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1
I N T R O D U C T I O N

Over the past several decades, hydrologists and climatologists have
developed relationships between large scale oceanic–atmospheric vari-
ability and climate [Soukup et al., 2009]. Studying the relationship be-
tween ocean-atmospheric interaction and hydro-meteorological pro-
cesses is helpful in hydrologic and meteorological forecasting and
water resources management. One way of studying these relation-
ships is to use the ocean’s Sea Surface Temperature (SST) [Meidani and
Araghinejad, 2013], since SST affects hydro-meteorological processes
by teleconnections. It is known that some patterns of SST affect hydro-
meteorological variables by a sea-land-atmosphere interaction known
as teleconnection. Moreover low frequency climatic fluctuations, re-
lated to SST variations, are known to be a major factor causing extreme
hydrological events and significant variations in water resources at
global and regional scales [Kahya and Dracup, 1993]. Therefore SST

variability can provide important predictive information about hy-
drologic variability in regions around the world [Soukup et al., 2009].
Several works can be found in the literature investigating the relation-
ship between SST and hydro-meteorological processes throughout the
world [Barnston and Smith, 1996]. These works try to assess this re-
lationship by employing SST indexes from ocean areas that have a
well-studied role in regulating climate and effects at global and re-
gional scales. SST indexes are then used to make prediction models in
order to improve the anticipation capability of hydro-meteorological
processes. Actually a purpose of water resources management is to ex-
tend the lead time in order to achieve medium-to-long range forecasts.
If reliable medium-to-long range forecasts of streamflow were avail-
able, water management policies accounting for flood control, power
generation and irrigation water supply could be developed. Knowing
the resource available months in advance, measures for adaptation
and resilience in water uses can be arranged leading to an overall im-
provement in water resources management [Savage, 2013].

Significant researches have focused on identifying atmospheric–oceanic
climatic phenomenon of the El Niño Southern Oscillation (ENSO) [Soukup
et al., 2009]. Most likely the best known teleconnection phenomenon,
ENSO is a large-scale coupled ocean–atmosphere phenomenon occur-
ring in the Tropical Pacific Ocean that has been linked to climate
anomalies throughout the world [Chiew and McMahon, 2002]. ENSO

effects are studied mostly in certain regions that are well known for
their sensitivity to the ENSO phenomenon, for example in the coastal

1



2 introduction

regions of Northern Peru and Southern Ecuador. In general, sev-
eral researchers have shown a significant relationship between ENSO

events and the rainfall of Pacific Rim countries and of the tropical belt
regions [Gutierrez and Dracup, 2001 and Amarasekera et al., 1997]. ENSO

effects on hydrometeorological processes are studied using standard
indexes, such as averaged SST over particular regions of the Pacfic
Ocean (e.g. Niño3, Niño4, Niño3.4, Niño1+2) or other indexes re-
lated to other variables in that region (e.g. the Southern Oscillation
Index (SOI) and the Multivariate ENSO Index (MEI)). Often, however,
the standard indices of these phenomena are not good predictors of
hydroclimate in every basin of the Pacific Rim, for example in the
western United States, even though ENSO phenomenon impact that
areas hydroclimate. Because the canonical patterns of this climate
phenomenon refer to specific regions in the ocean and slight shifts
in the patterns can result in decreased correlation values between the
indices and basin hydroclimate [Grantz and Rajagopalan, 2005]. There-
fore, depending on what region is being examined, it is possible that
other indicators may be more appropriate. Alternative indices of ENSO

phenomenon are studied to find a stronger ENSO-hydrology correla-
tions.

New indexes are found by averaging SST over the areas of highest
correlation with the basin hydrology (e.g. streamflow). These areas
are determined by visual inspection of the correlation maps or by
test of significance. For example, good results are obtained in west-
ern United States, averaging Pacific SST [Grantz and Rajagopalan, 2005].
Other researches follow this method in ocean area that not concern
only ENSO phenomenon. For example Phillips et al. have found in-
dexes in North Atlantic SST that can forecast precipitation in Iceland
[Phillips and Thorpe, 2006]. Researches of Tarakanov and Borisova de-
veloped recently Most Anomalous Indicator (MAI). In fact recent ad-
vances in satellite remote sensing techniques are making possible to
identify new oceanic regions that could be used as ENSO SST indi-
cators. MAI can serve as a convenient indicator of extreme oceano-
graphic conditions and can be also used as a predictor of global
events [Tarakanov and Borisova, 2013]. Further researches use statistical
tools for identifying coupled relationships between SST and hydro-
meteorological variables. For example, Roswiarti et al. use Empir-
ical Orthogonal Functions (EOF) and Canonical Correlation Analy-
sis (CCA) to extract the impact to El Niño on North Carolina precip-
itation. Results provide a confidence in the applicability of EOF and
CCA analysis for understanding El Niño-like climatic events under re-
gional or local perspectives [Roswintiarti, Devdutta, and Raman, 1998].

Moreover it is important to note that basin hydroclimate could be not
strongly related to specifically ENSO phenomenon more than other
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teleconnection phenomena. Therefore, alternative indices can be found
assessing the relationship between hydroclimate variables in a spe-
cific basin with oceanic areas that not concerns only ENSO area. It is
therefore clear that a great deal of uncertainty and significant subjec-
tivity exist in selecting not only which index to use but also which
oceanic areas are the most appropriate to study.

1.1 objectives

The purpose of this thesis is to assess the effects of SST of Indian and
Pacific Ocean on the hydro-meteorological processes over the Red
River Basin, Vietnam. This work is intentionally focused to cover the
impacts of Indian and Pacific Ocean on the hydrology of the Red
River Basin, because unambiguous research evidence showing these
connections are not found. Although the ENSO–hydrology relation-
ship is found to exist in Vietnam, there are still several open research
questions to be answered [Räsänen and Kummu, 2013].

The main goals of the present thesis are to assess the impact of SST

on the Red River Basin, means by to evaluate of new indicators of SST

that compress the main informations and behaviour of the SST in the
oceans, and to develop streamflow prediction models incorporating
the SST indicators found in the previous analysis.

In order to achieve these goals, this work presents a framework to
identify large-scale climate indicators of Sea Surface Temperature
Anomalies (SSTA) related to hydro-meteorological variables of the basin
and to incorporate this indicators into forecasts of streamflow. The
framework follows four main steps. Each step achieves a particular
objective, in order: the first step assess the relationship between SST

and hydro-meteorological variables, the second step create indicators
of SSTA, the third step assess the relationship between the new sets of
SSTA indicators and hydro-meteorological variables, the fourth step
compute prediction model by using the information obtained in the
previous steps. The findings of every step are employed in the follow-
ing step. Each step is described above:

1. Correlation analysis is adopted to prove the relationship be-
tween Indian and Pacific SST and hydro-meteorological vari-
ables of the Red River Basin. Squared grid SST data sets are
used. Each grid point of SST is correlated with streamflow and
rainfall series of the basin. Correlation maps obtained show the
areas strongly correlated.
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2. Empirical Orthogonal Functions (EOF) of SSTA is calculated in
order to create new sets of variables that could be used as in-
dicator of SSTA. The advantage of using EOF is to compress the
information of the input variables, such as SSTA, in order to ob-
tain new sets of independent variables. It is possible to select
few independent variables in order to explain most of the total
variance of the process.

3. Canonical Correlation Analysis (CCA) between selected EOFs of
SSTA (predictors) and EOFs of rainfall/streamflow (predictands)
is computed. CCA is a powerful statistical tool for identifying
coupled relationships between predictors and predictands. CCA

correlates linear combinations of a set of predictors that max-
imize relationships, in a least-square sense, to linear combina-
tions of predictands [Roswintiarti, Devdutta, and Raman, 1998].
Therefore CCA is used to assess the relationship between the
indicators of SSTA and the hydro-meteorological variables.

4. Prediction models using the indicators of SSTA are analyzed.
Two different methods are used: CCA and Input Variable Selec-
tion (IVS). CCA and IVS are computed between the indicators of
SSTA and the streamflow anomalies at each station of the basin.
In this step CCA is used in a predictive way. It’s possible to use
the linear combinations obtained from the method to make pre-
dictions. In general IVS is used in order to find the most relevant
climatic forcings of at site streamflow variability and to derive a
predictive model based on the inputs selected. Therefore IVS is
used first to evaluate if SST indicators are predictors of stream-
flow anomalies and second to build prediction models of the
selected SST indicators.

In summary, the new contribution of this thesis is the development
of a framework in which indicators of SST are assessed, in order to
improve prediction methods for teleconnection induced hydrological
anomalies.

The present thesis is structured into two distinct parts. In the first
part, the theoretical background is provided.

• Chapter 1 contains an overview on the role of SST on hydro-
meteorological processes and teleconnection phenomena. Addi-
tionally some SST data sets are described.

• Chapter 2 describes the methods and tools adopted in this work.

In the second part, case study and results are shown.

• In Chapter 4 the Red River Basin and its hydro-meterological
variables are described.
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Figure 1.1: Flowchart of the analysis

• Chapter 5 contains results and discussion of the impact of SSTA

on hydro-meteorological processes.

• Chapter 6 contains results and discussion of the prediction mod-
els.

Conclusions and fruther enhancements are drawn in Chapter 7.
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2
I M PA C T O F S S T O N C L I M AT E A N D
H Y D R O - M E T E O R O L O G I C A L P R O C E S S E S

The purpose of this chapter is to describe the SST variable and its
effect on climate and hydro-meterorological processes.

2.1 sst and climate

In recent decades, studies on sea-land-atmosphere interaction have a
crucial role in the understanding of global climate. In the dynamic
of hydrological cycle, oceans play an important role owing in part to
their large heat-storage capacity. Physically the ocean’ s thermal in-
ertia is linked to the atmosphere via turbulent and radiative energy
exchange at the sea surface. These energy fluxes, in turn, depend on a
single oceanic quantity, the sea surface temperature, as well as several
atmospheric parameters including wind speed, air temperature, hu-
midity and cloudiness. Since 1960s many studies have confirmed that
SSTs play a key role in regulating climate and its variability. In partic-
ular, slow variations in SST provide a source of potential predictabil-
ity for climate fluctuations on timescales of seasons and longer. SST

behavior differs fundamentally from atmospheric variables (e.g. pres-
sure), which often show marked variability at the daily timescale and
are strongly linked to concurrent but not future rainfall variability
[Deser et al., 2010].

It is known that some pattern of SST are related to atmospheric cir-
culation variability by teleconnections. A phenomena of teleconnec-
tion refers to recurring and persistent patterns of climate variables
located in two different places, during which one variable affects the
other one at large distance. Due to its relationship with teleconnec-
tions phenomena, SST affects the hydro-meteorological processes at
the basin scale. Teleconnections phenomena are widespread in dif-
ferent geographical areas and they can sometimes be prominent for
several consecutive years, thus reflecting an important part of both
the interannual and interdecadal variability of the atmospheric cir-
culation. Famous examples of climate indices linked to teleconnec-
tion patterns of atmospheric circulation variability include the Pacific
Decadal Oscillation (PDO), the Indian Ocean Dipole (IOD) and the El
Niño Southern Oscillation (ENSO). A brief description for each phe-
nomenon is provided below. ENSO is addressed in a dedicated section.

9



10 impact of sst on climate and hydro-meteorological processes

2.1.1 PDO and IOD

The Pacific Decadal Oscillation (PDO) occurs in the North Pacific Ocean,
where SST changes between warm (positive values) and cool (negative
values) phases occur every 20 to 30 years. When SSTs are anomalously
cool in the interior North Pacific and warm along the North Ameri-
can Pacific coast, and when sea level pressures are below average
over the North Pacific, the PDO has a positive value. When the cli-
mate anomaly patterns are reversed, with warm SST anomalies in the
interior and cool SST anomalies along the North American coast, or
above average sea level pressures over the North Pacific, the PDO has
a negative value. PDO affects specially the North American climate.
Warm phases of the PDO are correlated with above average winter
and spring time temperatures in northwestern North America, be-
low average temperatures in the southeastern United States, above
average winter and spring rainfall in the southern United States and
northern Mexico, and below average precipitation in the interior Pa-
cific Northwest and Great Lakes regions. Cool phases are correlated
with the reverse climate anomaly patterns over North America. The
PDO-related temperature and precipitation patterns are also strongly
expressed in regional snow pack and stream flow anomalies, espe-
cially in western North America.

The Indian Ocean Dipole (IOD) is centered in the equatorial Indian
Ocean and it affects mainly the climate of countries that surround the
Indian Ocean basin, Australia included. It is commonly measured by
an index that is the difference between SST anomalies in the west-
ern (50°E to 70°E and 10°S to 10°N) and eastern (90°E to 110°E and
10°S to 0°S) equatorial Indian Ocean. The index is called the Dipole
Mode Index (DMI). A positive IOD period is characterised by cooler
than normal water temperatures in the tropical eastern Indian Ocean
and warmer than normal water temperatures in the tropical west-
ern Indian Ocean. Conversely, a negative IOD period is characterised
by warmer than normal water temperatures in the tropical eastern
Indian Ocean and cooler than normal water temperatures in the trop-
ical western Indian Ocean. Some effects of IOD are observed over Aus-
tralia, where a positive IOD SST pattern is associated with a decrease
in rainfall over parts of central and southern Australia. Otherwise a
negative IOD SST pattern is associated with an increase in rainfall over
parts of southern Australia.

2.1.2 ENSO

The El Niño Southern Oscillation (ENSO) is centered in the equatorial
Pacific Ocean. It consists of two phases, the warm El Niño phase and
the cold La Niña phase, that are connected to the atmosphere through



2.1 sst and climate 11

a seesaw atmospheric pressure fluctuation in the South Pacific called
the Southern Oscillation (SO) [Shrestha and Kostaschuk, 2005]. Typi-
cally, ENSO events occur at irregular intervals, with a characteristic
return frequency of 2-7 years (which makes ENSO a quasi-periodic
phenomenon) and usually persist for 1–2 years. No two events are
completely alike: they evolve according to a consistent pattern, but
they differ in timing, intensity, extent, and duration [Kahya and Dracup,
1993]. ENSO events are related to inter-annual variations in precipita-
tions and streamflow in several regions of the world. Therefore the
ability to predict flow patterns in rivers and precipitation forecasting
in a certain region will be highly enhanced if a strong relationship
between ENSO-climate variables is quantified [Amarasekera et al., 1997].
Seeing the potential offered by knowledge of ENSO events, many re-
searchers assessed the relationship among ENSO event and hydro-
meteorological processes all over the world [Barnston and Smith, 1996].
Several indexes to monitor ENSO condition are available, and the most
widely used are the SOI and the SST based indexes, calculated over dif-
ferent areas of the tropical Pacific Ocean known as Niño 1+2, Niño 3,
Niño 3.4 and Niño4 [Kiem and Franks, 2001].

SST-based indexes have been derived using different areas of the equa-
torial Pacific Ocean (see figure 2.1):

• Niño1+2: 80°W – 90°W, 10°S – Equator;

• Niño3: 90°W – 150°W, 5°S – 5°N;

• Niño3.4: 120°W – 170°W, 5°S – 5°N;

• Niño4: 150°W – 180°W, 5°S – 5°N.

Figure 2.1: Equatorial Pacific SST regions. Source: National Center for
Atmospheric Research (http://www.ucar.edu/communications/
newsreleases/1998/ninatip.html).

The SSTs characterizing the identified regions are averaged for each
corresponding ENSO index [Chandimala and Zubair, 2007]; for exam-
ple, the Niño3 index is defined as the seasonal SST averaged over the
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Niño3 region, which is located in the central/eastern Pacific Ocean
between 5°S and 5°N in latitude and 90°W and 150°W in longitude.

More recently, other ENSO indexes have come to the attention of re-
searchers, such as the Multivariate ENSO Index (MEI) and Most Anoma-
lous Indicator (MAI). The MEI is based on six observed variables over
the tropical Pacific Ocean. These six variables are Sea Level Pressure,
Sea Surface Temperature, zonal and meridional components of the
surface wind, Surface Air Temperature and total cloudiness fraction
of the sky. According to several researchers, being derived from mul-
tiple climate variables, the MEI could potentially represent a more
integrated measure of persistent anomalies and, therefore, reflect the
nature of the coupled ocean-atmosphere system better than either SOI

or SST based indexes. This is because integrating more information
than the SOI and SST-based indexes, which are each based on a single
variable (pressure and temperature, respectively), the MEI would re-
sult less vulnerable to non-ENSO related variability [Kiem and Franks,
2001]. Tarakanov and Borisova developed the MAI index that is de-
fined as a geographical point where the value of SST is greater than
in any other point of the area. Such singular point of the MAI can
serve as a convenient indicator of extreme oceanographic conditions
and can also be used as a predictor of global events [Tarakanov and
Borisova, 2013].

2.2 sst and hydrometeorological processes

Thanks to the effects of teleconnections, studies have been developed
during the last decades focusing on the relationship among SSTs and
meteorological variables of a geographical area in order to forecast
hydro-meteorological processes. One easy way of measuring these re-
lationships is to use SST indexes, alternatively a selection of a shorter
portion of SST over oceans is used in order to evaluate which par-
ticular ocean area affects more the meteorological variables. It is a
common approach to assess the influence of a particular ocean por-
tion on a regional area by dividing the ocean in a grid square of SST

values in order to study the influence of each square on the hydro-
meteorological variables (e.g. rainfall, streamflow) recorded on that
area in a specific lagged time. Instead of using SST, many studies use
SSTA that are definied as the SST removed from its long-term average.
It is possible to calculate SSTA averaging the SST at each month and
removing the montly average from each month of SST samples. SSTA

is useful because it is able to assess the influence of the sea surface
temperature no affected by seasonal variability.

SSTs can be used to provide an indication of whether the following
month or season is likely to be wetter or drier than average, but they
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cannot be used to predict individual extreme events at the synoptic
timescale, that is the scale of an atmospheric condition. This restricts
the utility of rainfall forecasts using SST because planning authori-
ties will often be more interested in short-lived rainfall extremes than
time-averaged behavior over a season. However, the development of
globally complete SST and sea-ice data sets allows climate scientists
to study SST–weather linkages with greater confidence than their pre-
decessors, who were hindered by data sets that were geographically
sparse, of limited record length and homogeneity [Phillips and Thorpe,
2006].

Many studies in literature focused particularly on the influence of
tropical Pacific SST, such as the area where ENSO is the main pattern,
on meteorological variables, because ENSO is an event of great inter-
est in the climate field and, further, its strong influence on climate
variables all over the world is well documented [Chiew and McMahon,
2002].

The work of Barnston and Smith (1996) attempts to use SST to ex-
amine relationships between SST and precipitation an temperatures
over most of the world. They use Canonical correlation analysis (CCA)
in order to provide a physical interpretation of the relationships for
the 1950-1992 period. Specifically a sequence of four consecutive 3-
months periods of global SST anomalies is related to temperature and
precipitation anomalies during 3-month periods ranging from zero to
four seasons later. Results show that specification and prediction are
relatively skillful, first, in areas affected by the ENSO. These include
the tropical Pacific islands and most of the tropical Indian Ocean land
regions throughout most of the year. They include also portions of
North and South America, Africa and Australia for specific seasons
for both temperature and precipitation. In South America precipita-
tion, it was noted that the Atlantic SST can be at least as important as
Pacific SST. Results show that additional predictive skills are observed
also from other processes than ENSO. Trends in non-ENSO sources ap-
pear to control the continental climate as strongly as ENSO both in
regions directly affected by ENSO and those are minimally influenced
[Barnston and Smith, 1996].

Many studies focus on Europe and often assess the relationships
between Atlantic Ocean and different regional area around Europe.
Lorenzo et al. (2010) looks at the relationship between monthly North
Atlantic Sea Surface Temperatures Anomalies (SSTAs) and regional in-
dex of rainfall in northwest Iberian Peninsula during the period 1951-
2006, similarly Phillips Thorpe (2006) assesses the relationship be-
tween gridded (5°× 5°) monthly North Atlantic (10–70°N, 80°W–20°E)
SSTAs and concurrent, one-monthly and two-monthly lagged rainfall



14 impact of sst on climate and hydro-meteorological processes

totals for four coherent Icelandic precipitation regions over the period
1961–2002. Both studies evaluate the strength of the relationships by
correlation coefficient for any given grid square of SSTA with the me-
teorological variable on lands.

Roswiarti et al. (1998), studying the linear teleconnections of El Niño
events and precipitation over North Carolina, found an highly cor-
relation among monthly tropical Pacific SSTA and precipitations. In
particular the results show that El Niño-related precipitation anoma-
lies along the North Carolina coast were positive from November to
May and negative between June and October consistent with large-
scale studies.
Using winter monthly grid of SST in order to predict East Asian sum-
mer monsoon (EASM), Li and Zeng (2008) found that the forecast
skill of EASM rainfall, based on CCA prediction model, is quite low
although the tropical Pacific SST in winter has been generally recog-
nized as the most prominent previous signals from the sea.
An example of a study in Arabic peninsula is taken from Meidani
(2013), who investigates the rainfall and streamflow over southwest-
ern Iran from SST of Mediterranean Sea. The aim is to evaluate the
correlation of SST with the hydrological response of the study area
through singular value decomposition (SVD). The analysis show that
Mediterranean SSTs have a clear significant impact on wet season
(February to May) average streamflow over the south west of Iran.

2.3 sst data

Nowadays some known organizations arrange open climate variables
on the web; NOAA (National Oceanic and Atmospheric Adminis-
tration) collects a widespread and updated archives of SST data set.
Other organizations which provide analysis of SST data are the Aus-
tralia Government Bureau of Meteorology and the Met Office Hadley
Centre. In this section are considered those data sets that are available
in a regular grid over the world oceans on NOAA’s website. The SST

data sets discussed below are reported in tab.2.1.

2.3.1 ICOADS

The International Comprehensive Atmosphere-Ocean Data Set (ICOADS)
is an extensive and widely used digital collection of quality-controlled
surface weather observations (including SST). The majority of the mea-
surements come from ships of opportunity, supplemented in recent
years by research vessels, moored environmental buoys, drifting buoys,
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Name Period of record Spatial resolution Comments

ICOADS 1/1800-present 2°x2°since 1800 In situ

1°x1°since 1860

Kaplan 1/1856-present 5°x5° In situ/satellite

ERSST 1/1854-present 2°x2° In situ/satellite

Optimum Interpolation 12/1981-present 1°x1° Satellite estimates

Table 2.1: SST indexes, source NOAA
(http://www.esrl.noaa.gov/psd/data/gridded/)

and near-surface measurements from hydrographic profiles. The data
are monthly averaged and binned into 2°latitude by 2°longitude grid
beginning in 1800 (1°by 1°beginning in 1960) and extending through
2007. Due to the uneven distribution of commercial shipping routes
and changes in those routes over time, data coverage is poor in cer-
tain regions and periods (see figure 2.2). Specifically the North At-
lantic, western South Atlantic, and northern Indian oceans contain
the highest density of observations, with reasonable coverage back to
approximately 1870. Data coverage is limited in the North Pacific be-
fore 1946 and in the tropics before 1960; the Southern Ocean remains
poorly sampled throughout the record [Deser et al., 2010].

The lack of spatial and temporal smoothing in the ICOADS, along
with large uncertainties in individual monthly mean values due to
inadequate sampling, makes it difficult to produce comprehensible
maps for a specific month and year without additional processing of
the data. Various empirical and statistically optimal procedures have
been employed to improve upon the sampling uncertainties, tempo-
ral lack, and missing data in the ICOADS and related archives.

Figure 2.2: ICOADS SST data set at the beginning of 1970s
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2.3.2 Kaplan, ERSST, OI

Globally complete monthly SST products (e.g. Kaplan, the Extended
Reconstructed Sea Surface Temperature (ERSST) and the Optimum
Interpolation (OI)) are useful in studies of global SST variability, al-
though they remain constrained by the quality, quantity, and distri-
bution of the original measurements. Thanks to the advent of remote
sensing at the beginnings of the early 1980s, there is now full cover-
age over the world oceans at both high temporal (sample every few
days) and spatial (1°latitude by 1°longitude) resolution. The satel-
lite data are achieved by infrared sensors from the Advanced Very
High Resolution Radiometer and by microwave measurements from
the Advanced Microwave Scanning Radiometer; they are sometimes
blended with conventional in situ data to account for biases.
One of the most recent SST product is the NOAA’s OI, which has been
collecting data since the beginning of 1980s. Also if there are not
analysis over land, values are filled also over it by an interpolation in
order to produce a complete grid. The OI analysis is produced weekly
on a spatial resolution of one-degree grid and the monthly values are
derived by averaging the weekly values over a month.
Kaplan dataset is derived from Met Office Hadley Centre SST data,
which is an input to sophisticated statistical techniques applied to fill
gaps. It has a high spatial resolution of five-degree grid and data are
avaible only in a monthly sampling.

The ERSST data (see figure 2.3) constructed using the most recently
available ICOADS SST data and improving statistical methods that al-
low stable reconstruction using sparse data. In this study, it is used
the monthly ERSST data set for two mainly reason: the long tempo-
ral coverage (from 1854 to present) and the higher spatial resolution
(2°latitude by 2°longitude). It has a more accurate spatial resolution
compared with Kaplan (5°latitude by 5°longitude) and a longer tem-
poral coverage compared with OI. These properties are essential in or-
der to produce precise analysis over decades which start before 1980s.
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Figure 2.3: ERSST SST data set at the beginning of 1970s





3
M E T H O D S A N D T O O L S

The methods used in the study are presented in order of complex-
ity. The first method described is the correlation analysis, followed
by the Empirical Orthogonal Function (EOF) and Canonical Correla-
tion Analysis (CCA). At last the Input Variable Selection (IVS) methods
are shown. The correlation analysis and EOF/CCA methods, are com-
monly used by climate researches in order to investigate the telecon-
nection between SST/SSTA and climate or hydro-meteorological pro-
cesses. IVS is only recently studied in the literature. The goals of these
methods are basically:

• compression of informations (EOF)

• assessment of the relationship between SST/SSTA and rainfal-
l/streamflow (Correlation analysis, CCA, IVS)

• prediction of streamflow (CCA, IVS)

A framework of four steps is developed as follow:

1. Correlation Analysis to verify and assess the effects of SST on the
hydro-meteorological variables of the basin;

2. EOF on SSTA to create new sets of variables of SSTA (indicators)
that explain the largest amount of total variance of the SSTA

process;

3. CCA between the new sets of EOFs variables of SSTA and selected
EOFs of streamflow/rainfall anomalies to assess the relationship
between the two input variables;

4. Streamflow prediction models using the new sets of EOFs variables
of SSTA and streamflow anomalies at each station of the basin.
Moreover IVS method gives an evaluations of the SSTA indica-
tors.

3.1 correlation analysis

The Pearson product-moment correlation coefficient ri quantifies the
linear association between the SST/SSTA of a grid square cell and the
rainfall and streamflow series. Basically, the method constitutes a first
approach to the analysis of climate data, in order to obtain results
about the relationship of the variables.

19
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The coefficient is defined as follows

ri =

∑k
i=1(xi − x)(yi − y)√∑k

i=1(xi − x)
2
∑k

i=1(yi − y)
2

(3.1)

where for k observations the vector Xi = [x1, x2, . . . xk] represents the
SST/SSTA time series in a grid square cell, and vector Y = [y1, y2, . . . , yk]
represents the weather series (rainfall or streamflow data) recorded
in a station. The method assumes a linear relationship among Xi, the
predictor, and Y, the predictand. The values are between -1 and +1 in-
clusive, where +1 is total positive correlation, 0 is no correlation, and
1 is total negative correlation. It is important to note that it is possible
to obtain a statistically significant correlation simply by correlating
two random number series and, as in many studies, the coefficient’s
significance should be assessed to be greater than 95% by means of
Student’s t test.

There are a number of possible advantages of using correlation anal-
ysis. Foremost, it is possible to cluster local or regional grid cells of
SST/SSTA observing the correlation coefficient at each grid point. Lo-
cal and regional clustered cells can be easily understood starting from
their spatial information and also they can be easily related to physi-
cal processes.

3.2 empirical orthogonal functions and canonical cor-
relation analysis

3.2.1 Empirical Orthogonal Functions

Empirical Orthogonal Function (EOF) analysis or Principal Compo-
nent Analysis (PCA) is a technique used for describing large data sets
efficiently. The technique was originally described by Pearson (1982)
and Hotelling (1935). It was first used in meteorology by Lorenz
(1956). In meteorology and oceanography EOF analysis is used to
describe a large number of time series efficiently, such as gridded
SST/SSTA data.
The basic idea is as follows. Considerm time series Xi(t)(i = 1, 2, . . . ,m),
each time series having zero mean. In order to describe the variabil-
ity of these time series as simply as possible, linear combinations of
the m time series are selected to explain as much as possible of the
variability of the m time series [Jolliffe, 2002].

Weighting factors pi are selected so that the variance of the linear com-
bination

∑m
i=1(piXi(t)) is maximized; i.e. pi is selected by maximiz-

ing
∑

t

∑m
i=1(piXi(t)) where

∑
t denotes summation over all times t
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of the time series.
Notice that the maximum of the above quantity is always found by
letting pi →∞, so to make the problem well-defined pi is normalized
by requiring

m∑
i=1

(p2i ) = 1 (3.2)

In practice, the time series Xi(t), i = 1, 2, . . . ,m often correspond to
time series of a physical variable at a spatial locations i. For example,
the i-th cell of a grid square of SST/SSTA or the i-th rainfall/stream-
flow station.

The constrained maximization described above is solved by method
of Lagrange multiplier and is equivalent to the maximization of

ε =
∑
t

( m∑
i=1

(piXi)
)2

+ λ
(
1−

m∑
i=1

(pi)
2
)

(3.3)

where λ is a Lagrange multiplier.
The maximum must satify δε/δλ = 0 and this implies the satisfaction
of the condition (2.2). The maximum must also satify δε/δpk = 0 and
this gives

Sxxp = λp (3.4)

where Sxx is a matrix having the value
∑

t(Xk(t)Xi(t)) in the k-th
row and i-th column. It then follows the normalization condition (2.2)
that

∑
t

( m∑
i=1

(piXi)
)2

= λ (3.5)

Since Sxx is a real symmetric matrix, all its eigenvalues are real and
there exist real eigenvectors p such that (2.2) is satisfied. As pi and Xi

are real, by (2.5) λ is non-negative and hence all eigenvalues of (2.4)
are non-negative.

The eigenvector p(i) is known as the i-th empirical orthogonal func-
tion (EOF) and describes a spatial pattern of weighting. The linear
combination αi(t) = p(i) ·X is known as the i-th principal compo-
nent. The m mutually perpendicular EOF vectors p(i) span an m-
dimensional space, so for coefficients αi it could be written

X =

m∑
i=1

(αi(t)p(i)) (3.6)
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Furthermore, the linear combination of the time series that maximizes
the variability is associated with the eigenvector p(1) corresponding
to the maximum eigenvalue (λ1 > λ2 > . . . > λm). This eigenvector
p(1) is known as the first empirical orthogonal function. Other eigen-
vectors are ordered in a descending way, according to the value of the
corrisponding eigenvalue.

EOFs are particularly useful when the time series Xi(t) are influenced
by a single large-scale process. For example, suppose there are records
of very low-frequency sea level along an ocean boundary and that
there is no significant wind along the coast. Since there is no sig-
nificant flow into the boundary, the sea level is expected spatially
constant along the boundary and have the same time variability. This
can be descripted by one dominant EOF p(1) with all elements equal
[Jolliffe, 2002].
One useful property of the EOFs is that they are orthogonal in space,
consequently the principal components α are uncorrelated in time,
i.e., if i 6= j then

∑
t

(αi(t)αj(t)) = 0 (3.7)

These properties allow EOF analysis not to show two or more pro-
cesses simultaneously and meanwhile show the major processes sep-
arately through the first eigenvectors. Thanks to that, one of the main
purpose of EOF analysis is data compaction and filtering.
It is usually performed to derive SST/SSTA data set in order to retain
all the large scale spatial dependencies that may exist in the record,
and eliminate the “noise” of smaller scale features that are not use-
ful in the context of global scale general circulation patterns [Sharma,
2000].

Specifically, EOF is used to compress geophysical predictor and predic-
tand data sets in both space and time. This reduction is accomplished
by projecting the temporal variance onto uncorrelated orthogonal spa-
tial patterns (eigenvectors) and associated time series (principal com-
ponents). The eigenvector patterns accounting for large variances are,
in general, considered physically meaningful and connected with im-
portant centers of action. On the other hand, the remaining modes ac-
counting for smaller variances are regarded as statistically and phys-
ically insignificant (noise) [Roswintiarti, Devdutta, and Raman, 1998].

There are two different methods to determine significant principal
component and thus determine the number of them to retain: Kaiser
method and Horn’s Parallel Analysis (PA).
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• Kaiser method (1960) is the most known and utilized in practice.
According to this rule, only the principal components that have
eigenvalues greater than one are retained for interpretation.

• Horn (1965) proposes PA, a method based on the generation
of random variables. PA compares the observed eigenvalues of
EOF’s principal components with those obtained from uncorre-
lated normal variables. From a computational point of view,
PA implies a Monte Carlo simulation process, since ’expected’
eigenvalues are obtained by simulating normal random matrix
of data of identical dimensionality to the observed matrix of
data (same number of variables and samples). Principal compo-
nents with eigenvalues higher than simulated ones are retained,
otherwise principal components with eigenvalues lower than
those obtained by Monte Carlo simulation are considered no
significant.

3.2.2 Canonical Correlation Analysis

The Canonical Correlation Analysis (CCA) finds a linear combination
of m predictor that maximizes correlation with a linear combination
of n predictand time series. Actually, the time series need not to be
predictors and predictands; the theory applies to maximizing correla-
tion between a linear combination of any appropriate m time series
with a linear combination of any appropriate n time series. Mathe-
matically, the m time series of predictors is written in the form of a
time-dependent column vector X(t) of length m and the n time series
be written as a time-dependent column vector Y(t) of length n.

CCA produces the CCA modes, each containing:

• Eigenvectors (loading pattern): p and q that are interpreted as
indicators of the underlying physical processes;

• Eigenvalues that show the importance of the relationship be-
tween predictor and predictand;

• Amplitude times series for each predictand and predictor vari-
ables.

Then if p is a time-independent vector of length m and q a time-
independent vector of length n,

α(t) = p ·X (3.8)

and

β(t) = q ·Y (3.9)
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are linear combinations of the m and n time series, respectively. CCA

finds p and q so that the correlation of α(t) and β(t) is maximized.

r =
∑

t(α(t)β(t))√∑
t(α(t))

2
∑

t(β(t))
2

(3.10)

where the summation for t is over the length of the time series. Notice
that if p or q are vectors describing optimal linear combinations and
if σ is some scalar, then σp or σq are also optimal vectors since r in
(2.10) remains unchanged.
In order to make p and q, a normalization is required

∑
t

(α2(t)) = 1 and
∑
t

(β2(t)) = 1 (3.11)

And the optimal correlation is

r =
∑
t

(α(t)β(t)) (3.12)

from which one can deduce that

r = pTSXYq (3.13)

So that the problem of maximizing r can be written in the Lagrange
multiplier form and solved by derivative respect to Lagrange multi-
pliers and setting the result equal to zero.
Let p(j) and q(j) be the j-th eigenvector pair and let the corresponding
linear combinations be

αj(t) = p(j) ·X (3.14)

and

βj(t) = q(j) ·Y (3.15)

A key property of the αj(t) or βj(t) is that for i 6= j, αi(t) is not corre-
lated with αj(t) and that βi(t) is not correlated with βj(t). Moreover
for i 6= j the correlation of αi(t) = p(i) ·X with βj(t) = q(j) ·Y is zero.

CCA can also be viewed as a special form of EOF analysis, where the
correlation structure between predictor and predictand datasets is de-
scribed more completely with each successive CCA mode. It is used
combining the CCA with EOF analysis. Prior to conducting the CCA,
the standardized predictor and predictand data are separately con-
densed using EOF analysis, in order to reduce the number of original
variables to fewer essential variables [Barnston and Smith, 1996].
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3.2.3 Prediction using CCA

CCA is usefull to make predictions. Once CCA modes are obtained,
predictions are given by using the amplitude time series of predictor
(or predictand) to make predictions of predictor (or predictand). Sup-
pose to estimate Y a time ∆t into the future given X up to time t∗.
It is possible to do that by estimating each component Yi(t∗ +∆t) of
Y(t∗ +∆t) as the sum of M terms

Ŷ(t∗ +∆t) =

M∑
j=1

(γijαj(t∗)) (3.16)

where the αj(t∗) is associated with the canonical correlation between
X(t) and Y(t+∆t) instead of X(t) and Y(t). The coefficient γij is cho-
sen so that the fit is as good as possible in the least-squares sense by
minimizing

∑
t

Yi(t+∆t) − M∑
j=1

(γijαj(t))

2

(3.17)

where the sum is taken over all times t for which Yi(t+∆t) and αj(t)

are available. Differentiating the above expression with respect to γij
and using the orthogonality of the αj gives

γij =
∑
t

(Yi(t+∆t)αk(t) (3.18)

In summary, if we have X up to time t∗, then by CCA between X(t)
and Y(t+∆t), λij can be estimated using known data up to time t∗.
Since the p(j) are known from CCA, at the time t∗, it can be calculated

αj(t∗) = p(j) ·X(t∗) (3.19)

and hence estimate the prediction Ŷ(t∗ +∆t).

3.3 input variable selection

Input Variable Selection (IVS) method is used to assess the relation-
ship between SST/SSTA and rainfall/streamflow. Differently from the
previous methods, the IVS method used, does not assume a linear re-
lationship among the predictor and the predictand. For this reason it
is an useful method to study relationships between variables such as
SST/SSTA and rainfall/streamflow, that are ruled by complex phenom-
ena.
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3.3.1 Overview

The IVS problem is defined as the task of appropriately selecting a sub-
set of s variables from an initial candidate set which comprises the set
of all potential inputs to a model (i.e. candidates). The goal is to cor-
rectly identify the subset of input variables that collectively possess
the largest amount of information about the system being modeled,
without including irrelevant input variables [Guyon and Elisseeff, 2003;
May et al., 2008; Hejazi and Cai, 2009; Galelli et al., 2014].

Defining an appropriate subset of input variables requires assessing
the effect the choice of input variables ultimately has on the perfor-
mance of the model that is either incorrectly over-specified or under-
specified. An inaccurate model results when the input set is under-
specified, as the selected variables do not fully describe the observed
behavior within the system under consideration. On the other hand,
the inclusion of input variables that are either irrelevant or redundant
(i.e. over-specification) increases the size of the model. This not only
adds processing time for model development and deployment, but
it also adds noise, rather than information, to the model inputs and
thus reduces accuracy [Guyon and Elisseeff, 2003]. Given these consid-
erations, an appropriate set of model inputs is considered to be the
smallest set of input variables required to adequately describe the
observed behavior of the system [May et al., 2008].

3.3.2 Input Variable Selection techniques

Input Variable Selection methods can be distinguished in wrappers
(model-based approach) and filters (model-free approach) [Guyon and
Elisseeff, 2003]. A brief description of the two approaches is provided
below.

3.3.2.1 Wrappers

The model-based approach is based on the idea of calibrating and
validating a number of models with different sets of inputs, and se-
lecting the set that ensures the best model performance. Wrappers
essentially treat the selection of inputs as an overall optimization of
the model structure: the candidate inputs are evaluated in terms of
prediction accuracy of a preselected underlying model.

Implementation of wrappers can be achieved in several ways, such
as the combination of global optimization techniques (e.g. evolution-
ary optimization) with data-driven modeling (e.g. Artificial Neural
Networks) in order to define the subset of input variables that maxi-
mizes the underlying model performance. The main drawback of this
approach stands in its computational requirements, as a large num-
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ber of calibration and validation runs must be performed to single
out the best combination of inputs. This means that wrappers do not
scale well when dealing with large data sets. Moreover, the input se-
lection result depends on the predefined model class and architecture.
Thus, on one hand, model-based approaches generally achieve better
performances since they are tuned to the specific interactions between
the model class and the data; but, on the other hand, the optimality
of a selected set of inputs obtained with a particular model is not
guaranteed for another one, and this restricts the applicability of the
selected set [Galelli and Castelletti, 2013b].

3.3.2.2 Filters

In contrast to the model-based wrapper approach, in model-free filter
techniques the variable selection is directly based on the information
content of the candidate input data set as measured by statistical de-
pendence between the candidates and the output variable [Guyon and
Elisseeff, 2003]. Not having to deal with model class and calibration
within the IVS problem, this approach not only leads to improved
computational efficiency, but also results in input sets with wider ap-
plicability to different model architectures. However, the performance
of IVS filters is largely dependent on the statistical dependency mea-
sure that is used [Guyon and Elisseeff, 2003]. Moreover, the significance
measure is generally monotonic and, thus, without a predefined cut-
off criterion, the commonly used algorithms tend to select very large
subsets of input variables, with high risk of redundancy [Galelli and
Castelletti, 2013b].

3.3.3 Iterative Input variable Selection

The tree-based Iterative Input variable Selection (IIS) is a novel hybrid
approach, that incorporates some of the features of model-based ap-
proaches into a fast model-free method able to handle very large can-
didate input sets. The optimal subset is incrementally built using the
information content of the data with a ranking-based procedure and
then validated by a model-based forward selection process [Galelli
and Castelletti, 2013b].

Description of the IIS algorithm

The IIS algorithm is embedded into a stepwise forward selection ap-
proach that consists of three main steps (see figure 3.1):

Step 1. Given s candidate inputs, the IIS algorithm runs an Input
Ranking (IR) algorithm to sort the s candidate inputs according to a
non-linear statistical measure of significance. Each candidate input is
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Figure 3.1: Flowchart of the IIS algorithm. Source: Galelli and Castelletti
[2013b].

scored by estimating its contribution, in terms of variance reduction,
to the building of the underlying model of the output y. In principle,
the first variable in the ranking should be the most significant in ex-
plaining the output; in practice, having several potentially significant
but redundant inputs, makes their contribution to the output expla-
nation equally partitioned. This means that the most relevant input
variables might not be listed in the very top positions. To reduce the
risk for misselection, the first p variables in the ranking are individu-
ally evaluated in the following step.

Step 2. The relative significance of the first p-ranked variables is as-
sessed against the observed output y. To this end, p Single Input-
Single Output (SISO) models are identified with an appropriate Model
Building (MB) algorithm and compared in terms of a suitable distance
metric (e.g. mean-squared error) between the output y and each SISO

model prediction1. The best performing input among the p consid-

1 The evaluation of the chosen distance metric follows a k−fold cross-validation ap-
proach: the training data set is randomly split into k mutually exclusive subsets
of equivalent size, and the MB algorithm is run k times. Each time the underlying
model is validated on one of the k folds and calibrated using the remaining k–1 folds.
The estimated prediction accuracy is then the average value of the metric over the
k validations. The k−fold cross validation is aimed at estimating the ability of the
model to capture the behavior of unseen or future observation data from the same
underlying process, and, as such, it minimizes the risk of over-fitting the data.
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ered is added to the set of the variables selected to explain y.

Step 3. A MB algorithm is then run to identify a Multi Input-Single
Output (MISO) model mapping the variables so far selected into the
output y.

The algorithm is not stopped until either the best variable returned
by the IR algorithm is already in the set, or the performance of the un-
derlying model does not significantly improve. At each iteration, the
process is repeated using the residuals as the new output variable in
steps 1 and 2: the reevaluation of the ranking on the model residuals
every time a candidate variable is selected ensures that all the candi-
dates that are highly correlated with the selected variable, and thus
may become useless, are discarded. This strategy reinforces the SISO

model-based evaluation in step 2 against the selection of redundant
variables and is independent of the MB and IR algorithms adopted
[Galelli and Castelletti, 2013b].

Extra-Trees

The IIS algorithm employs Extremely randomized Trees (ET) as under-
lying model family: they are a non-parametric tree-based regression
method, originally proposed by Geurts, Ernst, and Wehenkel [2006].
Tree-based regressors are based on the idea of decision trees, which
are tree-like structures composed of decision nodes, branches, and
leaves, which form a cascade of rules leading to numerical values.
Each tree is obtained by first partitioning at the top decision node,
with a proper splitting criterion, the set of the input variables into
two subsets, thus creating the former two branches. The splitting pro-
cess is then repeated in a recursive way on each derived subset, until
some termination criterion is met, e.g., the numerical values belong-
ing to a subset vary just slightly or only few elements remain. When
this process is over, the tree branches represent the hierarchical struc-
ture of the subset partitions, while the leaves are the smallest subsets
associated to the terminal branches. Each leaf is finally labeled with
a numerical value.

The Extra-Trees based algorithm is an ensemble method, which means
that (using a top-down approach) it grows an ensemble of M trees.
For each tree, the decision nodes are split using the following rule:
K alternative cut directions (i.e. input variables xi with i = 1, . . . , K
candidate to be the argument of the node splitting criterion) are ran-
domly selected and, for each one, a random cut-point is chosen; the
variance reduction is computed for each cut direction, and the cut
direction maximizing this score is adopted to split the node. The al-
gorithm stops partitioning a node if its cardinality is smaller than a
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predefined threshold nmin and the node is a leaf in the tree struc-
ture. Each leaf is assigned with a value, obtained as the average of
the outputs y associated to the inputs that fall in that leaf. The es-
timates produced by each single tree are finally aggregated with an
arithmetic average over the ensemble of M trees, and the associated
variance reduction of the ensemble is calculated.

The rationale behind the approach is that the combined use of ran-
domization and ensemble averaging provides more effective variance
reduction than other randomized methods, while minimizing the bias
of the final estimate [Geurts, Ernst, and Wehenkel, 2006]. Although
based on the construction of an ensemble of trees, the approach is
still computationally efficient because the splitting rule adopted is
very simple, if compared to other splitting rules that locally optimize
the cut points, as, for example, the one in classification and regres-
sion trees [Breiman et al., 1984]. A detailed analysis of the sensitivity
of Extra-Trees performance to the tuning of M, K and nmin, with an
application to a streamflow modeling problem, is presented in Galelli
and Castelletti [2013a].
ET have been recognized to perform particularly well in characteriz-
ing strongly non-linear relationships and to provide more flexibility
and scalability compared to parametric models such as Artificial Neu-
ral Networks [Geurts, Ernst, and Wehenkel, 2006]. In addition, the par-
ticular structure of Extra-Trees can be exploited to infer the relative
importance of the input variables and to order them accordingly. This
means that Extra-Trees can directly be used as an IR procedure.

The Input Ranking algorithm

Thanks to the particular structure of Extra-Trees, it is possible to rank
the importance of the s input variables in explaining the output be-
havior. The ranking-based procedure has two main advantages:

1. It does not require any assumption on the statistical properties
of the input data set (e.g., Gaussian distribution) and, thus, can
be applied to any sort of sample;

2. It does not rely on computationally intensive methods (e.g.,
bootstrapping) to estimate the information content in the data
and, thus, is generally faster and more efficient.

This approach is based on the idea of scoring each input variable by
estimating the variance reduction it can be associated with by prop-
agating the training data set over M different trees composing an
ensemble.
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T H E R E D R I V E R B A S I N , V I E T N A M

This chapter describes the study site: the Red River Basin in the north
of Vietnam. The Red River Basin is the second largest of Vietnam after
the Mekong River Basin. It is located between 20°-25.30°N of latitude,
and 100°E-107.10°E of longitude, with a total area of approximately
169 000 km2, of which 48% is in China, 51% in Vietnam, and the rest
in Laos (as shown in figure 4.1) [Quach, 2011].

4.1 physical system

The Red River originates at the confluence of three main upstream
tributaries, all originate from China: Lo, Thao and Da River. Even
though the catchment areas of the Da and Thao River basins are al-
most the same, the Da River contributes 42%, while the Thao River
contributes only 19% of total flow to the Red River. The contribution
of the Lo River, the smallest one, is 25.4%. Properly the Da River, in
the eastern part of the basin, pours first in the Thao River, and then,
downstream Viettri, the Thao River and Lo River flows into Red River.

Lo River: it is 470 km long and its catchment is 39 000 km2. The basin
goes from being mountainous at the border with China, to becoming
flat further downstream.

Thao River: it is 843 km long and its catchment is 51 800 km2. It rises in
a mountainous region of the Yunnan province, China, and its course
is remarkably straight.

Da River: it is 900 km long and its catchment is 52 900 km2. It also
rises in China, in the south-western part of the Yunnan province, at
an altitude of 2400 m a.s.l.

4.1.1 Climate

The basin is located in the South Asian Monsoon (SAM) region, over
10°-30°N and 70°-110°E, whose synoptic system is mainly of tropical
nature. The whole basin is characterized by two distinguished sea-
sons: wet season from May to October and dry season from Novem-
ber to April of the following year. During the wet season, winds blow-
ing from South-South East bring humid air masses to the basin re-
sulting in high temperatures and heavy rainfall; on the other hand,
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Figure 4.1: The Red River basin, Vietnam.

during the dry season, air circulation reverses direction to North East
bringing dry air masses to the basin, inducing cooler weather and lit-
tle rain.

4.1.2 Rainfall

Annual rainfall varies from 1200mm/year to 4800mm/year. As it can
be seen in figure 4.2, the highest values of rainfall occurs during the
wet season, from May to September, while the lowest rainfall is in
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from December to February in the dry season. About 80% of rainfall
occurs during the wet season, with highest values occurring in July
[Quach, 2011].

Figure 4.2: Rainfall trends in the Red River basin

4.1.3 Streamflow

Wet and dry seasons can be very well recognized also in the flow
regime: flood (high flow) season goes from May to October, with the
highest streamflows usually occurring in June-July, while low flow
season is longer and goes from November to March. Because of this
uneven distribution of rainfall, flows throughout the basin are un-
evenly distributed in time, causing floods and water-logging in the
rainy season and water shortages in the dry season [Quach, 2011].
Streamflow trends in three stations located in three different river of
the basin are shown in figure 4.3: Laichau and Hoabinh in the upper
Da river, Chiemhoa in the Gam River (a tributary of Lo river).

Figure 4.3: Streamflow trends in Laichau, Chiemhoa, Hoabinh stations
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4.2 data description

Rainfall and streamflow data come from a dense network of stations
located in the basin and they made available by the Integrated and
sustainable water Management of the Red River system (IMRR) re-
search project. All the selected stations have been operated since the
beginning of the 60s. Because of the different time of record in each
station, the selection has been done to cover the longest time horizon
with the largest possible number of stations. Monthly observations
taken from January 1962 to April 2008, that consists in 47 years of
records, are evaluated.

12 rainfall stations (see figure 4.3), located close to the Da River in the
eastern part of the Red River basin, are utilized. They are clustered
into 3 locations, going from the border of China to the downstream
of the Da River: upper, middle and lower basin. The spatial aggrega-
tion is conducted by means. As shown in figure 4.4, rain distribution
decreases southward, with the highest values recorded in the upper
part of the basin. Table 4.1 summarizes the main characteristics of
the stations considered in the river area. There are utilized 11 stream-
flow stations (see figure 4.3), spread in the whole Red River basin as
summarized in Table 4.2.

Location Stations Latitude Longitude Period of record

Muong Nhe 22,18°N 102,46°E 1960-2010

Upper Basin Muong Te 22,36°N 102,83°E 1961-2011

Lai Chau 22,05°N 103,15°E 1958-2011

Sin Ho 22,35°N 103,25°E 1962-2011

Tuan Giao 21,58°N 103,41°E 1961-2011

Middle Basin Quynh Nhai 21,83°N 103,56°E 1961-2009

Than Uyen 22,01°N 103,91°E 1962-2011

Son La 21,33°N 103,90°E 1961-2011

Yen Chau 21,05°N 104,28°E 1962-2011

Lower Basin Phu Yen 21,26°N 104,65°E 1962-2011

Moc Chau 20,85°N 104,63°E 1962-2011

Hoa Binh 20,81°N 105,33°E 1957-2011

Table 4.1: Summary of the rainfall stations used for the Red River (see fig-
ure 4.5).

4.3 enso-red river teleconnection

Beltrame and Carbonin [2013] studied the effect of ENSO on the
Da River basin from May 1961 to April 2008. In their analysis the
same rainfall stations of this study and the streamflow on station
of HoaBinh are used. The classification of ENSO events is based on
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Figure 4.4: Metereological trends in the upper, middle, lower locations

Figure 4.5: Map of the stations considered in the Red River basin

the Oceanic Niño Index (ONI), provided by NOAA: a-month-running
mean of SST averaged in the Niño3.4 region.
Graphical analysis reveals that the ENSO influence on the Red River
is quite weak for each data. The analysis on streamflow are consis-
tent with findings of Räsänen and Kummu [2013] for the Mekong
River, that is the potential impacts of ENSO are not much related
to the maximum peak flow, it affects more the duration of the flood
season, with a generally longer flood period during La Niña and con-
versely shorter during El Niño. Other results (see figure 4.6) show
that sometimes the streamflow anomalies are oppositely aligned to
ENSO phase, i.e. there are positive anomalies during La Niña and
negative anomalies during El Niño, and this results could be inter-
preted as an influence of ENSO on streamflow anomalies. This is no-
ticeable for the El Niño 1968-1969 event which causes a prolonged
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River Stations Latitude Longitude Period of record

Lai Chau 22,06°N 103,16°E 1957-2011

Da River Nam Muc 21,87°N 103,29°E 1960-2011

Ta Bu 21,43°N 104,05°E 1961-2011

Hoa Binh 20,81°N 105,31°E 1956-2008

Thao River Yen Bai 21,58°N 103,41°E 1956-2011

Ham Yen 22,05°N 105,08°E 1960-2010

Lo River Chiem Hoa 22,08°N 105,26°E 1959-2010

Vu Quang 21,56°N 105,25°E 1957-2011

Son Tay 21,15°N 105,50°E 1956-2011

Red River Thuong Cat 21,06°N 105,86°E 1957-2011

Ha Noi 21,01°N 105,85°E 1956-2011

Table 4.2: Summary of the streamflow stations used for the Red River (see
figure 4.5).

period of negative monthly anomalies, reversed into positive anoma-
lies by the subsequent La Niña 1970-1971. Other El Niño signals are
visible for the events 1986-1987, when anomalies turn from positive to
negative in a few months, 1992-1993 when persistent negative anoma-
lies occur, and 2003-2004 similarly. Effects due to La Niña are found
for the events 1995-1996, when increasingly positive anomalies are
registered, and 1999-2000, when positive anomalies persist through
many consecutive months. Results on rainfall are weaker than results
on streamflow and difficult to seek when visualizing trajectories. The
only considerable case reported in their study is related to rainfall
in the lower basin, this could be explained considering that the in-
fluence of ENSO increases when moving southwards, as empirically
demonstrated by Räsänen and Kummu [2013] for the nearby Mekong
basin. Rainfall occurring in the summer peak can be variably high
irrespective of El Niño or La Niña years [Beltrame and Carbonin, 2013].
However results reported do not show a strong relationship between
ENSO and streamflow anomalies. Statistical analysis performed by
box-plot, show appreciable difference in streamflow anomalies dur-
ing El Niño and La Niña phases but not strong enough to be sig-
nificant from a statistical point of view, and similarly to results on
graphical analysis, rainfall statistical results aren’t significant.
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Figure 4.6: Sequence of ENSO events and Da River monthly streamflows
in the period considered (1961-2007). ENSO events refer to the
historical pattern of ONI. Streamflows represented in bars are
monthly anomalies related to the respective monthly mean.
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I M PA C T O F S S TA O N H Y D R O - M E T E O R O L O G I C A L
P R O C E S S E S

The scope of this chapter is to describe the analysis conducted to
SST/SSTA in the Indian and Pacific Ocean and rainfall and streamflow
in the Red River Basin. In particular the main task is to understand
the existence of the teleconnection at first, and then to evaluate how
and when oceans, through SST/SSTA, affect the hydro-meteorological
processes in the Red River Basin.

Two principal ocean’s areas are evaluated. A1 is centered to Indian
Ocean and A2 is centered to Pacific Ocean. Indian Ocean and Pacific
Ocean are selected in this work because they are the oceans closest
to the basin, thus the teleconnection’s effects are supposed to be very
strong. The corect delimitation of the selected areas is summarized in
Table 5 and displayed in figure 5.1 and figure 5.2.

Area Latitude Longitude Ocean of reference

A1 40°N to -20°S 60°E to 150°E Indian Ocean

A2 40°N to -20°S 110°E to 230°E Pacific Ocean

Table 5.1: Areas of oceans evaluated

Figure 5.1: A1 Area: spatial location SST in January 1971

In next sections results obtained from Correlation Analysis, Empir-
ical Orthogonal Function (EOF) and Canonical Correlation Analysis
(CCA) are shown. Analysis are evaluated on SST, rainfall and stream-

41



42 impact of ssta on hydro-meteorological processes

Figure 5.2: A2 Area: spatial location SST in January 1971

flow in stations in Red River Basin and also on their anomaly time se-
ries (SSTA, rainfall anomalies and streamflow anomalies). An anomaly
time series is defined as the time series of deviations of a quantity
from the long-term average. In practice the long-term monthly aver-
ages are removed from each monthly value of the time series. All data
sets are monthly series from January 1962 to April 2008. The SST data
set chosen is the ERSST (see section 1.3.2).

5.1 results and discussion

5.1.1 Correlation Analysis Results

Correlation Analysis are done on each grid cell of SST over Indian
Ocean/Pacific Ocean and rainfall/streamflow series.

Rainfall
First a correlation analysis is conducted between upper, middle and
lower locations of rainfall in Da river and the SST at each grid point.
The purpose of this first analysis is to show if a relationship among
the two variables exists. Results confirm that SST is correlated with
rainfall and the pattern of correlation is not dependent on the spa-
tial location of the rainfall. In fact, similar results are obtained from
correlation of SST and rainfall in upper, middle and lower basin. This
suggests that the correlation does not change over the Da river (e.g.
see figure 5.3). Correlation Analysis is done with monthly SST and
monthly rainfall series with a lag time from 1 to 6 months. In figure
5.4 are displayed the correlation from a lag time of 1 month to a lag
time of 3 months and in figure 5.5 from a lag time of 4 months to a lag
time of 6 months. The positive correlation area move southward from
lag time 4 to lag time 6 and this result could be caused by circulation
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of mass of ocean water. It is noticeable that the ENSO area in the Pacific
Ocean is always positive correlated with rainfall and the correlation
is strong. In particular, the shape of ENSO area is stressed in the corre-
lation map of 1 and 2 lag time. Also the Indian Ocean is noticeable in
map correlation, in particular from a lag time of 2 to 3 months, there
is a strong positive correlation as in ENSO area. These first results sug-
gest that effectively there is a link among SST and rainfall, and ENSO

area and Indian Ocean area play a key role. A p-value test is run to
test the significance of the results. Confirming that most of the cor-
relation maps are significant. In figure 5.6 significant p-values for a
lag time from 1 to 3 months are shown, and similarly in figure 5.7
for lag time from 4 to 6 months. The grid cells with p-value<0.01 are
reported in orange. The ENSO area is significant also in the p-value
maps, this is clear in lag time 1, where the ENSO area is shaped from
the rest part of the ocean.

Figure 5.3: Correlation analysis among SST and rainfall in the three location
at lag1. In order from top to bottom: upper, middle and lower
basin. The correlation maps are similar.

Streamflow
The same correlation analysis is carried out for streamflow data (see
section 3.1). The correlation are calculated for each grid point of SST

with each streamflow station. The correlation maps are similar in ev-
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Figure 5.4: Correlation analysis among SST and rainfall in upper basin at
different lag time: lag time 1 (above), lag time 2 (middle), lag
time 3 (below). The lag time is in month.

Figure 5.5: Correlation analysis among SST and rainfall in upper basin at
different lag time: lag time 4 (above), lag time 5 (middle), lag
time 6 (below). The lag time is in month.

ery station, no significant difference is observed, that means that the
relationship among SST and streamflow is homogeneous in all rivers.
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Figure 5.6: P-value test among SST and rainfall in upper basin at different
lag time: lag time 1 (above), lag time 2 (middle), lag time 3 (be-
low). Orange: p-value<0.01, yellow: p-value<0.05.

Figure 5.7: P-value test among SST and rainfall in upper basin at different
lag time: lag time 4 (above), lag time 5 (middle), lag time 6 (be-
low). Orange: p-value<0.01, yellow: p-value<0.05.

Moreover the patterns displayed in these maps are similar to those
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observed in the correlation maps of rainfall. In figure 5.8 the corre-
lation maps of Chiem Hoa station are displayed from 1 lag time to
3 lag time. Similarly, in figure 5.9 the correlation maps are displayed
from 4 to 6 lag time. All the most correlated area are significant, as
shown in p-value maps figure 5.10 and figure 5.11. The ENSO area and
Indian Ocean are strong and positive correlated with streamflow. The
shape of ENSO area is well identified especially in 1 and 2 lag time.
The strength of the ENSO area is less pronounced than in the rainfall’s
correlation maps, infact the relationship among hydrologic variables
(streamflow) and SST is less directly correlated than the climatic (rain-
fall) one.

Figure 5.8: Correlation analysis among SST and streamflow in Chiem Hoa
station at different lag time: lag time 1 (above), lag time 2 (mid-
dle), lag time 3 (below). The lag time is in month.

5.1.2 Empirical Orthogonal Function Results

Empirical Orthogonal Function are evaluated on every data set of
variables: rainfall anomalies, streamflow anomalies, SSTA on A1 area
and SSTA on A2 area. SSTA is used instead of using SST to assess the
influence of the sea surface temperature no affected by seasonal vari-
ability.

Rainfall anomalies
EOF is computed on the 12 rainfall stations anomalies time series. The
principal components are ordered in descending way of explained
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Figure 5.9: Correlation analysis among SST and streamflow in Chiem Hoa
station at different lag time: lag time 4 (above), lag time 5 (mid-
dle), lag time 6 (below). The lag time is in month.

Figure 5.10: P-value test among SST and streamflow in Chiem Hoa station
at different lag time: lag time 1 (above), lag time 2 (middle), lag
time 3 (below). Orange: p-value<0.01, yellow: p-value<0.05.
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Figure 5.11: P-value test among SST and streamflow in Chiem Hoa station
at different lag time: lag time 4 (above), lag time 5 (middle), lag
time 6 (below). Orange: p-value<0.01, yellow: p-value<0.05.

variance, as shown in figure 5.12. The first two principal components
are significant for the Horn method and the first three for the Kaiser
method (see section 2.3.2). Following the Kaiser method, the first
three principal components explain more than 60% of the total vari-
ance, such as, the first principal components explains the 40% of the
process, the second less then 20% and the tirth around 10% of the to-
tal variance. Further principal components explain less of the process.
Weighting factors pattern are different in each principal components
and the most interesting patterns are displayed in the first two prin-
cipal components. Stations are all weighted around 30% in the first
principal components. The second principal components displayed a
gradient (see figure 5.13). Weighting factors gradually increase going
from north-west to south-east of the Da river. In the northest part sta-
tions are weighted around -30%, in the middle part weigths gradually
increase from -10% to 30%. In the southest part, stations are positively
weighted around 40%. The gradient in the weighting factors is ex-
plained by the "corridor-barrier" phenomenon [Yungang, Daming, and
Changqing, 2008]. The Red River Basin is characterized by longitudinal
montain ranges, major rivers and deep valleys, which had "corridor"
function in south-north direction and "barrier" function in east-west
direction on the trasportation of vapor. Thanks to the topography,
masses of vapor are constrained to pass in the Da river valley from
south-east and they lose their energy northward [Yungang, Daming,
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and Changqing, 2008].

Figure 5.12: Explained Variance on the principal components of rainfall
anomalies.

Streamflow anomalies
EOF on the 11 streamflow stations gives performance represented in
figure 5.14. It is noticeable that only the first principal component
explains more than 70% of explained variance, the second around
10% and the others less than 10%. As a consequence, only the first
principal components is significant for the Horn method and the first
two for the Kaiser method. As observed in the rainfall, also the first
principal components of streamflow anomalies has the same weight
(around 30%) for each station. The interpretation of the second prin-
cipal component is more difficult than for the rainfall, because the
streamflow stations are widespread all around the basin. In this case
results are not displayed.

SSTA in area A1
EOF evaluates each SSTA grid cell as a variable that influence the be-
haviour of the whole SSTA area. Before running EOF methods, a spatial
aggregation is computed on A1 and A2 areas. The grid cell are aggre-
gated on a 4°x4°grid square in order to ensure a number of observa-
tions greater than that of the variables. Explained variance graph is
shown in figure 5.15. The first 16 principal components are significant
for Horn method and the first 20 for Kaiser method. Spatial patterns
of weighting factors are displayed in maps and represent the role of
each SSTA grid cell in the behaviour of the system. Since each prin-
cipal component is orthogonal and so independent of another one,
the weighting factors of each EOF display pattern independent. The
first EOF (EOF1) spatial pattern, which has the highest value of ex-
plained variance (around 40%), shows the leading SSTA cells in the
Indian Ocean. As displayed in figure 5.16, the cells most weighted
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Figure 5.13: Spatial pattern of the second principal component of rainfall
anomalies.

are clustered more in the Indian Ocean. In the EOF2 (more than 10%
of explained variance and see figure 5.17) the ocean area above Aus-
tralia close to Philippines is the more predominant, in EOF3 (around
5% of explained variance see figure 5.18) the leading ocean part is the
sea close to Indonesia and in EOF4 (around 5% of explained variance
and see figure 5.19) the weighted part is centered in China sea.

SSTA in area A2
EOFs of area A2 have values of explained variance lower than those
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Figure 5.14: Explained Variance on the principal components of streamflow
anomalies.

Figure 5.15: Explained Variance on the principal components of SSTA in
area A1.

in area A1 (see figure 5.20). Infact the number of SST cells in area A2

is greater than in area A1. Kaiser method selects 29 principal com-
ponents and Horn method 20 principal components. Spatial pattern
of the first EOF (EOF1), which explains less than 30% of explained
variance, underline the role of ENSO in area A2. In figure 5.21, only
the cells in the ENSO area are positive weighted and that means that
ENSO phenomenon is the leading behaviour in the area A2. Further
EOFs can not be easily interpreted (see figure 5.22, figure 5.23 and
figure 5.24). Weighted cells in EOF2 and EOF3 follow orthogonal di-
rections and that is an effect of the independency of the EOFs. Cells
in ENSO area are still weighted in EOF2 and EOF4. Because EOFs are
independent, these results are not related to ENSO but they show the
importance that ENSO area have for less important processes in the
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Figure 5.16: Spatial pattern of EOF1 in area A1. The weighting factors are
higher in the Indian Ocean. Lands are displayed in blue, in
particular Southeast Asia is displayed in the upper left part,
North of Australia is displayed in bottom right (see figure 5.1
to have more spatial reference).

Figure 5.17: Spatial pattern of EOF2 in area A1. The weighting factors are
higher in Philippines sea. Lands are displayed in blue, in par-
ticular Southeast Asia is displayed in the upper left part, North
of Australia is displayed in bottom right (see figure 5.1 to have
more spatial reference).

system.
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Figure 5.18: Spatial pattern of EOF3 in area A1. The weighting factors are
higher in the Indonesia sea. Lands are displayed in blue, in
particular Southeast Asia is displayed in the upper left part,
North of Australia is displayed in bottom right (see figure 5.1
to have more spatial reference).

Figure 5.19: Spatial pattern of EOF4 in area A1. The weighting factors are
higher in the China sea. Lands are displayed in blue, in partic-
ular Southeast Asia is displayed in the upper left part, North
of Australia is displayed in bottom right (see figure 5.1 to have
more spatial reference).

5.1.3 Canonical Correlation Analysis Results

CCA is computed with EOFs of SSTA as predictors and EOFs of rainfal-
l/streamflow anomalies as predictands. The number of EOF retained
to CCA is chosen using Kaiser method because it selects few more
principal components than Horn method. The CCA experiments are
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Figure 5.20: Explained Variance on the principal components of SSTA in
area A2.

Figure 5.21: Spatial pattern of EOF1 in area A2. ENSO is the leading area in
the system. Lands are displayed in blue, in particular Eastern
China is displayed in the upper left part, North of Australia
is displayed in bottom left (see figure 5.2 to have more spatial
reference).

evaluated for each combination of SSTA areas and streamflow/rainfall
anomalies (see Table 5.1.3). CCA is calculated with different time lag:
from time lag 0 to time lag 6.

Number of EOF for hydrological variables Number of EOF for SSTA

(predictand) (predictor)

3 EOFs of rainfall anomalies 20 EOFs of SSTA in A1

3 EOFs of rainfall anomalies 29 EOFs of SSTA in A2

2 EOFs of rainfall anomalies 20 EOFs of SSTA in A1

2 EOFs of rainfall anomalies 29 EOFs of SSTA in A2

Table 5.2: Number of EOF selected in input to CCA.
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Figure 5.22: Spatial pattern of EOF2 in area A2. Lands are displayed in blue,
in particular Eastern China is displayed in the upper left part,
North of Australia is displayed in bottom left (see figure 5.2 to
have more spatial reference).

Figure 5.23: Spatial pattern of EOF3 in area A2. Lands are displayed in blue,
in particular Eastern China is displayed in the upper left part,
North of Australia is displayed in bottom left (see figure 5.2 to
have more spatial reference).

Results of CCA show always a positive correlation among the first
principal component evaluated in output of CCA for the predictor
and the first principal components evaluated in output for the predic-
tand. The values of the correlation coeffient are almost costant in each
time lag for each combination of CCA. Bar graphs in figure 5.25 and in
figure 5.26 display the correlation coefficients of rainfall experiments
in area A1 and and in area A2 for each time lag. The correlation co-
efficients are around 30%, in particular, in area A1 it varies from 20%
to 30% and in area A2 from 25% to 30%. Bar graphs of streamflow
experiments are shown in figure 5.27 and figure 5.28 and correlation
coefficients are around 40%: in area A1 it varies around from 35% to
40%, and in area A2 it is costant around 40%. As a consequence of
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Figure 5.24: Spatial pattern of EOF4 in area A2. Lands are displayed in blue,
in particular Eastern China is displayed in the upper left part,
North of Australia is displayed in bottom left (see figure 5.2 to
have more spatial reference).

these results, a existence of teleconnections between SSTA in the two
ocean areas and the rainfall/streamflow anomalies is proven by CCA

method.

Figure 5.25: Correlation coefficient of CCA between EOF of rainfall anoma-
lies and EOF of SSTA in area A1 at different time lag.

Similar patterns are found plotting the first CCA’s principal compo-
nents of EOF of SSTA and EOF of rainfall/streamflow anomalies in
some months. An example is shown in figure 5.29, in which the first
CCA’s principal components of CCA between EOF of rainfall anoma-
lies and EOF of SSTA in A1 at lag 1 are displayed around from August
1998 and October 2002. In June 1999 and December 2002 the trend
of the two series are similar. Not in all months the two signal are
in-phase, but it is justified by the corresponding correlation of the
two series, that is around 30%. An example for streamflow anomalies
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Figure 5.26: Correlation coefficient of CCA between EOF of rainfall anoma-
lies and EOF of SSTA in area A2 at different time lag.

Figure 5.27: Correlation coefficient of CCA between EOF of streamflow
anomalies and EOF of SSTA in area A1 at different time lag.

Figure 5.28: Correlation coefficient of CCA between EOF of streamflow
anomalies and EOF of SSTA in area A2
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is shown in figure figure 5.30, where the first CCA’s principal com-
ponents of streamflow anomalies and SSTA in area A2 at lag 1 are
displayed. In particulat similar trend are found before August 1998

and before April 1980. As for rainfall anomalies, there is not a perfect
in-phase signal because the correlation coefficients among the two se-
ries is around 40%.

Figure 5.29: The first CCA’s principal components of rainfall anomalies and
SSTA in A1 at lag 1. The correlation coefficients between the
two series is around 30%. Time period: August 1998 - October
2002.

Figure 5.30: The first CCA’s principal components of streamflow anomalies
and SSTA in A2 at lag 1. The correlation coefficients between
the two series is around 40%. Time period: August 1978 - Oc-
tober 1982.

After CCA analysis, a correlation analysis between the first CCA’s prin-
cipal components of the EOF of SSTA and SSTA at each grid point is
computed. The aim of this kind of analysis is to evaluate if a particu-
lar part of SSTA is more correlated with the results of CCA analysis in
order to understand if there is a part in the oceans that is greater
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linked with rainfall and streamflow anomalies. Interesting results
are found especially when CCA is computed with EOF of streamflow
anomalies. Results evaluated in area A2 show always a positive and
significant correlation in the ENSO area. The correlation is widespread
in ENSO area with the number of time lag (see figure 5.31). This results
mean that the first CCA’s principal components, that have a correla-
tion coefficients of around 40% with EOF of streamflow anomalies,
are strongly related with ENSO area. As a consequence, ENSO area is
linked with streamflow anomalies and probably a teleconnection be-
tween SST in Pacific Ocean and streamflow exists. Results calculated
in area A1 have not positive correlations if the correlation is com-
puted with the first principal components from lag 0 to lag 2 (e.g. see
figure 5.32), after lag time 3 until lag time 6 (see figure 5.33) the maps
correlation show strong positive correlation, especially in the Indian
Ocean and in China sea. These results are always significant. They
show a delay in the correlations and, as a consequence, the SSTA in In-
dian Ocean and China sea have effects on streamflow after 3 months.

Figure 5.31: Map correlation between first CCA’s principal components of
SSTA and SSTA in area A2 at lag 3 in streamflow analysis.
ENSO area is positive correlated. Other correlation maps show
similar results. Lands are displayed in blue, in particular East-
ern China is displayed in the upper left part, North of Australia
is displayed in bottom left (see figure 5.2 to have more spatial
references).

The same correlation analysis are evaluated also for rainfall but re-
sults do not show a regular pattern as for streamflow. Correlation
analysis evaluated between first CCA’s principal components of EOF

of SSTA in area A2 and rainfall anomalies show positive correlation
in ENSO area but the shape of correlation varies more with lag time
instead as for streamflow (see figure 5.34). Moreover correlation anal-
ysis evaluated on area A1 show spots widespread over Indian Ocean,
Indonesian sea and China sea that change at each lag time (see figure
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Figure 5.32: Map correlation between first CCA’s principal components of
SSTA and SSTA in area A1 at lag 1 in streamflow analysis. No
positive correlation is observed. Lands are displayed in blue,
in particular Southeast Asia is displayed in the upper left part,
North of Australia is displayed in bottom right (see figure 5.1
to have more spatial references).

Figure 5.33: Map correlation between first CCA’s principal components of
SSTA and SSTA in area A1 at lag 3 in streamflow analysis. Pos-
itive correlation is observed in Indian Ocean and China sea.
Lands are displayed in blue, in particular Southeast Asia is dis-
played in the upper left part, North of Australia is displayed in
bottom right (see figure 5.1 to have more spatial references).

5.35).



5.1 results and discussion 61

Figure 5.34: Map correlation between first CCA’s principal components of
SSTA and SSTA in area A2 at lag 1 in rainfall analysis. Lands
are displayed in blue, in particular Eastern China is displayed
in the upper left part, North of Australia is displayed in bottom
left (see figure 5.2 to have more spatial references).

Figure 5.35: Map correlation between first CCA’s principal components of
SSTA and SSTA in area A1 at lag 3 in rainfall analysis. Lands
are displayed in blue, in particular Southeast Asia is displayed
in the upper left part, North of Australia is displayed in bottom
right (see figure 5.1 to have more spatial references).





6
S T R E A M F L O W P R E D I C T I O N

6.1 introduction

The second part of this study is to build prediction models of the
11 station’s streamflow using as input variables the EOF’s principal
compontents of SSTAs in area A1 and A2 got from the previous anal-
ysis. The aim is to evaluate the performance of the models, assuming
that a teleconnection exists between streamflow and SSTAs in Pacific
Ocean and Indian Ocean as it is discussed in chapter 6. Two methods
are used to achieve it: CCA and IVS. Similarly to CCA’s analysis, the
number of principal components retained for each area is chosen fol-
lowing the Kaiser method, such as 20 principal components in area
A1 and 29 principal components in area A2. The coefficient of deter-
mination R2 is the index used to evaluate the performance.

6.2 cca’s prediction

CCA can be used to make prediction using the CCA’s amplitude time
series of predictor (or predictand) (see section 3.3.3). CCA’s predic-
tion models are built evaluating CCA between the streamflow anoma-
lies recorded in the 11 stations of the basin and the SSTA’s principal
components in each area (A1 or A2). The models are evaluated sepa-
rately for each area: SSTA’s principal components in area A1 evaluate
a model that concerns only SSTAs in area A1, and the SSTA’s principal
components in area A2 for the model related to area A2. The models
are calculated for different time lags between the streamflow anoma-
lies and the SSTA’s principal components, from lag of 0 months to a
lag of 6 months. The outputs of CCA’s prediction model are predicted
streamflow anomalies series for each station (11 time series) thus R2

indexes are calculated to evaluate the performance in every station.
R2 are evaluated by a k-fold cross-validation with 10 number of folds.

R2 indexes in calibration relative models evaluated using SSTA of area
A1, are summarized in tab.6.1 and tab.6.2. The best performances
does not exceed 0.19 of R2 and is found in the first lag time. In general,
indexes R2 in area A1 decrease with lags, but ∆R2 varies little from a
lag time to another (the maximum variation of R2 is around 0.02) but
there are some exceptions. For example in ChiemHoa, LaiChau and
ThuongCat R2 in lag of 2 months is lower than R2 in lag of 3 months,
or in HaNoi, SonTay, VuQuang and ThuongCat R2 in lag of 5 months
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is lower than R2 in lag of 6 months.
Performances concerning area A2 are similar to those evaluated in
relation to area A1, the difference is that the decrease with lag is
not evident here as in the previous model. R2 values are reported in
tab.6.3 and tab.6.4. R2 below 0.05 is not found in spite of in model
evaluated at area A2 reaches R2 of 0.02.
In summary, the R2 values in calibration in the CCA’s models have the
highest value around 0.20 in NamMuc station. In general R2 higher
values in each station vary from 0.10 to 0.15, and they depend on the
particular station.

lag ChiemHoa HamYen HaNoi HoaBinh LaiChau NamMuc

0 0.1104 0.1100 0.1396 0.1466 0.1145 0.1900

1 0.0848 0.0754 0.1039 0.1054 0.0745 0.1635

2 0.0723 0.0555 0.0983 0.0979 0.0686 0.1494

3 0.0763 0.0676 0.0849 0.0894 0.0706 0.1439

4 0.0428 0.0443 0.0637 0.0745 0.0629 0.1353

5 0.0373 0.0276 0.0474 0.0685 0.0729 0.1301

6 0.0422 0.0249 0.0567 0.0636 0.0624 0.1238

Table 6.1: R2 in calibration in CCA’s prediction models of streamflow
anomalies in area A1-part1. Station from ChiemHoa to NamMuc
(see figure 4.5).

lag SonTay TaBu ThuongCat VuQuang YenBai

0 0.1313 0.1512 0.1441 0.1100 0.1626

1 0.0962 0.0986 0.1121 0.0864 0.1208

2 0.0871 0.0908 0.1154 0.0700 0.1222

3 0.0858 0.0876 0.1082 0.0765 0.1165

4 0.0782 0.0720 0.0881 0.0476 0.0784

5 0.0614 0.0779 0.0665 0.0359 0.0617

6 0.0471 0.0687 0.0603 0.0465 0.0545

Table 6.2: R2 in calibration in CCA’s prediction models of streamflow
anomalies in area A1-part2. Station from SonTay to YenBai (see
figure 4.5).

Performances in validation are always worse than in calibration. Be-
cause R2 values in calibration don’t show a strong performance, high
values of R2 are not expected in validation. They vary from −0.20 to
0 and a positive value is never observed. Below are reported plots of
streamflow anomalies in NamMuc station evaluated at time lag 1 in
calibration (see figure 6.1 for area A1 and figure 6.2 for area A2) and
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lag ChiemHoa HamYen HaNoi HoaBinh LaiChau NamMuc

0 0.1091 0.1028 0.1263 0.1164 0.1082 0.2025

1 0.0646 0.0726 0.0869 0.1003 0.0943 0.1613

2 0.0692 0.0608 0.1070 0.1131 0.1032 0.1690

3 0.0890 0.0876 0.1166 0.1215 0.1117 0.2079

4 0.1021 0.0922 0.1059 0.0782 0.0750 0.1890

5 0.0813 0.0727 0.0857 0.0642 0.0564 0.1669

6 0.0785 0.0780 0.0965 0.0624 0.0614 0.1526

Table 6.3: R2 in calibration in CCA’s prediction models of streamflow
anomalies in area A2-part1. Stations from ChiemHoa to Nam-
Muc (see figure 4.5).

lag SonTay TaBu ThuongCat VuQuang YenBai

0 0.1100 0.1322 0.1580 0.1222 0.1567

1 0.0710 0.1055 0.1066 0.0715 0.1066

2 0.0769 0.1103 0.1226 0.0848 0.1209

3 0.0978 0.1256 0.1359 0.1216 0.1255

4 0.0969 0.0872 0.1083 0.1306 0.1050

5 0.0809 0.0655 0.0812 0.1078 0.0990

6 0.0889 0.0714 0.0789 0.1194 0.1052

Table 6.4: R2 in calibration in CCA’s prediction models of streamflow
anomalies in area A2-part2. Stations from SonTay to YenBai (see
figure 4.5).

in validation (see figure 6.3 for area A1 and figure 6.4 for area A2).

Figure 6.1: Plot CCA’s prediction model in calibration in area A1 time lag
1. Station: NamMuc.

The previous models are evaluated on the streamflow series obtained
by adding the monthly average to the streamflow anomalies pre-
dicted by CCA. These analysis are computed to test the contribution
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Figure 6.2: Plot CCA’s prediction model in calibration in area A2 time lag
1. Station: NamMuc.

Figure 6.3: Plot CCA’s prediction model in validation in area A1 time lag 1.
Station: NamMuc.

Figure 6.4: Plot CCA’s prediction model in validation in area A2 time lag 1.
Station: NamMuc.
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of the monthly average in the forecasting. The R2 values are higher
than those evaluted for streamflow anomalies because the monthly
average improves the performances. The calibration values of R2 are
lower than validation values of R2. Better performances are found
in validation because the streamflow anomalies predicted previously
have bad performances thus they have a low contribution in the
model. In other words, the validation models are like models of the
only monthly averages related to the streamflow series. R2 values in
calibration are reported in tab.6.5, tab.6.6, tab.6.9 and tab.6.10. R2 val-
ues in validation are reported in tab.6.7, tab.6.8, tab.6.11 and tab.6.12.

lag ChiemHoa HamYen HaNoi HoaBinh LaiChau NamMuc

0 0.6712 0.7397 0.7671 0.7625 0.7852 0.6694

1 0.6779 0.7470 0.7765 0.7752 0.7979 0.6879

2 0.6830 0.7533 0.7772 0.7747 0.7977 0.6906

3 0.6826 0.7510 0.7795 0.7763 0.7957 0.6911

4 0.6869 0.7531 0.7809 0.7762 0.7966 0.6845

5 0.6899 0.7596 0.7843 0.7800 0.7999 0.6896

6 0.6887 0.7600 0.7828 0.7828 0.8016 0.6869

Table 6.5: R2 in calibration in CCA’s prediction models of streamflow in
area A1-part1. Station from ChiemHoa to NamMuc (see figure
4.5).

lag SonTay TaBu ThuongCat VuQuang YenBai

0 0.7634 0.7726 0.7481 0.7085 0.6617

1 0.7732 0.7899 0.7561 0.7137 0, 6751

2 0.7751 0.7906 0.7520 0.7200 0.6784

3 0.7744 0.7889 0.7559 0.7192 0.6761

4 0.7735 0.7892 0.7567 0.7211 0.6834

5 0.7748 0.7931 0.7635 0.7258 0.6867

6 0.7784 0.7944 0.7672 0.7221 0.6905

Table 6.6: R2 in calibration in CCA’s prediction models of streamflow in
area A1-part2. Station from SonTay to YenBai (see figure 4.5).

6.3 ivs’s prediction

IVS method is used in two steps: in the first step variables, which best
represent the relationship with streamflow anomalies, are ranked; in
the second step, a multi-step prediction model is developed using
the selected variables as input to forecast streamflows anomalies. IIS

algorithm is used to develop IVS, with an ensemble of 250 trees and
a predefined threshold nmin of 5. The performance is evaluated by
a 5 fold cross-validation. The aim is to forecast streamflow anomalies
having EOF’s principal components of different lead time. Three IIS
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lag ChiemHoa HamYen HaNoi HoaBinh LaiChau NamMuc

0 0.7205 0.8785 0.7905 0.7928 0.8286 0.7271

1 0.7201 0.8853 0.7937 0.8001 0.8261 0.7466

2 0.7395 0.9096 0.8173 0.8113 0.8310 0.7608

3 0.7320 0.9012 0.8077 0.8099 0.8328 0.7776

4 0.7245 0.9001 0.8030 0.7976 0, 8313 0.8402

5 0.7202 0.9044 0.8201 0.8181 0.8286 0.8514

6 0.7055 0.9004 0.8017 0.8107 0.8239 0.8426

Table 6.7: R2 in validation in CCA’s prediction models of streamflow in
area A1-part1. Station from ChiemHoa to NamMuc (see figure
4.5).

lag SonTay TaBu ThuongCat VuQuang YenBai

0 0.7615 0.8613 0.8412 0, 7732 0.7842

1 0.7621 0.8570 0.8459 0.7707 0.7901

2 0.7851 0.8650 0.8504 0.8073 0.7995

3 0.7801 0.8659 0.8527 0.7986 0.7921

4 0.7659 0.8677 0.8391 0.7805 0.8172

5 0, 8056 0.8720 0.8600 0.7862 0.8357

6 0.7914 0.8646 0.8498 0.7708 0.8155

Table 6.8: R2 in validation in CCA’s prediction models of streamflow in
area A1-part2. Station from SonTay to YenBai (see figure 4.5).

lag ChiemHoa HamYen HaNoi HoaBinh LaiChau NamMuc

0 0.6729 0.7437 0.7696 0.7718 0.7906 0.6709

1 0.6843 0.7523 0.7817 0.7753 0.7945 0.6864

2 0.6801 0.7522 0.7757 0.7721 0.7925 0.6801

3 0.6799 0.7448 0.7715 0.7656 0.7857 0.6731

4 0.6717 0.7449 0.7738 0.7786 0.7959 0.6772

5 0.6813 0.7524 0.7776 0.7820 0.8011 0.6832

6 0.6705 0.7470 0.7721 0.7796 0.7974 0.6811

Table 6.9: R2 in calibration in CCA’s prediction models of streamflow in
area A2-part1. Station from ChiemHoa to NamMuc (see figure
4.5).

experiments are computed to assess the relationship between EOF’s
principal components of SSTA and streamflow anomalies in a station,
at each experiment different time lags are evaluated. Experiments
are evaluated dividing EOF’s principal components for each area (A1

and A2). The three experiments are summarized below, where "EOF"
means a set of EOF’s principal components. A set is the number of
principal components chosen for each kind of model (summarized in
tab.6.13). These numbers are selected observing the R2 of each linear
model solved by least square method. In particular the numbers of
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lag SonTay TaBu ThuongCat VuQuang YenBai

0 0.7672 0.7822 0.7451 0.7065 0.6623

1 0.7798 0.7872 0.7568 0.7196 0.6796

2 0.7760 0.7861 0.7516 0.7145 0.6777

3 0.7707 0.7780 0.7485 0.7056 0.6706

4 0.7700 0.7892 0.7551 0.7017 0.6757

5 0.7729 0.7936 0.7630 0.7119 0.6779

6 0.7679 0.7894 0.7592 0.6976 0.6725

Table 6.10: R2 in calibration in CCA’s prediction models of streamflow in
area A2-part2. Station from SonTay to YenBai (see figure 4.5).

lag ChiemHoa HamYen HaNoi HoaBinh LaiChau NamMuc

0 0.7307 0.8835 0.7861 0.7923 0.8242 0.7267

1 0.7458 0.8886 0.8091 0.8047 0.8310 0.7554

2 0.7339 0.9028 0.8060 0.7984 0.8222 0.7685

3 0.7136 0.8979 0.8050 0.7949 0.8236 0.7277

4 0.6914 0.8857 0.7880 0.7925 0.8302 0.8106

5 0.6791 0.8797 0.7938 0.8167 0.8320 0.8233

6 0.6997 0.8748 0.7827 0.8095 0.8276 0.8289

Table 6.11: R2 in validation in CCA’s prediction models of streamflow in
area A2-part1. Station from ChiemHoa to NamMuc (see figure
4.5).

lag SonTay TaBu ThuongCat VuQuang YenBai

0 0.7637 0.8561 0.8390 0.7622 0.7821

1 0.7874 0.8603 0.8574 0.7884 0.8017

2 0.7861 0.8574 0.8367 0.7960 0.7949

3 0.7769 0.8538 0.8308 0.7825 0.7897

4 0.7555 0.8635 0.8335 0.7419 0.8071

5 0.7839 0.8688 0.8456 0.7273 0.8027

6 0.7690 0.8659 0.8438 0.7355 0.7950

Table 6.12: R2 in validation in CCA’s prediction models of streamflow in
area A2-part2. Station from SonTay to YenBai (see figure 4.5).

principal components are selected when the linear model have an R2

of at least 0.1.

model 1 yt = EOF(SSTA(t−1))+EOF(SSTA(t−2))+EOF(SSTA(t−3))

model 2 yt = EOF(SSTA(t−2))+EOF(SSTA(t−3))+EOF(SSTA(t−4))

model 3 yt = EOF(SSTA(t−3))+EOF(SSTA(t−4))+EOF(SSTA(t−5))

The previous models are evaluated also with in input the streamflow
anomalies at time lags: t-1 in model 1, t-2 in model 2 and t-3 in model
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Model A1 area A2 area

model 1 13 15

model 2 14 18

model 3 19 19

Table 6.13: Number of principal components evaluated in each model

3.

IIS Prediction Model 1
Experiments of model 1 select the first principal compontents from
each ocean area (A1 and A2) at first positions. In general rankings
are similar in every station, this evidence proves that a comparable
relationships exist between streamflow anomalies and principal com-
ponents over the basin. For model evaluated in area A1, the second
principal components at time lag 1 is the most selected. In particular
it is ranked at first position by IIS in 10 of the 11 stations, in partic-
ular 7 of the 10 stations select it more than 5 times in 10 total times
(see tab.6.14). This result is noticeable thinking that IIS evaluates the
importance of 39 total inputs. Observing the second principal compo-
nent of area A1, IIS selects the ocean areas above Australia and close
to Philippines that are so the most affecting streamflow anomalies.
IIS results concerning area A2 select the first four principal compo-
nents at time lag 1, especially the fourth principal component. For
example in YenBai station, the fourth principal component is ranked
in first position 8 times over 10 times, and the first principal compo-
nent is ranked in the second one 5 times over 10 times. In Sontay the
fourth principal component is ranked at first position 6 times over
10 times. In ThuongCat, the fourth principal component and the first
principal component are ranked in first position 4 and 2 times, prin-
cipal components that appear also in second position 2 and 1 times.
Both these results suggest that ENSO area affect streamflow anomalies,
infact ENSO area is the most prominent cluster of cells in the first prin-
cipal component and one of the leading part of ocean on the fourth
principal component.

Model performances in area A1 with only the second component as
inpunt are all around 0.50 of R2 in calibration and −0.10 of R2 in vali-
dation. In general results of IIS are better than those observed in CCA.
For example performances are summarized in tab.6.15. In tab.6.16 per-
formances using in input also streamflow anomalies at t-1 are shown.
Performances of model in area A2 using the first and the fourth prin-
cipal components are reported in tab.6.17, and in tab.6.18 using also
the streamflow anomalies at t-1 as input. In general there is not high
results of R2 index in validation. The highest value of R2 in validation
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Station Freq. Freq. Freq.

1° position 2° position 3° position

ChiemHoa 5 2 3

HamYen 1 1 2

HaNoi 7 0 1

HoaBinh 7 0 1

LaiChau 2 0 1

NamMuc 0 0 0

SonTay 3 0 1

TaBu 7 1 0

ThuongCat 8 0 0

VuQuang 6 0 1

YenBai 5 0 0

Table 6.14: Frequency of the second principal component in area A1 at time
t-1. The frequency refers to a 10 total times of run.

is around 0.08 and it is reached using as input the streamflow anoma-
lies at t-1.

Station 1 iteration 2 iteration

Input of model 2° PC (t-1) 1° PC(t-1)

TaBu

calibration 0.5690 0.6901

validation −0.1044 −0.0700

VuQuang

calibration 0.5763 0.7225

validation −0.0971 −0.0835

Table 6.15: R2 in calibration and validation of model 1 in A1. Input vari-
able are the second principal component and the first principal
component. Often only the second principal component is the
only ranked.

IIS Prediction Model 2
Models 2 do not show interesting results thus not a particular selec-
tion of principal components is selected by IIS. It is only noticeable
that the first four principal components at time t-3 and t-4 are the
most selected in area A1. In particular the third principal component
at time t-4 is the most selected, and models with only this variable
as input have around 0.58 of R2 in calibration and around −0.10
of R2 in validation. In area A2 the first four principal components
at time t-2, t-3 and t-4 are the most ranked, without a characteristic
pattern in the selection of input. Specifically IIS selects the first and
the fourth principal components at each time lag, in particular the
fourth principal component is only selected at time t-2 and t-3. As



72 streamflow prediction

Station 1 iteration 2 iteration 3 iteration

Input of model flow anom. (t-1) 3° PC (t-1) 2° PC (t-1)

HaNoi

calibration 0.6186 0.7624 0.7895

validation −0.0416 0.0500 0.0828

VuQuang

calibration 0.6198 0.7573 0.7916

validation −0.0568 0.0161 0.0867

Table 6.16: R2 in calibration and validation of model 1 in A1 with stream-
flow anomalies in input. Input are the streamflow anomalies
at t-1, the third principal component and the second principal
component at t-1.

Station 1 iteration 2 iteration

Input of model 1° PC (t-1) 2° PC (t-1)

YenBai

calibration 0.5899 0.7291

validation −0.1309 −0.0407

SonTay

calibration 0.5697 0.7243

validation −0.1309 −0.0560

Table 6.17: R2 in calibration and validation of model 1 in A2. The input of
the model are in order of iteration: the first principal component
and the second principal component at time t-1.

Station 1 iteration 2 iteration

Input of model flow anom. (t-1) 3° PC (t-1)

HoaBinh

calibration 0.6022 0.7340

validation −0.0872 −0.0481

Input of model flow anom. (t-1) 1° PC (t-1)

SonTay

calibration 0.5852 0.7515

validation −0.0803 0.0806

Table 6.18: R2 in calibration and validation of model 1 in A2 with stream-
flow anomalies in input.

a consequence, ENSO area is once again proved to affect the stream-
flow anomalies. Performances of models in area A1 are reported in
tab.6.19 and tab.6.20, performances of models in area A2 are reported
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in tab.6.21 and tab.6.22.

Station 1 iteration 2 iteration 3 iteration

Input of model 1° PC (t-3) 2° PC (t-2) 3° PC (t-4)

TaBu

calibration 0.5308 0.6970 0.7229

validation −0.1550 −0.1346 −0.0652

Input of model 1° PC (t-3) 3° PC (t-4) 1° PC (t-2)

TaBu

calibration 0.5713 0.7193 0.7440

validation −0.1271 −0.0126 −0.0110

Table 6.19: R2 in calibration and validation of model 2 in A1.

Station 1 iteration 2 iteration 3 iteration

Input of model flow anom. (t-2) 2° PC (t-4) 1° PC (t-3)

NamMuc

calibration 0.5449 0.7068 0.7633

validation −0.1037 −0.0352 0.0446

Input of model flow anom. (t-2) 2° PC (t-2)

ThuongCat

calibration 0.5755 0.7192

validation −0.0773 −0.0722

Table 6.20: R2 in calibration and validation of model 2 in A1 with stream-
flow anomalies in input.

Station 1 iteration 2 iteration

Input of model 1° PC (t-4) 4° PC (t-2)

VuQuang

calibration 0.5407 0.7356

validation −0.1566 −0.0338

Input of model 2° PC (t-2) 4° PC (t-3)

NamMuc

calibration 0.5753 0.7212

validation −0.1086 0.0327

Table 6.21: R2 in calibration and validation of model 2 in A2.

IIS Prediction Model 3
A particular pattern of selection of input variables for every station is
not found also in models 3. As in the previous models, often the first
four principal components are selected but without a regular pattern.
In general, the most selected principal components in area A1 is the
third principal component at time t-4 that is the same input selected
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Station 1 iteration 2 iteration

Input of model flow anom. (t-2) 2° PC (t-4)

ThuongCat

calibration 0.5780 0.7211

validation −0.0968 −0.0646

Input of model flow anom. (t-2) 1° PC (t-3)

YenBai

calibration 0.6167 0.7233

validation −0.0745 −0.0430

Table 6.22: R2 in calibration and validation of model 2 in A2 with stream-
flow anomalies in input.

in model 2. This result confirm the role of the Indonesia sea that is
the leading part in the third EOF’s principal components in area A1.
It affects the streamflow anomalies with a lag of 3 months. Results
in area A2 are similar to those of model 2: a frequency in ranking of
the first and the fourth principal components is noticed. Especially
the fourth principal components are selected only in time t-3 and t-
4, as in model 2 its contribution for long time lag is not important.
Streamflow anomalies at time t-3 is not selected by IIS in most of the
stations. As in the previous models, significant results are shown in
tab.6.23 for area A1, and tab.6.24 for area A2.

Station 1 iteration 2 iteration

Input of model 3° PC (t-4) 1° PC (t-3)

HoaBinh

calibration 0.5457 0.6756

validation −0.1052 −0.0651

Input of model 1° PC (t-3) 3° PC (t-4)

LaiChau

calibration 0.5470 0.6804

validation −0.0816 −0.0804

Table 6.23: R2 in calibration and validation of model 3 in A1.

In conclusion the only significant performances are found in calibra-
tion. Not good performances in validation using different selections
of the first four principal components are found both for area A1

and area A2. In general, calibration performances are better than val-
idation performances. Infact in validation models are tested with pa-
rameters evaluated with the calibration data set and this reduce the
accuracy of the performance. In this work a k-fold cross-validation is
used both for CCA and IIS, respectively 5 fold for CCA and 10 fold for
IIS. The number of observations used to perform validation is lower
than calibration, and that also affects the performances.
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Station 1 iteration 2 iteration

Input of model 4° PC (t-3) 3° PC (t-3)

HoaBinh

calibration 0.5544 0.7051

validation −0.1195 −0.1045

Input of model 1° PC (t-3) 4° PC (t-3)

NamMuc

calibration 0.5873 0.7296

validation −0.0719 0.0131

Table 6.24: R2 in calibration and validation of model 2 in A2.
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C O N C L U S I O N S A N D F U T U R E R E S E A R C H
D I R E C T I O N S

The present thesis investigates the relationship between Indian and
Pacific SST and hydro-meteorological variables, such as rainfall and
streamflow, in the Red River Basin in Vietnam. With the purpose of
improving the knowledge of the hydro-meteorological system in a
basin that is undergoing rapid development in terms of population
and economic growth. Therefore, studying the influence of SST on this
fast-evolving context could be exploited for substantially improving
water resources management with related significant socio-economic
benefits.

Three main goals are considered and are summarized as follows: first
to assess that effectively SST affects the hydro-meteorological system
in the basin, second to select new indicator of SST in the Indian and
Pacific ocean that best explain the previous relationship and last us-
ing the new SST’s indicators in order to develop streamflow prediction
models.
The most notable contribution of this work is the search for new kind
of indicators of SST phenomena that can be related to teleconnection
effects in a basin scale. In conclusion, EOF principal components of
SSTA analysis can be used as indicators.

An EOF is developped on SSTA in order to compress information and
capture the main process dynamics. The results of EOF are found to
be consistent with the leading modes in Indian and Pacific Ocean.
Especially the ENSO area is found to be the prominent one in the Pa-
cific Ocean. A selection of the most significant EOF modes arrange a
new set of SST’s indicators. EOF are developped on streamflow anoma-
lies and rainfall anomalies. EOFs of rainfall anomalies show a south-
ward gradient that could be explained by the "corridor-barrier" phe-
nomenon caused by the topography of the basin. CCA analysis, be-
tween the EOF results on rainfall/streamflow anomalies and EOF re-
sults of SST, are developped to assess the relationship between the
SST’s indicators and the hydro-meteorological variables over the basin.
Observing the correlations between the output of CCA analysis, indi-
cators of SST and the EOF of rainfall (streamflow) variables are proven
to be related, thus around 30% (40%) of correlation coefficients are
found. Finally streamflow prediction models are evaluated using in
input the SST’s indicators. IVS and CCA methods are computed to
achieve it. CCA’s models show low performances in calibration (around
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78 conclusions and future research directions

0.10 of R2) and zero performances in validation. IVS selects the most
significant indicators as the most related to streamflow anomalies.
However IVS’s models show high performances in calibration but still
zero performances in validation.

Further enhancements to this work would include the following as-
pect:

• In this work the effects of Indian and Pacific oceans are consid-
ered separately. Further researches may assess the effects of the
two oceans studying a whole combined area. EOF results in this
area should compare the processes in the two areas.

• ENSO-related effects may be compared with the indicator of Pa-
cific SST, because some correspondences with ENSO phenomena
are found in EOFs of this area. For example, some experiments
of IVS could be evaluated in order to compare the importance of
the SST indicator in streamflow forecasts.

• Predictions model could be improved by using in addition other
meteorological variables (e.g. temperature, evaporation).



B I B L I O G R A P H Y

[1] K. N. Amarasekera et al. “ENSO and the natural variability
in the flow of tropical rivers.” In: Journal of Hydrology 200.1-4
(1997), pp. 24–39 (cit. on pp. 2, 11).

[2] A. G. Barnston and T. M. Smith. “Specification and Prediction
of Global Surface Temperature and Precipitation from Global
SST using CCA.” In: Journal of Climate 9 (1996), pp. 2660–2697

(cit. on pp. 1, 11, 13, 24).

[3] L. Beltrame and D. Carbonin. “ENSO teleconnection patterns
on large scale water resources systems.” Master Thesis. Politec-
nico di Milano, Milan, Italy, 2013 (cit. on p. 38).

[4] L. Breiman et al. Classification and regression trees. Wadsworth
International Group, 1984. isbn: 0412048418 (cit. on p. 30).

[5] J. Chandimala and L. Zubair. “Predictability of stream flow and
rainfall based on ENSO for water resources management in Sri
Lanka.” In: Journal of Hydrology 335.3-4 (2007), pp. 303–312 (cit.
on p. 11).

[6] F. H. S. Chiew and T. A. McMahon. “Global ENSO- streamflow
teleconnection, streamflow forecasting and interannual variabil-
ity.” In: Hydrological Sciences Journal 47.3 (2002), pp. 505–522 (cit.
on pp. 1, 13).

[7] C. Deser et al. “Sea Surface Temperature Variability: Patterns
and Mechanisms.” In: Annual Review of Marine Science 2 (2010),
pp. 115–143 (cit. on pp. 9, 15).

[8] S. Galelli and A. Castelletti. “Assessing the predictive capability
of randomized tree-based ensembles in streamflow modelling.”
In: Hydrology and Earth System Sciences 17 (2013a), pp. 2669–
2684.

[9] S. Galelli and A. Castelletti. “Tree-based iterative input vari-
able selection for hydrological modeling.” In: Water Resources
Research 49.7 (2013b), pp. 4295–4310 (cit. on pp. 27–29).

[10] S. Galelli et al. “An evaluation framework for input variable
selection algorithms for environmental data-driven models.” In:
Environmental Modelling Software 62 (2014), pp. 33–51 (cit. on
p. 26).

[11] P. Geurts, D. Ernst, and L. Wehenkel. “Extremely randomized
trees.” In: Machine Learning 63.1 (2006), pp. 3–42 (cit. on p. 30).

79



80 Bibliography

[12] K. Grantz and B. Rajagopalan. “A technique for incorporating
large-scale climate information in basin-scale ensemble stream-
flow forecasts.” In: Water Resources Research 41 (2005) (cit. on
p. 2).

[13] F. Gutierrez and J. A. Dracup. “An analysis of the feasibility of
long-range streamflow forecasting for Colombia using El Niño
Southern Oscillation indicators.” In: Journal of Hydrology 246.1-4
(2001), pp. 181–196 (cit. on p. 2).

[14] I. Guyon and A. Elisseeff. “An introduction to variable and fea-
ture selection.” In: Journal of Machine Learning Research 3 (2003),
pp. 1157–1182 (cit. on pp. 26, 27).

[15] M. I. Hejazi and X. Cai. “Input variable selection for water re-
sources systems using a modified minimum redundancy max-
imum relevance (mMRMR) algorithm.” In: Advances in Water
Resources 32.4 (2009), pp. 582–593 (cit. on p. 26).

[16] I. T. Jolliffe. Principal Component Analysis. Springer, 2002. isbn:
978-0-387-95442-4 (cit. on pp. 20, 22).

[17] E. Kahya and J. A. Dracup. “U.S. Streamflow Patterns in Rela-
tion to the El Niño/Southern Oscillation.” In: Water Resources
Research 29.8 (1993), pp. 2491–2503 (cit. on pp. 1, 11).

[18] A. S. Kiem and S. W. Franks. “On the identification of ENSO-
induced rainfall and runoff variability: a comparison of meth-
ods and indices.” In: Hydrological Sciences Journal 46.5 (2001),
pp. 715–727 (cit. on pp. 11, 12).

[19] F. Li and Q. Zeng. “Statistical Prediction of East Summer Asian
Monsoon Rainfall Based on SST and Sea Ice Concentration.” In:
Journal of Meteorological Society of Japan 86.1 (2008), pp. 237–243.

[20] R. J. May et al. “Non-linear variable selection for artificial neu-
ral networks using partial mutual information.” In: Environmen-
tal Modelling & Software 23.10-11 (2008), pp. 1312–1326 (cit. on
p. 26).

[21] E. Meidani and S. Araghinejad. “Long-Lead Streamflow Fore-
casting in Southwest of Iran by the Sea Surface Temperature of
Mediterranean Sea.” In: Journal of Hydrologic Engineering (2013)
(cit. on p. 1).

[22] I. D. Phillips and J. Thorpe. “Icelandic Precipitation - North At-
lantic Sea-Surface Temperature Associations.” In: International
Journal of Climatology 26 (2006), pp. 1201–1221 (cit. on pp. 2, 13).

[23] X. Quach. “Assessing and optimizing the operation of the HoaBinh
reservoir in Vietnam by multi-objective optimal control tech-
niques.” PhD Thesis. Politecnico di Milano, Milan, Italy, 2011

(cit. on pp. 33, 35).



Bibliography 81

[24] T. A. Räsänen and M. Kummu. “Spatiotemporal influences of
ENSO on precipitation and flood pulse in the Mekong River
Basin.” In: Journal of Hydrology 476 (2013), pp. 154–168 (cit. on
p. 3).

[25] O. Roswintiarti, S. N. Devdutta, and S. Raman. “Teleconnec-
tionsb etweent ropical Pacific sea surface temperature anoma-
lies and North Carolina precipitation anomalies during El Nifio
events.” In: Geophysical Research Letters 25.22 (1998), pp. 4201–
4204 (cit. on pp. 2, 4, 22).

[26] N. Savage. “Modelling: Predictive yield.” In: Nature 501.7468

(2013), pp. 10–11 (cit. on p. 1).

[27] A. Sharma. “Seasonal to interannual rainfall probabilistic fore-
casts for improved water supply management: Part 1 - A strat-
egy for system predictor identification.” In: Journal of Hydrology
239.1-4 (2000), pp. 232–239 (cit. on p. 22).

[28] A. Shrestha and R. Kostaschuk. “El Niño/Southern Oscillation
(ENSO)-related variablity in mean-monthly streamflow in Nepal.”
In: Journal of Hydrology 308.1-4 (2005), pp. 33–49 (cit. on p. 11).

[29] T. L. Soukup et al. “Long lead-time streamflow forecasting of
the North Platte River incorporating oceanic–atmospheric cli-
mate variability.” In: Journal of Hydrology 368 (2009), pp. 131–
142 (cit. on p. 1).

[30] A. O. Tarakanov and A. V. Borisova. “Galapagos indicator of
El Niño using monthly SST from NASA Giovanni system.” In:
Environmental Modelling & Software 50 (2013), pp. 12–15 (cit. on
pp. 2, 12).

[31] L. Yungang, H. Daming, and Y. Changqing. “Spatial and tempo-
ral variation of runoff of Red River Basin in Yunnan.” In: Journal
of Geographical Sciences 18 (2008), pp. 308–318 (cit. on p. 48).




