
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Monte Carlo Tree Search algorithms

applied to the card game Scopone

Relatore: Prof. Pier Luca Lanzi

Tesi di Laurea di:

Stefano Di Palma, Matr. 797319

Anno Accademico 2013-2014

Contents

Contents III

List of Figures VII

List of Tables XI

List of Algorithms XIII

List of Source Codes XV

Acknowledgements XVII

Abstract XIX

Sommario XXI

Estratto XXIII

1 Introduction 1

1.1 Original Contributions . 2

1.2 Thesis Outline . 2

2 Artificial Intelligence in Board and Card Games 5

2.1 Artificial Intelligence in Board Games 5

2.1.1 Checkers . 5

2.1.2 Chess . 6

2.1.3 Go . 7

2.1.4 Other Games . 7

2.2 Minimax . 8

2.3 Artificial Intelligence in Card Games 10

2.3.1 Bridge . 10

2.3.2 Poker . 10

III

2.3.3 Mahjong . 11

2.4 Monte Carlo Tree Search . 11

2.4.1 State of the art . 12

2.4.2 The Algorithm . 14

2.4.3 Upper Confidence Bounds for Trees 16

2.4.4 Benefits . 18

2.4.5 Drawbacks . 18

2.5 Monte Carlo Tree Search in Games with Imperfect Information 20

2.5.1 Determinization technique 21

2.5.2 Information Set Monte Carlo Tree Search 23

2.6 Summary . 25

3 Scopone 29

3.1 History . 29

3.2 Cards . 30

3.3 Game Rules . 30

3.3.1 Dealer Selection . 30

3.3.2 Cards Distribution . 31

3.3.3 Gameplay . 31

3.3.4 Scoring . 33

3.4 Variants . 34

3.4.1 Scopone a 10 . 34

3.4.2 Napola . 35

3.4.3 Scopa d’Assi or Asso piglia tutto 35

3.4.4 Sbarazzino . 35

3.4.5 Rebello . 36

3.4.6 Scopa a 15 . 36

3.4.7 Scopa a perdere . 36

3.5 Summary . 36

4 Rule-Based Artificial Intelligence for Scopone 37

4.1 Greedy Strategy . 37

4.2 Chitarrella-Saracino Strategy 39

4.2.1 The Spariglio . 39

4.2.2 The Mulinello . 42

4.2.3 Double and Triple Cards 43

4.2.4 The Play of Sevens . 45

4.2.5 The Algorithm . 48

4.3 Cicuti-Guardamagna Strategy 53

4.3.1 The Rules . 53

IV

4.3.2 The Algorithm . 55

4.4 Summary . 55

5 Monte Carlo Tree Search algorithms for Scopone 59

5.1 Monte Carlo Tree Search Basic Algorithm 59

5.2 Information Set Monte Carlo Tree Search Basic Algorithm . . 61

5.3 Reward Methods . 63

5.4 Simulation strategies . 63

5.5 Reducing the number of player moves 64

5.6 Determinization with the Cards Guessing System 65

5.7 Summary . 65

6 Experiments 67

6.1 Experimental Setup . 67

6.2 Random Playing . 67

6.3 Rule-Based Artificial Intelligence 68

6.4 Monte Carlo Tree Search . 72

6.4.1 Reward Methods . 72

6.4.2 Upper Confidence Bounds for Trees Constant 74

6.4.3 Simulation strategies 75

6.4.4 Reducing the number of player moves 76

6.5 Information Set Monte Carlo Tree Search 79

6.5.1 Reward Methods . 79

6.5.2 Upper Confidence Bounds for Trees Constant 80

6.5.3 Simulation strategies 82

6.5.4 Reducing the number of player moves 83

6.5.5 Determinizators . 85

6.6 Final Tournament . 86

6.7 Summary . 87

7 Conclusions 89

7.1 Future research . 91

A The Applications 93

A.1 The Experiments Framework 93

A.2 The User Application . 96

Bibliography 101

V

VI

List of Figures

2.1 Steps of the Monte Carlo Tree Search algorithm. 15

3.1 Official deck of Federazione Italiana Gioco Scopone. 31

3.2 Beginning positions of a round from the point of view of one

player. Each player holds nine cards and there are four cards

on the table. 32

3.3 The player’s pile when it did two scopa. 33

6.1 Reward methods comparison on the Monte Carlo Tree Search

winning rate as a function of the number of iterations when

it plays against the Greedy strategy as the hand team. . . . 73

6.2 Reward methods comparison on the Monte Carlo Tree Search

winning rate as a function of the number of iterations when

it plays against the Greedy strategy as the deck team. . . . 73

6.3 Scores Difference and Win or Loss reward methods compari-

son on the Monte Carlo Tree Search winning rate as a function

of the Upper Confidence Bounds for Trees constant when it

plays against the Greedy strategy as the hand team. 74

6.4 Scores Difference and Win or Loss reward methods compari-

son on the Monte Carlo Tree Search winning rate as a function

of the Upper Confidence Bounds for Trees constant when it

plays against the Greedy strategy as the deck team. 75

6.5 Winning rate of Monte Carlo Tree Search as a function of the

ε value used by the Epsilon-Greedy Simulation strategy when

it plays against the Greedy strategy both as hand team and

deck team. 76

6.6 Simulation strategies comparison on the Monte Carlo Tree

Search winning rate when it plays against the Greedy strategy

both as hand team and deck team. 77

VII

6.7 Moves handlers comparison on the Monte Carlo Tree Search

winning rate when it plays against the Greedy strategy both

as hand team and deck team. 78

6.8 Moves handlers comparison on the Monte Carlo Tree Search

winning rate when it plays against the Chitarrella-Saracino

strategy both as hand team and deck team. 78

6.9 Reward methods comparison on the Information Set Monte

Carlo Tree Search winning rate as a function of the number

of iterations when it plays against the Greedy strategy as the

hand team. 79

6.10 Reward methods comparison on the Information Set Monte

Carlo Tree Search winning rate as a function of the number

of iterations when it plays against the Greedy strategy as the

deck team. 80

6.11 Scores Difference and Win or Loss reward methods compari-

son on the Information Set Monte Carlo Tree Search winning

rate as a function of the Information Set Upper Confidence

Bounds for Trees constant when it plays against the Greedy

strategy as the hand team. 81

6.12 Scores Difference and Win or Loss reward methods compari-

son on the Information Set Monte Carlo Tree Search winning

rate as a function of the Information Set Upper Confidence

Bounds for Trees constant when it plays against the Greedy

strategy as the deck team. 81

6.13 Winning rate of Information Set Monte Carlo Tree Search as a

function of the ε value used by the Epsilon-Greedy Simulation

strategy when it plays against the Greedy strategy both as

hand team and deck team. 82

6.14 Simulation strategies comparison on the Information Set Monte

Carlo Tree Search winning rate when it plays against the

Greedy strategy both as hand team and deck team. 83

6.15 Moves handlers comparison on the Information Set Monte

Carlo Tree Search winning rate when it plays against the

Greedy strategy both as hand team and deck team. 84

6.16 Moves handlers comparison on the Information Set Monte

Carlo Tree Search winning rate when it plays against the

Chitarrella-Saracino strategy both as hand team and deck

team. 84

VIII

6.17 Determinizators comparison on the Information Set Monte

Carlo Tree Search winning rate when it plays against the

Chitarrella-Saracino strategy both as hand team and deck

team. 85

A.1 Menu of the user application 97

A.2 Round of the user application 98

A.3 Scores at the end of a round of the user application 98

IX

X

List of Tables

3.1 Cards’ values for the calculation of primiera. Each column

shows the correspondence between card’s rank and used value. 34

3.2 Example of scores calculation. The first part shows the cards

in the pile of each team at the end of a round. The second

part shows the points achieved by each team and the final

scores of the round. 35

4.1 Cards’ values used by the Greedy strategy to determine the

importance of a card. Each column of the first part shows

the correspondence between a card in the suit of coins and

the used value. Each column of the second part shows the

correspondence between a card’s rank in one of the other suits

and the used value. 38

5.1 Complexity values of the Monte Carlo Tree Search algorithm

applied to Scopone. 61

5.2 Complexity values of the Information Set Monte Carlo Tree

Search algorithm applied to Scopone. 62

6.1 Winning rates of the hand team and the deck team, and the

percentage of ties, when both the teams play randomly. . . . 68

6.2 Tournament between the different versions of the Chitarrella-

Saracino strategy. In each section, the artificial intelligence

used by the hand team are listed at the left, while the ones

used by the deck team are listed at the bottom. The first

section shows the percentage of wins of the hand team, the

second one shows the percentage of losses of the hand team,

and the third one shows the percentage of ties. 69

6.3 Scoreboard of the Chitarrella-Saracino strategies tournament.

It shows the percentage of wins, losses, and ties each artificial

intelligence did during the tournament. 69

XI

6.4 Tournament between the rule-based artificial intelligence. In

each section, the artificial intelligence used by the hand team

are listed at the left, while the ones used by the deck team are

listed at the bottom. The first section shows the percentage

of wins of the hand team, the second one shows the percent-

age of losses of the hand team, and the third one shows the

percentage of ties. 71

6.5 Scoreboard of the rule-based artificial intelligence tournament.

It shows the percentage of wins, losses, and ties each artificial

intelligence did during the tournament. 71

6.6 Final Tournament. In each section, the artificial intelligence

used by the hand team are listed at the left, while the ones

used by the deck team are listed at the bottom. The first

section shows the percentage of wins of the hand team, the

second one shows the percentage of losses of the hand team,

and the third one shows the percentage of ties. 86

6.7 Scoreboard of the final tournament. It shows the percentage

of wins, losses, and ties each artificial intelligence did during

the final tournament. 87

XII

List of Algorithms

1 Minimax pseudo-code . 9

2 Monte Carlo Tree Search . 16

3 UCT algorithm . 19

4 ISMCTS algorithm . 26

5 Greedy strategy pseudo-code 40

6 Chitarrella-Saracino strategy pseudo-code 50

7 Cicuti-Guardamagna strategy pseudo-code 56

XIII

XIV

List of Source Codes

A.1 Monte Carlo Tree Search algorithm implementation 94

A.2 Information Set Monte Carlo Tree Search algorithm imple-

mentation . 95

XV

XVI

Acknowledgements

I wish to thank my supervisor Prof. Pier Luca Lanzi for reading and pro-

viding feedback on my thesis, for the interesting discussions on artificial

intelligence, and for allowing me to do this work.

Last but not least, I would like to thank my family and my friends for

their continuous support and motivation during the whole studies. A special

thank to my parents that allow me to study what I like.

XVII

XVIII

Abstract

The aim of this thesis is to design a competitive Artificial Intelligence AI al-

gorithm for Scopone, a famous Italian-card game. In particular, we focused

on the Monte Carlo Tree Search (MCTS) algorithms. However, MCTS re-

quires full knowledge of the game state, therefore we also used an extension

of the algorithm called Information Set Monte Carlo Tree Search (ISMCTS),

that can work with partial knowledge of the game state. We developed dif-

ferent improvements of MCTS and ISMCTS, and we evaluated their playing

strength against three rule-based AI encoding rules taken from well-known

strategy books of Scopone. Our results showed that the deck team has

an advantage over the hand team and the MCTS and ISMCTS algorithms

proved to be stronger than the rule-based AI. Finally, we also developed an

application to let human players interact with our AI.

XIX

XX

Sommario

Lo scopo di questa tesi è quello di progettare un algoritmo d’Intelligenza Ar-

tificiale (IA) competitiva per Scopone, un famoso gioco di carte Italiano. In

particolare, ci siamo concentrati sugli algoritmi di Ricerca ad Albero Monte

Carlo (o Monte Carlo Tree Search, MCTS). Tuttavia, MCTS richiede la pie-

na conoscenza dello stato di gioco, quindi abbiamo anche usato un’estensione

dell’algoritmo chiamata Information Set Monte Carlo Tree Search (ISMC-

TS), che è pensata per funzionare usando una conoscenza parziale dello stato

di gioco. Inoltre, abbiamo sviluppato diverse varianti degli algoritmi MCTS

e ISMCTS, valutando il loro livello di gioco contro tre IA a regole, che codi-

ficano la conoscenza tratta da famosi libri di strategia di Scopone. I nostri

risultati hanno dimostrato che la coppia di mazzo ha un vantaggio rispetto

la coppia di mano e gli algoritmi MCTS e ISMCTS sono risultati più forti

delle IA a regole. In fine, abbiamo sviluppato un’applicazione che permette

ai giocatori umani di misurarsi con le nostre IA.

XXI

XXII

Estratto

Questa tesi si inquadra nell’ambito dell’Intelligenza Artificiale (IA) nei gio-

chi di carte. Questo campo è nato negli anni ’50 ed i primi algoritmi di

IA, sviluppati per giochi da tavolo a due giocatori (come Dama e Scacchi),

erano in grado di giocare solo mosse finali di una partita o competere con

principianti. Negli anni successivi, grazie alla progettazione di tecniche più

avanzate, i programmi erano in grado di competere contro professionisti. In

alcuni casi, è stato possibile risolvere un gioco, ovvero prevedere il risultato

di una partita in cui tutti i giocatori giocano in maniera perfetta.

Lo scopo di questa tesi è di progettare un algoritmo di intelligenza artifi-

ciale competitivo per Scopone, un famoso gioco di carte Italiano che richiede

elevate capacità intellettuali per poter essere giocato. Per questo motivo, è

spesso chiamato Scopone Scientifico, perché le regole gli conferiscono dignità

di Scienza.

In particolare, il nostro obiettivo è quello di valutare il livello di gioco che

può essere raggiunto con l’algoritmo di Ricerca ad Albero Monte Carlo (o

Monte Carlo Tree Search, MCTS) applicato a Scopone. L’algoritmo MCTS

è stato introdotto nel 2006 da Rémi Coulom et al. [13]. Poco dopo, Kocsis e

Szepesvári hanno formalizzato questo approccio nell’algoritmo Upper Con-

fidence Bounds for Trees (UCT), che oggi è l’algoritmo più utilizzato della

famiglia MCTS. In contrasto con i classici algoritmi di IA (come Minimax),

che esplorano completamente l’albero di ricerca, MCTS costruire un albero

in modo incrementale e asimmetrico, guidato da molte simulazioni casua-

li delle svolgimento della partita. In questo modo, MCTS esplora solo le

aree più promettenti dell’albero. Inoltre, l’esplorazione può essere interrotta

in qualsiasi momento restituendo il miglior risultato finora ottenuto, questo

rende MCTS molto efficiente in termini di tempo e memoria. Kocsis e Szepe-

svári sono stati anche in grado di dimostrare che, con un numero sufficiente

di iterazioni dell’algoritmo, MCTS converge allo stesso risultato di Minimax.

Tuttavia, Scopone, come molti giochi di carte, ha la caratteristica che i gio-

catori non conoscono le carte in possesso degli altri, quindi lo stato di gioco

XXIII

dal punto di vista di un giocatore nasconde alcune informazioni. Invece,

MCTS richiede piena conoscenza dello stato di gioco, quindi abbiamo uti-

lizzato un’estensione dell’algoritmo proposto da Cowling et al. [14] nel 2012

chiamato Information Set Monte Carlo Tree Search (ISMCTS). ISMCTS è

pensato per funzionare usando una conoscenza parziale dello stato di gioco,

infatti basa la propria decisione su un albero di ricerca, dove ciascun nodo

è un information set, che rappresenta tutti gli stati di gioco compatibili con

le informazioni disponibili al giocatore radice. In ogni caso, abbiamo man-

tenuto anche l’algoritmo MCTS come giocatore sleale, cioè che può vedere

le carte degli altri giocatori, e l’abbiamo usato come punto di riferimento

per il miglior modo di giocare.

Per valutare il livello di gioco raggiunto dagli algoritmi MCTS e ISMC-

TS, abbiamo sviluppato tre AI a regole che codificano la conoscenza tratta

da famosi libri di strategia di Scopone. La strategia Greedy cattura sempli-

cemente le carte più importanti sul tavolo o gioca la carta meno importante

che si ha in mano. La strategia Chitarrella-Saracino (CS) include le regole

tratte dai libri di strategia di Chitarrella [11] e Saracino [24] sullo spariglio,

il mulinello, il gioco di carte doppie e triple, e il gioco dei sette. La strategia

Cicuti-Guardamagna (CG) è un’estensione della IA CS, e codifica le regole

proposte da Cicuti e Guardamagna [12] sul gioco dei sette. Gli esperimen-

ti hanno dimostrato che CS è la miglior strategia, mostrando che le regole

supplementari per il gioco dei sette di CG non aumentano il livello di gioco.

Successivamente, abbiamo testato diverse varianti degli algoritmi MCTS

e ISMCTS al fine di selezionare la migliore configurazione per Scopone.

Abbiamo sperimentato quattro metodi per le ricompense: Normal Score

(NS), utilizza il punteggio di ogni squadra; Scores Difference (SD), utilizza

la differenza tra il punteggio delle squadre; Win or Loss (WL), utilizza 1

per una vittoria, −1 per una sconfitta, e 0 per un pareggio; e Positive Win

or Loss (PWL), usa 1 per una vittoria, 0 per una sconfitta, e 0.5 per un

pareggio. Il miglior metodo per le ricompense si è rivelato essere SD, con

una costante UCT pari a 2.

Poi, abbiamo testato quattro strategie di simulazione: Random Simula-

tion (RS), sceglie una mossa casuale; Greedy Simulation (GS), use la mossa

scelta dalla strategia Greedy; Epsilon-Greedy Simulation (EGS), con proba-

bilità ε sceglie una mossa casuale, altrimenti seleziona la mossa scelta dalla

strategia Greedy; e Card Random Simulation (CRS), gioca una carta a ca-

so, ma la strategia Greedy decide che carte catturare in caso ci siano più

possibilità di presa. La miglior strategia di simulazione si è rivelata essere

EGS con ε = 0.3 per MCTS, e GS per ISMCTS. Probabilmente, ISMCTS

è in grado di sfruttare tutte le conoscenze di gioco della strategia Greedy,

XXIV

perché entrambi non conoscono le carte degli altri giocatori. Considerando

che, MCTS può anche vedere le carte degli avversari, contare completa-

mente sulla strategia Greedy potrebbe indirizzare la ricerca in aree poco

promettenti dell’albero.

Abbiamo anche sperimentato quattro gestori di mosse per ridurre in

numero di mosse disponibili in ciascun nodo: All Moves Handler (AMH),

genera tutte le mosse disponibili; One Move Handler (OMH), genera una

mossa per ogni carta nella mano del giocatore e usa la strategia Greedy per

scegliere le carte da catturare; One Card Handler (OCH), come OMH ma

nella mossa è memorizzata solo la carta giocata; e Greedy Opponents Handler

(GOH), quando non è il turno del giocatore radice, viene generata solo la

mossa scelta dalla strategia Greedy. Gli esperimenti hanno dimostrato che

AMH, OMH, e OCH sono equivalenti, ma AMH ha il vantaggio di sfruttare

tutte le mosse disponibili. Mentre, GOH è significativamente più forte contro

la strategia Greedy, ma con la strategia CS si è rivelata più debole. Questo

è un caso di overfitting che si verifica soprattutto con MCTS. Per queste

ragioni, abbiamo selezionato AMH come il miglior gestore di mosse.

Come ultima variante dell’algoritmo ISMCTS, abbiamo testato due de-

terminizzatori: determinizzatore Random, sceglie uno stato nel information

set radice in modo casuale; determinizzatore Cards Guessing System (CGS),

limita il campione agli stati in cui ogni giocatore possiede le carte predette

dal sistema di predizione delle carte. I due metodi si sono rivelati equivalen-

ti, ma crediamo che CGS consenta a ISMCTS di evitare mosse che portano

in modo semplice gli avversari a fare una scopa, dal momento che ISMCTS

con CGS può prevedere le carte che gli avversari potrebbero possedere. Per

questo motivo, abbiamo scelto CGS come il migliore determinizzatore.

Infine, abbiamo eseguito un torneo tra la strategia casuale, CS, MCTS,

e ISMCTS. I risultati hanno confermato che la coppia di mazzo ha un van-

taggio rispetto alla coppia di mano e il vantaggio aumenta con l’abilità del

giocatore. Ovviamente, MCTS ha raggiunto le migliori prestazioni, perché

è un giocatore sleale, mentre la strategia casuale è chiaramente la peggiore.

La cosa importante è che ISMCTS ha dimostrato di essere più forte della

strategia CS. Questo conferma che l’algoritmo ISMCTS è molto efficacie e

merita lo svolgimento di ulteriori ricerche al riguardo.

Come conseguenza di questa tesi, abbiamo sviluppato due versioni del

gioco: una pensata appositamente per testare le varie intelligenze artificiali,

e un’applicazione, sviluppata con il motore di gioco Unity, che abbiamo in

programma di rilasciare per Android e iOS. Con l’applicazione utente, si

può giocare a Scopone contro le IA che abbiamo sviluppato e compilare

un sondaggio sul livello di gioco percepito e il comportamento umano delle

XXV

intelligenze artificiali.

XXVI

Chapter 1

Introduction

This thesis focuses on the application of Artificial Intelligence (AI) in card

games. This field was born in the ’50s and the first AI algorithms, developed

for two-players-board games (like Checkers and Chess), were able to play

only final moves of the game or they could only play at the level of beginners.

In the following years, due to the design of more advanced techniques, the

programs could compete against human-expert players. In some cases, it

has been possible to solve a game, i.e. predict the result of a game played

from a certain state in which all the players did the optimal moves.

The aim of this thesis is to design a competitive AI algorithm for Scopone,

a famous Italian card game that requires high intellectual skills in order to

be played. For this reason, it is often called Scopone Scientifico (Scientific

Scopone), because the rules give it the dignity of Science.

In particular, our goal is to evaluate the playing strength that can be

achieved with the Monte Carlo Tree Search (MCTS) algorithm applied to

Scopone. MCTS has been introduced in 2006 by Rémi Coulom et al. [13].

Shortly after, Kocsis and Szepesvári formalized this approach into the Up-

per Confidence Bounds for Trees (UCT) algorithm, which nowadays is the

most used algorithm of the MCTS family. In contrast with the classical AI

algorithms (like Minimax), that completely explore the search tree, MCTS

build up a tree in an incremental and asymmetric manner guided by many

random simulated games. In this way it can explore only the most promis-

ing areas of the tree. Moreover, the exploration can be stopped at any time

returning the current best result, this make MCTS very efficient in terms of

time and memory. Kocsis and Szepesvári were also able to prove that, with

enough iterations of the algorithm, MCTS converges to the same result of

Minimax. However, Scopone, like many card games, has the characteristic

that the players do not know the cards held by the other players, therefore

1

CHAPTER 1. INTRODUCTION

the game state perceived by one player includes some hidden information.

In contrast, MCTS requires full knowledge of the game state, therefore we

also used an extension of the algorithm proposed by Cowling et al. [14] in

2012 called Information Set Monte Carlo Tree Search (ISMCTS). ISMCTS

can work with partial knowledge of the game state, in fact it bases its deci-

sions on a tree search where each node is an information set representing all

the game states compatible with the information available to the ISMCTS

player.

In order to select the best possible MCTS and ISMCTS algorithms, we

designed and experimented with different variations of these algorithms.

We also developed three rule-based AI, one representing a beginner and

two that encode the rules taken from well-known strategy books written by

expert player of Scopone. The final results allow us to evaluate the playing

strength of MCTS and ISMCTS against the rule-based AI, showing that the

algorithms are competitive.

To perform these experiments, we designed two versions of the game:

one strictly focused on testing the artificial players, and one application,

made with the game engine Unity, to let human players interact with our

AI.

1.1 Original Contributions

This thesis contains the following original contributions:

• The development of three rule-based AI for Scopone.

• The design of different variants of the MCTS algorithm applied to

Scopone.

• The experimental comparison between the developed AI algorithm.

• The development of a research framework on MCTS and Scopone.

• The development of an application made in Unity in order to let the

users play Scopone.

1.2 Thesis Outline

The thesis is structured as follows:

• In Chapter 1, we introduce the goals of this work, showing the original

contributions and the thesis structure.

2

1.2. THESIS OUTLINE

• In Chapter 2, we present several applications of AI in board and card

games and we introduce the MCTS and ISMCTS algorithms.

• In Chapter 3, we describe the rules of Scopone.

• In Chapter 4, we show the rule-based AI we developed for Scopone.

• In Chapter 5, we present the various versions of MCTS and ISMCTS

we developed for Scopone.

• In Chapter 6, we show and discuss the results obtained from the ex-

periments we did between the AI we designed.

• In Chapter 7, we evaluate the work done for this thesis and we propose

future research on this topic.

• In Appendix A, we briefly describe the two applications we developed.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Artificial Intelligence in

Board and Card Games

In this chapter we overview the most interesting applications of Artificial

Intelligence (AI) in board and card games related to this work. Then we

introduce the Monte Carlo Tree Search (MCTS) algorithm and we compare

it with the well-known AI algorithm, Minimax, showing advantages and

disadvantages of the two methods. Finally, we discuss the Information Set

Monte Carlo Tree Search (ISMCTS) algorithm, an extension of MCTS that

can deal with imperfect information games.

2.1 Artificial Intelligence in Board Games

Artificial Intelligence aims to develop an opponent able to simulate a ra-

tional behavior, that is, do things that require intelligence when done by

humans. Board games are particularly suited for this purpose because they

are difficult to solve without some form of intelligence, but are easy to model.

Usually, a board configuration corresponds to a state of the game, while a

legal move is modeled with an action that changes the state of the game.

Therefore, the game can be modeled with a set of possible states and a set

of legal actions for each state.

2.1.1 Checkers

The first applications of artificial intelligence to board games were presented

in the ’50s, when Christopher Strachey [1] designed the first program for

the game of Checkers. Strachey wrote the program for Ferranti Mark I

that could play a complete game of Checkers at a reasonable speed using

5

CHAPTER 2. ARTIFICIAL INTELLIGENCE IN BOARD AND CARD
GAMES

evaluation of board positions. Later Arthur Samuel developed an algorithm

to play Checkers that was able to compete against amateur players [33].

The algorithm used by Samuel was called Minimax with alpha-beta pruning

(Section 2.2), which then became one of the fundamental algorithm of AI.

Samuel tried to improve his program by introducing a method that he called

rote learning [32]. This technique allowed the program to memorize every

position it had already seen and the reward it had received. He also tried

another way of learning, he trained his artificial intelligence by let it play

thousands of games against itself [23]. At the end of the ’80s Jonathan

Schaeffer et al. began to work on Chinook, a program for Checkers developed

for personal computers. It was based on alpha-beta pruning and used a

precomputed database with more than 400 billion positions with at most

8 pieces in play. Chinook became world champion in ’94 [27]. In 2007,

Schaeffer et al. [26] were able to solve the game of Checkers (in the classical

board 8 x 8) by proving that the game played without errors leads to a draw.

2.1.2 Chess

Chess is more widespread than Checkers but also much more complex. The

first artificial intelligence to play this game was presented, in the ’50s, by

Dietrich Prinz [2]. Prinz’s algorithm was able to find the best action to

perform when it was only two moves away from checkmate [1], known as

the mate-in-two problem; unfortunately the program was not able to play a

full game due to the low computational power of the used machine, Ferranti

Mark I. In 1962, Alan Kotok et al. designed Kotok-McCarthy, which was the

first computer program to play Chess convincingly. It used Minimax with

alpha-beta pruning and a single move took five to twenty minutes. In 1974,

Kaissa, a program developed by Georgy Adelson-Velsky et al., became the

first world computer chess champion. Kaissa was the first program to use

bitboard (a special data structure), contained an opening book (set of initial

moves known to be good) with 10000 moves, used a novel algorithm for move

pruning, and could search during the opponent’s move. The first computer

which was able to defeat a human player was Deep Thought in 1989 [34].

The machine, created by the computer scientist of the IBM Feng-hsiung

Hsu, defeated the Master of Chess David Levy, in a challenge issued by the

latter. Later, Hsu entered in the Deep Blue project, a computer designed

by the IBM to play Chess only. The strength of Deep Blue was due to its

high computational power, indeed it was a massively parallel computer with

480 processors. The algorithm to play Chess was written in C and was able

to compute 100 million of positions per second. Its evaluation functions

6

2.1. ARTIFICIAL INTELLIGENCE IN BOARD GAMES

were composed by parameters determined by the system itself, analyzing

thousands of champions’ games. The program’s knowledge of Chess has

been improved by the grandmaster Joel Benjamin. The opening library was

provided by grandmasters Miguel Illescas, John Fedorowicz, and Nick de

Firmian [38]. In 1996 Deep Blue became the first machine to win a chess

game against the reigning world champion Garry Kasparov under regular

time controls. However, Kasparov won three and drew two of the following

five games, beating Deep Blue. In 1997 Deep Blue was heavily upgraded

and it defeated Kasparov, becoming the first computer system to defeat a

reigning world champion in a match under standard chess tournament time

controls. The performance of Chess software are continuously improving. In

2009 the software Pocket Fritz 4, installed on a smart phone, won a category

6 tournament, being able to evaluate about 20000 positions per second [35].

2.1.3 Go

Another widely studied board game in the field of artificial intelligence is

Go, the most popular board game in Asia. The board of Go is a square of 19

cells and basically a player can put a stone wherever he wants, therefore it

has a very high branching factor in search trees (361 in the first ply), hence

it is not possible to use the traditional methods such as Minimax. The first

Go program was created in the ’60s, when D. Lefkovitz [9] developed an

algorithm based on pattern matching. Later Zobrist [9] wrote the first pro-

gram able to defeat an amateur human player. The Zobrist’s program was

mainly based on the computation of a potential function that approximated

the influence of stones. In the ’70s Bruce Wilcox [9] designed the first Go

program able to play better than an absolute beginner. His algorithm used

abstract representations of the board and reasoned about groups. To do

this he developed the theory of sector lines, dividing the board into zones.

The next breakthroughs were at the end of the ’90s, when both abstract

data structures and patterns where used [23]. These techniques obtained

decent results, being able to compete against player at higher level than

beginners, however the best results was found with the Monte Carlo Tree

Search algorithm, that we discuss in Section 2.4.

2.1.4 Other Games

Thanks to the good results with Checkers, Chess, and Go, the interest of arti-

ficial intelligence was extended to other games, one of them is Backgammon.

The main difficulty in creating a good artificial intelligence for this game is

the chance event related to the dice roll. This uncertainty makes the use of

7

CHAPTER 2. ARTIFICIAL INTELLIGENCE IN BOARD AND CARD
GAMES

the common tree search algorithm impossible. In 1992 Gerry Tesauro [23]

combining the learning method of Samuel with neural networks techniques

was able to design an accurate evaluator of positions. Thanks to hundreds

of millions of training games, his program TD-Gammon is still considered

one of the most strong player in the world.

In the ’90s, programs able to play Othello were introduced. The main

applications of artificial intelligence for this game was based on Minimax

with alpha-beta pruning. In 1997 the program Logistello, created by Micheal

Buro defeated the world champion Takaeshi Murakami. Nowadays Othello

is solved for the versions with board dimensions 4 x 4 and 6 x 6. In the 8 x 8

version (the standard one), although it has not been proven mathematically,

the computational analysis shows a likely draw. Instead, for the 10 x 10

version or grater ones, it does not exist any estimation, except of a strong

likelihood of victory for the first player [36].

With the spread of personal computers, the research field of artificial in-

telligence has also been extended to modern board games. Since 1983 Brian

Sheppard [29] started working on a program that can play the board game

Scrabble. His program, called Maven, is still considered the best artificial in-

telligence to play Scrabble [40] and competes at the World Championships.

Maven combines a selective move generator, the simulation of plausible game

scenarios, and the B* search algorithm.

The artificial intelligence algorithms have been applied to many other

games. Using these algorithms it was possible to solve games like Tic Tac

Toe, Connect Four, Pentamino, Gomoku, Nim, etc [42].

2.2 Minimax

Minimax is a tree search algorithm that computes the move that minimize

the maximum possible loss (or alternatively, maximize the minimum gain).

The original version assumes a two-player zero-sum game but it has also

been extended to more complex games. The algorithm starts from an initial

state and builds up a complete tree of the game states, then it computes the

best decision doing a recursive calculus which assumes that the first player

tries to maximize his rewards, while the second tries to minimize the rewards

of the former [23]. The recursive call terminates when reaches a terminal

state, which returns a reward that is backpropagated in the tree according

to the Minimax policy. The Minimax pseudo-code is given in Algorithm 1.

Minimax turns out to be computationally expensive, mostly in games where

the state space is huge, since the tree must be completely expanded and

visited. Alpha-beta pruning is a technique that can be used to reduce the

8

2.2. MINIMAX

Algorithm 1 Minimax pseudo-code

1: function Minimax(node,maximizingP layer)

2: if node is terminal then

3: return the reward of node

4: end if

5: if maximizingP layer then

6: bestV alue← −∞
7: for all child of node do

8: val← Minimax(child,False)

9: bestV alue← max(bestV alue, val)

10: end for

11: return bestV alue

12: else

13: bestV alue← +∞
14: for all child of node do

15: val← Minimax(child,True)

16: bestV alue← min(bestV alue, val)

17: end for

18: return bestV alue

19: end if

20: end function

9

CHAPTER 2. ARTIFICIAL INTELLIGENCE IN BOARD AND CARD
GAMES

number of visited nodes, by stopping a move evaluation when it finds at

least one possibility that proves the move to be worse than a previously

examined one.

2.3 Artificial Intelligence in Card Games

Card games are challenging for artificial intelligence, because they are the

classic example of imperfect information games and also involve multi-player

interactions. The uncertainty on the hand of the opponent makes the

branching factor of the traditional tree search method very high, therefore

the conventional methods are often inadequate.

2.3.1 Bridge

A game that provided many ideas for research in this field is Bridge [37]. The

game requires two players divided in two teams. In the early ’80s Throop et

al. [6] developed the first version of Bridge Baron, an artificial intelligence

for the game of Bridge which used a planning technique called hierarchical

task network (HTN) [30], based on the decomposition of tasks. HTN decom-

poses recursively the tasks creating smaller and smaller ones, until it reaches

primitive tasks that can solve directly. Despite the excellent performance

in the Baron Barclay World Bridge Computer Challenge, Bridge Baron was

not able to compete with expert human players [30]. In 1999, Ginsberg

et al. [23] developed a program called GIB (Ginsberg’s Intelligent Bridge-

player), which won the world championship of computer bridge in 2000. The

Ginsberg’s algorithm, instead of choosing the move for each possible config-

uration of cards in the game, based its evaluation on a random sample of 100

different cards ordering. GIB also used a technique called explanation-based

generalization that computes and stores rules of excellent moves in different

standard situations of the game [23]. Despite the excellent levels achieved

by programs such as GIB, the research on artificial intelligence in the game

of Bridge has not yet been able to reach the expert level [6].

2.3.2 Poker

Another game extensively studied in this context is Poker. In addition to

imperfect information and non-cooperative multi-player, the central element

in this game is the psychological factor of the bluff. In the early 2000s Darse

Billings et al. [7] created the program Poki, which was able to play with

reasonable accuracy at Poker, in its Texas Hold’em variant. The strategy

10

2.4. MONTE CARLO TREE SEARCH

of Poki was divided into three steps: (i) calculate the effective strength of

the hand; (ii) use this information combined with an opponent’s behavior

modeling to create a probability distribution for the three possible actions

(fold, call, raise); (iii) generate a random number to choose the action. The

behavior modeling of each opponent was done by a feed-forward neural net-

work, trained with data collected in online games between human players,

improving accuracy by means of cross-validation with data collected in pre-

vious games of each player.

2.3.3 Mahjong

In 2009, Wan Jing Loh developed an artificial intelligence to play Mahjong.

The program evaluated the strength of the hand, seeing it as a constraint

satisfaction problem, and indicated the possibility of victory for each possible

move. The method builds up a histogram which is then used to choose a

move [19].

2.4 Monte Carlo Tree Search

The traditional artificial intelligence algorithms for games are very powerful

but require high computational power and memory for problem with a huge

state space or high branching factor. Methodologies to decrease the branch-

ing factor have been proposed, but they often rely on an evaluation function

of the state in order to prune some branches of the tree. Unfortunately such

function may not be easy to find and requires domain-knowledge experts.

A possible algorithm to overcome these issues is the Monte Carlo method.

This technique can be used to approximate the game-theoretic value of a

move by averaging the reward obtained by playing that move in a random

sample of games. Adopting the notation used by Gelly and Silver [17], the

value of the move can be computed as

Q (s, a) =
1

N (s, a)

N(s)∑
i=1

Ii (s, a) zi

where N (s, a) is the number of times action a has been selected from state

s, N (s) is the number of times a game has been played out through state

s, zi is the result od the ith simulation played out from s, and Ii (s, a) is

1 if action a was selected from state s on the ith playout from state s or

0 otherwise. If the actions of a state are uniformly sampled, the method is

called Flat Monte Carlo and this achieved good results in the games Bridge

and Scrabble, proposed by Ginsberg [18] and Sheppard [29] respectively.

11

CHAPTER 2. ARTIFICIAL INTELLIGENCE IN BOARD AND CARD
GAMES

However Flat Monte Carlo fails over some domains, because it does not allow

for an opponent model. Moreover, it has no game-theoretic guarantees, i.e

even if the iterative process is executed for an infinite number of times, the

move selected in the end may not be optimal.

In 2006 Rémi Coulom et al. combined the traditional tree search with

the Monte Carlo method and provided a new approach to move planning

in computer Go, now known as Monte Carlo Tree Search (MCTS) [13].

Shortly after, Kocsis and Szepesvári formalized this approach into the Upper

Confidence Bounds for Trees (UCT) algorithm, which nowadays is the most

used algorithm of the MCTS family. The idea is to exploit the advantages

of the two approaches and build up a tree in an incremental and asymmetric

manner by doing many random simulated games. For each iterations of the

algorithm, a tree policy is used to find the most urgent node of the current

tree, it seeks to balance the exploration, look at areas which are not yet

sufficiently visited, and the exploitation, look at areas which can returns a

high reward. Once the node has been selected, it is expanded by taking

an available move and a child node is added to it. A simulation is then

run from the child node and the result is backpropagated in the tree. The

moves during the simulation step are done according to a default policy, the

simplest way is to use a uniform random sampling of the moves available at

each intermediate state. The algorithm terminates when a limit of iterations,

time or memory is reached, for this reason MCTS is an anytime algorithm,

i.e. it can be stopped at any moment in time returning the current best

move. A Great benefit of MCTS is that the intermediate states do not need

to be evaluated, as for Minimax with alpha-beta pruning, therefore it does

not require a great amount of domain knowledge, usually only the game’s

rules are enough.

2.4.1 State of the art

Monte Carlo Tree Search attracted the interest of researchers due to the

results obtained with Go [4], for which the traditional methods are not able

to provide a competitive computer player against humans. This is due to

the fact that Go is a game with a high branching factor, a deep tree, and

there are also no reliable heuristics for nonterminal game positions (states

in which the game can still continue, i.e. is not terminated) [10]. Thanks

to its characteristics, MCTS achieved results that classical algorithms have

never reached.

Hex is a board game invented in the ’40s, is played on a rhombus board

with hexagonal grid with dimension between 11 x 11 and 19 x 19. Unlike Go,

12

2.4. MONTE CARLO TREE SEARCH

Hex has a robust evaluation function for the intermediate states, which is

why is possible to create good artificial intelligence using alpha-beta pruning

techniques [3]. Starting in 2007, Arneson et al. [3] developed a program

based on Monte Carlo Tree Search, able to play the board game Hex. The

program, called MoHex, won the silver and the gold medal at Computer

Olympiads in 2008 and 2009 respectively, showing that it is able to compete

with the artificial intelligence based on alpha-beta pruning.

MTCS by itself is not able to deal with imperfect information game,

therefore it requires the integration with other techniques. An example

where MCTS is used in this type of games is a program for Texas Hold’em

Poker, developed by M. Ponsen et al. in 2010 [22]. They integrated the

MCTS algorithm with a Bayesian classifier, which is used to model the

behavior of the opponents. The Bayesian classifier is able to predict both the

cards and the actions of the other players. Ponsen’s program was stronger

than rule-based artificial intelligence, but weaker than the program Poki.

In 2011, Nijssen and Winands [21] used MCTS in the artificial intelli-

gence of the board game Scotland Yard. In this game the players have to

reach with their pawns a player who is hiding on a graph-based map. The

escaping player shows his position at fixed intervals, the only information

that the other players can access is the type of location (called station)

where they can find the hiding player. In this case, MCTS was integrated

with Location Categorization, a technique which provides a good prediction

on the position of the hiding player. Nijssen and Winands showed that their

program was stronger than the artificial intelligence of the game Scotland

Yard for Nintendo DS, considered to be one of the strongest player.

In 2012, P. Cowling et al. [15] used the MCTS algorithm on a simplified

variant of the game Magic: The Gathering. Like most of the card games,

Magic has a strong component of uncertainty due to the wide assortment of

cards in the deck. In their program, MCTS is integrated with determiniza-

tion methods (Section 2.5.1). With this technique, during the construction

of the tree, hidden or imperfect information is considered to be known by

all players.

Cowling et al. [31] also developed, in early 2013, an artificial intelligence

for Spades, a four players card game. Cowling et al. used Information Set

Monte Carlo Tree Search (Section 2.5.2), a modified version of MCTS in

which the nodes of the tree represents information sets (Section 2.5). The

program demonstrated excellent performance in terms of computing time.

It was written to be executed on an Android phone and to find an optimal

solution with only 2500 iterations in a quarter of a second.

13

CHAPTER 2. ARTIFICIAL INTELLIGENCE IN BOARD AND CARD
GAMES

2.4.2 The Algorithm

The MCTS algorithm relies on two fundamental concepts:

• The expected reward of an action can be estimated doing many random

simulations.

• These rewards can be used to adjust the search toward a best-first

strategy.

The algorithm iteratively builds a partial game tree where the expansion

is guided by the results of previous explorations of that tree. Each node

of the tree represents a possible state of the domain and directed links to

child nodes represent actions leading to subsequent states. Every node also

contains statistics describing at least a reward value and the number of visits.

The tree is used to estimate the rewards of the actions and usually they

become more accurate as the tree grows. The iterative process ends when a

certain computational budget has been reached, it can be a time, memory or

iteration constraint. With this approach MCTS is able to expand only the

most promising areas of the tree avoiding to waste most of the computational

budget in less interesting moves. At whatever point the search is halted, the

current best performing root action is returned.

The basic algorithm can be divided in four steps per iteration, as shown

in Figure 2.1:

• Selection: Starting form the root node n0, it recursively selects the

most urgent node according to some utility function until a node nn is

reached that either represents a terminal state or is not fully expanded

(a node representing a state in which there are possible actions that are

not outgoing arcs from this node because they have not been expanded

yet). Note that can be selected also a node that is not a leaf of the

tree because it has not been fully expanded.

• Expansion: If the state sn of the node nn does not represent a terminal

state, then one or more child nodes are added to nn to expand the tree.

Each child node nl represents the state sl reached from applying an

available action to state sn.

• Simulation (or Rollout or Playout): A simulation is run from the new

nodes nl according to the default policy to produce an outcome (or

reward) ∆.

14

2.4. MONTE CARLO TREE SEARCH

Selection Expansion Simulation Backpropagation

IteratedDNDtimes

ADselectionDstrategyDisDapplied
recursivelyDuntilDaDterminalDstate

orDpartiallyDexpandedDnodeDis
reached

OneDorDmoreDnodesDare
addedtoDtheDselectedDnode

OneDsimulatedDgameDisDplayed
startingDfromDtheDexpandedDnode

TheDresultDofDthisDgame
isDbackpropagatedDinDtheDtree

TreeDpolicy DefaultDpolicy

n0 n0

nn

nl

n0

nl

Δ

Δ

Δ

Δ

Δ

fullyDexapandedDandDnonterminalDnode

terminalDstateDnode

partiallyDexapandedDnode

Figure 2.1: Steps of the Monte Carlo Tree Search algorithm.

• Backpropagation: ∆ is backpropagated to the previous selected nodes

to updates their statistics; usually each node’s visits count is incre-

mented and its average rewards updated according to ∆.

These can also be grouped into two distinct policies:

• Tree policy : Select or create a leaf node from the nodes already con-

tained in the search tree (Selection and Expansion).

• Default policy : Play out the domain from a given nonterminal state

to produce a value estimate (Simulation).

These steps are summarized in Algorithm 2. In this algorithm s(n) and

a(n) are the state and the incoming action of the node n. The result of the

overall search a(BestChild(n0)) is the action that leads to the best child

of the root node n0, where the exact definition of “best” is defined by the

implementation. Four criteria for selecting the winning action have been

described in [25]:

• max child : select the root child with the highest reward.

• robust child : select the most visited root child.

• max-robust child : select the root child with both the highest visits

count and the highest reward; if none exists, then continue searching

until an acceptable visits count is achieved.

15

CHAPTER 2. ARTIFICIAL INTELLIGENCE IN BOARD AND CARD
GAMES

Algorithm 2 Monte Carlo Tree Search

1: function MCTS(s0)

2: create root node n0 with state s0
3: while within computational budget do

4: nl ← TreePolicy(n0)

5: ∆← DefaultPolicy(s(nl))

6: Backpropagate(nl,∆)

7: end while

8: return a(BestChild(n0))

9: end function

• secure child : select the child which maximizes a lower confidence

bound.

Note that since the MCTS algorithm does not force a specific policy, but

leaves the choice of the implementation to the user, it is more correct to say

that MCTS is a family of algorithms.

2.4.3 Upper Confidence Bounds for Trees

Since MCTS algorithm leaves the choice of the tree and default policy to

the user, in this section we present the Upper Confidence Bounds for Trees

(UCT) algorithm which has been proposed by Kocsis and Szepesvári in 2006

and is the most popular MCTS algorithm.

MCTS uses the tree policy to select the most urgent node and recursively

expand the most promising parts of the tree, therefore the tree policy plays

a crucial role in the performance of the algorithm. Kocsis and Szepesvári

proposed the use of the Upper Confidence Bound (UCB1) policy which has

been proposed to solve the multi-armed bandit problem. In this problem one

needs to choose among different actions in order to maximize the cumulative

reward by consistently taking the optimal action. This is not an easy task

because the underlying reward distributions are unknown, hence the rewards

must be estimated according to past observations. One possible approach

to solve this issue is to use the UCB1 policy, which takes the action that

maximizes the UCB1 value defined as

UCB1(j) = X̄j +

√
2 lnn

nj

where X̄j ∈ [0, 1] is the average reward from action j, nj is the number of

times action j was played, and n is the total number of plays. This formula

16

2.4. MONTE CARLO TREE SEARCH

faces the exploitation-exploration dilemma: the first addendum considers

the current best action; the second term favors the selection of less explored

actions.

The UCT algorithm takes the same idea of the UCB1 policy applying

it to the selection step, it treats the choice of the child node to select as a

multi-armed bandit problem. Therefore, at each step, it selects the child

node n′ that maximizes the UCT value defined as

UCT (n′) =
Q(n′)

N(n′)
+ 2Cp

√
lnN(n)

N(n′)

where N(n) is the number of times the current node n (the parent of n′) has

been visited, N(n′) is the number of times the child node n′ is visited, Q(n′)

is the total reward of all playouts that passed through node n′, and Cp > 0

is a constant. The term X̄j in the UCB1 formula is replaced by Q(n′)/N(n′)

which is the actual average reward obtained from all the playouts. When

N(n′) is zero, i.e. the child has not been visited yet, the UCT value goes to

infinity, hence the child is going to be selected by the UCT policy. This is

why in the selection step we use the UCT formula only when all the children

of a node have been visited at least once. As in the UCB1 formula, there is

the balance between the first (exploitation) and second (exploration) term.

The contribution of the exploration term decreases as each node n′ is visited,

because it is at the denominator. On the other hand, the exploration term

increases when another child of the parent node n is visited. In this way

the exploration term ensures that even low-reward children are guaranteed

to be selected given sufficient time. The constant in the exploration term

Cp can be chosen to adjust the level of exploration performed. Kocsis and

Szepesvári showed that Cp = 1/
√
2 is optimal for rewards ∆ ∈ [0, 1], this

leads to the same exploration term of the UCB1 formula. If the rewards are

not in this range, Cp may be determined from empirical evaluation. Kocsis

and Szepesvári also proved that the probability of selecting a suboptimal

action at the root of the tree converges to zero at a polynomial rate as

the number of iterations grows to infinity. This means that, given enough

time and memory, UCT converges to the Minimax tree and is thus optimal.

Algorithm 3 shows the UCT algorithm in pseudocode. Each node n contains

four pieces of data: the associated state s(n), the incoming action a(n), the

total simulation reward Q(n), and the visits count N(n). A(s) is the set of

possible actions in state s and f(s, a) is the state transition function, i.e. it

returns the state s′ reached by applying action a to state s. When a node

is created, its values Q(n) and N(n) are set to zero. Note that in the UCT

formula used in line 31 of the algorithm, the constant c = 1 means that we

17

CHAPTER 2. ARTIFICIAL INTELLIGENCE IN BOARD AND CARD
GAMES

are using Cp = 1/
√
2.

2.4.4 Benefits

MCTS offers three main advantages compared with traditional tree search

techniques:

• Aheuristic: it does not require any strategic or tactical knowledge

about the given game, it is sufficient to know only its legal moves

and end conditions. This lack of need for domain-specific knowledge

makes it applicable to any domain that can be modeled using a tree,

hence the same MCTS implementation can be reused for a number of

games with minimum modifications. This is the main characteristic

that allowed MCTS to succeed in computer Go programs, because its

huge branching factor and tree depth make it difficult to find suitable

heuristics for the game. However, in its basic version, MCTS can have

low performance and some domain-specific knowledge can be included

in order to significantly improve the speed of the algorithm.

• Anytime: at the end of every iteration of the MCTS algorithm the

whole tree is updated with the last calculated rewards and visits counts

through the backpropagation step. This allows the algorithm to stop

and return the current best root action at any moment in time. Al-

lowing the algorithm for extra iterations often improves the result.

• Asymmetric: the tree policy allows spending more computational re-

sources on the most promising areas of the tree, allowing an asymmet-

ric growth of the tree. This makes the tree adapts to the topology of

the search space and therefore makes MCTS suitable for games with

high branching factor such as Go.

2.4.5 Drawbacks

Besides the great advantages of MCTS, there are also few drawbacks to take

into consideration:

• Playing Strength: the MCTS algorithm may fail to find effective moves

for even games of medium complexity within a reasonable amount of

time. This is mostly due to the sheer size of the combinatorial move

space and the fact that key nodes may not be visited enough times to

give reliable estimates. Basically MCTS might simply ignore a deeper

tactical moves combination because it does not have enough resources

18

2.4. MONTE CARLO TREE SEARCH

Algorithm 3 UCT algorithm

1: function UCT(s0)

2: create root node n0 with state s0
3: while within computational budget do

4: nl ← TreePolicy(n0)

5: ∆← DefaultPolicy(s(nl))

6: Backpropagate(nl,∆)

7: end while

8: return a(BestChild(n0))

9: end function

10:

11: function TreePolicy(n)

12: while s(n) is nonterminal do

13: if n is not fully expanded then

14: return Expand(n)

15: else

16: n← BestUctChild(n, c)

17: end if

18: end while

19: return n

20: end function

21:

22: function Expand(n)

23: a← choose untried actions from A(s(n))

24: add a new child n′ to n

25: s(n′)← f(s(n), a)

26: a(n′)← a

27: return n′

28: end function

29:

30: function BestUctChild(n, c)

31: return arg maxn′∈children of n
Q(n′)
N(n′) + c

√
2 lnN(n)
N(n′)

32: end function

19

CHAPTER 2. ARTIFICIAL INTELLIGENCE IN BOARD AND CARD
GAMES

33: function DefaultPolicy(s)

34: while s is nonterminal do

35: a← choose uniformly at random from A(s)

36: s← f(s, a)

37: end while

38: return reward for state s

39: end function

40:

41: function Backpropagate(n,∆)

42: while n is not null do

43: N(n)← N(n) + 1

44: Q(n)← Q(n) + ∆

45: n← parent of n

46: end while

47: end function

to explore a move near the root, which initially seems to be weaker in

respect to the others.

• Speed : MCTS requires many iterations to converge to a good solution,

for many applications that are difficult to optimize this can be an issue.

Luckily, there exists a lot of improvements over the basic algorithm

that can significantly improve the performance.

2.5 Monte Carlo Tree Search in Games with Im-

perfect Information

As we have shown, MCTS has been applied successfully in deterministic

game with perfect information, i.e. games in which each player perfectly

knows the current state of the game and there are no chance events (e.g.

draw a card from a deck, dice rolling) during the game. However, there

are a lot of games in which there is not one or both of the two components:

these type of games are called stochastic (chance events) game with imperfect

information (partial observability of states).

Stochastic games with imperfect information provide an interesting chal-

lenge for AI research because, in such a way, the algorithms have to consider

all the possible states that are compatible with the observed information

or all the possible outcomes that can result from a chance event. In a tree

search approach, this results in a huge state space and high branching factor.

20

2.5. MONTE CARLO TREE SEARCH IN GAMES WITH
IMPERFECT INFORMATION

Moreover, opponent modeling is more important as the opponent’s policy

generally depends on their hidden information, hence guessing the former

allows the latter to be inferred. Furthermore, players may be able to infer

some opponent’s hidden information from the actions they make, and then

may be able to mislead their opponents into making incorrect inferences.

All of these situations lead to an increased complexity in decision making

and opponent modeling compared to games with perfect information.

In this thesis, we mainly focus in game with imperfect information be-

cause Scopone does not have chance events, by the way we show some meth-

ods that can deal also with that. Imperfect information games can have three

type of uncertainty [14]:

• Information set : is the set of all possible states in which a game can

be, given the player’s observed information. For instance, in a card

game the player knows its cards, hence the information set contains

all states which correspond to all possible permutations of opponent

cards. By definition, the player knows in which information set he is,

but not which state within that information set.

• Partially observable move: is a move performed by a player, but some

information about that move are hidden from the opponents.

• Simultaneous move: is a move performed by a player without knowing

which move the opponents have done simultaneously. The effect of the

move is resolved when all the players have performed their move. The

well-known game of Rock-Paper-Scissors is an example of this.

In Scopone there are not partially observable and simultaneous moves, there-

fore we mainly discuss information sets.

2.5.1 Determinization technique

One approach to designing AI for games with stochasticity and/or imper-

fect information is determinization. A determinization is a conversion of a

stochastic game with imperfect information to a deterministic game with

perfect information, in which the hidden information and the outcomes of

all future chance events are fixed and known. In other words, a deter-

minization is a sampled state in the current information set of the game.

For example, the determinization of a card game is an instance of the cur-

rent game in which the player knows the opponents’ hand and the deck

is completely visible. The decision for the original game is made by sam-

pling several determinizations from the current game state, analyzing each

21

CHAPTER 2. ARTIFICIAL INTELLIGENCE IN BOARD AND CARD
GAMES

one using AI techniques for deterministic games of perfect information, and

combining these decisions. This method is also called Perfect Information

Monte Carlo Sampling.

Determinization has been applied successfully to games such as Bridge

[18], Magic: The Gathering [15], and Klondike Solitaire [8]. However, Russell

and Norvig [23] describe it as “averaging over clairvoyance”. They point

out that determinization will never make a move that causes an opponent

to reveal some hidden information or avoids revealing some of the player’s

hidden information to an opponent. Moreover, Frank and Basin [16] identify

two key problems with determinization:

• Strategy fusion: In imperfect information game we must find a strat-

egy that chooses the same move regardless the actual state within the

current information set, because we cannot distinguish between these

states. However, we broke this constraint by applying a deterministic

AI algorithm to many determinizations, because in different deter-

minizations we can make a different decision in two states within the

same information set.

• Nonlocality : It occurs when an opponent has some knowledge of the ac-

tual game state and plays toward parts of the game tree that are most

favorable in the determinizations he expects. Hence, some portions of

the tree may never be reached under particular determinization. This

leads the deterministic AI algorithm to erroneously consider rewards

that are meaningless in that portion of the tree.

Starting from the work of Frank and Basin, Long et al. [20] proposed three

parameters that can be used to determine when a game tree is suited to

apply determinization successfully:

• Leaf Correlation: gives the probability that all the sibling terminal

nodes have the same reward value. Low leaf correlation means that a

player can always affect his reward also later in the tree.

• Bias: measures the probability that the game will favor one of the

players.

• Disambiguation factor : determines how quickly the hidden informa-

tion is revealed during the game, in other words, how quickly the states

within player’s information set decrease with regard to the depth of

the tree.

22

2.5. MONTE CARLO TREE SEARCH IN GAMES WITH
IMPERFECT INFORMATION

The study found that determinization performs poorly in games where the

leaf correlation is low or disambiguation is either very high or very low. The

effect of bias was small in the examples considered and largely dependent

on the leaf correlation value. Cowling et al. [14] showed another weakness of

the algorithm: it must share the computational budget between the sampled

perfect information games. The trees often have many nodes in common,

but the determinization approach does not exploit it.

2.5.2 Information Set Monte Carlo Tree Search

In 2012 Cowling et al. [14] proposed the Information Set Monte Carlo Tree

Search (ISMCTS) family of algorithms. They presented three type of ISM-

CTS algorithms:

• Single-Observer ISMCTS (SO-ISMCTS): It assumes a game with no

partially observable moves and it resolves the issue of strategy fusion

arising from the fact that a deterministic solver may make different

decisions in each of the states within an information set.

• SO-ISMCTS With Partially Observable Moves (SO-ISMCTS+POM):

It is an extension of SO-ISMCTS that can deal with partially observ-

able moves. It resolves the issue of strategy fusion arising from the

fact that a deterministic solver will assume that a partially observ-

able move can be observed and that it can make a different decision

depending on the actual move made by the opponent. However, it

uses a weak opponent modeling since it is assumed that the opponent

chooses randomly between actions that are indistinguishable to the

root player.

• Multiple-Observer ISMCTS (MO-ISMCTS): It resolves the issue in-

troduced with SO-ISMCTS+POM by maintaining a separate tree for

each player and during each iteration the trees are searched simulta-

neously.

These algorithms can also deal with chance events and simultaneous moves.

Handling of chance events can be done introducing an environment player

that acts in correspondence of chance nodes. Chance nodes have as outgo-

ing arcs all the possible outcomes of the corresponding chance event. The

environment player gets always a reward of zero ensuring that all the out-

comes are selected uniformly by the UCT formula. Simultaneous moves can

be modeled by having players choose their actions sequentially, while hiding

23

CHAPTER 2. ARTIFICIAL INTELLIGENCE IN BOARD AND CARD
GAMES

their choices from the other players, until finally an environment player re-

veals the chosen actions and resolves their effects. This approach obviously

requires the handling of partially observable moves. From now on, we re-

fer to SO-ISMCTS as ISMCTS because partially observable moves are not

present in Scopone, therefore are out of the scope of this work.

The Algorithm

The idea of ISMCTS is to construct a tree in which nodes represents in-

formation sets rather than states. Each node represents an information set

from the root player’s point of view and arcs correspond to moves played

by the corresponding player. The outgoing arcs from an opponent’s node

have to represent the union of all moves available in every state within that

information set, because the player cannot know the moves that are really

available to the opponent. However, the selection step has to be changed be-

cause the probability distribution of the moves is not uniformly distributed:

a move may be available only in a less significant part of the states within the

information set. This can cause a move to be considered as optimal, when

it is actually almost never available. To address this issue, at the beginning

of each iteration, a determinization is sampled from the root information

set and the following steps of the iteration is restricted to regions that are

consistent with that determinization. In this way, the probability of a move

being available for selection on a given iteration is precisely the probability

of sampling a determinization in which that action is available. The set

of moves available at an opponent’s node can differ between visits to that

node, hence we have to use the subset-armed bandit problem for the selec-

tion step. This is handled with a simple modification in the UCT formula

(Section 2.4.3):

ISUCT (n′) =
Q(n′)

N(n′)
+ 2Cp

√
lnN ′(n′)

N(n′)

where N ′(n′) is the number of times the current node n (the parent of

n′) has been visited and node n′ was available for selection, N(n′) is the

number of times the child node n′ was visited, Q(n′) is the total reward

of all playouts that passed through node n′, and Cp > 0 is a constant.

Without this modification, rare moves are over-explored: whenever they are

available for selection the term lnN(n)
N(n′) , where N(n) is the number of times

the current node n (the parent of n′) has been visited, is very high, resulting

in a disproportionately large UCT value. The ISMCTS pseudo-code is given

in Algorithm 4. This pseudo-code uses the following notation:

24

2.6. SUMMARY

• c(n) = children of node n.

• a(n) = incoming move at node n.

• N(n) = visits count for node n.

• N ′(n) = availability count for node n.

• Q(n) = total reward for node n.

• A(d) = set of possible moves in determinization d.

• f(d,m) = state transition function, i.e. it returns the determinization

d′ reached by applying move m to determinization d.

• c(n, d) = {n′ ∈ c(n) : a(n′) ∈ A(d)}, the children of n compatible with

determinization d.

• u(n, d) = {m ∈ A(d) : @n′ ∈ c(n, d) with a(n′) = m}, the moves from

d for which n does not have children in the current tree.

When a node is created, its values Q(n) and N(n) are set to 0, and N ′(n)

is set to 1.

Benefits and Drawbacks

ISMCTS inherits the same benefits of the MCTS algorithm, in addition it

can deal with imperfect information games and resolves the issue of strategy

fusion. However, the nonlocality problem is still present, but can be resolved

with techniques such as opponent modeling and calculation of belief distri-

butions. ISMCTS has also the advantage of focusing all the computational

budget on a single tree, whereas a determination technique would split it

among several trees. This usually allows for a deeper search, however, for

some games, the branching factor can drastically increase due to the high

number of available moves at each information set, hence the performance

may decrease.

2.6 Summary

In this chapter we overviewed applications of artificial intelligence in board

and card games. We discussed artificial intelligence for Checkers, Chess,

Go, and other board games. Then, we showed the well-known AI algorithm,

Minimax, that can deal with deterministic game with perfect information.

Next, we presented AI programs able to play the card games Bridge, Poker,

25

CHAPTER 2. ARTIFICIAL INTELLIGENCE IN BOARD AND CARD
GAMES

Algorithm 4 ISMCTS algorithm

1: function ISMCTS(IS0)

2: create root node n0 with information set IS0
3: while within computational budget do

4: d0 ← randomly choose a determinization ∈ IS0
5: (nl, dl)← TreePolicy(n0, d0)

6: ∆← DefaultPolicy(dl)

7: Backpropagate(nl,∆)

8: end while

9: return a(BestChild(n0))

10: end function

11:

12: function TreePolicy(n, d)

13: while d is nonterminal do

14: if u(n, d) 6= 0 then

15: return Expand(n, d)

16: else

17: for all n′ ∈ c(n, d) do

18: N ′(n′)← N ′(n′) + 1

19: end for

20: n← BestIsuctChild(n, d, c)

21: d← f(d, a(n))

22: end if

23: end while

24: return n

25: end function

26:

27: function Expand(n, d)

28: m← randomly choose a move ∈ u(n, d)

29: add a new child n′ to n

30: d← f(d,m)

31: a(n′)← m

32: return (n′, d)

33: end function

34:

35: function BestIsuctChild(n, d, c)

36: return arg maxn′∈c(n,d)
Q(n′)
N(n′) + c

√
2 lnN ′(n′)

N(n′)

37: end function

26

2.6. SUMMARY

38: function DefaultPolicy(d)

39: while d is nonterminal do

40: a← choose uniformly at random from A(d)

41: d← f(d, a)

42: end while

43: return reward for state d

44: end function

45:

46: function Backpropagate(n,∆)

47: while n is not null do

48: N(n)← N(n) + 1

49: Q(n)← Q(n) + ∆

50: n← parent of n

51: end while

52: end function

and Mahjong, showing how they handle the imperfect information of these

games. Then, we introduced the Monte Carlo Tree Search algorithm, show-

ing the state of the art, the basic algorithm, the Upper Confidence Bounds

for Trees implementation, and benefits/drawback with respect to Minimax.

Finally, we discussed the use of MCTS in imperfect information games, show-

ing the determinization technique and the Information Set Monte Carlo Tree

Search algorithm.

27

CHAPTER 2. ARTIFICIAL INTELLIGENCE IN BOARD AND CARD
GAMES

28

Chapter 3

Scopone

In this chapter we present the card game Scopone starting from a brief

history of the game, the cards used, the rules, and some variants of the

original game.

3.1 History

Scopone is a very ancient card game played in Italy. It is a four players

extension of another Italian two players game named Scopa [41], in fact Sco-

pone means “a big Scopa”. The origin of the game are unknown, although

many authors consider that the first book about Scopone has been written

by Chitarrella [11] in 1750. In his book, Chitarrella defines 44 rules, that

include the rules of the game and basic strategies. Some of these strategies,

however, have been criticized by many authors, for instance Saracino [24]

and Cicuti-Guardamagna [12] commented on the rules about the handle of

7s. Chitarrella also wrote that the game was very spread in Italy. Since

Scopone is very difficult to play and, at that time, most of the people were

illiterate, Saracino argued that probably Scopone has been played for cen-

turies before Chitarrella. Initially, it might have been played only by aristo-

crats who might have been formidable players. Later, the game might have

spread among less cultured classes and handed down orally from genera-

tion to generation until Chitarrella formally wrote it down. Unfortunately,

nobody found a proof that Chitarrella wrote these rules in 1750, the oldest

book of Chitarrella ever found is dated 1937. Therefore, the first book about

Scopone might be the one written by Capecelatro in 1855, “Del giuoco dello

Scopone”. Capecelatro wrote that the game was known by 3-4 generations,

therefore it might have been born in the eighteenth century. He also wrote

that the game was invented by four notables of a little town, who got bored

29

CHAPTER 3. SCOPONE

by playing Scopa and found a way to play it in four. Later, the book of

Capecelatro has been followed by several other publications that introduced

more advanced strategies. In 1969, Unione Italiana Gioco Scopone (UIGC)

and Federazione Svizzera Gioco Scopone (FSGS) wrote the official rules of

Scopone used still now in every tournament. Nowadays, Federazione Ital-

iana Gioco Scopone [28] (FIGS), located in Naples, is the reference for all

Scopone enthusiasts. On their website there are the full list of publications

and a lot of other information about Scopone.

3.2 Cards

Scopone is played with the traditional Italian deck composed by 40 cards,

including 10 ranks of each of the four suits, coins (Denari in Italian), swords

(Spade), cups (Coppe), and batons (Bastoni). Each suit contains, in increas-

ing order, an ace (or one), numbers two through seven, and three face cards.

The three face cards are: knave (Fante or eight); horse (Cavallo or nine) or

mistress (Donna or nine); and king (Re or ten). This deck is not internation-

ally known like the 52 cards French deck, probably due to the fact that each

region of Italy has its own cards style. For this reason the FIGS adopted an

official deck (Figure 3.1) that merges the Italian and French suits in order

to be understood easily by everyone. The correspondences are: coins with

diamonds (♦), swords with spades (♠), cups with hearts (♥), and batons

with clubs (♣).

3.3 Game Rules

Scopone is played by four players divided into two teams. The players are

disposed in the typical North-East-South-West positions and teammates are

in front of each other. At the right of the dealer there is the eldest hand (in

Italian “primo di mano”), followed by the dealer’s teammate and the third

hand. The team of the dealer is called deck team, whereas the other is called

hand team. The game is composed by many rounds and ends when a team

reaches a score of 11, 16, 21 or 31. If both the teams reach the final score,

then the game continues until one of the team scores more than the other

one.

3.3.1 Dealer Selection

At the beginning of the game, the dealer is randomly chosen through some

procedure, because being the last player to play has some advantages. For

30

3.3. GAME RULES

Figure 3.1: Official deck of Federazione Italiana Gioco Scopone.

example, the deck is shuffled and the player who draws the highest card

deals; if there is a tie, the involved players continue to draw a card until one

wins. Another method consists of dealing a card to each player until one

gets an ace. In the following rounds the eldest hand of the previous round

become the new dealer.

3.3.2 Cards Distribution

At the beginning of each round, the dealer shuffles the deck and offers it to

the third hand for cutting. Then, it deals the cards counterclockwise three

by three, starting with the eldest hand, for a total of nine cards for each

player. The dealer must not reveal the cards, if this happens it must repeat

the process. During the first distributions, the dealer also leaves twice on

the table a pair of face-up cards, for a total of four cards. If, at the end of the

distribution, on the table there are three kings, the dealer must repeat the

process because three kings do not allow doing scopa for the whole round.

At the end of the distribution the table looks like in Figure 3.2.

3.3.3 Gameplay

A round is composed by 36 turns. The eldest hand plays first, then it is the

turn of the dealer teammate and so on counterclockwise. At each turn the

player must play a card from his hand. The chosen card can either be placed

on the table or capture one or more cards. A capture is made by matching

31

CHAPTER 3. SCOPONE

Figure 3.2: Beginning positions of a round from the point of view of one player. Each

player holds nine cards and there are four cards on the table.

32

3.3. GAME RULES

Figure 3.3: The player’s pile when it did two scopa.

a card in the player’s hand to a card of the same value on the table, or if

that is not possible, by matching a card in the player’s hand to the sum of

the values of two or more cards on the table. In both cases, both the card

from the player’s hand and the captured card(s) are removed and placed

face down in a pile in front of the player. Usually, the teammates share the

same pile that is placed in front of one of them. These cards are now out

of play until scores are calculated at the end of the round. For example, in

Figure 3.2, the player may choose to place on the table the A♠ or capture

the 3♠ with 3♦ or capture the 3♠ and 5♦ with the J♦. Note that it is

not legal to place on the table a card that has the ability to capture. For

instance, in Figure 3.2, the player cannot place on the table the Q♥, because

it can capture the Q♠. In case the played card may capture either a single

or multiple cards, the player is forced to capture only the single card. For

example, in Figure 3.2, the Q♥ cannot capture the 4♣ and 5♦ because is

forced to capture the Q♠. When the played card may capture multiple cards

with different combinations, the player is allowed to choose the combination

it prefers. If by capturing, all cards were removed from the table, then this

is called a scopa, and the card from the player’s hand is placed face up under

the player’s pile (in Figure 3.3 the player did two scopa), in order to take

it into account when the scores are calculated. However, at the last turn,

it is not allowed to do a scopa. This move is called scopa (in Italian means

broom) because it looks like if all the cards in the table are swept by the

played card. If, at the end of the round, there are still cards on the table,

then these cards are placed in the pile of the last player who did a capturing

move.

3.3.4 Scoring

When the round ends, the round’s scores are calculated and added to the

games’s scores. There are five ways to award points:

• Scopa: a point for each scopa is awarded.

• Cards: the team who captured the largest number of cards gets one

33

CHAPTER 3. SCOPONE

Table 3.1: Cards’ values for the calculation of primiera. Each column shows the corre-

spondence between card’s rank and used value.

Card’s Rank 7 6 A 5 4 3 2 J Q K

Value 21 18 16 15 14 13 12 10 10 10

point.

• Coins: the team who captured the largest number of cards in the suit

of coins gets one point.

• Settebello: the team who capture the seven of coins gets one point.

• Primiera: the team who obtain the highest prime gets one point. The

prime for each team is determined by selecting the team’s best card

in each of the four suits, and summing those four cards’ point values.

Table 3.1 shows the cards’ values used in this calculation. If a team

does not have an entire suit, the point is awarded to the opponents,

even if they have a minor sum.

The four points awarded with cards, coins, settebello, and primiera are called

deck’s points. Note that, for both cards, coins, and primiera, in case of a tie,

everybody gets no point. Table 3.2 shows an example of a round’s scores

calculation. The hand team’s primiera is calculated on the cards 7♦ 7♠ 5♥
7♣ (21 + 21 + 15 + 21 = 78), whereas the deck team’s primiera is calculated

on the cards 6♦ 6♠ 7♥ A♣ (18 + 18 + 21 + 16 = 73).

3.4 Variants

There are many variants of Scopone that make the game more exciting and

difficult. Each region of Italy has its own favorite variant and the variants

can be also combined, for example in Milan area is common to play the

variant that combines Scopone a 10, Napola, and Scopa d’Assi.

3.4.1 Scopone a 10

In this variant, the players are dealt ten cards each so that none is left on the

table. This means that, initially, the hand team may let the opponents do

a series of scopa and this makes the game more exiting. Scopone Scientifico

(Scientific Scopone) is often said to refer to Scopone a 10, but FIGS states

that both Scopone and Scopone a 10 can be called Scopone Scientifico,

because it means that the rules give it the dignity of Science, that both

these variants have.

34

3.4. VARIANTS

Table 3.2: Example of scores calculation. The first part shows the cards in the pile of

each team at the end of a round. The second part shows the points achieved by each

team and the final scores of the round.

Team’s pile

Hand team

5♠ 5♥ 4♦ A♠ 3♣ 3♦ 3♥ 7♣ 7♠ Q♦
Q♠ Q♥ Q♣ 7♦ 5♦ 2♥ 4♠ 4♥ K♣ 6♣
J♣ 4♣

Deck team
J♦ J♥ K♦ K♥ 6♦ 6♠ J♠ 2♠ 6♥ 5♣
3♠ 2♣ A♥ A♦ K♠ A♣ 2♦ 7♥

Round’s scores

Hand team Deck team

Scopa 1 3

Cards 22 18

Coins 5 5

Settebello 1 0

Primiera 78 73

Scores 4 3

3.4.2 Napola

The team that capture the ace, two, and three of coins achieves the Napola

and is awarded additional points equal to the highest consecutive coin they

obtain, e.g. if a team captures the ace, two, three, four, five, and eight of

coins, that team is awarded 5 additional points. This variant makes the

game more enjoyable because the players who try to achieve the Napola can

obtain many points.

3.4.3 Scopa d’Assi or Asso piglia tutto

In this variant, playing an ace captures all cards currently on the table but

does not count as a scopa. When there is already an ace on the table (this

may happens or not, depending on the other chosen variants), the player,

who play an ace, can only capture the ace on the table. This is called

“burning an ace” because it is wasting the power of the played ace. This

variant change completely the strategy of the players, since a player can

capture many cards that might never be captured without the ace.

3.4.4 Sbarazzino

This variant works exactly like Scopa d’Assi, but the ace count as a scopa.

This bias the game toward fortune, because the players get points by having

35

CHAPTER 3. SCOPONE

a lucky card distribution.

3.4.5 Rebello

The team who capture the king of coins gets one extra point, exactly like

the settebello.

3.4.6 Scopa a 15

In Scopa a 15 a capturing move can be done only if the played card and the

captured cards sum up to 15. For example, suppose that the table is A 3 4

5 J , then by playing a 6, one can capture either A J (6 + 1 + 8 = 15) or 4

5 (6 + 4 + 5 = 15).

3.4.7 Scopa a perdere

In this variant the players aim to get the lowest possible score, basically the

players have to invert their strategy.

3.5 Summary

In this chapter we presented the card game Scopone. We showed that the

origin and creator of Scopone is unknown, and that the oldest book about

Scopone has been written by Capecelatro in 1855 and not by Chitarrella in

1750. Then, we presented the 40 Italian cards used in FIGS tournaments,

the game rules of Scopone, how the cards are distributed, the legal moves,

and the scoring system. Finally, we illustrated some game variants that

make it more enjoyable. In the next chapter, we see the three types of rules-

based artificial intelligence we have designed for Scopone, that are based on

rules taken from strategy books.

36

Chapter 4

Rule-Based Artificial

Intelligence for Scopone

In this chapter, we present the three types of rule-based artificial intel-

ligence that we have developed for Scopone: Greedy, Chitarrella-Saracino,

and Cicuti-Guardamagna. The first one encodes simple rules in such a way it

represents, more or less, the strategy of a beginner. The second one encodes

a union of the rules written by Chitarrella and Saracino in [24], therefore it

implements what we may consider an expert player. The last one encodes

the rules written by Cicuti and Guardamagna in [12], they introduced sev-

eral rules about the handle of 7s that can be added to the rules of Chitarrella

and Saracino. We have developed these artificial intelligence for the purpose

of compare them with the Monte Carlo Tree Search (MCTS) algorithms we

have designed. In this way, we can validate the playing strength of MCTS

against a beginner and expert players.

4.1 Greedy Strategy

The Greedy strategy represents the playing strength of a beginner that plays

elementary using the basic rules of the game. Therefore, it’s strategy is: if

it is possible to capture some cards, then the most important ones must be

captured; otherwise the least important one must be placed on the table.

To define the meaning of a card to be important, we used a modified version

of the cards’ values for the primiera (Table 4.1), in which the value of the 7s

is changed from 21 to 29, 10 points are added to cards in the suit of coins,

and other 100 points are added to the 7♦. Using almost the same values

for the primiera ensures that the Artificial Intelligence (AI) tries to achieve

the highest possible primiera score. The greatest value is assigned to the

37

CHAPTER 4. RULE-BASED ARTIFICIAL INTELLIGENCE FOR
SCOPONE

Table 4.1: Cards’ values used by the Greedy strategy to determine the importance of a

card. Each column of the first part shows the correspondence between a card in the suit

of coins and the used value. Each column of the second part shows the correspondence

between a card’s rank in one of the other suits and the used value.

Coins suit

Card 7♦ 6♦ A♦ 5♦ 4♦ 3♦ 2♦ J♦ Q♦ K♦
Value 139 28 26 25 24 23 22 20 20 20

Other suits

Card’s Rank 7 6 A 5 4 3 2 J Q K

Value 29 18 16 15 14 13 12 10 10 10

7♦, that alone it is one point for the settebello. The additional 10 points

for the cards in the suit of coins ensures that the program try to capture

the maximum number of coins card and therefore try to accomplish the

coins point. The value 29 for the 7s is needed to let them more important

than any card in the suit of coins, because they are important both for the

primiera and the achievement of the settebello. The accomplishment of the

cards point is ensured by the strategy itself, because if it can do a capturing

move, then it will do it. Moreover, in case there are two possible moves

capturing the greatest-value card, the AI will choose the one that maximize

the sum of all the captured cards’ values. For example, suppose that the

table is 6♦ A♣ 4♦ 3♠ 6♥ and the player has the 7♦ in its hand. Obviously,

besides the other cards it has, it is going to do a capturing move with the

7♦ because it is the greatest-value card, anyway it can do three possible

capturing moves:

• Capture 6♦ and A♣, for a total value of 183 (28 + 16 + 139).

• Capture 4♦ and 3♠, for a total value of 176 (24 + 13 + 139).

• Capture 6♥ and A♣, for a total value of 173 (18 + 16 + 139).

In this case, the AI will capture 6♦ and A♣ because it sums up to the

greatest value.

We did not take into consideration the scopa points. This appears to be

a very important aspect, since by doing many scopa one can easily overcome

the deck’s points of the opponents. There are two problems to take into ac-

count: (i) avoid allowing the opponents to do a scopa; (ii) force or not the

scopa when it is possible. To solve the first one, the program applies the

above strategy considering the set of moves that do not leave on the table

a combination of cards that can be captured by a card that has unknown

38

4.2. CHITARRELLA-SARACINO STRATEGY

position. A card has unknown position if it is in the other players’ hand, but

the AI does not know who holds it. If such a set is empty, then it applies

the above strategy considering all the moves. For the second problem, we

decided not to force the scopa, because in some circumstances it may be

better to skip it in favor of the capture of some important cards. Neverthe-

less, avoiding a scopa can leave on the table a combination of cards allowing

the opponents to do a scopa. This is always avoided, hence, in most of the

cases, it will be forced to do the scopa.

The Greedy AI is summarized in Algorithm 5. This pseudo-code uses

the following notation:

• A game state has two properties: legalMoves, the set of legal moves

from that state; unKnownCards, the set of cards that have unknown

position from the point of view of the player about to act, i.e. the

union of the cards held by the other players.

• A card is represented by its rank and suit.

• A move has two properties: playedCard, the card played by the player

making the move; cards, the set of cards involved in the move, i.e. both

the played card and captured cards.

• cardV alue is a dictionary that relates each card with its value given

in Table 4.1.

4.2 Chitarrella-Saracino Strategy

The Chitarrella-Saracino (CS) strategy aims to behave like an expert player

of Scopone. In order to achieve this result, we took the rules of Chitarrella

and the most important playing strategies from the book of Saracino [24],

which have been summarized in [5].

4.2.1 The Spariglio

One of the most important rules of Scopone involves the spariglio (decou-

pling in English), that consists in playing a card that matches to the sum of

the values of two or more cards on the table. For example, if we capture 3

and 2 with 5, then we did the spariglio 3 + 2 = 5. We know that each card

rank appears four times in the deck, because the number of suits. There-

fore, at the beginning of a round, all the cards are coupled, in the sense that,

by doing moves not involving the spariglio, each card is taken by its copy

39

CHAPTER 4. RULE-BASED ARTIFICIAL INTELLIGENCE FOR
SCOPONE

Algorithm 5 Greedy strategy pseudo-code

1: function GreedyStrategy(state)

2: moves← state.legalMoves

3: nonScopaMoves← {m ∈ moves : ¬BringToScopa(state,m)}
4: if nonScopaMoves 6= ∅ then

5: return BestMove(nonScopaMoves)

6: end if

7: return BestMove(moves)

8: end function

9:

10: function BringToScopa(state,move)

11: remainingSum←
∑

c∈{cards on the table after move} c.rank

12: return ∃c ∈ state.unKnownCards : c.rank = remainingSum

13: end function

14:

15: function BestMove(moves)

16: capturingMoves← {m ∈ moves : m is a capturing move}
17: if capturingMoves 6= ∅ then

18: cardMaxV alue← maxm∈capturingMoves

maxc∈m.cards cardV alue[c]

19: maximumMoves←{m ∈ capturingMoves :

maxc∈m.cards cardV alue[c] = cardMaxV alue}
20: return arg maxm∈maximumMoves

∑
c∈m.cards cardV alue[c]

21: end if

22: return arg minm∈moves cardV alue[m.playedCard]

23: end function

40

4.2. CHITARRELLA-SARACINO STRATEGY

until there are no more cards on the table at the end of the round. This

advantages the deck team, because they always play after the opponents.

For example, let us assume that all the players have the same cards, then,

without doing some spariglio, all the cards will be captured by the deck

team. When a player does a spariglio move, the involved cards that were

coupled, or even, will become decoupled. Conversely, the involved cards that

were decoupled, or odd, will return coupled. For example, if we have that 3

and 5 are coupled and 2 is decoupled, then by doing the spariglio 3 + 2 = 5,

3 and 5 will become decoupled and 2 will return coupled.

CS1 This is the fundamental rule of Scopone: The dealer and his teammate

seek to keep the number of cards of the same rank even, while the

opponents try to decouple them. Keeping the cards even is needed to

capture good cards during the game; hence, if the opponents decouple

them, the deck team have to recouple them. For the same reason the

opponents of the dealer have to decouple them as much as they can.

Because of this rule, each player has to remember all the odd cards and

change its strategy accordingly. This is called “fare il quarantotto” (“do the

forty-eight” in English). Chitarrella did not know the meaning of this word

and Saracino tried to explain it by saying that 4-8 is the only spariglio of two

cards that is irreducible, i.e it is not possible to do a spariglio that reduces the

number of decoupled cards to one. Cicuti and Guardamagna seem to have

found the final explanation: forty-eight is the sum of the cards involved in the

spariglio where all cards but 7 are decoupled (1+2+3+4+5+6+8+9+10 =

48). In fact, it is easy to remember the number of 7s played during the game,

because they are the most important cards, but only expert players can

remember all the odd cards. Everyone has its own method to remember the

decoupled cards. Saracino proposed to remember them in increasing order,

whereas Cicuti and Guardamagna introduced a method using the fact that

the number of odd-rank cards, in the decoupled ones, must be even.

CS2 Who is interested in maintaining the decoupling has to play the last

decoupled card of the highest rank: in that case the recoupling is

impossible.

For example, let us assume that someone did the spariglio 2 + 3 = 5. The

deck team will try to recouple these cards by playing 2 or 3 to favor the

capture of 5. The hand team can avoid it by playing the last decoupled card

of the highest rank, 5. In this way, it has to be captured by another 5 and

the last one remains decoupled.

41

CHAPTER 4. RULE-BASED ARTIFICIAL INTELLIGENCE FOR
SCOPONE

CS3 Whereas the hand team has to play the last decoupled card of the

highest rank, the dealer’s teammate must never do it, leaving to the

dealer the choice of playing it when it is convenient.

For instance, when the dealer has no 7s and wants to cause a higher spariglio.

CS4 When the dealer holds the last two cards, having an even and an odd

card, it has to play the odd one.

In this way, the dealer is almost sure to do the last capturing move with the

even card that it has kept and take all the cards remaining on the table.

This last card is called “tallone”. This rule applies also when one has to

choose between an odd 7 and an even card.

CS5 When the third hand holds the last two cards, having an even card

and a decoupled card of higher rank, it has to play the even one.

For example, let the spariglio be 3-5-8-10 and the table be 5 K, both the

last ones. The third hand holds 4 and the last J . It knows that the cards

still in play are one 3 and three 4. If the dealer holds two 4, it will capture

the 4 played by the third hand keeping the other 4 as tallone, but the third

hand will capture 3 and 5 with J . Instead, if the dealer holds 3 and 4, it

will play 3 because of CS4 and the third hand will capture 3 and 5 with J .

Conversely, if the third hand plays J , then the dealer can simply play 3 by

maintaining 4 as tallone.

4.2.2 The Mulinello

The mulinello (eddy in English) is a play combination in which two players

continuously capture and the other two play without capturing any cards.

It often happens at the beginning of the round, when the eldest hand can do

a good capture on the four cards on the table. For example, let us assume

that the table is 1♦ 3♥ 3♣ 6♠. The eldest hand captures 1♦ 3♥ 6♠ with

K♦, challenging the fourth 3 because it holds the other one. The dealer’s

teammate, to avoid a scopa, plays Q♣ that the third hand captures with

Q♥. The dealer follows the teammate and plays Q♠ that is captured by the

eldest hand with Q♦, and so on, especially if the deck team does not have

double or triple cards.

CS6 If it is possible to do the mulinello either on a low-rank or face card,

then the hand team must always prefer to do it on the low-rank card.

42

4.2. CHITARRELLA-SARACINO STRATEGY

It can also be applied to the deck team, because the mulinello on the low-

rank card can bring to do, at some point, one or two scopa. But if, for

practical reasons, the dealer does not want to create some spariglio, then it

will be better to do the mulinello on the face card.

CS7 One must never play a fourth card, i.e the last card of a quartet of

which three cards have already been captured, when there is the risk

that the opponents do the mulinello on that fourth card.

For example, let us assume that there is on the table a K and it is known

that the kings are in the opponents hand. Having the fourth 2, one must

not play it, because the opponent will capture K causing the mulinello on

2. Another situation where one must avoid to play a fourth card is when

there are three cards on the table that cannot be involved in a spariglio. In

fact, by playing the fourth card, the opponent at its right will capture one

of the three cards, its teammate the second one, and the opponent at its left

the third one. In this way, a mulinello, in favor of the opponents, has been

created on the fourth card that has been erroneously played.

CS8 At the beginning of a round there are on the table two cards of the

same rank. It is advisable to capture none of these cards, even if one is

in the suit of coins, unless it is possible to do the mulinello on another

card.

In this case the mulinello is easily predictable. For example, let us assume

that at the beginning of a round there are two Q on the table, another one

is held by the eldest hand, and the last one by one of the opponents. If

the eldest hand captures one of the queens, then the last Q is held by an

opponent who can easily create the mulinello on that card. Of course, the

fourth Q could be in the hand of the teammate, in this case they can create

the mulinello against the opponents, but from the point of view of the eldest

hand the fourth Q is more likely to be in the opponents hand.

4.2.3 Double and Triple Cards

Since in Scopone the players are not allowed to speak, there are some com-

mon rules and ways of playing that make your teammate aware of the cards

you hold. Of course, also the opponents can guess the cards which one holds

by its moves. Therefore, there is a trade off between what you want your

teammate to known and what you want your opponents to know. Some-

times, it is also useful resorting to the bluff in order to confuse your oppo-

nents and capture some important card.

43

CHAPTER 4. RULE-BASED ARTIFICIAL INTELLIGENCE FOR
SCOPONE

CS9 In general, when it is possible to capture some cards, one has to do

it.

CS10 If it is not possible, one has to play a double card, i.e. a card of

which one also holds the other card of the same rank.

CS11 If the opponent captures it and the teammate has the other card of

the same rank, it must play it in order to create the mulinello on that

card. This card is called “franca”, because the last one is held by the

player who first played it.

CS12 In general, the teammate has not to capture the double card of

its partner, but it has to wait that one of the opponents captures it,

creating the mulinello.

CS13 It is useless and detrimental playing the card of which the teammate

has not replayed, because if it is held by the opponents, they can create

the mulinello on that card.

The rule of playing double cards does not exclude the 7s, because it is better

to risk one them instead of playing them at the end of the round without

any hope.

CS14 Having double and triple cards, one has to play the triple ones first.

Having triple cards is never an advantage, especially when you have more

than one triple, because the scope of action of the player is reduced. It is also

a disadvantage to hold all single cards, because it is not possible to apply

the rule CS10. The rule CS14 applies also to 7s. Beginners often hesitate

to play one of the three 7 they hold when they have not the settebello, but,

obviously, who holds it will never play it. It often happens that they remain

with the three 7s as the last three cards and they are forced to play one

of them even if it is possible to form a spariglio with a low-rank card like

7 + 2 = 9. For this reason they often lose all the 7s.

CS15 It is better to play a double card rather than a third card, i.e. the

third card of a quartet of which two cards have already been captured,

when there is the risk of a series of scopa.

For example, the eldest hand, after a scopa of the dealer, has played a double

2. The dealer’s teammate did a scopa. The third hand did not have the 2 to

replay to its teammate, hence it played an ace, but the dealer did another

scopa. The eldest hand does not have the ace of the teammate but it has

44

4.2. CHITARRELLA-SARACINO STRATEGY

the third 2 and a couple of 5. It will play 5 instead of 2 hoping to find the

correspondence with its teammate, because in case the fourth 2 was in the

hand of the opponent, then the series of scope might continue till the end.

CS16 The eldest hand, having to choose between a low-rank-double card

and higher one, it must always play the lower one, provided that the

cards on the table allow it.

CS17 When the hand team has done no spariglio, it is intended to bring

its cards to the deck team, because the latter plays after it. To exit

from the grip that nails them and try to score some points or tie them,

the third hand has to play single cards.

In fact, if the dealer does not capture the card, considering it double, the

eldest hand will be able to capture a card that otherwise it would have never

captured. Moreover, if the fourth card is held by the dealer’s teammate, the

deck team, that will hesitate to play that card believing to bring it to the

third hand, holds a franca card, but it will know it only at the end of the

round.

CS18 When one captures a couple of cards and one of the players plays

immediately a card of the same rank, it means that the latter holds

also the fourth card.

For example, let the table be Q♥ J♠ 3♦. One of the players capture the

3, another one plays the third 3; this means that it holds also the fourth

3. If it played the third 3 and it did not hold the fourth one, it would

make a serious mistake, because, besides the fact that it would mislead its

teammate, it would allow the opponents who hold it to do the mulinello on

that card.

CS19 The play of a face card on a low-rank card is not an indication for

the teammate of having also the copy of that face card. It could have

played it to avoid a scopa.

4.2.4 The Play of Sevens

In Scopone, 7s are the most important cards since they count for both the

points of primiera and settebello. Therefore, the game is mostly played

around these cards, hence they deserve special rules.

CS20 The dealer’s teammate must always capture the 7 played either by

the dealer or by the opponents.

45

CHAPTER 4. RULE-BASED ARTIFICIAL INTELLIGENCE FOR
SCOPONE

Capturing the one played by the dealer, the third 7 will be captured by

the dealer, because it holds the fourth one since it played it first. It has to

capture the 7 played by the eldest hand because, if the other one is held by

the dealer, then they will capture all the 7s; otherwise, if the other one is

held by the third hand, the dealer’s teammate has captured the one reserved

to it. It has to capture the 7 played by the third hand because it does not

have to allow the third hand to capture its own 7.

CS21 When the dealer’s teammate has the chance to capture a 7 on the

table or do a spariglio involving it, e.g. 7 + 1 = 8, it must always do

the spariglio if it holds only one 7.

In fact, the eldest hand does not hold any 7 because it did not capture it,

hence the other two 7s are held by the dealer and the third hand. In case the

two 7s are held by the third hand, the latter, at same point, will be forced to

play one of them and the dealer’s teammate will capture it, whereas the last

one will be captured by the dealer with the tallone. If the two 7s are divided

between the dealer and the third hand, then the former, at its second-last

turn, will play the decoupled 7 because of CS4; next, the dealer’s teammate

will capture it and the last 7 will be captured by the dealer with the tallone.

CS22 If the dealer’s teammate does not hold any 7 and has the chance to

capture a 7 on the table with a spariglio, e.g. 7+1 = 8, it must always

do it even if it decouples three cards.

Here there are four situations:

• The other three 7s are held by one player. If they are held by the

eldest or the third hand, then the hand team will capture two of them

but the last one will be captured by the dealer with the tallone. If the

three 7s are held by the dealer, then the deck team will easily capture

all the four 7s.

• The other three players hold one 7 each. The dealer, at its second-last

turn, will play the decoupled 7, because of CS4, that will be captured

by the eldest hand; next, the dealer will capture the last one with the

tallone. The dealer could also play a card that allows the recoupling

of the 7s, e.g. by playing an even 6 on an odd 1, in this case the deck

team will capture three 7s.

• Two 7s are held by the dealer and one by an opponent. The dealer

will be forced to play one of the two 7s that will be captured by the

opponents; by the way, it will capture the last one with the tallone.

46

4.2. CHITARRELLA-SARACINO STRATEGY

• Two 7s are held by one of the opponents and one by the dealer. The

dealer will capture the 7 played by the opponent and then it will

capture the last one with the tallone. In this case, the deck team will

capture all the four 7s.

The spariglio done by the dealer’s teammate worths at least two 7s for its

team.

CS23 The dealer’s teammate, that holds two 7s, must capture the 7 on

the table and must not capture it with a spariglio, e.g. 7 + 1 = 8.

By doing the spariglio, it favors the game of the opponents, because it

remains with two decoupled 7s.

CS24 The dealer’s teammate has to avoid to capture a card, that summed

to a double card it holds, may bring to the spariglio of 7s.

For example, let us assume that the table is 3 5 10 and the dealer’s teammate

holds 3, 5, and two 4. It will prefer to capture the 5 instead of the 3. In

this way the 3 will be captured by the opponents and it will safely play the

4, controlling the play of the 3s.

CS25 When the dealer’s teammate does a spariglio with 7, e.g. 4 + 3 = 7,

being able to avoid it, it is clear that it holds another 7.

CS26 Each player, that holds two 7s or the settebello, must capture the 7

played by the other players.

CS27 When no 7 has been played yet, who does not hold any 7 must not

play cards that may bring to the spariglio of 7s.

If the player at its right holds two 7s, then it will capture one 7 with the

spariglio and two 7s with a capturing move. Whereas, it would let them

be captured by the teammate of whom has caused the spariglio. Moreover,

who has caused the spariglio has misled its teammate, who will believe that

it holds a 7.

CS28 The dealer, that holds two 7s, must play them as late as possible.

However, if it has the chance to capture one of them with a spariglio,

it must always do it.

It must play them as late as possible because it will capture the other two

7s, if they are held by either the eldest or the third hand. It must always

capture the 7 with a spariglio because:

47

CHAPTER 4. RULE-BASED ARTIFICIAL INTELLIGENCE FOR
SCOPONE

• If the other two 7s are held by one player, then it will capture one

with its 7 and the last one with the tallone.

• If the opponents hold one 7 each, then it will give its 7 to the eldest

hand at the second-last turn, but it will capture the last one with the

tallone. In this case, it cannot capture more than two 7s.

• If the eldest hand holds no 7, its 7 will be captured by the dealer’s

teammate and the last one with the tallone.

CS29 A player, that holds three 7s, must never capture 7 with a spariglio,

but it must let the opponents do the spariglio with the fourth 7, espe-

cially when it does not hold any 6.

If the three 7s are held by the dealer or its teammate and the other 7 has

been decoupled (1 + 6 = 7, 2 + 5 = 7, 3 + 4 = 7), then they will capture two

with a normal move and the other with the tallone or with a spariglio. If the

three 7s are held by the eldest or the third hand, then they will capture, for

sure, two of them with a normal move and the other one may be captured

with a spariglio.

4.2.5 The Algorithm

The rules of Chitarrella and Saracino are not easily translatable to a com-

puter program, because it often happens that several rules can be applied

in a given situation; in this case the choice of which one to apply is left to

the user experience. In a rule-based AI, we would like to have that only one

rule for each situation can be applied, but this would require distinguishing

from many situations and it is often infeasible. Alternatively, it is possible

to assign a priority to each rule and choose the one with the highest priority.

Unfortunately, Chitarrella and Saracino did not assign priorities to their rule

explicitly, hence we tried to assign the priorities that better approximate the

advices given by the two authors.

The Algorithm 6 shows the high-level pseudo-code of the CS strategy.

A rule can be applied in two ways: (i) by immediately returning the move

chosen by the rule; (ii) by removing the moves that do not follow the rule, in

this way the remaining moves can be processed by the following rules. The

rules involving the tallone have the maximum priority because are necessary

for capturing several cards at the end of a round. Then follow the rules

about the play of sevens, that are the most important card. Next, the

program takes into consideration the moves that bring to the mulinello, i.e.

it considers only the moves that do not leave on the table a combination

48

4.2. CHITARRELLA-SARACINO STRATEGY

of cards that allow the opponents to capture some cards. This is done by

verifying that all the cards combinations sum up to a card’s rank of which the

quartet has already been captured or the last one is held by the teammate.

If such moves exist, then the AI will play the best one of them, i.e. the

move chosen by using the same policy of the Greedy strategy (BestMove

function in Algorithm 5). The next step of the algorithm looks at moves

that do not allow the opponents to do the mulinello. The program considers

only the moves that do not bring to a state in which the opponent can do a

move that bring to the mulinello. If such moves exist, then the next steps

only consider them as possible moves. The remained moves are checked for

scopa, i.e the AI considers the moves that do not allow the opponent to do a

scopa. This is done in the same way of the Greedy strategy, by considering

the set of moves that do not leave on the table a combination of cards that

can be captured by a card that has unknown position. If such moves exist,

then the program only considers those moves in the following steps. At this

point, the AI prioritizes the capturing moves over the others. If such moves

exist, the program selects the best move accordingly to the fundamental rule

of Scopone (CS1), i.e. the move that minimizes or maximizes the number

of decoupled cards after the move, depending on the player about to act.

The program can easily know the decoupled cards by counting the cards

previously played, hence it does not use any of the methods proposed in

Section 4.2.1. The selected move is then validated by three rules; in the

case it is not compatible with one of them, it is removed from the available

moves and the program returns to the point in which it has to prioritize the

capturing moves. Whereas, if it does not exist any capturing move, the AI

try to apply some other rules and finally it returns the best remaining move.

Some rules, the exploit of the mulinello, and the scopa prevention need

somehow the guessing of the cards the other players hold. For this reason,

we designed a card guessing system that keeps track of the cards a player

might hold, looking at the moves it did during the round. Each time a

player do a non-capturing move, it is likely to hold also the copy of that

card, because of rule CS10, therefore the program adds it to the list of that

player guessed cards. In this way the other part of the program can benefit

of this important information. When the player plays also the other card of

the same rank, the first one is removed from the list of that player guessed

cards, because we cannot assume that it holds also the third one. Also

rules CS18, CS19, and CS25 are used for this purpose.

49

CHAPTER 4. RULE-BASED ARTIFICIAL INTELLIGENCE FOR
SCOPONE

Algorithm 6 Chitarrella-Saracino strategy pseudo-code

1: function CSStrategy(state)

2: moves← state.legalMoves

3: if Rule CS5 then

4: return move ∈ moves chosen by this rule

5: end if

6: if Rule CS4 then

7: moves← filtered moves according to this rule

8: end if

9: if Rule CS27 then

10: moves← filtered moves according to this rule

11: end if

12: if Rule CS29 then

13: moves← filtered moves according to this rule

14: end if

15: if Rule CS28 then

16: if it must capture then

17: return move ∈ moves chosen by this rule

18: else

19: moves← filtered moves according to this rule

20: end if

21: end if

22: if Rule CS26 then

23: return move ∈ moves chosen by this rule

24: end if

25: if Rule CS21 then

26: return move ∈ moves chosen by this rule

27: end if

28: if Rule CS22 then

29: return move ∈ moves chosen this rule

30: end if

31: if Rule CS20 then

32: return move ∈ moves chosen this rule

33: end if

34: if Rule CS23 then

35: return move ∈ moves chosen this rule

36: end if

50

4.2. CHITARRELLA-SARACINO STRATEGY

37: mulinelloMoves← subset of moves that bring to the mulinello

38: if mulinelloMoves 6= ∅ then

39: if Rule CS6 then

40: return move ∈ moves chosen this rule

41: end if

42: return BestMove(mulinelloMoves)

43: end if

44: nonOppMulMoves← subset of moves that do not bring to the

mulinello of the opponents

45: if nonOppMulMoves 6= ∅ then . also enforces Rule CS7

46: return PreventingScopaMove(nonOppMulMoves)

47: end if

48: return PreventingScopaMove(moves)

49: end function

50:

51: function PreventingScopaMove(moves)

52: nonScopaMoves← subset of moves that do not bring to scopa

53: if nonScopaMoves 6= ∅ then

54: return DetermineMove(nonScopaMoves)

55: end if

56: return DetermineMove(moves)

57: end function

58:

59: function DetermineMove(moves)

60: capturingMoves← subset of moves that capture some cards

61: if capturingMoves 6= ∅ then . enforces Rule CS9

62: move← ChooseCapturingMove(capturingMoves)

63: if move is not compatible with Rule CS24 then

64: move← TryAnotherMove(moves,move)

65: end if

66: if move is not compatible with Rule CS8 then

67: move← TryAnotherMove(moves,move)

68: end if

69: if move is not compatible with Rule CS12 then

70: move← TryAnotherMove(moves,move)

71: end if

72: return move

73: end if

74: if Rule CS11 then

75: moves← filtered moves according to this rule

76: end if

51

CHAPTER 4. RULE-BASED ARTIFICIAL INTELLIGENCE FOR
SCOPONE

77: if Rule CS13 then

78: moves← filtered moves according to this rule

79: end if

80: if Rule CS17 then

81: moves← filtered moves according to this rule

82: end if

83: if the player holds some non-single cards then

84: if Rule CS16 then

85: return move ∈ moves chosen by this rule

86: end if

87: return move ∈ moves chosen by Rules CS10, CS14, CS15

88: end if

89: if Rule CS2 then

90: return move ∈ moves chosen by this rule

91: end if

92: if Rule CS3 then

93: moves← filtered moves according to this rule

94: end if

95: return BestMove(moves)

96: end function

97:

98: function ChooseCapturingMove(moves) . enforces Rule CS1

99: if player ∈ hand team then

100: return move ∈ moves that maximizes the number of

decoupled cards

101: end if

102: return move ∈ moves that minimizes the number of

decoupled cards

103: end function

104:

105: function TryAnotherMove(moves,move)

106: otherMoves← moves \ {move}
107: if otherMoves 6= ∅ then

108: move← DetermineMove(otherMoves)

109: end if

110: return move

111: end function

52

4.3. CICUTI-GUARDAMAGNA STRATEGY

4.3 Cicuti-Guardamagna Strategy

The book of Cicuti and Guardamagna [12] refines the techniques proposed by

Saracino, especially the rules about the play of sevens. The most important

of these rules have been summarized in [5]. With the Cicuti-Guardamagna

(CG) strategy we aim to encode these additional rules to allow the AI for

better ways of playing.

4.3.1 The Rules

CG1 If the dealer’s teammate holds two 7s, then it must always capture

the 7, also with a spariglio.

CG2 The player, who holds three 7s with the settebello, must immediately

play one of them.

CG3 The player, who holds two 7s without the settebello, must play the

7 as late as possible.

CG4 The opponent of the dealer, who holds two 7s with the settebello,

must play the 7 when the state of the game allows its teammate to

redouble the combination of 7.

In this way, if the opponent at its right does not capture the 7, the teammate,

that does not hold any 7, can favor the capture of the settebello by redoubling

the combination of 7, i.e. it can play a card that sums up to 7 with another

card on the table.

CG5 The player, who holds the last two 7s with the settebello, if it belongs

to the hand team, it must play the settebello; if it belongs to the deck

team, it must play the other 7.

In fact, it often happens that the second-last 7 is in danger because of the

play of a low-rank card that allows for the spariglio with a face card. If

this happens, the settebello is likely to be captured with the tallone by the

dealer. Therefore, the loss of the second-last 7 is not a big problem for the

deck team, but is a serious issue for the hand team, because they risk of

losing also the settebello. Hence, for the hand team, it is convenient to play

the settebello; in this way even if the teammate cannot capture the low-rank

card played by the opponent, it can at least capture the settebello with a

face card.

53

CHAPTER 4. RULE-BASED ARTIFICIAL INTELLIGENCE FOR
SCOPONE

CG6 The dealer’s teammate, the third hand, and the dealer, who hold

three 7s without the settebello, must play the 7 on a low-rank card

that allows for the spariglio of 7.

In fact, if one does the spariglio, then the low-rank-decoupled card can favor

the capture of the second 7 with another spariglio and therefore allow the

capture of the settebello.

CG7 When there are still three 7s in game and the dealer holds the sette-

bello, the dealer’s teammate, that does not hold any 7, must remains

with an even card that sums up to 7 with another decoupled card.

CG8 When the third hand plays 7 and the eldest hand has the possibility

to redouble the combination of 7, the dealer must capture the 7 of the

third hand.

CG9 When the third hand plays 7, the dealer, who does not hold any 7,

must not redouble the combination of 7, but it must try to prevent

the eldest hand from redoubling the combination of 7.

CG10 When the dealer’s teammate and the third hand hold the last two

7s, the dealer can favor the capture of a 7 by its teammate with a

spariglio, by remaining with an even card that sums up to 7 with

another decoupled card.

CG11 When the decoupled cards are 3, 4, 7; or 2, 5, 7; or 1, 6, 7; and

the third hand holds the last 7, the dealer must remain respectively,

in the first case with a 3 or a 4; in the second case with a 2 or a 5;

and in the third case with an ace or a 6. This rules also holds for the

dealer’s teammate, when the last 7 is held by the eldest hand.

CG12 When there are still three 7s in game, the eldest hand, who does

not hold any 7, must create a block for the transit of 7, e.g. with a J

if the ace is decoupled, with a Q if the 2 is decoupled, with a K if the

3 is decoupled. When it does not have this possibility, it must remain

with an even card that sums up to 7 with another decoupled card.

CG13 The eldest hand must not capture the 7 played by the dealer unless

it gains the primiera point.

54

4.4. SUMMARY

4.3.2 The Algorithm

With the rules of Cicuti and Guardamagna there is still the problem dis-

cussed in Section 4.2.5 about the priority of each rule. Therefore, once more,

we tried to assign the priorities that better fit the advices of the authors.

The high-level pseudo-code of the CG strategy is shown in Algorithm 7.

Like in the CS strategy, each rule can be applied in two ways: (i) returning

the move chosen by the rule; (ii) removing the moves that do not follow the

rule. Since the rules of the CG strategy are an extension to the rules of the

CS strategy, the program try to apply the CG rules first; if no rule can be

applied, then the AI returns the move chosen by the CS strategy.

4.4 Summary

In this chapter, we showed the rule-based Artificial Intelligence (AI) we

developed for Scopone. We designed three AI that aim to represent the

playing strength of a beginner, an expert, and another expert with refined

techniques. The Greedy strategy represents the beginner and basically it

captures the most important card currently available on the table; otherwise

it plays on the table the less important card it holds. The Chitarrella-

Saracino (CS) strategy represents an expert player and it encodes the rules

taken from the books of Chitarrella and Saracino. The rules are related to

four important aspects of the game: the spariglio, the mulinello, the play of

double and triple cards, and the play of sevens. The Cicuti-Guardamagna

(CG) strategy is an extension of the CS AI, it encodes the rules proposed

by Cicuti and Guardamagna in their book. Basically, they introduced more

refined techniques for the play of sevens.

55

CHAPTER 4. RULE-BASED ARTIFICIAL INTELLIGENCE FOR
SCOPONE

Algorithm 7 Cicuti-Guardamagna strategy pseudo-code

1: function CGStrategy(state)

2: moves← state.legalMoves

3: if Rule CG9 then

4: moves← filtered moves according to this rule

5: end if

6: if Rule CG8 then

7: return move ∈ moves chosen by this rule

8: end if

9: if Rule CG2 then

10: move← move ∈ moves chosen by this rule

11: if move does not bring to scopa or all moves bring to scopa then

12: return move

13: end if

14: end if

15: if Rule CG6 then

16: move← move ∈ moves chosen by this rule

17: if move does not bring to scopa or all moves bring to scopa then

18: return move

19: end if

20: end if

21: if Rule CG1 then

22: return move ∈ moves chosen by this rule

23: end if

24: if Rule CG5 then

25: move← move ∈ moves chosen by this rule

26: if move does not bring to scopa or all moves bring to scopa then

27: return move

28: end if

29: end if

30: if Rule CG4 then

31: move← move ∈ moves chosen by this rule

32: if move does not bring to scopa or all moves bring to scopa then

33: return move

34: end if

35: end if

36: if Rule CG3 then

37: moves← filtered moves according to this rule

38: end if

56

4.4. SUMMARY

39: if Rule CG7 then

40: moves← filtered moves according to this rule

41: end if

42: if Rule CG10 then

43: moves← filtered moves according to this rule

44: end if

45: if Rule CG11 then

46: moves← filtered moves according to this rule

47: end if

48: if Rule CG12 then

49: moves← filtered moves according to this rule

50: end if

51: if Rule CG13 then

52: moves← filtered moves according to this rule

53: end if

54: return CSStrategy(state)

55: end function

57

CHAPTER 4. RULE-BASED ARTIFICIAL INTELLIGENCE FOR
SCOPONE

58

Chapter 5

Monte Carlo Tree Search

algorithms for Scopone

In this chapter we show the Monte Carlo Tree Search (MCTS) algorithms

we designed for Scopone. Besides the basic MCTS algorithm, we investi-

gated some changes that can be made to improve the playing strength of

the algorithm. In particular, we used different reward methods for the back-

propagation step, some variants in the simulation strategies, and few ways

to reduce the number of available moves in each state. We also used a dif-

ferent determinization procedure in order to reduce the number of states

within an information set in the Information Set Monte Carlo Tree Search

(ISMCTS) algorithm.

5.1 Monte Carlo Tree Search Basic Algorithm

In the basic version of the MCTS algorithm, each node represents a single

state of the game and memorizes five pieces of information: the incoming

move, the visits count, the total rewards, the parent node, and the child

nodes. Each state memorizes the list of cards on the table, in the players

hands, and the cards captured by each team. It also memorizes the cards

that caused a scopa, the index of the last player to move, and the last player

who did a capturing move. Each state also records all the moves previously

done by each player along with the state of the table before each move, these

informations are needed especially by the rule-based artificial intelligence.

Every move is composed by the played card and the list of captured cards,

that can be also empty. Each card is represented by its rank and suit. Every

state can return the list of available moves and, in case of a terminal state,

the score of each team. It also offers a method to apply a move and jump

59

CHAPTER 5. MONTE CARLO TREE SEARCH ALGORITHMS FOR
SCOPONE

in another state of the game.

The selection step of MCTS is done with the Upper Confidence Bounds

for Trees (UCT) formula of Algorithm 3 with a constant c = 1. In the

expansion step, the move to expand the node is chosen randomly from the

moves available in the corresponding state. For the simulation step the game

is played randomly until a terminal state. The backpropagated reward is

a vector containing the score of each team. During the selection step, the

UCT formula considers only the team’s score of the player acting in that

node. At the end of the algorithm, the incoming move of the most visited

root node is selected.

The MCTS algorithm described above could not be used with Scopone

because it is a game with imperfect information. Therefore, we decided

to use it as cheating player, i.e. a player that has access to the hidden

information of the game, in this case the cards in the players’ hand. Using

a cheating player is not a valid approach to Artificial Intelligence (AI) for

games with imperfect information, but it provides a useful benchmark for

other algorithms since it is an approach which is expected to work better

than approaches that do not cheat.

The game tree resulting from an exhaustive search, starting from an

initial state of the game, has (9!)4 = 1.73 × 1022 leaf nodes. It can be

calculated by considering that, at the beginning of a round, each player

holds 9 cards and, at the end of the fourth turn, we can be in any of the 94

possible states. At the eighth turn, we can be in any of the 84 possible states

under any of the previous 94 states, for a total of (9 · 8)4. Continuing in this

way until each player holds no card, we get the result. The previous result

can be used to calculate the total number of nodes in the full-expanded tree.

We know that, at the end of every four turns, we have (
∏9

t=x t)
4 leaf nodes,

where x is the number of cards that each player holds during its last turn.

Moreover, in these four turns we have a total of (x+x2 +x3 +x4) nodes for

each leaf of the previous four turns. Therefore, the total number of nodes is

1 +

9∑
x=1

(

9∏
t=x+1

t)4(x+ x2 + x3 + x4) = 1.03× 1023

(the +1 is for the root node), hence the leaf nodes are the 16.8% of the total

nodes. Note that when x = 9, then t should vary from 10 to 9 and this

produces the empty product, hence 1 is returned. The depth of the tree is

36, i.e. the total number of cards in the players’ hand, therefore the Effective

Branching Factor (EBF) [23] is 4.33, calculated enforcing the constraints:

treeNodes =
EBF treeDepth+1 − 1

EBF − 1
, EBF > 0.

60

5.2. INFORMATION SET MONTE CARLO TREE SEARCH BASIC
ALGORITHM

Table 5.1: Complexity values of the Monte Carlo Tree Search algorithm applied to

Scopone.

State space Tree nodes Leaf nodes Tree depth EBF

2.02× 1047 1.03× 1023 1.73× 1022 36 4.33

Note that these values are calculated by considering that a move consists

in playing a card from a player’s hand. This is not completely true, since

sometime it is possible to do different capturing moves by playing the same

card and this results in a higher branching factor. Therefore, these values

have to be considered as a lower bound of the actual values. An idea of the

dimension of the state space can be calculated starting from the number of

possible initial states and multiply it by the total number of nodes in the

full-expanded tree. For sure, every nodes in the tree represents a different

state, but we can have that the same state can be represented in different

game tree, hence the value that we will obtain is only an upper bound of

the actual dimension of the state space. Although the total number of deck

shuffles is 40! = 8.16 × 1047, many of them result in the same initial state

because the cards’ order in the players’ hand and on the table does not

matter. Therefore, the number of possible initial states can be calculate as(
40

9

)(
31

9

)(
22

9

)(
13

9

)(
4

4

)
= 1.96× 1024,

hence the dimension of the state space is 1.96× 1024 · 1.03× 1023 = 2.02×
1047. Table 5.1 summarizes the complexity of the basic MCTS algorithm

applied to Scopone. According to [39], Scopone with MCTS has a game

tree complexity and EBF comparable with Connect Four, and a state space

similar to Chess.

5.2 Information Set Monte Carlo Tree Search Ba-

sic Algorithm

In the basic version of the Information Set Monte Carlo Tree Search (ISM-

CTS) algorithm, each node represents an information set from the root

player’s point of view. The only additional information required to each

node, with respect to MCTS, is the availability count.

The ISMCTS algorithm applies the same steps of MCTS, but it uses the

ISUCT formula of Algorithm 4 with a constant c = 1. It also has to create a

determinization of the root state at each iteration, this is done by randomize

the cards held by the other players.

61

CHAPTER 5. MONTE CARLO TREE SEARCH ALGORITHMS FOR
SCOPONE

Table 5.2: Complexity values of the Information Set Monte Carlo Tree Search algorithm

applied to Scopone.

ISS Tree nodes Leaf nodes Tree depth EBF

2.23× 1058 1.14× 1034 3.95× 1033 36 8.8

In contrast with the MCTS algorithm, ISMCTS is suited for games with

imperfect information, therefore it can be used with Scopone without any

form of cheating. However, this increases the branching factor of the tree

search, resulting in a higher complexity of the algorithm.

This time, the leaf nodes in the full-expanded game tree are 9! 27! =

3.95 × 1033. In fact, at the first branch, the root player knows its cards,

therefore there are 9 possible branches. At the second branch, however,

the next player could play any of the 27 cards that have unknown position

from the point of view of the root player (remember that the outgoing arcs

from an opponent’s node have to represent the union of all moves available

in every state within that information set). Analogously, in the third and

fourth branch the available moves are respectively 26 and 25. At the fifth

branch, it is again the turn of the root player and it can do 8 moves. The

next branches are of 24, 23, 22 moves, and so on until the end. To calculate

the total number of nodes in the tree, we can proceed as before by summing

the total branches at each turn. Therefore, we obtain a game tree of

1 +
9∑

i=1

4∑
j=1

9∏
x=i

x
27∏

y=3(i−1)+j

y = 1.14× 1034

nodes. This time the leaf nodes are the 34.65% of the total nodes. The

depth of the tree is still 36, but the EBF is increased to 8.8. Note that these

values are a lower bound of the actual ones, for the reason explained in

the previous section. Moreover, since the nodes correspond to information

sets, additional capturing moves may be available, because they can be

done in some particular states within that information set. Of course, the

state space of the game is not going to change, but we can have an idea

of the dimension of the Information-Set Space (ISS) by multiplying the

number of initial states with the total number of nodes in the ISMCTS

tree, thus we obtain 1.96 × 1024 · 1.14 × 1034 = 2.23 × 1058 information

sets. Table 5.2 summarizes the complexity of the basic ISMCTS algorithm

applied to Scopone. According to [39], Scopone with ISMCTS has a game

tree complexity comparable with Congkak, an EBF like Domineering(8×8),

and a state space similar to Hex (11× 11).

62

5.3. REWARD METHODS

5.3 Reward Methods

In the MCTS algorithm the role of the reward is very important, since it is

used in the UCT formula to orient the search in the most promising areas

of the tree. In the basic algorithm we used the score of each team as reward

(we called it Normal Scores (NS)), but, in order to chose the best possibility,

we create three other types of reward:

• Scores Difference (SD): for each team, we used the difference between

the score of that team and the opponents. For example, if the final

scores of a game were (4, 1), the reward for the first team would be 3

and −3 for the other one.

• Win or Loss (WL): it is returned a reward of 1 to the winning team,

−1 for the other one, and 0 in case of a tie.

• Positive Win or Loss (PWL): The winning team gets a reward of 1,

the losing team gets 0, and in case of a tie both teams get 0.5.

We presume that NS and SD, rewards that do not only distinguish from

win, loss or tie, will behave in a more human-like way, because they will try

to achieve the maximum score even if they are going to lose the game. PWL

is similar to WL, but we want to exploit the fact that, for rewards between

[0, 1], we know the optimal UCT constant.

5.4 Simulation strategies

The simulation strategy is another important aspect of MCTS. It is respon-

sible to play a game from a given state until the end, in order to get an

approximation of the result the game will always have if played from that

state. In the basic version of the MCTS algorithm we used a Random Sim-

ulation (RS) strategy, this is very efficient, but it does not always give good

results. Previous studies [15] suggest that using heuristics in the simulation

step can increase the performance of the algorithm. Therefore, we designed

other three simulation strategies:

• Greedy Simulation (GS): It simply uses the Greedy strategy to play

the game until the end.

• Epsilon-Greedy Simulation (EGS): At each turn, it plays at random

with probability ε, otherwise it plays the move chosen by the Greedy

strategy.

63

CHAPTER 5. MONTE CARLO TREE SEARCH ALGORITHMS FOR
SCOPONE

• Card Random Simulation (CRS): It plays a card at random, but the

Greedy strategy decides which capturing move to do in case there are

more than one.

We decided to use EGS because, relying on a non-random simulation strat-

egy, can be too restrictive, the results from a given state will be always equal.

Therefore, we think that adding some random factor can be beneficial, by

the way ε will be determined experimentally.

5.5 Reducing the number of player moves

The basic MCTS algorithm uses all the legal moves of a state in order to

expand the corresponding node (we called this approach All Moves Handler

(AMH)). This exploits all the possibilities of the game, but makes the tree

search very expensive. In order to decrease the dimension of the tree search,

it is possible to apply some pruning strategies to filter out some moves.

Therefore, we created three moves handlers:

• One Move Handler (OMH): It generates one move for each card in the

player’s hand. If it is possible to do different capturing moves with a

card, it will choose the most important one, exactly in the same way

the Greedy strategy would do.

• One Card Handler (OCH): It generates one move for each card in the

player’s hand, moreover the move memorizes only the played card.

The eventual captured cards are determined by the Greedy strategy

only when the move has to be done.

• Greedy Opponents Handler (GOH): When it is not the turn of the root

player, it is generated only the move chosen by the Greedy strategy.

At a first look, OMH and OCH would seem to have the same behavior. In

fact, it is true for MCTS, they both ensure that the game tree has a max-

imum complexity equal to the values illustrated in Table 5.1. However, for

ISMCTS, only OCH can ensure it for the values illustrated in Table 5.2.

This is because using OMH does not guarantee that the chosen captured

cards will be available in all the states within the information set, therefore

other capturing moves might be added. GOH has been introduced to con-

sistently decrease the complexity of the game tree. In fact, with MCTS, it

reduces the leaf nodes to 9! = 3.63× 105, the total nodes to

1 + 4

9∑
i=1

9∏
x=i

x = 3.95× 106,

64

5.6. DETERMINIZATION WITH THE CARDS GUESSING SYSTEM

and the EBF to 1.48. For ISMCTS, the reduction cannot be calculated.

We have to remember that each node represents an information set, there-

fore in each opponent’s node there are available moves as many states are

within that information set, because we have a Greedy move for each state.

Therefore, we can have two extreme situations: (i) in every state within the

information set, the Greedy strategy chooses the same move, in this case we

have only one outgoing arc from the node; (ii) the Greedy strategies chooses

different move in each state, in the worst situation, we have outgoing arcs

as the number of unknown cards in that information set. For this reason, in

some situation it might reduce the complexity of the tree search, in others

it might not.

5.6 Determinization with the Cards Guessing Sys-

tem

In order to reduce the complexity of the ISMCTS tree, we can also try to

decrease the number of states within an information set. In this way the

number of available moves at each node could be reduced, since we can

exclude some moves that were only available in the eliminated states. The

idea is to remove the states that are less likely to happen, in this way, besides

the possible moves’ reduction, the search will be focused only in the most

likely states. For these reasons, we integrated, in the determinization step

of ISMCTS, the cards guessing system that we designed for the Chitarrella-

Saracino strategy. Therefore, at each iteration of the ISMCTS algorithm it

is generated a determinization in which each player holds the cards guessed

by the cards guessing system.

5.7 Summary

In this chapter we showed how the basic MCTS and ISMCTS algorithm have

been implemented, and the complexity of these search methods on Scopone.

Next, we illustrated some methods that can be used to reduce the complexity

of the algorithms and increase the playing strength of AI. We proposed three

different reward methods: Scores Difference, Win or Loss, and Positive Win

or Loss. Three simulation strategies: Greedy Simulation, Epsilon-Greedy

Simulation, and Card Random Simulation. Three moves handlers: One

Move Handler, One Card Handler, and Greedy Opponents Handler. Finally,

we integrated the cards guessing systems in the determinization step of

ISMCTS.

65

CHAPTER 5. MONTE CARLO TREE SEARCH ALGORITHMS FOR
SCOPONE

66

Chapter 6

Experiments

In this chapter, we discuss the experiments we performed to evaluate the

playing strength of the various strategies we developed. For this purpose,

we first determined the best Artificial Intelligence AI for each of the three

categories: rule-based, Monte Carlo Tree Search (MCTS), and Information

Set Monte Carlo Tree Search (ISMCTS). Then, we did a tournament to

rank them.

6.1 Experimental Setup

In order to provide consistency between experiments, and reduce the vari-

ance of our results, we randomly generated a sample of 1,000 initial game

states and we used it in all our experiments. Moreover, for MCTS and

ISMCTS we played each game 10 times to further reduce the variance, due

to the stochastic nature of the algorithms. For each of the experiments we

assigned an AI to the hand team and another one to the deck team, then

we compared the winning rate for each team and the percentage of ties. We

also introduced a random playing strategy in order to have a performance

benchmark.

6.2 Random Playing

In this first experiment, we used the random strategy for both the hand

team and deck team. With this experiment we want to find out how much

the game is biased towards a specific team. Table 6.1 shows the winning

rates of the hand team and the deck team, and the percentage of ties, when

both the teams play randomly. The results in Table 6.1 confirm that the

deck team has a slight advantage over the hand team. In fact, the deck team

67

CHAPTER 6. EXPERIMENTS

Table 6.1: Winning rates of the hand team and the deck team, and the percentage of

ties, when both the teams play randomly.

Hand Team Deck Team Ties

41.69% 45.71% 12.6%

wins the 45.71% of the games, against the 41.69% of the opponents. This

was mentioned also in the strategy books we previously presented, but it

has never been estimated quantitatively.

6.3 Rule-Based Artificial Intelligence

In the second experiment, we compared the different rule-based AI. Initially,

we determined how the most important aspects of the game strategy influ-

ence the winning rate. For this purpose, we designed two special versions

of the Chitarrella-Saracino (CS) strategy. A CS Without Scopa Preven-

tion (CSWSP) that encodes all the rules of the CS strategy but it does

not include the function PreventingScopaMove of Algorithm 6, that

gives priority to the moves that do not leave on the table a combination of

cards allowing the opponents to do a scopa. A CS Without Play of Sevens

(CSWP7): that encodes all the rules of the CS strategy except the ones

related to the play of sevens (Section 4.2.4). Then, we performed a tourna-

ment between the basic CS, CSWSP, and CSWP7 by playing 1,000 games

in each match. Table 6.2 shows the percentage of wins, losses, and ties in

each match of the tournament. While, Table 6.3 shows the final scoreboard

of the tournament, calculated by counting the wins, losses, and ties each AI

did during the tournament. From the results it is clear that CSWSP is the

worst strategy losing the 54.65% of the games and winning only the 34.63%

of the times. This is not surprising, since CSWSP does not try to avoid a

move that will bring to an opponent’s scopa, and this is a crucial aspect

of Scopone, since each scopa worth one point and there is no limit on the

number of scopa one can do. The results show also that CS and CSWP7

are almost equivalent, they both win about the 48% of the matches. This is

unexpected, since CSWP7 has no strategy for the play of sevens, but sevens

are the most important cards of the game and it is quite natural to think

that they deserve some special strategies. However, this result may be due

to the fact that the importance of the sevens is already taken into account by

the BestMove function of Algorithm 5. In fact, either this strategy selects

the capturing move involving the most important cards currently available,

or it plays the least important one on the table. Therefore, additional rules

68

6.3. RULE-BASED ARTIFICIAL INTELLIGENCE

Table 6.2: Tournament between the different versions of the Chitarrella-Saracino strat-

egy. In each section, the artificial intelligence used by the hand team are listed at the

left, while the ones used by the deck team are listed at the bottom. The first section

shows the percentage of wins of the hand team, the second one shows the percentage

of losses of the hand team, and the third one shows the percentage of ties.

Winning rates of the hand team

CSWSP 38.1% 24.1% 25.4%

CSWP7 52% 38.2% 38.6%

CS 54% 36.8% 38.7%
Hand Team/Deck Team CSWSP CSWP7 CS

Losing rates of the hand team

CSWSP 52.5% 66.1% 65.2%

CSWP7 35.1% 47.9% 47.3%

CS 32.6% 47.5% 46.6%
Hand Team/Deck Team CSWSP CSWP7 CS

Tying rates

CSWSP 9.4% 9.8% 9.4%

CSWP7 12.9% 13.9% 14.1%

CS 13.4% 15.7% 14.7%
Hand Team/Deck Team CSWSP CSWP7 CS

Table 6.3: Scoreboard of the Chitarrella-Saracino strategies tournament. It shows the

percentage of wins, losses, and ties each artificial intelligence did during the tournament.

AI Wins Losses Ties

CSWP7 48.38% 38.23% 13.38%

CS 48.1% 38.23% 13.67%

CSWSP 34.63% 54.65% 10.72%

69

CHAPTER 6. EXPERIMENTS

for sevens might not be needed. We also notice that, if we consider the

matches between the same AI (the diagonal values of the tables), we find

out that the winning rate of the hand team is decreased from 41.69% to

38%, comparing the result obtained with the random strategy. This may be

explained by considering that the CS strategy has more knowledge of the

game and can better exploit the advantage of being part of the deck team.

Moreover, one can notice that CSWSP, when it plays against itself as deck

team, has a winning rate that is greater than the one of the other AI in the

same situation: 52.5% versus 47.9% and 46.6%. This suggests that having

a player, as hand team who does not use a scopa prevention, increases the

advantages of the deck team, because it is the first player to move and it is

likely to give more scopa opportunities.

Finally, in order to select the best AI, we performed a tournament be-

tween all the rule-based AI that we developed: Greedy, Chitarrella-Saracino

(CS), and Cicuti-Guardamagna (CG). The Greedy strategy should behave

like a beginner, while CS and CG represent expert players, with CG encod-

ing additional rules for the play of sevens. Table 6.4 shows the results of

this tournament, in which 1,000 games have been played in each match, and

Table 6.5 shows the final scoreboard. Unsurprisingly, the Greedy strategy

is the worst of the AI, but it turns out to be stronger than we expected.

In fact, it wins the 39.83% of the games and there is only a difference of

about 4% of wins from the two other AI. Probably, the scopa prevention

and the playing of the best move considering only the importance of the

cards are sufficient to obtain a good strategy for Scopone. However, we

believe that these strategies are not sufficient to give to a human player the

feeling of a good way of playing. The results also show that the CS and CG

strategies have almost the same playing strength, they win about the 44%

of the games. Moreover, CS turns out to be slightly better than CG. This

is unexpected, because we know that the CG strategy is supposed to be

an improvement over the CS strategy, for the reason that it adds advanced

rules for the play of sevens. Once more, we found out that special rules

for the play of sevens might not be needed, since the CS strategy somehow

already handles them. However, in our opinion, the CG strategy should

behave more similarly to an expert human player. Moreover, one can notice

that CG, when it plays against itself as deck team, has a winning rate which

is grater than the CS one in the same situation: 49.1% versus 46.6%. This

tells us that the additional rules are more beneficial to the deck team, that

can exploit them to win a greater number of games. Another thing to notice

is that Greedy versus Greedy has a tying rate which is greater than the one

of other matches: 17% versus about 14%. This may be explained by the fact

70

6.3. RULE-BASED ARTIFICIAL INTELLIGENCE

Table 6.4: Tournament between the rule-based artificial intelligence. In each section,

the artificial intelligence used by the hand team are listed at the left, while the ones

used by the deck team are listed at the bottom. The first section shows the percentage

of wins of the hand team, the second one shows the percentage of losses of the hand

team, and the third one shows the percentage of ties.

Winning rates of the hand team

Greedy 39.3% 36.5% 37.7%

CS 46.7% 38.7% 37.5%

CG 43.7% 37.9% 37.3%
Hand Team/Deck Team Greedy CS CG

Losing rates of the hand team

Greedy 43.4% 48.8% 48.2%

CS 40.1% 46.6% 47.6%

CG 42% 48.2% 49.1%
Hand Team/Deck Team Greedy CS CG

Tying rates

Greedy 17.3% 14.7% 14.1%

CS 13.2% 14.7% 14.9%

CG 14.3% 13.9% 13.6%
Hand Team/Deck Team Greedy CS CG

Table 6.5: Scoreboard of the rule-based artificial intelligence tournament. It shows the

percentage of wins, losses, and ties each artificial intelligence did during the tournament.

AI Wins Losses Ties

CS 44.42% 41.23% 14.35%

CG 43.97% 41.97% 14.07%

Greedy 39.83% 45.02% 15.15%

71

CHAPTER 6. EXPERIMENTS

that the Greedy strategy seeks to capture as much and as best as possible,

and this leads to more frequent ties since the points are equally distributed.

Thus, the best rule-based AI is the CS strategy, therefore it will be used in

the final tournament against the MCTS methods.

6.4 Monte Carlo Tree Search

In the third set of experiments, we selected the best MCTS algorithm for

Scopone. In order to do that, we compared all the different variations of

MCTS that we discussed in Chapter 5. Remember that MCTS is a cheating

player, i.e. it knows the cards in the other players’ hand. We used it as a

benchmark for the best possible strategy. In all the experiments, the MCTS

algorithm played 1,000 games versus the Greedy strategy, both as hand team

and deck team, and each game was played 10 times.

6.4.1 Reward Methods

The first experiment concerns the reward method, that guides the search in

each node. We tested the four different rewards methods that we designed:

Normal Score (NS), Scores Difference (SD), Win or Loss (WL), and Positive

Win or Loss (PWL). For each one of them, MCTS played 1,000 games

10 times against the Greedy strategy. Figure 6.1 plots the winning rate

as a function of the number of iterations when MCTS plays as the hand

team, while Figure 6.2 shows the results when MCTS plays as the deck

team. From the plots, WL appears to be the best strategy, because at the

maximum iterations is the best for both the hand team and the deck team.

Moreover, for the deck team, it is the best for all the iterations. However,

we can see that, for the hand team, SD is the best for the iterations before

700. Another thing to notice is that, NS and SD have almost the same

trend, even if SD is better. The same thing happens between PWL and

WL. This is not surprising, because PWL and WL only consider win, lose

or tie, whereas the rewards returned by NS and SD take into account the

scores of the game. However, the negative rewards WL and SD are always

better than their positive counterpart PWL and NS. For these reasons, we

chose to maintain both WL and SD for the next set of experiments. The

results also show that MCTS already outperforms the winning rate achieved

by CS versus the Greedy strategy. In fact, the current best MCTS wins the

80.52% of the games as hand team and the 90.04% as deck team. Whereas,

CS wins only the 46.7% and 48.8% of times respectively. This result was

expected, since MCTS is a cheating player, who knows the cards of all the

72

6.4. MONTE CARLO TREE SEARCH

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
10

20

30

40

50

60

70

80

90

100

number of iterations of MCTS

w
in

n
in

g
ra

te
o
f

M
C

T
S

[%
]

NS
SD
WL

PWL

Figure 6.1: Reward methods comparison on the Monte Carlo Tree Search winning rate

as a function of the number of iterations when it plays against the Greedy strategy as

the hand team.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
10

20

30

40

50

60

70

80

90

100

number of iterations of MCTS

w
in

n
in

g
ra

te
of

M
C

T
S

[%
]

NS
SD
WL

PWL

Figure 6.2: Reward methods comparison on the Monte Carlo Tree Search winning rate

as a function of the number of iterations when it plays against the Greedy strategy as

the deck team.

73

CHAPTER 6. EXPERIMENTS

0 2 4 6 8 10 12 14 16
40

50

60

70

80

90

100

UCT constant

w
in

n
in

g
ra

te
o
f

M
C

T
S

[%
]

SD
WL

Figure 6.3: Scores Difference and Win or Loss reward methods comparison on the

Monte Carlo Tree Search winning rate as a function of the Upper Confidence Bounds

for Trees constant when it plays against the Greedy strategy as the hand team.

other players.

6.4.2 Upper Confidence Bounds for Trees Constant

The previous experiments showed that WL and SD are the best rewards

methods. However, the Upper Confidence Bounds for Trees (UCT) formula

uses also an exploration constant in the selection step of the algorithm. The

objective of the next experiments is to determine the best UCT constant.

For this purpose, we fixed the number of iteration of the MCTS algorithm

to 1,000, the point in which it begins to stabilize itself (Figure 6.1 and

Figure 6.2), and, in each experiments, MCTS is playing 1,000 games 10

times against the Greedy strategy. Figure 6.3 plots the winning rate as a

function of the UCT constant when MCTS plays as the hand team, while

Figure 6.4 shows the results when MCTS plays as the deck team. The results

show that the best UCT constant for WL is 0.75, whereas for SD it is 2.

Moreover, from the plots, we can see that best values of the UCT constant

for WL are condensed near 0.75; whereas, for SD, they are spread around

2. This can be explained by the fact that the rewards of WL range from

-1 to 1, while the rewards of SD have not a limited range, since there is no

74

6.4. MONTE CARLO TREE SEARCH

0 2 4 6 8 10 12 14 16
40

50

60

70

80

90

100

UCT constant

w
in

n
in

g
ra

te
o
f

M
C

T
S

[%
]

SD
WL

Figure 6.4: Scores Difference and Win or Loss reward methods comparison on the

Monte Carlo Tree Search winning rate as a function of the Upper Confidence Bounds

for Trees constant when it plays against the Greedy strategy as the deck team.

limit on the points one can do in a round. Therefore, in order to balance

the exploration term of the UCT formula, the greater the rewards are, the

greater the best constant has to be. SD turns out to be the best choice,

because it outperforms WL of about the 2% of wins. Therefore, we fixed

this setting for the next experiments. Between the hand team and the deck

team, besides the fact that the latter reaches higher winning rates, there is

no significant difference.

6.4.3 Simulation strategies

MCTS requires the estimation of the state’s value of a leaf node. The simu-

lation strategy is responsible to play a game from a given state until the end

and obtain an approximation of the state’s value. Previous studies [15] sug-

gest that using heuristics in the simulation step can increase the performance

of the algorithm. Therefore, we performed another set of experiments to test

the four simulation strategy we designed: Random Simulation (RS), Greedy

Simulation (GS), Epsilon-Greedy Simulation (EGS), and Card Random Sim-

ulation (CRS). We used the same setup of the previous experiments, where

MCTS played 1,000 games 10 times against the Greedy strategy. Figure 6.5

75

CHAPTER 6. EXPERIMENTS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
75

80

85

90

95

probability ε

w
in

n
in

g
ra

te
o
f

M
C

T
S

w
it

h
E

G
S

[%
]

Hand team
Deck team

Figure 6.5: Winning rate of Monte Carlo Tree Search as a function of the ε value used

by the Epsilon-Greedy Simulation strategy when it plays against the Greedy strategy

both as hand team and deck team.

plots the winning rate of MCTS with EGS as a function of the probability ε

of playing at random at each turn. Figure 6.6 shows the comparison between

the best EGS probability and the other simulation strategies, with MCTS

playing both as hand team and deck team. From the results, it is clear that

the best value of ε is 0.3 and the EGS strategy turns out to be the best

choice. In fact, it outperforms RS of about 7% as hand team, and 3% as

deck team. Therefore, the inclusion of the Greedy strategy in the simulation

step gives some advantages, because it allows MCTS to exploit its encoded

knowledge of the game. However, relying completely on it is not the best

choice, probably because MCTS, since it is a cheating player, can also see

the hidden cards of the opponents and following too much a strategy that

cannot see them is not beneficial. In fact, GS turns out to be even worse

than RS. CRS also includes some knowledge of the game, but probably it

is not sufficient to give some advantages, in fact it is almost equivalent to

RS. For these reasons, we fixed the EGS strategy with ε = 0.3 for the next

experiments.

6.4.4 Reducing the number of player moves

Finally, we tested the four moves handlers we designed to reduce the number

of moves available in each node to the MCTS player: All Moves Handler

76

6.4. MONTE CARLO TREE SEARCH

RS GS EGS CRS
75

80

85

90

95

79.48
78.34

86.04

80.33

89.09

87.58

92.57

88.93

Simulation strategy

w
in

n
in

g
ra

te
o
f

M
C

T
S

[%
]

Hand team
Deck team

Figure 6.6: Simulation strategies comparison on the Monte Carlo Tree Search winning

rate when it plays against the Greedy strategy both as hand team and deck team.

(AMH), One Move Handler (OMH), One Card Handler (OCH), and Greedy

Opponents Handler (GOH). For each strategy, MCTS played 1,000 games

10 times against the Greedy strategy. Figure 6.7 shows the comparison

between the moves handlers, with MCTS playing both as hand team and

deck team. From the results, it is easy to see that AMH, OMH, and OCH are

equivalent. While, GOH significantly outperforms the other methods. This

is not surprising because GOH allows MCTS to predict the moves of the

opponents and choose the best move accordingly. However, this might be

a case of overfitting, because MCTS is playing against the Greedy strategy

that is also used by GOH to predict the opponents’ moves, therefore the

prediction is always correct. Moreover, the advantage of the deck team over

the hand team is significantly decreased when MCTS uses GOH, this may

be another clue of the fact that we are overfitting. For these reasons, we

also tested AMH and GOH with MCTS playing against the CS strategy. We

chose to maintain only AMH because OMH and OCH did not provide any

advantage, neither in terms of winning rate nor in terms of speed. Figure 6.8

shows the comparison between AMH and GOH, with MCTS playing both

as hand team and deck team. The results show that GOH is significantly

weaker than AMH, this is the proof that MCTS with GOH overfits the

Greedy strategy. Therefore, AMH turns out to be the best moves handler

and we fixed it for the final tournament.

77

CHAPTER 6. EXPERIMENTS

AMH OMH OCH GOH
50

60

70

80

90

100

86.04 85.59 85.84

96.76
92.57 92.49 92.43

97.2

Moves handler

w
in

n
in

g
ra

te
o
f

M
C

T
S

[%
]

Hand team
Deck team

Figure 6.7: Moves handlers comparison on the Monte Carlo Tree Search winning rate

when it plays against the Greedy strategy both as hand team and deck team.

AMH GOH
50

60

70

80

90

100

83.08

54.49

91.63

73.31

Moves handler

w
in

n
in

g
ra

te
of

M
C

T
S

[%
]

Hand team
Deck team

Figure 6.8: Moves handlers comparison on the Monte Carlo Tree Search winning rate

when it plays against the Chitarrella-Saracino strategy both as hand team and deck

team.

78

6.5. INFORMATION SET MONTE CARLO TREE SEARCH

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

10

20

30

40

50

60

70

number of iterations of ISMCTS

w
in

n
in

g
ra

te
o
f

IS
M

C
T

S
[%

]

NS
SD
WL

PWL

Figure 6.9: Reward methods comparison on the Information Set Monte Carlo Tree

Search winning rate as a function of the number of iterations when it plays against the

Greedy strategy as the hand team.

6.5 Information Set Monte Carlo Tree Search

We repeated the same experiments using ISMCTS. In this case, ISMCTS

is not cheating, it is not aware of which cards the other players hold. It

bases its decisions on a tree search, where each node is an information set

representing all the game states compatible with the information available

to the ISMCTS player.

6.5.1 Reward Methods

In the case of ISMCTS, the comparison of the reward methods produced the

following results: Figure 6.9 plots the winning rate as a function of the num-

ber of iterations when ISMCTS plays as the hand team, while Figure 6.10

shows the results when ISMCTS plays as the deck team. The trends of the

plots are similar to the MCTS ones, but they stabilize with a higher number

of iterations, in fact they seem to grow also after the 2,000 iterations. Also

this time, WL and SD reach the higher winning rate, moreover they are

equivalent for the hand team. Because of this consideration and the ones

we discussed for MCTS, we chose to use them also in the next experiment.

The results also show that ISMCTS already outperforms the winning rate

achieved by CS versus the Greedy strategy. In fact, the current best ISM-

79

CHAPTER 6. EXPERIMENTS

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

10

20

30

40

50

60

70

number of iterations of ISMCTS

w
in

n
in

g
ra

te
o
f

IS
M

C
T

S
[%

]

NS
SD
WL

PWL

Figure 6.10: Reward methods comparison on the Information Set Monte Carlo Tree

Search winning rate as a function of the number of iterations when it plays against the

Greedy strategy as the deck team.

CTS wins the 47.71% of the games as hand team and the 56.9% as deck

team. Whereas, CS wins the 46.7% and 48.8% of times respectively. This

also tells us that ISMCTS plays better as deck team, probably because it

better exploits the advantages of this role.

6.5.2 Upper Confidence Bounds for Trees Constant

The Information Set Upper Confidence Bounds for Trees (ISUCT) formula

uses also an exploration constant in the selection step of the ISMCTS algo-

rithm. In order to determine the best ISUCT constant, we fixed the number

of iteration of the ISMCTS algorithm to 1,000. Figure 6.11 plots the winning

rate as a function of the ISUCT constant when ISMCTS plays as the hand

team, while Figure 6.12 shows the results when ISMCTS plays as the deck

team. The plots confirm the results obtained for MCTS: the best ISUCT

constant for WL is 0.75, whereas for SD it is 2. The general trend remains

the same of the MCTS algorithm and between the hand team and the deck

team there are no significant differences. This is not surprising, because it

depends on the rewards. Also this time, SD turns out to be the best choice,

because it outperforms WL of about the 2% of wins. Therefore, we fixed

this setting for the next experiments.

80

6.5. INFORMATION SET MONTE CARLO TREE SEARCH

0 2 4 6 8 10 12 14 16
25

30

35

40

45

50

55

60

ISUCT constant

w
in

n
in

g
ra

te
o
f

IS
M

C
T

S
[%

]

SD
WL

Figure 6.11: Scores Difference and Win or Loss reward methods comparison on the

Information Set Monte Carlo Tree Search winning rate as a function of the Information

Set Upper Confidence Bounds for Trees constant when it plays against the Greedy

strategy as the hand team.

0 2 4 6 8 10 12 14 16
25

30

35

40

45

50

55

60

ISUCT constant

w
in

n
in

g
ra

te
of

IS
M

C
T

S
[%

]

SD
WL

Figure 6.12: Scores Difference and Win or Loss reward methods comparison on the

Information Set Monte Carlo Tree Search winning rate as a function of the Information

Set Upper Confidence Bounds for Trees constant when it plays against the Greedy

strategy as the deck team.

81

CHAPTER 6. EXPERIMENTS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
45

50

55

60

65

70

probability ε

w
in

n
in

g
ra

te
o
f

IS
M

C
T

S
w

it
h

E
G

S
[%

]

Hand team
Deck team

Figure 6.13: Winning rate of Information Set Monte Carlo Tree Search as a function of

the ε value used by the Epsilon-Greedy Simulation strategy when it plays against the

Greedy strategy both as hand team and deck team.

6.5.3 Simulation strategies

As we did with MCTS, in these experiments we tested different simulation

strategies for the ISMCTS algorithm. Figure 6.13 plots the winning rate of

ISMCTS with EGS as a function of the probability ε of playing at random

at each turn. Figure 6.14 shows the comparison between the best EGS

probability and the other simulation strategies, with ISMCTS playing both

as hand team and deck team. This time the results suggest us that the

best probability for EGS is 0.1 and it has almost the same winning rate of

GS. This is completely different of what happened with MCTS, where GS

was even worse than RS. Probably, ISMCTS is able to exploit all the game

knowledge of the Greedy strategy because they do not know the cards of

the other players. Whereas, MCTS can also see the cards of the opponents

and the Greedy strategy could direct the search in wrong areas of the tree.

Therefore, both EGS and GS are in charge to be selected as the best solution.

In fact, they both significantly outperform RS of about 13% as hand team,

and 12% as deck team. However, we prefer to maintain only GS for the

next experiments, for the reason that it is faster than EGS, since the latter

requires the additional step of generating a random number. In this case,

the little knowledge of CRS has some effect in the winning rate, but it is

not comparable with the one reached by GS.

82

6.5. INFORMATION SET MONTE CARLO TREE SEARCH

RS GS EGS CRS
45

50

55

60

65

70

45.97

58.66 58.88

47.84

54.87

66.59 66.04

57.33

Simulation strategy

w
in

n
in

g
ra

te
o
f

IS
M

C
T

S
[%

]

Hand team
Deck team

Figure 6.14: Simulation strategies comparison on the Information Set Monte Carlo Tree

Search winning rate when it plays against the Greedy strategy both as hand team and

deck team.

6.5.4 Reducing the number of player moves

In this set of experiments, we tested the four moves handlers that we used

also for MCTS. Figure 6.15 shows the comparison between the moves han-

dlers, with ISMCTS playing both as hand team and deck team. Once again,

AMH, OMH, and OCH are equivalent and GOH appears to be the best han-

dlers. But, as we did with MCTS, we tested AMH and GOH also with ISM-

CTS playing against the CS strategy, because GOH might overfit the Greedy

strategy. Figure 6.16 shows the comparison between AMH and GOH, with

ISMCTS playing both as hand team and deck team. This time, AMH and

GOH are equivalent, probably this can be explained by the fact that GOH

cannot successfully predict the moves of the opponents since it cannot see

their cards. In fact, it predicts the move of the opponents in each deter-

minization, but the set of all the predicted moves in all the determinizations

may be equivalent to the one created by AMH. However, we believe that

AMH is generally better than GOH because it does not restrict the search

and allows ISMCTS to exploit all the moves, therefore we fixed it for the

next experiments.

83

CHAPTER 6. EXPERIMENTS

AMH OMH OCH GOH
50

55

60

65

70

75

58.66 58.25
59.37

64.4

66.59 65.86 66.58

70.09

Moves handler

w
in

n
in

g
ra

te
o
f

IS
M

C
T

S
[%

]

Hand team
Deck team

Figure 6.15: Moves handlers comparison on the Information Set Monte Carlo Tree

Search winning rate when it plays against the Greedy strategy both as hand team and

deck team.

AMH GOH
50

55

60

65

70

75

52.13
51.23

62.93
63.85

Moves handler

w
in

n
in

g
ra

te
of

IS
M

C
T

S
[%

]

Hand team
Deck team

Figure 6.16: Moves handlers comparison on the Information Set Monte Carlo Tree

Search winning rate when it plays against the Chitarrella-Saracino strategy both as

hand team and deck team.

84

6.5. INFORMATION SET MONTE CARLO TREE SEARCH

Random CGS
50

55

60

65

70

52.13 52.47

62.93
62.11

Detarminizator

w
in

n
in

g
ra

te
o
f

IS
M

C
T

S
[%

]

Hand team
Deck team

Figure 6.17: Determinizators comparison on the Information Set Monte Carlo Tree

Search winning rate when it plays against the Chitarrella-Saracino strategy both as

hand team and deck team.

6.5.5 Determinizators

In the last experiment, we tested the two methods that are used by ISMCTS

to determinize the root information set at each iteration. The Random

determinizator simply samples a state within the root information set, while

the Cards Guessing System (CGS) determinizator restricts the sample to the

states in which each player holds the cards guessed by the cards guessing

system. Since the cards guessing system is designed to take into account

the rules of the CS strategy, it does not make sense testing it against the

Greedy strategy. For this reason, we tested both the determinizators only

against CS. Figure 6.17 shows the comparison between the Random and

CGS determinizators, with ISMCTS playing both as hand team and deck

team. The results show that they are equivalent, but we believe that CGS

allows ISMCTS to avoid moves that bring the opponents to an easy scopa,

since with CGS it can predict the cards that the opponents might hold. For

this reason, we fixed it for the final tournament.

85

CHAPTER 6. EXPERIMENTS

Table 6.6: Final Tournament. In each section, the artificial intelligence used by the

hand team are listed at the left, while the ones used by the deck team are listed at the

bottom. The first section shows the percentage of wins of the hand team, the second

one shows the percentage of losses of the hand team, and the third one shows the

percentage of ties.

Winning rates of the hand team

Random 41.69% 3.25% 0.08% 1.26%

CS 90.87% 38.7% 2.78% 24.6%

MCTS 98.72% 83.08% 30.29% 75.52%

ISMCTS 94.2% 52.47% 3.87% 33.67%
Hand Team/Deck Team Random CS MCTS ISMCTS

Losing rates of the hand team

Random 45.71% 93.05% 99.56% 96.35%

CS 4.4% 46.6% 91.63% 62.11%

MCTS 0.31% 9.03% 51.94% 13.49%

ISMCTS 2.36% 34.72% 89.13% 52.63%
Hand Team/Deck Team Random CS MCTS ISMCTS

Tying rates

Random 12.6% 3.7% 0.36% 2.39%

CS 4.73% 14.7% 5.59% 13.29%

MCTS 0.97% 7.89% 17.77% 10.99%

ISMCTS 3.44% 12.81% 7% 13.7%
Hand Team/Deck Team Random CS MCTS ISMCTS

6.6 Final Tournament

In the last experiment, we performed a tournament between the random

strategy and the best AI resulting from the previous experiments: CS, the

best rule-based AI; MCTS with the Scores Difference rewards, the UCT

constant equals to 2, the Epsilon-Greedy Simulation strategy with ε = 0.3,

and the All Moves handler; ISMCTS with the Scores Difference rewards, the

ISUCT constant equals to 2, the Greedy Simulation strategy, the All Moves

handler, and the Cards Guessing System determinizator. In both the MCTS

and ISMCTS algorithms were used 1,000 iterations per move. Table 6.6

shows the results of this tournament, in which 1,000 games have been played

10 times in each match, for a total of 80,000 matches, and Table 6.7 shows the

final scoreboard. Unsurprisingly, playing at random is the worst strategy.

In fact, it loses the 82.52% of times and wins only the 12.38% of games, the

86

6.7. SUMMARY

Table 6.7: Scoreboard of the final tournament. It shows the percentage of wins, losses,

and ties each artificial intelligence did during the final tournament.

AI Wins Losses Ties

MCTS 77.48% 13.97% 8.54%

ISMCTS 51.1% 39.24% 9.67%

CS 42.54% 47.78% 9.68%

Random 12.38% 82.52% 5.1%

majority of them against itself. While, the best strategy is MCTS. In fact,

it wins the 77.48% of times and loses only the 13.97% of games, the majority

of them against itself. This was expected, since it is a cheating player and

it can see the cards of the other players. The comparison between CS and

ISMCTS is more interesting, since both of them have a partial knowledge of

the game state. ISMCTS wins the comparison, because it wins the 51.1%

of times and loses the 39.24% of games, against the 42.54% of wins and

the 47.78% of losses of the CS strategy. This is an important result, since

ISMCTS proved to be stronger than an AI encoding the rules written by

expert players of Scopone. Moreover, Figures 6.9 and 6.10 suggest that the

strength of ISMCTS can be improved by increasing the number of iterations

of the algorithm, since at 1,000 iterations the convergence has not been

reached yet. The results also confirm that the deck team has an advantage

over the hand team. Moreover, the advantage increases with the ability of

the player. In fact, if we consider the matches between the same AI (the

diagonal values of the tables), we find out that the winning rate of the hand

team decreases as the player’s strength increases: 41.69% of the random

strategy, 38.7% of CS, 33.67% of ISMCTS, and 30.29% of MCTS.

6.7 Summary

In this chapter, we discussed the experiments we performed to evaluate

the playing strength of the Artificial Intelligence (AI) we designed. The

first experiment showed that, by playing at random, the deck team has an

advantage over the hand team, and this results has been confirmed also

in the next experiments. Then, we did a tournament between the rule-

based AI and the Chitarrella-Saracino (CS) strategy turns out to be the

best one. In the next experiments, we selected the best optimizations for

the Monte Carlo Tree Search (MCTS) and Information Set Monte Carlo

Tree Search (ISMCTS) algorithms. The best MCTS configuration uses the

87

CHAPTER 6. EXPERIMENTS

Scores Difference rewards, the Upper Confidence Bounds for Trees constant

equals to 2, the Epsilon-Greedy Simulation strategy with ε = 0.3, and the

All Moves handler. While, the best ISMCTS configuration uses the Scores

Difference rewards, the Information Set Upper Confidence Bounds for Trees

constant equals to 2, the Greedy Simulation strategy, the All Moves handler,

and the Cards Guessing System determinizator. Finally, we performed a

tournament between the random strategy and the best AI resulting from

the previous experiments. The results confirmed that the deck team has an

advantage over the hand team and the advantage increases with the ability

of the player. MCTS obviously achieved the best performance, since it is

a cheating player, while the random strategy is clearly the worst one. The

important thing is that ISMCTS proved to be stronger than the CS strategy.

88

Chapter 7

Conclusions

This thesis aimed at designing a competitive Artificial Intelligence (AI) al-

gorithm for the card game of Scopone. In order to achieve this goal, we

developed three rule-based AI encoding the rules taken from well-known

strategy books of Scopone. The Greedy strategy simply captures the most

important cards on the table or plays the least important one held by the

player. The Chitarrella-Saracino (CS) strategy includes the rules taken from

the strategy books of Chitarrella [11] and Saracino [24] about the spariglio,

the mulinello, the play of double and triple cards, and the play of sevens.

The Cicuti-Guardamagna (CG) strategy is an extension of the CS AI, and

encodes the rules proposed by Cicuti and Guardamagna [12] about the play

of sevens. The experiments showed that CS is the best one, showing that

the additional rules for the play of sevens of CG do not increase the playing

strength.

Next, we designed different improvements of the Monte Carlo Tree Search

(MCTS) and Information Set Monte Carlo Tree Search (ISMCTS) algo-

rithms in order to select the best configuration for Scopone. We experi-

mented four reward methods: Normal Score (NS), it uses the score of each

team; Scores Difference (SD), it uses the difference between the score of the

teams; Win or Loss (WL), it uses 1 for a win, −1 for a loss, and 0 for a

tie; and Positive Win or Loss (PWL), it uses 1 for a win, 0 for a loss, and

0.5 for a tie. The best rewards method turned out to be SD, with an Upper

Confidence Bounds for Trees (UCT) constant equals to 2.

Then, we tested four simulation strategies: Random Simulation (RS),

it chooses a move at random; Greedy Simulation (GS), it chooses the move

selected by the Greedy strategy; Epsilon-Greedy Simulation (EGS), with

probability ε it chooses a move at random, otherwise it selects the move

chosen by the Greedy strategy; and Card Random Simulation (CRS), it plays

89

CHAPTER 7. CONCLUSIONS

a card at random, but the Greedy strategy decides which capturing move

to do in case there are more than one. The best simulation strategy turned

out to be EGS with ε = 0.3 for MCTS, and GS for ISMCTS. Probably,

ISMCTS is able to exploit all the game knowledge of the Greedy strategy

because both of thems do not know the cards of the other players. Whereas,

MCTS can also see the cards of the opponents and relying completely on

the Greedy strategy could direct the search in wrong areas of the tree.

We also experimented with four moves handlers to reduce the number of

moves available in each node: All Moves Handler (AMH), it generates all

the legal moves of a state; One Move Handler (OMH), it generates one move

for each card in the player’s hand and uses the Greedy strategy to choose

the cards to capture; One Card Handler (OCH), like OMH but the move

memorizes only the played card; and Greedy Opponents Handler (GOH),

when it is not the turn of the root player, it is generated only the move

chosen by the Greedy strategy. The experiments showed that AMH, OMH,

and OCH are equivalent, but AMH has the advantage to exploit all the

available moves. While, GOH is significantly stronger against the Greedy

strategy, but with the CS strategy turned out to be weaker. This is a case

of overfitting and it happens especially with MCTS. For these reasons, we

selected AMH as the best moves handler.

As last variation of the ISMCTS algorithm, we tested two determiniza-

tors: Random determinizator, it simply samples a state within the root

information set; Cards Guessing System (CGS) determinizator, it restricts

the sample to the states in which each player holds the cards guessed by the

cards guessing system. The two methods turned out to be equivalent, but we

believe that CGS allows ISMCTS to avoid moves that bring the opponents

to an easy scopa, since with CGS it can predict the cards that the opponents

might hold. For this reason, we selected it as the best determinizator.

Finally, we performed a tournament between the random strategy, CS,

MCTS, and ISMCTS. The results confirmed that the deck team has an

advantage over the hand team and the advantage increases with the ability

of the player. MCTS obviously achieved the best performance, since it

is a cheating player, while the random strategy is clearly the worst one.

The important thing is that ISMCTS proved to be stronger than the CS

strategy. This confirms that the ISMCTS algorithm is very effective and

deserves further research on this topic.

As result of this thesis, we developed an application, using the game

engine Unity, that we plan to release for Android and iOS. With the ap-

plication, the user can play Scopone against the AI that we developed and

compile a survey about the perceived playing strength and the human be-

90

7.1. FUTURE RESEARCH

havior of the AI.

7.1 Future research

There are several areas for potential future research. For instance, the CS

and CG strategies do not include all the rules written in the corresponding

books, but only the most important of them. Encoding additional rules

might increase the playing strength of the AI and provide a better model

of an expert player. Moreover, the priority of the rules can be adjusted

to provide better results, for instance one might use a genetic algorithm to

assign them.

An enhancement for the MCTS and ISMCTS algorithms might be to

use the CS AI as simulation strategy. We showed that the Greedy strategy,

used in the simulation step, increased the playing strength of the algorithm,

therefore using a better AI like CS might increase the performance. Another

improvements might be related to the moves handler. We showed that gen-

erating only the moves chosen by the Greedy strategy did not provide good

results. However, using the CS strategy or trying to remove some moves

that are worst for sure, might improve the playing strength of the algo-

rithm. Furthermore, we did not experiment some well-known enhancements

of the MCTS algorithm, like AMAF or RAVE [10], that have proved very

successful for Go. Finally, during the experiments we performed, we have

also collected useful data about the points that each AI achieved during

a game. Future research might study this data in order to discover some

interesting patterns in the points that each AI achieves.

91

CHAPTER 7. CONCLUSIONS

92

Appendix A

The Applications

In this appendix we show the main features of the two versions of the ap-

plication we developed for this thesis: one to do the experiments, and one

to let the users play it.

A.1 The Experiments Framework

In order to do the experiments we need for this work, we developed a con-

sole application written in C# with the Microsoft Integrated Development

Environment (IDE) Visual Studio 2013. We designed the framework in such

a way that it is easy to use it also with other games. For this purpose, we

defined two interfaces:

• IGameState: it represents the state of a game and includes methods

to get the available moves, apply a move, check if it is a terminal state,

get the scores fo the game, know the last player to move, clone the

state, and get a simulation move.

• IGameMove: it represents a move of the game. It does not define

any particular method because the moves of different games can be

very different. We need only to test if a move is equal to another one,

but this is already provided by the Object interface by overriding the

Equals method.

Then, we implemented these interfaces with the classes SoponeGameState

and ScoponeMove. We also want that the informations in the nodes of the

tree are not fixed, such that one can implement its variant of the Monte

Carlo Tree Search (MCTS) algorithm, and not just use the standard Upper

Confidence Bounds for Trees (UCT) algorithm. For this reason, we defined

other two interfaces:

93

APPENDIX A. THE APPLICATIONS

• ITreeNode: it represents a node of the MCTS algorithm. It defines

methods to add a child, get the parent node, get the incoming move

and the player who did it, select the next node to visit, select one of

the untried move, update the informations inside the node, and get the

best move connecting its children. An ITreeNode creation requires in

input the associated IGameState, IGameMove, and the parent ITreeN-

ode. Then, instead of storing the state, it memorizes the legal moves

from that state and it will select one of them when an expansion is

needed.

• ITreeNodeCreator : it provides a method to generate the root of a

tree. It allows the MCTS algorithm to be independent by the actual

implementation of the ITreeNode interface.

We provided the UCT implementation of these interfaces with the classes

UCTTreeNode and UCTTreeNodeCreator. The class MCTSAlgorithm imple-

ments the general MCTS algorithm that relies on the previous interfaces.

The code is shown in Source Code A.1.

Source Code A.1: Monte Carlo Tree Search algorithm implementation

1 public IGameMove Search (IGameState rootState , int i t e r a t i o n s)

2 {
3 ITreeNode rootNode = treeCrea to r . GenRootNode (roo tS ta t e) ;

4 for (int i = 0 ; i < i t e r a t i o n s ; i++) {
5 ITreeNode node = rootNode ;

6 IGameState s t a t e = roo tS ta t e . Clone () ;

7

8 // Se l e c t

9 while (! node . HasMovesToTry () && node . HasChildren ()) {
10 node = node . S e l e c tCh i l d () ;

11 s t a t e .DoMove(node .Move) ;

12 }
13

14 // Expand

15 i f (node . HasMovesToTry ()) {
16 IGameMove move = node . SelectUntriedMove () ;

17 s t a t e .DoMove(move) ;

18 node = node . AddChild (move , s t a t e) ;

19 }
20

21 // Ro l l ou t

22 while (! s t a t e . I sTerminal ()) {
23 s t a t e .DoMove(s t a t e . GetSimulationMove ()) ;

24 }
25

26 // Backpropagate

27 while (node != null) {
28 node . Update (s t a t e . GetResult (node . PlayerWhoJustMoved)) ;

29 node = node . Parent ;

30 }

94

A.1. THE EXPERIMENTS FRAMEWORK

31 }
32

33 return rootNode . GetBestMove () ;

34 }

For the Information Set Monte Carlo Tree Search (ISMCTS) algorithm,

the things are a little bit different. The game state also need a method to

clone and randomize it from the point of view of a given player, we need

it to create a determinization of the state. Therefore, we created the inter-

face IISGameState that extends IGameState and adds this method. Also the

interface of the node must change, for this purpose we created the inter-

faces IISTreeNode and IISTreeNodeCreator. Since the node of the ISMCTS

tree represents an information set, i.e. a set of states, storing all the states

or the current determinization does not make sense. For this reason, some

methods defined in IISTreeNode take in input the current determinization in

order to calculate the current available moves when they are needed. Also in

this case, we provide the Information Set Upper Confidence Bounds for Trees

(ISUCT) implementation of these interfaces with the classes ISUCTTreeN-

ode and ISUCTTreeNodeCreator. The class ISMCTSAlgorithm implements

the general ISMCTS algorithm that uses the previous interfaces. The code

is shown in Source Code A.2.

Source Code A.2: Information Set Monte Carlo Tree Search algorithm implementation

1 public IGameMove Search (IISGameState rootState , int i t e r a t i o n s)

2 {
3 IISTreeNode rootNode = treeCrea to r . GenRootNode (roo tS ta t e) ;

4 for (int i = 0 ; i < i t e r a t i o n s ; i++) {
5 IISTreeNode node = rootNode ;

6 IISGameState s t a t e =

7 roo tS ta t e . CloneAndRandomize (roo tS ta t e . PlayerToMove ()) ;

8

9 // Se l e c t

10 while (! node . HasMovesToTry (s t a t e) && node . HasChildren ()) {
11 node = node . S e l e c tCh i l d (s t a t e) ;

12 s t a t e .DoMove(node .Move) ;

13 }
14

15 // Expand

16 i f (node . HasMovesToTry (s t a t e)) {
17 IGameMove move = node . SelectUntriedMove (s t a t e) ;

18 s t a t e .DoMove(move) ;

19 node = node . AddChild (move , s t a t e) ;

20 }
21

22 // Ro l l ou t

23 while (! s t a t e . I sTerminal ()) {
24 s t a t e .DoMove(s t a t e . GetSimulationMove ()) ;

25 }
26

27 // Backpropagate

95

APPENDIX A. THE APPLICATIONS

28 while (node != null) {
29 node . Update (s t a t e . GetResult (node . PlayerWhoJustMoved)) ;

30 node = node . Parent ;

31 }
32 }
33

34 return rootNode . GetBestMove () ;

35 }

In order to easily implement the variants of the MCTS and ISMCTS

algorithms we proposed for Scopone (Chapter 5), we made the class So-

poneGameState take in input four components:

• IScoponeSimulationStrategy : it is responsible to generate a simulation

move from the state according to a fixed strategy.

• IScoponeMovesHandler : it generates the available moves of the state

or a subset of them.

• IScoponeRewardsMethod : it returns the result of the state.

• IScoponeDeterminizator : it is responsible to generate a determiniza-

tion of the state.

This allows us to select which variant of the algorithm to use by simply

passing to the algorithm a SoponeGameState initialized with the desired

components.

A.2 The User Application

In order to let the user play with our Artificial Intelligence (AI), we de-

veloped a user application with the cross-platform game creation system

Unity. It includes a game engine and the open-source IDE MonoDevelop.

The game engine’s scripting is built on Mono, the open-source implementa-

tion of .NET Framework. It provides a number of libraries written in C#,

Javascript, and Boo in order to manage graphics, physics, sound, network,

and inputs of a game. One of the greatest advantages of Unity is that it

allows the deployment of the same code on several platforms. In fact, it is

able to build an application for Windows, Mac OS X, Linux, iOS, Android,

BlackBerry, Windows Phone, web browsers, and game consoles. With the

recent versions, it allows also to develop a 2D game by means of dedicated

libraries and components. For the development of our game we used Unity

4.5.5 with the C# programming language, so that we can use the same code

we created for the console application.

96

A.2. THE USER APPLICATION

Figure A.1: Menu of the user application

The application starts with a menu (Figure A.1) where you can choose

to continue a previous game, start a new game, start a multiplayer session,

change the settings, or see the credits. In the settings menu you can change

the amount of points to win a game, change the speed of the cards’ anima-

tion, and change the time that the card, chosen by the AI, freezes before

proceeding with the move’s animation. If one chooses to start a new game, it

will be displayed the AI selection screen, where one can select the AI used by

the teammate and the opponents. Then, the round begin with the distribu-

tion of the cards. The dealer is chosen randomly and your cards are always

at the south position on the screen. During the round (Figure A.2), an icon

with two rotating gears is shown on the cards of the player that is thinking

on the move to do. When it is your turn, you can just touch the card you

want to play and the system will automatically select the captured cards. If

more than one combination of captured cards is possible, you have also to

touch the cards you want to capture; at each touch, the system will filter

out all the combinations that do not include the selected card, until only one

combination remains. When the round is finished, the scores and the teams’

pile are displayed, and eventually the winner is elected (Figure A.3). The

state of the game is saved automatically at each player move, in such a way

that, if one exits from the application, then it can continue the game from

the point where it left it. In order to collect useful data about the AI, at

the end of a game, a survey is displayed and the user can send us its opinion

about the AI. By starting a multiplayer session, the program searches for

97

APPENDIX A. THE APPLICATIONS

Figure A.2: Round of the user application

Figure A.3: Scores at the end of a round of the user application

98

A.2. THE USER APPLICATION

available servers registered on a master server. If no server is found, then

the program starts a server itself and registers it to the master server. Once

all the four players are connected, the game starts and proceeds as usual.

99

APPENDIX A. THE APPLICATIONS

100

Bibliography

[1] Chess programming. http://chessprogramming.wikispaces.com.

[2] History of ai. http://www.alanturing.net/turing_archive/pages/

Reference%20Articles/BriefHistofComp.html.

[3] Broderick Arneson, Ryan B Hayward, and Philip Henderson. Monte

carlo tree search in hex. Computational Intelligence and AI in Games,

IEEE Transactions on, 2(4):251–258, 2010.

[4] Computer Go Group at the University of Alberta. Fuego. http://

fuego.sourceforge.net/.

[5] Franco Bampi. Scopone: Le regole dei maestri. http:

//www.francobampi.it/franco/ditutto/scopone/regole_dei_

maestri.htm.

[6] Paul M Bethe. The state of automated bridge play. January 2010.

[7] Darse Billings, Aaron Davidson, Jonathan Schaeffer, and Duane

Szafron. The challenge of poker. Artificial Intelligence, 134(1):201–

240, 2002.

[8] Ronald Bjarnason, Alan Fern, and Prasad Tadepalli. Lower bounding

klondike solitaire with monte-carlo planning. In ICAPS, 2009.

[9] Bruno Bouzy and Tristan Cazenave. Computer go: an ai oriented

survey. Artificial Intelligence, 132(1):39–103, 2001.

[10] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M

Lucas, Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego

Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte

carlo tree search methods. Computational Intelligence and AI in

Games, IEEE Transactions on, 4(1):1–43, 2012.

101

http://chessprogramming.wikispaces.com
http://www.alanturing.net/turing_archive/pages/Reference%20Articles/BriefHistofComp.html
http://www.alanturing.net/turing_archive/pages/Reference%20Articles/BriefHistofComp.html
http://fuego.sourceforge.net/
http://fuego.sourceforge.net/
http://www.francobampi.it/franco/ditutto/scopone/regole_dei_maestri.htm
http://www.francobampi.it/franco/ditutto/scopone/regole_dei_maestri.htm
http://www.francobampi.it/franco/ditutto/scopone/regole_dei_maestri.htm

BIBLIOGRAPHY

[11] Chitarrella. Le regole dello scopone e del tressette. Fuori collana.

Dedalo, 2002.

[12] A. Cicuti and A. Guardamagna. I segreti dello scopone. I giochi. Giochi

vari. Ugo Mursia Editore, 1978.

[13] UK. Computational Creativity Group (CCG) of the Department of

Computing, Imperial College London. Monte carlo tree search. http:

//mcts.ai/about/index.html.

[14] Peter I Cowling, Edward J Powley, and Daniel Whitehouse. Informa-

tion set monte carlo tree search. Computational Intelligence and AI in

Games, IEEE Transactions on, 4(2):120–143, 2012.

[15] Peter I Cowling, Colin D Ward, and Edward J Powley. Ensemble de-

terminization in monte carlo tree search for the imperfect information

card game magic: The gathering. Computational Intelligence and AI

in Games, IEEE Transactions on, 4(4):241–257, 2012.

[16] Ian Frank and David Basin. Search in games with incomplete infor-

mation: a case study using bridge card play. Artificial Intelligence,

100(1–2):87 – 123, 1998.

[17] Sylvain Gelly and David Silver. Monte-carlo tree search and rapid

action value estimation in computer go. Artificial Intelligence,

175(11):1856–1875, 2011.

[18] Matthew L Ginsberg. Gib: Imperfect information in a computationally

challenging game. J. Artif. Intell. Res.(JAIR), 14:303–358, 2001.

[19] Wan Jing Loh. Ai mahjong. 2009.

[20] Jeffrey Richard Long, Nathan R Sturtevant, Michael Buro, and Tim-

othy Furtak. Understanding the success of perfect information monte

carlo sampling in game tree search. In AAAI, 2010.

[21] JAM Nijssen and Mark HM Winands. Monte-carlo tree search for

the game of scotland yard. In Computational Intelligence and Games

(CIG), 2011 IEEE Conference on, pages 158–165. IEEE, 2011.

[22] Marc JV Ponsen, Geert Gerritsen, and Guillaume Chaslot. Integrating

opponent models with monte-carlo tree search in poker. In Interactive

Decision Theory and Game Theory, 2010.

102

http://mcts.ai/about/index.html
http://mcts.ai/about/index.html

BIBLIOGRAPHY

[23] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall series in artificial intelligence. Prentice Hall, 2010.

[24] G. Saracino. Lo scopone scientifico con le regole di Chitarella. Ugo

Mursia Editore, 2011.

[25] Frederik Christiaan Schadd. Monte-carlo search techniques in the mod-

ern board game thurn and taxis. M. sc, Maastricht University, Nether-

lands, 2009.

[26] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto,

Martin Müller, Robert Lake, Paul Lu, and Steve Sutphen. Checkers is

solved. science, 317(5844):1518–1522, 2007.

[27] Jonathan Schaeffer, Robert Lake, Paul Lu, and Martin Bryant. Chinook

the world man-machine checkers champion. AI Magazine, 17(1):21,

1996.

[28] Federazione Italiana Gioco Scopone. Figs website. http://www.

federazionescopone.it/.

[29] Brian Sheppard. World-championship-caliber scrabble. Artificial Intel-

ligence, 134(1):241–275, 2002.

[30] Stephen J Smith, Dana Nau, and Tom Throop. Computer bridge: A

big win for ai planning. Ai magazine, 19(2):93, 1998.

[31] Daniel Whitehouse, Peter I Cowling, Edward J Powley, and Jeff Rolla-

son. Integrating monte carlo tree search with knowledge-based methods

to create engaging play in a commercial mobile game. In AIIDE, 2013.

[32] Wikipedia. Arthur samuel — wikipedia, the free encyclopedia, 2014.

http://en.wikipedia.org/w/index.php?title=Arthur_Samuel.

[33] Wikipedia. Artificial intelligence (video games) — wikipedia, the free

encyclopedia, 2014. http://en.wikipedia.org/w/index.php?title=

Artificial_intelligence_(video_games).

[34] Wikipedia. Chess — wikipedia, the free encyclopedia, 2014. http:

//en.wikipedia.org/w/index.php?title=Chess.

[35] Wikipedia. Computer chess — wikipedia, the free encyclopedia, 2014.

http://en.wikipedia.org/w/index.php?title=Computer_chess.

[36] Wikipedia. Computer othello — wikipedia, the free encyclopedia, 2014.

http://en.wikipedia.org/w/index.php?title=Computer_Othello.

103

http://www.federazionescopone.it/
http://www.federazionescopone.it/
http://en.wikipedia.org/w/index.php?title=Arthur_Samuel
http://en.wikipedia.org/w/index.php?title=Artificial_intelligence_(video_games)
http://en.wikipedia.org/w/index.php?title=Artificial_intelligence_(video_games)
http://en.wikipedia.org/w/index.php?title=Chess
http://en.wikipedia.org/w/index.php?title=Chess
http://en.wikipedia.org/w/index.php?title=Computer_chess
http://en.wikipedia.org/w/index.php?title=Computer_Othello

BIBLIOGRAPHY

[37] Wikipedia. Contract bridge — wikipedia, the free encyclopedia, 2014.

http://en.wikipedia.org/w/index.php?title=Contract_bridge.

[38] Wikipedia. Deep blue (chess computer) — wikipedia, the free encyclo-

pedia, 2014. http://en.wikipedia.org/w/index.php?title=Deep_

Blue_(chess_computer).

[39] Wikipedia. Game complexity — wikipedia, the free encyclopedia, 2014.

http://en.wikipedia.org/w/index.php?title=Game_complexity.

[40] Wikipedia. Maven (scrabble) — wikipedia, the free encyclopedia, 2014.

http://en.wikipedia.org/w/index.php?title=Maven_(Scrabble).

[41] Wikipedia. Scopa — wikipedia, the free encyclopedia, 2014. http:

//en.wikipedia.org/w/index.php?title=Scopa.

[42] Wikipedia. Solved game — wikipedia, the free encyclopedia, 2014.

http://en.wikipedia.org/w/index.php?title=Solved_game.

104

http://en.wikipedia.org/w/index.php?title=Contract_bridge
http://en.wikipedia.org/w/index.php?title=Deep_Blue_(chess_computer)
http://en.wikipedia.org/w/index.php?title=Deep_Blue_(chess_computer)
http://en.wikipedia.org/w/index.php?title=Game_complexity
http://en.wikipedia.org/w/index.php?title=Maven_(Scrabble)
http://en.wikipedia.org/w/index.php?title=Scopa
http://en.wikipedia.org/w/index.php?title=Scopa
http://en.wikipedia.org/w/index.php?title=Solved_game

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Source Codes
	Acknowledgements
	Abstract
	Sommario
	Estratto
	Introduction
	Original Contributions
	Thesis Outline

	Artificial Intelligence in Board and Card Games
	Artificial Intelligence in Board Games
	Checkers
	Chess
	Go
	Other Games

	Minimax
	Artificial Intelligence in Card Games
	Bridge
	Poker
	Mahjong

	Monte Carlo Tree Search
	State of the art
	The Algorithm
	Upper Confidence Bounds for Trees
	Benefits
	Drawbacks

	Monte Carlo Tree Search in Games with Imperfect Information
	Determinization technique
	Information Set Monte Carlo Tree Search

	Summary

	Scopone
	History
	Cards
	Game Rules
	Dealer Selection
	Cards Distribution
	Gameplay
	Scoring

	Variants
	Scopone a 10
	Napola
	Scopa d'Assi or Asso piglia tutto
	Sbarazzino
	Rebello
	Scopa a 15
	Scopa a perdere

	Summary

	Rule-Based Artificial Intelligence for Scopone
	Greedy Strategy
	Chitarrella-Saracino Strategy
	The Spariglio
	The Mulinello
	Double and Triple Cards
	The Play of Sevens
	The Algorithm

	Cicuti-Guardamagna Strategy
	The Rules
	The Algorithm

	Summary

	Monte Carlo Tree Search algorithms for Scopone
	Monte Carlo Tree Search Basic Algorithm
	Information Set Monte Carlo Tree Search Basic Algorithm
	Reward Methods
	Simulation strategies
	Reducing the number of player moves
	Determinization with the Cards Guessing System
	Summary

	Experiments
	Experimental Setup
	Random Playing
	Rule-Based Artificial Intelligence
	Monte Carlo Tree Search
	Reward Methods
	Upper Confidence Bounds for Trees Constant
	Simulation strategies
	Reducing the number of player moves

	Information Set Monte Carlo Tree Search
	Reward Methods
	Upper Confidence Bounds for Trees Constant
	Simulation strategies
	Reducing the number of player moves
	Determinizators

	Final Tournament
	Summary

	Conclusions
	Future research

	The Applications
	The Experiments Framework
	The User Application

	Bibliography

