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Abstract
This work arises within the FARB project “Public Management Research: Health and Education
System Assessment”. The main interest of the project lies in improving the quality of health
and educational services. In this work we use administrative data on hospitalizations due to
chronic cardiovascular diseases, for assessing healthcare quality in Lombardia (a northern Italy
regional disctrict whose capital is Milan).
The topic of this thesis is the analysis of data coming from hospital discharge papers of patients
resident in Lombardia, which belong to the BDA (Banca Dati Assistito, i.e., the database of
individuals registered within the Lombardia healthcare system). The aim is firstly to outline
hospitals that had an unusual behaviour with respect to mortality and re-hospitalization, then
to summaryze the techniques to assess quality on the run and lastly to analyze hospitals in
Lombardia as a network.
The structure of the work is as follows:

• In Chapter 1 we present the motivating problem and the dataset.

• In Chapter 2 and Chapter 3 we present Cumulative Sum Charts and funnel plots and their
use.

• In Chapter 4 evaluation of hospital performances in terms of mortality rate.

• In Chapter 5 evaluation of hospital performances in terms of re-hospedalization rate.

• In Chapter 6: we present the network approach.

• In Chapter 7: we introduce the hospital networks.

• In Chapter 8: we present the gravity model and the exponential random graph model for
the analysis of network data, applying them to the case study of interest .

All the analysis have been carried out using the statistical software R.3.0.1.
Keywords: Funnel plots, Hospital Monitoring, Heart Failure, Networks, ERGM.
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Sommario
Questa tesi nasce all’interno del progetto FARB “Public Management Research: Health and
Education System Assessment”, il cui scopo è volto al miglioramento dei sistemi scolastico e
sanitario. In questo elaborato introduciamo una valutazione delle strutture ospedaliere, utiliz-
zando i dati raccolti nella Banca Dati Assistito, un dataset amministrativo che tiene conto dei
dati relativi alle ammissioni ospedaliere dei pazienti residenti il Lombardia. In questa tesi ci
concentriamo sulle informazioni riguardanti pazienti affetti da una patologia cardiaca cronica, lo
scompenso cardiaco e usiamo i dati ottenuti dalle Schede di Dimissione Ospedaliera per valutare
le strutture ospedaliere.
Un primo passo nell’inquadramento del problema consiste nel presentare ed applicare sul dataset
fornitoci metodi già affermati per la valutazione degli ospedali. Usando i funnel plot caratterizzi-
amo il comportamento delle strutture nei riguardi della percentuale di decessi e di riospedaliz-
zazioni, evidenziando eventuali strutture che presentano comportamenti estremi, sia in positivo
che in negativo. In un secondo momento introduciamo altre tecniche utilizzate per la valutazione
e infine proponiamo un approcio di tipo Network per studiare la rete di ospedali.
La struttura è come segue:

• Nel Capitolo 1 presentiamo il problema, gli scopi e il dataset.

• Nei Capitoli 2 e 3 presentiamo le Cumulative Sum charts, i funnel plot e il loro utilizzo
nella valutazione delle strutture.

• Nel Capitolo 4 valutiamo le strutture ospedaliere utilizzando come output la percentuale
di decessi.

• Nel Capitolo 5 valutiamo le strutture ospedaliere utilizzando come output la percentuale
di riospedalizzazioni.

• Nel Capitolo 6 presentiamo l’approccio network.

• Nel Capitolo 7 presentiamo e analizziamo diversi network di ospedali.

• Nel Capitolo 8 presentiamo vari modelli generalizzati che utilizziamo nell’analisi dei net-
work: diversi esempi di “gravity model” and “exponential random graph model”, che
applichiamo al caso di studio.

Tutte le analisi sono state effettuate utilizzando il software R.3.0.1.
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Introduzione
I dati amministrativi, ovvero le informazioni raccolte e conservate da istituzioni pubbliche, sono
sempre più usate in campi di valutazione e di monitoraggio di strutture. Nel campo ospedaliero,
diversi autori [5, 15] suggeriscono di usare queste risorse per ottenere indici clinici, per valutare
le prestazioni degli ospedali e per ricerche epidemiologiche [15, 18]. Un’altra possibilità già
esplorata [4] è quella di usare dati amministrativi, che sono continuamente aggiornati, per poter
sorvegliare la performance delle strutture e accorgersi rapidamente di possibili deterioramenti
[31, 5]
I vantaggi che derivano dall’utilizzo di queste banche dati sono certamente grandi: la dimensione
campionaria è estremamente elevata, arrivando spesso a coprire la totalità della popolazione
disponibile, i costi di raccolta sono nulli, essendo già disponibili, il tempo di osservazione è
estremamente lungo e infine, grazie all’unicità dei codici identificativi delle persone, è possibile
collegare diverse banche dati e arricchire i dataset. Anche se i dati clinici sono spesso ridotti
e lacunosi, poiché lo scopo della raccolta non era né la valutazione delle strutture, né possibili
analisi epidemiologiche, l’utilizzo di queste risorse è prezioso per la valutazione delle strutture
ospedaliere.
Il dataset esaminato comprende i dati provenienti dalle Schede di Dimissione Ospedaliere (SDO)
di tutti i residenti della Lombardia, di cui sono stati selezionati solo quelli ricoverati per scom-
penso cardiaco tra il 2000 e il 2012. Le informazioni, che provengono dalle SDO, sono raccolte
nella Banca Dati assistito, la banca dati che tiene traccia degli eventi medici: per ogni evento di
scompenso cardiaco possiamo quindi ricavare informazioni sui trattamenti ricevuti dai pazienti.
La scelta dei pazienti soggetti alla patologia di interesse è una scelta delicata, poiché la diag-
nosi per scompenso cardiaco comprende diversi codici ed è complessa da definire in un dataset
amministrativo. La selezione dei pazienti trattatati in questa tesi viene quindi descritta in [18].
Dopo esserci occupati della pulizia del dataset, introdurremo metodi per l’identificazione di
quelle strutture che presentano comportamenti estremi riguardo alla percentuale di decessi e
a quella di riospedalizzazioni e spiegheremo possibili tecniche per un continuo monitoraggio
delle strutture. Useremo infine questi strumenti per individuare effettivamente le strutture che
presentano un comportamento anomalo. In una seconda parte della tesi introdurremo un’analisi
di rete. Gli ospedali saranno quindi collegati gli uni con gli altri e i loro rapporti saranno definiti
sia dal flusso di pazienti che si muove nella rete degli ospedali, sia dalla somiglianza tra strutture.
Dopo aver presentato questi possibili network di ospedali, presenteremo dei GLM adattati ai
network introdotti.
Tutte le analisi sono state condotte usando il software statistico R.3.0.1[28].
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Part I

Introduction and Motivations
Introduction
Administrative data, collected mainly for administrative purposes, are increasingly being used to
derive hospital-specific clinical indicators and to evaluate their performance [5, 15]. Bottle and
al. [4] use administrative data to help hospitals in identifying areas in need of self-monitoring or
to identify structures that present a too high mortality rate [31, 5]. The use of administrative
data is already well established in epidemiological researches [15, 18]. Advantages in their
use can be identified in large sample size, no gathering costs, really long observational period
and sometimes the possibility of linking new databases information, thanks to the uniqueness
of encrypted ID codes. Problems and drawbacks are clearly present: data are collected for
different goals than those needed, causing lack of informations. Despite the possible drawbacks,
administrative data are a powerful resource that we must use to the fullest.
Our dataset comes from dimission hospital discharge papers (Schede di Dimissione Ospedaliera,
SDOs) of patients admitted for heart failure events [18]. In Lombardia (a northern Italy regional
disctrict), all the SDOs and other data related to services obtained from medical events, are
collected in several databases. These databases are organized in a patient-centerd database
(BDA, Banco Dati Assistito), so that is possible to link drugs, procedures, etc. to patients and
identify their medical history.
Our interest lies in the hospitals capability of treating patients affected by Heart Failure (HF).
The choice of criteria to select patient affected by a specific disease is one of the most relevant
issues when dealing with administrative data. The patients selection is detailed in [18]. Fot
the aims of this work we select the subsect of all the patients that were identified as sure HF
patients.
In conclusion the database we have is a collection of HF events, with every row of the dataset
regarding one event for a patient. A row includes all the information we have about that Hearth
Failure event.
The aim is to outline hospitals that had an unusual behaviour with respect to mortality and
re-hospitalization, then to summaryze the techniques to assess quality on the run and lastly to
analyze hospitals in Lombardia as a network.
As a first step we explore the data, checking for coherency, missing ID’s and other similar
problems, then we select the subset of interest. Then we present two well established approaches
to evaluate hospitals: the construction of funnel plot for identifying outliers and creation of
CUSUM tables for monitoring performance over time[4]. We explain advantages and drawback
and we use funnel plot outlier detection on our data.
In the second part of the work we propose to study different hospitals networks. We propose a
flow network, where hospitals are connected by patients flows and a similarty network, where
similar structures are considered near. We analyze networks’ features and we model all the
hospital networks we propose.
All the analysis have been carried out using the statistical software R.3.0.1[28].
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1 Data
In this section we will present the dataset and the preprocessing neded for introducing both
monitoring and modelling techniques described in the following chapters.

1.1 Dataset introduction
The original dataset, that from now on will be referred to as the Complete Dataset, is an
administrative dataset containing all the data from the hospital discharge papers of patients
resident in Lombardia that are admitted for Heart Failure (HF) events. The hospitalizations
take place from 2000 to 2012 mainly, but not only, in Lombardia. Since the dataset is centered
on patients that are resident in Lombardia, but records all data regarding them, also events
that are related to admission in other regions are present in the dataset.
In the Complete Dataset patients are divided in four groups, one of which is composed by events
related to sure HF as explained in [18]. This subset is the one we select for further analysis.
As we see in Table 1 the dataset is event based: a row represents a HF event for one patient and
any patient must have at least one Heart Failure event to enter the study. Every event, patient
and hospital has an encrypted code, so we can group events for patient or hospital.

Row Patient ID Event ID Age Date of admission ...
1 10,000,024 1 61 10/09/2000 ...
2 10,000,024 2 62 11/10/2001 ...
3 10,000,032 3 45 05/04/2006 ...
4 10,000,048 4 70 ... ...

Table 1: Example of data from BDA. Any row represents a single Heart Failure event. We see
that a patient can have more than one HF event during the considered period.

The events recorded in the original dataset are 701,701 corresponding to 371,766 patients admit-
ted into 1,035 hospitals. Among clinical informations there are: sex, age, date of admission and
discharge, length of stay, admission ward, date of death (collected from the civil registry), AHRQ
and HCC80 codes (that were used to identify the group of sure HF events from the Complete
Dataset), a flag indicating if the patient dies during the hospitalization, flags for comorbidities,
a flag indicating if the patient visited Intensive Therapy (IT) during the hospitalization, a flag
indicating if the recovery is a rehabilitation one, a flag indicating the presence of an event of
shock and flags indicating the use of cardiochirurgy, a defibrillator implant, and other proce-
dures. In the evaluation of comorbidities we use a risk index proposed in [13]. This index mixes
the comorbidity flags; high values of the index are associated to high risk patients, low values
to low risk patients. Another variable that is available is the total espense of admission, that
can be used to compare hospitals regarding to cost-effectiveness.
During a HF event the patient can be transferred from an hospital to another. When patients are
discharged and readmitted to another hospital in the same day they are said to be transferred.
About 12% of events in the dataset are events with transfers. In the dataset all the transfers
are grouped as part of the same event and the number of transfers in an event are identified in
a column counting the number of different hospitalizations that occurred in the same event.
With more than one hospitalization in a single event, Length Of Stay (LOS) and all the proce-
dures are cumulative and the hospital label is the hospital of first admission. So if a patient is
firstly admitted in an hospital without intensive care, but then is transferred somewhere else,
the event can have a positive IT flag. Also, if the patient dies in the last hospital, the death is
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marked under the first hospital. This assignation problem is widely discussed in literature [5, 4]
and there isn’t a simple or unique solution, but in the database we deal with events that are
already grouped. As such we use the cumulative events we have without discussing it further.

1.2 Data quality control and subset selection.
From the Complete Dataset of 701, 701 events we outline 489, 903 that were assigned in the
group of sure HF events. We then discard patients that presented invalid or missing identifiers,
hospital of admission and date of admission/discharge. Checking date coherency we remove
also all the events that have a date of death preceding the date of admission. Then we check
coherency between flag for intra-hospital death and the dates of admission, discharge and death.
A great number of patients (more than 1, 500) have positive flag of intra-hospital death and a
date of death following the date of dimission, so that they are marked as dead in the hospital
and have a date of death posterior to the dimission date, or vice versa people that have negative
intra-death flag, but have a date of death included between date of admission and discharge.
Specialists say to consider the flags of intra hospital mortality as the reliable ones. Indeed, an
intra-death hospital flag is collected on the SDO and death report errors are very unusual. Dates
of death are recovered from civil registry and are not always accurate (in most of the cases data
of discharge and data of death differs only for one or two days).
Finally we discard also underage patients, we choose not to deal with them, because they behave
differently from the typical HF patient.
We have now 488,820 events from 254,852 patients that are admitted to 939 hospitals. Among
these we retained only hospitals with more than 20 patients each, in order to have proper
dimensions when carrying out estimates in the analysis. This reduced the dataset to patients
admitted to 275 hospitals. The consistent reduction is due to the fact that the most part of the
hospitals are very small as we can see in Figure 1.

Distribution of the number of patients
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Figure 1: Histogram of number of patients per hospital. To show the high frequency of small
hospitals only structures with less than 500 patients are shown.

A possible explanation of the high number of small hospitals is that events recorded include also
recovers outside Lombardia, probably these structures gather less than 20 patients.
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1.3 Dataset description
In Table 2 we explain the meaning of the variables we use in the study. They are already at
hand in the original dataset with the exception of the re-hospitalization flag that is extrapolated
from the data. All flag variables are 1 if the named event happens, 0 if not.

Variable Description
Dead Intra-hospital death flag
IT Flag for presence of Intensive Theraphy

during the event
Cardiology Flag for the use of Cardiochirurgy

ICD Flag for a Defibrillator Implant
DRG Flag that explain if the admission was labeled

as a surgery one (administrative choice)
Shock Flag for presence of a shock event
PTCA Flag for Percutaneous Transluminal Coronary Angioplasty
CABG Flag for Coronary Artery Bypass Graft
MDC5 Flag that explain if the admission is labeled

as a Major Diagnostic Category 5
Risk Risk index obtained from comorbidities flags

goes from -2 (very low risk) to 13 (very high risk)
LOS Length Of Stay

goes from 0 to 958
Age Age of the patient at the begining of the event

goes from 18 to 108

ReH Flag that specifies if the patient is re-admitted
after the current event

Table 2: List and explanation of variables analyzed in the study.

In Tables 3 and 4 some summary statistics concerning the dataset are reported.

Number
Patients 253, 475
Hospitals 275
Events 485, 693

Females Males
Patients 53% 47%

percentage
Dead 0.086
ReH 0.400
IT 0.200

Cardiology 0.053
ICD 0.012
DRG 0.150
Shock 0.024
PTCA 0.054
CABG 0.030
MDC5 0.990

Table 3: Summary of the dataset with hospitals with more than 20 events each.
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min max median mean SD
Age (years) 18 108 79 77.000 11.06

Risk -2 13 1 0.990 1.42
LOS (days) 0 958 10 14.000 14.29

Table 4: Summary statistics for the variables of interest reported in Table2. Only hospitals with
more than 20 cases are considered.

About 88% of the events are without in-event transfers, while 99% of the events are made by
3 or less hospitalization. We decide to use all the data in the descriptive analysis, while in the
modelling we reduce the dataset only to events without transfers, since in these cases there is a
one to one corrispondence between patients and hospitals.
The distribution of patients that have respectively K events is another feature of interest. In
Table 5 we can see the distribution of number of events per patient.

Number of events per patients % Cumulative %
1 60.2 60.2
2 19.9 80.1
3 8.8 88.9
4 4.5 93.5
≥5 6.5 100

Table 5: Percentage and cumulative percentage of number of HF events per patient.

Almost 60% of patients have only one event, while only 6.5% have more than 5 events. We see
both from the table and from other analyses that the percentage of rehospitalization increases
with the number of the hospitalization itself. For example while less than 40% of patients at
their first event will have another hospitalization, among patients at their second event about
50% will be rehospitalized, and so on.
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Part II

Monitoring of hospitals by means of
funnel plots and cumulative sum charts
Quality control in medicine has gained more and more interest over recent years. Not only
industrial concepts of quality control have been thought as useful in healthcare monitoring
[33, 25], but also a standard tool within meta-analysis like the funnel plot is now used in
hospital evaluation [30, 19]. It’s clear by now that medical performance needs to be adequately
monitored and in this chapter we introduce the use of funnel plots and cumulative sum charts
to this aim.

2 An introduction to funnel plots
Institutional comparisons can be handled in different ways [1]. In literature such comparisons
commonly lead to the production of comparison tables, in which institutions are ranked accord-
ing to a chosen performance indicator. The problem is that tables lead to a rank ordering, that
in general is very questionable.
The funnel plots introduced by Spiegelhalter[30] avoids spurious ranking and in the mean time
provides a strong and visual indication of outlier performances. Advantages include the display
of the variable of interest, a graphical check of the relationship between event rate and volume
of cases, and allow increased variability among smaller institutions. Furthermore an intuitive
choice of axes can make the funnel plot a useful way to explain data.
In Figure 2 we see an example of a funnel plot. As we can see in the given example, for every
hospital is plotted the rate of re-hospitalization against the volume. On the plotted data are
then superimposed 95% (2 standard deviation) and 99% (3 standard deviation) confidence limits
around the overall re-hospitalization rate. This funnel plot find the majority of the institutions
lying within the 99% limits, while it clearly show hospitals that have an outlier behaviour.
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Figure 2: Example of a general funnel plot.
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A funnel plot consists of four main components:

1. An indicator response Y (Rate of Re-hospitalization in Figure 2) on the Y-axis.

2. A target θ0 for the response, representing a desired expectation i.e., E(Y |θ0) = θ0 when
units are under control (θ0 is around 0.56 in Figure 2).

3. A precision parameter ρ on the X-axis. ρ denotes the accuracy the indicator is measured
by and is usually proportional to the inverse variance of the under control distribution:
ρ = g(θ0)/V ar(Y |θ0), for some function g. The choice of ρ is arbitrary to some degree,
but it is better to select an intepretable precision parameter, so g is chosen accordingly.
When Y is a proportion (for example the rate of re-hospitalization in Figure 2) we have
V (Y |θ0) = θ0(1−θ0)/n and since the sample size is an interpretable measure of precison
we set ρ = n and g(θ0) = θ0(1−θ0).

4. Control limits of level 1−p, which are chosen so that the probability of going outside these
limits for an under control unit is equal to p.

Given a series of I observations with indicators yi and associated precisions ρi, a funnel plot
consists of a plot of yi against ρi, with target θ0 shown by a horizontal line and control limits
plotted as a function of ρi. Control limits are independent of the data being plotted.
For a more complete discussion about funnel plots we refer to [30].

2.1 Funnel limits
In many circumstances we can assume an approximate normal distribution:

Y |θ0 ∼ N(θ0; g(θ0)/ρ) (1)

In so doing the control limits will result in:

yp(θ0; ρ) = θ0 + zp
√
g(θ0)/ρ (2)

where zp is such that φ(zp) = P (Z ≤ zp) = p for a standard normal distribution Z.

2.2 Overdispersion
If the target distribution doesn’t express the variability of the under control units properly, a lot
of institution will result outside the funnel even if they are not extreme. We refer to this saying
they are overdispersed around the target. If this happens the appropriateness of the limits
evaluated with 2 is questionable and proper verification for overdispersion may be needed.
An overdispersed behaviour is generally due to latent covariates: although each one may have
a small impact on the outcome, when taken together they can lead to an excess variability
among units that are under control. If this is not properly taken into account there will be an
inappropriate number of units identified as special cases by the funnel plot. Since we build the
limits at level 0.95 and 0.99, having half of the structures outside the funnel is a clear signal of
overdispersion.
Two automatic procedures that expand the funnel limit are proposed in [30]. We shall now
explore these two basic statistical models for over-dispersion: first the ’extreme-effects’ formu-
lation, which inflates the variance with a over-dispersion factor and then a ‘random-effects’
formulation which adds a constant term to the sampling variance of each unit.
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Multiplicative (or random-effects) formulation
We assumed before that ρ = g(θ0)/V ar0(Y |θ0), where the subscript on V ar0 has now been
introduced to indicate the case of no over-dispersion.
The random effects formulation is a multiplicative approach that introduces an over-dispersion
factor φ that inflates the null variance, so that the variance is now evaluated as:

V ar(Y |θ0; ρ;φ) = φ · V ar0(Y |θ0; ρ;φ) =
φg(θ0)

ρ
(3)

Suppose we have a sample of I units that we assume to be under control, then:

φ̂ =
1

I

∑
i

(yi − θ0)
2ρi

g(θ)
=

1

I

∑
i

z2i (4)

Where zi are called standardized Pearson residuals.
so the original funnel limits, defined in (2), are inflated by

√
φ̂. Over-dispersed control limits

are now evaluated as:

yp(θ0; ρ) = θ0 + zp

√
φ̂ · g(θ0)/ρ (5)

The problem to estimate φ in (4) lays in identifying the units under control to be used in the
evaluation of φ. Sure enough, if out-of-control units are included in this estimation, they increase
the estimate of φ, widen the funnel limits and include outliers inside the funnel. To avoid this
particular issue we used the ‘Winsorised’ estimates, proposed in [30].

1. Choose a percentile q (and 1− q).

2. Evaluate the “naive Z-scores” such as: zi = yi−θ0
V ar(Y |θ) .

3. Rank istitution according to this Z-scores.

4. Identify zq andz1−q, the 100q% most extreme top and bottom naive Z-scores.

5. Now set the lowest 100q % of Z-scores equal to zq, and the highest 100q% of Z-scores to
z1−q. Denote the resulting set of Z-scores as zWi (q).

φ̂ may be estimated as:
φ̂W =

1

I

∑
i

zWi (q)2 (6)

If there is no true over-dispersion, then Iφ̂W has approximately a χ2 distribution (see [30]), so
E(φ̂W ) = 1, V (φ̂W ) = 2/I .
Therefore we assume overdispersion only if

φ̂W > 1 + 2 ·
√
2/I (7)

If φ̂W < 1 + 2 ·
√
2/I we will set φ = 1.

Additive (or outlier-effects) formulation
The second approach inflates funnel limits in an additive way [10]. This approach assumes that
Yi has expectation E(Yi) = θi, variance V (Yi) = s2i , and that for under control units θi is
distributed with mean θ0 and standard deviation τ .
The parameter τ is estimated using the moments estimator:

τ2 =
Iφ̂− (I − 1)∑

i wi −
∑

i w
2
i /

∑
i wi

(8)

Where wi = 1/s2i and φ̂ is as previously defined. If φ̂ < (I − 1)/I , then τ2 is set to 0.
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If φ̂ < (I − 1)/I τ is set to 0.
The original funnel limits, defined in (2) are inflated and over-dispersed control limits are now
evaluated as:

yp(θ0; ρ) = θ0 + zp
√
g(θ0)/ρ+ τ2 (9)
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3 Cumulative Sum chart
Every process can be seen as a wave-like motion: if we consider in-hopital mortality we see
that patients that dies are never equally distributed in time. An hospital performance will be
better or worse depending on various issues. These fluctuations around the mean can never be
eliminated. An essential question is how to detect a degradation in a process. Statistical Process
Control (SPC) consider the process variability as an index that identify if a process is under
control or not. In theory, all points situated outside of the normal variation, indicate that the
process is possibly out of control.
In healthcare literature, different kinds of SPCs are used. We thereby present Cumulative Sum
charts, or CUSUM charts. These charts are based on sequential monitoring of the cumulative
performance over a period of time [22]. The difference with respect to funnel plots is that this
can be defined as an “on the run” approach. Indeed CUSUM charts are updated after each
event so that there can be a real-time monitoring of performance, while more data are needed
to evaluate a structure with funnel plots. Their strenght is that they identify subtle and slow
degradation in a process and alert for this degradation as soon as possible [34, 4, 26].
Where their strength is in identify degradation in a single structure in a short amount of time,
our data cover a very long period of time and our aim is to compare structures, so there is little
use in the CUSUM approach. We shortly discuss the use and utility of the Cumulative failure
charts in assessing hospital performance and the reasons why we won’t show CUSUMs analysis.

3.1 Cumulative failure charts
The CUSUM charts for monitoring hospital performance usually work on binary events, such as
death/alive, or presence/absence of rehospitalization within a certain amount of days. In this
example we choose the mortality as an outcome.
The cumulative failure chart (Figure 3) is the simplest form of a CUSUM chart. The chart is
constructed by the cumulative number of events (failures), on the vertical axis, plotted against
the total number of events on the horizontal axis. Each death makes the graph grow up, with a
100% event rate we have a 45° slope, while a horizontal line corrispond to the case of no events.
Boundary lines to evaluate quality can be constructed. These boundaries, or alert lines, are
costructed with accepted (p0) and the unaccepted (p1) failure rate. Values for the two alert
lines in a failure chart are evaluated as in paper [25]. The two lines identify the acceptable
failure rate and the unacceptable failure rate. If the graph of cumulative failures exceeds the
upper boudary line (unacceptable failure rate), the failure rate is higher than the unacceptable
rate (p1). If the graph crosses the lower boundary line (acceptable failure rate), the failure rate
is lower than the acceptable rate (p0). An acceptable process shows a graph with a slope towards
the lower boundary line.
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Example of Cumulative failure charts

Figure 3: Cumulative failure chart for a generic hospital.

In Figure 3 we use the in-hospital mortality as a response (1 if the patient dies, and 0 if he/she
remains alive). The p0 and p1 values are evaluated using the dataset, with p0 beeing the global
mean and p1 beeing the global mean plus two standard deviation. The green line represents the
acceptable failure rate, while the red line represent the unacceptable failure rate. The black line
represent the behaviour of a hospital.
In Figure 3 we clearly see why this analysis is almost useless with our data. It is true that the
CUSUM chart assesses that the hospital “030DJQ” has a good behaviour, but we don’t need to
run the chart on all the data. In every plot the black line goes out really fast from the boudaries,
whereas CUSUM charts are expected to be re-started, and limits to be readjusted since the alert
is out (when the black line goes above the red line).
As such, while CUSUM charts are very useful in hospitals monitoring, they are unfitting for the
dataset we use.
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4 Hospital performance in terms of mortality rate
As said before, between CUSUM charts and funnel plots, we find the latter to be really fitting
our aim. In the following sections we will show the results of the analysis carried out on the
dataset under study.

4.1 Hospital Standardized Mortality Ratio
Mortality rate is used to assess quality of care. However in order to carry out a fair comparison,
features such as the severity of the events, distribution of comorbidities, age of patients must be
taken in account. If proper adjustment are not performed unrealistic or biased conclusion may
arise, see for example [27], where expert practitioners resulted to performe worse than newbies,
because treating more difficult patients. For these reasons in our model we standardize the
mortality and adjust for case mix of patients.

Indirect Standardization Method

A Hospital Standardized Mortality Ratio is calculated as the observed number of deaths divided
by the expected number of deaths [27], given its case-mix of patients. The expected probabilities
of in-hospital death are estimated using a logistic regression model with in-hospital mortality as
outcome and patient features as covariates. All the data are usually used in this modelling. An
expected probability of death is then evaluated for every patients in the dataset. This expected
probability can be seen as the probability of in-hospital death for that patient in a standard
hospital in Lombardia.
Given a hospital, the patients admitted in that hospital are selected. The sum of their expected
probabilities gives the total expected number of deaths (E) for that hospital.
The observed number of deaths (O) is evaluated by simply counting the number of people
who died in the hospital over the time period of interest. Finally the indirectly standardized
mortality ratio is given by the ratio between the observed number of deaths and the expected
number of deaths. For further details [27].

Logistic Models

Our dataset is event based and a patient can have more than one HF event. While events related
to different patients can be considered as indipendent instances, the same assumption doesn’t
stand if looking at different HF events related to the same patient. For this reason the focus
has to change: we divide the dataset using the hospitalization number as a label. We select all
the data related to the first, second and third hospitalization for further studies. In the subset
containing all the data related to a hospitalization k, there is a one to one relation between
events and patients, because every patient can be admitted just once for its kth time.
Our logistic models are fitted on the subsets of interest (one for each subset), with subsets beeing
data related to first, second and third hospitalization events.
The models use as explanatory variables: Sex, Age, risk coefficient for comorbidity, Length of
Stay, flags for Intensive Therapy, cardiochirurgy, Shock events, presence of other procedures,
while the response variable is in-hospital death.
The result for the model fitted on first hospitalized patients is shown in Table 7.
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Model 1
(Intercept) −7.18∗∗∗ (0.10)
SexM 0.13∗∗∗ (0.02)
Age 0.06∗∗∗ (0.00)
Risk 0.20∗∗∗ (0.00)
LOS −0.02∗∗∗ (0.00)
Intensive Therapy 0.74∗∗∗ (0.02)
Cardiochirurgy −0.43∗∗∗ (0.07)
ICD −1.89∗∗∗ (0.19)
Shock Event 3.61∗∗∗ (0.03)
PTCA −0.58∗∗∗ (0.04)
AIC 125271.02
BIC 125396.33
Log Likelihood -62623.51
Deviance 125247.02
Num. obs. 253475
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 6: Statistical models

Table 7: Summary for the logistic model fitted on patients at first re-hospitalization. The
response variable is in-hospital death.

As we see in Table (7) all the coefficients are significant. That is expected, considering the
number of patients examined. Coefficients related to LOS, presence of ICD, PTCA and Car-
diochirurgy Care are negative, meaning that both a short length of stay and these procedures
have a positive influence on the probability of survival. Instead the presence of an event of
shock during the hospitalization strongly hinder the same probability. Risk, Intensive Therapy,
beeing male and Age also increase probability of death. Age and the presence of a Shock event
seem to be the strongest factors in decreasing probability of survival, while the ICD implant
the strongest one in increasing it. The LOS coefficient is negative, but we notice that also reha-
bilitative admissions are considered, so this coefficient may be influenced by the rehabilitative
patients.
We then model mortality rate on second and third hospitalized patients. In every model the c2

statistic is good (≥ 0.75) and all the coefficients are significant.
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4.2 Identification of hospital outliers via funnel Plot: mortality out-
come

Mortality rate are standardized as explained in Section 4.1.
The funnel plots of Standardized Mortality Rate (SSR) for patients at their first hospitalization
are shown in Figure 4. The funnel plot of SSR for patients at their second hospitalization is
reported in Figure 6. While the funnel plot of SSR for patients at their third hospitalization is
in Figure 7. In these Figures:

1. Y = O/E is the measured indicator for every institution. O is the observed number of
deaths and E the expected number of deaths.

2. The target SSR is θ0 = 1, since Observed deaths are assumed to be distributed as a
Poisson with mean value E and variance θ/E.

3. The precision parameter ρ is given by ρ = E and g(θ0) = θ0.

4. funnel limits are as in (2) or, if overdispersion correction is needed as in (5) or in (9).

In our funnel plots we identify as negative outliers the hospitals that are above the upper funnel
limit (0.99). We identify as positive outliers the hospitals below the lower funnel limit (0.01).
Finally a hospital is “under control” if it lies whithin the funnel limits.

4.3 Standardized mortality rate at first, second and third admission
Here funnel plots are applied to analyze hospital mortality rates.

Mortality at first hospitalization

Only first hospitalizations are considered: patients are 252,875, admitted in 232 hospitals. We
consider now hospitals with at least 20 patients admitted for their first event. In Table 8 and 9
some summary statistics of data are reported.

Number
Patients 252, 875
Hospitals 232

Females Males
Patients 53% 47%

percentage
Dead 0.086
ReH 0.400
IT 0.20

Cardiology 0.053
ICD 0.012
DRG 0.15
Shock 0.024
PTCA 0.054
CABG 0.03
MDC5 0.99

Table 8: Summary of the dataset with hospitals with at least 20 first events.
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median mean SD
Age 79 77.15 11.05
Risk 1 0.99 1.42
LOS 10 13.67 14.19

Table 9: Summary of the dataset with hospitals with at least 20 “first events” each.

The funnel reported in Figure 4 shows the Standardized Mortality Ratio plotted against the
Expected cases.

●

●●

●

●

●

●●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
● ●

●
●●

●

●

●

● ●●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

0 100 200 300 400 500

0
1

2
3

4
5

6

In−hospital deaths after first hospitalization

Expected cases

O
bs

er
ve

d/
E

xp
ec

te
d

Figure 4: Funnel plot of Standardized Mortality Ratio evaluated on patients at first hospital-
ization. Funnel limits are computed without overdispersion correction, see (2).

We see that, as expected, dispersion around the funnel decreases as long as hospital dimension
increases, but a large number of institutions lies outside the funnel. Since 39 hospitals (16.8%)
are identified as “positive outliers”, 43 (18.5%) as negative outliers and only 150 as under control
units we need to check for overdispersion.
As previously explained in Section 2.2, we assume overdispersion only if the estimate of φ is
bigger than the threshold defined in (7). Since the threshold is equal to 1.19 and φ̂ = 6.1, we
assume overdispersion and we evaluate the funnel limits as specified in Section 2.2. We present
them in Figure 5.
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Figure 5: Funnel plot of Standardized Mortality Ratio evaluated on patients at first hospitaliza-
tion. Funnel limits evaluated with multiplicative (left) and additive (right) correction, see (5)
an (9) respectively.

Both funnel plots in Figure 5 show funnels with limits adjusted for overdispersion. The first
funnel has limits evaluated with multiplicative correction (5), while the second funnel has limits
evaluated with the additive random-effects correction as in (9). The funnel on the left in Figure
5 identify 2 structures (0.8%) as positive outliers and 11 (4.7%) as negative outliers, the right
one identify 2 structures as positive outliers and 15 (6.4%) as negative outliers.
The two sets of identified outliers are a subset of the ones previously identified in Figure 4, but
the two groups are very different from each other. Indeed it’s easy to see that the two methods
label outliers very differently: between the structures identified as outliers only 4 are labelled
the same (3 negative and 1 positive). Funnel limits evaluated with extreme outlier effects, or
multiplicative approach, are more lenient with smaller hospitals than with bigger ones. Most
of the outliers identified with funnel limits evaluated with additive correction are indeed small
structures.
If the aim of the monitoring is to identify only few health authorities as outliers, correction for
overdispersion must be made. When adjustments for overdispersion are needed, they should be
chosen accordingly to the aim of the monitoring. Indeed we can assess the subset of hospitals we
need to focus our attention on: if small hospitals are to be monitored as strictly as bigger ones
we can choose the additive overdispersion correction, if on the contratry we are more interested
in outlier detection between bigger hospitals, the multiplicative approach is to be preferred.

Mortality at second hospitalization

Only second hospitalizations of patients are now considered. Hospitals included in the study
have at least 20 patients that are admitted for their second event. In Tables 10 and 11 some
summary statistics are reported.
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Number
Patients 100, 204
Hospitals 187

Females Males
Patients 50% 50%

percentage
Dead 0.093
ReH 0.500
IT 0.150

Cardiology 0.035
ICD 0.032
DRG 0.140
Shock 0.022
PTCA 0.028
CABG 0.015
MDC5 0.830

Table 10: Summary of the dataset with hospitals with at least 20 “second events” each.

median mean SD
Age 79 77.82 10.48
Risk 1 1.56 1.62
LOS 9 13.20 13.50

Table 11: Summary of the dataset with hospitals with at least 20 second events.

The funnel of Standardized Mortality Ratio evaluated on the dataset of patients at their second
hospitalization shows overdispersion. While this overdispersion lessens, we have still 17 hospitals
(9%) identified as “positive outliers”, 19 (10.2%) as negative outliers and only 151 as under
control units, so we check for overdispersion.
The estimate of φ is smaller than before, but bigger than the threshold defined in (7). Since
the threshold is equal to 1.21 and φ̂ = 2.7, we assume overdispersion and we evaluate the funnel
limits as specified in Section 2.2. We present them in Figure 6.
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Figure 6: Funnel plot of Standardized Mortality Ratio evaluated on patients at second hospi-
talization. Funnel limits evaluated with multiplicative (left) and additive (right) correction, see
(5) an (9) respectively.

As before the identified outliers remain a subset of the outliers identified with limits evaluated
as in (2) and they remain very different from each other. Among the structures identified as
outliers only 2 are labelled the same by the two methods. Funnel limits evaluated with extreme
outlier effects, or multiplicative approach, are once again more lenient with smaller hospitals
than with bigger ones. Most of the outliers identified with funnel limits evaluated with additive
correction are instead small structures.

Mortality at third hospitalization: Only third hospitalizations of patients are now consid-
ered. Hospitals included in the study have at least 20 patients that are admitted for their third
event. In Tables 12 and 13 some summary statistics are reported.

Number
Patients 50, 046
Hospitals 161

Females Males
Patients 47% 53%

mean
Dead 0.099
ReH 0.560
IT 0.140

Cardiology 0.026
ICD 0.037
DRG 0.130
Shock 0.022
PTCA 0.022
CABG 0.010
MDC5 0.830

Table 12: Summary of the dataset with hospitals with more than 20 “third events” each.
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median mean SD
Age 79 77.62 10.23
Risk 2 2 1.73
LOS 10 13.43 13.97

Table 13: Summary of the dataset with hospitals with more than 20 third events.

In Figure 7 we show the funnel plot of Standardized mortality evaluated on patients at their third
hospitalization. To show clearly the decreasing of the overdispersion we report the plot where
funnel limits are evaluated without correction. A brief comparison with Figure 4 points out that
fewer hospitals are outside the funnel. Only 8 hospitals (5%) are identified as positive outliers
and 11 (6.8%) as negative outlies. If we check for oversipersion we find that the estimate of φ is
still bigger than the threshold defined in (7). The threshold is still around 1.2 and φ̂ = 1.9. Since
the two values are similar we show the funnel plot with limits without overdispersion correction.
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Figure 7: Funnel plot of Standardized Mortality Ratio evaluated on patients at third hospital-
ization. Funnel limits evaluated without overdispersion correction, see (2).

Remarks on outlier behaviour with hospitalization

Two remarks can be made about the outlier behaviour with increasing hospitalization. Firstly
overdispersion decreases clearly from the first hospitalization to the third. Hospital Standardized
Mortality Rate evaluated on patients at their first hospitalization are much more dispersed
around the mean than ones evaluated on data related to second and third admissions. Since
an overdispersed behaviour is usually due to the impact of unmeasured covariates that are
not taken into account in any risk-adjustment method, the lessening of the overdispersion can
be due to some kind of evening out of the patients at further hospitalizations. Secondly the
outlier behaviour of an hospital doesn’t change with different patient history: all the hospitals
labelled as outliers for SSR evaluated on patients at their third admission, are also outlier at
first hospitalization, while between first and second only one hospital exits the funnel limits.
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Therefore we can say that while the number of outliers decreases, the ones that are outlier at
third hospitalization are outliers also at first one. On the other hand hospitals which are within
the funnel limits in patients at their first event, remain within the funnel limits also for further
hospitalizations. So hospitals tend to pull back inside the funnel limits, while no hospital exits
the funnel plot in further hospitalization if they weren’t outside in the first one.
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5 Hospital performance in terms of re-admission rate
While in Section 4 hospital performance is evaluated using mortality rate, a different perspective
is now introduced. As previously stated, Hearth Failure is a chronic disease, where around 40% of
patients are re-hospitalized after their first admission. Therefore, also outlier behaviour relating
to the re-hospitalization rate can be monitored. As previously defined, the re-hospitalization
rate is the rate of patients that will have another event after the current one. In this section
funnel plots are constructed to analyze hospital re-hospitalization rates.
While the mortality rate was standardized, the re-hospitalization rate we analyze now isn’t, but
a standardization can be considered. The re-hospitalization rate is evaluated for each one of the
three subsets used in Section 4.2.

5.1 Identification of hospital outliers via funnel Plot: re-hospitalization
outcome

In Figures 8 and 9 are shown the funnel plot of re-hospitalization for patients at their first, second
and third hospitalization. In these figures all funnel limits are evaluated without overdispersion
correction.

1. Y = p where p is the observed rate of rehospitalization.

2. The target θ0 is the mean of the current dataset, that means that re-hospitalization rates
are assumed to be distributed as a Bernoulli distribution with mean θ0 and variance
θ0(1− θ0)/n.

3. The precision parameter ρ is given by ρ = n and g(θ0) = θ(1− θ0).

4. Funnel limits are as in (2) or, if overdispersion correction is needed as in (5) or in (9).

As before we identify as negative outliers the hospitals that are above the upper funnel limit
(0.99), as positive outliers the hospitals below the lower funnel limit (0.01) and as “under control”
hospitals that lie whithin the funnel limits.

5.2 Re - hospitalization rate at first, second and third admission
Funnel plot of re-hospitalization rate plotted against the number of events is reported in Figure
8. As with the mortality rate funnel plots, units identified as “out of control” are too many: 31
(13.4%) hospitals are labelled as positive outliers and 49 (21.1%) as negative outliers.
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Figure 8: Funnel plot for re-hospitalization evaluated on patients at first hospitalization. Funnel
limits evaluated without overdispersion correction, see (2).

As before overdispersion is present: indeed the estimate of φ is φ̂ = 4, while the threshold
defined in (7) is around 1.18. We then assume overdispersion and we evaluate the funnel limits
as specified in Section 2.2. With the additive overdispersion correction 11 (4.5%) hospitals
are identified as positive outliers and 12 (5.2%) as negative outliers. With the multiplicative
correction all the hospitals but 4 (1.7%) negative outliers are considered under control. Only 3
hospitals are labelled as negative outliers by both methods. The great difference in labelling is
present because most of the hospitals identified as negative outliers by funnel limits evaluated
with the additive correction are once again small hospitals, that are within the funnel limits
obtained with multiplicative correction.
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Figure 9: Funnel plot for re-hospitalization evaluated on patients at second and third hospital-
ization. Funnel limits evaluated without overdispersion correction, see (2).
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In Figure 9 are shown the funnel plot of re-hospitalization rate for patients at their second and
third hospitalization. Overdispersion (φ̂ > 2) is still clear in both funnel plots relative and we
correct the funnel limits as before. While we have evaluated funnel limits with overdispersion
correction and we have identified the hospitals that are identified as outliers, in Figure 9 we
show funnel limits drawn without correction so that the lessening of overdispesion can be clearly
seen.
One (second admission) or no (third admission) outliers are obtained if the multiplicative cor-
rection for overdispersion is used. The funnel limits obtained with additive correction highlight
the presence of 7 (3.7%) negative and 3 (1.6%) positive outliers at second admission, while 5
(3.1%) negative and 4 (2.5%) positive outliers are pointed out at third admission.
Two main remarks can be made about the outlier behaviour with hospitalization. Firstly overdis-
persion decreases from the first hospitalization to the third. Re-hopitalization rates evaluated
on patients at their first hospitalization are more dispersed around the mean than ones evalu-
ated on data related to second and third admissions. Secondly there is once again permanence
of outliers between rehospitalization, as only one hospital identified as outlier in the analysis
relative to the third hospitalization isn’t between outliers highlighted at first hospitalization.
Hospitals tend to pull back inside the funnel limits, but some of the outliers still remain outside
as seen before.

Remarks
In Chapters 3,4,5 we presented funnel plots as a simple and effective way to monitor hospitals’
performances. In fact, while beeing an interesting way to explain data on institutional compar-
isons, they’re also an explicative one. With axis that are easily interpretable and the outliers
as points outside the funnel limits, funnel plots are ideal to communicate data clearly. Further-
more as stated previously, there is no spurious ranking of institutions, additional variability in
institutions with small volume is allowed and finally overdispersion can be taken into account.
While beeing an attractive communicative device, the funnel plot isn’t appropriate to study the
progress of individual institutions over time, since a basis for sequential testing due to repeated
testing is not provided. Methods such as Cumulative Sum charts or risk-adjusted CUSUMs
provide a formal basis for such sequential monitoring. In conclusion we suggest that CUSUM
charts are to be used to monitor hospital on the run, while funnel plots can be used to evaluate
the hospitals once in a while, likely once in a year.
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Part III

Network analysis
In Part III we introduce the network analysis and explain why the hospitals can be considered
as a group instead of different and separate units. We introduce the hospital networks we work
with and the models we implement. For further reading on statistical analysis of network data
we refer to the book from Kolaczyk and Csárdi [21]. Most of the analysis have been carried out
using the “igraph” package of R [8] and the “ergm” package [14, 17]. In this part we reduce our
attention to a subset of hospitals, choosing those (80 units) with at least 2000 patients.

6 Introduction to Graphs
A graph is a representation of a set of units where some of them are connected by links in
pairs. The interconnected units are called vertices, and the links are called edges. A graph is
graphically represented as a set of dots for the vertices, joined by lines that represent edges.
The edges may be directed or undirected. For example, if the vertices represent hospitals in our
network in our hospital netwok, and there is an edge between two hospitals if they are similar,
then this is an undirected graph, because if hospital A is similar to hospital B, then hospital B
is also similar to hospital A. In contrast, if there is an edge from hospital A to hospital B when
a patient from A is transferred to hospital B, then this graph is directed, because the transfer
is not a symmetric relation. This latter type of graph is called a directed graph and the edges
are called directed edges.

6.1 Definitions
A graph is an ordered pair G = (V,E) where V denotes the set of vertices and E the set of
edges. In our networks V and E are finite. The order of a graph is the number of vertices |V |
and the graph’s size is the number of edges |E|.

Vertices: Vertices are the nodes of the graph, they can be connected in pairs, but they may
also exist even without belonging to an edge. Given a directed edge that connect hospital i to
hospital j, j is called the head (or hospital out) and i is called the tail (or hospital in).

Edges: Every element in E is an ordered (directed graph) or unordered (undirected graph)
list of two vertices, these two vertices are the ones that the edge connects. The vertices belonging
to an edge are also called the ends or end vertices of the edge. In a directed graph, given two
vertices i and j, if there is an edge from i to j and an edge between j and i, the two edges are
defined mutual. An edge can be also called tie or link.
A graph is said to be weighted if a number (weight) is assigned to each edge. Such weights can
represent for example flows between two units, costs or distances.

Connection, transitivity and mutuality: In an undirected graph G, two vertices i and j
are reachable if there is a path from i to j.
A graph is called connected if every vertex is reachable from every other. A directed graph is
called weakly connected if replacing all of its directed edges with undirected edges produces a
connected graph. It is strongly connected if it contains a directed path from i to j and a directed
path from j to i for every pair of vertices i, j.
The transitivity of a graph is based on the relative number of triangles in the graph, compared
to total number of connected triples of nodes. Where a triangle consists of 3 nodes that are
completely connected to each other and a connected triple consists of three nodes i, j, k such
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that node i is connected to node j and node j is connected to node k. The factor of 3 arises
because each triangle gets counted 3 times in a connected triple. It’s computed as:

T = 3 · t

CT
(10)

Where t is the number of triangles in the observed network and CT is the number of connected
triples of nodes in the network. 0 ≤ T ≤ 1.
Mutuality in a directed graph is the percentage of edges that are mutual.

Degree and Strength: The degree of a vertex is the number of incident edges. In an undi-
rected graph there is no distinction between out-degree and in degree, while in a directed graph
the out-degree in the number of edges that exits from the vertex and the in-degree is the number
of edges that enters the vertex.
The strength of a vertex is the sum of the weights of incident edges. Out-strenght and In-strenght
correspons to Out-degree and In-degree.

Centrality: Centrality is a vertex features. There are various measure of centrality, and are
all linked with the strength and the importance of an hospital in the network. Examining
the centrality of a structure is like asking how critical that structure is in the general flow or
connection. Measures of centrality are designed to quantify various notion of “importance” of a
node.
There are a vast number of centrality measures that have been proposed (see [21] for details).
The most widely used remain the vertex degree, that we have already described above.
Betweennes centrality summarizes the extent to which a vertex is located between other pairs
of vertices. This centrality measure highlights the importance that relates to where a vertex
is located with respect to the paths in the network. The most commonly used betweeness
centrality measure, introduced by Freeman [11], is defined as:

CB(v) =
∑

s 6=t6=vεV

σ(s, t|v)
σ(s, t)

(11)

where σ(s, t|v) is the total number of shortest paths between s and t that pass throught v and
σ(s, t) is the total number of shortest paths between s and t. If the shortest paths are unique,
the Betweennes centrality measures the number of shortest paths that pass throught v. In the
following (Section 7) we evaluate the centrality of the nodes belonging to the network, as well
as vertices’ strenght and degree.

Layout:

The depiction of a graph must balance different aspects. The position of vertices and the length
of edges must be chosen so that the graphs avoids confusion at its best. To watch out for graphic
aspects it’s necessary: nodes must be placed so that all the edges are of more or less equal length
and there are as few crossing edges as possible. This is done by assigning forces among the set
of edges and the set of nodes, based on their relative positions, and then using these forces to
minimize their energy.
There are several algorithm that one can use to generate this equilibria: we mostly use the Ka-
mada Kaway layout [20]. This approach is automatically implemented in the “igraph” package
[8] automatically. For reasons of random initialization, every time the same network is plotted
the result differs slightly (i.e: the postioning is different).
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6.2 Network as the right perspective
Network analysis has been used for years, mainly to advance research in the social sciences [2],
but has been developing faster in recent years ([8], [9], [12], [6], [17], [24]) due to the recent
advances in technologies. In fact, internet and and especially on-line social networks produce a
great deal of relational data, i.e., data which need to be analyzed considering their intertwining
nature. The network perspective enables to model the relationships among units, considering
patterns and pattern implications. As network approach is the most natural way to analyze this
kind of interactive data, the research in the area is lively.
As people in a social network are connected by data flow, institutions can be considered as
units connected by human flow. Networks are an unique tool to extrapolate flows information
and information about unit authority or centrality. Understanding the patients flow in an
hospital network is surely of interest, since it can highlight an additional outlier behavior, such
as excessive out-flow or in-flow of patients. A flow network is the first hospital network we
explore. Other hospital networks can be proposed: as an example in Section 7.2 we introduce a
hospital network where similarity between hospitals is accounted for on edges.
Two are the main issues when dealing with modelling a network. First of all, one must choose
properly the variables to be represented on nodes and edges, as well as the weights the edges must
be labelled with. This is a descriptive step of the analysis, that allows, if properly approached,
for useful insights of the problem under study. A second issue is how to fit a model on the
chosen graph.
In Section 7 we describe the hospital network we propose. In Section 8 we present the generalized
linear models we can fit on them.

7 Networks of Hospitals
In this section we propose how to look at hospital networks within Lombardia in two different
ways. Firstly we state our choices regarding vertices, edges and their representation, then we
analyze the proposed networks.

7.1 Vertices
The first step is to label the vertices. Since in every proposed network vertices are alike, we
present them beforehand.
As we previously stated, every hospital is not completely indipendent of others. Several con-
nections between structures can be made and are proposed in what follows, however all the
networks we study see hospitals as vertices. Hospital features are inserted as nodes attributes,
according to instructions in package “igraph” of R [8]. Some features are displayed in terms of
nodes colors, size, shape, among others. For each institution, in addiction to the identification
code, the features reported in Table 14 are available.
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(Standardized Mortality rate Color) (Re-hospitalization rate Color)
Standadized Mortality Ratio (SSR) Re-hospitalization Rate (reH)

mean risk Number of patients (N)
median Lenght Of Stay (LOS) mean expense (worth)
Cardiochirurgy percentage ICD percentage

Intensive Therapy percentage PTCA percentage
DRG percentage Shock event percentage
CABG percentage MDC51 percentage

Table 14: Vertex features in the hospital network. Indicators measured in Funnel Plots described
in Section 4 and 5 are used to color the nodes.

As we said informations relative to the vertices can be displayed in the graph. As such the outlier
labels obtained with funnel plots are recorded in “Mortality Rate Color” and “Re-hospitalization
rate Color” and used to color the network. “Positive outliers” (Green), “under control units”
(Yellow) and “negative outliers” (Red) can then be easily identified in a graphical way. The color
can vary between the color obtained by the mortality funnel plot (in Table 14: “standardized
Mortality Rate Color”) and by the rehospitalization one (in Table 14: “Re-hospitalization rate
Color”) at need.
In particular we considered funnel plots with limits evaluated without overdispersion correction
to determine the color of vertices. Other choices can be made, using the outliers found by other
limits, depending on the aim, as stated before.
We choose median Length Of Stay instead of the mean to detect the rehabilitative admissions
effect. Since we are interested in the hospitals dimission policy, we prefer to deal with typi-
cal admissions and not rehabilitative ones. Lastly the “mean worth” is the mean expense of
admissions in the hospital.
As two other features can be shown in figures as every vertex’s width and height, we choose
vertex dimensions proportional to hospital dimension (Width) and mean worth (Height).

7.2 Hospital network as a flow graph
The first hospital network see the flow of patients on the edges. Patients that have more than
one hospitalization either go every time in the same hospital, or they can change hospital. If
they change hospital we have a patient that moves along an edge.
To create this kind of graph we join each hospital with all the others with a “potential” directed
edge. The resulting graph is a complete directed graph. For every patient we check his/her
admissions, if the patient has an hospitalization in hospital A and the following in the hospital
B, we add plus one to the edge between A and B. Null edges between hospitals are then deleted.

Edges

We must highlight the fact that this kind of patient flow is really small in numbers. On the
first hand we know that more than half of the patients had just one admission and on the other
hand the majority of the others tend to stick to the same hospital. Patients remain mainly
in the same hospital, probably both for geographical reasons (the majority of chronic patients
are elderly, so its really unlikely they go to a far away hospital) and because people prefer to
stick to the same doctor or team if possible. So these edges completely ignore more than two
third of the patients. These edges measure more or less the way chronic patients move between
hospitalization and are strongly related with the geographical position, a variable that we are
not allowed to measure.
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Nontheless with this approach we can identify hospitals that are in-stars and out-stars for
patients and also point out flows that clinician can identify as uncommon. An analysis on such
a graph can give useful insights on the epidemiology of transfers and help with logistic issues
that can arise.
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Figure 10: Weight distribution in the flow graph

As we can see in Figure 10 we have the great majority of really small edges (76% weight between
1 and 10). Since a nearly complete graph is difficult to represent, in the descriptive analysis
that follows we use only edges that had more than 10 patients.

Graph representation

In Figure 11 we colour the hospitals by the Standardized Mortality rate color and in Figure 12)
with the re-hospitalization one (see table 14).
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Hospitals with Kamada−Kaway layout

High SSR
Normal SSR
Low SSR

Width ~ N
Height ~ average money spent

Figure 11: Hospital Network as a flow graph. Vertices are colored according to the SSR of the
corresponding hospital, classified as “positive” (green) if under the lower limit of the Funnel
Plot in Figure 4, “under control” (orange) if within the funnel limits in Figure 4 and “negative”
(red) if above the upper funnel limit of the Funnel Plot in Figure 4. Edges are depicted as light
blue if the flow is betwen same-color hospitals or colored as the “head” if between different-color
hospitals.
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Hospitals with Kamada−Kaway layout

High SSR
Normal SSR
Low SSR

Width ~ N
Height ~ average money spent

Figure 12: Hospital Network as a flow graph. Vertices are colored according to the SSR of the
corresponding hospital, classified as “positive” (green) if under the lower limit of the Funnel
Plot in Figure 8, “under control” (orange) if within the funnel limits in Figure 8 and “negative”
(red) if above the upper funnel limit of the Funnel Plot in Figure 8. Edges are depicted as light
blue if the flow is betwen same-color hospitals or colored as the “head” if between different-color
hospitals.

The network we have previoulsy explained are reported in Figure 11 and Figure 12. The choice
of features we display on vertices (number of patients, average money spent and outlyingness)
can be changed at need. The current choice enables an efficient monitoring of the most impor-
tant hospital indicators related to hospital efficiency. In both figures small structures with very
high mean expence are easily spotted. When small numbers, high mean espense and underper-
formance behaviour coexist in a hospital, further analysis are needed. While this seem to be
only a graphical aid, it can be worthwile when explaining data.
As a first step we examine the network to see what observations can be made about patients
flow.
We are interest in the edge disposition, we want to know if smaller structures are clustered
aroud bigger ones, if the flow is mainly between hospital of the same dimension and so on. If
there are some kind of grouping and if we can identify differences between groups.
In Figures 11 and 12 we notice that:

• Most of the bigger edges are between hospitals that differs greatly in exposure.

• There some kind of clustering. It’s possible due to geographical reasons, but we are not
allowed to verify.

• The mortality outlier distribution in Figure 11 seem to vary in different areas. So there
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seem to be a clustering of the labels. The only group induced by color is on the left, where
a group of green hospitals stays isolated from the rest. Instead we don’t see a major effect
of the color on to the edges dimension.

• The rehospitalization outlier distribution in the graph seem to vary in different areas, with
red outliers condensed firstly in the top right, and secondly in the center of the bottom left
group. Otherwise from Figure 11 hospitals have the majority of their neighbours of their
color and outlier seem to be distributed as annular rings around a center of red outliers.

• The difference in coloring is easily spotted after noticing that the two graphs mirror on each
other. The coloring done with mortality and with re-hospitalization are really different,
almost contrary. This phenomena is really relevant in the group of hospitals that seems
to be separated from the others, having an extremely good behaviour with respect to
mortality as an extremely bad one with respect to re-hospitalization.

Vertices and edges features - Mortality

In what follows, vertices and edges features related to the network graph colored by Standardized
Mortality rate are further analyzed.

In and out strength: While the degree of a hospital is the number of hospitals connected to
it, the strenght is the number of patients that depart or arrive in the hospital. Both are indices
of centrality and are linked with the hospitals importance. Unfortunately also geographical
influence is concerned, since patient mobility among hospitals in the same city differs greatly
from patients mobility between cities. Patients in a big city can easily change hospital staying
inside the city itself, while in a small city there can be only one hospital. Since for elderly patients
changing city is challenging, a latent geographical effect probably influences the strenght.
As the number of patients that flow between the hospital is the focus, we report streght plots.
In Figure 13 we see the relation between flow and dimension. The dependence of Out-strenght
on the number of patients in a hospital is to be expected, since a great number of patients mean
more patients that can move from the hospital itself. Instead the dependence of In-strenght
on the number of patients is more difficult to explain, since the number of patients seem to be
related the attractivness of the hospital.
Despite the clear dependence between dimension and flow neither among the two figures suggests
that being an outlier modify the flow in any way. Hospitals behave in the same way even though
they are labelled differently. In the end there doesn’t seem to be a linear relation between flow
and SSR.
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Figure 13: Plot of In-Strenght (left) and of Out-Strenght (right) for all the vertices in the graph
flow. Vertices are colored accordingly to the corresponding SSR labelling.

Relations between outlier labeling and edges: In Figure 11 we notice that hospitals
are neighbour with hospitals of every color, so once again there doesn’t seem to be a relation
between flow and SSR labelling. To identify if vertices have indeed some kind of preference we
evaluate a relative same-color strength of vertices: the percentage of strength that is related to
vertices of the same color. Given a vertex i of color K, with K = {Red,Green, Y ellow}:

RSCSK(i) =
SK(i)

S(i)
(12)

Where SK(i) is the strength (In or out) evaluated only considering hospitals colored “K” and
S(i) is the strength introduced before. In Tables 15 and 16 are reported the relative same-color
strength of vertices.

Same Color Out-Strength
Color Vertices 1st Qu. Median Mean 3rd Qu. Max.

Red 0.140 0.310 0.330 0.470 0.890
Green 0.180 0.280 0.290 0.410 0.550
Yellow 0.260 0.350 0.410 0.590 0.820

Table 15: Summary table for same color Out-Strength for vertices in the Flow graph. Vertices
are colored accordingly to the corresponding SSR.
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Same Color In-Strength
Min. 1st Qu. Median Mean 3rd Qu. Max.
Red 0.140 0.320 0.320 0.490 0.770
Green 0.210 0.280 0.310 0.450 0.620
Yellow 0.240 0.380 0.400 0.530 0.860

Table 16: Summary table for same color In-Strength for vertices in the Flow graph. Vertices
are colored accordingly to the corresponding SSR.

We see that the vertices strength are related to the percentage of colors in the graph (with 34%
red, 40%, yellow, 26% green vertices). These results doesn’t support a relation between SSR
and flow. A weak relation can always be masked easily by geographical influence, that we aren’t
able to see.

Connection, transitivity and mutuality: In our data a lot of edges are mutual and the
transitivity is high. In fact 89% of the edges are indeed mutual and the transitivity is also high.
Moreover our graph is not only weakly, but also strongly connected according to the definition
given in Section 6.1.

Vertices and edges - Rehospitalization

Here vertex and edges features related to the network graph colored by Re-hospitalization Rate
are further analyzed.

In and out strength: In Figure 14 we see the relation between flow and dimension. The
dependence of Out-strenght and In-strenght to the number is the same as for the mortality
coloring.
Once again despite the clear dependence between dimension and flow neither of the two figures
suggests that being an outlier modify the flow in any way. Hospitals behave in the same way
even though they are labelled differently. In the end we see that beeing an outlier with respect
to rehospitalization seems to increase Out-strength.
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Figure 14: Plot of In-Strenght (left) and of Out-Strenght (right) for all the vertices in the graph
flow. Vertices are colored accordingly to the corresponding Re-hospitalization Rate labelling.

Small edges as a noise

We stated before that very small edges are the majority, but with more than 2000 patients in
12 years, some patients can change hospital without any real pattern. In this section we reduce
our attention to main patterns. We now build a graph that mantains only edges that weight at
least 50 and we examine the network with colored by Standardized Mortality Rate.
It is likely that a latent geographical clustering is shown in Figure 15, but we are not aware of it
(and it cannot be recovered) due to the encrypted identification key for hospitals. Nevertheless,
it can be observed that some clusters behave better than others in terms of SSR.
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Figure 15: Distribution of weights for edges in the Flow Graph obtained cutting edges smaller
than 50 on the left. Flow Graph obtained cutting edges smaller than 50 on the right. In
the graph vertices color is chosen according to the labelling relative to SSR, while edges are
depicted as light blue if the flow is betwen same-color hospitals or colored as the “head” if
between different-color hospitals.

In Figure 15 we easily see that the majority of the edges are between hospitals with different
labels. In Table 17 we show the vertices connected by the biggest edges.

hospin hospout weight colorin Nin colorout Nout

3334 030ENR 030DKT 308 green 4, 780 orange 11, 596
6099 030JLQ 030DKT 285 green 5, 859 orange 11, 596
4284 030IJN 030DKV 283 orange 4, 157 red 6, 186
1397 030DKV 030IJN 275 red 6, 186 orange 4, 157
5860 030JFV 030DKR 261 orange 3, 861 red 9, 435
1262 030DKT 030JLQ 260 orange 11, 596 green 5, 859

Table 17: List of the vertices connected by the biggest edges in the flow graph of Figure 15 with
weight and coloring of the structures al both ends of the edge. The coloration is done with the
information derived from the funnel plot related to Mortality.

Unlike for the complete graph, SSR differences seem to be related to the flow. When we propose
a generalized linear model to model the patients flow we will consider the difference in the
variable regarding the mortality as a possible esplanation for the dimension of the edge between
two hospitals.
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Grouping in flow graphs

A question of interest is whether a graph separates into distinct subgraphs and, if this is the case,
which are determinants driving such clustering. In our problem it’s possible that the grouping
is linked with the geographical clustering. Despite this previous knowledge, it can be of interest
to study if there are some hospitals connected to others or if there are big flows between distinct
groups. The direction of these flows is also of interest.
In the analysis of network graphs, clustering equals to find subsets of vertices that seems better
“cohesive” in themselves than in the overall network. A “cohesive” subset is a group of vertices
that are well connected among themselves and at the same time relatively separated from the
other vertices. This problem is also referred as community detection. Many methods for graph
partitioning are available and are well discussed in [24, 23, 7] to which we refer for further reading.
We use primarily the “infomap community algorithm”, a community detection algorithm for
directed and weighted graphs [29].
We show in Figure 16 and 17 the results of grouping obtained with this algorithm, in such figures
all the edges are of the same thickness and the coloring is once again the SSR one.

Community of hospitals

High SSR
Normal SSR
Low SSR

Width ~ N
Height ~ average money spent

Figure 16: Flow Graph obtained keeping only edges bigger than 10. Vertices color is chosen
with the labelling relative to Standardized Mortality Rate. Edges are all of the same thickness.
edges color is black for intra-group edges, red for the others.

In Figures 16 and 17 black edges are intra group edges, while red edges are edges between
different groups. Vertices color is chosen with the labelling relative to SSR, but the same
analysis can be done with the labelling relative to R-hospitalization Rate. This choice let us
see that the colors for mortality seem to be related to the clustering. As the number of groups
is high, we won’t test community for differences, but we will use the group information in the
modelling that follows in Section 8.
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Community of hospitals

High SSR
Normal SSR
Low SSR

Width ~ N
Height ~ average money spent

Figure 17: Flow Graph obtained keeping only edges bigger than 50. Vertices color is chosen
with the labelling relative to Standardized Mortality Rate. Edges are all of the same thickness.
edges color is black for intra-group edges, red for the others.
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7.3 Hospital network as a similarity graph
In this section we propose a different way to look at the hospital network. The aim is now to
look at a network where similar units are linked one each other, in order to explore if similar
structures perform in a similar way. Now edges represent some kind of “distance”/ “similarity”
between hospitals.
Clinicians drove the choice of features to be used to construct a suitable similarity measure. At
the end we selected the following ones: the presence or absence of three medical facilities such
as Cardiochirurgy, Hemodynamic and Intensive Therapy, and three continuous variables: global
number of treated patients, global mean worth and median LOS.
The “Cardiochirurgy”, “Emodinamic”, “Intensive Therapy” are flags that mark the presence or
absence of the related medical unit. The flags are extracted from the data: in assessing the
presence of the Cardiochirurgy in a hospital we check that the sum of flags “cardio” relative
to that hospital’s patients is different from zero. For the Emodinamic we use the flags relative
to “PTCA” and for Intensive Theraphy units we use the “IT” flags (see Table 2). Concerning
the continuous variables, the total number of patients the hospital admitted is a measure of the
exposure, the median LOS of patients is an index of the LOS policy of the structure, and the
global mean worth for patient is an index of the economic policy. Global number of patients
and Global mean worth are evaluated on the Complete Dataset.
For every pair of hospital x and y their distance is defined as follows:

d(x, y) =

6∑
i=1

xi − yi
max(x,y)(xi − yi)

(13)

where:

x = (Globameanworth,median los,Global N,Cardiochirurgy,Hemodynamics, IT ) (14)

Every hospital is now connected with all the others with a number that indicate the proximity.
Small values are then to be interpreted as indices of similarity, whereas high values as indexes
of dissimilarities, while high values are an index of dissimilarity. In Figure 18 the edge weights
distribution is shown.
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Figure 18: Weight distribution in the similarity graph obtained with distance 13.
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As we see in Figure 18 there are three kinds of edges. Edges with weights between zero and
one are a first group, edges with weights between 1 and 1.4 are in a second group and the third
edges with weights greater than 1.4 are in the third.
Two hospitals may have a distance smaller than one only if they have the same flags. Two
hospitals have a distance included between 1 and 1.4 either if they have really close similarity
for all parameters except one of the flags or if they have the same structures but are rather
different in at least two continuous variables.
Two hospitals with distance bigger than 1.4 might either have the same medical structures, but
beeing very different for some others characteristics or could have different medical structures
and not much similarity for other features, or both.
We now propose two possible threshold for edges, where hospitals bigger than the threshold are
considered completely different.

Clustering of medical structures

In the first case we choose the threshold equal one so that we arbitrarily cluster hospitals for
medical structures. What we actually do is artificially delete the edges whose values are bigger
than one. If we mantain only edges with weight less than one, we group hospitals for medical
structures: in the same group we have only hospitals that have the same equipment in terms of
Cardiochirurgy, Intensive Therapy and Hemodynamics units and have enough similarity in the
other three characteristics. Nearly all of the structure in the same group have the same degree.
Our main interest is in assessing whether the natural clustering for medical structure is somewhat
connected with the performance in terms of SSR or Re-hospitalization Rate. In Figure 19 we
color the vertices using results from the funnel plot about mortality.
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Hospitals with Kamada−Kaway layout

High SSR
Normal SSR
Low SSR

Width ~ N
Height ~ average money spent

Figure 19: Graph obtained with weight computed by (13). We keep only edges smaller than
1. Vertices color is chosen with the labelling relative to Standardized Mortality Rate. Edge
thickness is proportional to the similarity.

In Figure 19 we identify the group on the top left as hospitals that have all the medical units,
while the group on the left is made by hospitals with both Intensive Theraphy and Emodinamic,
but without Cardiochirurgy. All following comparison will be made between these two groups.
In Figure 19 we also see that hospitals within the group with all the medical facilities are bigger
that the ones in the other group. While the obtained clustering depends mainly on the flags, the
two groups resulted different using the Wilcoxon test for all the variables used in the definition
of (13).
In Figures 19 we notice also that the clustering by structures seem to be entirely independent
of the “color” distribution. Testing the two bigger groups for difference in mean risk, SSR and
re-hospitalization percentage let us to the same conclusion. So presence of a medical structure
doesn’t seem significantly linked with an improvement in the performance.
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Figure 20: Histogram of Vertex degree for all the vertices in the graph in Figure 19 on the left.
Plot of Strenght for all the vertices in the graph on the right. The coloring is done with the
information derived from the funnel plot related to SSR.

Vertex characteristics, such as degree and strength (see Figure 20), highlight what we see in
the networks in Figure 19, where hospitals in the same group have about the same degree.
Furthermore there seem to be a connection between the strength and the dimension of the
hospitals that is shown in 20, but this is probably due to some of the smaller hospitals having
less connections (the smaller groups in Figure 19 are all made by small hospitals).
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Figure 21: Boxplot for DRG (left) and mean expense (right) distribution in the two major
groups. In each boxplot on the left the group with all the medical facilities, on the right the
group without Intensive Teraphy Care. The corresponding graph is the one in Figure 26.

While the two major groups test the same as for the SSR and the rehospitalization percentage,
they differed for the DRG (p− value = 0.001 and p− value = 0.002 with Willcoxon test). This
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difference is probably due to the DRG and worth distribution beeing almost the same (see 26).
The DRG, beeing a flag that specify if the patient is evaluated as chirurgical or not, is indeed
meaningful in the refound policy.

Different cutoffs

The cutoff choice is a crucial point in defining the possible features to be extrapolated from the
graph. Whereas our previous choice (distance cutoff equal to 1) has a straightforward meaning
for the analysis, other possible choices are not as easy to be interprested as it was. Looking at
Figure 18 we see that another natural cut off is around 1.4 and in Figure 22 we see the graph
that result if we put to zero all the edges bigger than 1.4. It’s easy to see that this graph is
completely different from the previous one.

Hospitals with Kamada−Kaway layout

High SSR
Normal SSR
Low SSR

Width ~ N
Height ~ average money spent

Figure 22: Graph obtained keeping only edges smaller than 1.4. The coloration is done with
the information derived from the funnel plot related to Mortality.

The network in Figure 22 is conneced, but some kind of clustering is shown nontheless. As such
we search for communities and five groups are identifyed by the fastgreedy.community algorithm
[7]. While the flags still hold a great importance in assessing the membership, hospitals with
a difference in flags are now allowed to be in the same group, but only if other similarity are
really strong. The two main groups we identifty are still the ones we found previously, so for
remarks and analysis we refer to Section 7.3.
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Countinuous distance

As shown in Section 7.3 the distance previously evaluated (see 13) is strongly polarized by the
three flags chosen. We decided to modify this index of dissimilarity and we asked clinician
what continuous variables could be chosen to assess similarity. They suggested the use of
PTCA, cardiochirurgy and Intensive Teraphy percentage to evaluated the distance between
two hospital instead of the flags, as they represent a kind of procedural similarity. So for for
every pair of hospital x and y their distance is evaluate as follows:

d(x, y) =
6∑
1

xi − yi
max(x,y)(xi − yi)

(15)

where:

x = (meanworth,median los,N, p cardio, p ptca, p IT ) (16)

We evaluate all the distances between hospitals and we have yet again every hospital connected
with all the others with a number that indicate the proximity.
In Figure 23 is shown the edge weights distribution and the resulting graph where edges bigger
than the mean are deleted.
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Figure 23: Weight distribution in the similarity graph obtained with distance 15 (left) and the
graph obtained keeping only edges smaller than the mean, using the continuous distance (right).
The coloration is done with the information derived from the funnel plot related to SSR.

Once again our ultimate aim is to understand if similar hospitals have similar outputs and once
again we must choose a cut off, so to choose the maximum distance that to similar hospital can
have. The more natural cut off is to chose edges bigger than the mean or than the median. This
network is still difficult to understand, but the similarity between hospitals are more even. In
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Figure 23 we see the graph that derives from such cut off. We notice an interesting grouping of
red hospitals in the middle of the graph, with five “red” hospitals that are really near to each
other. The same grouping algorithm is applyed to evaluate if the clustering have some relation
with hospital performance and in Figure 24 the results are shown.

Community detection
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Figure 24: Community detection in the Graph in Figure 25 (left) and distribution of SSR
stratified by groups found with Community Detection Algorithm fastgredy.community (right).

If we analyze the three groups in relation to all the vertex characteristics (see Table 14), we
find no differences in the performance indices such as SSR and re-hospitalization, as we can
clearly see in Figure 24 for the SSR. The DRG flag results significantly different between the
three groups, but that brings no surprise, since the DRG flag is strongly related with the mean
worth and the percentage of Cardiochirurgy events, both used in the evaluation of the edges.
A surprise is instead the difference between the patients risk that we see in Figure 25 and it’s
interesting the concurrence in group 3 of low mean worth and high patient risk.
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Figure 25: Distribution of average worth (left) and average risk (right) stratified by groups
found with Community Detection Algorithm fastgredy.community.
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8 Statistical models for network analysis
In this section we exploit proper statistical models to befitted on the hospital networs introduced
in Section 7.2, i.e., Gravity Model and other different generalized linear models.

8.1 The hospital network as a flow graph
The first network we examine is the flow graph presented in Section 7.2, a network where edges
represent the patients flow. In literature this flow is usually named as “traffic”. Flows are
our main interest: we’d like to understand the flow as a response variable and to explain it’s
behaviour looking at vertices and edges features.
Given the network G = (V,E) we can identify a matrix that sum up all the responses: the
Origin − Destination (OD) matrix. Given any couple of vertices i and j, the OD matrix is
defined as Z = Zij , where Zij is the volume of patients flowing from hospital i to hospital j.
Hereafter, in all the models fitted on the flow network Z will represent the response matrix

Gravity models

Gravity models are a class of models that describe the interaction between different groups
or population. They have been used mainly in geography, economics and sociology. The term
“gravity model” derives from the fact that the dimension of the two populations and the distance
(real, or metaphorical) between the two are considered as explanatory variable.
This kind of modeling consider all edges as indipendent between each other so, while it can
be usefull in explaining the phenomena to some extent, it must be used with caution. The
independence assumption is a problematic issue, because edges with a vertex in common may
be dependent.
The Zij are counts, we assume Zij with independent Poisson distributions with mean:

E(Zij) = hO(i) · hD(j) · hS(cij) (17)

where hO, hD and hS are positive functions of the origin i, destination j and a vector cij of
k separation attributes. The k elements of cij are chosen to describe some kind of distance or
cost.
A classical example is the model of Stewart, developed for demograpy, in which:

E(Zij) = γ · πO,i · πD,j · d−2
ij (18)

Where π is a measure of dimension of the origin or destination and dij is a measure of the
distance. A generalization usually used is:

E(Zij) = γ · πα
O,i · π

β
D,j · c

γ
ij (19)

We use the form proposed in (19) to fit two simple models.

Model 1.1: logE(Zij) = K + α logSSRi + β logSSRj + γ log dij

Model 1.2: logE(Zij) = K + α logNi + β logNj + γ log dij
Where dij is the distance identified in (13) between hospital i and hospital j.
As Goodness Of Fit (GOF) indicators we use the values of AIC, BIC and Loglikelihood. We
also look at the plot of fitted against measured flows.
In Model 1.1, despite coefficents are significant, the values of the parameters are really small
and the GOF very poor, so we don’t show the results. On the other hand in Model 1.2 we find
that hospital’s dimension is significant in assessing the dimension of the edge, and the GOF of
the model improved. The corresponding results are reported in Table 19. 18.
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Model 1.2
(Intercept) −12.60∗∗∗

(0.13)
lN_in 1.81∗∗∗

(0.03)
lN_out 2.11∗∗∗

(0.02)
ldistance 0.13∗∗∗

(0.01)
AIC 161,364.65
BIC 161,391.66
Log Likelihood -80,678.33
Deviance 150,892.50
Num. obs. 6,320
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Measured

Measured flows

D
en

si
ty

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

Fitted

Fitted flows

D
en

si
ty

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

True and fitted distribution of flows

Table 18: Summary of fitted Model 1.2 (left) and histograms of measured versus fitted for Model
1.2 (right)

First of all we see that results are coherent with the remarks we made before. The coefficent of
Nin is postitive, since a great number of patients means a greater number of chronic patients,
that are responsible for the traffic between hospitals. Also the coefficient of Nout is positive,
therefore the “head” hospital dimension increase the flow. The coefficient relative to the differ-
ence between hospitals is positive, meaning that distance between hospital increases the flow,
but we see that the value of the coefficient is very small, and the distances between hospitals
are in most cases smaller than one, so this dissimilarity beteen structures isn’t really a major
factor.
The problem is that yet again the goodness of fit is not very strong: the comparison between the
measured values and the fitted values are poor. The strong presence of latent factors probably
hinders our capacity in modeling the problem.

Further models

After the gravity models, we use all the results obtained in the descriptive analysis, to point
out the right variables to explain edges dimension. The Zij is once again in the form of counts,
with independent Poisson distributions and mean functions E(Zij).
Some among the variables in the Table 19 are used in the following models
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Variable Description
N Hospital size

group group label of the hospital, derived from
graph with edges >50

groupequal 1 if groupi and groupj
are equal, 0 if not

reh percentage of re-hospitalization
(first admission)

groupi : groupj interaction between groups
hosp hospital label

Table 19: List and explanation of variables used in the analysis.

Same group effect - Model 2.1:

logE(Zij) = a logNi + b logNj + α(|Nj −Ni|) + β(groupequal) + γrehj + φrehi

E(Zij) = K ·Na
i ·N b

j · eα(|Nj−Ni|)+γrehj+φ·rehi (20)

Firstly we use the hospital sizes as suggested by the Model 1.1. The choice of the covariate
|Nj −Ni| is based on the idea we had in Section 7.2, that the difference between hospitals size
increase the flow between hospitals. In the term groupequal we use the grouping we have found
using the graph with edges bigger than 50, since hospitals in the same area are more likely
to have flows between them. The term rehi is adopted since an hospital that produce more
rehospitalization has more probability to produce flows. We introduce also the term rehj . The
results are reported in Table 20.

Model 2.1
(Intercept) −8.71∗∗∗

(0.16)
lN_in 1.10∗∗∗ (0.03)
lN_out 1.36∗∗∗ (0.03)
dif_N 0.00∗∗∗ (0.00)
g_uguale1 2.96∗∗∗ (0.01)
reh_in 0.52∗∗ (0.16)
reh_out 0.79∗∗∗ (0.17)
AIC 81,605.97
BIC 81,653.23
Log Likelihood -40,795.98
Deviance 71,127.82
Num. obs. 6,320
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Table 20: Summary of fitted Model 2.1 (left) and plot of measured versus fitted for Model 2.1
(right)
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Once again the number of patients in hospitals has a positive coefficient and the same is true
for the difference of hospital dimension, but the coefficent is really small. The exposure of the
hospital the flow depart by has a positive coefficient, as expected, The dimension of the out
hospital has a positive coefficient, too, meaning that patients are likely to move to big structure.
The absolute difference between hospital exposures is not significant, or else, it’s significant, but
really small. Both Re-hospitalization rate in the hospital out and in the hospital in have positive
coefficients. The coefficients relative to re-hospitalization means that if the re-hospitalization
rate are high, the flow raise, meaning that if both hospitals have high hospitalization the flow
is enhanced more.
In Figure (20a) we see the models has two problems: firstly the smaller edges are too many for
a Poisson model and the fitted values are completely wrong for small flows, secondly while the
coefficient relative to groupequal is surely significant, there are probably groups that are more
connected than others, while in Figure 20a the fitted values separates in two different groups.
To solve this second problem, we propose the Model 2.2.

Grouping effects - Model 2.2:

logE(Zij) = a logNi+b logNj+α(|Nj−Ni|)+ξ(groupi)+φ(groupj)+γrehj+ηrehi+θ(groupi :
groupj)

E(Zij) = K ·Na
i ·N b

j · eα(|Nj−Ni|)+ξ(groupi)+φ(groupj)+γrehj+ηrehi+θ(groupi:groupj) (21)

The main difference from Model 2.1 is that instead of using the groupequal flag, we use three
variables, the group of hospital i and j and the interaction between the two of them. In Table
21 we show only some of the coefficients, but also if they aren’t shown, they are for the most
part significant.

Model 2.2
(Intercept) −12.13∗∗∗ (0.21)
lN_in 1.62∗∗∗ (0.03)
lN_out 1.88∗∗∗ (0.03)
dif_N 0.00∗∗∗ (0.00)
reh_in 3.05∗∗∗ (0.22)
reh_out 3.46∗∗∗ (0.22)
.... ....
g_in10 −1.32∗∗∗ (0.05)
g_in11 −1.26∗∗∗ (0.04)
.... ....
g_out10 −1.31∗∗∗ (0.05)
g_out11 −1.36∗∗∗ (0.05)
.... ....
g_in10:g_out10 3.09∗∗∗ (0.09)
g_in11:g_out10 −0.67∗ (0.27)
AIC 50,341.26
BIC 52,812.30
Log Likelihood -24,804.63
Deviance 39,145.12
Num. obs. 6,320
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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(a) Show the plot of fitted flows against measured flows.

Table 21: Summary of fitted Model 2.2 (left) and plot of measured versus fitted for Model 2.2
(right).
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Coefficients relative to same variables have similar values both in Model 2.1 and 2.2, only the
coefficient relative to re-hospitalization increases significantly moving from Model 2.1 to Model
2.2. We notice that most of the groups and the interactions are significant, so that we can
estimate areas where the flows are mostly outward or inward directed. Also we can look at the
interaction between different groups and find significant connections between them.
BIC, AIC and Log likelihood improve and also the plot of fitted against measured flows improve
significantly moving from Model 2.1 to Model 2.2. The interaction between groups erase the
division within fitted values that we had in Model 2.1. The smaller edges remains randomly
distributed, as in the prior model.

Hospital effects - Model 2.3:

logE(Zij) = a logNi + b logNj + α(|Nj −Ni|) + β(groupequal) + θhospi

E(Zij) = K ·Na
i ·N b

j · eα(|Nj−Ni|)+β(groupequal)+θ(hospi) (22)

Lastly we propose to use the hospitals (categorical variables) as explanatory variables for the
flows. This time we want to assess how hospitals can influence flows. Since we want to mantain
some kind of grouping effect, but we want to reduce as possible the number of explanatory
variables, we use the groupequal flag from model 2.1.

Model 2.3
(Intercept) 5.74∗∗∗ (1.58)
lN_in −3.15∗∗∗ (0.44)
lN_out 1.54∗∗∗ (0.03)
dif_N 0.00∗∗∗ (0.00)
g_equal1 3.15∗∗∗ (0.01)
hosp_in030AHQ 0.49∗∗∗ (0.07)
hosp_in030AIO −0.49∗∗∗ (0.08)
.... ....
AIC 76,656.30
BIC 77,216.67
Log Likelihood -38,245.15
Deviance 66,026.15
Num. obs. 6,320
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 22: Summary of fitted Model 2.3

As before, coefficients for Nout, diffN and groupequal mantain similar values compared to prior
models, while the coefficient realive to Nin changes and becomes negative. Almost all the
hospitals are significant, so that we can, for every hospital, identify if the hospital is prone to
an out flow or an in flow.
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Figure 26: Plot and histograms for Measured versus Fitted for Model 2.3

AIC, BIC and Log Likelihood worsen. We see once again the group effect in the plot of fitted
against measured. Fitted flows are once again divided, despite the effect is softer than Model
2.1 (see Figure (26)).

Remarks

According to the GOF analysis and the results presented above, we select Model 2.1 as the most
appropriate for modelling the hospital network flow. In this model both hospitals dimensions
increase the flow. While the dimension of the hospital that release the patients can be linked to
the number of patients who exit form the hospitals itself, the other dimension can be a measure
of the attractiveness of the structure. Also both re-hospitalization rate of in and out hospitals
increase the flow. While for the hospital dimensions we can understand why re-hospitalization
rate of the hospital that release the patients can be related to the flow, an explanation for the
re-hospitalization rate of the hospital where the patient move is more difficult. Among group
effetcs and group interaction effects coefficients are mostly significant, so we can see which groups
are more prone to outflow or inflow and what groups communicate best.
We notice that this kind of graph can be really usefull for dealing with transfers. During an
“HF event” a patient can be moved from an hospital to another. While in the database we
analyze all the adjacent transfers are coercerd in one event, in the original database all the
single hospitalizations are separate rows. With this approach, applyed on the original data, we
can identify hospitals that are in-stars and out-stars for transfers and also analyze flows that
clinicians can identify as not common (such as transfer from an hospital with cardiology to an
hospital without). At the same time an analysis on such a graph can give usefull insights on the
nature of transfers and help with logistic issues that can arise.
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8.2 GLM with p∗ model
One of the main focus of this part is to fit predictive models for the graph seen as a whole, with
edges (relational ties) as a response. Basically we want to model the relation between a similarity
tie and a specific collection of explanatory variables, such as those in Table 14, considering also
the dependence between the relation and the structure of the entire graph. The explanatory
variables can be of several different types, taking in account the difference between nodes or
their similarity, but also the graph characteristics as a whole (i.e: number of ties, number of
mutual edges, the degree of the actor).
A social relation (i.e. a similarity between two hospitals) is defined on a set of social actors (i.e
hospitals) and measures how these actors are linked to each other. The main statistical focus
in the literature has been on models for univariate and dichotomous relations represented as
directed graphs, so we need to modify our network. As previously stated choose a cut off and
we put to zero all edges bigger than the cut off and to 1 all the others, so that where there is an
edge there is similarity, where there isn’t the two structures are considered different. On such a
graph we procede with the modelling.

The p∗ model

All similarities between hospitals can be represented by a sociomatrix, X = [Xij ]. In this matrix
Xij are the entries and Xij is equal 1 if there is a relation between unit i and unit j, 0 if there
isn’t. From X, we define X+

ij as the sociomatrix where there is always a tie from i to j, X−
ij as

the sociomatrix where there is never a relational tie from i to j and XC
ij as the matrix that has

no information about a tie between i and j.
Our response variable is the presence or absence of a tie that is specified in Xij , while the
explanatory variables are node covariates (such as mean expense, presence of cardiochirurgy,
mean age..) or any graph-theoretic characteristic of the relation (number of ties, dimension of
stars, number of triangles..)
We denote these explanatory variables by z1(x), z2(x), ..., and the model parameters, the k
elements of the vector θ, are coefficients of a linear function of these explanatory variables as in
standard linear models:

θ1z1(x) + θ2z2(x) + ...+ θrzr(x) (23)

We need to model the probability of the observed x, P (X = x); but we models a logarithmic
transformation of it, we then say that:

log[P (X = x)] ∼ θ1z1(x) + θ2z2(x) + ...+ θrzr(x) (24)

In eq (24) the θ parameters are the unknown regression coefficients and must be estimated.
A great problem of this exponential model is to normalize the right side of 24, as the normalizing
costant is of difficult evaluation and can be evaluated only on the simplest scenarios.
An alternative version of (24) is a logit formulation, that was first described by Strauss and
Ikeda [32]. Hence we model:

P (Xij = 1|XC
ij )

P (Xij = 0|XC
ij )

= exp( θ (z(x+
ij)− z(x−

ij) ) ) (25)

The coefficient θ can be interpreted as the log-odds of an individual tie conditional on all others.
We notice that ERGM are designed in direct analogy to the GLMs. The idea is to facilitate the
extention of well-established statistical principles and methods for the construction, fitting and
comparison of models. While this class of models has potential, much of the standard inferential
infrastructure available for GLM, resting on asymptotics approximations has not already been
formally justified. As such, p− values and other results must be used with some care.
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Lastly one distinction in model terms is worth reminding: terms are either dyad independent
or dyad dependent. Dyad independent terms (like nodal homophily or difference between nodes
terms) imply no dependence between dyads beacause the presence or absence of a tie does not
depend on the state of other ties. Dyad dependent terms (like degree terms, or triad terms)
imply dependence between dyads. In standards settings, with i.i.d. distributed realizations, ex-
ponentially family models like (24) are generally fitted using the maximum likelihood method.
In the context of the ERGM, the estimators of the parameters are well defined, but their calcu-
lation is non-trivial in all settings but the simplest ones. Therefore, models with dyad dependent
terms are fit using the function ergm, which implements a version of Markov Chain Monte Carlo
(MCMC) maximum likelihood estimation (see [17] for additional details and references).

The ERGM package

The ERGM package is developed for R and it’s suggested in the statistical study of networks.
It’s aim is to propose tools for the modeling of network graphs and it’s based on the class of
models called exponential-family random graph models (ERGMs) or p∗ models. Within this
framework, one can choose between some already implemented graph statistics as explanatory
variables and obtain maximum-likehood estimates for the related parameters. Moreover one
can also introduce node features as response variables and comparison between node features
at edges’ ends, such as a matching or absolute difference, and obtain the relative estimates.
In the package are also available tests for goodness-of-fit. Model comparison are allowed and
the possibility to simulate additional networks (with the underlying probability distribution
previously evaluated) allows tests on the goodness of the model proposed.

GOF for the MCMC: With the results of the MCMC algorithm, one can look at all the
MCMC characteristics, such as autocorrelation against lags, autocorrelation between explana-
tory variables, accepted sample percentage, etc. Figure 27 represents the plot related to the
mixing of the MCMC and is already imbedded in the package. For all the other parameters,
one can look at the mcmc.diagnostic that is proposed in the package.
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Figure 27: Convergence analysis for a MCMC.

GOF for the graph itself: A maximum likelihood estimator, while providing the best choice
from the class of models we are considering, does not necessarily result in a good model. In
assessing if the model is a good one, we can use the GOF function provided in the package.
The idea is to compare the observed graph with a set of simulated networks (simulated with
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the probability distribution we have obtained) based on certain network statistics. A number
of graphs are then simulated and some network statistics are evaluated for every network, these
simulated network statistics are then compared with the statistics evaluated on the observed
network. The sets of statistics used for the comparison are:

1. The geodesic distance distribution: proportion of pairs of nodes whose shortest connecting
path is of length k. Pairs of nodes that are not connected are classified as k = ∞

2. The edgewise shared partner distribution: number of edges in y between two nodes that
share exactly i neighbors in common, i.e., the number of edges that serve as the common
base for exactly i distinct triangles.

3. The degree distribution: number of individuals with exactly k relationships.

As these characteristics are not used as parameters in the fitting of the model, an index of
goodnes of fit can be the similarity between observed and simulated on these network statistics.
If the observed network is too different from the simulated one, the model is not a good repre-
sentation of our network and the class of models may be changed, depending on the aim of the
modelling.
The plots are such as Figure 28, where the observed is the black line and the boxplots are
obtained from the simulated graph. A model that is a good representation of the phenomena
has at least all the black lines inside the grey ones.

Generalized Linear Models

In the fitting of the model some difficulty may arise. The fitting of a model on a nearly complete
or nearly empty network may fail [3, 16]. The estimation process can be affected also when the
proposed model is a very poor representation of the observed network. In the first scenario the
model usually fails. If this is due to the poor representation of the graph we can try to enrich
the algorithm with more variables that are more significant for the model, such as, sometimes,
the same variables we used to build the graph itself. Therefore we won’t study all the hospital
network we have previously proposed.
The general model we use is:

log(X = x|Y = y) ∼ θ1S1(x) + θ2(x)AKTλ(x) + βTg(x, y) (26)

Where:

• X = [Xij ] is the random adjacency matrix fot the graph G.

• x is the particular realization of X.

• S1(x) =
∑

ij xij is the number of edges.

• Y are the random attribute statistics.

• y is the particular realization of Y .

• AKTλ(x) = 3T1 +
∑Nv−2

k=2 (−1)k+1 Tk(x)
λk−1 where

– Tk is the number of k-triangles.

• g(x, y) =
∑

1≤i<j≤Nv
xijh(yi,yj) is a function of the observed edge distribution and of

the features distribution. h can be:

– The absolute difference for a feature between the two hospitals at the edge’s ends.
– The match for a feature between the two hospitals at the edge’s ends.
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Model 1

Due to the nearly completeness (see [16] for a deeper discussion on relationship between com-
pletenss and degeneracy) the graph represented in Figure 19 presents fitting problems. In order
to fit a feasible model mantanining as much as possible of the observed features, we choose to
trucate edges which are greater than 1.01. We therefore analyze a graph that is a blending
between the graph with the cut off chosen at 1 and the graph with cut off chosen at 1.4, with
different groups connected by some edges.
We model the graph firstly with all variables but the dichotomous flags we used in the evaluation
of distance, because we know these variables are most of the explanation for the presence of
absence of the edges.
The model we choose is

h(xi,xj) = (|Shocki − Shockj |, |SSRi − SSRj |, |weighti − weightj |, |ptcai − ptcaj |,

|icdi − icdj |, |cabgi − cabgj |, |rehirehj |, |%ITi −%ITj |, worthi − worthj |, |Ni −Nj |,

LOSi = LOSj)

The mixing of the Markov chains is good, while the GOF of the model is somewhat lacking. In
Figure 28, 30 and 29 we present the GOF results.
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Figure 28: Comparison between simulated and observed network minimum geodesic distance.
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Figure 30: Comparison between simulated and observed network edge-wise shared partners.

We see that the only graph statistic that simulated networks and observed network have similar
is the node degree distribution. The two othe graph statistics are really different. The lacking in
the GOF is probably due to the fact that our graph is strongly dependent on the flag variables,
while dependence on the structure is really low. If we fit a model with all vertices features
as explanatory variables the GOF improve significantly and the simulated networks are very
similar to the observed one.
In Table 23 are reported coefficents for the explanation variables we choose in the modelling.
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Model with discrete distance

Estimate Std. Error p-value
edges −12.50 1.92 < 1e− 04∗∗∗

absdiff.Shock 2.87 3.07 0.35
absdiff.SSR −0.21 0.14 0.12
absdiff.weight −0.53 0.19 0.00561∗∗

absdiff.reh 0.97 0.93 0.29
absdiff.icd 18.31 2.71 < 1e− 04∗∗∗

absdiff.cabg 52.30 9.90 < 1e− 04∗∗∗

absdiff.ptca −7.40 1.75 < 1e− 04∗∗∗

absdiff.p it −2.20 0.41 < 1e− 04∗∗∗

absdiff.worth −0.001 9.69e− 05 < 1e− 04∗∗∗

nodematch.los 0.28 0.092 0.00252∗∗

absdiff.Np −2.79e− 04 2.26e− 05 < 1e− 04∗∗∗

AKT 4.65 0.66 < 1e− 04∗∗∗

AIC 4,267
BIC 4,348

Table 23: Coefficients for the model evaluated on the graph obtained with discrete distance
keeping only edges smaller than 1.01. The model is fitted with all the variables available for
vertices, except flags for Cardiochirurgy, Emodynamic and IT care.

Coefficients relative to edges have a negative value, so that the probability that a tie is produced
is very low unless some vertex features are assumed.That is coherent with the nature of the
graph, that is nodes exist only if related features affirm so. Indeed, the similarity for ptca
and IT percentage replaces Emodinamics and Intensive therapy flags, trying to explain the
similarity between flags and increasing the probability of an edge where the difference is small.
More difficult to understand are the ICD and CABG percentage, that with high values that
boost the probability of an edge.
The AKT factor has a positive coefficient and aknowledges the presence of strong transitivity
effects. We fit the model also with the GWD, but the related coefficinet is not significant,
probably due to the strong dependence on the graph to node covariates.
SSR, Shock events percentage and re-hospitalization rate are never significant in explaining the
presence or absence of an edge and that is also coherent with the tests we made in Section 7.3.
Performance indices such as Standardized Mortality and re hospitalization rate don’t seem to
be related to the similarity we choose.

Model 2

Due to the polarization issues in the distance as defined in (13), we analyzed also the graph
built with distance as specified in equation (15). We show only results for the complete model,
since without all the variables the model doesn’t converge. The continue distance has a weight
distribution as shown in Figure 23 and we need to choose a reasonable cut off. Since we must
choose a value for which all edges smaller than the cut off state a similarity relation and the
weight distribution is simmetrical around the mean, we choose the mean and the first quartile
and we show results for both choices.
The model is as equation (26) with

h(xi,xj) = (|Shocki − Shockj |, |SSRi − SSRj |, |weighti − weightj |,
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, |ptcai − ptcaj |, |%cardi −%cardj |, |icdi − icdj |, |cabgi − cabgj |,

|rehirehj |, |%ITi −%ITj |, worthi − worthj |, |Ni −Nj |, LOSi = LOSj)

As before, the MCMC converges and both the mixing of the chain and the autocorrelation are
acceptable. As for the goodness of fit analysis of the resulting graph was acceptable too.
Coefficients relative to the model with the cut off chosen as the mean are in Table 24, the ones
relative to the model with the cut off chosen as the 1st quartile are in Table 25.

Model with all variables, continuous distance and cut off = mean

Estimate Std. Error p-value
edges 1.093e+ 01 1.087e+ 00 < 1e− 04∗∗∗

absdiff.Shock −7.388e+ 00 5.498e+ 00 0.1791
absdiff.SSR −1.263e+ 00 2.733e− 01 < 1e− 04∗∗∗

absdiff.worth −1.159e− 04 1.532e− 04 0.4491
absdiff.weight −4.982e− 01 2.973e− 01 0.0939.
absdiff.ptca −7.926e+ 01 4.421e+ 00 < 1e− 04∗∗∗

absdiff.icd −4.860e+ 00 4.377e+ 00 0.2669
absdiff.IT −3.139e+ 01 1.418e+ 00 < 1e− 04∗∗∗

absdiff.cabg −1.346e+ 02 3.154e+ 01 < 1e− 04∗∗∗

absdiff.reh 2.503e− 01 2.607e+ 00 0.9235
absdiff.card −1.091e+ 02 5.832e+ 00 < 1e− 04∗∗∗

nodematch.los 1.104e+ 00 1.692e− 01 < 1e− 04∗∗∗

absdiff.Np −1.034e− 03 4.829e− 05 < 1e− 04∗∗∗

AKT −2.617e− 01 3.465e− 01 0.4501

AIC 1, 666
BIC 1, 750

Table 24: Coefficients for the model evaluated on the graph obtained with continuous distance
keeping only edges smaller than the mean of weight distribution.
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Model with all variables, continuous distance and cut off = 1st qt.

Estimate Std. Error p-value
edges 3.845e+ 00 7.493e− 01 < 1e− 04∗∗∗

absdiff.Shock 2.421e+ 00 5.930e+ 00 0.683055
absdiff.SSR −1.219e+ 00 3.264e− 01 0.000192∗∗∗

absdiff.worth −6.570e− 04 2.111e− 04 0.001874∗∗

absdiff.weight −1.443e+ 00 4.011e− 01 0.000325∗∗∗

absdiff.ptca −7.848e+ 01 6.109e+ 00 < 1e− 04∗∗∗

absdiff.icd 1.080e+ 01 5.229e+ 00 0.039019∗

absdiff.IT −3.167e+ 01 1.662e+ 00 < 1e− 04∗∗∗

absdiff.cabg −1.589e+ 02 5.376e+ 01 0.003135∗∗

absdiff.reh −2.034e+ 00 3.335e+ 00 0.541938
absdiff.card −1.070e+ 02 7.130e+ 00 < 1e− 04∗∗∗

nodematch.los 1.308e+ 00 1.931e− 01 < 1e− 04∗∗∗

absdiff.Np −9.722e− 04 6.345e− 05 < 1e− 04∗∗∗

AKT 1.074e+ 00 2.052e− 01 < 1e− 04∗∗∗

AIC 1, 155
BIC 1, 240

Table 25: Coefficients for the model evaluated on the graph obtained with continuous distance
keeping only edges smaller than the first quartile of weight distribution.

Results are similar as for model 8.2 on page 63 as the rehospitalization and the shock percentage
aren’t significant in assessing the presence of an edge. The SSR instead seem to have some kind
of relation with the presence or absence of an edge. As the coefficient is negative two hospital
with different SSR are not so likely to have an edge between the two of them as two that have
similar SSR. That is an interesting concept: while the similarity in the graph with the discrete
distance depends mainly with the presence or absence of a structure, the continuous distance
assesses mainly similarity of treatment. So if two hospital are similar, so they have more or less
same size, but also similar policies, they are less likely to have different mortality. We notice
that in the second model the AKT coefficient is not significant, once again that is probably due
to the relative independence between dyads.
Both models, if different, are useful in the analysis. The first model highlight yet again the
apparent independence beetwen SSR and Re-hospitalization rate and the similarity introduced
with distance (13) and this suggests to look at models like the second for further analysis. The
second model indeed look at the similarity between hospitals differently. With this model we
find that a similarity in percentage of procedures is linked with alike result in SSR. Therefore
we could maybe try to understand why and how these procedures change performances.
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9 Concluding remarks and future work
In this work we have examined the hospitals in Lombardia firstly as units, than as a network.
As for the analysis with funnel plots we can say that the funnel plots are very useful to assess
hospital quality. Evaluation of results for hospitals is of great importance and funnel plots,
while avoiding a spurios ranking, point out structures that behave as outliers, so that they can
be inspected further. While funnel plots seem to be the right approach, both the performance
indices we choose presented overdispersion. Therefore, if institutions outside the funnel are not
all outliers, a correction for overdispersion is needed. In evaluating the hospitals a decision
must be made: what overdispersion correction to choose, so to be more lenient with smaller
structures or with bigger ones. Indeed the choice of the overdispersion correction must be
discussed throughoutly because, as we have seen, the hospitals that are identifed as outliers
changes completely. Another remarks that we have made is that overdispersion lessens with the
number of hospitalization and that hospitals that are outliers at third admission, are outliers
also for the first. While this is interesting, we don’t think that this can be of any help in
classifying hospitals, since in a plausible period of time, like one year, only very bis hospitals
can be evaluted for third hospitalization.
Our analysis of hospital performances have dealt with mortality and re-hospitalization, but
evaluating hospital performance remains a difficult and complex task. We thereby suggest to
evaluate at least two other performance indices other than pure in-hospital mortality and re-
hospitalization [5]. Mortality within 30 days after the discharge is clearly an outcome of interest,
underperforming beeing a high mortality rate within a certain amount of days from the dimis-
sion. The re-hospitalization within a certain period is also of interest: HF is a chronic disease,
but the re-admission in a short time after the discharge is an underperformance. Hospitals
can therefore be tested on: in-hospital mortality, mortality at 30 days, re-hospitalization, re-
hospitalization at 30 days. Also, results at patients level were the main concern in this study,
however the mean espense or the LOS of patients can be similarly analyzed. If that is the output
of interest, the mean espense at patient level can be easily normalized and a funnel can be used
to identify hospitals that use too much resources.
Where the funnel plots are useful with a dataset that cover a long period of time, the Cumulative
Sum charts are appropriate to study the progress of individual institutions over time. As the
administrative dataset are constantly updated, the Cumulative Sum charts can help hospitals in
monitoring their performance during the time in which data are collected for a new evaluation,
as an example with funnel plots.
When we introduced the network approach, not only new kinds of outliers were introduced, such
as in-star or out-star outliers, but also a new set of interesting features and a new way to look at
hospitals themselves. As patients flow connects hospitals, hospitals that have too many patients
that leave the hospital or too many patients that enter the hospital can be in need of a further
exam. We notice that in-star or out-star outliers are not mutual with previously introduced
outliers, but some insights on the local distribution of patients affected by hearth failure and
their movements can be of use. With more informations about hospitals ID, we could, as an
example, analyze if private and public hospitals are connected and gain some useful insights
about reasons under these transfers.
The flows we have studied are related mostly to cronic patients and, while this kind of approach
give interesting results, they are difficult to understand. We propose to use a similar analysis
in the study of transferts, patients that, during the HF event are transferred from an hospital
to another. Precious insights can be gained: on one hand understanding what structures will
have more in-transfers can prepare in the dealing of transfers, on the other hand figuring out
why these transfers happen can help understanding the hospital performance. As an example a
high in-flow of high-risk patients can change a hospital performance for the worse.
The poisson modelling of flows, while assuming independence between flows let us verify some
of the reasons behind patients flow. Among all the results we highlight the fact that hospital
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performance related to mortality was not one of the main causes.
The idea of a distance between hospitals remains an interesting idea, especially since the analysis
has let us know the presence/absence of some kind of structures, such as Intensive Therapy, seem
to have little effects on the results on mortality. Such knowledge strongly suggests to evaluate
an hospital with performances and not only presence or absence of structures. Therefore, we
suggest to analyze all the data related to procedural aspects, so to understand the best course
of action in the treatment of Heart Failure. Indeed, in the graph flow, we have seen that there
seem to bee some areas were the results are better and with the introduction of a continuous
distance, we saw that a similarity in percentage of procedures is linked with alike result in SSR,
so that some procedures seem somewhat related to results. We could maybe try to understand
why some clusters seem on average better than others. Also, if these areas are connected with
geographical districts, maybe some differences in protocols can be further analyzed.
As for the use of the “ergm” package, we see that it can help to take in the dependence between
edges and also the nature of the graph. In this work we have seen the possibilies and we have
explored the package and it’s uses. We suggest the ergm package to be used on the flow graph,
specifically reduced as a binary directed graph. While the choosing of the cut off is as usual a
sensible matter we think the flow graph could take more advantage in the use of the structure
of the graph as a regressor, more than the model with the distance we have implemented.
Transitivity, presence of triangles and other graph characteristics can be assessed and these
effects in a flow graph, if present, have a precise meaning.
The analysis of hospital networks discussed in this work is a first step both for the study of
patients flows and for the analysis of procedural similarities. A better understanding of the
flow network, particularly with ergm models, can help hospitals in handling transfers. This
additional information about flows and procedural similarities can also help improving hospitals
evaluation.
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10 Appendix: R Codes
Funnel Plot of SSR without correction and Winsorization
This code refers to the evaluation of the funnel plot of SSR with limits evaluated without
overdispersion correction as in Section 2.1. The figure obtained is as in Figure 4.

val <- seq(0, 2000, 0.5)
p1 = 0.99
p2 = 0.01
p3 = 0.975
p4 = 0.025
theta = 1

plot(ssr_den,ylim=c(0,6), ssr, type="p",
xlab="Expected␣cases", ylab="Observed/Expected",
main="In-hospital␣deaths␣after␣first␣hospitalization", pch=16)

abline(h=theta)
points(val, theta+c(qnorm(p1)*sqrt(1/val)), type='l', col='red')
points(val, theta+c(qnorm(p2)*sqrt(1/val)), type='l', col='red')
points(val, theta+c(qnorm(p3)*sqrt(1/val)), type='l', col='blue')
points(val, theta+c(qnorm(p4)*sqrt(1/val)), type='l', col='blue')

The code refers to the Winsorization correction explained in Section 2.2. the evaluated φ and τ
are used in the funnel limits evaluation as in (5) and (9) that are shown in Figures 5 and 4.

## Winsorization for SSR ##
q1 <- 0.05
q2 <- 0.1
q3 <- 0.15
theta <- 1

Z<-(SSR-theta)*sqrt(ssr_den)
Zq1=quantile(Z, q1)
Zq2=quantile(Z, 1-q1)

for(i in 1:length(Z))
{
if(Z[i]<=Zq1)

Z[i]<-Zq1
if(Z[i]>=Zq2)

Z[i]<-Zq2
}

phi1 <- sum(Z^2)/n_osp
w <- ssr_den
tau21 <- (n_osp*phi1-(n_osp-1))/(sum(w)-(sum(w^2)/sum(w)))

Cumulative Failure Chart
This code refers to the evaluation of the Cumulative Failure chart introduced in Section 3. The
figure obtained is as in Figure 3.

# boundary evaluation
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p0 = 0.1 % acceptable mortality rate
p1 = 0.15 % unacceptable mortality rate
alpha = 0.05
beta = 0.2
a = log( (1-beta)/alpha )
b = log( (1-alpha)/beta )
P = log(p1/p0)
Q = log( (1-p0)/(1-p1) )
s = Q / (P+Q)
acc <- s*val-b/(P+Q)
n_acc <- s*val+a/(P+Q)

# Cumulative Failure chart plot
c_1 <- cumsum(data$dec_intra[which(data$strutt_ric_ricod==HOSP)])
plot(c_1, ylim=c(0,1500), type="l", xlab="Case␣number",

ylab="Cumulative␣failure", main=paste("Hospital␣HOSP")
points(val, acc, type='l', col='green')
points(val, n_acc, type='l', col='red')

Graph visualization
In the code below we decorate the graph.
Before plotting the graph with kamada-Kaway layout we:

• Create the graph from the two data frame containing edges and vertices lists.

• Set vertices form and sizes, so to show number of patients and mean expense in the plot.

• Set edges and arrow sizes.

• Select subgroups colored with SSR (or rehospitalization rate) and color the edges as the
head hospital.

The figure we obtain is the one reported in Figure 11.

# DEFINING the GRAPH
library(sand)
hosp.graph <- graph.data.frame(EDGES,directed=T,vertices=VERTICES)

# shapes and sizes of vertices
igraph.options(vertex.shape = "rectangle")
V(hosp.graph)$size <- 0.001*V(hosp.graph)$Np
V(hosp.graph)$size2 <- 0.001*V(hosp.graph)$worth

# shapes and sizes of edges
igraph.options(vertex.label=NA, edge.arrow.size=0.0001*E(hosp.graph)$

weight)
E(hosp.graph)$width <- 0.02*E(hosp.graph)$weight

# Subgroups selection and coloring of the edge as the "head" hospital
FR <- V(hosp.graph)[color == "red"]
FY <- V(hosp.graph)[color == "orange"]
FG <- V(hosp.graph)[color == "green"]
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E(hosp.graph)[ FY %->% FR ]$color <- "red"
E(hosp.graph)[ FR %->% FR ]$color <- "red"
E(hosp.graph)[ FG %->% FR ]$color <- "red"
E(hosp.graph)[ FY %->% FG ]$color <- "green"
E(hosp.graph)[ FR %->% FG ]$color <- "green"
E(hosp.graph)[ FG %->% FG ]$color <- "green"
E(hosp.graph)[ FY %->% FY ]$color <- "orange"
E(hosp.graph)[ FR %->% FY ]$color <- "orange"
E(hosp.graph)[ FG %->% FY ]$color <- "orange"

plot(hosp.graph, layout=layout.kamada.kawai,
main="Hospitals␣with␣Kamada-Kaway␣layout")

legend("topright", c("High␣SSR","Normal␣SSR","Low␣SSR"),
fill=c("Red", "orange", "green"),cex=0.7, pt.cex = 0.7)

legend("topleft", c("Width␣~␣N","Height␣~␣average␣money␣spent"),
cex=0.7, pt.cex = 0.7)

Vertex and edge features
In this code we show how to obtain the plot represented in Figure13.

#### STRENGTH PLOT

stren_in <- graph.strength(hosp.graph, mode="in")
plot(V(hosp.graph)$Np,stren_in, main="In␣strength",

xlab= "Vertex", ylab="Strenght", col=V(hosp.graph)$color, pch=16)

Here we show how to select and show a subgraph.

# induced subgraphs
grafo.r <- induced.subgraph(hosp.graph,FR)
plot(grafo.r, layout=layout.kamada.kawai,

vertex.label=NA, main="Hospitals␣with␣Kamada-Kaway␣layout")

Here we show some among graph features of interest.

# SOME GRAPH FEATURES

table(sapply(maximal.cliques(hosp.graph), length)) #number of maximal
cliques

average.path.length(hosp.graph)
diameter(hosp.graph)
transitivity(hosp.graph)

edge.connectivity(hosp.graph)
is.connected(hosp.graph, mode=c("strong"))
reciprocity(hosp.graph)

Here we show how to detect community in a weighted and directed graph. Also we propose both
the plot with coloring by community and by SSR labelling. As specified in 7.2 we set costant
edge thickness.

# COMMUNITY DETECTION
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kc <- infomap.community(hosp.graph, v.weight=NULL)

igraph.options(vertex.label=NA,edge.arrow.size=0.2)
E(hosp.graph)$width <- 0.01

plot(kc, hosp.graph, col=V(hosp.graph)$color)
plot(kc,hosp.graph, main="Community␣of␣hospitals")
legend("topleft", c("Width␣~␣N","Height␣~␣average␣money␣spent"),

cex=0.7, pt.cex = 0.7)

ERGM model
Here we show the code to implement an ergm model with the ergm package.

library(ergm) # Will load package 'network' as well.

hosp.graph<-graph.data.frame(EDGES,directed="F",vertices=VERTICES)

A <- get.adjacency(hosp.graph)
v.attrs <- get.data.frame(hosp.graph, what="vertices")
hosp.s <- network::as.network(as.matrix(A), directed=FALSE)
# all features are assigned as:
network::set.vertex.attribute(hosp.s, "SSR", v.attrs$SSR)
#...

hosp.ergm <- formula(hosp.s ~ edge
+ absdiff("Shock")
+ absdiff("SSR")
+ absdiff("weight")
+ absdiff("ptca")
+ absdiff("icd")
+ absdiff("cabg")
+ absdiff("reh")
+ absdiff("p_it")
+ absdiff("mean_worth")
+ nodematch("los")

+ absdiff("Np")
+ gwesp(1,fixed= T)

)

hosp.ergm.fit<-ergm(hosp.ergm,verbose=T,
control=control.ergm(MCMC.interval=500)
)

summary.ergm(hosp.ergm.fit)
mcmc.diagnostics(hosp.ergm.fit)
gof.hosp.ergm <- gof(hosp.ergm.fit)
plot(gof.hosp.ergm)
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