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Sommario

Il presente lavoro tratta dell’analisi statistica di dati provenienti da spettro-
scopie del vicino infrarosso (NIRS) eseguite al cervello. La NIRS è una tecnica
ottica che consente di ricostruire nel tempo la concentrazione di emoglobina
in più punti del cervello chiamati “canali”. Il nostro obiettivo consiste nell’a-
nalizzare l’andamento dell’emoglobina in ogni canale per valutare in quali di
questi il cervello è attivo durante un certo esperimento. Questa operazione è
complicata a causa dell’alta variabilità tra soggetti e della presenza di diversi
rumori (fisiologici, di misura e dovuti alla configurazione dell’esperimento).
Per questo motivo un filtraggio dei dati e un’analisi statistica degli stessi sono
indispensabili per una corretta classificazione dei canali. In questo lavoro
suggeriamo un metodo per determinare quali canali andrebbero esclusi dalle
analisi a causa dell’eccessivo rumore. Tale metodo si basa sull’analisi delle
aree sotto la curva (AUC).
Uno dei metodi statistici più comuni in letteratura per individuare le aree
attive prevede l’adattamento di un modello di regressione lineare che utilizza
come regressore una risposta emodinamica ideale. Questo modello presenta
però diverse criticità, dovute soprattutto alla forte dipendenza temporale che
caratterizza i dati. Per far fronte a queste criticità proponiamo un metodo
alternativo, che prende spunto dal modello in letteratura e come esso utilizza
un regressore che mima la risposta emodinamica ideale, ma che consente
di ottenere per ogni canale un campione di determinate quantità che ne
sintetizzano il grado di attivazione. Questo campione è gaussiano e può
essere facilmente indagato per ricavare il grado di attivazione di ogni canale.
Descriviamo inoltre alcune proposte per un’analisi di gruppo e un approccio
bayesiano coerenti col modello sopra esposto.
Proponiamo infine l’utilizzo dell’algoritmo k-medie per la classificazione dei
canali. Questo algoritmo segue una un’altra procedura rispetto a quella finora
descritta e pertanto costituisce un utile strumento ausiliario e di controllo.
Queste tecniche sono testate su un dataset simulato e su uno proveniente da
un esperimento in vivo.

xi





Abstract

The present work concerns the statistical analysis of NIRS data applied to the
brain. The Near Infra-Red Spectroscopy (NIRS) is an optical technique that
allows to reconstruct the hemoglobin concentration in time, in some points
of the brain indicated as “channels”. Our objective consists in analysing the
temporal evolution of hemoglobin in each channel, in order to evaluate where
the brain is activated during a certain experiment. This operation is difficult
because of the high variability between subjects and because of the presence of
many noises (physiological noises, measure noises and experiment errors). For
this reason it is necessary to filter data and to perform a statistical analysis.
In this work we suggest a method to determine which channels should be
excluded from the analysis because of a too high noise. This method is based
on the analysis of the Area Under the Curve (AUC).
One of the most commonly accepted methods for statistical activation detec-
tion consists in using an adapted linear regression model that has as regressor
an ideal hemodynamic response. However this model presents several crit-
icalities, mainly due to the high temporal correlation that afflicts data. In
order to solve these criticalities we propose an alternative method, that takes
advantage from a regressor imitating the ideal hemodynamic response, as
happens in the current literature, but produces for each channel a sample of
activation-related quantities. This sample is gaussian and it can be easily
inspected to detect the activation degree of each channel. We also describe
some procedures for a group analysis and a bayesian approach that are coher-
ent with the model earlier illustrated.
We propose the k-means clustering algorithm for the channels’ classification.
This algorithm follows a new procedure respect of the one described until
now and it represents a useful additional tool in activation detection.
These techniques are tested on a simulated dataset and on a dataset from an
in vivo experiment.
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Introduzione

Questo lavoro riguarda l’analisi di dati provenienti dall’utilizzo della spettro-
scopia del vicino infrarosso (NIRS) al cervello.

L’obiettivo primario del nostro studio consiste nel proporre un modello
statistico che indaghi i dati valutando l’attività neuronale in diverse zone del
cervello.

La letteratura corrente suggerisce diversi metodi per ricercare l’attivazione
e a causa della complessità del problema e della relativa novità di questa
tecnica ottica non è stata ancora adottata un’unica procedura. Alcune delle
metodologie proposte sono piuttosto semplici, altre sono molto più complesse.
Tutte presentano alcuni svantaggi e criticità irrisolte.

Una profonda revisione dei metodi usati per l’analisi di dati NIRS è
necessaria per proporre un modello che sfrutti le conoscenze pregresse e
minimizzi le problematiche esistenti.

L’output finale del nostro modello sarà una mappa della testa che mostra
quali aree del cervello sono attivate. Tale mappa dovrà essere chiara e
comprensibile anche a personale medico e a utenti con un background non
statistico.

Il lavoro che proponiamo si articola nelle seguenti parti.
Nel Capitolo 1 proponiamo un’introduzione al problema dell’analisi di dati

NIRS. Viene presentata la tecnica della spettroscopia del vicino infrarosso, con
una breve descrizione delle sue applicazioni in ambito scientifico. Riportiamo
poi una sintesi delle tecniche utilizzate in letteratura per l’analisi di dati NIRS
e descriviamo la procedura eseguita sui dati da uno dei software più utilizzati
in questo campo, il software NIRS-SPM.

Nel secondo capitolo presentiamo i dataset, precisandone le caratteristiche
e il processo di acquisizione.

Nel Capitolo 3 riportiamo le analisi condotte sulle aree sotto la curva
(AUC). Indaghiamo queste quantità con un duplice obiettivo: cerchiamo da
una parte di trovare le zone attivate, dall’altra di determinare quali canali
sono da escludere a causa dell’eccessivo rumore.

Il Capitolo 4 descrive una nuova procedura per rivelare le aree cerebrali
attivate. Tale procedura si basa su modelli di regressione ineari. Questo
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capitolo presenta una sezione di presentazione dei modelli lineari (4.1), una
sezione riportante le analisi condotte sui parametri ottenuti (4.2), una sezione
sull’algoritmo di k-medie, proposto come strumento addizionale e di controllo
(4.4), e una sezione sulle analisi di gruppo (4.5).

Infine nel Capitolo 5 proponiamo un approccio bayesiano, con una sezione
sull’analisi dei dati come serie temporale e una in cui descriviamo un modello
bayesiano gerarchico, che conferma e arricchisce i risultati ottenuti tramite
l’analisi frequentista.

Questo lavoro è stato condotto il collaborazione con il Dipartimento di
Fisica del Politecnico di Milano.



Introduction
The present work concerns the analysis of data from the application of Near
Infrared Spectroscopy (NIRS) to the brain.

The main objective of our studies is the proposal of a statistical model on
NIRS data for the detection of neural activation in the brain.

The current literature suggests different methods for activation detection,
and a common accepted procedure is not yet defined because of the complexity
of the matter and the relative novelty of the technique. Some of the frameworks
proposed in recent years are quite simple, others are much more complex.
Each of them presents some drawbacks or unresolved criticalities.

A good review of the methods used on NIRS data since the beginnings is
necessary to propose a model that takes advantage from previous knowledge
and minimizes the unsolved questions.

The final output of our model will be a map of the head showing which
areas of the brain are activated. This map should be understandable to
medical personnel and people without a mathematical background.

This work is composed by the following parts.
In Chapter 1 an introduction to the problem is proposed, with a section

describing NIRS technique (Section 1.1), a review of the present literature
(Section 1.2) and a brief dissertation about one of the most commonly used
software for NIRS data analysis, NIRS-SPM (Section 1.3).

In Chapter 2 datasets are presented, with explanations about the used
pre-processing algorithm.

Chapter 3 reports analysis on Area Under the Curves (AUC) of our data.
We inspect this quantity in order to perform activation detection (Section
3.1) and outlier detection (Section 3.2).

In Chapter 4 we propose a new procedure for activation detection, based
on linear regression models. This chapter is organized with a section on
the linear regression models (Section 4.1), a section with analysis on the
parameters of the models (Section 4.2), a section on the resulting activation
maps (Section 4.3), a section on k-means clustering algorithm used as an
additional activation detection technique (Section 4.4) and a section on group
analysis (Section 4.5).
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A bayesian approach is proposed in Chapter 5, with time series analysis
(Section 5.1) and a bayesian hierarchical linear regression model (Section 5.2).
Convergence diagnostic is reported in Section 5.3, while a bayesian criterion
for activation detection is introduced in Section 5.4.

This work was conducted in collaboration with the Physics Department
of the Politecnico of Milan.



Chapter 1

Introduction to NIRS

1.1 An optical method with several applications

Near Infrared Spectroscopy (NIRS) is an optic technique that uses optic
radiations from near infra-red spectrum (i.e. radiations with wavelengths
from 650 to 950 nm) to inspect the composition of materials.

This technology was introduced in the ‘70s in agriculture and food science,
to estimate the level of humidity and the chemical composition of foodstuffs
and animal feeds. At the beginning it was used in a few contexts, because its
instrumentation was expensive and there were many difficulties in handling
and evaluating results. Then, with electronics and computers development,
managing data became easy and the cost of NIRS technology decreased.
Thus NIRS found new applications in different sectors, such as astronomy,
agrochemical quality control, material science, combustion research, polymer
and plastic moisture analysis, cosmetics and pharmaceutical.

In the last few decades NIRS began to be employed also in medical
diagnostics and medicine research, with applications in sports medicine,
ergonomics, neonatal research and childhood brain development analysis,
urology, neurology and functional neuroimaging.

NIRS applied to functional neuroimaging is called functional Near Infrared
Spectroscopy (fNIRS), because it aims to probe the function of the brain.
Many researches have been conducted in this field, with the objective, for
example, to inspect the cerebral response to visual, auditory or somatosensory

5
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Figure 1.1: An example of source-detector
map. Head is seen from above. Sources
are in red, detectors are in green. Us-
ing this configuration, hemoglobin concen-
trations are acquired for each of the 30
channels between a source and a detector.
Channels are marked in blue.

stimuli, or to study brain activity during speech recognition or cognitive
processes. NIRS in fact allows to monitor changes in oxygenated hemoglobin
(O2Hb) and deoxygenated hemoglobin (HHb) caused by neural activity.

fNIRS was also employed in clinical studies on patients with Alzheimer
disease, epilepsy, depression, schizophrenia and other diseases, and during
rehabilitation after an ischemia or cerebral damages. These studies aimed to
detect and understand cerebral alterations caused by these pathologies.

Nowadays fNIRS has become a complementary and alternative technique to
functional Magnetic Resonance Imaging (fMRI), with the advantages, respect
to fMRI, of higher temporal resolution, excellent sensitivity to hemoglobin
(fMRI can only monitor concentration changes in HHb), fewer motion artefacts
and a cheaper and more portable technology.

fNIRS is based on the optical absorption/transparency of blood and
biological tissues. In fact the skin, skull and tissues are transparent to NIR
wavelengths, while O2Hb and HHb absorb these spectra.

During the experiment, the patient wears a helmet with a variable number
of sources and detectors. Photons emitted in the NIR range by sources
penetrate in the head, being absorbed, transmitted or reflected depending on
the optical properties of the medium they pass through. Reflected photons are
then absorbed by detectors, placed some centimetres apart from the emission
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points. Highly sensitive detectors are required, since the intensity of the
reflected light is very low. In fact, not to damage tissues, the NIR emission is
about a few mW ·mm−2, in order that the skin temperature increase is less
than 0.5 ◦C.

Hemoglobin is the main absorber at NIR wavelengths, thus from the reflec-
ted spectra registration it is possible to acquire its concentration. Moreover
the difference in the NIR absorption spectra of O2Hb and HHb allows the
separate measurement of the concentrations of these two species: to achieve
this goal, it is sufficient to perform NIRS measurements at two different
wavelengths.

According to some authors (Boas et al., 2004), wavelengths should be
chosen in the range of 670 to 900 nm, as shorter wavelengths are too strongly
absorbed by hemoglobin, and longer wavelengths are strongly absorbed by
water. The maximal distance between a source and a detector is usually
around 3.5-4 cm, allowing photons to reach a depth of 3-3.5 cm.

While the spatial resolution is moderate (subcentimetre to fewcentimetre,
limited by the diffusive nature of photon transport) and it degrades rapidly
with increasing depth in the brain, the temporal resolution of hemoglobin
detection with NIRS is not acquisition limited and can be up to milliseconds,
much faster then the hemodynamic response itself.

There are three main types of NIRS technologies. All the three methods
allows a direct determination of O2Hb and HHb concentrations during time.
From these time series it is possible also to determine the total hemoglobin
concentration (tHb) and the tissue oxygen saturation (StO2), which are given
by: tHb = O2Hb + HHb

StO2 = 100 · O2Hb
tHb

(1.1)

The simplest and the cheapest NIRS system, and for this the most common
one, is “continuous wave” (CW) fNIRS. This NIRS system emits waves with
constant frequency and amplitude, continuously in time. Absorption changes
are determined by measuring the attenuation of incident light. The main
drawback of this technology is that it doesn’t allow to define the photon path
length, preventing an absolute estimate of the absorption coefficients and
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consequently of the hemoglobin concentration.

Figure 1.2: The emission/detection of NIR
waves for the three types of NIRS systems,
Scholkmann, Wolf (2012).

A more complex and more pre-
cise system is “time domain” (TD)
fNIRS. In this type of spectroscopy
photons are emitted through pulses
with a temporal width of some tens of
picoseconds. The photons path can
be obtained evaluating delay between
emission and detection, thus it is pos-
sible to reconstruct the depth reached
by photons and to determine the ab-
solute absorption coefficients of the
crossed media. In this way the ab-
solute concentration values of O2Hb
and HHb can be retrieved.

This method is more expensive
and technically complex than CW
fNIRS, because it requires high-speed
sources and detectors. Nevertheless
it provides the most information, as
well as a good spatial resolution. It
also enables the correction of the
noise of the superficial layers.

The datasets we use are obtained
with this technique.

The third NIRS system is “fre-
quency domain” (FD) fNIRS. Sources
introduce into the head an amplitude-modulated sinusoid at frequencies in
order of tens to hundreds of MHz. These systems record changes in amplitude
and phase of the back-scattered signal and, from them, information on the
absorption and scattering properties of tissues is acquired. This method re-
quires modulated lasers and phasic measurements, thus it is less portable and
more expensive than CW NIRS systems. Even if the frequency range, being
limited, cannot cover the infinite frequency modulation of a time resolved
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pulse, the information obtained with this method is in principle the same of
the TD approach.

The behaviour of the three NIRS systems in time is shown in Fig. 1.2.

1.2 The State of the Art

Using NIRS to measure hemoglobin concentration in the brain has a lot of
advantages. It is a very safe and non-invasive technique, that can be used on
children and elderly people, without contraindications. In literature there are
studies on neonates a few hours old, for example.

Moreover NIRS is relatively cheap, easy to use and to move. It doesn’t
need for special infrastructure or trained personnel, thus it can be used on
people far from urban area (for example, there are studies on children in rural
regions of Africa), and on bedridden patients.

Finally, NIRS has a high resolution in time. It allows to study the
temporal behaviour of the hemodynamic response to neural activation, with
high temporal precision.

This technique presents also some disadvantages, including a modest
spatial resolution (1-3 cm), a limited penetration depth and the presence of
noises.

fNIRS data are usually corrupted by different types of noise: physiolo-
gical noise (such as interferences provoked by heartbeat, breathing, blood
pressure), instrument noise (such as shot noise, with a Poisson distribution,
and measurement noise, which is assumed to be a Gaussian white noise) and
experiment errors (motion artefacts, potential sensitivity to hair absorption,
interferences from external sources). Thus it is advantageous to pre-process
data, in order to remove some interferences and to improve the spatial sensit-
ivity of registered measurements. After subtracting noise, data are usually
analysed to detect active areas of the brain.

Many methods have been proposed to filter and analyse fNIRS data. We
report now a brief summary on the most important results about preprocessing
(physiological noise and motion artefact correction) and active channels
detection.
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Systemic interference correction

Noise caused by cardiac activity, respiration, blood pressure variations in-
cluding Mayer waves (with an approximately 10 s period) and other slower
variations is called systemic physiological interference. This interference can
arise from two spatial sources: the superficial layers (such as scalp and skull)
and the brain layer. The contribution of systemic interference to NIRS signal
is intensified because of the “back reflection geometry” of the measurements.
In fact light is both emitted and received at the scalp surface, thus photons
reflected from brain tissue must travel trough the skin, skull and dura before
reaching a detector on the scalp surface. This increases the sensitivity of
NIRS measurements to systemic oscillations occurring in the superficial layers.
For this reason systemic interference from superficial layers often results as
the dominating noise component.

Several methods have been used in the literature to reduce this type of
noise in NIRS data. One of the most common technique is low-pass filtering
(e.g. Franceschini, Boas, 2004). This approach suits perfectly the suppression
of high frequency interferences (such as noise from heartbeat), but it doesn’t
remove noise from respiration and other low frequency phenomena. If the
noise has the same frequency of the hemodynamic response, a frequency-
based filtering is also inappropriate, because it may distort the information
on cerebral activity.

Other methods for reduction of systemic physiological interference include
wavelet filtering (e.g. Lina et al., 2010) and Principal Component Analysis
(e.g. Franceschini et al., 2006).

Another approach that can be adopted takes advantage of the different
spatial locality between hemodynamic response and systemic interference. In
fact the former is expected to be localized in a limited space (dependent on
the experiment), while the latter extends globally. Thus the signal from a
not-activated area should be similar to systemic noise. Direct subtraction of
a signal from a not-activated channel was proposed by Franceschini, Boas
(2004).

Another way to isolate noise from superficial layers is “multi-distance”
approach. Photons propagate through the head travelling along a zig-zag path
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Figure 1.3: Multi-distance source-
detector approach. Superficial layer
interference acquired from S-D1 are used
to estimate systemic interference in S-D2
(Zhang et al., 2007).

until they are detected. The collective photon propagation follows a half-moon
pattern, as shown in Fig. 1.3. Depth reached by photons depends on the
separation of source and detector. With an appropriate source and detector
placement, we can use the signal from close source-detector, dependent on
noise only, to eliminate systemic interference in signal from distant source-
detector, with the assumption that a common systemic interference is present
in both channel measurements. This approach is applied, for example, in
Gagnon et al. (2012); Saager, Berger (2005).

Several algorithms have been developed to use small separation signals
as regressors to filter the systemic interference in the longer source-detector
measurements. These include linear minimum mean square estimation (Saager,
Berger, 2005), adaptive filtering (Zhang et al., 2007) and state-space modeling
with Kalman filter estimation (Gagnon et al., 2011, 2012).

The most critical point in multi-distance approach is the difficulty in
determining photons path length in each head layer. Many studies tried to
solve this problem using Monte Carlo simulations to investigate the partial
optical path lengths for each layer, in order to fix appropriate multi-distance
set-ups (Umeyama, Yamada, 2014).

Finally, we underline that TD fNIRS produces data with a systemic noise
much lower than CW NIRS. In fact with this technique it is possible to
estimate the superficial hemodynamics and to distinguish between photons
from deep and shallow layers.

Motion artefacts correction

Motion artefact is another type of noise that corrupts fNIRS data. It can
be distinguished from hemodynamic response by its rapid occurrence and
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larger amplitude, appearing as a sharp spike in the signal, sometimes followed
by a shift in the baseline value. It differs from systemic noise because of its
irregularity.

Motion artefacts are provoked by a sudden increase or decrease in the
measured light attenuation, depending on a lack of contact from the source or
the detector and the skin. Gravitational effects produced by head movement
may also result in changes in blood flow in parts of the head, interfering with
experiment-related hemodynamic response.

Optodes are usually fitted firmly to the head using a cap to minimize the
effects of motion, and optical fibers are placed at right angles to the scalp
surface.

Even though fNIRS is less sensitive to motion artefacts than other
neuroimaging techniques, such as fMRI, motion artefacts cannot always
be eliminated entirely. This happens especially in studies on children, animals
or patients unable to avoid movements deliberately.

In order to reduce motion artefacts in fNIRS data, many approaches have
been developed. Some of these detect motion artefact exclusively through
an analysis of the temporal characteristics of the signal. Others methods,
instead, use additional equipment (requiring an alteration of experimental
design) to get an input signal that is highly correlated with motion artefact
but not with hemodynamic response. Such an input signal can be obtained
through a specific disposition of channels (for example, co-located channels),
or an additional sensor to detect movements (typically, an accelerometer).

In co-located channels configuration, source-detector pairs are on the
same position. Since photon penetration depth depends on source-detector
separation, if source and detector overlap the registered signal is superficial
noise. Thus with co-located channels it is possible to measure little or no
physiological signal, registering the signal fluctuations caused by the shift
between the fiber and the skin.

Trough an accelerometer or the co-located channels configuration, motion
can be easily identified. After the identification, signals can be corrected in
different ways (e.g. adaptive filters, wavelet filtering, Independent Component
Analysis, linear regression). These class of methods has the disadvantage of
needing specific additional equipment, which is not always available in NIRS
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Figure 1.4: Motion Artefact corrected trough different techniques (Cooper et al.,
2012).

devices.
In the literature we find another approach to this problem: it aims to

remove motion artefacts without an external measure of motion. These
techniques are based on an analysis of signal mutations in amplitude and
frequency, because rapid changes are usually provoked by motion artefacts.
Some methods used for this approach are based on Wiener filtering (Izzetoglu
et al., 2005), Kalman filtering (Izzetoglu et al., 2010), correlation-based signal
improvement method (Cui et al., 2010), Wavelet-based filtering (Sato et al.,
2006) and moving standard deviation with spline interpolation (Scholkmann
et al., 2010).

The Wiener filter requires two calibrations measurements before the actual
one: one measurement with motion artefact and one without it. Thus it can’t
be applied if it is not possible to avoid motion artefact during the calibration
period (e.g. fNIRS on neonates).

Correlation-based signal improvement takes advantage of the negative
correlation between O2Hb and HHb, assuming that positive or not strongly
negative correlated signals are substantial noise. This method suggests to
correct the original signal with a linear combination of O2Hb and HHb that
maximizes the negative correlation between the two hemoglobins.

Wavelet transform decomposes signals into global trends, hemodynamic
signals and uncorrelated noise components as distinct scales. Motion artefact



14

usually provokes a sudden change in the signal frequency, thus wavelet trans-
formation can be used to remove motion artefact, deleting the coefficients
which correspond to motion artefact in the wavelet domain.

Moving standard deviations with spline interpolation algorithm detects mo-
tion artifacts calculating moving standard deviation (MSD): motion artefact
is assumed when MSD exceeds a threshold. Then a cubic spline interpolation
of motion artefact segments is subtracted to the original signal, smoothing
and detrending it.

Fig. 1.4 shows how motion artefact can be corrected trough different
techniques.

Statistical Inference for brain activation detection

In the first studies about fNIRS, brain activation was detected through a
simple visual inspection of hemodynamic signals (e.g. Murata et al., 2002).
Another simple procedure that was initially adopted (Benaron et al., 2000)
was the control of hemoglobin concentration increase: if signal exceeded 2
standard deviation from the mean, the activation was assumed1.

These subjective or heuristic approaches can be inaccurate, especially if
the signal is highly corrupted by interferences and noises. Statistical inference
and a more organised procedure then become essential for neural activation
detection in fNIRS data.

Many methods have been proposed in different studies and even now
there isn’t a unique way to detect activation (for a review, see Tak, Ye,
2014). Suitable statistics were calculated to test the difference between
means of two groups: the hemoglobin concentration during task and the
hemoglobin concentration during rest. In these analysis one hypothesis test
was implemented for each channel and P-values were adjusted with Bonferroni
correction.

One-way or multi-way ANOVA was also employed to compare different
groups of concentrations. Typically, average values are used in this analysis
not to make assumptions on the exact shape or the evolution in time of

1In order to reduce noise, this analysis was performed after the subtraction of a baseline,
assuming a globally distribution of noise and its independence from brain activation



1.2 The State of the Art 15

hemoglobin signals.
White et al. (2009) studied spatial correlation between different channels.

Correlation between a benchmark (activated) channel and the other time
traces was analysed, founding the highest correlation between activated
channels.

In these simple analysis the information on timing and shape of the
hemodynamic response is usually lost. Neural activation provokes a specific
hemoglobin alteration: its peculiarity is not just in absolute values, but in a
particular evolution in time. Thus forgetting about the correlation structure of
data can be inaccurate, because the hypothesis of independence of data, that
is often assumed, is not verified, and also limiting, because some information
on activation is lost. The strong dependence of measures, that can be a
critical point to treat, is at the same time a source of knowledge. Thus more
complex methods have been applied, taking advantages from evolution in
time of data.

Trough Fourier analysis it is possible to compare time courses. This
analysis is based on the intuition that activated signals must have a peak
at the task frequency. The main drawback on Fourier approach is that it is
hardly applied to non-periodic tasks such as event-related paradigm.

Then the Generalized Linear model (GLM), that was used in fMRI analysis,
was proposed for fNIRS, because of the similarities of the two technologies.
Numerous studies have been presented to exploit this method.

With GLM, hemoglobin concentration is seen as a linear combination of
some predictors plus an error term. Predictors usually consist of task-related
boxcar functions. In our analysis we will use, as predictors, convolutions
between a boxcar function and the hemodynamic response function (HRF).

These convolutions represent a sort of temporal evolution of the “ideal”
hemoglobin concentration in an active channel. In fact neuronal activity
consumes oxygen carried by hemoglobin, provoking an increase of the blood
flux. This blood flux variation is called hemodynamic response and it reaches
a peak after 4-5 s, then it decreases to the initial level (usually passing below
it). Fig. 1.5 shows the hemodynamic response function, that describes this
phenomenon.

Thus in the GLM a signal is expected to depend on predictors if it belongs
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Figure 1.5: The hemodynamic response function.

to an active channel, while an independence will suggest no activation.
The error covariance matrix is not an identity matrix (as in a linear

regression model), because errors are not independent. This makes inference
on parameters more complicated than in linear models, because an appropriate
test statistic should be calculated in a more sophisticated way (for more details,
see Section 1.3).

Several methodologies have been developed for fNIRS users to process
functional optical data. The first public domain software package for fNIRS
data analysis was HomER2 (acronym for Hemodynamic Evoked Response).
The software provides a graphical user interface and MATLAB3 scripts for
both the preprocessing and the standard statistics on fNIRS data. HomER
has been upgraded and the new release HomER2 more easily supports group
analyses and re-configuration of the processing stream, and it integrates users
algorithms into the processing stream.

Another free software is Functional Optical Signal Analysis (fOSA4), which
offers MATLAB based functions for a basic analysis of fNIRS data, incor-
porating several filters for signal denoising and providing also the Statistical
Parametric Mapping (SPM) methodology for statistical analysis based on the
GLM approach.

2http://www.nmr.mgh.harvard.edu/PMI/, distributed by Massachusetts General Hos-
pital.

3MATLAB and Statistics Toolbox Release 2012, The MathWorks, Inc., Natick, Mas-
sachusetts, USA.

4Koh et al. (2007)
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More focused on the development of SPM routines is the non-commercial
MATLAB-based software NIRS-SPM5. A novelty introduced by this program
is represented by a voxel based alignment between interpolated maps instead
of an inter-subjects realignment of optodes, in order to facilitate the group
analysis.

Another software is NIRS analysis package (NAP6) which allows noise
removal and GLM analysis, as well as anatomical registration of the measure-
ments.

fNIRSOFT7 is a stand-alone software to process, analyse and visualize
fNIRS signals through a graphical user interface and/or scripting distributed
by BIOPAC Systems, Inc.

Finally POTATo8 (Platform for Optical Topography Analysis Tools) is
a software package for fNIRS signal processing and analysis, developed by
Hitachi, Ltd.

In order to better understand the GLM method and a typical existing
approach to fNIRS data, we examine in depth the software NIRS-SPM,
illustrating the steps it performs. In this way some fundamental idea will
be clear, as well as some critical points that we’ll try to solve in the next
chapters.

1.3 The software NIRS-SPM

NIRS-SPM is a public domain toolbox for the analysis of fNIRS signals. It is
based on SPM59 and MATLAB, and it allows a stand alone or a combined
fNIRS-fMRI data analysis. With its packages it is possible to filter the data
in different ways and to perform a statistical analysis, building a GLM and
obtaining the related activation maps.

Analysis takes place in six stages: (1) converting the optical densities to
concentration changes of O2Hb and HHb, (2) spatial registration of channels

5http://bisp.kaist.ac.kr/NIRS-SPM.html
6Fekete et al. (2011)
7http://www.biopac.com/fNIR-Software-Professional-Edition
8http://www.hitachi.co.jp/products/ot/analyze/kaiseki_en.html
9Wellcome Department of Cognitive Neurology, London, UK.
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positions, (3) model specification, (4) detrending the unwanted global trends
using wavelet-MDL algorithm or discrete cosine transform based high pass
filtering, (5) temporal correlation estimation from precoloring or prewhitening
method, (6) statistical inference and visualization of activated region from
various functional contrasts (O2Hb, HHb, tHb, StO2. For a definition of these
quantities, see (1.1)).

Figure 1.6: Main panel of NIRS-SPM.

(1) The first step allows conversion of the optical densities, that are unitless
quantities, in hemoglobin concentration changes in µM. They are calculated
using the modified Beer-Lambert law:

∆OD = [εO2Hb∆CO2Hb + εHHb∆CHHb] · d · l, (1.2)

where ∆OD is the optical density variation, εO2Hb and εHHb [(µM ·mm)−1]

are the extinction coefficients of O2Hb and HHb, CO2Hb and CHHb are the
hemoglobin concentration changes, d is the unitless differential path length
factor and l [mm] is the distance between the source and the detector. NIRS-
SPM can analyse the optical density of various formats from different NIRS
systems.

(2) NIRS-SPM allows the spatial registration of fNIRS channels to Montreal
Neurological Institute (MNI) space. The MNI is a coordinate system used to
map the location of brain structures independent from individual differences
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Figure 1.7: An example of chan-
nels MNI coordinates projected to a
rendered brain. The brain is seen from
above: the face of the subject is on
the right.

in the size and overall shape of the brain. This allows a standardization of
brains from different subjects and permits their comparison and an eventual
group analysis. The spatial registration can be done with an additional
alignment with MRI data, or standalone. In order to do it, it is possible to
insert channels or optodes MNI coordinates or real coordinates. The fNIRS
channels positions are then localized onto the cerebral cortex of an anatomical
MR image, and they are saved for later analysis (an example of channels
locations on a “standardized” brain is reported in Fig. 1.7).

(3) In model specification we can choose the design matrix that will be
used for the GLM. We do this specifying:

• the interscan interval (in seconds) or, equivalently, the sampling fre-
quency (in Herz);

• the names, onsets and durations of each event (in our data the two
repeated events will always be rest and task);

• the basis functions used to build the predictors. We can choose the
Hemodynamic Response Function (HRF) or HRF with time and/or dis-
persion derivatives. In the simplest case each column of the design mat-
rix contains the predicted hemodynamic response for one experimental
condition over time (in our analysis the two experimental conditions will
be rest and task). With the inclusion of the HRF’s first and second tem-
poral derivative, a design matrix with more columns is obtained. This
kind of matrix has been proposed to address inter-individual differences
regarding the HRF’s latency and dispersion.
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Figure 1.8: An example of design matrix built by NIRS-SPM. The alternation
between colors derives from the convolution between scales functions and the HRF.

(4) In fNIRS experiments, there often exist global drifts of the optical
signal measurements for a variety of reasons, including subject movement
during the experiment, vaso-motion, blood pressure variation, long-term
physiological changes or instrumental instability. Moreover, the amplitude
of the global drift is often comparable to that of a signal from an activated
channel.

In order to eliminate the global trend and to improve the signal-to-noise
ratio, two different high-pass filters are implemented: discrete cosine transform
(DCT) based detrending algorithm and Wavelet detrending algorithm. If
we choose the latter, Wavelet transform is applied to decompose fNIRS
measurements into global trends, hemodynamic signals and uncorrelated
noise components as distinct scales.

(5) After detrending, temporal correlation continues to exist in fNIRS data.
This means that the signal at the specific time is highly correlated with its
temporal neighbours. This generates problems in statistical inference, because
the hypothesis of independence of the observations falls down. NIRS-SPM
gives two options to address this problem, both initially proposed for fMRI:
precoloring method and prewhitening method.

In the former, the intrinsic temporal correlations are swamped by an im-
posed temporal correlation structure, by smoothing the data with a temporal
filter that will attenuate high frequency components. It’s a low-pass filter.
The shape of this filter can be Gaussian or HRF (differences are slight).

Prewhitening method, instead, attempts to regress out the unknown
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autocorrelations through an AR(1) model. If yt is hemoglobin concentration
at time t, (X)t is the t-th row of the design matrix and εt and vt are Gaussian
white noises, we can set the following linear model and autoregressive model:yt = (X)tβ + εt

yt = ρyt−1 + vt
(1.3)

From this we obtain:

yt − ρyt−1 = ((X)t − ρ(X)t−1)β + (εt − ρεt−1),

and if we redefine each variable as follows:

y∗t = yt − ρyt−1, (X∗)t = (X)t − ρ(X)t−1, ut = εt − ρεt−1,

we can build the following linear model, with a reduction in correlation:

y∗t = (X∗)tβ + ut. (1.4)

(6) After filtering algorithms, a GLM is implemented. If X ∈ Rn×(r+1) is
the design matrix built in (3), yi ∈ Rn is the hemoglobin concentration in
channel i and εi ∈ Rn is a term of error, the model is:

yi = Xβi + εi. (1.5)

The unknown coefficients βi ∈ Rr+1 are estimated with the Least Square
unbiased estimates, given by

β̂i = X†yi,

where X† = (XTX)−1XT defines the Moore-Penrose pseudo-inverse matrix
of X.

Then the gaussianity of the errors εi is assumed. We can’t assume the
independence of errors in time, but we hypothesize that different channels
have the same correlation structure, defining a temporal correlation matrix,
Λ, common for all the channels. Thus we assume εi ∼ Nn(0, σ2

i Λ), where Λ

is the common correlation matrix and σ2
i is the variance in the i-th channel,

and we find β̂i ∼ Nr+1(β
i, σ2

i (X†Λ(X†)T )).
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An hypothesis test is implemented on a linear combination of the coeffi-
cients estimates: under the null hypothesis cT β̂i ∼ N (0,Cβ̂i

), with c contrast
vector and Cβ̂i

= σ2
i (cTX†Λ(X†)Tc). The software calculates the following

statistics:

Ti =
cT β̂i√

σ̂i
2(cTX†Λ(X†)Tc)

. (1.6)

Because of the shape of the correlation matrix Λ, the denominator of (1.6) is
not the square root of a χ2 distribution. This means that the statistic Ti of
(1.6) is not distributed as a t-student, and we cannot simply make inference
by comparing it with a t distribution with trace(RV) degrees of freedom,
where R = I −X(XTX)−1XT . Thus an approximation for the denominator
has to be found.

Friston et al. (2011) proposes to approximate the distribution of the
denominator of (1.6) with the square root of a χ2, using the Satterthwaite
approximation. This procedure is made imposing:

d = σ2cT (XTX)−1XTΛX(XTX)−1c, (1.7)

d = ay (1.8)

where y ∼ χ2(ν), with ν that has to be estimated.
Note that, for a χ2(ν) distribution, E[y] = ν and V ar(y) = 2ν.
The approximation is made by matching the first two moments of d with

the first two moments of ay:
E[d] = aν (1.9)

V ar(d) = a22ν (1.10)

If the correlation matrix Λ is assumed to be known, from (1.9) and (1.10) we
get:

ν =
2E[σ̂2]2

V ar(σ̂2)
. (1.11)

With E[σ̂2] = σ2 and:

E[eT eeT e] = V ar(eT e) + (E[eT e])2

= 2trace(E[eeT ]2) + trace(E[eeT ])2

= σ4(2trace(RV RV ) + trace(RV )2)

(1.12)
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we have:

V ar(σ̂2) = E[σ̂4]− E[σ̂2]2

=
σ4(2trace(RV RV ) + trace(RV )2)

trace(RV )2
− σ4

=
2σ4trace(RV RV )

trace(RV )2
.

(1.13)

Using (1.11), we get:

ν =
2E[σ̂2]2

V ar[σ̂2]
=

trace(RΛ)2

trace(RΛRΛ)
, (1.14)

where ν approximates the degrees of freedom of the t-student statistic in
(1.6).

At this point NIRS-SPM calculates the P-values for which the null ipothesis
can be rejected, and it builds the maps.

It uses Euler Characteristic (EC) with Lipschitz Killing Curvature or Sun’s
tube formula in order to interpolate in the space, getting a high resolution
map.

Figure 1.9: A typical output of NIRS-SPM.

An example of a typical NIRS-SPM output is reported in Fig. 1.9.
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The most critical points of this approach are the hypothesis on errors.
Of course errors can’t be treated as independent, because they belongs to

repeated measures in time of the same concentration. This complicates the
procedure to find a statistic with a known distribution.

Furthermore, errors are assumed to be normal. This is a fundamental
hypothesis, because without it the assumption on gaussianity of the coefficients
βi fails, making the inference weak.

If we make some Shapiro-Wilk tests on the residuals of our datasets to
verify this assumption, we get low P-values. Thus we have to reject the null
hypothesis of gaussianity.

In Fig. 1.10 we reported some examples for two subjects of our dataset
from an in vivo experiment. The P-value from Shapiro-Wilk test on the
residuals is plotted for each channel (channels are on x-axis). The red line
stands at 0.05.

Then we look for an alternative analysis that relax these hypotheses. Our
analysis grows from the same essential idea of NIRS-SPM: we try to detect
activation through an inspection of the dependence between data and an ideal
hemodynamic response to neural activation. However theoretical assumptions
are different, as we’ll see in the next chapters.

Channels

0.05

1 5 10 15 20 25 30

(a) Subject 0173.

Channels

0.05

1 5 10 15 20 25 30

(b) Subject 0182.

Figure 1.10: An example of P-values from Shapiro-Wilk tests on errors originated
by the GLM. Data refer to O2Hb of subjects 0173 and 0182.



Chapter 2

The datasets

We will use two types of data: in vivo data, originated by a real fNIRS
experiment on volunteers, and synthetic data, obtained trough simulations.
Both in vivo and synthetic data present the same structure: they register (or
mimic, if they are simulated) the concentration of O2Hb and HHb in 30 fixed
positions (“channels”) of the brain in a healthy adult, during a motor task.
The hemoglobin measurements are recorded with (or simulated as deriving
from) a TD fNIRS system (for a definition of TD fNIRS, see Pag. 8).

The 30 channels are placed in the same positions in both synthetic and in
vivo datasets. Their disposition on the head is reported in Fig. 1.1 at Pag. 6.

Hemoglobin concentrations of in vivo and virtual subjects are registered
during a right hand grip experiment, in which periods of rest and task flow
one after the other with the following structure: after an initial resting period

Figure 2.1: Temporal configuration of the right hand grip experiment.

of 50 s, 10 trials are performed. Each trial is composed by 10 s of rest, 20 s
of right hand gripping (task) and 10 s of rest. A final resting period of 40 s is
conducted after the last trial. The temporal configuration of the experiment
is reported in Fig. 2.1. The experiment completely lasts 490 s.

25
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The fNIRS system registers one concentration of O2Hb and one concen-
tration of HHb on each second: a complete dataset is then composed by 30
vectors of length 490 for O2Hb measures, and 30 vectors of length 490 for
HHb data.

In our work we consider each type of hemoglobin (oxygenated and deoxy-
genated) individually, analysing each of them in two different moments.

2.1 Pre-processing

A filtering algorithm is initially applied to all fNIRS datasets. The objective
of the filter consists in subtracting some noise. In particular, we are interested
in subtraction of habituation effects and high frequency noise.

We focus on the central 400 s of trials (10 s rest, 20 s task, 10 s rest),
forgetting the first 50 and the last 40 s of rest. The sample mean on the first
10 s of each trial is subtracted to the related trial, in order to detrend data.

Then a smoothing spline algorithm is applied to the whole signal. If yt, is
hemoglobin concentration at time t = 1 : 400, the algorithm calculates the
curve ŷ(t) that minimizes (in the class of twice differentiable functions) the
following quantity:

1

400

400∑
t=1

(yt − ŷ(t))2 + λ

∫ 400

1

(ŷ′′(t))2 dt. (2.1)

The first term represents the estimated Mean Squared Error (MSE) when
using ŷ(t) to estimate yt. The second term penalizes the curvature of ŷ(t).
The parameter λ controls the trade-off between the accuracy of ŷ(t) (for λ = 0

it corresponds to the original data) and how it is smoothed. Thus data are
estimated through the smoothing spline ŷ(t) that minimizes a weighted sum
of MSE and the average curvature.

In next sections we describe in vivo and synthetic data in details.

2.2 In vivo data

We have O2Hb and HHb measures from 12 right-handed healthy volunteers.
Data were acquired by a multi-channel dual-wavelength TD fNIRS medical
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device developed by the Physics Department of the Politecnico of Milan (see
Contini et al., 2009).

Subjects are 7 males and 5 females, of age 32.2±10 years.
During task periods they squeezed a soft ball in the right hand at a rate

of 2 Hz, guided by a metronome. Instructions about the movement and rest
periods were given by presenting a picture on a screen, which always had a
fixation cross in the centre.

Hemodynamic parameters were estimated by the Physics Department of
the Politecnico of Milan trough the following steps:

1. calculating the baseline optical properties and the absorption changes
in the upper and lower layer;

2. gathering the hemoglobin concentrations from the absorption coeffi-
cients.

For each subject we have two datasets originated from the same physical
experiment, from the same fNIRS system acquisition: the difference between
them consists in the way in which raw data are treated by physicists’ team
after the fNIRS system registration. In particular, the difference concerns the
estimation of the photon path length in the superficial and deep layers: we
have different datasets depending on the used estimation method.

The simplest way to estimate the photon path length l consists in using the
formula l = vt, where v is the speed of light in tissues and t is a characteristic
time, set to 500 · 10−12 s for “early” photons (the ones that pass through
superficial layers), set to 1500 · 10−12 s for photons from deep layers (they are
called “late” photons). The risk of this method consists in overestimating the
path in deep regions and underestimating hemoglobin concentration. The in
vivo dataset obtained trough this calculation will be identified as “INV1”.

A more complex estimation method was developed by the Physics De-
partment of the Politecnico of Milan (for details, see Zucchelli et al., 2013).
In this work the photon propagation model is refined trough a more precise
computation of the path length travelled by photons within each layer the
tissue is composed of. The non-idealities of the fNIRS system set-up and the
heterogeneous structure of the human head are also considered. This method
leads to a reduction of photon path in deep regions, and to an increase in
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estimated hemoglobin concentration. In this way we find higher hemoglobin
amplitudes (until 10 times respect of the first dataset) and a more precise
hemoglobin estimation. The signals are more corrupted by noise, though,
because this method is more sensitive to few photons. In order to reduce
noise we smooth data, applying a moving average of 5 s. We will refer to the
dataset obtained trough this method as to “INV2”.

At first we had only INV1, therefore all the analysis were initially developed
and applied on this dataset.

Then, when the Physics Department provided INV2, we replayed only the
most incisive and convincing methods on new data, abandoning techniques
that had shown low performances on INV1.

An example of data from INV1 and INV2 is reported in Fig. 2.2. Here
we can notice the different amplitudes of the signals.
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(a) O2Hb for 0173, dataset INV1.
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(b) O2Hb for 0173, dataset INV2.

Figure 2.2: An example of in vivo data, from datasets INV1 and INV2. Data are
reported during the ten trials (thus from second 51 to 450).

All the statistical analysis will be conducted separately and independently
on each subject, except for group analysis in Section 4.5. Subjects are
identified trough a number: they are 0173, 0176, 0179, 0182, 0185, 0188, 0191,
0197, 0200, 0203, 0206, 0209.

Some subjects present several channels with very high noise. We will see
that noisy channels can create many problems in activation detection. For
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a visual identification of critical subjects in INV2 we can look at Fig. 2.3,
2.4, 2.5. In these figures we report for each channel the mean of hemoglobin
concentration on trials of 40 s. O2Hb measures are in red, HHb measures are
in blue.

During the 40 s trials, activated channels should have an increase in O2Hb
and a decrease in HHb, drawing the shape of an eye. From these figures we
have a visual control of noisy channels: subjects 0185, 0188, 0197, 0200, 0209
seem to have several noisy channels.

In the following sections we will specify at each time which in vivo dataset
we will use (INV1 or INV2), and the reason of the choice (that typically
depends on time in which the analysis was conducted).

A comparison between results on the two datasets can be in some cases
useful to understand differences between data, and to direct the future analysis
and path length estimation research.

2.3 Synthetic data

Simulated data mimic real multichannel fNIRS measurements on a healthy
adult during the right hand grip experiment before described. The procedure
to create synthetic data is developed by Physics Department of Politecnico of
Milan. It consists in the following steps.

Defining the geometry of the head
The head is modelled as a bilayered medium, where the upper layer is 1 cm
thick, and the lower layer is ideally a semi-infinite medium. To a first approx-
imation in fact this geometry can be used to simulate fNIRS measurements
on the head of an adult, where an extra-cerebral layer (composed by scalp,
skull and cerebrospinal fluid) overlays the intra-cerebral one (grey and white
matter).

Specification of the hemodynamic parameters and the HRF
Hemoglobin concentrations are calculated for both layers of the head. They
are simulated by considering reference values of 12 µM for the O2Hb and 7
µM for the HHb in the superficial layer, and reference values of 30 µM for
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(b) Subject 0176.
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(d) Subject 0182.

Figure 2.3: Means of O2Hb and HHb concentration during trials for in vivo data
(INV2). O2Hb is in red, HHb is in blue.
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(a) Subject 0185.
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(b) Subject 0188.
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(c) Subject 0191.
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(d) Subject 0197.

Figure 2.4: Means of O2Hb and HHb concentration during trials for in vivo data
(INV2). O2Hb is in red, HHb is in blue.
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(a) Subject 0200.
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(b) Subject 0203.
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(c) Subject 0206.
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(d) Subject 0209.

Figure 2.5: Means of O2Hb and HHb concentration during trials for in vivo data
(INV2). O2Hb is in red, HHb is in blue.
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the O2Hb and 20 µM for the HHb in the lower layer.
Two different datasets are simulated.
The first experiment (EXP1) considers an ideal situation where a neuronal

activation is generated by a motor task, and no physiological oscillations occur
in the superficial layer. The O2Hb and HHb concentrations in the upper layer
are simulated to be constant at reference values during the whole experiment,
while the concentrations in the lower layer are perturbed in some channels so
as to mimic a hemodynamic response in correspondence to the task periods.

This superimposed response profile is calculated as a convolution of a
boxcar function, representing the task and rest alternation, with the Hemo-
dynamic Response Function (HRF) evoked by a single stimulus. By following
the method proposed by Scarpa et al. (2013) the HRF is modelled as a linear
combination of two different gamma-variant time-dependent functions Γn:

HRF(t) = α · (Γn(t, τ1, ρ1) + β · Γn(t, τ2, ρ2)) , (2.2)

with

Γn(t, τj, ρj) =
1

p!τj

(
t− ρj
τj

)p

e
−
t−ρj
τj δ(t− ρj),

δ(t− ρj) =

1 if t− ρj ≥ 0

0 otherwise
, (2.3)

where α tunes the amplitude, τj and ρj tune the response width and the onset
time respectively. Variability in amplitude of about 5% is considered among
the different trials to account for possible differences in the execution of the
task and/or in the functional response (e.g. habituation effects).

The peak of the HRF for the O2Hb is chosen to be around 1.555± 0.075

µM; the HRF for the HHb is inverted and with a maximum set at -1/3 with
respect to the O2Hb response. The free parameters are chosen so as to create
a HRF similar to the one expected for the motor task of interest (α = 1282,
β = 0.17, τ1 = 1, τ2 = 1, ρ1 = −0.5, ρ2 = 3.5).

To simulate an actual neuronal activation localized around the central po-
sitions of the hemisphere contralateral to the movement, channels considered
as activated are: channel number 16 (with an intensity of 25% HRF), 17
(100% HRF), 18 (50% HRF), 21 (50%HRF), 28 (25% HRF), 29 (50% HRF).
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Table 2.1: Mean and standard deviation of frequency and amplitude of each
physiological component (Scarpa et al., 2013).

Frequency (Hz) Amplitude (nM)

Very low frequency f1 = 0.002± 0.0001 A1 = 700± 100

Low frequency f2 = 0.01± 0.001 A2 = 700± 100

Vasomotor f3 = 0.07± 0.04 A3 = 400± 10

Respiratory f4 = 0.2± 0.03 A4 = 200± 10

Cardiac f5 = 1.1± 0.1 A5 = 400± 10

In the other channels no hemodynamic response is added.

In the second experiment (EXP2) the reference values for both layers and
for the hemodynamic changes happening in the lower layer are identical to
EXP1. However a physiological noise is added in the superficial layer by
following the procedure reported by Scarpa et al. (2013).

The physiological noise at time t, indicated as ψ(t), is an oscillation built
for O2Hb signal for one channel as a sum of sinusoidal functions at different
mean frequencies and amplitudes:

ψ(t) =
5∑

i=1

Ai sin(2πfit+ φi).

Amplitudes Ai and frequencies fi vary in the channel for every repetition
in the range described in Table 2.1, while phases φi are equally distributed
between 0 and 2π and are different for each trial. The generated signal is
then replicated for all the channels by modifying the oscillation amplitude of
a random value between ±10%.

The HHb variations are generated by threefold reducing the magnitude of
the physiological noise simulated for the O2Hb.

Obtaining the absorption coefficients
The absorption coefficients at two wavelengths (690 and 820 nm) for both lay-
ers are computed from these hemoglobin concentration changes by exploiting
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the Lambert Beer law (see (1.2)) and the a priori knowledge of the specific
absorption of O2Hb and HHb.

Adding the information on the reduced scattering coefficients
The scattering coefficients at the same wavelengths are derived from a simple
approximation of the Mie theory:

µ′s(λ) = a

(
λ

λ0

)−b
(2.4)

by setting the amplitude scattering a and the power scattering b fixed re-
spectively at 12 cm−1 and 0.5 for the upper layer, and at 12 cm−1 and 1 for
the lower layer, for a reference λ0 at 660 nm.

Generate distributions of photon time-of-flight
A forward model for photon diffusion in a bilayered geometry is used to
generate synthetic time-resolved reflectance curves for each channel by using
as input parameters the optical properties and the source detector distance
(fixed at 3 cm). A count rate of 5 · 105 ph/s is considered, the integration time
is set at 1 s, and Poisson noise is added to the simulated curves to mimic real
measurements.

After this procedure, hemodynamic parameters are obtained as for in vivo
data, estimating the baseline optical properties and the absorption changes
in the upper and deep layer and calculating the hemodynamic parameters
from the absorption coefficients, following the method proposed by Zucchelli
et al. (2013).

Finally, data are pre-processed trough the algorithm of Section 2.1.
The resulting hemoglobin concentrations for synthetic datasets are repor-

ted in Fig. 2.6.
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(a) Folded data for the superficial layer of EXP1.
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(b) Folded data for the deep layer of EXP1.
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(c) Folded data for the superficial layer of EXP2.
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(d) Folded data for the deep layer of EXP2.

Figure 2.6: Means of O2Hb and HHb concentration during trials for synthetic data
EXP1 and EXP2. O2Hb is in red, HHb is in blue.



Chapter 3

AUC Analysis

In this section we study the “area under the curve” (AUC) of hemoglobyn
concentrations. To do this we look at our data as a functional data. This
approach is different from the one used in the other chapters, where we always
consider the data as vectorial data.

We propose two AUC analysis. They were conducted in two different
moments, with different purposes. The former analysis aims at channel
activation detection. One of the critic points in analysing fNIRS data is their
high dimensionality compared with their low sample size: the information
on activation is split on 400 measures for each channel, and the number of
channels, usually equivalent to the sample size, is equal to 30. The first
attempt in detecting activation was then dimensionality reduction. We were
looking for some indices that could summarize the information on activation,
making data easy to handle. AUC was the first index we thought. It is an
index simple to calculate with a clear meaning.

The latter analysis aims at “anomalous channels” detection. This expres-
sion refers to signals with too high noise, and for this reason they can’t be
used for activation analysis. This is mainly due to a low number of registered
photons. We will see that AUC analysis will help us in detecting these
abnormal measures.
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3.1 AUC analysis for activation detection

One of the first attempt in detecting cortical activation was “area under the
curve” (AUC) analysis. We knew that the ideal hemodynamic response has a
known shape, shown by the Hemodynamic Response Function (HRF), and it
has a positive AUC for O2Hb. We wondered if activated channels had specific
AUC, maybe higher than not-activated ones, and if they could be detected
through it. We thought that activated channels could have higher AUC
because we supposed that noise on not-activated signals, that mainly causes
not null AUC, had lower amplitude than the hemodynamic response. In this
chapter we analyse the in vivo dataset INV1, using O2Hb concentrations
because of the highest amplitude of the signal.

After the preprocessing algorithm we split the signal in ten sub-intervals
of 40 s for each channel, evaluating the absolute value of AUCs for each
sub-interval. We choose to use the absolute value because HRF is positive
in the first seconds, then it becomes negative. Choosing AUC with sign we
could find small AUC also for activated channels because of compensation
between positive and negative areas.

We build a boxplot of AUC in different channels for each sub-interval, in
order to verify if AUCs change with sub-intervals. We report boxplots for 0173
and 0203 in Figure 3.1a e 3.1b, as an example (boxplots from other subjects
have the same features). Boxplots look like very homogeneous and similar
to each other. This means that sub-intervals don’t help us in discriminating
AUC. To confirm this we implement an ANOVA model with sub-intervals as
group factors. As we expected from boxplot visual inspection, we don’t reject
the null hypothesis of equality of the means.

This is coherent with the hypothesis we will make in the next sections, in
which we will consider each sub-interval as a realization of the same event.

Obviously in this figure we can’t find any information about the relation
between AUC and activated channels.

To inspect activation we plotted boxplots for AUC divided by channels.
Graphics referred to O2Hb for subjects 0173 and 0203 are reported in Figure
3.1c and 3.1e. Looking at these images we can understand that it is difficult
to detect activation trough AUC.
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Differently from previous image, boxplots are not similar to each other.
Some of them have a higher mean and a larger variance (in particular, the
ones related to ch. 12, 18, 20, 28, 29 for subject 0173, to ch. 12, 22, 23 for
subject 0203). This means that AUC differs from channel to channel and
there are channels with higher AUCs, as we expected. Unfortunately, though,
channels with different boxplot are not the activated ones, as we can see from
activation brain maps on the right, in which activated channels are in white.
Almost all the activated channels in the maps (such as ch. 17, 21, 25 for
subject 0173, ch. 17, 20, 21, 29 for 0203) have related boxplots that don’t
have higher sample mean or variance. If we implement for subject 0173 an
ANOVA model, using as group factors channels 17, 21, 25, 29 (the activated
ones, according to the activation map on the right), we find a high P-value.
We can’t then reject the null hypothesis of equality of the means.

We also applied a k-means algorithm on the R2 vectors made for each
channel by its AUC sample mean and its AUC standard deviation, in order
to see if this classification algorithm can discriminate between activated/not-
activated channels. As we expected from the previous analysis, it failed.

Thus we hypothesize that differences among boxplots are generated by
other factors, and that it is not possible to perform an activation detection
using AUC only. We then move to an analysis that consider the shape
of the signal, not only the area under it (coherently with the state of the
art). Oscillations caused by noise in not-activated channels probably are too
high, and they produce AUC similar to the ones of activated signals, making
impossible activation detection.

Trough this analysis we can also realize that abnormal boxplots can derive
from anomalies on data. Thus, when we were asked about outlier detection
and anomalous data analysis, we thought about AUC.

3.2 AUC analysis for anomalous channels de-
tection

Another problem we faced is anomalous channel detection. NIRS data usually
present some channels with a very high noise, mainly due to a low number of
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Figure 3.1: Boxplots on AUC, divided by channels and by trials. In the activation
maps, colours indicate the activation degree of each channel: activated channels are
in white.
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registered photons.
This can happen for many reasons: hair covering the sensors, particular

head shape, equalization of signals that produces a penalization of some
channels not to saturate others with too many photons.

An anomalous signal can derive also from the reception of external light
or from a loss of contact between the skin and the optode (due, for example,
to motion artefact). This can last for a part or the whole experiment, thus
we can have channels with a signal that is always out of control, or channels
with acceptable hemoglobyn concentrations till a certain moment, and then
a degeneration with a change of some orders of magnitude. Some of these
anomalous data are easy to find even through a visual inspection (see, for an
example of clear anomalies, Figure 3.2); others are more difficult to detect.
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(a) O2Hb for subj. 0188.
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Figure 3.2: Clear examples of anomalous channels.

It would be preferable to exclude abnormal channels from activation ana-
lysis: an appropriate outlier detection should be performed before using any
activation detection algorithm. If the algorithm analyses channels independ-
ently one to each other, this can be done not to find false activated channels,
or not to catch information from an unreliable data. If activation analysis is
not on individual channels but it requires interaction among them, then an
outlier detection is even mandatory not to alter results. This happens, for
example, using k-means algorithm, as in Section 4.4: we will see that in this
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Table 3.1: Abnormal channels from a visual inspection.

Subject Excluded channels

0173 12, 18
0176 6 8, 20, 24, 28, 29
0179 20, 21
0182 8, 12, 19
0185 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 20, 22, 27
0188 4, 6, 7, 20, 21, 22, 23, 28, 29
0191 18, 22, 26
0197 6, 8, 9, 18, 19, 20, 23, 29
0200 4, 8, 9, 12, 17, 22, 23, 25, 26, 28, 29
0203 12
0206 18, 20, 22, 28
0209 2, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 20, 23

situation the exclusion of irregular channels is required to obtain acceptable
results.

We have a list, made by experts, with channels which seem to be abnormal
from a visual inspection. They are reported in Tab. 3.1.

The question is: is it possible to detect anomalous channels through
some automatic algorithm? We think again at the AUC analysis of Section
3.1, looking at boxplots in Fig. 3.1. We wonder if channels with particular
boxplots are generated by anomalous signals. By intuition it can be correct
that anomalous signals have a high AUC mean, due to measures from a
different order of magnitude, and/or a high AUC variance (this happens when
a signal is correct till a certain moment and then it degenerates, producing
AUC very different from the previous ones). If this hypothesis was correct we
could detect outliers through an analysis on the sample mean and the sample
variance of AUC.

For an outlier detection we use O2Hb concentrations, pre-processing data
subtracting the baseline sample mean for each trial (without applying spline
interpolation). As in the previous section we calculate the AUC for each
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sub-interval of the absolute value of the signal. Then we build a bivariate
dataset with sample size n = 30, made by the AUC sample mean and the
AUC sample variance in each channel.

One idea is to compute Tukey depth. It is a measure proposed by John
Tukey in ‘70 for outlier detection and estimation of the “centre” of multivariate
data. For each point of a bivariate dataset it evaluates all possible half spaces
generated by a line passing through the point, counting for each half space
the minimum number of points at one side. Then the Tukey depth of each
statistical unit is the minimum number of sample points on one side of half
spaces, divided by the sample size. This measure evaluates how much a point
is extreme for the population. Outliers will have a low depth, while a good
estimate of the population will have a high depth (it will be in the “centre” of
the population). We calculate Tukey depth using the R package depth1.
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Figure 3.3: AUC sample mean vs standard deviation for subj. 0173, and related
Tukey depth.

Nevertheless this measure is not very suitable for our aim. One of its
drawbacks is that Tukey depth is radial symmetric: it considers as outliers all
the points at the peripheral regions, independently of the part of the space
in which the points are. This doesn’t work well with our purpose because
we are interested in identifying channels with high sample mean and high

1Genest et al. (2012)
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variance and, for example, we don’t care about the points in the bottom of
the cloud. An example of this bad behaviour is reported in Fig. 3.3. In this
image the anomalous channels are represented by red points in the plane. If
we look at 3.3b we can notice that the lowest depth (equal to 0.033, that is
1/30) is related to points higher than the cloud (ch. 12, 17, 18), but also to
channels with low AUC sample mean and sample variance (ch. 5, 9, 27, 30).

Moreover if we analyse one subject at time Tukey depth labels as outliers
the extreme points of the subject, obviously without considering the absolute
magnitude of the points. This means that the algorithm always finds outliers:
if a subject hasn’t got any anomalous channel, the depth will be minimal for
the points on the edge of the cloud, which will be labelled as outliers even if
they are not.

A more appropriate method should consider the absolute values of the
sample mean and the sample variance, proposing a threshold beyond which
the channels must be excluded.

In Fig. 3.4 and 3.5 we reported the natural logarithm of the AUC sample
standard deviation (on y-coordinate) as a function of the AUC sample mean
(on x-coordinate) for all the subjects. Anomalous channels from visual
inspection are in red.

From this graphics we can observe that high sample mean and high
variance seem to be correlated. This is confirmed by a linear regression model
in which we use the sample standard deviation as the independent variable,
and the sample mean as predictor. P-values associated to the tests on the
predictor coefficient (H0 : β = 0 vs H1 : β 6= 0) are low for each subject, so
the null hypothesis is rejected and the linear dependence is verified.

Then we can notice that red points are in the right part of each image,
which means they have higher AUC sample mean. In all the subjects except
the ones with a lot of abnormal channels (such as 0185, 0188, 0197, 0200 and
0209) red points are well separated from the point cloud. This suggests us
that the idea of detecting abnormal channels trough AUC is good. We could
fix a threshold between 10 or 12 for the AUC mean.

Thus if we have to detect anomalous channels we can look at AUC sample
mean: if it is smaller than the threshold the channel will be used for the
activation analysis, otherwise it will be excluded.
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(a) Subject 0173.
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(b) Subject 0176.
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(c) Subject 0179.
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(d) Subject 0182.

10 20 30 40 50 60

0
2

4
6

1
23

4
5 67

8 9
10

11

12

13

14
15

16

17 18

19

20

21

22

23
24
25

2627

2829

30

(e) Subject 0185.
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(f) Subject 0188.

Figure 3.4: Sample Mean vs Log(Std. Dev.) for subjects 0173, 0176, 0179, 0182,
0185, 0188.
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(a) Subject 0191.

0 20 40 60 80

0
2

4
6

1
2

3

45

6

7
8

9

1011
12

1314

15
16

17
18 19

20

21

22
23

24
25

26

27

28

29

30

(b) Subject 0197.
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(c) Subject 0200.

5 10 15 20

−
1

0
1

2
3

1

2

3

4
5

6

7

8

9

10
11

12

13 14
15

16

17
18

19

20

21

22

2324 25

26

27

28

29

30

(d) Subject 0203.
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(e) Subject 0206.
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(f) Subject 0209.

Figure 3.5: Sample Mean vs Log(Std. Dev.) for subjects 0191, 0197, 0200, 0203,
0206, 0209.



Chapter 4

Activation detection trough linear
regression models

In this chapter we propose a procedure for channels’ activation detection. We
showed in Section 1.3 that a common approach to this problem doesn’t include
a check of important hypothesis on which the used statistical tests are based,
such as the gaussianity of residuals. Furthermore, statistics used for inference
are often obtained trough approximations and rough assumptions (for an
example, see the procedure to find a known distribution for the statistic T ,
in Section 1.3).

Therefore the main objective of this work consists in proposing a method
for activation detection with higher solidity and theoretical rigour than existing
ones. This will be performed maintaining the good-working aspects of the
widely used models presented so far: in particular, the linear dependence of
data from a reference signal (the HRF) will be inspected, as in the current
literature.

4.1 The linear regression model

Each fNIRS dataset (in vivo and synthetic, for O2Hb and HHb, superficial and
deep layers) is pre-processed (baseline sample mean subtraction and smoothing
spline interpolation) as described in Section 2.1. Then each dataset is analysed
trough the following linear model, one at a time.

47
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The first 50 s and the last 40 s of the experiment (resting periods) are
neglected, in order to focus on the 400 s central part of the experiment, in
which activation can be found.

Instead of using all the 400 s for a single linear regression model, we divide
the data time series of each channel in 10 sub-intervals (i.e. repetitions or
trials) lasting 40 s (made of 10 s rest, 20 s task, and 10 s rest).

We then individually apply a linear regression model to each sub-interval.
Each trial is the elementary sequence revealing activation. It represents a
repetition of the same event, a realization of the same phenomenon (the
activation sequence). It can therefore be interesting to first analyse each trial
independently, writing a regression model for each of them.
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Figure 4.1: Regressors for O2Hb (4.1a) and HHb (4.1b) concentrations.

If i indicates the sub-interval and k indicates the channel, we build for
each channel k = 1 : 30 the ten following linear regression models:

yi,k = Xβk + εi,k, i = 1, 2, . . . 10, (4.1)

where yi,k is the vector of data, X is the design matrix, βk the vector of
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coefficients, εi,k a term of error. They are defined as follows:

yi,k =


yi,k1
yi,k2
...
yi,k40

 , X =


1 rest1 task1

1 rest2 task2
...

...
...

1 rest40 task40

 , βk =

 βk
0

βk
rest

βk
task

 , εi,k =


εi,k1
εi,k2
...
εi,k40

 .

Under the hypothesis that O2Hb increases during the task periods, the
regressors for O2Hb, rest and task, are obtained through a convolution between
the HRF and a step-function (equal to 0 in the first and last 10 s and 1
elsewhere for task, the opposite for rest). They are shown in Fig. 4.1a.

On the contrary, given that HHb is expected to decrease during the task,
the regressors for HHb are built as a convolution between the HRF and a
step-function equal to 0 in the first and last 10 s, -1 elsewhere for task, the
opposite for rest (see Fig. 4.1b).

For each channel k and sub-interval i, we calculate the Ordinary Least
Squares estimators for βk , as:

β̂i,k = (XTX)−1XTyi,k.
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(b) A unique regr. model on all 400 s.

Figure 4.2: Comparison between fitted data in the two approaches. Images refer to
channel 25 of O2Hb (INV2). Real data are in grey, fitted data are in blue.

Following this procedure we obtain fitted values ŷi,k more similar to yi,k

than the ones found through a single linear regression model. An example is
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reported in Fig. 4.2, where fitted values and real data for channel 25 of in
vivo subject 0173 are plotted for ten regression models on sub-intervals (Fig.
4.2a) and for a unique regression model on all 400 s (Fig. 4.2b). Real data are
in grey, fitted data are in blue. The figure refers to O2Hb of dataset INV2. In
the first situation the Mean Square Error (MSE) is lower than in the second
one (precisely, 0.67 vs 1.59 µM2), in which the obtained coefficients are the
same for all trials, preventing any variability.

For this reason the approach with regression models on trials well suits
also experiments where the intensity of the HRF varies in time.

Moreover, through this approach, we have a sample of size 10 from the
population of βk

rest, βk
task and βk

task−βk
rest for each channel k. These quantities

summarize appropriately the information about activation in each sub-interval:
the following step will be analysing them in depth, understanding if and how
they can be used to distinguish between activated and not-activated channels.

4.2 Analysis of the coefficients of the models

We report here some analysis on the quantities having a role in the regression
models, such as residuals ε, the coefficients’ estimates βk

rest and βk
task, and

data y, in order to better understand the features of our samples.
Some of these analysis will be used for the final output of our research,

others are just preliminary and can be omitted in analysing future datasets.
They are performed on INV1.

Gaussianity of data and residuals

Introductory analysis on gaussianity of data is performed trough Shapiro-Wilk
tests. For each trial and channel a test is implemented on O2Hb and HHb
measures. P-values vary from subject to subject. Generally 46% of them is
higher than 0.05, thus it is not possible to accept the hypothesis of gaussianity
of O2Hb and HHb.

Gaussianity of residuals is tested in the same way. P-values from Shapiro-
Wilk tests are higher than 0.05 in 62% of trials. Also in this situation we
can’t assume gaussianity of residuals.
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These analysis are quite simple and rough (no correction on P-values is
performed), but they show that gaussianity of data and residuals is a delicate
point, and that it is preferable not to use inference tests based on these
assumptions of normality.

Gaussianity of coefficients estimates

The gaussianity of β̂i,k
rest and β̂

i,k
task is investigated, as well as the gaussianity of

the linear combination β̂i,k
task− β̂

i,k
rest, through running, on each channel k, three

Shapiro-Wilk tests (one on the ten-observations sample (β̂1,k
rest, β̂

2,k
rest, . . . , β̂

10,k
rest ),

one on (β̂1,k
task, β̂

2,k
task, . . . , β̂

10,k
task), one on their linear combination).

Channels

0.05

1 5 10 15 20 25 30

(a)
Channels
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(b)
Channels

0.05
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Figure 4.3: Gaussianity P-values for β̂i,k
rest (4.3a), β̂

i,k
task (4.3b) and β̂i,k

task − β̂
i,k
rest

(4.3c) for the deeper layer of INV1, O2Hb.

P-values are almost always higher than 0.05 in every dataset, both simu-
lated and in vivo, with O2Hb and HHb measures. An example is reported
in Fig. 4.3. We can therefore assume that, for each fixed channel k, β̂i,k

rest

belongs to a normal distribution, as well as β̂i,k
task and β̂i,k

task − β̂
i,k
rest.

In order to discriminate between activated/not-activated channels we focus
on the contrast of the coefficients, β̂i,k

task − β̂
i,k
rest, coherently with the current

literature (see Friston et al., 2011).

Tests between right and left hemispheres

Activation is expected in the left hemisphere, in some a priori unknown
channels. A first idea can be to compare contrasts of the two hemispheres,
to see if there are differences between them. Boxplots of each hemisphere
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for all subjects are reported in Fig. 4.4 for a visual comparison. We can
notice that boxplots from the left hemispheres are generally higher than the
ones referred to the relative right hemisphere. This can happen because of
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Figure 4.4: Boxplots of contrasts in right and left hemispheres, for each subject.

activated channels, that are supposed to have contrasts higher than zero.
For most of subjects variance seems different in the two hemispheres: left
hemispheres could have higher variability because of the presence of channels
with very different degrees of activation.

If we look at boxplots related to HHb measures, we see that they are
smaller: as we know, the amplitude of HHb signals is lower than O2Hb. This
affects also the coefficients’ estimates.

In order to confirm these hypothesis, we implement for each subject a
statistical test of comparison between the variance of the two groups, and a
test of comparison between the means.

Statistics for tests on the variances of two hemispheres are calculated
as the ratio between the sample variances of the two groups. If the null
hypothesis of equal variances is true, the statistic follows a Fisher distribution,
with (149, 149) degrees of freedom.

For tests on the means, we calculate the following statistic

T =
X left −Xright√

S2
left+S2

right

150

,
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Table 4.1: Tests comparing variances and means of contrasts in right and left
hemispheres.

O2Hb HHb

Test on variances Test on means Test on variances Test on means

173 0.36 10−7 0.001 8 · 10−5

176 6 · 10−4 10−6 2 · 10−5 0.372

179 50.21 9 · 10−5 0.01 5 · 10−6

182 0 9 · 10−4 0 2 · 10−4

185 0.25 0.226 3 · 10−4 0.043

188 5 · 10−4 0.712 0.01 0.644

191 0.002 0.019 0 0.128

197 0 0.432 6 · 10−12 0.210

200 0 0.095 0 0.057

203 0 0.029 0.002 0.193

206 5 · 10−15 6 · 10−7 0 0.026

209 0 0.181 0 0.067

where X left and Xright are the contrasts sample means in the two hemispheres,
S2
left and S2

right are the sample variances. If the null hypothesis of equal means
is true, the statistic has a t-student distribution, with degrees of freedom
dependent on variances in the two samples: if variances are equal, the degrees
of freedom are 298; if variances are different, the degrees of freedom are
approximated by:

ν =
149 ·

(
S2
left+S2

right

150

)2
(

S2
left

150

)2
+
(

S2
right

150

)2 .
P-values are reported in Tab. 4.1.

We observe that results vary a lot. This happens because the clustering
of the channels is rigid and made a priori. The hemisphere with activated
channels (the left one) includes also not-activated areas, that reduce the
difference between hemispheres. Thus when we ask if there is a difference
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between the two groups of contrasts, the answer is often negative. We need
a higher degree of precision in localizing activation: a comparison between
hemispheres is not enough, a (binary or continuous) activation label is required
for each channel.

A test on each channel

We use the 10 found linear combinations β̂i,k
task − β̂

i,k
rest and their gaussianity

to implement an inference test for each channel k. We conduct a hypothesis
test on the expected value of β̂i,k

task − β̂
i,k
rest. In particular, for fixed channel k,

the test will be: H0 : µk = 0 null hypothesis

H1 : µk > 0 alternative hypothesis

where µk = E[β̂k
task − β̂k

rest] is the expected value of the linear combination of
the coefficients. A one-tailed test is chosen due to the shape of the regressors
and of the HRF.

Theoretically the decision of the test would be acceptance of the null
hypothesis for the not-activated channels, and the rejection for the activated
ones. In fact if a channel is activated we expect that the linear combination
of the regressors is significant, and the coefficients related to it have expected
value higher than 0.

Due to gaussianity of β̂k
task − β̂k

rest we can calculate for every test the
following test statistic:

T =
Xn − 0√
S2/10

.

Under the null hypothesis it is distributed as a t-student with n− 1 degrees
of freedom. Here the sample size, n, is equal to 10, Xk

n is the sample mean of
β̂k
task − β̂k

rest, and S2
k is the sample variance.

A P-value for each channel can be calculated as P (X > Tk), where X is a
random variable from a t-student distribution with n− 1 degrees of freedom.

Now we can plot a map in which the colour of each channel is proportional
to its P-value. Colours vary from white (activation) to black (no activation).
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4.3 Activation maps

Tests on channels described in the previous section are applied on in vivo
(INV2) and synthetic data, producing good results in both situations. We
report here some of the obtained maps.

Activation maps for synthetic data

Activation maps for synthetic data are reported in Fig. 4.5 (EXP1) and in
Fig. 4.6 (EXP2). Maps concerning O2Hb measures are on the left, maps for
HHb are on the right. The top row of both figures is related to the superficial
layer of the head, while the bottom row describes the deep layer.
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Figure 4.5: Activation maps for synthetic data, EXP1. The numbers inside the
circles are the channel numbers while the numbers outside the circles are P-values.
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Channels simulated as active (in deep layer) are circled by green.
For dataset EXP1, obtained simulating ideal hemodynamic evolution

without confounding oscillations, it is clear how the proposed method can
discriminate the activated channels in the deeper region.

P-values related to activated channels are in fact close to 0 (equal to 0
rounding to the third decimal place), creating a sharp division in the map
between white and coloured channels.
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Figure 4.6: Activation map for synthetic data, EXP2. The numbers inside the circles
are the channel numbers while the numbers outside the circles are the P-values.

If we choose a type I error of 0.05, applying a Bonferroni correction, we
consider as activated channels with P-values lower than 0.0016 (0.0016 =

0.05/30). We note that the map can discriminate the activated channels.
More specifically, the lowest P-value (less than 10−7) is the one referred to
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channel 17, the most activated one (100% HRF), while channels with the
lowest activation intensity (channels 16 and 28, 25% HRF) have the highest
P-values among the activated ones (less than 0.0005). This confirms our
choice of using P-values: they quantify the degree of activation of each channel
with a high precision.

In the upper layer we don’t find any activation, as expected, and P-values
are all higher than 0.01.

Also in the activation map for the deeper layer of dataset EXP2 (Fig. 4.6)
activated channels are instantly detectable.

In the superficial layer of EXP2 P-values are very high (higher than 0.5)
and very uniform, confirming that the simulated O2Hb is noise.

We can notice in the HHb activation maps of both figures the same
trends found for O2Hb. Revealing activation in this situation is more difficult,
because activation amplitude is lower than in O2Hb measures. Nevertheless,
this method performs a good channels classification on these measures too:
the only channel with a slightly high P-value, compared to others, is 28 (25%
HRF).

Activation maps for in vivo data

Activation maps for in vivo data, INV2, are reported in Fig. 4.7, 4.8, 4.9 and
4.10.

In these maps P-values are slightly higher than in activation maps for
synthetic data, but the procedure finds activated area in most of subjects.

In fact active channels in the left hemisphere can be clearly observed in
maps related to O2Hb of subjects 0173, 0182, 0185, 0191, 0203 and 0206.

The other subjects show no activation in the hemisphere controlateral to
the movement. This can be also due (in particular for subject 0188) to high
noise that corrupts signals in some channels of the left hemisphere.

As for synthetic data, maps from HHb measures show the same features
of O2Hb maps.
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Figure 4.7: Activation maps for in vivo data (INV2). The numbers inside the circles
are the channel numbers while the numbers outside the circles are the P-values.



4.3 Activation maps 59

1

23

4 5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0.446

0.9760

0.377 0.268

0.489

0.719

0.246

0.071

0.991

0.969

0.928

0.087

0.8480.451

0.568

0.084

0.113

0.11

0.119

0.001

0.095

0.373

0.636

0

0.782

0.36

0.93

0.001

0.485

DOWN

accepting H0

rejecting H00.0

0.2

0.4

0.6

0.8

1.0

(a) Subject 0182, O2Hb.

1

23

4 5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0.729

0.110.998

0.96 0.921

0.264

0.192

0.559

0.403

0.6

0.362

0.358

0.212

0.6930.412

0.784

0.002

0.137

0.409

0.554

0.001

0.006

0.371

0.318

0

0.315

0.344

0.317

0

0.031

DOWN

accepting H0

rejecting H00.0

0.2

0.4

0.6

0.8

1.0

(b) Subject 0182, HHb.

1

23

4 5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0.969

0.8960.577

0.015 0.174

0.132

0.916

0.283

0.226

0.486

0.667

0.955

0.463

0.5270.264

0.356

0.004

0.016

0.77

0.434

0.062

0.143

0.905

0.004

0

0.63

0.124

0.011

0.01

0.496

DOWN

accepting H0

rejecting H0

(c) Subject 0185, O2Hb.

1

23

4 5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0.402

0.2240.951

0.329 0.404

0.893

0.832

0.09

0.105

0.445

0.358

0.979

0.43

0.1660.219

0.761

0.064

0.404

0.566

0.183

0.006

0.416

0.467

0.155

0

0.275

0.136

0.137

0.042

0.34

DOWN

accepting H0

rejecting H0

(d) Subject 0185, HHb.

1

23

4 5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0.281

0.7180.009

0.142 0.19

0.692

0.376

0.873

0.535

0.777

0.554

0.006

0.77

0.1970.572

0.091

0.885

0.11

0.9

0.334

0.05

0.703

0.94

0.982

0.032

0.068

0.138

0.476

0.05

0.026

DOWN

accepting H0

rejecting H0

(e) Subject 0188, O2Hb.

1

23

4 5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0.891

0.8590.849

0.935 0.186

0.087

0.05

0.806

0.288

0.848

0.46

0.969

0.069

0.870.002

0.839

0.279

0.609

0.005

0.774

0.105

0.892

0.554

0.01

0.648

0.785

0.31

0.084

0.66

0.485

DOWN

accepting H0

rejecting H0

(f) Subject 0188, HHb.

Figure 4.8: Activation maps for in vivo data (INV2). The numbers inside the circles
are the channel numbers while the numbers outside the circles are the P-values.
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Figure 4.9: Activation maps for in vivo data (INV2). The numbers inside the circles
are the channel numbers while the numbers outside the circles are the P-values.
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Figure 4.10: Activation maps for in vivo data (INV2). The numbers inside the circles
are the channel numbers while the numbers outside the circles are the P-values.
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4.4 K-means clustering algorithm

When an activation map shows activated areas the statistical analysis can be
confirmed through k-means clustering algorithm. If k indicates the channel
and i the trial, the following vector is considered for each channel:

β̂1,k
task − β̂

1,k
rest

...
β̂i,k
task − β̂

i,k
rest

...
β̂10,k
task − β̂

10,k
rest


A k-means algorithm is applied to the 30 vectors in R10. This clustering

algorithm separates the 30 vectors in m groups, finding clusters that minimize
the Euclidean distance within clusters and maximizes the one between clusters.
We set m equal to 2, because we expect to observe two clusters: one with
activated channels, one with not-activated ones. The algorithm consists of 3
steps:

1. Initialization, in which the initial centres are randomly fixed.

2. The Euclidean distances from centres are calculated for each vector,
then vectors are assigned to the cluster with the nearest centre.

3. Updating of centres: the centre of each cluster is calculated as the mean
between the vectors belonging to the cluster.

Steps 2. and 3. are repeated until convergence.
The k-means clustering algorithm works well if there are channels with

“similar” vectors (thus with a similar evolution in time. This is expected to
happen with activated channels). If there is no activation the algorithm is
forced to separate channels in two groups, thus results are unpredictable and
with no sense.

The choice of m = 2 is confirmed also by the average silhouette width, a
quality index allowing to select the number of clusters (Struyf et al., 1997).
The index is calculated in the following way. If the number of clusters m is
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fixed, i indicates one of the thirty classified vectors and A is the cluster to
whom i belongs, the average dissimilarity of i to all other vectors of A is:

a(i) =
1

|A| − 1

∑
j∈A, j 6=i

d(i, j), (4.2)

where d(i, j) is the Euclidean distance between i and j.
Similarly, for any cluster C different from A, the average dissimilarity of i

to all objects of C can be calculated as:

d(i, C) =
1

|C|
∑
j∈C

d(i, j). (4.3)

After computing d(i, C) for all clusters C 6= A, we take b(i) = min
C 6=A

d(i, C).

Then the silhouette value s(i) of vector i is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
. (4.4)

The silhouette value varies from -1 to 1, increasing if the algorithm well
classifies the vector, decreasing if it is badly classified.

Now we can calculate the average silhouette width w, defined as the
average of the s(i) over all vectors i in the dataset:

w =
1

30

30∑
i=1

s(i). (4.5)

K-means is performed several times, each time with a different number
of clusters m. Then resulting average silhouette width w are compared and
k-means with the highest w is chosen.

For synthetic data EXP1, if m = 2, w is equal to 0.85 for O2Hb, equal
to 0.76 for HHb. If 2 < m < 7 we obtain w < 0.36 for both hemoglobins.
Similar values are obtained for EXP2, where w = 0.86 (O2Hb) and 0.8 (HHb)
if m = 2; w < 0.5 for 2 < m < 7.

Also in vivo data (INV2) show the highest index for m = 2 (for example,
O2Hb of subject 0173 has w = 0.40 for m = 2, w ' 0.20 in the other cases).
Thus m = 2 is the best choice to perform activation detection.

The unique exception happens on subjects with highly noisy channels: in
this situation the highest w can be obtained with m > 2, since the clustering
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algorithm separates noisy channels, activated and not-activated ones. We will
see an example of this situation in the next pages.

Silhouette indexes are calculated with the R package cluster (Maechler
et al., 2013).
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(b) HHb, superficial layer.
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(c) O2Hb, deep layer.
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Figure 4.11: K-means activation for EXP1. Channels simulated as active are circled
in green.The numbers inside the circles are the channel numbers while colors identify
the two clusters.

K-means activation maps for synthetic data are reported in Fig. 4.11 and
4.12 for EXP1 and EXP2, respectively.

In these images channels from different clusters are represented in different
colours. Channels simulated as active (in deep layer) are circled by green.

The k-means algorithm is able to identify most of the activated channels
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for both O2Hb and HHb in the deep layer. The channels that present a higher
activation intensity (channels 17, 18, 21, 29) are precisely clustered, for both
EXP1 and EXP2, O2Hb and HHb measures. Conversely, channels 16 and
28, that present a low intensity of activation (25% HRF), are assigned to the
cluster of not-activated ones. In fact k-means algorithm separates channels in
two sharp groups: the output is a binary assignment of each channel, that is
simply labelled as “active/not-active”. Thus it can happen that low activated
channels are assigned to the cluster of not-activated ones.
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(a) O2Hb, superficial layer.
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(b) HHb, superficial layer.
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(c) O2Hb, deep layer.
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Figure 4.12: K-means activation for EXP2. Channels simulated as active are circled
in green.The numbers inside the circles are the channel numbers while colors identify
the two clusters.

If there is no activation, as happens in the upper layer, the algorithm is
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not suitable. In fact it is forced to separate channels in two groups, even if
vectors shouldn’t be divided in two clusters. Thus results are unpredictable.

Some problems can also arise if one (or more) channels are particularly
noisy and product vectors much different from the others: in this situation
the k-means algorithm can be inaccurate, separating noisy channels from the
others.

This happens for some of in vivo subjects, for example 0176. As shown
in Fig. 4.13a, this subject has several noisy channels (e.g. 10, 11, 13, 14, 15,
22). In this situation k-means algorithm with m = 2 separates channel 15
from all the others. The average silhouette width w is high (0.88), but the
reason of this classification is clearly not dependent on activation.
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(a) Folded data for subject 0185.
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(b) K-means for 0185, m = 3.
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Figure 4.13: Folded data, k-means and activation map for subject 0185.

Excluding m = 2, the highest average silhouette width is obtained for
m = 3 (w = 0.79). The clusterization with m = 3 is reported in Fig. 4.13b.
Here the algorithm separates channel 20 and some of the other channels with
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the highest noise (channels 13 and 22). We can’t find any relation between
k-means clusterization and the activation map in Fig. 4.13c. This confirms
that subjects with several noisy channels are difficult to treat with k-means.
Noise corrupts not only some channels, but the whole clusterization, because
channels are not treated independently one from the other as for activation
maps of Section 4.3.

For this reason highly noisy channels should be excluded before an analysis
with k-means.
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(a) 0173, O2Hb.
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(b) 0182, O2Hb.
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(c) 0191, O2Hb.
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Figure 4.14: K-means activation for some of in vivo data. The numbers inside
the circles are the channel numbers while colours identify the two clusters. Pink
channels have been excluded.

Nevertheless k-means clustering algorithm produces good results on in vivo
subject with low noise. Fig. 4.14 reports activation maps for O2Hb (INV2) of
subjects with activated areas. We notice that the algorithm correctly classifies
most of channels.
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K-means clustering algorithm follows a different procedure compared to
the linear regression model. It aims to detect the same channels applying
another kind of analysis, that doesn’t use statistical tests and is based on
different hypothesis. Thus it can be an important instrument of control: its
right clustering is a further confirm of the accuracy of the previous analysis
and of the calculated activation maps.

4.5 Group Analysis

If we want to compare the hemodynamic response between two different
groups (typically, a set of healthy subjects and a set of patients), a group
analysis is needed. The group analysis should summarize information from
all the subjects of the group, producing a map that synthesizes the ones from
single subjects.

In literature (see Ye et al., 2009; Tak, Ye, 2014) this is usually performed
trough a two-levels analysis, where parameters of interest at the group level
are estimated from parameter and variance estimates from the single-session
level (i.e. from the GLM on single subjects).

This procedure approximates a single-level mixed effect model that pro-
cesses all group data together and estimates parameters of interest at the
group level directly from the single sessions. If y is the hemoglobin concentra-
tion (O2Hb or HHb) for a fixed channel and subject, the single-level mixed
effect model would be:

y = Xα+Xη + ε (4.6)

where X is the known design matrix, ε is a vector of errors, α denotes the
group mean (equal for all the subjects in the group) and η denotes a between-
subject random effect parameter (depending on each subject). Group level
statistics are obtained working with parameter α.

The approximation of this model trough a two-levels analysis has the
advantage of using yet calculated statistics from single sessions, making group
analysis much simpler.

We suggest some ideas to perform a group analysis that suits the proposed
activation detection procedure.
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A first attempt consists in using all trials from a fixed channel, independ-
ently from the subject to whom they belong, for the same hypothesis test.
We build a dataset of 30 channels, each channel including 120 (= 10 trials
×12 subjects) trials. We calculate 120 contrasts β̂i,k

task− β̂
i,k
rest, with i = 1 : 120,

for each channel k, performing an inference test on the mean on each of these
samples of size 1201. Finally we use P-values from the hypothesis tests to
draw a group map.

1

23

4 5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0.637

0.9290.571

0.781 0.495

0.157

0.503

0.549

0.794

0.772

0.74

0.734

0.802

0.4260.327

0.017

0

0.068

0.943

0.121

0

0.641

0.963

0.325

0

0.171

0.056

0.257

0

0.01

accepting H0

rejecting H00.0

0.2

0.4

0.6

0.8

1.0

(a) O2Hb.

1

23

4 5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0.246

0.6290.692

0.532 0.506

0.157

0.077

0.249

0.109

0.488

0.267

0.775

0.523

0.0270.162

0.85

0

0.277

0.186

0.342

0

0.725

0.728

0.001

0

0.243

0.084

0.019

0.004

0.02

accepting H0

rejecting H00.0

0.2

0.4

0.6

0.8

1.0

(b) HHb.

Figure 4.15: Group analysis maps calculated on 120 trials. For each fixed channel,
trials are used as if they belonged to a unique subject.

The group map for INV2 resulting from this procedure is reported in Fig.
4.15, for O2Hb and HHb measures. We can observe an activated area in the
left hemisphere of both maps.

With this model we don’t combine the information extracted from each
subject (represented by P-values): we put signals together, and then we
extract an information from mixed signals.

If we look for an approach that takes advantage from previously calculated
P-values we can follow another procedure: we draw a group map in which
the color of each channel is proportional to the mean of P-values calculated

1A sample with more than ten contrasts - surely belonging to the same subject, and not
from different subjects - could be useful to obtain a more precise test on the gaussianity of
the sample. For this reason longer experiments could be considered.
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in the analysis on single subjects.
The map built with the mean of P-values in subjects is reported in Fig.

4.16, for O2Hb and HHb measures.
Looking at this figure we don’t notice any activated channels. This

happens because the mean suffers from extreme values: a high P-value (from
an anomalous signal or a not-activated subject) makes the mean much higher
in the channel.

In order to resolve this problem we can use the median of single-level
P-values instead of the mean: in fact the median remains stabler varying
extreme values.
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Figure 4.16: Group analysis maps obtained trough mean of P-values.

Resulting map with median of P-values is reported in Fig. 4.17, for O2Hb
and HHb measures. As we supposed, the map is less influenced by “outlier
subjects” and it shows an area with low P-values in the central region of the
left hemisphere.

No correction is performed on P-values, thus results must be treated with
attention. In fact twelve hypothesis tests (one for each subject) are performed
simultaneously for a fixed channel, increasing the chances of obtaining false-
positive results.

It is clear that group analysis are influenced by subjects whose single map
doesn’t show activated channels (because of noise or no real activation). It is
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interesting to compare Fig. 4.17, reporting maps with median P-values for
INV2, with Fig. 4.18, reporting the same maps for INV1.

Maps related to dataset INV1 show lower P-values than the ones from
INV2. Maybe this is difference depends on the lower noise that afflicts dataset
INV1 respect of INV2.

A future study could improve these group-level analysis considering P-
values corrections, and inspecting the influence of noise (for example, trough
an exclusion of noisy channels).
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Figure 4.17: Group analysis maps obtained trough median of P-values.

1

23

4 5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0.28

0.440.556

0.644 0.489

0.309

0.452

0.45

0.544

0.734

0.391

0.493

0.483

0.6540.46

0.178

0.004

0.162

0.247

0.133

0.009

0.136

0.303

0.127

0.039

0.27

0.343

0.36

0.016

0.132

accepting H0

rejecting H00.0

0.2

0.4

0.6

0.8

1.0

(a) Group median of P-values, O2Hb for
INV1.

1

23

4 5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0.428

0.2250.111

0.48 0.398

0.361

0.204

0.519

0.588

0.385

0.503

0.343

0.284

0.4430.551

0.424

0.011

0.117

0.292

0.14

0.003

0.152

0.376

0.143

0.012

0.386

0.287

0.319

0.054

0.264

accepting H0

rejecting H00.0

0.2

0.4

0.6

0.8

1.0

(b) Group median of P-values, HHb for INV1.

Figure 4.18: Group analysis maps obtained trough median of P-values for INV1.



Chapter 5

Bayesian analysis

We propose here a bayesian approach to fNIRS activation detection problem.
We introduce this alternative point of view, compared to the frequentist
approach described so far, in order to confirm and enrich results of the
previous chapter, on the one hand, and on the other hand to extend our
knowledge on this subject inspecting features that have been ignored till now.

In fact, two analysis are proposed. At first data are inspected as time
series, following an approach new to us and analysing the correlation structure
of data, that haven’t been studied till now. Then a bayesian linear model is
illustrated: it is similar to linear models of Chapter 4 and it can be used as a
further confirmation and development of results already obtained.

In this chapter methods are applied to the 10 trials (40 s each) of O2Hb
of subject 0173, from dataset INV2. Some subjects from the same dataset
are used to estimate hyperparameters of priors in the bayesian linear model.

Not to weigh the exposition down, we will often focus on the eight central
channels of the brain (four from the left hemisphere, all activated for subject
0173, four from the right one, all not-activated), proposing a comparison
between channels in the two regions.

5.1 Bayesian analysis of time series

A first approach to the problem consists in studying correlation between
hemoglobin concentration in different channels. If we found different time
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series in active channels, we would be able to reach our goal of activation
detection.

If ykt is O2Hb measure in channel k at time t, with k = 1 : 30, t = 1 : 400,
we can build the following linear regression model:

ykt = βk
0 + βk

1y
k
t−1 + εkt , with εkt |σ2 iid∼ N (0, σ2)

∀ t = 1:400

∀ k = 1:30
(5.1)

We can then obtain the likelihood for ykt , considering that

ykt |ykt−1,βk, σ2 ind∼ N (βk
0 + βk

1y
k
t−1, σ

2).

We choose for βk and σ2 the following prior distributions:

β1, ...,βk, ...,β30 iid∼ N (0, 100 · I2), with I2 identity matrix,

σ2 ∼ U(0, 2000).

We choose two non-informative priors, assigning to βk and σ2 a high variance.
We use this kind of model and not, for example, a bayesian hierarchical

model1 (that will be used, in a different context, in the next section), because
our interest is oriented in evaluating the posterior densities of βk

1 , comparing
them for different k. With a hierarchical model we would inspect variables that
describe the common features of all the channels (e.g. a variable representing
the expected value of βk

1 in all channels), studying the shared characteristics
instead of the ones that allow a separation between channels.

We want to inspect βk
1 because it specifies the relation between data at

a certain time and at the previous instant: we are interested in verifying if
activated channels show a different dependence in time.

For the sake of simplicity σ2 is equal for all channels: we verified that
results don’t change assuming different σ2 for each channel.

We run a Markov Chain Monte Carlo (MCMC) simulation with the
software Jags (see Plummer, 2003) to obtain the posterior densities of the
parameters. We run 53.000 iterations, with a burn-in of 3000 and a thinning
of 10.

1Hoff (2009)
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Then we verify the convergence of the chain trough Geweke’s statistic,
Kolmogorov-Smirnov’s test, Heidelberger and Welch’s convergence diagnostic
and visual inspection of traceplots and autocorrelation plots (for details on
these methods, see Section 5.3). We obtain very good results of convergence
for all parameters (for an example, see traceplots and autocorrelation plots
in Fig. 5.1 and 5.2).

The proposed model doesn’t help in activation detection, though. In fact
if we compare the posterior densities of βk we can’t find significant differences
between βk from activated and not-activated channels.
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(a) β1, ch. 4 (right hemisphere).
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Figure 5.1: Traceplot, Autocorrelation function and posterior densities for β1 of
not-activated channels (channels 4, 6, 10, 14).
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In order to prove this, we report the posterior densities of βk
1 from the

four central channels of right hemisphere (Fig. 5.1), that can be compared
with the central channels from left hemisphere (Fig. 5.2). The mean of the
distribution is similar in all channels (around 0.85-0.9) and also the variance
doesn’t seem to change.
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(a) β1, ch. 17 (left hemisphere).
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(b) β1, ch. 21 (left hemisphere).
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(c) β1, ch. 25 (left hemisphere).
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(d) β1, ch. 29 (left hemisphere).

Figure 5.2: Traceplot, Autocorrelation function and posterior densities for β1 of
activated channels (channels 17, 21, 25, 29).

For a quicker comparison of βk
1 from all channels we can observe Fig. 5.3.

It shows the Highest Posterior Density (HPD) regions for βk
1 in all channels.

Quantiles of order 0.05, 0.5 and 0.95 are marked with points, channels in
which we want to find activation are in red. Segments in red are not different
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from the others: we would like to find that they can be easily distinguished,
for example because they are shorter than the blue ones, or because they lie
around different y-axis values. A confirm of the similarity between segments
length can be obtained looking at Fig. 5.4, in which lengths of HPD regions
are shown.

From a simple visual inspection of these images we understand that it is
difficult to separate active channels studying only the correlation structure.
This is due to the high correlation of ykt , that doesn’t depend on specific
channels. Not-activated channels show a high temporal correlation, similar
to the ones in activated channels. This happens because data indicate the
concentration of a substance during time in a fixed region: we found that the
relation between data in consecutive instants is very strong, independently on
the activation of each fixed channel. Thus a model that inspects only data
correlation can’t find the desired classification.

For this reason we move to a different procedure, using a regressor that
mimic the Hemodynamic Response Function (HRF), as in frequentist approach
of Chapter 4.
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Figure 5.3: HPD intervals for β1 in each channel. Quantiles of order 0.05, 0.5 and
0.95 are marked with points. Channels in which we want to find activation are in
red.



78

0 5 10 15 20 25 30

0
.0

5
0

.1
0

0
.1

5
0

.2
0

Channels

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1617

18

19

20

21
22

23

24

25

26

27

28
29

30

Figure 5.4: Length of HPD intervals for β1 in each channel. Channels in which we
want to find activation are in red.

5.2 A hierarchical linear regression model

Considering data as time series we don’t reach our objective of activation
detection: we need a model that evaluates the shape of data, its specific
evolution in time. We implement this model taking advantage from the
previous knowledge and from the frequentist analysis seen in Chapter 4. As in
that situation (and in the GLM of the current literature), we use a regressor
that mimics the ideal hemodynamic response.

With this model we would like to confirm the results already obtained in
Chapter 4, and to enrich them trough a bayesian analysis on the posterior
distributions. We won’t observe only a numeric value for the classification (e.g.
the P-values of the activation maps or the labels of the k-means clustering
algorithm), but a whole distribution.

We divide signals in 10 trials of 40 s, applying a linear regression model
to each of them.

For each fixed channel, yj is the O2Hb concentration in sub-interval j,
with j = 1 : 10, R is the regressor rest, reported in Fig. 5.5, and X is the



5.2 A hierarchical linear regression model 79

design matrix:

yj =


yj1
yj2
...
yj40

 , R =


r1

r2
...
r40

 , X =


1 r1

1 r2
...

1 r40

 . (5.2)

As in the frequentist model of Chapter 4, the regressor R is obtained trough
a convolution between the HRF and a step-function equal to 1 in the first
and last 10 s and 0 elsewhere, in order to reproduce the alternation of task
and rest periods. We use only one regressor, rest, to simplify the procedure
and the computations. In fact, following the current literature, the proposed
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Figure 5.5: The regressor, rest.

frequentist analysis implements a model with two regressors, studying their
linear combination. However the same statistical results can be obtained
using a single regressor, therefore we here opt for the simplest model.

For each fixed channel, we set:

yj = Xβj + εj, with εj|Σ iid∼ N40(0,Σ), for j = 1 : 10. (5.3)

We choose the following hierarchical model:

yj|X,βj,Σ
ind∼ N40(Xβ

j,Σ) for j = 1 : 10,

βj|µ, λ iid∼ N2(µ, λ · I2) for j = 1 : 10,
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µ0,∼ N (a, b),

µ1 ∼ N (a′, b′),

λ ∼ invGamma(c, d).

In this model, for each fixed channel, the random variable µ synthesizes
the information derived from β. In particular we are interested in µ1: we will
try to understand if this random variable has a specific distribution for active
channels. We will calculate the posterior densities for µ1 in each channel and
then we will compare them.

We fix hyperparameters a, b, a′ and b′ using other subjects from in vivo
dataset.

We still have to define the matrix Σ. Since Σ is a 40 × 40 matrix, we
have to choose a known structure, not to estimate too many parameters2. We
choose a matrix of an ARMA(1,1) process, defined as:

Σ = σ2 ·


1 γ γφ γφ2 γφ3 . . .

γ 1 γ γφ γφ2 . . .

γφ γ 1 γ γφ . . .
...

...
...

...
... . . .

 . (5.4)

If parameters σ2, φ and ψ are specified, the matrix is completely defined.
In order to obtain a positive definite matrix we choose the following prior
distributions:

σ ∼ U(0, 10),

ϑ ∼ U(−1, 1),

φ ∼ U(0, 1),

with σ2 = σ · σ and γ equal to the following deterministic transformation:

γ =
(φ− ϑ)(1− φϑ)

(1− φ2) + (φ− ϑ)2
.

Using Jags, we run an MCMC simulation with 185000 iterations, a thinning
of 35 and a burn-in of 5000.

2An alternative approach could be using a common correlation matrix for all channels,
as usually happens in Statistical Parametric Mapping (see Friston et al., 1994).
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5.3 Convergence analysis

All the simulated Markov Chains are convergent. Their convergence was
tested with the following instruments.

Geweke’s statistic

For each parameter, Geweke’s convergence diagnostic considers two parts of
the Markov chain (usually, the first 10% and the last 50%) comparing their
means with a test on the difference of the means, in order to see if the two
parts belong to the same distribution3.

The final output is a statistic from a Z distribution, that has to be compared
with the 0.025 and 0.975 quantiles of a standard normal distribution (they
are equal to ±1.96): if Z-score is included in the interval (−1.96, 1.96), the
Markov Chain is convergent. With our data, this condition is verified for all
parameters of each channel.

(a) Channel 6. (b) Channel 29.

Figure 5.6: Geweke plot for µ1 in two channels.

Fig. 5.6 shows how Geweke’s Z-statistic varies if the first iterations are
discarded. To do this, the first half of the Markov chain is divided in l segments
(we choose l = 19), then Geweke’s Z-statistic is repeatedly calculated. The
first Z-statistic is calculated with all iterations in the chain, the second one
after discarding the first segment, the third after discarding the first two

3An alternative method to verify if samples have the same distribution could be
comparing two parts of the chain trough a Kolmgorov-Smirnov’s test.
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segments, and so on. The last Z-statistic is calculated using only the samples
in the second half of the chain.

Heidelberg-Welch’s diagnostic

Heidelberg-Welch’s diagnostic performs a convergence test (based on Cramer-
Von Mises statistic) to accept or reject the null hypothesis that the sample
values come from a stationary distribution. This method is composed of two
steps:

1. The test is applied to the whole chain, accepting or rejecting the null
hypothesis that the chain comes from a stationary distribution. If the
null hypothesis is rejected, the first 10% of the chain is discarded and
then the test is repeated. If the result of the test is another rejection, the
next 10% of the chain is discarded, and so on until the null hypothesis
is accepted or the 50% of the chain has been discarded. If the last test
result is a rejection the chain is not convergent and a longer MCMC is
needed. If the stationarity test is passed, the number of iterations to
keep and the number to discard are reported.

2. If the test is not failed, a 95% confidence interval for the mean is
calculated, using the portion of the chain which passed the stationarity
test. Then half the width of this interval is compared to the estimate
of the mean: if the ratio between the two quantities is low enough, the
test is passed and the chain estimates the mean of the parameter with
sufficient accuracy. Otherwise a longer MCMC is required.

We always obtain passed tests, and the number of iterations to discard is
often 0.

Traceplots, autocorrelation and effective sample size

Another way to verify the convergence of the chain consists in controlling
that the chain visits the whole parametric space. In fact if the chain needs
several iterations to move in the space, it will have a slow convergence.
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To control this we can observe traceplots. Traceplots show the values
assumed by parameters at each iteration. As an example we report traceplots
related to the parameter µ1 for channel 4 (not-activated) and 25 (activated)
in Fig. 5.7.
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(b) Channel 25.

Figure 5.7: Traceplot and autocorrelation plot for µ1 in two channels.

In the same figure we can see two examples of autocorrelation plots:
they show the autocorrelation in the sample during time. Plots reveal a low
autocorrelation, confirming the pertinence of the used thinning.

The stationarity of the chain can be inspected also by cumulative quantile
plots. They show the evolution of the sample quantiles as a function of the
number of iterations. An example of this kind of graph is reported in Fig.
5.8, for the parameter µ1 of two channels.

We finally report the effective sample size for parameters of one channel
(channel 14, not-activated):

> effectiveSize(output)
lambda mu0 mu1 phi sigma theta
3919.104 4032.037 4676.081 3173.212 2801.692 5143.000

The effective sample size gives an estimate of the equivalent number of inde-
pendent iterations that the chain represents. If the chain was composed by an
independent sample, its effective sample size would be the size of the sample
(in our model, the size of the sample is equal to 5143 = num.it−burn-in

thinning ). Lower
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the effective sample size is, higher the efficience lost because of correlation.
Our chains show high effective sample sizes, confirming a good thinning.
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Figure 5.8: Evolution in time of the sample quantiles of µ1 for two channels.

Methods here proposed were applied to all parameters of each channel,
always obtaining good results. Since we can’t report all results for all channels,
we chose some of values from the four central channels of both hemispheres.

Convergence analysis were made trough R package coda (for more details
on these algorithms see Plummer et al., 2006).

5.4 A look to the posterior densities

With the bayesian approach we don’t obtain only a numeric estimate of µ1,
but we get an estimation of its whole distribution: the posterior density. This
distribution is originated by an update of our a priori beliefs (represented by
the prior distribution) trough data.

We analyse the posterior densities for µ1 in the central channels of the
two hemispheres, in order to understand if it is possible to separate activated
channels trough them.

Since the hierarchical model inspects the relation between the O2Hb
concentration and rest, we would expect to find a negative dependence
between data and the regressor in activated channels, and no correlation
between them in the not-activated ones.
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This results in an expected value of β1 − that is represented by µ1 −
lower than 0 in activated channels, near to 0 in the not-activated ones. In this
way we would have a demonstration of the dependence of activated signals
from the HRF, that is a proof of the cerebral activation.

The posterior distributions for µ1 in the two hemispheres are reported in
Fig. 5.9 and 5.10. Red lines indicate the 0.05, 0.5 and 0.95 quantiles.
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Figure 5.9: Posterior densities for µ1 in not-activated channels. Red lines indicate
the 0.05, 0.5 and 0.95 quantiles.

Looking at these figures we can notice that posterior distributions for
activated channels are quite different from the ones for not-activated channels.
In fact the variance of the distributions and their bell-shapes seem very similar
on to the other, but their means are very different: if we focus on the HPD
intervals (the dotted red lines) we immediately see that the ones related to
the left hemisphere don’t include the zero, while the others do.

Our hypothesis on the dependence between O2Hb measures and the
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regressor rest is confirmed: the correlation is negative in activated channels,
and near to 0 in not-activated ones. This confirms the proposed frequentist
model, in which the hypothesis tests evaluate the equality to 0 of the mean
of the coefficients4, without having a distribution.
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Figure 5.10: Posterior densities for µ1 in activated channels. Red lines indicate the
0.05, 0.5 and 0.95 quantiles.

Trough this model, a simple criterion for channels’ clusterization (with the
binary label activated/not-activated) can be deduced by the visual inspection
of the posterior density: if the HPD interval includes the zero the channel is
activated, otherwise it isn’t.

The goal is reached: channels can be classified trough the proposed
hierarchical model.

4In Chapter 4 the alternative hypothesis inspects a positive correlation because the
observed quantity is a contrast between coefficients.



Chapter 6

Conclusions

The present work describes and faces the problem of fNIRS data analysis.
In particular, our main objective consists in proposing a new procedure for stat-
istical analysis of activated channels in fNIRS data, exploiting the convenient
aspects of some models in the current literature and reducing their weaknesses.

In order to detect noisy channels we performed an outlier detection using
the Area Under the Curve (AUC).

We tried to detect noisy channels using the mean and the variance of
AUCs on sub-intervals. The proposed procedure showed a good ability in
highlighting anomalous channels and a coherence with results deriving from
the visual inspection made by experts.

Future analysis could enhance the accuracy of the selection, finding a
threshold value (for the mean or for a linear combination between mean and
variance). In this way it would be possible to perform an automatic and
real-time outlier detection.

The most critical matter about fNIRS data is its strong temporal depend-
ence structure. The vector of data is the concentration of the hemoglobin in
a fixed point, during time: surely each measure depends on the previous one.

This dependence, that complicates analysis, contains the information
that has to be investigated in order to find activation. In fact activated
channels can be recognised by the shape of the hemoglobin signal during time,

87



88

by its specific evolution, caused by the neural activation. Thus the strong
dependence of measures, that can be a critical point to treat, is at the same
time a source of knowledge.

The current literature suggests many procedures for activation detection.
One of the most commonly accepted and used method is the General Linear
Model (GLM), a linear regression model that uses, as regressors, functions
imitating the evolution of the ideal hemodynamic response (e.g. convolutions
between scales function and the hemodynamic response function). The GLM
is based on hypothesis that were not verified on our datasets.

We introduced a method that minimizes the hypotheses to be fullfilled.
Data have been split in sub-intervals, each one representing a realization of

the same event (the elementary activation sequence), and a linear regression
model was applied on each of them. Thus, rather than a unique linear
combination for each channel, that can be difficult to analyse without making
some hypothesis, we obtained a normal population of linear combinations for
each channel, which can be easily investigated through an inference test.

The unique hypothesis required to use this model is the gaussianity of the
activation-related quantities, and this hypothesis was always confirmed by
statistical tests.

The output of this method is a head map where the colour of each channel
depends on its activation degree.

This procedure has been applied on in vivo and simulated data, and it
has shown very good results in both situations.

In this work we suggest also some ideas to perform a group analysis
coherent with the proposed linear regression model. In particular we show a
method that mixes signals from different subjects (for each fixed channel),
considering them as if they belong to a unique person, and a method that
uses the median of P-values that were calculated during the single subject
analysis.

Results are good in both situation, even if the latter method was highly
influenced by subjects without activated channels.

Further studies should be conducted in this area, analysing the advantages
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and drawbacks of both methods in deep.

A k-means clustering algorithm is also proposed as an useful additional
tool for activated channels detection.

This clustering algorithm doesn’t require any statistical hypothesis: it di-
vides channels in k groups. The number of groups has been chosen maximizing
suitable indexes.

Because of the different proceedings compared to the previous algorithm,
k-means can be used as a reinforcing control instrument after the proposed
method execution.

K-means algorithm performs a correct clusterization on a (simulated or
in vivo) subject if its activation map has shown activated channels. Since
the classification is not continuous but binary, low activated channels can be
misclassified.

If a subject has no activation the algorithm is forced to separate channels
in two groups, thus results were unpredictable. For this reason, k-means
algorithm should be used after the proposed linear regression model, and its
use should be evaluated in each situation.

Some problems can also arise if one (or more) channels are particularly
noisy: in this situation the clustering algorithm can separate noisy channels
from the others.

Therefore highly noisy channels should be excluded before an analysis
with k-means clustering algorithm.

Finally, a bayesian approach has been introduced.
We proposed a hierarchical linear regression model that recalls the frequent-

ist linear model previously analysed: data have been divided in sub-intervals
and for each of them a linear model has been set.

For each fixed channel, the analysis focuses on µ1, the random variable
that represents the mean of the task -related coefficient. An MCMC simulation
was run for each channel and the posterior density for the variable of interest
µ1 was obtained.

We tested the convergence of the simulated Markov Chains trough several
instruments and results are very good.
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Moreover, we find that it is possible to perform a precise classification
(activated/not-activated channels) using the proposed bayesian model, trough
an inspection of the posterior densities of µ1. In fact activated channels can
be recognised looking at the highest posterior density interval for µ1: if it
doesn’t include the zero, the channels is activated.

Further studies in this area could apply the bayesian model to simulated
or noisier subjects, in order to confirm the validity of the model in critical
situations.



Appendix: R codes

We report the most important R codes used for fNIRS analysis.
In particular, we write the codes for the pre-processing algorithm, the creation
of the linear models, the gaussianity tests on coefficients, the tests on contrasts
with maps’ drawings, and a hint on AUC analysis.

The used packages are specified in the code.
In the following lines:

• y is a matrix of size 490 × 30, with O2Hb or HHb measures from
an in vivo or synthetic subject. Each column includes hemoglobin
concentration in one channel during time.

• rest is a vector of length 40, containing the regressor rest

• task is a vector of length 40, containing the regressor task

• coord is a matrix of size 30 × 2, containing channels’ coordinates in
the page space (it is used for the creation of activation maps).

### Baseline mean subtraction and smoothing spline algorithm
period <- 39
start <- seq(51, 411, 40)
start2 <- seq(1, 400, 40)
t <- seq(1, 400)
withoutBase <- matrix(0, 400, 30) # matrix that will contain data
after the baseline subtraction
spl <- matrix(0, 400, 30) # matrix that will contain data after smoothing
spline algorithm
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for(j in 1:30){ # switching each channel
for(i in 1:10){ # switching each trials
withoutBase[start2[i]:(start2[i]+period),j] <-
y[start[i]:(start[i]+period),j] - mean(y[start[i]:(start[i]+9),j])
}
spl[, j]<-smooth.spline(t, withoutBase[, j], spar=.001)$y

}

### Linear regression models on sub-intervals
yHat <- matrix(0, 400, 30) # matrix that will contain the fitted
values
betaHat <- matrix(0, 30, 30) # matrix that will contain the coefficients
estimates
period <- 39
start2 <- seq(1, 400, 40)
dist <- seq(1, 30, 3) # [1 4 7 10 13 16 19 22 25 28]
for(i in seq(1, 30)){ # switching each channel
for(j in 1:10){ # switching each trial
model <- lm(spl[start2[j] : (start2[j]+period), i]∼ rest + task)
betaHat[i, dist[j] : (dist[j]+2)] <- coefficients(model)
yHat[start2[j] : (start2[j]+period), i] <- fitted(model)
}

} # N.B. betaHat: each row is a channel
diff <- betaHat[, dist+2] - betaHat[, dist+1]

### Shapiro tests on coefficients estimates
shapBeta0 <- rep(0,30); shapBeta1 <- rep(0,30) # inizialized to 0
shapBeta2 <- rep(0,30); shapContrasts <- rep(0,30)
for(i in 1:30){ # four Shapiro tests on each channel
shapBeta0[i] <- shapiro.test(betaHat[i, dist])$p.value
shapBeta1[i] <- shapiro.test(betaHat[i, dist+1])$p.value
shapBeta2[i] <- shapiro.test(betaHat[i,dist+2])$p.value
shapContrasts[i] <- shapiro.test(diff[i,])$p.value

}
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### Hypothesis Test: for each channel, a one-sided test
### E[beta2-beta1] = 0 vs E[beta2-beta1] > 0
pva <- rep(0, 30) # vector that will contain P-values
for(i in 1:30){ # one test for each channel
pva[i] <- t.test(diff[i, ], alternative = ’greater’, conf.level
= 0.95)$p.value
}

### Drawing the activation maps
ind <- pva*100
colori <- c(’yellow1’, ’darkorange’, ’darkorange1’, ’darkorange2’,
’orangered’, ’orangered1’, ’orangered2’, ’red’, ’red1’, ’red2’,
’red3’, ’darkred’, ’red4’)
scala <- colorRampPalette(c(’white’, colori, ’black’), bias = 1,
space = "rgb")

v <- scala(100)
par(mfrow = c(1,1), mar = c(4, 4.5, 4, 2) + 0.1)
plot(coord[,1], coord[,2], yaxt = ’n’, xaxt = ’n’, col = c(v[ind+1]),
xlab = ”, ylab= ”, pch = CIRCLE<-16, cex = 4, xlim = c(1.5,59),
ylim = c(1.1, 17.6), pty = ’s’, bty = ’n’)
points(coord[, 1], coord[, 2], pch = 1, cex = 4)
textColor <- (pva < 0.5)
text(coord[, 1], coord[, 2], labels = seq(1, 30), col = textColor)
text(coord[, 1] + 4, coord[, 2], round(pva, 3), cex = 0.5)
lines( c(24, 26.5), c(17.4, 18.25)) # drawing the nose
lines( c(26.5, 29), c(18.25, 17.4), lwd=1)# drawing the nose
require(plotrix) # loading the package plotrix
require(car) # loading the package car
legend(26, 4, c(expression(paste("accepting ",paste(H[0]),sep="")),
expression(paste("rejecting ",paste(H[0]),sep=""))), xjust=1, bty=’n’,
cex = 0.8, text.width = 4, y.intersp = 1.3, box.col = 0, pt.lwd = 1,
pch = c(22,22), col = c(1,1), pt.bg = c(1, 0), pt.cex = 1.5)
ellipse(center = c(26, 8.2), shape = cbind(c(38, 0), c(0, 3.4)),
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radius = 5, col = 1, center.pch = 0, lwd = 0.5)
library(fields) # loading the package fields
palette(v) # drawing the color scale
image.plot(legend.only = T, col = v, horizontal = F, add = T,
zlim = c(0, 1), reset.graphics = T,
smallplot = c(0.05, 0.09, 0.2, 0.85))
palette("default")

### AUC
require(pracma) # loading the package pracma
auc <- matrix(0, 10, 30) # matrix 10 × 30 that will contain the
AUCs. Each column is a channel.
sottoins <- matrix(0, 40, 1) # auxiliary variable
start2 <- seq(1, 400, 40)
for(j in 1:30){ # switching channels
for(i in 1:10){ # switching trials
sottoins <- spl[start2[i] : (start2[i] + periodo), j]
auc[i, j] <- trapz(abs(sottoins))
}

}
med <- colMeans(auc) # a vector with AUC means
varianze <-diag(var(auc)) # a vector with AUC variances
# A simple plot for visual inspection:
plot(med, varianze, pch = 16, ylim = c(min(varianze), 3))
text(med, (varianze)+0.1, seq(1,30))
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