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Abstract

In this work, carried out in collaboration with the computational geoscience group
of MOX, starting from previous analysis of the flow through fractured porous rock
media, we extend the model taking into account the compaction phenomenon that
characterizes the sedimentary layers subject to a progressive burial.
The compaction process, determining changes of the porosity of the rock medium and,
in particular, of the fracture aperture, impacts the fluid dynamic behaviour within the
sediment, whose pore space is usually filled by water or fluid resulting from the chem-
ical transformation of the organic component of the rock.
Through our analysis we investigate how the presence of an highly permeable fracture
and its different physical properties affect the overall flow behaviour, highlighting,
moreover, the influence of the choice of the fracture boundary conditions.
The physical problem is characterized by a significant separation of spacial scales, since
the aperture of the fracture is considerably smaller compared to size of the domain.
Thus, to represent this strong localized heterogeneity we employ a reduced model for
the fracture fluid dynamics, avoiding an extremely high computational effort to resolve
the scale of the fracture with the grid.
Furthermore to treat the fracture as an immersed interface, thanks to the reduced
model, we exploit the Extended Finite Elements (XFEM), that, with a proper enrich-
ment of the element cut by the interface, allow the use of more flexible non-conforming
meshes.
We built a suitable solver based on the C++ finite element library GetFEM++ to carry
out the simulations that are performed in a two dimensional section of a sedimentary
layer. We consider the differential problems formulated in an auxiliary fixed domain,
derived from the completely compacted configuration of the physical one that, instead,
deforms as time elapses. In this way the mesh is built just once at the beginning along
with the basis function of the finite element method, reducing the computational costs.





Sommario

Lo studio dei flussi sotterranei è di grande interesse per le le sue applicazioni nelle scienze
ambientali. Tuttavia simulazioni realistiche di flussi di Darcy in applicazioni geofisiche
sono complicate dalla eterogeneità del mezzo poroso. Il dominio di interesse è, infatti,
composto da strati di diversi sedimenti che si sono accumulati durante milioni d’anni e
che hanno subito un complesso processo di compattazione e deformazione, determinando
una forte variabilità della permeabilità.
Inoltre il complesso stato di sforzo che caratterizza questi sedimenti durante il processo di
interramento è spesso causa di fratture nella roccia, e queste regioni fratturate costituis-
cono forti eterogeneità localizzate, di grande rilevanza per il comportamento fluidodinam-
ico del mezzo poroso. L’effetto delle fratture sul comportamento del fluido è di grande
importanza in diversi campi, come lo studio di falde acquifere fratturate, campi geotermici,
giacimenti petroliferi e di gas naturale. Le fratture possono essere suddivise in due grandi
famiglie: microfratture, e macrofratture, che si estendono per 10 – 100m con spessori di
qualche centimetro, o faglie, che si estendono per 100 – 1000m raggiungendo spessori di
alcuni metri.
La presenza di microfratture può essere tenuta in conto attraverso tecniche di omogeniz-
zazione, comportando un cambiamento nella permeabilità del sedimento, ma le macrofrat-
ture influenzano il flusso, agendo come barriere o vie preferenziali per il fluido, in un modo
complesso che non può essere rappresentato correttamente nelle simulazioni numeriche
con la semplice omogeneizzazione. Un comportamento simile è associato all’interfaccia
tra due differenti strati sedimentari, per esempio una sabbia di grana grossa e uno strato
impermeabile di argilla: la superficie di separazione, chiamata orizzonte, può diventare
una via preferenziale per il flusso di fluidi, come l’olio ed il gas, che tendono a galleggiare
rispetto all’acqua.
La scala spaziale di queste singolarità solitamente necessita di una mesh estremamente fine,
comportando costi computazionali proibitivi. Lo spessore tipico delle fratture (dell’ordine
di qualche centimetro) e delle faglie (dell’ordine di qualche metro) è quindi molto piccolo
rispetto alla lunghezza caratteristica del dominio di interesse, che per queste applicazioni
si aggira sulle centinaia di metri per simulazioni relative ai giacimenti, e sul centinaio di
chilometri nel caso di simulazioni relative a bacini.
Per affrontare questo problema, una possibilità consiste nell’utilizzare un modello ri-
dotto per rappresentare il flusso all’interno della frattura, rappresentata quindi come
un’interfaccia (n - 1) dimensionale immersa nel dominio poroso, con opportune condizioni
di accoppiamento tra la frattura e il mezzo. I modelli per la rappresentazione di frat-
ture sono stati approssimati con una grande varietà di metodi, che includono differenze
finite, elementi finiti e volumi finiti. In tutti questi casi la frattura e la griglia com-
putazionale del mezzo devono essere coerenti tra di loro, ad esempio la frattura deve
costituire un’interfaccia conforme tra due blocchi di mesh. In casi realistici, con fratture
numerose e complesse, la conformità della mesh può risultare un vincolo molto rigido.
D’Angelo e Scotti in [7] hanno esteso un già noto modello ridotto per il flusso di Darcy
in un mezzo fratturato, al caso in cui la mesh della matrice porosa e la mesh della frat-
tura sono indipendenti e non combaciano, arricchendo i classici spazi di elementi finiti di



Raviart-Thomas con delle funzioni di base discontinue sugli elementi tagliati dalla frattura.
In questo modo si ottengono gli elementi finiti noti come XFEM (Elementi finiti estesi). In
più, Fumagalli e Scotti in [11] hanno valutato l’efficacia e accuratezza del modello ridotto
per problemi realistici nel caso multifase, valutando l’errore associato alla riduzione del
modello, comparando i risultati con quelli generati dal modello completo.
L’obiettivo di questo progetto è l’estensione dello studio sui mezzi porosi fratturati, con-
siderando il caso di un mezzo fratturato soggetto a compattazione. L’evoluzione del bilan-
cio dello sforzo verticale ha forti implicazioni sulla porosità e, conseguentemente, sulla per-
meabilità. Per di più il processo di compattazione influenza direttamente l’evoluzione dello
spessore della frattura, modificando le sue proprietà e il comportamento fluidodinamico. In
questo studio viene analizzato l’impatto di una frattura, caratterizzata da un’elevata per-
meabilità, sulla fluidodinamica all’interno dello strato sedimentario e si esamina l’ influenza
delle sue diverse proprietà fisiche. Inoltre, viene messo in evidenza come l’imposizione di
diverse condizioni al contorno alle estremità della frattura incida sul risultato delle simu-
lazioni numeriche.
Per effettuare le simulazioni, relative ad una sezione bidimensionale dello strato sedimen-
tario, è stato sviluppato un solutore numerico basato sulla libreria C++ per gli elementi
finiti GetFEM++.
Inoltre, uno sviluppo naturale di questo progetto consisterebbe nel tenere conto delle
reazioni chimiche che comportano una modifica della porosità. Questi fenomeni, studiati
per esempio in [4], includono la precipitazione o dissoluzione minerale e la generazione di
petrolio a partire dalla componente organica presente nella roccia, come il kerogen. In una
complessa interazione di compattazione meccanica e fluidodinamica, questi processi pos-
sono portare ad un’ulteriore riduzione della porosità, come nel caso di deposito minerale,
o ad un suo aumento locale quando parte della matrice solida viene convertita in fluido,
fenomeno studiato da Giovanardi in [12], dove è stata esaminata la generazione di idro-
carburi nella roccia madre, ovvero uno strato di sedimenti ricco di materia organica. In
questo caso l’idrocarburo generato viene espulso dalla roccia a causa della compattazione
del sedimento dovuta al suo progressivo interramento.
L’accoppiamento di questi processi con un’accurata descrizione del flusso all’interno delle
fratture è rilevante per diverse applicazioni: da una parte, permetterebbe di considerare la
cementazione di fratture a causa della precipitazione minerale, dall’altra, dal momento che
le sorgenti di kerogen si presentano spesso come sottili strisce, il trattamento utilizzato per
le fratture precedentemente descritto risulterebbe utile per la rappresentazione di questo
tipo di distribuzioni.
Per queste ragioni, anche se l’aggiunta di reazioni chimiche al modello esula dallo scopo
di questo lavoro, durante l’analisi è stata utilizzata, dove possibile, una notazione e for-
mulazione generale che possa tenere conto della presenza di roccia reattiva, per facilitare
sviluppi successivi del progetto in questa direzione.
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1 Introduction to the problem

The study of underground flows is of great interest for its application to environmental
studies. However, realistic simulations of Darcy flow in geophysical applications are quite
challenging because of the heterogeneity of the medium. The domain of interest is indeed
composed by layers of different sediments that have accumulated over millions of years and
which have experienced a complex history of compaction and stress induced deformations,
resulting in a strong variability of the permeability.

Moreover the complex stress state experienced during burial history often causes frac-
turing in the rocks, and fractured regions can be regarded as strongly localized hetero-
geneities that are very relevant for the flow. The effect of fractures on the flow is important
in many different applications such as the study of fractured aquifers, geothermal fields,
oil and gas reservoirs and unconventional hydrocarbon sources. Fractures may be broadly
divided into two main classes: microfractures and macrofractures, that extends for 10 -
100m with widths of some centimeters, or faults, that extend for 100 − 1000m, reaching
widths of some meters.

The presence of microfractures may be accounted for by homogenization techniques,
leading to a change in the effective permeability, but macrofractures influence the flow,
acting as barriers or preferential pathways, in a complex way that cannot be reproduced
in numerical simulations by simple homogenization. A similar behaviour is associated
to the interface between two different sedimentary layers, say a coarse sand layer and
an impermeable clay layer: the surface of discontinuity, called horizon, can become a
preferential path for the flow of fluids, like oil and gas, that are subject to buoyancy
effects in presence of water.
The spatial scale of these features is usually such that a very fine mesh is needed, leading
to an extremely high computational cost. The typical thickness of fractures (of the order
of centimetres) and faults (of the orders of meters) is indeed very small compared to the
characteristic length of the domain of interest that ranges from hundreds of meters for
reservoir scale simulations to hundreds of kilometres at basin scale.

One possibility to address this problem is to use a reduced model to account for the
flow in fractures, represented as (n − 1) dimensional interfaces immersed in the porous
domain, with proper coupling conditions between fracture and medium. Discrete fracture
models have been approximated using a variety of numerical methods including finite
differences, finite elements and finite volumes. In all the cases above the fracture and
the computational grid of the medium have to match, i.e. the fracture is a conforming
interface between two mesh blocks.

In realistic cases with numerous and complex fractures, mesh conformity can be a
rigid constraint. D’Angelo and Scotti in [7] extended an already known reduced model
of Darcy’s flow in fractured media to the case where the porous matrix mesh and the
fracture mesh are independent and non-matching, enriching the classical Raviart-Thomas
finite element basis on the elements cut by the fracture with discontinuous functions.
The resulting finite elements are known as XFEM (Extended Finite Elements Method).
Moreover Fumagalli and Scotti in [11] assessed the effectiveness and accuracy of the re-
duced model for realistic problems in the multiphase case, evaluating the error associated
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with the model reduction, comparing the results with those provided by the fully resolved
model.
The goal of this project is to extend the study of fractured porous media, considering
the case of a fractured medium subject to compaction. The evolution of the balance of
the vertical stress has strong implications on porosity and, consequently, on permeability.
Moreover compaction impacts directly the thickness of the fracture, changing its proper-
ties and fluid dynamic behaviour.
Throughout our study we analyse the impact of an highly permeable fracture in the fluid
dynamics within the sedimentary layer and investigate the influence of its different physi-
cal properties. Moreover, we highlight how the imposition of different boundary conditions
at the tips of the fracture affects the outcome of the numerical simulations.
In order to carry out the numerical simulations, that are performed in a two dimensional
section of the sedimentary layer, we built a suitable solver based on the C++ finite element
library GetFEM++. Furthermore, a natural development of this work would be taking
into account chemical reactions that can modify porosity. Those phenomena, studied for
instance in [4], include mineral precipitation or dissolution and, for example, oil generation
from organic rock component, such as kerogen. In a complex interplay with mechanical
compaction and fluid flow, these processes can either further reduce the porosity, as in the
case of mineral deposition, or locally increase it when part of the solid matrix is converted
into fluid, as analyzed by Giovanardi in [12], where the generation of hydrocarbons in
the source rock, i.e. a layer of sediments rich in organic matter, was studied. Here, the
compaction of the layer due to the progressive burial causes the expulsion of the generated
hydrocarbons from the rock.
The coupling of such processes with an accurate description of the flow in fractures is
relevant for different applications: on one hand, it would allow to take into account the
cementation of fractures due to mineral precipitations, on the other hand kerogen sources
have often the shape of thin layers and the treatment for the fracture, previously described,
could be useful to represent this type of spatial distribution. For these reasons, even if
the addition of the chemical reactions to the model is out of the scope of this work, in
our analysis we will employ, where possible, a general notation and formulation that could
account for the presence of reactive rock, to facilitate further developments toward this
direction.
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2 The model

We consider a two dimensional vertical section of a sedimentary layer and, at this first
stage of the analysis, we study a simplified model, neglecting chemical reactions and re-
stricting ourselves to the single phase case, i.e. we consider a pore space fully saturated
with water. The region where we set the problem represents a portion of a single sedi-
mentary layer and the space setting of the problem is crucial for the choice of suitable
boundary conditions.

2.1 The physical problem

Sediments and sedimentary rocks are porous media, bodies composed of a solid part,
called solid matrix and a void space. The pores are usually connected and a fluid may flow
through the void space. The way in which pores are connected and their size determine
how permeable a porous medium is for fluid flow, and the volume of the pore space controls
its capacity to store fluid.
Moreover, the presence of fractures determines local changes in the permeability of the
sedimentary rock, increasing or decreasing it depending on their nature. Therefore, it
potentially affects the fluid dynamic behaviour of the porous medium.
The pores are a consequence of the variety of sizes and shapes of the grains the rocks
consist of, but it is also the result of a complex interplay of mechanical and possibly
chemical processes. We take into account the compaction of the pore space that results
from the large overburden to which the rock medium is subject. This process affects the
fluid flow by directly changing the permeability of the porous medium and forcing the
pore fluid out whenever the pore space is compressed.
The assumptions that are usually made to identify a rock matrix as a porous medium are
the following

• the void space of the solid matrix is interconnected;

• the dimensions of the pore space are large compared to the mean free path of fluid
molecules. Under this assumption we are allowed to model the fluid in the void space
as a continuum;

• the dimensions of the pores are small enough to consider the fluid flow as controlled
by adhesive forces at fluid-solid interfaces and cohesive forces at fluid-fluid interfaces.

Under these hypotheses, considering a domain Ω ∈ IRd we define the functions:

χ(x, t) :=

{
1 if x ∈ void space

0 if x ∈ solid matrix
x ∈ Ω

and

φ(x, t, r) :=
1

|Br(x)|

∫
Br(x)

χ(y, t)dy x ∈ Ω,
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where Br(x) denotes the d-dimensional ball of center x and radius r. If there exists r0

such that |∂φ∂r | << 1 for r in a neighborhood of r0, then we define porosity the field
φ(x, t) = φ(x, t, r0).
Moreover for the generic phase α, that represent a chemically homogeneous portion of
a system under consideration that is separated from other such portions by a definite
physical boundary, we define

χα(x, t) :=

{
1 if x ∈ α phase
0 otherwise

x ∈ Ω,

and

Sα(x, t, r) :=

∫
Br(x) χα(y, t)dy∫
Br(x) χ(y, t)dy

We then define saturation of phase α the function Sα(x, t) := Sα(x, t, r0), if there exists
r0 such that |∂Sα∂r | << 1 for r in a neighborhood of r0.

2.2 Recasting the problem in a fixed domain

Figure 1: The maps to switch from the different coordinates

Because of the compaction process, the sediment matrix is not fixed and the physical
domain changes with time. The equations are then set on a domain changing in time and
their numerical solution is thus more complex. A possibility is to resort to a Lagrangian
description and write the equations in a fixed domain. We introduce, in order to do so, the
domain Ω̂, whose coordinates are (x, ξ), that is obtained from the physical domain Ω(t)
as its completely compacted configuration. Moreover, for the sake of generality if the rock
has a reactive part (such as organic matter) that can dissolve in time, we consider Ω̂ as the
non-degradable, fully compacted volume. Thus, Ω̂ represents the non-degradable material
volume and is fixed. We assume that compaction leads only to a vertical movement of the
solid matrix. Hence both domains have the same x coordinate. Throughout our analysis
we employ a more general notation showing also the general expressions in presence of
organic matter, in order to facilitate further developments toward this direction. Thus,

4



another assumption is that kerogen, or in general the reactive part of the rock, can be
considered as dispersed in the solid matrix. Hence, at any point x inside the domain and
at any time t we can define a field C = C(x, t) that represents the ratio between the
volume of kerogen and the initial solid volume, i.e. the solid volume when no chemical
reactions have yet occurred. Under these assumptions, the map from the fixed domain to
the physical domain is ϕ : Ω̂→ Ω(t), ϕ(x, ξ) = (x, z(ξ, t))

ϕ(x, ξ) =

(
x, ztop(x)−

∫ ξ∗

ξ

1− C0 + C(ξ′)

(1− C0)(1− φ(ξ′))
dξ′

)
, (1)

where ξ∗ is the height of the domain along the ξ-axis and is computed from the porosity
at the initial configuration. We define

J := ∇ϕ =

[
1 0
0 ∂z/∂ξ

]
,

and we set

J(x, ξ, t) :=
1− C0 + C(x, ξ, t)

(1− C0)(1− φ(x, ξ, t))
.

Since in our simplified case C(x, ξ, t) = C0(x, ξ) = 0, we have

J(x, ξ, t) :=
1

(1− φ(x, ξ, t))
.

This function is the Jacobian determinant of the map and will often appear in the follow-
ing, as a consequence of the change of coordinates in the integrals, while obtaining the
equations.
The advantage of writing the equations and solving the problem on a domain that, differ-
ently than the physical one, is fixed, is that we do not need to follow the movement of the
domain by deforming the mesh. The mesh can be built once and for all at the beginning
of the simulation, as well as the basis functions of the finite element methods.
The following differential equations are written directly on the fixed domain Ω̂ and the
boundary conditions will be specified later on.

2.3 The mechanical compaction

In this section we present a mathematical model for the representation of the compaction
process, due to the progressive burial of the domain, to which both the bulk medium and
fracture are subject.
The porosity φ of the rock medium depends on the overload and pore pressure and, in
general, on the volume fraction of the reactive rock (i.e. φ = φ(σe, C)). By assuming a
simple poroelastic behaviour like [18], the porosity is given by

φ(x, ξ, t) = (1 + C(x, ξ, t)− C0)φ0e
−βσe(x,ξ,t) (2)

in cases where, C = C0 = 0, it simply becomes the well known Athy’s law, derived in [1]

φ(x, ξ, t) = φ0e
−βσe(x,ξ,t).
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Here β [Pa−1] is the compressibility of the rock and σe = σe(x, t) represents the vertical
effective stress, which, in the assumption of vertical compaction, can be taken equal to
the difference between the bulk pressure σT and the fluid pressure pf ,

σe = σT − pf .

The fluid pressure is defined, in general, as a mean over phase pressures, such as oil
pressure po and water pressure pw, weighted with respect to the saturations

pf = Sopo + Swpw = pw,

where Sw = Sw(x, ξ, t) and So = So(x, ξ, t) = 1 − Sw(x, ξ, t) are the saturations of water
and oil, respectively. Since in our case we consider the pore space initially saturated with
water and we do not consider oil generation, we have Sw = 1 and So = 0 for all x, ξ, t.

The bulk pressure at depth z is the pressure due to the weight of sediments and the
pore fluids, and assuming that the thickness of the fracture is small enough to ensure the
continuity of the bulk pressure, its mechanical contribution can be neglected, yielding

σT (x, ξ, t) =

∫ ξtop

ξ
[(1− φ)ρs + φρf ]Jg dξ′ + σtop(t) (3)

where σtop is the weight of overlying sedimentary layers and may be variable in time. Note
that the density of the fluids ρf is a weighted average given, in general, by

ρf = Soρo + Swρw = ρw

where ρw = ρw(x, ξ, t) and ρo = ρo(x, ξ, t) are the densities of water and oil, which may
depend on temperature and pressure. Concerning the solid part, ρs is given by

ρs =
(1− C0)ρr + Cρk

1− C0 + C

where ρr and ρk are the densities of the inert rock and the reactive solid, respectively.
In our case C = C0 = 0, thus we have

ρs = ρr

The mechanical evolution of the thickness of the fracture lΓ is taken into account using
the law proposed in [16],

lΓ = lΓ,i + lΓ,m

(
e−βfσ

n
e (x,ξ,t) − e−βfσne0(x,ξ)

)
(4)

where lΓ,i and lΓ,m are respectively the initial and maximum thickness of the fracture, βf
[Pa−1] is the compressibility of the fracture, σne and σne0 are respectively the effective stress
and the initial effective stress normal to the fracture. Hence the porosity of the fracture
φf is related to its actual and initial thickness and initial porosity φf0 as

φf =
lΓ
lΓ,i

φf0.
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Since we are not resolving for the full stress tensor, in order to compute the stress com-
ponent normal to the fracture, that may have different orientations, we estimate the hori-
zontal stress component following [8]. During uniaxial consolidation the horizontal stress
σT,H increases as a function of depth but at a reduced rate compared with the vertical
stress. Thus we estimate it from the vertical component as

σT,H =
ν

1− ν
σT , (5)

where ν is the Poisson coefficient, typically in the range [0.15, 0.30] in the case of rocks.
Hence we compute the effective horizontal stress as

σe,H = σT,H − pf .

In order to take into account the progressive rock compaction we solve the following
equation in Ω(t)× (0, T ] for the vertical velocity of the solid matrix usz

∂

∂t
((1− φ)ρs) +

∂

∂z
((1− φ)ρsusz) = Qs, (6)

where Qs is a source term that may represent the appearance/disappearance of solid, for
instance the breakdown of kerogen into oil. In our case Qs = 0. By solving this equation
at each time step, we can compute the new position of the nodes of the mesh.
Hence, even if the whole problem is solved in the fixed domain, we can visualize the
solutions on the physical domain.

2.4 The fluid dynamic problem in the bulk medium

In this paragraph we present the model that describes the evolution of the fluid pressure
and velocity within the bulk medium. We will write the equations directly in the fixed
domain, describing with the tilde the reduced variable.
The mass conservation equation for water in the porous medium can be expressed as:

∂(ρwφSwJ)

∂t
+∇ · (ρwU) = 0 in Ω̂× (0, T ] (7)

We assume no water generation or injection hence there is no source term in the equation.
The water flux U in the rock medium is given by the generalized Darcy law that models
the fluid flow through a porous medium in response to a pressure gradient as

U = −J kr,wK̃

µw

(
∇pw − ρwJTg

)
in Ω̂× (0, T ] (8)

with g = −gez. Notice that in the vertical direction we subtract the effect of gravity,
hence a fluid pressure gradient equal to the weight of the fluid column determines a null
Darcy flux.
Here kr,w is the relative permeability of the water and is a given function of the saturation.
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There are several models for the relative permeability in literature. We model it according
to the Brooks-Corey relative permeability curve of [5], namely

kr,w(Sw) = S3
w. (9)

Notice that if the relative permeability vanishes, then no flow of the corresponding phase
occurs. We have denoted with µw the viscosity of water which is modeled as constant. We
have set K̃ := J−1K(φ)J−T , where K is the permeability tensor, that we assume diagonal,
and function of the porosity φ according to the following relation:

K(φ) = K(φ)

[
kxx 0
0 kzz

]
(10)

where K(φ) is chosen following [6]

K(φ) =


k0φ

3 if φ ≥ 0.1

100 k0φ
5

(1− φ)2
if φ < 0.1

. (11)

Note that since the equation is written in the fixed domain, K̃ is the tensor transformed
with J.

2.5 The fluid dynamic problem for the fracture

In this section we show how to derive a suitable reduced problem, able to model the fluid
flow inside the fracture, and how to link it with the flow in the bulk medium with proper
interface conditions.
Let us introduce the sub-domain Ωf , which is the part of Ω occupied by the fracture,
as represented in figure 2. We assume that the geometry of the fracture fulfils some
requirements:

• The domain Ω is divided into three connected subsets, called Ω1, Ω2 and Ωf , such

that Ω̊i ∩ Ω̊j = ∅ for i 6= j and i, j = 1, 2, f,⋃
i=1,2,f

Ω̄i = Ω̄,

and we define γi = ∂Ωf ∩ ∂Ωi, i = 1, 2

• we suppose the existence of a non auto-intersecting n−1 manifold Γ of class C2 such
that the domain Ωf can be written as

Ωf :=

{
x ∈ Ω : x = s + rnΓ, s ∈ Γ, r ∈

(
− lΓ(s)

2
,
lΓ(s)

2

)}
, (12)

with lΓ ∈ C2(Γ), as previously indicated, the thickness of Ωf and nΓ the unit normal
to Γ. We require that ∃ c1, c2 ∈ R+

lΓ(s) > c1 and |l′Γ(s)| < c2
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with c2 “small”. So basically, we assume that Γ does not differ too much from a
straight line if n = 2.

• the domain Ωf is “thin” compared with Ω1 and Ω2, i.e.

diam(Ωi) � max
s∈Γ

lΓ(s) for i = 1, 2.

With this assumption we can identify Ωf with Γ and we can adopt the approxima-
tions nΓ ≈ n1 ≈ −n2, ∂Γ ≈ ∂Ω ∩ ∂Ωf

Figure 2: The domain Ω, subdivided in Ω1 and Ω2 by the thin domain Ωf that is assimilated
to the curve Γ.

Let us consider the fracture as represented by the line Γ, and denote with nΓ the
normal vector with fixed orientation on Γ from Ω1 to Ω2 and with τΓ the tangential unit
vector on Γ. We model the relation between permeability and porosity in the fracture
the same way we did in the case of the rock medium, which determines the following
permeability tensor expressed in the local coordinates of the fracture

KΓ(φ) = K(φ)

[
kΓ,n 0

0 kΓ,τ

]
(13)

where K(φ)kΓ,n is the normal permeability and K(φ)kΓ,τ is the tangential permeability.
Notice that typically the permeability tensor in Γ could be significantly different from that
in the rest of the domain Ω, since the porosity of the fracture can be completely different
from that of the surrounding rock.
We define the projection matrices along the normal of Γ and on the tangential space as

N := nΓ ⊗ nΓ and T := τΓ ⊗ τΓ = I−N, (14)

respectively, with the following properties:

N = NT , T = TT , NN = N, TT = T, and NT = 0.
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Moreover it holds

NnΓ = nΓ, NτΓ = 0, TτΓ = τΓ, and TnΓ = 0.

Finally, given a generic vector m we can decompose it along the normal direction and the
tangential space as

m = Nm + Tm = mn + mτ .

Using the projection matrix (14), given a regular scalar function g : Ω→ R we define the
normal and tangential gradient as

∇ng := N∇g and ∇τg := T∇g = ∇g −∇ng. (15)

and given a regular vector function u : Ω → Rn we define the normal and tangential
divergence as

∇n · u := N : ∇u and ∇τ · u := T : ∇u = ∇ · u−∇n · u. (16)

Let Uf,τ and pf be respectively the fluid velocity in the fracture in the tangential
direction and the pressure in the fracture. We define the mean flow rate and mean pressure
in the fracture as

Ũ(s) :=

∫ lΓ(s)

2

− lΓ(s)

2

Uf,τ (r) dr(s), (17)

p̃(s) :=
1

lΓ(s)

∫ lΓ(s)

2

− lΓ(s)

2

pf (r) dr(s). (18)

2.5.1 The reduced mass conservation equation

Proposition 1. Under the previous assumptions the reduced mass conservation equation
for the fracture in the fixed domain is represented by the following equation

∇τ · (ρwŨ) = −lΓ
∂(ρwφfSwJ)

∂t
+ (ρwU1 − ρwU2) · nΓ in Γ̂× (0, T ] (19)

where (U1−U2) ·nΓ is the jump of the flow normal to the fracture, which may be discon-
tinuous across Γ.

Proof. In order to derive the reduced problem for the fluid dynamics in the fracture we
start from the fluid dynamic problem defined in the full-dimensional fracture Ωf , we map

it in the fixed domain Ω̂f and then we reduce it following a procedure similar to the one
employed in [9] but with two substantial differences, in our case we have the presence of
gravity and the equations are mapped in the fixed domain, thus we have few different
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terms which need a proper treatment.
Let us consider the mass conservation equation in the physical domain

∇ · (ρwU) = −
∂(ρwφfSw)

∂t
in Ωf × (0, T ] (20)

we map it in the fixed domain according to [12] obtaining

∇̂ · (ρwÛ) = −
∂(ρwφ̂f ŜwJ)

∂t
in Ω̂f × (0, T ]. (21)

From now we will omit the ” ˆ ” to simplify the notation. We proceed integrating the
mapped mass equation (21) on the thickness of the fracture for every given point s∗ ∈ Γ∫ lΓ

2

− lΓ
2

∇ · (ρwU) dr = −
∫ lΓ

2

− lΓ
2

∂(ρwφfSwJ)

∂t
dr.

Decomposing the divergence operator along the normal direction and the tangential space
we obtain ∫ lΓ

2

− lΓ
2

∇n · (ρwU) dr +

∫ lΓ
2

− lΓ
2

∇τ · (ρwU) dr = −
∫ lΓ

2

− lΓ
2

∂(ρwφfSwJ)

∂t
dr.

Assuming small changes on the porosity, J, ρw and Sw along the fracture thickness, we
approximate

−
∫ lΓ

2

− lΓ
2

∂(ρwφfSwJ)

∂t
dr ≈ −lΓ

∂(ρwφfSwJ)

∂t
,

moreover integrating the normal divergence term
∫ lΓ

2

− lΓ
2

∇n · (ρwU) dr we obtain

ρwU|γ2 · nΓ − ρwU|γ1 · nΓ +

∫ lΓ
2

− lΓ
2

∇τ · (ρwU) dr = −lΓ
∂(ρwφfSwJ)

∂t
.

Thanks to previous assumptions on the fracture geometry we have

ρwU|γ2 · nΓ ≈ −ρwU|γ2 · n2 = −ρwU2|γ2 · n2 ≈ ρwU2|Γ · nΓ,

ρwU|γ1 · nΓ ≈ ρwU|γ1 · n1 = ρwU1|γ1 · n1 ≈ ρwU1|Γ · nΓ,

so we obtain ∫ lΓ
2

− lΓ
2

∇τ · (ρwU) dr = (ρwU1 − ρwU2) · nΓ − lΓ
∂(ρwφfSwJ)

∂t
.
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Exploiting the properties of tensor T, we have∫ lΓ
2

− lΓ
2

∇τ · (ρwU) dr =

∫ lΓ
2

− lΓ
2

T : ∇(ρwU) dr =

∫ lΓ
2

− lΓ
2

(TT) : ∇(ρwU) dr =

= T :

∫ lΓ
2

− lΓ
2

T∇(ρwU) dr ≈ T : ∇
∫ lΓ

2

− lΓ
2

T(ρwU) dr,

since we assume ρw homogeneous across the thickness of the fracture, and using definitions
(16) and (17) we have

∇τ · (ρwŨ) = (ρwU1 − ρwU2) · nΓ − lΓ
∂(ρwφfSwJ)

∂t
.

Figure 3: A representation of the thickness along which we integrate the equation.

2.5.2 The reduced Darcy equation

Thanks to assumption (13) on the permeability tensor in the fracture, and since J is
diagonal, the following property for the mapped permeability tensor in the fracture K̃Γ :=
J−1KΓ(φ)J−T holds:
K̃Γ can be written as

K̃Γ = K̃Γ,nN + K̃Γ,τT.

Moreover we make the following assumptions

• K̃Γ,n, K̃Γ,τ ∈ L∞(Ω̂f ) are strictly positive;

• both K̃Γ,n and K̃Γ,τ are constant on each cross section of the fracture, i.e. for fixed
s.

Consequently, we have
K̃Γn = K̃Γ,nn and K̃Γτ = K̃Γ,ττ.
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Proposition 2. Under the previous assumption the Darcy equation for the fracture in the
fixed domain is represented by the following equation

Ũ = −J
kr,wK̃Γ,τ

µw
lΓ
(
∇τ p̃− ρwTJTg

)
in Γ̂× (0, T ] (22)

Proof. Proceeding in the same way of the proof of proposition (1) we start from the Darcy
equations in the full-dimensional fracture domain

U = −kr,wKΓ

µw
(∇p− ρwg) in Ωf × (0, T ] (23)

requiring, moreover, {
U · nj = Uj · nj

p = pj
on γj . (24)

(23) mapped in the fixed domain becomes

Û = −J kr,wK̃Γ

µw

(
∇̂p̂− ρwJT ĝ

)
in Ω̂f × (0, T ]. (25)

Applying T on both sides of the latter equation, and omitting the ” ˆ ” we have

TU = −J
kr,wK̃Γ,τ

µw
T
(
∇p− ρwJTg

)
,

that is

TU = −J
kr,wK̃Γ,τ

µw

(
∇τp− ρwTJTg

)
,

and integrating across the thickness of the fracture for a given point s∗ ∈ Γ we have∫ lΓ
2

− lΓ
2

TU dr = Ũ = −J
kr,wK̃Γ,τ

µw

(∫ lΓ
2

− lΓ
2

∇τp−
∫ lΓ

2

− lΓ
2

ρwTJTg

)
=

= −J
kr,wK̃Γ,τ

µw

(
T

∫ lΓ
2

− lΓ
2

∇p−Tρw

∫ lΓ
2

− lΓ
2

JTg

)
≈

≈ −J
kr,wK̃Γ,τ

µw

(
∇τ
∫ lΓ

2

− lΓ
2

p−Tρw

∫ lΓ
2

− lΓ
2

JTg

)
.

Using the definition (18) we finally obtain

Ũ = −J
kr,wK̃Γ,τ

µw
lΓ
(
∇τ p̃− ρwTJTg

)
.
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2.5.3 The interface conditions

Proposition 3. The problem is closed with the following interface conditions

ηn[U · nΓ] =
4

2ξ − 1
({p} − p̃) on Γ̂ (26)

ηn{U · nΓ} = [p] + lΓ{G · nΓ} on Γ̂ (27)

where ηn = lΓµw
Jkr,wK̃Γ,n

, G = ρwJTg. Note that we have adopted the following notations

for the jump and the average of any function f that may be discontinuous across Γ

[f ] := f1 − f2, {f} := 1
2(f1 + f2), where f1,2 = limε→0± f(x− εnΓ) ∀x ∈ Γ.

Proof. Let us apply N on both sides of the equation (25), we obtain

NU = −J
kr,wK̃Γ,n

µw
N
(
∇p− ρwJTg

)
,

that is

NU = −J
kr,wK̃Γ,n

µw

(
∇np− ρwNJTg

)
,

multiplying it for nΓ and integrating in the direction normal to the fracture we get∫ lΓ
2

− lΓ
2

NU · nΓ dr = −J
kr,wK̃Γ,n

µw

(∫ lΓ
2

− lΓ
2

∇np · nΓ −
∫ lΓ

2

− lΓ
2

ρwNJTg · nΓ

)
.

Integrating the pressure term, and since

NJTg · nΓ = JTg ·NTnΓ = JTg ·NnΓ = JTg · nΓ

we have ∫ lΓ
2

− lΓ
2

NU · nΓ dr = −J
kr,wK̃Γ,n

µw

(
p|γ2 − p|γ1 −

∫ lΓ
2

− lΓ
2

ρwJTg · nΓ

)
.

Thanks to previous assumptions on the fracture geometry we can approximate

p|γ2 − p|γ1 ≈ p2|Γ − p1|Γ,∫ lΓ
2

− lΓ
2

NU·nΓ dr ≈ lΓ
2

(NU|γ2 · nΓ + NU|γ1 · nΓ) =
lΓ
2

(U2|Γ · nΓ + U1|Γ · nΓ) = lΓ{U·nΓ},

∫ lΓ
2

− lΓ
2

ρwJTg · nΓ ≈ lΓ{ρwJTg · nΓ}.
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Setting

ηn =
lΓµw

Jkr,wK̃Γ,n

we finally get
ηn{U · nΓ} = [p] + lΓ{ρwJTg · nΓ}

that is equation (27).
Now let us derive the first interface condition following the procedure of [9]. We approx-
imate the value of the pressure inside the fracture by the following Taylor expansion,
regarding the first transversal section in figure 4

p(s∗) = p(x1) +
lΓ
2
∇p(θ1) · nΓ, (28)

where θ1 = s∗−ξ1
lΓ(s∗)

2 nΓ with ξ1 ∈ [0, 1]. The point x1 ∈ γ1 is such that x1 = s∗− lΓ(s∗)
2 nΓ.

In the second transversal section we approximate the value of the pressure inside the
fracture by

p(s∗) = p(x2)− lΓ
2
∇p(θ2) · nΓ, (29)

where θ2 = s∗+ξ2
lΓ(s∗)

2 nΓ with ξ2 ∈ [0, 1]. The point x2 ∈ γ2 is such that x2 = s∗+ lΓ(s∗)
2 nΓ.

Using relation (24) and assuming a piecewise linear variation of the normal flow inside the
fracture NU = Un we have{

Un(θ1) · nΓ = ξ1U1 · nΓ + (1− ξ1)U2 · nΓ,

Un(θ2) · nΓ = ξ2U2 · nΓ + (1− ξ2)U1 · nΓ.
(30)

We approximate p(x1) ≈ p1(x1) and, exploiting the mapped Darcy equation (25) and the
properties of the projection matrix, the pressure in the fracture (28) is approximated as

p(s∗) ≈ p1(x1) +
lΓ
2
∇p(θ1) · nΓ = p1(x1) +

lΓ
2
∇np(θ1) · nΓ =

= p1(x1)− ηn
2

Un(θ1) · nΓ +
lΓ
2

(ρwJTg)(θ1) · nΓ,

using (30) and approximating (ρwJTg)(θ1) = G(θ1) ≈ G1|Γ we get

p(s∗) ≈ p1(x1)− ηn
2

(ξ1U1 · nΓ + (1− ξ1)U2 · nΓ) +
lΓ
2

G1|Γ · nΓ =

= p1(x1)− ηn
2

(
{U · nΓ}+ (ξ1 −

1

2
)[U · nΓ]

)
+
lΓ
2

G1|Γ · nΓ

while equation (29) provides

p(s∗) ≈ p2(x2) +
ηn
2

(ξ2U2 · nΓ + (1− ξ2)U1 · nΓ)− lΓ
2

G2|Γ · nΓ =
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= p2(x2) +
ηn
2

(
{U · nΓ} − (ξ2 −

1

2
)[U · nΓ]

)
− lΓ

2
G2|Γ · nΓ.

Now, using the interface condition previously derived (27) to substitute {U · nΓ}, we get

p(s∗) ≈ {p} − ηn(2ξ1 − 1)

4
[U · nΓ]− lΓ

4
[G · nΓ]

p(s∗) ≈ {p} − ηn(2ξ2 − 1)

4
[U · nΓ]− lΓ

4
[G · nΓ]

Since the pressure in the fracture is single valued at s∗ , the only possibility is to choose
ξ1 = ξ2 = ξ, then integrating in the transversal section of Ωf and using the definition (18)
for the reduced pressure we obtain the last coupling condition

p̃ = {p} − ηn(2ξ − 1)

4
[U · nΓ]− lΓ

4
[G · nΓ].

In our case, since we are assuming the aperture of the fracture ”small” enough, we consider
the gravity jump negligible, obtaining

p̃ = {p} − ηn(2ξ − 1)

4
[U · nΓ].

Figure 4: A representation of the coordinates employed for the Taylor expansion.

The equations for the flow in the rock medium (7), (8), along with the reduced problem
(19), (22) and the interface conditions (26), (27) constitute a system of coupled problems
governing the fluid motion in the fractured domain.



∂(ρwφSwJ)

∂t
+∇ · (ρwU) = 0 in Ω̂× (0, T ]

U = −J kr,wK̃

µw

(
∇pw − ρwJTg

)
in Ω̂× (0, T ]

∇τ · (ρwŨ) = −lΓ
∂(ρwφfSwJ)

∂t
+ (ρwU1 − ρwU2) · nΓ in Γ̂× (0, T ]

Ũ = −J
kr,wK̃Γ,τ

µw
lΓ
(
∇τ p̃− ρwTJTg

)
in Γ̂× (0, T ]

(31)
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 ηn[U · nΓ] =
4

2ξ − 1
({p} − p̃) on Γ̂

ηn{U · nΓ} = [p] + lΓ{G · nΓ} on Γ̂

(32)

The well posedness of this coupled problem has been proved for 1
2 < ξ ≤ 1 in [14].
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3 Numerical approximation

In this section we will derive a numerical formulation for the equations in the fixed domains
Ω̂ and Γ̂ illustrated in the previous section and we will suggest a proper splitting strategy.
Let us introduce a triangulation Th of the domain Ω̂, being h the maximal diameter of
the elements of Th, and a one-dimensional mesh T̃h of the fracture Γ̂. For the sake of
simplicity, we assume that Ω̂h :=

⋃
K∈Th K = Ω̂.

We point out that Th may not be conformal with the fracture Γ̂ , so that triangles K ∈ Th
may be cut by Γ̂.

3.1 The equation for the bulk pressure

We start analysing equation

σT (x, ξ, t) =

∫ ξtop

ξ
[(1− φ)ρr + φρf ]Jg dξ′ + σtop(t)

for the bulk pressure σT . It is more convenient to bring this equation to its differential
formulation. For this purpose, we derive it with respect to ξ and obtain the following
differential problem:

∂σT
∂ξ

= ((1− φ)ρr + φρf )Jg with σT (x, ξtop, t) = σtop(t). (33)

Note that the right hand side of the equation depends on the porosity φ which changes in
time because of the rock compaction. Thus, the problem is indeed time dependent.

Multiplying equation (33) by a test function ϕ, we have∫
Ω̂

∂σT
∂ξ

ϕ dΩ̂ =

∫
Ω̂
fϕ dΩ̂,

where in our case f = [(1 − φ)ρr + φρf ]Jg. The assumptions on the coefficients that we
will list in the next section grant that the right hand side of the stress differential equation
is in L∞(Ω̂× (0, T ]).

The discrete formulation is obtained by choosing the discrete space Sh := IP1(Ω̂, Th) ⊂
H1(Ω̂).
The numerical solution of this problem requires a stabilization. We propose the strongly
consistent SUPG stabilization, which consists of the addition of the term∑

K∈Th

δhK

∫
K

(
∂σTh
∂ξ
− f

)
∂ϕh
∂ξ

dK

to the integral formulation, where hK is the dimension of the K-th element of the trian-
gulation Th.

Hence, a stabilized discrete formulation of the problem is:

Discrete formulation:

18



find σn+1
Th ∈ Sh such that σn+1

Th (x, ξtop) = σtop(t
n+1) and∫

Ω̂

∂σn+1
Th

∂ξ
ϕh dΩ̂ +

∑
K∈Th

δhK

∫
K

∂σn+1
Th

∂ξ

∂ϕh
∂ξ

dK =

∫
Ω̂
fϕh dΩ̂ +

∑
K∈Th

δhK

∫
K
f
∂ϕh
∂ξ

dK,

∀ϕh ∈ Sh.

Following the usual procedure, we can write

σn+1
Th =

∑
j

σn+1
j ϕhj ,

impose that the equation holds for each element ϕhi of the base of Sh, and obtain the
algebraic system:

Aσn+1 = F

where

Aij =

∫
Ω̂

∂ϕhj
∂ξ

ϕhi dΩ̂ +
∑
K∈Th

δhK

∫
K

∂ϕhj
∂ξ

∂ϕhi
∂ξ

dK (34)

Fi =

∫
Ω̂
fϕhi dΩ̂ +

∑
K∈Th

δhK

∫
K
f
∂ϕhi
∂ξ

dK. (35)

The Dirichlet boundary condition at ξtop is imposed directly on the assembled ma-
trix and right hand side vector, by eliminating from A and F the degrees of freedom
corresponding to the Dirichlet nodes.

The same discretization technique explained in this paragraph will also be used to
solve numerically equation (6) for the mesh nodes. In this case, we will take

f = −∆((1− φ)ρr)

∆t

and homogeneous Dirichlet boundary conditions will be imposed at z = 0.

3.2 The flow equations

We now analyse the equations governing the fluid flow in the fractured domain managing
the fracture problem with the XFEM approach suggested by D’Angelo and Scotti in [7].
Let us consider the one phase fluid dynamic problem in the rock medium and in the
fracture completed with the boundary conditions,

∂(φJ)

∂t
+∇ ·U = 0 in Ω̂× (0, T ]

U = −JλK̃ (∇p−G) in Ω̂× (0, T ]

{
p = pD on ∂DΩ̂

U · n = h on ∂N Ω̂
(36)

∇τ · Ũ = −lΓ
∂(φfJ)

∂t
+ (U1 −U2) · nΓ in Γ̂× (0, T ]

Ũ = −JλK̃Γ,τ lΓ (∇τ p̃−TG) in Γ̂× (0, T ]

(37)
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{
p̃ = p̃D on ∂DΓ̂

Ũ · τΓ = 0 on ∂N Γ̂
(38)

The problem is completed with the interface conditions (26), (27).
We assume that the Dirichlet boundary ∂DΩ̂ and the Neumann boundary ∂N Ω̂ are such
that ∂DΩ̂ ∩ ∂N Ω̂ = ∅ and ∂DΩ̂ ∪ ∂N Ω̂ = ∂Ω̂. λ =

kr,w
µw

is the water mobility. We assumed
ρw homogeneous and constant in time and we took into account Sw = 1.
Let us derive the weak formulation of this problem starting from (36). Let us work formally
first and test the equations against two sufficiently smooth test functions q and v. We will
specify the functional setting later on.

We have ∫
Ω̂
∇ ·U q dΩ̂ =

∫
Ω̂
− ∂

∂t
(φJ) q dΩ̂∫

Ω̂

1

λJ
K̃−1U · v dΩ̂ = −

∫
Ω̂

(∇p−G) · v dΩ̂

Integrating by parts the pressure term of the right hand side of the second equation, we
obtain ∫

Ω̂

1

λJ
K̃−1U · v dΩ̂ =

∫
Ω̂
p ∇ · v dΩ̂−

∫
∂Ω̂
p v · n dγ +

∫
Ω̂

G · v dΩ̂

If we assume that v · n = 0 on ∂N Ω̂, we obtain the following equations:∫
Ω̂
∇ ·U q dΩ̂ =

∫
Ω̂
− ∂

∂t
(φJ) q dΩ̂

∫
Ω̂

1

λJ
K̃−1U · v dΩ̂−

∫
Ω̂
p ∇ · v dΩ̂ = −

∫
∂DΩ̂

pD v · n dγ +

∫
Ω̂

G · v dΩ̂

If we approximate the term ∂
∂t(φJ) as

∂

∂t
(φJ) ≈ ∆(φJ)

∆t
,

where we indicate with ∆(φJ)
∆t a suitable finite difference approximation (such as ∆(φJ) =

φ∗J∗ − φ∗∗J∗∗ where ∗ and ∗∗ mean n+ 1, n, or n− 1), the following functional setting
guarantees that all the previous integrals make sense. Concerning the coefficients and the
boundary conditions, we require that:

• φ, J, ρw, µw ∈ L∞(Ω̂× (0, T ]);

• K̃ ∈ (L∞(Ω̂× (0, T ]))d×d

(if det(K̃) 6= 0, this condition implies K̃−1 ∈ (L∞(Ω̂× (0, T ]))d×d);

• pD,h ∈ L2(0, T ;H1/2(∂DΩ̂));
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Let us introduce the space

Hdiv(Ω̂) := {v ∈ (L2(Ω̂))d : ∇ · v ∈ L2(Ω̂)}.

After the time discretization, a proper weak formulation for the pressure problem reads:

Weak formulation:

find Un+1 ∈ Hdiv(Ω̂) and pn+1 ∈ L2(Ω̂) such that Un+1 · n = h, and∫
Ω̂
∇ ·Un+1 q dΩ̂ =

∫
Ω̂
−∆(φJ)

∆t
q dΩ̂,

∫
Ω̂

1

λJ
K̃−1Un+1 · v dΩ̂−

∫
Ω̂
pn+1 ∇ · v dΩ̂ = −

∫
∂DΩ̂

pD v · n dγ +

∫
Ω̂

G · v dΩ̂,

∀q ∈ L2(Ω̂) and ∀v ∈ {v ∈ Hdiv(Ω̂) : v · n = 0 on ∂N Ω̂}.

Notice that, while the Dirichlet boundary condition on pressure is included in the
equations, the Neumann boundary condition needs to be embedded in the functional
space setting.

A common choice for the finite dimensional spaces for such problem are the lowest
order Raviart Thomas elements RT0(Ω̂, Th) ⊂ Hdiv(Ω̂) for velocity, and the space of the
piece-wise constant function P0(Ω̂, Th) ⊂ L2(Ω̂) for pressure.
Mixed methods have the advantage of approximating the velocity field as a variable of
the problem, while in a classic formulation the velocity has to be computed by numerical
differentiation of pressure. Moreover, since in a mixed formulation the continuity equation
is not integrated by parts, we can also expect it to be satisfied with higher accuracy with
respect to classic methods.
However we have allowed the interface Γ to cut the elements and we have employed the
extended finite element method (XFEM), based on the technique of enriching the elements
cut by an “embedded” interface with discontinuous functions, as exposed in the works by
Hansbo on the elasticity problem in domains with fractures [2], [3], [13]. We denote
Ki = K ∩ Ω̂i ∀K ∈ Th and Gh = {K ∈ Th : K ∩ Γ̂ 6= ∅} the collection of elements crossed
by the fracture. Let us introduce the finite element spaces that will be used in the set up
of the method.
First we define ∀K ∈ Th RT0(Ki) = {Uh|Ki : Uh ∈ RT0(K)} as the linear space of the
restrictions to Ki of the standard Raviart-Thomas RT0 local functions. Analogously we
define P0(Ki). We consider discrete velocities vh and pressures qh in the following spaces,

Vh = V1,h ×V2,h, Qh = Q1,h ×Q2,h,

Vi,h = {vh ∈ Hdiv(Ω̂i) : vh|Ki ∈ RT0(Ki) ∀K ∈ Th}

Qi,h = {qh ∈ L2(Ω̂i) : qh|Ki ∈ P0(Ki) ∀K ∈ Th}.
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Each discrete velocity vh = (v1,h,v2,h) and pressure qh = (q1,h, q2,h) is thus made of

two components, associated to the domains Ω̂i, i = 1, 2. The discrete variables are dis-
continuous on Γ̂, being defined on each part Ki of a cut element K ∈ Gh by independent
(RT0,P0) local functions. So, on all cut elements each local function is actually a pair of
independent restrictions of the traditional finite element spaces to each of the two sub-
regions. So, basically the finite element basis for the spaces Vh and Qh are obtained from
the standard RT0 and P0 basis on the mesh replacing each standard basis function liv-
ing on an element that intersects the interface by its restrictions to Ω̂1 and Ω̂2 respectively.

Figure 5: A representation of the cut elements, divided in two pieces associated to the two
domain Ω1 and Ω2.

Figure 6: A representation of the enrichment of the elements cut by the fracture.

The Neumann boundary condition U · n = h on ∂N Ω̂, which is not included in the
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equations yet, is imposed with a Nitsche penalization technique. Thus, we add to the left
hand side of the equations the term∫

∂N Ω̂
γU (U · n)(v · n) dγ,

and to the right hand side the term∫
∂N Ω̂

γUh(τ · n) dγ.

Where γU is a suitable penalization parameter.
Moreover following the same procedure on Ω̂1, Ω̂2 separately like in [9] we insert the in-
terface conditions (26), (27) as natural conditions in our variational formulation. The full
discretization of the problem in Ω̂ is then

Discrete formulation:
find Un+1

h ∈ Vh and pn+1
h ∈ Qh such that∫

Ω̂

1

λhJh
K̃−1
h Un+1

h · vh dΩ̂−
∫

Ω̂
pn+1
h ∇ · vh dΩ̂ +

∫
∂N Ω̂

γU (Un+1
h · n)(vh · n) dγ

+

∫
Γ̂
ηn{Un+1

h · nΓ}{vh · nΓ} dγ + ξ0

∫
Γ̂
ηn[Un+1

h · nΓ][vh · nΓ] dγ

= −
∫
∂DΩ̂

pD vh · n dγ +

∫
Ω̂

Gh · vh dΩ̂ +

∫
∂N Ω̂

γUh(vh · n) dγ

−
∫

Γ̂
ηnp̃[vh · nΓ] dγ +

∫
Γ̂
lΓ{Gh · nΓ}{vh · nΓ} dγ,

∫
Ω̂
∇ ·Un+1

h qh dΩ̂ =

∫
Ω̂
−∆(φJ)

∆t
qh dΩ̂,

∀vh ∈ Vh and ∀qh ∈ Qh.

The weak formulation and finite element approximation of the fracture flow problem (37)
is obtained following the same method employed for the bulk flow problem (36). In this
case we consider standard (not extended) finite element spaces

Ṽh = {ṽh ∈ Hdiv(Γ̂) : ṽh|Ki ∈ RT0(K) ∀K ∈ T̃h}

Q̃h = {q̃h ∈ L2(Γ̂) : q̃h|K ∈ P0(K) ∀K ∈ T̃h}.

The discrete problem in Γ̂ is thus the following

Discrete formulation:
given the normal velocity jump [Uh · nΓ] find Ũn+1

h ∈ Ṽh and p̃n+1
h ∈ Q̃h such that
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∫
Γ̂

1

λhJhlΓ
[K̃Γ,τ ]−1Ũn+1

h · ṽh dγ −
∫

Γ̂
p̃n+1
h ∇ · ṽh dγ +

∫
∂N Γ̂

γU (Ũn+1
h · τΓ)(ṽh · τΓ) dγ

= −
∫
∂DΓ̂

p̃D ṽh · τΓ dγ +

∫
Γ̂

TGh · ṽh dγ,∫
Γ̂
∇ · Ũn+1

h q̃h dγ =

∫
Γ̂
−

∆(φfJ)

∆t
q̃h dγ +

∫
Γ̂
[Uh · nΓ] q̃h dγ,

∀ṽh ∈ Ṽh and ∀q̃h ∈ Q̃h.
Note that discrete problems in the medium and fracture are coupled, since the first one
depends on the pressure within the fracture, and the second one on the normal jump of
the bulk velocity.

Proceeding with the usual technique, we write Un+1
h , pn+1

h , Ũn+1
h and p̃n+1

h with a

proper base of the finite dimensional spaces Vh, Qh, Ṽh and Q̃h

Un+1
h =

∑
j

Un+1
j vhj pn+1

h =
∑
j

pn+1
j qhj

Ũn+1
h =

∑
j

Ũn+1
j ṽhj p̃n+1

h =
∑
j

p̃n+1
j q̃hj

and require that the equations hold for each element of the base of the respective discrete
spaces and write for the rock medium∑

j

Un+1
j

(∫
Ω̂

1

λhJh
K̃−1
h vhj · vhi dΩ̂

)
+
∑
j

pn+1
j

(
−
∫

Ω̂
qhj ∇ · vhi dΩ̂

)

+
∑
j

Un+1
j

(∫
∂N Ω̂

γU (vhj · n)(vhi · n) dγ

)
+
∑
j

Un+1
j

(∫
Γ̂
ηn{vhj · nΓ}{vhi · nΓ} dγ

)

+
∑
j

Un+1
j

(
ξ0

∫
Γ̂
ηn[vhj · nΓ][vhi · nΓ] dγ

)
=

∫
∂N Ω̂

γUh(vhi · n) dγ

−
∫
∂DΩ̂

pD vhi · n dγ +

∫
Ω̂

Gh · vhi dΩ̂

+
∑
j

p̃n+1
j

(
−
∫

Γ̂
ηnq̃hj [vhi · nΓ] dγ

)
+

∫
Γ̂
lΓ{Gh · nΓ}{vhi · nΓ} dγ,

∑
j

Un+1
j

(∫
Ω̂
∇ · vhj qhi dΩ̂

)
=

∫
Ω̂
−∆(φJ)h

∆t
qhi dΩ̂
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and for the fracture∑
j

Ũn+1
j

(∫
Γ̂

1

λhJhlΓ
[K̃Γ,τ ]−1ṽhj · ṽhi dγ

)
+
∑
j

p̃n+1
j

(
−
∫

Γ̂
q̃hj ∇ · ṽhi dγ

)

+
∑
j

Ũn+1
j

(∫
∂N Γ̂

γU (ṽhj · τΓ)(ṽhi · τΓ) dγ

)
= −

∫
∂DΓ̂

p̃D ṽhi · τΓ dγ +

∫
Γ̂

TGh · ṽhi dγ,

∑
j

Ũn+1
j

(∫
Γ̂
∇ · ṽhj q̃hi dγ

)
=

∫
Γ̂
−

∆(φfJ)

∆t
q̃hi dγ +

∑
j

Un+1
j

(∫
Γ̂
[vhj · nΓ] q̃hi dγ

)
.

The equations above can be solved together, written in the following algebraic form
A BT 0 E
−B 0 0 0

0 0 Ã B̃T

−ET 0 −B̃ 0




Un+1

pn+1

Ũn+1

p̃n+1

 =


I
F

Ĩ

F̃

 . (39)

Here

Aij =

∫
Ω̂

1

λhJh
K̃−1
h vhj · vhi dΩ̂ +

∫
∂N Ω̂

γU (vhj · n)(vhi · n) dγ

+

∫
Γ̂
ηn{vhj · nΓ}{vhi · nΓ} dγ + ξ0

∫
Γ̂
ηn[vhj · nΓ][vhi · nΓ] dγ

Bij =

∫
Ω̂
−∇ · vhj qhi dΩ̂

Ãij =

∫
Γ̂

1

λhJhlΓ
[K̃Γ,τ ]−1ṽhj · ṽhi dγ +

∫
∂N Γ̂

γU (ṽhj · τΓ)(ṽhi · τΓ) dγ

B̃ij =

∫
Γ̂
−∇ · ṽhj q̃hi dγ

Eij =

∫
Γ̂
ηnq̃hj [vhi · nΓ] dγ

Ii =

∫
∂N Ω̂

γUh(vhi · n) dγ −
∫
∂DΩ̂

pD vhi · n dγ

+

∫
Ω̂

Gh · vhi dΩ̂ +

∫
Γ̂
lΓ{Gh · nΓ}{vhi · nΓ} dγ

Fi =

∫
Ω̂
−∆(φJ)h

∆t
qhi dΩ̂

Ĩi =

∫
∂DΓ̂
−p̃D ṽhi · τΓ dγ +

∫
Γ̂

TGh · ṽhi dγ,

F̃i =

∫
Γ̂
−

∆(φfJ)

∆t
q̃hi dγ.
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Notice that the blocks E and ET are due to the interface conditions that couple the two
problems. Since the basis functions defining Eij are related to different meshes (although
the integral is computed on Γ̂ , hence using the fracture mesh), in general an interpolation
has to be performed between the bulk mesh Th covering Ω̂ and the fracture mesh T̃h on Γ̂.
We solve the system (39) directly using the LU factorization with the package ”SuperLU”
provided by the Gmm++ library.

3.3 The splitting strategy

The full problem of flow and compaction is therefore coupled, non linear and a fully implicit
approach would be too onerous. In this paragraph we describe the splitting strategy that
we use in order to solve the whole problem. Let us define the linear operator Σ that
associates to φh the numerical solution σn+1

Th to the stress problem whose coefficients are
evaluated in φh:

σn+1
Th = Σ(φh)

We introduce the linear operator P that associates to the functions, φh, φfh, lΓ, and
∆(φJ)h the solutions Un+1

h , pn+1
h , Ũn+1

h and p̃n+1
h of the fluid dynamic problem, where

the coefficients are evaluated in φh, φfh, lΓ:

(Un+1
h , pn+1

h , Ũn+1
h , p̃n+1

h ) = P (φh, φfh, lΓ,∆(φJ)h) .

The initial conditions that we need are the initial porosity of the non-compacted state φ0,
the initial porosity of the fracture φ0

f , the initial pressure p0, the initial aperture of the

fracture l0Γ, the initial bulk pressure σ0
T , and initial effective stress σ0

e . Known, p0, l0Γ we
compute φ0, σ0

T and σ0
e through some fixed point iterations, so that the initial configuration

is an equilibrium one.
Then we can start the time iterations (each time step consist in an inner loop of fixed

point iterations). We start by computing the bulk pressure

σn+1
T = Σ(φn).

We can then compute the effective stress as σn+1
e = σn+1

T − pn, the porosities and the
fracture aperture as

φn+1 = φ0e
−βσn+1

e ,

ln+1
Γ = l0Γ + lΓ,m

(
e−βfσ

n+1
e,N − e−βfσ

0
e,N

)
,

φn+1
f =

ln+1
Γ

l0Γ
φ0
f .

Finally we compute the velocities Un+1, Ũn+1 and pressures pn+1, p̃n+1:

(Un+1, pn+1, Ũn+1, p̃n+1) = P
(
φn+1, φn+1

f , ln+1
Γ ,∆(φJ)

)
,
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where we choose ∆(φJ) = φn+1J(C0, C0, φn+1)− φnJ(C0, C0, φn), and iterate until con-
vergence is achieved for each time step. The stopping criterion is based on the variations
of the Jacobian J(C,C0, φ), which accounts for the deformation of the physical domain.
Thus, set Jn+1

k the vector of the DOFs of the finite element function J(C0, C0, φn+1
k ) we

check for each fixed point iteration k < Kmax if

||Jn+1
k − Jn+1

k−1 ||2
||Jn+1

k ||2
< tol.
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Figure 7: A scheme of the splitting strategy employed.
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4 Implementation

4.1 Overview

In this section we will describe the structure of the code we implemented to solve the
problem analysed in the previous sections.
The starting points of the code were two pre-existing programs. The first one, developed by
Bianca Giovanardi in her master thesis work [12], is able to simulate the coupled problem
of fluid flow and mechanical compaction in a sedimentary layer, the second one, developed
by Alessio Fumagalli and Anna Scotti, related to their works [10], [11], is able to solve
the purely fluid dynamic problem in a domain cut by fractures. Thus, both programs
have their specific capabilities, useful to solve our target problem, and as well their own
limitations. To solve the coupled problem of our interest we will merge the two programs,
leveraging their different strengths and building a clean and structured framework handy
for the users.

The code is based on GetFEM++, a C++ finite element library. The library includes
the tools for the import of meshes and for the construction of regular ones, as well as
the usual tools for finite element such as assembly procedures for PDEs and interpolation
methods. GetFEM++ includes Gmm++, that is a generic C++ template library for sparse,
dense and skyline matrices.

First of all let us go through some GetFEM++ terminology. The mesh is an object
composed of convexes. Convexes can be simple line segments, prisms, tetrahedrons, curved
triangles, and so on. They all have an associated reference convex. E.g. for segments, this
will be the [0, 1] segment, for triangles this will be the canonical triangle (0, 0) − (0, 1) −
(1, 0). All convexes of the mesh are constructed from the reference convex through a
geometric transformation. In order to define the geometric transformation, the geometrical
nodes are defined on the reference convex. The geometric transformation maps these nodes
into the mesh nodes. On the mesh, a set a basis functions is defined: the finite element
(FEM ). The basis functions are attached to some geometrical points, where the degrees of
freedom are located. The set of all basis functions on the mesh forms the basis of a vector
space, on which the PDE will be solved. Obviously, the FEM have to be defined for both
the unknown functions and the data. The finite element methods involve the computation
of integrals of these basis functions on the convexes (and faces of convexes), approximated
using appropriate quadrature formulas. Hence, to each convex is attached an integration
method along with the FEM. The process of construction of a global linear system from
integrals of basis functions on each convex is the assembly procedure. A mesh with a set
of FEM attached to its convexes is called a mesh fem object in GetFEM++, and a mesh
with a set of integration methods attached to its convexes is called a mesh im object.

Since the two previous programs have been developed for two different applications
they are also characterized by a completely different structure. Four new classes were
built in order to merge the the two programs, extend their capabilities and blend them in
a common interface.
The two files functions.cpp and functions.h contain the constants and the constitutive
relations, as well as some other useful functions. A data file data allows to set the technical
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data, such as the finite elements funtions, the mesh description, the penalization and
stabilization parameters, and the most important physical information related to the rock
medium and fracture, such as the depth, the permeability parameter and the porosity of
the non-compacted initial configuration.

4.2 The classes

The four new objects have different task but all of them exploit smart pointers to efficiently
link together the different classes of the two previous programs.
We have the MeshHandlerX, an object that manages the construction and compaction of
the meshes were the differential problems are solved.
Then we have the IC that takes care of the setting of the initial conditions.
Finally we have the StressHandler and Darcy, two objects that, through a similar public
interface, that includes the methods create, init, assembly and solve, set and solve
respectively the differential problem related to the stress and the flow. They also manage
other tasks related to the problems, such as the updates of the coefficients and sources as
well as the export of the solutions in the in the Visualization Toolkit format.
Both, StressHandler and Darcy, contain two smart pointers to the MeshHandlerX and IC,
initialised by their constructors, to have a direct link to the mesh and the initial conditions
data. The method create initializes the smart pointer that manages the object used to
solve a specific block of the problem. init initialises the setting of the block including the
finite element methods for the solution and the coefficients and the integration methods
used to compute the integrals during the assembling. The method assembly assemblies the
algebraic system associated to the differential problem, using the assembling tools provided
by GetFEM++. Each brick of the matrix is built calling the associated operator (defined
in the correspondent operators file), then assembly organizes the bricks to compose the
full algebraic system. The method solve solves the algebraic system with the super LU
technique provided by Gmm++.
The different classes read the needed input data through a GetPot object which is one of
the input of the constructors.
We would like to point out that the updates of the shared pointers are performed with
make shared which is considerably faster because it can use a single allocation for both
the object and its corresponding control block, eliminating a significant portion of the
shared ptr construction overhead reducing one of the major efficiency complaints about
shared ptr.
Notice that showing the public interfaces of the objects in the next pages we omitted the
”get” methods, used to have access to its private members, for brevity.

4.2.1 Class MeshHandlerX

The MeshHandler (previously developed by Fumagalli-Scotti) was constructed mainly to
build or import the mesh, set the FEM for velocity, pressure, coefficients and, given a
pointer to a FractureSet, to cut the mesh. This is its public interface
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public :
MeshHandler ( const GetPot& dataFi l e ,

const std : : s t r i n g& sectionDomain = "" ) ;

void setUpMesh ( ) ;

void setUpRegions ( const FracturesSetPtr Type& f r a c t u r e ) ;

void setUpFEM ( ) ;

void computeMeshMeasures ( ) ;

void

printCuttedElements ( const std : : s t r i n g& vtkFolder = "vtk/" ,
const std : : s t r i n g& fi leName = "CuttedElements" ) const ;

The object MeshHandlerX extends the capabilities of the MeshHandler, as we can see
from its public interface

public :

//! @name Constructor

//@{

//! \brief The constructor.

/**

* @param dataFile GetPot object for the input reading.

* @param sectionDomain The input section of the medium data.

* @param dataTime The input section of the time data.

*/

MeshHandlerX ( const GetPot& dataFi l e ,
const std : : s t r i n g& sectionDomain = "" , const std : : s t r i n g&

dataTime = "" ) ;
//@}

//! @name Core methods

//@{

//! \brief Sets the mesh.

void setUpMesh ( ) ;

//! \brief Sets the regions of the domain.

void setUpRegions ( const FracturesSetPtr Type& f r a c t u r e ) ;

//! \brief Sets the FEM.

void setUpFEM ( ) ;

//! \brief Compute h^-1 used to impose the boundary condition with Nitsche

penalisation.

void computeMeshMeasures ( ) ;

//! \brief Saves the cutted elements in a .vtk file.

void

printCuttedElements ( const std : : s t r i n g& vtkFolder = "vtk/" ,
const std : : s t r i n g& fi leName = "CuttedElements" ) const ;

//! \brief Computes the positions of the nodes of the fixed (compacted) mesh.

void computeFixPos ( const sca larVector Type & C 0 , const sca larVector Type &
p h i o l d c u r r , s td : : s t r i n g f o l d e r ) ;

//! \brief Compacts the mesh changing the position of the nodes.
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void compactMesh ( const sca larVector Type & fixedPos , const getfem : : mesh fem &
mf s ) ;

//! \brief Performs the progressive compaction of the mesh.

void moveMesh( const sca larVector Type & C 0 , const sca larVector Type & phi o ld ,
const sca larVector Type & phi new , const sca larVector Type & z o l d ) ;

//! \brief Compute the compacted mesh with Triangle.

void t r i a n g l e ( ) ;

//! \brief Compute the positions of the nodes of the physical mesh from the

compacted mesh.

void computePhysPos ( const getfem : : mesh fem & mf s o ld , const

sca larVector Type & C 0 , const sca larVector Type & p h i o l d c u r r , s td : :
s t r i n g f o l d e r ) ;

//! \brief Un -compacts the mesh changing the position of the nodes.

void uncompactMesh ( const getfem : : mesh& fixmesh , const sca larVector Type &
physPos , const getfem : : mesh fem & mf s ) ;

//! \brief Compute the height of the compacted domain.

void computeH ( ) ;
//@}

First of all the MeshHandlerX is able to build meshes of arbitrary dimensions from the
mesh input data that it reads. Moreover it can manage the progressive compaction of the
mesh, step by step with the moveMesh method, and the complete compaction with the two
methods computeFixPos (computes the positions of the nodes of the fixed [compacted]
mesh) and compactMesh (updates the nodes given the fixed positions). The complete
compaction process was split in two methods to grant more freedom to the user. For
example our application involves the use of two MeshHandlerX, one associated to the fixed
[compacted] mesh (denoted simply as ”mesh”) where we solve the differential problems,
and another one associated to the moving mesh (denoted as ”Z mesh”) that compacts
gradually. So the computation of the fixed position is performed at the beginning on
”Z mesh” which has the FEM already set, and then its fixed position output is used as
input to call compactMesh on ”mesh”.
Both moveMesh and computeFixPos have to solve a problem like (6) for the rock velocity.
To this aim MeshHandlerX contains a smart pointer to a problemZpde object (part of the
previous implementation), which solves a partial differential equation of type

∂σ

∂z
= f in Ω

σ = σ̃ on ΓD.

Moreover, differently from the previous implementation, it is able also to set and manage
the FEM for the stress.

private :
// shared_ptr <MeshHandler_Type >

MeshHandlerPtr Type M MeshHP;

// integration method for stress

std : : s t r i n g M integrat ionTypeStres s ;
getfem : : mesh im M integrat ionMethodStress ;
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// mesh_fem for stress

std : : s t r i n g M fEMTypeStress ;
getfem : : mesh fem M meshFEMStress ;

// The SUPG parameter

s c a l a r t y p e M delta ;

// The timestep

s c a l a r t y p e M del ta t ;

// The position of the compacted mesh

sca larVector Type M fixedPos ;

sca larVector Type M z new ;

// The data regarding the Stress

getfem : : pfem M pFETypeStress ;

getfem : : p integrat ion method M pintegrat ionTypeStress ;

s c a l a r t y p e M K0;

// shared_ptr <problemZpde >

problemZpdePtr Type M problemZpde ;

// Vector containing the coordinates of the nodes of the border

std : : vector<std : : pa ir<s c a l a r t y p e , s c a l a r t y p e> > M nodes ;

// Vector containing the ids of the points of the border segments

std : : vector<std : : pa ir< int , int > > M segments ;

// prompt command for Triangle

std : : s t r i n g M tr iang l e ;

//flags for Triangle

std : : s t r i n g M tr iang l eF lags ;

//file for Triangle execution

std : : s t r i n g M t r i a n g l e F i l e ;

// Height of the compacted domain

s c a l a r t y p e M H;

4.2.2 Class IC

The class IC has the task to set and store the initial conditions as well as to read the
physical input data, allowing us to keep the main clean and compact.

public :

//! @name Constructor

//@{

//! \brief The constructor.

/**

* @param meshHXP Smart pointer to the Mesh Handler Extended.

* @param dataFile GetPot object for the input reading.

* @param sectionDomain The input section of the medium data.

* @param dataFracDomain The input section of the fracture data.
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*/

IC ( const MeshHandlerXPtr Type & meshHXP, const GetPot& dataFi l e , const std : :
s t r i n g& sectionDomain = "" , const std : : s t r i n g& dataFracDomain = "" ) ;

//@}

//! @name Core methods

//@{

//! \brief Sets the initial conditions for the variable that do not need fixed

point iterations.

void s e t I n i t i a l C o n d i t i o n s ( ) ;
//! \brief Overload of the method that is able to use an arbitrary initial

distribution of kerogen passed as a functor.

template<class Type>
void s e t I n i t i a l C o n d i t i o n s (Type const & C )
{

// Initial temperature , depth and stress boundary condition

T = 20 . + depth 0 ∗ gradientT ;
s igma bc = 2500.∗ g∗depth 0 ;

// Water saturation

gmm: : r e s i z e (S w , mf coe f . nb dof ( ) ) ; gmm: : c l e a r ( S w ) ;
for ( s i z e t y p e i = 0 ; i < mf coe f . nb dof ( ) ; i++)

S w [ i ] = 1 . ;

// Oil saturation

gmm: : r e s i z e ( S o , mf coe f . nb dof ( ) ) ; gmm: : c l e a r ( S o ) ;
for ( s i z e t y p e i = 0 ; i < mf coe f . nb dof ( ) ; i++)

S o [ i ] = 0 . ;

// Kerogen concentration

gmm: : r e s i z e ( C 0 , mf s . nb dof ( ) ) ; gmm: : c l e a r ( C 0 ) ;
for ( s i z e t y p e i = 0 ; i < mf s . nb dof ( ) ; i++)

C 0 [ i ] = C( mf s . p o i n t o f b a s i c d o f ( i ) [ 0 ] , mf s . p o i n t o f b a s i c d o f ( i )
[ 1 ] ) ;

// Pressure

gmm: : r e s i z e ( p 0 s , mf s . nb dof ( ) ) ; gmm: : c l e a r ( p 0 s ) ;
for ( s i z e t y p e i = 0 ; i < mf s . nb dof ( ) ; i++) {

s c a l a r t y p e z = mf s . p o i n t o f b a s i c d o f ( i ) [ 1 ] ;
p 0 s [ i ] = wate r dens i ty ∗g ∗( depth 0 + Z top − z ) ;

}
gmm: : r e s i z e ( p 0 , mf p . nb dof ( ) ) ; gmm: : c l e a r ( p 0 ) ;
getfem : : i n t e r p o l a t i o n ( mf s , mf p , p 0 s , p 0 ) ;

// Porosity

gmm: : r e s i z e ( ph i o ld prev , mf s . nb dof ( ) ) ; gmm: : c l e a r ( p h i o l d p r e v ) ;
for ( s i z e t y p e i = 0 ; i < mf s . nb dof ( ) ; i++)

p h i o l d p r e v [ i ] = ph i 0 ;

// Stress

gmm: : r e s i z e ( s i g m a e f f 0 , mf s . nb dof ( ) ) ; gmm: : c l e a r ( s i g m a e f f 0 ) ;

gmm: : r e s i z e ( p h i o l d c u r r , mf s . nb dof ( ) ) ; gmm: : c l e a r ( p h i o l d c u r r ) ;

}

//! \brief Sets the initial conditions for porosity and stress with fixed point

iterations.

void se t In i t ia lPh iAndSigma ( ) ;
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//! \brief Checks the convergence of the fixed point iterations.

inline bool checkConvergence ( ) const

{
return s q r t ( no rm d i f f /norm) < t o l f i x e d p o i n t ;

}

//! \brief Updates the porosity.

inline void updatePhi ( )
{

p h i o l d p r e v = p h i o l d c u r r ;
}

//! \brief Updates the boundary conditions for the stress

inline void updateSigmaBC ( )
{

s igma bc = sigma bc + 2500.∗ g ∗(M meshHXP−>getDeltaT ( ) ) ∗ sed imentVe loc i ty ;
}

//! \brief Sets saturation and initial porosity for the fracture

void s e t I n i t i a l F r a c V a l ( const FracturesSetPtr Type & f r a c t u r e s ) ;

//! \brief Updates the changed dofs after the new mesh is built with Triangle

void updateFEM ( ) ;
//@}

The method setInitialConditions sets the initial conditions for the bulk medium pres-
sure p (and eventually for saturations Sw, So, and kerogen concentration C) that do not
need fixed point iteration in order to be initialized. In order keep the code more general
for further applications, the overload of this method was performed to support arbitrary
initial concentration C, that is taken in input by the method as a functor.
On the other hand the method setInitialPhiAndSigma sets the initial conditions for the
bulk medium porosity φ, bulk pressure σ and effective stress σe that need some fixed point
iterations, keeping the initial pressure constant with the hydrostatic value, to start from a
configuration of equilibrium. The stress problem is solved by a problemZpde object that,
again, is controlled by the IC from a smart pointer stored as an attribute of the class.
The IC also takes care of computing the target norms and checking the convergence
achievement inside the fixed point loop. Moreover setInitialFracVal sets the initial
data regarding the fracture, like the saturation and porosity. Finally the IC has two meth-
ods to update the porosity, used for the fixed point iterations, and the boundary conditions
used by the the StressHandler , which change with the progressive burial of the domain.

private :

//Mesh Handler Extended

MeshHandlerXPtr Type M meshHXP;

//FEM for the coefficients

getfem : : mesh fem mf coe f ;

//FEM for the stress

getfem : : mesh fem mf s ;

//FEM for the pressure

getfem : : mesh fem mf p ;

//Water Saturation
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sca larVector Type S w ;
sca larVector Type S w f rac ;

//Oil Saturation

sca larVector Type S o ;

// Kerogen concentration

sca larVector Type C 0 ;

// Pressure

sca larVector Type p 0 s ;
sca larVector Type p 0 ;

// Porosity

sca larVector Type p h i o l d p r e v ;
sca larVector Type p h i o l d c u r r ;

// Stress

sca larVector Type s i g m a e f f 0 ;
sca larVector Type sigma 0 ;

// temperature

s c a l a r t y p e T;
s c a l a r t y p e gradientT ;

// Initial depth

s c a l a r t y p e depth 0 ;

// stress boundary condition

s c a l a r t y p e sigma bc ;

s c a l a r t y p e Z top ;

//The SUPG parameter

s c a l a r t y p e de l t a ;

//Norms for the fixed point iterations

s c a l a r t y p e norm d i f f ;
s c a l a r t y p e norm ;

// Tollerance fot the fixed point iterations

s c a l a r t y p e t o l f i x e d p o i n t ;

// Compressibility for the rock medium

s c a l a r t y p e beta ;

// Initial porosity

s c a l a r t y p e ph i 0 ;

// Initial porosity for the fracture

s c a l a r t y p e phiF 0 ;

// Initial Porosity for etaN

sca larVector Type ph i f racN0 ;

// Initial Porosity for etaT

sca larVector Type ph i f racT0 ;

s c a l a r t y p e sed imentVe loc i ty ;

// Initial thickness

s c a l a r t y p e M bi ;
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//Max thickness

s c a l a r t y p e M bm;

// Fracture compressibility

s c a l a r t y p e M betaf ;

problemZpdePtr Type M problemZpde ;

//First component of the versor tangent to the fracture

s c a l a r t y p e M tau1 ;

// second component of the versor tangent to the fracture

s c a l a r t y p e M tau2 ;

//First component of the versor normal to the fracture

s c a l a r t y p e M n1 ;

// second component of the versor normal to the fracture

s c a l a r t y p e M n2 ;

// Poisson coef

s c a l a r t y p e M nu ;

4.2.3 Class StressHandler

The StressHandler object has the task to solve the equation of the type (33) for the
stress, and again this is accomplished through a smart pointer pointing to a problemZpde

object. It contains, stored within its attributes, a smart pointer to the MeshHandlerX and
one to the IC that give it direct access to the initial conditions, the input data and the
mesh where we want to solve the differential problem. Its constructor also takes as input
a FractureSet object which is needed in order to update some quantities related to the
fracture, like its thickness.

public :

//! @name Constructor

//@{

//! \brief The constructor.

/**

* @param meshHXP Smart pointer to the Mesh Handler Extended.

* @param ICP Smart pointer to the Initial Conditions Handler.

* @param fractures Smart pointer to the fracture set.

*/

Stre s sHand le r ( const MeshHandlerXPtr Type& meshHXP,
const ICPtr Type& ICP ,
const FracturesSetPtr Type& f r a c t u r e s ) ;

//@}

//! @name Core methods

//@{

//! \brief Set the initial stress used to compute the fracture thickness.

void computeIn i t ia lData ( ) ;

//! \brief Compute rhs for the Stress problem.

void computeData ( const sca larVector Type& phi new prev ) ;
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//! \brief Creates the ProblemZpde object.

void c reateSt re s sProb l em ( ) ;

//! \brief Sets the type of the mesh (w.r.t. the getfem classification of

geometric transformations) and the mesh itself , the integration method , the

finite element space , the finite element space for coefficients. All the

input coefficients must be finite element functions of the type set.

inline void i n i t ( )
{

M problemZpde−>setMesh (M meshHXP−>getMeshType ( ) , M meshHXP−>getMesh ( ) ) ;
M problemZpde−>se t Integrat ionMethod (M meshHXP−>get Integ ra t i onMethodSt re s s ( )

) ;
M problemZpde−>s e tF in i t eE lement ( mf s ) ;
M problemZpde−>s e t F i n i t e E l e m e n t C o e f f i c i e n t s ( mf coe f ) ;

}

//! \brief Assemblies the algebraic system associated to the weak formulation

of the problem.

inline void assembly ( )
{

M problemZpde−>assembly ( ) ;
}

//! \brief Solves the algebraic system built with the function assembly.

inline void s o l v e ( )
{

M problemZpde−>s o l v e ( ) ;
}

//! \brief Exports the matrix associated to the algebraic system built with the

function assembly.

inline void exportMatrix ( )
{

M problemZpde−>exportMatrix ( ) ;
}

//! \brief Exports solution of the problem in a .vtk file.

inline void exportVtk ( std : : s t r i n g f o l d e r )
{

M problemZpde−>exportVtk ( f o l d e r ) ;
}

//! \brief Computes the effective stress.

void computeStrEff ( const sca larVector Type& P new prev ) ;

//! \brief Updates the thickness of the fracture.

void computeAperture ( ) ;

//@}

The method computeInitialData computes, from the stress initial condition provided by
the IC, the initial stress values in the dof of the fracture needed in order to update the
fracture thickness at each time step.
The method computeData sets the right hand side of the differential problem.
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As previously anticipated the core methods related to the differential problem are
createStressProblem, that updates the pointer to problemZpde through the use of
make shared, init, assembly and solve which were already illustrated.
Moreover the StressHandler is responsible, given the pressure computed by Darcy, for
updating the effective stress.
It also takes care of the mechanical compaction of the fracture, computing its current
thickness with computeAperture.

We complete its description with the list of its private attributes

private :

//Mesh Handler Extended

MeshHandlerXPtr Type M meshHXP;

// IC

ICPtr Type M ICP ;

// Fracture Set

FracturesSetPtr Type M fracture s ;

// Auxiliary initial effective stress

sca larVector Type M s igma e f f o ld coe fN ;

// Auxiliary initial effective stress

sca larVector Type M sigma e f f o ld T ;

// Matrix to switch from mf_coef to the pressure FE of the fracture

sparseMatrixPtr Type M fractureMediumInterpolat ionMatr ix ;

sca larVector Type M rho f s ;

sca larVector Type M rhs coe f ;

problemZpdePtr Type M problemZpde ;

sca larVector Type M sigma new curr ;

sca larVector Type M P new prev s ;

sca larVector Type M sigma e f f new curr ;

//The fracture thickness used to compute etaT

sca larVector Type M b etaT ;

//The fracture thickness used to compute etaN

sca larVector Type M b etaN ;

getfem : : mesh fem mf coe f ;

getfem : : mesh fem mf s ;

getfem : : mesh fem mf p ;

4.2.4 Class Darcy

The class Darcy extends a pre-existing class that was able to build and solve the system
(39) associated to the full fluid dynamic problem.
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public :

public :

DarcyFractured ( const MediumDataPtr Type& medium ,
const MeshHandlerPtr Type& mesh ,
const BCHandlerPtr Type& bcHandler ,
const FracturesSetPtr Type& f r a c t u r e s ,
const ExporterPtr Type& expor te r ) ;

void i n i t ( ) ;

void assembly ( ) ;

void s o l v e ( ) ;

Darcy is able to implement realistic permeabilities, porosities and source terms and also
to take into account the gravity effect, that was neglected in the previously implemented
class DarcyFractured

public :

//! @name Constructor

//@{

//! \brief The constructor.

/**

* @param meshHXP Smart pointer to the Mesh Handler Extended.

* @param ICP Smart pointer to the Initial Conditions Handler.

* @param bcHandler Smart pointer to the Boundary Conditions Handler.

* @param fractures Smart pointer to the fracture set.

* @param exporter Smart pointer to the Exporter.

*/

Darcy ( const MediumDataPtr Type& medium ,
const MeshHandlerXPtr Type& meshHXP,
const ICPtr Type& ICP ,
const BCHandlerPtr Type& bcHandler ,
const FracturesSetPtr Type& f r a c t u r e s ,
const ExporterPtr Type& expor te r ) ;

//@}

//! @name Core methods

//@{

//! \brief Sets finite element , permeability , integration methods and select

the boundaries.

inline void i n i t ( )
{

M darcyFractured−> i n i t ( ) ;
}

//! \brief Assemblies the algebraic system associated to the weak formulation

of the problem.

inline void assembly ( )
{

M darcyFractured−>assembly ( ) ;
}

//! \brief Solves the algebraic system built with the function assembly.

inline void s o l v e ( )
{

M darcyFractured−>s o l v e ( ) ;
}
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//! \brief Exports the pressure solution of the problem in a .vtk file.

inline void exportVtk ( const std : : s t r i n g& s t r )
{

M darcyFractured−>exportVtk ( s t r ) ;

}

//! \brief Creates the Darcy Fractured object.

void createDarcyFrac ( const s c a l a r t y p e& depth ) ;

//! \brief Coumputes rh, gravity , permeability.

void computeData ( const sca larVector Type& phi new curr , const

sca larVector Type& phi o ld , const sca larVector Type& b etaN , const

sca larVector Type& b etaT , const sparseMatrixPtr Type &
fractureMediumInterpo lat ionMatr ix ) ;

//@}

The core interface includes the methods createDarcyFrac, which updates
DarcyFracturedPtr through the use of make shared, init, assembly and exportVtk.
Moreover, given the thickness of the fracture from the StressHandler, it manages the
computation of the right hand side, gravity terms and the permeabilities of the medium
and fracture.

private :

MeshHandlerXPtr Type M meshHXP;

DarcyFracturedPtr Type M darcyFractured ;

ICPtr Type M ICP ;

MediumDataPtr Type M medium ;

BCHandlerPtr Type M bcHandler ;

FracturesSetPtr Type M fracture s ;

ExporterPtr Type M exporter ;

sca larVector Type M KK xx ;

sca larVector Type M KK xz ;

sca larVector Type M KK zz ;

sca larVector Type M etaN ;

sca larVector Type M etaT ;

s c a l a r t y p e M depth ;

sca larVector Type M G c ;

sca larVector Type M Gf c ;

s i z e t y p e M etaTsize ;

sca larVector Type M rh coef ;

sca larVector Type M rh F ;
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sca larVector Type M phi fracTold ;

getfem : : mesh fem mf coe f ;

getfem : : mesh fem mf s ;

getfem : : mesh fem mf p ;

4.3 Functions and data

All the given functions and constants are specified in the files functions which was kept
and extended from the previous implementation. These data are kept separated, in order
to simplify the procedure of changing constitutive relation, such as the porosity law or
the relative permeabilities. We report the file function.h. Most of the functions are
implemented twice: once for the scalar variables and once for the vectorial ones.

// ---------------------------------------------------------------------------------

// Some given coefficients

-------------------------------------------------------------------------------

// ---------------------------------------------------------------------------------

// The densities and viscosities

const s c a l a r t y p e w a t e r v i s c o s i t y = 0 . 0 0 1 ; // [Pa s]

const s c a l a r t y p e o i l v i s c o s i t y = 0 . 0 0 2 ; // [Pa s]

const s c a l a r t y p e wate r dens i ty = 1 0 0 0 . ; // [kg/m3]

const s c a l a r t y p e o i l d e n s i t y = 7 5 0 . ; // [kg/m3]

const s c a l a r t y p e ke rogen dens i ty = 1 1 5 0 . ; // [kg/m3]

const s c a l a r t y p e r o c k d e n s i t y = 2 5 0 0 . ; // [kg/m3]

// The coefficients for the arrhenius law

const s c a l a r t y p e ar rhen iusFacto r = 1E12 ; // [1/s]

const s c a l a r t y p e act ivat ionEnergy = 2 0 0 . 0∗1 0 0 0 . 0 ; // [J/mol]

const s c a l a r t y p e gasConstant = 8 .314472 ; // [J/ (K mol)]

// The gravity acceleration

const s c a l a r t y p e g = 9 . 8 1 ; // [m/s2]

// The coefficient for the permeability function

const s c a l a r t y p e DarcyTOm2 = 0.987∗1E−12; // conversion factor from Darcy to

squared meters

// The permeability tensor

const s c a l a r t y p e k xx = 1 . ; // [-]

const s c a l a r t y p e k xz = 0 . ; // [-]

const s c a l a r t y p e k zz = 1 . ; // [-]

// The coefficients for the capillary pressure function

const s c a l a r t y p e PD = 1E6 ; // [Pa]

const s c a l a r t y p e a c e n t r i c f a c t o r = 0 . 6 6 4 ; // [-]

const s c a l a r t y p e m = 0.48508 + 1.55171∗ a c e n t r i c f a c t o r − 0.151613∗ a c e n t r i c f a c t o r ∗
a c e n t r i c f a c t o r ; // [-]

// ---------------------------------------------------------------------------------

// Some given functions

-------------------------------------------------------------------------------

// ---------------------------------------------------------------------------------

// Arrehnius constant for kerogen breakdown as a function of temperature [C]
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inline s c a l a r t y p e arrheniusK ( s c a l a r t y p e T) {
return ar rhen iusFacto r ∗exp(−act ivat ionEnergy /( gasConstant ∗(T+273.0) ) ) ;

}

// The capillary pressure function [Pa] and its first derivative wrt Sw [Pa]

s c a l a r t y p e c a p i l l a r y p r e s s u r e ( const s c a l a r t y p e &Sw) ;
s c a l a r t y p e c a p i l l a r y p r e s s u r e p r i m e ( const s c a l a r t y p e &Sw) ;

// Functions that compute water mobility [(Pa s)^-1]

std : : vector<s c a l a r t y p e> lambda w ( const std : : vector<s c a l a r t y p e> &S w ) ;

inline s c a l a r t y p e lambda w ( const s c a l a r t y p e &S w ) {
return S w∗S w∗S w/ w a t e r v i s c o s i t y ;

}

// Functions that compute the first derivative of water mobility [(Pa s)^-1]

std : : vector<s c a l a r t y p e> lambda prime w ( const std : : vector<s c a l a r t y p e> &S w ) ;

inline s c a l a r t y p e lambda prime w ( const s c a l a r t y p e &S w ) {
return 3 .∗ S w∗S w/ w a t e r v i s c o s i t y ;

}

// Functions that compute oil mobility [(Pa s)^-1]

std : : vector<s c a l a r t y p e> lambda o ( const std : : vector<s c a l a r t y p e> &S o ) ;

inline s c a l a r t y p e lambda o ( const s c a l a r t y p e &S o ) {
return S o∗S o ∗ ( 1 . − ( 1 . − S o ) ∗ ( 1 . − S o ) ) / o i l v i s c o s i t y ;

}

// Functions that compute the first derivative of oil mobility [(Pa s)^-1]

std : : vector<s c a l a r t y p e> lambda prime o ( const std : : vector<s c a l a r t y p e> &S o ) ;

inline s c a l a r t y p e lambda prime o ( const s c a l a r t y p e &S o ) {
return 2 .∗ S o ∗ ( 1 . − ( 1 . − S o ) ∗ ( 1 . − S o ) ) / o i l v i s c o s i t y + S o∗S o ∗ ( 2 . ∗ ( 1 . −

S o ) ) / o i l v i s c o s i t y ;
}

// Functions that compute the porosity at t^n+1 [-]

std : : vector<s c a l a r t y p e> computePorosity ( const std : : vector<s c a l a r t y p e> &C 0 ,
const s c a l a r t y p e &phi 0 ,
const std : : vector<s c a l a r t y p e> &C new ,
const std : : vector<s c a l a r t y p e>&sigma new ,
const s c a l a r t y p e beta ,
const std : : vector<s c a l a r t y p e>&i n t e g r a l ) ;

s td : : vector<s c a l a r t y p e> computeAthyPorosity ( const std : : vector<s c a l a r t y p e> &C 0 ,
const s c a l a r t y p e &phi 0 ,
const std : : vector<s c a l a r t y p e>

&C new ,
const std : : vector<s c a l a r t y p e>

&sigma new ,
const s c a l a r t y p e beta ) ;

// Function that computes the density of the solid matrix [kg/m3]

inline s c a l a r t y p e so l idMatr ixDens i ty ( s c a l a r t y p e C, s c a l a r t y p e C 0 ) {
return ( ( 1 . − C 0 ) ∗ r o c k d e n s i t y + C∗ ke rogen dens i ty ) / ( 1 . − C 0 + C) ;

}

// Function that computes the fluid density [kg/m3]

std : : vector<s c a l a r t y p e> f l u i d D e n s i t y ( std : : vector<s c a l a r t y p e> S o ) ;

// Function that computes the concentration at t^n+1 [m3_ker/m3_rock]
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std : : vector<s c a l a r t y p e> computeConcentration ( const std : : vector<s c a l a r t y p e> &
C old , const std : : vector<s c a l a r t y p e> K new , const s c a l a r t y p e d e l t a t ) ;

// Functions that compute the Jacobian determinant of the trasformation from the

phyisical domain to the reference one [-]

inline s c a l a r t y p e J ( const s c a l a r t y p e &C, const s c a l a r t y p e &C 0 , const

s c a l a r t y p e &phi ) {
return ( 1 . − C 0 + C) / ( ( 1 . − C 0 ) ∗ ( 1 . − phi ) ) ;

}

std : : vector<s c a l a r t y p e> J ( const std : : vector<s c a l a r t y p e> &C, const std : : vector<
s c a l a r t y p e> &C 0 , const std : : vector<s c a l a r t y p e> &phi ) ;

// Functions that compute the scalar permeability (i.e. the function that

multiplies the permeability tensor) [m2]

s c a l a r t y p e s c a l a r P e r m e a b i l i t y ( const s c a l a r t y p e &phi , const s c a l a r t y p e &K0) ;

std : : vector<s c a l a r t y p e> s c a l a r P e r m e a b i l i t y ( const std : : vector<s c a l a r t y p e> &phi ,
const s c a l a r t y p e &K0) ;

// Function that computes the numerical flux [kg/(m2 s)]

s c a l a r t y p e f l u x f u n c t i o n ( const s c a l a r t y p e &So , const s c a l a r t y p e &un , const

s c a l a r t y p e &gn , const s c a l a r t y p e &phi , const s c a l a r t y p e &K0) ;

// Function that computes the first derivative of the numerical flux wrt So [kg/(m2

s)]

s c a l a r t y p e f l u x f u n c t i o n p r i m e ( const s c a l a r t y p e &So , const s c a l a r t y p e &un , const

s c a l a r t y p e &gn , const s c a l a r t y p e &phi , const s c a l a r t y p e &K0) ;

// ---------------------------------------------------------------------------------

// Some useful functions

-------------------------------------------------------------------------------

// ---------------------------------------------------------------------------------

// A function that computes the index of the node of the mesh associated to the i-

th dof of the fem mf.

s i z e t y p e do f t o node index ( const s i z e t y p e &i , const getfem : : mesh &mesh , const

getfem : : mesh fem &mf) ;

// A function that converts an integer number into a string containing that number

std : : s t r i n g conve r t In t ( s i z e t y p e number ) ;

// Read a chart containing the values of function pi_w for 1000 values of S_w

// equidistributed in [0, 1]

void r e a d t a b l e ( std : : vector<s c a l a r t y p e> &pi w tab l e , s td : : vector<s c a l a r t y p e> &
S w tab le ) ;

// A function to compute pi_w(S_w) by interpolating pi_w_table linearily [Pa]

s c a l a r t y p e pi w ( const s c a l a r t y p e S w , const std : : vector<s c a l a r t y p e> p i w tab l e ,
const std : : vector<s c a l a r t y p e> S w tab le ) ;

// --------------------------------------------------------------------------------

// Dirichlet boundary condition for pressure (i.e. linear w.r.t the depth). This

condition is imposed at the top boundaries

s c a l a r t y p e Pressure ( const base node &x , const s c a l a r t y p e depth ) ;

// Updates the aperture of the fracture

s c a l a r t y p e Aperture ( const s c a l a r t y p e bi , const s c a l a r t y p e bm, const s c a l a r t y p e
StrEf f , const s c a l a r t y p e S t r E f f i , const s c a l a r t y p e d) ;

s td : : vector<s c a l a r t y p e> Aperture ( const s c a l a r t y p e bi , const s c a l a r t y p e bm, const

std : : vector<s c a l a r t y p e> &StrEf f , const std : : vector<s c a l a r t y p e> &S t r E f f i ,
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const s c a l a r t y p e be ta f ) ;

s td : : vector<s c a l a r t y p e> Aperture ( const std : : vector<s c a l a r t y p e> &bi , const std : :
vector<s c a l a r t y p e> &bm, const std : : vector<s c a l a r t y p e> &StrEf f , const std : :
vector<s c a l a r t y p e> &S t r E f f i , const s c a l a r t y p e be ta f ) ;

// Posority correction for the fracture

std : : vector<s c a l a r t y p e> F phi ( const s c a l a r t y p e bi , const std : : vector<s c a l a r t y p e>
&b) ;

std : : vector<s c a l a r t y p e> F phi ( const std : : vector<s c a l a r t y p e> &bi , const std : :
vector<s c a l a r t y p e> &b) ;

// Porosity update

std : : vector<s c a l a r t y p e> PhiUp( const s c a l a r t y p e bi , const std : : vector<s c a l a r t y p e>
&b , const std : : vector<s c a l a r t y p e> &phi ) ;

4.4 The input file

The GetPot input file managed by the user is divided in sections and subsections regarding
the medium, fracture and time loop data. Beside those there are few extra parameters.
The most meaningful parameters that the user is allowed to set are

• The physical dimensions of the domain, and the initial depth of its top. The informa-
tion on the depth is used for the computation of the hydrostatic boundary condition
for pressure, the boundary condition for stress, and possibly the temperature, which
could be used in the Arrhenius law for the reaction rates;

• The position of the fracture managed with the LevelSet method

• The fracture initial and maximum thickness and initial porosity

• The maximum number of fixed point iterations and the tolerance of the fixed point
iterations

• The sedimentation velocity, which is used at each time step to compute the depth
of the source rock;

• The permeability coefficient k0 and the initial porosity of the non-compacted con-
figuration. These parameters may change a lot from case to case;

• The coefficient in the porosity law β;

• The time step and the number of time iterations

• The resolution of the meshes for the medium and fracture and their type, according to
GetFEM++ classification of the geometric transformation from the reference element
to the element of the mesh;

• The integration methods and the finite elements (for velocity, pressure, stress);

• The two parameters for the penalization of boundary conditions and for the stabi-
lization of problemZpde.
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• Flags and settings for the Triangle interface

Here is an example of input file.

#GETPOT INPUT FILE

meshFile = meshes/mesh

folderVTK = ./vtk/

stabilize = 1

numberFractures = 1

# Fixed Point Iterations parameters

N_FIXED_POINT_MAX = 100; # [-]

TOL = 1E-7; # [-]

# SUPG parameter for the stress problem

delta = 5.E4; # [-]

# Sedimentation velocity

SEDIM_VEL = 1.585E-12; # [m/s] 0.5 km / 10 My = 500 m / (10 *

10^6 * 3600 * 24 * 365 s )

# Geothermal gradient of temperature

GRAD_T = 0.035; # [C/m]

# Permeability coefficient

K0 = 1.E-6; # [Darcy]

# Initial porosity of the non -compacted configuration

PHI0 = 0.5; # [-]

# Stress coefficient

BETA = 1.E-8; # [Pa^-1]

[dataTime]

# The timestep and the number of time iterations

deltaTime = 1000000000000 # [s]

plotAt = 1

N_ITER = 3500; # [-]

[../]

[stabilization]

relaxPeclet = 1.

function = Pe -1.

[../]

[mediumData]

[./ domain]
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meshExternal = none

meshFolder = ./ meshes/

triangle = ./ Triangle/triangle

triangleFlags = -pqDa5

triangleFile = Triangle/FIX.poly

spatialDiscretizationX = 50

spatialDiscretizationZ = 30

DEPTH = 2000. # Initial depth of the top of the domain [

m]

spatialInclination = 0.

lengthAbscissa = 200.0

lengthOrdinate = 120.0

lengthQuota = 1.

meshType = GT_PK (2,1)

spaceDimension = 2.

integrationTypeVelocity = IM_TRIANGLE (6)

integrationTypePressure = IM_TRIANGLE (1)

INTEGRATIONSTR = IM_TRIANGLE (2)

POLYNOMIAL_DEGREE = 1

FEMTypeVelocity = FEM_RT0 (2)

FEMTypePressure = FEM_PK (2,0)

FEM_TYPE_STR = FEM_PK (2,1)

penaltyParameterVelocity = 5.E6

penaltyParameterPressure = 10.

nu = 0.25 #Poisson coeff

[../]

[./ darcy]

solution = 0 #function for BC on pressure

solutionIn = 0

solutionOut = 0

velocity = 0. #function for BC on velocity

[../]

[../]

[fractureData0]

spaceDimension = 1.

[./ levelSet]

levelSet = y-60. %the zero is the fracture

levelSetCut = -1

zMap = 60 %fracture equation as z=z(x)
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jacMap = 1. %ratio between grid size and actual arc

length

normalMap = [0. ,1.] #[ -0.01 ,1.] #[ -0.75 ,1.] #[ -0.25 ,1.]

integrationTypeSimplex = IM_STRUCTURED_COMPOSITE(

IM_TRIANGLE (3) ,1)

[../]

[./ domain]

position = 0.0

thickness = 0.01 #initial thickness of the fracture

thicknessMax = 0.01 #max thickness of the fracture

phiF0 = 0.9 #initial porosity of the fracture

betaF = 1.E-9; # [Pa^-1] fracture

compressibility

csi0 = 0.25 # parameter for model closure

spacing = x

spatialDiscretization = 160

translateAbscissa = 0.0

lengthAbscissa = 200

lengthOrdinate = 0.

lengthQuota = 0.

meshType = GT_PK (1,1)

integrationTypeVelocity = IM_GAUSS1D (3)

integrationTypePressure = IM_GAUSS1D (2)

FEMTypeVelocity = FEM_PK (1,1)

FEMTypePressure = FEM_PK (1,0)

FEMTypeLinear = FEM_PK (1,1)

[../]

[./ darcy]

solution = 0.0 #for BC on pressure

velocity = 0.

[../]

[../]
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4.5 The interface with an external mesh generator

Moreover the compacted mesh could show significant deformation of the elements even
if we start from a mesh of good quality, especially in presence of heterogeneities or large
amounts of reactive rock as shown in figures 8 and 9. Since the differential problems are
solved on the compacted mesh, in anticipation to the further developments of the project,
an effort was made in order to improve the quality of the mesh of the fixed domain.
Because of the limitations of the mesh generator of GetFEM++, that is able to mesh just

Figure 8: The initial mesh

Figure 9: The mesh of the compacted domain, in the presence of four strips of kerogen
partially overlapping, generated with GetFEM++

rectangular domains, the program has been interfaced with an external mesh generator.
So, if it is necessary, the mesh can be generated by Triangle that is able to build, for
example, Delaunay triangulations, constrained Delaunay triangulations, conforming De-
launay triangulations, (an example is shown in figure 10). All the flags and the options for
the use of Triangle are selectable directly from the input file. Triangle takes as an input
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Figure 10: The mesh of the compacted domain generated with Triangle

the list of nodes and segments that determine the border of the domain and it meshes the
convex hull defined by the border.
To do so we compact the initial mesh, supply the border of the compacted domain to
Triangle in a .poly format, generate the new compacted mesh and convert it to a .msh for-
mat readable by the GetFEM++ utilities. Finally we de-compact it and the de-compacted
mesh substitute the initial one to keep the order of the nodes between the fixed and the
moving mesh, property that is exploited, for example, to visualize the solution on the
physical domain. Everything is done by the MeshHandlerX with the methods triangle,
computePhysPos and uncompactMesh.
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5 Results

In this chapter we present the results of the simulations which, as we anticipated, are
performed in a two dimensional section of the sedimentary layer. First of all we consider
the test case of a fracture that cuts the layer horizontally, studying the influence of its
compressibility and considering different boundary conditions.
Once evaluated the validity of the model and the solver with the test case, we move on
to the more complex, and more interesting case of inclined fracture that cuts the domain
from the top to the bottom.
We consider, as anticipated before, a rock only filled with water and no kerogen (C(x, t) =
C0 = 0). Thus no oil can be generated (So(x, t) = S0

o = 0).

5.1 The test case of an horizontal fracture

We studied the case of a fracture that cuts the layer horizontally, analysing its potential
impact on the fluid dynamics during the rock compaction. We considered the case of an
highly permeable fracture with high initial porosity φf = 0.9, βf = 1.E − 6 Pa−1, initial
thickness lΓ,i = 0.01 m and a maximum thickness lΓ,m = lΓ,i assuming that the fracture
has not experienced previous compaction.
The position of the fracture is located by a level set function at y = 60m and the regular
one-dimensional mesh where we solve the reduced problem for the flow in the fracture has
a resolution of 160 elements.
The following tests were conducted in a 200m × 120m domain initially at the depth of
2000 m, discretized with a 50 × 30 regular mesh built with the tools provided by Get-
FEM++. The penalization and stabilization parameters were chosen as γU = 5 106

(suitably scaled according to the size of the domain) and δ = 5 104. To take into account
compaction we considered a sedimentation velocity of 500 m per 10 My.
The initial conditions for pressure consist of an hydrostatic pressure and the initial condi-
tions for the effective stress and the porosity are obtained with some fixed point iterations:
we start from a uniform porosity equal to the porosity of the initial non compacted con-
figuration (φ0 = 0.5), and compute the overload corresponding to that porosity, obtaining
the effective stress as the difference between the overload and the initial pressure in pores.
As previously anticipated, the stopping criterion is based on the variations of the Jacobian
J(C,C0, φ), which accounts for the deformation of the physical domain. Thus, set Jn+1

k

the vector of the DOFs of the finite element function J(C0, C0, φn+1
k ) we check for each

fixed point iteration k < Kmax if

||Jn+1
k − Jn+1

k−1 ||2
||Jn+1

k ||2
< tol.

We take a time step ∆t = 1012s and 3500 time iterations, for a total time span of approx-
imately 111My.
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5.1.1 An horizontal fracture that extends past the boundaries

The boundary conditions selected for the rock medium are homogeneous Neumann con-
ditions on both sides of the domain, which correspond to symmetry conditions, since we
assume that the layers continues outside the domain in the horizontal direction. We im-
pose Neumann conditions also at the bottom of the domain since Giovanardi in [12] showed
that imposing hydrostatic pressure at the bottom is a strong assumption that can lead to
unphysical solutions. Finally we impose Dirichlet conditions at the top, accounting for the
hydrostatic pressure. Hence, if we denote with d > 0 the depth of the top of the domain
and with ztop > 0 its z coordinate, we require{

p = ρw g d on ∂DΩ̂

U · n = 0 on ∂N Ω̂
.

Regarding the fracture, in this case, we impose symmetry conditions simulating a
fracture that extends past the boundaries in the horizontal direction on both sides, i.e. we
set

Ũ · n = 0 on ∂Γ̂.

The flags for the boundary conditions are handled by the BCHandler and the pressure
values at the Dirichlet boundaries are computed consistently with the user-defined depth.
In this test we simulate a progressive sedimentation of the layers above the domain during
approximately 100 My. This leads to a progressive burial of the domain, which causes the
boundary conditions for both overload and pressure to change.

We show in figure 11 the fixed mesh where we solve the differential problems, along
with a close-up of the elements cut by the fracture.

Figure 11: The fixed mesh and a close-up on the fracture. Notice that, since we are using
the XFEM, the re-meshing has the only purpose of visualization.

The position of the fracture is defined as the zero of the level set function, plotted in
figure 12.
In figure 13 we can observe the progressive compaction of the physical domain.
The compaction affects also the porosity of the whole domain as we can see from figure
14, where φ decreases significantly from the beginning to the end of the simulation in the
whole domain.
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Figure 12: The level set that defines the position of the fracture.

Figure 13: The deformation of the physical domain. Snapshots taken at t = 0, 45 and
90 My.
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Figure 14: The evolution of porosity φ in the physical domain. Snapshots taken at t = 0, 45
and 90 My.

We can notice few small oscillations, in the left side of the domain, caused by the
interpolation of the pressure, defined on the P0 dof, on the P1 dof of the stress, performed
during the computation of the effective stress.

In figure 15 we report the evolution of the pressure in the medium and fracture. The
pressure in both cases increases in time and, as we can see more precisely from the plot
with a smaller range in figure 16, the pressure in the fracture is almost homogeneous in
space, only slightly higher in the center.

Moreover, looking at the plot of the pressure over a line across the fracture shown in
figure 17, we can better see that the pressure in the fracture is comparable to that one
that we have in the medium close to it. This is reasonable because we are forcing, with the
interface conditions (26), the pressure in the fracture to be equal to the average pressure
of the medium across the fracture, plus the jump of the flow, which we expect to be small
because of the highly permeable nature of the fracture.

5.1.2 The comparison with the case without fracture

We compared the results of the fractured domain (with βf = 1.E − 6 Pa−1) to the case
with the same settings, but without fracture.

As we can see from figure 18 there is not significant change in the pressure behaviour of
the medium in the presence of the fracture. This is reasonable because, even if the fracture
is highly permeable, the symmetry boundary conditions at the fracture tips do not allow
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Figure 15: The evolution of pressure in the rock medium and fracture. Snapshots taken at
t = 0, 1.5 and 2 My.

fluid inflow/outflow in the tangential direction. Thus an horizontal fracture that extends
indefinitely on both sides of the domain does not significantly behave as a preferential
path for the flow, and the medium compaction of the domain has a way stronger impact
on the overall fluid dynamic behaviour compared to the influence of the fracture.
Moreover, since the presence of the fracture is neglected in the stress problem, as explained
in section 2.3, we do not expect significant changes in the effective stress distribution,
that ultimately means that is reasonable to not expect much variation in the porosity
distribution in the medium. This is confirmed by the plot in figure 19

5.1.3 The impact of fracture compressibility

We performed a parametric study of the behaviour of the fractured domain with different
fracture compressibility βf . Here we report the most meaningful results, regarding the
comparison of the cases with βf = 1.E − 6 Pa−1 and with βf = 1.E − 8 Pa−1.
In the case of βf = 1.E − 8 Pa−1 we have a more significant reduction of the thickness
of the fracture because of the compaction. After approximately 90 My the width of the
fracture has reduced by roughly the 30%, differently from the other case where we have
a reduction lower than 0.1% after 90 My. This implies, in the case of 1.E − 8 Pa−1, a
more tangible decrease of the fracture porosity in time, meaning that the fracture tends
to lose its high permeability. Moreover, recalling that K(φ) ∼ φ3, the permeability is
highly sensitive to porosity changes. The progressive reduction of the aperture leads in
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Figure 16: The evolution of pressure in the fracture. Snapshots taken at t = 0, 45 and
90 My.

Figure 17: On the right the plot of the pressure over the line highlighted on the left.
Snapshots taken t = 45 My.
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Figure 18: The evolution of the pressure, on the left the case of the fractured domain, on
the right the case with no fracture. Snapshots taken at t = 30, 60 My.

general to an higher overpressure, which is the pressure component that does not include
the hydrostatic pressure, especially inside the fracture as we can see from figure 20.

Even if the percent variation of the pressure is small, the differences of the pressure
values related to the different compressibility are more significant compared to the varia-
tion of the pressure that we have in space inside the fracture.
The outcome of this analysis let us presume that the mechanical behaviour of the fracture
can have a significant impact in the overall fluid dynamic behaviour of the rock medium.
In particular we expect, going toward the limit case of the closed fracture, the formation
of two separated compartment of pressure, relative to the domain Ω̂1 and Ω̂2.

5.1.4 An horizontal fracture limited to the domain

Differently from the previous case, here we present the results regarding the case of a
fracture whose extension is limited to the computational domain. Hence we impose dif-
ferent boundary conditions at the tips with respect to the previous case, in particular the
hydrostatic pressure on both ends of the fracture.
Moreover we still consider a rock medium that continues outside the domain in the hori-
zontal direction.
So we require the following boundary conditions for the problem{

p = ρw g d on ∂DΩ̂

U · n = 0 on ∂N Ω̂
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Figure 19: The evolution of the porosity on the physical domain, on the left the case of
the fractured domain, on the right the case with no fracture. Snapshots taken at t = 30, 60
My.
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Figure 20: The Max/Min pressure in the fracture in the case of different compressibility,
at t = 30, 60, 90 My.
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and
p̃ = ρw g df on ∂Γ̂,

where we denoted with df > 0 the depth of the fracture.
In this case we have a significant variation in space of the pressure inside the fracture, as
shown in figure 21, showing lower values toward both ends of the fracture, compared to
the previous case, because of the boundary conditions on the pressure that allow the fluid
to flow out from it.
Thus the fracture, in this case, behaves as a vent for the pressure in the domain and its

Figure 21: The pressure, plotted with the same range, in the case of limited fracture on
the left and extending fracture on the right. Snapshots taken at t = 45 My.

behaviour leads, consequently, to a lower pressure in the rock medium. The lower pressure

Figure 22: The Pressure in the full domain in the case of limited fracture on the left and
extending fracture on the right. Snapshots taken at t = 20 My.

toward the ends of the fracture impacts also the effective stress, that present higher values
close to the ends of the fracture, as shown in figure 23. This pattern is obviously followed
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by the porosity, represented in figure 24.

Figure 23: The effective stress at t = 30 My.

Figure 24: The porosity plotted in the physical domain at t = 30 My.
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However the high effective stress, in the regions toward the ends of the fracture, de-
termines an higher compression of the fracture in those regions, that ultimately leads to a
reduction of the permeability in the long period, reducing the fluid flow and increasing the
pressure in the fracture. Thus after 90 My the pressure returns basically homogeneous in
the fracture, as shown in figure 25, and the overall distribution of pressure in the domain
of the case of the extending fracture is restored, see figure 26.

Figure 25: The evolution of pressure in the fracture. Snapshots taken at t = 0, 45 and
90 My.

62



Figure 26: The pressure in the full domain in the case of limited fracture on the left and
extending fracture on the right. Snapshots taken at t = 90 My.

5.2 Inclined fracture

After testing the model and the solver with the horizontal fracture we moved on with the
analysis of an inclined fracture that cuts the domain from the top to the bottom as shown
in figure 27. We consider a fracture with an initial porosity of φf = 0.9, βf = 1.E−8 Pa−1,
initial thickness lΓ,i = 0.01 m and a maximum thickness lΓ,m = lΓ,i. The other parameters
are the same of the previous cases.
Moreover, since the fracture is inclined, in this case the horizontal effective stress plays
a role in the fracture compaction. We consider the following Poisson coefficient in (5),
ν = 0.25 so that we have σT,H = 1

3σT .

Figure 27: The position of the fracture in the fixed domain, defined by a line with angular
coefficient of -1.5.

As we did previously, we consider a rock medium that extends outside the domain in
the horizontal direction and since the fracture cuts the domain from the top to the bottom
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we impose the following boundary conditions{
p = ρw g d on ∂DΩ̂

U · n = 0 on ∂N Ω̂

and {
p̃ = ρw g d on ∂Γ̂top,

Ũ · n = 0 on ∂Γ̂bottom.

The presence of the fracture has a meaningful impact on the pressure distribution of
the rock medium, as it is noticeable in the left figure 28, where we observe a local drop
of the pressure. This phenomenon happens because, thanks to the high permeability of
the fracture, the fluid is allowed to flow upwards where the boundary conditions allows
for outflow. Thus the fracture acts as a vent for the pressure, draining the fluid from the
lower part of the domain to the upper boundary.
This is also confirmed considering the same case but with a fracture with low permeability,
with an initial porosity of φf = 0.4. Looking at figure 28 we can see that in the case of
low permeability the fracture is not able to become a preferential path for the fluid flow
and consequentially it does not determine a drop of pressure.

Figure 28: The pressure distribution in the fixed domain in the case of inclined fracture
after 30 My. Fracture with high permeability on the left and low permeability on the right.

The pressure asymmetry is reflected, obviously, on the effective stress that, as shown
in figure 29, shows a region of maximum value localized at the lower end of the fracture.

The uneven distribution of pressure affects the compaction of the domain. In the
low-pressure region close to the bottom, the fluid is, indeed, not able to sustain the load,
causing the presence of a minimum porosity region, as figure 30 shows. Thus the region
close to the base of the fracture is more likely to collapse compared to the rest of the domain
as attested by the small depression at the top of the domain localized in correspondence
of the fracture lower end, as it is noticeable from the zoom in figure 31.
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Figure 29: The evolution of the effective stress, after 500, 505, 510 and 515 time iterations,
showing a region of high values at the bottom of the fracture.

Figure 30: The porosity plotted in the physical domain in in the case of inclined fracture
after 20 My.
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Figure 31: Zoom on the top of the domain where a depression detectable in correspondence
of the lower end of the fracture. Snapshot taken at t = 20 My.
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5.2.1 The influence of slope

We also considered different inclinations of the fracture, studying their impact on the fluid
dynamic behaviour of the fracture. We report, for instance, the case of higher inclination
represented in figure 32. All other physical parameters are the same of the previous
inclined case.

Figure 32: The position of the fracture in the fixed domain, defined by a line with angular
coefficient of -15.

Because of the higher inclination the horizontal stress plays the major role in the law
which models the evolution of the fracture thickness (4). Since the horizontal stress has a
smaller entity compared to that one of the vertical stress, it is reasonable to expect that
the highly inclined fracture would be subject to a slower compaction process and thus is
able to keep its permeability high for a longer time.

So, because of the higher permeability, in the long time frame, we observe a progressive
lower overpressure inside the fracture, with respect to the case of lower inclination, as
shown in figure 33. We point out that the total pressure increases in time because the
predominant component is the hydrostatic pressure, which grows in time because of the
burial of the domain. However the overpressure decreases in time because, as the time
elapses, we proceed toward an equilibrium between pressure and compaction. Thus the
compaction slows down and the motion of the fluid reduces, going toward a still situation
of pure hydrostatic pressure.
The different pressure behaviour of the highly inclined fracture ultimately determines a
lower minimum porosity value, compared to the case of lower inclination, as represented
in figure 34.
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Figure 33: The maximum overpressure inside the fracture for the case of lower inclination
(angular coefficient of -1.5) and higher inclination (angular coefficient of -15).

Figure 34: The porosity plotted in the physical domain in the case of low inclination on
the left and high inclination on the right. Snapshots taken t = 75 and 90 My.

68



6 Conclusions and further developments

In this work we presented a suitable model able to represent the compaction phenomenon
in a fractured sedimentary layer and we built an appropriate solver for the numerical
resolution of the resulting coupled, non-linear problem.
The numerical results show a fluid dynamic behaviour consistent with the physics of
the problem and, furthermore, the changes of the fracture properties that we analysed
determine a reasonable behaviour of the fracture. Finally we showed how sensitive the
problem is to the different boundary conditions at the tips of the fracture.
We report, below, the next steps that we consider as the most meaningful in order to
extend the project.

• In this work we deeply analysed the influence of a single fracture that cuts the sed-
imentary layer. An interesting development of the analysis could be considering
networks of multiple fractures localized in a portion of the sediment, or fractures
that branch out.
Since those configurations would determine an even more significant local increase
in the permeability of that portion of the domain, we would expect a sensible inten-
sification of the draining effect and, consequentially, an even stronger asymmetry in
the rock compaction process.

• As previously anticipated, a natural continuation of the work would be taking into
account chemical reactions that modify porosity, reducing it in the case of mineral
deposition, or locally increasing it when the solid matrix is converted into fluid. The,
aim would be the development of a general model able to represent these processes
in presence of cracks, modeling, for example, the cementation of fracture due to
mineral precipitation.
Moreover, the generation of hydrocarbons and their primary migration from the
source rock, where they are generated, is of great interest for the petroleum industry.
Oil is generated from the layers of sediments rich in organic matter, such as kerogen,
which, because of the high temperatures experienced by the source rock due to its
progressive burial, is subject to chemical reactions that cause its breakdown into oil.
The treatment for the fracture compaction, employed in our work, could be leveraged
to represent more realistic sources of kerogen that have often the shape of thin layers.

• Describing our model for the mechanical compaction we assumed uniaxial consol-
idation, which is a reasonable assumption since the deformation in the other two
directions of the sedimentary layer are limited because of the presence of surround-
ing rock, and we assumed the fracture aperture to be small enough to guarantee the
continuity of the stress across the crack. However, the model for the stress evolution
could be refined, considering a full elasticity problem, relaxing the hypothesis of
uniaxial consolidation and taking into account the presence of the fracture, allowing
a potential discontinuous state of stress across it.
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