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“... you never learn anything unless you are willing to take a risk

and tolerate a little randomness in your life.”

Heinz Rudolf Pagels
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Introduction

Functional Data Analysis, i.e., the statistical analysis of sets of curves, is a

lively area of statistics (Ramsay and Silverman, 2002, 2005; Ferraty and Vieu,

2006). New possibilities introduced by recent technologies of recording and stor-

ing high-resolution data representable as functions (e.g., time or space-varying

data, frequency spectra), leave statisticians with the problem of developing novel

methodologies to analyze this type of data. In this work we address one of the

debated issues in this field, that is how to perform inference on functional data.

Functional data are typically modeled as random elements of an infinite di-

mensional separable Hilbert space, usually constituted by the L2 space (Tarpey,

2003). One of the main issues of this framework is the impossibility of defining

a probability density function for random functions (Delaigle and Hall, 2010).

However, the problem of developing suitable inferential tools for functional data

is of high importance for practitioners. For instance, a test for deciding whether

several groups of curves have the same (functional) mean could be applied to

a wide range of situations. For example, we may think of the case in which

the curves express the movement through time of groups of subjects affected by

different pathologies. In this case, a test of mean comparison between groups

could provide a quantitative way to understand whether they express the same

behavior.

Statistical inference for functional data is currently approached from two dif-

ferent perspectives: parametric and non-parametric inference. Non-parametric

inference commonly relies on computational intensive permutation or bootstrap

techniques (Hall and Tajvidi, 2002; Cardot et al., 2007; Cuesta-Albertos and

Febrero-Bande, 2010; Hall and Van Keilegom, 2007a). Parametric inference re-

lies instead on distributional assumptions on functional data (e.g., normality)

and on asymptotic results (Horváth and Kokoszka, 2012; Spitzner et al., 2003;

Cuevas et al., 2004; Fan and Lin, 1998; Schott, 2007).

In the case of functional data, normality is a very demanding assumption.

Indeed, it implies that the projection of the random function on each element of

the functional space (e.g., L2) is a normal random variable (Tarpey, 2003). Such

an assumption is practically impossible to verify. For this reason we choose in

this work to base inference on non-parametric permutation tests (Good, 2005;

Pesarin and Salmaso, 2010). For instance, suppose that we want to test for

differences between two groups of curves. A permutation test can be constructed

by evaluating the distribution of a test statistic measuring the distance between

groups over the space of all possible permutations of data across groups. The

p-value of such test can be evaluated as the proportion of permutations leading

to a test statistic higher than the one evaluated with the non-permuted data.
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The resulting test is exact, and it does not require any parametric distributional

assumption.

In this thesis, we present and apply different inferential methods for functional

data based on permutation tests. In detail, the thesis includes three parts: Part

I describes the different methodological approaches developed to make inference

on functional data; Part II presents various applications of the methodologies

described in Part I; Part III presents details on the fdatest R package that

contains implementation of inferential procedures for functional data.

Methods

In Chapter 1, we introduce an inferential method for functional data based

on a generalization of Hotelling’s T 2 statistic (Hotelling, 1931) in functional

Hilbert spaces. The methodology introduced is a global inferential method, in

the sense that it provides a unique result over the whole domain of the curves.

Specifically, we introduce a novel test statistic, the functional Hotelling’s T 2,

to perform inference on functional data in the L2 geometry. The test statistics

corresponds to a semi-distance between the sample mean and the actual mean,

induced by the sample covariance operator. Functional Hotelling’s T 2 is the

natural extension in the infinite-dimensional framework of the statistical tools

for testing the mean with unknown variance, from the works of Gosset and

Fisher at the beginning of the twentieth century (Gosset, 1908; Fisher, 1925a),

up to the earlier extensions of Hotelling’s T 2 to high dimensional data (Secchi

et al., 2013). Furthermore, even if functional Hotelling’s T 2 is defined in the L2

geometry, as it is the natural extension of Euclidean geometry exploited in the

classical multivariate framework, we show how the statistic can be extended on

any functional Hilbert space. Finally, we suggest permutation tests based on

functional Hotelling’s T 2 to test for the mean of one functional population, and

to compare the means of two functional populations.

As the majority of works proposing inferential methods for functional data

analysis, the inferential method described in Chapter 1 is a global testing pro-

cedure, i.e., a procedure that provides a unique result over the whole domain of

the curves. For instance, when comparing the means of two different groups, the

result of the test is whether the mean functions are statistically different from

one another.

In some cases, knowing that two groups are statistically different from one

another is not fully satisfactory for practitioners. Indeed, one this is discovered,

one of the main interests is to discover how groups differ. Differences might be

expressed only in a particular part of the domain, or on a particular frequency

band. In these cases, we would want to identify the differences -when present-

with a control on false positives.

For this reason, in Chapter 2, we approach the problem of inference in a

component-wise perspective, in order to provide a way to answer the question

of how data differ. In detail, we suggest a novel technique: Interval Testing

Procedure (ITP) that enables inference for functional data whenever data are

described via a basis expansion. As its final result, ITP provides a family of ad-

justed p-values associated to each component of the basis expansion. Hence, sig-

nificantly different basis components can be selected by comparing corresponding

10
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adjusted p-values with the desired significance level α. When applied to a local

basis, such as B-splines, it provides a selection of the statistically significant

intervals of the domain. When applied to a Fourier basis, it provides instead a

selection of the statistically significant frequency bands. The procedure is pro-

vided with an interval-wise control of the Family Wise Error Rate, which is a

novel type of error control particularly suited for functional data that guarantees

that the probability of falsely rejecting any interval of true null hypotheses is

controlled.

In Chapter 2, we introduce ITP in the context of testing differences between

two functional populations, as well as for testing the mean of one functional pop-

ulation. Then, in Chapter 3, the procedure is extended to the case of testing a

functional-on-scalar linear model, i.e., a model in which the functional responses

are expressed as a sum of a functional common mean and functional fixed re-

gression coefficients multiplied by scalar covariates. In this case, we provide: (i)

a functional F -test (that we prove to be exact and consistent) for testing the

regression model; and (ii) functional t-tests (that we prove to be asymptotically

exact and consistent) for testing the effects of single covariates. All tests are

performed in a non-parametric way by applying suitable permutation tests. A

major advantage over previous works dealing with this type of model is that

our inferential approach requires neither normality assumptions on functional

residuals nor specific covariance structure.

Applications

In Part II the ITP is employed to analyze and test functional data sets coming

from different applications.

In Chapter 4 we present a functional one-way Analysis of Variance applied

to knee movement data, on a follow-up study on Anterior Cruciate Ligament

(ACL) ruptures. The knee movements of individuals suffering from an ACL

injury, treated with surgery (first group) or physiotherapy (second group) and

uninjured controls (third group) are investigated, using data from a long term

follow-up study (about 20 years after the injury). The aim of the analysis is

to compare the kinematics during a one-leg hop, i.e., a task during which all

individuals jumped horizontally as far as possible with one leg in a controlled

fashion. The main objective of the analysis is to test for significant differences

in knee motion between the three groups, and thereafter identify in which part

of the hopping task the groups differ. For this purpose, a B-spline-based ITP

is applied to the one-way ANOVA model, and the time intervals presenting sig-

nificant differences between the three groups are detected. Furthermore, since

pairwise group comparisons are performed, the specific groups showing dissimilar

patterns are identified, showing how individuals that were treated with physio-

therapy present significantly different movement patterns with respect to the

other two groups both during take-off and during landing.

Chapter 5 presents the analysis of the same data using a more sophisti-

cated model, in which we consider additional individual-specific covariates to

describe movements. In the previous chapter, we focused on differences between

groups, showing that the individuals treated with physiotherapy present differ-

ent movements with respect to the other two groups. In this chapter, we want

11
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to investigate whether this result is solely due to the treatment method (i.e.,

physiotherapy), or can it be explained by mans of other variable characterizing

the individuals (e.g., gender, BMI, age). An ANCOVA model is considered, in

which functional data (the flexion of the knee during the jump) are modeled

by means of a linear model with fixed scalar covariates and time-varying fixed

regression coefficients, in the framework described in Chapter 3. ITP-based tests

on the regression coefficients of the model are performed, and intervals present-

ing significant effects selected. The results of the analysis show that, even after

having discounted for the jump length (the only covariate that turns out to be

significant) the movement patter of physiotherapy group is significantly different

with respect to the other two groups during take-off and landing.

Chapter 6 presents an application of ITP for the remote monitoring of laser

welding. A functional two-way ANOVA is performed to investigate the effects of

the gap between the welded plates and the location of the laser beam on the laser

emission spectra. The effects of both the gap and the location are estimated

throughout all recorded wavelength range, and wavelength bands presenting

significant effects are inferentially selected. The result of such technique is the

selection of the bands of wavelengths that can be used to remotely monitor the

gap between the plates during the welding process. Indeed, we select a band

in the thermal emission domain in which the gap effect is significant and the

location one is not. This suggests the use of emission data on this band to

monitor the gap between the plates during the welding process at any possible

location, as in this band the emission is significantly influenced by the gap and

not by the location.

In Chapter 7, ITP is applied on daily temperatures and irradiation data, for a

renewable energy application. Mean and variance functions of daily irradiation

and temperature in a close area in southern Spain are tested by means of a

Fourier-based ITP. As a result, significant frequencies in the description of mean

and variance functions of data are selected, and time-varying estimates of the

mean and variance are calculated as a Fourier expansion of the sample mean

coefficients, restricted to the frequencies selected by the test. Finally, a time-

varying beta model is defined from the mean and variance estimates. This

model is then used to calculate some relevant quantities for the installation of

a residential photovoltaic plant. The model is used to evaluate the Expected

Energy Not Supplied, being a relevant parameter in photovoltaic applications.

A comparison with the approach mostly used in literature (based on a constant

distribution in time) shows that the use of a time-varying distribution gives

a more precise result, which allows avoiding overestimation of the size of the

panels.

Software

Part III reports some details about the implementation of the ITP. Implemen-

tations of the ITP with B-spline and Fourier basis, for both the two-population

and the one-population cases, have been made freely available in the R-package

fdatest (Pini and Vantini, 2014), downloadable from CRAN. The package is

briefly described in Chapter 8, and its R documentation, giving a detailed de-

scription of each function together with some examples, is reported.

12
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Chapter 1

Global Inference on Functional
Data: Hotelling’s T 2 in
Functional Hilbert Spaces

Abstract

The field of statistics is at the cusp of a revolution in the way data is collected

by measuring instruments. Massive information is retrieved in real-time and/or

spatially-referenced, hence producing new kind of data: functional data. Statis-

tical inference for functional data is particularly challenging as it is an extreme

case of high-dimensional data for which, no matter how large the sample is, infor-

mation will always be insufficient to fully characterize the underlying model. In

detail, after a historical excursus over the test statistics introduced for approach-

ing the problem of testing the mean, we provide a generalization of Hotelling’s

T 2 on any functional Hilbert space, naturally dubbed functional Hotelling’s T 2.

We discuss a nonparametric permutational framework that enables statistical

testing for the mean function of a population as well as for the difference be-

tween the mean functions of two populations. Within this framework, we show

how a number of state-of-the-art test statistics can be seen as approximations

of functional T 2 statistic hereby proposed.

Keywords: Hotelling’s T square, Functional Data, Inference, Permutation Test

1.1 State of the art

The tremendously fast technological developments pertaining to measuring in-

struments have brought the field of Statistics at the cusp of a revolution, with

real-time and/or spatially-referenced continuous information as the elementary

datum to be analyzed. Various constraints (time, economical or ethical issues)

on the other hand often prevent data analysts from collecting large samples.

This brings the statistician out of his comforting zone where enough informa-

tion is available to fully characterize all the variables under study and urges the

demand for new inferential procedures that make the most out of the available
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information to provide the best possible inference. Traditionally, the number

of variables under study is referred to as the dimension of the problem and of-

ten denoted p, while the number of observations of these variables is referred

to as the sample size and often denoted n. Hence, traditional samples with

more observations than variables are termed small p large n data while modern

samples with more variables than observations are termed large p small n data.

Functional data is an extreme case of large p small n data with p → ∞. In

this paper, we propose a chronological overview and evolution of the statistical

approach to the inference for the mean from the early works of De Moivre and

Gauss back at the beginning of the XX century to the most recent advances.

We will show how this evolution is tightly related to the sample characteristics

and we will address this specific problem for functional data (extreme case of

high-dimensional setting) by introducing a new test statistic.

z-test. In the XIX century, the German mathematician and astronomer

Carl Friedrich Gauss, while trying to measure distances between stars, realized

that he could not obtain perfectly reproducible measurements (Gauss, 1809).

Rather, his measurements were clustered around a central value, with more

frequently close to this value and less frequently further away. He named this

distribution of measurements the Normal distribution, also named after his name

nowadays. As a matter of fact, this distribution was introduced 60 years before

by the French mathematician Abraham de Moivre in the privately circulated

pamphlet “Approximatio ad summam terminorum binomii (a + b)n in seriem

expansi” (De Moivre, 1733) in response to the Bernoulli brothers’ paper 23

years earlier where he derived a simple approximation to the Bernoulli distri-

bution. In this work, de Moivre unveils the mathematical expression of the

Normal distribution curve, well known as the “Bell curve”. French mathemati-

cian and astronomer Pierre-Simon Laplace further formalized the introduction

of the Normal distribution in the “Théorie analytique des probabilités” (Laplace,

1820).

Almost a century later, the English statistician and geneticist Sir Ronald

Aylmer Fisher publishes “Statistical methods for research workers” (Fisher,

1925b), in which he formalizes the use of the Normal distribution for statistical

inference using elementary one-dimensional data. Let (x1, . . . , xn) be a sample of

n independent measurements following the Normal distribution with mean µ and

standard deviation (SD) σ. Fisher interprets the area under de Moivre’s curve

as a measure of probability. Hence, if σ is known and the hypothesis µ = µ0

is formulated, he defines the so-called z-score z0 = σ−1(x− µ0)/
√
n, where x is

the sample mean and shows that z0 follows a centered Normal distribution with

unit standard deviation under the null hypothesis. Subsequently, he argues that

the farther away from 0 the z-score z0, the more evidence there is against the

hypothesis µ = µ0 since it implies that the occurrence of such a z-score was very

unlikely under this assumption. This is the basis of the z-test, which enables for

the first time to make inference for the mean of one-dimensional data.

However, most of one-dimensional data are not normally distributed and the

above theory relies on the cornerstone that z0 follows a centered Normal dis-

tribution with unit SD. The validity of this assumption is somehow guaranteed

16
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by the Central Limit Theorem (CLT). Hence, most of the inferential procedures

proposed in the early 1900s pertain to large samples. We refer to this period as

the 1 = p < n = +∞ age of Statistics (see Figure 1.1).

Figure 1.1: Timeline of the principal results on statistical inference for the mean.

t-test. Eventually, in many fields of applied statistics, it turned out that

large samples were not feasible, mainly for time, economical or ethical reasons.

This became problematic for applying the z-test for two reasons: (i) the SD of

the measurement distribution is never known in practical situations but large

sample theory provides an unbiased estimator of it, which is not accurate for

small finite sample sizes and (ii) the measurement distribution is rarely Normal

but large sample theory ensures that the sample mean is Normal (CLT), which

is not guaranteed anymore in the small finite sample size setting.

The English statistician William Sealy Gosset was the first scientist to ac-

knowledge this fact. At that time, as reported in Box (1981, 1987), he was

working on a study about breweries and had only a few observations for making

inference. Hence, he circumvented this issue by introducing the t-distribution

under the pen-name Student in his work “The Probable Error of a Mean” (Gos-

set, 1908). He accounted for the variability of the sample standard deviation in

the z-statistic, which becomes non-negligible at low sample sizes. To avoid con-

fusion, he labels it as the t-statistic and characterizes its distribution under the

assumption of normality of the data. Fisher further studies the t-distribution in

“Applications of ‘Student’s’ distribution” (Fisher, 1925a).

Jointly working together, Gosset and Fisher thus introduced the Student’s

t-distribution and formulated the corresponding t-test, which enables inference

for the mean of one-dimensional Normal data using small samples. We refer to

this period as the 1 = p < n < +∞ age of Statistics (see Figure 1.1).

Hotelling’s T 2 test. A few years later, a growing interest arose in study-
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ing multiple features (variables) associated to the same underlying statistical

unit (observation). A simple example of this can be formulated as the following

question: what are the averaged height and weight of the US population? One

can obviously treat the two questions separately but would not account for the

obvious correlation between the two variables by doing so. In other words, the

scientific community was in need of inferential procedures for jointly distributed

multi-dimensional data. Building on Indian statistician Prasanta Chandra Ma-

halanobis’s work “Analysis of Race Mixture in Bengal” (Mahalanobis, 1927)

where the distance named after him is introduced, American statistician Harold

Hotelling introduces the T 2-statistic as a multivariate generalization of the t-

statistic in “The generalization of Student’s ratio” (Hotelling, 1931). In essence,

the T 2-statistic is the Mahalanobis distance between the multivariate sample

mean and a multivariate hypothesized mean. Hotelling derives the statistical

distribution of the T 2-statistic under the assumption of multivariate normality

with dimension p smaller than the sample size n, which provided the scientific

community with adequate inferential procedures for simultaneously testing for

the mean of multiple features.

Hotelling thus introduced the T 2-statistic, which follows a Fisher distribution

under the assumption of multivariate normality with p < n. We refer to this

period as the 1 < p < n < +∞ age of Statistics (see Figure 1.1).

High-dimensional tests. At the end of the XX Century, probably one of

the most dramatic changes of paradigm in the history of modern statistics oc-

curred. So far, due to technological limitations, it was a luxury to be able to

measure multiple features at the same time (and so p easily remained smaller

than n). The major breakthroughs that measuring instruments underwent dur-

ing the second half of the XX century yielded data with more features than

observations (and thus it became usual that p exceeds n at least by an order of

magnitude). In other words, statistical research translated from a world with

enough information to fully characterize the features of interest (p < n) to a

world with insufficient information to do so (p ≥ n). DNA micro-arrays for

gene expression are one of the most famous examples of such data. They are

characterized by thousands of variables being evaluated on only a few replicates.

Due to the increasing number of such large p small n data, many efforts have

been made to extend Hotelling’s result to the p > n case for enabling inference

for the mean of multi-dimensional data which dimension exceeds the sample size.

The work of Srivastava (2007) is pioneering in this direction. He proposes a gen-

eralized T 2-statistic and shows that it follows a Fisher distribution for each n

and p, with n < p < +∞, under the assumption of multivariate normality and of

proportionality of the variance-covariance matrix to the identity (which implies

the independence among components). In Secchi et al. (2013), a generalized

T 2-statistic is presented in a less stringent framework, i.e., without relying on

the assumption of independence among components (even though still requiring

multivariate normality). Under some conditions on the trace of the variance-

covariance matrix, they show that it follows a χ2 distribution with n−1 degrees

of freedom in the p→∞ regime. We refer to this period as the 1 < n < p < +∞
age of Statistics (see Figure 1.1).
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Functional tests. Some areas of applied statistics are interested in a par-

ticular kind of data: they aim at making inference for a single variable acquired

in a continuous fashion by cutting-edge measuring instruments. The occurrence

of such functional data is growing rapidly in these areas and raises the demand

for appropriate inferential tools. Functional data analysis (FDA) has been one

of the focuses of statisticians in the XXI century (Ramsay and Silverman, 2002,

2005; Ferraty and Vieu, 2006). The curve describing the continuous variable can

be viewed as an infinity of points, or variables, and is thus the obvious extreme

case of large p small n data. In addition, each “variable” describing a given

point on the observed curves cannot be assumed independent from the other

points on the same curves. We are thus entering in a new age of Statistics at the

antipodes with respect to the beginning of the XX century that we shall refer

to as the 1 < n < p = +∞ age of Statistics.

A commonality between the different inferential procedures provided during

the last two centuries is the normality assumption of the data. This yielded para-

metric tests that are particularly appealing because (i) they generally achieve

great statistical power and (ii) they only require the computation of a single test

statistic, which is computationally easy and the comparison with tabulated crit-

ical values. In contrast, nonparametric approaches to the problem of inference,

such as permutation tests, also introduced during the XX century (Fisher, 1936),

were not widely used because available technologies back in these days could not

cope with the high computational burden that these procedures generated.

This was not really a concern during the 1 = p < n = +∞ age. Indeed,

after Russian mathematician Aleksandr Mikhailovich Lyapunov proved the CLT

under very wide assumptions in the “Nouvelle forme du théoreme sur la limite de

probabilité” (Lyapunov, 1901), the z-test could be easily applied to non-normal

data. During the 1 = p < n < +∞ age, even though asymptotic normality of

the sample mean was not sufficient anymore to ensure that the t-statistic follows

the t-distribution, inferential procedure for testing the assumption of normality

of one-dimensional data already existed and was thus not a debated point.

Debates really started with the 1 < p < n < +∞ age. Indeed, Hotelling’s T 2

test strongly relies on the assumption of multivariate normality, which can be

assessed in the bivariate case but becomes more and more challenging to assess as

the dimension p increases. This is known as the “curse of dimensionality” (Hastie

et al., 2009). These concerns grew even more during the 1 < n < p < +∞ age as

most statistical procedures proposed for their analysis, such as the tests proposed

in Srivastava (2007); Secchi et al. (2013), also strongly rely on the assumption of

multivariate normality and, in addition, have been shown not to be robust with

respect to violation of this assumption (Secchi et al., 2013). Similar concerns

remain now that we enter the 1 < n < p = +∞ age with FDA.

Consequently, in this work, following the approach pioneered by Fisher (Fisher,

1936), we propose a nonparametric permutational framework for the inference

on the mean of functional data. This framework does not rely on either mul-

tivariate normality or pre-specified variance-covariance structures. As such, it

offers an appealing alternative to parametric procedures, the validity of which

remains unclear in the new settings we find ourselves into.
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In detail, in the present work, we propose a L2 generalization of the Hotelling’s

T 2 statistic. We refer to it as functional Hotelling’s T 2. We define the statistic

and discuss its properties in Section 1.2. In Subsection 1.2.3 we discuss how

to compute the functional Hotelling’s T 2, and show how its finite-dimensional

approximation is related with the multivariate large p small n generalization

of T 2 provided in Secchi et al. (2013). In Section 1.3 we discuss a possible

application of the functional Hotelling’s T 2 statistic to the problem of inference

for the mean in FDA, by means of nonparametric permutation tests. In Section

1.4 we compare it with other L2-based test statistics presented in literature to

test for functional data. Finally, in Section 1.5 we extend functional Hotelling’s

T 2 to any functional Hilbert space. All proofs are reported in the Appendix.

1.2 Hotelling’s T 2 in L2

1.2.1 Theoretical framework

Let (Ω,F ,P) be a probability space on the space L2(T ) of all real-valued squared-

integrable functions on the domain T (where T is an interval of R of the form

(a, b)). The space L2(T ), endowed with its natural inner product (ξ1, ξ2) =∫
T
ξ1(t)ξ2(t)dt for any ξ1, ξ2 ∈ L2(T ), and associated norm ‖ξ‖L2 =

√∫
T
ξ2(t)dt

(for any ξ ∈ L2(T )), is a Hilbert space. Let E denote the integration with respect

to the probability measure P. The elementary datum in functional data analy-

sis (FDA) is a random function of which we shall give a proper mathematical

definition. Following (Tarpey, 2003), we state:

Definition 1.1. Given a probability space (Ω,F ,P), a random L2-function, or

L2-valued random variable, is a measurable surjective map from the sample space

Ω to L2(T ).

Note that, unlike Tarpey (2003), we here require the random function to be

a surjective map from Ω to L2(T ). This assumption means that the random

function is nondegenerate, in the sense that it covers the whole L2(T ) space.

Similarly to real-valued one-dimensional (resp., multi-dimensional) variables,

for a given random L2-function ξ, we can define the concepts of mean and dis-

persion around the mean. In traditional discrete cases, the former is a real

one-dimensional (resp., multi-dimensional) vector and the latter is summarized

by the variance (resp., variance-covariance matrix). The mean of a random L2

function on the other hand is a function and its dispersion is characterized by a

covariance operator. They are given by the following.

Definition 1.2. Let ξ be a random L2-function. The mean function µ : TtoR
and covariance operator V : L2(T ) → L2(T ) of the random L2-function ξ are:

respectively given by:

µ(t) = E[ξ(t)], and (V f) (t) =

∫
T

σ(t, s)f(s)ds,

where σ : T × T → R is the covariance function of ξ:

σ(t, s) = E [(ξ(t)− µ(t))(ξ(s)− µ(s))] , for any (t, s) ∈ T × T .
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In the current work, similarly to (Horváth and Kokoszka, 2012; Bosq, 2000),

we restrict ourselves to random L2-functions with finite total variance, i.e., such

that:

E
[
‖ξ‖2L2

]
< +∞ (finite total variance).

This covers a huge number of practical situations and confers convenient prop-

erties to the covariance operator such as the spectral theorem decomposition.

Indeed, the covariance function σ can then be shown to belong to L2(T ×T ). As

a result, the covariance operator V is an Hilbert-Schmidt operator, i.e., it belongs

to the subspace HS(L2(T )) of the space of limited linear operators L(L2(T )) on

L2(T ) (Arveson, 2002).

At this point and for the rest of the paper, we will assume that we collected

a random sample of n independent and identically distributed (iid) random L2-

functions ξ1, . . . , ξn, with common mean function µ and covariance operator V ,

satisfying the finite total variance assumption.

Unbiased estimators for µ and V are given by the following

Definition 1.3. The sample mean function ξ : T → R is an unbiased estimator

of the mean function µ and is given by:

ξ(t) =
1

n

n∑
i=1

ξi(t) .

The sample covariance operator V̂ : L2(T )→ L2(T ) is an unbiased estimator of

the covariance operator V and is given by:(
V̂ f
)

(t) =

∫
T

S(t, s)f(s)ds,

where S is the sample covariance function defined as:

S(t, s) =
1

n− 1

n∑
i=1

(ξi(t)− ξ(t))(ξi(s)− ξ(s)) for any (t, s) ∈ T × T .

The proof of unbiasness of these random variables as estimators of the mean

function and covariance operator respectively is straightforwardly obtained by

replicating the proof of unbiasness of their multivariate counterparts. Note that

ξ is a random L2-function and V̂ is a random HS(L2)-operator.

1.2.2 Definition of Hotelling’s T 2 in L2

Similarly to the multivariate case, it is possible to break down the total variance

in the original functional dataset into two components, one of which only depends

on the data. The following theorem states such a decomposition of variance and

introduces some useful operators.

Theorem 1.1. Consider a sample of n iid random functions with mean µ,

covariance operator V s.t. E[‖ξi‖2L2 ] < +∞. Then, the following variance de-

composition holds:

(n− 1)V̂ + nV̄ = Ṽ ,

or, equivalently, ∀g ∈ L2(T ):

(n− 1)(g, V̂ g) + n(g, V̄ g) = (g, Ṽ g),

where:
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• V̂ is the sample covariance operator, with kernel S, that describes the dis-

persion of data ξi around the sample mean ξ̄;

• V̄ is the random operator with kernel
(
ξ̄(t) − µ(t)

)(
ξ̄(s) − µ(s)

)
, that de-

scribes the distance between the sample mean ξ̄ and the mean µ;

• Ṽ is the random operator with kernel
∑n

i=1

(
ξi(t)−µ(t)

)(
ξi(s)−µ(s)

)
, that

describes the dispersion of data ξi around the mean µ.

The random operators V and V̂ introduced in Theorem 1.1 are the key con-

cepts for generalizing Hotelling’s T 2 statistic to the functional case. The follow-

ing definition formally introduces this statistic:

Definition 1.4. The functional Hotelling’s T 2-statistic is defined as the L2

distance between the sample mean function and the true mean function “stan-

dardized” to the sample covariance operator. Similarly to the multivariate case,

it reads:

T 2 = n max
g∈Im(V̂ )

(g, V g)

(g, V̂ g)
. (1.1)

The functional T 2-statistic has a number of desirable properties that makes

it particularly appealing for inferential purposes:

T 2 is a semi-distance between µ and ξ. It is important to keep in mind

that, although the formulation of the functional T 2-statistic proposed in Def-

inition 1.4 is closely related to the multivariate T 2-statistic that one can find

in many textbooks on introduction to multivariate analysis, the two statistics

fundamentally differs in their mathematical implications. The multivariate T 2-

statistic is defined as the maximum of the squared t-statistics associated to all

possible one-dimensional projections of the multi-dimensional data. Differently,

the functional T 2-statistic is defined as the maximum over the space Im(V̂ )

spanned by the sample covariance operator V̂ , which is an (n − 1)-dimensional

random subspace of L2(T ). As a result, T 2 is a distance between µ and ξ in the

random space Im(V̂ ) but is only a semi-distance in L2(T ), for which the identity

of indiscernibles does not hold.

T 2 is invariant under similarity transformations. Functional Hotel-

ling’s T 2-statistic is invariant under similarity transformations of the data, i.e.,

under affine transformations ξ 7→ aOξ + f , where a ∈ R+, f ∈ L2(T ) and O is

an orthogonal linear limited operator on L2(T ), i.e., O satisfies (Og1, Og2)L2 =

(g1, g2)L2 for any g1, g2 ∈ L2(T ). Lehmann and Romano (2006) have shown that

this type of invariance is the largest family of invariance transformations that

one can achieve in the framework p ≥ n. In this sense, the functional T 2-statistic

is invariant-optimal.

T 2 “marginal” distributions under functional normality are known.

The notion of functional normality has been introduced in Tarpey (2003) and

stipulates that a random L2-function is normally distributed if and only if, for all

u ∈ L2(T ), the real-valued one-dimensional random variable (ξ, u) is normally

distributed. If we further assume functional normality of our dataset, Theorem
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1.1 combined with Cochran’s Theorem yields the following (see Proposition 1.1

in the Appendix):

n
(g, V g)

(g, V̂ g)
∼ F (1, n− 1) . (1.2)

Equation 1.2 provides the distribution of the ratios involved in the T 2 statis-

tic. However the distribution of its maximum over all functions of Im(V̂ ) is not

easy to elicit without introducing very strong assumptions on the covariance

operator V . In addition, functional normality may be too stringent for many

applications and hard to defend and/or prove. For all these reasons, we will

tackle the problem of inference for the mean function within a nonparametric

permutational framework, based on minimal distributional assumption.

1.2.3 A finite-dimensional approximation of Hotelling’s T 2 in L2

With Definition 1.4, we gave a formal definition of functional Hotelling’s T 2

statistic. However, expressed as a maximization problem, T 2 is of little practical

interest here. Indeed, permutation tests rely on the evaluation of a sufficient

statistic over an enormous number of permuted datasets, which might become

computationally too heavy if, for each evalution, a maximization problem has

to be solved. Furthermore, in practical scenarios, analytic expressions of the

observed functions ξi’s are often not provided. Rather, finite high-dimensional

approximations are available.

Let us consider a countable set of basis functions {φk}k≥1 of L2(T ). It is

possible to project the original n observed functions onto the first p elements

of such a basis. Let ξi = ((φ1, ξi), . . . , (φp, ξi)) be the vector of the scores of

the i-th observed function ξi projected onto the first p elements of the basis.

Then, we can define the p-dimensional random vector ξ as the sample mean of

the individual scores and the p× p matrix S as their sample variance-covariance

matrix. Similarly, the mean function µ can be projected into a p-dimensional

vector µ of mean scores. At this point, the finite-dimensional approximation of

functional Hotelling’s T 2 can be computed directly without solving any maxi-

mization problem, as shown by the following.

Theorem 1.2. Consider a sample of n iid random functions with mean µ,

covariance operator V s.t. E[‖ξi‖2L2 ] < +∞. Let {φk}k≥1 be a countable set of

basis functions of L2(T ). Then, for any p ≥ 1, the following identity holds:

T 2
p = n max

g∈Im(V̂ )∩{φ1,...,φp}

(g, V g)

(g, V̂ g)
= n(ξ − µ)>W 1/2S+W 1/2(ξ − µ) , (1.3)

where W ∈ Rp×p is the matrix of inner products between the basis functions

[W ]i,j = (φi, φj) and S+ is the Moore-Penrose generalized inverse (Rao and

Mitra, 1971) of the sample variance-covariance matrix S. In addition:

T 2
p

a.s.−−−→
p→∞

T 2 .

Theorem 1.2 states that, if the basis used to project the data is orthonormal

(i.e., W = I), if we limit the search for the maximum in the functional T 2

definition to those functions in Im(V̂ ) that are spanned by the first p elements

23



CHAPTER 1. GLOBAL INFERENCE ON FUNCTIONAL DATA: HOTELLING’S
T 2 IN FUNCTIONAL HILBERT SPACES

of any basis of L2(T ), then the resulting maximum can be formulated as a high-

dimensional T 2 statistic as introduced in (Secchi et al., 2013). In the case of

non-orthonormal basis, this finite-dimensional approximation is still related to

the high-dimensional generalization provided in (Secchi et al., 2013), but the

generalized inverse of the covariance matrix is rescaled, by considering the inner

products between the basis functions. In addition, as p → ∞, the sequence of

such statistics converges almost surely to the functional T 2 statistic.

Note that, with the basis of principal components of V̂ , we have the equality

T 2 = T 2
n−1, i.e., the functional Hotelling’s T 2 can be exactly evaluated by means

of the first n− 1 sample principal components.

1.3 Permutation test L2 based on Hotelling’s T 2

The problem of inference for functional data has been addressed in the literature

from both a parametric and a nonparametric perspective. The former approach

commonly relies on distributional assumptions on functional data and on asymp-

totic results (Horváth and Kokoszka, 2012; Spitzner et al., 2003; Cuevas et al.,

2004; Fan and Lin, 1998; Schott, 2007). The latter approach relies instead on

permutation or bootstrap techniques, which are computationally intensive (Hall

and Tajvidi, 2002; Cardot et al., 2007; Cuesta-Albertos and Febrero-Bande, 2010;

Pini and Vantini, 2013; Hall and Van Keilegom, 2007a). The method that we

propose for testing functional data relies on this latter approach.

in detail, we now show how functional Hotelling’s T 2 can be used in nonpara-

metric permutation procedures for making inference on the mean of a random L2

function (Section 1.3.1) and on the difference between the means of two random

L2 functions (Section 1.3.2).

1.3.1 One-population test

Let (ξ1, . . . , ξn) be n i.i.d. random L2-functions with mean function µ and covari-

ance operator V that satisfy the finite total variance assumption (E[‖ξi‖2L2 ] <

+∞, for all i ∈ {1, n}).
Assuming that we want to test the following null hypothesis on the mean

function:

H0 : µ = µ0, vs. H1 : µ 6= µ0 , with µ0 ∈ L2(T ) , (1.4)

one can compute, under the null hypothesis H0, the functional T 2 statistic (Def-

inition 1.4):

T 2
0 = n max

g∈Im(V̂)

(g, V0g)

(g, V̂ g)
, (1.5)

where V0 is the random operator with kernel σ0(t, s) = (ξ(t)−µ0(t))(ξ(s)−µ0(s))

for any t, s ∈ T and V̂ is the sample covariance operator with kernel S.

One can use the T 2
0 statistic in a permutational framework for testing the

null hypothesis H0. Instead of the normality assumption often required in this

framework (see for instance Horváth and Kokoszka 2012), we make in a per-

mutation framework the much weaker assumption of symmetry of the distri-

bution of the data around the mean. Then, a permutation test can be con-

structed by evaluating the test statistic (1.5) over all possible reflections of
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data with respect to the center of symmetry under H0, i.e., the transformations

ξi(t) 7→ ξ∗i (t) = µ0(t) + (−1)ci(ξi(t) − µ0(t)), with i = 1, ..., n, and ci ∈ {0, 1}.
The p-value of test (1.4) is the proportion of permuted T 2

0 (ξ∗1 , ξ
∗
2 , ..., ξ

∗
n) exceeding

the value T 2
0 (ξ1, ξ2, ..., ξn) evaluated on the original data set.

1.3.2 Two-population test

Let (ξ11, . . . , ξn11) and (ξ12, . . . , ξn22) be two independent samples of size n1 and

n2 respectively. Let (ξ11, . . . , ξn11) be i.i.d. random L2-functions with mean

function µ1 and covariance operator V and let (ξ12, . . . , ξn22) be i.i.d. random

L2-functions with mean function µ2 and covariance operator V . In addition, we

assume that the assumption of finite total variance is met in the two samples.

Assuming that we want to test the following null hypothesis:

H0 : µ1 = µ2, vs. H1 : µ1 6= µ2 , (1.6)

one can compute, under H0, the functional T 2 statistic (Definition 1.4):

T 2
0 =

(
1

n1

+
1

n2

)−1

max
g∈Im(V̂pooled)

(g, V0g)

(g, V̂pooledg)
, (1.7)

where V0 is the random operator with kernel

σ0(t, s) =
[
ξ1(t)− ξ2(t)

[ [
ξ1(s)− ξ2(s)

]
, ∀t, s ∈ T

with ξ1 and ξ2 being the sample mean functions of the first and the second

populations respectively and V̂pooled is the pooled sample covariance operator

with pooled covariance function Spooled defined as:

Spooled(t, s) =
1

n1 + n2 − 2

[
n1∑
i=1

(
ξi1(t)− ξ1(t)

) (
ξi1(s)− ξ1(s)

)
+

n2∑
i=1

(
ξi2(t)− ξ2(t)

) (
ξi2(s)− ξ2(s)

)]
, ∀t, s ∈ T .

A permutation test can be constructed by evaluating the test statistic (1.7)

over all permutations of data over the sample units (ξ11, ..., ξn11, ξ12, ..., ξn22) 7→
(ξ∗11, ..., ξ

∗
n11, ξ

∗
12, ..., ξ

∗
n22). The p-value of the corresponding test is then the

proportion of T 2
0 (ξ∗11, ..., ξ

∗
n11, ξ

∗
12, ..., ξ

∗
n22) exceeding T 2

f,0(ξ11, ..., ξn11, ξ12, ..., ξn22)

evaluated on the original data set.

1.4 Other L2-based test statistics

To perform a permutation test on the mean of one functional population (or

two functional populations), we only need to define a distance or semi-distance

between the sample mean function (or difference between the sample mean func-

tions) and the mean function under the null hypothesis H0 (or difference between

the two sample mean functions). In the literature of permutation testing, the

following distances have been proposed for random L2 functions:
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The L2 distance.

∆2
L2 =

∫
T

(
ξ(t)− µ(t)

)2
dt .

This test statistic and associated permutation test have been proposed in Hall

and Tajvidi (2002); Hall and Van Keilegom (2007a). It is also possible to derive

parametric or asymptotic tests based on the same statistic under the assumption

of functional normality (see for instance Horváth and Kokoszka 2012). The

statistic ∆L2 can be expressed as the norm of an appropriate operator in L2 as:

∆2
L2 = n max

g∈L2(T )

(g, V g)

(g, g)
.

Hence, ∆2
L2 can be seen as an approximation of the functional Hotelling’s T 2,

where the sample covariance operator V̂ is assumed to be the identity operator.

Note that this statistic neither accounts for the point-wise variance of the data

nor its covariance structure. It instead gives equal weight to equally-long inter-

vals of the domain T .

The standardized L2 distance. (i.e., the L2 distance between standardized

data)

∆2
L2
t

=

∫
T

(
ξ(t)− µ(t)

)2
S(t, t)

dt ,

where S(t, t) is the point-wise sample variance. This test statistic has been

introduced in Hall and Tajvidi (2002) and can be seen as a weighted version of

the L2 statistic. Similarly to the L2 statistic, the statistic ∆2
L2
t

can be expressed

as the norm of an appropriate operator in L2 as:

∆2
L2
t

= n max
g∈L2(T )

(g, V g)

(g,Dσg)
.

Hence, ∆2
L2
t

can be seen as a more sophisticated approximation of the functional

Hotelling’s T 2 statistic. The sample covariance operator is indeed assumed to

be “diagonal” and reads (Dσg) (t) = S(t, t)g(t). The ∆2
L2
t

statistic thus makes

use of the point-wise estimates S(t, t) of the variance of the data but does not

account for its auto-correlation structure S(t, s).

Note that, unlike the functional T 2 statistic, the ∆2
L2 and ∆2

L2
t

statistics are

distances in L2(T ) (and not semi-distances). On the other hand, they share

no commonality with traditional test statistics used for null hypothesis statisti-

cal testing in multivariate analysis and they are not invariant under similarity

transformations.

1.5 Hotelling’s T 2 in functional Hilbert spaces

In the previous sections we presented the functional Hotelling’s T 2 in the L2

geometry as the natural extension of finite-dimensional Euclidean geometry to

the space L2(T ). Nevertheless, functional Hotelling’s T 2 can be extended to

every functional Hilbert space. Indeed, its definition only requires the evaluation
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of mean function and covariance operator, which directly derive from the notion

of inner product.

In particular, let H be a functional Hilbert space, endowed with the inner

product (·, ·)H and associated norm ‖ · ‖H . Let (ξ1, . . . , ξn) be n i.i.d. H-valued

random variables with mean µ ∈ H and covariance operator V ∈ L(H). A

sample estimate of the mean in H is the Fréchet mean: ξ̄ = argminξ∈H
∑n

i=1 ‖ξi−
ξ‖2H . Hence, functional Hotelling’s T 2 can be defined in the space H as:

T 2 = n max
g∈Im(V̂ )

(g, V̄ g)H

(g, V̂ g)H
. (1.8)

where:

• V̂ ∈ L(H) is the sample covariance operator in the space H, (defined

according to the scalar product in H), describing the dispersion of data ξi
around the Fréchet mean ξ̄. Indeed, V̂ is such that (g, V̂ g)H is the sample

variance of the scores of the orthogonal projections of ξi on g, with respect

to the inner product in H.

• V̄ ∈ L(H) is a random operator associated to the distance between the

Fréchet mean ξ̄ and the mean µ. Indeed, V̄ is such that (g, V̄ g)H is the

square distance between the scores of the orthogonal projections of ξ̄ and

µ over g, with respect to the inner product in H.

In the following, we report two concrete examples of geometry where we

explicit the definition of these operators: (i) the Sobolev space Hk(T ) of k-

differentiable squared-integrable real functions with squared-integrable deriva-

tives (Section 1.5.1) and (ii) the Bayes linear space B2(T ) of non-negative real

functions on T with squared-integrable logarithm (Boogaart et al., 2014) (Sec-

tion 1.5.2).

1.5.1 Example: Hotelling’s T 2 in Sobolev spaces

Consider the Sobolev space Hk(T ), that is, the space of k-differentiable functions

g ∈ L2(T ) such that, for j ≤ k, Djg ∈ L2(T ) (where Djg denotes the j-th

derivative of g). The space Hk(T ) is a Hilbert space, endowed with the following

inner product:

(f, g)Hk =
k∑
j=0

(Djf,Djg)L2 =
k∑
j=0

∫
T

(Djf)(t) · (Djg)(t)dt . (1.9)

Let (ξ1, . . . , ξn) be n i.i.d. Hk(T )-valued random variables with mean µ ∈
Hk(T ) defined as µ = argminm∈Hk(T ) E [‖ξi −m‖2Hk ]. The functional Hotelling’s

T 2 in Hk(T ) then reads:

T 2 = n max
g∈Im(V̂ )

(g, V g)Hk

(g, V̂ g)Hk
, (1.10)

where the operators V̂ and V can be explicitly defined using the inner product

in Hk(T ) given by Eq.(1.9). In details,
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• the operator V̂ ∈ L(Hk) is defined as:

(
V̂ f
)

(t) =

∫
T

k∑
j=0

S0j(t, s)D
jf(s)ds,

where Slj(t, s) is the sample covariance between lth and jth derivatives of

data ξi: Slj(t, s) = 1
n−1

∑n
i=1(Dlξi(t)−Dlξ̄(t))(Djξi(s)−Dj ξ̄(s)), and ξ̄(t)

is the Fréchet mean of the ξi:

ξ̄ = argmin
m∈Hk

n∑
i=1

‖ ξi −m ‖2Hk ;

• the operator V̄ ∈ L(Hk) is defined as:

(
V̄ f
)

(t) =

∫
T

k∑
j=0

(ξ̄(t)− µ(t))(Dj ξ̄(s)−Djµ(s))Djf(s)ds.

To have a better insight into the interpretation of Hotelling’s T 2 in the

Sobolev space Hk(T ), we can rely on the following identities (Lemma 1.1 of

the Appendix):

(g, V̂ g)Hk = V̂ ar [(g, ξ1)Hk , . . . , (g, ξn)Hk ] ;

(g, V̄ g)Hk = ((g, ξ̄ − µ)Hk)
2.

These identities show that Hotelling’s T 2 in Hk(T ) can be interpreted as the

maximum over all elements in the image space of V̂ of the ratio between: (i)

the squared distance between the scores of the orthogonal projections of ξ and µ

on g, with respect to the inner product in Hk(T ); and (ii) the sample variance

of the scores of the orthogonal projections of the ξi’s on g, with respect to the

inner product in Hk(T ).

1.5.2 Example: Hotelling’s T 2 in the Bayes linear space

Another example of functional Hilbert space recently introduced in the Func-

tional Data Analysis literature is the Bayes linear space B2(T ), that is, the space

of absolutely continuous density functions on the compact set T with squared-

integrable logarithm. The interested reader can find detailed descriptions of

Bayes spaces in Egozcue et al. (2006); Egozcue and Pawlowsky-Glahn (2006);

Menafoglio et al. (2013); Boogaart et al. (2014); Hron et al. (2014). As shown by

Egozcue et al. (2006), B2(T ) is a functional Hilbert space when proper addition

⊕, scalar multiplication � and inner product (·, ·)B2 operations are defined. In

details, for any f, g ∈ B2(T ) and α ∈ R:

(f ⊕ g)(t) =
f(t)g(t)∫

T
f(s)g(s)ds

, (α� f)(t) =
f(t)α∫

T
f(s)αds

,

(f, g)B2 =
1

2|T |

∫∫
T×T

ln
f(t)

f(s)
ln
g(t)

g(s)
dtds ,

(1.11)

where |T | is the measure of the compact set T .
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An isometric isomorphism between B2(T ) and L2(T ) is defined by the centred

log-ratio (clr) transformation (Boogaart et al., 2014; Menafoglio et al., 2013):

clr(f)(t) = ln f(t)− 1

|T | ln f(s)ds. (1.12)

Using both the Hilbert geometry conferred from the addition, scalar multipli-

cation and inner product proposed by Egozcue et al. (2006) and the isomorphism

in Eq.(1.12), we can provide a functional Hotelling’s T 2 statistic in B2(T ) use-

ful for making inference on the mean of populations of density functions on a

compact support.

Let (ξ1, . . . , ξn) be n i.i.d. B2(T )-valued random variables with mean µ ∈
B2(T ) defined as µ = argminm∈B2(T ) E [‖ξi −m‖2B2 ]. The functional Hotelling’s

T 2 in Hk(T ) then reads:

T 2 = n max
g∈Im(V̂ )

(g, V g)B2

(g, V̂ g)B2

, (1.13)

where the operators V̂ and V can be explicitly defined using the inner product

in B2(T ) given by Eq.(1.11) and the isomorphism given by Eq.(1.12). In details,

• the sample covariance operator V̂ ∈ L(B2) is defined as:(
V̂ f
)

(t) = clr−1

(∫
T

Sc(t, s)clr(f)(s)ds

)
,

where clr−1 is the inverse centered log-ratio transformation, and Sc(t, s) is

the sample covariance between clr-transformed data:

Sc(t, s) = 1
n−1

∑n
i=1

(
clr(ξi)(t)− clr(ξ̄)(t)

) (
clr(ξi)(s)− clr(ξ̄)(s)

)
.

• the operator V̄ ∈ L(B2) is defined as:(
V̄ f
)

(t) = clr−1

(∫
T

(
clr(ξ̄)(t)− clr(µ)(t)

)
(
clr(ξ̄)(s)− clr(µ)(s)

)
clr(f)(s)ds

)
,

where ξ̄(t) is the Fréchet mean of the ξi:

ξ̄ = argmin
m∈B2

n∑
i=1

‖ ξi −m ‖2B2 .

Similarly to we did in Sobolev spaces, to have a better insight into the in-

terpretation of Hotelling’s T 2 in the Bayes space B2(T ), we can rely on the

following identities (Lemma 1.2 of the Appendix):

(g, V̂ g)B2 = V̂ ar[(g, ξ1)B2 , . . . , (g, ξn)B2 ]

(g, V̄ g)B2 = ((g, ξ̄ − µ)B2)2

Hence, Hotelling’s T 2 in B2(T ) is the the maximum over all elements in the

image space of V̂ of the ratio between: (i) the squared distance between the

scores of the orthogonal projections of ξ and µ on g, with respect to the inner

product in B2(T ); and (ii) the sample variance of the scores of the orthogonal

projections of the ξi’s on g, with respect to the inner product in B2(T ).
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1.6 Conclusions

After a historical excursus on how the problem of inference for the mean evolved

in the statistical research, from the early works of De Moivre and Gauss back

at the beginning of the XX century to the most recent advances, we presented a

generalization of Hotelling’s T 2 (functional Hotelling’s T 2) in functional Hilbert

spaces, and demonstrated how it can be used for hypothesis testing for the mean

of functional data within a permutational framework.

The functional Hotelling’s T 2 is presented as a natural extension of Euclidean

geometry to the functional L2 space. It is a semi-distance based on a semi-

metric in L2. In essence, the functional T 2 statistic maximizes the ratio of

an operator that assesses the distance between the sample mean of an i.i.d.

functional dataset and its actual mean to another operator that assesses the

variability of such a functional dataset around its sample mean. We presented

a practical way of computing this statistic without resorting to optimization

algorithms by projecting the dataset onto any basis of the image space of the

sample covariance operator.

For inferential purposes, we set up a permutational framework for making

inference on the mean (or difference between means) of functional data. We dis-

cussed the advantage of our proposed functional T 2 statistic, which, unlike all

other statistics proposed in the literature, fully accounts for the covariance struc-

ture of the input data. Moreover, we showed that already existing test statis-

tics recently presented in the literature are in fact approximations of functional

Hotelling’s T 2, where the variance and/or correlation of the data is ignored.

Finally, even though we presented functional Hotelling’s T 2 in the L2 geom-

etry, as the natural functional extension of Euclidean geometry, we also showed

how our functional T 2 statistic can be defined and used in virtually any Hilbert

space. Examples included in this work are the Sobolev spaces Hk(T ) and the

Bayes linear space B2(T ).

An interesting and challenging future development of this work would be the

extension of T 2 to the larger family of functional metric spaces (e.g., Banach

spaces), following the direction of some lively and very recent areas of statisti-

cal research, such as object-oriented data analysis and shape analysis (see for

instance Marron and Alonso 2014). This extension requires a definition of T 2

exclusively based on a metric that relies neither on the notion of inner product

nor on the one of vector space.
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Appendix

1.A Proofs

Proof. [Theorem 1.1] Note that, by their definition, these 3 operators have respectively 1,
n− 1 and n degrees of freedom. Moreover, we have that, ∀ω ∈ Ω, ∀t, s ∈ T :

(n− 1)S(ω)(t, s) =

n∑
i=1

(
ξi(ω)(t)− ξ̄(ω)(t)

)(
ξi(ω)(s)− ξ̄(ω)(s)

)
=

n∑
i=1

[(
ξi(ω)(t)− µ(t) + µ(t)− ξ̄(ω)(t)

)
×
(
ξi(ω)(s)− µ(s) + µ(s)− ξ̄(ω)(s)

)]
=

n∑
i=1

(
ξi(ω)(t)− µ(t)

)(
ξi(ω)(s)− µ(s)

)
+

n∑
i=1

(
ξ̄(ω)(t)− µ(t)

)(
ξ̄(ω)(s)− µ(s)

)
−

n∑
i=1

(
ξi(ω)(t)− µ(t)

)(
ξ̄(ω)(s)− µ(s)

)
−

n∑
i=1

(
ξ̄(ω)(t)− µ(t)

)(
ξi(ω)(s)− µ(s)

)
=

n∑
i=1

(
ξi(ω)(t)− µ(t)

)(
ξi(ω)(s)− µ(s)

)
− n

(
ξ̄(ω)(t)− µ(t)

)(
ξ̄(ω)(s)− µ(s)

)
.

Hence, we have:

(n− 1)S(ω)(t, s) + n
(
ξ̄(ω)(t)− µ(t)

)(
ξ̄(ω)(s)− µ(s)

)
=

n∑
i=1

(
ξi(ω)(t)− µ(t)

)(
ξi(ω)(s)− µ(s)

)
, (1.14)

and the thesis follows. �

Proposition 1.1. Consider a sample of n iid random functions ξ1, ..., ξn with

mean µ, covariance operator V s.t. E[‖ξi‖2L2 ] < +∞, and Im(V ) = L2(T ). Let

the random functions be normally distributed, i.e., ∀u ∈ L2(T ), (ξ, u) is a real

univariate gaussian random variable. Then, we have:

n
(g, V̄ g)

(g, V̂ g)
∼ F (1, n− 1).

Proof. Let g ∈ Im(V̂ ). Under the normality assumption we have:

• (g, Ṽ g) ∼ (g, V g)χ2(n);

• n(g, V̄ g) ∼ (g, V g)χ2(1).
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Indeed, for the first one, we have:

(g, Ṽ g) =

n∑
i=1

(∫
T

(
ξi(t)− µ(t)

)
g(t)dt

)2
We know that the random functions ξi − µ, i = 1, . . . , n, are independent and identically
distributed as N∞(0, V ) (Gaussian random function with mean 0 and covariance operator V ).
Thus, the random variables ∫

T

(
ξi(t)− µ(t)

)
g(t)dt, i = 1, . . . , n

are independent and identically distributed as N1

(
0, (g, V g)

)
, thanks to the definition of gaus-

sian random function. The thesis follows immediately by definition of the χ2 distribution.
The second statistic can be written:

n(g, V̄ g) =
(∫

T

√
n
(
ξ̄(t)− µ(t)

)
g(t)dt

)2
Similar arguments give the distribution of N(g, V̄ g).

This result put us in the conditions to use Cochran’s theorem (Johnson and Wichern, 2007).
It leads then to

• (n− 1)(g, V̂ g) ∼ (g, V g)χ2(n− 1);

• n(g, V̄ g) and (n− 1)(g, V̂ g) are independent.

These 2 points carry with them the following consequence: given V̂ , ∀g ∈ Im(V) ∩ Im(V̂),
i.e., ∀g ∈ Im(V̂),

n
(g, V̄ g)

(g, V̂ g)
∼ F (1, n− 1) (1.15)

Finally, we know that Ker(V̂ ) has null measure in L2(T ). Hence, P[g 6∈ Im(V̂ )] = 0. This

last condition leads to the thesis. �

Proof. [Theorem 1.2] For the first part of the statement it is sufficient to note that T 2
p is a

monotonic increasing sequence which converges to the functional statistic T 2
f defined in (1.1),

as the basis {φk}k≥1 is dense in L2.
Now, at p fixed, we aim at finding the expression of T 2

p . It requires first to write the
decomposition of each function involved on the basis {ek}k≥1, and project them on the space
generated by the first p basis components. We have:

g =

p∑
k=1

gkφk ξi,p =

p∑
k=1

ξikφk ξ̄p =

p∑
k=1

ξ̄kφk µp =

p∑
k=1

µkφk.

Note that we are now working with finite-dimensional approximations ξi,p, ξ̄p, µp of the
functions ξi, ξ̄, µ, and that all approximations converge to the respective function for p→∞.

Now, the projection of the quantity (g, V̄ g) in the p-dimensional space generated by the
first p φk can be written as:

(g, V̄ g)p =
(∫

T

(
ξ̄p(t)− µp(t)

)
g(t)dt

)2
=
(∫

T

p∑
k=1

p∑
l=1

(ξ̄k − µk)glφk(t)φl(t)dt
)2

At this point, note that, by definition:∫
T

φk(t)φl(t)dt = Wkl

Thus, we obtain:

(g, V̄ g)p =
( p∑
k=1

p∑
l=1

(ξ̄k − µk)Wklgl
)2

=
(
(ξ̄ − µ)′Wg

)2
=
(
(ξ̄ − µ)′W 1/2W 1/2g

)2
,

where

g = (g1, . . . , gp)
′

ξ̄ − µ = (ξ̄1 − µ1, . . . , ξ̄p − µp)′
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Similarly, we have:

(n− 1)(g, V̂ g)p =

n∑
i=1

(∫
T

(
ξi,p(t)− ξ̄p(t)

)
g(t)dt

)2
=

n∑
i=1

(∫
T

p∑
k=1

p∑
l=1

(ξik − ξ̄k)glφk(t)φl(t)dt
)2

=

n∑
i=1

( p∑
k=1

p∑
l=1

(ξik − ξ̄k)Wlkgl
)2

= (n− 1)g′W 1/2SW 1/2g,

where

S =
1

n− 1

n∑
i=1

(ξi − ξ̄)(ξi − ξ̄)′

ξi − ξ̄ = (ξi1 − ξ̄1, . . . , ξip − ξ̄p)′

Thus, we obtain the following:

T 2
p = n max

g∈Im(S)

(
(ξ̄ − µ)′W 1/2W 1/2g

)2
g′W 1/2SW 1/2g

.

It can be written in another interesting way thanks to the Maximization Lemma in Johnson
and Wichern (2007). We get the final representation:

T 2
p = n(ξ̄ − µ)′W 1/2S+W 1/2(ξ̄ − µ),

where S+ is the Moore-Penrose inverse of S.

�

Lemma 1.1. Let {ξi}i=1,...,n a set of random elements of Hk(T ), with common

mean µ, and let V̂ and V̄ be the two Hk operators defined in Subsection 1.5.1.

The two operators V̂ and V̄ are such that, for any g ∈ Hk:

• (g, V̂ g)Hk = V̂ ar[(g, ξi)Hk ];

• (g, V̄ g)Hk = ((g, ξ̄ − µ)Hk)
2.

Proof. For any g ∈ Im(V̂ ), we have:

(g, V̂ g)Hk =

k∑
l=0

(Dlg,Dl(V̂ g))L2

=

k∑
l=0

∫
T

Dlg(t)Dl

[∫
T

k∑
j=0

S0j(t, s)Djg(s)ds

]
dt

=

k∑
l=0

∫
T

Dlg(t)

∫
T

k∑
j=0

∂ltS0j(t, s)Djg(s)dsdt

=

k∑
l=0

k∑
j=0

∫∫
T×T

Dlg(t)Slj(t, s)Djg(s)dsdt,

where in the last equality, we used the fact that:

∂ltS0j(t, s) = ∂lt
1

n− 1

n∑
i=1

(ξi(t)− ξ̄(t))(Djξi(s)−Dj ξ̄(s))

=
1

n− 1

n∑
i=1

(Dlξi(t)−Dlξ̄(t))(Djξi(s)−Dj ξ̄(s)) = Slj(t, s).
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Furthermore, we have:

k∑
l=0

k∑
j=0

∫∫
T×T

Dlg(t)Slj(t, s)Djg(s)dsdt

=

k∑
l=0

k∑
j=0

∫∫
T×T

Dlg(t)
1

n− 1

n∑
i=1

(Dlξi(t)−Dlξ̄(t))(Djξi(s)−Dj ξ̄(s))Djg(s)dsdt

=
1

n− 1

n∑
i=1

k∑
l=0

k∑
j=0

(∫
T

Dlg(t)(Dlξi(t)−Dlξ̄(t))dt

)(∫
T

Djg(t)(Djξi(t)−Dj ξ̄(t))dt

)

=
1

n− 1

n∑
i=1

(
k∑
l=0

∫
T

Dlg(t)(Dlξi(t)−Dlξ̄(t))dt

)2

=V̂ ar

[
k∑
l=0

∫
T

Djg(t)Djξi(t)dt

]
=V̂ ar[(g, ξi)Hk ],

i.e., (g, V̄ g)Hk is the sample variance of the scores of the orthogonal projections of ξi on g,

V̂ ar[(g, ξi)Hk ].
In the same way, for any g ∈ Hk, we have:

(g, V̄ g)Hk =

k∑
l=0

(Dlg,Dl(V̄ g))L2

=

k∑
l=0

∫
T

Dlg(t)Dl

[∫
T

k∑
j=0

(ξ̄(t)− µ(t))(Dj ξ̄(s)−Djµ(s))Djg(s)ds

]
dt

=

k∑
l=0

∫
T

Dlg(t)

∫
T

k∑
j=0

∂lt(ξ̄(t)− µ(t))(Dj ξ̄(s)−Djµ(s))Djg(s)dsdt

=

k∑
l=0

k∑
j=0

∫∫
T×T

Dlg(t)(Dlξ̄(t)−Dlµ(t))(Dj ξ̄(s)−Djµ(s))Djg(s)dsdt

=

k∑
l=0

k∑
j=0

(∫
T

Dlg(t)(Dlξ̄(t)−Dlµ(t))dt

)(∫
T

Djg(t)(Dj ξ̄(t)−Djµ(t))dt

)

=

(
k∑
l=0

∫
T

Dlg(t)(Dlξ̄(t)−Dlµ(t))dt

)2

=
(
(g, ξ̄ − µ)Hk

)2
,

that is, (g, V̄ g)H is the square distance between the scores of the orthogonal projections of ξ̄

and µ over g. �

Lemma 1.2. Let {ξi}i=1,...,n a set of random elements of B2(T ), with common

mean µ, and let V̂ and V̄ be the two Hk operators defined in Subsection 1.5.2.

The two operators V̂ and V̄ are such that, for any g ∈ B2(T ):

• (g, V̂ g)B2 = V̂ ar[(g, ξi)B2 ];

• (g, V̄ g)B2 = ((g, ξ̄ − µ)B2)2.

Proof. For any g ∈ Im(V̂ ), exploiting the isomorphism (1.12), we have:

(g, V̂ g)B2 = (clr(g), clr(V̂ g))L2

=

(
clr(g),

∫
T

Sc(t, s)clr(g)(s)ds

)
L2

=

∫∫
T×T

clr(g)(t)Sc(t, s)clr(g)(s)dsdt

= (clr(g), V̂cclr(g))L2 ,
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where V̂c ∈ L(L2) is the integral operator of kernel Sc(t, s). Finally, we have:

(clr(g), V̂cclr(g))L2 = V̂ ar((clr(ξi), clr(g))L2)

= V̂ ar((ξi, g))B2).

In the same way, for any g ∈ B2(T ):

(g, V̄ g)B2 = (clr(g), clr(V̄ g))L2

=

(
clr(g),

∫
T

(clr(ξ̄)(t)− clr(µ)(t))(clr(ξ̄)(s)− clr(µ)(s))clr(g)(s)ds

)
L2

=

∫∫
T×T

clr(g)(t)(clr(ξ̄)(t)− clr(µ)(t))(clr(ξ̄)(s)− clr(µ)(s))clr(g)(s)dsdt

= (clr(g), V̄cclr(g))L2 ,

where V̄c ∈ L(L2) is the integral operator of kernel (clr(ξ̄)(t)− clr(µ)(t))(clr(ξ̄)(s)− clr(µ)(s)).
Finally, we have:

(clr(g), V̄cclr(g))L2 =
(
(clr(ξ̄)− clr(µ), clr(g))L2

)2
=
(
(ξ̄ − µ, g)B2

)2
.

�

35



CHAPTER 1. GLOBAL INFERENCE ON FUNCTIONAL DATA: HOTELLING’S
T 2 IN FUNCTIONAL HILBERT SPACES

36



Chapter 2

Component-Wise Inference on
Functional Data: the Interval
Testing Procedure

Abstract

We propose a novel technique (Interval Testing Procedure, or ITP) that enables

inference for functional data, whenever the use of a basis expansion to describe

data is advisable. The procedure is very general and indeed it can be used

to perform different hypothesis testing (e.g., equality in distribution between

two or more functional populations, mean function of a functional population).

The procedure involves three steps: (i) representing data on a (possibly high-

dimensional) functional basis; (ii) testing each possible set of consecutive basis

coefficients; (iii) computing the adjusted p-values associated to each basis com-

ponent, using a novel strategy here proposed. The procedure is provided with

an interval-wise control of the Family Wise Error Rate: a new type of error

control, which we hereby define, that is particularly suited for functional data.

A simulation study comparing the ITP with other testing procedure is reported.

The ITP is then applied to the analysis of hemodynamical features involved with

the cerebral aneurysm pathology. The procedure is implemented in the fdatest

R package.

Keywords: Family Wise Error Rate, Functional Data, Inference, Permuta-

tion Test

2.1 Introduction

“Are these two groups of curves statistically different?”. “Well, since you say

that they differ, could you tell me which the differences are?”. “What is the

probability that these differences just popped up by chance?”. Such kinds of

questions are becoming more and more urging in many research areas, due to

the fast development of more and more precise acquisition devices. Despite

the recent breakthrough of functional data analysis (FDA) as a method for

analyzing data sets made of curves, and the development of many statistical
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tools to answer questions similar to the former one, very few are instead currently

available to answer questions similar to the latter ones. We here develop a new

inferential procedure able not only to assess the equality in distribution between

two functional populations, but also to point out the differences by controlling

the probability of false discoveries.

In FDA, data are functions defined in a continuous domain and lying in an in-

finite dimensional separable Hilbert space (Ramsay and Silverman, 2002, 2005).

The major issue for making inference in FDA is that classical multivariate infer-

ential tools (e.g., Hotelling’s theorem) become pretty useless in this framework,

since they require the number of sample units to be greater than the dimension

of the space in which data are observed. In addition, it is not easy to define

a suitable model for objects lying in infinite-dimensional spaces. Indeed, the

normality and the dependency structure of data in the functional setting are

difficult to assess. Hence, the growing interest for the analysis of this type of

data is urging the development of inferential techniques suited for this kind of

data.

Many methods dealing with inferential problems for functional data are cur-

rently object of statistical investigation. The most common approach is the one

of “global inference” on the curves. Such techniques are made by a global test

that provides a unique p-value. Examples of such techniques are usually based on

asymptotic results or on strong modeling assumptions on data distribution (e.g.,

Abramovich and Angelini 2006; Antoniadis and Sapatinas 2007; Cuevas et al.

2004; Fan and Lin 1998; Horváth and Kokoszka 2012; Schott 2007; Spitzner

et al. 2003; Staicu et al. 2014; Zhang and Liang 2014). Many methods have

been proposed to test functional data also in a permutational framework, thus

not relying on strong distributional assumptions (e.g., Cardot et al. 2007; Hall

and Tajvidi 2002). All these procedures are meant to state if there is evidence

to reject the assumption of equality in distribution, but not for imputing the

rejection to specific features of the data. This could make them not satisfactory

in some applications because they do not give any insight to the reasons that

has led to rejection.

Although functional data are theoretically infinite-dimensional objects, in the

practice, statisticians deal with them by projecting them on a finite dimensional

space spanned by a suitable truncated basis, which may be fixed (e.g., Fourier ba-

sis, B-splines, wavelets, polynomials, Ramsay and Silverman 2005), data driven

(e.g., functional principal components Hall and Van Keilegom (2007b)), or even

random (Cuesta-Albertos and Febrero-Bande, 2010), and whose dimension can

be low or high, depending on the application and on the computational cost.

Thus, similarly to these latter works, whenever functional data are described

through a basis expansion, we here propose to base inference directly on the

set of coefficients representing the data. In this perspective, the functional test

can be replaced by a family of tests pertaining the components of the basis

expansion.

A natural approach could be to test each component, and then to correct

the test results in order to provide the control of the level of the test for each

possible set of true null hypotheses (i.e., strong control of the Family Wise Error

Rate). The correction can be made, for instance, using the Bonferroni or the
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Bonferroni-Holm procedures (Holm, 1979). An example of application of such

technique to FDA can be found, for instance, in Spitzner et al. (2003). The

resulting procedures provide a strong control of the Family Wise Error Rate

(FWER) and enable the selection of a smaller subset of significant components.

Nevertheless, they are generally not suited for cases in which the number of basis

components is large (namely, computational cost of might explode and/or their

power can become very low), that is often the case in FDA.

The Interval Testing Procedure (ITP), which we here propose, deals with

the previous issue, and is meant for dealing with functional data. Similarly to

Bonferroni-like component-wise inferential techniques, it is able, in case of re-

jection, to highlight which components have led to the rejection. Differently

from them, even when the number of components is very large, its power re-

mains comparable with the one provided by global inference techniques. Since

“there is no such thing as a free lunch” the ITP lacks the strong control of the

FWER. Indeed it just provides an “interval-wise” control of the FWER (which

is stronger than the weak control provided by global tests but weaker than the

strong control provided by component-wise procedures). As we will show, in the

FDA framework this is a minor drawback since this kind of control might be

sufficient in the practice.

For example, as we will show in the following Sections, when testing for the

difference between two functional populations relying on the B-spline represen-

tation, the “interval-wise” control implies the control of the FWER on intervals

of the domain. This means that, for any sub-interval of the domain, if there is no

difference between the two populations, the probability that they are detected

as significantly different on this interval is controlled to the desired level.

The paper is outlined as follows: in Section 2.2 the ITP is described for the

two population test (i.e., testing for differences between two functional popula-

tions). The Section describes the algorithm, and presents a discussion on the

theoretical properties of the ITP, both in terms of control of the FWER and of

its power. In Section 2.3, we indicate how to extend the ITP in other frame-

works (e.g., test for the mean of one population, test for ANOVA, and tests for

linear models) is provided. In Section 2.4 we present the results of a simula-

tion study comparing the performances of the ITP with other component-wise

techniques based on the Bonferroni-Holm and Benjamini-Hockberg (Benjamini

and Hochberg, 1995) corrections. In Section 2.5 the ITP is applied to a case

study devoted to the analysis the Aneurisk data set (Sangalli et al., 2009), and

concerning the comparison between geometric and hemodynamic features of the

internal carotid artery in two groups of patients associated to different levels

of severity of the cerebral aneurysm pathology. The proofs of all Theorems are

reported in Appendix 2.A. In the Appendix we also report some details of the

implementation of permutation tests for univariate and multivariate data (Sec-

tion 2.B), and a second case study on the Fourier-based analysis of Milan daily

temperatures data (Section 2.C).

The R-package fdatest implementing the ITP for one or two populations

of functional data evaluated on a uniform grid is available on CRAN (Pini and

Vantini, 2014). All computations and images have been created using R (R Core

Team, 2012).
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2.2 The ITP in the two-population framework

2.2.1 ITP algorithm

Suppose to have two independent samples of sizes n1 and n2 of independent

random functions on a separable Hilbert space. We aim at testing the null

hypothesis of no differences in distribution between the two populations of curves

which the two samples have been drawn.

The testing procedure we propose is composed by the following steps:

1. Basis Expansion: functional data are represented through the coefficients

of a basis expansion;

2. Interval-Wise Testing: statistical tests are performed on each interval

of basis coefficients;

3. Multiple Correction: for each component of the basis expansion, an

adjusted p-value is computed from the p-values of the tests performed in

the previous step.

First step: basis expansion

Theoretically, each function can be uniquely represented through a countable

sequence of coefficients associated to a basis of the functional space (i.e., Fourier

harmonics, B-splines, wavelets, ...). In practice, very rarely functional data come

with an analytic expression. More often, just some point-wise evaluations of a

function (possibly with some noise) are available, and thus just a reduced number

of components can be estimated. It is thus necessary to represent data by means

of a finite-dimensional representation yij(t) obtained through an expansion on a

reduced basis {φ(k)}k=1,...,p :

yij(t) =

p∑
k=1

c
(k)
ij φ

(k)(t), (2.1)

where i is the unit index, j the population index, and k the basis component

index. This projection constitutes the first step in most FDA procedures. The

integer p represents the finite dimension of the functional space in which data

are represented. It is important to point out that the choice of the basis and

of the dimension p of the truncated basis expansion is not a critical issue for

the ITP, that can deal with any functional basis, and with any dimension p,

independently on the sample size. The choice of the basis used to represent

data, of the truncation p, and of the method used to estimate the coefficients

is deeply discussed in the FDA literature. We refer to Ramsay and Silverman

(2005) for an overview on this issue.

In the end, we can represent each of the n = n1 + n2 units by means

of the corresponding p coefficients {c(k)
ij }k=1,...,p, i = 1, ..., nj, j = 1, 2 associ-

ated to the expansion (2.1). The assumptions made for the functional popula-

tions can be re-stated in terms of the expansion coefficients: we thus have for

each k, that c
(k)
11 , ..., c

(k)
n11, c

(k)
12 , ..., c

(k)
n22 are independent, and c

(k)
11 , ..., c

(k)
n11 ∼ C

(k)
1 ,

c
(k)
12 , ..., c

(k)
n22 ∼ C

(k)
2 , where C

(k)
1 and C

(k)
2 denote the unknown distributions of

the kth basis coefficient in the two populations. Note that we do not assume
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here independence between basis coefficients pertaining to different components

(for example, when using a B-spline basis expansion, we have typically that

successive basis coefficients associated to the same sample unit have positive

dependence), nor the joint or marginal normality of basis coefficients (that can

be unrealistic or anyhow difficult to assess), nor the orthogonality of the basis.

We just assume independence among units.

Second step: interval-wise testing

The second step of the ITP consists in obtaining tests on each interval of compo-

nents. In particular, each basis component k is marginally tested (H
(k)
0 : C

(k)
1

d
=

C
(k)
2 ); then, a bivariate test is performed on each couple of successive basis com-

ponents (H
(k,k+1)
0 : H

(k)
0 ∩ H(k+1)

0 ); then, a three-variate test is performed on

each triple of successive basis components (H
(k,k+1,k+2)
0 : H

(k)
0 ∩H(k+1)

0 ∩H(k+2)
0 ),

and so on, up to the global p-variate test, jointly on all components (H
(1,...,p)
0 :

H
(k)
0

⋂p
k=1H

(k)
0 ). Finally, we obtain a family of tests with their associated p-

values (e.g., Figure 2.1(a)). We denote with λ(k) the p-value of the multivari-

ate test for H
(k)
0 =

⋂
k∈kH

(k)
0 (where k is a vector of successive indexes in

{1, ..., p}). In addition to all possible tests on intervals, we add the multivariate

tests on the complementary sets of each interval, i.e., we also test each hypothe-

sis H
(kc)
0 =

⋂
k 6∈kH

(k)
0 (as shown in Figure 2.1(a)). The advantage of considering

also the complementary sets of the intervals is pertaining to the multiple correc-

tion phase, and will be detailed in the next paragraph.

(a) (b)

Figure 2.1: Example (with p = 4) of the family of multivariate tests explored by the ITP (on
the left). Version focusing only on intervals, excluding the complementary sets (on the right).

The interval-wise tests can be performed in different ways, depending on the

sample size and assumptions on the distributions of C
(k)
j . The best-case scenario

is the one in which coefficients are jointly normal and n > p. In this case, we

can base the ITP on Hotelling’s T-square tests on each interval.

On the contrary, in a more realistic scenario, we cannot assess the normality

of coefficients and n ≤ p. A possible approach to deal with this issue is to exploit

the Non Parametric Combination Procedure (NPC), presented in Pesarin and

Salmaso (2010). The NPC is a procedure that enables to build multivariate

permutation tests by means of combining univariate synchronized permutation

tests. The resulting tests are correct for any n and p even in the presence of

dependence among components.

The use of permutation tests to build the family of interval-wise tests has

another advantage, that is the fact that the hypothesis of independence between

sample units can be relaxed. Indeed, permutation tests only require exchange-

ability between units under the null hypothesis. This allows, for instance, to

base the ITP on the coefficients of a data driven basis expansion.
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For a more detailed discussion about the permutation tests, and the NPC

procedure, see Appendix 2.B.

Third step: multiple correction

The final step of the ITP consists in the computation of the adjusted p-values

associated to each basis component, in order to provide an interval-wise control

of the FWER.

We obtain the adjusted p-value for the kth component λ
(k)
ITP by associating

to the kth component the maximum p-value observed over the p-values of all

interval-wise tests of the previous family whose null hypothesis implies H
(k)
0 :

λ
(k)
ITP = max

(
max

k s.t. k3k
λ(k), max

kc s.t. kc3k
λ(kc)

)
.

In the next section we will prove that (if we reject H
(k)
0 when the kth ad-

justed p-value λ
(k)
ITP ≤ α), for any interval k the probability of rejecting all H

(k)
0

pertaining to the interval is lower or equal to α, if all the H
(k)
0 pertaining to that

interval are true. This property reads interval-wise control of the FWER.

Note that in a general multivariate setting, where the order of the variables is

arbitrary, this latter control is of poor interest. On the contrary, in this setting

where the component k has a natural order (e.g., in B-splines k is related to

the domain, in the Fourier basis k is related to frequency), this control becomes

of immediate interest from the practitioners’ point of view. For instance when

using B-splines the control holds on any sub-interval of the domain with edges

in correspondence of the knots, or when using Fourier expansion the control

holds on any frequency band. We can thus control the probability of wrongly

detecting sub-intervals of the domain or frequency bands.

As a final remark, note that we could have based the procedure only on

tests on intervals of components, excluding the ones on complementary sets, as

shown in Figure 2.1(b). Nevertheless, according to this combination strategy the

hypotheses in the “middle” are tested more times than the ones at the “edges”

(in the example of Figure 2.1(b) with p = 4, H
(2)
0 and H

(3)
0 are included in

6 tests, whereas the hypotheses H
(1)
0 and H

(4)
0 are only tested 4 times). This

asymmetry may favor the rejection of the hypotheses at the edges, since tested

less times. This is why we introduced the tests on the complementary intervals.

The resulting procedure has two major advantages: (i) each components is tested

the same number of times (i.e., p(p+1)/2), and (ii) the FWER is controlled not

only on intervals but also on their respective complementary sets.

2.2.2 Theoretical properties of the ITP

In this subsection, we present some theoretical results regarding the control of

the FWER and the power of the ITP. All the proofs of the theorems are reported

in Appendix 2.A. Not to overload the notation, through this theoretical section

we will indicate with “intervals” both proper intervals and complementary sets

of intervals.

We start by formally defining the novel type of error control that we intro-

duced, i.e., the interval-wise control of the FWER.
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Definition 2.1. Given a p-dimensional expansion of a functional data set, an

inferential procedure is provided with an interval-wise control of the FWER if,

for any interval k of components and for all level α ∈ [0, 1], the probability of

rejecting at least one of the null hypotheses pertaining the components of the

interval is less than α, when all these hypotheses are true:

∀ interval k ⊆ {1, ..., p} : P
H

(k)
0 true

[
∃k ∈ k : H

(k)
0 is rejected

]
≤ α.

The following result characterizes the control of the FWER provided by the

ITP.

Theorem 2.1. The ITP based on the p components of any basis expansion is

provided with an interval-wise control of the FWER:

∀ interval k ⊆ {1, . . . , p} : P
H

(k)
0 true

[
∃k ∈ k : λ

(k)
ITP < α

]
≤ α.

In simple words, interval-wise control of the FWER means that, given any

interval of components associated to true null hypotheses, the probability that

at least one of the null hypotheses associated to the interval is wrongly detected

as false is always controlled at the desired level. This kind of control guarantees,

among the others, the control on the entire set of components and on single

components, as extreme cases of intervals. From these, we have indeed the

following.

Corollary 2.1. The ITP based on the p components of any basis expansion is

provided with a weak control of the FWER, i.e., the probability of rejecting at

least one null hypothesis when all null hypotheses are true is controlled:

P
H

({1,...,p})
0 true

[
∃k ∈ {1, . . . , p} : λ

(k)
ITP < α

]
≤ α.

Corollary 2.2. The ITP based on the p components of any basis expansion

is provided with a control of the Comparison-Wise Error Rate, i.e., for each

component the probability that the null hypothesis pertaining the component is

rejected when true is controlled:

∀k ∈ {1, . . . , p} : P
H

(k)
0 true

[
λ

(k)
ITP < α

]
≤ α.

To further characterize the inferential properties of the ITP, it is useful to

introduce two other testing procedures, derived from the use of different families

of multivariate tests in the second step of the procedure described in Subsection

2.2.1. The Global Testing Procedure (GTP), which is associated to a degen-

erative family made by the global test only, and the Closed Testing Procedure

(CTP), which is associated to the family made by all 2p − 1 possible multivari-

ate tests. Note that the CTP, even though theoretically sound, becomes quickly

unfeasible in practice when the dimension p is high, due to the high number

of tests it is based on. The number of tests indeed grows exponentially in the

number of components p for the CTP, quadratically for the ITP and is constant

equal to one for the GTP.

The ITP is intermediate between the GTP and CTP. Indeed, the GTP pro-

vides a weak control of the FWER (the probability of wrongly rejecting at least
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one null hypothesis is controlled only if all null hypotheses are true) while the

CTP provides a strong control of the FWER (the probability of wrongly re-

jecting at least one null hypothesis is controlled over any set made of true null

hypotheses).

The following results make a comparison between the ITP, GTP, and CTP

in terms of power and error rate. In particular, Theorems 2.2 and 2.3 prove

(globally and component-wise, respectively) that the power of the GTP is always

higher than the power of the ITP which is always higher than the power of the

CTP. The same theorems prove also (globally and component-wise, respectively)

that the CTP is always more conservative than the ITP which is always more

conservative than the GTP, which is indeed exact.

Theorem 2.2 (Global properties). Let us consider a CTP, an ITP, and a GTP

based on the p components of a basis expansion. The actual global levels of the

CTP, of the ITP, and of the GTP (i.e., the probability of rejecting at least one

H
(k)
0 when all null hypotheses are true) satisfy:

αCTP ≤ αITP ≤ αGTP = α .

The powers of the CTP, of the ITP, and of the GTP (i.e., the probability

of rejecting at least one H
(k)
0 when at least one of the null hypotheses is false)

satisfy:

πCTP ≤ πITP ≤ πGTP .

Theorem 2.3 (Component-wise properties). Let us consider a CTP, an ITP,

and a GTP based on the p components of a basis expansion. The Comparison-

Wise Error Rates of the CTP and of the ITP on each component (i.e., the

probability of rejecting H
(k)
0 when true) satisfy:

CWER
(k)
CTP ≤ CWER

(k)
ITP ≤ α .

The component-wise powers of the CTP and of the ITP on each component (i.e.,

the probability of rejecting H
(k)
0 when false) and the power of the GTP satisfy:

π
(k)
CTP ≤ π(k)

ITP ≤ πGTP ,

with πGTP the power of the global test.

Previous theorems explicit the tradeoff between the control of the FWER

and the power both globally (Theorem 2.2) and component-wise (Theorem 2.3).

Indeed the weaker control of the FWER of the ITP with respect to the CTP is

counterbalanced by the fact that the ITP is less conservative and more powerful

(globally and component-wise) than the CTP. On the contrary, the stronger

control of the FWER of the ITP with respect to the GTP is counterbalanced

by the fact that the ITP is more conservative and less powerful than the GTP.

This latter power loss is anyway countered by a big gain in interpretability of

the test results with respect to the GTP. Indeed, differently from the GTP, the

ITP is able to highlight the basis elements which the rejection is due to.

Note that all results hold for any implementation of the ITP. Indeed, the

corresponding proofs exclusively rely on the exactness of the family of interval-

wise tests described in Subection 2.2.1 and not on the nature of the latter ones.
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Thus, the theoretical results depend neither on the type and dimension of the

basis used nor on the type of tests. In practice, the choice of the basis matters

instead. Indeed, for instance, if one desires a control on intervals of the domain,

a B-spline basis expansion should be used, while if the control is desired in the

frequency domain a Fourier expansion should be used.

In conclusion, when dealing with functional data, the ITP provides a good

compromise between the CTP and GTP gathering the best of both procedures.

Indeed, like the CTP, the ITP performs a selection of the significant components;

and, like the GTP, its computational costs remain affordable even for large values

of p; moreover, its control of the FWER and its power are intermediate between

the ones provided by the CTP and GTP.

2.3 Extending the ITP to different frameworks

The idea of performing a family of multivariate tests on each interval of consec-

utive basis components of a functional basis, along the line described in Section

2.2 is very general, and may be applied more or less straightforwardly to situ-

ations more complex than the comparison between two functional populations.

To apply the ITP to other tests in FDA, we just need to define a way to build

exact multivariate tests on the intervals of components of the basis expansion.

For instance, we can think about a situation in which we aim at testing for

differences between two paired populations. This case can be treated by applying

suitable paired tests in the second step of the algorithm. Furthermore, we can

apply the ITP in the one-population framework, where the objective is testing

for the mean of a functional population. In this case, we just have to provide

exact multivariate tests for the mean vectors of the coefficient intervals.

We can also provide ITP-based tests for a functional ANOVA framework,

where the objective is to detect differences among g > 2 independent functional

populations. In this case, the tests can be based on MANOVA-like tests on each

interval of components. By changing the type of tests performed in the second

phase of the ITP, we can also deal with more complicated situations, such as

tests for variance, two-way ANOVA, ANCOVA, and linear models. In detail,

when all tests performed in the second phase of the algorithm are exact, the

resulting ITP will provide an interval-wise control of the FWER.

2.4 Simulation study

The aim of the simulation study here reported is to investigate the performances

of the ITP. In particular, we want to compare the performances of the ITP and

the Benjamini-Hochberg procedure (BH, Benjamini and Hochberg 1995), as the

number of false hypotheses increases, being the latter one currently one of the

most used approaches to multiple testing. The BH is indeed a multiple testing

procedure widely spread in many research fields, who deals with the problem

of extremely large families of tests. If applied to a basis expansion, it controls

the False Discovery Rate (FDR) over components, i.e., the expected proportion

of falsely rejected components among those being rejected. The FDR control is

weaker than the strong FWER control (i.e., the BH is only provided with weak
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control of the FWER), but it leads to procedures that are more powerful than

the ones provided with strong FWER control (e.g., Bonferroni-Holm).

We also compared the ITP with the Bonferroni-Holm procedure (which is

provided with a strong control of the FWER, Holm 1979). Due to the large

number of components (i.e., 50), the Bonferroni-Holm never rejected any hy-

pothesis. Hence, the results for the performances of the Bonferroni-Holm are

not reported here, being not informative.

2.4.1 Simulation setting

The simulation study is divided into two parts: in the first part for each compo-

nent we compare the probability that the component is rejected; in the second

part we compare the probability of rejecting at least one of the components which

are known to be identically distributed in the two populations (i.e., false discov-

eries) and the probability of rejecting at least one of the components which are

known to be differently distributed in the two populations (i.e., true discoveries).

In the entire study, we consider a standard scenario for data generation.

We perform a test for the differences between two independent populations of

functional data on L2[0, 1] generated via the cubic B-spline coefficients in a

50-dimensional space. Let c
(1)
1 , c

(2)
1 , .., c

(50)
1 be the random B-spline coefficients

associated to units of the first population, and c
(1)
2 , c

(2)
2 , .., c

(50)
2 the random B-

spline coefficients associated to units of the second population, and let µ
(k)
1 and

µ
(k)
2 indicate the means of the coefficients of the first and second populations,

respectively. We generate the coefficients c
(k)
j from a normal distribution, with

mean µ
(k)
1 = 0, µ

(k)
2 ∈ [0, 1]. We suppose that the functional means of the two

populations differ on a closed interval of length h ∈ [0, 1]. In this interval, the

mean of the differences between coefficients will be equal to a constant v ∈ [0, 1].

Two different scenarios of alternative hypotheses are explored, by varying

the parameters h and v. In the first scenario, we take a constant v = 0.5, and

vary h (which is the length of the interval where the two means differ), between

the extremes values of 0 (i.e., no difference along the entire domain) and 1 (i.e.,

difference along the entire domain). In the second scenario, we take a constant

h = 0.5, and vary the parameter v (which is the maximal difference between the

two coefficients’ means) between 0 and 1.

The different components are generated independently, i.e., the variance co-

variance matrix of the 50-dimensional vector of differences is Σ = σ2I, with

σ2 = 0.25. Other simulations have been performed with different choices for Σ,

showing that the described results do not change considering a more complicate

covariance structure. Finally, we suppose to observe n1 = n2 = 10 different

realizations from the two populations. An instance of the simulated data for

h = 0.5, v = 1 is reported in Figure 2.2. In all scenarios, 5000 different func-

tional data sets are simulated.

2.4.2 Component-wise probability of rejection

On Figure 2.3, we report the component-wise probability of rejection at a 5%

level (i.e., the probability that a component is rejected at 5% level). In par-

ticular, on each panel we report a different scenario for h and v, and for each
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Figure 2.2: Functional data of the first and second group simulated for the study (gray and
lightblue lines, respectively), functional means (black and blue lines, respectively), in the ex-
ample h = 0.5, v = 1.

component along the abscissa we report on the vertical-axis the probability that

the component is rejected. In addition, the shaded gray part of each panel in-

dicates the interval in which the two means are actually different, according to

the simulation setting. Thus, in the white part of the plot the graph repre-

sents the probability of rejecting a component which should not be rejected (i.e.,

component-wise error rate), while in the gray part the probability of rejecting

a component which should be rejected (i.e., component-wise powers). The top

panels of Figure 2.3 show the results obtained varying the parameter h with

v = 0.5, whereas the lower panels of the same figure show the results obtained

varying the parameter v with h = 0.5.

The simulation shows that both procedures assure the control of the CWER

in each scenario, as expected by theory. We notice that the ITP maximizes the

component-wise power at the center of the intervals where the difference occurs,

while the BH component-wise power has a flat shape over all the components.

This is due to the fact that the ITP exploits the ordered structure of the com-

ponents, gaining power in the center of the false hypotheses interval, thanks to

the structure of the family of multivariate tests that are performed. On the

other hand, the BH procedure adjusts the p-values in a step-wise way, without

considering the fact that coefficients are ordered. Hence, the ITP appears to

be more powerful in detecting the presence of a significant interval, but more

conservative with respect to the amplitude of the interval (i.e., its power at the

boundaries is lower). The BH procedure is, on the other hand, less powerful in

detecting the presence of a significant interval, but once detected, it targets its

actual amplitude.

2.4.3 Family-wise probability of rejection

In the top panels of Figure 2.4 we report, for each testing procedure, the esti-

mated probability of having at least one false discovery, that is the FWER (i.e.,
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(a) Estimated component-wise probability of rejection as a function of h
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(b) Estimated component-wise probability of rejection as a function of v

Figure 2.3: Estimated component-wise probability of rejection at a 5% level for the considered
multiple testing procedures on each scenario.
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the probability of rejecting at least one of the components which are known to

be identically distributed in the two populations). The estimated probability is

obtained by varying the parameters h (left) and v (right). We notice that, coher-

ently with the theory, the ITP controls this probability for any scenario, while

this control is in general not guaranteed by the BH procedure. Note that, if the

difference between the two populations is on a fixed domain (top-right panel),

as the difference increases, the BH procedure starts rejecting components that

should not be rejected, up to a 40% probability.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Probability of a false discovery

h

E
st

im
at

ed
 p

ro
ba

bi
lit

y

ITP
Benhamini−Hochberg

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Probability of a false discovery

v

E
st

im
at

ed
 p

ro
ba

bi
lit

y

ITP
Benhamini−Hochberg

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability of a true discovery

h

E
st

im
at

ed
 p

ro
ba

bi
lit

y

ITP
Benhamini−Hochberg

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability of a true discovery

v

E
st

im
at

ed
 p

ro
ba

bi
lit

y

ITP
Benhamini−Hochberg

Figure 2.4: Estimated probability of having at least one false discovery (top) and estimated
probability of having at least one true discovery (bottom) as functions of h (left) and v (right),
for h, v ∈ {0, 0.1, 0.2, ..., 1}. The error bands indicate the 95% confidence intervals for the real
probability.

In the lower panels of Figure 2.4 we report for both procedures the estimated

probability of having at least one true discovery, that is the power on false

components (i.e., the probability of rejecting at least one of the components

which are known to be differently distributed in the two populations). In all

explored cases, the ITP outperforms the BH procedure, showing the ITP to be

more powerful in detecting differences. This confirms what noticed with the

component-wise results, i.e., that the ITP is more powerful in detecting the

presence of an interval presenting differences between the two populations.

Note that the probability of having at least one false discovery is not defined

in the case h = 1 (only false null hypotheses), while the probability of having at

least one true discovery is not defined in the cases h = 0 or v = 0 (only true null

hypotheses).
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2.5 Analysis of the Aneurisk data set

Aim of this section is to show the usefulness of the ITP in practical situations. In

detail, we present the analysis of the Aneurisk data set (Passerini et al., 2012),

which deals with the geometrical and hemodynamical features of the internal

carotid arteries (ICA) of patients affected by a cerebral aneurysm.

The aim of this analysis is to assess whether the geometry and/or the hemo-

dynamics of the internal carotid artery can be related to the type and severity of

the pathology. In particular, we look for possible differences in the distributions

of vessel-radius, centerline-curvature, and wall-shear-stress (WSS) - as functions

of the arch-length along the carotid centerline - between subjects affected by a

severe form of the pathology (i.e., upper group, 25 subjects with an aneurysm

in the upper part of the brain within the skull) and subjects affected by a minor

form of the pathology or healthy (i.e., lower group, 25 subjects with an aneurysm

in the lower part of the head outside the skull or without any aneurysm). A de-

tailed description of data gathering and processing can be found in Passerini

et al. (2012). The projection of data on p = 128 uniformly spaced B-splines of

order m = 3 for radius, curvature, and WSS are reported in the bottom panels

of Figure 2.5. Upper group functions are reported in blue while the lower group

ones in red.

In detail, we perform three separated analyses for the radius, curvature, and

WSS functions, respectively, and we implement the ITP for the differences be-

tween two independent functional populations (Section 2.2). The interval-wise

multivariate tests of the second step are obtained using the NPC procedure based

on the Fisher combination function (Pesarin and Salmaso, 2010). Note that the

original data are very smooth, and thus the procedure is robust as the order m

of the basis and/or its dimension p vary.

The adjusted p-values of the three ITPs are reported in the central panels

of Figure 2.5. At level α = 5%, we do not detect any statistical difference

between upper and lower groups pertaining neither the radius nor the curvature

functions. A difference in terms of WSS is instead detected. In detail, being

here the support of the B-splines localized with respect to the arc-length (i.e.,

x-axis), we can impute the rejection to the segment of the carotid associated to

the arc-length interval (−2.783cm,−1.632cm) (gray region in bottom panels of

Figure 2.5). In particular, we found lower WSS for very severe subjects (i.e.,

upper group) while higher WSS for less severe subjects (i.e., lower group).

Hemodynamics could explain this finding: the latter region corresponds to

the second bend of the ICA (i.e., the segment where a second peak of curvature

is present and where the ICA becomes getting narrower). The bends of the

ICA are indeed “guardians” of the arteries of upper part of the brain, which are

among the weakest in the entire body (being not surrounded by any muscular

tissue). Thanks to the passage through the bends the unsteady blood flow from

the heart is made steadier before entering the brain. This “stabilizing” effect is

related to the loss of energy which is in turn related to the magnitude of the

wall-shear-stress within the bends.

Hence, the ITP provides the statistician (S) with a tool to answer the ques-

tions related to this application pointed out by the practitioner (P).
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P: “Are the curves of the upper and lower groups statistically different?”

S: “They are not with respect to radius and curvature, but they are with

respect to WSS.”

P: “Could you tell me which the differences in the WSS curves are?”

S: “There is a significant differences between the two groups in the segment

of the carotid in the arc-length interval (−2.783cm,−1.632cm).”

P: “Are you sure that these differences did not just pop up by chance?”

S: “We can state that the probability that this result popped up by chance

is lower than 5%. Indeed, if there is no difference in distribution between

the two population in the segment (−2.783cm,−1.632cm), the probability

of pointing out that segment would be less than 5%.”

Finally, just for theoretical interest, on the top panels of Figure 2.5, we added

the heat-map of all p-values of interval-wise tests performed in the second step

of the procedure and used to compute the adjusted p-values, and in the middle

panels both the adjusted and the unadjusted component p-values (full dots and

empty dots, respectively).

The CTP is in this application unfeasible (i.e., more than 1038 multivariate

tests would be needed) and the GTP on WSS rejects the null hypothesis of no

difference in the WSS between the groups, but it cannot detect in which segment

of the carotid this difference is. The Bonferroni-Holm correction is not able to

detect any difference between the two groups, while the Benjamini-Hochberg

correction detects, a larger interval than the one detected by the ITP (i.e., the

interval (−3.239cm,−1.210cm)). This is consistent with the weaker control of

the FWER provided by the Benjamini-Hochberg correction, and comes with

the property that, on average, up to the 5% of this interval is expected to be

composed by false discoveries.

2.6 Discussion

We presented a novel inferential procedure suited for functional data analysis

(FDA). The procedure, named Interval Testing Procedure (ITP), involves three

steps: (i) representing functional data on a functional basis; (ii) performing

a family of multivariate tests on each interval of components; (iii) computing

adjusted p-values associated to each basis component. The procedure is very

general and it can be easily declined to deal with several inferential problems

occurring in FDA: for example, the comparison of two or more functional popula-

tions, or testing for the mean function of a functional population. The inference

carried out by the ITP is semi-parametric in the sense that we make use of

a parametric basis expansion to represent data, but we do not introduce any

strong distributional assumption on the coefficients of the expansion (e.g., we

do not assume gaussianity).

We introduced the definition of interval-wise control of the Family Wise Error

Rate (FWER) which is particularly meaningful in the framework of FDA and

which the ITP is provided with. In detail, interval-wise control of the FWER
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Figure 2.5: Aneurisk case study analysis of radius (left), curvature (center) and WSS (right).
Top: p-value heat-maps; center: uncorrected (empty dots) and corrected (full dots) p-values;
bottom: curves of the upper and lower groups (blue and red, respectively), and sample means
associated to the two groups (bold blue and red curves). The shaded part indicates the interval
where significant differences area found in terms of WSS.

refers to the property of controlling the FWER over all intervals of components

of the basis expansion, meaning that, for any interval, if there is no difference in

distribution between the investigated populations the probability of incorrectly

detecting as significant at least one of the components of the interval is con-

trolled. As an example this control, which lies in between the weak and the

strong control of the FWER, if associated to a B-spline expansion implies that,

given any interval of the domain in which there is no difference between the

two functional populations, the probability that at least a part of the domain is

wrongly detected as significant is controlled to the desired level.

In addition to having proved the interval-wise control property of the ITP,

we also proved that the component-wise and global statistical power of the ITP

is always higher than the one provided by the Closed Testing Procedure (which

provides a strong control of the FWER but it is computationally unfeasible in

the functional framework). On the contrary, we proved that the component-wise

and global power of the ITP is always lower than the Global Testing Procedure

one (which however provides only a weak control of the FWER and does not

provide any guide to the interpretation in terms of components of the test result).

Even though all theoretical properties shown in this work hold for any di-

mension p of the basis, it is of course of major interest for future research to

explore the trade-off, in terms of power of the procedure, as p increases. Indeed,

being usually the data available as noisy evaluations observed at some points,

an extreme large value of p may lead to overfitting, and thus it results in a loss

of power, due to the presence of noise in data representation. On the contrary, a

too low value of p may lead to oversmoothing, and it results in a loss of power,

52



CHAPTER 2. COMPONENT-WISE INFERENCE ON FUNCTIONAL DATA: THE
INTERVAL TESTING PROCEDURE

due to excessive flattening of data differences.

A comparison with Bonferroni-Holm and Benjamini-Hochberg procedures has

been carried out through a simulation study. The major finding that can be

drawn from simulations is that the ITP is more powerful than the Bonferroni-

Holm procedure. Moreover, it appears to be more powerful than the Benjamini-

Hochberg procedure in detecting the presence of a significant interval, but more

conservative with respect to the amplitude of the interval. The Benjamini-

Hochberg procedure is, on the other hand, less powerful in detecting the presence

of a significant interval, but once detected, it targets its actual amplitude.

We reported the application of the ITP to a case study to show its potential

in practice. In detail, we performed a B-spline-based inference for the difference

between radius, curvature and wall shear stress curves along the Internal Carotid

Artery of two pathologically-different groups of subjects. We compared the find-

ings highlighted by the ITP with the ones pointed out by the Bonferroni-Holm

correction procedure (which provides a strong control of the FWER) and the

Benjamini-Hochberg correction procedure (which provides a control of the False

Discovery Rate and thus just a weak control of the FWER). The ITP turned

out to be more powerful than the Bonferroni-Holm procedure and comparable

with the Benjamini-Hochberg correction procedure.

An R-package (fdatest) implementing the ITP is available on CRAN (Pini

and Vantini, 2014). The current version of the package requires functional data

evaluated on a uniform grid; it performs a projection of each function on a

chosen functional basis using Ordinary Least Squares; it performs the entire

family of interval-wise multivariate tests; and, finally, it provides the vector of

the adjusted p-values, which can be used to select the statistically significant

basis components at level α. The package provides also a plotting function

creating a graphical output like the ones presented in Figure 2.5: the p-value

heat-map, the plot of the adjusted p-values, and the plot of functional data.

We conclude by mentioning Vsevolozhskaya et al. (2014), a very recent work

appeared on The Annals of Applied Statistics that we have been recently aware

of, and that proposes an inferential procedure for functional data along the

same line of research of the present manuscript. In very few words, for selecting

segments of the domain, Vsevolozhskaya et al. (2014) propose to perform a

family of global tests on pre-selected segments of the domain, and then apply

a closed testing procedure over this family. Despite the similarity in the aims,

the two procedures present major differences with respect to the control of the

FWER. Indeed, while the ITP guarantees the strong control of the FWER on

any segment of the domain, the procedure proposed in Vsevolozhskaya et al.

(2014) provides only a weak control within each pre-selected segment and lacks

any control on segments different from the pre-selected ones. On the other

hand, the latter procedure has a strong control over any couplet, triplet, ...

of pre-selected segments, which the ITP is instead missing. Anyhow, the two

approaches propose two ways to reach a shared target, that is, searching for a

good compromise between the advantages and disadvantages of global testing

procedure and closed testing procedure.
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Appendix

2.A Proofs

Proof. (Theorem 2.1)

Let k = {k1, k2, ...kd} be a set of indices defining an interval in {1, 2, ..., p}. Let R(ki)
α,ITP be

the event “H
(ki)
0 is rejected by the ITP at level α” and R(k)

α,ITP =
⋃
ki∈kR

(ki)
α,ITP the event

“at least one of the H
(ki)
0 is rejected by the ITP at level α”. Proving the interval-wise control

of the FWER of the ITP means proving that, for any k and for any α, P[R(k)
α,ITP ] ≤ α when

H
(k)
0 =

⋂
ki∈kH

(ki)
0 is true (i.e., when all H

(ki)
0 are true).

Let us indicate with R(k)
α the event “H

(k)
0 =

⋂
ki∈kH

(ki) is rejected at level α by the

corresponding multivariate test”. This is the conclusion of the test included in the family of

tests explored within the ITP that is derived from the aggregation of the univariate tests for

H
(ki)
0 with ki ∈ k. Thanks to the structure of the ITP, for any ki ∈ k, the latter test is among

the ones used to correct the kith p-value. Thus, the ITP cannot reject H
(ki)
0 if the latter test

does not reject H
(k)
0 (i.e., R(ki)

α,ITP ⊆ R
(k)
α ). This inclusion holds for all ki ∈ k and thus we have

that R(k)
α,ITP =

⋃
ki∈kR

(ki)
α,ITP ⊆ R

(k)
α ; and consequently that P[R(k)

α,ITP ] ≤ P[R(k)
α ]. Finally,

due to the exactness of all tests included in the family explored by the ITP, we have that, when

H
(k)
0 =

⋂
ki∈kH

(ki)
0 is true, the second term of the latter inequality is equal to α and thus,

under the same assumption, that P[R(k)
α,ITP ] ≤ α. �

Proof. (Corollaries 2.1 and 2.2)

The proofs are straightforward, and come directly from the fact that the global test on all

components (Corollary 2.1) and the marginal tests on each component (Corollary 2.2) are

extreme types of intervals included in the ITP. �

Proof. (Theorem 2.2)

Let R(k)
α,ITP be the event “H

(k)
0 is rejected by the ITP at level α”, R(k)

α,CTP be the event

“H
(k)
0 is rejected by the CTP at level α”, and Rα,GTP be the event “H0 =

⋂
k=1,...,pH

(k)
0

is rejected by the GTP at level α”. Thanks to the structure of the ITP and of the CTP,
all multivariate tests used to correct the kth p-value in the ITP are used to correct the CTP
but not vice versa. Moreover, the global test is among the test used in both the CTP and
the ITP to correct the kth p-value. Thus, every time the CTP rejects H

(k)
0 also the ITP

rejects it and every time the ITP rejects H
(k)
0 also the GTP rejects it. Thus we have that

R(k)
α,CTP ⊆ R

(k)
α,ITP ⊆ Rα,GTP , and consequently that P[R(k)

α,CTP ] ≤ P[R(k)
α,ITP ] ≤ P[Rα,GTP ].

Let us now consider the event “at least one of the H
(k)
0 is rejected by the ITP at level α”

(i.e.,
⋃
k=1,...,pR

(k)
α,ITP ) and the event “at least one of the H

(k)
0 is rejected by the CTP at level

α” (i.e.,
⋃
k=1,...,pR

(k)
α,CTP ). We have that

⋃
k=1,...,pR

(k)
α,CTP ⊆

⋃
k=1,...,pR

(k)
α,ITP ⊆ Rα,GTP

and thus P[
⋃
k=1,...,pR

(k)
α,CTP ] ≤ P[

⋃
k=1,...,pR

(k)
α,ITP ] ≤ P[Rα,GTP ]. Now, if the state of nature

implies that H0 =
⋂
k=1,...,pH

(k)
0 is true, the left term defines the actual global level of CTP,

the second term the actual global level of ITP, and the third one the actual global level of the
GTP which is equal to α. Thus, the first thesis is proven.

On the contrary, if the state of nature implies that H0 =
⋂
k=1,...,pH

(k)
0 is false, the left
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term defines the power of CTP, the second term the power of ITP, and the third one the power

of the GTP. Thus, also the second thesis is proven. �

Proof. (Theorem 2.3)
Let k ∈ {1, 2, ..., p} be an index referring to the kth component of the basis representation. Let

R(k)
α,ITP be the event “H

(k)
0 is rejected by the ITP at level α”, R(k)

α,CTP be the event “H
(k)
0 is

rejected by the CTP at level α”, and Rα,GTP be the event “H0 =
⋂
k=1,...,pH

(k)
0 is rejected

by the GTP at level α”. Thanks to the structure of the ITP and of the CTP, all multivariate
tests used to correct the kth p-value in the ITP are used to correct the CTP but not vice versa.
Moreover, the GTP is among the test used in both the CTP and the ITP to correct the kth
p-value. Thus, every time the CTP rejects H

(k)
0 also the ITP rejects it and every time the ITP

rejects H
(k)
0 also the GTP rejects it. Thus we have that R(k)

α,CTP ⊆ R
(k)
α,ITP ⊆ Rα,GTP , and

consequently that P[R(k)
α,CTP ] ≤ P[R(k)

α,ITP ] ≤ P[Rα,GTP ]. Now, if the state of nature implies

that H
(k)
0 is true, the left term defines the CWER of the CTP and the second term the CWTR of

the ITP. Moreover, being single components special kind of intervals, Theorem 2.1 proves that
also the CWTR is controlled by the ITP. Thus, the first thesis CWER

(k)
CTP ≤ CWER

(k)
ITP ≤ α

is proven.

On the contrary, if the state of nature implies that H
(k)
0 is false, the left term defines the

component-wise power of the CTP, the second term the component-wise power of the ITP, and

the third one the power of the GTP. Thus, also the second thesis π
(k)
CTP ≤ π

(k)
ITP ≤ πGTP is

proven. �

2.B Permutation tests and non parametric combina-
tion

The second step of the ITP consists in performing univariate and multivariate

tests on the coefficients of the basis expansion (2.1).

We discuss here in detail a possible approach that can be used to perform

the tests. This approach is based on non-parametric permutation (NPC) tests

and can be used for any n and p (in particular, also when p ≥ n). It is based

on the combination of joint univariate permutation tests, based on different test

statistics.

2.B.1 Univariate tests on basis components

We start describing the method that we propose for the univariate test on basis

components. We aim at testing the differences between the two populations for

each k = 1, ..., p by means of a univariate test on the kth coefficient, defined by:

H
(k)
0 : C

(k)
1

d
= C

(k)
2 vs H

(k)
1 : C

(k)
1

d

6= C
(k)
2 (2.2)

In order to perform a marginal test for each k, we introduce a suitable permu-

tation test, based on a family of data transformations preserving the likelihood

under H
(k)
0 , and a suitable test statistic, stochastically larger under H

(k)
1 than

under H
(k)
0 .

In particular, fix the basis component k, and let c(k) = (c
(k)
1 , c

(k)
2 ) the n1 +n2

dimensional vector of the coefficients associated to units of the two groups, and

c(k)∗ = (c
(k)∗

1 , c
(k)∗

2 ) the vector of the permuted coefficients. We have the total

exchangeability under H
(k)
0 , thus the family of transformations is composed by

any permutation over the sample units of the observed values. On the other

hand, in the case of paired coefficients corresponding to paired functional data,
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the exchangeability under H0 is only within and between couples, i.e., couples

cannot be split. It is important to note that, being the different components

C1, C2, . . . , Cp possibly dependent, the permutations of the coefficients need to

be jointly performed, i.e., each permutation is applied simultaneously to the

entire set of coefficients. This is the key to build the multivariate interval-wise

tests.

The test statistic T (c(k)∗) used for the univariate permutation tests of the

expansion coefficients may depend on the functional basis used to describe data.

Indeed, in the permutation framework the test statistic has to be properly chosen

in order to reflect the characteristics of data which are expected to change the

most under the alternative hypothesis.

Once chosen the test statistic, for each k, the p-value of the corresponding test

(2.2) is estimated through a conditional MC algorithm (for details, see Pesarin

and Salmaso (2010)), as the proportion of T (c(k)∗) exceeding the value T (c(k))

calculated on the original data set.

To better understand how a test statistic may be selected and how the test

statistic may depend on the type of test and on the basis used for the analysis,

we report some examples that can be used in different applications.

Example 1: B-spline Basis Suppose that a difference between the two func-

tional populations is suspected to occur exclusively on an unknown region of the

domain. Then, a quite natural choice to target this problem is the use of the B-

spline basis. In particular, we fix a grid of knots along the abscissa, and express

each data through the p coefficients associated to the B-spline basis functions

b(k)
m (t) of order m: yij(t) =

∑p
k=1 c

(k)
ij b

(k)
m (t) (Bosq, 2000).

If we consider the unpaired case, then, a possible test statistic for each test

(2.2) can be defined as the difference between the two sample means of the co-

efficients (which is inferentially equivalent to the classic t-test statistic though

computationally less time consuming and thus more commonly used in permu-

tation tests):

T (c(k)∗) =
1

n1

n1∑
i=1

c
(k)∗

i1 − 1

n2

n2∑
i=1

c
(k)∗

i2 .

If, on the contrary, we consider the paired scenario, the same test statistic

can be properly rewritten as the sample mean of the differences between the

paired coefficients:

T (c(k)∗) =
1

n1

n1∑
i=1

(
c

(k)∗

i1 − c(k)∗

i2

)
.

Example 2: Fourier Basis Suppose now that data are T -periodic curves, and

that we expect a difference between the two populations in a frequency band.

Thus, it is natural to express data in the frequency domain by means of a Fourier

expansion, which can be expressed in both following representations:

yij(t) = m
(0)
ij +

p∑
k=1

(
a

(k)
ij cos

(
2π

T
kt

)
+ b

(k)
ij sin

(
2π

T
kt

))
; (2.3)
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yij(t) = m
(0)
ij +

p∑
k=1

α
(k)
ij cos

(
2π

T
kt+ φ

(k)
ij

)
, (2.4)

The first expression (2.3) is exactly of the type (2.1), and associates each fre-

quency k to the coefficients a
(k)
ij and b

(k)
ij . The second expression (2.4) associates

instead each frequency to an amplitude and to a phase coefficient (i.e., α
(k)
ij and

φ
(k)
ij ) leading to a more interesting interpretation. Coherently, for the “0th” fre-

quency, we can define the amplitude and phase coefficients as α
(0)
ij = |m(0)

ij | and

φ
(0)
ij = π[1− sign(m

(0)
ij )]/2. Amplitude and phase coefficients have different prop-

erties: amplitude coefficients are defined on [0,+∞), while phase coefficients are

angles defined on [0, 2π] and invariant by 2π translations. Thus, it is clear that

different test statistics need to be used for testing the two quantities.

In particular in the unpaired scenario, for the amplitude coefficients we will

rely on the logarithmic distance of geometric sample means:

Tamp(α
(k)∗) =

∣∣∣∣∣∣∣log


(∏n1

i=1 α
(k)∗

i1

)1/n1

(∏n2

i=1 α
(k)∗

i2

)1/n2


∣∣∣∣∣∣∣ .

In the paired case, the same test statistic can be more properly rewritten as:

Tamp(α
(k)∗) =

∣∣∣∣∣∣log

(
n1∏
i=1

α
(k)∗

i1

α
(k)∗

i2

)1/n1

∣∣∣∣∣∣ .
Instead, for testing the phase coefficients in the unpaired scenario, we will rely

on the signed geodesic distance (on the circle S1) between the geodesic sample

means:

Tph(φ(k)∗) = sign(mgeo(φ
(k)∗

2 )−mgeo(φ
(k)∗

1 ))dgeo(mgeo(φ
(k)∗

1 ),mgeo(φ
(k)∗

2 )).

In the paired case, we will use the geodesic sample mean of the signed geodesic

distances:

Tph(φ(k)∗) = mgeo[{sign(φ
(k)∗

i2 − φ(k)∗

i1 )dgeo(φ
(k)∗

i1 , φ
(k)∗

i2 )}i=1,...,n1
],

with the signed geodesic distance and the geodesic sample mean defined accord-

ing to:

dgeo(φ1, φ2) = min{|φ1 − φ2|, |2π − (φ1 − φ2)|}, φ1, φ2 ∈ [0, 2π);

mgeo(φ1, φ2, . . . , φq) = argmin
φ

q∑
l=1

[dgeo(φl, φ)]2 φi ∈ [0, 2π);

sign(φ2 − φ1) =

{
+1 if 0 ≤ φ2 − φ1 ≤ π or − 2π ≤ φ2 − φ1 < −π
−1 if − π < φ2 − φ1 ≤ 0 or π < φ2 − φ1 ≤ 2π

.

2.B.2 Multivariate tests on intervals of components

To build the multivariate tests on each interval, we can exploit the NPC method-

ology, which consists in the construction of suitable combinations of the univari-

ate test statistics in order to obtain multivariate tests on each interval. In the
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following, as an example, we will illustrate how to obtain a bivariate test from

two univariate tests along the NPC philosophy. The extension to multivariate

NPC’s is straightforward, and detailed in Pesarin and Salmaso (2010).

Let us indicate with T
(1)∗

0 and T
(2)∗

0 the observed values of the two univariate

statistics related to variables X1 and X2 and with T
(1)∗

b and T
(2)∗

b the values in-

duced by the permutation b of the bivariate data set containing the realizations

of (X1, X2). Then, select a combining function, i.e., a continuous non increasing

function ψ : [0, 1]2 → R which is symmetric on the two arguments and attain

its maximal value when at least one argument attains zero. Some possible ex-

amples are the Fisher combining function: ψF (x1, x2) = −2(log x1 + log x2);

the Liptak combining function, based on the inverse of the Normal cdf Φ:

ψL(x1, x2) = (Φ−1(1 − x1) + Φ−1(1 − x2)); the Tippett combining function,

based on the maximum test statistic: ψL(x1, x2) = max(1 − x1; 1 − x2). Fi-

nally define T
(1,2)∗

b = ψ(L
(1)
b , L

(2)
b ) where L

(1)
b and L

(2)
b are the marginal survival

functions of the two test statistics T (1) and T (2) evaluated in T
(1)∗

b and T
(2)∗

b ,

respectively. Analogously define T
(1,2)∗

0 = ψ(L
(1)
0 , L

(2)
0 ). The p-value of the joint

bivariate test is now simply defined as the proportion of permutations provid-

ing T
(1,2)∗

b > T
(1,2)∗

0 . Note that L
(1)
0 and L

(2)
0 coincide with the p-values of the

two original univariate tests. In the practice, the marginal survival functions

(and the descending p-values) can be estimated by means of a conditional MC

(i.e., just B randomly selected permutations are used). In this case we have:

L̂
(1)
b =

∑B
q=1 I(T

(1)∗
q ≤T (1)∗

b
)+1/2

B+1
and L̂

(2)
b =

∑B
q=1 I(T

(2)∗
q ≤T (2)∗

b
)+1/2

B+1
. The p-value of the

joint test is of course estimated by L̂
(1,2)
0 =

∑B
q=1 I(T

(1,2)∗
q ≤T (1,2)∗

0 )+1/2

B+1
. For further

details about NPCs procedure please refer to Pesarin and Salmaso (2010).

2.C Analysis of the NASA Temperature Data

In this section we report the analysis of daily temperatures registered by NASA

satellites in the region (45o−46o North, 8o−9o East) including the city of Milan

(Italy) from July 1983 to June 2005 and stored in the NASA database Earth

Surface Meteorology for Solar Energy1. The aim of this analysis is to test for

the mean function of Milan temperature yearly profiles.

In the application, we identify the 22 years available as sample units (n = 22)

and the 365 records available for each year as 365 point-wise evaluations of the

functional data (J = 365) (Figure 2.6), and we aim at testing the mean function

of the functional population which data are assumed to be drawn. Because of the

periodic nature of these data and because of their daily resolution we perform

an ITP starting from the coefficients of a truncated Fourier expansion (2.3) of

dimension 365 and period T equal to one year.

In particular we want to see if the functional mean of the data is expressed

only on some particular frequencies, by selecting, among the frequencies k =

0, ..., (J − 1)/2 = 182, the ones whose contribution to the mean function is

significantly different from zero. In order to answer this question, we test if the

1These data were obtained from the NASA Langley Research Center Atmospheric Science Data
Center Surface meteorological and Solar Energy (SSE) web portal supported by the NASA LaRC
POWER Project. Data are freely available at: NASA Surface Meteorology and Solar Energy, A
Renewable Energy Resource web site (release 6.0): http://eosweb.larc.nasa.gov
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mean function is equal to µ0 ≡ 0 on each frequency. In detail, assuming the

functional population to be symmetrically distributed around its mean function,

for each frequency k > 0 we perform a bivariate test to test the null hypothesis:

center[(A(k), B(k))] = (0, 0), based on the joint changes of the signs of vectors

(a
(k)
i , b

(k)
i ) and on the Hotelling T 2 statistic:

T (a(k)∗ ,b(k)∗) = (ā(k)∗ − a(k)
0 , b̄(k)∗ − b(k)

0 )′S∗k,k(ā
(k)∗ − a(k)

0 , b̄(k)∗ − b(k)
0 ).

For the 0 − th frequency, we perform a univariate permutation test based

on the squared of the univariate Student t statistic and on the change of the

signs of the coefficients m
(0)
i . Finally, we obtain the p-value heat-map (top panel

of Figure 2.6) by combining the tests mentioned above as shown in subsection

2.2.1 relying on the Fisher combination function. In the top panel of Figure

2.6, we represent the result of each test included in the family explored by

the ITP. In particular, the horizontal axis is associated to the interval central

frequencies and the vertical one to the width of the tested band. Each pixel of

the image represents a single multivariate test associated to a specific band and

its color represents the corresponding p-value (blue corresponds to low p-values

and yellow to high p-values). Please remember that p-value heat-map is periodic

in the horizontal direction. The adjusted p-value for the kth frequency is the

maximal value of the p-values all the tests lying in the upside-down cone with

vertex in correspondence with the univariate test for the kth frequency. Thus,

the blue triangle of the p-value heat-map resulting from the NASA case study

indicates that the only significant frequencies are the two lower ones (i.e., all

multivariate tests pertaining to bands including the constant term or the first

harmonic present low p-values).

For convenience, the central panel of Figure 2.6 reports for each frequency its

unadjusted p-value (empty dots), and its adjusted p-value (full dots), . According

to the adjusted p-values, just the first two frequencies (i.e., the constant term and

the sinusoids of period one-year) contribute significantly to the mean function.

The ITP thus suggests an easy description of the mean function as a vertically

translated sinusoid of period one year. In detail, this sinusoid is characterized by

an annual average temperature of 9.023◦C and an annual excursion of 21.771◦C.

Thanks to this reduced representation we can also estimate the 18th January as

the coldest day of the year with a mean temperature of −1.891◦C and the 20th

July as the warmest day of the year with a mean temperature of 19.880◦C.

To appreciate the information provided by the ITP, in the lower panel of

Figure 2.6, together with the original data (dashed light lines), we report the

sample mean (bold solid red line) and the sample mean restricted just to the

zero-th and the first frequencies (bold solid blue line), that is the estimate of

the mean suggested by the ITP. Note how the high-frequency fluctuations that

characterize the sample mean (clearly related to the specific sample at hand) are

instead not present in the second estimate, as considered not significant by the

ITP.

As a comparison with other inferential procedures that can be applied to

the coefficients of the basis expansion, let us mention the fact that: the CTP

is not feasible for p = 365 (i.e., more than 10109 multivariate tests would be

needed). The global test of course rejects the null hypothesis that the func-
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Figure 2.6: NASA case study. Top : p-values heat-map of the ITP. Center: unadjusted p-
values (empty dots), and adjusted p-values (full dots) provided by the ITP. Bottom: curves of
daily temperatures data (dashed light lines), sample mean (bold solid red line), and mean as
estimated according to the ITP results (bold solid blue line).
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tion population is centered on zero but it cannot detect which frequencies are

not centered on zero. Finally, like the ITP, both the Bonferroni-Holm and the

Benjamini-Hochberg corrections of the univariate tests detect just the zero-th

and the first frequencies as not centered on zero. Note that the latter correc-

tion procedures obtain adjusted p-values by comparing the p-values of univariate

tests while the ITP obtains the adjusted p-values by comparing the p-values of

a family of multivariate tests (i.e., the ones related to bands) thus exploiting

possible dependencies among components.

As a final comment, note that the Fourier expansion of temporal signals is

common practice in engineering. Nevertheless, in that field, important frequen-

cies are detected by means of amplitude thresholding and/or frequency filters

tuned according to some specific knowledge about the physics (typical amplitude

and frequencies of the signal) and/or about the instruments (typical amplitude

and frequencies of the noise). The selection criterion derived by the application

of the ITP is instead purely statistical and exclusively relies on the observed

signals, and it can thus be applied also in context not provided with any quan-

titative prior knowledge about the problem.

62



Chapter 3

Component-Wise Inference on
Functional-on-Scalar Linear
Models

Abstract

We introduce a distribution-free procedure for testing a functional-on-scalar

linear model with fixed effects. The procedure does not only test the global

hypothesis on all the domain, but also selects the intervals where statistically

significant effects are detected. We prove that the proposed tests are provided

with an asymptotic interval-wise control of the family-wise error rate, i.e., the

probability of falsely rejecting any interval of true null hypotheses. The pro-

cedure is then applied to one-leg hop data from a study on anterior cruciate

ligament injury. We compare knee kinematics of three groups of individuals,

taking individual-specific covariates into account.

Keywords: Functional Data, Inference, Permutation Test, Linear Models

3.1 Introduction

Functional data analysis (FDA) is a relatively new, dynamically developing,

research area within the field of statistics. In recent literature, linear models

for functional data have been widely studied (see, e.g., Fan and Zhang 2000;

Abramovich and Angelini 2006; Cardot et al. 2007; Reiss et al. 2010; Gertheiss

et al. 2013; Abramowicz et al. 2014).

In this paper we consider a functional-on-scalar linear model. In detail, we

model a functional response with a set of covariates multiplied by functional

parameters. Such model finds its application in a wide range of research fields

where modern techniques enable collection of high-resolution data. In this con-

text, many of the empirically relevant questions do not only address the effect of

covariates on a functional response, but also require identification of significant

domain subsets.

We focus on a distribution-free method and therefore propose to use a least

squares method for parameter estimation. Parameter estimation of the func-

tional model is handled by first representing the functional response and the
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functional regression parameters in terms of a suitable functional basis. The

functional estimation problem is thus decomposed into a family of correspond-

ing linear models of univariate response variables, one for each of the coefficients

(components) of the basis expansion. Hence, least squares estimation methods

for linear models with univariate response variables can be used to estimate the

functional linear model (see Section 3.2).

Forming valid tests of various hypotheses about the functional regression

parameters, with control of the error rate, is not straightforward. One so-

lution adopted in the literature is to develop global tests for the parameters

of the model. Such tests investigate if a covariate has a significant effect on

the response, but does not provide any domain selection (Cuevas et al., 2004;

Abramovich and Angelini, 2006; Antoniadis and Sapatinas, 2007; Cardot et al.,

2007; Schott, 2007; Cuesta-Albertos and Febrero-Bande, 2010; Zhang and Liang,

2014). Another approach, proposed in Fan and Zhang (2000); Reiss et al. (2010);

Ramsay and Silverman (2005), is to provide point-wise confidence bands for the

functional parameters. The results indicate in which parts of the domain the

covariates have an effect, but not at which significance level. As clearly dis-

cussed in Ramsay and Silverman (2005, pp. 243–244), point-wise limits are not

equivalent to confidence regions for the entire estimated curves. Assuming that

data are expressed through a functional basis, inference can be based directly on

the expansion coefficients, as proposed by Spitzner et al. (2003). In the latter

work, single-component tests are performed, and their p-values adjusted with the

Bonferroni-Holm procedure (Holm, 1979). In this way, results are compensated

for the many dependent tests performed on the same data set. A drawback with

this procedure is that it is typically too conservative, and needs a relevant di-

mensional reduction of data in order to detect significant functional parameters.

In our work, we follow the same line of research proposed by Spitzner et al.

(2003), introducing a less conservative p-values adjustment, which rely on the

properties of functional data, and does not require any dimensional reduction of

the functional data set. The continuous nature of functional models expressed in

terms of a basis expansion such as B-splines, typically implies that neighbouring

basis coefficients present a positive dependence. Combinations of neighbouring

component-wise (dependent) tests thus have the potential to more easily detect

parts of the domain where a functional regression parameter is significantly dif-

ferent from zero. Therefore, in our paper we restrict multiple comparisons of

component-wise tests to intervals of neighbouring components and use the In-

terval Testing Procedure (ITP) introduced by Pini and Vantini (2013), which

is based on single- and multiple-component tests. The single-component tests

are based on Freedman and Lane permutation schemes (Freedman and Lane,

1983), which do not rely on any distributional assumptions. Further, we use

a Non-Parametric Combination (NPC) procedure to obtain simultaneous tests

on intervals of components. The NPC procedure is a computationally efficient

procedure which preserves the exactness and consistency properties of single-

component tests. For further details, we refer to Pesarin and Salmaso (2010).

Using the ITP, for each basis component we obtain an adjusted p-value, which

is used to select the significant component intervals. Such tests are provided

with an interval-wise control of the Family Wise Error Rate (FWER). In detail,
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this control implies that the probability of falsely rejecting any interval of basis

components associated to true null hypotheses is controlled at the desired sig-

nificance level. We prove that the proposed tests are exact or asymptotically

exact.

The paper is outlined as follows: in Section 3.2, we describe the functional-on-

scalar linear model, discussing the methodology proposed for functional param-

eter estimation and inference. Section 3.3 reports the theoretical properties of

the proposed methodology. The proofs of theorems of Section 3.3 are reported in

Appendix 3.A. Finally, Appendix 3.B reports some details on the Freedman and

Lane permutation scheme, while Appendix 3.C briefly describes the NPC pro-

cedure. Two different applications of the methodology described in this chapter

are reported in Chapters 5 and 6. In the first case, the methodology is applied

to a functional ANCOVA on time-varying knee motion, whereas in the second

case, it is applied to a functional two-way ANOVA on laser emission.

3.2 Methodology

3.2.1 The functional-on-scalar linear model

Suppose we have observed a sample of n continuous random functions {yi(t)}i=1,...,n,

over time t: t ∈ [a, b]. We want to study the following functional-on-scalar linear

model:

yi(t) = β0(t) +
L∑
l=1

βl(t)xli + εi(t), i = 1, ..., n, (3.1)

where x1i, ..., xli ∈ R are known scalar covariates and βl(t), l = 0, ..., L, are the

fixed functional regression parameters. The errors εi(t), t ∈ [a, b] are i.i.d. (with

respect to units) zero-mean random functions (not necessarily Gaussian) with

finite total variance, i.e., ∫ b

a

E [εi(t)]
2
dt <∞. (3.2)

We assume that, for each i = 1, . . . , n, yi(t) can be expressed in terms of basis

functions {φ(k)(t)}pk=1, i.e.,

yi(t) =

p∑
i=1

yi
(k)φ(k)(t).

Whenever functional data are described through a basis expansion, we can per-

form inference directly on the set of coefficients representing the data. Therefore,

we can project the model (3.1) on the functional space spanned by the basis:

p∑
k=1

yi
(k)φ(k)(t) =

p∑
k=1

β0
(k)φ(k)(t) +

L∑
l=1

p∑
k=1

βl
(k)φ(k)(t)xli +

p∑
k=1

εi
(k)φ(k)(t),

for all t ∈ [a, b], which leads to:

p∑
k=1

[
yi

(k) − β0
(k) −

L∑
l=1

βl
(k)xli − εi(k)

]
φ(k)(t) = 0 ∀t ∈ [a, b]. (3.3)
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Since {φ(k)(t)}pk=1 is a basis, equation (3.3) holds if

yi
(k) = β0

(k) +
L∑
l=1

βl
(k)xli + εi

(k), ∀k = 1, ..., p (3.4)

holds. Therefore, we can express model (3.1) as a family of p scalar-on-scalar lin-

ear models, with errors pertaining to the same sample unit i possibly dependent.

Moreover, we have that:

0 = E[εi(t)] = E

[
p∑
k=1

εi
(k)φ(k)(t)

]
=

p∑
k=1

E[εi
(k)]φ(k)(t) ∀t ∈ [a, b],

and hence E[ε
(k)
i ] = 0 for all k = 1, ..., p. From (3.2) and the fact that {φ(k)(t)}pk=1

is a basis, we also have that for k = 1, . . . , p, E[ε
(k)2

i ] <∞. Finally, the indepen-

dence of the random functions εi(t), t ∈ [a, b], implies independence across units

of the coefficients εi
(k). Therefore, for fixed k, the error terms εi

(k), i = 1, . . . , n

are i.i.d. zero-mean random variables with finite variance. Note that we are

not making assumptions instead on the auto-covariance structure of the εi(t)’s.

Hence, for fixed i, the errors ε
(k)
i , k = 1, . . . , p, are not assumed independent.

In practice, we often can not observe the complete response functions yi(t), i =

1, . . . , n, and need to estimate them based on the finite number of observations.

We refer to, e.g., Ramsay and Silverman (2005) for a discussion about the choice

of basis used to represent data and methods used to estimate the coefficients.

3.2.2 Model estimation

The ordinary least squares (OLS) estimators of the functional parameters βl(t),

l = 0, . . . , L, can be found by minimizing the sum over units of the L2 distances

between the functional data yi(t) and the quantity β0(t) +
∑L

l=1 βl(t)xli with

respect to βl(t), l = 0, . . . , L (Ramsay and Silverman, 2005):

n∑
i=1

∫ b

a

(
yi(t)− β0(t)−

L∑
l=1

βl(t)xli

)2

dt. (3.5)

The minimization can be done separately for each coefficient of the basis

expansion, even in presence of non-orthonormal basis components. Indeed, when

using a basis expansion, (3.5) can be written as:

n∑
i=1

∫ b

a

[
p∑
k=1

(
y

(k)
i − β(k)′xi

)
φ(k)(t)

]2

dt, (3.6)

where β(k) = (β
(k)
0 , ..., β

(k)
L )′ and xi is the i-th row of the design matrix Xn ∈

R(n×(L+1)) ([Xn]i,1 = 1, ∀i = 1, ..., n; [Xn]i,j = xj−1,i, i = 1, ..., n, j = 2, ..., L+1).

Equation (3.6) is equivalent to:

n∑
i=1

p∑
k1=1

p∑
k2=1

(
y

(k1)
i − β(k1)′xi

)(
y

(k2)
i − β(k2)′xi

)∫ b

a

φ(k1)(t)φ(k2)(t)dt,

which can be written using matrix notation as

n∑
i=1

(
yi − β′xi

)′
W
(
yi − β′xi

)
, (3.7)
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where yi = (y
(1)
i , ..., y

(p)
i )′ ∈ Rp, β ∈ R((L+1)×p) is the matrix of coefficients,

[β]l,k = β
(k)
l , and W ∈ Rp×p is the matrix of inner products between basis

functions [W ]k1k2 =
∫ b
a
φ(t)(k1)φ(t)(k2)dt. As shown in Johnson and Wichern

(2007), for any positive definite matrix W , we have that:

argmin
β

n∑
i=1

(
yi − β′xi

)′
W
(
yi − β′xi

)
= argmin

β

n∑
i=1

(
yi − β′xi

)′(
yi − β′xi

)
that is, in the minimization, W can be replaced with the identity. Note that:

n∑
i=1

(
yi − β′xi

)′(
yi − β′xi

)
=

p∑
k=1

n∑
i=1

(
y

(k)
i − β(k)′xi

)2

and hence the minimization problem on the left hand side with respect to β

is reduced to the family of p independent minimization problems, one for each

component k = 1, . . . , p. For each k,
∑n

i=1

(
y

(k)
i − β(k)′xi

)2

is minimized by the

OLS estimate β̂
(k)

= (β̂
(k)
0 , . . . , β̂

(k)
L ) of β(k). Therefore β̂ = (β̂

(1)
, . . . , β̂

(p)
) is

also the global OLS estimate minimizing (3.6). Hence, for each l = 0, . . . , L, the

estimate of the functional regression parameters βl(t) is

β̂l(t) =

p∑
k=1

β̂
(k)
l φ(k)(t). (3.8)

It is also possible to establish asymptotic properties of the OLS estimates on

each basis component k. Consider the following standard conditions:

C1 The matrix X ′mXm is non-singular for some m ≥ 1 (implying that it is

non-singular for all n ≥ m), and its inverse V = X ′nXn is s.t. the elements

[V −1]ij → 0 as n→∞, for all i, j = 1, ..., L+ 1.

C2 For each k = 1, ..., p, the regression errors ε
(k)
i satisfy:

sup
i=1,...,n

E
[
ε

(k)2

i

]
<∞.

Under conditions C1 -C2, we have that for each k = 1, . . . , p, the obtained

OLS estimates β̂
(k)
0 , . . . , β̂

(k)
L are asymptotically strongly consistent estimates of

β
(k)
0 , . . . , β

(k)
L (see, Lai et al., 1979). Condition C1 is a sufficient condition for

finding an explicit expression of the OLS estimates, and guarantees convergence

in probability. Condition C2 assures almost sure convergence.

3.2.3 Model inference

One of the main challenges with inference for functional linear model (3.1) is

performing valid tests of hypotheses on functional regression parameters. Anal-

ogously to the classical framework, we are interested in testing the hypotheses

on the full model, i.e.,{
H0,F : βl(t) = 0 ∀l ∈ 1, . . . , L, ∀t ∈ [a, b]

H1,F : βl(t) 6= 0 for some l ∈ {1, . . . , L} and t ∈ [a, b]
(3.9)
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together with tests of significance for specific functional parameter l ∈ {0, . . . , L}:{
H0,l : βl(t) = 0 ∀t ∈ [a, b]

H1,l : βl(t) 6= 0 for some t ∈ [a, b].
(3.10)

In the most general case we are interested in testing linear hypotheses on the

functional parameters of the regression. This is done by specifying a combination

matrix C. Let C ∈ R(q×(L+1)) be a real-valued full rank matrix, where q ≤ L+ 1

denotes the number of hypotheses on the functional regression parameters to

be jointly tested. Moreover, let c0(t) = (c01(t), ..., c0q(t))
′ be a vector of fixed

functions from the space spanned by the basis functions {φ(k)(t)}k=1,...,p. Denote

by β(t) = (β0(t), ..., βL(t))′ the vector of functional regression parameters. We

are in general interested in testing hypotheses of the form:{
H0,C : Cβ(t) = c0(t) ∀t ∈ [a, b]

H1,C : Cβ(t) 6= c0(t) for some t ∈ [a, b].
(3.11)

where the j-th element of vector Cβ(t) is a function obtained by means of a

linear combination of the functional regression parameters βl(t) with weights

[C]jl: [Cβ(t)]j =
∑L

l=0[C]jlβl(t), j = 1, ..., q. There are two important special

cases of the general functional linear hypotheses:

1. Let q = L, C = (0
∣∣IL) ∈ R(L×(L+1)), and c0(t) = 0 ∈ RL, where IL is L×L

identity matrix. Then, we obtain a functional F-test on the regression

model, reducing the hypotheses in (3.11) to the hypotheses in (3.9);

2. For a fixed l, let q = 1, C ∈ R1×(L+1) with C1r = 1 if r = l and 0 otherwise,

and c(t) = 0. Then we obtain the functional t-test on regression parameter

l, reducing the hypotheses in (3.11) to the hypotheses in (3.10).

By using the basis representation of β(t) and c0(t), functional linear hypothe-

ses are translated into a family of p linear hypotheses pertaining the components

of the basis expansion k = 1, . . . , p:{
H

(k)
0,C : Cβ(k) = c

(k)
0

H
(k)
1,C : Cβ(k) 6= c

(k)
0 ,

(3.12)

where c
(k)
0 ∈ Rq is a vector composed by the k-th coefficients of the basis ex-

pansion of vector c0(t) with the basis expansion performed for each element

of the vector. Hence, as opposed to model estimation, the problem of infer-

ence for multiple components is not straightforward, as it involves a, possibly

high-dimensional, family of dependent statistical tests.

In this paper we use interval testing procedure for controlling the probability

of falsely rejecting at least one true null hypothesis of the family, i.e., the FWER.

The ITP is a three step procedure involving a basis expansion of functional data,

the testing of each multiple-component hypothesis pertaining intervals of basis

coefficients, and a multiplicity correction providing an interval-wise control of the

FWER. In the following paragraphs we first give some details on the starting

point of the ITP, that is the single-component testing, and then describe the

construction of multiple-component tests and the p-value correction.
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Single component testing

For hypotesis testing on a single component k, we use permutation tests based

on the Freedman and Lane permutation scheme (Freedman and Lane, 1983),

which is briefly described in Appendix 3.B. This permutation strategy is the

most commonly used for linear models, and presents many advantages with

respect to other techniques (Davison and Hinkley, 1997; Anderson and Legendre,

1999; Anderson and Robinson, 2001; Zeng et al., 2011; Winkler et al., 2014). In

particular, it can be shown empirically that its power is typically higher than

the one of tests based on other permutation schemes (Anderson and Legendre,

1999; Winkler et al., 2014). Permutation tests based on the Freedman and

Lane scheme are based on the permutations of the estimated residuals under the

reduced model (i.e., the linear model under the null hypothesis of the test).

For the fixed component k, to perform the F -test with hypotheses{
H

(k)
0,F : β

(k)
l = 0 ∀l ∈ 1, . . . , L

H
(k)
1,F : β

(k)
l 6= 0 for some l ∈ {1, . . . , L}

(3.13)

we use the F -test statistic:

T
(k)
F =

(n− L)
∑n

i=1(ŷ
(k)
i − ȳ(k))2

L
∑n

i=1(y
(k)
i − ŷ(k)

i )2
, (3.14)

where ŷ
(k)
i = β̂

(k)
0 +

∑L
l=1 β̂

(k)
l xli are the fitted values of the response coefficients

yi
(k), and ȳ(k) =

∑n
i=1 yi

(k)/n is the sample mean of the response coefficients.

To perform the t-test for the l-th functional regression parameter, i.e., to test{
H

(k)
0,l : β

(k)
l = 0

H
(k)
1,l : β

(k)
l 6= 0

(3.15)

we use the absolute value of the t-test statistic:

T
(k)
t,l =

∣∣∣∣∣ β̂
(k)
l

se(β̂
(k)
l )

∣∣∣∣∣ , (3.16)

where se(β̂
(k)
l ) is the standard error of β̂

(k)
l . As shown in Pesarin and Salmaso

(2010), the test statistic (3.16) is permutationally equivalent to the squared

partial correlation coefficient, commonly used in the literature of permutation

tests for linear models (see, for instance, Anderson and Robinson 2001).

More in general, to perform each single-component test of linear hypotheses

H
(k)
0,C (3.12), we can use the statistic:

T
(k)
C =

1

s2

(
Cβ̂

(k) − c
(k)
0

)′ (
C(X ′nXn)−1C ′

)−1
(
Cβ̂

(k) − c
(k)
0

)
, (3.17)

where β̂
(k)

is the OLS estimate of β(k), and s2 = (y(k)−Xnβ̂)′(y(k)−Xnβ̂)/(n−
L + 1) is the estimate of the variance of residuals at component k, with y(k) =

(y
(k)
1 , . . . , y(k)

n )′.

Multiple tests and p-value correction

The p-values of single-component tests need to be adjusted to provide an interval-

wise control of the FWER, according to the interval testing procedure (Pini
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and Vantini, 2013). To perform this multiplicity correction, each multivariate

hypothesis on intervals of components I = {k1, k1 + 1, . . . , k2} with 1 ≤ k1 <

k2 ≤ p need to be tested. In detail, we need to test each hypothesis

HI0,C =
⋂
k∈I

H
(k)
0,C .

Such tests can be approached exploiting the NPC procedure (Pesarin and Salmaso,

2010), which is briefly described in Appendix 3.C. The NPC is a procedure that

enables to build multivariate permutation tests by means of combining syn-

chronized univariate permutation tests. The procedure applies in presence of

dependence between univariate tests, which is the case in FDA.

Let λIC denote the p-value corresponding to the multivariate test on hypothe-

sis HI0,C . The adjusted p-value λ
(k)
ITP,C for the k-th component is then computed

as the maximum between all p-values of univariate and multivariate tests con-

taining that component, i.e.:

λ
(k)
ITP,C = max

I3k
λIC .

The adjusted p-values can be used to select only the basis components leading to

the rejection of the null hypothesis H
(k)
0,C , i.e., the ones with associated adjusted

p-value lower than the desired significance level α.

It is important to point out that the ITP takes into account the depen-

dence between the basis coefficients, which in the framework of a functional

linear model means that it does not require to specify their covariance struc-

ture. Moreover, as tests are based on permutations, the procedure does not

require the normality of residuals.

3.3 Theoretical results

In this section, we give theoretical properties of inference on functional-on-scalar

linear models performed along the line depicted in Section 3.2. All proofs are

reported in Appendix 3.A and the results are valid for the ITP, based on the

NPC of tests using the Freedman and Lane scheme.

First, we prove that test of the family of linear hypotheses {H(k)
0,C}k=1,...,p

is provided with an asymptotic interval-wise control of the FWER. Pini and

Vantini (2013) proved that, if all univariate and multivariate tests used to build

the ITP are exact, the ITP based on the p components of any basis expansion is

provided with an interval-wise control of the FWER. This result can be applied

directly in the case of the F -test on the regression model, but has to be extended

in the more general case of tests on linear hypotheses (including the t-tests on

functional regression parameters), as in the latter the exactness of all tests is

only asymptotical.

Theorem 3.1. Under assumptions (C1-C2), the test of the family of linear

hypotheses (3.12) based on the statistic T
(k)
C (3.17) is provided with an asymptotic

interval-wise control of the FWER. Formally, the ITP-adjusted p-values λ
(k)
ITP,C,

∀k = 1, ..., p, are s.t., for any interval I and any α ∈ (0, 1]:

lim sup
n→∞

PHI0,C
[
∃k ∈ I s.t. λ

(k)
ITP,C ≤ α

]
≤ α.
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Since t-tests are specific cases of linear hypothesis, we obtain directly the follow-

ing corollary.

Corollary 3.1. Under assumptions (C1-C2), the test of the family of hypotheses

(3.15) for the l-th functional regression parameter based on the statistic T
(k)
t,l

(3.16) is provided with an asymptotic interval-wise control of the FWER.

Furthermore, the following proposition provides exact results for ITP-based F -

test.

Proposition 3.1. The test of the family of hypotheses (3.13) based on the statis-

tic T
(k)
F (3.14) is provided with an exact interval-wise control of the FWER. For-

mally, the ITP-adjusted p-values λ
(k)
ITP,F , ∀k = 1, ..., p, are s.t., for any interval

I and any α ∈ (0, 1]:

PHI0,F
[
∃k ∈ I s.t. λ

(k)
ITP,F ≤ α

]
≤ α.

Next, we focus on the property of consistency of the proposed tests. Let A
denote the set of indexes associated to all components where H

(k)
0,C is false, i.e., let

HA1,C =
⋂
k∈AH

(k)
1,C hold. Then, the following theorem states that the probability

of detecting every component of the set A converges to 1 as the sample size

increases.

Theorem 3.2. The test of the family of linear hypotheses (3.12) based on the

test statistic T
(k)
C (3.17) is consistent. Formally, for any set A ⊆ {1, ..., p}, the

ITP-adjusted p-values λ
(k)
ITP,C are s.t.:

lim
n→∞

PHA1,C
[
∀k ∈ A, λ(k)

ITP,C ≤ α
]

= 1.

As a consequence, we obtain also consistency results for ITP-based F -test and

t-tests.

Corollary 3.2. The test of the family of hypotheses (3.13) based on the F -test

statistic T
(k)
F (3.14) is consistent.

Corollary 3.3. The test of the family of hypotheses (3.15) for the l-th functional

regression parameter based on the t-test statistic T
(k)
t,l (3.16) is consistent.

The ITP used in this paper provides the control of FWER on every interval.

However, it is possible to consider for the multiplicity correction not only all

possible intervals, but also the complementary sets of all intervals. In such way,

the control can be extended over the interval complements as well. For details,

we refer to Pini and Vantini (2013).

3.4 Discussion

In this work, we introduced a methodology to estimate and test a functional-on-

scalar linear model, i.e., a linear model where the response variable is a function

and the covariates are fixed scalar variables multiplied by fixed functional param-

eters. This type of model can be applied whenever functional data are described

through a suitable basis expansion. We showed how the initial functional linear
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model can be decomposed in a family of dependent linear models, one for each

component of the basis expansion.

We provided OLS estimates for the functional regression parameters, as well

as tests on the model. Specifically, we provided: (i) a functional F -test for

testing the regression model; and (ii) functional t-tests for testing the effects of

single covariates. All tests are based on the Interval Testing Procedure (ITP), a

non-parametric procedure for testing functional data. We provided theoretical

properties for the ITP-based F -test on the regression model and the ITP-based

t-tests on the functional regression parameters. In detail, we proved theoretically

that the F -test on the regression model is provided with an interval-wise control

of the Family Wise Error Rate, implying that the probability of falsely rejecting

any interval of true null hypotheses pertaining basis components is controlled.

Furthermore, we proved that the F -test on the regression model is consistent,

in the sense that the probability of rejecting all false null hypothesis converges

to one as the sample size increases. We proved that the t-test on functional

regression parameters are provided with an asymptotic interval-wise control of

the Family Wise Error Rate, and that they are consistent.

Finally, we mention that the R-package fdatest (Pini and Vantini, 2014),

available on CRAN, contains the implementation of the inferential procedure on

functional-on-scalar linear models presented in this work. The current version

of the package requires the evaluation of functional data on a uniform grid. It

automatically projects data on a B-spline basis, and performs the F -test on the

regression model and all t-tests on regression parameters.
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Appendix

3.A Proofs

In this section, we prove the theoretical properties reported in Section 3.3. We

first report the theoretical properties of single-components tests based on the

Freedman and Lane scheme, i.e., the tests on each component of the basis expan-

sion. Then, we report the theoretical properties of the corresponding multiple-

component tests, i.e., the tests on intervals of basis components obtained by

means of the NPC of single-components tests. Finally, we prove that the ITP-

based tests of linear hypotheses on the functional-on-scalar linear model is pro-

vided with an asymptotic interval-wise control of the FWER and that they are

consistent. Additionally we show that the ITP-based F -test on the regression

model is provided with an exact interval-wise control of the FWER.

3.A.1 Single-component tests

As mentioned above, we first prove the theoretical properties of single-components

tests, i.e., the tests on each component of the basis expansion. We start by show-

ing asymptotic exactness of single-component tests on linear hypotheses.

Lemma 3.1. Under assumptions (C1-C2), and for each component k = 1, ..., p,

the single-component test of linear hypotheses on the regression parameters (3.12)

is asymptotically exact.

Proof. Let H
(k)
0,C hold, i.e., Cβ(k) = c

(k)
0 . Under the null hypothesis, the model can be

reduced by solving the linear system Cβ(k) = c
(k)
0 . In detail, since C has full rank, q ≤ L+ 1

regression parameters can be removed from the model. LetQ denote the set of indexes removed.
The reduced model is then y

(k)
i =

∑
r 6∈Q βr

(k)a
(k)
r xri+εi

(k), where x0i = 1, a
(k)
r are fixed known

coefficients (depending only on the solution of linear system Cβ(k) = c
(k)
0 ), and εi

(k) are i.i.d.
and zero-mean errors.

The Freedman and Lane permutation scheme is based on the permutations of the residuals
ε̂
(k)
i,C = y

(k)
i −

∑
r 6∈Q β̂

(k)
r,Ca

(k)
r xri, where β̂

(k)
r,C , r 6∈ Q are the OLS estimate of parameters β

(k)
r

under the reduced model. Under conditions (C1-C2 ), we have strong consistency of the OLS

parameter estimates, i.e., in our case: β̂
(k)
r,C

a.s.−−→ β
(k)
r , ∀r 6∈ Q. Hence, we also have the strong

convergence of the residuals, i.e., ε̂
(k)
i,C

a.s.−−→ ε
(k)
i , ∀i = 1, ..., n.

The errors εi
(k) of the reduced linear model are exchangeable. Hence, the likelihood of every

permutation is invariant, and equal to 1/n!. Therefore, the test based on the permutations of

the errors εi
(k) is exact. As ε̂

(k)
i,C

a.s.−−→ ε
(k)
i , the residuals are asymptotically exchangeable, i.e.,

the likelihood of every permutation is asymptotically invariant, and converges to 1/n!. Hence,

the test based on permutations of the residuals is asymptotically exact. �

Asymptotical exactness for the t-test (3.15) is a direct consequence of the above

lemma. As an addition to asymptotic results for single component tests on any

linear hypothesis, we prove exactness of single-component F -test.
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Lemma 3.2. For each component k = 1, . . . , p, the single-component F -test of

(3.13) is exact.

Proof. Under H
(k)
0,F we have yi

(k) = β0
(k) + εi

(k). The estimated residuals of this model are

ε̂
(k)
i,0 = β0

(k) + εi
(k) − β̂(k)

0 , where β̂
(k)
0 = ȳ(k) is the sample mean of the responses yi

(k). Note

that the quantity β0
(k) + εi

(k) − β̂(k)
0 is permutationally invariant. Hence, the independence

between the errors implies the exchangeability of the residuals under H
(k)
0,F . Thus, the test

is exact, as it is based on the permutation of exchangeable quantities (Pesarin and Salmaso,

2010). �

In the next step, we verify the consistency of single-component tests on linear

hypotheses.

Lemma 3.3. For each component k = 1, . . . , p, the single-component test of

linear hypotheses on the regression parameters (3.12) based on the test statistic

T
(k)
C (3.17) is consistent.

Proof. The statement follows directly from the fact that the test statistic T
(k)
C is stochas-

tically greater under H
(k)
1,F than under H

(k)
0,F (Pesarin and Salmaso, 2010). �

As direct implication of Lemma 3.3, we get the consistency of single-component

F -test and t-tests based on test statistics T
(k)
F and T

(k)
t,l , respectively.

3.A.2 Multiple-components tests

Next, we investigate the properties of multiple-component testsHI0,C =
⋂
k∈I H

(k)
0,C ,

where I = {k1, ..., k2} and 1 ≤ k1 < k2 ≤ p. To construct these tests from the

results of joint single-component tests, we use the NPC methodology. We start

by proving the asymptotic exactness of such tests on linear hypotheses.

Lemma 3.4. Under assumptions (C1-C2), for each interval of components I,

the multiple-component test of linear hypotheses on the regression parameters

HI0,C is asymptotically exact.

Proof. Let HI0,C hold, i.e., Cβ(k) = c
(k)
0 , for any k ∈ I. Under the null hypothesis, and for

each k ∈ I, the model can be reduced by solving the linear system Cβ(k) = c
(k)
0 . In detail, since

C has full rank, q ≤ L+1 regression parameters can be removed from the model. Let Q denote
the set of indexes removed. The reduced model is then y

(k)
i =

∑
r 6∈Q βr

(k)a
(k)
r xri+ εi

(k), where

x0i = 1, a
(k)
r are fixed known coefficients (depending only on the solution of linear systems

Cβ(k) = c
(k)
0 ), and εi

(k) are i.i.d. and zero-mean errors.

The NPC applied to the Freedman and Lane permutation scheme is based on the joint
permutations (the same for each k) of the residuals ε̂

(k)
i,C = y

(k)
i −

∑
r 6∈Q β̂

(k)
r,Ca

(k)
r xri, where β̂

(k)
r,C ,

r 6∈ Q are the OLS estimate of parameters β
(k)
r under the reduced model. Under conditions (C1-

C2 ), we have strong consistency of the OLS parameters estimates, i.e., in our case: β̂
(k)
r,C

a.s.−−→
β
(k)
r , ∀r 6∈ Q, and ∀k ∈ I. Hence, we also have the strong convergence of the residuals, i.e.,
ε̂
(k)
i,C

a.s.−−→ ε
(k)
i , ∀i = 1, ..., n and ∀k ∈ I.

The errors εi
(k) of the linear model are jointly exchangeable. Hence, the likelihood of every

joint permutation is invariant, and equal to 1/n!. So, the test based on the joint permutations

of the errors εi
(k) is exact. As ε̂

(k)
i,C

a.s.−−→ ε
(k)
i , ∀k ∈ I, the residuals are jointly asymptotically

exchangeable, i.e., the likelihood of every joint permutation is asymptotically invariant, and

converges to 1/n!. Hence, the test based on joint permutations of the residuals is asymptotically

exact. �
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Asymptotic exactness of multiple-component t-tests is a direct implication of

the above lemma. As in single-component case, we can also show stronger result

for multiple-component F -test.

Lemma 3.5. For each interval of components I, the multiple-component F -test

of the regression model is exact.

Proof. Since all univariate tests are exact and consistent (Corollary 3.2 and Lemma 3.3),

the combined test is also exact, due to results of Pesarin and Salmaso (2010). �

We proceed by proving consistency of multiple-component tests on linear hy-

potheses.

Lemma 3.6. For each interval of components I, the multiple-component test of

linear hypotheses on the regression parameters HI0,C is consistent.

Proof. The consistency of the multiple-component test follows directly from the consistency

of the corresponding single-component test (Lemma 3.3) and results of Pesarin and Salmaso

(2010). �

Once again, since F -test and t-tests are special cases of linear hypothesis tests,

the consistency of the multiple-component F -test and t-tests follows immediately

from Lemma 3.6.

3.A.3 Properties of IPT-based tests

We start by proving Theorem 3.1, establishing asymptotic interval-wise control

of ITP-based tests of linear hypotheses.

Proof of Theorem 3.1. Let I be an interval of components associated to only true
null hypotheses. Consider a component k of the interval, k ∈ I, and let K denote the set of
all intervals containing the component k. The ITP-adjusted p-value associated to component
k is λ

(k)
ITP,C = maxJ∈K λ

J
C , where λJC is the p-value of the permutation test on the interval J .

In particular, as I ∈ K, we have that λ
(k)
ITP,C ≥ λIC , and PHI

0,C
[λ

(k)
ITP,C ≤ α] ≤ PHI

0,C
[λIC ≤ α].

Since all tests are asymptotically exact (Lemmas 3.1 and 3.4), we have:

lim
n→∞

PHI
0,C

[
λIC ≤ α

]
= α,

and therefore,

lim sup
n→∞

PHI
0,C

[
∃k ∈ I : λ

(k)
ITP,C ≤ α

]
≤ α.

�

Assertion of Proposition 3.1 follows directly from the results of Pini and Vantini

(2013) and the fact that univariate and multivariate tests used to build the

procedure are exact (Lemmas 3.2 and 3.5). We now prove Theorem 3.2, which

guarantees consistency of ITP-based tests of linear hypothesis.

Proof of Theorem 3.2. Suppose that for a basis component k the alternative hypothesis
H

(k)
1,C is true, i.e. Cβ(k) 6= c

(k)
0 . Let K denote the set of every interval containing the component

k. If H
(k)
1,C is true, also each alternative hypothesis pertaining intervals in K is true. Since each

test is consistent (Lemmas 3.3, 3.6), it follows that, for n→∞, for each I ∈ K, the p-value λIC
converges to zero almost surely. The ITP-adjusted p-value λ

(k)
ITP,C is the maximum among all

p-values of the tests containing k, i.e., λ
(k)
ITP,C = maxI∈K λ

I
C → 0, almost surely. Then, for the

ITP-adjusted p-value associated to the k-th component λ
(k)
ITP,C , we have:

lim
n→∞

P
H

(k)
1,C

[
λ
(k)
ITP,C ≤ α

]
= 1.
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The latter holds for any k ∈ A, where A denotes the set of all false null hypotheses. Hence, we
also have:

lim
n→∞

PHA
1,C

[
∀k ∈ A, λ(k)

ITP,C ≤ α
]

= 1.

�

The Corollary 3.2 and Corollary 3.3 follow immediately from Theorem 3.2, as

special cases.

3.B The Freedman and Lane permutation scheme

In this section, we give some details of the implementation of the Freedman and

Lane permutation scheme for testing linear hypotheses on regression model for

each component k (see eq. (3.4))

y
(k)
i =

L∑
l=0

βl
(k)xil + εi

(k), ∀i = 1, . . . , n,

with xi0 = 1, ∀i. Further, we present the the two specific cases: F -test on the

regression model; and t-tests on the regression parameters.

The Freedman and Lane permutations are based on the following steps:

i the residuals of the reduced model (that is the linear model under the null

hypothesis) are estimated;

ii the residuals of the reduced model are permuted;

iii the permuted responses are computed, through the reduced model and

permuted residuals.

For more details about this method, we refer to Freedman and Lane (1983);

Anderson and Legendre (1999).

3.B.1 Tests on linear hypotheses

Under the null hypothesis (3.12), the model (3.4) can be reduced by solving the

linear system Cβ(k) = c
(k)
0 . In detail, since C has full rank, q ≤ L+ 1 regression

parameters can be removed from the model, by expressing them in terms of the

others. Let Q denote the set of indexes of the removed regression parameters.

The reduced model is then:

y
(k)
i =

∑
r 6∈Q

βr
(k)x̃ri + εi

(k), (3.18)

i.e., the responses can be written in terms of modified covariates x̃ri = a(k)
r xri,

where a(k)
r are fixed known coefficients, depending only on the solution of linear

system Cβ(k) = c
(k)
0 , and εi

(k) are i.i.d. and zero-mean errors.

The residuals of the reduced model can then be estimated as ε̂
(k)
i,C = y

(k)
i −∑

r 6∈Q β̂
(k)
r,C x̃ri, where β̂

(k)
r,C are the OLS estimates of parameters β(k)

r , r 6∈ Q, of

model (3.18). Then, the residuals ε̂
(k)
i,C are permuted, and the permuted responses

are evaluated using the permuted residuals ε̂
(k)∗

i,C in the reduced model (3.18):

y
(k)∗

i =
∑
r 6∈Q

β̂
(k)
r,C x̃ri + ε̂

(k)∗

i,C . (3.19)
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3.B.2 F -test for the regression model

In the case of the F -test (3.13), under the null hypothesis all regression param-

eters except the intercept are null. So, the reduced model is:

yi
(k) = β0

(k) + εi
(k).

The estimated residuals of such model are ε̂
(k)
i,F = yi

(k) − ȳ(k), where ȳ(k) is the

sample mean of the responses yi
(k). Therefore, using the permuted residuals

ε̂
(k)∗

i,F , we get:

yi
(k)∗ = ȳ(k) + ε̂

(k)∗

i,F .

Moreover, in this case permuting the residuals ε̂
(k)
i,F is equivalent to permuting

the responses yi
(k).

3.B.3 t-tests on regression parameters

In the case of t-tests, the model under null hypothesis (3.15) reduces to:

y
(k)
i = β0

(k) +
∑
r 6=l

βr
(k)xri + εi

(k).

The estimated residuals of such model are ε̂
(k)
i,l = y

(k)
i −β̂(k)

0,l +
∑

r 6=l βr,l
(k)xli, where

β̂
(k)
r,l are the OLS estimates of the parameters of the reduced model. Then, the

permuted responses are:

y
(k)∗

i = β̂
(k)
0,l +

∑
r 6=l

β̂
(k)
r,l + ε̂

(k)∗

i,l , (3.20)

where ε̂
(k)∗

i,l are the permuted residuals.

3.C The Non Parametric Combination procedure

The NPC methodology (Pesarin and Salmaso, 2010) allows to build multivari-

ate permutation tests starting from the results of a family of joint univariate

permutation tests.

Consider a family of null hypotheses {H(m)
0 }m∈M, with M = {m1, . . . ,md}.

Each hypothesis H
(m)
0 is tested against H

(m)
1 , m ∈ M, by means of a suit-

able permutation test, with test statistic T (m). Let λ(m) denote the resulting

p-value. We want to test the multivariate hypothesis H
(M)
0 =

⋂
m∈MH

(m)
0

against the alternative H
(M)
1 =

⋃
m∈MH

(m)
1 , using the results of the univariate

tests. The test statistic for such test is the combination of univariate p-values:

ψ(λ(m1), ..., λ(md)), where ψ is any valid combining function, i.e., any function

ψ : [0, 1]d 7→ R satisfying:

(P1) ψ is non-increasing in each argument;

(P2) ψ is invariant with respect to rearrangements of its arguments:

ψ(λ(m1), ..., λ(md)) = ψ(λ(m∗1), ..., λ(m∗d)),

where (λ(m∗1), ..., λ(m∗d)) is any rearrangement of (λ(m1), ..., λ(md));
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(P3) ψ attains its supremum value ψ̄ (possibly not finite) even when only one

argument attains zero;

(P4) for α ∈ (0, 1], let ψα denote the critical value of the test statistic, i.e.,

ψα = F−1
ψ (α), where Fψ is the cdf of the test statistic ψ. Then, for a valid

combining function, ψα is finite and strictly smaller than ψ̄.

The following theorem, reported in Pesarin and Salmaso (2010) shows the

properties of combined tests:

Theorem 3.3. If permutation tests for respectively H
(m)
0 against H

(m)
1 , m ∈M

are exact and consistent, then the NPC test based on a combining function ψ

satisfying (P1) to (P4) is an exact and consistent test for HM0 against HM1 .
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Chapter 4

One-Way Functional ANOVA:
Analysis of Human Movement

Abstract

Regardless of conservative or surgical intervention, anterior cruciate ligament

(ACL) ruptures can cause long-term functional deficits. To assist identify and

treat deficiencies, three-dimensional motion analysis systems can be used to

provide objective data that describes functional performance. In most circum-

stances, kinematic data are analyzed using traditional methods, which reduce

continuous data series into discrete variables. Conversely, functional data anal-

ysis (FDA) considers magnitude, shape, and timing of continuous data, thereby

providing a more comprehensive overview on motion. Here, we employ a novel

ANOVA-based FDA technique to examine the entire time domain of knee-

kinematic curves from one-leg hops performed by 95 subjects. All subjects were

involved in a long-term follow-up ACL study (KACL20) that involved ACL-

ruptured subjects treated ∼20 years ago conservatively with physiotherapy only

(ACLPT) or combined with reconstructive surgery (ACLR), and knee-healthy

controls (CTRL).

Keywords: Biomechanics, Curve Analysis, Functional Outcomes, Interval Test-

ing Procedure, Lower Extremity, Rehabilitation

4.1 Introduction

Anterior cruciate ligament (ACL) injuries are common worldwide, affecting each

year approximately 1/4 million Americans (Silvers and Mandelbaum, 2011) and

up to 0.05% of several national populations (Røtterud et al., 2011). In the short-

term, acute interventions of such injuries can instigate high socio-economic costs

(Brophy et al., 2009), with the injuries themselves causing deficits in knee func-

tion, control, and strength still apparent 6 to 9 months post-injury (Xergia et al.,

2013). In the middle-to-long term, individuals post-ACL injuries show changes

in cartilage morphology up to two-years post-therapeutic interventions (Frobell,

2011); low rates of return to competitive sports despite promising functional

outcome scores (Ardern et al., 2011); persisting knee-joint laxity 17-years post-

reconstruction on radiographic evaluation in ∼ 70% of cases (Ait Si Selmi et al.,

2006); and precursors of osteoarthritis or osteoarthritis itself about 25-years
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post-reconstruction in ∼ 50% (Pernin et al., 2010; Yamaguchi et al., 2006) to

90% of cases (Tengman et al., 2014).

Conservative treatment of ACL ruptures (ACLPT) traditionally involves a

physiotherapeutic approach inclusive of analgesic modalities, rehabilitative ex-

ercises, and physical activity modification. Alternatively, surgical treatment

of ACL ruptures (ACLR) involves reconstruction combined with physiotherapy.

There is a longstanding controversy regarding whether all ACL-ruptured indi-

viduals should undergo surgery and the extent to which the long-term functional

outcomes differ between conservatively and surgically treated patients (Delincé

and Ghafil, 2012). Although some studies report greater knee instability and

degeneration and poorer subjective outcomes with conservative treatment (Mi-

helic et al., 2011), others suggest relatively similar outcomes between treatment

approaches (Ageberg et al., 2008; Frobell et al., 2010; von Porat et al., 2006).

In any circumstance, evidence suggests adverse effects persisting more than

20-years post-ACL ruptures (Mihelic et al., 2011; Yamaguchi et al., 2006), with

knee function and kinematics never fully returning to normative values (Delincé

and Ghafil, 2012). Still, only a few studies have investigated the long-term effects

(i.e., > 15 years) of both types of ACL-rupture interventions on knee-joint kine-

matics during functionally demanding tasks, particularly in relation to matched

knee-healthy controls. The existing research in this area provides equivocal find-

ings, with no consistent conclusions regarding the presence or extent of long-term

biomechanical functional deficits in conservatively- and surgically-treated groups

(Roos et al., 2014; Stensdotter et al., 2013; von Porat et al., 2006). For instance,

a recent investigation reported inferior one-leg balancing ability in ACLPT in-

dividuals 20-years post-intervention when compared to matched knee-healthy

controls (CTRL), but comparable abilities between ACLPT and ACLR (Stens-

dotter et al., 2013). On the other hand, von Porat et al. (2006) observed no

marked differences in the kinematic and kinetic characteristic of gait, stair as-

cent and descent, and cross-over hops between such groups (i.e., ACLPT, ACLR,

and CTRL) when ACL-ruptured subjects were 16-years post-treatment.

In biomechanics, the use of traditional statistical analyses may explain such

divergent findings given that continuous kinematic and kinetic data series are

generally reduced to discrete variables (e.g., maximum knee flexion angles and

time-to-peak forces), thereby removing information pertinent to the timing and

shape of the continuous data series. Alternatively, functional data analysis

(FDA) considers the magnitude, shape, and timing of continuous data series,

and may therefore discern differences overlooked by traditional analyses. As

such, employing FDA to treat biomechanical data has emerged over the last

decade (Godwin et al., 2010; Pataky et al., 2013; Ryan et al., 2006) with the

benefit of conserving the time-dependent structure of the data. In particular,

the Interval Testing Procedure (ITP) (Pini and Vantini, 2013) identifies time

intervals in which populations of interest differ, without dimensional reduction

since the latter intervals are inferentially identified.

Here, we propose using this novel FDA method named ITP on one-leg hop

(OLH) kinematic data taken from the KACL20 long-term follow-up study that

involved ACLPT, ACLR , and CTRL. Clinically, the OLH is employed to assess

functional capacities after ACL injuries (Ageberg et al., 2007), as it demonstrates
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moderate correlations with patient-reported outcomes (Reinke et al., 2011; Sern-

ert et al., 1999) and is reliable for assessing function post-ACL reconstruction

(Sernert et al., 1999). Furthermore, since the OLH represents a biomechanically

challenging task, it is often used to assess readiness to return to sports activities

(Barber-Westin and Noyes, 2011). Using ITP to analyze knee kinematics dur-

ing a functionally demanding task in CTRL, ACLPT, and ACLR might assist in

further understanding the extent and mechanisms underlying longstanding dys-

functions, as well as the movement compensation strategies which follow these

injuries.

Hence, our aims were to employ FDA on knee-joint kinematic data collected

during OLHs, and compare kinematic curves between ACLR, ACLPT, and CTRL

subject groups. On the basis of existing research and conventional analyses

on these kinematic data (Tengman et al., 2013), we hypothesized that FDA

would identify between-group and between-leg differences in the ACL-ruptured

groups, with the involved leg of ACL-injured subjects exhibiting lesser knee

flexion during take-off and landing (Gokeler et al., 2010; Orishimo et al., 2010),

as well as greater knee abduction (Paterno et al., 2010) and external rotation

(Deneweth et al., 2010) during landing. Furthermore, we anticipated that the

ITP would identify time-intervals during which groups differed, providing novel

information not available when using more conventional statistical approaches.

4.2 Method

4.2.1 Subjects

The research protocol used, which adhered to the Declaration of Helsinki, was

approved by the Regional Ethical Review Board (Ume̊a, Sweden) before subject

recruitment. To meet inclusion, subjects had to be in good self-reported health

with no contra-indication to completing the study protocol. Omitting unilateral

ACL injuries in the ACLR and ACLPT groups, individuals were excluded when

presenting with a current or prior traumatic musculoskeletal injury to the knee,

inflammatory or rheumatic disease, neurological condition, or history of bilateral

ACL injury.

All subjects provided written informed consent to participate in this study,

which was part of the larger-scale KACL20 project that addressed several aspects

of knee function (Tengman et al., 2014). The demographic characteristics of

subjects presenting a complete kinematic data set for the OLH task are reported

in TABLE 1, along with hoping distances. All ACLR and ACLPT subjects had

been treated ∼ 20 years ago (range: 17 to 28 y) in two separate hospitals that

had been following different treatment protocols, as described in (Tengman et al.,

2014). Although the CTRL subjects were purposefully selected to match as

closely as possible the demographic characteristics of the ACL-ruptured subjects,

non-parametric analyses revealed between -group differences in body mass index

(p = 0.0005), with CTRL differing from both ACLR (p = 0.0140) and ACLPT

(p = 0.0007).
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Subjects (n = 95) Age (y) BMI (kg/m2) Men (%) One-leg hop distance (m)

Injured Non-injured
non-dominant dominant

ACLR (n = 31) 46± 5 27± 3a 64.5 1.13± 0.27 1.20± 0.26

ACLPT (n = 33) 48± 6 28± 4a 63.3 1.00± 0.22 1.10± 0.26

CTRL (n = 31) 47± 5 25± 3b,c 64.5 1.08± 0.23 1.07± 0.25

Table 4.1: Demographic characteristics and maximal one-leg hopping distances of subjects
presented by group. Injured and non-injured legs are in ACLR and ACLPT, whereas non-
dominant and dominant legs are in CTRL. Significant differences between-groups were derived
from non-parametric analyses (Kruskal-Wallis and Mann-Whitney with Bonferroni corrections).
a,b,c: significantly different (p < 0.05) from the CTRL, ACLR, and ACLPT values, respectively.

4.2.2 Experimental procedures

Each subject was familiarized with the experimental protocol and tested in a

single session. After recording height and body mass; subjects warmed-up for

6-min on an ergometer bicycle (Monark AB, Sweden) at a fairly light intensity,

i.e., 11 on the 20-point Borg scale (Borg, 1982). Subjects then practiced the

OLH sub-maximally under supervision and guidance from an investigator. The

familiarization period was followed by 2 min of rest, after which testing was

initiated.

One-leg hops for maximal distance were performed barefoot beginning in

single-legged upright stance over a custom-made force-plate sampling at 1200

Hz (Department of Biomedical Engineering and Informatics, University Hospi-

tal of Ume̊a, Sweden). Force-plate data were time synchronized with the motion

analysis system, and used to determine hop take-off. During hopping, subjects

were requested to hop forward as far as possible, landing on the same leg with-

out losing balance. Arms were held across the chest to limit contribution of

arm swing to performance and occlusion of lower-body markers. Hops were

performed three times on each leg, starting on the non-injured leg for the ACL-

injured groups and dominant leg for controls (i.e., preferred leg to kick a ball),

and followed by the contralateral leg. When subjects failed to perform a hop

appropriately (e.g., lost balance during landing), it was replaced with an addi-

tional trial after rest. On the basis of the horizontal displacement of the lateral

malleolus, only data from the longest hop on each leg were kept for analysis,

with corresponding distances presented in Table 1.

4.2.3 Motion capture

Body motion was monitored during OLHs at a 240-Hz sampling rate using a

calibrated 8-camera 3D motion analysis system (Oqus 300+, Qualisys Medical

ABr, Gothenburg, Sweden) and QTM software version 2.7 (Qualisys Medical

ABr, Gothenburg, Sweden). Forty-two retro-reflective markers were taped onto

the skin of individuals over anatomical landmarks following standard marker

placement guidelines used previously (Grip and Häger, 2013). From the reference

markers, an 8-segment full-body biomechanical model with 6-degrees-of-freedom

was constructed in Visual3D ProfessionalTM Software v.4.96.7 (C-Motion Inc.,

Germantown, Maryland, USA), with the local coordinates of all body segments

derived from a static measurement captured prior to the dynamic hopping trials.
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4.2.4 Data processing

Biomechanical data were exported in the c3d format and processed in Visual3D.

Marker data were routinely interpolated in QTM using a B-spline interpolation,

allowing a maximum of 30 frames for gap filling. Both marker and force-plate

data were then filtered with a 6-Hz bi-directional second order low-pass Butter-

worth filter.

Take-off event was defined from the kinetic data as the instance when the

vertical ground reaction forces reached minimal values. Touch-down event was

determined from the kinematic data as the instance when the vertical velocities

of the lateral malleolus marker reached minimal values. On the basis of these

events, all hops were divided into three phases: 1) take-off, 0.7 ms prior to and

including take-off events; 2) flight, between take-off and touch-down events; and

3) landing, 0.7 ms following and including touch-down events.

Kinematic parameters were calculated using rigid-body analysis and Euler

angles obtained from the static calibration. Knee-joint angles (◦) were computed

using an x− y − z Cardan sequence equivalent to the Joint Coordinate System

(Grood and Suntay, 1983), with the conventions used for interpreting motion

directions illustrated in Figure 4.1. The kinematic curves of knee-joint angles in

the three planes of motions were extracted for FDA. Although angular velocity

and acceleration data were also investigated, only joint-angle curves are reported

here as preliminary analysis revealed similar trends in results for the other two

parameters.

Figure 4.1: Knee-joint motion in the sagittal (left figure), coronal (middle figure), and trans-
verse (right figure) planes of motion with conventions used to interpret direction of motion.

4.2.5 Statistical method

An inferential analysis on the knee-joint kinematic curves was performed for the

data in the sagittal, coronal, and transverse planes and for the three hopping

phases independently from one another using ITP, described in Chapter 2. Given

the various durations of flight (range: 150 to 350 ms), data from this phase were

time normalized and expressed as a percentage.

In ITP, time-dependent data are decomposed in the abscissa domain (i.e.,

time domain) into smaller parts using B-spline methods. The procedure then

uses non-parametric permutation tests to provide adjusted p-values for each part

of the domain via an interval-wise control of the family wise error rate (Pini and

Vantini, 2013), thus enabling identification of time intervals wherein data from
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different groups statistically differ. The process ensures that the probability

of wrongly rejecting any time interval (i.e., false positive) is below the chosen

significance level, herein set at 5%.

To compare motion curves between groups, an ITP-based ANOVA using

Scheffé-based pair-wise comparisons was applied following previously described

procedures (Abramowicz et al., 2014) (see Appendix 4.A for more details). The

ITP was first applied to data from the injured legs of ACLR and ACLPT subjects

and non-dominant legs of CTRL subjects, and then to the data from the non-

injured and dominant legs of these respective groups. Finally, an ITP-based

t-test was also applied to the point-wise difference of curves between legs within

each group, calculated as the injured minus the non-injured leg in ACLR and

ACLPT and the non-dominant minus the dominant leg in CTRL subjects. All

computations were performed in R version 3.03 (R Core Team, 2012).

4.3 Results

4.3.1 Between-group comparisons

Statistical comparisons of the kinematic curves involving the injured and domi-

nant legs of subjects (Figure 4.2) revealed no marked differences between ACLR

and CTRL. In contrast, the performance of ACLPT in the sagittal plane substan-

tially differed from the two other groups, with the most pronounced differences

spanning the maximum knee flexion time-points during both take-off and land-

ing. Specifically, ACLPT exhibited lesser knee flexion than ACLR from 636 to

207 ms prior to take-off, and from 621 to 122 ms compared to CTRL. Similarly,

during landing, ACLPT demonstrated lesser knee flexion than CTRL and ACLR

from 36 to 464 and 22 to 464 ms following ground contact, respectively. In

addition, ACLPT had greater external rotation than CTRL in vicinity of 10 ms

post-landing.

Statistical comparisons of the kinematic curves involving non-injured and

dominant legs (Figure 4.3) showed similar, but less pronounced, differences than

those involving injured and non-dominant legs. Between-group differences were

only significant in the sagittal plane during take-off, with ACLPT again demon-

strating lesser knee flexion than ACLR and CTRL from 464 to 136 ms prior to

take-off.

4.3.2 Within-group comparisons

No significant between-leg point-wise differences in the knee angle curves were

identified within the CTRL (Figure 4.4). In the other hand, both ACLPT and

ACLR showed between-leg disparities, wherein the injured leg in the correspon-

dent groups exhibited more pronounced knee flexion throughout the first third

(0% to 34%) and third-quarter (50% to 77%) of flight. Moreover, the injured leg

of ACLPT also exhibited increased external rotation at several instances during

the landing.
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Figure 4.2: Between-group comparisons of knee angles in the sagittal (top row), coronal (middle
row), and transverse (bottom row) planes of motion during the take-off (left column), flight
(middle column), and landing (right column) phases of one-leg hops performed using the injured
leg in ACLR and ACLPT subjects and non-dominant leg in CTRL subjects. The bold solid lines
correspond to group means and the dashed lines represent the data for a given individual (ACLR

in red, ACLPT in blue, and CTRL in green). The grey areas within the plots indicate significant
between-group differences detected using Interval Testing Procedure based ANOVAs. Results
from the pairwise group comparisons are underlined in grey in the panels below the plots,
with the pairs indicated by the color-coded symbols (ACLR by red rectangles, ACLPT by blue
circles, and CTRL by green triangles). Significant differences at 5% and 1% are represented
in light and dark grey, respectively. ACLR, ACL-ruptured subjects treated surgically with
reconstruction and physiotherapy; ACLPT, ACL-ruptured subjects treated conservatively with
physiotherapy only; CTRL, knee-healthy controls.
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Figure 4.3: Between-group comparisons of knee angles in the sagittal (top row), coronal (mid-
dle row), and transverse (bottom row) planes of motion during the take-off (left column), flight
(middle column), and landing (right column) phases of one-leg hops performed using the non-
injured leg in ACLR and ACLPT subjects and dominant leg in CTRL subjects. The bold solid
lines correspond to group means and the dashed lines represent the data for a given individ-
ual (ACLR in red, ACLPT in blue, and CTRL in green). The grey areas within the plots
indicate significant between-group differences detected using Interval Testing Procedures based
ANOVAs. Results from the pairwise group comparisons are underlined in grey in the panels
below the plots, with the pairs indicated by the color-coded symbols (ACLR by red rectangles,
ACLPT by blue circles, and CTRL by green triangles). Significant differences at 5% are rep-
resented in light grey. ACLR, ACL-ruptured subjects treated surgically with reconstruction
and physiotherapy; ACLPT, ACL-ruptured subjects treated conservatively with physiotherapy
only; CTRL, knee-healthy controls.
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Figure 4.4: Within-group comparisons of knee angles in the sagittal (top row), coronal (mid-
dle row), and transverse (bottom row) planes of motion during the take-off (left column),
flight (middle column), and landing (right column) phases of one-leg hops. The bold solid
lines correspond to group means of between-leg differences (i.e., injured minus non-injured in
ACLR and ACLPT, and non-dominant minus dominant leg in CTRL). For clarity, no individ-
ual curves are presented. Results from the Interval Testing Procedure based paired -t-tests are
underlined in grey in the panels below the plots, with the pairs indicated by the color-coded
symbols (ACLR by red rectangles, ACLPT by blue circles, and CTRL by green triangles).
Significant between-leg differences at 5% and 1% are represented in light and dark grey, respec-
tively. ACLR, ACL-ruptured subjects treated surgically with reconstruction and physiother-
apy; ACLPT, ACL-ruptured subjects treated conservatively with physiotherapy only; CTRL,
knee-healthy controls.
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4.4 Discussion

Despite interventions, long-term (∼ 20 years) knee-joint movement discrepancies

in ACL-ruptured individuals were detected here using a novel FDA approach,

which statistically compared the entire knee-kinematic curves of OLHs between

and within three different population groups. By employing ITP, we not only

identified between-group and between-leg differences in knee-displacement curves

of distinct populations during a challenging task, but also isolated the time-

interval ranges during which movement patterns differed.

Use of ITP is a step forward from previous reports investigating similar hop

performances, wherein the main focus was on a few discrete variables, such as

knee angles at given time-points (Gokeler et al., 2010; Orishimo et al., 2010; Pa-

terno et al., 2010). Indeed, our ITP approach analyzed the entire time-varying

structure of the kinematic data rather than a single registered event, providing a

more comprehensive overview of knee-joint function and ability to identify differ-

ences. Such information can be useful for clinicians during OLH evaluations and

assist in detecting deviations in movement patterns from the anticipated norm.

For example, our data informs practitioners that ACL-deficient subjects with-

out full functional recovery are likely to exhibit lesser knee flexion from ∼640

to 200 ms prior to take-off and from ∼40 to 460 ms post-landing compared to

ACLR and CTRL Additionally, ACLPT might also exhibit greater external ro-

tation in vicinity of 10 ms post-landing compared to CTRL, even several years

after injury. In contrast, the flight phase and abduction/adduction kinematic

curves provided little evidence of movement discrepancies in our ACL-injured

cohort, suggesting that these particular aspects may be of lesser diagnostic value

in the long term during OLH evaluation. Given the key differences identified,

individuals with conservative treatment would not only benefit from post-injury

rehabilitation, but also a more consistent and long-term program. Such a pro-

gram could involve feedback training targeting their functional deficits during

landing (Gokeler et al., 2013), knee extensor strengthening in presence of deficits

(Schmitt et al., 2012), as well as core exercise training (Jamison et al., 2013) to

enhance lower-body dynamic stabilization.

As hypothesized, between-group and between-leg differences in ACL-ruptured

groups were identified, although mainly in ACLPT. In terms of between-group

analyses and consistent with previous investigations, the injured leg of ACLPT

demonstrated lesser knee flexion during take-off and landing (Gokeler et al.,

2010; Orishimo et al., 2010) and greater external rotation during landing (De-

neweth et al., 2010) than the non-dominant leg of controls. Our findings extend

on previous work employing more traditional analyses by detecting that dif-

ferences in knee movement patterns occur not only at specific instances, such

as the maximal knee flexion during take-off, but rather throughout large por-

tions of the take-off. These latter results, however, did not apply to ACLR, as

the kinematics of their reconstructed-ACL knee did not significantly differ from

CTRL at any time during the OLH. As such, our results suggest superior long-

term knee-joint functional stability in ACLR (reconstruction with physiotherapy)

than in ACLPT (physiotherapy only), supporting recent investigations in this

area (Roos et al., 2014). Potential mediators of long-term knee dysfunctions in

90



CHAPTER 4. ONE-WAY FUNCTIONAL ANOVA: ANALYSIS OF HUMAN
MOVEMENT

ACL-injured individuals include reduced relative strength, particularly of knee

extensors (Oberländer et al., 2013; Roos et al., 2014); diminished feed-forward

strategies (Bryant et al., 2009); increased reliance on hip and ankle joints for

dynamic stabilization (Oberländer et al., 2013); lower activity levels (Tengman

et al., 2014) incurring deconditioning; and impaired sensory functions (Ageberg

and Fridén, 2008), predominantly involving an increase in the threshold for de-

tecting passive motion of injured knees (Lee et al., 2009). The ability to detect

passive motion partly relies on the stimulation of Ruffini type mechanoreceptors

(Lephart et al., 1998) that, after one year, can be absent in untreated ruptured

ACLs (Denti et al., 1994), supporting Barretts (Barrett, 1991) earlier findings

of poorer detection of passive motion in ACLPT than ACLR, both inferior to

CTRL.

The fact that the time-interval of significant differences between-groups in the

sagittal plane involved the event of maximum knee flexion during take-off and

landing substantiates the use of the latter measures when more traditional sta-

tistical approaches are employed. However, it is also clear from our findings that

the event of maximum knee flexion is not the only characteristic distinguishing

OLH performances between ACL-deficient individuals against matched controls,

thereby encouraging scientists to employ more inclusive statistical procedures to

movement analysis. Concurrently, referring to Figures 4.2 and 4.4, our results

indicate that using the uninjured ACLPT leg as a reference for comparisons

(i.e., normative data) provides rather different results than when contrasted di-

rectly against the non-dominant leg of matched controls. For example, the noted

discrepancies during take-off in the sagittal plane between ACLPT and CTRL

(Figure 4.2) were not present when comparing between legs of ACLPT (Figure

4.4). In this instance, the time of maximum knee flexion was not able to detect

differing movement patterns between injured and non-injured legs, and was not

sensitive in identifying knee-joint movement differences. Therefore, although

previously concluded that comparisons to the uninvolved leg can serve as an

appropriate reference for normal OLH performance in ACL-injured individuals

(Petschnig and Baron, 2009; Van der Harst et al., 2007), our analyses caution

that such an approach may obscure functional impairments.

Considering the novelty of employing ITP on clinically relevant data, our

group piloted various approaches prior to selecting the most suitable for data

reporting and interpretation. As stated in our methods, ITP-based ANOVA was

also applied during preliminary analyses to the angular velocity- and acceleration-

time curves. However, analysis of knee-joint position was the most effective at

detecting deficits herein, and provided the most practically relevant information

to clinicians. Inherently, observing angular displacements during functional ac-

tivities is more viable in a clinical environment than estimating velocities and

accelerations. Similarly, to complement our analyses, FDA was also applied

on landmark-registered aligned data (Ramsay et al., 2009) during take-off and

landing by linearly transforming time to align maximum knee flexion angles of

individuals to an identical relative time point. Doing so reduced the phase vari-

ability around the maximum knee flexion event, with a greater analytical focus

on curve amplitudes. Since similar results were obtained between aligned and

unaligned data, only the latter analyses were presented to maintain temporal
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features of the OLH. Lastly, alternative methods than interval-wise control for

adjusting P-value statistics were piloted. Again, comparable outcomes were ob-

tained, emphasizing the presence of the between- and within-group differences

detected within our sampled populations, strengthening the rigor of the proposed

statistical approach.

Another advantage of our novel application of ITP on clinically-relevant data

is that each statistical result was derived using an interval-wise control of the

family wise error rate, implying a stern control of probabilities of accepting false-

positive intervals. Furthermore, the technique used here, albeit only applied to

knee-joint data, is generalizable to a range of continuous data, such as other

joint-kinematic, kinetic, and electromyographic data. In the future, we foresee

generalizing FDA use to a range of statistical questions, incorporating additional

covariates within FDA, and extending its use to ANCOVA-based models. In-

deed, various factors may have contributed to the differences observed, such as

age and sex (Ageberg et al., 2001), as well as take-off angles and jumping tech-

nique (Wakeling, 2009). Accounting for hopping distance might further elucidate

whether similar or dissimilar mechanisms are employed to fulfill this biomechan-

ically challenging task in distinct populations.

One limitation of this study is the pure focus on knee-joint angle as opposed

to whole body, which was a conscious choice to test the use of FDA on kinematic

data. When landing during OLH, Roos et al. (2014) reported lower center of

mass velocities just prior to landing, ranges of knee motion, travelled distances,

and knee movement fluency (i.e., a measure representing medial-lateral control)

in ACLPT compared to ACLR, with both significantly differing from controls.

Applying FDA to center of mass displacements and velocities could complement

and extend their study findings, describing the temporal profile of differences in

movement patterns; not just at landing, but throughout the hop. Identifying the

onset of such discrepancies might aid in further understanding the underlying

mechanisms associated with impaired motion, and highlight the most challenging

sections of OLHs, or other tasks, in ACL-injured individuals. Thereby, key

information could be gained, which could help tailor rehabilitation programs to

individuals, with future studies planned in this area.

4.5 Conclusions

Our novel implementation of FDA on knee-joint kinematic curves highlighted

knee-joint dysfunctions persisting ∼20 years post-ACL ruptures following inter-

vention that were more consistently identified in ACLPT than ACLR, consistent

with previous studies. Given the key differences identified, individuals with

conservative treatment would not only benefit from post-injury rehabilitation,

but also a more consistent and long-term follow-up with ongoing rehabilitation.

Although similar results may be observed using traditional statistics, our analyt-

ical approach has the advantage of considering the entire time-varying structure

of the kinematic data set, identifies time-intervals in which compromised knee

movement patterns are evident, and provides a more comprehensive and detailed

descriptive of human motion. With future refinement of our model, it would be

possible to take into account various covariates, such as age, sex, and hopping
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distances. Embracing such an approach could further explain the persistence

of dysfunctions in previously injured individuals, assist in analyzing a range of

functional movements, and guide rehabilitation programs.
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Appendix

4.A Statistical methodology for domain selection in
functional ANOVA

Suppose to observe a collection of curves y={y11, ...,yn11, ...,y1g, ...,yngg} from

g > 2 functional populations, and that the functions associated to the same

group are independent and identically distributed observation of the same ran-

dom function, i.e., {yiτ}i=1,...,nτ

iid∼ Yτ , ∀τ ∈ {1, ..., g}, and that Yτ1 and Yτ2 are

independent random functions, for each τ1 6= τ2. We aim at testing the equality

in distribution of all functional populations against the difference in distribution

of at least one population from the other ones:

H0 : Y1
d
=Y2

d
= ...

d
=Yg vs. H1 : ∃ τ1, τ2 s.t. Yτ1 6= Yτ2 . (4.1)

In order to perform the test, we apply the ITP proposed in Pini and Vantini

(2013). The ITP is a testing procedure for functional data constituted by the

following steps: (i) a high-dimensional functional basis is selected, and data are

represented by means of the coefficients of the basis expansion (in this case, we

will use a B-spline basis expansion yij(t) =
∑p

k=1 c
(k)
ij b

(k)
m (t)); (ii) the family of all

possible intervals of hypotheses pertaining ordered basis components (including

the univariate hypotheses themselves) is tested; (iii) the p-values associated to

each component is adjusted by calculating the maximum among the p-values

of each test containing that hypothesis. Details on the implementation of the

ITP are reported in Pini and Vantini (2013). To build the family of tests used

in the second phase, we propose employing the Non Parametric Combination

(NPC) procedure Pesarin and Salmaso (2010), which is based on joint univariate

permutation tests. Indeed, the NPC is a procedure that enables to perform a

multivariate test for each possible dimension of the vector to be tested and

for each sample size, and it is distribution-free, meaning that the normality

assumption is not needed.

As a final result, the procedure provides a family of p adjusted p-values

π(k), k = 1, ..., p, one for each basis function used in the first step. The ITP

is provided with an interval-wise control of the FWER that, since the B-spline

basis used is local, results in a control on each possible interval in terms of

the common abscissa along which the data are observed. In particular, while

rejecting the marginal null hypotheses with associated adjusted p-value π(k) < α,

we have that the probability of wrongly rejecting any interval of the domain is

less than α. The result of the test is, therefore, a selection of the intervals of the

domain that are significantly different among groups.

If one is just interested in selecting the intervals that presents differences
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among the g groups, without performing pairwise group comparisons, it would be

possible to construct an ITP that uses all possible permutations of the observed

values over the g groups, and a permutationally-invariant version of the Fisher

test statistic (Basso et al., 2009) to construct the univariate tests of the second

phase:

T ∗ =

g∑
τ=1

nτ
(
c̄(k)∗

τ − c̄(k)∗
)2

, (4.2)

where c̄(k)∗ is the sample mean of all permuted coefficients (which is identical

to the original sample mean), and c̄(k)∗

τ is the sample mean of the permuted

coefficients associated the group τ . Then, the multivariate tests can be built by

applying a combining function to the joint univariate results, as suggested in the

NPC methodology.

However, once the significance of each coefficients of the basis expansion is

tested in the ANOVA framework, if the null hypothesis is rejected, we also want

to investigate which groups are identically distributed and which are not. To

perform this kind of analysis, usually a two-group test is applied to all possible

pairs of groups, that is, g(g − 1)/2 comparisons of the form Hτ1,τ2
0 : Yτ1

d
=Yτ2

versus Hτ1,τ2
1 : Yτ1

d

6=Yτ2 , for each τ1 6= τ2 are tested in a Scheffé-like framework.

Indeed, all the two-group comparison are performed simultaneously to provide

a result that is adjusted with respect to the multiplicity (e.g., in the parametric

framework, Scheffe 1959 and Kramer 1957).

The method that we propose for the pairwise group comparisons is based on

the application of the Closed Testing Procedure (CTP) Marcus et al. (1976).

We perform an ANOVA-based ITP based on the statistic (4.2) for any possible

subselections of at least two groups, that is, the two-group comparison Hτ1,τ2
0 ,

the three-group comparison Hτ1,τ2,τ3
0 = {Yτ1

d
=Yτ2

d
=Yτ3}, the four-group com-

parison, and so on, up to the final g-group comparison, that coincides with the

starting ANOVA test (4.1). Then, the p-values of the two-group comparisons are

adjusted, for each basis coefficient k, by taking the maximum among all p-values

associated to the same coefficient:

π̄(k)τ1,τ2 = max
{
π(k)τ1,τ2 , π(k)τ1,τ2,τ3 , π(k)τ1,τ2,τ4 ..., π(k)τ1,τ2,τ3,...,τg

}
.

Note that, as the test statistics of each test of the closure family have possibly a

dependent structure, as suggested in Basso et al. (2009), we apply for all tests,

pooled permutations involving the whole data vector. Thus, it is possible to use

the exact same permutations to test all the hypotheses Hτ1,τ2
0 , Hτ1,τ2,τ3

0 , ..., and

for the ANOVA hypothesis H0 in (4.1), and perform all tests jointly.

By applying this procedure, based on both the ITP (provided with an interval-

wise control on the abscissa level), and the CTP (provided with a strong FWER

control on the group level), we are able to provide the following error control: if

in any interval of the domain (or its complementary set) all the populations have

the same distribution, the probability of rejecting at least part of the interval (or

the complementary set) in at least one of the two-group comparisons is always

controlled.
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Chapter 5

Functional ANCOVA: Analysis
of Human Movement

Abstract

We here extend the analysis of knee movements presented in the previous chap-

ter, by considering in the tests the effects of other covariates. In detail, an AN-

COVA model is considered, in which the functional data (i.e., the time-varying

flexion of the knee during a one-leg hop) are modeled by means of a linear model

with fixed scalar covariates and time-varying fixed regression coefficients, in the

framework described in Chapter 3. ITP-based tests on the regression coefficients

of the model are performed, and the intervals presenting significant effects are

selected.

Keywords: Biomechanics, Curve Analysis, Rehabilitation, Analysis of Vari-

ance, Functional Linear Model

5.1 Introduction and data description

Anterior Cruciate Ligament (ACL) injuries are common worldwide, and are typ-

ically treated either with conservative physiotherapy or with surgery and reha-

bilitative exercises. As discussed in Chapter 4, there is a controversy regarding

whether all ACL-ruptured individuals should undergo surgery and the extent to

which the long-term functional outcomes differ between conservatively and surgi-

cally treated patients (Delincé and Ghafil, 2012). Hence, it is of great importance

to further study the long-term outcome after ACL-rupture. More specifically, as

in the previous chapter, we focus on knee-joint kinematics data during a one-leg-

hop, comparing individuals from the surgery and physiotherapy groups (ACLR

and ACLPT , respectively) with age and gender matched knee-healthy control

subjects (CTRL). We here focus on the differences between the three groups on

the injured (non-dominant for CTRL) leg.

This motivating data set originates from the larger-scale KACL20 project

that addressed several aspects of knee function (Tengman et al., 2014). Tradi-

tional analysis of kinematic data typically reports results for landmarks of the

curves, such as maximal knee angle during take-off. Basic characteristics and
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results from traditional analysis of the one-leg-hop are presented by Tengman

et al. (2014). Previous univariate results performed on some features of the jump

(e.g., maximum and minimum knee flexion) show a lower knee flexion among

the individuals that are treated with physiotherapy.

The functional ANOVA for comparing the three groups reported in Chapter

4 indicates, coherently with previous results, that the physiotherapy group has

different knee-joint kinematics during specific parts of the jump, detected espe-

cially on the flexion/extension angle during take-off and landing (Chapter 4).

However, no covariates are taken into consideration into that study.

Here we are extending parts of that analysis by including the information

coming from some additional covariates. In detail, we want to investigate if the

difference between the movements of ACLPT subjects and the ones of the other

two groups resulting from an ANOVA analysis is really due to the treatment that

individuals had (i.e., physiotherapy), or it can be explained by means of other

variable characterizing the individuals (e.g., gender, BMI, age). We only present

here results for between-group comparisons considering the flexion-extension an-

gle, only including covariates available for all three groups.

Descriptive statistics for all included covariates are presented in Table 5.1.

Figure 5.1 displays instead a scatter plot of the covariates. The different colors

and point characters are associated to the three groups (CTRL: green triangle;

ACLPT: blue circle; ACLR: red square).

Variable Surgery Physiotherapy Control
Jump length (m) 1.13 (0.27) 1.00 (0.22) 1.08 (0.23)
BMI (kg/m2) 27 (3) 28 (4) 25 (3)
Weight (kg) 83 (16) 86 (15) 78 (15)
Height (m) 1.74 (0.09) 1.74 (0.08) 1.77 (0.10)
Gender (male/female) 20/11 21/12 20/11
Age (years) 46 (5) 48 (6) 47 (5)

Table 5.1: Means and standard deviations for all variables considered as covariates in the
presented analysis; for gender, the frequencies are presented.

5.2 Methodology

An inferential analysis on the knee-joint kinematic curves was performed for the

data in the sagittal, plane and for the three hopping phases independently from

one another. The analysis is performed by applying the ITP to perform tests on

a functional-on-scalar linear model, according to the methodology described in

Chapter 3.

In detail, let yij denote the functional data representing the knee flexion

during the jump over time. The index i denotes the groups (i = 1, 2, 3, corre-

sponding to ACLR, ACLPT and CTRL, respectively), and the index j = 1, ..., ni
denotes the individuals. We are interested in testing the following model:

yij(t) = β0(t) + τi(t) +
L∑
l=1

βl(t)xijl + εij(t), i = 1, 2, 3, j = 1, ..., ni, (5.1)

where n1 = 31 ACLR individuals, n2 = 33 ACLPT individuals and n3 = 31

CTRL individuals. In model (5.1) we introduce functional coefficients: β0(t)
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Figure 5.1: Scatter plot of covariates. The different colors and point characters correspond to
the three groups: CTRL: green triangle; ACLPT: blue circle; ACLR: red square.
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is the fixed common mean, τi(t) is the fixed treatment effect, βl(t) is the fixed

coefficient associated to covariate l, and εij(t) are random zero-mean i.i.d errors

with finite total variance (E[‖εij‖2L2 ] < ∞). Finally, we have a constraint for

the treatment effects:
∑3

i=1 τi(t) = 0. Note that the model (5.1) can be written

as a functional-on-scalar linear model presented in Chapter 3, by introducing

two dichotomic covariates expressing the membership of subjects to the three

groups.

We are interested in developing different types of functional tests. First of

all, we can perform a functional F -test on the regression model, to test is at

least one covariate (including the groups) has a significant effect:{
H0,Model : τi(t) = βl(t) = 0 ∀i = 1, ..., 3, ∀l = 1, ..., L;

H1,Model : ∃i s.t. τi(t) 6= 0 or ∃l s.t. βl(t) 6= 0.
(5.2)

Then, we can perform functional t-tests on the regression coefficients. In

particular, we have three tests on the differences between the effects of the three

groups:

H0,i1i2 : τi1(t) = τi2(t); H1,i1i2 : τi1(t) 6= τi2(t),
∀i1, i2 = 1, 2, 3,

i1 6= i2,
(5.3)

and L+ 1 tests on the effects of the other covariates:

H0,l : βl(t) = 0; H1,l : βl(t) 6= 0, ∀l = 0, ..., L. (5.4)

The functional tests (5.2), (5.3), and (5.4) are performed by applying the ITP,

based on a B-spline basis expansion. The procedure selects, for each test (5.2)

to (5.4), the intervals of the domain presenting significant effects. The resulting

adjusted p-values are provided with an exact interval-wise control of the Family

Wise Error Rate in the case of the F -test (5.2), and with an asymptotic interval-

wise control of the Family Wise Error Rate in the case of the t-tests (5.3) and

(5.4).

5.3 Results

The analysis is performed individually on three different phases of the one-leg-

hop: take-off, flight, and landing. As in the previous ANOVA analysis, discussed

in Chapter 4, the data of the flight phase are aligned, in order to have the

same take-off and landing instant for all individuals. For each phase of the

jump, we tested a full model including all six covariates and all groups’ effects.

Then, we started reducing the model by removing, with a step-wise backward

procedure, the non-significant covariates. As the final aim of this analysis is to

test for differences between the groups, the covariates indicating the membership

of individuals to the groups are never removed, even in the case of non-significant

effects.

This model selection (performed independently for each phase) provides the

same reduced model for all phases. In detail, excluding the groups’ effects, the

only significant covariate is the jump length. All other covariates are on the

contrary excluded from the model, due to not being significant. We here present
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only the results of this reduced model on the three phases, i.e., an ANCOVA

model including the effects of groups and of the jump length. The plots of the

results of the three full models (for take-off, flight, and landing) are reported in

Appendix 5.A.

Figure 5.2 displays the curves, and the results of the tests on this model,

for the take-off, flight, and landing phases (left, middle, and right panels, re-

spectively). In detail, the upper panels of the figure represent the results of the

ITP-based functional F -test. The grey areas indicate the parts of the domain

where we detect significance effects at 10% (light grey) and 5% (dark grey) sig-

nificance levels. The other panels represents instead the results of functional

t-tests (from top to bottom: intercept β0(t), effect of the jump length, difference

between surgery and physiotherapy, difference between control and physiother-

apy, and difference between control and surgery). The curves represented in

each panel correspond to the OLS estimates of the functional coefficients of the

linear model, and, as for the functional F -test, grey areas indicate the presence

of a significant effect of the corresponding covariate.

The F -test indicates the presence of at least one significant effect in all three

phases, throughout a great part of the domain, confirming the validity of the

model. The intercept is significant throughout the entire domain, and the esti-

mate of the coefficient shows that it is catching the common mean of all curves.

The jump length has, not surprisingly, a significant effect throughout all three

phases, in a great part of the time domain. In detail, the associated coefficient is

positive during take-off and landing, indicating that to jump longer, individuals

have to perform a higher flexion of the knee during both take-off and landing.

During the flight, the coefficient associated to jump length switches its sign. The

sign is negative in the two intervals corresponding to the minimum of flexion and

positive sign in an interval corresponding to the maximum of flexion. This in-

dicates that, to jump longer, the movement of the knee during flight has to be

more pronounced (with higher maximal flexion and lower minimal flexion).

The physiotherapy group is significantly different with respect to the other

two groups both during take-off and during landing, whereas three groups do

not differ significantly during flight. The coefficient associated to the differences

between the effects of the other two groups and the physiotherapy one is pos-

itive. This means that patients treated with physiotherapy have, in mean, a

lower flexion during these two phases with respect to individuals in surgery and

control groups. These findings are in line with the results of the simpler ANOVA

model reported in Chapter 4. Even after having discounted for the jump length,

physiotherapy group remains significantly different with respect to the other two

groups.

5.4 Discussion

In this paper, data from a long-term follow-up study after anterior cruciate liga-

ment injury are analyzed, applying the functional-on-scalar linear model previ-

ously described. Knee kinematics of individuals treated with physiotherapy or

surgery and healthy controls were compared during a one-leg hop. The compar-

ison between the three groups was carried out by taking into account individual-
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Figure 5.2: Results of the tests on the ANCOVA model on knee flexion angle for take-off (left),
flight (middle), and landing (right). Upper panels: functional data and ITP-based functional
F -test. Other panels: OLS estimates of functional coefficients and functional t-tests (from top
to bottom: intercept, jump length, difference between surgery and physiotherapy, difference
between control and physiotherapy, and difference between control and surgery). Grey areas
indicate a significant result of the test at 10% (light grey) and 5% (dark grey) levels.
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specific covariates, such as the jump length, BMI, age and gender.

The analysis of these data showed that the effect of jump length on knee

kinematics is significantly different from zero, while the effects of BMI and age

are not. In line with the results of the functional one-way ANOVA reported

in Chapter 4, even after having discounted for the jump length, physiotherapy

group remains significantly different with respect to the other two groups.

It is worth mentioning that the knee motion data analyzed in this chapter

and in the previous one, are part of a larger data set, which also includes two

more replicates for each jump. An interesting future development of this work

would be the extension of the analysis to take into account replicates. To this

purpose, the methodology presented in Chapter 3 can be extended to the case

of a functional mixed-effects model, in which the three replicates are considered

and individuals are included as random-effects. Another interesting future de-

velopment of the analysis reported here is its extension to other knee angles (i.e.,

the abduction/adduction and rotation angles reported in Chapter 4), and other

body parts during the same jump.
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Appendix

5.A Results of the full models

We here report the results of the tests on the ANCOVA model on the knee flexion

data including all covariates (full model) reported in Table 5.1 and Figure 5.1.

The result of the tests on the full model for take-off, flight, and landing phases

are reported in Figures 5.3, 5.4, and 5.5, respectively.

Each panel displays the result of a different test (from top to bottom and

left to right: functional F -test; t-tests for: intercept; jump length; BMI; weight;

gender; height; age; difference between surgery and physiotherapy; difference

between control and physiotherapy; and difference between control and surgery.)

Grey areas displayed in each panel indicate the parts of the domain where we

detect significance effects at 10% (light grey) and 5% (dark grey) significance

levels on the corresponding tests.

In all three phases, the results of the full models are consistent with the ones

of the reduced models that include only jump length and the groups’ effects.

Jump length is significant in all three phases, and the movements of ACLPT

group differ from the ones of other two groups during take-off and landing, but

not during flight. The estimate of the functional regression coefficients that are

significantly different from zero obtained in this full model is consistent with the

one obtained in the reduced model presented in Figure 5.2.
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Figure 5.3: Results of the tests on the ANCOVA model on knee flexion angle including all
covariates for take-off. From top to bottom and left to right: functional data and ITP-based
functional F -test; OLS estimates of functional coefficients and ITP-based functional t-tests
for: intercept; jump length; BMI; weight; gender; height; age; difference between surgery and
physiotherapy; difference between control and physiotherapy; and difference between control
and surgery. Grey areas indicate a significant result of the test at 10% (light grey) and 5%
(dark grey) levels.
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Figure 5.4: Results of the tests on the ANCOVA model on knee flexion angle including all
covariates for flight. From top to bottom and left to right: functional data and ITP-based
functional F -test; OLS estimates of functional coefficients and ITP-based functional t-tests
for: intercept; jump length; BMI; weight; gender; height; age; difference between surgery and
physiotherapy; difference between control and physiotherapy; and difference between control
and surgery. Grey areas indicate a significant result of the test at 10% (light grey) and 5%
(dark grey) levels.
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Figure 5.5: Results of the tests on the ANCOVA model on knee flexion angle including all
covariates for landing. From top to bottom and left to right: functional data and ITP-based
functional F -test; OLS estimates of functional coefficients and ITP-based functional t-tests
for: intercept; jump length; BMI; weight; gender; height; age; difference between surgery and
physiotherapy; difference between control and physiotherapy; and difference between control
and surgery. Grey areas indicate a significant result of the test at 10% (light grey) and 5%
(dark grey) levels.
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Chapter 6

Two-Way Functional ANOVA:
Analysis of Laser Spectra

Abstract

Remote monitoring of remote laser welding is an important technological issue in

many industrial fields. Traditionally, many monitoring approaches are possible,

and most of them involve the statistical analysis of a set of discrete variables

summarizing the entire emission spectrum. Some examples are the monitoring

of the overall visible emission, or of emission in separated wavelength ranges,

defined by physical evaluations of the welding process. Although these methods

are promising, they can provide practitioners with different results, giving an

unclear overall description of the welding process. Moreover, the analyzed pa-

rameters cannot describe entirely the emission spectra, as they only summarize

some of their features. In this paper, we propose to analyze the whole functional

shape of emission data, by applying a two-way functional ANOVA model. In

the model the effects of both the gap between welded plates and the location of

the laser beam are estimated throughout all the recorded wavelength range, and

wavelength bands presenting significant effects are inferentially selected. The se-

lected bands can be used to remotely monitor the gap between the plates during

the welding process.

Keywords: Remote Laser Welding, Remote Monitoring, Spectroscopy, Func-

tional Two-Way ANOVA

6.1 Introduction

Laser welding technologies are quickly replacing, for instance in the automo-

tive industry, conventional welding processes. Furthermore, nowadays the laser

welding is often used in remote configurations, i.e., configurations in which the

laser beam is moved along the seam with the help of a laser scanner.

One of the most common applications of such process is the welding of zinc-

coated steel in the lap-joint configuration. However, this particular configuration

and materials present a lot of technical issues, since the boiling temperature of

the zinc is significantly lower than the one of steel (approx. 906◦C and 1500◦C,
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respectively). Consequently, during the welding, highly pressurized zinc vapors

are often produced at the interface of the two metals, and may cause defects in

the welded material, such as spatters and porosities, that can compromise its

quality.

The classical solution applied in industrial processes to prevent these defects

is to leave a small gap (order of hundreds nano meters) between the two metal

sheets, to facilitate the degassing (Akhter et al., 1991; Steen et al., 2003). One

of the methods used to produce such gap is laser dimpling, which uses a remote

pulsed laser to generate protuberances on one of the plates (AG, 2005; Schwoerer,

2008; Gu, 2010).

However, the variance of the height of laser-dimples can cause errors in the

final gap dimension, which can cause defects on the welded material, compro-

mising its quality and causing variations in the mechanical properties of the weld

bead.

In Colombo et al. (2013), a method to remotely monitor the gap in remote

laser welding, avoiding destructive off-line tests, is proposed. According to this

technique, optical emissions are monitored during remote laser welding by a

spectroscope. Then, from the acquired spectra, different indicators, or summa-

rizing variables, are evaluated, such as the overall emission across the considered

range, and the emissions in separated wavelength ranges (defined by physical

evaluations of the welding process). For each of the obtained variables, uni-

variate analysis of variance is performed, and the statistical significance of the

effects of the gap value is used to compare the tested methods. The optical

emission recorded during the experiment can also depend on the location of the

laser beam on the welded surface. That is why, in Colombo et al. (2013), a

two-way analysis of variance is performed, to evaluate the effect of the gap on

the emission taking into account the different locations.

The former analysis is a valid instrument to assess how the emission is influ-

enced by the gap, and the results can be used to provide an indicator to evaluate

the gap remotely. However, the choice of the better indicator to evaluate the gap

effect is difficult to perform, and in any case the obtained summarizing variables

cannot describe the whole emission spectrum.

The aim of this paper is to extend the analysis performed in Colombo et al.

(2013) in a functional data analysis framework (Ramsay and Silverman, 2005).

Indeed the acquired emission signals are continuous functions of wavelength,

and can be analyzed by taking into account the whole functional shape. Hence,

we here perform a functional analysis of variance, to assess whether the whole

emission function is influenced by the gap and the location. The analysis will take

into account the functional shape of the signals, instead of only some discrete

indicators that summarize the signal.

Furthermore, the final aim of the functional ANOVA that we present here

is to select the wavelength bands presenting significant effects of the gap and

the location on the emission, controlling the probability of false discoveries. The

result of such technique will be the selection of a band of wavelengths that can be

used to remotely monitor the gap between the plates during the welding process.
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6.2 Experimental procedure and data acquisition

A Through Optical Combiner Monitoring architecture (Capello et al., 2008;

Colombo and Previtali, 2009, 2010) is used to perform and monitor the laser

welding. According to this technique, the monitoring of laser emission is per-

formed remotely. Indeed, far from the work area, the optical emissions from the

welding process are directly observed inside the laser source through the optical

combiner of the fiber laser source with a spectroscope. An extensive descrip-

tion of the experimental welding procedure and the monitoring technology goes

beyond the scope of this paper, and can be found in Colombo et al. (2013).

The main objective of this study is to assess the effects of both gap and

location on the emission data. To analyze these effects, the emission is acquired

in correspondence of different levels of gap and location, in a repeated factorial

design. Three values of gap, corresponding to 100 nm, 200 nm and 300 nm are

explored. For each of the analyzed gap values, three replicates are produced, for

a total of nine welded specimens. Inside each specimen, five emission spectra are

acquired at five different locations, for a total number of 45 acquired spectra.

The emission data are described in detail in Colombo et al. (2013).

To record the optical emission in the visible range, optical emission spec-

troscopy, i.e., the analysis of emitted light with high-wavelength resolution, is

used. The laser emission is acquired at 703 discrete wavelengths between 400.521

nm and 800.030 nm. The acquired data, as well as the three means, correspond-

ing to the three different values of the gap, are represented in Figure 6.1.

Note that in the explored wavelength range, it is possible to distinguish be-

tween three different types of emission:

• between 400 nm and 530 nm, it is observed the emission related to electronic

transition, i.e., the plasma emission;

• around 535 nm we observe a strong emission line, corresponding to the

laser emission;

• above 540 nm we observe the emission due to the thermal black-body ra-

diation, i.e. the thermal emission.

The aim of the following analysis is to assess whether the gap and the location

have some effects on the emission, by taking into account the whole functional

shape of the spectrum, controlling the probability of false discoveries. Finally,

we want to locate possible wavelength bands in which the significant effects are

detected.

6.3 Domain-selective functional two-way ANOVA

To analyze the laser emission data we will apply a functional two-way ANOVA

model with interaction. In our model, the functional response (i.e., emission

spectrum) will be expressed as the result of two main effects (i.e., gap and

location), and of an interaction term between the main effects. The aim of the

analysis is to test for the significance of every term in the model (i.e., interaction

and main effects).
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Figure 6.1: Emission data captured in the factorial laser welding experiment (dashed lines),
colored according to the three different gaps; and means of the three groups, corresponding to
the three different gaps (solid lines).

So, let Iijl(λ) be the functional data (i.e., the emission as function of the

wavelength λ) associated with gap level i (i = 1, 2, 3), location level j (j =

1, ..., 5) and replicate l (l = 1, 2, 3). In our case, λ∈(400.521nm, 800.030nm). The

functional ANOVA model that we want to study is the following:

Iijl(λ) = µ(λ) + αi(λ) + βj(λ) + γij(λ) + εijl(λ),

i =1, 2, 3,

j =1, ..., 5,

l =1, 2, 3.

(6.1)

In model (6.1), µ(λ) is the common mean, αi(λ) the gap effect, βj(λ) the lo-

cation effect, and γij(λ) the gap-location interaction effect (with the classical

constraints:
∑3

i=1 αi(λ) = 0;
∑5

j=1 βj(λ) = 0;
∑3

i=1

∑5
j=1 γij(λ) = 0). The er-

rors εijl(λ) (with i = 1, 2, 3; j = 1, ..., 5; and l = 1, 2, 3) are assumed to be

independent and identically distributed zero-mean random functions.

In our model, all effects (as well as the errors) are functions of the wave-

length. Indeed, we assume that the effects can change through frequency, and

in particular some of them may be expressed only in some wavelength bands.

The aim of our analysis is to test for the significance of all coefficients of model

(6.1). In particular, we want to perform the following tests, i.e, the functional

counterparts of classical ANOVA tests:

• a functional F -test on the model, jointly for all factors:

{
H0,Model : αi(λ) = βj(λ) = γij(λ) = 0 ∀i, j,
H1,Model : ∃i, j s.t. αi(λ) 6= 0, or βj(λ) 6= 0, or γij(λ) 6= 0;

(6.2)
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• a functional test for the effect of each factor, separately:

H0,Gap : αi(λ) = 0 ∀i;H1,Gap : ∃i s.t. αi(λ) 6= 0 (6.3)

H0,Loc : βj(λ) = 0 ∀j;H1,Loc : ∃j s.t. βj(λ) 6= 0 (6.4)

H0,Gap∗Loc : γij(λ) = 0 ∀i, j;H1,Gap∗Loc : ∃i, j s.t. γij(λ) 6= 0. (6.5)

Note that, exactly as in a classical two-way ANOVA, (6.2) is a test of significance

of the whole functional model, whereas the three tests (6.3-6.5) allow to perform

a model selection, i.e., to reduce the model by considering only the factors with

a significant effect on the emission.

The main difference that we have here with respect to a classical ANOVA

framework is that, being the response neither scalar nor multivariate, but func-

tional, tests (6.2-6.5) involve functional coefficients, i.e., the null hypothesis is

rejected whenever there is a significant difference between the corresponding

groups in at least one wavelength band.

The problem of testing a functional ANOVA model has been widely discussed

in the literature of this last decades, and it can be addressed in several ways

Cuevas et al. (2004); Cuesta-Albertos and Febrero-Bande (2010); Abramovich

and Angelini (2006); Antoniadis and Sapatinas (2007). In detail, the problem

of inference is approached from two different perspectives: parametric and non-

parametric inference. The former approach commonly relies on distributional

assumptions on functional data and on asymptotic results, while the latter relies

instead on permutation or bootstrap computational intensive techniques. A

common feature of all these works, is that the final result from the ANOVA

testing determines whether the hypothesis of equality of the distributions (or

of the mean values) of the groups of functions is globally accepted or rejected.

In particular, by applying these tests on our model, we would be only able to

answer the question “Are there any statistically significant effect of gap and/or

location on the emission spectrum?”. In the case of a positive answer, these tests

are not able to select the wavelength bands in which the effects are detected,

making the results of the analysis nearly useless for the remote monitoring of

the gap. Indeed, in our application, it is of great importance to identify the

significantly different bands, as we would like to use the (possibly) selected band

to monitor the gap between plates during the welding.

In detail, for each one of the tests, in case of rejection of the null hypothe-

sis, we want to select the wavelength intervals where significant differences are

detected, and classical functional inferential tools are unable to provide this

information. That is why we apply the Interval Testing Procedure (ITP, citealt-

pini2013), that is a testing procedure for functional data that enables to select

the intervals of the domain (in our case: wavelength bands) presenting significant

effects. Another advantage of the ITP is that it is a non-parametric procedure.

In particular, we neither need to assume the normality of the residuals of the

model, nor to specify the covariance structure of the residuals (that can both be

difficult to assess).

The procedure is based on the following steps:

1. Basis Expansion: functional data are represented through the coefficients

of a truncated ordered basis expansion Iijl(λ) =
∑p

k=1 I
(k)
ijl φ

(k)(λ) (in this

application localized in space, i.e., B-splines);
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2. Interval-Wise Testing: a suitable test is performed on each interval of

ordered basis coefficients I
(k)
ijl , ..., I

(k+h)
ijl (in this case associated to different

intervals of the domain);

3. Multiple Correction: for each component of the basis expansion, an

adjusted p-value is computed from the p-values of the tests performed in

the previous step, as detailed in Pini and Vantini (2013).

The adjusted p-values provided by the ITP enable a selection of the significant

basis components, for each corresponding test. If a local basis is used as in our

case, this selection translates into a selection of statistically significant intervals

of the domain, i.e., statistically significant wavelength bands.

In the functional ANOVA framework hereby depicted, the basis expansion

applied to model (6.1) leads to a classical ANOVA model for each coefficient of

the basis expansion, i.e.,:

I
(k)
ijl = µ(k) + α

(k)
i + β

(k)
j + γ

(k)
ij + ε

(k)
ijl ,

i =1, 2, 3,

j =1, ..., 5,

l =1, 2, 3,

k =1, ..., p.

The procedure provides as a result an adjusted p-value for each component of

the basis expansion used in the first step, that is in our case, the 1+3 families of

adjusted p-values corresponding to the F -test on the model and the three tests

on single effects:{
H

(k)
0,Model : α

(k)
i = β

(k)
j = γ

(k)
ij = 0 ∀i, j,

H
(k)
1,Model : ∃i, j s.t. α

(k)
i 6= 0, or β

(k)
j 6= 0, or γ

(k)
ij 6= 0;

H
(k)
0,Gap : α

(k)
i = 0 ∀i;H(k)

1,Gap : ∃i s.t. α
(k)
i 6= 0

H
(k)
0,Loc : β

(k)
j = 0 ∀j;H(k)

1,Loc : ∃j s.t. β
(k)
j 6= 0

H
(k)
0,Gap∗Loc : γ

(k)
ij = 0 ∀i, j;H(k)

1,Gap∗Loc : ∃i, j s.t. γ
(k)
ij 6= 0.

To perform the ITP, we just need to specify how to perform the interval-

wise tests of the second phase. As in Pini and Vantini (2013), we approach this

problem by means of multivariate Non-Parametric Combination (NPC, Pesarin

and Salmaso 2010) of permutation tests. The NPC is a procedure that enables

to build multivariate permutation tests by means of combining univariate joint

permutation tests, and is initialized with joint univariate permutation tests.

For the two-way ANOVA tests (6.2-6.5) that we here want to perform, we use

asymptotically exact tests based on the permutations of residuals under the

reduced model, described by Freedman and Lane (1983).

In detail, we perform each test by randomly permuting the residuals of the

reduced model, i.e., the model under the corresponding null hypothesis. As test

statistics, we use the two-way ANOVA statistics of the corresponding classical F -

tests. This provides exact tests for H0,Model, and approximated (asymptotically

exact) tests for H0,Gap, H0,Loc and H0,Gap∗Loc.
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The adjusted p-values of the test of H0,Model are provided by an Interval-Wise

control of the Family Wise Error Rate, which in our framework states that, if the

significant wavelength bands are detected as the ones associated to an adjusted

p-value lower than α: given any wavelength band in which the emission is not

influenced by any factor, the probability that this band is (wrongly) selected as

significant is lower than α. The adjusted p-values of the tests of H0,Gap, H0,Loc

and H0,Gap∗Loc are instead provided with an asymptotic Interval-Wise control of

the Family Wise Error Rate (see Chapter 3).

6.4 Results

6.4.1 Results of the tests

We applied the two-way ANOVA to test for gap, location, and interaction effects

on the emission data collected in the laser welding experiment. The ITPs that

we apply to test the factors of the model are based on a B-spline basis expansion

of order 2 (degree 1) with 200 evenly spaced knots (i.e., one knot every two nm).

This means that the support of every basis function used for the expansion is

four nm. Figure 6.2 (on the right) shows a representation of emission data after

the B-spline expansion.

Results consistent to the ones reported here can be found also with a different

number of knots. A discussion about the robustness of the method with respect

to this parameter is reported in the next subsection.

The presence of at least one significant factor in the model is confirmed by

a highly significant F -test (the minimum adjusted p-value over all basis compo-

nents is equal to zero). On the other hand, the interaction term γij(λ) is not

significant for any wavelength. Indeed, the minimum adjusted p-value associated

to the interaction term is equal to 0.92, meaning that the interaction term is not

significant for any basis component.

After removing the interaction term from model (6.1), we found significant

effects for both the gap and the location. Hence, we only report here the results

of the tests on this second model, i.e., the additive functional ANOVA model

without interaction:

yijl(λ) = µ(λ) + αi(λ) + βj(λ) + εijl(λ),

i =1, 2, 3,

j =1, ..., 5,

l =1, 2, 3.

Note that, in this case, the F -test on the model becomes:{
H̃0,Model : αi(λ) = βj(λ) = 0 ∀i, j;
H̃1,Model : ∃i, j s.t. αi(λ) 6= 0, or βj(λ) 6= 0.

Figure 6.2 reports the results of the additive two-way functional ANOVA of

emission data. In particular, the left panels of the figure report the adjusted

p-values associated to the 200 B-spline basis functions used to describe the data.

On the top panel, we report the adjusted p-values of H̃0,Model (testing in the

reduced model the significance of at least one factor between gap and location),

on the middle panel the adjusted p-values of H0,Gap and on the bottom panel
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the adjusted p-values of H0,Loc. For ease of visualization of the test results, the

right panels of the figure report the significant intervals at 5% and 1% levels

(areas colored in light and dark grey, respectively) on the emission data for the

three tests. The B-spline representation of data is reported on the same figure,

and to appreciate differences between groups data are colored in the three panels

according to the corresponding tests: on the top panel data are colored differently

according to the different levels of both gap and location (i.e., only the three

replicates for each experimental condition are plotted with the same color); on

the middle panel data are colored according to the different levels of gap; on the

bottom panel data are colored according to the different levels of location.
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Figure 6.2: Left: ITP adjusted p-values for the tests on H̃0,Model (top), H0,Gap (middle) and
H0,Loc (bottom). Right: B-spline representation of emission data colored according to gap and
location levels (top), gap levels (middle) and location levels (bottom). The gray areas represent
significant intervals at 5% and 1% levels (light and dark grey, respectively)

We find a significant effect of at least one factor among gap and location in

nearly the entire wavelength domain, both at 5% and 1% significance levels (test
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of H̃0,Model, top panels of Figure 6.2). This result suggests that, as expected, the

welding conditions have a significant effect on the spectrum for all three types

of emission (plasma, laser and thermal). The same result was found in Colombo

et al. (2013). What is new in the analysis here reported is the fact that, by

considering the whole functional shape of data, we are able to precisely locate

the wavelength bands presenting significant effects of the two factors.

In particular, the gap has a significant effect in a great part of the wavelength

domain, both at 5% and 1% significance levels (test of H0,Gap, middle panels of

Figure 6.2), suggesting that, consistently with previous results, the emission is

significantly influenced by the gap on all three types of emission.

The location has a significant effect, both at 5% and 1% significance levels,

for some wavelength intervals, located mainly in the plasma and laser emission

ranges (test of H0,Loc, bottom panels of Figure 6.2). This suggests that plasma

emission is influenced by the location.

The most important result highlighted by this analysis, and completely new

with respect to the literature in this field, is that, looking at all results together,

we detect a band (i.e., the band λ ∈ (547 nm, 681 nm) corresponding to the

thermal emission), in which the gap effect is significant and the location one is

not. This suggests the use of emission data on this band to monitor the gap

between the plates during the welding process at any possible location. Indeed,

in this band the emission is significantly influenced by the gap and not by the

location. Thanks to the interval-wise control of the FWER, we know that, if the

emission would not be effected by neither the gap nor the location in the band

λ ∈ (547 nm, 681 nm), we would have selected it as significant with a probability

lower that 5%. Furthermore, if the gap would not affect the emission in the same

band, we would have selected it as significant with a probability approximately

lower that 1%.

As a final detail, note that, coherently with the results reported in (Colombo

et al., 2013) the gap effect is not monotonic. Indeed, the black curves cor-

responding to the lower value of gap (i.e., 100nm) are mainly located in the

middle between green curves (300nm) and red curves (200nm), meaning that

the gap effect is not linear. For this reason we here choose to consider the gap

as a factor and not a numeric variable. If one would be interested in considering

the gap as a numeric variable, its value would necessarily need to be added in

the model in a non-linear way.

6.4.2 Robustness analysis with respect to the number of knots

To appreciate how the results of the analysis that we reported are robust with

respect to the number of knots, we performed the test by varying this parameter.

We considered the cases summarized in Table 6.1, based on B-splines expansions

with a different number of knots. In particular, we started from the maximum

possible resolution (i.e., 703 knots), and reduced the resolution until a minimum

value of 100 knots (still sufficiently high to have a good description of data). The

bandwidth corresponding to each B-spline basis function in each case is reported

in the table. In all cases we took piecewise-linear B-splines with evenly spaced

knots.
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The test on the interaction H0,Gap∗Loc is found not significant in all explored

cases. Hence, we remove the interaction from the model, testing a simpler addi-

tive model on the gap and the location. The results of the tests are summarized

in Table 6.1, and reported in Figure 6.3. In the figure, the results of tests on

H̃0,Model, H0,Gap and H0,Loc at 1% and 5% levels are represented by means of

the gray bands below each graphic. The axis on the left indicates the number of

knots used for the B-spline basis expansion, which varies between 100 and 703

knots, according to the values reported in Table 6.1.

Knots Bandwidth (nm) H̃0,Model H0,Gap H0,Loc

703 1.14 Significant (P,L,T) Significant (P,L,T) Significant (P,high T)
400 2 Significant (P,L,T) Significant (P,L,T) Significant (P,high T)
200 4 Significant (P,L,T) Significant (P,L,T) Significant (P,L,high T)
100 8 Significant (P,L,T) Significant (P,L,T) Significant (P,L,high T)

Table 6.1: Results of tests on H̃0,Model, H0,Gap and H0,Loc, varying the number of knots on
plasma (P), laser (L) and thermal (T) emission (level: 5%). The bandwidth of a single B-spline
basis function for each case is reported.

The results seem to be robust with respect to the number of knots. Both

the F -test on the model H̃0,Model and the test on the gap H0,Gap report signif-

icant differences at both 5% and 1% in almost all the wavelength domain. In

particular, the gap has a significant effect on all three types of emission. On

the other hand, the location has a significant effect on the emission only on the

high-wavelength band of thermal emission (where, anyway, the signal is very

low), and in some intervals on the plasma and laser emissions. In all cases, the

thermal band detected in the previous subsection, presenting a significant effect

of the gap but not of the location is preserved.
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Figure 6.3: Emission data colored according to gap and location levels (top), gap levels (middle)
and location levels (bottom). The gray bands below each graphic represent the results of tests
on H̃0,Model, H0,Gap and H0,Loc, resp., varying the number of knots, at 5% and 1% levels (light
and dark grey, resp.)
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Chapter 7

Functional One-Population
Test: Analysis of Climatic
Data

Abstract

In this paper, aleatory and epistemic uncertainties in energy generation systems

are investigated. The former are described by probability distributions, whereas

the latter by possibility distributions. In particular, given the evolution in time

of the aleatory uncertainty, time-varying probability distributions are considered

and they are elicited by Functional Data Analysis. Then, the joint propagation

of both types of uncertainty is performed by Monte Carlo simulation and Fuzzy

Interval Analysis. The method is applied to a model of an energy system made

of a solar panel, a storage energy system and the loads. As a quantitative indi-

cator of the analysis we evaluate the Expected Energy Not Supplied.

Keywords: Photo-Voltaic Energy, Irradiation, Functional Data Analysis, Fuzzy

Interval Analysis, Monte Carlo Simulation

7.1 Introduction

Renewable energy is getting more and more important as a solution for the

climate change concerns. However, it is affected by large uncertainties, due to the

intermittent nature of the energy source (regardless from the type of renewable

source, the amount of energy daily available can present high variations from

one day to another, at the same site) Borges (2012). In addition, a long-term

prediction of the energy that is daily available is a difficult problem, due to

the complexity of the system at hand. These issues mine the reliability of the

renewable energy, making it difficult to completely rely on it.

In this respect, we propose a methodology able to evaluate the amount of

energy not supplied from renewable sources. In particular, we consider a system

composed by a renewable energy source (e.g., photovoltaic energy, wind energy),

an end-user demanding energy on a daily basis, and a battery able to store the

-possibly generated- energy that is not required by the end-user. We consider

two types of uncertainty: randomness due to inherent variability in the system
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behavior (aleatory uncertainty) and imprecision due to lack of knowledge and

information on the system (epistemic uncertainty) as typically distinguished in

system risk analysis Helton and Oberkampf (2004). As illustrated in recent works

of risk analysis Li and Zio (2012), we address the co-existence of aleatory and

epistemic uncertainties in the reliability assessment of a distributed generation

system, representing the aleatory variables as probabilistic and the epistemic

ones as possibilistic, and apply a hybrid propagation approach of both types

of uncertainties. We embrace the Monte Carlo Simulation and Fuzzy Interval

Analysis approach for the joint propagation of uncertainties Li and Zio (2012);

Baraldi and Zio (2008).

Traditionally, aleatory uncertainty of an energy distribution system is repre-

sented by a unique probability density function that is inferred from historical

data of one fixed period Li and Zio (2012); Baraldi and Zio (2008). Nevertheless,

the data distribution evolve through time in a continuous way. Here we propose

to consider that time variation within a Functional Data Analysis (FDA) frame-

work Ramsay and Silverman (2002, 2005); Ferraty and Vieu (2006), where data

are represented as functions of a continuous variable, which in our application

is time. By applying FDA methods, it is then possible to model the entire time

evolution of data. We propose to analyze this time evolution in order to ob-

tain more realistic results from the uncertainty analysis. If we neglect long-term

climatic changes, we may assume that this time evolution is one-year periodic.

Hence, in this work, we model climatic data as random samples from parametric

distributions with one-year periodic parameters.

To exemplify the methodology, we analyze the aleatory and epistemic uncer-

tainties of a model of a photovoltaic energy distribution system made of a solar

panel, a storage energy system and loads (power demanded by the end-users).

As a quantitative indicator of the analysis we evaluate the Expected Energy Not

Supplied, a reliability index commonly used in this field Billinton et al. (1984).

The results of the uncertainty propagation in the case study are compared with:

i) the pure probabilistic uncertainty propagation approach based on the same

time-varying distributions Marseguerra and Zio (2002); and ii) the Monte Carlo

Simulation and Fuzzy Interval Analysis approach considering the random vari-

ables constant in time, i.e. described by a unique probability density function.

7.2 Methodology

The methodology that we propose to evaluate uncertainties in renewable energy

generation is based on the joint modeling and propagation of all the uncertain-

ties of the model, that can be either aleatory or epistemic. The first step in

order to evaluate the uncertainties in renewable energy generation consists in

modeling the system of energy generation, listing all sources of uncertainty in

the model inputs (e.g., electricity demand) that propagate to the model output

(e.g. electricity supply). These sources of uncertainty can be distinguished into

two types: epistemic uncertainties (due to due to lack of knowledge, and for

which no historical data are available) and aleatory uncertainties (due to the in-

trinsic variability of the system, typically modeled by means of large amounts of

historical data). The former type of uncertainty is also referred to as “reducible”

122



CHAPTER 7. FUNCTIONAL ONE-POPULATION TEST: ANALYSIS OF
CLIMATIC DATA

uncertainty to highlight that a gain of information about the system can lead

to a reduction of epistemic uncertainty. In renewable energy applications, epis-

temic uncertainty typically characterizes the parameters of the devices due to i)

the lack of information provided by the manufacturers for commercial reasons

and ii) the limited quantity of data available for each house for private issues

Izquierdo et al. (2011).

Aleatory uncertainties can instead be due to the variability of the energy

source (e.g., wind speed and direction, solar irradiation) and the loads (i.e.,

power demanded by the end-users). In the current risk assessment practice,

both types of uncertainties are represented by means of probability distribu-

tions with fixed parameters. However, potential limitations are associated to

a probabilistic representation of epistemic uncertainty under limited informa-

tion Helton and Oberkampf (2004) and a number of alternative representation

frameworks have been proposed, e.g., fuzzy set theory, evidence theory, possi-

bility theory and interval analysis Klir and Yuan (1995); Aven and Zio (2011).

Given the representation power of possibility theory and its relative mathemat-

ical simplicity, we adopt it to describe the epistemic uncertainty in renewable

energy applications. In addition, we represent the aleatory uncertainty by means

of time-varying probability distributions since the variables associated with re-

newable energy systems can vary with time (e.g., day and night, seasons, etc.).

For instance, the solar irradiation in summer is higher than in winter; as a con-

sequence, the mean of its probability distribution should change with seasons

(i.e., it should be higher in summer and lower in winter). The parameters of

these time-varying probability distributions have been evaluated from historical

data by applying FDA techniques.

Finally, the aleatory and epistemic uncertainties are jointly propagated on

the renewable energy system by combining Monte Carlo simulation and Fuzzy

Interval Analysis. Actually, the possibilistic representation of uncertainty can

both be combined with and transformed into the traditional probabilistic repre-

sentation. In the following subsections we present the details of the methodology

adopted to model the time-varying data distribution, and propagate the aleatory

and epistemic uncertainties from the input variables of the system to the output

variable of interest.

7.2.1 Uncertainty modeling of time-varying data

Suppose to observe n realizations of the quantity of interest ξ (e.g., irradiation,

wind speed) for the chosen location through time, during the year: for each time

unit tq (i.e., a day), we observe n different samples of functional data ξi(tq),

where i = 1, .., n denotes the sample units, and q = 1, ..., Q denotes the different

time units. We suppose that, for a fixed time tq, the observed data ξi(tq) is a

random independent sample from a fixed parametric distribution Fη, described

by a set of unknown parameters η(tq) ∈ Rr:

ξi(tq) ∼ Fη, ∀i = 1, ..., n, q = 1, ..., Q. (7.1)

The distribution Fη can be chosen in different ways, according to the data

that we are modeling. For instance, a Beta distribution is typically used to model
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solar irradiation, while a Weibull distribution is used to model wind speed Atwa

et al. (2010); Li and Zio (2012); Salameh et al. (1995).

We assume that observations on different time units are conditionally inde-

pendent, given the values of the parameters η. In particular, this implies that

the dependence structure of the solar irradiation on different days is entirely

expressed by means of the time-varying structure of its parameters, which we

suppose can be modeled as smooth and regular functions of time, due to the

intrinsic regularity of data.

To estimate the time-varying parameters we adopt, for each time unit tq, the

method of moments. So, to elicit a time-varying estimate for the distribution

of data, we only need to find time-varying estimates for the first r moments of

the distribution of data. Furthermore, we suppose that the moments of the

distribution are regular one year-periodic functions. Since the sample daily

moments are extremely non-regular functions, we consider a method to regularize

data, estimating a proper low dimensional functional space in which they are

defined, by exploiting the procedure proposed in Pini and Vantini (2013). In

the following, we describe the smoothing procedure applied to estimate the rth

moment of data distribution.

Estimate of time-varying moments

Suppose that we want to estimate the moment of order r of the data distribution,

r ≥ 1. Let ϕi(t) = ξi(t)
r. We need to estimate the mean of functions ϕi(t). We

apply a Fourier-based Interval Testing Procedure (ITP) described in Pini and

Vantini (2013). The method consists in the following three steps:

1. Basis Expansion: functional data (in our case: time-varying irradiation

data) are represented through the coefficients of a truncated ordered basis

expansion;

2. Interval-Wise Testing: a suitable test is performed on each interval of

ordered basis coefficients;

3. Multiple Correction: for each component of the basis expansion, an

adjusted p-value is computed from the p-values of the tests performed in

the previous step.

The final result of the procedure is a family of adjusted p-values, one for each

basis function used in the expansion. This result can be used to select the basis

components that are statistically significant to describe the mean function of

data (for instance, selecting all the components with associated adjusted p-value

lower than the 5% level).

In our application, data are assumed to be one-year periodic functions. Hence,

a natural choice for the basis used to describe data is the one-year periodic

Fourier basis. In detail, we use an interpolating Fourier expansion:

ϕi(tq) =
a

(0)
i

2
+

(Q−1)/2∑
h=1

a
(h)
i cos

(
2π

Q
htq

)
+ b

(h)
i sin

(
2π

Q
htq

)
, Q = 365. (7.2)

In the case of a Fourier basis expansion, intervals of basis components are

frequency bands. In detail, equation (7.2) associates at each data, and for each
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frequency h > 0, a bivariate vector of coefficients (a
(h)
i , b

(h)
i ), and for the fre-

quency h = 0 a coefficient a
(h)
0 . Denote as

(
A(h), B(h)

)′
the bivariate distribution

of coefficients (a
(h)
i , b

(h)
i ) (and A(0) the distribution of the 0th frequency). For

each frequency h > 0, the ITP can be applied to associate an adjusted p-value

to each of the following bivariate tests:

H
(h)
0 : E

[(
A(h), B(h)

)′]
= (0, 0)′ vs. H

(h)
1 : E

[(
A(h), B(h)

)′] 6= (0, 0)′, (7.3)

while for the 0th frequency, an adjusted p-value to the univariate test:

H
(0)
0 : E

[
A(0)

]
= 0 vs. H

(h)
1 : E

[
A(0)

]
= 0, (7.4)

In particular, by means of tests (7.3)-(7.4), we aim at selecting the frequencies

that are significantly different from zero in the expansion of the mean signal.

The final time-varying estimate of the mean function will then be evaluated as

the Fourier basis expansion on these frequencies.

In order to apply the ITP, we then need to specify how to perform the

interval-wise tests of the second phase of the procedure, that is in our case,

how to perform a test on each frequency band. In detail, we need a test for each

frequency (single-frequency tests), and a test for each interval of frequencies

(multiple-frequency test). The approach that we use to perform such tests is a

non-parametric approach based on the suitable combination of joint permutation

tests on each frequency. We start by performing each single-frequency test, by

means of permutation tests Pesarin and Salmaso (2010). For each frequency h >

0 we perform a bivariate test to test the null hypothesis E[(A(h), B(h))] = (0, 0),

based on the joint changes of the signs of vectors (a
(h)
i , b

(h)
i ) and on the Hotelling

T 2 statistic T (a(h)∗ ,b(h)∗) = (ā(h)∗ , b̄(h)∗)′S∗h,h(ā(h)∗ , b̄(h)∗), where (a(h)∗ ,b(h)∗) de-

note the permuted data, and S∗h,h ∈ R(2×2) is the covariance matrix of permuted

data at frequency h. For the 0th frequency, we perform a univariate permuta-

tion test based on the squared of the univariate Student t statistic and on the

change of the signs of the coefficients a
(0)
i . It is important to note here that

the permutations used to build the single-frequency tests are the same across

frequency. This aspect will be key to build the multiple-frequency tests.

To perform multiple-frequency tests, we combine the results of the single-

frequency tests by means of the non-parametric combination (NPC) methodol-

ogy, based on the Fisher combining function Pesarin and Salmaso (2010). The

NPC is a method able to build multiple-feature permutation tests by means of

combining joint single-feature permutation tests.

According to the ITP, when the tests on each interval of basis components (in

this case: each frequency band) is performed, the adjusted p-value associated to

the tests (7.3) on frequency h is computed as the maximum among all p-values

of tests pertaining that frequency. Once the adjusted p-values are computed, we

can select as significant all the frequencies with an associated adjusted p-value

lower than 5%. This final selection is provided with an interval-wise control of

the family wise error rate. In detail, this control means that the probability of

wrongly rejecting any frequency band is lower than 5%.

Once selected the significant frequencies, the estimate of the functional mo-

ment will then be the one-year periodic function obtained by means of the Fourier
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expansion of the sample mean coefficients of functions ϕi, restricted to the se-

lected frequencies. That is, if v = (vi, ..., v(Q−1)/2) is the index vector identifying

the final selection of significant frequencies, (vh = 0 if the result of the h-th test

is H
(h)
0 , vh = 1 if the result of the h-th test is H

(h)
1 ), the final estimate of the

functional moment is given by:

µ̂ϕ(tq) =
ā(0)

2
+
∑
h∈v

ā(h) cos

(
2π

Q
htq

)
+ b̄(h) sin

(
2π

Q
htq

)
, (7.5)

where ā(h) = 1/n
∑n

i=1 a
(h)
i , and b̄(h) = 1/n

∑n
i=1 b

(h)
i .

7.2.2 Joint propagation of aleatory and epistemic uncertainties

When both the aleatory and epistemic uncertainties are described by probability

distributions, a pure probabilistic approach can be adopted for their propaga-

tion to the model output. This approach consists on the Monte Carlo sampling

of possible values of all the input variables from the corresponding probability

distributions and the subsequent computation of the model output in corre-

spondence of the input values sampled Marseguerra and Zio (2002)). Random

realizations of the model output can be obtained repeating a large number of

times this procedure considering each time new samples of the input variables.

Instead, when the epistemic uncertainty is represented in possibilistic terms,

the joint propagation of the aleatory and epistemic uncertainty can be performed

by combining the Monte Carlo technique and the extension principle of fuzzy

set theory by means of the following two main steps Baudrit et al. (2006): (i)

repeated Monte Carlo sampling of the random variables to process aleatory

uncertainty; and (ii) fuzzy interval analysis to process epistemic uncertainty.

In this work, the random variables are represented by time-varying probabil-

ity distributions; therefore these two steps have to be repeated for all the time

steps in the period of interest. Details of possibility theory are not reported

here for brevity sake, the interested reader is referred to Dubois (2006). The

operative steps of the procedure for the case study under analysis are illustrated

in Appendix 7.A.

7.3 Case Study

The case study that we present here concerns the design of a solar panel that

provides electrical energy to a house located in the south of Spain. The size

and number of the panels is a trade-off between their performance to satisfy

the demand of energy and the high costs of construction and maintenance. To

perform this evaluation we consider the demand of power requested by the end-

users and the possibility of storing the generated exceedance power in a battery,

that is necessary when the power from the solar energy is not sufficient (e.g.

during cloudy days) or it is completely absent (e.g. during nights). This case

study deals with a big amount of uncertainty due to the stochasticity of the

behavior of the end-users, the variability of the solar irradiation, the lack of

knowledge about some operation parameters of the solar panels.

The system consists of three different parts: the solar panel, the load and the

battery, as illustrated in Figure 7.1.

126



CHAPTER 7. FUNCTIONAL ONE-POPULATION TEST: ANALYSIS OF
CLIMATIC DATA

Figure 7.1: Scheme of the system of a solar panel, load and battery considered in the case
study

The power generated by the solar panel, PS[kW], is a function of the solar

irradiation, S, the number of solar cells, N , and a vector of operation parameters,

θ = (IMPP , VMPP , VOC , ISC , Not, kc, Ta) Li and Zio (2012):

PS = N · FF · Vy · Iy, (7.6)

where Iy = S · ISC +kc(Tc−25), Vy = VOC −kv ·Tc, Tc = Ta +S(Not−20)/(0.8),

FF = (VMPP ·IMPP )/(VOC ·ISC). IMPP [A] and VMPP [V] are the current and volt-

age at maximum power point, respectively, VOC [V] is the open circuit voltage,

ISC [A] is the short circuit current, Not[
◦C] is the nominal operating temperature,

kc[A/
◦C] is the current temperature coefficient, kv[V/◦C] is the voltage temper-

ature coefficient, Ta[
◦C] is the ambient temperature, and the load, PLD[kW], is

the power demanded by the end-users.

The output model of the battery is the power, PB[kW], that can be stored

in the battery when the solar panel produces more power than the demand,

i.e. when PDiff = PS − PLD > 0, and can be given to the end-users when the

opposite occurs, i.e. when PDiff = PS − PLD < 0. In the present study we have

adopted a dynamic model Chen et al. (2011) to represent the level of charge of

the battery, calculating the difference between stored energies of two consecutive

steps. The following equations describe the model of the battery when it is

charging, i.e. ∆PB(t) = −PDiff < 0 (7.7)-(7.8), when it is discharging, i.e.

∆PB(t) = −PDiff > 0 (7.9)-(7.10) and when it is idle, i.e. ∆PB(t) = PDiff = 0

(7.11).

−ηc∆PB(t)∆tmin ≤ KcQmax; (7.7)

Q(t+ 1) = Q(t)− ηc∆PB(t)∆tmin; (7.8)

∆PB(t)∆tmin/ηd ≤ KdQmax; (7.9)

Q(t+ 1) = Q(t)−∆PB(t)∆tmin/ηd; (7.10)

Q(t+ 1) = Q(t)−Whourly. (7.11)

In equations (7.7-7.11), Q(t)[kWh] is the capacity of the battery at hour t,

ηc and ηd are the charging and discharging efficiency, respectively, Kc and Kd

are the maximum portion of rated capacity that can be added to and withdraw

from storage in an hour, respectively, Qmax is the rated maximum stored energy,

Whourly[kWh] is the battery hourly discharged energy, ∆tmin is the scheduling

interval. The parameter values adopted in the model are: ηc = ηd = 0.85,

Kc = Kd = 0.3, Qmax = 40, Whourly = 0.5 kWh and ∆tmin = 1 h. In this work,

the initial level in the battery has been assumed to be equal to zero.
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7.3.1 Uncertainty representation

In the model of the solar panel (7.6) the inputs can be classified in i) aleatory

variable, i.e. the solar irradiation and the load, ii) epistemic variables, i.e. the

operation parameters of the vector θ, and iii) constant, i.e. the number of solar

cells N that in the present simulation has been taken equal to 30.

Operation parameters

The operation parameters θ are classified into parameters provided by the man-

ufacturers, e.g. IMPP , VMPP , VOC , ICS, Not, kc, kv, and by the end-users, e.g. Ta.

Both are associated with epistemic uncertainty, and we represent them by trape-

zoidal possibility distributions (πIMPP , πVMPP , πVOC , πICS , πNot , πkc , πkv) as

proposed in Li and Zio (2012).

Solar irradiation

Solar irradiation S[kW/m2] depends on the variability of the weather. It is

typically described by a probabilistic distribution, e.g. a Beta distribution, whose

parameters, α and β, are inferred from sufficient historical data and are fixed

for a given period Li and Zio (2012). In the present paper, coherently with the

literature, we represent the solar irradiation with the Beta distribution. The

main novelty of our approach with respect to the literature is that we consider

the evolution of solar irradiation through time, estimating different values of the

parameters α and β for each day of the year, according the method explained in

Subsection 7.2.1.

The historical data used to elicit the parameters are daily irradiations in

a geographical close area near Seville, Spain, (the square with latitude in the

interval [37, 38] and longitude in [−6,−5]), registered from July 1983 to June

2005 and stored in the database NASA: Earth Surface Meteorology for Solar

Energy NASA (2008)1. By way of example, Figure 7.2 shows an histogram

of the historical data recorded and the correspondent Beta distribution of the

solar irradiation in four different days in July and August (1st and 21st July,

11th and 31st August, respectively). The figure compares a Beta distribution

characterized by constant parameters (green line), and one characterized by

time-varying parameters estimated with the method that we will present in this

Section (red line). We observe from the histograms that the distribution of solar

irradiation is changing through time even in the relatively small period of two

months. Hence, a correct approach to model such irradiation data is to consider

its time-varying distribution, rather than a constant one.

We suppose that, for a fixed day tq, the observed data Si(tq) is a random

independent sample from a beta distribution of parameters α(tq) and β(tq):

Si(tq) ∼ Beta(α(tq), β(tq)), ∀i = 1, ..., 22, q = 1, ..., 365. (7.12)

To estimate the time-varying parameters we adopt the methodology discussed

in Subsection 7.2.1. Since we need to estimate, for each tq, the two parameters

1These data were obtained from the NASA Langley Research Center Atmospheric Science Data
Center Surface meteorological and Solar Energy (SSE) web portal supported by the NASA LaRC
POWER Project. Data are freely available at: NASA Surface Meteorology and Solar Energy, A
Renewable Energy Resource web site (release 6.0): http://eosweb.larc.nasa.gov
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Figure 7.2: Histogram of the recorded data and the correspondent Beta distribution for the 1st

and 21st of July, 11th and 31st of August, and corresponding Beta distributions characterized
by: constant parameters (green line); time-varying parameters (red line).

α(tq) and β(tq), we need to estimate the mean and variance of the data distri-

bution, for each time unit tq.

Load

The load, PLD, is affected by aleatory uncertainty since its value depends on

the behavior of the end-users. Typically it is modeled by a normal probabilistic

distribution Liu et al. (2011), with parameters inferred from the large amount of

historical data available. In this work, we use a normal distribution, estimating

two different time-varying mean values for days and nights, µday, and µnight,

respectively, following the procedure explained in Section 7.2.1, and maintaining

a same standard deviation σ.

As well as the solar irradiation, also the load PLD[kW] has a time varying

structure. In particular, we suppose that, for each day of the year tq, the load

has two normal distributions for days and nights, with the same constant stan-

dard deviation (σ = 0.25 kW) and two time-varying means (µPLD,day(tq) and

µPLD,night(tq), respectively). The model assumed for the day and night load, for

each time tq is then the following:

PLD,day/night(tq) ∼ N(µPLD,day/night(tq), σ
2), q = 1, ..., Q. (7.13)

To estimate the day and night mean functions, it is not possible to proceed

applying the ITP to the daily load data, as they are not directly available. The

daily mean electrical consumption of a house in the south of Spain is about 24.54

kWh Sech-Spahousec (n.d.) and in the night the demand of electricity is the

half than during the day Omie (2012). Thus, the estimated means of the hourly

load for days and nights are 1.363 kW and 0.682 kW, respectively. Since these

data are aggregated through the entire year, it is not possible to infer a time

varying distribution. Consequently, a different approach is here necessary.

Most of the usual household electrical devices (e.g. washing machine, refrig-

erator, TV) are approximately used in the same way in summer and winter, and,

thus, their electrical consumption can be assumed to follow a constant distribu-

tion throughout the year. The only devices that may have a time-varying load

are the air conditioning systems (whose load varies in the warm months depend-
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ing on the external temperature) and the lighting (whose load changes through

the year depending on the variation of daylight time). Since for the former, the

load is higher than for the latter, we consider only the air conditioning systems

(AC) as a device with a time varying load. Since the AC load depends on the

external temperature, we first apply the ITP to minimum and maximum daily

temperatures, to find a smooth time-varying estimate of their mean functions.

Then, we use this estimate to calculate the time-varying day and night means

of the load due to the AC. The steps of the procedure applied to calculate the

load are detailed in Appendix 7.B.

7.3.2 Uncertainty propagation

The joint propagation of aleatory and epistemic uncertainties represented by

probability and possibility distributions, respectively, is carried out by Monte

Carlo simulation and Fuzzy Interval Analysis. Since the analysis is time-varying,

the procedure is repeated for each time steps in the period of interest.

In the present case study, the aleatory variables are the solar irradiation and

the loads that vary during days and nights. As a consequence of their variation,

the level of energy in the storage system varies too. We assume that at the first

time step it is day (i.e., there is solar irradiation) and the level of energy in the

storage system is equal to zero.

When the power generated by the solar panel is higher than the demands of

the end-users, the level of energy in the storage system increases and the end-

users are satisfied (the energy not supplied (ENS) is equal to zero); instead when

the power generated is lower than the demands of the end-users two cases can

occur: 1) there is enough energy in the storage system to supply the end-users,

so the level in the storage decreases but the end-users are satisfied (the ENS is

equal to zero); 2) there is not enough energy in the storage system, so the level

in the storage decreases to zero (if it is not already zero) and the ENS to the

end-users is positive.

The following time steps have been considered in our case:

• ∆tmin = 1[h] is the smallest time step of the system model. The total

number of hours in the period of interest is defined by the variable Nsteps;

• ∆tmax = 12[h] is the time interval in which the power generated by the

solar panel, PS, and the one demanded by the end-users, PLD, can be

considered constant. This assumption has been introduced to reduce the

computational time of the simulation and to distinguish only between day

and night, and is coherent with the calculation of PLD proposed in Section

3.2. Therefore, the total number of different values considered for those

variables is Nsteps/∆tmax .

The joint uncertainty propagation that consists in combining Monte Carlo

technique with the extension principle of fuzzy set theory is illustrated in details

in Appendix 7.A with respect to the case study considered in this work. At

the end of the procedure an ensemble of m fuzzy random realizations (fuzzy

intervals) πkEENS, k = 1, . . . ,m, of the Expected Energy Not Supplied (EENS)

index is obtained.
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On the basis of the rule of the possibility theory Baudrit et al. (2006), these

possibilistic distributions can be aggregated. As a result, two cumulative distri-

bution functions (cdfs), called belief and plausibility (i.e., the lower and upper

cdfs, respectively), of the Expected Energy Not Supplied are obtained. They

can be interpreted as bounding cumulative distribution functions Baudrit et al.

(2006) and they contain all the possible cumulative distribution functions that

can be generated by a pure probabilistic approach that considers all the inputs

variables as probabilistic. For the sake of comparison, we have embraced also

this method with m = 10000 samples of the probabilistic variables: in this case,

the possibilistic distributions of the input variables are transformed into proba-

bilistic distributions by the normalization method given in Flage et al. (2008).

7.3.3 Results

The adjusted p-values for the first and second moments are reported in the top

panels of Figure 7.3, where the 5% level is indicated as a horizontal red line.

For the first moment, the p-values associated to the first three frequencies are

lower than the chosen significance level (and are, furthermore, lower than every

typically-used significance level), whereas all other p-values are higher. Hence,

we have a rejection corresponding to the mean value (zero-frequency) and the

sine and cosine functions of period one year. For the second moment we have

instead a rejection on the first four frequencies, corresponding to the mean value

and the sine and cosine functions of period one year, six and three months.

The final estimates are periodic functions fully described by the sample means

coefficients on these frequencies.

To appreciate the result of the test, the lower panels of Figure 7.3 show, for

the first two moments, the two estimates of the mean: ITP estimate (red) and

daily estimate (black). Gray lines are the solar irradiation data in southern

Spain for the first moment (left), and squared solar irradiations for the second

moment (right). Comparing the ITP and daily estimates, it can be seen that

the first method gives smooth curves, which follow the yearly fluctuations of the

quantity of interest, whereas the second one gives extremely irregular functions.

The results of the analysis on the min-max temperature data, and the sub-

sequent results of the load parameters are presented in Figure 7.4. On the top,

the ITP-adjusted p-values for the minimum (left) and maximum (right) tempera-

tures are reported. In this case, the ITP selects as significant the mean value and

the first two frequencies, both for the min and the max temperatures. On the

middle, the daily minimum and maximum temperatures data in southern Spain

(light blue and red lines, respectively) are shown, together with the ITP esti-

mates of the two functional means, evaluated according to the ITP results. The

horizontal line indicates the threshold temperature at which the AC is turned on,

Tthres = 26◦C. On the bottom panel, the estimates of the time-varying means of

the load, for days and nights (yellow and black lines, respectively) are reported.

To appreciate how the modeling of the load data is related to the test results,

the figure indicates the densities of the simulated day and night load PLD,day(tq)

and PLD,night(tq) for a summer and a winter day. Note that the variability of

the normal distribution remains constant, whereas its mean level changes from

days and nights, and from winter to summer.
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Figure 7.3: Top: ITP-adjusted p-values for each frequency of the Fourier expansion for the first
(left) and second (right) moment. Bottom: ITP (red) and daily (black) estimates of the first
two moments. Gray lines: solar irradiation (left); and squared solar irradiation (right).
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Figure 7.4: Top: ITP-adjusted p-values for each frequency of the Fourier expansion for the min
(left) and max (right) temperatures. Middle: daily min (light blue) and max (light red) tem-
peratures data and ITP estimates for the means (bold blue and red lines). Bottom: estimates
of the time-varying means of the load for days (yellow) and nights (black), and densities of
simulated data in a summer and winter day.

132



CHAPTER 7. FUNCTIONAL ONE-POPULATION TEST: ANALYSIS OF
CLIMATIC DATA

Figure 7.5: Left: comparison of the cumulative distribution functions of the EENS [kWh]
obtained by the pure probabilistic approach (solid line) with the belief (dotted line) and plau-
sibility (dashed line) functions obtained by the Monte Carlo and Fuzzy Interval Analysis. Right:
comparison of the lower and upper cumulative distribution functions of the EENS obtained by
the Monte Carlo and Fuzzy Interval Analysis approach considering constant (solid line) and
time-varying (dotted line) parameters of the probabilistic distribution.

The computation of the EENS index has been performed by applying the

method of Section 3.3 considering the time-varying parameters of the proba-

bilistic distribution of the solar irradiation and of the loads determined above.

The analysis has been carried out with respect to the month of July that is a

critical period for the high demand of power by the end-users. In fact, the hot

temperature reached in the south of Spain gives rise to a large use of air condi-

tioners. Figure 7.5 reports on the left panel a comparison of the cumulative dis-

tribution functions of the EENS index obtained by the probabilistic uncertainty

propagation approach (solid lines) with the belief (lower curves) and plausibil-

ity (upper curves) functions obtained by the Monte Carlo and Fuzzy Interval

Analysis approach described in Section 3.3.

The Monte Carlo and Fuzzy Interval Analysis method explicitly propagates

the aleatory and epistemic uncertainty: the separation between the belief and

plausibility functions reflects the imprecision in the knowledge of the possibilis-

tic variables and the slope pictures the variability of the probabilistic variables.

Instead, the uncertainty in the output distribution of the pure probabilistic ap-

proach is given only by the slope of the cumulative distribution. As expected, the

cumulative distribution of the EENS obtained by the pure probabilistic method

is within the belief and plausibility functions obtained by the Monte Carlo and

Fuzzy Interval Analysis approach.

Figure 7.5 (on the right) compares the previous results, carried out with the

Monte Carlo and Fuzzy Interval Analysis approach, with those obtained by the

same method but by considering constant the parameters of the probabilistic

distributions of the solar irradiation S, and the loads PLD. A conservative

measure of the EENS distribution to be used to evaluate the size of the panel can

be chosen as the 99th percentile of the distribution. The lower and upper values

of this measure, obtained with time-varying or constant parameters, are reported

in Table 7.1. The value obtained by considering time-varying parameters (with

a model that describes with a higher precision the real climatic conditions) are

lower than the ones obtained with constant parameters.

It can be seen that the lower and upper cumulative distributions functions
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EENS
Lower value [kWh] Upper value [kWh]

Time-varying 0.22 0.70
Constant 0.45 0.78

Table 7.1: Lower and upper values of the 99th percentile of the EENS distribution, evaluated
with time-varying and constant parameters.

obtained by considering time-varying parameters are always lower than those

resulted by keeping constant those parameters. This means that a time-varying

analysis allows designing the solar panel with smaller dimension. Furthermore,

the gap between the cumulative distributions functions obtained by considering

time-varying parameters is higher than that between the curves obtained by

keeping constant those parameters. In particular, by considering time-varying

parameters, we introduce a higher variability on the EENS estimation, due to

the fact that the distribution of data changes daily. The higher variability allows

considering within our model the situation in which the solar panel fully support

the load demand, including the zero value in the EENS distribution.

7.4 Conclusions

We illustrated a methodology to represent and joint propagate the aleatory and

epistemic uncertainties of renewable energy generation systems. We represented

the former ones by probability distributions and the second ones by possibility

distributions. In particular, we focused on the aleatory variables that present

a time-varying behavior (e.g., solar irradiation and loads) and we elicited time-

varying probability distributions from historical climatic data.

Once all uncertainties have been represented, we proceeded to evaluate the

output of interest (e.g., the Expected Energy Not Supplied) by propagating the

uncertainties through the model of the energy distribution system. The results

that can be obtained from this analysis can provide a support in the decision

process for the dimensioning of the energy generation system.

In this work, we applied the methodology to a model of an energy system

made of a solar panel, a storage energy system and the loads. In particular, we

considered the variations in time of the solar irradiation and the loads, describing

them by probabilistic distributions with time-varying parameters. We evaluated

the Expected Energy Not Supplied as a quantitative indicator of the analysis.

Two main results have to be highlighted: (i): the uncertainty propagation

method divides the contribution of the aleatory and epistemic uncertainty, iden-

tifying an upper and a lower bound of values for the EENS, i.e. an interval of

values of the EENS index is determined. This can be of interest in the decision

making process to identify the proper size of the solar panel; (ii) accounting for

the time-varying parameters in the distributions of the solar irradiation and of

the loads leads to more realistic results that allows to reduce the dimension of

the solar panel. Thus, considering constant parameters an overestimation of the

size of the solar panel can be done.
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7.A Joint uncertainty propagation

The operative steps of the procedure for the joint uncertainty propagation by

Monte Carlo simulation and Fuzzy Interval Analysis are here detailed with re-

spect to the case study presented in Section 7.3. As a quantitative indicator of

the analysis, the Expected Energy Not Supplied index is computed.

1. Set k = 1 (outer loop processing aleatory uncertainty).

2. Sample the solar irradiations S̃kl , l = 1, ..., Nsteps/∆tmax from Beta dis-

tribution (equation (7.1)) if l is an odd number (i.e. when it is day),

otherwise, set S̃kl = 0 (i.e. when it is night). Then, sample the loads

P̃ k
LD,l, l = 1, ..., Nsteps/∆tmax from equation (7.13) taking into account

the different distributions associated with that variable during the days

and nights. The vectors [S̃k]l and [P̃k
LD]l, are transformed into [S̃k]j and

[P̃k
LD]j, j = 1, ..., Nsteps, respectively, repeating each value ∆tmax times, to

obtain values of solar irradiations and loads for each hour in all the period

of interest.

3. Set α = 0 (middle loop processing epistemic uncertainty).

4. Set j = 1 (inner loop processing the time variation).

5. Select the corresponding α-cuts of the possibility distributions (πIMPP ,

πVMPP , πVOC , πICS , πNot , πkc , πkv) as intervals of possible values of the

possibilistic variables IMPP , VMPP , VOC , ICS, Not, kc, kv.

6. Calculate the smallest and largest values of the solar power generated,

P k
S,j,α and P

k

S,j,α, respectively, by equation (7.6) considering the fixed values

Skj sampled for the random variables S and all values of the possibilistic

variables IMPP , VMPP , VOC , ICS, Not, kc, kv in the α-cuts of their possibility

distributions.

7. Compute the value P k
Diff,j,α = P k

S,j,α − PL
j,k: if P k

Diff,j,α > 0, go to step

7.a.; if P k
Diff,j,α < 0 go to step 7.b., else go to step 7.c.:

a. set to zero the Energy Not Supplied index, ENS
k

j,α = 0, and in-

crease the level of energy in the battery by equation (7.8), Qk

j+1,α
=

f(Qk
j,α, P

k
B,j,α, ηc), where P k

B,j,α = −P k
Diff,j,α if the constraint defined

in equation (7.7) is verified, otherwise it is computed by equation (7.7).

If the level of energy in the battery at the step j + 1 is higher than its

maximum capacity, i.e. Qk

j+1,α
> Qmax, then, set Qk

j+1,α
= Qmax;
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b. decrease the level of energy in the battery by equation (7.10), Qk

j+1,α
=

f(Qk
j,α, P

k
B,j,α, ηd); if the constraint defined in equation (7.9) is verified

P k
B,j,α = −P k

Diff,j,α (case i.), otherwise P k
B,j,α is computed by equation

(7.9) (case ii.). If the level of energy in the battery at the step j + 1

is higher than zero, the Energy Not Supplied index is computed as

ENS
k

j,α = 0 for the case i., and ENS
k

j,α = −P k
Diff,j,α − P k

B,j,α for the

case ii.; otherwise, set, Qk

j+1,α
= 0 and ENS

k

j,α = −P k
Diff,j,α;

c. set ENS
k

j,α = 0, and decrease the level of the battery by equation

(7.11), Qk

j+1,α
= f(Qk

j,α,Whourly). If the level of energy in the battery

at the step j + 1 is lower than zero, then set Qk

j+1,α
= 0.

8. Repeat step 7. for the evaluation of the lower bounds of ENSkj,α, computing

the upper values of P
k

Diff,j,α, P
k

B,j,α and Q
k

j,α.

9. If j ≤ Nsteps, then set j = j + 1 and return to step 5.; otherwise go to step

10.

10. Compute the total lower and upper bounds of the ENS index in the period

under analysis as ENSkα =
∑Nsteps

j=1 ENSkj,α, ENS
k

α =
∑Nsteps

j=1 ENS
k

j,α; the

lower and upper bounds of EENS, EENSkα and EENS
k

α, are obtained by

performing the means of ENSkα and ENS
k

α, respectively.

11. Take the extreme values, EENSkα and EENS
k

α, found in 10. as the lower

and upper limit of the α-cut of the Expected Energy Not Supplied.

12. If α 6= 1, then set α = α+ ∆α and return to step 4. to compute the EENS

for another α-cut; otherwise a fuzzy random realization, πkEENS, of the

EENS has been identified. If k 6= m, where m is the number of simulations,

then set k = k + 1 and return to step 2.; else stop the algorithm.

At the end of the procedure the fuzzy random realizations (fuzzy intervals)

πkEENS, k = 1, ...,m of the Expected Energy Not Supplied index is constructed

as the collection of the values EENSkα and EENS
k

α, found at step 10. (in other

words, πkEENS is defined by all its α-cut intervals (EENSkα, EENS
k

α).

7.B Time-varying estimate of the load

The operative steps of the procedure applied to find time-varying estimates

of the load is briefly described here. Starting from the daily minimum and

maximum temperatures in the Seville area, stored in the NASA data base NASA

(2008), we calculate the time-varying mean of the load of an AC with some fixed

characteristics. We consider a class “A” device, with an Energy Efficiency Ratio

(EER) equal to 3.5. The number of AC installed in the house is set equal to the

mean number of conditioners in Spanish homes in Andalusia, which is 1.623 INE

(2008). The nominal power of the AC is calculated as PAC
N = Surf ·Ceiling · 25

ENEA (2006), where Surf = 20m2 is the surface of the room and Ceiling =

2.7m is the height of the ceiling. All data are chosen to indicate a representative

Spanish house. Finally, since the proportion of Spanish that leave the AC turned
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on at night is equal to 7.6% INE (2008), we multiply the AC load at nights by

this proportion.

In order to calculate the mean load of such AC system, first of all, we find

functional estimates for the mean tendency of the daily minimum and maxi-mum

temperature for the given location (Tmin(tq) and Tmax(tq) [◦C], respectively), by

means of the ITP on min and max temperatures, as shown in Section 3.1.1.

Then, for each day tq, we perform the following calculation:

• We fix a threshold temperature Tthres = 26◦C, and suppose that the AC

is turned on when the external temperatures exceed the threshold, as in

Izquierdo et al. (2011).

• We estimate the daily lapse of time in which the AC is turned on hon(tq)[h],

supposing for each day a linear temperature profile between Tmin(tq) and

Tmax(tq):

hon(tq) = 24

(
Tmax(tq)− Tthres
Tmax(tq)− Tmin(tq)

)
. (7.14)

This approximation is justified by the comparison of our results with a

daily temperature profile estimated from hourly data FreeMeteo (2012).

• The quantity hon(tq) is then divided into daily (10.00 a.m. - 10.00 p.m.)

and nightly (10.00 p.m. - 10.00 a.m.) hours of switching on (hdayon (tq) and

hnighton (tq), respectively), assuming that Tmax(tq) is attained at 4.00 p.m.

and Tmin(tq) at 6.00 a.m. FreeMeteo (2012).

• The mean power load on days of the AC is then calculated as:

µPLD,day(tq) = PAC
N nroomh

day
on (tq)/(12EER) (7.15)

The mean load on nights, is:

µPLD,night(tq) = PAC
N nroomh

night
on · 0.076(tq)/(12EER) (7.16)

Note that both quantities are divided by 12[h] in order to found an estimate

of the hourly power.

• The quantities µPLD,day and µPLD,night are finally added to the day and night

fixed averages (mean load without AC), calculated in order to maintain the

values of 1.363 kW and 0.682 kW as yearly means.
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Chapter 8

The package fdatest

The implementation of the ITP for one- and two-population tests, F - and t-

tests for functional-on-scalar linear models, and the test of significance of the

factors of a functional ANOVA model, have been made available for users in the

R-package fdatest (Pini and Vantini, 2014), downloadable on CRAN.

The current version of the package requires functional data evaluated on a

uniform grid; it automatically projects each function on a chosen functional

basis (B-splines or Fourier in the current version); it performs the entire family

of interval-wise tests; and, finally, it provides the matrix of the p-values of the

previous tests and the vector of the adjusted p-values. The functional basis and

the kind of test (including paired or unpaired scenario in the two-population

framework) can be chosen by the user.

The main functions included in the current version of the package are the

following:

• ITP1bspline: B-spline-based ITP for testing the mean of one population;

• ITP1fourier: Fourier-based ITP for testing the mean of one population;

• ITP2bspline: B-spline-based ITP for comparing the means of two pop-

ulations;

• ITP2fourier: Fourier-based ITP (sine-cosine decomposition) for com-

paring the means of two populations;

• ITP2pafourier: Fourier-based ITP (amp-phase decomposition) for com-

paring the means of two populations;

• ITPlmbspline: B-spline-based ITP for testing functional-on-scalar linear

models (F -test and t-tests);

• ITPaovbspline: B-spline-based ITP for testing the factors on a func-

tional ANOVA;

Each function takes as input the point-wise evaluations of the functional data

on a uniform grid, the mean (or mean difference) under the null hypothesis (in

the case of one- or two- population tests), the covariates and factors (in the case

of tests on linear models and ANOVA), the parameters characterizing the basis

expansion (e.g., the order of the basis functions and the number of knots for

the B-spline basis), and the number of random permutations to be used in the

permutation tests. In addition, for the two-population case, the user can choose

whether the test is paired or not.
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A graphical output of the tests, displaying functional data, adjusted p-values

and significant intervals at a chosen significance level is obtained applying the

plot method to the output of each function. In addition, with the ITPimage

function, it is possible to visualize the p-value heatmap.

The package also contains the NASAtemp dataset, providing the data analyzed

in the NASA daily temperature case study, reported in the Appendix of Chapter

2. In the following, we report the manual of the fdatest package, with a detailed

description of each function of the package, and some examples of how they are

used to perform the ITP.
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References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

See Also

See also ITP1bspline, ITP1fourier, ITP2bspline, ITP2fourier, ITP2pafourier, ITPlmbspline,
and ITPimage.

Examples

data(NASAtemp)
# Performing the ITP for one population with the Fourier basis
ITP.result <- ITP1fourier(NASAtemp$milan,maxfrequency=15,B=1000)
# Plotting the results of the ITP
## Not run:

ITPimage(ITP.result)

## End(Not run)
# Selecting the significant coefficients
which(ITP.result$corrected.pval < 0.05)

# Performing the ITP for two populations with the B-spline basis
ITP.result <- ITP2bspline(NASAtemp$milan,NASAtemp$paris,nknots=30,B=1000)
# Plotting the results of the ITP
## Not run:

ITPimage(ITP.result,abscissa.range=c(0,12))

## End(Not run)
# Selecting the significant components for the radius at 5% level
which(ITP.result$corrected.pval < 0.05)

ITP1bspline One population Interval Testing Procedure with B-spline basis

Description

The function implements the Interval Testing Procedure for testing the center of symmetry of a
functional population evaluated on a uniform grid. Data are represented by means of the B-spline
expansion and the significance of each basis coefficient is tested with an interval-wise control of
the Family Wise Error Rate. The default parameters of the basis expansion lead to the piece-wise
interpolating function.
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Usage

ITP1bspline(data, mu = 0, order = 2, nknots = dim(data)[2], B = 10000)

Arguments

data Pointwise evaluations of the functional data set on a uniform grid. data is a
matrix of dimensions c(n,J), with J evaluations on columns and n units on
rows.

mu The center of symmetry under the null hypothesis: either a constant (in this case,
a constant function is used) or a J-dimensional vector containing the evaluations
on the same grid which data are evaluated. The default is mu=0.

order Order of the B-spline basis expansion. The default is order=2.
nknots Number of knots of the B-spline basis expansion. The default is nknots=dim(data)[2].
B The number of iterations of the MC algorithm to evaluate the p-values of the

permutation tests. The defualt is B=10000.

Value

ITP1bspline returns an object of class "ITP1".

An object of class "ITP1" is a list containing at least the following components:

basis String vector indicating the basis used for the first phase of the algorithm. In this
case equal to "B-spline".

test String vector indicating the type of test performed. In this case equal to "1pop".
mu Center of symmetry under the null hypothesis (as entered by the user).
coeff Matrix of dimensions c(n,p) of the p coefficients of the B-spline basis expan-

sion. Rows are associated to units and columns to the basis index.
pval Uncorrected p-values for each basis coefficient.
pval.matrix Matrix of dimensions c(p,p) of the p-values of the multivariate tests. The ele-

ment (i,j) of matrix pval.matrix contains the p-value of the joint NPC test
of the components (j,j+1,...,j+(p-i)).

corrected.pval Corrected p-values for each basis coefficient.
labels Labels indicating the population membership of each data (in this case always

equal to 1).
data.eval Evaluation on a fine uniform grid of the functional data obtained through the

basis expansion.
heatmap.matrix Heatmap matrix of p-values (used only for plots).

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.
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See Also

See also ITP1fourier, ITP2bspline, ITP2fourier, ITP2pafourier, and ITPimage.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)
# Performing the ITP for two populations with the B-spline basis
ITP.result <- ITP1bspline(NASAtemp$paris,mu=4,nknots=50,B=1000)
# Plotting the results of the ITP
## Not run:

ITPimage(ITP.result,abscissa.range=c(0,12))

## End(Not run)
# Selecting the significant components for the radius at 5% level
which(ITP.result$corrected.pval < 0.05)

ITP1fourier One population Interval Testing Procedure with Fourier basis

Description

The function implements the Interval Testing Procedure for testing the center of symmetry of a
functional population evaluated on a uniform grid. Data are represented by means of the Fourier
expansion and the significance of each basis coefficient is tested with an interval-wise control of the
Family Wise Error Rate.

Usage

ITP1fourier(data, mu = 0, maxfrequency=floor(dim(data)[2]/2), B = 10000)

Arguments

data Pointwise evaluations of the functional data set on a uniform grid. data is a
matrix of dimensions c(n,J), with J evaluations on columns and n units on
rows.

mu The center of symmetry under the null hypothesis: either a constant (in this case,
a constant function is used) or a J-dimensional vector containing the evaluations
on the same grid which data are evaluated. The default is mu=0.

maxfrequency The maximum frequency to be used in the Fourier basis expansion of data. The
default is floor(dim(data)[2]/2), leading to an interpolating expansion.

B The number of iterations of the MC algorithm to evaluate the p-values of the
permutation tests. The defualt is B=10000.
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Value

ITP1fourier returns an object of class "ITP1".

An object of class "ITP1" is a list containing at least the following components:

basis String vector indicating the basis used for the first phase of the algorithm. In this
case equal to "Fourier".

test String vector indicating the type of test performed. In this case equal to "1pop".

mu Center of symmetry under the null hypothesis (as entered by the user).

coeff Matrix of dimensions c(n,p) of the p coefficients of the Fourier basis expan-
sion. Rows are associated to units and columns to the basis index: the first
column is a0, the following (p-1)/2 columns are the ak coefficients (sine coef-
ficients) and the last (p-1)/2 columns the bk coefficients (cosine coefficients).

pval Uncorrected p-values for each frequency.

pval.matrix Matrix of dimensions c(p,p) of the p-values of the multivariate tests. The ele-
ment (i,j) of matrix pval.matrix contains the p-value of the joint NPC test
of the components (j,j+1,...,j+(p-i)).

corrected.pval Corrected p-values for each frequency.

labels Labels indicating the population membership of each data (in this case always
equal to 1).

data.eval Evaluation on a fine uniform grid of the functional data obtained through the
basis expansion.

heatmap.matrix Heatmap matrix of p-values (used only for plots).

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

See Also

See also ITP1bspline, ITP2bspline, ITP2fourier, ITP2pafourier, and ITPimage.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)
# Performing the ITP
ITP.result <- ITP1fourier(NASAtemp$milan,maxfrequency=20,B=1000)
# Plotting the results of the ITP
#\dontrun{

plot(ITP.result,main='NASA data',xrange=c(1,365),xlab='Day')
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#}
# Selecting the significant coefficients
which(ITP.result$corrected.pval < 0.05)

ITP2bspline Two populations Interval Testing Procedure with B-spline basis

Description

The function implements the Interval Testing Procedure for testing the difference between two
functional populations evaluated on a uniform grid. Data are represented by means of the B-spline
basis and the significance of each basis coefficient is tested with an interval-wise control of the
Family Wise Error Rate. The default parameters of the basis expansion lead to the piece-wise
interpolating function.

Usage

ITP2bspline(data1, data2, mu = 0,
order = 2, nknots = dim(data1)[2], B = 10000, paired = FALSE)

Arguments

data1 Pointwise evaluations of the first population’s functional data set on a uniform
grid. data1 is a matrix of dimensions c(n1,J), with J evaluations on columns
and n1 units on rows.

data2 Pointwise evaluations of the second population’s functional data set on a uni-
form grid. data2 is a matrix of dimensions c(n2,J), with J evaluations on
columns and n2 units on rows.

mu The difference between the first functional population and the second functional
population under the null hypothesis. Either a constant (in this case, a constant
function is used) or a J-dimensional vector containing the evaluations on the
same grid which data are evaluated. The default is mu=0.

order Order of the B-spline basis expansion. The default is order=2.

nknots Number of knots of the B-spline basis expansion. The default is nknots=dim(data1)[2].

B The number of iterations of the MC algorithm to evaluate the p-values of the
permutation tests. The defualt is B=10000.

paired A logical indicating whether the test is paired. The default is FALSE.

Value

ITP2bspline returns an object of class "ITP2".

An object of class "ITP2" is a list containing at least the following components:

basis String vector indicating the basis used for the first phase of the algorithm. In this
case equal to "B-spline".
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test String vector indicating the type of test performed. In this case equal to "2pop".

mu Difference between the first functional population and the second functional
population under the null hypothesis (as entered by the user).

paired Logical indicating whether the test is paired (as entered by the user).

coeff Matrix of dimensions c(n,p) of the p coefficients of the B-spline basis expan-
sion, with n=n1+n2. Rows are associated to units and columns to the basis index.
The first n1 rows report the coefficients of the first population units and the fol-
lowing n2 rows report the coefficients of the second population units

pval Uncorrected p-values for each basis coefficient.

pval.matrix Matrix of dimensions c(p,p) of the p-values of the multivariate tests. The ele-
ment (i,j) of matrix pval.matrix contains the p-value of the joint NPC test
of the components (j,j+1,...,j+(p-i)).

corrected.pval Corrected p-values for each basis coefficient.

labels Labels indicating the population membership of each data.

data.eval Evaluation on a fine uniform grid of the functional data obtained through the
basis expansion.

heatmap.matrix Heatmap matrix of p-values (used only for plots).

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

See Also

See also summary.ITPlm for summaries. For different types of ITP-based tests, see ITP1bspline,
ITP1fourier, ITP2fourier, ITP2pafourier, and ITPimage.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)
# Performing the ITP
ITP.result <- ITP2bspline(NASAtemp$milan,NASAtemp$paris,nknots=50,B=1000)
# Plotting the results of the ITP
#\dontrun{

#ITPimage(ITP.result,abscissa.range=c(0,12))
plot(ITP.result,main='NASA data',xrange=c(1,365),xlab='Day')

#}
# Selecting the significant components for the radius at 5% level
which(ITP.result$corrected.pval < 0.05)
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ITP2fourier Two populations Interval Testing Procedure with Fourier basis

Description

The function implements the Interval Testing Procedure for testing the difference between two
functional populations evaluated on a uniform grid. Data are represented by means of the Fourier
basis and the significance of each basis coefficient is tested with an interval-wise control of the
Family Wise Error Rate.

Usage

ITP2fourier(data1, data2, mu = 0,
maxfrequency=floor(dim(data1)[2]/2), B = 10000, paired = FALSE)

Arguments

data1 Pointwise evaluations of the first population’s functional data set on a uniform
grid. data1 is a matrix of dimensions c(n1,J), with J evaluations on columns
and n1 units on rows.

data2 Pointwise evaluations of the second population’s functional data set on a uni-
form grid. data2 is a matrix of dimensions c(n2,J), with J evaluations on
columns and n2 units on rows.

mu The difference between the first functional population and the second functional
population under the null hypothesis. Either a constant (in this case, a constant
function is used) or a J-dimensional vector containing the evaluations on the
same grid which data are evaluated. The default is mu=0.

maxfrequency The maximum frequency to be used in the Fourier basis expansion of data. The
default is floor(dim(data1)[2]/2), leading to an interpolating expansion.

B The number of iterations of the MC algorithm to evaluate the p-values of the
permutation tests. The defualt is B=10000.

paired A logical indicating whether the test is paired. The default is FALSE.

Value

ITP2fourier returns an object of class "ITP2".

An object of class "ITP2" is a list containing at least the following components:

basis String vector indicating the basis used for the first phase of the algorithm. In this
case equal to "Fourier".

test String vector indicating the type of test performed. in this case equal to "2pop".

mu Difference between the first functional population and the second functional
population under the null hypothesis (as entered by the user).

paired Logical indicating whether the test is paired (as entered by the user).
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coeff Matrix of dimensions c(n,p) of the p coefficients of the Fourier basis expan-
sion. Rows are associated to units and columns to the basis index: the first n1
rows report the coefficients of the first population units and the following n2
rows report the coefficients of the second population units; the first column is
a0, the following (p-1)/2 columns are the ak coefficients (sine coefficients) and
the last (p-1)/2 columns the bk coefficients (cosine coefficients).

pval Uncorrected p-values for each frequency.

pval.matrix Matrix of dimensions c(p,p) of the p-values of the multivariate tests. The ele-
ment (i,j) of matrix pval.matrix contains the p-value of the joint NPC test
of the frequencies (j,j+1,...,j+(p-i)).

corrected.pval Corrected p-values for each frequency.

labels Labels indicating the population membership of each data.

data.eval Evaluation on a fine uniform grid of the functional data obtained through the
basis expansion.

heatmap.matrix Heatmap matrix of p-values (used only for plots).

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

See Also

See also ITP2pafourier, ITP2bspline, ITP1fourier, ITP1bspline, and ITPimage.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)
# Performing the ITP
ITP.result <- ITP2fourier(NASAtemp$milan,NASAtemp$paris,maxfrequency=20,B=1000,paired=TRUE)
# Plotting the results of the ITP
#\dontrun{

plot(ITP.result,main='NASA data',xrange=c(1,365),xlab='Day')

#}
# Selecting the significant coefficients
which(ITP.result$corrected.pval < 0.05)
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ITP2pafourier Two populations Interval Testing Procedure with Fourier basis (phase-
amplitude decomposition)

Description

The function implements the Interval Testing Procedure for testing the difference between two
functional populations evaluated on a uniform grid. Data are represented by means of the Fourier
basis expansion with the phase-amplitude decomposition and the significance of the amplitude and
phase of each frequency is tested with an interval-wise control of the Family Wise Error Rate.

Usage

ITP2pafourier(data1, data2,
maxfrequency=floor(dim(data1)[2]/2), B = 10000, paired = FALSE)

Arguments

data1 Pointwise evaluations of the first population’s functional data set on a uniform
grid. data1 is a matrix of dimensions c(n1,J), with J evaluations on columns
and n1 units on rows.

data2 Pointwise evaluations of the second population’s functional data set on a uni-
form grid. data2 is a matrix of dimensions c(n2,J), with J evaluations on
columns and n2 units on rows.

maxfrequency The maximum frequency to be used in the Fourier basis expansion of data. The
default is floor(dim(data1)[2]/2), leading to an interpolating expansion.

B The number of iterations of the MC algorithm to evaluate the p-values of the
permutation tests. The defualt is B=10000.

paired A logical indicating whether the test is paired. The default is FALSE.

Value

ITP2pafourier returns an object of class "ITP2".

An object of class "ITP2" is a list containing at least the following components:

basis String vector indicating the basis used for the first phase of the algorithm. Equal
to "paFourier".

test String vector indicating the type of test performed. Equal to "2pop".

paired Logical indicating whether the test is paired (as entered by the user).

coeff_phase Matrix of dimensions c(n,p) of the p phases of the Fourier basis expansion.
Rows are associated to units and columns to frequencies: the first n1 rows report
the coefficients of the first population units and the following n2 rows report the
coefficients of the second population units.
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coeff_amplitude

Matrix of dimensions c(n,p) of the p amplitudes of the Fourier basis expansion.
Rows are associated to units and columns to frequencies: the first n1 rows report
the coefficients of the first population units and the following n2 rows report the
coefficients of the second population units.

pval_phase Uncorrected p-values of the phase tests for each frequency.

pval_amplitude Uncorrected p-values of the amplitude tests for each frequency.
pval.matrix_phase

Matrix of dimensions c(p,p) of the p-values of the multivariate tests on phase.
The element (i,j) of matrix pval.matrix_phase contains the p-value of the
joint NPC test of the frequencies (j,j+1,...,j+(p-i)).

pval.matrix_amplitude

Matrix of dimensions c(p,p) of the p-values of the multivariate tests on am-
plitude. The element (i,j) of matrix pval.matrix_amplitude contains the
p-value of the joint NPC test of the frequencies (j,j+1,...,j+(p-i)).

corrected.pval_phase

Corrected p-values of the phase tests for each frequency.
corrected.pval_amplitude

Corrected p-values of the amplitude tests for each frequency.

labels Labels indicating the population membership of each data.

data.eval Evaluation on a fine uniform grid of the functional data obtained through the
basis expansion.

heatmap.matrix_phase

Heatmap matrix of p-values for phase (used only for plots).
heatmap.matrix_amplitude

Heatmap matrix of p-values for amplitude (used only for plots).

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

See Also

See also ITP2fourier, ITP2bspline, ITP1fourier, ITP1bspline, and ITPimage.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)
# Performing the ITP
ITP.result <- ITP2pafourier(NASAtemp$milan,NASAtemp$paris,maxfrequency=20,B=1000,paired=TRUE)
# Plotting the results of the ITP
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#\dontrun{

plot(ITP.result,main='NASA data',xrange=c(1,365),xlab='Day')

#}
# Selecting the significant coefficients
which(ITP.result$corrected.pval < 0.05)

ITPaovbspline Interval Testing Procedure for testing Functional analysis of variance
with B-spline basis

Description

ITPaovbspline is used to fit and test functional analysis of variance. The function implements the
Interval Testing Procedure for testing for significant differences between several functional pop-
ulation evaluated on a uniform grid. Data are represented by means of the B-spline basis and the
significance of each basis coefficient is tested with an interval-wise control of the Family Wise Error
Rate. The default parameters of the basis expansion lead to the piece-wise interpolating function.

Usage

ITPaovbspline(formula, order = 2,
nknots = dim(model.response(model.frame(formula)))[2],
B = 10000, method = "residuals")

Arguments

formula An object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted.

order Order of the B-spline basis expansion. The default is order=2.

nknots Number of knots of the B-spline basis expansion.
The default is dim(model.response(model.frame(formula)))[2].

B The number of iterations of the MC algorithm to evaluate the p-values of the
permutation tests. The defualt is B=10000.

method Permutation method used to calculate the p-value of permutation tests. Choose
"residuals" for the permutations of residuals under the reduced model, accord-
ing to the Freedman and Lane scheme, and "responses" for the permutation of
the responses, according to the Manly scheme.

Value

ITPaovbspline returns an object of class "ITPaov".

The function summary is used to obtain and print a summary of the results.

An object of class "ITPlm" is a list containing at least the following components:
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call The matched call.

design.matrix The design matrix of the functional-on-scalar linear model.

basis String vector indicating the basis used for the first phase of the algorithm. In this
case equal to "B-spline".

coeff Matrix of dimensions c(n,p) of the p coefficients of the B-spline basis expan-
sion. Rows are associated to units and columns to the basis index.

coeff.regr Matrix of dimensions c(L+1,p) of the p coefficients of the B-spline basis ex-
pansion of the intercept (first row) and the L effects of the covariates specified
in formula. Columns are associated to the basis index.

pval.F Uncorrected p-values of the functional F-test for each basis coefficient.

pval.matrix.F Matrix of dimensions c(p,p) of the p-values of the multivariate F-tests. The
element (i,j) of matrix pval.matrix contains the p-value of the joint NPC
test of the components (j,j+1,...,j+(p-i)).

corrected.pval.F

Corrected p-values of the functional F-test for each basis coefficient.

pval.factors Uncorrected p-values of the functional F-tests on each factor of the analysis of
variance, separately (rows) and each basis coefficient (columns).

pval.matrix.factors

Array of dimensions c(L+1,p,p) of the p-values of the multivariate F-tests on
factors. The element (l,i,j) of array pval.matrix contains the p-value of the
joint NPC test on factor l of the components (j,j+1,...,j+(p-i)).

corrected.pval.factors

Corrected p-values of the functional F-tests on each factor of the analysis of
variance (rows) and each basis coefficient (columns).

data.eval Evaluation on a fine uniform grid of the functional data obtained through the
basis expansion.

coeff.regr.eval

Evaluation on a fine uniform grid of the functional regression coefficients.

fitted.eval Evaluation on a fine uniform grid of the fitted values of the functional regression.

residuals.eval Evaluation on a fine uniform grid of the residuals of the functional regression.

R2.eval Evaluation on a fine uniform grid of the functional R-squared of the regression.

heatmap.matrix.F

Heatmap matrix of p-values of functional F-test (used only for plots).

heatmap.matrix.factors

Heatmap matrix of p-values of functional F-tests on each factor of the analysis
of variance (used only for plots).

Author(s)

Alessia Pini, Simone Vantini
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References

D. Freedman and D. Lane (1983). A Nonstochastic Interpretation of Reported Significance Levels.
Journal of Business & Economic Statistics 1.4, 292-298.

B. F. J. Manly (2006). Randomization, Bootstrap and Monte Carlo Methods in Biology. Vol. 70.
CRC Press.

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

See Also

See summary.ITPaov for summaries and plot.ITPaov for plotting the results.

See also ITPlmbspline to fit and test a functional-on-scalar linear model applying the ITP, and
ITP1bspline, ITP2bspline, ITP2fourier, ITP2pafourier for one-population and two-population
tests.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

temperature <- rbind(NASAtemp$milan,NASAtemp$paris)
groups <- c(rep(0,22),rep(1,22))

# Performing the ITP
## Not run:

ITP.result <- ITPaovbspline(temperature ~ groups,B=1000,nknots=20,order=3)

# Summary of the ITP results
summary(ITP.result)

# Plot of the ITP results
layout(1)
plot(ITP.result)

# All graphics on the same device
layout(matrix(1:4,nrow=2,byrow=FALSE))
plot(ITP.result,main='NASA data', plot.adjpval = TRUE,xlab='Day',xrange=c(1,365))

## End(Not run)

ITPimage Plot of the Interval Testing Procedure results
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Description

Plotting function creating a graphical output of the ITP: the p-value heat-map, the plot of the cor-
rected p-values, and the plot of the functional data.

Usage

ITPimage(ITP.result, alpha = 0.05, abscissa.range = c(0, 1), nlevel = 20)

Arguments

ITP.result Results of the ITP, as created by ITP1bspline, ITP1fourier, ITP2bspline,
ITP2fourier, and ITP2pafourier.

alpha Level of the hypothesis test. The default is alpha=0.05.

abscissa.range Range of the plot abscissa. The default is c(0,1).

nlevel Number of desired color levels for the p-value heatmap. The default is nlevel=20.

Value

No value returned. The function produces a graphical output of the ITP results: the p-value heatmap,
a plot of the corrected p-values and the plot of the functional data. The basis components selected
as significant by the test at level alpha are highlighted in the plot of the corrected p-values by a
gray area.

Author(s)

Alessia pini, Simone Vantini

References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

See Also

See also ITP1bspline, ITP1fourier, ITP2bspline, ITP2fourier, and ITP2pafourier.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)
# Performing the ITP for one population with the Fourier basis
ITP.result <- ITP1fourier(NASAtemp$milan,maxfrequency=15,B=1000)
# Plotting the results of the ITP
## Not run:

ITPimage(ITP.result)



ITPlmbspline 17

## End(Not run)
# Selecting the significant coefficients
which(ITP.result$corrected.pval < 0.05)

# Performing the ITP for two populations with the B-spline basis
ITP.result <- ITP2bspline(NASAtemp$milan,NASAtemp$paris,nknots=30,B=1000)
# Plotting the results of the ITP
## Not run:

ITPimage(ITP.result,abscissa.range=c(0,12))

## End(Not run)
# Selecting the significant components for the radius at 5% level
which(ITP.result$corrected.pval < 0.05)

ITPlmbspline Interval Testing Procedure for testing Functional-on-Scalar Linear
Models with B-spline basis

Description

ITPlmbspline is used to fit and test functional linear models. It can be used to carry out regression,
and analysis of variance. The function implements the Interval Testing Procedure for testing the
significance of the effects of scalar covariates on a functional population evaluated on a uniform
grid. Data are represented by means of the B-spline basis and the significance of each basis coeffi-
cient is tested with an interval-wise control of the Family Wise Error Rate. The default parameters
of the basis expansion lead to the piece-wise interpolating function.

Usage

ITPlmbspline(formula, order = 2,
nknots = dim(model.response(model.frame(formula)))[2],
B = 10000, method = "residuals")

Arguments

formula An object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted.

order Order of the B-spline basis expansion. The default is order=2.
nknots Number of knots of the B-spline basis expansion.

The default is dim(model.response(model.frame(formula)))[2].
B The number of iterations of the MC algorithm to evaluate the p-values of the

permutation tests. The defualt is B=10000.
method Permutation method used to calculate the p-value of permutation tests. Choose

"residuals" for the permutations of residuals under the reduced model, accord-
ing to the Freedman and Lane scheme, and "responses" for the permutation of
the responses, according to the Manly scheme.
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Value

ITPlmbspline returns an object of class "ITPlm".

The function summary is used to obtain and print a summary of the results.

An object of class "ITPlm" is a list containing at least the following components:

call The matched call.

design.matrix The design matrix of the functional-on-scalar linear model.

basis String vector indicating the basis used for the first phase of the algorithm. In this
case equal to "B-spline".

coeff Matrix of dimensions c(n,p) of the p coefficients of the B-spline basis expan-
sion. Rows are associated to units and columns to the basis index.

coeff.regr Matrix of dimensions c(L+1,p) of the p coefficients of the B-spline basis ex-
pansion of the intercept (first row) and the L effects of the covariates specified
in formula. Columns are associated to the basis index.

pval.F Uncorrected p-values of the functional F-test for each basis coefficient.

pval.matrix.F Matrix of dimensions c(p,p) of the p-values of the multivariate F-tests. The
element (i,j) of matrix pval.matrix contains the p-value of the joint NPC
test of the components (j,j+1,...,j+(p-i)).

corrected.pval.F

Corrected p-values of the functional F-test for each basis coefficient.

pval.t Uncorrected p-values of the functional t-tests for each partial regression coeffi-
cient including the intercept (rows) and each basis coefficient (columns).

pval.matrix.t Array of dimensions c(L+1,p,p) of the p-values of the multivariate t-tests. The
element (l,i,j) of array pval.matrix contains the p-value of the joint NPC
test on covariate l of the components (j,j+1,...,j+(p-i)).

corrected.pval.t

Corrected p-values of the functional t-tests for each partial regression coefficient
including the intercept (rows) and each basis coefficient (columns).

data.eval Evaluation on a fine uniform grid of the functional data obtained through the
basis expansion.

coeff.regr.eval

Evaluation on a fine uniform grid of the functional regression coefficients.

fitted.eval Evaluation on a fine uniform grid of the fitted values of the functional regression.

residuals.eval Evaluation on a fine uniform grid of the residuals of the functional regression.

R2.eval Evaluation on a fine uniform grid of the functional R-squared of the regression.
heatmap.matrix.F

Heatmap matrix of p-values of functional F-test (used only for plots).
heatmap.matrix.t

Heatmap matrix of p-values of functional t-tests (used only for plots).

Author(s)

Alessia Pini, Simone Vantini
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References

D. Freedman and D. Lane (1983). A Nonstochastic Interpretation of Reported Significance Levels.
Journal of Business & Economic Statistics 1.4, 292-298.

B. F. J. Manly (2006). Randomization, Bootstrap and Monte Carlo Methods in Biology. Vol. 70.
CRC Press.

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

See Also

See summary.ITPlm for summaries and plot.ITPlm for plotting the results.

See also ITPaovbspline to fit and test a functional analysis of variance applying the ITP, and
ITP1bspline, ITP2bspline, ITP2fourier, ITP2pafourier for one-population and two-population
tests.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

temperature <- rbind(NASAtemp$milan,NASAtemp$paris)
groups <- c(rep(0,22),rep(1,22))

# Performing the ITP
## Not run:

ITP.result <- ITPlmbspline(temperature ~ groups,B=1000,nknots=20)
# Summary of the ITP results
summary(ITP.result)

# Plot of the ITP results
layout(1)
plot(ITP.result,main='NASA data', plot.adjpval = TRUE,xlab='Day',xrange=c(1,365))

# All graphics on the same device
layout(matrix(1:6,nrow=3,byrow=FALSE))
plot(ITP.result,main='NASA data', plot.adjpval = TRUE,xlab='Day',xrange=c(1,365))

## End(Not run)

NASAtemp NASA daily temperatures data set
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Description

It contains the daily mean temperatures registered from July 1983 to June 2005 and stored in the
NASA database Earth Surface Meteorology for Solar Energy of two different geographical loca-
tions: the region (45-46 North, 9-10 East), including the city of Milan (Italy), and the region (48-49
North, 2-3 East), including the city of Paris (France).

Usage

data(NASAtemp)

Format

List of 2 elements:

• milan Matrix of dimensions c(22,365) containing the daily mean temperatures of the region
(45-46 North, 9-10 East), including the city of Milan (Italy) registered from July 1983 to June
2005 (22 years).

• paris Matrix of dimensions c(22,365) containing the daily mean temperatures of the region
(48-49 North, 2-3 East), including the city of Paris (France) registered from July 1983 to June
2005 (22 years).

Source

These data were obtained from the NASA Langley Research Center Atmospheric Science Data
Center Surface meteorological and Solar Energy (SSE) web portal supported by the NASA LaRC
POWER Project. Data are freely available at: NASA Surface Meteorology and Solar Energy, A
Renewable Energy Resource web site (release 6.0): http://eosweb.larc.nasa.gov

Examples

data(NASAtemp)
## Not run:

matplot(t(NASAtemp$milan),type='l')
matplot(t(NASAtemp$paris),type='l')

## End(Not run)

plot.ITP1 Plotting ITP results for one-population tests

Description

plot method for class "ITP1". Plotting function creating a graphical output of the ITP for the test
of the mean of one population: functional data and ITP-adjusted p-values are plotted.



plot.ITP1 21

Usage

## S3 method for class 'ITP1'
plot(x, xrange = c(0, 1), alpha1 = 0.05, alpha2 = 0.01,

ylab = "Functional Data", main = NULL, lwd = 1, col = 1,
pch = 16, ylim = range(object$data.eval), ...)

Arguments

x The object to be plotted. An object of class "ITP1", that is, a result of an ITP
for comparison between two populations. Usually a call to ITP1bspline or
ITP1fourier.

xrange Range of the x axis.

alpha1 First level of significance used to select and display significant differences. De-
fault is alpha1 = 0.05.

alpha2 Second level of significance used to select and display significant differences.
Default is alpha1 = 0.01. alpha1 and alpha2 are s.t. alpha2 < alpha1.
Otherwise the two values are switched.

ylab Label of y axis of the plot of functional data. Default is "Functional Data".

main An overall title for the plots (it will be pasted to "Functional Data" for the
first plot and "adjusted p-values" for the second plot).

lwd Line width for the plot of functional data.

col Color used to plot the functional data.

pch Point character for the plot of adjusted p-values.

ylim Range of the y axis.

... Additional plotting arguments that can be used with function plot, such as
graphical parameters (see par).

Value

No value returned. The function produces a graphical output of the ITP results: the plot of the
functional data and the one of the adjusted p-values. The basis components selected as significant
by the test at level alpha1 and alpha2 are highlighted in the plot of the corrected p-values and in
the one of functional data (in case the test is based on a local basis, such as B-splines) by gray areas
(light and dark gray, respectively).

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.
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See Also

See also ITP1bspline and ITP1fourier to perform the ITP to test for the mean of a functional
populations. See plot.ITP2 and plot.ITPlm for the plot method applied to the ITP results of
two-population tests and linear models, respectively.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

# Performing the ITP for one population with the B-spline basis
ITP.result.bspline <- ITP1bspline(NASAtemp$paris,mu=4,nknots=50,B=1000)
# Plotting the results of the ITP
plot(ITP.result.bspline,xlab='Day',xrange=c(0,365),main='NASA data')
# Selecting the significant components for the radius at 5% level
which(ITP.result.bspline$corrected.pval < 0.05)

# Performing the ITP for one population with the Fourier basis
ITP.result.fourier <- ITP1fourier(NASAtemp$milan,maxfrequency=20,B=1000)

# Plotting the results of the ITP
layout(1)
plot(ITP.result.fourier,xlab='Day',xrange=c(1,365),main='NASA data')

# Selecting the significant components for the radius at 5% level
which(ITP.result.fourier$corrected.pval < 0.05)

plot.ITP2 Plotting ITP results for two-population tests

Description

plot method for class "ITP2". Plotting function creating a graphical output of the ITP for the test
of comparison between two populations: functional data and ITP-adjusted p-values are plotted.

Usage

## S3 method for class 'ITP2'
plot(x, xrange = c(0, 1), alpha1 = 0.05, alpha2 = 0.01,

ylab = "Functional Data", main = NULL, lwd = 1,
col = c(1, 2), pch = 16, ylim = range(object$data.eval), ...)

Arguments

x The object to be plotted. An object of class "ITP2", that is, a result of an
ITP for comparison between two populations. Usually a call to ITP2bspline,
ITP2fourier or ITP2pafourier.
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xrange Range of the x axis.

alpha1 First level of significance used to select and display significant differences. De-
fault is alpha1 = 0.05.

alpha2 Second level of significance used to select and display significant differences.
Default is alpha1 = 0.01. alpha1 and alpha2 are s.t. alpha2 < alpha1.
Otherwise the two values are switched.

ylab Label of y axis of the plot of functional data. Default is "Functional Data".

main An overall title for the plots (it will be pasted to "Functional Data" for the
first plot and "adjusted p-values" for the second plot).

lwd Line width for the plot of functional data.

col Color used to plot the functional data.

pch Point character for the plot of adjusted p-values.

ylim Range of the y axis.

... Additional plotting arguments that can be used with function plot, such as
graphical parameters (see par).

Value

No value returned. The function produces a graphical output of the ITP results: the plot of the
functional data and the one of the adjusted p-values. The basis components selected as significant
by the test at level alpha1 and alpha2 are highlighted in the plot of the corrected p-values and
in the one of functional data (in case the test is based on a local basis, such as B-splines) by gray
areas (light and dark gray, respectively). In the case of a Fourier basis with amplitude and phase
decomposition, two plots of adjusted p-values are done, one for phase and one for amplitude.

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

See Also

See also ITP2bspline, ITP2fourier, ITP2pafourier to perform the ITP to test for differences
between two populations. See plot.ITP1 and plot.ITPlm for the plot method applied to the ITP
results of one-population tests and a linear models, respectively.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

# Performing the ITP for two populations with the B-spline basis
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ITP.result.bspline <- ITP2bspline(NASAtemp$milan,NASAtemp$paris,nknots=30,B=1000)
# Plotting the results of the ITP
plot(ITP.result.bspline,xlab='Day',xrange=c(1,365),main='NASA data')

# Selecting the significant components for the radius at 5% level
which(ITP.result.bspline$corrected.pval < 0.05)

# Performing the ITP for two populations with the Fourier basis
ITP.result.fourier <- ITP2fourier(NASAtemp$milan,NASAtemp$paris,

maxfrequency=20,B=1000,paired=TRUE)
# Plotting the results of the ITP
layout(1)
plot(ITP.result.fourier,xlab='Day',xrange=c(1,365),main='NASA data')
# Selecting the significant components for the radius at 5% level
which(ITP.result.fourier$corrected.pval < 0.05)

plot.ITPaov Plotting ITP results for functional analysis of variance testing

Description

plot method for class "ITPaov". Plotting function creating a graphical output of the ITP for the
test on a functional analysis of variance: functional data, and ITP-adjusted p-values of the F-tests
on the whole model and on each factor are plotted.

Usage

## S3 method for class 'ITPaov'
plot(x,xrange=c(0,1), alpha1=0.05, alpha2=0.01,

plot.adjpval=FALSE,ylim=range(x$data.eval),col=1,
ylab='Functional Data',main=NULL,lwd=1,pch=16,...)

Arguments

x The object to be plotted. An object of class "ITPaov", usually, a result of a call
to ITPaovbspline.

xrange Range of the x axis.

alpha1 First level of significance used to select and display significant effects. Default
is alpha1 = 0.05.

alpha2 Second level of significance used to select and display significant effects. De-
fault is alpha1 = 0.01. alpha1 and alpha2 are s.t. alpha2 < alpha1.
Otherwise the two values are switched.

plot.adjpval A logical indicating wether the plots of adjusted p-values have to be done. De-
fault is plot.adjpval = FALSE.

col Colors for the plot of functional data. Default is col = 1.

ylim Range of the y axis. Default is ylim = range(x$data.eval).
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ylab Label of y axis of the plot of functional data. Default is "Functional Data".

main An overall title for the plots (it will be pasted to "Functional Data and F-test"
for the first plot and "factor" for the other plots).

lwd Line width for the plot of functional data. Default is lwd=16.

pch Point character for the plot of adjusted p-values. Default is pch=16.

... Additional plotting arguments that can be used with function plot, such as
graphical parameters (see par).

Value

No value returned. The function produces a graphical output of the ITP results: the plot of the func-
tional data, functional regression coefficients, and ITP-adjusted p-values of the F-tests on the whole
model and on each factor. The basis components selected as significant by the tests at level alpha1
and alpha2 are highlighted in the plot of the corrected p-values and in the one of functional data by
gray areas (light and dark gray, respectively). The first plot reports the gray areas corresponding to
a significant F-test on the whole model. The remaining plots report the gray areas corresponding to
significant F-tests on each factor (with colors corresponding to the levels of the factor).

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

See Also

See also ITPaovbspline to fit and test a functional analysis of variance applying the ITP, and
summary.ITPaov for summaries. See plot.ITPlm, plot.ITP1, and plot.ITP2 for the plot method
applied to the ITP results of functional-on-scalar linear models, one-population and two-population,
respectively.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

temperature <- rbind(NASAtemp$milan,NASAtemp$paris)
groups <- c(rep(0,22),rep(1,22))

# Performing the ITP
## Not run:

ITP.result <- ITPaovbspline(temperature ~ groups,B=1000,nknots=20,order=3)

# Summary of the ITP results
summary(ITP.result)
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# Plot of the ITP results
layout(1)
plot(ITP.result)

# All graphics on the same device
layout(matrix(1:4,nrow=2,byrow=FALSE))
plot(ITP.result,main='NASA data', plot.adjpval = TRUE,xlab='Day',xrange=c(1,365))

## End(Not run)

plot.ITPlm Plotting ITP results for functional-on-scalar linear model testing

Description

plot method for class "ITPlm". Plotting function creating a graphical output of the ITP for the test
on a functional-on-scalar linear model: functional data, functional coefficients and ITP-adjusted
p-values for the F-test and t-tests are plotted.

Usage

## S3 method for class 'ITPlm'
plot(x, xrange = c(0, 1), alpha1 = 0.05, alpha2 = 0.01,

plot.adjpval = FALSE, col = c(1, rainbow(dim(x$corrected.pval.t)[1])),
ylim = range(x$data.eval), ylab = "Functional Data",
main = NULL, lwd = 1, pch = 16, ...)

Arguments

x The object to be plotted. An object of class "ITPlm", usually, a result of a call to
ITPlmbspline.

xrange Range of the x axis.

alpha1 First level of significance used to select and display significant effects. Default
is alpha1 = 0.05.

alpha2 Second level of significance used to select and display significant effects. De-
fault is alpha1 = 0.01. alpha1 and alpha2 are s.t. alpha2 < alpha1.
Otherwise the two values are switched.

plot.adjpval A logical indicating wether the plots of adjusted p-values have to be done. De-
fault is plot.adjpval = FALSE.

col Vector of colors for the plot of functional data (first element), and functional
coefficients (following elements).
Default is col = c(1, rainbow(dim(x$corrected.pval.t)[1])).

ylim Range of the y axis. Default is ylim = range(x$data.eval).

ylab Label of y axis of the plot of functional data. Default is "Functional Data".
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main An overall title for the plots (it will be pasted to "Functional Data and F-test"
for the first plot and "t-test" for the other plots).

lwd Line width for the plot of functional data. Default is lwd=16.

pch Point character for the plot of adjusted p-values. Default is pch=16.

... Additional plotting arguments that can be used with function plot, such as
graphical parameters (see par).

Value

No value returned. The function produces a graphical output of the ITP results: the plot of the
functional data, functional regression coefficients, and ITP-adjusted p-values for the F-test and t-
tests. The basis components selected as significant by the tests at level alpha1 and alpha2 are
highlighted in the plot of the corrected p-values and in the one of functional data by gray areas (light
and dark gray, respectively). The plot of functional data reports the gray areas corresponding to a
significant F-test. The plots of functional regression coefficients report the gray areas corresponding
to significant t-tests for the corresponding covariate.

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

See Also

See also ITPlmbspline to fit and test a functional-on-scalar linear model applying the ITP, and
summary.ITPlm for summaries. See plot.ITPaov, plot.ITP1, and plot.ITP2 for the plot method
applied to the ITP results of functional analysis of variance, one-population and two-population,
respectively.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

data <- rbind(NASAtemp$milan,NASAtemp$paris)
lab <- c(rep(0,22),rep(1,22))

# Performing the ITP
## Not run:

ITP.result <- ITPlmbspline(data ~ lab,B=1000,nknots=20)
# Summary of the ITP results
summary(ITP.result)

# Plot of the ITP results
layout(1)
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plot(ITP.result,main='NASA data',xlab='Day',xrange=c(1,365))

# Plots of the adjusted p-values
plot(ITP.result,main='NASA data', plot.adjpval = TRUE,xlab='Day',xrange=c(1,365))

# To have all plots in one device
layout(matrix(1:6,nrow=3,byrow=FALSE))
plot(ITP.result,main='NASA data', plot.adjpval = TRUE,xlab='Day',xrange=c(1,365))

## End(Not run)

summary.ITPaov Summarizing Functional Analysis of Variance Fits

Description

summary method for class "ITPaov".

Usage

## S3 method for class 'ITPaov'
summary(object, ...)

Arguments

object An object of class "ITPaov", usually, a result of a call to ITPaovbspline.

... Further arguments passed to or from other methods.

Value

The function summary.ITPaov computes and returns a list of summary statistics of the fitted func-
tional analysis of variance given in object, using the component "call" from its arguments, plus:

factors A L x 1 matrix with columns for the factors of ANOVA, and corresponding
(two-sided) ITP-adjusted minimum p-values of the corresponding tests of signif-
icance (i.e., the minimum p-value over all p basis components used to describe
functional data).

R2 Range of the functional R-squared.

ftest ITP-adjusted minimum p-value of functional F-test.

Author(s)

Alessia Pini, Simone Vantini
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References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

See Also

See also ITPlmbspline, ITP1bspline, ITP2bspline, ITP2fourier, ITP2pafourier, and ITPimage.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

temperature <- rbind(NASAtemp$milan,NASAtemp$paris)
groups <- c(rep(0,22),rep(1,22))

# Performing the ITP
## Not run:

ITP.result <- ITPaovbspline(temperature ~ groups,B=1000,nknots=20,order=3)

# Summary of the ITP results
summary(ITP.result)

## End(Not run)

summary.ITPlm Summarizing Functional-on-Scalar Linear Model Fits

Description

summary method for class "ITPlm".

Usage

## S3 method for class 'ITPlm'
summary(object, ...)

Arguments

object An object of class "ITPlm", usually, a result of a call to ITPlmbspline.

... Further arguments passed to or from other methods.
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Value

The function summary.ITPlm computes and returns a list of summary statistics of the fitted functional-
on-scalar linear model given in object, using the component "call" from its arguments, plus:

ttest A L+1 x 1 matrix with columns for the functional regression coefficients, and
corresponding (two-sided) ITP-adjusted minimum p-values of t-tests (i.e., the
minimum p-value over all p basis components used to describe functional data).

R2 Range of the functional R-squared.

ftest ITP-adjusted minimum p-value of functional F-test.

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.

See Also

See also ITPaovbspline, ITP1bspline, ITP2bspline, ITP2fourier, ITP2pafourier, and ITPimage.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

temperature <- rbind(NASAtemp$milan,NASAtemp$paris)
groups <- c(rep(0,22),rep(1,22))

# Performing the ITP
## Not run:

ITP.result <- ITPlmbspline(temperature ~ groups,B=1000,nknots=20)

# Summary of the ITP results
summary(ITP.result)

## End(Not run)
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