
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell'Informazione

Corso di Laurea in Ingegneria Informatica

FACE RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS ON LOW POWER ARCHITECTURES

Relatore: Prof. Marco TAGLIASACCHI

Correlatore: Ing. Luca BAROFFIO

Tesi di Laurea di:

Luca BONDI

Matr. 797195

Anno Accademico 2013 / 2014

Contents

List of Figures 4

List of Tables 5

Abbreviations 6

Sommario 7

Abstract 8

1 Review of the State of the Art 12

1.1 Visual Sensor Networks . 12

1.1.1 RaspberryPi . 16

1.2 Convolutional Neural Networks for Face Recognition 18

1.2.1 Filter-bank correlation . 20

1.2.2 Activation . 21

1.2.3 Local pooling . 21

1.2.4 Local normalization . 22

1.3 The PubFig83 dataset . 23

1.3.1 Accuracy evaluation protocol . 23

2 Time-accuracy optimization 26

2.1 Three-Layers CNN performance and simplification 27

2.2 Stage-wise Dual-Layers CNN optimization 28

2.2.1 Model search: First step . 29

2.2.2 Model search: Second step . 30

2.2.3 Model search: Third step . 31

2.2.4 Model search: Fourth step . 32

2.2.5 Model search: Fifth step . 33

2.3 Dual-Layers CNN optimal model . 35

3 Rate-accuracy tradeoff 37

3.1 PCA based dimensionality reduction . 37

3.1.1 PCA dimensionality reduction through SVD 37

3.1.2 Dimensionality reduction . 38

2

Contents 3

3.2 Features quantization and coding . 39

4 Analyze-Then-Compress vs. Compress-Then-Analyze 43

4.1 CTA approach . 43

4.2 ATC vs. CTA . 44

5 Conclusions and future work 46

List of Figures

1.1 A Visual Sensor Network schema from [1] 12

1.2 Sensor node schema . 13

1.3 Camera modules for RaspberryPi and BeagleBone platforms 14

1.4 Examples of sensor nodes for Visual Sensor Networks 15

1.5 RaspberryPi Model B . 16

1.6 Wireless USB and UART adapters for RaspberryPi 18

1.7 CNN Layer 0: image transformation . 19

1.8 CNN: feature maps transformation . 19

1.9 PubFig83 aligned sample images . 24

1.10 SVM one-vs-all example: Each line represents the separating hyperplane
generated by a binary linear SVM trained with the samples of the same
color of the line labeled +1 and all the others labeled -1 25

2.1 First model search: results . 29

2.2 Second model search: results . 31

2.3 Third model search: results . 32

2.4 Fourth model search: results . 33

2.5 Fifth model search: results . 34

2.6 Dual layer model search results . 35

3.1 PCA based dimensionality reduction: impact on the rate-accuracy plane . 38

3.2 PCA dimensionality reduction, quantization and entropy coding: impact
on the rate-accuracy plane . 41

4.1 Analyze-Then-Compress vs. Compress-Then-Analyze 45

4

List of Tables

2.1 fg11-ht-l3-1 model: parameters . 26

2.2 fg11-ht-l3-1 model: time profiling . 27

2.3 fg11-ht-l2-s1 model: time profiling . 28

2.4 First model search: selected models . 29

2.5 fg11-ht-l2-s2 model: parameters . 30

2.6 Second model search: selected models . 30

2.7 fg11-ht-l2-s3 model: parameters . 31

2.8 Third model search: selected model . 32

2.9 fg11-ht-l2-s4 model: parameters . 33

2.10 fg11-ht-l2-s5 model: parameters . 34

2.11 fg11-ht-l2-opt model: parameters . 35

2.12 Dual layer pseudo-optimal model: time profiling 36

3.1 Dual layer pseudo-optimal model: the effect of PCA based dimensionality
reduction on rate and accuracy . 39

3.2 Dual layer pseudo-optimal model: the effect of quantization and entropy
coding after PCA based dimensionality reduction on rate and accuracy . . 42

4.1 JPEG 100 x 100 greyscale face image size at different quality factors . . . 44

5

Abbreviations

VSN Visual Sensor Network

CNN Convolutive Neural Network

SVD Singular Values Decomposition

KLT Karhunen Loève Transform

PCA Principal Component Analysis

ATC Analyze Then Compress

CTA Compress Then Analyze

SVM Support Vector Machine

SoC System on a Chip

SDRAM Synchronous Dynamic Random Access Memory

UART Universal Asynchronous Receiver Transmitter

SPI Serial Peripheral Interface

I2C Inter Integrated Circuit

I2S Integrated Interchip Sound

CSI Camera Serial Interface

DSI Display Serial Interface

GPIO General Purpose Input Output

DMA Direct Memory Access

GPU Graphical Processing Unit

DSP Digital Signal Processor

VFP Vector Floating-Point

6

Sommario

La crescente diffusione di dispositivi integrati a basso consumo alimentati a batteria, sia

in ambito industriale che scientifico, richiede lo sviluppo di algoritmi di visione artifi-

ciale energeticamente efficienti. Gli stessi dispositivi integrati sono inoltre generalmente

utilizzati in ambienti problematici, nei quali la larghezza di banda per le comunicazioni

risulta fortemente limitata.

Lo stato dell’arte nell’ambito del riconoscimento facciale è rappresentato da algoritmi

basati su Reti Neurali Convolutive. Su diversi dataset di volti, fotografati in condizioni

ambientali non controlalte, le Reti Neurali Convolutive si sono dimostrate accurate

quanto gli esseri umani nel riconoscimento di volti. Applicazioni quali l’autenticazione

basata sul volto, il tracciamento degli individui e la sorveglianza a scopi militari possono

trarre beneficio da dispositivi integrati, portabili ed autonomi capaci di riconoscere ac-

curatamente un volto con il minor dispendio possibile di energia, anche in condizioni di

comunicazione particolarmente avverse.

Questo lavoro ha l’obiettivo di ottimizzare l’implementazione esistente di una Rete Neu-

rale Convolutiva per il riconoscimento facciale al fine di incontrare le necessità dei dis-

positivi a bassa potenza alimentati a batterie, anche quando operano in condizioni am-

bientali estreme. La Rete Neurale Convolutiva di partenza viene prima semplificata al

fine di ottenerne una versione con un tempo di esecuzione ridotto, ma che allo stesso

tempo consenta di mantenere un alto livello di accuratezza. Una architettura di codi-

fica ad-hoc viene quindi sviluppata per comprimere le dimensioni dei dati estratti dalla

Rete Convolutiva e mostrare che, anche in condizioni di comunicazione particolarmente

difficili, la perdita in termini di accuratezza è minima.

Abstract

The growing diffusion of battery operated low-power computing platforms, both in indus-

trial and scientific environments, calls for the development of energy efficient algorithms

for a variety of computer vision applications. Furthermore, these pervasive devices are

usually operated in challenging environments, where communications are strongly lim-

ited in bandwidth.

The state of the art in face recognition field is represented by Convolutional Neural

Networks based algorithms. Convolutional Neural Networks are as accurate as humans

on a variety of challenging faces datasets, whose pictures are taken with no constraints

on environmental conditions. Applications as face-based authentication, people tracking

and military surveillance can benefit of pervasive, portable and autonomous devices

capable of performing accurate face recognition with a small amount of energy, even

when networking conditions are awful.

This work aims at optimizing an existing Convolutional Neural Network implementation

for face recognition to suit the needs of battery operated low-power devices, even when

operating in difficult environmental conditions. The existing CNN is first simplified to

obtain a faster execution algorithm with the minimum possible loss in recognition accu-

racy. An ad-hoc coding architecture is then developed to compress the output features

of the fast CNN and show that, even with a very limited bandwidth, the recognition

accuracy loss is negligible.

Introduction

In the field of computer vision, automatic face recognition is a task that has received

attention since the 60s with Bledsoe [2] and in the 70s with Kanade [3], mainly focusing

on the idea of finding a model for faces based on points and relationships between them.

These techniques were shown to be too sensitive to changes in image conditions. In the

80s Sirovich and Kirby proposed Eigenfaces [4] a compact KLT based representation

of human faces. Based on this work, in the 90s Turk and Pentland [5] developed a

computationally efficient face tracking and recognition system with images acquired in

a controlled environment.

In the last decade a number of face recognition datasets [6], [7], [8] have been cre-

ated to challenge the development of robust algorithms capable of recognizing faces in

unconstrained natural environments. Different methods based on high dimensionality

handcrafted features have been proposed in the last years [9], [10], together with alter-

native methods based on Convolutional Neural Networks and Deep Learning techniques

[11], [12]. Deep Convolutional Neural Networks have been proven to perform at the

same level as humans in terms of face recognition accuracy [13].

A number of applications could benefit from the development of energy efficient face

recognition algorithms, able to run on low-power devices: access control, privacy-critical

video surveillance, people tracking, military surveillance. Moving the computational

effort of detecting and recognizing faces from a centralized node directly to the camera

that acquires the images, allows to avoid bandwidth expensive image or video streaming

and reduces the risk of privacy violations due to network intrusions.

9

Introduction 10

The growing number of low-power pervasive computing platforms available nowadays in

industrial and scientific applications enforces the development of distributed intelligence

Visual Sensor Networks.

A basic Visual Sensor Network consists of a group of nodes, each equipped with a low

power embedded processor, an energy source, one or more image sensors and a network

adapter for communications [14]. These low power sensor nodes send data to a powerful

central node, the sink, which takes care of collecting and processing all the data coming

from the sensor nodes or even from other VSNs.

In a traditional VSN a sensor node is used to acquire an image or a video, compress

it - resorting to JPEG or H.264/AVC - and send it to a sink node through a network

infrastructure. The whole elaboration process takes place in the sink node, where fea-

tures are first extracted from the compressed image or video and then used for specific

applications. This workflow is known as Compress-Then-Analyze.

Conversely the Analyze-Then-Compress paradigm [15] proposes another working schema:

features extraction is performed directly on sensor nodes and a compact representation

of the features is sent to the sink node. This kind of approach is known to be the only

feasible way when the available network bandwidth is very limited [16] or when, due to

privacy issues, the original signals can’t be sent through a network infrastructure. The

ATC paradigm also reduces the load at the sink node, thus reducing the cost of the

node or allowing more sensor nodes to send data to a single sink node sharing a limited

bandwidth communication channel.

Following the idea of the ATC approach, a sensor node could even operate independently

from the sink node in all those situations in which, once the training phase of the system

is completed at the sink node, a compact library of reference features is sent to each

sensor node and is directly used to classify the future signals collected during sensor

operations.

The present work shows one possible way to scale and optimize an existing Convolu-

tional Neural Network for Face Recognition with the goal of execute it on a low power

Introduction 11

computing platform, taking care of reducing the execution time and the amount of data

sent to the sink node, while keeping the highest possible accuracy on the task.

Chapter 1 recaps the State of the Art on Visual Sensor Networks and Convolutional

Neural Networks for Face Recognition. The PubFig83 reference dataset and the Rasp-

berryPi platform used in this work are introduced.

Chapter 2 describes in details the method used to reduce and simplify an existing CNN

model for facial feature extraction to suit the computational requirements of a low-power

computing platform, while preserving the highest possible accuracy on the recognition

task.

Chapter 3 shows the development of an ad-hoc coding architecture meant to significantly

reduce the rate needed to send the extracted facial features to the sink node, always

investigating the impact on task accuracy.

Chapter 4 compares the Analyze-Then-Compress and Compress-Then-Analyze paradigms

with respect to the original and the simplified CNN models, showing that the ATC

approach is highly competitive with the CTA approach, even in non rate-constrained

network conditions.

Finally in Chapter 5 conclusions are drawn and some future works are proposed to

continue the investigation on energy and rate efficients algorithms for face and object

recognition.

Chapter 1

Review of the State of the Art

1.1 Visual Sensor Networks

A basic Visual Sensor Network consists of

• tiny, battery-operated, visual sensor nodes that integrate an image sensor, an

embedded processor and a wireless transceiver

• powerful sink nodes, collecting and processing data from the sensor nodes

Figure 1.1: A Visual Sensor Network schema from [1]

Some applications of Visual Sensor Networks are [17]:

12

Chapter 1. State of the Art 13

• public and commercial surveillance: VSNs may be used for monitoring public

places such as parks, department stores, transport systems, and production sites

for infrastructure malfunctioning, accident detection, and crime prevention

• environmental and building monitoring: VSNs are a solution for early detection of

landslides, fires, or damages in mountain coasts, historical and archaeological sites

• military surveillance: VSNs can be employed in patrolling national borders, mea-

suring flow of refugees, and assisting battlefield command and control

• smart homes and meeting rooms: VSNs can provide continuous monitoring of

kindergarten, patients, or elderly requiring special care. This helps to measure the

effectiveness of medical treatments and to detect earlier harmful situations.

Sensor node

Processing
module

Camera
module

Power
module

Wireless
module

Storage
module

Figure 1.2: Sensor node schema

A sensor node in a VSN is typically composed of an image sensing module, a processing

module, a storage module, a wireless communication module, and a power module (figure

1.2). The design of a node depends on the type of components and the way they are

interconnected. Some off-the-shelf platforms offer all the system components in a single

board, while modular systems are composed of a main board, containing the processing

module, to which all the other modules (batteries, energy harvesting modules, digital

cameras, wireless transceivers) are connected.

Digital camera modules are typically built with Complementary Metal–Oxide–Semiconductor

(CMOS) imaging sensor. Although Charge-Coupled Device (CCD) components were the

first used image capture technology, in the last decade CMOS sensors officially surpassed

them as the overall image capture technology of choice, especially for challenging envi-

ronments. This is mainly due to the low power consumption of CMOS (one tenth of

Chapter 1. State of the Art 14

CCD), low cost, and easy integration of all camera functions on a single chip, signifi-

cantly reducing chip count and board space. Moreover, CMOS sensors offer the same

or better sensitivity compared to CCDs.

Figure 1.3: Camera modules for RaspberryPi and BeagleBone platforms

Processing modules are divided in three main categories. Some nodes are equipped with

relatively powerful General Purpose Processor and large storage components (directly

on the processing module or as separate storage modules) to achieve high performance.

The drawback is the high energy dissipation, in the order of several Watts. Other

nodes use lightweight microcontrollers (MCU) and specialized reconfigurable hardware

components to address critical parts, as Complex Programmable Logic Devices (CPLD)

or Field Programmable Gate Array (FPGA). The last type of nodes uses 32-bit low

power processors (less than 1W) operating at relatively high frequencies.

Popular wireless technologies available for different bandwidth requirements, distance

range, price, network topology are, power consumption:

• Bluetooth - IEEE 802.15.1: up to 230.4 Kbps, low power consumption

• ZigBee or similar - IEEE 802.15.4: up to 250 Kbps, low power consumption

• WiFi - IEEE 802.11: up to 150Mbps depending on the standard, high power

consumption

Energy modules are typically made of battery packs. Energy harvesting techniques

are used to convert different forms of ambient energy (solar power, thermal energy,

wind energy, kinetic energy) into electricity to power pervasive devices. However only

Chapter 1. State of the Art 15

photovoltaic technologies in good environmental conditions are able to give the necessary

amount of power for visual sensor nodes to operate without battery draining.

Cyclops: Low power 8-bit ATMEL ATmega12 RISC MCU with TinyOS [18]

Vision Mote : Medium power 32-bit Atmel 9261 ARM 9 CPU with Linux OS [19]

Panoptes: High power Intel StrongARM 206 MHz with Linux OS [20]

Figure 1.4: Examples of sensor nodes for Visual Sensor Networks

From the software side, sensor nodes may run general purpose OS, application specific OS

or no OS at all. Linux, together with its distributions, is a widespread general purpose

OS for VSNs nodes. It provides flexibility to modify its components to fit the application

needs. Programming and prototyping is easy at a greater expense of energy due to OS

overhead compared to application specifics OS. TinyOS and Nano-RK are two examples

of VSN specific OS, requiring minimal hardware to run. Some sensors could even have

no OS at all, with a finite state machine firmware that performs resource management.

This kind of approach has great performance but requires a longer development time.

Chapter 1. State of the Art 16

1.1.1 RaspberryPi

The reference sensor node chosen for this work is a a Raspberry Pi model B.

Figure 1.5: RaspberryPi Model B

The Raspberry Pi is a single board computer based on a BCM2835 SoC [21]. The board

is equipped with:

• BCM2835 SoC

• Full size SD card slot

• HDMI output port

• Composite video out

• Two USB type A ports

• 26 pin expansion header exposing GPIO, I2C, SPI, UART peripherals

• 3.5mm stereo audio output jack

• Camera interface port (CSI-2)

• LCD display interface port (DSI)

Chapter 1. State of the Art 17

• microUSB type B connector (power only)

• Ethernet port 10/100 Mbit/s

The BCM2835 is configured with:

• ARMv6 architecture ARM1176JZF-S processor [22] working at 700MHz

• Vectorized Floating Point Unit v2 (VFPv2)

• Dual Core VideoCore IV c©Multimedia Co-Processor

• Low power, high performance OpenGL-ES c©1.1/2.0 VideoCore GPU

• 512Mb of SDRAM

• UART, I2C and SPI/I2S peripherals

• DMA controller

• General Purpose I/O

• USB 2.0 host controller

The running OS is a non real time Linux Debian version optimized for RaspberryPi,

named Raspbian1, with kernel version 3.12.28+.

Python interpreter version 2.7.3 is used with the following modules:

• numpy 1.9.0 scientific computing package for Python, linked to ATLAS 3.8.4 linear

algebra libraries2

• scipy 0.14.0 mathematics, science, and engineering package for Python3

• numexpr 2.4 fast numerical array expression evaluator for Python4

• skimage 0.10.1 image processing package for Python5

1http://www.raspbian.org
2http://www.numpy.org/
3http://www.scipy.org/
4https://github.com/pydata/numexpr
5http://scikit-image.org/

Chapter 1. State of the Art 18

• PIL 1.1.7 Python Imaging Library from the Pillow fork6

RaspberryPi Model B is natively equipped with an Ethernet port for network com-

munications, but no wireless module nor camera are available. An ad-hoc HD camera

module7 is available from RaspberryPi Foundation, but also generic USB webcam can

be used, paying attention to driver availability and compatibility for the kernel in use.

Some examples of wireless devices, for different radio protocols, known to work with

Raspbian are:

• IEEE 802.11b/g/n - Edimax EW7811-Un8 USB adapter

• IEEE 802.15.1 - Hama Bluetooth 3.0+EDR9 USB adapter

• IEEE 802.15.4 - Dresden Elektronik RaspBee10 UART adapter

Figure 1.6: Wireless USB and UART adapters for RaspberryPi

As in the camera case, care must be taken to select a device whose drivers are available

and stable for the kernel version in use.

1.2 Convolutional Neural Networks for Face Recognition

Cox and Pinto in [23] describe a large-scale feature search approach to the problem of

unconstrained face recognition, based on the Labeled Faces in the Wild challenge set [8].

The best performing CNN model (HT-L3-1st) is composed of an input layer (Layer0)

followed by three structurally identical layers (Layer1, Layer2, Layer3).

6http://pillow.readthedocs.org/
7http://www.raspberrypi.org/products/camera-module/
8http://www.edimax.com/edimax/merchandise/merchandise detail/data/edimax/global/wireless adapters n150/ew-

7811un
9https://de.hama.com/00049237/hama-nano-bluetooth-usb-adapter-version-30+edrclass2 eng

10http://www.dresden-elektronik.de/funktechnik/solutions/wireless-light-control/raspbee/

Chapter 1. State of the Art 19

Layer0 takes as input an RGB image, converts it into a greyscale image, then locally

normalizes the image to get N0.

Layer0 : Input RGB image
Grayscale−−−−−−→ Local normalization−−−−−−−−−−−−→N0

Figure 1.7: CNN Layer 0: image transformation

The general structure for Layerl with l ≥ 1 is

Layerl : N l−1 Filter-bank correlation−−−−−−−−−−−−−−→ F l Activation−−−−−−→ Al Local pooling−−−−−−−−→ P l Local normalization−−−−−−−−−−−−→N l

where:

• Filter-bank correlation locally transforms the input maps to generate a greater

number of output maps

• Activation acts in a non-linear fashion on the single coefficients

• Pooling performs a map-by-map local smoothing followed by downsampling

• Normalization works along all the maps to locally normalize the coefficients

A qualitative result of the feature maps transformation trough the three layers is shown

in figure 1.8.

Layer 1 Layer 2 Layer 3

Figure 1.8: CNN: feature maps transformation

Chapter 1. State of the Art 20

The Python implementation of the CNN by Pinto et al. available at [24] is used as

reference in this work.

1.2.1 Filter-bank correlation

The input N l−1 for Layerl, l ≥ 1 is linearly filtered using a bank of kl filters to produce

a stack of kl feature maps, called F l. Each filter Φl
i has shape f ls × f ls × f ld, where

f ls ∈ {3, 5, 7, 9} is the filter neighborhood and

f ld =

kl−1 l > 1

1 l = 1

is the stack dimension of the input layer feature maps. The filtering operation for Layer l

is denoted

F l = Filter
(
N l−1,Φl

)

where Φl is the f ls×f ls×f ld×kl filterbank and each filter, denoted as Φl
i ∀i ∈ {1, 2, . . . , kl},

has shape f ls×f ls×f ld. Each output map F li is the result of a three dimensional correlation

between N l−1 and Φl
i sliding along the first and second dimensions of N l−1

F li = N l−1 ⊗ Φl
i ∀i ∈ {1, 2, . . . , kl}

For an input feature map N l−1 of shape B × B × f ld the output feature map F l has

shape B − (f ls − 1)×B − (f ls − 1)× kl.

The number of output maps for the filter kl is chosen in a different pool for each layer

of the network:

• k1 ∈ {16, 32, 64}

• k2 ∈ {16, 32, 64, 128}

• k3 ∈ {16, 32, 64, 128, 256}

Chapter 1. State of the Art 21

A peculiar characteristic of this network is that the filter weights are not trained with

feedforward and back-propagation, as usually done in neural networks, but instead they

are randomly drawn from a uniform distribution between −1 and 1. For each filter F li

the mean of the random coefficients is removed and the filter is normalized with respect

to the L2 norm of the unbiased coefficients.

1.2.2 Activation

The output of the filtering stage F l is subject to non-linear threshold and saturation.

Al = Activate
(
F l
)

The activation function is defined as

Activate(x) =

γlmax if x > γlmax

γlmin if x < γlmin

x otherwise

where γlmin ∈ {−∞, 0} is the threshold level and γlmax ∈ {1,+∞} is the saturation level.

The activation function acts element-wise, thus the shape of Al is the same of F l.

1.2.3 Local pooling

The output of the activation stage Al is subject to a two step pooling operation:

• A map-wise smoothing operation of order pl ∈ {1, 2, 10} within a neighborhood of

shape al × al (al ∈ {3, 5, 7, 9})

• A downsampling operation with fixed stride α = 2 resulting in a downsamplig

factor of 4

Each map P l
i ∀i ∈ {1, 2, . . . , kl} is defined as:

P l
i = Downsampleα

(
pl
√(

Ali
)pl � 1al×al

)

Chapter 1. State of the Art 22

where

• Ali is a map of shape B×B from the activation stage outputAl of shape B×B×kl.

• � is the 2-dimensional correlation function between
(
Ali
)pl

and 1al×al

• 1al×al is a al × al matrix of ones.

For pl = 1 the result of the smoothing operation is equivalent to blurring with a box-

car filter, while with pl = 10 the smoothing operation is similar to a max operation

(softmax).

For an input Al of shape B × B × kl the output of the local pooling operation P l has

shape b
(
B − (al − 1)

)
/2c × b

(
B − (al − 1)

)
/2c × kl.

1.2.4 Local normalization

The final processing stage of each layer is a local normalization operation across space

and maps. The local normalization function is defined as

N l = Normalize
(
P l
)

=

ρl · P l if ρl ·

∣∣∣∣P l ⊗ 1bl×bl×kl
∣∣∣∣
2
< τ l

P l

||P l⊗1
bl×bl×kl ||2

otherwise

where

• ρl ∈ {10−1, 100, 101} is a stretching value

• τ l ∈ {10−1, 100, 101} is a threshold value

• bl ∈ {3, 5, 7, 9} is the neighborhood size

• ||x||2 is the L2 norm of x

• 1bl×bl×kl is a bl × bl × kl array of ones

• ⊗ is a 3-dimensional correlation operation sliding across the first two dimensions

of P l

Chapter 1. State of the Art 23

For an input P l of shape B×B×kl the output of the local normalization operation N l

has shape B − (bl − 1)×B − (bl − 1)× kl.

Note that for the input Layer0, kl is equal to 1.

1.3 The PubFig83 dataset

The reference dataset used in this work is the PubFig83 aligned dataset, created by

Pinto et al. in [12]. The PubFig83 dataset is a subset of the PubFig dataset defined

in [25], a collection of 60000 publicly available photos of 200 celebrities (300 photos per

individual on average). Both the development and the evaluation PubFig sets have been

processed with the OpenCV face detector to prune the faces not successfully detected.

The remaining images contained many duplicates of the same original photos, with

different type of compression, color spaces, sizes, digitally edited background. To remove

those duplicates, a correlation based score on the face central region has been used to

rank couple of images for each subject. The 4% most correlated couples among all the

subjects were marked as duplicates and one of the images has been removed. At the

end of this process only 83 subjects with more than 100 non duplicated photos were

preserved to build the PubFig83 dataset. The final result is a dataset containing 13838

face images for 83 subjects. Each subject counts from a minimum of 100 to a maximum

of 300 color images at 100 x 100 pixels resolution. The aligned version of the PubFig83

is an eye-aligned version of the original PubFig83 dataset. Some samples from the

PubFig83 aligned dataset are shown in figure 1.9

1.3.1 Accuracy evaluation protocol

The evaluation protocol proposed for the PubFig83 dataset is a 10-fold cross validation

method, with 90 training samples and 10 testing samples per category.

For each subject 10 splits of 100 images are randomly generated from the available

pictures. Each split is further randomly divided in a training subset of 90 pictures and

Chapter 1. State of the Art 24

Figure 1.9: PubFig83 aligned sample images

a testing subset of 10 pictures. For the PubFig83 dataset the resulting training and test

sets are composed respectively of 83 · 90 = 7470 and 83 · 10 = 830 images.

The classifier used to evaluate the accuracy is a linear Support Vector Machine with

regularization parameter fixed to 105 and precomputed train and test kernel.

Given a train set Mtrain of shape Ntrain × P , where Ntrain is the number of training

samples and P is the number of features, and a test set Mtest of shape Ntest × P the

precomputed train and test kernels are Mtrain ·MT
train and Mtest ·MT

train, respectively

of shapes Ntrain×Ntrain and Ntest×Ntrain. Both the kernels are divided by the trace of

the train kernel.

To support the multi-class problem of face recognition the one-versus-all approach is

used to train a different SVM for each category, using the precomputed training kernel.

The training samples corresponding to the considered category are labeled as +1, all the

others are labeled as -1. The SVM is then trained using the precomputed train kernel

and the separating hyperplane is determined. The distances of the test samples from the

Chapter 1. State of the Art 25

separating hyperplane are calculated on the precomputed test kernel trough the decision

function.

Figure 1.10: SVM one-vs-all example: Each line represents the separating hyperplane
generated by a binary linear SVM trained with the samples of the same color of the

line labeled +1 and all the others labeled -1

Every SVM, one for each category, gives a distance measure for each test sample. To

each samples is then assigned the category corresponding to the highest output SVM.

The accuracy of a single split is calculated as the percentage of correctly classified test

samples. The global accuracy is the mean accuracies over the 10 splits .

Chapter 2

Time-accuracy optimization

The best performance 3-layer CNN model (HT-L3-1st) presented in [23] is the starting

point for a model search aimed at finding a good compromise between processing time

on the RaspberryPi and accuracy on the PubFig83 dataset. Since the processing time

is proportional to the amount of energy required by the algorithm, the following work

can be thought as an energy-accuracy optimization process.

To comply with the naming scheme of the reference Python implementation available at

[24] the 3-layer CNN model HT-L3-1st is called fg11-ht-l3-1 1. Its parameters are shown

in table 2.1.

Layer 0 Layer 1 Layer 2 Layer 3

fbcorr
shape - 3 x 3 5 x 5 5 x 5
filt num - 64 128 256

threshold
th min - 0 0 0
th max - ∞ ∞ ∞

lpool
shape - 7 x 7 5 x 5 7 x 7
order - 1 1 10
stride - 2 2 2

lnorm
shape 9 x 9 5 x 5 7 x 7 3 x 3
stretch 10.0 0.1 1.0 10.0
threshold 1.0 1.0 1.0 1.0

Table 2.1: fg11-ht-l3-1 model: parameters

1fg11-ht : model class; l3 : three layers; 1 : top-1 model

26

Chapter 2. Time-accuracy optimization 27

The fg11-ht-l3-1 model needs input images of 200 x 200 pixels, thus requiring an initial

image upsampling before using the CNN to extract the features.

The original implementation of the neural network has been modified to allow the timing

of network layers and operations. The chosen timing method is based on system time

and thus is influenced by other processes running on the platform. However, since the

RaspberryPi has no scheduled cronjobs nor active services, this timing system is reliable

when compared to the dedicated Python timing modules (Profile, cProfile) and it has a

very small overhead.

A smaller version of the PubFig83 aligned dataset has been created selecting one image

from each category. This smaller dataset is used to average the timing results on the

RaspberryPi while keeping a reasonably fast execution of the time profiling procedures.

2.1 Three-Layers CNN performance and simplification

The execution time of the fg11-ht-l3-1 model is profiled using the time-enabled neural

network implementation. The results are shown in table 2.2.

Time [s] Time %

Layer 0 00.06 00.34
lnorm 00.06 00.34

Layer 1 03.76 21.00
fbcorr 00.69 03.84
lpool 02.90 16.22
lnorm 00.16 00.90

Layer 2 09.42 52.69
fbcorr 08.44 47.23
lpool 00.93 05.22
lnorm 00.04 00.22

Layer 3 04.64 25.96
fbcorr 04.20 23.51
lpool 00.42 02.36
lnorm 00.01 00.08

Tot 17.88 100.00

Table 2.2: fg11-ht-l3-1 model: time profiling

Chapter 2. Time-accuracy optimization 28

The total time needed for the fg11-ht-l3-1 CNN execution is 17.88s. The two most

demanding operations are the filter-bank correlations at 2nd and 3rd layers. In order

to reduce the huge amount time needed to compute the features, the 3rd layer of the

network is removed and the initial image upsampling is avoided. The newly obtained

model is called fg11-ht-l2-s1 2

2.2 Stage-wise Dual-Layers CNN optimization

The accuracy of the fg11-ht-l2-s1 model on the PubFig83 dataset is 80.64%. The exe-

cution time of the model is profiled and the result is shown in table 2.3.

Time [s] Time %

Layer 0 00.02 00.57
lnorm 00.02 00.57

Layer 1 00.83 23.86
fbcorr 00.16 04.58
lpool 00.63 18.21
lnorm 00.04 01.01

Layer 2 02.62 75.55
fbcorr 02.46 70.90
lpool 00.15 04.34
lnorm 00.01 00.27

Tot 03.47 100.00

Table 2.3: fg11-ht-l2-s1 model: time profiling

The total time needed for the fg11-ht-l2-s1 CNN execution is 3.47s. The two most time

demanding operation are the filter-bank correlation in the second layer and the local

pooling in the first layer. Following the idea of brute-force model search presented in

[12], the CNN parameters are modified to exploit the effect of the network structure

modifications on the time-accuracy plane. Since the parameters space it’s too big to be

completely explored, a handcrafted 5-step search is performed in the following sections.

The performance of the three layer network model are kept as reference benchmark for

accuracy and timing during the whole model search process.

2two layers; first model search

Chapter 2. Time-accuracy optimization 29

2.2.1 Model search: First step

Starting from the fg11-ht-l2-s1 model a first model search is performed varying:

• The number of filters in the first layer (k1): {16, 32, 64}

• The number of filters in the second layer (k2): {16, 32, 64, 128}

Each model is evaluated both in its execution time, on a RaspberryPi, and in its accuracy,

on a test PC, following the PubFig83 evaluation protocol. The 12 resulting models time-

accuracy performance are shown in figure 2.1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Feature extraction time [s]

65

70

75

80

85

90

A
cc

u
ra

cy
 [

%
]

l3
-1

Figure 2.1: First model search: results

In order to continue the model search, the two red-dots models are chosen as good com-

promise between accuracy and time. Their parameters and time-accuracy performance

are shown in table 2.4.

k1 k2 Time [s] Accuracy [%]

16 128 0.93 79.28

32 128 1.88 80.53

Table 2.4: First model search: selected models

Reducing the number of filters and removing the third layer reduces significantly the

computation time, at the cost of losing at least 10% points in accuracy.

Chapter 2. Time-accuracy optimization 30

2.2.2 Model search: Second step

Starting from the results of the first model search, a second model search is performed.

The search-base model fg11-ht-l2-s2 is the same as the first search-base model (fg11-ht-

l2-s1) but with 16 filters in the first layer, as shown in table 2.5.

Layer 0 Layer 1 Layer 2

fbcorr
shape - 3 x 3 5 x 5
filt num - 16 128

threshold
th min - 0 0
th max - ∞ ∞

lpool
shape - 7 x 7 5 x 5
order - 1 1
stride - 2 2

lnorm
shape 9 x 9 5 x 5 7 x 7
stretch 10.0 0.1 1.0
threshold 1.0 1.0 1.0

Table 2.5: fg11-ht-l2-s2 model: parameters

The second model search is performed varying:

• The number of filters in the first layer (k1): {16, 32}

• The normalization stretching in all layers (ρl, l ∈ {0, 1, 2}): {0.1, 1, 10}

The resulting 54 models time-accuracy performance are shown in figure 2.2.

The two clusters of points clearly show the difference between the models using 16 filters

in the first level (leftmost) and the ones using 32 filters in the first level (rightmost).

The normalization stretching doesn’t influence too much the timing but it strongly

influences the accuracy. Following these considerations, the two red-dots models are

used as search-base models for the third (fg11-ht-l2-s3) and the fourth (fg11-ht-l2-s4)

steps of the model search. Their time-accuracy performance are shown in table 2.6.

New model k1 ρ0 ρ1 ρ2 Time [s] Accuracy [%]

fg11-ht-l2-s3 16 10 10 10 0.95 81.67

fg11-ht-l2-s4 32 10 10 1 1.87 83.12

Table 2.6: Second model search: selected models

Chapter 2. Time-accuracy optimization 31

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Feature extraction time [s]

78

80

82

84

86

88

A
cc

u
ra

cy
 [

%
]

l3
-1

Figure 2.2: Second model search: results

2.2.3 Model search: Third step

The parameters of the third step search-base model fg11-ht-l2-s3 are shown in table 2.7.

Layer 0 Layer 1 Layer 2

fbcorr
shape - 3 x 3 5 x 5
filt num - 16 128

threshold
th min - 0 0
th max - ∞ ∞

lpool
shape - 7 x 7 5 x 5
order - 1 1
stride - 2 2

lnorm
shape 9 x 9 5 x 5 7 x 7
stretch 10.0 10.0 1.0
threshold 1.0 1.0 1.0

Table 2.7: fg11-ht-l2-s3 model: parameters

The third model search is performed varying:

• The pooling neighborhood size in all layers (al, l ∈ {1, 2}): {3, 5, 7, 9}

• The pooling exponent in all layers (pl, l ∈ {1, 2}): {1, 2, 10}

The resulting 144 models time-accuracy performance are shown in figure 2.3.

Chapter 2. Time-accuracy optimization 32

0.8 0.9 1.0 1.1 1.2 1.3 1.4
Feature extraction time [s]

65

70

75

80

85

90

A
cc

u
ra

cy
 [

%
]

l3
-1

Figure 2.3: Third model search: results

Since all the models have 16 filters in the first layer, the average execution time is around

1s. The time difference is mostly due to the varying neighborhood size of the pooling

operations. A larger neighborhood causes a greater cropping of the image and thus a

reduction of features first and second dimensions in the successive operations.

The red-dot model is selected as search-base model for the fifth step of the model search

(fg1-ht-l2-s5). Its time-accuracy performance are shown in table 2.8.

New model a1 p1 a2 p2 Time [s] Accuracy [%]

fg11-ht-l2-s5 5 1 5 10 1.15 85.40

Table 2.8: Third model search: selected model

2.2.4 Model search: Fourth step

The parameters of the fourth step search-base model fg11-ht-l2-s4 are shown in table

2.9.

The fourth model search is performed varying the same parameters as in the third step:

• The pooling neighborhood in all layers (al, l ∈ {1, 2}): {3, 5, 7, 9}

• The pooling exponent in all layers (pl, l ∈ {1, 2}): {1, 2, 10}

Chapter 2. Time-accuracy optimization 33

Layer 0 Layer 1 Layer 2

fbcorr
shape - 3 x 3 5 x 5
filt num - 32 128

threshold
th min - 0 0
th max - ∞ ∞

lpool
shape - 7 x 7 5 x 5
order - 1 1
stride - 2 2

lnorm
shape 9 x 9 5 x 5 7 x 7
stretch 10.0 10.0 1.0
threshold 1.0 1.0 1.0

Table 2.9: fg11-ht-l2-s4 model: parameters

The resulting 144 models time-accuracy performance are shown in figure 2.4.

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
Feature extraction time [s]

65

70

75

80

85

90

A
cc

u
ra

cy
 [

%
]

Figure 2.4: Fourth model search: results

Comparing these results to the ones of the third search step, the average execution time

is around 1.9s due to the 32 filters in the first layer of the network but the maximum

accuracy is 85.97%, greater than the maximum accuracy of the third search step.

2.2.5 Model search: Fifth step

The parameters of the fifth step search-base model fg11-ht-l2-s5 are shown in table 2.10.

Chapter 2. Time-accuracy optimization 34

Layer 0 Layer 1 Layer 2

fbcorr
shape - 3 x 3 5 x 5
filt num - 16 128

threshold
th min - 0 0
th max - ∞ ∞

lpool
shape - 5 x 5 5 x 5
order - 1 10
stride - 2 2

lnorm
shape 9 x 9 5 x 5 7 x 7
stretch 10.0 10.0 1.0
threshold 1.0 1.0 1.0

Table 2.10: fg11-ht-l2-s5 model: parameters

The fifth model search is performed varying:

• The normalization neighborhood in all layers (bl, l ∈ {0, 1, 2}): {3, 5, 7, 9}

The resulting 64 models time-accuracy performance are shown in figure 2.5.

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Feature extraction time [s]

65

70

75

80

85

90

A
cc

u
ra

cy
 [

%
]

l3
-1

Figure 2.5: Fifth model search: results

All the models evaluated in this step have 16 filters in the first layer and the average

execution time is around 1.15s. The maximum accuracy however is really near to the

benchmark one (fg11-ht-l3-1), with an execution time up to 17 times smaller.

Chapter 2. Time-accuracy optimization 35

2.3 Dual-Layers CNN optimal model

A collection of 413 network models, shown in figure 2.6, is obtained putting together all

the model search steps and removing the duplicates.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Feature extraction time [s]

65

70

75

80

85

90

A
cc

u
ra

cy
 [

%
]

l3
-1

Figure 2.6: Dual layer model search results

It is still possible to separate by hand the models having 16 filters in the first layer (time

smaller than 1.5s) from the ones having 32 filters in the first layer (time higher then

1.5s), even if some outliers from the first model search are present.

The red-dot model is selected as pseudo-optimal dual layer CNN model and is named

fg11-ht-l2-opt. Its parameters are shown in table 2.11 and its accuracy reaches 86.73%.

Layer 0 Layer 1 Layer 2

fbcorr
shape - 3 x 3 5 x 5
filt num - 16 128

threshold
th min - 0 0
th max - ∞ ∞

lpool
shape - 5 x 5 5 x 5
order - 1 10
stride - 2 2

lnorm
shape 9 x 9 5 x 5 3 x 3
stretch 10 10 1
threshold 1 1 1

Table 2.11: fg11-ht-l2-opt model: parameters

Chapter 2. Time-accuracy optimization 36

Notice that the stepwise model search described above is not complete in the space

of parameters, and thus the pseudo-optimal model could be suboptimal. However the

whole process shows how an initially slow yet well performing neural network model

(fg11-ht-l3-1) could be reduced and optimized for a specific task in a few number of

steps.

The time profiling of the fg11-ht-l2-opt model in table 2.12 shows that even if the most

time demanding operation is again the filter-bank correlation in the second layer, the

impact on the total time is only the 53%, with respect to the 71% of the first dual-layer

model (fg11-ht-l2-s1).

Time [s] Time %

Layer 0 00.02 01.86
lnorm 00.02 01.85

Layer 1 00.20 18.61
fbcorr 00.05 04.29
lpool 00.13 12.66
lnorm 00.02 01.58

Layer 2 00.84 79.49
fbcorr 00.56 52.96
lpool 00.27 25.33
lnorm 00.01 01.09

Tot 01.06 100.00

Table 2.12: Dual layer pseudo-optimal model: time profiling

With respect to the original three layer network (fg11-ht-l3-1) the loss in accuracy of

the pseudo-optimal dual layer network (fg11-ht-l2-opt) is only 0.4% with a 94% time

reduction.

Chapter 3

Rate-accuracy tradeoff

The pseudo-optimal dual layer network model (fg11-ht-l2-opt) generates 14 x 14 x 128

float32 features as output, for a total of 800kBit/image. This value is more than 10

times the size of a 100 x 100 grayscale JPEG image (roughly 62kBit/image) and thus is

not optimal for an efficient wireless network transmission.

The goal of this Chapter is to understand the relationship between features size (rate)

and accuracy when features are lossy coded. The development of an ad-hoc coding ar-

chitecture is made in two phases: a Principal Component Analysis based dimensionality

reduction (sec. 3.1) followed by features quantization and coding (sec. 3.2).

The output features are reshaped in order to have an N x P matrix, where N is the

number of images and P is the number of features (25088 for the fg11-ht-l2-opt CNN

model).

3.1 PCA based dimensionality reduction

3.1.1 PCA dimensionality reduction through SVD

The training set of each split is used to determine the bias for each feature. The bias

is removed from both the training and the test set. Singular Value Decomposition

37

Chapter 3. Rate-accuracy tradeoff 38

(SVD) of the unbiased training set (Mtrain) is calculated (UΣV T = Mtrain) and the

first K columns of U are multiplied by the first K columns of Σ to get the transformed

training set M
PCA(K)
train . The unbiased test set of the same split (Mtest) is transformed

multiplying it with the first K rows of the rotation matrix V , previously calculated

with SVD: M
PCA(K)
test = Mtest · V T

K . The newly obtained M
PCA(K)
train ∈ RNtrain·K and

M
PCA(K)
test ∈ RNtest·K are used to train the SVMs and evaluate the accuracy of the split

according to the PubFig83 protocol.

3.1.2 Dimensionality reduction

Figure 3.1 shows the impact of PCA with K = {200, 400, 800, 1600, 3200, 6400} in the

rate-accuracy plane. The PCA is trained in each split independently as described above.

The rate is calculated as K · 32 bit/image.

0 50000 100000 150000 200000 250000
Rate [bit]

70

72

74

76

78

80

82

84

86

88

A
cc

u
ra

cy
 [

%
]

l2
-o

p
t

fg11-ht-l2-opt + PCA

Figure 3.1: PCA based dimensionality reduction: impact on the rate-accuracy plane

Table 3.1 shows the comparison, in terms of rate reduction and accuracy loss between, the

PCA based dimensionality reduction and the fg11-ht-l2-opt features extraction without

dimensionality reduction (rate = 802816 bit, accuracy = 86.73%).

PCA based dimensionality reduction can be used to effectively reduce the storage space

or the amount of data sent through the network while keeping a high level of accuracy.

Chapter 3. Rate-accuracy tradeoff 39

K Rate [bit] Rate reduction [%] Accuracy [%] Accuracy loss [%]

200 6400 99.20 70.04 16.69

400 12800 98.41 76.87 9.86

800 25600 96.81 81.17 5.56

1600 51200 93.62 84.00 2.73

3200 102400 87.24 85.58 1.15

6400 204800 74.49 86.10 0.63

Table 3.1: Dual layer pseudo-optimal model: the effect of PCA based dimensionality
reduction on rate and accuracy

3.2 Features quantization and coding

After PCA based dimensionality reduction, a fixed step (Q) mid-thread uniform quan-

tizer is used to quantize the features and to reduce their entropy. The number of levels

(L) of the quantizer is determined in each split by the range of the training set features.

The quantizer is unique for all the features. An optimized Python implementation of

the quantizer is shown in the listing below.

1 de f midt read quant i ze r (t r a i n s e t , t e s t s e t , b in width) :

3 import numpy as np

import numexpr as ne

5

bin width = np . f l o a t 3 2 (bin width)

7 # determine t h r e s h o l d s and c e n t r o i d s −−−

abs max = np . max([− t r a i n s e t . min () , t r a i n s e t . max()])

9

th = np . arange (bin width /2 , abs max , bin width , dtype=np . f l o a t 3 2)

11 cent r = np . arange (b in width/2+bin width /2 , abs max+bin width /2 , bin width

, dtype=np . f l o a t 3 2)

13 th = np . concatenate ((− th [: : − 1] , th))

cent r = np . concatenate ((− cent r [: : − 1] , np . array ([0]) , c ent r))

15

a s s e r t th . s i z e == cent r . s i z e − 1

17

symbols = np . arange (cent r . s i z e , dtype=np . in t32)

19

quant ize with symbols −−−

Chapter 3. Rate-accuracy tradeoff 40

21 t r a i n s e t q s = np . z e r o s (t r a i n s e t . shape , dtype=np . in t32)

t e s t s e t q s = np . z e ro s (t e s t s e t . shape , dtype=np . in t32)

23

f o r idx in range (1 , th . s i z e) :

25 th min = th [idx −1]

th max = th [idx]

27 sym = symbols [idx]

t r a i n s e t q s = ne . eva luate (’ where ((t r a i n s e t>=th min)&(t r a i n s e t <

th max) , sym , t r a i n s e t q s) ’)

29 t e s t s e t q s = ne . eva luate (’ where ((t e s t s e t >=th min)&(t e s t s e t <

th max) , sym , t e s t s e t q s) ’)

31 # l a s t l e v e l −−−

th min = th [−1]

33 sym = symbols [−1]

t r a i n s e t q s = ne . eva luate (’ where ((t r a i n s e t>=th min) , sym ,

t r a i n s e t q s) ’)

35 t e s t s e t q s = ne . eva luate (’ where ((t e s t s e t >=th min) , sym , t e s t s e t q s) ’

)

37 # symbols to c e n t r o i d s −−−

b ia s = np . in t32 ((symbols . s i z e −1)/2)

39 t r a i n s e t q c = ne . eva luate (’ (t r a i n s e t q s −b ia s) ∗bin width ’)

t e s t s e t q c = ne . eva luate (’ (t e s t s e t q s −b ia s) ∗bin width ’)

41

re turn t r a i n s e t q s , t e s t s e t q s , t r a i n s e t q c , t e s t s e t q c , symbols

The numexpr package has been extensively used to reduce the quantization time since

it allows the fast evaluation of where expressions on arrays and vector by scalar mul-

tiplications. Numexpr parses the expression into its own operation-code, that is used

by the integrated computing virtual machine. The array operands are split in small

chunks, to fit the cache of the CPU, and then passed to the virtual machine. All the

temporaries and constants in the expression are kept in the same small chunk as the

operand, avoiding additional memory space and bandwidth waste.

The rate required to sent the quantized features is estimated with an arithmetic coder,

working on each feature independently. For each split the number of occurrences of

Chapter 3. Rate-accuracy tradeoff 41

symbol i in feature j is determined on the training set (ntraini,j). If symbol i never occurs

in feature j then ntraini,j is set to 1. The a priori probability ptraini,j of symbol i in feature

j is estimated as

ptraini,j =
ntraini,j∑L−1
l=0 n

train
i,l

The number of occurrences of symbol i in feature j on the test set (ntesti,j) is determined

and the a posteriori probability of symbol i in feature j is estimated on the test set as

ptesti,j =
ntesti,j∑L−1
l=0 n

test
i,l

The rate is finally estimated as

r = −
K−1∑
i=0

L−1∑
j=0

ptesti,j · log2
(
ptraini,j

)

The effect on the rate-accuracy plane of quantization and coding after PCA dimension-

ality reduction is shown in figure 3.2. Each line is obtained preserving a different number

of PCA components K = {800, 1600, 3200, 6400}. The points in each line are obtained

evaluating rate and accuracy at different quantization steps Q = {0.05, 0.03, 0.01, 0.005}.

0 5000 10000 15000 20000
Rate [bit]

76

78

80

82

84

86

88

A
cc

u
ra

cy
 [

%
]

l2
-o

p
t

fg11-ht-l2-opt + PCA 6400 + Q

fg11-ht-l2-opt + PCA 3200 + Q

fg11-ht-l2-opt + PCA 1600 + Q

fg11-ht-l2-opt + PCA 800 + Q

Figure 3.2: PCA dimensionality reduction, quantization and entropy coding: impact
on the rate-accuracy plane

Chapter 3. Rate-accuracy tradeoff 42

With respect to PCA dimensionality reduction without quantization, the reduction in

terms of rate is over 90%, while the reduction of accuracy is less then 1%. Some numeric

examples of are reported in table 3.2.

K Q
PCA only PCA + Q + coding

Rate [bit] Accuracy [%] Rate [bit] Accuracy [%]

6400
0.005

204800 86.10
18963 86.00

0.01 12818 85.86

3200
0.01

102400 85.56
7939 85.41

0.03 3253 83.35

1600 0.03 51200 84.00 2410 82.18

Table 3.2: Dual layer pseudo-optimal model: the effect of quantization and entropy
coding after PCA based dimensionality reduction on rate and accuracy

The combination of PCA based dimensionality reduction, quantization and entropy

coding allows to reach a great level of compression while keeping an accuracy comparable

to the one of the complete fg11-ht-l2-opt CNN model.

Chapter 4

Analyze-Then-Compress vs.

Compress-Then-Analyze

In an Analyze-Then-Compress enabled Visual Sensor Network a sensor node acquires

an image, extracts features from the image, encodes the features and sends the encoded

features to a sink node. This kind of approach requires low complexity algorithms due

to the limited amount of processing power available on sensor nodes.

In a Compress-Then-Analyze Visual Sensor Network a sensor node acquires an image,

preforms lossy compression of the image and sends the compressed image to a sink node,

where features extraction takes place.

Both the ATC and CTA paradigms need to face issues related to image or features trans-

mission to the sink node. Noisy or band-limited transmission channels can significantly

reduce the available bandwidth. Moreover, sensor nodes are battery powered and this

requires special attention to the amount of data sent over the network due to the energy

cost of network transmissions.

4.1 CTA approach

For the CTA approach JPEG compression is used as benchmark to evaluate:

43

Chapter 4. ATC vs. CTA 44

• The JPEG compression time needed by a RaspberryPi for a greyscale 100 x 100

face image.

• The size (rate) of a 100 x 100 greyscale face image compressed at different quality

factors.

• The accuracy on PubFig83 dataset when images are first compressed at different

quality factors and then features are extracted with both fg11-ht-l3-1 and fg11-ht-

l2-opt models.

A greyscale 100 x 100 image requires on average only 11ms to be compressed on Rasp-

berryPi, 1/100th the time needed for facial feature extraction using the fg11-ht-l2-opt

CNN model on the same device.

The size of a JPEG compressed 100 x 100 greyscale face image at different quality factors

is ranges from 7 to 62 kBit, as detailed in table 4.1.

Quality factor Size [kBit]

10 6.90

30 11.03

50 13.94

70 17.64

90 28.83

100 62.09

Table 4.1: JPEG 100 x 100 greyscale face image size at different quality factors

4.2 ATC vs. CTA

The impact on face recognition accuracy is evaluated extracting features with the fg11-

ht-l2-opt and fg11-ht-l3-1 CNN models after JPEG compression at different quality

factors. Figure 4.1 shows the comparison on the rate-accuracy plane between:

• ATC approach

– Sensor node: image acquisition, features extraction with fg11-ht-l2-opt CNN,

PCA based dimensionality reduction with K = 1600, 3200, 6400, quantization

with Q = 0.05, 0.03, 0.01, 0.005, arithmetic entropy coding

Chapter 4. ATC vs. CTA 45

– Sink node: accuracy estimation

• CTA approach

– Sensor node: image acquisition, JPEG compression at QF = 10, 30, 50, 70, 90

– Sink node: features extraction - from the compressed image - with fg11-ht-

l2-opt and fg11-ht-l3-1 CNN models, accuracy estimation

0 5000 10000 15000 20000 25000 30000
Rate [bit]

70

72

74

76

78

80

82

84

86

88

A
cc

u
ra

cy
 [

%
]

l2
-o

p
t
l3

-1

ATC: fg11-ht-l2-opt + PCA 6400 + Q

ATC: fg11-ht-l2-opt + PCA 3200 + Q

ATC: fg11-ht-l2-opt + PCA 1600 + Q

CTA: JPEG + fg11-ht-l3-1

CTA: JPEG + fg11-ht-l2-opt

Figure 4.1: Analyze-Then-Compress vs. Compress-Then-Analyze

In a rate constrained environment, below 15kBit/image, the ATC paradigm is the only

way to get high accuracy, even if this requires more processing time on sensor nodes to

perform feature extraction, reduction, quantization and coding.

For example, with a maximum rate of 11kBit/image, CTA with JPEG compression at

QF = 30 followed by fg11-ht-l2-opt model CNN reaches 83.96% accuracy, while ATC

with nearly the same rate reaches 85.54% accuracy with K = 3200 and Q = 0.005.

When the available rate falls below 10kBit/image the CTA accuracy falls significantly

below 80% while the ATC approach can guarantee an accuracy level of 82.18% with

K = 1600 and Q = 0.03 with a rate of only 2.4kBit/image.

Even when the available bandwidth is not so strictly limited, the ATC loss in accuracy

with respect to CTA is only 1.13% considering in the case of JPEG with QF = 100 and

ATC with K = 6400 and Q = 0.03.

Chapter 5

Conclusions and future work

The method proposed in this work to adapt an existing Convolutional Neural Network

for Face Recognition, originally developed for a powerful computer, to run on a low power

device shows that with a guided CNN model simplification the recognition accuracy can

be kept at a high level while greatly reducing the energy impact, thanks to execution

time and transmission size reduction. An interesting continuation on this line-up is the

application of the same typology of CNN network simplification to other computer vision

algorithms, ranging from object recognition to people tracking.

The ATC approach has shown to be really competitive with respect to CTA, not only

when the available network bandwidth in a VSN is limited, but also in optimal network-

ing conditions. The benefit of this paradigm change are extended also to privacy related

issues arising when images are sent through a communication infrastructure. Certainly

what ATC is missing is the availability of a faster CNN extractor implementation, able

to run in a total time comparable to the one of JPEG compression.

From a VSN point of view the implementation of the proposed energy efficient CNN

model in a real sensor network would require some additional efforts. Even if the ac-

tual Python code is highly optimized, and many of the most computationally intensive

operations are executed with Fortran based libraries, a low level language porting (e.g.

C++) of the whole CNN implementation would benefit from removing Python overhead

on the operations. The development in a low level language could explore the time

46

Bibliography 47

reduction due to the use of vectorized floating point NEON instructions (available on

ARMv7 architectures with VFPv3 unit), the possibility to empower the GPU or the

multimedia co-processor of parts of the calculations and even the possibility to run the

algorithm on tiny, application specific lower power platforms, such as DSP.

Finally from an energetic perspective, the RaspberryPi power consumption specifica-

tions are not available, thus no estimation on the real power consumption are possible.

The building of an accurate power consumption measurement setup, both of the net-

working module and of the processing module, could allow a more precise energy guided

optimization.

Bibliography

[1] Daniel G. Costa, Ivanovitch Silva, Luiz Affonso Guedes, Francisco Vasques, and

Paulo Portugal. Availability issues in wireless visual sensor networks. Sensors,

14(2):2795–2821, 2014. ISSN 1424-8220. doi: 10.3390/s140202795. URL http:

//www.mdpi.com/1424-8220/14/2/2795.

[2] W. W. Bledsoe. The model method in facial recognition. Panoramic Research Inc.,

August 1966.

[3] Takeo Kanade. Picture processing system by computer complex and recognition of

human faces. In Doctoral dissertation, Kyoto University. November 1973.

[4] L. Sirovich and M. Kirby. Low-Dimensional Procedure for the Characterization of

Human Faces. Journal of the Optical Society of America A, 4(3):519–524, 1987.

[5] M.A. Turk and A.P. Pentland. Face recognition using eigenfaces. In Computer

Vision and Pattern Recognition, 1991. Proceedings CVPR ’91., IEEE Computer

Society Conference on, pages 586–591, Jun 1991. doi: 10.1109/CVPR.1991.139758.

[6] P.J. Phillips, J.R. Beveridge, B.A. Draper, G. Givens, A.J. O’Toole, D.S. Bolme,

J. Dunlop, Yui Man Lui, H. Sahibzada, and S. Weimer. An introduction to the good,

the bad, amp; the ugly face recognition challenge problem. In 2011 IEEE Intl.

Conference on Automatic Face Gesture Recognition (FG), pages 346–353, March

2011. doi: 10.1109/FG.2011.5771424.

[7] M. Gunther, A. Costa-Pazo, C. Ding, E. Boutellaa, G. Chiachia, H. Zhang,

M. de Assis Angeloni, V. Struc, E. Khoury, E. Vazquez-Fernandez, D. Tao,

M. Bengherabi, D. Cox, S. Kiranyaz, T. de Freitas Pereira, J. Zganec-Gros,

48

http://www.mdpi.com/1424-8220/14/2/2795
http://www.mdpi.com/1424-8220/14/2/2795

Bibliography 49

E. Argones-Rua, N. Pinto, M. Gabbouj, F. Simoes, S. Dobrisek, D. Gonzalez-

Jimenez, A. Rocha, M.U. Neto, N. Pavesic, A. Falcao, R. Violato, and S. Marcel.

The 2013 face recognition evaluation in mobile environment. In Intl. Conference on

Biometrics (ICB), pages 1–7, June 2013. doi: 10.1109/ICB.2013.6613024.

[8] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled

faces in the wild: A database for studying face recognition in unconstrained envi-

ronments. Technical Report 07-49, University of Massachusetts, Amherst, October

2007.

[9] Oren Barkan, Jonathan Weill, Lior Wolf, and Hagai Aronowitz. Fast high dimen-

sional vector multiplication face recognition. In The IEEE Intl. Conference on

Computer Vision (ICCV), December 2013.

[10] Dong Chen, Xudong Cao, Fang Wen, and Jian Sun. Blessing of dimensionality:

High-dimensional feature and its efficient compression for face verification. In

CVPR, pages 3025–3032. IEEE, 2013.

[11] G.B. Huang, Honglak Lee, and E. Learned-Miller. Learning hierarchical represen-

tations for face verification with convolutional deep belief networks. In Computer

Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2518–

2525, June 2012. doi: 10.1109/CVPR.2012.6247968.

[12] N. Pinto, Z. Stone, T. Zickler, and D. Cox. Scaling up biologically-inspired computer

vision: A case study in unconstrained face recognition on facebook. In Computer

Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer So-

ciety Conference on, pages 35–42, June 2011. doi: 10.1109/CVPRW.2011.5981788.

[13] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Clos-

ing the gap to human-level performance in face verification. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2014.

[14] A. Marcus and O. Marques. An eye on visual sensor networks. Potentials, IEEE,

31(2):38–43, March 2012. ISSN 0278-6648. doi: 10.1109/MPOT.2011.2178279.

Bibliography 50

[15] A. Redondi, L. Baroffio, M. Cesana, and M. Tagliasacchi. Compress-then-analyze

vs. analyze-then-compress: Two paradigms for image analysis in visual sensor net-

works. In IEEE Intl. Workshop on Multimedia Signal Processing (MMSP), pages

278–282, Sept 2013. doi: 10.1109/MMSP.2013.6659301.

[16] L. Baroffio, M. Cesana, A. Redondi, M. Tagliasacchi, and S. Tubaro. Coding visual

features extracted from video sequences. IEEE Transactions on Image Process-

ing (T.IP), 23(5):2262–2276, May 2014. ISSN 1057-7149. doi: 10.1109/TIP.2014.

2312617.

[17] Mayssaa Al Najjar, Milad Ghantous, and Magdy Bayoumi. Video Surveillance

for Sensor Platforms - Algorithms and Architectures, volume 114 of Lecture Notes

in Electrical Engineering. Springer, 2014. ISBN 978-1-4614-1856-6. URL http:

//dx.doi.org/10.1007/978-1-4614-1857-3.

[18] Mohammad Rahimi, Rick Baer, Obimdinachi I. Iroezi, Juan C. Garcia, Jay Warrior,

Deborah Estrin, and Mani Srivastava. Cyclops: In situ image sensing and inter-

pretation in wireless sensor networks. In In SenSys, pages 192–204. ACM Press,

2005.

[19] Meiyan Zhang and Wenyu Cai. Vision mesh: A novel video sensor networks plat-

form for water conservancy engineering. In Computer Science and Information

Technology (ICCSIT), 2010 3rd IEEE International Conference on, volume 4, pages

106–109, July 2010. doi: 10.1109/ICCSIT.2010.5565158.

[20] Wu chi Feng, Wu chang Feng, and Mickael Le Baillif. Panoptes: Scalable low-power

video sensor networking technologies. In In MULTIMEDIA ’03: Proceedings of the

eleventh ACM international conference on Multimedia, pages 562–571. ACM Press,

2003.

[21] RaspberryPi Fundation. Raspberrypi soc: Bcm2835. http://www.raspberrypi.

org/documentation/hardware/raspberrypi/bcm2835/README.md.

[22] ARM Ltd. Arm1176jzf-s technical reference manual. http://infocenter.arm.

com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.

pdf.

http://dx.doi.org/10.1007/978-1-4614-1857-3
http://dx.doi.org/10.1007/978-1-4614-1857-3
http://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
http://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.pdf

Bibliography 51

[23] D. Cox and N. Pinto. Beyond simple features: A large-scale feature search approach

to unconstrained face recognition. In Automatic Face Gesture Recognition and

Workshops (FG 2011), 2011 IEEE International Conference on, pages 8–15, March

2011. doi: 10.1109/FG.2011.5771385.

[24] N. Pinto, N. Poilvert, and G. Chiachia. Convolutional neural networks using random

filter weights. https://github.com/giovanichiachia/convnet-rfw.

[25] N. Kumar, A.C. Berg, P.N. Belhumeur, and S.K. Nayar. Attribute and simile

classifiers for face verification. In Computer Vision, 2009 IEEE 12th International

Conference on, pages 365–372, Sept 2009. doi: 10.1109/ICCV.2009.5459250.

https://github.com/giovanichiachia/convnet-rfw

	List of Figures
	List of Tables
	Abbreviations
	Sommario
	Abstract
	1 Review of the State of the Art
	1.1 Visual Sensor Networks
	1.1.1 RaspberryPi

	1.2 Convolutional Neural Networks for Face Recognition
	1.2.1 Filter-bank correlation
	1.2.2 Activation
	1.2.3 Local pooling
	1.2.4 Local normalization

	1.3 The PubFig83 dataset
	1.3.1 Accuracy evaluation protocol

	2 Time-accuracy optimization
	2.1 Three-Layers CNN performance and simplification
	2.2 Stage-wise Dual-Layers CNN optimization
	2.2.1 Model search: First step
	2.2.2 Model search: Second step
	2.2.3 Model search: Third step
	2.2.4 Model search: Fourth step
	2.2.5 Model search: Fifth step

	2.3 Dual-Layers CNN optimal model

	3 Rate-accuracy tradeoff
	3.1 PCA based dimensionality reduction
	3.1.1 PCA dimensionality reduction through SVD
	3.1.2 Dimensionality reduction

	3.2 Features quantization and coding

	4 Analyze-Then-Compress vs. Compress-Then-Analyze
	4.1 CTA approach
	4.2 ATC vs. CTA

	5 Conclusions and future work

