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Sommario

La presente tesi descrive le fasi di progettazione e sviluppo di un middleware per

la gestione dei dati generati da Sistemi Pervasivi. L’obiettivo principale di questo

software consiste nel fornire un’interfaccia di alto livello finalizzata all’estrazione

di informazioni da un Sistema Pervasivo, vale a dire una rete eterogenea composta

da dispositivi di misura ed attuazione di varia natura. L’architettura proposta

si basa su un paradigma di programmazione ad eventi che permette una gestione

asincrona dei flussi dati generati dalla rete di sensori controllata.
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Abstract

This thesis describes the design and development of a data management middle-

ware for Pervasive Systems. The main goal of this software consists in the definition

of a high-level abstraction layer that can be used to collect information from a Per-

vasive System, i.e., a heterogeneous network composed of sensing and actuating

devices with different characteristics. The proposed architecture is based upon an

event-driven programming paradigm, which enables an asynchronous management

of the data streams generated by the underlying sensing network.
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Chapter 1

Introduction

Computing devices permeate every aspect of our life. PCs, tablets, smartphones,

identification badges, credit cards, smart-watches, wearable gadgets, traffic cam-

eras, digital fitness bands, and personal medical devices like pacemakers or insulin

injectors are only a few of the tools that we use every day, more or less consciously,

to produce and consume information.

As the number of devices and services that surround ourselves increases, so does the

level of mutual cooperation that we expect from them. We know that our smart-

phone will automatically show us the weather for our current location, sometimes

even for our hometown when we are away (How does it know where I live? Did

I ever tell it?). Navigation apps guide us through different itineraries at different

times of the day, depending on current and expected traffic conditions. Outbreaks

of the most common viral diseases can be traced and monitored by analysing what

people are searching on the web and correlating that data with other sources like

hospital records.

We have grown so accustomed to the tight level of integration between different

services and information sources, that behaviours similar to those presented above

are nowadays expected. User requirements have heightened, and products can

fail to gain traction if they don’t exploit the data that is available around us in
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CHAPTER 1. INTRODUCTION 2

new and innovative ways; different computing devices and services must discover

themselves and make mutual use of the information that they produce or consume,

meshing together in what is called a Pervasive System.

Firstly envisioned by Mark Weiser [17], Pervasive Systems are connected networks

of independent and heterogeneous devices, whose ultimate goal is to assist people

in a way that is effectively invisible to the final user. They are the result of a post-

PC era, where scores of computing gadgets are disseminated in our surroundings,

enhancing our capabilities to sense the world and providing ubiquitous access to

information.

From a software and hardware perspective, a Pervasive Systems is a rich and

varied environment, hosting myriads of different network protocols, data formats,

and incompatible CPU architectures. Tapping the ever increasing stream of data

produced in such a heterogeneous context, and using it to build advanced and

connected products, can easily become a daunting task. Since Weiser’s seminal

paper, several endeavours have explored different techniques for simplifying the

task of building and designing Pervasive Systems, many of which stemmed from

the research on Wireless Sensor Networks (WSN).

1.1 Wireless Sensor Networks and beyond

As suggested by the name, Wireless Sensor Networks (WSNs) are networks of wire-

lessly connected devices called nodes or motes, that are able to measure or detect

physical properties from their surrounding environment. Although the original

acronym only references the sensory features of such systems, current usage of the

term WSN is commonly extended to include devices with actuation capabilities.

Wireless Sensor Networks provide a low-cost and effective solution for monitoring

physical phenomena: several inexpensive nodes may be scattered around the area

of observation, without requiring an explicit configuration or a wired communica-

tion infrastructure. Data is autonomously routed from the point of origin to the
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interested consumers, where it is usually aggregated, analysed and presented to

the user. Flexibility and ease of deployment make WSNs the ideal candidate for

a plethora of applications, covering home automation, theft prevention systems,

healthcare, control of environmental hazards and monitoring of production lines.

The rapid increase in popularity of WSNs, coupled with the intrinsic difficulties

of working in a variegated software and hardware environment, spurred the devel-

opment of a wide variety of frameworks, middlewares, and ad-hoc programming

languages designed for providing an easy way of access to the functionalities offered

by networks of sensing and actuating devices and Pervasive Systems alike.

This thesis describes the design and implementation of one of these software sys-

tems, an asynchronous data access middleware for Pervasive Networks dubbed

New PerLa Middleware. Its history, as will be shown in chapter 2, is strongly

intertwined with the PerLa Query Language [15], a declarative SQL-like language

for collecting data from WSNs and other distributed sensing networks. However,

before delving into the substance of this middleware, the next section will provide a

short survey on the different approaches proposed in literature for the management

of Pervasive Systems.

1.2 Data management in Pervasive Systems

Early experiences in managing sensing networks were based on ad-hoc systems

that provided bespoken solutions to specific applications. These approaches were

usually built using proprietary hardware and highly customized software architec-

tures, whose design was ultimately concerned with the implementation of a limited

and well-defined series of task-oriented requirements. As shown in [9] [14] [18] [10]

these highly personalized systems are poorly reusable, since their architecture usu-

ally fails to provide a clear separation of concerns between the pure data access

mechanisms employed to control the underlying sensing network, and the partic-

ular behaviour required by the specific application. It soon became clear that this

strategy could not become a viable model for a simple and effective development



CHAPTER 1. INTRODUCTION 4

of pervasive applications, as all the effort and expertise put in the implementation

of such systems could not be efficiently exploited and shared in new projects.

TinyDB [13] is one of the first endeavours that tried to provide a generic ab-

straction suitable for the development of sensing applications based on Pervasive

Systems. A WSN managed by TinyDB is in fact presented to the final users as

a vast streaming database controlled through SQL-like queries, which are appro-

priately interpreted and distributed to the single nodes of a pervasive system in

order to specify a globally coordinated behaviour. Despite the general high-level

abstraction employed by this system, the execution of TinyDB queries requires all

nodes in the sensing network to be running the TinyOS [11] embedded operating

system, therefore limiting the variety of devices which can be managed using this

approach.

Similarly to TinyDB, DSN [4] aims at providing a database-like abstraction of

an entire Pervasive System, which can be queried and controlled using a Datalog

dialect dubbed Snlog. A comparable “WSN as a database” abstraction, as will be

shown in chapter 2, is a characteristic feature of the PerLa System as well.

Other projects tried to approach the problem of handling a Pervasive System by

shifting the focus on the management of highly heterogeneous networks of sensing

devices. SWORD [8] tries to achieve this goal by providing a central infrastructure

that can be used to monitor events and signals collected from a distributed mesh of

nodes. Unfortunately, its XML-over-HTTP messaging system considerably reduces

the variety of devices that can be integrated. GSN [2], on the other hand, is a

Java Middleware based on the concept of Virtual Sensor, a high-level software

component aimed at providing a common interface that can be used to collect

information generated by a single device of a sensing network. Virtual Sensors are

created by means of a declarative XML descriptor, and can be interfaced with the

remote endpoints through a specific device driver dubbed wrapper. Unfortunately

GSN does not provide any mechanism for automating the deployment of new

Virtual Sensors.

The TinyREST [12] project attempts to provide a RESTful [6] data access interface
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to each node available in a Pervasive System. This goal is achieved through a

server infrastructure that performs a mapping between HTTP methods and various

Input/Output operations performed by the devices of a sensing network. As a

result, an HTTP GET request can be used to sample a physical phenomena,

whereas a PUT operation allows users to command actuators or set variables

on remote devices. Its reliance on the TinyOS makes it vulnerable to the same

critiques made to TinyDB.

Contiki [5] is a lightweight and portable operating system specifically designed for

memory-limited devices. Differently from TinyOS, Contiki tries to foster the same

programming model available to desktop machines. Its kernel, whose footprint

may vary between 10 and 30 KB of RAM, provides in fact a fully functional

IPv4 and IPv6 networking stack, a multi-thread concurrency mechanism based on

protothreads and an over-the-air programming mechanism. Differently from the

other projects discussed in this section, Contiki does not provide any high-level

abstraction for accessing the information produced by a Pervasive System.



Chapter 2

The PerLa System

2.1 A brief history of PerLa

PerLa is a software infrastructure for data management and integration in Perva-

sive Information Systems. Its development began in 2005 at Politecnico di Milano,

with a thesis by Marco Marelli and Marco Fortunato entitled “A Declarative Lan-

guage for Pervasive Systems” [7]. With this document the two authors laid the

foundations for a completely declarative, SQL-like language that could be used to

gather information from Pervasive Systems and Wireless Sensing Networks alike.

Though their work primarily focussed on defining the syntax and semantics of the

PerLa language, Marelli and Fortunato went on to propose a reference software

architecture that could support the execution of PerLa data collection queries.

In their first design they envisioned the possibility of creating a Device Access

Layer, whose goal was to conceal all the idiosyncratic features of a Pervasive

System, and provide a homogeneous data access interface that could be used as

a thought device to support the first development stages of PerLa. The principal

element of this initial software architecture was the Logical Object, a virtualization

module that provides a uniform API for accessing the functionalities of a single

device in the sensing network; this germinal design evolved during the course of

6
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the following years into what would later be known as PerLa Middleware.

The PerLa Middleware [15] was primarily concerned with providing an actual

implementation to the Logical Object abstraction, a goal that was achieved with

the creation of the Functionality Proxy Component (FPC). The FPC is a Java entity

that reifies all concepts embodied by the Logical Object, with particular emphasis

on the ability to abstract the peculiar features of a single sensing device through

a common and uniform programming interface. The PerLa Middleware, however,

was more than a simple implementation of the Logical Object, as it provided a

Plug & Play system for the autonomous creation of FPC objects, as well as an

initial release of the PerLa Query Executor component.

The development of the PerLa Middleware has been a collaborative effort that

involved multiple students and several years of work. Therefore, the product that

ensued is the sum of all contributions made by different people, that, at one time

or another, put their minds and hearts at the design and implementation of the

system. While such development approach allowed PerLa to thrive and mature

rapidly, since many intellects had the possibility to contribute with their innova-

tive ideas, it also meant that the growth of the system has been inconstant and,

at times, confusing. It is under these premises that, in early 2014, the Middle-

ware underwent a complete redesign, whose primary intentions were to consoli-

date the main programmatic API (Application Programming Interface), improve

performances, and further advance some of the defining characteristics of its ar-

chitecture. The document you are reading is an account of this recent endeavor,

and contains a description of the past, present and foreseeable future of the PerLa

System.

The remaining sections of this chapter provide an overview of PerLa prior to

the current redesign, starting with the previous Middleware architecture — also

known as Classic PerLa Middleware — and ending with a short digression towards

Context management in Pervasive Systems. This same chapter will describe the

main features of the PerLa Query Language, which as of today still is the interface

of choice for using PerLa. Chapters 3 and 4 contain an in-depth description of



CHAPTER 2. THE PERLA SYSTEM 8

Context Manager

Query Executor

PerLa Middleware

Pervasive System

Figure 2.1: A macro component view of the PerLa System.

the New Middleware architecture, which should be of concern to any programmer

interested in developing PerLa Plugins or connecting new types of sensing devices.

Finally, chapter 5 wraps up the work illustrated in this thesis, and provides an

outlook on the prospects for PerLa’s future.

2.2 The Classic Middleware Architecture

2.2.1 Main goals and operating principles

The PerLa Middleware is a complex software based on the Java platform. Its

development focussed primarily on the design and implementation of the following

features:

• data-centric view of Pervasive Systems;

• homogeneous high level interface to heterogeneous devices;

• support for highly dynamic networks (e.g., wireless sensor networks);

• minimal coding effort for new device addition.

The remaining of this chapter will show how the implementation of the FPC compo-

nent and the development of a Plug & Play device addition mechanism contributed
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to achieving the aforementioned goals. The reader is strongly encouraged not to

skip these following sections, as most of the concepts hereby introduced will be

subject of further discussion in chapter 3, where they are going to be matched

alongside their novel counterparts.

2.2.2 The Functionality Proxy Component

As previously stated, the principal element of the PerLa Middleware, both in its

classic and redesigned incarnations, is the FPC. Its primary function consists in

providing a consistent and homogeneous interface that can be used by high-level

components of the PerLa System to access all functionalities of a Pervasive System,

without requiring any knowledge of the underlying hardware layer.

All data elements accessible through an FPC are abstracted using the concept of

Device Attribute, namely a single piece of information produced or consumed by

a node in the Pervasive System. By design, device attributes are not tied to a

particular technology, and can therefore be used to represent any primitive value,

regardless of the method employed for its generation (physical sampling, read from

main memory, etc.). Device Attributes are one of the defining aspects of the PerLa

Middleware, and greatly contribute to the creation of a data-centric abstraction

that can be used to access all features of a sensing network; any operation per-

formed through the FPC interface is in fact specified in terms of reading or writing

a specific set of attributes.

In the Classic PerLa Middleware, the physical connection between an FPC and

its remote device is entirely managed by the Channel Manager (see figure 2.2).

This singleton component is responsible for the creation of Virtual Channels,

abstract network interfaces that conceal the specific technologies required to hold

a communication link between two endpoints of a Pervasive System. By means of

the Channel Manager, FPCs and physical devices can exchange information trans-

parently, mutually ignoring all the architectural differences that may exist between

them. The achievement of a truly universal communication system, however, is
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Figure 2.2: The Classic PerLa Middleware architecture

severely limited by the capabilities of the Channel Manager itself, as the choice

of protocols available in the Classic Middleware is strictly restricted to those that

the original PerLa Developers hard-coded into this component.

As shown in figure 2.3, the internal structure of the Classic FPC is mainly composed

of a Marshaller, an Unmarshaller, and a selection of Java objects representing

the messages which can be exchanged with the remote endpoint. This early design

is enough to implements a simplified data collection mechanism, based on the

assumption that every device attribute can be mapped to exactly one message

field. Under the Classic Middleware, a typical data collection request for a well-

defined set of attributes would then be executed as follows:

1. Starting from a user’s request, and leveraging the one-to-one relationship be-
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Figure 2.3: The Classic FPC design

tween attributes and message fields, the FPC compiles a list of data structures

which are to be collected from the remote device;

2. The remote device starts streaming data to the FPC. This information is un-

marshalled into a high-level Java message, according to the directives speci-

fied inside the Device Descriptor (see section 2.2.3);

3. All message fields containing relevant information for the user are read in

order to produce an output record.

A similar process, making use of the Marshaller component instead of the Un-

marshaller, and with a reversed data flow, allows the FPC component to send

configuration parameters towards its controlled device.
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2.2.3 Plug & Play device addition

Sensing nodes can be added to a running instance of the PerLa Middleware through

a Plug & Play device registration mechanism that allows the discovery and configu-

ration of new devices without the need for direct user interventions. This operation

is performed at runtime by the FPCFactory, a software component tasked with

creating new FPC objects from a blueprint document called Device Descriptor.

PerLa-enabled devices are programmed to send their XML descriptor at startup;

this allows them to be readily available for use, as their controlling FPC object

is dynamically instantiated by the FPCFactory upon reception of the Device De-

scriptor. Figure 2.2 contains a graphic portrayal of this entire process.

<parameterStructure name="DataMessage">
  <endianness>BigEndian</endianness>
  <parameterElement name="timestamp">
    <length>8</length>
    <type nameType="long">
      <sign>unsigned</sign>
    </type>
    <attributeType></attributeType>
    <permission></permission>
  </parameterElement>
  <parameterElement name="voltage">
    <length>2</length>
    <type nameType="long">
      <sign>signed</sign>
    </type>
    <attributeType></attributeType>
    <permission></permission>
  </parameterElement>
...
</parameterStructure>

XML Descriptor Java Message

@StructInfo(endianness = Endianness.BIG)
public class DataMessage {
  
  @SimpleField(size = 8, sign = Sign.UNSIGNED)
  private long timestamp;
  @SimpleField(size = 2, sign = Sign.SIGNED)
  private int panelVoltage;
  @SimpleField(size = 2, sign = Sign.SIGNED)
  private int panelCurrent;
  @SimpleField(size = 2, sign = Sign.SIGNED)
  private int batteryVoltage;
  @SimpleField(size = 1, sign = Sign.UNSIGNED)
  private int flags;
}

C-Struct declaration

typedef struct {
  uint64_t timestamp;
  int16_t panelVoltage;
  int16_t panelCurrent;
  int16_t batteryVoltage;
  uint8_t flags;
} DataMessage;

Figure 2.4: Physical to logical attribute mapping in the Classic PerLa Middleware. The anno-
tations added to the Java Message allow the Marshaller and Unmarshaller components
to encode and decode the information exchanged with the remote device.

The information required to create all internal components of an FPC, along with

the corresponding attribute-message mappings and Marshaller/Unmarshaller di-

rectives, are extracted from the Device Descriptor. Figure 2.4 contains a typical

example of such file, which highlights the interdependence that exists between C-

Struct declarations used in the sensing device, corresponding Device Descriptors,

and the resulting Java classes created by the FPCFactory.

All FPC objects created by the FPCFactory are catalogued and inventoried in the
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Registry, a simplified main-memory database that contains a complete directory

of all devices connected to the PerLa Middleware. By means of the Registry,

users can sift through all nodes of the network, and select those that best suit their

current computational needs. As will be shown in the next section, this component

is fundamental for the implementation of the EXECUTE IF query clause.

2.3 The PerLa Query Language

The PerLa Query Language is a declarative, SQL-like language for interacting with

Pervasive Systems. A sensing network managed by PerLa is abstracted as a large

table in a streaming database, whose columns correspond to specific Attributes

that can be retrieved from the devices connected to the Middleware. This gener-

alization allows final users to glean information out of a Pervasive System without

dealing with all the complications that stem from managing the quirks of every

single sensing node, as the intricate mesh of available data sources is completely

hidden by the database abstraction.

The PerLa Query Language is designed to be simple and easy to use. Its core syn-

tax is compact and reminiscent of other well-known database-oriented languages

as SQL, and provides a uniform interrogation mechanism that enables the collec-

tion of data elements regardless of their origin; information may be sampled from

a physical phenomena, read from the memory of an endpoint device or extracted

from a web service: whatever the source, the PerLa query pattern is always the

same.

The reminder of this section will provide an overview of the main syntactic and se-

mantic features of the PerLa Query Language, along with two examples excerpted

from real-world use cases.
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2.3.1 The Data Management section

Introduced by the SELECT clause, this portion of the PerLa Query Language should

immediately result familiar to every developer acquainted with classic SQL. This

clause achieves two purposes: first, it defines which data elements (specifically,

which data Attributes) are to be collected from the Pervasive System; second, it

indicates the operations and computations that must be performed on the infor-

mation being extracted.

The need to manage a theoretically infinite stream of data elements coming from

the sensing network required the development of a custom syntax for aggregate

operations. Differently from standard SQL aggregates, which always operate on a

finite set of elements, PerLa aggregates must cope with an ever-flowing stream of

records, and thus require users to specify the scope of their intended computations.

This is achieved through a duration expression, a mandatory parameter that com-

plements the aggregation clause by limiting the number of records to be processed

to a limited amount. Duration expressions can be specified using two different

methods: a time-based syntax, that allows users to define the aggregation scope in

terms of time windows (SELECT AVG(TEMP, 10 SECONDS)), and a record-based syn-

tax, that clearly indicates the number of records to be used for the computation

(SELECT AVG(TEMP, 30 SAMPLES)).

2.3.2 Sampling section

The Sampling section can be used to specify how and when the data Attributes

requested with the SELECT statement are to be extracted from the network nodes.

There are two different operating modes, both introduced by the SAMPLING clause.

Time-based sampling is employed to collect data at periodic intervals; in this mode,

the sampling frequency is specified by means of an IF-EVERY syntax, which enables

users to specify different expression-guarded sampling periods (see listing 2.1 for an

applicative example). On the other hand, the Event-based sampling mode allows

the acquisition of a data sample each time a specific event is fired.
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1 SAMPLING

2 IF temperature < 50 EVERY 10 MINUTES

3 ELSE IF TEMPERATURE >= 50 EVERY 1 MINUTES

Listing 2.1: An example of time-based sampling, which shows how the sampling frequency

can be increased as the monitored phenomenon evolves.

2.3.3 Conditional Execution section

Introduced by the EXECUTE IF clause, this query section contains a boolean ex-

pression that every sensing device must satisfy in order to be considered as a

candidate data source, and it’s often employed when the user requires its query to

be executed on nodes with well-defined capabilities. This section is optional, and

its omission implies that the PerLa query must be executed on every device of the

sensing network. An EXECUTE IF statement can be optionally complemented by a

REFRESH clause, which specifies how often the execution condition is re-evaluated

to update the list of nodes involved in the evaluation of a query.

2.3.4 Termination Condition section

The Termination Condition is an optional clause that can be used to stop a query

after a specific of amount of time (TERMINATE AFTER 1 DAY) or number of executions

(TERMINATE AFTER 10 SELECTIONS). This behaviour is useful when perform a one-

shot query, or when the monitoring period is known a priori.
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2.3.5 Query examples

The following query initiates a temperature sampling operation on all temperature

sensors located in room number three. New data readings are collected by the

minute, as specified in the SAMPLING clause; however, new output records are

created every 5 minutes, as indicated in the EVERY statement that guards the

entire data management section. Thanks to the MAX aggregation expression, each

record produced by this query contains the maximum temperature value collected

in the previous 10 minutes of sampling.

1 CREATE OUTPUT STREAM Table (Temperature FLOAT) AS:

2 EVERY 5 MINUTES

3 SELECT MAX(temp, 10 MINUTES)

4 SAMPLING

5 EVERY 1 MINUTES

6 EXECUTE IF EXISTS(temp) AND EXISTS(room) AND room = 3

This second example illustrates how the PerLa Language can be used to collect

information in response to an event. As can be seen from the TERMINATE AFTER

clause, this one-shot query terminates as soon as the first record is produced.

Its single output record contains the number of times the RFID with identifier

0xDF445A was scanned in the last 10 minutes.

1 CREATE OUTPUT STREAM Table (rfid STRING, counter INTEGER) AS:

2 EVERY 10 MINUTES

3 SELECT lastReaderId, COUNT(*, 10 MINUTES)

4 SAMPLING

5 ON EVENT lastReaderChanged

6 EXECUTE IF ID=[0xDF445A]

7 TERMINATE AFTER 1 SELECTIONS
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2.4 Context management

The Context Management layer [16] is an extension to the PerLa framework de-

signed to simplify the development and deployment of context-aware applications

based on distributed sensing networks. It consists of a Context Language and

a Context Management component, both of which interface directly with the

Query Executor layer. The Context Language enables PerLa users to define the

context-driven behaviour of a network of distributed computing nodes; context is

represented using the Context Dimension Tree model (CDT, [3]), while context-

dependent actions are specified using PerLa Queries. The Context Management

component is responsible for populating the CDT with data collected from the

sensing network, as well as tailoring and performing the related PerLa query asso-

ciated with the active context.



Chapter 3

The New PerLa Middleware

3.1 Design goals

Redesign of the PerLa Middleware began in early 2014 with the intention to con-

solidate the existing software infrastructure and refine its main features. This

process set in motion a critical analysis of the existing architecture, which led to

a complete rethinking of many of the Middleware’s distinctive components and

processes, like the FPC and its Plug & Play device addition mechanism. As will

become clear, not all components required the same amount of changes; some var-

ied much, other less, while others practically remained unchanged (for example,

the Registry).

The main driving force that pushed this re-engineering endeavour was the need

to strengthen the major Middleware APIs, and elegantly integrate all isolated

contributions made by past PerLa developers into a single, coherent product. Fur-

thermore, this redesign proved to be an excellent opportunity for expanding the

capabilities of the PerLa Middleware itself, and to better prepare it to cope with a

constantly evolving Pervasive Environment where web-services and RESTful data

sources are ever more present. This last requirement, above everything else, has

been crucial to the development of the final Middleware architecture described in

18
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this thesis, as it enforced a precarious balance between two seemingly incompatible

necessities, namely the need to interface with low-level, resource-limited sensing

nodes and with high-power web services alike.

In summary, the goals pursued during the re-engineering of the PerLa middleware

amounted to:

• Consolidate all programming interfaces exposed to the final users, with a

special regard to the FPC and the Device Descriptor;

• Integrate and coalesce the internal programming interfaces employed to in-

terconnect the various Middleware modules using an asynchronous, event-

driven paradigm;

• Improve the expandability of the system by introducing a modular design

composed of pluggable and independent software units;

• Identify and solve potential bottlenecks that could prevent the Middleware

from scaling gracefully under load.

The remainder of this section presents an overview of the New PerLa architecture;

its intended objective is to convey the major differences that exist between the two

Middleware designs, while explaining how they contribute to achieving the afore-

mentioned goals. An in-dept description of all modules described in the following

is available in chapter 4.

3.2 Overview of the New Middleware Architec-

ture

As illustrated in the previous chapter, the PerLa Middleware is responsible for

managing the lifecycle of all devices connected to the PerLa System, and for pro-

viding a uniform API to interact with them. Its design revolves around the Func-

tionality Proxy Component (FPC), a self-contained proxy object that embeds all

the logic required to communicate with a single remote device. The most promi-

nent trait of the FPC is its interface, an API that allows PerLa users to interact
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with the sensing network through a compact set of hardware-agnostic communica-

tion primitives reminiscent of classic Java getter and setter methods. Use of this

interface neither requires knowledge of the sensing network, nor of the device that

will ultimately perform the requested operation.
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Figure 3.1: The New PerLa Middleware architecture

3.2.1 The New FPC

Differently from the Classic PerLa Middleware, the New FPC is formed from the

composition of various independent software units, each of which is responsible for

the management of a single aspect of the interaction with the remote device (see

figure 3.2). This new modular design was chosen to further promote reusability
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and foster future expandability through composition of independent objects. The

remainder of this section contains a summary of all modules that compose the new

FPC architecture.

Output data streamRequest

Physical Device

FPC
Operation Scheduler

Messages

Channels

Script
Operation

Figure 3.2: Internal structure of the New FPC.

3.2.1.1 Channel

Channels are software components capable of performing I/O operations. They

are commonly employed to manage the communication between PerLa and the

devices of a Pervasive System, and can be thought as a complete substitute of the

Channel Manager/Virtual Channel component pair. Unlike their counterpart

in the Classic architecture, Channels are settled inside the boundary of an FPC.

This change of location has two important consequences: first of all, it allows each
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FPC to make use of multiple data transmission technologies for the exchange of

information with the controlled endpoint; second, it enhances the modularity of

the entire PerLa Middleware, as new communication systems and protocols can

be introduced without modifying any existing Channel implementation.

Every Channel is bundled with a collection of IORequest objects, which are

employed to initiate specific I/O tasks on the sensing nodes. For example, the

HTTPChannel — a Channel implementation of the HTTP protocol — can be used

with four different IORequests, one for each of the principal HTTP methods (GET,

POST, PUT and DELETE).

3.2.1.2 Mapper

A software module for marshalling and unmarshalling data. Mappers allow the

FPC to interpret byte streams received from a communication Channel, and to

serialize high-level data structures prior to transmission. They perform as a more

flexible alternative to the fixed Marshaller-Unmarshaller components found in

the Classic FPC implementation.

It is important to note that every Mapper is a discrete component responsible for

managing a specific Message format. Therefore, similarly to what already seen for

the Channel object, a single FPC may employ different Mapper objects tasked with

managing a well-defined set of data structures exchanged with the remote device.

This feature is in stark contrast with the Classic Middleware design, which could

only handle a single data format per device.

3.2.1.3 Scripts and Operations

Scripts and Operations are new additions to the PerLa Middleware. Their pri-

mary duty consists in binding high-level data requests to native processing tasks

performed on the remote device.

Scripts are interpreted programs written using the PerLa scripting language, a
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simple imperative programming language designed for interacting with sensing

nodes and for mapping low-level data structures to high-level Attributes gen-

erated by an FPC. Scrips are executed by a singleton component denominated

Script Engine.

Operations, on the other hand, are data management entities that incorporate

one or more Scripts dedicated to a specific purpose. The New Middleware ar-

chitecture distinguishes between four Operation types, corresponding to different

data collection or transmission strategies:

Temp: 25.4, Hum: 84

Temp: 25.2, Hum: 84

Physical Device

FPC
Operation (temperature, humidity)

Channels

Messages

Data ScriptInit Script

get(temperature, humidity) Temp: 25.0, Hum: 84

2
Init Script starts

the periodic
sampling

1 User reuquest

3
Data Script converts

samples in
PerLa records

Figure 3.3: The execution of a user request in the New FPC
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• Get Operation: retrieves a single sample from the remote device;

• Set Operation: transmits data to the remote device;

• Periodic Operation: manages the periodic collection of data samples gen-

erated by an endpoint of the Pervasive Network;

• Async Operation: handles the reception of asynchronous events emitted by

the controlled node.

It is important to note that every Operation is associated with the set of Device

Attributes that can extract or set through it (see 3.3). Therefore, under the New

Middleware architecture, a typical data collection request is executed as follows:

1. The FPC selects an Operation that can be used to adequately retrieve the

Attributes requested by the user;

2. The Operation’s initialization Scripts, if any, are executed in order to con-

figure the remote device and commence the collection of data;

3. Every data sample received from the FPC is processed by a Script, as per

Operation instructions, which is tasked with unmarshalling the information

sent by the endpoint and create a new output record.

3.3 FPCFactory

The new FPCFactory is a modular software entity composed of multiple factory

components dedicated to the creation of a specific FPC module. Its design is a

significant departure from the original monolithic factory structure, and allows

final users to easily expand the base capabilities of the PerLa Middleware with-

out modifying its original source code. This modular architecture, formally called

FPCFactory Plugin System, is a direct implementation of the Open/Close princi-

ple: the FPCFactory is open for extension, as its functionalities can be expanded

by adding new plugins, but closed for modification, since the addition of a new

sub-factory modules does not require any change to the Middleware’s source code.

At the current state of implementation, the PerLa Middleware supports three dif-
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ferent FPCFactory plugin types, viz. ChannelFactories, IORequestFactories

and MapperFactories, which are responsible for the creation of new Channels,

IORequests and Mappers respectively. All implementations of a single plugin type

are tasked with creating the same class of FPC modules, but are allowed different

behaviours; for example, the HTTPChannelFactory and the TinyOSChannelFac-

tory both create Channel objects, but the first are used to connect with RESTful

web APIs, whereas the second are interfaces to TinyOS networks.

The introduction of a new modular FPCFactory Plugin System resulted in a com-

plete redesign of the Device Descriptor itself, which changed its layout to accom-

modate a modular structure that closely follows the new FPCFactory architecture.

The new Device Descriptor is composed of the following elements:

• Preamble: Represented by the root <device> tag, this section contains

a textual description of the endpoint, and a list of XML namespaces. As

shown later, namespaces are employed to select the various Device Descriptor

features and FPCFactory plugins required for the creation of an FPC object;

• Attribute declarations: A list of all the Attributes exposed by the de-

vice. It must be enclosed in an <attribute> XML tag;

• Channel declarations: This section contains the configuration options

of all Channel objects required to communicate with the remote device.

Its contents are parsed and interpreted by the individual ChannelFactory

plugins, whose structure is discussed in section 4.1;

• Request declarations: This part of the Device Descriptor is reserved for

the declaration of all IORequest objects needed to communicate with a re-

mote device. The elements hereby contained are processed by the IORe-

questFactory plugins, as per instructions given in section 4.1;

• Message declarations: A section reserved for the declaration of all data

structures required to exchange information with a node of the network. Its

contents are directly interpreted by the MapperFactory plugins to create

new Message mappers, as described in section 4.2;

• Operation declarations: As shown in section 4.4, this final portion of
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the Device Descriptor contains all PerLa Scripts employed to control the

remote device.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <device type="test" xmlns="http://perla.dei.org/device">

3 <attribute>

4 <!-- Attribute declarations -->

5 </attribute>

6 <channel>

7 <!-- Channel declarations -->

8 </channel>

9 <message>

10 <!-- Message declarations -->

11 </message>

12 <request>

13 <!-- IORequest declarations -->

14 </request>

15 <operation>

16 <!-- Operation and Scripts -->

17 </operation>

18 </device>

Listing 3.1: The skeleton of the new XML Device Descriptor.

As briefly explained in previous paragraphs, XML namespaces constitute a fun-

damental element of the FPCFactory Plugin System, since they are used to select

which factory component must be employed for the creation of a specific FPC

module. A practical example of this concept is available in figure 3.4: this De-

vice Descriptor excerpt specifies two plugin namespaces, one for a HTTPChannel

(http://perla.dei.org/fpc/channel/http), and the other for a JSONMapper

(http://perla.dei.org/fpc/message/json); these two values, once processed
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by the /textttFPCFactory, are used for selecting the specific plugin that will be

used for constructing the corresponding FPC components. It is important to note

that the http://perla.dei.org/device and http://perla.dei.org/device/instructions

namespaces included in this example are mandatory, as they respectively define

the Device Descriptor base elements and all available Script instructions.

Device Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<device type="test-json"
    xmlns="http://perla.dei.org/device"
    xmlns:i="http://perla.dei.org/device/instructions"
    xmlns:http="http://perla.dei.org/fpc/channel/http"
    xmlns:json="http://perla.dei.org/fpc/message/json">

<channel>
  <http:channel id="http_ch1"/>
</channel>

<message>
  <json:object id="data">
    <!-- content omitted -->
  </json:object>
</message>

</device>

FPCFactory

Channel Plugins

TinyOSChannelFactory
http://perla.dei.org/fpc/channel/tinyos

HTTPChannelFactory
http://perla.dei.org/fpc/channel/http

XMLMapperFactory
http://perla.dei.org/fpc/message/xml

JSONMapperFactory
http://perla.dei.org/fpc/message/json

Mapper Plugins

FPC

HTTPChannel
(http_ch1)

JSONMessage
(data)

Figure 3.4: Namespace-guided FPC creation.

Every FPCFactory plugin is also responsible for defining the particular XML syn-

tax to be used in its Device Descriptor section. This feature endows plugin authors

with the opportunity to specify a custom set of options to be used for the creation

of their FPC modules. The possibility of using a custom syntax is key to the new

FPCFactory Plugin System, since different types of plugins may require totally

different configuration values in order to be used or even initialized (e.g., commu-

nicating over a HTTP Channel is considerably different than sending data on a

low-power mesh network).

3.4 Asynchronous interaction paradigm

The last differences between the New and Classic Middleware architectures lies

in the technique employed to interconnect internal modules of the PerLa software

infrastructure. The New Middleware introduces a fully asynchronous interaction
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paradigm based on non-blocking method invocations and event-driven program-

ming techniques, which deviates profoundly from the mechanism previously pro-

moted in the Classic design.

Pi
pe

Producer

Consumer

Waiter

Data �ows from the producer to 
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A Waiter Java thread is required to 
correctly deque information from 
the Pipe.

Figure 3.5: A typical Pipe-Waiter connection in the Classic PerLa Middleware

Within the previous Middleware architecture, a connection between two different

modules was achieved by means of a decoupling element dubbed Pipe, a one-way

message queue designed to shuttle data elements from a software component to

its intended receiver. This system proved to be crucial in the first development

stages of PerLa, as its generic interface allowed the early designers to experiment

with several competing architectures and component combinations. However, its

flexibility came at a cost, both in terms of performances and API readability. First

of all, each Pipe allocated an initial memory cache of 10 elements. Moreover,

the receiving end of a Pipe, namely the Waiter, was required to instantiate a

Java thread dedicated solely to the reception of data messages. The widespread

use of the Pipe-Waiter paradigm thus led to the proliferation of threads and to

an overuse of memory, which negatively impacted the overall system efficiency.

In addition, the loosely coupled interaction paradigm promoted by the Classic

Middleware resulted in a weak API that lacked intent and semantic clarity.

The asynchronous, event-driven architecture implemented in the New Middleware

overcomes all aforementioned drawbacks, and improves system performances in
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terms of both throughput and scalability. Differently from the deprecated Pipe-

driven system, this new design fosters a direct exchange of information between

data producers and data consumers; information is no more delivered using a

mandatory middleman (i.e., the Pipe), but is explicitly handed over to the in-

tended recipients. This interaction paradigm is based on the Hollywood Principle,

a software design methodology whose tenets are summarized by the motto “don’t

call us, we call you”, that encourages the development of highly-cohesive, low-

coupling APIs,

1
Request
async.

computation

request(Handler)

return IOTask

complete(data)

callback

Consumer Handler Producer

3 Async.
Callback

Figure 3.6: Sequence diagram of an asynchronous method call. Note that the consumer
and the producer continue their execution in parallel.

Every asynchronous method call in the New PerLa Middleware is identified by the

following characteristics:

• Does not block: Calls to an asynchronous method never block; control of

the execution flow is immediately returned to the caller, and the requested
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computation is executed asynchronously. This characteristics reduces the

number of Java threads that the caller module needs to instantiate;

• Returns a Task object: Asynchronous method calls do not return the

immediate result of a computation. Instead, they return a Task, i.e., an

object that can be employed to stop the ongoing operation or to query its

current state of progress;

• Defers the delivery of results: The effective result of an asynchronous

method is notified through a Handler function, which is invoked as soon as

the computation terminates.

For an in-depth description of the actual asynchronous APIs implemented within

the PerLa Middleware, refer to chapter 4.



Chapter 4

In-depth component description

4.1 Communicating with Channels

Channel is an interface for performing I/O operations. It represents the principal

abstraction used by the middleware to communicate with hardware devices and

external software services.

The Channel interface is not tied to any specific technology or communication

stack; as a result of this design choice, a wide variety of data management tasks,

including but not limited to, networking, file handling, and automatic data gener-

ation can be implemented as Channels. This concept is taken even further by the

SimulatorChannel, a particular Channel implementation that generates random

data samples that allow the PerLa Middleware to be tested even when no devices

are connected to it.

The current Middleware architecture encourages the creation of several highly spe-

cialized Channels, which are usually developed around third-party communication

libraries. HTTPChannel, a Channel providing support for HTTP communications,

is an excellent example of the advantages of this design strategy. Implemented as

a simple wrapper around Apache’s HTTP Components toolkit, its development

only required a basic understanding of the HTTP protocol; yet HTTPChannel is a

31
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1 public interface Channel {

2

3 public String getId();

4

5 public IOTask submit(IORequest request, IOHandler handler)

6 throws ChannelException;

7

8 public void setAsyncIOHandler(IOHandler handler)

9 throws IllegalStateException;

10

11 public boolean isClosed();

12

13 public void close();

14

15 }

Listing 4.1: The Channel interface

fully compliant HTTP/1.1 client.

Upon instantiation, Channels are open and ready to be used. They may be option-

ally closed to relinquish unused resources by invoking the close() method. Once

closed, a Channel cannot be re-opened, and every subsequent attempt to perform

an I/O operation will fail causing a ChannelException to be thrown. The current

state of a Channel can be probed through its isClosed() method.

Bytes sent or received with a Channel are encapsulated in a Payload object. As

shown in listing 4.2, the Payload interface allows all Middleware components to

handle different data types with a common set of methods, regardless of their indi-

vidual encoding. Payloads will be the subject of further discussion in section 4.2

All user-initiated I/O operations begin with an invocation of the Channel.submit()

method. As can be seen in listing 4.1, submit() is a direct implementation of the

asynchronous interaction paradigm introduced in section 3.4. The emphasis on

asynchronous execution is underscored by the absence of blocking operations in

the Channel interface. This aspect is of paramount importance for the entire

Middleware design, as implementing a truly asynchronous system would prove
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1 public interface Payload {

2

3 public Charset getCharset();

4

5 public InputStream asInputStream();

6

7 public ByteBuffer asByteBuffer();

8

9 public String asString();

10

11 }

Listing 4.2: The Payload interface

impossible if such feature were not provided by its core data access layer.

4.1.1 Instantiating new Channels

Channels are created by means of the ChannelFactory interface, a reification of

the Factory design pattern that allows polymorphic instantiation of new object

classes.

By using a Factory instantiation model, the choice of a particular Channel im-

plementation can be postponed from compile time to run time. This technique

allows the Middleware to dynamically adapt in response to environment changes,

and to support extension through the addition of new user-defined Channels. For

further information regarding the Factory pattern and its other uses inside the

PerLa Middleware, refer to section 3.3.

All the information required to create a new Channel is stored inside a ChannelDe-

scriptor. As shown in listing 4.3, this configuration object is the only parameter

required to correctly invoke the createChannel() method.

Each ChannelFactory is tied to a specific communication technology; therefore,

it can only accept a single class of ChannelDescriptor objects. For example, the

HTTPChannelFactory parses HTTPChannelDescriptors and creates HTTPChan-
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1 public interface ChannelFactory {

2

3 public Class<? extends ChannelDescriptor>

4 acceptedChannelDescriptorClass();

5

6 public Channel createChannel(ChannelDescriptor descriptor)

7 throws InvalidDeviceDescriptorException;

8

9 }

Listing 4.3: The ChannelFactory interface

Figure 4.1: Class diagram of the Channel layer

nels, whereas an hypothetical SerialChannelFactory would consume SerialChan-

nelDescriptors to create SerialChannels. Failure to provide a suitable Chan-

nelDescriptor object will cause the createChannel() method to throw an In-

validDeviceDescriptorException.

The acceptedChannelDescriptorClass() method can be used to dynamically

discover which ChannelDescriptor type is supported by a specific ChannelFac-

tory. This method is the fulcrum of the Channel Plugin System, as it allows the

Middleware to invoke the most appropriate ChannelFactory using only informa-

tion available at runtime.

ChannelDescriptor objects are automatically created by the Middleware using

the information contained in the Device Descriptor XML files. This binding process
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Device Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<device type="test-json">

<channels>
  <serial:channel
    id=”test” 
    port=”com1”
    baud-rate=”9600”
    data-bits=”8”
    parity=”none”/>
</channels>

</device>

SimulatorFactory
(SimulatorChannelDescriptor)

HTTPChannelFactory
(HTTPChannelDescriptor)

SerialChannelFactory
(SerialChannelDescriptor)

FPCFactory

SerialChannel

String port;  // com1
int baudRate; // 9600
int dataBits; // 8
int parity;   // 0

1

2

3

Figure 4.2: The Channel creation process

This figure illustrates the Channel creation process executed by the Middleware upon reception of a
new Device Descriptor.

1. JAXB binds the XML Device Descriptor to an appropriate ChannelDescriptor object using
namespace information

2. A suitable ChannelFactory is selected at runtime using the acceptedChannelDescriptor-

Class() method
3. The information contained in the SerialChannelDescriptor is used to create a new Seri-

alChannel

is performed by the JAXB library, which is also responsible for instantiating the

correct ChannelDescriptor class using XML Namespace information. Figure 4.2

illustrates this technique, and ties it together with the other operations described

in this section.

It is important to note that a single JVM instance running the PerLa Middleware
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1 public interface IORequest {

2

3 public String getId();

4

5 public void setParameter(String name, Payload payload);

6

7 }

Listing 4.4: The IORequest interface

may host several Channel objects of the same type, at the same time. Several

devices can use the same communication technology, and the ChannelFactory

may determine that it’s best to create an individual Channel for each one of

them. This behaviour is fostered by the new ChannelFactory architecture, and

is considered idiomatic design; hence, it would not be uncommon to implement

the hypothetical SerialChannelFactory introduced in the previous paragraphs

so that every serial port is handled by a different SerialChannel instance.

4.1.2 IORequest management

IORequest is the base object interface employed to interact with a sensing node

connected to the Middleware. It contains two types of information: the payload to

be transferred, and Channel-dependent data needed for a correct communication

with the endpoint device.

Every Channel implementation is bundled with its own custom IORequest class.

Following up on previous examples, the HTTPChannel package contains a HTTPI-

ORequest object, whereas the fictitious SerialChannel would be supplied with a

SerialIORequest class of request objects. This additional level of indirection is

necessary since different communication technologies require different settings to

establish end-to-end connectivity; therefore, a universal IORequest object would

soon prove to be a limiting factor for the extension of the Middleware.

As shown in listing 4.4, payload data can be set in an IORequest by means of the
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setParameter() method. Payloads are addressed by name, and a single IORe-

quest implementation may support several at once. The exact set of Payload

parameters accepted by an IORequest class depends on the design of its match-

ing Channel; for example, the HTTPChannel implementation supports three: an

‘entity’ payload (request body), a ‘query’ payload (an URL-encoded string), and

a ‘path’ payload (a path component used to identify a single resource accessible

from the base URL).

IORequests are disposable objects; they are created, submitted to a Channel, and

garbage collected once the communication is over. Creation is performed by means

of a factory interface dubbed IORequestBuilder, which allows the Middleware to

build new copies of an IORequest from a fixed template. It is important to note

that request objects built using this technique do not contain Payload parameters;

these are to be added manually before submitting the IORequest to a Channel.

Besides IORequest creation, the IORequestBuilder interface can be used to dy-

namically discover which Payload parameters are supported by an IORequest.

This functionality, exposed through the getParameterList() method, is a cru-

cial component of the Middleware Plugin System, as it allows Script instructions

to determine whether an IORequest was populated with all the necessary Pay-

load parameters or not. This concept will be the subject of further analysis in

section 4.3.

A single device connected to the PerLa Middleware is generally managed using

several IORequestBuilders, any one of which is responsible for creating a request

object suitable to control a single aspect of the interaction with the endpoint. The

main advantage brought by this templating mechanism is that Channel-related

configuration settings are only specified once, hence the same IORequest structure

can be reused multiple times to transport different payload information.

1 public interface IORequestBuilder {
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2

3 public String getRequestId();

4

5 public IORequest create();

6

7 public abstract List<IORequestParameter> getParameterList();

8

9 public static class IORequestParameter {

10

11 public String getName() {

12 return name;

13 }

14

15 public boolean isMandatory() {

16 return mandatory;

17 }

18

19 }

20 }

Listing 4.5: The IORequestBuilder interface

REST APIs are an excellent use case to demonstrate the aforementioned concept,

as every operation on a RESTful resource can be easily abstracted using an ap-

propriately configured request builder. By using HTTPIORequestBuilder objects,

HTTP protocol information (base URL, method, header, . . . ) are specified one

single time only for every REST endpoint. Once this step is done, the API can be

invoked just by building new IORequests and submitting them to a HTTPChannel.

IORequestBuilders are created by means of an IORequestBuilderFactory, an

object that implements the now familiar Factory design pattern. Creation pro-

ceeds as follows: the request template is loaded from an XML Device Descriptor,

bound to an appropriate IORequestDescriptor, and processed by the IORequest-

BuilderFactory to create the corresponding IORequestBuilder. Similarly to
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Device Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<device type="test-json">

<requests>
  <http:request
    id=”get” 
    host=”http://test.com/resource/”
    method=”GET”/>
  <http:request
    id=”create” 
    host=”http://test.com/resource/”
    method=”POST”
    content-type=”application/json”/>
</requests>

</device>

SimulatorIORequestFactory
(SimulatorIORequestDescriptor)

SerialIORequestFactory
(SerialIORequestDescriptor)

HTTPIORequestFactory
(HTTPIORequestDescriptor)

FPCFactory

1

2

3

String host;  // http://test.com/people/ 
String method; // GET

HTTPIORequestDescriptor (get)

String host;  // http://test.com/people/ 
String method; // GET
String contentType; // application/json

HTTPIORequestDescriptor (create)

IORequestBuilder
Creation

HTTPIORequestBuilder (get)

HTTPIORequestBuilder (create)

Template:
host = http://test.com/people/ 
method = GET
contentType = application/json

HTTPIORequest

host = http://test.com/people/ 
method = GET
contentType = application/json

4
IORequest
Creation

Payload:
body = null 
query = null
path = null

5
Add

Payload
{
  “id” = “769-26-0000” 
  “name” = “John”
  “surname” = “Doe”
}

Figure 4.3: The IORequest creation process

This figure illustrates the autonomous creation of IORequest objects. Steps 1 to 3 are performed
only once after receiving the Device Descriptor, whereas steps 4 and 5 are repeated every time the
REST API is to be invoked.

1. JAXB binds the XML Device Descriptor to an appropriate IORequestDescriptor object using
namespace information

2. A suitable IORequestBuilderFactory is selected at runtime using the acceptedIORe-

questDescriptorClass() method
3. The information contained in the IORequestDescriptor is used to create a new IORequest-

Builder

4. The IORequestBuilder is used to create new IORequest copies using the internal template
5. The newly created IORequest objects can be populated with Payload parameters as needed
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what already seen in the previous section, every IORequestBuilderFactory im-

plements an acceptedIORequestDescriptorClass() method, which can be used

to dynamically determine if a factory object can parse a specific type of IORe-

questDescriptor. It should come as no surprise that every IORequestBuilder

class is provided with complementary IORequestBuilderFactory and IORequest-

Descriptor implementations.

Figure 4.4: The extended IORequest class diagram. For additional information about the
IORequestParameter object consult listing 1.5.

4.1.3 Handling asynchronous I/O operations

As mentioned in previous sections, communication with a device connected to

the PerLa Middleware is achieved by means of the Channel.submit() method.

Invocations of submit() are non-blocking; control flow is immediately returned to

the caller, thus allowing other computations to be performed while the requested

I/O operation is being processed.

As can be seen in listing 4.1, submit() requires two parameters: an IORequest

and an IOHandler callback object. The former specifies which I/O operation is to

be performed, while the latter allows the caller to be asynchronously notified of

its completion.

The IOHandler interface is composed of two methods, namely complete() and
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1 public interface IOHandler {

2 public void complete(IORequest request, Optional<Payload>

result);

3

4 public void error(IORequest request, Throwable cause);

5 }

Listing 4.6: The IOHandler interface

1 public interface IOTask {

2 public void cancel();

3

4 public IORequest getRequest();

5

6 public boolean isCancelled();

7

8 public boolean isDone();

9 }

Listing 4.7: The IOTask interface

error(), which are invoked when processing of an I/O operation comes to an end.

It is important to note that both these methods always carry context information

in the form of an IORequest, which is guaranteed to be the same exact object

used for starting the I/O operation whose completion is being notified. For this

reason, IOHandler can be considered the nexus of the asynchronous invocation

model, as it connects IORequest objects with the outcome of the corresponding

I/O operation performed by the Channel.

Semantically, an invocation of the complete() method is always associated with

the successful termination of an I/O operation. As shown in listing 4.6, this

method includes an optional Payload object, that contains all data received from

the endpoint device. A call to complete() with an empty Payload indicates

that the I/O operation was completed without errors, but no data was received.

Conversely, an invocation of the error() method indicates that the I/O operation

was aborted before completion. In this case the cause of failure is always notified

through the cause parameter.
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From the point of view the Java memory model, the Channel.submit() creates a

happens-before relationship with IOHandler.complete() and IOHandler.error(),

viz. any side effect generated by the code that led to the submit() invocation is

guaranteed to be visible in the complete() and error() callback methods.

Asynchronous execution does not imply loss of control; ongoing I/O operations can

be monitored or cancelled by means of the IOTask object acquired upon submitting

an IORequest. Listing 4.7 shows all methods of the IOTask interface; method

names are self explanatory, and the reader should be able to deduce their purpose

just by analyzing their signature. The only nuance worth mentioning is that

isCancelled() always implies isDone() (i.e., all cancelled I/O operations are also

complete), while the opposite does not hold (i.e., not all complete I/O operations

were cancelled).

1
Submit

IORequest

2
I/O

operation

send

receive bytes

submit()

return IOTask

complete(Payload)

callback

User process IOHandler Channel Device

3
Async

Callback

Figure 4.5: Sequence diagram of an asynchronous I/O operation. Note that the user process
and the I/O operation are executed in parallel.
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The Channel interface is also designed to manage completely asynchronous I/O

operations, namely communication efforts spontaneously initiated by the remote

device. This communication model is popular among WSNs, as it is often em-

ployed to handle periodic data streams or events happening at irregular intervals.

Such I/O operations can be handled through a catch-all IOHandler set with the

setAsyncIOHandler() method (listing 4.1). Since the communication is not ini-

tiated by the Middleware, the complete() and error() callback methods will be

invoked with the IORequest parameter set to null.

4.2 Handling data

Payload is a container for raw sequences of bytes. In spite of its simplicity, this

class forms the foundation of the entire PerLa Middleware, as it is the vessel that

conveys all information passing through the Channel interface.

The data encapsulated in a Payload object is accessed one byte at a time; this

granularity level is ideal for the implementation of an I/O access layer, whose sole

concern consists in the transmission of information between two endpoints, but is

not suited to other forms of data management. Processing the information con-

tained in a Payload can be unwieldy and unnecessarily complex; the byte-oriented

interface doesn’t provide any facility for leveraging the underlying structure of the

enclosed data, and even a simple action like retrieving a value in a complex data

structure can easily become a daunting task.

4.2.1 The Message interface

Messages are structured data containers that enclose a group of individual items

called fields. The chief advantage that this data structure provides over the simpler

Payload object consists in the possibility of addressing information by field name,

a convenient feature that dispenses with the burden of managing data in byte-sized

chunks. The methods available in the Message interface are shown in listing 4.8.
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Channel

Payload

Mapper

Message

The Payload object is a 
container for raw bytes sent 
or received through the 
Channel interface

The Mapper interface 
converts Payload objects 
into high level data 
structures and vice versa

Figure 4.6: Relationship between the Channel, Payload, Mapper and Message objects.

1 public interface Message {

2 public String getType();

3

4 public boolean hasField(String name);

5

6 public Object getField(String name)

7 throws IllegalArgumentException;

8

9 public void setField(String name, Object value)

10 throws IllegalArgumentException;

11

12 public void appendElement(String name,Object element)

13 throws IllegalArgumentException;
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14

15 public boolean validate();

16 }

Listing 4.8: The Message interface

The specific structure of a Message is defined by its type, which can be queried

through the getType() method. This property unequivocally identifies the set of

fields contained in a Message in terms of field name, field type and field qualifier.

The field name is a textual attribute that uniquely identifies one specific data

item in the scope of a single Message. It can be used to retrieve or set the value

of a field through the getField() and setField() methods respectively.

The type attribute defines the set of legal values that can be stored in a field,

together with the operations that are allowed on those values. It is worth men-

tioning that this information is used to statically verify the type safety of nearly

all data management operations performed on a Message (consult section 4.3 for

additional information). The PerLa Middleware currently supports six primitive

types:

• INTEGER: a 32 bit signed two’s complement integral data type

• FLOAT: a single-precision 32 bit IEEE 745 floating point

• BOOLEAN: a type with only two values, true or false

• STRING: a string of characters with UTF-16 encoding

• TIMESTAMP: a date with timezone, currently implemented using Java’s

ZonedDateTime class.

• ID: a unique label that identifies a single node connected in a PerLa managed

network. The current implementation uses a 32 bit integer.

Besides the data types presented above, fields can also be configured to hold nested

Messages. In this case, the type attribute must be set to the particular type of

Message that is to be stored in the field.

The qualifier attribute is employed to define additional field properties. It can
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be set to one of the following values:

• SIMPLE: a normal field whose value can be altered and retrieved using the

setField() and getField() methods respectively.

• LIST: a field that can hold multiple elements of the same type. New values

can be added with the appendElement() method, and the entire list can be

retrieved through the conventional getField() method. List-qualified fields

preserve the order of insertion of the individual elements.

• STATIC: a field whose value is statically set when the Message type is

declared. Any attempt to modify a statically-qualified field with either the

setField() or the appendElement() methods will cause an exception to be

thrown. It is important to note that static field values are set on a per-type

basis; this means that all Messages of the same type will share the same field

values for each static field (if any).

4.2.2 Working with Messages: the Mapper interface

Message objects are managed by the Mapper component. Its interface, available

in listing 4.9, groups all the functionalities needed to handle a specific variety of

structured information. The one-to-one relationship between Mappers and data

types is epitomized by the getMessageType() method, whose return value indi-

cates which Message class is supported by a particular Mapper. This method is

extensively employed by the Middleware to sift through a collection of Mappers, in

order to find one that is best suited for handling the information currently being

processed.

1 public interface Mapper {

2

3 public String getMessageType();

4
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5 public FieldDescriptor getFieldDescriptor(String name);

6

7 public Collection<FieldDescriptor> getFieldDescriptors();

8

9 public FpcMessage createMessage();

10

11 public FpcMessage unmarshal(Payload payload);

12

13 public Payload marshal(FpcMessage message);

14

15 }

Listing 4.9: The Mapper interface

Interactions with a Mapper usually begin with a call to the createMessage()

method, whose execution results in the creation of an empty Message instance.

Despite its unsurprising outcome, this method draws once again our attention to

the close relationship between Mappers and data types. Every Mapper instance

is in fact committed to the management of a precise class of information, hence

all Messages created with the createMessage() method will share the same data

type property, and, consequently, the same set of fields. The interdependence

between a Mapper and its assigned type is accentuated even further by the get-

FieldDescriptor() and getFieldDescriptors() methods, which can be used

to analyze the internal field structure characterizing all Message objects that the

Mapper creates. This introspective capability is extensively exploited in the Ex-

ecution Engine to check whether a Script is type-safe or not (see section 4.3 for

further details).

As explained in the introductory paragraphs of this section, Message objects are a

convenience introduced for simplifying data management operations in the PerLa

Middleware. They provide structured access to information, a familiar set of prim-

itive data types, and a selection of tools for combining basic values into complex

data structures. In spite of these advantages, the Message interface is a high level



CHAPTER 4. IN-DEPTH COMPONENT DESCRIPTION 48

abstraction that cannot be employed where a Payload is expected, since its con-

tents are not directly accessible as a simple sequence of bytes; as a consequence,

Messages can’t be used for any kind of I/O operation. This structural gap is

bridged by the marshal() and unmarshal() methods of the Mapper interface. As

can be seen by analyzing their respective signatures, these two methods can be

used to convert Message objects into Payloads and vice-versa. This additional

Mapper functionality brings to light yet another aspect of the PerLa data man-

agement layer, namely its ability to work with different representations of binary

data.

Every Mapper is in fact created to support a single data format; JSONMapper

instances, for example, handle JSON-formatted byte streams, whereas URLEn-

codedMappers specialize in the conversion of URL-encoded HTTP entities. The

structure of the Messages created by a Mapper and the data format they can be

marshalled unto are not orthogonal concerns, as the choice of a specific binary

representation may prevent the use of some of the previously discussed field at-

tributes. The URL-encoded format, for example, is defined as a flat collection of

key-value pairs, with no support for nested data structures; hence, the correspond-

ing URLEncodedMapper class could never be used to create and manage Messages

with nested fields. The close connection between a Message and its corresponding

binary format manifests itself in the design of the Mapper component, specifi-

cally in the decision to coalesce the marshalling/unmarshalling mechanism, and

the more general Message management methods (createMessage(), getField-

Descriptors()), under the same interface. The specific methodology for creating

Mapper objects, and for defining their distinctive data format and Message type,

will be subject of additional discussion in the remainder of this chapter.

Before this section comes to an end, it is worth putting into context the role oc-

cupied by the Mapper inside the PerLa Middleware. The additional decoupling

provided by the Mapper builds over the pluggable Channel interface, thus allow-

ing the payload format to be selected independently of the I/O stack. This is an

important characteristic of the Middleware design, as even the simplest communi-
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Payload (XML)

<object>
  <field name=”temp”
    value=”23.2”/>
  <field name=”press”
         value=”1027”/>
</object>

Payload (JSON)

{
  ”temp”: ”23.2”,
  ”press”: ”2017”
}

Message

float temp; // value = 23.2
int press; // value = 1027

Message

float temp; // value = 23.2
int press; // value = 1027

marshal()marshal()

Figure 4.7: Using a single Channel to transmit data marshalled with different Mappers

cation protocol usually requires several Message structures, viz. several Mappers,

for exchanging data between two endpoints.

4.2.3 Creating Mappers and defining Message structures

New Mapper objects are created by means of the MapperFactory interface.

Its design follows the same concepts explained in previous sections; the accept-

edMessageDescriptorClass() method returns the type of MessageDescriptor

objects that can be used with the MapperFactory, while the createMapper()

method consumes a MessageDescriptor to create a Mapper. However, differently

from all factory components described so far, the creation of a new object calls
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1 public interface MapperFactory {

2

3 public Class<? extends MessageDescriptor>

4 acceptedMessageDescriptorClass();

5

6 public Mapper createMapper(MessageDescriptor descriptor,

7 Map<String, Mapper> mapperMap, ClassPool classPool)

8 throws InvalidDeviceDescriptorException;

9

10 }

Listing 4.10: The Mapper Factory interface

for two additional parameters other than the descriptor itself: a ClassPool, and a

map of Mappers. These extra items contain a reference to previously built Mappers,

and can be used to check whether nested Message fields are properly declared or

not.

The MapperFactory interface is an additional extension point available to PerLa

users, and can be leveraged to introduce support for new binary formats and infor-

mation encoding schemes. As a consequence, every installation of the Middleware

will contain a wide variety of MapperFactory implementations, each of which is

dedicated to a single data format. Instances of the previously introduced JSON

and URL-Encoded mappers, for example, are created by two distinct MapperFac-

tory objects, namely JSONMapperFactory and URLEncodedMapperFactory. This

design is a substantial improvement on the previous middleware architecture, as it

ensures that every MapperFactory object is responsible for managing the quirks

of only a single data format.

Moreover, every MapperFactory implementation is bundled with a custom Mes-

sageDescriptor object, whose class name is exposed by the aforementioned ac-

ceptedMessageDescriptorClass() method. The additional complexity deriving

from this design choice is more than made up for in type safety and flexibility, as

each different MessageDescriptor may be implemented to closely represent the

idiosyncratic characteristics of its corresponding data format. A concrete example
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of this concept comes from the URLEncodedMessageDescriptor class, which pre-

vents the creation of Messages that don’t comply with the URL-encoded format by

disallowing non-primitive fields. Having multiple MessageDescriptors also means

that different Messages are not forced to abide by the same set of rules; the limits

imposed on URL-encoded messages are not universal, and in fact the JSONMes-

sageDescriptor refrains from applying them. Furthermore, MessageDescriptor

objects can adopt a custom lexicon for expressing the PerLa-specific concepts of

message, field and field type. Take for example listings 4.11 and 4.12. These

two XML snippets show how the vocabulary employed in message declarations

varies with the data format (field are dubbed member in JSON, and parameter

in URL-Encoded strings). Using a terminology that best suits the actual data

format makes Message declarations idiomatic, reminiscent of the corresponding

real-world objects and therefore easier to use.

4.2.4 Managing multiple message types

It is not uncommon for a single device to communicate using multiple message

formats; developers may choose to encapsulate different information inside differ-

ent data structures, which the receiver must correctly identify to decipher their

contents. In such cases, every Message exchanged between the two endpoints is

tagged with a data type value, i.e., a common field that advertises the type of

information being transferred. This technique is widespread among firmware de-

velopers, since it can be easily implemented with most programming languages

(C/C++ support it by design through tagged unions).

The PerLa Middleware implements various techniques to cope with sensor nodes

that communicate using multiple message formats. First of all, only the data

structures that can actually be received are considered when unmarshalling a byte

stream; if under the current conditions a device only sends a subset of its available

message types, then the Middleware can immediately rule out the unmatching

ones. As it will be discussed later, a collection of expected data formats is au-

tomatically curated by the FPC by cross-comparing information excerpted from
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1

2 <js:object id="coord">

3 <js:member name="lon" type="string"/>

4 <js:member name="lat" type="string"/>

5 </js:object>

6

7 <js:object id="main">

8 <js:member name="temp" type="float"/>

9 <js:member name="pressure" type="float"/>

10 <js:member name="humidity" type="float"/>

11 <js:member name="temp_min" type="float"/>

12 <js:member name="temp_max" type="float"/>

13 </js:object>

14

15 <js:object id="wind">

16 <js:member name="speed" type="float"/>

17 <js:member name="deg" type="float"/>

18 </js:object>

19

20 <js:object id="weather">

21 <js:member name="coord" type="coord"/>

22 <js:member name="main" type="main"/>

23 <js:member name="wind" type="wind"/>

24 </js:object>

Listing 4.11: A compound JSON message declared using the JSONMessageDescriptor
(XML notation). Note that the data type of all fields inside weather message is a reference
to a previously declared Message.
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1

2 <ue:message id="urlencoded_message">

3 <ue:parameter name="temperature" type="float"/>

4 <ue:parameter name="pressure" type="float"/>

5 <ue:parameter name="location" type="string"/>

6 <ue:parameter name="key" qualifier="static" type="integer"

value="5"/>

7 <ue:parameter name="timestamp" type="timestamp" format="d MMM

uuuu HH:mm"/>

8 </ue:message>

Listing 4.12: An URLEncoded message declaration. Thanks to the custom
URLEncodedMessageDescriptor, trying to create a non-primitive field results in an
exception. Note the custom format attribute on the timestamp field, which is employed
to define the encoding format for dates and times

the Device Descriptor with the current device status. It should be clear that this

technique alone is not enough to cover all practical use cases, as it falls short as

soon as a device starts sending two or more message varieties concurrently; in such

scenarios, PerLa needs to search for clues that will help it recognize how the bytes

being received are structured. These clues take the form of static fields. When

faced with an ambiguous situation, the FPC will try unmarshal the bytes received

into all expected data types. A congruency check will then be performed on the

resulting Messages: the data can be considered correctly decoded only when all its

static fields match the corresponding Device Descriptor declaration. This method-

ology can be employed to interact with sensor nodes that make use of tagged data

structures.

4.3 Data management: Scripts

Channels, Payloads, Mappers and Messages are the core components used by

PerLa to exchange data with nodes of a Pervasive System. They provide the sup-

porting infrastructure through which information can be serialized, transmitted

and faithfully reconstructed at the receiving endpoint. Taken together, these com-
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ponents implement an adaptable transport layer, whose features can be tailored

around each device connected to the Middleware: combine a HTTPChannel with a

JSONMapper to obtain a network stack for RESTful services; swap the data layer

with an XMLMapper if the format changes; add a ZigbeeChannel and a StructMap-

per to communicate with low-powered devices in a mesh network. In spite of their

individual capabilities, all these components are not enough to glean information

from a Sensor Network. The interaction with a sensor node requires far more than

a transport layer; in fact it can only occur when data transfer operations follow a

strict set of rules, i.e., an application protocol. Channels, Mappers and Messages

provide no more than the basic building blocks needed for the interaction, but their

use is to be tightly orchestrated before any purposeful exchange of information can

take place.

PerLa Scripts, just referred as Scripts in the remainder of this document, imple-

ment the kind of structural scaffolding required to organize a series of primitive

data management operations into a self-contained, reusable procedure. Their pur-

pose in the PerLa Middleware is twofold: first, to issue commands that conform to

the specific protocols used in a Pervasive Systems; second, to act as an impedance

matcher between the structured information collected from a sensor network and

the record-oriented output of an FPC. The PerLa scripting language is one of the

most distinctive features of the new Middleware design; a procedural program-

ming tool that can be used to complement and enrich the declarative nature of the

Device Descriptor. Scripts improve the reusability of all existing and future Mid-

dleware components, as they can be used to adjust the output of a computation

before it’s used as the input of another one.

An archetypal example of this concept is given in figure 4.8. This Script solves

a recurring impedance matching problem: a device that stores multiple samples

into a common data structure, and sends them with a single transmission in order

to conserve battery power. The result of such aggregation can’t be coerced into

a sequence of records as-is, as more often than not it contains a mixture of both

high frequency and low frequency information (and indeed it does in the current
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Output records

NODE TIMESTAMPCITY TEMP. HUM.

243 Milan 2014-11-01T10:15:30+01:00 21.30 80

243 Milan 2014-11-01T10:15:31+01:00 21.37 80

243 Milan 2014-11-01T10:15:32+01:00 21.36 80

Script

<i:put expression=”${input.node-id}” attribute=”node”/>
<i:put expression=”${input.city}” attribute=”city”/>
<i:foreach items-var=”input” items-field=”samples” variable=”sample”>
  <i:put expression=”${sample.timestamp}” attribute=”timestamp”/>
  <i:put expression=”${sample.temp}” attribute=”temperature”/>
  <i:put expression=”${sample.hum}” attribute=”humidity”/>
  <i:emit />
</i:foreach>

Input

{
  “node-id”: ”243”,
  “city”: ”Milan”,
  “samples”: [
    {
      “timestamp”: ”2014-11-01T10:15:30+01:00”,
      “temp”: ”21.30”,
      “hum”: ”80”,
    },
    {
      “timestamp”: ”2014-11-01T10:15:31+01:00”,
      “temp”: ”21.37”,
      “hum”: ”80”,
    },
    {
      “timestamp”: ”2014-11-01T10:15:32+01:00”,
      “temp”: ”21.36”,
      “hum”: ”80”,
    }
  ]
}

Low frequency, constant 
for all data samples}

} High frequency 
sampling data

Figure 4.8: Flattening the content of a nested JSON data structure with a PerLa Script
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example). The PerLa scripting language can be used to unroll the high frequency

content, complement it with the information that remains constant for all sam-

ples, and output the resulting records one by one; all without having to resort to a

bespoken Mapper implementation, as it would prove necessary if the former Mid-

dleware were used instead. Moreover, this same script can be easily employed to

handle similar aggregation patterns with little or none modifications, as it doesn’t

depend on any particular Channel, Mapper or Message implementation.

PerLa Scripts are also used to address minor compatibility problems that may

arise when authoring new Device Descriptors; they can wrap an existing Middle-

ware component and adapt its behaviour to handle an unforeseen usage scenario,

convert information between different units of measure, alter a Message before it

is sent to the intended recipient, or compute aggregations. It is important to note

that Scripts are slower than pure Java code; an excessive usage in data intensive,

real-time applications should be carefully avoided, as it may negatively affect the

performance of the entire Middleware. End users are therefore invited to thor-

oughly test and benchmark their Device Descriptors to eliminate any potential

bottleneck before deployment.

4.3.1 Anatomy of a PerLa Script

PerLa Script is a full-fledged imperative programming language composed of

data management instructions, control flow statements and a powerful expression

language. Procedures written in PerLa Script are processed by the Script En-

gine, a Middleware module that reads, interprets and executes script instructions.

Instructions are specified using a proprietary XML syntax, specifically designed

to allow PerLa Scripts to be directly embedded in a Device Descriptor. Con-

flicts with potentially similar XML tags and attributes are avoided through the

http://perla.dei.org/device/instructions namespace, which is commonly

associated with the “<i:” prefix. PerLa developers are invited to follow this con-

vention, as the use of a different namespace prefix may create confusion among

end users and future Device Descriptor maintainers.
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Every Script instruction is composed of a name, a textual property that iden-

tifies a specific type of computation, and a list of parameters, name-value pairs

that customize its runtime behaviour. With the exception of the submit instruc-

tion, whose unconventional characteristics are described in the remainder of this

section, parameters are always defined using the standard XML attribute syntax.

PerLa Scripts currently support two different types of parameter values: literals

and expressions. Literals are simple textual strings, which are used as-is by the

execution engine to express constant concepts like variable names or immutable

values. Expressions, on the other hand, are combinations of variables, operators,

functions and constants, whose evaluation produces a new result value. Differently

from literals, expressions are prefixed by the $ sign and enclosed in curly braces

(${ ... }); this cue is employed by the execution engine to determine whether an

instruction parameter has to be pre-processed or not prior to being used. Expres-

sions can be used to perform the following actions:

• Arithmetic operations (sum, subtraction, product, division, modulo)

• Logical operations (or, and, not)

• Comparisons (<, >, !=, <=, >=)

• Access Message fields (dot operator). Multiple dot operators may be applied

in succession to access a specific value buried inside a complex data structure

(e.g., the expression ${result.environment.temperature} is used to traverse

3 nesting levels).

• Retrieve Script arguments through the built-in args associative array. This

feature can be leveraged to create parametric Scripts that dynamically

adapt to the user’s requests.

Whether a certain parameter can be specified as a literal, as an expression, or both,

depends entirely on the instruction in which it is employed. This information, along

with other useful details regarding the PerLa Scripting language, is available in

the following instruction compendium.
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4.3.1.1 var instruction

Description

Declares a new variable. This instruction requires two mandatory parameters:

• name: The variable name, namely a textual identifier used to reference the

variable in later instructions. It must be unique in the scope of a single

script.

• type: The type of data that can be stored inside the newly created variable.

It can be set to one of the six PerLa primitive data types, or to a user-defined

message type.

Usage examples

Creates a new variable named count of primitive type integer.

1 <i:var name="count" type="integer"/>

Creates a new variable named cmd of complex type node command, whose declara-

tion is omitted for brevity reasons.

1 <i:var name="cmd" type="node_command"/>

4.3.1.2 set instruction

Description

Sets the contents of a variable to a new value. The optional field parameter can

be used whenever the user needs to modify a specific field in a variable of complex

type.

• variable: Name of the variable to be modified.

• field (optional): An optional parameter that can be used to select the

specific field to set in a variable of complex type.



CHAPTER 4. IN-DEPTH COMPONENT DESCRIPTION 59

• value: The new value of the variable. This parameter may be either a literal

value or an expression.

Usage examples

Sets the previously defined count variable to the literal value 5.

1 <i:set variable="count" value="5"/>

Sets the field operation of the previously defined cmd variable to the literal value

sample.

1 <i:set variable="cmd" field="operation" value="sample"/>

Converts a temperature reading from Celsius to Fahrenheit degrees, and stores it

in the temp f field of a hypothetical variable named result.

1 <i:set variable="result" field="temp_f"

2 value="${result.temp_c * 9/5 + 32}"/>

Deep copy. The content of the source variable is accessed with the “${original}”

expression.

1 <i:set variable="copy" value="${original}"/>

4.3.1.3 append instruction

Description

Appends a new element to the end of a list-qualified field.

• variable: Name of the variable to be modified.

• field: Name of the list-qualified field to which the new value is to be ap-

pended.
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• value: The new value to be inserted. This parameter may either be a literal

value or an expression.

Usage examples

Appends the literal value “5” to a list field.

1 <i:append variable="result" field="temp_list" value="5"/>

4.3.1.4 submit instruction

Description

Submits an IORequest on a Channel. This instruction supports the following

parameters:

• request: Identifier of the IORequest to be submitted.

• channel: Identifier of the Channel on which the request has to be submitted

• variable (optional): Name of the variable used to store the result of the

I/O operation. If present, the complementary type parameter must be set.

It is important to note that the result variable is automatically declared by

the submit instruction; therefore, the final user must not create it with an

explicitly var instruction.

• type (optional): Type of the variable used to store the result of the I/O

operation. Its presence is subordinated to the aforementioned type param-

eter.

Additional IORequest parameters may be specified by supplying an appropriate

list of param XML tags, each of which must contain the name of the parameter

being set, and a reference to a variable containing the desired value (see the usage

example section below for further syntax information). Upon submission, this

instruction will automatically handle every Mapper operation required to convert

the parameter value into a Payload object suited to the I/O operation.

Usage examples
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Basic usage, submits the “start sampling” request to a SerialChannel. All

information received during the I/O operation is discarded, since no result variable

is specified for this instruction.

1 <i:submit request="start_sampling" channel="serial"/>

Submits the “get data” request to a HTTPChannel. All bytes received from the

remote server are stored in the result variable.

1 <i:submit request="get_data" channel="http"

2 variable="result" type="json_result"/>

Submits the “send command” request to a SerialChannel. The command variable

is set as an IORequest parameter.

1 <i:submit request="get_data" channel="http">

2 <i:param name="payload" variable="command"/>

3 </i:submit>

4.3.1.5 stop instruction

Description

Stops the Script. This instruction is usually employed in conjunction with the

if control structure to implement advanced halt conditions based on information

available only at runtime.

Usage example

Immediately stops the execution of the Script.

1 <i:stop/>

Guarded stop. Halts the execution of the Script only when a certain condition

holds true.
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1 <i:if condition="${temp_c > 25}">

2 <i:then>

3 <i:stop/>

4 </i:then>

5 </i:if>

4.3.1.6 error instruction

Description

Aborts the Script, signalling an abnormal execution condition. This instruction

must be supplied with a message parameter that indicates the cause of failure.

Similarly to the stop instruction, error invocations are commonly guarded by an

if control structure to implement advanced error management behaviours.

Usage examples

The following code excerpt throws an error when the humidity level falls outside

the acceptable range. This example combines the stop and error instructions to

demonstrate a typical PerLa Script error management pattern.

1 <i:if condition="${humidity >= 0 && humidity <= 100}">

2 <i:then>

3 <i:put expression="${humidity}" attribute="humidity"/>

4 <i:emit/>

5 <i:stop/>

6 </i:then>

7 <i:else>

8 <i:error message="humidity out of range"/>

9 </i:else>

10 </i:if>
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4.3.1.7 put instruction

Description

Adds a field into the staging area, viz. a temporary storage location used for

the incremental creation of new output records. This instruction requires two

mandatory parameters:

• attribute: Name of the attribute corresponding to the value being added in

the staging area. The purpose of this parameter is twofold: first, it defines

the name through which the new data can be retrieved (record field names

always correspond to device attribute names); second, it is used to confirm

that the value being added in the staging area has the correct data type

(record field types always correspond to device attribute types).

• expression: Value of the new record field.

This instruction is intended to be called multiple times in the lifetime of a single

Script execution, as a single put operation can only be used to set one record field

at a time. As soon as all the desired values are staged, the content of the entire

staging area can be flushed into a new record by means of the emit instruction.

It is worth noting that the content of the staging area is not deleted once emit

is invoked. Though this may seem counter-intuitive or even undesirable, such be-

haviour allows for a simpler and more efficient management of aggregated data.

The ability to retain all field values set with previous invocations of the put in-

struction is key to the example of figure 4.8, where low frequency information —

namely the name-id and the city records — is set only once, and only the high-

frequency samples are continuously replaced with new calls to the put instruction.

This optimization technique would not be possible if the staging area were not

provided with the aforementioned memory-retaining mechanism.

Usage Examples

Refer to section 4.3.1.8 for combined usage examples of the instructions put and

emit.
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4.3.1.8 emit instruction

Description

Creates a new record using the field values stored in the staging area. All records

created by the emit instruction are released to the user only if the Script termi-

nates without errors.

Usage Examples

Creates a record containing two literal fields.

1 <i:put attribute="temperature" expression="25"/>

2 <i:put attribute="humidity" expression="85"/>

3 <i:emit/>

Maps a flat data structure into a record. Differently from the previous exam-

ple, record values are dynamically read from the sample variable, hypothetically

received from a remote sensor node.

1 <i:put attribute="temperature" expression="${sample.temperature}"/>

2 <i:put attribute="humidity" expression="${sample.humidity}"/>

3 <i:put attribute="timestamp" expression="${sample.timestamp}"/>

4 <i:emit/>

Script expressions can also be used to create new record values at runtime. In

the following code snippet, a simple conversion formula is employed to derive the

temp fahrenheit record field from other information sent by the sensor node.

1 <i:put attribute="temp_centigrade" expression="${sample.temp_cent}"/>

2 <i:put attribute="temp_fahrenheit"

3 expression="${sample.temp_centigrade * 9/5 + 32}"/>

4 <i:put attribute="humidity" expression="${sample.humidity}"/>

5 <i:put attribute="timestamp" expression="${sample.timestamp}"/>

6 <i:emit/>
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Looping over multiple samples stored in a list. The following example creates a

new record for each element contained in the data.samples field.

1 <i:foreach items-var="data" items-field="samples" variable="sample">

2 <i:put expression="${sample.timestamp}" attribute="timestamp"/>

3 <i:put expression="${sample.temp}" attribute="temperature"/>

4 <i:put expression="${sample.hum}" attribute="humidity"/>

5 <i:emit/>

6 </i:foreach>

Exploiting the characteristic memory-retention feature of the put instruction to

efficiently combine high-frequency and low-frequency information. Note that the

node and city fields are staged only once, while all other fast changing information

requires the execution of a put instruction for each list element.

1 <i:put expression="${input.node-id}" attribute="node"/>

2 <i:put expression="${input.city}" attribute="city"/>

3 <i:foreach items-var="input" items-field="samples" variable="sample">

4 <i:put expression="${sample.timestamp}" attribute="timestamp"/>

5 <i:put expression="${sample.temp}" attribute="temperature"/>

6 <i:put expression="${sample.hum}" attribute="humidity"/>

7 <i:emit />

8 </i:foreach>

4.3.1.9 if control structure

Description

A conditional control structure for executing different Script branches depending

on whether a user-specified condition expression evaluates to true or false.

Usage example

If..then example. Sets the variable alarm to TRUE when the temperature rises
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above 25◦ C.

1 <i:if condition="${temp_c > 25}">

2 <i:then>

3 <i:set variable="alarm" value="true"/>

4 </i:then>

5 </i:if>

If..then..else example. Sets the variable tropical to TRUE when the temper-

ature rises above 30◦ C and the humidity is greater than 90%, to false otherwise.

1 <i:if condition="${temp_c > 25 && hum > 90}">

2 <i:then>

3 <i:set variable="tropical" value="true"/>

4 </i:then>

5 <i:else>

6 <i:set variable="tropical" value="true"/>

7 </i:else>

8 </i:if>

4.3.1.10 foreach control structure

Description

A control structure for traversing list-qualified Message fields. It can be used to

repeat a given block of code for every element of a collection. The foreach control

structure supports the following parameters:

• items-var: Name of the source variable.

• items-field: Name of the source field, namely the list-qualified field inside

the items-var on which to loop over.

• variable: Name of the variable through which the current item is exposed.

• index (optional): Index of the current item.
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Usage examples

Computing the average of all temperatures received from a remote sensor node.

1 <i:var name="count" type="integer"/>

2 <i:set variable="count" value="0"/>

3 <i:var name="avg" type="float"/>

4 <i:set variable="avg" value="0"/>

5 <i:foreach items-var="data" items-field="samples" variable="sample">

6 <i:set variable="avg" value="${avg + sample.temperature}"/>

7 <i:set variable="count" value="${count + 1}"/>

8 </i:foreach>

9 <i:set variable="avg" value="${avg / cont}"/>

4.3.2 Script Engine architecture and execution model

The Script Engine is the Middleware component responsible for the execution of

PerLa Scripts. It is currently implemented as a program interpreter that parses

and executes an intermediate PerLa Script representation generated by the FPC-

Factory, dubbed SIR (Script Intermediate Representation). SIR programs are

directed graphs, where each node is an instruction, and each arc is a potential

evolution of the program status; thus, SIR-encoded Scripts can be run by sim-

ply traversing the source data structure until a stop instruction is encountered,

or an error is thrown. Thanks to this intermediate representation, the Script

Engine architecture is lean and efficient; the core execution loop need not be con-

cerned with the continuous interpretation of textual instructions or with complex

error-checking procedures, as these two operations are only performed once, by the

FPCFactory, when a Script is translated in its corresponding SIR form. More-

over, as a result of the additional decoupling provided by this intermediate code

representation, the introduction of a new PerLa Script format does not entail

any modification to the Script Engine, as long as a suitable SIR translator is

provided for the new syntax.
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Script
<i:submit channel=”http” request=”get-data”
    variable=”result” type=”environment”/>
<i:if condition=”${result.ok == false}”>
  <i:then>
    <i:error message=”cannot retrieve data from server”/>
  </i:then>
</i:if>
<i:put expression=”${result.city}” attribute=”city”/>
<i:foreach items-var=”result” items-field=”samples” variable=”sample”>
  <i:put expression=”${sample.temp}” attribute=”temperature”/>
  <i:put expression=”${sample.hum}” attribute=”humidity”/>
  <i:emit/>
</i:foreach>
<i:stop/>

If

Submit
channel: http
request: get-data
variable: result
type: environment

Error
message: cannot retrieve 
data from server

Put
expression: ${result.city}
attribute: city

Put
expression: ${result.temp}
attribute: temperature

Put
expression: ${result.hum}
attribute: humidity

Emit

StopForeach

${result.ok == false}

no more elements

Figure 4.9: A PerLa Script and its corresponding SIR representation

Once started, PerLa Scripts are sandboxed in a dedicated thread of execution.

For better isolation, the current status of each running Script instance is stored

inside a private ExecutionContext object, which contains the following elements:

• Program Counter: A reference to the current instruction;

• Variable Map: An associative array that stores the current value of all
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declared variables;

• Record staging area: Temporary working area used to create new records;

• Output records: List of records to be returned when a stop instruction is

encountered.

This design ensures that all changes a single Script makes to its environment will

remain private, that its status won’t be altered by any other rogue routine, and

that several Scripts can run simultaneously without interfering with each other.

The execution of a Script is always subordinated to an external event, like the

submission of a new user request or the arrival of information from a sensing

device. In particular, PerLa Scripts associated with the management of sensor

data tend to run frequently and for a relatively short period of time, as their

execution is triggered by each sample collected from the sensing network. To

better cope with such usage scenario, the Script Engine implements a thread

caching mechanism that reduces memory usage and startup times by reclaiming

the runtime environment of each terminated Script, and re-purposing it for a new

execution. This caching technique greatly reduces the overall number of objects

allocated by the Java Virtual Machine, and guarantees that the overhead due to

the initialization of new ExecutionContext instances is shared between multiple

Script runs.

Moreover, the Script Engine can preemptively pause I/O bound computations

to optimize the usage of available system resources. This feature, implemented by

leveraging the asynchronous I/O design of the PerLa Middleware, is totally trans-

parent to the Script developer, who should not worry with matters of concurrent

programming; Scripts are automatically paused after an IORequest is submitted

to a Channel, and their execution resumes as soon as the I/O activity terminates.

These two operations — pause and resume — are performed within the submit

instruction, which interrupts the Script after an I/O request is submitted, and

restarts it once the associated response is available.
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4.4 Putting it all together: the FPC

The FPC (Functionality Proxy Component) is the main data access interface avail-

able to the PerLa Middleware. Its chief duty is to provide a high-level abstraction

of a Pervasive System by exposing the functionalities of all devices of the network

through a single consistent API. Every instance of the PerLa Middleware hosts

multiple FPCs, one for each sensing node. This one-to-one relationship — the

fulcrum of the PerLa philosophy — is a fundamental architectural feature that en-

dows the Middleware with utmost flexibility and the finest granularity of control,

as it presents final users with the possibility to manage heterogeneous networks

of sensing devices, down to the single node, through a uniform set of high-level

functions.

Output data streamRequest

Physical Device

FPC
Operation Scheduler

Messages

Channels

Script
Operation

Figure 4.10: Internal structure of the Functionality Proxy Component
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4.4.1 Accessing device features

FPCs are created from the composition of all Middleware components described

in the former sections of this chapter. As shown in figure 4.10, these software

modules are complemented by a set of Operations and an Operation Scheduler.

An Operation is a collection of Scripts committed to the management of a well

defined aspect of an endpoint device, such as the retrieval of a specific data sample

at periodic intervals of time. In total, there are four different Operation types

available in the PerLa Middleware, each of which corresponds to a FPC action

(get, set, periodic sampling and asynchronous event handling). Each of these

Operations is associated with the list of device Attribute that can be modified

or generated with it; this list is automatically inferred by the PerLa Middleware

by analyzing the associated data access Scripts.

4.4.1.1 Get Operation

A single Script that retrieves information from the remote device. It can be used

to perform a single-shot sampling operation or to read software parameters stored

on the connected endpoint.

This Operation type is introduced by the <get> XML tag, and contains a single

PerLa Script that is responsible for connecting with the remote device, retrieving

the information requested by the user, and creating an output record. The fol-

lowing example shows a textbook implementation of the Get Operation, which

demonstrates how all the aforementioned operations can be performed in a few

lines of PerLa Script.

1 <get id="single-temp-sample">

2 <i:submit request="temperature-request" channel="serial"

3 variable="result" type="temperature-msg"/>

4 <i:put expression="${result.temperature}" attribute="temperature"/>

5 <i:emit/>

6 </get>
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4.4.1.2 Set Operation

A single Script that sends information to the controlled device. It can be used

to dispatch commands, activate mechanisms, or change software parameters on a

remote sensing node.

All Set Operation Scripts must be enclosed in a <set> XML tag, and are re-

quired to define a series of actions resulting in the transmission of data to the

remote device. An example of this Operation is available in the code excerpt

below, which retrieves the current time from a parameter passed by the FPC user

(arg[’timestamp’]), and delivers it by means of a SerialChannel.

1 <set id="set-clock">

2 <i:create variable="settings" type="settings-msg"/>

3 <i:set variable="settings" field="time" value="${arg[’timestamp’]}"/>

4 <i:submit request="send-settings" channel="serial">

5 <i:param name="payload" variable="settings"/>

6 </i:submit>

7 </set>

4.4.1.3 Periodic Operation

A collection of Scripts for managing an unattended, periodic stream of infor-

mation. The Periodic Operation is more complicated than previous Operation

types, both from a syntactic and an operative point of view, as it requires the

device developer to specify three different classes of Scripts.

The first of these is the <start> Script, which is employed to initialize the sam-

pling operation. It normally contains a series of instruction that parse the signal

rate requested by the user, configure the device to start the sampling operation,

and handle potential error conditions. By default, the sampling period exposed to

the Script by means of the arg[’period’] argument is expressed in milliseconds;

it is the developer’s duty to convert this value into whichever format is required
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by the remote device. The code extract available below is worthy of note, since

it is employed to initialize two different sampling operations at once, one for tem-

perature, and one for humidity.

After the sampling operation is correctly initialized, the sensing node will begin

sending data packets towards its controlling FPC. All the instructions required to

convert these raw information into a record suitable for further processing have to

be specified inside an <on> tag. As shown below, each Periodic Operation is to

be equipped with an <on> Script for each different type of Message sent by the

device.

Finally, the Periodic Operation is required to contain a <stop> Script that can

be used to terminate the sampling operation and undo any action performed at

startup.

1 <periodic id="weather-periodic">

2 <start>

3 <i:create variable="period" type="sampling-period"/>

4 <i:set variable="period" field="period" value="${arg[’period’]}"/>

5 <i:submit request="temperature-request" channel="simulator">

6 <i:param name="period" variable="period"/>

7 </i:submit>

8 <i:submit request="humidity-request" channel="simulator">

9 <i:param name="period" variable="period"/>

10 </i:submit>

11 </start>

12 <stop>

13 <i:create variable="period" type="sampling-period"/>

14 <i:set variable="period" field="period" value="0"/>

15 <i:submit request="temperature-request" channel="simulator">

16 <i:param name="period" variable="period"/>

17 </i:submit>

18 <i:submit request="humidity-request" channel="simulator">

19 <i:param name="period" variable="period"/>
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20 </i:submit>

21 </stop>

22 <on message="temperature-msg" variable="result">

23 <i:put expression="${result.temperature}" attribute="temperature" />

24 <i:emit />

25 </on>

26 <on message="humidity-msg" variable="result">

27 <i:put expression="${result.humidity}" attribute="humidity" />

28 <i:emit />

29 </on>

30 </periodic>

31 </periodic>

4.4.1.4 Async Operation

A collection of Scripts that handles an asynchronous stream of information from

the device, i.e. a series of events that are received at irregular intervals of time.

Similarly to the Periodic Operation, the Async Operation features a <start>

Script (optional), and a <on> Script for each different type of event message that

may be received from the sensing node.

1 <async id="event-async">

2 <start>

3 <i:create variable="period" type="sampling-period"/>

4 <i:set variable="period" field="period" value="200"/>

5 <i:submit request="event-request" channel="simulator">

6 <i:param name="period" variable="period"/>

7 </i:submit>

8 </start>

9 <on message="event-msg" variable="result">

10 <i:put expression="${result.event}" attribute="event"/>

11 <i:emit />
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12 </on>

13 </async>

4.4.2 The FPC interface

The FPC interface, whose signature is available in listing 4.13, represents one of

the defining features of the PerLa Middleware. Its technology-agnostic data access

methods provide an easy and intuitive way to access the information generated by

a Pervasive System, and require no knowledge of the underlying hardware layer in

order to be used.

1 public interface Fpc {

2 public int getId();

3

4 public String getType();

5

6 public Collection<Attribute> getAttributes();

7

8 public Task set(Map<Attribute, Object> valueMap, TaskHandler

handler);

9

10 public Task get(Collection<Attribute> attributes, TaskHandler

handler);

11

12 public Task periodic(Collection<Attribute> attributes, long periodMs,

13 TaskHandler handler);

14

15 public Task async(Collection<Attribute> attributes, TaskHandler

handler);

16 }
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Listing 4.13: The FPC interface

The first three methods of this interface — getId(), getType() and getAt-

tributes() — are designed to retrieve a series of basic information concerning

the remote endpoint. The first one, getId(), returns a numeric identifier that can

be used to address the single specific node connected to the current FPC object.

The second one, getType(), is employed to retrieve a brief textual description of

the remote endpoint. Lastly, the getAttributes() method returns a comprehen-

sive list of all device Attributes that can be sampled or modified using an FPC,

qualified in terms of name, data type (id, integer, float, string, boolean or

timestamp) and access permissions (read-only, read-write or write-only).

Attribute values can be retrieved or set using the FPC’s data access methods,

namely get(), periodic(), set(), and async(), each of which correspond to a

specific type of Operation. Similarly to what already seen for other Middleware

components described in this document, all these methods implement the asyn-

chronous interaction paradigm introduced in section 3.4. As shown in listing 4.13,

their immediate return type is in fact a Task object, which can be employed to con-

trol the status of the ongoing data access operation. The actual data samples and

events generated by the FPC are notified asynchronously through a TaskHandler

using the following methods:

• complete(): Signals that the operation associated with the TaskHandler

has just been completed. It is employed to notify the successful completion

of a set() operation, or to indicate that a get() operation has been stopped

and will not produce any new record;

• newRecord(): Delivers a new record;

• error(): Indicates that the operation associated to the TaskHandler was

aborted due to an error.
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1 public interface Task {

2 public Collection<? extends Attribute> getAttributes();

3

4 public boolean isRunning();

5

6 public void stop();

7 }

8

9 public interface TaskHandler {

10 public void complete(Task task);

11

12 public void newRecord(Task task, Record record);

13

14 public void error(Task task, Throwable cause);

15 }

Listing 4.14: The Task and TaskHandler interfaces.

The user is always required to list all Attributes to be sampled when invoking one

of the available data retrieval methods; this information is employed by the FPC

to check whether the requested information can be gathered through the remote

device or not, and to select an Operation that best suits the user’s demands.

Both these activities are performed by the OperationScheduler, a Middleware

component tasked with managing all data handling Operations available in an

FPC. This component is also responsible for the management of concurrent op-

erations occurring at different sampling rates, a common use case that requires

the OperationScheduler to start a single periodic Operation using the highest

requested sampling frequency, and to distribute the resulting records according to

the requirements of each single user.

An additional thing of note regarding the OperationScheduler is its ability per-

form several types of Operations even if the endpoint device does not support

them natively; periodic sampling activities can be simulated from a simple Get
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Operation simply by executing a single-shot request at regular intervals, whereas

starting a Periodic Operation and stopping it after the arrival of the first data

sample is tantamount to a Get Operation.

4.4.3 FPC Factory

As suggested by its name, the FPCFactory is the Middleware component responsi-

ble for creating new FPC objects. It plays a fundamental role in the Middleware’s

Plug-and-Play device addition mechanism, since its primary task consists in the

creation and final assembly of all constituent parts of an FPC object.

The creation of an FPC is a complex process that begins with the reception of a De-

vice Descriptor, a declarative document containing a machine-parseable blueprint

of the newly connected sensor node. Device Descriptors are composed of several

parts, the contents of which have been thoroughly explained in previous sections

of this document:

• Device Attributes: Declaration of all data items supported by the device;

• Channels and Requests: Configuration of all Channels and IORequest

objects required to communicate with the endpoint device;

• Messages: Contains the declaration of all data structures employed during

the communication with the endpoint device, along with the strategies to be

followed for serializing and deserializing high-level information into Channel-

ready Payload objects;

• Operations: Definition of the PerLa Script procedures that are to be used

for interacting with the remote device.

During the installation of a new PerLa instance, users must guarantee that ev-

ery available Channel has the possibility to relay new Device Descriptors towards

an active FPCFactory; failure to do so may prevent some portions of the sensing

network from establishing an autonomous connection with the Middleware. This

configuration is to be done according to the characteristics of each specific Chan-

nel, since every communication mechanism may enforce a different connection
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paradigm. For example, the HTTPChannel module can’t be connected to the FPC-

Factory, as web services and REST APIs are not able to initiate a spontaneous

connection to the Middleware, and thus can’t send their Device Descriptors; Se-

rialChannels, on the other hand, expose a dedicated handler method designed

to broadcast Device Descriptor data to any interested FPCFactory.

FPCFactory

JaxbDeviceDescriptorParser

FPC

XML
Device
Descriptor

JSON
Device
Descriptor

Java
Object
Device
Descriptor

JSONDeviceDescriptorParser

Figure 4.11: Translation of different Device Descriptor formats into an intermediary Java
representation

Figure 4.11 shows a section of a hypothetical Middleware setup. As can be seen,

Device Descriptors are parsed and transliterated into an intermediate Java repre-

sentation before being handed over to the FPCFactory. This decoupling process,

performed by the DeviceDescriptorParser interface, ensures that the FPCFac-

tory is not directly tied to any particular Device Descriptor format; as a result,

the introduction of a new descriptor syntax does not entail any change to the

FPCFactory itself, but only the creation of an appropriate DeviceDescriptor-

Parser class. At the present moment, the PerLa Middleware includes a Jaxb-

DeviceDescriptParser implementation, which is responsible for translating the

XML Device Descriptor syntax shown in previous sections of this document into

the corresponding DeviceDescriptor Java class required by the FPCFactory.
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1 public interface DeviceDescriptorParser {

2 public DeviceDescriptor parse(InputStream is)

3 throws DeviceDescriptorParseException;

4 }

Listing 4.15: The DeviceDescriptorParser interface. The only method exposed by this

module is responsible for converting Device Descriptors received from the sensing nodes

into an intermediate Java object representation.

The FPCFactory, in its essence, is a coordinator object that delegates the actual

construction of all FPC components to the various factory modules described in

the former sections of this chapter. This feature is an essential characteristics of

the new Middleware architecture, and constitutes the basic building block of the

PerLa pluggable module system. New Channels, IORequests, and Messages can

be added simply by means of the FPCFactory constructor method (see listing 4.16),

and don’t require any modification to the existing Middleware code; PerLa is open

for extension but closed for modification.

In addition to the creation of all FPC component modules, the FPCFactory performs

the following tasks:

• Parses the <operation> Device Descriptor section and compiles all PerLa

Scripts in their intermediate SIR form;

• Associates every declared device Attribute to the Operation that is respon-

sible for its management;

• Assembles the various component modules, Operations and Scripts inside

a single FPC object.

1 public class FPCFactory {

2 public BaseFpcFactory(List<MapperFactory> mapperFactoryList,
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3 List<ChannelFactory> channelFactoryList,

4 List<IORequestBuilderFactory> requestBuilderFactoryList)

5

6 public Fpc createFpc(DeviceDescriptor descriptor, int id)

7 throws InvalidDeviceDescriptorException;

8 }

Listing 4.16: The FPCFactory class methods

4.4.4 Registry

The Registry is a simple in-memory database that stores FPC objects. It is pri-

marily employed for the discovery of sensing devices registered in a running PerLa

instance, and its services are extensively exploited by the Query Executor com-

ponent for the management of EXECUTE IF statements. Its interface, available in

listing 4.17, is straightforward and easy to use. It is composed of two data manip-

ulation methods, namely add() and remove(), and three data retrieval methods,

get(), getAll() and getByAttribute.

add() and remove() allow PerLa users to respectively insert and delete FPC objects

from the Registry. The first method is primarily used by the FPCFactory, which is

responsible for registering newly connected devices, whereas the second is invoked

from the FPC itself when the controlled node stops operating.

The data retrieval section of the Registry interface comprises three methods with

different semantics. get() can be used to retrieve a single FPC object with a

specific identifier, and is usually invoked when the user needs to address a certain

device in a Pervasive Network. getAll() is a shortcut that returns a list with all

the FPC objects connected to PerLa. The last method, getByAttribute(), allows

PerLa users to select a subset of devices with well-defined characteristics; its two

parameters can in fact be used to indicate the precise set of data Attributes that

a remote node must possess in order to be considered in the selection.
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1 public interface Registry {

2 public Fpc get(int id);

3

4 public Collection<Fpc> getAll();

5

6 public Collection<Fpc> getByAttribute(Collection<Attribute> with,

7 Collection<Attribute> without);

8

9 public void add(Fpc fpc);

10

11 public void remove(Fpc fpc);

12 }

Listing 4.17: The Registry interface
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Conclusions

This thesis described the design and implementation of an asynchronous data

access middleware for Pervasive Systems. As shown in previous chapters, this

process began with an analysis aimed at identifying the weaknesses and strengths

of the Classic PerLa Middleware architecture, which was later used to outline a

basic set of goals to be followed during the development of the software hereby

described. From these goals ensued a New Middleware design (chapter 3), and

a concrete implementation (chapter 4). The most important contributions that

the development of this new data access middleware brought to the PerLa System

can be classified into three categories: modularization of the Plug & Play device

registration process, asynchronous data flow management, and an improved FPC.

The new Plug & Play device registration process was enhanced with three dis-

tinct measures: first, the internal structure of the FPC component was split into

independent modules; second, the FPCFactory itself was partitioned into several

sub-factory units, one for each FPC module; third, a Plugin System was designed

to allow the addition of new FPC fragments without requiring any direct modifi-

cation to the FPCFactory itself. The advantages and merits of this new modular

design were tested and validated with the implementation of five different mod-

ules, three created by the author of this thesis (JSONMapper, URLEncodedMapper

and SimulatorChannel), and two by other graduate student (HTTPChannel and
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TinyOSChannel).

Another crucial aspect of the New PerLa Middleware design is represented by

the asynchronous data flow management paradigm. As explained in section 3.4,

all components of the new architecture implement an asynchronous event-driven

API that improves both memory usage and global reaction times of the entire

system. An example of the benefits brought by this new paradigm can be derived

by analysing the number of threads instantiated for each FPC. In the Classic Mid-

dleware, each FPC was composed of four distinct Java threads: one dedicated to

reading incoming messages, one for the Unmarshaller, one for the Marshaller,

and one for the creation of output records. Conversely, within the New Middleware

infrastructure, a single Java thread located in the Channel module is enough to

drive all data handoffs occurring inside an entire FPC. Although additional threads

may be instantiated during the execution of PerLa Scripts, it is worth noting

that these are managed by the Script Engine, and are always shared among

all running FPCs; as a consequence, the New Middleware can dynamically adjust

its resource consumption figures to match the actual workload (see chapter 4 for

additional details).

The FPC benefits from another improvement brought by the New Middleware de-

sign, namely the PerLa Scripting Language. This new feature complements the

declarative nature of the Device Descriptor, enabling the definition of advanced

mappings between device capabilities and data Attributes exposed by the FPC

component. The imperative programming paradigm fostered by the PerLa Script-

ing Language proved to be a key addition to the Middleware architecture, as it

enhanced the flexibility and versatility of the entire PerLa System; Scripts have

in fact been used to define complex device initialization procedures, to aggregate

the information collected from a sensing network, and to reshape the contents of

hierarchical data structures into the one-dimensional record pattern produced by

the FPC component. It is in the author’s view that the former Device Descriptor

structure could not be used to adequately model the aforementioned applications,

as its inherently declarative essence embodied a fixed set of behavioural assump-



CHAPTER 5. CONCLUSIONS 85

tion which were forced on all nodes of the Pervasive Network. The PerLa Scripting

Language proposes itself as a less opinionated tool that can be used by node de-

velopers to better specify the functioning mechanisms of their devices.

5.1 Future work

5.1.1 Implementation of new plugins

The New PerLa Middleware is designed to be extended through the addition of new

modules, and it should come as no surprise that one of its intended evolution paths

consists in fact in the development of new Plugins. As described in chapter 4, there

are two main types of modules that can be added to the PerLa Plugin System:

Channels and Mappers.

The possibility to add new Channel implementations is a distinguishing feature

of the New Middleware design that should be effectively exploited to expand the

range of supported endpoint devices. At the time of writing the selection of Plugins

shipped with the core Middleware distribution allows PerLa to connect with HTTP

services and TinyOS motes. This initial line-up should be only considered as a

starting point, since a larger assortment of communication systems is required to

manage even the most rudimentary Pervasive System. The following list contains

a choice of protocols and networking technologies for which a dedicated Channel

implementation is advised:

• TCP/IP: Widely employed in a vast variety of devices, ranging from high-

end personal computers to low power devices;

• Bluetooth LE (Low Energy): One of the leading technologies for wireless

personal area networks. Currently supported by all major operating systems,

Bluetooth LE found its way into many devices and appliances, like fitness

bands, smartphones, healthcare instruments, home entertainment sets and

localization beacons;
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• IEEE 802.15.4 based protocols: IEEE 802.15.4 is a physical layer widely

employed in many personal area network protocols. It is the foundation of

several networking specifications like Zigbee, Xbee and MiWi;

• RS232: Serial port communication. Its implementation should be consid-

ered in order to connect with legacy devices and other low power systems

(e.g., Arduino).

Mappers represent another extension point of the PerLa Middleware infrastructure

that can be used to manage additional data formats and encodings. The only

Mapper components available as of December 2014 in the core Middleware distri-

bution provide support for JSON and URL-encoded data structures. Analogously

to what already stated for the Channel component, future PerLa developers should

consider implementing new Mappers for handling the following data formats:

• C/C++ structs: Its implementation should be a simple backport from the

Classic Middleware architecture;

• XML: A markup language for document encoding;

• CSV (Comma-Separated Values): A simple format for the transmission

and storage of tabular data.

5.1.2 Alternative Device Descriptor forms

As introduced in chapter 4, the new Plug & Play node registration system is

comprised of two separate elements: a DeviceDescriptorParser front-end, which

analyzes the Device Descriptor to build a format-agnostic Java representation of

the descriptor itself, and the FPCFactory, which consumes this intermediate Java

representation to assemble the final FPC. This new architecture was conceived

to facilitate the future addition of alternative Device Descriptor formats by only

requiring the development of an appropriate DeviceDescriptorParser module.

There are two main reasons for adding a new Device Descriptor representation:

first, to support a different data format that may be more convenient for some

devices (e.g., a JSON Device Descriptor); second, to create FPCs using readily
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available industry standard device description technologies. This former motiva-

tion leads us to one future development of the PerLa infrastructure, namely the

possibility of introducing a DeviceDescriptorParser for the SensorML [1] sensor

description format. Through this effort the PerLa Middleware would be imme-

diately compatible with all devices for which a SensorML description is already

available.

5.1.3 Distributed PerLa

Future development of the PerLa Middleware should aim at implementing in-

network processing capabilities in order to better exploit the resources available

in a Pervasive System. Such efforts must focus on the definition of a software

distribution infrastructure that can be used to divide a high-level computation

into smaller, independent units of work to be executed on the individual nodes of

the sensing network.
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Appendix A

Complete XML Device

Descriptor examples

A.1 Example 1

The Device Descriptor portrayed in this first example is employed to create a

Simulator FPC, a useful tool that helps testing the PerLa Middleware even when no

physical sensor nodes are available. This simulated device exposes two attributes:

a read-only float representing the temperature in Celsius degrees (temp c), and a

write-only integer that will be used to set the sampling period (period).

This FPC contains one Channel of type SimulatorChannel, which generates new

data samples without requiring a connection to a real sensing device. In our ex-

ample, the SimulatorChannel is configured with a single data generation routine,

named temperature, that automatically creates new data samples in increments

of 0.1◦, spanning from a minimum of 16◦ C to a maximum of 20◦ C. The <request>

section shows that a single IORequest object is enough to drive the single data

generator available in this FPC.

Only two Message types are declared in the Device Descriptor: a temperature-

msg message, which contains a single field of type float, and a sampling-period
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message, composed of only an integer field. These two messages will be used to

collect temperature samples and to set the desired sampling period in the Simu-

latorChannel respectively.

As can be seen from the <operation> section of this descriptor, the simulator device

exposes a periodic sampling operation named temp-periodic. It is important to

note that the start Script initializes the SimulatorChannel according to the

sampling rate specified by the user, which is retrieved with a ${arg[’period’]}

expression. New output records are create by the on Script upon arrival of each

temperature-msg. Finally, the generation of new data samples can be stopped by

setting the sampling frequency to zero.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <device type="Weather simulator"

3 xmlns="http://perla.dei.org/device"

4 xmlns:i="http://perla.dei.org/device/instructions"

5 xmlns:sim="http://perla.dei.org/channel/simulator">

6

7 <attributes>

8 <attribute id="temp_c" type="float" permission="read-only"/>

9 <attribute id="period" type="integer" permission="write-only"/>

10 </attributes>

11

12 <channels>

13 <sim:channel id="simulator">

14 <sim:generator id="temperature">

15 <sim:field name="temperature" strategy="step"

16 type="float" min="16" max="20" increment="0.1"/>

17 </sim:generator>

18 </sim:channel>

19 </channels>
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20

21 <messages>

22 <sim:message id="temperature-msg">

23 <sim:field name="temperature" type="float"/>

24 </sim:message>

25 <sim:message id="sampling-period">

26 <sim:field name="period" type="integer"/>

27 </sim:message>

28 </messages>

29

30 <requests>

31 <sim:request id="temperature-request" generator="temperature"/>

32 </requests>

33

34 <operations>

35 <periodic id="temp-periodic">

36 <start>

37 <i:create variable="period" type="sampling-period"/>

38 <i:set variable="period" field="period"

value="${arg[’period’]}"/>

39 <i:submit request="temperature-request" channel="simulator">

40 <i:param name="period" variable="period"/>

41 </i:submit>

42 </start>

43 <stop>

44 <i:create variable="period" type="sampling-period"/>

45 <i:set variable="period" field="period" value="0"/>

46 <i:submit request="temperature-request" channel="simulator">

47 <i:param name="period" variable="period"/>

48 </i:submit>

49 </stop>

50 <on message="temperature-msg" variable="result">

51 <i:put expression="\${result.temperature}" attribute="temp_c" />
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52 <i:emit />

53 </on>

54 </periodic>

55 </operations>

56

57 </device>

A.2 Example 2

This second Device Descriptor is used to configure an FPC for collecting data from

a RESTful meteorological service. The remote API is accessed by means of a

HTTPChannel, which retrieves a complete JSON-encoded weather report for the

city of Milan.

The service chosen for this application returns its results using a fairly complex

JSON entity, whose structure has been replicated in the <message> section of

this descriptor. The main weather object is in fact a wrapper for three other

components: a coord message, a data message, and a wind message. It is worth

noting that these three sub-objects are constructed using only primitive fields, and

that they are not intended to be used on their own; their only purpose is to be

included as the constituent elements of a weather message.

The stateless nature of the HTTP protocol is underscored by the simplicity of

the HTTPChannel declaration, which doesn’t require any parameter except for its

own identifier, and by the related HTTPIORequest, where all information required

for querying the RESTful API endpoint is stored. These two FPC components are

then employed in the <get> Operation, which is tasked with creating a new record

from the weather object retrieved from the web service.
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1 <?xml version="1.0" encoding="UTF-8"?>

2 <device type="REST Weather station"

3 xmlns="http://perla.dei.org/device"

4 xmlns:js="http://perla.dei.org/fpc/message/json"

5 xmlns:http="http://perla.dei.org/channel/http"

6 xmlns:i="http://perla.dei.org/device/instructions">

7

8 <attributes>

9 <attribute id="city" type="string" permission="read-only"/>

10 <attribute id="temp_k" type="float" permission="read-only"/>

11 <attribute id="temp_c" type="float" permission="read-only"/>

12 <attribute id="temp_f" type="float" permission="read-only"/>

13 <attribute id="pressure" type="float" permission="read-only"/>

14 <attribute id="humidity" type="float" permission="read-only"/>

15 <attribute id="wind_speed" type="float" permission="read-only"/>

16 <attribute id="wind_deg" type="float" permission="read-only"/>

17 </attributes>

18

19 <channels>

20 <http:channel id="http"/>

21 </channels>

22

23 <messages>

24 <js:object id="coord">

25 <js:value name="lon" type="string"/>

26 <js:value name="lat" type="string"/>

27 </js:object>

28

29 <js:object id="data">

30 <js:value name="temp" type="float"/>

31 <js:value name="pressure" type="float"/>

32 <js:value name="humidity" type="float"/>

33 <js:value name="temp_min" type="float"/>
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34 <js:value name="temp_max" type="float"/>

35 </js:object>

36

37 <js:object id="wind">

38 <js:value name="speed" type="float"/>

39 <js:value name="deg" type="float"/>

40 </js:object>

41

42 <js:object id="weather">

43 <js:value name="coord" type="coord"/>

44 <js:value name="data" type="data"/>

45 <js:value name="wind" type="wind"/>

46 </js:object>

47 </messages>

48

49 <requests>

50 <http:request id="weather-mi"

51 host="http://api.openweathermap.org/data/2.5/weather?q=Milan,it"

52 method="get" />

53 </requests>

54

55 <operations>

56 <get id="weather-mi">

57 <i:submit request="weather-mi" channel="http"

58 variable="result" type="weather"/>

59 <i:put expression="Milan" attribute="city"/>

60 <i:put expression="${result.data.temp}" attribute="temp_k"/>

61 <i:put expression="${result.data.temp - 272.15}"

attribute="temp_c"/>

62 <i:put expression="${(result.data.temp - 273.15) * 9 / 5 + 32}"

63 attribute="temp_f"/>

64 <i:put expression="${result.data.pressure}" attribute="pressure"/>

65 <i:put expression="${result.data.humidity}" attribute="humidity"/>
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66 <i:put expression="${result.wind.speed}" attribute="wind_speed"/>

67 <i:put expression="${result.wind.deg}" attribute="wind_deg"/>

68 <i:emit/>

69 </get>

70 </operations>

71

72 </device>

A.3 Example 3

A purely educational Device Descriptor designed to showcase the following PerLa

Middleware features:

• read-write, read-only write-only and static attributes;

• SimulatorChannel value generator configurations for all available data types;

• Get and Set Operations;

• Periodic Operations with single and multiple <on> Scripts.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <device type="test"

3 xmlns="http://perla.dei.org/device"

4 xmlns:i="http://perla.dei.org/device/instructions"

5 xmlns:sim="http://perla.dei.org/channel/simulator">

6

7 <attributes>

8 <attribute id="integer" type="integer" permission="read-write"/>

9 <attribute id="float" type="float" permission="read-write"/>

10 <attribute id="boolean" type="boolean" permission="read-write"/>

11 <attribute id="string" type="string" permission="read-write"/>

12 <attribute id="event" type="boolean" permission="read-only"/>
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13 <attribute id="period" type="integer" permission="write-only"/>

14 <attribute id="static" type="integer" access="static" value="5"/>

15 </attributes>

16

17 <channels>

18 <sim:channel id="simulator">

19 <sim:generator id="all">

20 <sim:field name="type" strategy="static" value="all"/>

21 <sim:field name="integer" strategy="dynamic"

22 type="integer" min="12" max="32"/>

23 <sim:field name="float" strategy="dynamic"

24 type="float" min="450" max="600"/>

25 <sim:field name="string" strategy="dynamic"

26 type="string" min="10" max="15"/>

27 </sim:generator>

28 <sim:generator id="integer">

29 <sim:field name="type" strategy="static" value="integer"/>

30 <sim:field name="integer" strategy="dynamic"

31 type="integer" min="47" max="58"/>

32 </sim:generator>

33 <sim:generator id="string">

34 <sim:field name="type" strategy="static" value="integer"/>

35 <sim:field name="string" strategy="dynamic"

36 type="string" min="5" max="5"/>

37 </sim:generator>

38 <sim:generator id="boolean">

39 <sim:field name="type" strategy="static" value="boolean"/>

40 <sim:field name="boolean" strategy="dynamic" type="boolean"/>

41 </sim:generator>

42 <sim:generator id="event">

43 <sim:field name="type" strategy="static" value="event"/>

44 <sim:field name="event" strategy="dynamic" type="boolean"/>

45 </sim:generator>
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46 </sim:channel>

47 </channels>

48

49 <messages>

50 <sim:message id="set-msg">

51 <sim:field name="test" type="integer"/>

52 </sim:message>

53 <sim:message id="sampling-period">

54 <sim:field name="period" type="integer"/>

55 </sim:message>

56 <sim:message id="all-msg">

57 <sim:field name="type" type="string" qualifier="static"

value="all"/>

58 <sim:field name="integer" type="integer"/>

59 <sim:field name="float" type="float"/>

60 <sim:field name="string" type="string"/>

61 </sim:message>

62 <sim:message id="integer-msg">

63 <sim:field name="type" type="string" qualifier="static"

value="integer"/>

64 <sim:field name="integer" type="integer"/>

65 </sim:message>

66 <sim:message id="string-msg">

67 <sim:field name="type" type="string" qualifier="static"

value="string"/>

68 <sim:field name="string" type="string"/>

69 </sim:message>

70 <sim:message id="boolean-msg">

71 <sim:field name="type" type="string" qualifier="static"

value="boolean"/>

72 <sim:field name="boolean" type="boolean"/>

73 </sim:message>

74 <sim:message id="event-msg">
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75 <sim:field name="type" type="string" qualifier="static"

value="event"/>

76 <sim:field name="event" type="boolean"/>

77 </sim:message>

78 </messages>

79

80 <requests>

81 <sim:request id="all-request" generator="all"/>

82 <sim:request id="integer-request" generator="integer"/>

83 <sim:request id="string-request" generator="string"/>

84 <sim:request id="boolean-request" generator="boolean"/>

85 <sim:request id="event-request" generator="event"/>

86 </requests>

87

88 <operations>

89 <get id="integer-get">

90 <i:submit request="integer-request"

91 channel="simulator" variable="result" type="integer-msg"/>

92 <i:put expression="${result.integer}" attribute="integer"/>

93 <i:emit/>

94 </get>

95 <get id="string-get">

96 <i:submit request="string-request"

97 channel="simulator" variable="result" type="string-msg"/>

98 <i:put expression="${result.string}" attribute="string"/>

99 <i:emit/>

100 </get>

101 <set id="integer-set">

102 <!-- Just for test purposes -->

103 <i:create variable="set-data" type="set-msg"/>

104 <i:set variable="set-data" field="test"

value="${param[’integer’]}"/>

105 </set>
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106 <periodic id="all-periodic">

107 <start>

108 <i:create variable="period" type="sampling-period"/>

109 <i:set variable="period" field="period"

value="${param[’period’]}"/>

110 <i:submit request="all-request" channel="simulator">

111 <i:param name="period" variable="period"/>

112 </i:submit>

113 </start>

114 <stop>

115 <i:create variable="period" type="sampling-period"/>

116 <i:set variable="period" field="period" value="0"/>

117 <i:submit request="all-request" channel="simulator">

118 <i:param name="period" variable="period"/>

119 </i:submit>

120 </stop>

121 <on message="all-msg" variable="result">

122 <i:put expression="${result.integer}" attribute="integer" />

123 <i:put expression="${result.float}" attribute="float" />

124 <i:put expression="${result.string}" attribute="string" />

125 <i:emit />

126 </on>

127 </periodic>

128 <periodic id="multiple-periodic">

129 <start>

130 <i:create variable="period" type="sampling-period"/>

131 <i:set variable="period" field="period"

value="${param[’period’]}"/>

132 <i:submit request="integer-request" channel="simulator">

133 <i:param name="period" variable="period"/>

134 </i:submit>

135 <i:submit request="boolean-request" channel="simulator">

136 <i:param name="period" variable="period"/>
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137 </i:submit>

138 </start>

139 <stop>

140 <i:create variable="period" type="sampling-period"/>

141 <i:set variable="period" field="period" value="0"/>

142 <i:submit request="integer-request" channel="simulator">

143 <i:param name="period" variable="period"/>

144 </i:submit>

145 <i:submit request="boolean-request" channel="simulator">

146 <i:param name="period" variable="period"/>

147 </i:submit>

148 </stop>

149 <on message="integer-msg" variable="result" sync="true">

150 <i:put expression="${result.integer}" attribute="integer" />

151 <i:emit />

152 </on>

153 <on message="boolean-msg" variable="result">

154 <i:put expression="${result.boolean}" attribute="boolean" />

155 <i:emit />

156 </on>

157 </periodic>

158 <async id="event-async">

159 <start>

160 <i:create variable="period" type="sampling-period"/>

161 <i:set variable="period" field="period" value="200"/>

162 <i:submit request="event-request" channel="simulator">

163 <i:param name="period" variable="period"/>

164 </i:submit>

165 </start>

166 <on message="event-msg" variable="result">

167 <i:put expression="${result.event}" attribute="event"/>

168 <i:emit />

169 </on>
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170 </async>

171 </operations>

172

173 </device>


