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Abstract

Projection-based model reduction is one of the most popular approaches used for

the identification of reduced-order models (emulators). It is based on the idea of

using data samples, or snapshots from the original model to project it onto a lower

dimensional subspace that captures the majority of the variation of the original

model. Yet, this approach may unnecessarily increase the complexity of the emu-

lator, especially when only a few state variables of the original model are relevant

with respect to the output of interest. This is the case of complex hydro-ecological

models, which typically account for a variety of water quality processes. On the

other hand, selection-based model reduction uses the information contained in the

snapshots to select the state variables of the original model that are relevant with

respect to the emulator’s output, thus allowing for model reduction. This provides

a better trade-off between fidelity and model complexity, since the irrelevant and

redundant state variables are excluded from the model reduction process. In this

thesis, these issues are addresses by performing an experimental comparison between

a selection-based method, i.e. Recursive Variable Selection (RVS), and a projection-

based method, i.e. Principal Component Analysis (PCA), and two variants of the

latter, namely, Sparse PCA and Weighted PCA. The comparison is performed on

the reduction of DYRESM-CAEDYM, a 1D hydro-ecological model used to describe

the in-reservoir water quality conditions of Tono Dam, an artificial reservoir located

in western Japan. Experiments on three different output variables (i.e. released wa-

ter temperature, released sediments, and in-reservoir chlorophyll-a concentration)

show that RVS achieves the same fidelity as PCA, while reducing the number of

state variables in the emulators. Moreover, Sparse PCA and Weighted PCA were

found to mitigate some of the disadvantages of ordinary PCA, thus increasing the

accuracy and improving physical intepretability.
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Riassunto

Riduzione modello basato proiezione è uno degli approcci più popolari utilizzati

per l’identificazione dei modelli in ordine (emulatori). Si basa sull’idea di utiliz-

zando campioni di dati, o snapshots dal modello originale per proiettarla su un

minore sottospazio tridimensionale che cattura la maggior parte della variazione

dell’originale modello. Tuttavia, questo approccio può aumentare inutilmente la

complessitÃ dell’emulatore, soprattutto quando solo pochi variabili di stato del

modello originale sono rilevanti rispetto all’uscita di interesse. Questo è il caso del

complesso idro-ecologica modelli, che in genere rappresentano una varietà di processi

di qualità delle acque. D’altronde, la riduzione modello di selezione basata utilizza le

informazioni contenute nel snapshots per selezionare le variabili di stato del modello

originale che sono pertinenti con rispetto all’uscita dell’emulatore, consentendo cos̀ı

la riduzione del modello. Ciò fornisce una migliore trade-off tra infedeltà e comp-

lessità del modello, dal momento che l’irrilevante e variabili di stato ridondanti sono

esclusi dal processo di riduzione del modello. In questo tesi, questi problemi sono

indirizzi eseguendo un confronto sperimentale tra un metodo di selezione basata,

cioè Recursive Variable Selection (RVS), e una proiezione basata metodo, cioè Prin-

cipal Component Analysis (PCA), e due varianti di quest’ultimo, vale a dire, Sparse

PCA e Weighted PCA. Il confronto viene effettuato sulla riduzione di DYRESM-

CAEDYM, un modello idro-ecologico 1D utilizzato per descrivere la in-serbatoio

condizioni di qualità dell’acqua di Tono Dam, un serbatoio ciale arti situato in

Giappone occidentale. Esperimenti su tre variabili di uscita erente (acqua cioè ri-

lasciata temperatura, rilasciato sedimenti, e in-serbatoio concentrazione di clorofilla

a) spettacolo RVS che raggiunge lo stesso infedeltà come PCA, riducendo il numero

di stato variabili nei emulatori. Inoltre, Sparse PCA e Weighted PCA sono stati

trovati per mitigare alcuni degli svantaggi di ordinaria PCA, aumentando cos̀ı la

precisione e migliorando intepretability fisica.
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Introduction

Computer simulation of process-based models has been used extensively and with

success to describe complex physical systems and phenomena. These models have

been used in different scientific and engineering disciplines, ranging from atmospheric

science to water resource engineering. However, as the complexity and dimension-

ality of these models increase, the computational and storage requirements also

increase, oftentimes to unfeasible levels (Washington et al., 2009). Model-order re-

duction (or emulation modeling) is often used to mitigate this problem. The goal of

model-order reduction is to create a lower-order model, also known as a surrogate

model or emulator, which mimics the behavior of the full-sized model as closely as

possible while alleviating significantly the computational and storage burden.

In addition to the underlying complexity of certain mathematical models, an

even greater demand of computational and storage resources is often caused when

dealing with problems that require a large number of model evaluations such as:

optimal planning, optimal control or management, model structure identification,

data assimilation and forecasting, and sensitivity analysis. Problems of this kind

can benefit largely from model-reduction.

A reduced model can be derived by simplifying the structure of the process-based

models, or it can be identified on the basis of the data obtained via simulation. This

study is concerned with the latter type. More specifically, it deals with Dynamic

Emulation Modeling (DEMo), a model-reduction approach that preserves the dy-

namic nature of the original process-based model (Castelletti et al., 2012a).

For the purpose of this study, model-reduction is classified into two broad cate-

gories: Projection-based, and Selection-based model reduction techniques. Projection-

based approaches project a high-dimensional space vector of the process-based model

onto a lower dimensional space. On the contrary, in the selection-based approaches,

a subset of the states from the process-based model is selected based on its relevance

to the output of the emulator, resulting in a model of lower dimensionality.

12



The aim of this study is to assess the effectiveness of the two approaches, and

to compare them in terms of the fidelity, complexity, and physical interpretability

of the resulting reduced models. The comparison is performed on the reduction of

DYRESM-CAEDYM, a 1D hydro-ecological model used to describe the in-reservoir

water quality conditions of Tono Dam, an artificial reservoir located in western

Japan. This model is a suitable candidate for model-reduction, as it has been

employed in the design of the multi-purpose operations of the dam (Castelletti et al.,

2014), which is a computationally demanding process.

The widely used method of Principal Component Analysis (or PCA) is chosen to

represent projection-based approaches in this thesis. PCA has has been widely used

in the environmental modeling literature. Examples include ground water modeling

(e.g. Winton et al., 2011), oceanography (e.g. van der Merwe et al., 2007), and water

quality control (e.g. Xu et al., 2013). For selection-based approaches, the method

known as Recursive Variable Selection (RVS) is selected. RVS was introduced by

Castelletti et al. (2012b) and used for the emulation modeling of Tono Dam.

Principal Component Analysis works by projecting all the original variables into

a new set of variables (principal components). This projection is defined in such

a way that the first principal component explains the largest amount of variance

from the original variables, and each succeeding component in turn explains the

highest variance possible under the constraint that it is orthogonal to the preceding

components. On the other hand, Recursive Variable Selection selects, through a

correlation analysis, the most suitable variables from the original variables to explain

the output of interest, while discarding the rest of the variables.

This discrepancy between the two approaches may give PCA an advantage over

RVS in terms of overall reduction of the dimensionality. However, this comes at

the price of increased ambiguity of the reduced model, because all original variables

are still present. Therefore, RVS becomes favorable in applications where physical

interpretability must be preserved.

In order to achieve a high reduction of dimensionality without losing physical

interpretability, two additional model-reduction techniques are explored, namely,

Sparse Principal Component Analysis (SPCA), and Weighted Principal Component

analysis (WPCA).
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Overview

� Chapter 1: The first chapter gives a general overview of model-order reduc-

tion, and introduces Dynamic Emulation Modeling, or the DEMo procedure

(Castelletti et al., 2012b), which is a unified, six-step procedure upon which

the model-reduction exercises in this study will be based.

� Chapter 2: The second chapter consists of the theoretical backgrounds of

the methodologies used in this thesis for model-reduction, beginning with

selection-based approaches and ending with projection-based ones.

� Chapter 3: This chapter describes the case study; the Tono dam system, in-

cluding: (i) a description of DYRESM-CAEDYM, the 1D spatially-distributed

model used to describe the in-reservoir hydrological and ecological processes,

(ii) a description of the input/output variables that are used in the emulation

exercise, and (iii) the formulation of the optimal control problem of the water

system.

� Chapter 4: The fourth and final chapter presents the results of implementing

the DEMo procedure on the Tono Dam system with the competing approaches,

and concludes with a comparison between the obtained emulators in terms of

accuracy, complexity, and physical interpretability.
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Chapter 1

Overview of Model-order

Reduction

The goal of this chapter is to give a general overview of model-order reduction or em-

ulation modeling, and to introduce a general framework upon which the competing

methodologies will be based.

It is worth noting that techniques compared in this thesis are data-driven model-

reduction techniques, i.e., they are identified on a data-set of inputs, state-variables,

and outputs generated by simulations of the process-based, full-sized model. There-

fore, they do not rely on the original structure of the model, nor do they attempt to

manipulate it. Furthermore, these techniques fall under Dynamic Emulation Mod-

eling techniques (DEMo), i.e., they aim at preserving the dynamic behavior of the

original process-based model. The framework used in this study is the one described

by Castelletti et al. (2012a), which provides a unified, six-step procedure that can

be followed for both structure-based or data-based reduction techniques.

1.1 Introduction

An emulation model, or emulator, is a low-order approximation of the physically-

based model that can be substituted for it in order to solve a high resource-demanding

problems. Such a model can be derived by simplifying the physically-based model

structure, or it can be identified on the basis of the response data produced by

simulating this large model with carefully selected input perturbations. Dynamic

Emulation Modeling (DEMo) is a special type of model complexity reduction, in

which the dynamic nature of the original physically-based model is preserved, with
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consequent advantages in a wide range of problems, such as optimal control.

There is a large number of applications that benefit form emulation modeling

including: management of environmental resources, fluid dynamics, image process-

ing, and biological systems. As the number keeps increasing, it becomes useful to

describe of a unified design framework for the different strategies of complexity re-

duction and emulation. The next section describes the steps of such procedure.

These steps can be used to formulate any emulation problem. In particular, it is

used in this study for the Tono Dam system water system.

1.2 Framing The Problem

1.2.1 The System E

Let’s consider a large environmental system E , whose state X (t, s) varies in a time-

space domain T ×S. The system is affected by a time-varying, often distributed in

space, exogenous driver W(t, s).

The output Y(t) is generally, but not necessarily, lumped and is constituted by

the variables that are relevant to the analyst: it usually comprises few variables but

it can sometimes be distributed in space and coincide with the whole state.

Engineering applications are often related to the problem of controlling or man-

aging the dynamics of X (t, s) and Y(t) through a sequence of decisions, periodically

repeated over the whole system’s life. In this case, a control vector ut is applied to

E 1 at discrete time instants, according to a decision time-step. The system E can

also be affected by a vector v of planning decisions that are normally not changed

over the whole life of the system.

1.2.2 The Model M

The scientific approach to environmental systems modeling normally exploits phys-

ical knowledge about the dynamic behavior of the system E to build more or less

sophisticated process-based models that reproduce the perceived reality as well as

possible. These models can be separated into two, broad families: physically-based

and conceptual models (Wheater and Beven, 1993).

1It is assumed that system E is controllable. Operationally, the controllability of E must be

verified before the emulation modeling exercise.
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Physically-based models.

The system E is described by a large, generally nonlinear, dynamic model, normally

defined in T × S by a set of partial differential equations (PDE). These equations

describe the evolution of the system state X (t, s) and output Y(t) in response to

external forcing W(t, s) (either deterministic or stochastic) and control ut.

Conceptual Models.

1. Continuous-time. Although a PDE model could be used, the system E is

normally described by a continuous-time, non-linear model, formulated as a

system of ordinary differential equations, based on a conceptualization and

simplification of the physical laws describing the system dynamics.

Ẋ(t) = F (t,X(t),W(t),u(t),v|Θ) (1.1a)

Y(t) = H (t,X(t),W(t),u(t),v|Θ) (1.1b)

where the information content of X (t, s) and of W(t, s) is lumped into the

vectors X(t) and W(t), and Y(t) = Y(t) while F(·) is a generally non-linear,

time-variant, vector function that models the dynamics of X(t); H(·) is a

generally non-linear, possibly time-variant, output transformation function, v

are the planning decisions; and Θ is the vector of the model parameters.

2. Discrete-time. The system E is described by a discrete-time, non-linear

model, formulated as a system of finite-difference equations:

Ẋt+1 = Ft (Xt,Wt,ut,v|Θ) (1.2a)

Yt = Ht (Xt,Wt,ut,v|Θ) (1.2b)

where the information content of X (t, s), W(t, s), and Y(t) is now sampled,

typically at a uniform sampling interval ∆t, and transformed into the sampled

data vectors Xt ,Wt, and Wt.

The spatial aspects are normally defined by the state and exogenous driver

vectors Xt and Wt, which are defined at different spatial locations. In the
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presence of ut, the sampling time step is generally assumed equal to the deci-

sion time step, otherwise, only the former exists and is related to the frequency

of observations available or, when this is not limiting, based on the problem

at hand.

The function Ft(·) is a generally non-linear, time-variant, vector function that

models the dynamics of Xt; Ht(·) is a generally non-linear, possibly time-

variant, output transformation function, and Θ is a vector of the model pa-

rameters.

When a physically-based (or a conceptual continuous-time) model is adopted, an

explicit scheme is commonly used for its numerical solution. In practice, this requires

the discretization of the time-space domain T × S (or simply the time domain T )

with an appropriate grid. In this way, the original continuous-time model is, de

facto, transformed into a discrete-time model of the form (1.2a). When the original

model is physically-based, all the variables, apart from ut and v, which are not

spatially distributed, have a dimensionality equal to their original dimensionality

times the cardinality of the space discretization grid. When the original model is

conceptual, the dimensionality of all the variables is unchanged.

In conclusion, whatever the process-based model adopted, a distinctive feature

of the model M is the large dimensionality of the state, exogenous driver, and

parameter vectors which, on one hand, is required for a detailed description of the

processes in E but, on the other hand, makes it computationally too intensive for

those problems that require hundreds or thousands of model runs.

1.2.3 The Problem P

Assume that we have a model M together with a certain defined problem P . For

this model, according to its complexity, a full and proper statistical estimation or

’calibration’ of its parameters may not be feasible, so that this has been performed

as well as possible. Depending on P , our interest might be either in the trajectory

of Yt, or in a functional J(·) of this trajectory. Problems P are generally known

and classified in the following categories:

� Optimal management and planning In optimal management (or optimal

control) problems, the purpose is to design the feedback control policy P that

maximizes the function J(·). Instead, in optimal planning, the vector v that
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maximizes J(·) has to be determined. Depending on the dimensionality of v,

the size of the associated feasibility domain, and the complexity of the func-

tional and constraint shape, the algorithms available to solve optimal planning

problems (basically, simulation-based optimization algorithms) are hardly us-

able with large process-based models. The topic has been widely explored

in the environmental modeling literature; recent examples include air quality

planning, water quality planning, water distribution networks, water supply

system, etc.

� Model Diagnostics The selection and use of diagnostic measures are impor-

tant elements in the modeling exercise, both within the model building itself

(i.e., as a fundamental preliminary step prior to the practical application of

the model) and in analyzing the model-based results used to solve a problem

P . In the first case, diagnostic tools are used to test or validate hypotheses

and parametrizations against available observations; or with respect to some

desirable or plausible behavior of model outputs of interest. In the second case,

diagnostic tools can be used to assess the robustness of results (e.g. in control

or planning problems) and make them more transparent to users, stakeholders

and policy-makers. Diagnostic problems arising when evaluating the model

M are summarized below.

– Model structure identification. The large physically-based model struc-

ture is usually specified by the modeler’s choice of a specific model form

and order that best represent the system under analysis. After the model

structure is defined, however, the model should undergo a thorough iden-

tification, estimation (calibration) and validation analysis, before using it

for practical applications. The relation between data and parameters Θ

must be considered: an increase in model complexity is indeed reflected

on an increase in the number of parameter Θ to be defined and cali-

brated. This can easily lead to over-parametrization and non-uniqueness

(i.e., the presence of multiple models or parameter sets that have equally

acceptable fits to observational data). To avoid this problem, statisti-

cal techniques can be used to assess the discrepancy between the data

information content and the number of parameters to be calibrated.

– Sensitivity analysis. Uncertainty analysis aims at quantifying the un-

certainty associated with the model output or a functional J(·) thereof,
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given some ‘prior’ uncertainty, usually based on expert judgment, or af-

ter parameter estimation (calibration) has been completed. Uncertainty

quantification should always be accompanied by a sensitivity analysis

(Saltelli et al., 2000). Performing an uncertainty and sensitivity anal-

ysis involves the use of Monte Carlo sampling and performing a large

number of model evaluations by varying model parameters Θ. In the

presence of large, complex models, this is simply not affordable and the

use of emulators often represents the only possible solution to this kind

of problem.

– Data assimilation. IF some or all of the outputs Yt are being monitored

on a regular basis, it is often possible to combine these measurements with

the model Xt predictions to produce real-time estimates and forecasts of

the state variables.

� Simulation The modelM is the tool for analyzing the behavior of the system

E under different trajectories of the exogenous driver Wt, the control variable

ut and alternatives of up. Simulation analysis, often referred to as scenario

analysis, what-if analysis or policy2 simulation, can be seen as an elementary

and necessary step in almost all the above mentioned categories.

Real-world studies and applications often deal with more complicated problems

that can be seen as a combination of the above mentioned problems. In all these

cases, the solution of any problem P is practically unfeasible due to the large compu-

tational requests. As the core of the difficulty stands in the dimensionality of model

M, the natural solution is to identify a reduced model that accurately emulates the

output Yt, or the functional J(·), of modelM, but with a dimensionality such that

problem P can be solved. The reduced model is called an emulation model and it

substitutes modelM in problem P : this replacement is possible because some pro-

cesses described by the process-based model are more significant than others with

respect to Yt or J(·).
2A periodic sequence of control laws, which, given the current state Xt of the system E at each

time instant t, suggests the optimal control to be adopted.

20



1.3 Complexity Reduction

As mentioned in the previous section, the emulator m, once identified, can be used

in place of M in solving the problem P . Depending on whether the purpose of

the emulation modeling is to reproduce Yt or J(t), the techniques available in the

literature can be re-framed into two methodological approaches: Dynamic Emulation

modeling (DEMo) and non-dynamic emulation modeling. The The emulator neither

modifies nor improves the conceptual features of the model M; it simply makes it

computationally more efficient in solving the problem P . Hence, the consistency of

an emulator is simply inherited from M, which has to provide a meaningful and

reliable representation of the system E for the range of inputs (exogenous drivers,

control and planning variables) and parameters specified by the user.

1.3.1 Dynamic Emulation Modeling (DEMo)

Dynamical Emulation modeling provides a simplified description of the model M
that preserves its dynamical nature. For this reason, the target of DEMo is to

construct an approximation yt of the model M output Yt (such that yt ∼ Yt) by

adopting a considerably smaller number of variables (states xt and/or exogenous

drivers wt) and, possibly, parameters Θ. The rationale behind this dimensionality

reduction is that some of the processes described by the model M are more sig-

nificant than others in affecting Yt, so that any simpler model that describes, as

well as possible, only these processes and ignores the others can be considered as

operationally equivalent to the modelM with respect to problem P . The identified

dynamic emulator m is such that it is less computationally intensive than the model

M, and its input-output behavior approximates as well as possible the behavior of

M.

The emulator m can be either in an input-output or a state-space representation

and one form may be more suitable than the other, depending upon the circum-

stances and the nature of the problem P .

When an input-output representation is adopted, the emulator m is described

entirely in the input-output space by a time-variant, generally non-linear transfer

function.

yt = gt
(
yt−1, ...,yt−p,wt−1, ...,wt−r,ut−1, ...,ut−s,v|θ

)
(1.3)

where θ is a parameter vector and p, r and s are suitable time-lags. On the
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other hand, when a state-space representation is considered, the emulator m is de-

scribed by the following, more complex, state transition and output transformation

functions:

ẋt+1 = ft (xt,wt,ut,v|θ) (1.4a)

yt+1 = ht (xt,wt,ut,v|θ) (1.4b)

where ft(·) is a time-variant, generally non-linear vector function modeling the

dynamics of xt, ht(·) is a a time-variant, generally non-linear, output transformation

function, and θ is a vector of parameters.

1.3.2 Non-dynamic Emulation Modeling

When the problem P concerns the optimal planning of the functional J(·) with

respect to the vector v, or the uncertainty and sensitivity analysis of J(·) with

respect to the parameters Θ, the emulation modeling effort on the identification of

a static map between the planning variable v (and/or the parameters Θ) and the

functional J(·).
Non-dynamic emulation modeling has been used extensively in a wide variety

of mechanical and aerospace engineering studies (Queipo et al., 2005). Recently, it

has been considered in the environmental modeling field, with applications in the

planning of agroecosystems (Bouzaher et al., 1993; Børgesen et al., 2001; Krysanova

and Haberlandt, 2002; Piñeros Garcet et al., 2006; Audsley et al., 2008), water dis-

tribution networks (Broad et al., 2005), groundwater resources (Rogers and Dowla,

1994; Aly and Peralta, 1999; Johnson and Rogers, 2000; Yan and Minsker, 2003;

Kumar et al., 2010), and surface water resources (Solomatine and Torres, 1996;

Neelakantan and Pundarikanthan, 2000; Bhattacharjya and Datta, 2005; Castelletti

et al., 2010b,c; Sreekanth and Datta, 2010). In any case, non-dynamic emulation

modeling can be considered as a simplified version of DEMo and, therefore, it is

easily integrated within this wider concept and the subsequent discussion.

1.4 A general procedure for DEMo

The identification of a dynamic emulation model is made particularly difficult by the

typically non-linear nature and large dimensionality of the model M. A number of

different approaches, and corresponding techniques, have been developed as the basis
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for finding ad-hoc solutions to specific problems. However, all of these approaches

can be re-conducted to the following general categories:

1. In the structure-based approach, the mathematical structure of model M is

’manipulated’, with the aim of deriving a simpler structure m. This approach

is often adopted when the output Yt ofM is not defined, which is equivalent to

saying that the output coincides with the state vector Xt. Emulators identified

using this approach are usually represented in a state-space form (eq. 1.4a).

2. The data-based approach identikits the emulator structure on the basis of a

dataset F of state and output trajectories, obtained via simulation of the

model M on a given horizon H under suitable input scenarios. The emulator

structure can be either a black-box representation of some form; or a low order,

conceptual, mechanistic model.

Whatever approach is adopted, the identification of an emulator can be struc-

tured as a six-step procedure (see figure 1.1). The first step (Step 1 - Design of

experiments and simulation runs) concerns the generation of the data-set F . This

is obviously required for the data-based approach, but it is also necessary in the

structure-based one for the evaluation of the emulator in Step 6. The variables

(exogenous drivers and states) that will be operated by the emulator are obtained

by aggregating, in some appropriate way, the variables in the model M and/or se-

lecting, among them, the most relevant ones. These two, not necessarily mutually

exclusive operations, are the core of the complexity reduction process performed by

DEMo and are considered in two separate steps (Step 2 - Variable aggregation and

Step 3 - Variable selection). Variable selection generally follows the aggregation be-

cause it can be more effectively performed on a reduced number of variables. Once

these steps are complete, the emulator is eventually identified in Step 4 (Structure

identification). Finally, in Step 5 - Evaluation and physical interpretation, the em-

ulator is validated and a physical interpretation is provided. Note that, in any real

application, many recursions through this procedure may be required. The details

in each step of the emulation modeling procedure are described in the next section.

1.4.1 Design of Experiments and simulation runs

The Design Of computer Experiments (DOE), also known as Design and Analysis

of Computer Experiments (DACE), is used to design a sequence of simulation runs
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Figure 1.1: The DEMo procedure steps (see Castelletti et al., 2012b).
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for the modelM with the purpose of constructing the data-set F for the subsequent

DEMo steps. This requires the specification of the input trajectories to the model

M (i.e. the exogenous driver Wt and the control ut), as well as the values of the

planning vector v, that will drive the simulation runs, the parameters being set to

their nominal value Θ.

In principle, the data-set F should be sufficiently informative, reproducing all

the possible system behaviors and features, excited and forced by the spectrum of

external forces, controls and planning variables that may occur given the problem

P . This can be ensured by relying on the procedures used in the design of dynamic

experiments, such as those discussed in Goodwin and Payne (1977). In other words,

the experiments have to be designed in such a way that all the dynamical modes of

M’s response that are of interest for P are activated.

However, according to the computational requirements for simulating M (i.e.

the limit on the feasible number of simulation runs), a somewhat less formal exper-

iment design may need be adopted (e.g. the historical observations available for the

exogenous drivers and a well chosen periodic square wave input for the control, that

allows the system to reach a steady state at each step). The accuracy requirements

in the DOE also depends on the different approaches to the DEMo problem.

1.4.2 Variable aggregation

The purpose of this step is to aggregate the components of the state vector Xt (and

of the exogenous driver vector Wt) into lower dimensionality vectors. As common

practice in environmental modeling, the model M is spatially-distributed: so the

space discretization can lead to a strong increase in the dimensionality of the state

and exogenous driver vectors.

The data generated via simulation in Step 1 (sometimes referred as snapshots)

are used in an aggregation scheme to identify a mapping of the state Xt into a

lower dimensional state X̃t, so that the majority of the variation in the Xt data

is captured. The same is done with respect to Wt, thus obtaining a reduced ex-

ogenous driver vector W̃t. The most simple and ’natural’ aggregation scheme is

based on the expert knowledge of the system (see Galelli et al., 2010; Castelletti

et al., 2010a). This is particularly the case when M is spatially-distributed. Al-

ternatively, formal and analytical aggregation techniques can be employed. Such

techniques are commonly referred to as feature extraction techniques (Guyon et al.,

2006). The linear technique for aggregation that has been adopted most often, up

25



to now, is Principal Component Analysis (Jolliffe, 2005) (also known as proper or-

thogonal decomposition (Willcox and Peraire, 2002) or Karhunen Loeve Transform

(Zhang and Michaelis, 2003), which performs a linear mapping of the data produced

by the model M to a lower dimensional space in such a way that the variance of

the data in the lower dimensional representation is maximized. The literature also

presents a variety of non-linear feature extraction techniques (for a review, see Lee

and Verleysen, 2007). Different approaches have been also suggested from the sys-

tem and control literature in the last few decades, from simple methods, such as the

Power Reduction approach of Liaw et al. (1986), to more complex procedures, such

as Balanced Model Order Reduction, which are also used in the structure-based

approach. They also include Dominant Mode Analysis (DMA) (see Young, 1999),

which is used for model reduction in the DBM approach to emulation (see Young

and Ratto, 2009).

1.4.3 Variable selection

Based on the information content of F̃, model M is further simplified by selecting

the components of X̃t and W̃t that will constitute the emulator’s state xt and

exogenous driver wt vectors. Generally, this operation relies on some automated

technique, since X̃t and W̃t are often too large to be handled by a human operator.

1.4.4 Structure identification

The outcome of the variable selection (Step 3) are the variables characterizing the

emulator, as well as the nature of the relationship between these variables and the

output yt. This information can be exploited in this step of the DEMo procedure:

in particular, this step is generally performed in two stages. The first stage is ’struc-

ture identification’, and the second is ’parameter estimation’: first, the structure of

the function gt(·) (or ft(·) and ht(·)) is identified (e.g. using model structure iden-

tification criteria), then the value of θ that characterizes the best model structure

is estimated (optimally in some sense, if this is possible, but otherwise to yield sta-

tistically consistent estimates). In general, the emulator structure is only obtained

tentatively in the first step, which serves as a ’screening’ step for the variables to

be finally included in the emulator. The class of functional relationships underlying

the variable selection process (Step 3) is usually the first option for the structure

identification (e.g. when correlation analysis is employed, a linear model is the most
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coherent choice) but, usually, the exploration of a wider class of models is more

effective (Guyon and Elisseeff, 2003).

In any case, whatever approach is used, this step is concluded with a parameter

estimation performed over the data-set F̃ that provides the actual values for the θ

parameters. If the performance measures are satisfactory, one can proceed with the

following step; otherwise, one of the previous step must be re-considered.

1.4.5 Evaluation and physical interpretation

As introduced in Section 1.4.3, the emulator must be evaluated from two different

points of view: i) it must reproduce as well as possible the input-output behavior

of the model M; ii) it must be credible. With respect to point i), the emulator

is validated against that part of the data-set F̃ that has not been used for the

model identification (the validation data-set). As for point ii), the credibility of

the emulator is directly related to its physical interpretability. This latter property

is inherent when the emulator structure is obtained with the techniques proposed

for the structure-based approach in Section 1.4.3; or with the data-based approach,

when it can be satisfactorily interpreted in a physically meaningful manner. Gener-

ally, the identification of an emulator in state-space representation makes it easier to

maintain a physically meaningful relationship between the emulator and the original

model variables.

1.4.6 Model Usage

Once the emulator has been successfully validated against the data, it is ready to

be employed by the user in the resolution of the problem P. However, during the

identification of the emulation model more than one run of the entire procedure

can arise. In fact, if the performance of the model is not considered sufficient for

the future use of the model itself, it’s possible to design different simulation runs in

order to evaluate other reduction approaches.

Preview of the remaining chapters

While Chapter 1 gives an overview of model reduction and introduces the general

procedure of DEMo exercises, the remaining chapters apply that procedure to the

case study, Tono Dam. Chapter 2 explains in detail the methodologies used in this
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study: RVS, PCA, and its extensions, namely, SPCA and WPCA. PCA techniques

account for step 2 of the DEMo exercise, while RVS accounts for step 3 (See figure

1.1); they are the focus of this thesis. Step 1, the design of experiments and sim-

ulation runs was performed a priori, and its details are shown at the beginning of

Chapter 4, after the case study is explained in Chapter 3.
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Chapter 2

Methodology

2.1 Introduction

This chapter consists of the methodologies used in this thesis for model reduction.

Taking into account the Dynamic Emulation Modeling (DEMo) procedure described

in chapter 1 (See 1.1), the techniques used in this chapter, PCA and RVS, account

for steps 2 and 3 of that procedure, respectively, which aim at reducing the number

of variables in the model M to be used in the emulator m. The techniques are

divided into selection-based and projection-based model reduction techniques.

2.2 Recursive Variable Selection

2.2.1 Motivation

Representing selection-based model reduction is an automatic variable selection

method introduced by Castelletti et al. (2011) and Galelli (2010) through which

the variables that are most relevant to emulate the output of the process-based

model M are selected. The selection is made such that the subset of selected vari-

ables can build an emulator which is both accurate and compact, i.e., it has an

output close enough to the output of M while achieving a significant reduction in

dimensionality. This is achieved through an automatic, data-driven method that

recursively defines a sequence of variable selection problems, in which the accuracy

is tuned to the desired emulator parsimoniousness.
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2.2.2 Procedure

The RVS algorithm1 (Castelletti et al., 2011) proceeds iteratively in three steps

over each component of Yt. i) Given the information content of the dataset F̃ ,

the most relevant variables in explaining the given component are selected, with

some appropriate Input Selection (IS) algorithm, among the components of the

vectors X̃t, W̃t and ut. This gives the arguments of the output transformation

function (equation 1.4b) associated to the considered output. ii) For each state

variable selected in the previous step, a new run of the IS algorithm is performed

to select the variables relevant to describe its dynamics. This gives the arguments

of the corresponding component of the vector state transition function (equation

1.4a) associated to the considered state variable. iii) If the second step leads to

the selection of further variables from the vector X̃t (i.e. state variables not yet

included in xt), it is recursively repeated, until all the selected state variables are

given a dynamic description. Once the RVS algorithm is over, the arguments of

equations 1.4 are known.

Each invocation of the RVS algorithm requires to run an IS algorithm that selects

the most relevant input variables to explain a specified output variable. Algorithms

suitable for this task must account for both significance and redundancy: in other

words, they must be able to select only the most relevant input variables, while

trying to avoid the inclusion of redundant ones, which would unnecessarily add to

the emulator complexity. They must also account for non-linearities. The following

subsection presents the IS algorithm used in this study, the Iterative Input Selection

algorithm (Castelletti et al., 2012a; and Galelli and Castelletti, 2013).

2.2.3 Iterative Input Selection

As mentioned previously, the ideal selection algorithm should account for non-linear

dependencies and redundancy between variables, as real-world optimal management

problems are usually characterized by non-linear dynamic models with multiple cou-

pled variables. Moreover, it must be computationally efficient, since the number of

candidate variables is generally large, particularly when the original process-based

model is spatially distributed. To fulfill these requirements, Castelletti et al. (2012a)

developed the Iterative Input Selection (IIS) algorithm2, a model-free, forward-

1See Appendix A.3 for a pseudo code of the algorithm
2See Appendix A.4 for a pseudo code of the algorithm
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selection algorithm.

Given the output variable to be explained and the set of candidate variables,

the IIS algorithm first exploits an Input Ranking (IR) algorithm that provides the

best performing input according to a global ranking based on a statistical measure

of significance (preferably accounting for non-linear dependencies, as proposed by

Wehenkel (1998)). To account for variable redundancy, only the most significant

variable is then added to the set of selected variables. The reason behind this choice

is that, once an input variable is selected, all the inputs that are highly correlated

with it may become useless and the ranking needs to be re-evaluated. So, the

algorithm proceeds first as follows: first it estimates, with an appropriate model

building (MB) algorithm3, an underlying model m̂(·) to explain the output; then it

repeats the ranking process using the residuals of model m̂(·) as new output variable.

The algorithm iterates these operations until the best variable returned by the

ranking algorithm is not in the already selected ones or the accuracy of m̂(·) does not

significantly improve. The accuracy can be computed with a suitable distance metric

between the output and the model m̂(·) prediction, or more sophisticated metrics

accounting for both accuracy and parsimoniousness (e.g. the Akaike information

criterion, Bayesian information criterion or Young identification criterion). In this

thesis the accuracy of the model is expressed through the parameter R2.

The choice of a suitable model building algorithm (MB) and ranking procedure

(IR) is thus fundamental to let the IIS algorithm be capable of dealing with non-

linearities, redundancy and high-dimension data-sets. Among the many alternative

model classes, in this thesis Extremely randomized trees (or Extra-Trees, a tree-

based method proposed by Geurts et al. (2006) that can provide all these desirable

features) are used. As a consequence, also the choice of which ranking algorithm

(Jong et al., 2004) to use has fallen on a method based on Extra-Trees, since their

particular structure can be exploited too to infer the relative importance of the in-

put variables. Finally, Extra-trees will also be used for step 4 of the DEMo exercise,

i.e, structure identification and calibration, hence, the resulting Extra-tree models

from the competing sets of reduced variables will be compared. In other words,

Extra-tree models will be used as an evaluation tool, namely, for the accuracy of

the reduction.

3Depending on whether a parametric or a non-parametric model structure is adopted for the

underlying model, the model building (MB) algorithm can be either a traditional parameter esti-

mate algorithm or the building algorithm of the regressor.
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2.3 Principal Component Analysis

2.3.1 Motivation

This section describes model reduction through the procedure of Principal Com-

ponent Analysis (PCA), also known as the Karhunen-Loève transform (Karhunen,

1947), Empirical Orthogonal Functions, or Proper Orthogonal Decomposition (POD).

Given the information content of the dataset F̃ , namely, state variables X̃t, exoge-

nous inputs W̃t, and control variables ut, PCA derives a new set of variables that

are linear combinations of the original variables X̃t, W̃t, and ut. The transformation

is defined in such a way that, generally, only a few of the new variables account for

most of the variance of the original data-set. Therefore, dimesnionality reduction

can be achieved by truncation of the new variable-set. This is the context in which

PCA is used in this study.

2.3.2 Theory

Principal component analysis is a very old and popular multivariate statistical tech-

nique. The origin of PCA can be traced back to Pearson (1901), but the modern

formalization was done by Hotelling (1933), who also coined the term Principal

Component. PCA is used in many scientific disciplines to perform different tasks

such as clustering, classification, and most notably, dimensionality reduction.

There are several ways to interpret what PCA does (Shlens, 2014), one of them is

that is aims at finding a new linear basis to express the data which reveals the data

structure better than the default (or naive) basis. In other words, it aims to measure

the data from a new coordinate system about which the data is most spread-out (or

variant). This interpretation explains the orthogonality of the transformation and

the number of principal components being equal to the number of variables.

Formally, principal components are optimally-weighted linear combinations of

the original variables. The weights are defined in such a way that gives the princi-

pal components the following properties: the first principal component explains the

maximal amount of variance in F̃ , while the second principal component accounts

for the maximal amount of variance in F̃ that was not explained in the first prin-

cipal component, and it is uncorrelated with the first component. Every remaining

component has the same two properties: It accounts for the maximal amount of

variance not explained by all preceding components, and it’s uncorrelated with all
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of them. Therefore, principal components explain progressively less variance until

the p-th principal component is reached.

2.3.3 Procedure

Given the defining properties of principal components in the previous section, the

problem of finding the components is reduced to finding the appropriate weights

(or coefficients), represented by p coefficient vectors (or loading vectors). Since the

variance of the first components is to be optimized, the problem of finding the first

loading vector can be be formulated as a constrained optimization problem.

Assuming the data of snapshots in F̃ is standardized4 and arranged in matrix

Vn×p where n is the number of observations, and p is the number of variables, and

and assuming Wn×p is the transformation matrix consisting of the loading vectors

in the columns, which transforms V into a matrix of principal components, and R

is the correlation matrix of the q variables in V.

V =

 v11 . . . v1p

...
...

...

vn1 . . . vnp

 (2.2)

The first principal component PC1 is defined by the following linear combination

(Sadocchi, 1990):

PC1 = v1a11 + v2a21 + . . .+ vpap1 = Va1 (2.3)

The variance of PC1 is equal to:

s2
PC1

=

p∑
i=1

p∑
j=1

(ai1a1jσij) = aT1 Ra1 (2.4)

4Standardization is generally performed before applying the PCA procedure, specially when

the variables are measured in different units (Baxter, 1995). In this context, a standardized variable

v is computed as follows:

v =
x− µ
σ

(2.1)

where x is the original variable, µ is the mean of the population and σ is the standard deviation

of the population.
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In order to maximize the variance of PC1, the loading vector a1 is computed solving

the following problem:

a1 = arg max
a1

(aT1 Ra1) (2.5a)

subject to

aT1 a1 = 1 (2.5b)

The constraint (2.5b) normalizes a1 and moreover limits the values of the coeffi-

cients ai1 preventing the construction of a principal component PC1 with a variance

infinitely high.

The numerical value of a1 is obtained using the method of Lagrange multipliers:

∂

∂a1

[s2
PC1

+ λ1(λ− aT1 a1)] =
∂

∂a1

[aT1 Ra1 + λ1(λ− aT1 a1)] = 2(R− λ1I)a1 (2.6)

Thus the coefficients ai1 are the solution of the following system of p linear equations:

(R− λ1I)a1 = 0 (2.7)

where λ1 is the solution of the characteristic equation:

|R− λ1I| = 0 (2.8)

Therefore λ1 is an eigenvalue of the correlation matrix R and a1 is the corresponding

eigenvector. Moreover, λ1 is the maximum eigenvalue, because it is the solution of

system (2.7) that, multiplied by aT1 , results:

λ1 = aT1 Ra1 = s2
PC1

(2.9)

Then it is possible to define the second principal component PC2:

PC2 = v1a12 + v2a22 + . . .+ vpap2 = Va2 (2.10)

The coefficients ai2 have to compelled to the constraint aT2 a2 = 1 to maximize the

variance of PC2 and the constraint aT1 a2 = 0 in order to have orthonormal and

independent components. So the total explained variance of the first n components

is equal to the sum of the variances of each component. Applying again the method

of Lagrange multipliers, the coefficients ai2 are the solution of the following system:

(R− λ2I)a2 = 0 (2.11)
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So, the coefficients ai2 are the element of the eigenvector associated to the second

largest eigenvalue of the correlation matrix R.

In general it is possible to define the j-the principal component as:

PCj = v1a1j + v2a2j + . . .+ vqaqj = Vaj (2.12)

where the coefficients are the elements of the eigenvector of the correlation matrix

R associated to the j-th largest eigenvalues λj. The variance of PCj is equal to λj

and therefore the total variance of the whole system is λ1 + . . .+λq = trR = p. The

importance of the j-th principal component is thus λj/q (Morrison, 1976).

Finding the loading vectors by computing the eigenvectors of the correlation ma-

trix5 is the first analytical solution to PCA problem. It is a one-shot solution, as it

is able to compute all components at once, and not sequentially. Another popular

and equivalent analytical soultion to PCA uses the Singular Value Decomposition

or SVD, and is performed as follows:

Let the SVD of V be:

V = UDBT (2.13)

Z = UD are the principal components of F, and the columns of B are the corre-

sponding loading vectors. The sample variance of the j-th principal component is

D2
jj/n.

2.3.4 Analysis

Which principal components to retain?

After finding the principal components, it is important to appropriately determine

how many and which principal components to retain. Since principal components

explain progressively less variance as their order increases, it is commonplace to

retain the first q components (q < p). The number can be limited by different

criteria, alot of which are based on explained variance.

1. Threshold on cumulative variance: Only the components containing a pre-

defined percentage of the total variance (e.g. 75% or 90%) are retained.

5Equivalently, the same procedure can be performed using the covariance matrix. It is impor-

tant to standardize the data when using this approach.
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Figure 2.1: Scree plot

2. Eigenvalue one criterion: Also known as the Kaiser criterion (Kaiser, 1960),

which states that only the components with a corresponding eigenvalue λj

larger than 1 are retained. Any component satisfying this criterion explains

more than one p-th of total variance. More generally, one could only retain

components that explain a pre-defined percentage of total variance (e.g. 1%

or 5%).

3. Threshold on the variance of the next component : Stopping when the per-

centage explained variance of the next component is less than a pre-defined

threshold (e.g. 1% or 5%).

4. Scree test (Cattell): In this test, the components are plotted with their cor-

responding eigenvalues (Figure 2.1), and if a break or a large drop of the

eigenvalues is found at one component, only components before the break are

retained.

The above criteria are based on explained variance, and always result in selecting

the first q components. They are often effective for retaining the most meaningful

components for many application if the threshold is set carefully. However, large

explained variance does not necessarily guarantee an accurate emulator. In some

cases, components that explain less variance may be more relevant in explaining the

dynamics of the emulator’s output. In those cases, variable-selection techniques can

be used to select the most relevant components regardless of their order or explained

variance. Other ways to select principal components that are not-based on explained
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variance can be found in Mei et al. (2008).

Adequate sample size for PCA

Having an adequate sample size is an important factor to consider before applying

PCA to a data-set. ”Larger samples are better than smaller samples (all other

things being equal) because larger samples tend to minimize the probability of errors,

maximize the accuracy of population estimates, and increase the generalizability of

the results” (Osborne and Costello, 2004).

Generally, similar guidelines to those given for multiple regression problems can

be followed for PCA, namely, guidelines concerning the ratio between variables and

observations, e.g. 1:30 or 1:50 are suggested in (Pedhazur, 1997). Another approach

is giving suggestions on the minimum adequate sample size rather than the variable

to observation ratio.

Moreover, the effectiveness of the sample size for PCA can be assessed empir-

ically. Kocovsky et al., 2009 analytically measure the variation in the sign and

magnitude of the first principal component loadings as a function of the sample to

variable ratio, as well as the correlation among the principal component loadings

from different resamples of the same size.

Some consideration on sample size may also be application-dependent. For ex-

ample, in this study, the sample size must be suitable for both PCA and RVS; the

technique to which is it compared. Moreover, since the reduction aims at creating

an emulator to be used for optimal planning, the sample size must account for that

as well, i.e., the sample size must be small enough to make the optimal planning

computationally efficient.

One of the major drawbacks of PCA is that each principal component, in general,

is a combination of all of the original variables, i.e., all loadings are typically non-

zero. This makes it difficult to interpret the PCs. Sparse Principal Component

Analysis (SPCA) was developed to solve that problem (Zou et al., 2004), and it is

introduced in the section.

2.4 Sparse Principal Component Analysis

The goal of Sparse Principal Component Analysis is to introduce sparsity in the

principal componenets, i.e., to reduce the number of variables that load on the PCs
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by having loading vectors with a limited number of non-zero loadings. This desired

effect can be achieved following one of several approaches:

� Performing standard PCA and then artificially setting to zero loadings with

an absolute value beneath a certain threshold. This is an informal, yet widely

used in practice technique, but it can be misleading (Cadima and Jolliffe,

1995).

� Restriction of coefficients to take values from a small set of allowable integers,

such as 0, 1,−1 (Vines, 2000): a series of linear transformations maximize,

in each transformation, the variance of the data with respect to one of the

transformed axes. The transformation is restricted so that transformed axes

can still be represented by simple directions, defined as a direction that can

be represented by a vector proportional to an integer vector. Furthermore the

transformed axis for which the data have the greater variance will tend to be

proportional to a vector of small integers and hence be particularly simple.

� Reformulating the standard PCA cost function in a way that naturally induces

sparsity.

The last approach is the formal one, and it is the one considered in this thesis.

This is done by modifying the optimization problem with either a constraint or

penalty that cause sparsity in the resulting loading vectors.

Zou et al. (2006) introduced a formulation of the problem called the elastic net,

which is a combination of Ridge Regression and LASSO (least absolute shrinkage

and selection operator) regression (Tibshirani, 1996). LASSO refers to imposing an

L1-norm penalty in the PCA cost function. A generic lasso regression problem can

be defined as follows:

1. Let Y = (y1, . . . , yn)T be the response vector and X = (X1, . . . , Xn)T , j =

1, . . . , p the predictors, where Xj = (x1j, . . . , xnj)
T , β̂lasso is the lasso esti-

mate obtained by minimizing the lasso cost function, and λ is a non-negative

parameter that controls the sparsity.

β̂lasso = argmin
β
‖Y −

p∑
j=1

Xjβj‖2 + λ

p∑
j=1

|βj| (2.14)
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The nature of the L1-norm6 continuously shrinks the coefficients toward zero

while simultaneously achieving good prediction accuracy. If λ is high enough,

some coefficients will be shrunk exactly to zero. This produces accurate and

sparse models (Zou et al., 2006).

2. The second part of elastic net, the ridge regression, extends the problem by

adding an L2-norm penalty. This extension aims at overcoming the limitation

that lasso has when dealing with data-sets that have a low number of obser-

vation and a high number of variables, e.g., microarray data. This limitation

was pointed out by (Zou and Hastie, 2005). For any non-negative λ1 and λ2,

the elastic net estimate β̂en is given as follows:

β̂en = (1 + λ2)

{
argmin

β
‖Y −

p∑
j=1

Xjβj‖2 + λ2

p∑
j=1

|βj|2 + λ1

p∑
j=1

|βj|

}
(2.16)

The PCA solution is directly connected to the regression method in equation 2.16.

The sparse loadings can be found as follows:

Let X be the data-matrix (n× p), and Zi the i-th principal component, the sparse

loadings estimate can be found as follows:

β̂en = argmin
β
‖Zi −Xβ‖2 + λ|β‖2 + λ1‖β‖1, (2.17)

where ‖β‖1 is the 1-norm of β, λ and λ1 are non-negative. The i-th estimating

principal components can be found as XV̂i where V̂i = β̂

‖β̂‖ . Equation 2.17 is referred

to as naive elastic net by Zou and Hastie (2005), since it differs from elastic net

(Eq. 2.16) by the scaling factor (1 + λ), as the scaling does not affect V̂i, which is

normalized.

The formulation in Eq. 2.17 depends on knowing Zi, the result of the standard

PCA to find the sparse approximation.

Alternatively, a self-contained regression formulation was introduced by (Zou

et al., 2006) which finds the fist k sparse loading vector approximations without

having to find the standard principal components first.

6The L1-norm of a vector x is defined as the sum of the absolute values of its elements.

‖x‖ =

n∑
i=1

|xi| (2.15)
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Let Ap×k = [α1, . . . , αk] and Bp×k = [β1, . . . , βk], then:

(
Â, B̂

)
= argmin

A,B

n∑
i=a

‖xi −ABTxi‖2 + λ

k∑
j=1

‖βj‖2 +
k∑
j=1

λ1,i‖βj‖1 (2.18a)

subject to

ATA = Ik×k (2.18b)

where λ1,j j = 1 : k is the sparsity controlling parameter, which can be set

differently for each principal component, while λ is the same for all k components,

and it is required to be positive only if p > n.

In addition to equation 2.18, other optimization formulations can used to produce

sparse loading vectors. Richtárik et al. (2012) suggest 8 different formulations by

combining the following: two norms for measuring variance (L2, L1), and two norms

for inducing sparsity (L0, L1), which are used in two ways (constraint, penalty).

Table 2.1: 8 SPCA formulations (Richtárik et al., 2012)

# Variance SI norm SI norm usage X f(x)

1 L2 L0 constraint {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s} ‖Ax‖2
2 L1 L0 constraint {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s} ‖Ax‖1
3 L2 L1 constraint {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤

√
s} ‖Ax‖2

4 L1 L1 constraint {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤
√
s} ‖Ax‖1

5 L2 L0 penalty {x ∈ Rp : ‖x‖2 ≤ 1} ‖Ax‖22 − λ‖x‖0
6 L1 L0 penalty {x ∈ Rp : ‖x‖2 ≤ 1} ‖Ax‖12 − λ‖x‖0
7 L2 L1 penalty {x ∈ Rp : ‖x‖2 ≤ 1} ‖Ax‖2 − λ‖x‖1
8 L1 L1 penalty {x ∈ Rp : ‖x‖2 ≤ 1} ‖Ax‖1 − λ‖x‖1

Table 2.1 shows the 8 SPCA formulations classified by: norm type, sparsity-

inducing norm-type, and the usage of the sparsity-inducing norm. The L2 variance

formulations, numbers (1, 3, 5, and 7), were previously studied in literature. For

instance, the formulation in equation 2.18 roughly falls under formulation 7 in the

table; L2 norm, L1 penalized. On the other hand, L1 variance formulations are

less popular and were more recently proposed in literature (Meng et al., 2012; and

Richtárik et al., 2012).

2.4.1 Matrix deflation

Deflation is a process that modifies a matrix to eliminate the influence of one of

its eigenvectors. In the context of SPCA, deflation is necessary in cases where the
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problem is formulated such that it can only be solved sequentially, i.e., by solving the

cost function to find the first loading vector, and then solving another cost function

to find the next loading vector, and so on.

Typically, after one leading vector xt is computed, the covariance matrix At is

delfated with xt resulting in a deflated covariance matrix At+1. If the same cost

function is then solved on At+1 instead of At, the resulting loading vector xt+1 will

account for the maximal amount of variance not explained by xt.

There are several methods to perform the deflation process (See Mackey (2009)

for details). The most popular method, and the one used in this thesis is Hotelling’s

deflation, which is computed as follows:

At+1 = At − xtxTt AtxtxTt (2.19)

2.4.2 Adjusted explained variance

The standard principal components are uncorrelated and their loading vectors are

orthogonal. Therefore, the explained variance of the j-th principal component can

be computed as λj/q, where λj is the corresponding eigenvalue and q the number of

variables. On the other hand, SPCA guarantees neither the orthogonality nor the

uncorrelated property. Therefore, when computing the total explained variance of

k sparse principal componenets, the correlation between them must be accounted

for. For instance, the total explained variance of the first k + 1 sparse PCs should

equal the explained variance of the first k PCs plus the explained variance of the

extra (k + 1)− th PC, minus the variance attributed to new PC’s correlation with

the first k PCs.

Zou et al. (2006) propose a formula to compute the total explained variance of

a group of sparse PCs which takes into account the correlation among them. Let Ẑ

be a group of sparse PCs computed by any method, and Ẑj.1,...,j−1 the residual after

removing the linear dependence between Ẑj and Ẑ1, . . . , Ẑj−1:

Ẑj.1,...,j−1 = Ẑj −H1,...,j−1Ẑj, (2.20)
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where H1,...,j−1 is the projection matrix on {Ẑi}j−1
1 . Then the adjusted variance of

Ẑj is ‖Ẑj.1,...,j−1‖2. This can be computed using the QR decomposition7 Ẑ = QR:

‖Ẑj.1,...,j−1‖2 = R2
jj (2.21)

and the total explained variance for k PCs is equal to
k∑
j=1

R2
jj.

2.4.3 Numerical solutions

Two approaches to obtain sparse principal components are used in this thesis: The

elastic net method by Zou et al. (2006), and the first formulation of table 2.1 by

Richtárik et al. (2012). The former is an L1 penalty problem, while the latter is an L0

constraint problem, making them distinct approaches to induce sparsity. Moreover,

each method was solved using different algorithms. Zou et al. (2006) proposes an

alternating algorithm to solve the non-convex problem in equation 2.18 (See Zou

et al., 2006 for details). The second approach is reformulated by Richtárik et al.

(2012) to be solved by a generic alternating maximization method, which finds a

closed form solution to all formulations in table 2.1. For software implementation,

a Matlab toolbox developed by Sjöstrand et al. (2012) was used to solve the first

approach, while for the second approach, a Matlab toolbox8 was developed within

the scope of this thesis.

2.5 Weighted Principal Component Analysis

In most implementations of ordinary PCA, all variables and all observations (sam-

ples) are given the same importance by pre-standardization of the data, and per-

forming PCA by finding the eigenvectors of the convariance matrix. This allows

variables of different units and scales to be comparable, but at the same time, it

makes PCA inappropriate when a priori information is available about the variables

or the samples, i.e., their relative importance; or when the data is contaminated

with noise. Weighted Principal Component Analysis or WPCA is a modification to

ordinary PCA that aims to address these cases.

7The QR decomposition of a matrix Z is defined as Z = QR where Q is orthonormal and R is

upper triangular
8https://github.com/amjams/spca_am.git
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WPCA does not have a standard form, and usually consists of ad-hoc weighting

schemes of either the samples or the variables. Examples of sample-wise weighting

schemes can be found in Cheng et al., 2011, where they use WPCA to take into

account the relative importance of pixels (samples) for identifying the locations

of intrusive bodies from geochemical data. Pinto da Costa et al. (2011) apply the

same principal to microarray data by defining a new correlation coefficient that gives

higher weights to observations that are considered to be more important. Conversely,

weighting schemes can be variable-wise, Yue and Tomoyasu (2004) propose an ad-hoc

variable-wise weighting scheme to incorporate sensor knowledge in a fault detection

problem.

For the Tono case study, a variable-wise weighting scheme is appropriate. The

a priori knowledge that can be introduced to the problem relates to the fact that

the principal components will be used to build emulators with different outputs

(gtemp, gsed, and galgae). The relative importance of the input variables to any of

the outputs is incorporated into PCs using a weighting scheme that modifies the

covariance matrix.

cov(V ) = (V TV )/(N − 1) (2.22a)

covw(V ) = (WV TXV T )/(N − 1) (2.22b)

where N is the number of samples, V is the standardized data matrix, cov(V ) is

the covariance matrix, covw(V ) is the weighted covariance matrix, and W is an

appropriate weight matrix.

Three weight matrices are suggested. Two of them incorporate the information

from the IIS ranking9, while the third uses Pearson’s linear correlation coefficient.

They are defined as follows:

� WIIS1: Linearly spaced positive scalar values in the range (1 : 100) are assigned

to the IIS ranking order of the input variables for each emulator output, i.e.,

the input variable that ranks first in IIS is given a weight of 100, while the

input variables ranked last is given a weight of 1, while other selected variables

are weighted between 1 and 100 on a linear scale according to their ranking.

9The ranking is taken from 10 runs of the IIS algorithms on each output, and the variables

were ranked according to the number of times they are selected, and their average relative δR2

contribution
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Variables that are not selected at all by IIS are given a weight of 0.5, i.e.,

they are weighted down, or given less importance than in the ordinary PCA

case. Finally, the weight matrix WIIS1 is a diagonal matrix, with each diagonal

element wjj set to equal the weight associated to the j-th variable.

� WIIS2: Defined similarly to WIIS1, but with a logarithmic scale between (1 :

100) instead of a linear scale. Variables that are not selected are weighted

down by 0.1.

� Wpearson: In this scheme, the weights, i.e. the diagonal elements of Wpearson,

are set as the absolute values of the Pearson’s correlation coefficients between

the variables and the output of interest.

This results in 9 weight matrices, and 9 sets of weighted principal components,

three for each of the emulator outputs. In chapter 4, the accuracy of the models

built with these PCs is compared to those built with ordinary PCs and sparse PCs.
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Chapter 3

The Case Study: Tono Dam

This chapter starts with a description of the Tono Dam system which is used as

the case study in this thesis. Then, a description of DYRESM-CAEDYM, the

1D spatially-distributed model used to describe the in-reservoir hydrological and

ecological processes is presented. Finally, the optimal management problem of the

Tono Dam is formulated, including a description of the outputs that are used for

the emulation.

3.1 Description of the case study

3.1.1 System description

Tono dam is an artificial reservoir in western Japan constructed at the confluence

of Kango and Fukuro rivers (see figure 3.1). It has a height of 75 m and it forms an

impounded reservoir of 12.4 × 106 m3 (gross capacity), with a surface area of 0.64

km2 and fed by a 38.1 km2 catchment.

The reservoir has been built for multiple purposes: it provides water for irrigation

to several agricultural districts downstream (for a total irrigated surface area of 353

ha), feeds a hydro-power station with 1.1 MW installed capacity, provides industrial

water supply of 30 × 103 m3/day and drinking water supply of 20 × 103 m3/day

to the local communities, is used for buffering river floods (up to 5.5 × 106 m3),

provides ecological services (e.g. fish habitat) in the downstream river, and finally

it is used for recreation.

The dam is equipped with a withdrawal intake tower for releasing active storage

water at different levels. The selective withdrawal structure (SWS) is equipped with
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Figure 3.1: Tono Dam location in Western Japan (panel a), the main characteristics of the reservoir

with two of the decision variables adopted in this study (panel b), and the scheme of the selective

withdrawal structure (SWS) (panel c).
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a rack of 15 vertically stacked siphons (see figure 3.1), starting at 18 m from the

reservoir bottom. Siphons are operated by inflating or deflating air, and blending

is allowed. The total amount of water released through the SWS is equally divided

among the open siphons and it is conveyed into the hydro-power plant. A bypass is

available just before the plant to divert any flow rate smaller or greater than those

conveyable into the plant (1.0 m3/s and 3.0 m3/s respectively).

A flood orifice gate is foreseen at the elevation of 182.8 m (37.8 m from the bottom)

just at the bottom of the flood buffering layer. Selective release is not available

in the sediment storage, however an intake has been planned at 156 m to cover

the Minimum Environmental Flow and supporting the outflow in exceptionally dry

years, when the water level drops below the lower bound of the active storage.

In normal conditions, the minimum environmental flow is guaranteed through the

siphons. When the level drops below the SWS lower limit, the sediment outlet is

activated. This intake can not be used for flushing away sediments.

While one of the main purposes of Tono dam operation is to provide water

for irrigation, the SWS might have an impact on several other water uses. We

distinguish between in-reservoir and downstream issues, the former being affected

by level variations, the latter by the release.

In-reservoir

� Level Too low reservoir levels, which can be generated in the attempt to

release water to satisfy agricultural water demand, can potentially reduce the

recreational value of the lake. In order to emphasize this recreational interest,

the SWS management has to consider to keep the lake level as close as possible

to a reference level of 182.8 m a.s.l. as the normal high water level. This,

however, implies stocking a significant volume of water in the reservoir with

potentially negative effects both in-reservoir, e.g., boosting algal blooms, and

downstream, e.g., water shortages.

� Algal blooms Odors and unattractive appearance of algal blooms can detract

from the recreational value of the lake affecting the quality of the water stored

in the reservoir. The physical processes driving the bloom of algae are par-

ticularly complex. However, thermal stratification has a dominant role. Con-

trolling the temperature profile is a mechanical way of controlling the depth

of nutrient load intrusion and therefore the algae bloom, which is basically
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sensitive to the available light. Moreover the temperature profile might vary

as a consequence of withdrawing at different levels (Gelda and Effler, 2007).

Generally, the deeper the withdrawal the more the deepening of the thermo-

cline. Yet, this implies releasing colder water with potentially negative effects

downstream and might affect sedimentation in the way explained below.

� Sedimentation High levels of in-reservoir sedimentation can remarkably re-

duce the reservoir life by inducing the rapid silting of the impoundment. Sed-

imentation is basically driven by the inflow and re-suspension can be assumed

as negligible considering the reservoir depth (Evans, 1994). In particular,

inflow intrusion is governed by the in-reservoir temperature profile and the

inflow temperature because floods are more likely to intrude just above the

thermocline (Yajima et al., 2006). Therefore, to maximize sediment evacu-

ation, the release should be set at the depth at which the turbid inflow is

intruding and then, if necessary, dynamically moved to the deeper siphons to

intercept the maximum concentration of suspended solids not yet evacuated.

Moreover, some recent studies (Yajima et al., 2006) have shown that using the

top siphon combined with the spillways leads the inflow to the shallower depth

and facilitate sediment flushing from the spillway. These ways of operating the

SWS might have negative effects on the other sectors, like, for instance, the

ecosystem downstream, which might be damaged by too warm water. Also

recreation could be affected, since by keeping the thermocline in the shallow

layer, algal blooms are more likely to occur as explained above.

Downstream

Irrigation and Temperature are the sectors identified downstream from the dam.

� Irrigation Farmers are interested in reducing the water supply deficit, which

has a direct effect on the seasonal harvest and, therefore, on the annual in-

come, which is the criterion through which the farmers judge the level of

attractiveness of an operating policy (Hashimoto et al., 1982).

� Temperature The riverine ecosystem downstream from the dam is potentially

threatened by large deviations of the water temperature from the seasonal nat-

ural patterns that might negatively affect faunal richness in both fishes and

invertebrates (Bartholow et al. (2001) and references therein). According to
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Fontane et al. (1981) and Baltar and Fontane (2008), a simple and physically

rooted criterion to reduce the effect of artificially induced temperature vari-

ations is to force the outflow temperature to be as closest as possible to the

(natural) inflow temperature.

3.1.2 Evaluation Criteria

In principle, each one of the sector criteria specified in Section 3.1.1 has to be

associated to one or more quantitative evaluation criteria, through which different

control policies can be evaluated and compared.

The evaluation criteria are defined as the aggregation over a pre-selected evalu-

ation time horizon Hval (1990-1994) of step-costs gt+1, as follows:

z =
1

Hval

Hval−1∑
t=1

gt+1 (3.1)

Level

The first step-cost is associated to water-level, and it is defined as the squared

positive difference of lake level with respect to the reference level h̄ = 182.8m.

glevt+1 =
[
max

(
h̄− ht+1, 0

)]2
(3.2)

Algal bloom

The step-cost associated to the recreation sector of interest has to be strongly corre-

lated to algal bloom. One suitable choice would be to consider phosphorous concen-

tration in the epilimnion, but this is hardly measurable1. The average concentration

of Chl-a in the epilimnion is a potential valuable alternative. However, since Chl-a is

acting as a proxy of algal bloom, the daily average hourly maximum concentration

of Chl-a in the see-through layer was considered as follows:

grect+1 =
1

24

24∑
τ=1

max
zτ∈zE

(chlaτ (zτ ))
α (3.3)

1Another potential reference variable is the average value of DO (Dissolved Oxygen) in the

reservoir bottom layer. Maximizing the value of the oxygen dissolved in the water reduces the

chance for anoxic conditions in the bottom layer with consequent release of nitrogen and increase

in algal bloom via water mixing. However, this only accounts for the nutrient load available in the

bottom layers of the reservoir, but ignores the nutrient contribution coming in with the inflow.
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where chlaτ is the Chlorophyll a concentration [g/m3] at the τ -th hour of day t,

zτ is the depth with respect to the lake surface, zE is the see-through layer depth

(E stands for euphotic layer), set at 7 metres below water surface, as it came out

from the analysis on the transparency features of the water, and α is an amplifying

coefficient to take into account the associated bloom effect (provisionally α = 1).

Sedimentation

The step-cost associated to this sector is the daily volume of sediment expelled with

the release, which has to be maximized in order to reduce the silting of the reservoir

and increase its expected life. Therefore, the considered step-cost is the following:

gsedt+1 = TSSoutt+1 (3.4)

where TSSoutt+1 is the amount of Total Suspended Solid [g/day] in the reservoir outflow

between t and t+ 1. More precisely, TSSoutt+1 can be computed as

TSSoutt+1 =
N∑
i=1

tssit+1r
i
t+1 + tssspillt+1 r

spill
t+1 (3.5)

where rit+1 [m3/day] is the volume of water actually released2 from the i-th siphon

of the N available in the SWS and tssit+1 is the average TSS concentration [g/m3]

in the corresponding layer, tssspillt+1 is the average TSS in the layer of the spillway,

and rspillt+1 the actual release from the corresponding layer.

Irrigation

The step-cost associated to this sector is the water daily deficit. Since the impact of

deficit on the plant growth might have different effects depending on the vegetation

2A fundamental modeling tool in designing daily control policies is the so-called release func-

tion (see Soncini-Sessa et al. (2007a) for more details). Indeed, the release decision ut is taken at

time t and is supposed to be implemented between t and t+1, when a new decision is taken. Since

the reservoir level might change as a consequence of the inflow, of the evaporation and of the water

being released, the actual volume rt+1 released from the SWS at the end of the interval [t, t + 1)

might not correspond to the release decision taken at time t. For example, due to high inflow, the

water level can rise above the spillways bottom level, and some water can flow out uncontrolled

from the spillway orifice. Another example, the water being release can cause the level to drop

below the active siphon and the release decision has to be allocated to other siphons.
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phase and the effect of the water deficit on the real crop stress is not linear (reflecting

some risk aversion by the farmers), the following step-cost was defined:

girr1t+1 = β(t)
((
wt − (rt+1 − qMEF

t+1 )
)+
)γ

(3.6)

where wt is the agricultural reshaped (as explained later) water demand, rt+1 is

the total actual release from the dam (including SWS and spillway), qMEF
t+1 is the

Minimum Environmental Flow and (·)+ is a mathematical operator returning only

positive values of the deficit or zero. β(t) is a time-varying coefficient taking into

consideration the different relevance of water deficit in different periods of the years

and γ is a parameter accounting for the risk aversion of the farmers and is to be

selected into a range of 1-12 (see Soncini-Sessa et al. (2007a)).

The nominal water demand provided by the Ministry refers to a section downstream

of a lateral tributary to the downstream main river, whose flow is evaluated via

simple regression to be 48% of the inflow to Tono dam3. Not taking into account

this other source of water would assign to the farmers more water than their needs.

It is therefore necessary to reshape the nominal water demand: it can be done either

by evaluating the 48% of the worst yearly pattern and diminishing the nominal water

demand of these values, or by evaluating step by step the tributary inflow as the

48% of the Tono dam inflow and diminishing the water demand of this value. The

second option was adopted in this study (see fig. 3.2) and β(t) was set β(t) = 1

from May 3rd to June 1st, β(t) = 0.8 from June 2nd to September 4th, β(t) = 0.3

from September 5th to May 2nd; γ was set equal to 2.

Since the physical meaning of girr1t+1 is hardly interpretable, since it is expressed as

[(m3/day)2], other four more physically meaningful step-costs were introduced to

support the policy evaluation and comparison. The first one is the daily deficit

[m3/s]:

girr2t+1 = (wt − (rt+1 − qMEF
t+1 ))+ (3.7)

The other three step-costs are defined in the same way, but over a shorter inter-

3The tributary contribution of 48% is calculated as the ratio between the catchment area of

Tono dam (38.10 km2) and the catchment area of the downstream tributary (19.72 km2). This is

a viable procedure as the two basins are very close to each other and are at similar heights, giving

them similar meteorological conditions.
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Figure 3.2: The nominal water demand (dashed line) and the one reshaped (continuos line) to take

into account the contribution of the tributary to the downstream river.

annual period:

girr3t+1 = (wt − (rt+1 − qMEF
t+1 ))+ (3.8)

which is calculated over the winter period;

girr4t+1 = (wt − (rt+1 − qMEF
t+1 ))+ (3.9)

which is calculated in May;

girr5t+1 = (wt − (rt+1 − qMEF
t+1 ))+ (3.10)

which is calculated over the summer period.

Temperature

The step-cost for this sector is the squared daily difference between the temperature

of the inflow and the temperature of the outflow, as follows:

gtemp1t+1 = (T outt+1 − T int+1)2 (3.11)

where T int+1 is defined as

T int+1 =
TKt+1a

K
t+1 + T Ft+1a

F
t+1

aKt+1 + aFt+1

(3.12)

with TK and T F being the average temperature [◦C] of the inflow between t and t+1

respectively for the Kango and Fukuro river, and aKt+1 and aFt+1 the corresponding
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inflow, while T outt+1 is the average temperature in the same time interval in a section

just downstream of the turbine outlet. By assuming negligible the effects of the

turbines on the temperature as well as the temperature variation along the river

course from the dam to that river section, T outt+1 is given by

T outt+1 =

N∑
i=1

T it+1r
i
t+1 + T spillt+1 r

spill
t+1

N∑
i=1

rit+1 + rspillt+1

(3.13)

where T it+1 is the average temperature between t and t+1 in the layer corresponding

to the i-th controlled siphon and T spillt+1 is the average temperature in the layer of

the spillway. Also for this sector a more intuitive step-cost is defined as the daily

difference of temperature between inflow to and outflow from Tono, as follows:

gtemp2t+1 = (T outt+1 − T int+1) (3.14)

Figure (3.3) represents all the sectors affected by Tono dam operation, along with the

corresponding evaluation criteria (the sectors that have not any associated criterion

are represented with dotted line).

Figure 3.3: The hierarchy of criteria for the Tono dam system
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3.1.3 DYRESM-CAEDYM Model

In principle, a 3D spatially-distributed model of the hydrodynamic and ecological

processes taking place in the lake should be considered. However, there are basically

two reasons for not adopting this type of model:

1. The reservoir is being created by damming two rivers in a quite narrow sec-

tion of their course and therefore longitudinal and vertical phenomena are

dominating. A 2D water quality model (CE-QUAL-W2) should be enough for

accurately describing the system.

2. The estimated simulation/real-time time ratio of a 3D model, such as ELCOM-

CAEDYM, is 1/30 days, and this make it totally unsuitable for supporting the

design of a release policy.

Since a 2D model of Tono dam was not available, the final choice was for a 1D

model, namely DYRESM-CAEDYM. With this model, the spatial dynamics be-

tween the inlet and the outlet of the reservoir are lost, however the computational

time drops off to nearly 1/12275 days. DYRESM (DYnamic REServoir Simulation

Model, see Imerito (2007)) is an hydrodynamical model that is able to simulates the

vertical distribution of temperature, salinity and density in lakes that can be mono-

dimensionally approximated. The reservoir is represented by a set of horizontal

layers that have different depth according to the amount of water accumulated into

the reservoir. DYRESM is used together with CAEDYM (Computational Aquatic

Ecosystem DYnamics Model, see Hipsey et al. (2006a)) which simulate chemical and

biological processes. CAEDYM represents processes like C, N, P, Si and DO cycle,

inorganic suspended solids, and phytoplankton dynamics.

The model is based on a Lagrangian architecture that models the reservoir as

horizontal layers of uniform properties (i.e., temperature and water qualities). The

thickness of the layers varies in time depending on the water density profile. In this

study, the minimum and the maximum thickness of a layer is set to 1 m and 2 m,

respectively, which correspond to allow the definition of more than 30 layers in the

Tono Dam reservoir. Twenty-one state variables are defined for each layer, for a

total of nearly 600 state variables (including the level). Because observational data

are not yet available, the model was calibrated by applying the same parameter

values as obtained in the calibration of a neighboring reservoir with similar feature

and size (Castelletti et al., 2014).
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3.2 Formulation of the optimal control problem

The problem of designing the optimal control policy p∗ of the Tono dam can be

formalized as an optimal control problem:

J∗ = min
p
E{εt}t=1,...,h

[J(xh0 ,u
h−1
0 , εh1)] (3.15a)

subjected to

xt+1 = ft(xt,ut, εt+1) t=0,1,...,h-1 (3.15b)

mt(xt) = ut ∈ Ut(xt) t=0,1,...,h-1 (3.15c)

εt+1 ∼ φt(·) t=0,1,...,h-1 (3.15d)

x0 given (3.15e)

p , {mt(·); t = 0, 1, ..., h− 1} (3.15f)

any other constraints t=0,1,...,h-1 (3.15g)

where J =
∑n

j=1 λ
jJ j (

∑n
j=1 λ

j = 1 with λj ≥ 0 ∀j) is a weighted sum of n

design criteria and xt is the reduced state vector4.The vector of control variables

ut contains N release decision corresponding to N different outlets. The natural

choice would be to consider all the 15 siphons, including the last available one at

18 m from the bottom (bottom outlet) and the intake in the sediment storage at 11

m from the bottom (sediment outlet). However, the computational time required

to design such a complex control policy overcomes the objectives of the project and

a simplification was unavoidable. The more effective release decision variables are

the release decision u−3
t , u−7

t , u−13
t , and ubott that provide the water volumes to be

released between t and t + 1 respectively from the outlets at -3 m, -7 m, -13 m

4State reduction techniques are applied in order to make the problem computationally

tractable: the underlying idea is that not all the dynamic modes described by the 1D DYRESM-

CAEDYM model are equally relevant in the cause-effect relationship linking release decision to

evaluation criteria. The original state vector can be therefore reduced to a smaller vector which

is still significant in conditioning the release decision. Both formal and empirical (expert-based)

approaches can be adopted to perform such reduction.
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depth with respect to the water surface, and the volume released from the bottom

outlet. The underlying idea is that these water elevations should correspond, in

the average reservoir conditions, to the epiliminium, the thermocline region and the

hypolimnium of the stratified reservoir. The decision variables are defined over a

feasibility set Ut(xt) that takes into account which outlets are available given the

storage, the physical constraints imposed by the siphons and the SWS outlet size,

and the hydraulics of the SWS. More precisely, each siphon cannot convey more than

7.353 m3/s, while the flow rate allowed by the SWS outlet is 13.780 m3/s. The water

volume released through each siphons cannot be freely decided, but depends on the

total amount released from the SWS, which is hydraulically equally divided among

the open siphons. Notice that when more than one siphon is opened, each siphon

cannot be operated at the maximum capacity. Finally, εt+1 is the vector of stochastic

disturbance (e.g. inflow, wind, solar radiation, nutrient load in the inflow etc.).

The problem resolution is computationally intractable due to the dimensionality

of the state-action space, i.e., having hundreds of state variables, 4 controls, and the

high number of objectives considered. A linear increase in the number of objectives

indeed yields a factorial growth in the number of problems to solve, namely a four

objective problem requires to solve also 4 single-objective problems, 6 two-objective

problems, and 4 three-objective problems (Reed and Kollat, 2013; and Giuliani et al.,

2014). Therefore, state reduction is necessary to make the problem computationally

tractable.

In previous works (Castelletti et al., 2014; Giuliani et al., 2014), an expert-based

state reduction was performed to select a 6-variable state vector, which comprises

the following variables: time, reservoir storage, T-3, T-13, TSS-3, TSS-13. In this

study, the state reduction is performed using a formal approach based on Dynamic

Emulation Modeling (DEMo) (Castelletti et al., 2012a).
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Chapter 4

Results

The purpose of this study is to compare two classes of Dynamic Emulation Model-

ing (DEMo): selection-based, and projection-based techniques. First, the prelimi-

nary steps to model-reduction are described, namely (i) the design of experiments,

(ii) expert-based variable aggregation, and (iii) a reduction of sample-size by ran-

dom sampling. Then, the competing techniques, Recursive Variable Selection, and

Principal Component Analysis are applied on the resulting data-set F̃ to reduce

the number of variables. Finally, emulators are created for three outputs: two

in-reservoir water quality outputs; algal bloom, represented by the daily average

hourly maximum concentration of Chlorophyll-a in the see-through layer, and the

daily total suspended solid; and one downstream water quality output, i.e. the

squared daily difference between the temperatures of the inflow and the outflow.

The outputs will denoted as gtempt+1 , gsedt+1, and galgaet+1 respectively, and their associated

step-costs are found in equations 3.11, 3.4, and 3.3. These three represent water

quality issues, which require the use of complex, process-based models to describe

the hydrodynamic and ecological processes involved. Instead, the discarded objec-

tives are associated to water quantity, and their associated emulators are somewhat

trivial as they mainly depend on storage, time, and possibly inflow volumes. The

chapter is divided as follow: Part I includes the pre-processing steps to applying

RVS, PCA, SPCA, or WPCA, whereas Part II discusses the results from the four

approaches separately. Finally, the four approaches are compared with respect to

different criteria in Part III.
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4.1 Part I: Perquisites to model reduction

4.1.1 Design of experiments

Like any data-driven emulation exercise, the experiment starts with running a se-

quence of computer simulations of the original model M aimed at creating a data-

set F to be utilized for the emulation. In the case of the Tono dam case study,

this was done by running simulations on the 1D model, DYRESM-CAEDYM. The

model was simulated under 100 pseudo-random sequences of controls, sampled from

an irregular grid with lower probability assigned to high release values in order to

reduce the occurrence of full reservoir drawdown. The model consists of an ex-

ogenous driver vector Wt which includes 50 components, accounting for the main

hydro-meteorological processes and water pollution loads. The control vector ut is

assumed to have four components (i.e., the release decisions from the siphons u−3
t ,

u−7
t , u−13

t , and ubott [m3/s]). The trajectories of ut are designed to span as much

as possible the state-control space. As for Wt, the time series of observational data

over the period 1995-2006 are available, and, considering the variety of conditions

included in them and the length of the series, they are directly used without further

data generation.

For each of the 100 simulation scenarios so obtained, the coupled DYRESM-

CAEDYM model is run with 1 m vertical grid resolution and a simulation step of 1

min. The simulated data, sampled with a time-step ∆t equal to one day, are finally

stored in the data-set F of tuples {Xt,Wt,ut,Xt+1,Yt}, with dimensionality Nx,

Nw, Nu and Ny equal to ∼ 103, 50, 4 and 3. The dimensionality Ny of Yt is equal

to 3 since only three immediate costs (outputs) will be considered for emulation:

gtempt+1 , gsedt+1, and galgaet+1 . The 100 simulation runs, each one with a simulation horizon

of 12 years, give a total of ∼ 4.50× 105 tuples.

4.1.2 Variable aggregation

The dimensionality of the dataset F is unsuitable for the model-reduction tech-

niques used in this study, specially for selection-based techniques, as they tend to

be computationally demanding. In order to create a lower dimension dataset, vari-

able aggregation is applied, whose aim is to transform Xt and Wt into two lower

dimension vectors X̃t and W̃t, with dimensionality Ñx � Nx and Ñw � Nw by

using a suitable aggregation scheme. Castelletti et al. (2012b) employed an expert-
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based aggregation scheme for Xt, thereby reducing the original ∼ 103 components

to 19. The aggregation was made such that the states most relevant to characterize

the dynamic behavior of the reservoir with respect to the management objectives

were kept. For example:

� dissolved oxygen DO [mg O/L], ammonium NH4 [mg N/L], nitrate NO3

[mgN/L], phosphate PO4 [mgP/L], silicium SiO2 [mgSi/L], pH and chlorophyll-

a chlor [mg Chla/L] in both rivers; Kango and Fukuro.

� the reservoir temperature T i �], and total suspended solid tssi [g/m3], in the

layers located i meters below the surface, with i = 3, 7, 13, b, s (b and s are

the layers corresponding to the bottom and sediment outlet).

� the reservoir level h [m] and storage s [m3];

� the level hTin [m] at which the water temperature T in the reservoir equals

the average temperature Tin �] of the inflows and the level htssin [m] at which

the total suspended solid tss in the water column equals the average total

suspended solid tssin [g/m3] of the inflows;

� the maximum values Tmax = max
h

T (h)�] and tssmax = max
h

tss(h)[g/m3] of

the temperature and total suspended solid over the water column;

� the level hTmax and htssmax corresponding to Tmax and tssmax, i.e. argmax
h
T (h)

and arg max
h

tss(h);

This expert-based aggregation scheme reflects the idea of extracting from the

state vector Xt the features that might be most relevant to characterize the dy-

namic behavior of the controlled reservoir with respect to the different management

objectives. However, not all the states in X̃t are in a causal relationship with the

considered objectives (gtempt+1 , gsedt+1, and galgaet+1 ). As for the exogenous vector Wt, vari-

able aggregation was not considered, as these variables are already lumped in space.

For a full list of candidate input variables, see table 4.1.

4.1.3 Sample-size reduction

In addition to the dimensionality reduction described in the previous section, a

reduction of the number of observations was also considered. This was done for two

reasons:
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Table 4.1: List of candidate input variables

# Name # Name # Name # Name # Name

Kango inflow data Fukuro inflow data Meteorological Data State Variables Control variables

1 Volume 23 Volume 45 SW 51 t 70 u-spill

2 Temperature 24 Temperature 46 Cloud cover 52 h 71 u-3

3 Salinity 25 Salinity 47 Air Temperature 53 s 72 u-7

4 NH4 26 NH4 48 Vap. Press 54 Taff 73 u-13

5 NO3 27 NO3 49 Wind Speed 55 hTaff 74 u-bot

6 PONL 28 PONL 50 Rain 56 gateTaff 75 u-sed

7 PO4 29 PO4 57 TSSmax

8 POPL 30 POPL 58 hTSSmax

9 DO 31 DO 59 gateTSSmax

10 DOCL 32 DOCL 60 T-3

11 POCL 33 POCL 61 T-7

12 SSOL1 34 SSOL1 62 T-13

13 SSOL2 35 SSOL2 63 Tbot

14 SSOL3 36 SSOL3 64 Tsed

15 SSOL4 37 SSOL4 65 TSS-3

16 SSOL5 38 SSOL5 66 TSS-7

17 SSOL6 39 SSOL6 67 TSS-13

18 pH 40 pH 68 TSSbot

19 SiO2 41 SiO2 69 TSSsed

20 CYANO 42 CYANO

21 CHLOR 43 CHLOR

22 FIDAT 44 FIDAT

Note: For full variable notation, see the CAEDYM science manual (Hipsey et al., 2006b).

1. The Iterative Input Selection algorithm within RVS is a time-intensive pro-

cedure, and the time required to complete a single iteration increases super-

linearly with the number of observations (Appendix A). Therefore, a balance

must be found between the computing requirements of RVS and number of

observations in the dataset.

2. The purpose of creating these emulation models is to ultimately use them

to speed-up the procedure of designing the optimal operating policy of the

reservoir. This makes it necessary to take into account the time-effect of

sample-size from the beginning, so as not to impair the time-saving benefit of

variable-reduction.

As for principal component analysis, it turns out that computational time is not

critical with respect to the number of observations in this problem. However, a

unified sample-size was adopted in both techniques to provide a fair comparison of

the results. According to preliminary experiments (Giuliani, 2010), it was decided

that 10% of the original observations, i.e., ∼ 4.50×104 is a sufficient sample-size. The

sufficiency was proven empirically for both RVS and PCA. The sample is obtained
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by taking a random subset of F subject to the constraint of maintaining the same

frequency of use of each outlet as in the original DOE.

4.2 Part II: Model-order reduction

4.2.1 Recursive Variable Selection

In this section, the RVS results are reported. The results were obtained following the

RVS algorithm described in chapter 4 and appendix A.3, which in turn uses Iterative

Input Selection (see A.4) as an input selection algorithm. The state-variables for

which IIS was performed are items 54 to 69 in table 4.1, which are water quantity

and quality state-variables. For states t(time), ht(water level), and st(storage), IIS

was not needed, because the causal networks for these states are known a priori.

Time depends on the previous time-step, while storage is governed by the following

equations:

st+1 = st + at+1 − Et+1 − rt+1, (4.1a)

Et+1 = et+1S(st), (4.1b)

where a is the inflow, E is the evaporated volume, S is the volume of the water

surface, e is the specific evaporation volume, and r is the released volume, which

coincides with the control variables ut in this problem. Evaporation was considered

negligible. Finally, ht+1 is proportional to st+1.

Figure 4.1: Causal network for the reservoir storage and water level (Soncini-Sessa et al., 2007a:

Ch. 4)

61



As mentioned in section 2.2.3, IIS utilizes Extra-tress (Ernst et al., 2005) as a

model building (MB) algorithm. Extra-trees are characterized by three parameters:

M , K, and nmin. M is the number of trees in the ensemble, K is the number of

alternative cut-directions (i.e. the number of candidate variables), and nmin is the

minimum-cardinality for splitting a node. The parameter values were chosen based

on guidelines in (Geurts et al., 2006), and empirical experiments in (Castelletti

et al., 2011, 2012b), and adjusted to fit the time constraint of this experiment.

”The higher the value of M, the better from the accuracy point of view” (Geurts

et al., 2006). M was set to 500 for IIS on outputs to achieve the highest accuracy

possible, and it was reduced to 100 for state-variables to balance accuracy with

computational time, as there are more states than outputs. K is set to 75, which

is the number of candidate variables, and nmin is set to 2, following the guidelines

from the aforementioned studies. The stopping criterion for IIS in this experiment

is based on the R2 performance between the measured output and the output of

the underlying model (in k-fold cross-validation1, with k = 10). The results of

the IIS ranking (reported in appendix B) show all the selected variables for each

output or state-variable with their associated relative δR2 (i.e. the difference in R2

performance contributed by a selected variable, normalized by the total R2 of all

selected variables). In the next section, different causal networks are constructed by

varying a threshold on this criterion.

Causal Networks

The RVS algorithm proceeds by first applying IIS on the output (gtempt+1 , gsedt+1, or

galgaet+1 ). This run of IIS identifies the set of input variables most relevant in explaining

the process-based model output. From the first set of selected variables, those

that are state-variables need to have their dynamic behaviors explained. Therefore,

subsequent runs of IIS are performed on the selected states and the newly selected

variables and states are added to the causal network of the output. This procedure

continues until no states that have not been selected before are added, and the

output causal network becomes complete.

Different causal networks for a single output can be constructed by setting a

threshold on either the R2 contribution of the variable or the number of selected

1This means that the data-set is divided in k parts (folds), and for each one both calibration and

validation are performed. The final estimate of the model performance in calibration/validation is

obtained by averaging the values associated to each fold.
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variables from each IIS occurrence. For instance, RVS could be performed such that

only variables with a relative R2 contribution of more than 2% in IIS are passed

onto the next iteration of RVS. Alternatively, a threshold could be set on the number

of variables taken from each IIS ranking, e.g., the first 3 or 5 variables by ranking

order. The former method is implemented here; the next sections show how the

complexity of the resulting causal networks varies with the threshold on R2.

Temperature (gtempt+1 )

Table 4.2: Causal network complexity for gtemp
t+1

min δR2
number of inputs

(states, controls, exogenous)

0 44 (19, 4, 21)

0.5 23 (8, 4, 11)

1 20 (7, 4, 9)

1.5 18 (6, 4, 8)

2 16 (6, 4, 6)

2.5 15 (16, 4, 5)

3 14 (5, 4, 5)

3.5 14 (5, 4, 5)

4 9 (2, 4, 3)

4.5 9 (2, 4, 3)

5 9 (2, 4, 3)

Table 4.2 shows how the size of the network changes with different values of the

minimum δR2 threshold. When the threshold on min δR2 is set to 0, i.e., all selected

variables are included, the network consists of 44 variables, including 19 states, while

the total number of candidate inputs is 75. Yet, this network is too complex, and

does not represent the desired degree of model-reduction. The network complexity

decreases with the increase of min δR2. The change occurs in the number of states

and exogenous drivers, whereas even with the strictest threshold min (δR2 > 5%),

all four control variables (u−3
t , u−7

t , u−13
t , and ubott ) remain in the network. They

are connected to gtempt+1 directly, and through state-variable ht, the water level, which

explains 9.1% of the output variance, according to table B.1. This indicates that

water temperature is controllable using the four siphon outlets, and that they play

an important part in determining the dynamic behavior of this objective. Some

examples of the causal networks are visualized in the figures 4.2, 4.3, and 4.4, which

have a threshold on min δR2 of 2%, 3%, and 5%, respectively.
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Figure 4.2: Causal network for gtemp
t+1 , min relative δR2 > 2%

At δR2 > 2%, the output connects directly to: 2 state-variables, one exogenous

input, and all four control variables.

Figure 4.3: Causal network for gtemp
t+1 , min relative δR2 > 3%

At δR2 > 3%, the outcomes of the first two iterations of RVS remain the same,

i.e. at the output level and the states connected directly to the output, while in

the third iteration, the number of states and exogenous inputs each drop by one.

Namely, T afft and Raint are no longer selected.

Finally, at δR2 > 5% (see fig. 4.4), the size of the network is reduced significantly,

and it contains only two state-variables; ht (water level) and T sedt (water temperature

at sediment level), indicating their importance in explaining gtempt+1 relative to the

other state-variables. They are connected to the reservoir stratification conditions,

which depend on the water level (the higher the level is, the higher the stratification)
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Figure 4.4: Causal network for gtemp
t+1 , relative δR2 > 5%

(Castelletti et al., 2012b). To a lesser extent, time is an important driving force,

and it represents the annual periodicity of the process being modeled, while T−3
t

(temperature at −3 meter) serves the same purpose as ht and T sedt . The most

important exogenous driver; the temperature of Fukuro, can be seen as a proxy of

the average inflow temperature (of Kango and Fukoro).

Sediments (gsedt+1)

Table 4.3: Causal network complexity for gsedt+1

min δR2
number of inputs

(states, controls, exogenous)

0 4 (1, 1, 2)

0.5 4 (1, 1, 2)

1 3 (1, 0, 2)

1.5 3 (1, 0, 2)

2 3 (1, 0, 2)

2.5 3 (1, 0, 2)

3 3 (1, 0, 2)

3.5 3 (1, 0, 2)

4 3 (1, 0, 2)

4.5 3 (1, 0, 2)

5 3 (1, 0, 2)

Table 4.3 shows that there are only two distinct causal networks for gsedt+1 as min

δR2 is varied from 0% to 5%. The size of the networks is significantly smaller
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when compared to gtempt+1 . According to table B.2, The exogenous driver Kango

POCL (Labile Particulate Organic Carbon) explains 94% of the output R2, while

the second selected variable, the state TSS-3 (Total suspended solids at −3 meters),

explains around 5%. Auxiliary runs of IIS performed on different resamples of the

dataset revealed that the first selected variable varies at each run between a number

of exogenous drivers including (Fukoro SSOLi, Kango SSOLi, where i = 1, . . . , 6; and

Kango or Fukoro POCL). SSOLi (suspended solids) and POCL variables represent

different classes of suspended particles. Any of them may act as a proxy of all

suspended solids flowing into the reservoir, hence its importance in explaining the

dynamics of the released sediments. Moreover, this objective can be controlled by

the siphon at −3 meters. Figures 4.5 and 4.5 show a visualization of the two causal

networks for gsedt+1, with the control action appearing in the first one only, when all

selected variables are included (min δR2 > 0%).

Figure 4.5: Causal network for gsedt+1, relative δR2 > 0%

Figure 4.6: Causal network for gsedt+1, relative δR2 > 1%
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Algae (galgaet+1 )

Table 4.4: Causal network complexity for galgaet+1

min δR2
number of inputs

(states, controls, exogenous)

0 43 (19, 4, 22)

0.5 25 (10, 4, 11)

1 11 (3, 4, 4)

1.5 11 (3, 4, 4)

2 11 (3, 4, 4)

2.5 11 (3, 4, 4)

3 9 (2, 4, 3)

3.5 9 (2, 4, 3)

4 9 (2, 4, 3)

4.5 9 (2, 4, 3)

5 9 (2, 4, 3)

Table 4.4 shows four causal networks for galgaet+1 (Chlorophyll-a concentration

[gt+1/m
3]) as min δR2 is varied. The first two networks have 43 and 25 input

variables, and 19 and 10 states, respectively. This makes them unsuitable for this

model reduction exercise. The other two networks (min δR2 > 1% and > 3%) have

11 and 9 inputs; 3 and 2 states, respectively. The most significant state in explaining

the output is time, which accounts 55% of its variance (See table B.3). This result

has a physical meaning, since Chlorophyl-a concentration is a proxy of algal bloom,

which tends to follow an annual pattern. The second variable; NH4 (ammonium)

concentration in the Kango river, contributes δR2 = 27.8% to the model. This vari-

able represents a concentration of nutrients in the inflow that algae consume. The

third variable in importance is the water level which contributes δR2 = 10%. Level

plays an important factor since galgaet+1 is defined to measure the concentration of

Chlorophyll-a just in the sea-through layer (7 m below surface; See 3.1.2), and high

water levels represent favorable conditions for the reservoir stratification, trapping

the nutrients needed by the algae in the shallow layers. Moreover, the dependence

on level makes the output controllable. Figures 4.7 and 4.8 show a visualization of

the two causal networks.
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Figure 4.7: Causal network for galgaet+1 , relative δR2 > 1%

Figure 4.8: Causal network for galgaet+1 , relative δR2 > 3%
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In summary, it was shown that RVS was able to significantly reduce the di-

mensionality from the original 75. More specifically, the state-vector dimension is

reduced from 19 down to 2 or 3 states for gtempt+1 and galgaet+1 , and a single state for

gsedt+1. Physical interpretability is not compromised in this class of model-reduction

techniques. In Part III of this chapter, the accuracy of the models built with vari-

ables selected in this section is assessed and compared to those made with principal

component analysis.

4.2.2 Principal Component Analysis

In this section, the model-reduction problem is solved by implementing principal

component analysis on dataset F̃ . All input variables of the data set are projected

into principal components, from which a sufficient subset is selected to build an

emulator.

Adequate sample-size

The first step of the analysis aims to assess if the reduced sample-size (∼ 4.5× 105

observations) is adequate for PCA. This can done by analyzing the stability of load-

ing vectors resulting from applying PCA to different sample sizes. A loading vector

(and its corresponding principal component) are considered stable for a particular

sample size if the absolute values and signs of the loadings do not vary significantly

between different resamples.

Kocovsky et al. (2009) assessed this stability by analytically measuring the vari-

ation of the sign and magnitude of the loadings in the first 3 loading vectors, and the

correlation between a loading vector, and its copies derived from different resamples.

In this study, since too many loading vectors need to be analyzed, the assessment

of stability is performed visually using heat maps. A heat map of loading vectors

of PCA using all available observations (∼ 4.5 × 105) is shown in figure 4.9; the

figure displays how much the original variables load in absolute value on all PCs;

each column represents a single loading vector, and each row represents one of the

original variables. The color of each cell represent the absolute value by which an

original variable loads on a loading vector.

Since this heat map shows the overall structure of the loadings when all observa-

tions are used, it can be used as a reference to judge the structure of loadings from

smaller sample sizes, namely, if a smaller sample-size produces a similar loading
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structure, it is considered equivalently sufficient for PCA.

Loading heat maps were obtained from different sample-sizes ranging from 20 to

2 × 105, which cover a wide range of observation to variable ratios from less than

1 to (∼ 2 × 104). Ten resamples of each size were taken. It was found that the

structure of the loadings does not vary significantly for sample sizes larger than

1 × 105. Moreover, the structure remains stable among different resamples of the

same size. In fact, the structure loses stability marginally for smaller samples, but

fully deteriorates for samples with observation to variable ratios of less than 1. This

result is consistent with the commonly given guidelines for PCA sample-sizes.

Figure 4.16 shows the loading heatmaps for the first 20 PCs from four resamples

of the sample-size used in this experiment, i.e., 4.5× 105 or 10% of the full sample

given by the design of experiment stage. It can be noted that the loading structure

for the first 10 PCs is almost identical across different resamples. For PCs 10 to 13,

slight variability exists in the loadings of variables 71 to 74 (the control variables).

Therefore, this sample size is judged to be sufficient for PCA, and a single sample

of this size is chosen for the analysis, namely, the same sample used for RVS.

Figure 4.9: Loading vector heat map using the original sample-size
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Figure 4.10: Heat map, full sample Figure 4.11: Heat map, sample size 300000

Figure 4.12: Heat map, sample size 200000 Figure 4.13: Heat map, sample size 50000

Figure 4.14: Heat map, sample size 75 Figure 4.15: Heat map, sample size 20
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: First 20 PCs loading heat maps from multiple resamples of size 45000
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Explained Variance

Principal component analysis is performed on dataset F̃ according to the procedure

in section 2.3.The total variance of the dataset is explained by each principal com-

ponent is given by λj/p, where λj is the eigenvalue corresponding to the the j-th

PC, and p is the total number of variables, equal to 75 in this case.

It is found that the first principal component explains around 42% of the total

variance, while the second to fifth components explain 19%, 7.8%, 5.3%, and 3.47%

respectively. The first four PCs collectively explain around 75% of the total variance,

while 90% and 99% of the variance are explained by the first 12 and 23 variables

respectively. The distribution of variance over the fist 25 PCs is shown in figure

4.17.

The results show that PCA achieves good compression of the variance into fewer

components, as expected. However, it is not straightforward to determine how

many PCs to retain based only on explained variance, since different PCs might be

relavant/irrelevant depending on the output variable of interest. The choice of PCs

will be addressed in Part III of this chapter.

Figure 4.17: Relative and cumulative sum of the explained variance of the first 25 components.
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Physical Interpretation

For ordinary PCA, it is useful for the interpretability of some PCs to either examine

the loadings heat map(Fig. 4.9) or to rank the absolute values of the loadings in

descending order, and determine which variables the highest loadings correspond to.

Figure 4.18 shows that some PCs are loaded predominantly by fewer of the original

variables, making them more interpretable, e.g., PC7, PC10, and PC11 are loaded

by all four control variables. A possible explanation is that the control variables in

this experiment are designed trajectories; hey are predetermined to be variant, and

to vary similarly. Hence, they tend to load on the same components, as PCA is

derived from the covariance matrix. On the other hand, other principal components

are loaded evenly by many variables, making them to interpret.

Since each principal component is generally a combination of all the original

variables, it is often nontrivial to have a clear physical interpretation of each PC.

This is more evident in problems with a large number of variables that describe

distinct physical qualities, as is the case in the model at hand. This limitation is

overcome in Sparse PCA as discussed subsequently.
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(a) PC 1 (b) PC 2

(c) PC 7 (d) PC 9

(e) PC 10 (f) PC 11

Figure 4.18: PCA loading rank in absolute value for different principal components
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4.2.3 Sparse Principal Component Analysis

In this section, the results from the implementation of SPCA on dataset F̃ are pre-

sented. Two sets of sparse principal components are obtained using the two selected

approaches discussed in section 2.4. The results from each approach consist of a set

of sparse loading vector and the adjusted explained variance of their corresponding

sparse PCs.

Formulation A: L1 penalty (elastic net, lasso)

The first set of sparse loading vectors is computed according to the elastic net

approach. The solution is controlled by two parameters. First, λ (eq: 2.18); the

ridge regression parameter, which is commonly reserved for cases where the number

of variables is larger than the number of samples. However, in this experiment,

it was found that having a non-zero λ was beneficial in increasing the explained

variance of certain principal components. After λ is set, λ1,j (for j = 1, . . . , k; where

k is the number of desired PCs), the sparsity-inducing parameters, are determined

sequentially for each PC. In this approach, there is no direct relationship between

these parameters and the number of non-zero coefficients in the resulting loading

vectors, therefore, λ1,j were determined experimentally by varying λ1,j for the j-th

component and choosing a value that produces a loading vector that is sufficiently

sparse and produces a PC with a high explained variance. Therefore, the choice of

λ1,j depends on the user and the requirements of the application.

To choose the parameters in this study, each loading vector (10 in total) was

generated using a range of values for λ and λ1, namely, 0 : 10 with an increment of

0.5 for λ and 1 : 10 with an increment of 0.1 for λ1. For each (λ,λ1) pair, the sparsity

(number of non-zero loadings), and explained variance were recorded. Figure 4.19

shows a plot of these results for the first principal component, displaying how the

sparsity and explained variance vary with the two parameters. Based on this, it

was decided that it is sufficient to fix λ at any non-zero value, as its effect gradually

becomes insignificant for higher values; λ was set to 3.8. On the other hand, λ1, j

were determined after fixing λ with the aid of plots like the one in figure 4.20, making

a compromise at with each component between desired sparsity and high explained

variance.

Table 4.5 shows the variables corresponding to the non-zero coefficients of the

first 10 sparse loading vectors computed with elastic net, along with the loading
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Figure 4.19: The effect of λ and λ1 on the explained variance (left) and sparsity (right) of the first

sparse principal component. The effect of λ diminishes for values slightly larger than zero.

Figure 4.20: The effect of varying λ1 on the explained variance and sparsity (indicated by the

number of non-zero loadings on the plot). The desired sparsity was determined heuristically,

then, the value of λ1 achieving such sparsity and the highest EV possible is selected. In this

case, λ1 = 1.92 is selected, corresponding to 6 non-zero loadings and 8.22% EV. λ1,j was selected

similarly for the other sparse PCs.

value corresponding to each variable.

Table 4.6 shows the values of λ1,j along with the adjusted explained variance for

each sparse component. It is clear that, compared to ordinary PCA, the explained

variance of sparse PCs is significantly smaller. For instance, the fist 10 sparse PCs
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Table 4.5: Sparse loading vectors using elastic net method; variable name and loading value.

SPC 01 SPC 02 SPC 03 SPC 04 SPC 05

’Kango Volume’ 0.531 ’Kango Temperature’ -0.508 ’TSSmax’ -0.362 ’h’ 0.592 ’SW’ -0.565

’Kango POPL’ 0.242 ’Kango DO’ 0.336 ’TSS-3’ -0.384 ’storage’ 0.596 ’Cloud-Cover’ 0.804

’Kango POCL’ 0.479 ’Fukuro Temperature’ -0.493 ’TSS-7’ -0.442 ’hTaff’ 0.454 ’Rain’ 0.187

Fukuro Volume’ 0.531 ’Fukuro DO’ 0.301 ’TSS-13’ -0.458 gateTaff’ -0.296

’Fukuro POPL’ 0.121 ’Air Temp’ -0.283 ’TSS bot’ -0.413

’Fukuro POCL’ 0.366 ’Taff’ -0.464 ’TSS sed’ -0.380

SPC 06 SPC 07 SPC 08 SPC 09 SPC 10

’Kango NH4’ 0.065 ’u-3’ -0.474 ’gateTSSmax’ 1.000 ’Kango NH4’ -1.000 ’u-7’ -0.757

’Fukuro NH4’ 0.021 ’u-7’ -0.478 ’u bot’ 0.654

’Wind Speed’ 0.998 ’u-13’ -0.526

’u bot’ -0.519

with this method explain 37% of the total variance, whereas the first ordinary PC ex-

plains 42%. On the other hand, the advantage of increased physical interpretability

is also clear. The 10 sparse components have at most 6 non-zero loadings, mak-

ing physical interpretation more plausible. In addition to being sparse, the loading

vectors appear to group variables of similar type in a single vector, most notably,

loading vectors 4, and 7, which contain total suspended solid, and control variables,

respectively; and the first loading vector which contains the inflow volumes, and the

POPL, POCL particle concentrations.

Table 4.6: Explained variance and sparsity-inducing parameters lambda1,j for the first 10 sparse

PCs.

# λ1 sparsity explained eariance (EV) cumulative (EV)

1 1.92 6 0.0822 0.0822

2 0.67 6 0.0892 0.1714

3 2.75 6 0.0644 0.2358

4 1.7 4 0.0365 0.2723

5 1.6 3 0.0242 0.2965

6 0.9 3 0.0158 0.3123

7 1.4 4 0.0226 0.3349

8 0.35 1 0.016 0.3509

9 0.1 1 0.0079 0.3588

10 1 2 0.0143 0.3731
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Formulation B: L0 penalty

The second set of sparse principal components were computed using the L0-norm

constrained formulation in 2.1. In this case, the sparsity-inducing parameter s is

equal to the number of non-zero coefficients in the resulting loading vector, making

the process of selecting the parameters easier.

The algorithm starts with a random initialization of a loading vector (generally

not sparse) which converges after some iterations to a sparse loading vector con-

taining s non-zero loadings. Each starting point (or initialization) converges to a

different loading vector. Therefore, the experiment is performed by taking 1000 ini-

tialization of the first sparse loading vector, and the one that converges to a sparse

vector that explaining the highest variance is kept. After the first sparse vector

is obtained, deflation is performed with that vector, i.e., its influence is removed

from the data matrix (see section 2.4.1), and the process of random initialization is

repeated for the second vector, and so on, until all required loading vectors are ob-

tained. Ten loading vectors were obtained using this approach. Results are reported

in table 4.7, with their corresponding explained variance in table 4.8.

Table 4.7: Sparse loading vectors with L0 constraint; variable name and loading value.

SPC 01 SPC 02 SPC 03 SPC 04 SPC 05

’Kango SSOL1’ 0.354 ’Kango Temperature’ 0.411 ’TSSmax’ 0.401 ’Kango NH4’ 0.431 ’h’ -0.538

’Kango SSOL3’ 0.354 ’Kango DO’ -0.408 ’TSS-3’ 0.387 ’Kango NO3’ -0.397 ’storage’ -0.540

’Kango SSOL5’ 0.354 ’Fukuro Temperature’ 0.411 ’TSS-7’ 0.415 ’Kango PO4’ -0.396 ’hTaff’ -0.467

’Kango SSOL6’ 0.354 ’Fukuro DO’ -0.408 ’TSS-13’ 0.426 ’Fukuro NH4’ 0.431 ’gateTaff’ 0.448

’Fukuro SSOL1’ 0.354 ’Air Temp’ 0.406 ’TSS bot’ 0.416 ’Fukuro NO3’ -0.397

’Fukuro SSOL3’ 0.354 ’Taff’ 0.406 ’TSS sed’ 0.404 ’Fukuro PO4’ -0.396

’Fukuro SSOL5’ 0.354

’Fukuro SSOL6’ 0.354

SPC 06 SPC 07 SPC 08 SPC 09 SPC 10

’u-3’ 0.495 ’T-3’ 0.498 ’SW’ 0.667 ’hTSSmax’ 0.608 ’Wind Speed’ 0.705

’u-7’ 0.496 ’T-7’ 0.502 ’Cloud-Cover’ -0.642 ’gateTSSmax’ -0.794 ’time’ -0.710

’u-13’ 0.507 ’T-13’ 0.502 ’Rain’ -0.378

’u bot’ 0.502 ’Tbot’ 0.499

This formulation is characterized by a higher physical interpretability when com-

pared to the previous one, with components 1,3,4,6, and 7 containing variables of the

same type. Moreover, the implementation of this formulation is more intuitive, the

sparsity controlling parameter is equal to the number of non-zero loadings, making

it easy to manipulate the sparsity at each step to achieve a desired effect, such as

increased interpretability, or higher explained variance.

It is evident from the implementation of RVS, PCA, and SPCA that a clear dis-
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Table 4.8: Explained variance and sparsity for the first 10 sparse PCs using formulation B.

# sparsity explained eariance (EV) cumulative (EV)

1 8 0.089552 0.089552

2 7 0.104477 0.194029

3 6 0.055686 0.249715

4 3 0.022913 0.272628

5 7 0.087912 0.360540

6 2 0.007645 0.368185

7 6 0.056901 0.425086

8 2 0.000288 0.425374

9 3 0.002870 0.428245

10 5 0.003534 0.431779

tinction between the two classes of model-reduction, projection-based and selection-

based techniques, is the ability of the latter to select reduced sets of state-variables

that have causal relationships with the output or objective of interest, whereas

projection-based techniques like PCA and sparse PCA create states based on the

maximization of the variance in the input dataset into fewer states; without in-

cluding any information about the output. Sparse PCA overcomes this problem by

creating combination of features that preserve the physical interpretability of the

underlying process. In the next section, an attempt to combine projection-based and

selection-based approaches is made using the method of weighted principal compo-

nent analysis; ad-hoc weighting schemes are implemented to achieve that purpose

(see section 2.5).
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4.2.4 Weighted Principal Component Analysis

In this section, the three weighted principal components analysis schemes (see section

2.5) are applied to dataset F̃ . The first two weighting schemes, which utilize the

IIS-ranking of the variables as weights, are expected to have the advantages of both

selection-based and projection-based methods. Namely, they should create different

sets of PCs, each weighted to suit a particular output of interest, while at the

same time achieving the variance compression performance commonly associated

with projection-based methods. The third weighting scheme, which uses Pearson’s

linear correlation coefficient between the inputs and the output to weight the inputs,

is proposed as an alternative to the first two schemes; aiming to incorporate the

information about the output of interest into the PCs, without the computational

burden of IIS.

The resulting weighted PCs from the three schemes are analyzed in terms of

explained variance and physical interpretability in this section. However, their ad-

vantage should become more evident when each set of weighted PCs is emulated

with its designated output, in Part II.

Explained Variance

For explained variance, the adjusted explained variance formula will be used (2.4.2),

because just as in SCPA, the uncorrelated property of PCA is lost in WPCA, so

the correlation between components must be accounted for when computing the

variance for a single weighted PC. Another property of ordinary PCA that WPCA

does not have is the successive maximization of explained variance, because the

foremost loading vectors will tend to be combination of variables with higher weights

associated to them, rather than combinations of variables that maximize the total

explained variance. Figures 4.23, 4.22, and ?? show the explained variance of the

first 15 weighted components using the three weighting schemes on the three outputs:

gtempt+1 , gsedt+1, and galgaet+1 . It can be observed that successive maximization of variance,

attributed to ordinary PCs, is not present in weighted PCs; and it appears only

partially in some parts, e.g. PCs 12 to 15 in figures ??, and PCs 1 to 3 from the

third weighted scheme (??, ??, and ??).
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Physical Interpretability

Figure 4.24 shows the heat maps of the loading vectors from WPCA using all weight-

ing schemes on gtempt+1 , which demonstrates a side-effect of WPCA: the loadings vec-

tors appear more sparse when compared to ordinary PCA. This sparsity is not

complete as many loadings are close to zero but not exactly equal to zero, however,

it still improves the overall interpretability of the PCs. This sparsity is a direct

result of emphasizing and de-emphasizing, a priori, different input variables using

the weighting schemes, and the higher the relative difference in weights among the

variables, the more sparse the loading vectors tend to be, e.g. the loading vectors

from the second weighting scheme are more sparse than those from the first and

third schemes because the first scheme weights the variables based on a logarithmic

scale, as opposed to a linear scale.
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(a) WPCA IIS-1

(b) WPCA IIS-2

(c) WPCA Pearson

Figure 4.21: Adjusted explained variance and cumulative adjusted explained variance for weighted

PCs from the three schemes on gtemp
t+1 .
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(a) WPCA IIS-1

(b) WPCA IIS-2

(c) WPCA Pearson

Figure 4.22: Adjusted explained variance and cumulative adjusted explained variance for weighted

PCs from the three schemes on gsedt+1.
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(a) WPCA IIS-1

(b) WPCA IIS-2

(c) WPCA Pearson

Figure 4.23: Adjusted explained variance and cumulative adjusted explained variance for weighted

PCs from the three schemes on galgaet+1 .
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(a) PCA (b) WPCA 1

(c) WPCA 2 (d) WPCA 3

Figure 4.24: Loading vector heat maps for (a)ordinary PCA, (b)WPCA with RVS rank 1,

(c)WPCA with RVS rank 2, (d)WPCA with Pearson coefficients.
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4.3 Part III: Model identification and comparison

The next step in the dynamic emulation modeling exercise is to identify the dynamic

emulator models for the different outputs of interest using the sets of reduced vari-

ables selected in Part II of this chapter. The model structure that will be used is

Extra-Trees, the same structure used by the IIS algorithm. The Extra-Trees models

are parameterized similarly to the ranking experiments, namely: M , the number

of trees in the ensemble is set to 100, nmin, the minimum cardinality for splitting

a node is 2, while K, the number of alternative cut directions corresponds to the

number of inputs in the emulator (Geurts et al., 2006). The emulators are validated

with k-fold cross validation (with k = 10).

4.3.1 Emulation results

Recursive Variable Selection (RVS)

The emulator performances for the selected causal networks in tables 4.2, 4.3, and

4.4 are reported in tables 4.9, 4.10, 4.11, respectively. The emulators are built only

with the variables selected for the output, i.e., the first iteration of RVS, and the

performance is shown in terms of R2 and RMSE.

Table 4.9: Emulator performance for selected causal networks for gtemp
t+1

minimum δR2 (%) Number of inputs
Extra-Trees performance

(states, controls, exogenous) R2 RMSE

0 44 (19, 4, 21) 0.831039 0.407382

0.5 23 (8, 4, 11) 0.830576 0.407504

1 20 (7, 4, 9) 0.825909 0.412604

1.5 18 (6, 4, 8) 0.818915 0.420671

2 16 (6, 4, 6) 0.800926 0.441164

2.5 15 (6, 4, 5) 0.800926 0.441164

3 14 (5, 4, 5) 0.800926 0.441164

3.5 14 (5, 4, 5) 0.800926 0.441164

4 9 (2, 4, 3) 0.738681 0.506655

4.5 9 (2, 4, 3) 0.738681 0.506655

5 9 (2, 4, 3) 0.738681 0.506655

As expected, the performance of the emulators decreases with the number of in-

puts. Furthermore, outputs gsedt+1 (total released sediments) and galgaet+1 (algal bloom)

achieve better accuracy than gtempt+1 (temperature) for similarly sized networks, e.g
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Table 4.10: Emulator performance for selected causal networks for gsedt+1

minimum δR2 (%) Number of inputs
Extra-Trees performance

(states, controls, exogenous) R2 RMSE

0 4 (1,1,2) 0.957969 0.0811967

0.5 4 (1,1,2) 0.957969 0.0811967

1 3 (1, 0, 2) 0.957969 0.0811967

1.5 3 (1, 0, 2) 0.957969 0.0811967

2 3 (1, 0, 2) 0.957969 0.0811967

2.5 3 (1, 0, 2) 0.957969 0.0811967

3 3 (1, 0, 2) 0.957969 0.0811967

3.5 3 (1, 0, 2) 0.957969 0.0811967

4 3 (1, 0, 2) 0.957969 0.0811967

4.5 3 (1, 0, 2) 0.957969 0.0811967

5 3 (1, 0, 2) 0.957969 0.0811967

with 2 state-variables, gtempt+1 and galgaet+1 achieve R2 = 0.738 and 0.928 respectively,

while gsedt+1 achieves R2 = 0.958 with a single state-variable. This is an indicator

that the dynamics of temperature are more complex than algal bloom or sediments.

Nonetheless, even with two state-variables only, the obtained gtempt+1 emulator is con-

sidered accurate enough for use in designing the optimal operating policy for the

selective withdrawal system of Tono Dam. An emulator for gtempt+1 with matching per-

formance has been successfully used for that purpose by Castelletti et al. (2012b).

Pincipal Component Analysis (PCA, SPCA, and WPCA)

The performances of dynamic emulators built with the different sets of principal

components are reported here. First, the performance in terms of R2 of emulators

built with ordinary PCs are compared to those built with the weighted PCs to

highlight the effect of the different weighting schemes. Figures 4.25, 4.26, and 4.27

show the R2 scores of emulators as a function of the number of used PCs (or weighted

PCs).

For gtempt+1 (fig. 4.25), the performance increases significantly after the inclusion

of the seventh component in ordinary PCA, which contains high loadings from the

control variables (see fig. 4.18:c). This is consistent with the RVS results, which

showed the importance of the control variables in explaining gtempt+1 . However, for

WPCA, the emulator performance starts increasing at the the inclusion of the sec-

ond component, due to the fact that the important variables for the output were

prompted to load on the foremost components by the weighting scheme. As the
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Table 4.11: Emulator performance for selected causal networks for galgaet+1

minimum δR2 (%) Number of inputs
Extra-Trees performance

(states, controls, exogenous) R2 RMSE

0 43 (19, 4, 20) 0.951804 0.219428

0.5 25 (10, 4, 11) 0.948452 0.22693

1 11 (3, 4, 4) 0.934896 0.255047

1.5 11 (3, 4, 4) 0.934896 0.255047

2 11 (3, 4, 4) 0.934896 0.255047

2.5 11 (3, 4, 4) 0.934896 0.255047

3 9 (2, 4, 3) 0.928012 0.268198

3.5 9 (2, 4, 3) 0.928012 0.268198

4 9 (2, 4, 3) 0.928012 0.268198

4.5 9 (2, 4, 3) 0.928012 0.268198

5 9 (2, 4, 3) 0.928012 0.268198

number of components increases, the WPCA emulators outperform the PCA ones

by about 10%.

For gsedt+1, all emulators, from PCA and WPCA, reach 90% accuracy with the

inclusion of the first principal component only. This can be attributed to the fact

that most of gsedt+1’s dynamic behavior can be explained by a number of exogenous

drivers related to suspended solids (see 4.2.1) which load on the first PC (see fig.

4.18:a). Similarly, for galgaet+1 , the weighting schemes do not a have a big impact. In

fact, emulators from ordinary PCA and all WPCA schemes reach 90% with only 5

components.

In the case of sparse PCA, the principal components were ranked using IIS to

determine their importance in explaining each of the outputs. This was done because

there is no sequential maximization of variance in sparse PCA and the sparseness is

chosen by the user, and hence, no natural order of the PCs exists to aid in choosing

among them for emulation. Tables 4.12, 4.15, and 4.18 show the performance of

the emulator built with sparse PCs from both considered formulations. The first

column refers to the number of PCs in the emulator, while the second column refers

to the number associated to the sparse component added to the emulator; taken

from tables 4.5 and 4.7, for formulations A and B respectively.

The results show that sparse PCs can achieve similar accuracy to ordinary PCs,

despite having lower explained variance, as was shown in Part I of this chapter.

Indeed, they are easier to interpret physically. For instance, an emulator for gsedt+1

built with the first two selected sparse PCs of formulation B has an R2 score of
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0.91; and it is composed of sparse PCs 4 and 1 from table 4.7, which can be easily

interpreted, as they collectively contain variables that describe concentrations of

different particles.

Table 4.12: SPCA emulation performance for gtemp
t+1

Table 4.13: Formulation A: elastic-net

# sPC R2

1 2 0.183155

2 4 0.322982

3 7 0.426112

4 3 0.487195

5 9 0.541715

6 6 0.553051

7 1 0.563721

8 5 0.570645

9 10 0.572179

Table 4.14: Formulation B: L0-constrained

# sPC R2

1 2 0.185676

2 5 0.310413

3 6 0.414242

4 3 0.478696

5 4 0.531768

6 10 0.572015

7 7 0.59484

8 1 0.60473

9 9 0.610344

Table 4.15: SPCA emulation performance for gsedt+1

Table 4.16: Formulation A: elastic-net

# sPC R2

1 1 0.903198

2 3 0.953258

3 7 0.962269

4 6 0.964415

5 5 0.966304

6 9 0.967128

7 10 0.967848

8 2 0.968434

9 4 0.968501

Table 4.17: Formulation B: L0-constrained

# sPC R2

1 4 0.868694

2 1 0.915863

3 3 0.953592

4 6 0.963922

5 5 0.966627

6 10 0.967521
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Table 4.18: SPCA emulation performance for galgaet+1

Table 4.19: Formulation A: elastic-net

# sPC R2

1 2 0.44434

2 1 0.637168

3 4 0.805177

4 3 0.866776

5 6 0.884869

6 9 0.899786

7 5 0.909181

8 7 0.909415

9 8 0.909595

Table 4.20: Formulation B: L0-constrained

# sPC R2

1 2 0.445296

2 4 0.637323

3 5 0.799247

4 3 0.862036

5 7 0.886097

6 10 0.905278

7 8 0.914188

8 6 0.914269

9 9 0.915088

Figure 4.25: comparison of the PCA explained variance with respect to the PCA and WPCA

emulator performance of gtemp
t+1 for increasing number of principal components.
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Figure 4.26: comparison of the PCA explained variance with respect to the PCA and WPCA

emulator performance of gsedt+1 for increasing number of principal components.

Figure 4.27: comparison of the PCA explained variance with respect to the PCA and WPCA

emulator performance of galgaet+1 for increasing number of principal components.
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4.3.2 Evaluation and Comparison

Finally, the different model-reduction techniques are compared using a few similarly

sized sets of reduced variables from each technique, and the performance of their

corresponding emulator models in terms of R2 is compared. The size or the network

is defined as the number of state-variables in the selection-based emulators, and the

number of principal components in projection-based emulators.

In order to select the best principal components for each emulator output, IIS

was applied on the set of ordinary principal components, and the two sets of sparse

principal components. Then, the fist k components from the ranking are used to

build the emulator, where k refers to the size of the network to be analyzed. This

way, the best ordinary PCs are compared to the best sparse PCs in explaining

a certain output, making the comparison objective. On the contrary, the first k

weighted PCs were selected based on their order due to the fact that a ranking

(RVS or Spearman correlation) was incorporated a priori into the components by

the weighting schemes.

Table 4.21 shows that for temperature, WPCA with the first weighting scheme

achieves the highest accuracy among projection-based approaches, using 3, 5, and

10 components from each approach. When similarly sized networks from RVS are

compared to the projection-based approaches, similar or better accuracy is observed,

keeping in mind that these networks contain other inputs that are not state-variables;

the total number of variables is reported between brackets in the table.

For released sediments and algal bloom, there is less apparent variability in

performance among the different approaches. Interestingly, SPCA achieves slightly

higher accuracy than ordinary PCA in all three output variables. This gives it

another advantage besides being easier to interpret, and demonstrates that higher

explained variance in PCA methods does not guarantee higher accuracy in emulation

exercises. Overall, all techniques were successful in achieving high fidelity while

reducing the number of state-variables of the original model; with RVS and SPCA

having the extra benefit of physical interpretability.
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Table 4.21: Emulator performance comparison for gtemp
t+1

Reduction method
3 PCs 5 PCs 10 PCs

R2 R2 R2

PCA 0.218805 0.49399 0.568526

SPCA (elastic-net) 0.426112 0.541715 0.572179

SPCA (L0 contraint) 0.414242 0.531768 0.610344

WPCA (RVS-1) 0.613296 0.627268 0.759034

WPCA (RVS-2) 0.581056 0.606571 0.74819

WPCA (Spearman coeff.) 0.128939 0.156599 0.698822

Reduction method
2 states (9) 5 states (14) 8 states (23)

R2 R2 R2

RVS 0.738681 0.800926 0.831039

Table 4.22: Emulator performance comparison for gsedt+1

Reduction method
3 PCs 5 PCs 10 PCs

R2 R2 R2

PCA 0.878365 0.890362 0.959705

SPCA (elastic-net) 0.903198 0.953258 0.964415

SPCA (L0 contraint) 0.868694 0.915863 0.963922

WPCA (RVS-1) 0.910707 0.956024 0.954615

WPCA (RVS-2) 0.916525 0.949493 0.95929

WPCA (Spearman coeff.) 0.838868 0.951421 0.96112

Reduction method
1 state (4 variables)

R2

RVS 0.957969

Table 4.23: Emulator performance comparison for galgaet+1

Reduction method
1 PCs 2 PCs 4 PCs

R2 R2 R2

PCA 0.70979 0.786227 0.885419

SPCA (elastic-net) 0.805177 0.884869 0.909595

SPCA (L0 contraint) 0.799247 0.886097 0.915088

WPCA (RVS-1) 0.832015 0.897011 0.930044

WPCA (RVS-2) 0.775622 0.892947 0.931553

WPCA (Spearman coeff.) 0.805639 0.903584 0.935002

Reduction method
2 states (9) 3 states (11) 10 states (25)

R2 R2 R2

RVS 0.928012 0.934896 0.948452
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Conclusions

In this work, an exhaustive experimental comparison was made between two classes

of model-order reduction approaches; projection-based and selection-based. The

comparison was performed on the reduction of DYRESM-CAEDYM, a 1D hydro-

ecological model used to describe the in-reservoir water quality conditions of Tono

Dam, an artificial reservoir located in western Japan.

Projection-based approaches, like the popular Principal Component Analysis

(PCA), have been used extensively to create reduced-order models (emulators) of

complex process-based models. Despite being an effective and efficient solution,

the working principle of these techniques, which consists of using snapshots of the

original model to project the state-variables onto a lower dimensional space, creates

the disadvantage of including all the original state-variables in the emulator. In

this study, a selection-based model-reduction technique called Recursive Variable

Selection (RVS) (Castelletti et al., 2012b) was used as an alternative to projection-

based approaches. RVS uses the information contained in the snapshots to select the

state variables of the original model that are relevant with respect to the emulator’s

output and discards irrelevant ones, thus reducing complexity.

Experiments on three output-variables of the Tono Dam system (water temper-

ature, released sediments, and Chlorophyll-a concentration) reveal that the states

selected by RVS can be used to build emulators with higher accuracy than those

built with principal components, while maintaining a lower number of state-variables

in the emulator. In addition to high accuracy, RVS emulators were easy to interpret

and they often revealed physically meaningful relationships between the outputs and

the states.

Morever, two additional techniques, sparse PCA and weighted PCA were applied

to the case study to mitigate the drawbacks of ordinary PCA. In sparse PCA, sparse

loading vectors were obtained from the snapshots, and were used to create sparse

principal components, which are linear combination of only a few of the original
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states. The emulators built with sparse PCs achieved higher accuracy than ordinary

PCs, while the sparsity caused the resulting emulators to be easier to interpret

physically.

In weighted PCA, an ad-hoc weighting scheme was developed to emphasize in-

put variables that have a causal relationship with the output of interest prior to

performing PCA. The resulting weighted components were used to build emulators

that outperformed ordinary and sparse PCs in R2 accuracy, specially for the water

temperature output.

Overall, the results from the projection-based approaches; PCA, sparse PCA, and

weighted PCA, revealed that choosing components with higher explained variance

does not guarantee better emulator accuracy, as the high variance components are

not necessarily relevant to the output of interest.

Future research includes utilizing the emulators obtained from the competing

approaches in designing the optimal operating policy of the reservoir, and verifying

if the emulators with higher accuracy produce better policies.

Lastly, due to the good performance of sparse PCA in this study, it would be

beneficial to develop a formal approach of constructing sparse components, and

choosing sparsity based on expert-based knowledge of the outputs that the compo-

nents will be used to emulate, so as to improve on the results obtained from the

heuristic approach used in this study.
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Appendix A

DEMo procedure and algorithms

A.1 Variables involved in the DEMo procedure

� M, original process-based model.

� Xt,Yt,Wt, physically-based model state, output and exogenous driver vector.

� xt,yt,wt,ut emulator state, output, exogenous driver, and control vectors.

� Nx,Ny,Nw,Nu, dimensionality of the state, output, exogenous driver, and

control vectors respectively.

� ft(·), ht(·), emulator state transition and output transformation functions.

� X̃t,W̃t, physically-based model state and exogenous driver vectors (after ag-

gregation).

� F , data-set of tuples {Xt,Wt,ut,Yt,Xt+1}(witht = 1, . . . , H foe the DEMo

process.

� F̃ , data-set of tuples {X̃t,W̃t,ut,Yt, X̃t+1}(witht = 1, . . . , H) foe the DEMo

process (after aggregation).

� H, simulation horizon.
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A.2 Variables involved in the RVS-IIS algorithms

� vit = {X̃t,W̃t,ut},vot = {X̃t+1,Yt} input and output data, respectively, em-

ployed in the variable selection process.

� vot , i-th component of the vector Yt.

� vi = {X̃t,W̃t,ut}, vo = {X̃t+1 + Yt}, set of the candidate input and output

variables for the variable selection process.

� vitar, subset of the output variables that need to be explained (vitar ⊆ vo).

� visel, set of the input variables selected during the i-th iteration of the variable

selection process.

� vivo , set of the input variables that will appear in the output transformation

function for explaining vo.

� vn
X̃t
ew = vivo ∩ X̃t, set of the output variables to be explained.

� viY, set of the input variables to explain the output Y.

� v∗, most significant variable added to the set vivo .

� m̂(·), underlying model to explain vo.

� v̂o, residuals of m̂(·).

� D(vo, m̂(vivo)), distance metric between the output vo and the model m̂(·)
predictions.
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A.3 Recursive Variable Selection algorithm
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A.4 Iterative Input Selection algorithm
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Appendix B

Iterative Input Selection Results

for RVS

The IIS results were obtained using the following parameters for Extra-trees: K =

75, nmin = 2, M = 500 for outputs and 100 for state-variables.

Taxonomy

� #: the number of the selected variables as listed in table 4.1.

� variable name: the name or abbreviated name of the variable, see (Hipsey

et al., 2006) for details on the variables.

� rel. δR2 (%): the relative R2 contribution of the selected variable to the

built model, normalized by the total R2 score of the model built by all selected

variables (in percent).

� abs. δR2: the absolute value of R2 contribution of the selected variable to

the built model.

� abs δR2 (cum.): the absolute value of R2 score of the model built by all

variables up to the current variable.
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Table B.1: IIS for gtemp

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

55 hTaff 3.75082 0.03032 0.03032

64 Tsed 5.10450 0.04126 0.07157

24 Fukuro Temperature 8.37528 0.06769 0.13927

73 u-13 6.98426 0.05645 0.19572

72 u-7 12.39428 0.10018 0.29590

74 u bot 20.00186 0.16167 0.45756

71 u-3 29.11105 0.23529 0.69286

52 h 9.10573 0.07360 0.76646

60 T-3 1.44199 0.01166 0.77811

51 time 1.77505 0.01435 0.79246

45 SW 0.54203 0.00438 0.79684

54 Taff 0.04479 0.00036 0.79720

49 Wind Speed 0.18299 0.00148 0.79868

9 Kango DO 0.43093 0.00348 0.80216

31 Fukuro DO 0.21008 0.00170 0.80386

46 Cloud-Cover 0.11432 0.00092 0.80478

61 T-7 0.18930 0.00153 0.80631

58 hTSSmax 0.24076 0.00195 0.80826

Table B.2: IIS for gsed

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

11 Kango POCL 94.36316 0.91272 0.91272

65 TSS-3 5.63684 0.05452 0.96724
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Table B.3: IIS for galgae

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

51 time 55.38861 0.52030 0.52030

4 Kango NH4 27.88374 0.26193 0.78223

52 h 10.06631 0.09456 0.87679

65 TSS-3 2.71227 0.02548 0.90227

64 Tsed 0.65726 0.00617 0.90844

49 Wind Speed 0.79458 0.00746 0.91590

61 T-7 0.70867 0.00666 0.92256

31 Fukuro DO 0.93372 0.00877 0.93133

60 T-3 0.24038 0.00226 0.93359

55 hTaff 0.22260 0.00209 0.93568

47 Air Temp 0.39186 0.00368 0.93936

Table B.4: IIS for Taff(54)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

54 Taff 97.70370 0.96810 0.96810

45 SW 0.49180 0.00487 0.97297

47 Air Temp 1.24701 0.01236 0.98533

55 hTaff 0.17914 0.00178 0.98710

49 Wind Speed 0.10335 0.00102 0.98813

46 Cloud-Cover 0.05803 0.00058 0.98870

52 h 0.02402 0.00024 0.98894

60 T-3 0.03603 0.00036 0.98930

64 Tsed 0.01181 0.00012 0.98942

9 Kango DO 0.09628 0.00095 0.99037

53 storage 0.00252 0.00003 0.99039

31 Fukuro DO 0.03694 0.00037 0.99076

50 Rain 0.00262 0.00003 0.99079

72 u-7 0.00676 0.00007 0.99085
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Table B.5: IIS for hTaff(55)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

55 hTaff 57.11129 0.47111 0.47111

51 time 10.85559 0.08955 0.56065

47 Air Temp 9.06093 0.07474 0.63540

46 Cloud-Cover 3.87638 0.03198 0.66737

60 T-3 7.32665 0.06044 0.72781

50 Rain 2.24211 0.01850 0.74631

49 Wind Speed 1.86958 0.01542 0.76173

53 storage 1.20452 0.00994 0.77166

64 Tsed 0.99989 0.00825 0.77991

48 Vap Press 1.76399 0.01455 0.79446

54 Taff 0.91733 0.00757 0.80203

24 Fukuro Temperature 1.34417 0.01109 0.81312

61 T-7 0.42163 0.00348 0.81660

74 u bot 0.17954 0.00148 0.81808

62 T-13 0.30210 0.00249 0.82057

69 TSS sed 0.52431 0.00433 0.82489
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Table B.6: IIS gateTaff(56)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

56 gateTaff 48.00651 0.31671 0.31671

52 h 10.43650 0.06885 0.38556

45 SW 3.86874 0.02552 0.41109

63 Tbot 5.38817 0.03555 0.44663

47 Air Temp 13.91690 0.09181 0.53845

55 hTaff 1.96764 0.01298 0.55143

64 Tsed 1.07469 0.00709 0.55852

49 Wind Speed 2.29308 0.01513 0.57364

68 TSS bot 1.61825 0.01068 0.58432

62 T-13 1.90049 0.01254 0.59686

46 Cloud-Cover 1.39998 0.00924 0.60609

74 u bot 0.40047 0.00264 0.60874

72 u-7 0.26663 0.00176 0.61050

60 T-3 1.22309 0.00807 0.61856

54 Taff 0.65800 0.00434 0.62291

73 u-13 0.19993 0.00132 0.62422

51 time 1.14154 0.00753 0.63176

66 TSS-7 0.42109 0.00278 0.63453

61 T-7 0.29361 0.00194 0.63647

57 TSSmax 0.36682 0.00242 0.63889

69 TSS sed 0.16765 0.00111 0.64000

65 TSS-3 0.17598 0.00116 0.64116

48 Vap Press 0.84793 0.00559 0.64675

50 Rain 0.18023 0.00119 0.64794

59 gateTSSmax 0.04805 0.00032 0.64826

31 Fukuro DO 0.57949 0.00382 0.65208

9 Kango DO 0.25662 0.00169 0.65377

24 Fukuro Temperature 0.32286 0.00213 0.65590

71 u-3 0.09231 0.00061 0.65651

7 Kango PO4 0.25086 0.00166 0.65817

58 hTSSmax 0.06048 0.00040 0.65857

6 Kango PONL 0.17538 0.00116 0.65972
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Table B.7: IIS for TSSmax(57)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

12 Kango SSOL1 76.04237449 0.65242 0.65242

50 Rain 17.24234792 0.147934 0.800354

47 Air Temp 6.715277592 0.057615 0.857969

Table B.8: IIS for hTSSmax(58)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

58 hTSSmax 43.59824176 0.322157 0.322157

45 SW 3.903118326 0.028841 0.350998

51 time 21.80609049 0.16113 0.512128

47 Air Temp 16.90584392 0.124921 0.637049

67 TSS-13 4.353774823 0.032171 0.66922

48 Vap Press 3.935868739 0.029083 0.698303

68 TSS bot 1.143963774 0.008453 0.706756

49 Wind Speed 3.037939052 0.022448 0.729204

64 Tsed 0.464054393 0.003429 0.732633

66 TSS-7 0.851104717 0.006289 0.738922
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Table B.9: IIS for gateTSSmax(59)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

59 gateTSSmax 23.98262257 0.0934881 0.0934881

53 storage 8.015807458 0.0312469 0.124735

73 u-13 5.781189074 0.022536 0.147271

71 u-3 3.80435898 0.01483 0.162101

58 hTSSmax 1.955537997 0.007623 0.169724

47 Air Temp 8.575071316 0.033427 0.203151

74 u bot 2.461674226 0.009596 0.212747

45 SW 4.71761036 0.01839 0.231137

49 Wind Speed 2.940105075 0.011461 0.242598

72 u-7 2.816970058 0.010981 0.253579

67 TSS-13 3.025786525 0.011795 0.265374

63 Tbot 5.659080181 0.02206 0.287434

55 hTaff 3.153795637 0.012294 0.299728

50 Rain 2.914965009 0.011363 0.311091

52 h 1.999148316 0.007793 0.318884

65 TSS-3 1.149516695 0.004481 0.323365

64 Tsed 1.178248199 0.004593 0.327958

54 Taff 1.869600016 0.007288 0.335246

51 time 1.650009235 0.006432 0.341678

46 Cloud-Cover 1.029716584 0.004014 0.345692

60 T-3 1.233145894 0.004807 0.350499

48 Vap Press 1.40579145 0.00548 0.355979

7 Kango PO4 5.555441542 0.021656 0.377635

61 T-7 0.335542923 0.001308 0.378943

62 T-13 0.440464219 0.001717 0.38066

31 Fukuro DO 0.478943912 0.001867 0.382527

9 Kango DO 0.77959858 0.003039 0.385566

2 Kango Temperature 0.184445995 0.000719 0.386285

24 Fukuro Temperature 0.308094075 0.001201 0.387486

56 gateTaff 0.193681121 0.000755 0.388241

28 Fukuro PONL 0.404036776 0.001575 0.389816
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Table B.10: IIS for T-3(60)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

60 T-3 86.6167326 0.800239 0.800239

52 h 4.130059477 0.038157 0.838396

71 u-3 1.697830358 0.015686 0.854082

73 u-13 1.002072769 0.009258 0.86334

54 Taff 2.672410527 0.02469 0.88803

4 Kango NH4 1.333715776 0.012322 0.900352

74 u bot 0.971657728 0.008977 0.909329

72 u-7 0.986919368 0.009118 0.918447

48 Vap Press 0.136272372 0.001259 0.919706

45 SW 0.1478539 0.001366 0.921072

47 Air Temp 0.066566726 0.000615 0.921687

50 Rain 0.13031925 0.001204 0.922891

49 Wind Speed 0.024245442 0.000224 0.923115

2 Kango Temperature 0.03961532 0.000366 0.923481

55 hTaff 0.017101696 0.000158 0.923639

53 storage 0.017967604 0.000166 0.923805

57 TSSmax 0.008659086 8.00E-05 0.923885

Table B.11: IIS for T-7(61)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

60 T-3 87.13337357 0.79409 0.79409

52 h 2.811214133 0.02562 0.81971

71 u-3 1.835189554 0.016725 0.836435

54 Taff 2.752290558 0.025083 0.861518

73 u-13 1.318264114 0.012014 0.873532

72 u-7 0.982937401 0.008958 0.88249

74 u bot 1.01541669 0.009254 0.891744

4 Kango NH4 1.635815 0.014908 0.906652

56 gateTaff 0.149668075 0.001364 0.908016

48 Vap Press 0.122894607 0.00112 0.909136

45 SW 0.151533439 0.001381 0.910517

55 hTaff 0.091402864 0.000833 0.91135
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Table B.12: IIS for T-13(62)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

62 T-13 86.64558712 0.780156 0.780156

52 h 3.246893877 0.029235 0.809391

71 u-3 2.079633585 0.018725 0.828116

72 u-7 1.019548 0.00918 0.837296

2 Kango Temperature 3.487898143 0.031405 0.868701

73 u-13 1.256331915 0.011312 0.880013

74 u bot 1.160818704 0.010452 0.890465

50 Rain 0.405375839 0.00365 0.894115

55 hTaff 0.145491055 0.00131 0.895425

45 SW 0.1861397 0.001676 0.897101

48 Vap Press 0.141826013 0.001277 0.898378

31 Fukuro DO 0.08596189 0.000774 0.899152

53 storage 0.138494156 0.001247 0.900399

Table B.13: IIS for Tbot(63)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

63 Tbot 86.29188505 0.782544 0.782544

52 h 3.009625553 0.027293 0.809837

71 u-3 2.045636743 0.018551 0.828388

73 u-13 1.191918902 0.010809 0.839197

54 Taff 3.135444728 0.028434 0.867631

72 u-7 1.042170927 0.009451 0.877082

74 u bot 1.141194257 0.010349 0.887431

26 Fukuro NH4 1.685491759 0.015285 0.902716

48 Vap Press 0.089650298 0.000813 0.903529

45 SW 0.173787047 0.001576 0.905105

50 Rain 0.174448673 0.001582 0.906687

55 hTaff 0.018746065 0.00017 0.906857
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Table B.14: IIS for Tsed(64)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

64 Tsed 90.53285269 0.832283 0.832283

71 u-3 0.92220738 0.008478 0.840761

55 hTaff 1.706812456 0.015691 0.856452

73 u-13 0.643630699 0.005917 0.862369

51 time 1.630777665 0.014992 0.877361

72 u-7 0.578473561 0.005318 0.882679

52 h 1.595425294 0.014667 0.897346

74 u bot 0.689643169 0.00634 0.903686

48 Vap Press 0.273246631 0.002512 0.906198

50 Rain 0.476658733 0.004382 0.91058

9 Kango DO 0.14869751 0.001367 0.911947

4 Kango NH4 0.734785427 0.006755 0.918702

54 Taff 0.066788786 0.000614 0.919316

Table B.15: IIS for TSS-3(65)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

14 Kango SSOL3 83.98453 0.68545 0.68545

65 TSS-3 15.16894 0.12380 0.80925

71 u-3 0.84652 0.00691 0.81616

Table B.16: IIS for TSS-7(66)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

14 Kango SSOL3 80.6622812 0.694278 0.694278

65 TSS-3 12.71037571 0.109401 0.803679

45 SW 6.627343091 0.057043 0.860722
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Table B.17: IIS for TSS-13(67)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

39 Fukuro SSOL6 90.14684046 0.682975 0.682975

65 TSS-3 3.694043887 0.027987 0.710962

45 SW 5.518561294 0.04181 0.752772

46 Cloud-Cover 0.640554364 0.004853 0.757625

Table B.18: IIS for TSSbot(68)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

39 Fukuro SSOL6 74.73786639 0.67743 0.67743

50 Rain 17.04133238 0.154464 0.831894

51 time 8.220801229 0.074514 0.906408

Table B.19: IIS for TSSsed(69)

# variable name rel. δR2 (%)$ abs. δR2 abs δR2 (cum.)

14 Kango SSOL3 71.87626556 0.653131 0.653131

50 Rain 18.5566443 0.168622 0.821753

51 time 9.567090134 0.086935 0.908688
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