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Abstract
This work aims to catch the differences in educational attainments between

students and across classes and schools they are grouped by, in the context of
Italian educational system. The purpose is to identify a relationship between
pupils’ maths and reading test scores and the characteristics of students them-
selves, stratifying for classes, schools and geographical area. The dataset of
interest contains detailed information about more than 500,000 students at the
first year of junior secondary school in the year 2012/2013, provided by the
Italian Institute for the Evaluation of Educational System (INVALSI). The in-
novation of this work is in the use of multivariate multilevel linear mixed models,
in which the outcome variable is bivariate: reading and maths achievements. By
means of these models, it is possible to estimate statistically significant “school
and class effects” after adjusting for pupil’s characteristics, i.e. the positive/neg-
ative impact of attending a specific school or class on student’s test score, and
to identify which are the characteristics of the students that more influence
their performances, both in mathematics and reading. The results show that
big discrepancies elapse between the three geographial macro-areas (Northern,
Central and Southern Italy), where school/class effects and relevant student’s
features are very heterogeneous.

KEYWORDS: Pupils’ achievement; Multilevel models; Bivariate models; School
and class effect; Value-added.

Sommario
L’obiettivo di questo lavoro è di cogliere le differenze tra i rendimenti sco-

lastici degli studenti e tra le scuole e le classi in cui essi sono raggruppati, nel
contesto del sistema educativo Italiano. Lo scopo è di identificare una relazione
tra i risultati dei test di italiano e matematica degli studenti e le caratteristiche di
questi ultimi, raggruppati per classi, scuole e aree geografiche. Il dataset in ques-
tione contiene informazioni dettagliate su più di 500,000 bambini al primo anno
di scuola media, nell’anno scolastico 2012/2013, fornite dall’Istituto Nazionale
per la Valutazione del Sistema Educativo di Istruzione e di Formazione (IN-
VALSI). L’innovazione di questo lavoro risiede nell’uso di modelli lineari multi-
variati a effetti misti, nei quali la variabile risposta è bivariata: risultati dei test
di matematica e italiano. Per mezzo di questi modelli, è possibile stimare “effetti
scuola e classe” statisticamente significativi dopo aver aggiustato rispetto alle
covariate bambino, come per esempio l’impatto positivo/negativo di frequentare
una data scuola o classe sul rendimento dello studente, e identificare quali sono le
caratteristiche degli alunni che più influenzano la loro performance, in matem-
atica e in italiano. I risultati mostrano che ci sono grandi discrepanze tra le
tre macro-aree geografiche (Nord, Centro e Sud Italia), che sono caratterizzate
da effetti scuola/classe e caratteristiche rilevanti degli studenti molto eterogenei.
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Introduzione
L’analisi delle differenze dei rendimenti scolastici tra gruppi di studenti e tra
scuole sta diventando, negli ultimi anni, sempre più interessante. A tal propos-
ito vengono fatti numerosi studi per testare e migliorare il sistema educativo e
per capire quali variabili lo definiscono (vedi [7],[12],[30],[27]). Negli stati più
industrializzati, esistono istituzioni che, sottoponendo gli studenti a questionari
comuni e raccogliendo informazioni sulle scuole e sulle classi, cercano di testare
i rendimenti degli studenti e di capire quali sono gli aspetti che più influenzano
la loro prestazione. Il Programma per la Valutazione Internazionale dell’Allievo
(PISA) è stato promosso nel 2000 dall’Organizzazione per la Cooperazione e lo
Sviluppo Economico (OCSE) per analizzare il livello di istruzione dei ragazzi
negli stati più industrializzati. Lo scopo è quello di confrontare i risultati dei
test, per identificare quali sono gli stati con i migliori rendimenti e quali sono le
variabili, le caratteristiche e gli aspetti delle istituzioni scolastiche che permet-
tono loro di avere tali risultati. Tipicamente, i test coinvolgono tra i 4,500 e i
10,000 studenti in ogni stato.

In Italia, l’Istituto Nazionale per la Valutazione del Sistema educativo e
dell’Istruzione (INVALSI), fondato nel 2007, valuta gli studenti nelle loro presta-
zioni in matematica e in italiano in diversi stadi: alla fine del secondo e del
quinto anno di scuola elementare (circa a 7 e 10 anni rispettivamente), alla fine
del primo e del terzo anno di scuola media (11 e 13 anni) e alla fine del secondo
anno di scuola superiore (15 anni).

Agli studenti viene chiesto di rispondere a domande, uguali per tutti, sia
aperte che a risposta multipla, che testano le loro conoscenze in matematica e
italiano. Questo è un modo di valutare conoscenze e metodi di ragionamento che
i ragazzi avrebbero dovuto imparare nel loro percorso scolastico. Inoltre, viene
chiesto di rispondere a domande circa loro stessi, la loro famiglia, il livello di
istruzione dei genitori e la loro situazione socio-economica (vedi [4],[6],[17],[1]).
Abbiamo a disposizione due dataset separati, il primo contenente i risultati di
matematica e il secondo quelli di italiano, seguiti dalle informazioni sugli stu-
denti, sulle classi e sulle scuole. Questi due dataset sono stati forniti in due
momenti diversi: prima abbiamo ricevuto quello di matematica (già preceden-
temente studiato) e poi quello di italiano.

Gli obiettivi sono (i) esaminare la relazione tra le caratteristiche degli stu-
denti, come profilo, situazione socio-culturale, risorse culturali, e i loro rendi-
menti scolastici, (ii) chiarire se ci sono differenze educative tra le scuole e tra le
tre macro-aree geografiche dell’Italia (Nord, Cento e Sud) e (iii) scoprire come
l’effetto della scuola è più/meno accentuato per certi profili di studenti. Gli stru-
menti statistici utili per svolgere questi tipi di studi sono specialmente modelli
lineari a effetti misti, univariati e bivariati.

Il primo passo è creare un dataset congiunto in cui per ogni studente abbiamo
i risultati in entrambe le materie. In questo modo, possiamo fare considerazioni
e confronti, implementando modelli sullo stesso insieme di studenti.

Sono già stati fatti studi sui rendimenti di matematica, applicando mod-
elli lineari a effetti misti univariati, per analizzare come la variabile risposta
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(risultati di matematica) dipende dalle covariate e quali sono gli effetti della
classe e della scuola sui rendimenti degli studenti (vedi [2]). Sono emerse grandi
differenze tra Nord, Centro e Sud Italia, suggerendo il bisogno di implementare
tre modelli separati per descrivere questi fenomeni completamente differenti.
Quindi, la prima parte del lavoro sarà dedicata allo studio dei risultati di ital-
iano, così da poter poi confrontare i risultati delle due materie. Visto che,
comunque, c’è una forte correlazione tra le due variabili risposta, il fulcro del la-
voro sarà studiare modelli lineari a effetti misti multivariati, nei quali la risposta
è bivariata: risultati di matematica e italiano. Indagheremo poi se questo nuovo
approccio apporta del valore-aggiunto ai modelli e spiega la relazione che inter-
corre tra gli effetti scuola/classe delle due materie.

Il lavoro è organizzato come segue: la Sezione 2 presenta il dataset; nelle
Sezioni 3 e 4 si fanno studi sui risultati di italiano rispettivamente in Italia e
nelle tre macro-aree con modelli lineari a due e tre livelli; nella Sezione 5 si
introducono i modelli lineari a effetti misti bivariati per i risultati di italiano e
matematica e nella Sezione 7 si implementano modelli univariati e bivariati a
due livelli in cui gli studenti sono raggruppati solo per classi. Tutte le analisi
sono state fatte usando il software statistico R (vedi [22]), tranne i modelli
lineari a effetti misti bivariati, che sono stati implementati usando il software
AsReml (vedi [11]).
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1 Introduction
Nowadays, the analysis of the differences in educational attainments between
groups of students and across schools is becoming increasingly interesting. Stud-
ies on this subject are made in order to test and improve the educational sys-
tem and to understand which variables determine it (see [7],[12],[30],[27]). In
the most industrialized countries, exist institutions that, referring students to
common questionnaires and collecting information about schools and classes,
aim to test pupils’ achievement and to understand which are the aspects that
more influence the performances. The Programme for International Student
Assessment (PISA) is a project promoted by the Organization for Economic
Co-operation and Development (OECD) that was created in 2000 in order to
analyze the educational level of the teenagers in the main industrialized coun-
tries. The purpose is to compare the results of the tests, in order to detect
which are the countries with best and worst performances and which are the
variables, the characteristics and the aspects of their scholastic institutions that
permit them to have such results. Tipically, the tests involve between 4,500 and
10,000 students in each country.

In Italy, the Italian Institute for the Evaluation of Educational System (IN-
VALSI), founded in 2007, assesses students in their reading and mathematics
abilities at different stages: at the end of the second and fifth year of primary
school (about at age 7 and 10, respectively), at the end of the first and third
year of lower secondary school (age 11 and 13) and at the end of the second
year of upper secondary school (age 15).

Students are requested to answer questions, the same for everyone, with both
multiple choices and open-ended questions, that test their ability in reading
and mathematics. This is a way to test knowledge and reasoning that pupils
should have learned in their school career. Also, they are requested to compile
a questionnaire about themselves, their family, their parents’ educational level
and their socio-economic situation (see [4],[6],[17],[1]). Our resources are two
separate set of data, the former containing the mathematics achievements and
the latter the reading ones, followed by the information about students, classes
and schools in Italy. We obtained the two dataset in two different moments:
firstly, we received the mathematics one (that have already been explored) and
secondarily the reading one.

The aims are (i) to examine the relationship between pupils’ characteris-
tics, such as profile, socio-cultural background, household, cultural resources,
and pupil’s achievement, (ii) to detect if educational differences elapse be-
tween different schools and between the three geographical macro-areas of Italy
(Northern, Central and Southern) and (iii) to discover how the school effect
is stronger/weaker for specific types of students’ profile. The statistical tools
requested to make this kind of studies are especially multilevel linear mixed
models, both univariates and bivariates.

The first step is to create a joined dataset in which for each student we have
both his\her achievement in mathematics and reading. In this way, we can
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make considerations and comparisons, fitting the models on the same sample of
students.

Studies have already been made on the mathematics achievements, applying
univariate multilevel linear mixed models, to analyze how the outcome variable
(mathematics achievement) depends on the covariates and which are the school
and the class impacts on student’s achievements (see [2]). Big differences elapsed
between North, Center and South of Italy, emphasizing the need to have three
different models to explain the completely different phenomena. Therefore, the
first part of the work will be dedicated to the study of the reading achievements,
so that, we can start comparing the results of the two subjects. However, since
a strong correlation exists between the two outcome variables, the cornerstone
of the work is the study of bivariate linear mixed models in which the outcome
consists in a bivariate answer: mathematics and reading scores. We will detect
if this new approach may bring some value-added to the models and explain the
relationship between the school/class-effects of the two subjects.

The work is organized as follows: Section 2 presents the dataset; in Section
3 and 4 we make studies on the reading achievement respectively in Italy and
across macro-areas, by means of twoand three-level linear mixed models; in Sec-
tion 5 we introduce the bivariate multilevel linear mixed models for mathamatis
and reading achievements; Section 6 is dedicated to the analysis of the school
effects and in Section 7 we focus the attention on models, both univariate and
bivariate, in which pupils are nested in classes.

All the analysis are made using the statistical software R (see [22]), except
the bivariate multilevel linear mixed models that are implemented using the
software AsReml (see [11]).

10



2 Background and Motivations
We have two initial set of data containing information about more than 500,000
students attending the first year of junior secondary school in the year 2012/2013,
provided by INVALSI. The former is built from the mathematics test and the
latter from the reading one. For each student, we have his/her achievements
both in reading and mathematics tests. The information are nested in different
levels: pupils are nested within classes that are nested within schools. We have
information for each of these levels. Part of the variables are the same in the two
dataset and were yet studied for the mathematics achievements, but the “read-
ing dataset” contains new variables that bring other information. The “reading
dataset” contains information about 510,933 students and the “mathematics
one” about 509,371. As introduced before, we create a “complete dataset”, col-
lecting only the students that have both the test scores of mathematics and
reading, followed by all the variables presented in the two set of data. A merge
of the two dataset is possible thanks to the anonymous student ID that is known
for each pupil and that allows us to distinguish and individuate students. We
obtain a new dataset containing 507,229 students, for whom both the achieve-
ments in maths and reading are known, and 50 variables, loosing, fortunately,
very few individuals.

2.1 The Dataset
Several information are provided at pupil, class and school level and they create
the set of covariates. When considering characteristic referred to the single stu-
dent, the following information is available: gender, immigrant status (Italian,
first generation, second generation immigrant), if the student is early-enrolled
(i.e. was enrolled for the first time when five years-old, the norm being to
start the school when six years-old), or if the student is late-enrolled (this is
the case when the student must repeat one grade, or if he/she is admitted at
school one year later if immigrant), variables on his/her school performances
(school score of reading and mathematics, written and oral). The dataset con-
tains also information about the family’s background: if the student lives or
not with both parents (i.e. the parents are died, or are separated/divorced),
and if the student has siblings or not. Lastly, INVALSI collects information
about the socioeconomic status of the student, by deriving an indicator (called
ESCS-Economic and Social Cultural Status), which is built in accordance to
the one proposed in the OECD (The Organisation for Economic Co-operation
and Development)-PISA framework, in other words by considering (i) parents’
occupation and educational titles, and (ii) the possession of certain goods at
home (for instance, the number of books). Once measured, this indicator has
been standardized to have mean zero and variance one. The minimum and
maximum observed values in the Invalsi dataset are −3.11 and 2.67. In general,
pupils with ESCS equal to or greater than 2 are very socially and culturally
advantaged (high family’s socioeconomic background). The dataset also allows
to explore several characteristics at class level, among which the class-level av-
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erage of several individuals’ characteristics (for example: class-average ESCS,
the proportion of immigrant students, etc.). Of particular importance, there is
a dummy for schools that use a particular schedule for lessons (”Tempo Pieno”
classes comprise educational activities in the afternoon, and no lessons on Sat-
urday, while traditional classes end at lunchtime, from Monday to Saturday).
Also the variables at school level measure some school-average characteristics
of students, such as the proportion of immigrants, early and late-enrolled stu-
dents, etc. Two dummies are included to distinguish (i) private schools from
public ones, and (ii) ”Istituti Comprensivi” which are schools that include both
primary and lower-secondary schools in the same building/structure. This last
variable is relevant to understand if the ”continuity” of the same educational
environment affects (positively or negatively) students results. Some variables
about dimension (number of students per class, average size of classes, number
of students of the school) are also included to take size effects into account.
Lastly, regarding geographical location, we include two dummies for schools
located in Central and Southern Italy and the district in which the school is lo-
cated; some previous literature, indeed, pointed at demonstrating that students
attending the schools located in Northern Italy tend to have higher achievement
scores than their counterparts in other regions, all else equal. As we have the
anonymous student ID, we have also the encrypted school and class IDs that
allow us to identify and distinguish schools and classes. The outputs (MS and
RS, i.e., the score in the Mathematics and Reading standardized test adminis-
tered by Invalsi) are expressed as ”cheating-corrected” scores (CMS and CRS):
Invalsi estimates the propensity-to-cheating as a percentage, based on the vari-
ability of intra-class percentage of correct answers, modes of wrong answers,
etc.; the resulting estimates are used to ”deflate” the raw scores in the test.
Among data, there are also the scores in the Maths and Reading tests at grade
5 of the previous year, which are used as a control in the multilevel model to
specify a Value-Added estimate of the school’s fixed effect. It is well known
from the literature that education is a cumulative process, where achievement
in the period t exerts an effect on results of the period t + 1.  

Unfortunately, there are lots of missing data in the score at grade 5, both
in mathematics and reading achievements. This kind of data can be lost in the
passage of information between primary and junior secondary schools. Since
having longitudinal data is very important for this study, we omit the individuals
with missing data at grade 5, loosing almost 300,000 students. The final and
reduced dataset collects 221,529 students, almost half of the initial dataset,
within 16,246 classes, within 3,920 schools.

Thare is also a different way to treat the missing data, instead of delete them.
It’s possible to impute missing data using different methods: the simplest case
is to substitute some statistically meaningful data available; more complex is
the method of Multiple Imputation; lastly, there are iterative methods (EM)
that allow to obtain estimates for the parameter of interest (see [5],[23],[24]).

Hereafter, all the analysis are made on this reduced dataset with 221,529
students. The variables and some related descriptive statistics are presented in
Table 1.
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Level Type Variable Name Mean sd

Student - Student ID - -
Student (Y/N) Female 49.8% -
Student (Y/N) 1st generation immigrants 4.4% -
Student (Y/N) 2nd generation immigrants 4.9% -
Student num ESCS 0.24 1
Student (Y/N) Early-enrolled student 1.6% -
Student (Y/N) Late-enrolled student 2.8% -
Student (Y/N) Not living with both parents 12.6% -
Student (Y/N) Student with siblings 83.3% -
Student % Cheating 0.016 0.05
Student [0:12] Written reading score 9.41 2.74
Student [0:12] Oral reading score 6.80 1.13
Student [0:12] Written maths score 9.48 2.75
Student [0:12] Oral maths score 6.88 1.35

Class - Class ID - -
Class num Mean ESCS 0.18 0.48
Class % Female percentage 43.7 10.07
Class % 1st generation immigrant percent 5.4 6.47
Class % 2nd generation immigrant percent 4.7 5.83
Class % Early-enrolled student percent 1.4 3.24
Class % Late-enrolled student percent 6.2 6.11
Class % Disable percentage 5.8 5.58
Class count Number of students 23 3.49
Class (Y/N) ”Tempo pieno” 0.023% -

School - School ID - -
School num Mean ESCS 0.18 0.41
School % Female percentage 43.3 5.46
School % 1st generation immigrant percent 5.4 4.65
School % 2nd generation immigrant percent 4.6 4.06
School % Early-enrolled student percent 1.5 2.23
School % Late-enrolled student percent 6.3 3.94
School count Number of students 143 76.52
School count Average number of students 22.6 2.94
School count Number of classes 6.2 3.05
School (Y/N) North 52% -
School (Y/N) Center 18% -
School (Y/N) South 30% -
School - District − -
School (Y/N) Private 3.1% -
School (Y/N) ”Istituto comprensivo” 65.8% -
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Level Type Variable Name Mean sd

Outcome [0:100] MS-Math Score 48 17.45
Outcome [0:100] CMS-Math Score corrected for Cheating 47.4 17.67
Outcome [0:100] RS-Reading Score 67 14.58
Outcome [0:100] CRS-Reading Score corrected for Cheating 65 14.65
Outcome [0:100] CMS5-5th year Primary school math score 70.5 16.30
Outcome [0:100] CRS5-5th year Primary school reading score 74.5 13.50

Table 1: variables of the database
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3 Reading Achievements in Italy
As introduced before, we start analyzing the correlation between the reading
achievements of students and the available information about pupils, classes
and schools. The variable of interest of our analysis is the Reading Score (cor-
rected for cheating, namely CRS) of students attending the first year of junior
secondary school. The purpose is to detect which student’s characteristics have
a positive and which have a negative influence on the achievements and to esti-
mate the school impacts on students’ achievement, so that, how much attending
a particulary school has a positive or a negative effect. The way to model this
correlation is given by the multilevel linear mixed models (see [20],[9],[8]), that
allow us, among others, to decompose the total variability in parts that vary
between schools, classes and pupils. Univariate multilevel linear mixed models
are implemented using the package nlme in R (see [21]).

3.1 Two-level Linear Mixed Model
The first model proposed is a two-level school effectiveness model in which we
consider the variables at student level (level 1) with a random effect on schools
(level 2). We detect how the answer variable, the students’ reading achievement,
is correlated with the characteristics of students and which is the value-added
that the school gives to that achievement. Therefore, we use a two-level linear
mixed model in which pupil i, i = 1,..., nlj ; n =

∑
l,j nlj (first level) is nested

within school j (second level), j = 1,..., J:

yij = β0 +

K∑
k=1

βkxkij + bj + εij (1)

bj ∼ N(0, σb
2), εij ∼ N(0, σε

2) (2)

where
yij is the reading test achievement of student i within school j;

xkij is the corresponding value of the k-th predictor variable at student’s
level;

β = (β0, ..., βK) is the (K+1) dimensional vector parameters to be estimated;

bj is the random effect of the j-th school and it’s assumed to be Gaussian
distributed and independent to any predictor variables that are included in the
model;

εij is the zero mean Gaussian error.

The histogram of the answer variable, the reading test achievement corrected
for cheating (CRS), is reported in Figure 1.
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Figure 1: Histogram of Corrected Reading Score of pupils in the Invalsi
database. The red line refers to the mean, the green one to the median.

Before analyzing the results of the model, it’s interesting to see if there are
some evident differences between groups of students. In Figure 2 are reported
boxplots of CRS, stratified by some student level variables.
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Figure 2: Boxplots of CRS stratified by gender, being late enrolled and being
first or second generation immigrant student. The last stratification is also
adopted for ESCS.

From the first boxplot, we can deduce a slight prevalence of the outcome of
females over those of males, that means that females have better results than
males, contrarily to what is obtained in mathematics. Since we can not test the
normality of the data because the dimensions are too high, we use the Wilcoxon
test for the difference between the medians, that is the non-parametric equiva-
lent of the t-test, obtaining a p-value less that 2.2e− 16. From the second one,
we see that late-enrolled students, i.e. student that must repeat one grade, or
students admitted at school one year later if immigrants, have worst results than
“in time” students (p-value of Wilcoxon test less than 2.2e−16). Regarding the
foreign students, from the last two boxplots, it’s clear that the 1st and 2ndgen-
erations of immigrants have worst performances than the Italians (p-values of
Wilcoxon test less than 2.2e−16), but this is also strictly connected with the gap
between their respective ESCS indices; there is a significant positive correlation
between the CRS and the ESCS (coefficient 0.27). Usually, immigrants have a
low ESCS index. Except the first boxplot (where in mathematics males have
better results than females), these results are the same of the ones obtained for
the mathematics attainment: immigrants and late-enrolled students have worst
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performances and the ESCS index seems positively relevant.
The estimates of model (1) are reported in Table 2.

Fixed Effect Estimate Standard Error

Intercept 24.333 ∗ ∗∗ 0.183
Female 2.091 ∗ ∗∗ 0.051
1st generation immigrant −3.449 ∗ ∗∗ 0.142
2nd generation immigrant −3.201 ∗ ∗∗ 0.122
South −4.616 ∗ ∗∗ 0.174
Center −1.165 ∗ ∗∗ 0.215
Early-enrolled student −0.699 ∗ ∗∗ 0.204
Late-enrolled student −3.372 ∗ ∗∗ 0.171
ESCS 1.986 ∗ ∗∗ 0.028
Not living with both parents −1.008 ∗ ∗∗ 0.078
Student with siblings −0.579 ∗ ∗∗ 0.070
written reading score 0.001 0.002
oral reading score 0.024 ∗ ∗∗ 0.002
CRS5 0.552 ∗ ∗∗ 0.001

Random Effect

σb 4.383
σε 11.448
VPC 12.7%

Size

Number of observations 221, 529
Number of groups 3, 920

Table 2: ML estimates (with standard errors) for model (1), fitted to the dataset.
Asteriscs denote different levels of significance: . 0.01 < p-val < 0.1; * 0.001 <
p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val < 0.0001.

All the variables seem to be pretty significant, except the written and oral
reading score, that have respectively very high p-value and correlation coeffi-
cients very small (respect to the values that the variable assumes); this suggests
that there is no a strong link between the usual academic attainment of the
student at school and his/her Invalsi test’s result.

Being a female increases the mean result of reading of 2 points, as we ex-
pected from the boxplot of Figure 2. Also, as we could expect, being a 1st

or 2nd generation of immigrants involves a lowering of the mean result (∼ -3),

18



since being strangers involves a worst understanding of the Italian language.
Being a late-enrolled student reduces the mean result of 3.3 points. The posi-
tive coefficient (0.55) between the actual Invalsi score and the Invalsi score of
the 5th year of primary school (CRS5) suggests that students that had good
results at the primary school, continue to have good result also in the junior
secondary school. The positive ESCS coefficient (1.98) tells us that students
with a high ESCS, that means good parents’ occupation and educational titles
and a substantial amount of “cultural resources” at home, have better results
that students with a lower ESCS. Lastly, the difference between geographical
macro-areas is interesting: respect to the reference variable (being at North),
attending a school in the Center of Italy decreases the mean result of 1 point
and, especially, attending a school in the South decreases the mean result of
more than 4 points.

The positive/negative correlations between the output and the covariates
are quite the same than in mathematics achievement, except, as we introduced
before, the correlation between sex and score: females have better performances
in reading skills, while males are better at maths.

In this model, the total variability varies between schools and between pupils.
The Variance Partition Coefficient (VPC) captured by Random Effects is ob-
tained as the proportion of random effects variance over the total variation

σ2
b

σ2
b + σ2

ε

(3)

In model (1), 12.7% of the total variance is explained by the variance of
random effects, that is, the variance between different schools. This suggests
that the educational level is not the same in all the schools and a consistent
part of the total variance of performances is explained by attending different
schools.

3.1.1 Variables at School level

Now, we would like to understand how the information at school level (number of
students, percentage of female, immigrants..., private schools etc.) is correlated
with the coefficients bj of the random effects. The variables at school level
are divided into two groups: (i) the peers effects related to the composition
of student body and (ii) managerial and structural features of the school. We
use these variables to model the factors affecting the estimated random effects,
through a linear model:

b̂j = γ0 +

L∑
l=1

γlzlj + ηj (4)

ηj ∼ N(0, σ2
η) (5)

where

j=1,...,J is the index of the school;

19



b̂j is the estimated randon effect of the j-th school of model (1);

zlj is the value of the l-th predictor variable at school’s level;

γ = (γ0, ..., γL) is the (L+1) dimensional vector of parameters;

ηj is the zero mean gaussian error.

The histogram of the estimated Random Effect coefficients b̂j is reported in
Figure 3.

Figure 3: Histogram of the estimated Random Effect coefficients.

The ML estimates of model (4) are reported in Table 3.
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Model coefficients Estimate

Intercept −2.336 ∗ ∗
Mean ESCS −0.282.
Female percentage 0.028 ∗ ∗
1st generation immigrant percentage 0.046 ∗ ∗
2nd generation immigrant percentage 0.042∗
Early-enrolled student percentage −0.004
Late-enrolled student percentage −0.005
Number of classes 0.015
Number of students 0.000
Average number of students per class 0.030
Private school −2.199 ∗ ∗∗
”Istituto Comprensivo” 0.201

Table 3: ML estimates for model (4). Asteriscs denote different levels of signifi-
cance: . 0.01 < p-val < 0.1; * 0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001;
*** p-val < 0.0001.

The only variables that seem to have a significant influence on the “school
effect” are the index of Private or Public school and the percentages of females
and immigrants. Anyway, the very low R2s of the regression (about 4 %),
suggests that a lot of variability remains unexplained considering the measurable
variables only. Moreover, the design matrices present a high correlation among
their columns. In order to solve this issue, we fit a Lasso regression model (see
[26]) to the random effects estimates of model (1):

λ = argminγ

(
γ0 +

L∑
l=1

γlzlj

)2

(6)

subject to ∑
l

|γl| ≤ γ (7)

The Lasso regression is a variable selection algorithm and it produces some
coefficients that are exactly 0, that is, it’s a way to choose which are the most
important variables in order to refit the model using only these variables and
avoiding wrong estimates, given by the correlation between all the variables.
Table 4 shows the results of the model selected by Lasso regression, that is
implemented in the R package lars (see [13]).
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Lasso Model coefficients Estimates

Intercept −1.286219 ∗ ∗
Female percentage 0.024781 ∗ ∗
1st generation immigrant percentage 0.038944 ∗ ∗
2nd generation immigrant percentage 0.045787 ∗ ∗
Private school −2.865086 ∗ ∗∗

Table 4: ML estimates for model (4), fitted on the reduced space of variables
selected by Lasso. Asteriscs denote different levels of significance: . 0.01 < p-val
< 0.1; * 0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val < 0.0001.

From the variable selection algorithm results that the covariates that seem
more relevant are those that describe the composition of student body (percent-
ages of females and immigrants) and the index of private school. In particular,
the percentages of females and immigrants are positively associated with the
school effect, instead of being a “Private school”, that reduces the mean value-
added of the school of 2.8 points, suggesting that public schools are generally
better than the private ones.

3.2 Three-level Linear Mixed Model
Reverting to model (1), we observe that the amount of unexplained variability
remains high. This is probably due to the unobserved variables like those that
reflect the kind of activities which are undertaken within classes of each school.
In other words, part of the school effect is actually driven by the differences
between classes of the same school and so, exploring the variance between classes
(within school) can add explanatory power to our model. Therefore, we use a
three-level linear mixed model in which pupil i, i = 1,..., nlj ; n =

∑
l,j nlj (first

level) is in class l, l = 1,..., Lj ; L =
∑

k Lj(second level) that is in school j, j =
1,..., J:

yilj = β0 +

K∑
k=1

βkxkilj + bj + ulj + εilj (8)

bj ∼ N(0, σ2
School), ulj ∼ N(0, σ2

Class), εilj ∼ N(0, σ2
ε ) (9)

where

yilj is the CRS of the student i, in the class l, in the school j;

xkilj is the value of the k-th predictor variable at student’s level;

β = (β0, ..., βK) is the (K+1)-dimensional vector of parameter;

bj is the random effect for the j-th school;

ulj is the random effect for the l-th class in the j-th school;
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εilj is the zero mean gaussian error.
The estimates of model (8) are reported in table 5.

Fixed Effect Estimate Standard Error

Intercept 22.885 ∗ ∗∗ 0.190
Female 2.110 ∗ ∗∗ 0.048
1st generation immigrant −3.494 ∗ ∗∗ 0.128
2nd generation immigrant −3.247 ∗ ∗∗ 0.109
South −4.743 ∗ ∗∗ 0.165
Center −1.202 ∗ ∗∗ 0.201
Early-enrolled student −0.735 ∗ ∗∗ 0.183
Late-enrolled student −3.390 ∗ ∗∗ 0.154
ESCS 1.986 ∗ ∗∗ 0.025
Not living with both parents −0.967 ∗ ∗∗ 0.070
Student with siblings −0.605 ∗ ∗∗ 0.062
written reading score 0.002 0.002
oral reading score 0.032 ∗ ∗∗ 0.002
CRS5 0.572 ∗ ∗∗ 0.001

Random Effect

σSchool 3.114
σClass 5.343
σε 10.494
V PCClass 19.2%

Size

Number of observations 221, 529
Number of groups (School) 16, 246
Number of groups (Class) 3, 920

Table 5: ML estimates (with standard error) for model (8), fitted to the dataset.
Asteriscs denote different levels of significance: . 0.01 < p-val < 0.1; * 0.001 <
p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val < 0.0001.

The coefficients of the variables at pupils level are very similar to the ones
estimated in model (1). What is interesting is the proportion of explained
variability: in model (1), 12.7 % of the total variability was explained at school
level, here, 19.2 % of the variability is explained at class level and 6.5 % at
school level. This high proportion of total variability present between classes
may be due to the direct influence of the peers and the presence of good/bad

23



teachers. Lastly, the variance of the error σε is a bit smaller respect to model
(1), 10.494 respect to 11.448. Anyway, we must take into account that this
variability between classes is nested within schools, so that, it’s different from
the variability between classes that we would obtain in a two-level linear mixed
model with pupils nested only within classes.

3.2.1 Variables at Class Level

In Section 2.2.1, we analyzed how the estimated random effects b̂j depend on
the school level variables. Now it may be interesting to investigate which are
the variables at class level that more influence the random effect ûlj , where the
class l, l = 1, ...Lj and L =

∑
k Lj is in school j=1,..J. As the variables at school

level, these variables are divided into two groups: i) the peers effects related to
the composition of student body and (ii) managerial and structural features of
the school. The model is:

ûlj = α0 +

K∑
k=1

αkwljk + ηlj (10)

ηlj ∼ N(0, σ2
η) (11)

where

ûlj is the estimated random effect of the l-th class in the j-th school from
the model (8);

α = (α0, ..., αK) is the (k+1)-dimensional vector of parameters;

wljk is the value of the of the k-th predictor variable at class level;

ηnj is the zero mean gaussian error.

The histogram of the random effects at class level is reported in Figure 4.
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Figure 4: Histogram of random effects at class level.

Also in this case, with a lasso regression method, we select the main variables
to use in the model.

Lasso Model coefficients Estimates

Intercept −1.625 ∗ ∗∗
Mean ESCS −0.477 ∗ ∗∗
1st generation immigrant percentage 0.037 ∗ ∗∗
Late-enrolled students percentage 0.018 ∗ ∗
Number of students 0.061 ∗ ∗∗

Table 6: ML estimates for model (10), fitted on the reduced space of variables
selected by Lasso. Asteriscs denote different levels of significance: . 0.01 < p-val
< 0.1; * 0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val < 0.0001.

Again, the R2s is very low (∼ 0.03) but the mean ESCS and the number of
students in the class seem to be the most important variables.
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4 Reading Attainments across Macro-areas
In the analysis of the mathematics achievements emerged that the differences
between the geographical three macro-areas (North, Center and South) were
so deep that we could study three different models in which different variables
were important and “school effect” was actually very heterogeneous, showing
differences in the context of Italian educational system. We try now to un-
derstand what kind of differences elapses between macro-areas in the reading
achievements. In both the multilevel linear mixed models seen before (models
(1) and (8)), the variables related to the areas are relevant and the coefficients
show a negative influence of attending a school in the Center and especially in
the South respect to the North. The number of schools and students in the
dataset are not equally distributed in the three area: there are 115,368 students
in 1,800 schools in the North, 39,847 students in 688 schools in the Center and
66,314 students in 1,432 schools in the South (we lost lots of data in the South
deleting the missing values in CS5).

An idea of the CRS distribution in the three macro-area is obtained from
the boxplots in Figure 5.

Figure 5: Boxplots of CRS stratified by geographical macro-areas

Looking at the boxplots, emerge that there is no a significant difference be-
tween the CRS in the North and Center, but the CRS of the South is visibly
lower respect to the other ones and has a greater variance. Particularly, the
mean of these two populations are different (p-value of the Wilcoxon test less
than 2.2e− 16), 66.54 in the North and 62.07 in the South, and the variance of
the CRS in the South is higher than the one in the North. This last difference
is tested by a Levene’s test (see [16]) based on Kruskal-Wallis (see [25]), from
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the R package lawstat (see [31]), that is an inferential statistic used to assess
the equality of variances for a variable calculated for two or more groups (p-
value of the Levene’s test for comparing variances less than 2.2e− 16). We use
non-parametric tests because data are not normally distributed.

4.1 Two-level Linear Mixed Model in the three Macro-
areas

To analyze if there are different correlations between CRS and the covariates
and different school effects, we fit model (1) for each of the three geographical
macro-areas:

y
(R)
ij = β

(R)
0 +

K∑
k=1

βk
(R)xkij

(R) + bj
(R) + εij

(R) (12)

where R = {Northern, Central, Southern}
Table 7 shows the estimates of the three models.

27



Fixed Effects North Center South

Intercept 18.70 ∗ ∗∗ 25.10 ∗ ∗∗ 27.44 ∗ ∗∗
Female 2.12 ∗ ∗∗ 1.86 ∗ ∗∗ 2.16 ∗ ∗∗
1st generation immig −3.45 ∗ ∗∗ −3.34 ∗ ∗∗ −1.47∗
2nd generation immig −3.37 ∗ ∗∗ −2.94 ∗ ∗∗ −1.02∗
Early-enrolled student −1.84 ∗ ∗∗ −0.72 −0.35
Late-enrolled student −3.17 ∗ ∗∗ −2.58 ∗ ∗∗ −4.64 ∗ ∗∗
ESCS 1.55 ∗ ∗∗ 2.00 ∗ ∗∗ 2.58 ∗ ∗∗
not living with both parents −0.92 ∗ ∗∗ −1.33 ∗ ∗∗ −0.94 ∗ ∗∗
Student with siblings −0.50 ∗ ∗∗ −0.56 ∗ ∗∗ −0.66 ∗ ∗∗
written reading score 0.00 0.00 −0.01.
oral reading score 0.01 ∗ ∗∗ 0.02 ∗ ∗∗ 0.07 ∗ ∗∗
CRS5 0.63 ∗ ∗∗ 0.52 ∗ ∗∗ 0.44 ∗ ∗∗

Random Effects

σSchool 3.81 4.18 4.83
σε 10.59 11.59 12.57
VPC 11.5% 11.5% 12.8%

Size

Number of observations 115, 368 39, 847 66, 314
Number of groups (School) 1, 800 688 1, 432

Table 7: ML estimates for model (12) fitted to data of Northern, Central and
Southern area. Asteriscs denote different levels of significance: . 0.01 < p-val
< 0.1; * 0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val < 0.0001.

First of all, we note that the VPCs in the three areas are almost the same,
that is the variability between schools explains almost the same part of the
total variability in the three areas. This is different from the model fitted for
mathematics data, in which the variability between schools was much stronger
in the South than in the North (about 20% in the South respect to 10% in the
North) (see [2]). The ESCS positively influences the attainments in all three
cases, but it weighs more in the South (coefficient 2.58) than in the Center and
in the North (2.0 and 1.55 respectively), suggesting that the family situation
and the socio-cultural background is more relevant in the South. Also, being
immigrants in the North weighs more than in the South (∼ −3.3 vs −1.2) and
this is probably due to the fact that in the South there are less immigrants
than in the North. The coefficients of the CRS5 decreases from North to South,
suggesting than in the North there is more continuity in school performances
that in the South. All the other coefficients of fixed effects are very similar in
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the three macro-areas. Lastly, the highest variance of the error is in the South,
where the data are more dispersed.

4.1.1 Variables at School Level

Fitting three lasso regression models, we can individuate which are the variables
that weigh more at school level in the three geographical macro-areas, that is
which are the main characteristics of the schools that exert a positive/negative
effect on students’ achievement. The linear model is:

b̂
(R)
j = γ

(R)
0 +

L∑
l=1

γl
(R)zlj

(R) + ηj
(R) (13)

where b̂(R)
j are the school random effects of area R, estimated by models (12)

and the variables zlj are selected by the Lasso regression. The boxplots of the
b̂j are reported in Figure 6.

Figure 6: Boxplots of the b̂j estimated in the three macro-areas.

The variability of b̂j in the South is higher than in the rest of Italy (p-value
5.476e− 16 of the Levene’s test of the three populations).
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Lasso Model coefficients North Center South

Intercept 0.156 −0.380 −0.733
Mean ESCS −1.726 ∗ ∗∗ −0.396 1.035 ∗ ∗∗
Female percentage 0.031.
1st generation imm perc 0.050
2nd generation imm perc 0.153 ∗ ∗∗
Early-enrolled student perc −0.203∗ −0.091 ∗ ∗
Late-enrolled student perc 0.025 −0.073∗
Number of classes
Number of students 0.002.
Average num of stud per class
Private school −1.423 ∗ ∗∗ −2.455 ∗ ∗

Table 8: ML estimates of model (13) fitted to data of Northern, Central and
Southern area schools. Asteriscs denote different levels of significance: . 0.01
< p-val < 0.1; * 0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val <
0.0001.

The composition of student body (female, immigrants and early/late-enrolled
students percentages) seems more relevant in the South than in the North,
where, instead, weigh more managerial and structural features of the school
(number of students in the school and private/public school). In particular,
being a private school decreases the school mean value-added of -1.42 points in
the North. Interesting is the mean school ESCS: it’s relevant in all the three
areas, but in the North the greater the medium school ESCS, the lower the
value-added of the school. In the South is the opposite: schools with a high
mean school ESCS give a high value-added.

4.2 Three-level Linear Mixed Model in the three Macro-
areas

Lastly, for each area, we fit a three-level linear mixed model to analyze differ-
ences at class level. For each geographical area R:

y
(R)
ilj = β0

(R) +

K∑
k=1

βk
(R)xkilj

(R) + bj
(R) + ulj

(R) + εilj
(R) (14)

b
(R)
j ∼ N(0, σ

2(R)
School), u

(R)
lj ∼ N(0, σ

2(R)
Class), ε

(R)
ilj ∼ N(0, σ2(R)

ε ) (15)

30



Fixed Effects North Center South

Intercept 17.46 ∗ ∗∗ 23.28 ∗ ∗∗ 26.01 ∗ ∗∗
Female 2.15 ∗ ∗∗ 1.86 ∗ ∗∗ 2.17 ∗ ∗∗
1st generation immigr −3.48 ∗ ∗∗ −3.27 ∗ ∗∗ −1.59∗
2nd generation immigr −3.38 ∗ ∗∗ −2.98 ∗ ∗∗ −1.18.
Early-enrolled student −1.85 ∗ ∗∗ −0.93. −0.31
Late-enrolled student −3.20 ∗ ∗∗ −2.76 ∗ ∗∗ −4.46 ∗ ∗∗
ESCS 1.593707 ∗ ∗∗ 2.02 ∗ ∗∗ 2.51 ∗ ∗∗
not living with both parents −0.87 ∗ ∗∗ −1.26 ∗ ∗∗ −0.94 ∗ ∗∗
Student with siblings −0.54 ∗ ∗∗ −0.58 ∗ ∗∗ −0.65 ∗ ∗∗
written reading score 0.00 0.00 −0.00
oral reading score 0.01 ∗ ∗∗ 0.02 ∗ ∗∗ 0.07 ∗ ∗∗
CRS5 0.64 ∗ ∗∗ 0.55 ∗ ∗∗ 0.46 ∗ ∗∗

Random Effects

σSchool 2.33 2.96 3.67
σClass 5.00 5.37 5.77
σε 9.68 10.63 11.55
V PCClass 20.1% 19.1% 18.4%
V PCSchool 4.4% 5.8% 7.5%

Size

Number of observations 115, 368 39, 847 66, 314
Number of groups (Classes) 7, 754 3, 066 5, 426
Number of groups (School) 1, 800 688 1, 432

Table 9: ML estimates of model (10) fitted to data of Northern, Central and
Southern area schools. Asteriscs denote different levels of significance: . 0.01
< p-val < 0.1; * 0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val <
0.0001.

The estimates of the coefficients are similar to the ones obtained from the
two-level mixed model (12), in Table 7. Here, part of total variability is ex-
plained by the variability between classes. While the percentage of variability
explained at class level is higher in the North than in the South, the percent-
age explained at school level is higher in the South than in the North. So that,
there is more difference between classes in the North than in the South but more
difference between schools in the South than in the North. Anyway, as we did
for model (8), we must take into account that this variability between classes is
nested within schools, so that, it’s different from the variability between classes
that we would obtain in a two-level linear mixed model with pupils nested only
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within classes.

4.2.1 Variables at Class Level

From model (14) we estimate the coefficients of random effects at class level, to
fit linear models using variables at class level, in each of the three geographical
macro-areas. The model is:

û
(R)
lj = α

(R)
0 +

K∑
k=1

α
(R)
k w

(R)
ljk + η

(R)
lj (16)

η
(R)
lj ∼ N(0, σ2(R)

η ) (17)

The boxplots with the estimated random effects at class level are reported
in Figure 7. Like all the random effects at different levels, the higher variance
is in the South and the lower is in the North (p-value less than 2.2e− 16 of the
Levene’s test).

Figure 7: Boxplots of the estimated Random Effects at school level in the three
macro-areas.

The coefficients selected by the Lasso regression model are reported in Table
10. The only variable relevant in all the three macro-areas is the medium ESCS
of the class: in the North (coefficient -1.19) classes with a high mean ESCS
give a negative contribution at the result, instead of in the South (coefficient
0.32), where classes with a high mean ESCS give a positive value-added. As

32



we have seen before, the percentage of immigrants is irrelevant in the South,
where, however, class sizes are important, contrary to the North.

Lasso Model coefficients North Center South

Intercept −1.70 ∗ ∗∗ −0.54 ∗ ∗∗ −1.03 ∗ ∗
Mean ESCS −1.19 ∗ ∗∗ −0.59 ∗ ∗ 0.32 ∗ ∗
Female percentage
1st generation imm perc 0.32 ∗ ∗ 0.02
2nd generation imm perc 0.03 ∗ ∗
Early-enrolled student perc −0.02∗
Late-enrolled student perc 0.03 ∗ ∗∗ 0.05 ∗ ∗∗
Disable percentage −0.00
Number of students 0.06 ∗ ∗∗ 0.053 ∗ ∗∗
Tempo Pieno

Table 10: ML estimates of model (16) fitted to data of Northern, Central and
Southern area. Asteriscs denote different levels of significance: . 0.01 < p-val
< 0.1; * 0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val < 0.0001.
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5 Bivariate Multilevel Linear Mixed Models
As we can expect, there is a positive correlation between the performances of
students in the two topics, CMS and CRS. By a test of correlation, we obtain
a coefficient of correlation of 0.59 with a high significance (pval < 2.2e − 16).
Also, Figure 8 shows that correlation.

Figure 8: Reading vs mathematics achievement.

Therefore, it can be interesting to fit bivariate multilevel linear mixed models
where the outcome variable is a matrix with both the achievements in mathe-
matics and reading. This can be useful to explore the correlation between the
two random effects and to extract information from the interaction between the
two fields. All the bivariate multilevel linear mixed models are implemented
using the software AsReml (see [11]).

5.1 Bivariate Two-level Linear Mixed Model
Let’s take the model where pupil i, i = 1,..., nlj ; n =

∑
l,j nlj (first level) is in

class l, l = 1,..., Lj ; L =
∑

k Lj(second level) that is in school j, j = 1,..., J:

−→y ij =
−→
β 0 +

K∑
k=1

−→
β kxkij +

−→
b j +

−→ε ij (18)

where

−→y =

(
ymat

yread

)
is the bivariate outocome with mathamatics and reading

achievements;
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−→
β =

(
βmat

βread

)
is the bivariate coefficient of the student’s variables;

−→
b =

(
bmat

bread

)
∼ N(

−→
0 ,Σ) is the matrix of the two random effects (mathe-

matics and reading) at school level;

−→ε =

(
εmat

εread

)
∼ N(

−→
0 ,W ) is the error.

Figure 9 shows the histograms of the outcome variables, CRS and CMS.

Figure 9: Histogram of Corrected Reading and Mathematics Score of pupils in
the Invalsi database. The red lines refer to the mean, the green ones to the
median.

Using the software ASReml, we can fit this bivariate model and obtain the
new estimates of the coefficients. Table 11 shows the results. Note that we man-
aged to use the CRS5/CMS5 as a regressor only for the reading/mathamatics
achievement respectively, because the reading achievement doesn’t depend on
the mathematics score at grade 5 and the maths achievement doesn’t depend
on the reading one.
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Fixed Effects Mathematics coeff Reading coeff

Intercept 14.91 30.44
Female −2.211 2.134
1st generation immigrant −1.511 −3.921
2nd generation immigrant −2.281 −3.548
South −6.437 −4.670
Center −2.699 −1.163
Early-enrolled student −0.793 −0.792
Late-enrolled student −2.744 −3.638
ESCS 2.625 2.211
Not living with both parents −1.463 −1.104
Student with siblings 0.049 −0.6447
CS5 0.505 0.4763

Variance/Covariance matrix

of random effects
(
23.04 5.51
5.51 13.08

)
Variance/Covariance matrix

of error
(
180.5 63.13
63.13 132.25

)
Size

Number of observations 221, 529
Number of groups (School) 3, 900

Table 11: ML estimates of model (18) fitted to the entire dataset.

We can now compare the estimates of the coefficients of the two topics. As we
anticipated before, the coefficients of the variable “female” are almost opposites:
being a female has a good effect in reading and a bad one in mathematics. Being
immigrants has a negative effect in both the fields, but especially in reading,
suggesting that the main difficulty for immigrants students is the language.
Being a student in the South of Italy has a worst effect in mathematics than in
reading, while anyway has a negative effect in both the topics. The ESCS and
the score at grade 5 are positively correlated with the achievements and have
similar coefficients in both the fields.

Looking at the variance/covariance matrix of the random effects, is clear
that the variability of the mathematics random effects is much higher than the
reading one ( 23.04 vs 13.08). The two effects are correlated with coefficient
0.307. Figure 10 shows that different variability.
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Figure 10: Estimated school effects b̂j in mathematics and reading

To test this difference in variability, being both the populations not normal
distributed (p-values of the Shapiro test less than 2.2e − 16), we implement
a non-parametric Levene’s test and we obtain a very low p-value (less than
2.2e−16), proving that the variances of the random effects of the two topics are
different. If we compare the random effects of the school estimates by the bivari-
ate model with the ones estimated by the two univariate models (mathematics
and reading), we can observe that they are almost the same, with correlation’s
coefficients of about 0.98. Anyway, we notice that the variability of the bivariate
radom effects is smaller that the univariate’s one, both in reading and mathe-
matics (Figure 11). Again, we prove that with Kruskal-Wallis tests, testing the
difference of variances for both the topics and obatining p-values of 0.0019 for
mathamatics and 0.0011 for reading.
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Figure 11: School effects b̂j in mathematics and reading estimated by both the
univariates and bivariate models.

5.2 Bivariate Two-level Linear Mixed Models among Macro-
areas

Let’s fit now the model (18) for each of the three macro-areas:

−→y (R)
ij =

−→
β

(R)
0 +

K∑
k=1

−→
β

(R)
k xkij +

−→
b

(R)
j +−→ε (R)

ij (19)

The estimates of the model are reported in Table 12.
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Fixed Effects North mat Center mat South mat

Intercept 6.2 12 20
Female −1.8 −2.8 −2.15
1st generation imm −1.2 −1.17 0.18
2nd generation imm −2.3 −1.4 −0.55
Early-enrolled student −2.3 −0.5 −0.24
Late-enrolled student −2.7 −1.7 −0.55
ESCS 2.1 2.56 3.28
not living with both parents −1.37 −1.5 −1.57
student with siblings 0.15 −0.1 0
CR5 0.62 0.5 0.33

Fixed Effects North read Center read South read

Intercept 24 31 33.6
Female 2.16 1.89 2.21
1st generation imm −3.9 −3.7 −1.6
2nd generation imm −3.7 −3.2 −1.16
Early-enrolled student −2.04 −0.8 −0.37
Late-enrolled student −3.4 −2.8 −1.16
ESCS 1.7 2.21 2.8
not living with both parents −1 −1.4 −1
student with siblings −0.5 −0.6 −0.7
CR5 0.56 0.45 0.36

North Center South

Variance/covariance matrix

of fixed effects
(
9.74 1.85
1.85 11.2

) (
14.8 5.31
5.31 12.7

) (
43.6 8.36
8.36 15.7

)
Variance/covariance matrix

of residuals
(
154 47
47 113

) (
182 64
64 159.6

) (
210 82
82 159

)

Table 12: ML estimates of model (19) fitted for each of the three macro-areas.

Looking at the estimates of the three models, we observe that, in general,
the coefficients of variables immigrants and late/eartly-enrolled students of the
South are closer to the zero than those of the North. Particularly, for immi-
grants students, this can be explained by the high presence of immigrants in
the North respect to the South. The ESCS, instead, has a bigger coefficients in
the South than in the North ( 3.28 and 2.8 against 2.1 and 1.7), suggesting that
in the South, the socio-cultural back-ground is very important in the students’
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achievements. Lastly, the score at grade 5 is more relevant in the North than in
the South in both the topics (0.62 and 0.56 against 0.33 and 0.36), emphasizing
a greater continuity in student performances.

Let’s now look at the variance\covariance matrices of the random effects.
The three matrices seem quite different: instead of the North and the Center,
where the variance of the random effects of mathematics and reading are almost
the same (respectively 9.74 vs 11.2 and 14.8 vs 12.7 ), in the South the variance
of the random effects of mathematics is much higher than those of reading (43.6
vs 15.7). The correlation’s coefficients between the two vectors of random effects
are respectively 0.17 in the North, 0.39 in the Center and 0.32 in the South.
The matrices of errors don’t seem to be significatively different.

Figure 12 reports the plots of the random effects of reading and mathematics
estimated by the two univariate models first and then by the bivariate model.
Also here, it’s clear that the variability of the points in the univariate case is
higher than the bivariate one and as we could expect from the variance/covari-
ance matrices estimaed in table 12, the variance of the South is much higher
than the North and the Center ones.

Figure 12: The first image represents the random effects estimated by the bi-
variate model by the two univariate models, while the second one represents
the random effects estimated by the two univariate models. Colours identify
the three macro-areas: blue for the South, red for the North and green for the
Center.

5.2.1 Comparing Variance Matrices

To test if there is really a significant difference between the three variance/co-
variance matrices of the three macro-areas, we use some distance-based test for
homogeneity of multivariate dispersions.

Traditional likelihood-based tests for homogeneity of variance–covariance
matrices are extremely sensitive to departures from the assumption of multi-
variate normality, but there are tests that were found to be quite robust to
departures from normality (see [18],[14]). In a univariate context, an example
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is the Levene’s test for homogeneity, that is essentially an analysis of variance
(ANOVA) done on deviations from group means. In a multivariate context,
Van Valen (see [29]) proposed a multivariate analogue to Levene’s test as an
ANOVA on the Euclidean distances of individual observations to their group
centroid, defined as the point that minimizes the sum of squared distances to
points within the group. O’ Brien and Manly suggested that this approach
could be made more robust by replacing centroids with multivariate median as
the median for each variable within each group.

Following the ideas of Van Valen, O’ Brien and Manly, who used Euclidean
distances, a dissimilarity-based multivariate generalization of Levene’s test is
proposed. The suggested test statistics are ANOVA F-statistic comparing dis-
tances to centroids or spatial medians.

Let xij be the vector that denotes the point for the j-th observation in the
i-th group in the multivariate space of p variables. Furthermore, let ∆(., .)
denote the Euclidean distance between two points. The centroid vector ci for
group i is defined as the point that minimizes the sum of squared distances
to points within that group. One multivariate analogue to levene’s test is to
perform ANOVA on the Euclidean distances from individual points within a
group to their group centroid, zcij = ∆(xij , ci).

A P-value for the F-statistic calculated on distances to centroids may be
obtained using the traditional F-distribution.

A more robust version of Levene’s test, suggested by Brown and Forsythe
is to analyze deviations from medians instead. One multivariate analogue of
this would be to calculate ANOVA on distances from the spatial median, zmij =
∆(xij ,mi).

The approach may be extended to any distance or dissimilarity measure
of choice through the use of principal coordinates. Let D = [d] be a square
symmetric matrix of distances calculated between every pair of observations, l
= 1,...,N and l’ = 1,...,N. In the case of the Euclidean distance measure,

dll′ = ∆(xl, xl′) =

√√√√ p∑
k=1

(xlk − xl′k)2 (20)

To obtain principal coordinates, first let matrix A = [all′ ], where all′ =
− 1

2d
2
ll′ . Centering this matrix in the manner of Gower (1966) gives G = [gll′ ] =

[all′−al−al′+a..], where al is the mean for row l, al is the mean for column l′, and
a.. is the overall mean of the values in matrix A. Next, spectral decomposition
of the G matrix yields

G =

N∑
l=1

λlqlq
T
l′ (21)

,
where λ1, ...λN are the ordered eigenvalues of G and q1, ...qN are the corre-

sponding orthonormal eigenvectors. Principal coordinate axes (column vectors)
are then obtained by scaling each axis ql by the square root of its corresponding
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eigenvalue, ul = λ
1
2 ql. Now, unless the dissimilarities are indeed distances (Eu-

clidean embeddable), matrix G may not be nonnegative definite and so some
eigenvalues may be negative. The axes of matrix Q can be split into two sets,
Q = [q1, ...qr|qr+1, ..., qN ], such that the first r eigenvectors correspond to the
positive eigenvalues and the last (N-r) to the negative ones. For eigenvectors
corresponding to nonnegative eigenvalues, l = 1,...,r, we denote scaled axes
as u+

l = (λl)
1
2 ql. For eigenvectors l = r + 1,...,N corresponding to negative

eigenvalues, we may scale by the square root of the absolute value of λl and
subsequently multiply by (−1)12, recognizing that these correspond to axes in
imaginary space, i.e., (−1)12u−

l = (|λl|)12ql. Now, the original dissimilarity be-
tween two points xij and xi′j′ can be recovered in the principal coordinate space
using Euclidean distances, as

dij,i′j′ =
√

∆2(u+
ij , u

+
i′j′)−∆2(u−

ij , u
−
i′j′) (22)

. Furthermore, we can calculate a centroid for each of the i = 1, . . . , g
groups in each of the real and imaginary spaces as c+i i and c−i , respectively, in
the usual way. Then, the distance (or dissimilarity) from the ij-th point to its
centroid in the full principal coordinate space is

zcij =
√
∆2(u+

ij , c
+
i )−∆2(u−

ij , c
−
i ) (23)

, where we will consider only positive square root. The test for homogeneity of
dispersions then simply consists of doing univariate one-way ANOVA on the z’s
(see [3]).

Applying this last method and using the R package vegan (see [19]), we
find that the means of the Euclidean distances between points and centroid
within each group are 3.677 in the North, 4.238 in the Center and 6.329 in
the South, showing that, as we saw below, the points of the South are more
dispersed. Similar results are obtained if we calculate the distances from the
median within each group (repectively 3.645, 4.217 and 6.303). Both the tests
ANOVA (with centroids and medians) give p-values less than 2.2e−16, proving
that the three matrices are different, so that, there are different correlations
between the school effects and different variance structures or random effects in
the three marco-areas. Figure 13 shows the euclidean distances of the points
from the centroids of each macro-area and what is created are the convex hulls
in the Euclidean plane, that are the smallest convex set that contain the points.
The biggest one is referred to the South.
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Figure 13: Euclidean distances between the points and the centroid of each
macro-area in the principal component space.

If we try to repeat this study on the variance/covariance matrices of the
errors, we can not use the entire set of data, with 221,529 residuals because the
dimensions are too high for the software R. Therefore, we apply the method to
different subsample of 3,000 data for each macro-area and we always notice the
same trend of the random effects’ matrices: the distributions and the variances
of the residuals of the three macro-area are different, the distances between the
points and the centroids within each group are about 14 in the North, 15 in the
Center and 16 in the South. The test ANOVA gives a p-value less than 2.2e-16.
The big dispersion of the residuals in the South suggests that there is a big part
of the variability that remains unexplained.

5.2.2 Variables at School Level among Macro-areas

Let’s fit now three bivariate linear models in which the outcome variables are
the school effects

−→
b̂j estimated by models (19) for each macro-area and the

covariates are the variables at school level.

−→
b̂j

(R) = −→γ0(R) +

K∑
k=1

−→γk(R)z
(R)
jk +−→ηj (R) (24)

Estimates of model (20) are reported in Table 13.

43



Lasso Model coefficients North mat Center mat South mat

Intercept −4.032 ∗ ∗ −4.965 ∗ ∗ −2.679
Mean ESCS 0.262 0.815 1.458 ∗ ∗∗
Female percentage 0.034 ∗ ∗ 0.060 ∗ ∗ 0.072 ∗ ∗
1st generation imm perc −0.040∗ 0.053 0.135∗
2nd generation imm perc −0.007 0.152 ∗ ∗∗ 0.037
Early-enrolled student perc −0.097 −0.229∗ −0.116∗
Late-enrolled student perc −0.062 ∗ ∗ −0.063 −0.272 ∗ ∗∗
Number of classes 0.466∗ −0.031 −0.723
Number of students −0.017. 0.007 0.035.
Average num of stud per class 0.122∗ 0.030 0.022
Private school −0.797. −2.119∗ 1.379
IC 0.270 0.608 0.518

R2 0.11 0.07 0.06

Lasso Model coefficients North read Center read South read

Intercept −1.23 −3.968∗ −1.257
Mean ESCS −1.810 ∗ ∗∗ −0.381 0.752 ∗ ∗
Female percentage 0.005 0.021 0.039∗
1st generation imm perc −0.002 0.027 0.064.
2nd generation imm perc 0.017 0.129 −0.014
Early-enrolled student perc 0.025 −0.225 ∗ ∗∗ −0.101 ∗ ∗
Late-enrolled student perc 0.025 0.041∗ −0.080 ∗ ∗
Number of classes 0.105 0.125 −0.301
Number of students −0.002 −0.003 0.015
Average num of stud per class 0.044 0.082 −0.009
Private school −1.212∗ 1.580. 1.146
IC 0.047 0.345 0.316

R2 0.02 0.07 0.02

Table 13: ML estimates of model (20) fitted to data of Northern, Central and
Southern area. Asteriscs denote different levels of significance: . 0.01 < p-val
< 0.1; * 0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val < 0.0001.

First of all, we note that the R2s of the models of mathematics are a bit
higher that those of the reading ones, suggesting that the regressors predict the
outcome variable in a better way in mathamatics than in reading. Again, the
medium ESCS of the school is very relevant in the South, in both the topics,
with a positive influnce, while in the North has a negative weight. Generally, the
composition of the school’s peers, such that female, 1st/2nd generation immi-
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grants, early/late enrolled students percentage, weights more in the South. At
last, when it is relevant (North and Center), being a private school has always
a negative influence.
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6 Analysis of the School Effects
6.1 Exploratory Analysis
Having for each school the values-added given both for reading and mathamat-
ics estimated by model (18), we may detect if there is a particular geographical
distribution of positive/negative school effects or if there are some areas where
the effects in reading and mathamatics are particularly “coherent”, such that,
schools with a positive/negative value-added in reading have also positive/neg-
ative effects in mathematics. Nevertheless, the data are really uniformly dis-
tributed between the three macro-areas, each area has the same percentage of
very good/bad effects in both the topics, as we could expect from Figure 12,
where, except few cases, the points are compact and don’t emerge groups with
different behaviors. Therefore, it’s almost impossible to individuate clusters in
this way.

Anyway, we can create a “total effect” of the school, mixing both the effects
b̂j of reading and mathamatics. The first variable created is the absolute value
of the difference between the school effect of reading and mathematics:

diff = |b̂mat − b̂read|

that measures how much similar are the contributions that the school gives
in both the fields and if the difference is small, it means that the school is
“coherent” in its value-added in the two topics.

The second variable is the mean of the two school effects:

bmean = b̂mat+b̂read

2

that measures the “global” value-added of the school. If bmean is high/low,
it means that the school weighs positively/negatively in the performances of
both the fields.

Figure 14 shows the boxlots of the two variables among macro-areas.

Figure 14: The first image reports the boxplots of the variable diff ; the second
image reports the boxplots of the variable bmean.
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From the first image, emerges that the South is the less “coherent” in the
contribution in mathematics and reading: the mean of the difference is 4.70
against 2.99 of the North (p-value less than 2.2e-16 of the Wilcoxon-test for
the difference of the two medians) and furthermore the South is also the most
variable: the variance of the diff in the North and in the Center are about
8.3 while the variance in the South is 20.40 (p-value less than 2.2e-16 of the
Levene’s test). In the second image, the means of the bmean are the same, what
is different among macro-areas are the variances: the variance at North is 6.90,
at Center is 10.52 and at South is 19.27 (p-value of the Kruskal-Wallis based
Levene’s test less than 2.2e-16).

6.2 Depths of the School Effects
A different approach is to define the depth measures of multivariate data (see
[28]). They are a generalization of the unidimensional quantiles in a multidi-
mensional space. A data depth is a tool that allows to measure the “centrality”
of a set of multivariate data respect to the reference data. More precisely, for a
distribution P in Rd, the correspondent data depth is a function D(P ;x) that
allow to share the space Rd in different concentric regions. Taken a particular
region, a point x may be internal or estarnal. The analysis of data depth is
collocated in the non-parametric statistic and its strength is that it is easily
formulated and directly applicable to the multivariate case. Introducing the
data depth, we can define an order relation, indicated by symbol �, in a set X
of Rd, that respect the reflexive, antisymmetric, transitive and total properties.
This order relation has the center as maximum element. Therefore, the center
is the maximum element of the order relation (�), inducted by the data depth
D(P ;x). Similarly, we define the center as the point that has maximum depth
measure. By this definition, we deduce that the points “close” to the center
have a high depth measure, while points “far” from the center have low depth
measure. If a datum is surrounded by many other data, it will have a high level
of depth, if it’s in the “periphery” of the data it will have a low level of depth.

In a multivariate context, given a set of n points P , the location depth of a
point u is the minimum number of points contained in any half-plane passing
through u. To compute the set of all depth contours in the plane, observe the
following relation between depth of a point and its dual line (Figure 15). Given
a point u ∈ R2, let lu = D(u) be the dual line of u. Let L =

⋃
i D(pi) be the set

of dual lines to all the points in P . Then any line passing through u, say a line
l, in the primal plane corresponds to a point D(l) in the dual plane such that
D(l) lies on the line lu. Furthermore, due to the order preserving properties of
the dual, the number of points of P lying above the line l in the primal plane
corresponds to the number of lines in L vertically below the point D(l) in the
dual plane, i.e. the level of the point D(l). Therefore, to compute the depth of
point u in the primal plane, we can look at the dual line lu, and find the point
on lu with the minimum level (see [15]).
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Figure 15: A set of points in the plane (a) and its set of dual lines (b)

Using the R package depth (see [10]), we calculate the depth measures for
our bivariate data of school effects of Italy that go from 0 to 0.5. The depth
of each point (school) is computed respect to the entire set of data . Figure 16
shows these depths, that are grouped in the three macro-areas.

Figure 16: Depth levels of the school effects divided in the three macro-areas.

It’s clear that the depths decrease from North to South, the means are differ-
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ent (0.18 in the North, 0.16 in the Center and 0.11 in the South). Particularly,
looking at the North and South, the Wilcoxon-test confirm the difference be-
tween the medians with a p-value less than 2.2e − 16 and also the variances
result different (p-value 1.302e − 07 of the Levene’s test). This result confirm
the considerations of Figure 12, where we deduced that the Southern data are
more diserse than the others. Looking at Figure 17, the depth levels of the
Northern data are distributed almost uniformly between 0 and 0.4, while the
Southern ones are mostly concentrated between 0 and 0.1. This distribution of
the data suggests that, in the South, the school effects are more scattered than
in the other areas.

Figure 17: Histograms of depth levels in the three macro-areas.
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7 Grouping for Classes
Until now, we focused the analysis on models in which pupils were nested in
schools or, in some cases, in classes nested in their turn in schools. This was
because our interest was, among the others, to identify differences between
schools and schools’ value-added. Now, we would like to observe such differences
between classes. In this section, we implement two-level models in which pupils
are nested only in classes.

7.1 Two-level Linear Mixed Model for Reading Achieve-
ment

First of all, we repeat model (1), changing the level of grouping: in model (1),
pupils were nested in schools, here pupils are nested in classes. Therefore, pupil
i = 1...nl, n =

∑
l nl (first level) is nested in class l = 1...L (second level). The

model is:

yil = β0 +

K∑
k=1

βkxkil + ul + εil (25)

ul ∼ N(0, σu
2), εil ∼ N(0, σε

2) (26)

where
yil is the reading test achievement of student i within class l;

xkil is the corresponding value of the k-th predictor variable at student’s
level;

β = (β0, ..., βK) is the (K+1) dimensional vector parameters to be estimated;

ul is the random effect of the l-th class and it’s assumed to be Gaussian
distributed and independent to any predictor variables that are included in the
model;

εil is the zero mean Gaussian error.

The estimates of model (21) are reported in Table 14.
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Fixed Effect Estimate Standard Error

Intercept 23.332 ∗ ∗∗ 0.174
Female 2.113 ∗ ∗∗ 0.045
1st generation immigrant −3.498 ∗ ∗∗ 0.128
2nd generation immigrant −3.253 ∗ ∗∗ 0.109
South −4.789 ∗ ∗∗ 0.124
Center −1.249 ∗ ∗∗ 0.147
Early-enrolled student −0.777 ∗ ∗∗ 0.183
Late-enrolled student −3.413 ∗ ∗∗ 0.154
ESCS 1.986 ∗ ∗∗ 0.025
Not living with both parents −0.974 ∗ ∗∗ 0.070
Student with siblings −0.613 ∗ ∗∗ 0.062
written reading score 0.002 0.002
oral reading score 0.024 ∗ ∗∗ 0.002
CRS5 0.569 ∗ ∗∗ 0.001

Random Effect

σb 6.101
σε 10.497
VPC 25.2%

Size

Number of observations 221, 529
Number of groups 16, 246

Table 14: ML estimates (with standard errors) for model (21), fitted to the
dataset. Asteriscs denote different levels of significance: . 0.01 < p-val < 0.1; *
0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val < 0.0001.

The estimates are very similar to the ones estimated in both the models (1)
and (8). What is interesting is that the variance of the error (10.497) is almost
the same of the one of model (8) (10.494), where pupils where nested in classes,
nested in schools and that the VPC in this model, that is the proportion of
variation captured by the variation between classes (25.2%), is almost equal to
the sum of the two VPCs in model (8), where 19.2% of the total variability was
explained by the variance between classes and 6.5% by the variance between
schools. Therefore, the proportion of variation captured in the two models is
the same.

We fit now model (21) for each of the three macro-areas:
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y
(R)
il = β

(R)
0 +

K∑
k=1

β
(R)
k xkil + u

(R)
l + ε

(R)
il (27)

Comparing this model with model (14), we see that the estimates of the two
models are the same (we don’t write them again) in the three macro-areas and
the standard deviation of the errors too (9.68 in the North, 10.63 in the Center
and 11.55 in the South). In Table 15, we see that, again, the sum of the two
VPCs of each macro-area of model (14) is almost equal to the VPC of model
(23). So that, the two models explain, in each macro-area, the same proportion
of variability, suggesting that the proportion of variance that was captured by
the difference between schools in model (14), now is totally captured by the
differences between classes.

Model (14) North Center South

σε 9.68 10.63 11.55
V PCclass 20.1% 19.1% 18.4%
V PCschool 4.4% 5.8% 7.5%

Model (23) North Center South

σε 9.68 10.63 11.55
V PCclass 24% 24.7% 25.3%

Table 15: Comparison of standar deviation of errors and VPCs between models
(14) and (23).

7.2 Bivariate Linear Mixed Model
Let’s now fit a bivariate model with outcome variables CRS and CMS, grouping
pupils for classes. Pupil i, i = 1,..., nl, n =

∑
l nl (first level) is in class l, l =

1,...,L (second level):

−→y il =
−→
β 0 +

K∑
k=1

−→
β kxkil +

−→u l +
−→ε il (28)

where

−→y =

(
ymat

yread

)
is the bivariate outocome with mathamatics and reading

achievements;
−→
β =

(
βmat

βread

)
are the bivariate coefficients of the student’s variables;
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−→u =

(
umat

uread

)
∼ N(

−→
0 ,Σ) is the matrix of the two random effects (mathe-

matics and reading) at class level;

−→ε =

(
εmat

εread

)
∼ N(

−→
0 ,W ) is the error.

The estimates of the coefficients are again very similar to the ones obtained
in model (18) (see Table 11). We focus the attention on the variance/covariance
matrix of random effects: (

34.9 4.46
4.46 26.5

)
The variances of random effects at class level are really big respect to the

ones at school level, obtained in model (18): 34.9 vs 23.04 in mathematics and
26.5 vs 13.08 in reading, for the variances. This suggests that the variability
of the value-added of the class is much higher than the value-added of the
school, so that, attending a particular class can influence the mean result more
than attending a particular school. Figure 18 shows this difference between the
variabilities in maths and reading (both the p-values of the Levene’s test are less
than 2.2e− 16). Lastly, the correlation between the random effects of classes of
the two topics is 0.147, less than the one of the random effects of school (0.3),
suggesting that the contributes of the class in the two topics are not particularly
correlated.

Figure 18: Boxplots of the random effects in maths and reading, at school and
class levels.
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Let’s fit now model (23) for each of the three macro-areas:

−→y (R)
il =

−→
β

(R)
0 +

K∑
k=1

−→
β

(R)
k xkil +

−→u (R)
l +−→ε (R)

il (29)

Again, the estimates of the coefficients are very similar to the ones obtained
in models (19) (see Table 12). The variance/covariance matrices of random
effects are reported in Table 16.

North Center South(
13.9 1.05
1.05 22.5

) (
24.6 3.86
3.86 26.3

) (
73.9 8.67
8.67 30.7

)

Table 16: Variance/Covariance matrices of random effects in the three macro-
areas.

The three matrices are quite different: while in the North, the variance of
the class effect in reading is much higher than the one in maths (22.5 vs 13.9),
in the South it is the opposite (30.7 vs 73.9) and in the Center the variances
are similar (26.3 vs 24.6). In the South, the effects in the two topics are more
correlated than in the North (coefficients of correlation 0.182 vs 0.059). In order
to test the differences between the three matrices, we apply again the method
presented in 5.2.1: the means of the Euclidean distances between points and
centroid within each group are 4.670 in the North, 5.695 in the Center and
8.438 in the South, showing that, as we obtained in other analysis, the points
of the South are more dispersed. The test ANOVA gives a p-value less than
2.2e− 16.

Comparing these three matrices with the variance/covariance matrices of the
school effects obtained in models (19), we see that the variances of the random
effects at class level in both the topics are almost the double of the ones at
school level in all the three macro-areas. Lastly, computing the coefficients of
correlation, we notice that the class effects are less correlated than the school
effects in the two topics, in all the three macro-areas (0.059, 0.152 and 0.182 vs
0.62, 0.56 and 0.36). Such a low correlation between the class effects in the two
topics can be explained by the fact that the positive/negative value-added of
the class may depends on the “good”/ “bad” teachers, that are different from
reading to mathematics.

7.2.1 Variables at Class Level

We try now to understand how the variables at class level are correlated with
the value-added

−→
ûl of the classes. Let’s start fitting a model with, as outcome

variable, the estimates of
−→
ûl of model (24), where we consider data of all Italy:
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−→
ûl = α0 +

K∑
k=1

αkwlk + ηl (30)

where
−→
ûj =

(
ûmat

ûread

)
∼ N(

−→
0 ,Σ) is the matrix of the two random effects (mathe-

matics and reading) at class level estimated by model (24).

Using the Lasso regression method to select the variables, we fit a model
with a reduced space of variables. The results of model (26) are reported in
Table 17.
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Mathematics Lasso Model coefficients Estimates

Intercept −8.364590 ∗ ∗∗ 0.680758
Mean ESCS 0.865413 ∗ ∗∗ 0.095082
Female percentage
1st generation immigrant percent
2nd generation immigrant percent
Early-enrolled student percent
Late-enrolled students percent −0.052170 ∗ ∗∗ 0.007233
Disable percent
Number of students per class 0.083316 ∗ ∗∗ 0.012094
Compiled percent 0.070950 ∗ ∗∗ 0.006610
Tempo Pieno

R2 0.0243

Reading Lasso Model coefficients Estimates

Intercept −4.577520 ∗ ∗∗ 0.545140
Mean ESCS −0.939660 ∗ ∗∗ 0.081052
Female percent
1st generation immigrant percent 0.054025 ∗ ∗∗ 0.006247
2nd generation immigrant percent 0.033567 ∗ ∗∗ 0.007038
Early-enrolled student percent
Late-enrolled students percent
Disable percent
Number of students per class
Compiled percent 0.045249 ∗ ∗∗ 0.005794
Tempo Pieno

R2 0.01967

Table 17: ML estimates (with standard errors) for model (26), fitted to the
dataset. Asteriscs denote different levels of significance: . 0.01 < p-val < 0.1; *
0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val < 0.0001.

While in mathematics the mean ESCS has a positive correlation with the
class effect, in reading this correlation is negative. Furthermore, in mathematics
seem to be more relevant the variables describing the size of the class, such
as number of students per class (positively correlated) and the percentage of
compiled tests. In reading, instead, the composition of the student body of
the class, such as 1st and 2nd generation immigrant percentages (positively
correlated) weighs more.

We fit now model (26) for each of the three macro-areas, in order to assess
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if the value-added of the class is influenced by different aspects:

−→
ûl

(R) = α
(R)
0 +

K∑
k=1

α
(R)
k w

(R)
lk + η

(R)
l (31)

with R = {North, Center, South}
Table 18 shows the estimates of model (27) fitted to the dataset of the North:

Mathematics Lasso Model coefficients Estimates

Intercept −5.204984 ∗ ∗∗ 0.800781
Mean ESCS 0.226303∗ 0.095990
Female percent
1st generation immigrant percent
2nd generation immigrant percent
Early-enrolled student percent
Late-enrolled students percent −0.026891 ∗ ∗∗ 0.006571
Disable percent
Number of students per class 0.047197 ∗ ∗∗ 0.012776
Compiled percent 0.044688 ∗ ∗∗ 0.007801
Tempo Pieno

R2 0.01034

Reading Lasso Model coefficients Estimates

Intercept −2.095851 ∗ ∗∗ 0.373828
Mean ESCS −1.813397 ∗ ∗∗ 0.121579
Female percent
1st generation immigrant percent 0.035354 ∗ ∗∗ 0.008883
2nd generation immigrant percent
Early-enrolled student percent
Late-enrolled students percent 0.035903 ∗ ∗∗ 0.009448
Disable percent
Number of students per class 0.088483 ∗ ∗∗ 0.015980
Compiled percent
Tempo Pieno

R2 0.04709

Table 18: ML estimates (with standard errors) for model (27), fitted to the
dataset of the North. Asteriscs denote different levels of significance: . 0.01 <
p-val < 0.1; * 0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val <
0.0001.
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Table 19 shows the estimates of model (27) fitted to the dataset of the
Center:

Mathematics Lasso Model coefficients Estimates

Intercept −8.10860 ∗ ∗∗ 1.20537
Mean ESCS 0.53021 ∗ ∗ 0.20537
Female percent
1st generation immigrant percent
2nd generation immigrant percent 0.05293 ∗ ∗∗ 0.01472
Early-enrolled student percent
Late-enrolled students percent
Disable percent
Number of students per class 0.12765 ∗ ∗∗ 0.02351
Compiled percent 0.05088 ∗ ∗∗ 0.01160
Tempo Pieno

R2 0.02172

Reading Lasso Model coefficients Estimates

Intercept −0.64498 ∗ ∗∗ 0.18622
Mean ESCS −1.29164 ∗ ∗∗ 0.21632
Female percent
1st generation immigrant percent 0.03684∗ 0.01617
2nd generation immigrant percent 0.05851 0.01521
Early-enrolled student percent
Late-enrolled students percent 0.06141 ∗ ∗∗ 0.01707
Disable percent
Number of students per class
Compiled percent
Tempo Pieno

R2 0.04306

Table 19: ML estimates (with standard errors) for model (27), fitted to the
dataset of the Center. Asteriscs denote different levels of significance: . 0.01
< p-val < 0.1; * 0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val <
0.0001.

Table 20 shows the estimates of model (27) fitted to the dataset of the South:
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Mathematics Lasso Model coefficients Estimates

Intercept −10.31382 ∗ ∗∗ 1.46350
Mean ESCS 2.21170 ∗ ∗ 0.22395
Female percent
1st generation immigrant percent
2nd generation immigrant percent
Early-enrolled student percent
Late-enrolled students percent −0.13799 ∗ ∗∗ 0.01962
Disable percent
Number of students per class 0.11951 ∗ ∗∗ 0.02585
Compiled percent 0.09116 ∗ ∗∗ 0.01418
Tempo Pieno

R2 0.05807

Reading Lasso Model coefficients Estimates

Intercept −7.455701 ∗ ∗∗ 0.951469
Mean ESCS 0.242989. 0.146591
Female percent
1st generation immigrant percent
2nd generation immigrant percent
Early-enrolled student percent −0.050022 ∗ ∗ 0.015269
Late-enrolled students percent
Disable percent
Number of students per class 0.078980 ∗ ∗∗ 0.017077
Compiled percent 0.063195 ∗ ∗∗ 0.009319
Tempo Pieno

R2 0.01495

Table 20: ML estimates (with standard errors) for model (27), fitted to the
dataset of the South. Asteriscs denote different levels of significance: . 0.01 <
p-val < 0.1; * 0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001; *** p-val <
0.0001.

The variables that seem to be significant in most of the models are the mean
ESCS and the number of students per class: the number of students per class
has always a positive coefficient, suggesting that classes with a high number
of students give high value-added; the mean ESCS has positive coefficients in
the South and negative or close to zero in the North, suggesting that, once
again, the ESCS is more relevant in the South, where classes with a high mean
ESCS give positive value-added, than in the North, where this regressor is not
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so relevant. In all the models, the R2s is very low, therefore, a big part of the
models remains unexplained.

7.3 Analysis of the Class Effects
Let’s make some exploratory analysis on the class effects

−→
ûl , estimated in model

(24). In Figure 12, we saw that the school effects in the South were more
scattered that the ones in the Center and in the North, that were similar. We
repeat that kind of plot for the class effects in Figure 19.

Figure 19: Random effects estimated by model (24) coloured by macro-areas:
blue for the South, green for the Center and red for the North.

The trend is very similar to the one of figure 12: the points of the South are
the most scattered, so that, in the South the values-added of the class are very
heterogeneous and significantly influence the medium results of pupils. Again,
the points of the North and the Center are similar and we can notice a queue
on the left, where there are lots of classes that give a negative contribute in
reading and a negligible one in maths.

We define now the depth measures for the class effects. As we did in Section
6.2, we compute the depths for each of the three macro-areas. Each depth is
computed respect to the entire set of points.
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Figure 20: Depth levels of the class effects divided in the three macro-areas.

The trend is similar to the one in Figure 16. The depth levels of the South
are generally lower than the other two macro-areas because, as we saw below,
the points are more scattered. The mean are respectively 0.182 in the North,
0.156 in the Center and 0.114 in the South. The Kruskal-Wallis test confirm
the difference between the three medians of the group, with a p-value less than
2.2e-16. Furthermore, the variance of the depth levels in the South is lower
respect to the others (p-value of the Levene’s test less than 2.2e-16). These
aspects can be seen also from the histograms of the depth levels, shown in
Figure 21.
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Figure 21: Histogram of depth levels in the three macro-areas.

It’s immediatly clear that the variability of depth levels in the South is
strictly reduced respect to the Northern one. In the South, most of the points
has a depth measure between 0 and 0.1, so that, most of the points are on
the “periphery” of the sample (significant value-added of the class, different
from zero); the depth measures in the Center decrease uniformly and the depth
measures of the North are the most uniformly distributed between 0 and 0.5.
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8 Concluding Remarks
This work explores how the students’ achievements depend on students’ charac-
teristics and which may be the effects of attending specific schools and classes.
The data cocerns INVALSI reading and mathematics test scores of students
attending the first year of junior secondary school in the year 2012/2013.

Initially, univariate multilevel models have been applied in order to explain
how the reading achievements depend on students’ characteristics. What has
emerged are some recurrent dependencies between the outcome variable and
regressors: females have, on average, better results than males, 1st and 2nd

generation immigrants have more difficulties than Italian students and being
early/late-enrolled student decreases the medium result, such as being a pupil
not living with both parents. Furthermore, the pupil’s ESCS, index of the
socioeconomic status of the student, has a strong positive influence on the
achievement and the CRS5 (the student’s achievement at grade 5) is positively
correlated with the current score, contrarily to the written and oral reading
score at school, that do not seem correlated with the INVALSI test score. This
kind of relations between pupils’ characteristics and achievements emerged also
in mathematics test (explored in previous literature), except the fact that, in
mathematics, males are generally better than females. Lastly, from the model
emerged that students of the Central and especially of the Southern Italy, have
worst results than students of the North, showing big heterogeneities within the
Country.

The school effect, defined as the effect of attending a specific school on a
student’s test score, has been modeled as a random effect bj and has been
regressed against a school level variables with the aim of characterising the
features of those schools that exert a positive/negative effect on academic per-
formance. Particularly, the result shows that in Italy, Private schools give a
negative value-added respect to the Public ones.

What is interesting is that school effects and students’ characteristics are
different across the three geographical macro-areas, Northern, Central and South-
ern Italy, which can be considered as three different educational systems. The
variables at student level that more influence the CRS are heterogeneous across
macro-areas: the ESCS is much more relevant in the South than in the North
and being 1st and 2nd generation immigrants decreases the mean result less
in the South than in the North. Even the school effects are different: in the
South, they are much more scattered, suggesting that the school effect is much
stronger. Therefore, while being Private or Public school influences the school
effect in the North, in the South the medium ESCS of the school is one of
the most relevant variables that adds positive value-added, showing that in the
South the differences between schools tend to increase the inequalities between
disadvantaged and advantaged students.

Actually, the main contribute of this work has been the bivariate approach,
in which bivariate multilevel mixed models have been used in order to explore
the reading and mathematics scores together. In this way, it has been possible
to compare especially the school and class effects in both the topics. Regarding
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the school effects, emerged that, in Italy, the effect in mathematics is much
higher than the one in reading. In the macro-areas, this behaviour occurs also
in the South of Italy, while in the North is less pronounced. The values-added
of the South are always higher than the ones of the North. The coefficients
of correlation show a coherency between the school effects in the two topics,
proving that generally the contributes of the school in reading and mathematics
are positively correlated and this defines which are “good” (“bad”) schools.
Therefore, it is possible to identify “good” (“bad”) schools, knowing that they
give positive (negative) value-added in both the topics. This behaviour does not
occur in the classes where, instead, the value-added in the two topics are less
correlated, denying the possibility to identify “good” (“bad”) classes. This arises
from the fact that such kind of contributes at class level are probably given by
the teachers, and students in a class can have a good teacher of maths and a bad
one of reading and viceversa, without any kind of correlation. Anyway, the class
effects follow similar trends of the school effects: the contributes in mathematics
are more pronounced than in reading and in the South they are again higher
than in the North in both the topics, being different across macro-areas.

We can therefore conclude that sometimes it is possible to identify and choose
a good school, but within it there is still variability between and within classes
and this variability changes across the three geographical macro-areas.

Further studies may be done to explore other aspects of the Italian educa-
tional system. It could be interesting to deepen the geographical differences,
analyzing the districts; to explore if there is a sort of homogeneity of the variables
within the schools and within the classes; to discover how much the teachers
influence the class effects; to provide a way to treat the missing data and, par-
ticularly, to explore if there is a way to reduce the geographical heterogeneity,
in order to provide a good educational’s level to everyone.
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9 Code
In this section, are reported the main parts of the R and AsReml code, used to
compute this study.

Univariate two-level linear mixed model in R

Function that fits the two-level linear mixed model, with the reading achieve-
ment as outcome variable, the variables at student level (fixed effects) as covari-
ates and the random effect given by the school.

l i b r a r y ( nlme )

regmixed i ta = lme ( pu_it_no_corr ~ FEMMINA +S1 +S2 +Sud
+Centro +ANTICIPATARIO +POSTICIPATARIO
+ESCS + No_genitor i +S i _ f r a t e l l i +voto_sc r i t to_ i ta
+ voto_orale_ita + pu_it_no_5 , data = mcompleto ,
random = ~ 1 | CODICE_SCUOLA, method =”ML”)

summary( regmixed i ta )

# to obta in the c o e f f i c i e n t s o f random e f f e c t s
random . e f f e c t s ( regmixed i ta )

Univariate three-level linear mixed model in R

Function that fits the three-level linear mixed model, with the reading achieve-
ment as outcome variable, the variables at student’s level (fixed effects) as co-
variates and the random effects given by the school and the class.

l i b r a r y ( nlme )

regmixed i ta3 = lme ( pu_it_no_corr ~ FEMMINA +S1 +S2 +Sud
+Centro +ANTICIPATARIO +POSTICIPATARIO
+ESCS + No_genitor i +S i _ f r a t e l l i +voto_sc r i t to_ i ta
+ voto_orale_ita + pu_it_no_5 , data = mcompleto ,
random = ~ 1 | CODICE_SCUOLA/CODICE_CLASSE,
method = ”ML”)

summary( regmixed i ta3 )
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# to obta in the c o e f f i c i e n t s o f the two random e f f e c t s
random . e f f e c t s ( regmixed i ta3 ) [ [ 1 ] ]
random . e f f e c t s ( regmixed i ta3 ) [ [ 2 ] ]

Bivariate model in AsReml

Function that fits bivariate two-level model, with both reading and maths
achievements as outcome variables, variables at student’s level as covariates
and random effect given by the school.

mode l l i l i n e a r i b i v a r i a t i a e f f e t t i m i s t i

# d e f i n i t i o n o f the v a r i a b l e s

pu_ma_no_corr
pu_it_no_corr
FEMMINA 2
S1 2
S2 2
ESCS
ANTICIPATARIO 2
POSTICIPATARIO 2
No_genitor i 2
S i _ f r a t e l l i 2
area 3
pu_5 !G 2
CODICE_SCUOLA !A

# d e f i n i t i o n o f the model

biv . asd ! sk ip 1 !WORKSPACE 1906
pu_ma_no_corr pu_it_no_cor ~ Tra i t Tra i t .FEMMINA Trai t . S1

Tra i t . S2 Tra i t .ANTICIPATARIO Tra i t .POSTICIPATARIO
Tra i t .ESCS Tra i t . No_genitori , Tra i t . S i _ f r a t e l l i Tra i t . area
Tra i t . vect (pu_5) ! r Tra i t .CODICE_SCUOLA

# d e f i n i t i o n o f var iance / covar iance s t r u c t u r e s
# o f e r r o r and random e f f e c t s matr i ce s

1 2 1
0 0 ID
Tra i t 0 US
3*0
Tra i t .CODICE_SCUOLA 2
Tra i t 0 USH !GP
CODICE_SCUOLA 0 ID
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Depth Measures

Function that associates each point to its depth.

l i b r a r y ( depth )

pro f = rep (0 ,3920)
f o r ( i in 1 :3920){

pro f [ i ]= depth ( as . vec to r ( b_biva [ i , ] ) , b_biva )
}

Differences between Matrices

Code to compute the scattering of three bivariate populations and test the
differences between them.

l i b r a r y ( vegan )

jap = rbind ( b_biv_nord , b_biv_centro , b_biv_sud )
dim( jap )
d i s <− vegd i s t ( jap , method=”euc l i d ean ”)
groups <− f a c t o r ( c ( rep (1 ,1800) , rep (2 , 688 ) , rep (3 , 1432 ) ) ,

l a b e l s = c (” nord ” ,” centro ” ,” sud ” ) )

mod <− be tad i spe r ( d is , groups , type=”cen t ro id ”)
summary(mod)
anova (mod)

mod2 <− be tad i spe r ( d is , groups , type=”median ”)
summary(mod2)
anova (mod2)
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