
Polo Territoriale di Como

Scuola di Ingegneria dell'Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

 Cross-Platform Mobile Application Generation with
a Model-Driven Approach Based on IFML and

Cross-Compilation

Relatore: Tesi di Laurea di:

Prof. Marco Brambilla Emilijan Sekulovski 780049

Anno Accademico 2013-2014

Abstract

Today there are so many mobile devices running on different platforms and platform
versions, with even bigger number of different displays (differing in screen size, aspect ratio,
PPI, resolution and various technology). Therefore, developers need tools that will help them
build applications faster while keeping them consistent throughout different devices. The
main motivation of this thesis is to completely automate the process of developing cross-
platform mobile applications by using the Interaction Flow Modeling Language (IFML).
With the introduction of IFML, we are moving into the field of Model-Driven Development
(MDD), where MDD applications are (semi)automatically generated from the models,
allowing for more flexibility, faster prototyping, validation in the early phases of a project and
shorter time to market. In this thesis we choose a cross-platform mobile development tool,
propose a basic mapping between IFML and the chosen tool, develop an application
generation prototype, followed by a more extensive elaboration on a concrete example. At the
end we give conclusion on the advantages and disadvantages of both the tools and the
languages used, along with a future work proposition.

1

Astratto

Al giorno d'oggi abbiamo accesso a una svariata quantità di dispositivi mobili operanti con
diversi sistemi operativi, con diverse versioni degli stessi sistemi operativi e con un numero
ancora più svariato di display (differenti tra loro per dimensioni, proporzioni, PPI, risoluzione
e tecnologia realizzativa). A questo proposito, i programmatori necessitano di strumenti
finalizzati a creare, nel minor tempo possibile, nuove applicazioni supportate da questa
varietà di dispositivi. La motivazione principale di questa tesi è quella di automatizzare
completamente il processo di sviluppo di tali applicazioni mobili attraverso l'utilizzo del
linguaggio IFML (Interaction Flow Modeling Language). Con l'introduzione dell'IFML, ci
stiamo muovendo nel campo dello sviluppo MDD (Model-Driven Development), nel quale le
applicazioni sono generate (semi)automaticamente partendo da modelli pre-strutturati,
consentendo una maggiore flessibilità, una veloce prototipazione, una convalida in fase
iniziale e un breve tempo di inserimento sul mercato. Per cui, attraverso questa tesi, partendo
da uno strumento di sviluppo cross-platform, proponiamo una mappatura di base tra tale
strumento e l'IFML, sviluppiamo un prototipo di generazione dell'applicazione per poi
concludere con una elaborazione più dettagliata applicata a un esempio concreto. Il lavoro si
conclude con una riflessione sui vantaggi e gli svantaggi degli strumenti e dei linguaggi
utilizzati, unitamente a una serie di ipotesi su linee di sviluppo future.

2

List of Abbreviations

API Application Programming Interface

BPMN Business Process Model and Notation

CSS Cascading Style Sheet

DOM Document Object Model

DSL Domain-Specific Language

HTML Hypertext Markup Language

IDE Integrated Development Environment

ITPG IFML to Titanium Project Generator

Java EE Java Enterprise Edition

JS JavaScript

M2T Model to Text

MDA Model-Driven Architecture

MDE Model-Driven Engineering

MVC Model View Controller

NFC Near Field Communication

OMG Object Management Group

PDA Personal Digital Assistant

PIM Platform Independent Model

PX Pixel

RIA Rich Internet Application

SDK Software Development Kit

SME Small and Medium-sized Enterprises

TSS Titanium Style Sheet

UML Unified Modeling Language

XMI XML Metadata Interchange

XML Extensible Markup Language

3

Contents

1. Introduction ... 6

2. Mobile Application Design Principles .. 9

2.1. Application Structure ... 9

2.2. General Structure ... 10

3. The Interaction Flow Modeling Language (IFML) ... 11

3.1. IFML Main Concepts .. 12

3.2. IFML Example .. 13

3.3. The AutoMobile Project .. 13

4. Cross-Platform Mobile Development Tools Overview ... 15

4.1. Choosing the Right Tool ... 18

4.2. Why Titanium? .. 21

5. Going from IFML to Titanium .. 23

5.1. Mapping IFML to Titanium .. 25

5.1.1. Visual Constraints and Heuristics .. 25

5.1.2. Component Mapping Proposal .. 26

5.2. Mapping Implementation .. 30

5.2.1. Constructing the Data Model ... 33

5.2.2. Window Element ... 34

5.2.3. Form, List and Details Elements ... 36

5.2.4. Action, View Element, Select and Submit Events .. 36

6. Case Study: Book Library Example .. 38

6.1. Application Structure in IFML .. 38

6.2. Example Break Down .. 41

7. Related Work ... 43

8. Conclusion and Future Work ... 48

9. Bibliography .. 50

4

Table of Figures
Figure 1 Global population owning a smartphone ... 7

Figure 2 Mobile devices in GSMArena’s database .. 7

Figure 3 Common app structure overview ... 10

Figure 4 IFML email model ... 13

Figure 5 DeveloperEconomics cross-platform tools research .. 15

Figure 6 PhoneGap Build cloud platform ... 20

Figure 7 Titanium global architecture .. 21

Figure 8 IFML to Titanium transformation example ... 24

Figure 9 IFML to Titanium transformation process ... 24

Figure 10 Example of vertical and horizontal layout in action ... 25

Figure 11 ITPG process .. 31

Figure 12 ITPG web interface .. 32

Figure 13 ITPGData folder structure .. 32

Figure 14 Transformation classes developed for this thesis ... 33

Figure 15 Titanium project structure .. 35

Figure 16 IFML model for simple Book Library App ... 39

Figure 17 Part of the printed log from the ITPG tool ... 40

Figure 18 Initial MobiA prototype [26] .. 43

Figure 19 Collaborative development process [22] .. 44

Figure 20 Web-based designer application screenshot [28] ... 45

Figure 21 Snapshot of the open source IFML modeling tool [7] ... 46

Figure 22 MD2 Eclipse environment .. 46

5

1. Introduction

In 1983, the DynaTAC 8000x was the first mobile phone to be commercially available. From
1983 up until 2014, worldwide mobile phone subscriptions grew from zero to over 7 billion,
penetrating 100% of the global population. Today most of these phones are smartphones, and
with that they become less of phones, and more of cameras or navigation devices.

This extraordinary change in the way people communicate and access information is
happening all the time. Each day mobile devices are used more extensively. It seems like
everything is evolving so fast, that is hard to keep up with the ever-changing mobile industry.
But if we just take a small step back and try to see the big picture, the only important thing we
can see is information. Information is the one thing that matters, because people need to
communicate. In order to live, survive and prosper, people must exchange information. The
only thing that changes with time is the medium through which people communicate.

The first known symbols with the purpose of communication are cave paintings like the ones
in the Caves of Nerja located in Málaga, Spain, dating older than 40,000 years [1]. Later
people used all sorts of tools (devices) as a medium to communicate and exchange
information, like fire, smoke signals, drums and horns, as well as many other visual, auditory
and ancillary methods. Of course all this transformed into today's exciting world of
communication and information consumption. Tools have evolved, and instead of choosing
whether to use fire or smoke signal, we get to choose Apple or Samsung, Tablet or
Smartphone, iOS or Android. Therefore, we need to bring consistent information and allow
seamless way of communication throughout all modern mobile devices.

Nonetheless, this devices still stay phones and allow people to call each other, but at the same
time they become less of that. Today, millions of apps are available on the App Store and
Google Play, giving us the possibility to learn, communicate, create, entertain and share
things as never before. From 2009 to the end of 2013 we see an enormous jump from 5% to
22% of the global population owning a smartphone [2] (shown in Figure 1).

6

Figure 1 Global population owning a smartphone

In 2013 solely 1 billion smartphones were shipped, an increase of 38.4% comparing to 2012.
Tablets are enjoying 51.6% sales growth in 2013 compared to 2012 [3]. As of today,
GSMArena.com has 6424 different mobile devices in its database [4] (shown in Figure 2).
This number represents one thing: diversity. Diversity is what makes our life complicated.

Figure 2 Mobile devices in GSMArena’s database

Today there are so many devices running on different operating systems (platforms) with
different platform versions, and on top of that the number of different displays they use
(differing in screen size, aspect ratio, PPI, resolution and technology) just makes them more

7

diverse than ever. Therefore, we can say that we have a vast range of different devices, and
with this taken into consideration, we see the problem that lies there: consistency.

Keeping app’s user interface (UI) and user experience (UX) consistent in a cross-platform
environment and throughout different displays out there represents a huge challenge.
Fundamentally, we have two words that do not quite fit together: diversity and consistency.
The bigger the diversity, the harder to keep the consistency. And what matters the most while
keeping this cross-platform consistency are time and cost. How long it will take, and how
much it will cost? Every application developer (whether an individual or a company) out
there tries to keep these two values as low as possible.

Having that in mind, developers need tools that will help them build apps faster while keeping
the apps consistent throughout different devices. Fortunately, there are many innovating tools
that are focused on designing cross-platform mobile development patterns and principles. We
will compare several tools used for cross-platform mobile development and choose to proceed
this thesis research with one of them.

The main motivation of this thesis is to automate the process of developing cross-platform
mobile applications even further. To achieve this, the Interaction Flow Modeling Language
(IFML) is used. A modeling language is used to create models for the system to be developed.
It provides a conceptual model consisting of formally defined graphical and textual
representations. By introducing IFML, we are moving into the field of Model-Driven
Development (MDD). Usually, in MDD applications are (semi)automatically generated from
the models, allowing for more flexibility, faster prototyping, validation in the early phases of
a project and shorter time to market.

A basic mapping proposal between IFML and the chosen tool will be placed, followed by a
more extensive elaboration on a concrete example. Conclusion on all the pros and cons of this
approach and the developed prototype, along with a future work proposition summarizes this
work.

8

2. Mobile Application Design Principles

Mobile design is different, and not just because of the size of mobile devices. The physicality
and specifications of mobile devices convey different design affordances and requirements,
notably perceived affordances. Perceived affordances describe the relationships that users
perceive within an environment. Mobile design should help users to distinct actions and invite
them to use those actions [12].

Because mobile devices are lighter and more portable, it is more convenient to use them.
Consequently, people start feeling this unique, emotional connection to them. Today, most of
the mobile devices employ touch screens, making users rely on gestures and simple interface
elements to interact with them. Their smaller dimensions often impose smaller and simpler
content structures. Also, limited bandwidth and connectivity makes mobile devices require
optimized designs with less data requirements [13]. Having constant access to mobile devices,
people tend to use them more frequently: on the bus, while walking down the street, while
watching TV etc. They are often used while doing something else, which means that they are
used under difficult viewing conditions and among a variety of distractions.

The areas of the screen the user touches to activate something (hit areas) require adequate
space for the user to accurately and confidently use an action. The average fingertip is
between one to two centimeters wide, which roughly correlates to somewhere between 44px
and 57px on a standard screen and 88px to 114px on a high-density (retina) screen. Nokia,
Apple and Microsoft each recommend slightly different sizes to account for the nature of
touchscreens. Therefore, there are no hard and fast rules regarding to hit areas and their size.
Getting the interactions right on a mobile device is crucial for its usability and functionality.
But to create a truly wonderful experience the appearance and the UI of the application needs
to inspire, charm and engage users [14].

2.1. Application Structure

Applications come in many varieties that address very different needs. For example:

● Apps such as Calculator, Camera or Games are built around a single focused activity
handled from a single screen. It is not very useful to create a Titanium Project
Generator for this kind of apps.

● Apps such as Phone, Messages or Gallery whose main purpose is to switch between
different tabs (views) without deeper navigation are also not very interesting for us.

● Apps such as Gmail, WhatsApp or Instagram that combine a broader set of data
views with deeper navigation are the kind of apps we aim for.

9

2.2. General Structure

A typical mobile app consists of top level and detail/edit views. If the navigation hierarchy is
deep and complex, category views connect top level and detail views. This shown in Figure 3
below [15].

Figure 3 Common app structure overview

● Top level views - the top level of the app typically consists of the different views that
your app supports. The views either show different representations of the same data
or expose an altogether different functional facet of an app. It is practice to navigate
between top level views either from the app’s menu or by interacting with the current
view elements. See Figure 3.

● Category views - category views allow to drill deeper into the app’s data. It usually
offers a grouped and more structured view of the data available in the top level views.
See Figure 3.

● Detail/edit view - the detail/edit view is where data is consumed or created. This is
often the last view in the hierarchy of an app structure. See Figure 3.

As mentioned above in subsection 2.1, apps with broader set of data and deeper navigation
are the kind of apps that make sense to be modeled and developed in a cross-platform
environment.

10

3. The Interaction Flow Modeling Language (IFML)

A modeling language can be used to express information, knowledge or systems in a structure
that is defined by a consistent set of rules [5]. There are some general-purpose modeling
languages, like UML, that are used in any sector or domain. On the other hand, there are also
domain-specific languages, like IFML, which are focused on facilitating the definition of a
specific software subsystem.

IFML is an OMG standard for expressing the content, user interaction and control behavior of
the front-end of software applications. IFML supports the platform independent description of
graphical user interfaces for applications accessed or deployed on systems such as desktop
computers, laptop computers, PDAs, mobile phones, and tablets. The focus of the description
is on the structure and behavior of the application, as perceived by the end user. The
description of the structure and behavior of the business and data components of the
application is limited to those aspects that have a direct influence on the user’s experience.

With respect to the popular Model-View-Controller (MVC) model of an interactive
application, the focus of IFML is on the view part. Furthermore, IFML describes how the
view references or is depended on the model and control parts of the application.

IFML is a Platform Independent Model (PIM)-level language in Model-driven Architecture
(MDA) parlance, and it perfectly fits into the Abstract User Interface level of the Cameleon
Reference Framework. The Business Process Model and Notation (BPMN) language may be
used in the context of IFML to provide Context Independent Models.

11

3.1. IFML Main Concepts

Table 1 IFML main concepts and notations

An IFML model consists of one or more top-level view containers. Each view container can
be internally structured in a hierarchy of sub-containers. In case of mutually exclusive (XOR)
containers, one could be the default container, displayed by default when the parent container
is accessed.

A view container can contain view components, which denote the publication of content or
interface elements for data entry (e.g., input forms). A view container and a view component
can be associated with events, which can represent user’s interaction or system-generated
occurrences. An event can also cause the triggering of an action, which is executed prior to
updating the state of the user interface. The main concepts and notations are listed in Table 1
above.

12

3.2. IFML Example

To illustrate how the main concepts are used in real case scenarios, an example model of an
email system is shown in Figure 4 below.

Figure 4 IFML email model

3.3. The AutoMobile Project

AutoMobile [6] is a project that includes the development of a mobile modeling language.
This language is an extension of the IFML modeling language tailored especially for mobile
applications. AutoMobile exploits the modern paradigm of Model-Driven Engineering and
code generation to dramatically simplify multi-device development, reducing substantially
cost and development times, so as to increase the profit of small and medium-sized enterprise
(SME) solution providers and at the same time reduce the price and total cost of ownership
for end-customers.

AutoMobile relies on modeling languages such as IFML and on tools like WebRatio. IFML,
as described above, does not cover any mobile specific aspects. AutoMobile brings mobile
specific view elements, such as Screen or Message. It also brings mobile specific events, such
as TouchEvent or SwipeEvent. At the moment of writing, AutoMobile successfully completed
its first review on October 10th 2014 and is on its way to the second phase, which is defining

13

http://www.ifml.org/
http://www.webratio.com/

the methodology. It will be a textbook with clear methodological guidelines on how to elicit,
design, implement and deploy successfully mobile multi-channel and multi-device [7].

Now, we move on to the cross-compilation part of this thesis. We will review, evaluate and
choose one out of the four most popular cross-platform mobile development tools on the
market.

14

4. Cross-Platform Mobile Development Tools Overview

Cross-platform mobile development represents a technique used in developing mobile apps
for multiple platforms (OS). Writing a single codebase for an app that will be deployed on
multiple platforms sounds intriguing. This approach is also very challenging, because of two
reasons. First, the most popular mobile platforms like Android and iOS are structurally very
different from each other. This difference goes down to architectural level in some cases.
Second, Google and Apple usually encourage developers to code in contradicting ways,
making it difficult to have a single codebase efficient on both platforms. Therefore,
developers face major problems when coding apps for multiple platforms.

Today there are many cross-platform development tools to choose from. All of them have
their own unique approach. If we look at the research statistics (shown in Figure 5 below)
from DeveloperEconomics [8] blog, we will see that the top five most used tools are
PhoneGap, Appcelerator (Titanium), Adobe AIR, Sencha and Qt.

Figure 5 DeveloperEconomics cross-platform tools research

In the following part, we describe the first four most used tools, and we list their pros and
cons.

● PhoneGap - it uses HTML, JavaScript (JS) and CSS for writing mobile applications,
and it runs the apps in a “WebView” inside a native application container on the target
platform. It is, conceptually, a web application packaged within a native application
container where your JavaScript has access to native device APIs that normal web

15

applications would not. The name PhoneGap is quite possibly one of the more
recognizable names in the space of cross-platform mobile development. To summarize,
here are the most notable pros and cons of this development tool:

○ Pros:
i. Use of common web technologies (HTML, JS & CSS) for writing apps.

ii. Reduces training time and learning curve for your team, resulting in quick-to-
market stance.

iii. The apps install just like any other native app, through each platform’s
respective app store.

iv. There are no license costs, it is completely open source and free.
v. It has a plugin architecture, allowing access to new native device APIs through

extendable modular way.
vi. It offers cloud build, no SDK required. You can build your cross-platform app

on their online PhoneGap Build.

○ Cons:
i. Getting support for things that do not come right out of the box.

ii. Writing custom plugins by yourself in order to utilize additional native APIs.
iii. Performance. Because of its “WebView” nested inside a native application

container, native UI apps will always outperform hybrid solution like this.

● Appcelerator Titanium - this tool provides a unified (across devices) JavaScript API,
coupled with native-platform-specific features. Developers write JavaScript and utilize a
UI abstraction (the Alloy MVC framework) that results in the use of native UI
components, greatly aiding UI performance compared to other hybrid options. Here are
the pros and cons of this tool:

○ Pros:
i. Uses JS along with native-platform-specific features.

ii. Deployment with native UI elements is a performance win.
iii. Alloy framework normalizes UI across platforms.
iv. Use of JS normalizes code across platforms, allowing you to leverage existing

skills on multiple target platforms.
v. Provides app analytics and marketplace for 3rd party components.

○ Cons:
i. Developers have to manage all targeted platform SDKs locally by themselves.

SDK versions & build related issues can be a horrific time sink.
ii. Normalizing UI across platform, often means gaining skills that later cannot be

transferred outside Titanium.

● Adobe AIR - this is a cross-operating-system runtime that lets developers combine
HTML, JavaScript, Adobe Flash and Flex technologies, and ActionScript to deploy rich
Internet applications (RIAs) on a broad range of devices including desktop computers,

16

netbooks, tablets, smartphones, and TVs. But, you can only use Flash and ActionScript
to write Adobe AIR applications for mobile devices.

○ Pros:
i. Possibility for creating more animated UI elements, but not with native

approach.
ii. Developers praise its mature IDE.

○ Cons:
i. Since Adobe purchased PhoneGap, it is the “elephant in the room”. With other

words, it’s not the long term strategy of Adobe for cross-platform mobile
development.

● Sencha - Sencha Touch is an HTML5 mobile application framework for building web
applications that look and feel like native applications. Apps built with Sencha Touch
can be used with PhoneGap or Sencha’s native packager.

○ Pros:
i. Sancha has built a range of interoperable products to ease the process for

developers.
ii. It offers an MVC architecture along with a library for UI components.

○ Cons:
i. Same performance issues as PhoneGap. Developers should be experienced

enough to write efficient JS and DOM structure.
ii. It’s community is much smaller than the one of PhoneGap.

iii. There is the need to write custom PhoneGap plugins for accessing additional or
new native device APIs.

Summing up all these pros and cons, I narrowed my choice to two options:
● PhoneGap
● Appcelerator Titanium

Adobe AIR is the “elephant in the room” between the rests. It uses technologies like Adobe
Flash and ActionScript which are being less and less used among developers. Sancha is very
similar to PhoneGap, but Sancha’s community being much smaller made the difference
between this two. There is much more forum discussion, support, examples and tutorials for
PhoneGap than for Sancha.

17

4.1. Choosing the Right Tool

In the following table (Table 2) we list and compare the different features of PhoneGap and
Titanium. With green and red color we mark the strong and weak sides of each tool:

Feature PhoneGap Titanium

Supported
platforms

iOS, Android, Blackberry, Windows
Phone 7, Symbian and Bada.

iOS and Android.
Blackberry support is available only to
Pro/Enterprise customers (paid).

Development
technologies

HTML, CSS and JavaScript. It’s
possible to use jQuery Mobile and
other web frameworks which rely on
presence of DOM. This is probably
one of the reasons why PhoneGap is
so popular – most developers, who are
not familiar with mobile development,
can use PhoneGap easily if they have
some experience in web development.

Maps JavaScript calls into native code at
run time. Developers can’t use jQuery
Mobile or HTML for UI, but Titanium
API overall is much closer to native
API, comparing to PhoneGap API.
That’s why developers, who are familiar
with native mobile apps development,
can start developing using Titanium
quickly.

Control over system PhoneGap supports less features
which are specific to only one
platform.

Has much deeper integration with each
mobile platform, so it allows fine control
over the system, depending on the
platform on which the app runs.

Code maintenance,
code reuse and
porting to other

platforms

Aims to standardize code across all
platforms. Code maintenance for
several platforms is easier than with
Titanium.

Some APIs are platform-specific.
Because of this fine control, sometimes
it’s more difficult than with PhoneGap
to make and support code which runs on
all required platforms. Apps must be
tested thoroughly on all platforms.

UI (look and feel) Controls simulate look of native UI,
but there’s almost no way to get the
real native look – it just feels
different.

Native look, feel and UI controls (which
can be customized, if necessary)

Performance Performance is limited by HTML and
JavaScript. It’s noticeably slower than
what you can get with native apps.

Performance is similar to what you can
get with native apps (it’s much smoother
than with PhoneGap).

Development
environment

Eclipse. Not as well-suited for a
specific framework as Titanium
Studio. On the other hand, the
PhoneGap Build cloud package
compiler makes thing a lot easier for
the developers.

Have their own IDE based on Eclipse.
It’s called Titanium Studio. With
introduction of the IDE, Titanium
development has become much easier,
there’s integrated debugger and other
convenient tools to help developers.

Table 2 Feature comparison between PhoneGap and Titanium [9]

18

Both of the tools have their strong and weak sides, and because of their weaknesses, apps for
iOS and Android are still mostly implemented natively.

Each mobile application has its own specifics, so choice of technologies for its development
must be based on project requirements and supported features of each tool.

When it comes to Titanium, there might be more difficulties in maintaining and testing the
code compared to PhoneGap, as Titanium projects tend to have more platform-specific parts
of code. Applications developed with Titanium make use of platform-specific native user
interface elements for user interaction. Thus, with this approach it is possible to create a user
interface that closely matches a native one. Judging from a cross-platform code reuse aspect,
PhoneGap does a better job. It has 95-100% code and resources reused across different
platforms, varying 5% only for the potential use/development of additional platform-specific
plugins. However, Titanium stands at around 60-90% [10], depending mostly on the amount
of platform-specific UI elements used in a project.

In Titanium there are platform-specific resources, like images, scripts and style sheets.
Therefore, developers must use a technique called code branching for separating the
platform-specific parts. Code branching is useful when the code is mostly the same across
platforms. Usually, blocks of if-then-else statements are used to separate platform-specific
sections of the code. Long blocks of if-then-else code are difficult to read and maintain. Also,
excessive branching will slow down the app's execution. When using this technique,
developers should group as much code as you can within a branch and defer loading as much
as possible to mitigate the performance penalty of branching.

Branching is a result of the different UI elements in each platform. For example,
Titanium.UI.iOS.ANIMATION_CURVE_EASE_IN defines an iOS-specific animation
property. One platform's constants should not be used on another platform, because the code
will throw an error. Differences like this are solved through code branching. Its best practice
to query the platform value once, store it in a globally accessible variable and and use it to
branch your platform-specific code sections.

Example:

var isAndroid = (Ti.Platform.osname=='android') ? true : false;
if(isAndroid) {
 // do Android specific stuff
} else {
 // do iOS stuff
}

So, only one project is developed and maintained, which has all this little platform dependent
if-then-else statements to handle the differences between the multiple OS and their
presentation layer (native UI elements).

19

The main disadvantage of the code branching technique is that the user interface of a specific
branch cannot be reused. Also the platform-specific features (for example: camera access,
location services, local notifications) cannot be reused. These features are platform-specific
and the way to access these features varies from platform to platform. This approach would
be appropriate for simple applications but for sophisticated applications cross-compilation
might be outweighed by native approach.

Finally, it all depends on the project, the way UI should feel and the way a user interacts with
it. The more native feel is required, the more platform-specific code is needed to be branched.
So the code can easily go from 100% cross-platform to 70%.

Looking at the necessary development environment (IDEs, SDKs, Libraries) to work with
both tools, PhoneGap has a much faster and simple way of doing that. Developers can use any
IDE (Eclipse, Netbeans, Dreamweaver, even Notepad), and when the coding is finished one
should just upload the project to PhoneGap Build cloud platform. There is an option of
connecting a project's GitHub repo directly with the cloud platform. Using this option will
update, compile and package the new app version automatically for iOS, Android, Windows,
Blackberry, WebOS and Symbian. These are platform-specific packages ready to be
downloaded and installed immediately on any device. The Figure 6 below illustrates the cloud
build environment for a basic HelloWorld app on the cloud platform. Only iOS package was
not built because we needed an iOS developer account, which we currently don’t have.

Figure 6 PhoneGap Build cloud platform

Titanium has its own Titanium Studio IDE. All titanium projects must be developed in this
environment. They have a 3rd party plugins market integrated into the IDE. It also features a
robust debugger and many other convenient tools at disposal for the developer. When it
comes to SDKs, they have to be managed by the developers locally on their machine and
reference them in the IDE. This method is less convenient than the cloud build platform
provided by PhoneGap.

When it comes to performance, PhoneGap is much slower than Titanium. This is mainly due
to the usage of non-native UI. Titanium compiles native UI and provides smoother
interactions, much similar to the ones of native apps.

One more concern is the technology base of a developer. For developers who are only
familiar with web development (HTML, JS, CSS) PhoneGap is a better choice. For
developers with a bit of experience in native mobile development, Titanium is a better choice.

20

4.2. Why Titanium?

The decision comes from the project specification. Therefore, in our case, we would
definitely go with Titanium. The winner feature is native UI. In a mobile application, the
smooth native transitions and the responsiveness of the interface are still the most noticeable
and most important parts for a good user experience. There is a noticeable difference in the
user experience when it comes to PhoneGap apps. A developer working with PhoneGap must
pay close attention to performance. This means that the knowledge of profiling tools as well
as which web UI frameworks are mobile-friendly is essential for developing stable and user-
friendly apps.

Titanium exists as a bridge between the native operating system and the app's code. The
following graphic (Figure 7) illustrates its architecture.

Figure 7 Titanium global architecture

At the bottom of the stack is the client operating system: Android, iOS, or the browser (for
Mobile Web applications). At the top is the app and the built JavaScript. In between, there is
the Titanium SDK and the APIs it exposes. The app is written in JavaScript, calling on the
Titanium APIs to take actions like drawing buttons, opening windows, showing the camera,
etc. The Titanium bridge (part of the SDK), which is called Kroll, translates those calls into
their native equivalents. In other words, when a Titanium button is created, it's actually a
proxy for a true native button. When the Titanium button is modified, for instance to change
its label or add an event listener, Kroll applies corresponding changes to the native equivalent.
When events occur in native-land, Kroll bubbles them up to the JavaScript code.

21

The goal of Titanium is to help developers leverage their JavaScript skills to build native
mobile apps that run across multiple platforms. It gives developers the tools to build apps that
look, feel, and perform native. Furthermore, Titanium apps fit well within the native
ecosystem of each platform [11].

22

5. Going from IFML to Titanium

To move from an IFML model (like the email model shown in Figure 4) to a runnable
Titanium code, a Model-to-Text (M2T) transformation is needed.

Many concepts, languages and tools have been proposed to help automate the derivation of
text from models by using M2T transformations. These kind of transformations have been
used for automating numerous software engineering tasks such as the generation of
documentation or task lists.

Code-generation is by far the most important application of M2T transformations. Actually,
the main goal of model-driven software engineering is to generate a running system out of the
models. M2T transformations, in the area of model-driven software engineering, are mostly
focused on code-generation that manages the transition from model level to code level. One
of the major benefits of using models is that they can be used constructively to derive the
system as well as analytically to better explore and verify the properties of the system [16].

When developing a model-based code generator, three questions are essential:

● How much is generated? This question should answer which parts of the code can be
automatically generated from models. If only partial code-generation is possible, the
second question here is: which part? It can be one layer (horizontal or vertical)
completely generated while another may be completely manually developed.
Moreover, it can be one layer partially generated and all the missing parts may be
manually developed.

● What is generated? This question answers what kind of source code will be
generated. Furthermore, the code must be generated in a way developers are able to
read it and understand it.

● How to generate? When the requirements for the code-generation are specified,
namely when the first two questions are answered, we have to decide how to
implement these requirements.

A code-generator must support the following phases to be able to successfully transform
models into text:

● Load models - models have to be deserialized from their XMI representation and their
content has to be programmatically accessible for further processing.

● Produce code - collect the model information needed for generating the code.
Usually, the object graph is traversed starting from the root element of a model
breaking it down to its leaf elements.

The IFML model is the model and the cross-platform code for the Titanium application is the
text for the M2T transformation used in this thesis. IFML has dozens of components to
choose from, which should be mapped into some of the hundreds offered by Titanium.

We chose a set comprised of five components: Window, List, Details, Form and View
Element Event. We generate the XML view and the JavaScript code (if necessary), for each

23

of these components. The only file we do not generate is the TSS file, which defines the style
of the components, similar to the commonly known CSS files. This answers the first two
questions from above (how much and what we generate?). Answering the third one is
somewhat more complicated and requires more extensive elaboration.

In Figure 8 we show how a simple IFML model with a Window and a child List component is
transformed into a Titanium View XML file with a Window node and a nested ListView
node.

Figure 8 IFML to Titanium transformation example

A specific Java web tool has been developed, that handles the whole process of generating
Titanium code from IFML models. This tool is referred to as IFML to Titanium Project
Generator (ITPG). The ITPG accepts an IFML model as an input and outputs a ready to run
Titanium project. One is able to import this project into Titanium Studio and continue
working on it as with any other Titanium project. The ITPG generates all the necessary code
for the Titanium app as an output. It acts like a bridge between IFML and Titanium, as shown
in Figure 9 below.

Figure 9 IFML to Titanium transformation process

The ITPG tool is the answer to the third aforementioned question (how we generate?). It’s
expressive power and limitations are more broadly explained in subsection 5.2 of this thesis.

24

5.1. Mapping IFML to Titanium

5.1.1. Visual Constraints and Heuristics

The first constraints came from the fact that IFML does not define the actual UI layout nor the
style of the components. Because of that, we set and define some rules and heuristics in order
to move forward.

The first thing we have to set is the UI layout. The main two containers in Titanium, the
Window and the View, can employ one of three layout modes by setting their layout property
to one of the following values:

● absolute - This is the default mode. You specify point coordinates on a grid relative
to the parent container's top/left or bottom/right corner.

● vertical - This layout mode stacks child views vertically. The child's top property
becomes an offset value. It describes the number of units from its previous sibling's
bottom edge where the view will be positioned.

● horizontal - This layout mode lines up child views horizontally. The child's left
property, similar to vertical, becomes an offset. This time, it's the position from the
previous sibling's right edge.

In Figure 10 we show an example of vertical and horizontal layout.

Figure 10 Example of vertical and horizontal layout in action

25

We set the layout of each component that contains subcomponents to vertical. Setting a
component layout to vertical stacks all the subcomponents vertically, making them easily
accessible and visible to the user. This is clearly the most simple and most useful layout to
represent the UI of a generated mobile app.

Since IFML does not take care of the styles, we did not implement any styling to the UI
components. That means we are not writing TSS style rules (similar to the familiar CSS, only
in Titanium) to position and change the visual aspects of a component.

A heuristic conclusion on the complexity and the depth of navigation in a mobile app has to
be made. Based on the general app structure mentioned earlier in subsection 2.2, as well as
the fact that this is more of a research thesis, we choose to limit the depth of nested
components in windows to one level. Despite the fact that we make this compromise, we keep
in mind that cross-platform tools are best suitable for deep, complex, data-driven mobile apps.
They ease the process of developing and maintaining this kind of apps in a cross-platform
environment.

5.1.2. Component Mapping Proposal

The layout of an app is mostly determined by the components used and by the way they are
used. Titanium by default does not support all the components available in IFML and vice
versa. Therefore, we need a mapping table of a subset of components along with certain rules
about how the ITPG transforms the model components created in IFML into valid mobile
application structure ready for immediate cross-platform development in Titanium Studio.
Titanium Studio is the IDE for developing cross-platform Titanium apps.

Some of the IFML components should be mapped to Titanium top-level components, others
to Optional Titanium Module Packages (such as Maps, Facebook, NFC etc.), and others to
concrete Titanium UI elements (such as Buttons, Labels, Views, Windows etc.). Sometimes it
would be necessary to map even platform specific components (e.g. Menus, Action Bars and
Notification Managers) through platform specific code branching with conditional
expressions, like if-then-else statements.

The following table represents our final mapping proposal for five most commonly used
components, based on an extensive research on both IFML and Titanium. It contains a brief
description of each pair of mapping components, as well as restrictions and concerns
regarding the mapping process itself. Some of the components are clearly too broad to cover
in this thesis, therefore we put notes and possible future work in the table itself.

26

IFML component mapping Titanium component

Window

A View Container rendered as a
Window.

Usually an HTML page or a
desktop window.

Properties:

● Name
● Is Land Mark
● Is Default
● Is Xor
● Is Modal
● Is New

Name -> Window Title

Set the title of this window in
your mobile app

Is Land Mark -> Menu Item

Create a link to this window
directly from the menu of your
mobile app

Is Default -> Start Screen

Set this window as the start
screen of your mobile app (only
one per app)

NOTE:

There are special views that
manage windows (such as
NavigationWindow,
SplitWindow and TabGroup)
but they will not be covered by
this mapping.

FUTURE WORK:

“Is Xor” property can be used
to create tabbed windows in the
future.

Ti.UI.Window

A window is a top-level
container which can contain
other views. Windows can be
opened and closed. Opening a
window causes the window and
its child views to be added to
the application render stack, on
top of any previously opened
windows. Closing a window
removes the window and its
children from the render stack.

Windows contain other views,
but in general they are not
contained inside other views.

27

View Container

An element of the interface that
comprises elements displaying
content and supporting
interaction and/or other view
containers.

Properties:

● Name
● Is Land Mark
● Is Default

Name -> View ID

Set the ID of the View as the
name

NOTE:

One suggestion is to allow the
use of “Is Land Mark” & “Is
Default” only in the case of
Windows. When multiple View
Containers are added to a
single component we show them
all together.

Ti.UI.View

A View represents an empty
drawing surface or container
created by the method
Ti.UI.createView.

The View is the base type for all
UI widgets in Titanium. Views
can be added to Windows or
nested inside other views. It’s
the closest representation of the
DIV element in HTML.

List

A View Container used to
display a list of DataBinding
instances. Table with rows of
elements of the same kind.

Properties:

● Name

Name -> Section Title

Set the title of the first section
in the ListView

NOTE:

There is also the TableView
component that can also be
mapped with an IFML List.

We are choosing the ListView
because it uses a data-oriented
approach vs. the view-oriented
approach of the TableView.

FUTURE WORK:

Creating a data set of items and
adding it to the ListView section
is left as potential future work,
or its implementation can later
be done inside Titanium Studio.

Ti.UI.ListView

A list view is used to present
information, organized into
sections and items, in a
vertically-scrolling view.

A ListView object is a container
for ListSection objects that are,
in turn, containers for ListItem
objects.

List view is designed for
performance. One side effect of
the design is that the views
cannot be directly manipulated
(add children, set view
properties and bind event
callbacks) as in TableView.

28

http://docs.appcelerator.com/titanium/latest/%23!/api/Titanium.UI-method-createView
http://docs.appcelerator.com/titanium/3.0/%23!/api/Titanium.UI.ListSection
http://docs.appcelerator.com/titanium/3.0/%23!/api/Titanium.UI.ListItem

Form + Simple Fields

A ViewComponent used to
display a form that is composed
of Fields. HTML form.

Form Properties:

● Name

SimpleField Properties:

● Name

Form Name -> View ID

Set the ID of the View as the
form name

SimpleField Name ->
TextField ID

Map each SimpleField into
Titanium’s own TextField
component. The TextField ID
and hint text will get the value
of the SimpleField Name
property.

NOTE:

There is the problem of
mapping different type of fields
(date, password, image,
dropdown selection) in a form.

Ti.UI.View + Ti.UI.TextField +
Ti.UI.Button

The Form can be represented by
a view in Titanium. To that
view, we later add all the simple
fields as text fields.

By default we add a button to
each form.

A TextField is just a single line
text field with a hint text.

29

View Component

An element of the interface that
displays content or accepts
input.

For example: HTML list, image
gallery, input field.

Properties:

● Name

e.g. TextArea_AboutMe

TextArea – the targeted
component
AboutMe – the ID of that
component

Name Prefix -> Titanium
Component

The name prefix should select
the titanium mapping
component (e.g. Label,
TextField, ImageView, Button,
TextArea)

Name -> Component ID

Map the view component name
into component’s ID

NOTE:

Here we suggest some rule for
the View Componet Name
property, like having a prefix
which selects the Titanium
component that it will map into.
See example on the left.

FUTURE WORK:

Some better way of mapping
can be used here, by extending
IFML with more specific
components for each of the
Titanium components
mentioned on the right.

Ti.UI.Label, Ti.UI.TextField,
Ti.UI.ImageView, Ti.UI.Button,
Ti.UI.TextArea

A Label is actually just a
normal text label, with optional
background image.

A TextField is just a single line
text field.

An ImageView is a view to
display a single image or series
of animated images.

A Button is just like a normal
view that has four states:
normal, disabled, focused and
selected. Usually an event
listener is attached to it that
performs some action.

A TextArea represents a
multiline text field that supports
editing and scrolling.

Table 3 IFML to Titanium component mapping proposal

5.2. Mapping Implementation

In this section we describe in details the ITPG tool which was created as a M2T
transformation tool between the IFML models and Titanium code. As mentioned before,
ITPG stands for IFML to Titanium Project Generator. It accepts an IFML model as an input,
and generates a whole Titanium project as an output. There is a Hello World titanium project
template which we duplicate and use as a starting point for each generated project. After that,
the generator adds and modifies files according to the uploaded model. The project is then
ready to be imported and built as-is in Titanium Studio. With that being said, we created a
transformation process for the generator, comprised of the following steps:

30

1. A Titanium project template is copied and the configuration file (tiapp.xml) is
updated.

2. Data Model is created based on the Form component.
3. IFML Windows are transformed into Titanium Windows, creating a separate XML,

JS and TSS file for each of them.
4. View Element Events, children of an IFML Window component, are transformed into

Titanium Menu items.
5. IFML Lists are transformed into Titanium ListView components.
6. IFML Details are transformed into Titanium View components with labels to display

each attribute.
7. IFML Forms are transformed into Titanium View components with text fields and a

save button.

This process is show in Figure 11 below.

Figure 11 ITPG process

With that being said, ITPG has a limited expressive power at this moment, keeping in mind
its purpose is to demonstrate capabilities of an end-to-end (IFML to Titanium) generation of
cross-platform mobile applications. We summarize the limitations in the following list:

● ITPG supports models that contain only one list, one form and one details view.
● There must be only one default window in the IFML model, which is set as the start

page of the mobile app.
● There can be endless empty windows.
● The data source is generated out of the form.
● The form comes with a button that adds the form input as a new item in the data

source.
● After the item is added, the window with the form is closed and we show the default

window again.
● If there is a Select Event on the list, a click on each item in the list is automatically

added, which opens the details window showing all the information available for that
item.

● Each View Element Event is added as a menu button to the window in which it
belongs and it must be connected to another window.

All of these limitations come from the fact that this code generator was developed in order to
prove that such mapping is possible. There are many cases that are not covered with this
implementation, therefore the types of applications we can generate are fairly limited for now.

31

ITPG is developed in Java and can be run on any Java compatible server. It has a simple
interface that offers to choose the project name and to upload your IFML model (.ifml file).
This can be seen in Figure 12 below.

Figure 12 ITPG web interface

The “IFML to Titanium Project Generator” Java EE project offers not just the functionality
to generate these kind of projects, but also introduces an easy and convenient way to do that
through a web interface.

Locally we have one main directory where this generator operates. We’ve set it up to be
located in C:\ITPGData. This directory structure can be seen in Figure 13 below.

Figure 13 ITPGData folder structure

It contains the following directories:

● The IFML directory contains the ifml models uploaded by the user.
(ex. IFML/[ifml-model-name].ifml)

● The titanium directory contains the Alloy Titanium projects generated for each ifml
model.
(ex. titanium/[ifml-model-name])

● The Hello World titanium project template is located in the titanium_templates
directory under the name of alloyHello.

32

● The Temp directory is used for some temporary files generated by the file upload
control. The content of this directory can be deleted from time to time, but not the
directory itself.

Each time a titanium project is generated from an ifml model, a copy of alloyHello will be
placed in the titanium/[ifml-model-name] directory.

Once the project is copied, ITPG parses each IFML model with an XML parser. The model
has its own tags, attributes and attribute values that we need to understand and process in
order to perform all the necessary M2T transformations. The ITPG edits files, such as the
tiapp.xml, index.xml, index.js and model.js. It also creates new files, such as XML, JS and
TSS files for all the additional windows and their components.

The Window is the main component of any application view. Each window can contain
multiple child components, for example, views, lists, forms, details and events. Therefore, we
describe each of the transformations used in this thesis, starting with the one that maps the
IFML window component into a Titanium one. Moreover, we show all the developed
transformation classes for this thesis in Figure 14 below.

Figure 14 Transformation classes developed for this thesis

5.2.1. Constructing the Data Model

Before we look at the mapping implementation, we must explain how we handle data. Every
application suitable for cross-platform development relies on data, and IFML’s Eclipse plugin
does not contain data components, which we find as a major limitation. That being the case,
we presume that a form, by its nature, handles data. So, we try to extract a data model out of
the form itself. Therefore, we developed a workaround where we first look for a form
anywhere in the model and create a database based on it. The dataModelParser class handles
this before mapping any other elements.

We iterate through each of the SimpleField element in the form. As a result of this class, there
are two global variables that are later used to manipulate the views of the mobile app:

● mainParam (String) - this is the first SimpleField element, and it is used as display
text for any element which has this datasource

● otherParams (String[]) - this is an array of all the remaining SimpleField elements in
the form

33

The SimpleField element does not specify the type (string, integer, date, picture, or file) nor
the format (there is no validation implemented). Thus, we set the type for all the SimpleField
elements to string and no validation.

The last step is to create an alloy model, which inherits from the Backbone.Model class [17].
Models are specified with JavaScript files, which provide a table schema, adapter
configuration and logic to extend the Backbone.Model class. Models are automatically
defined and available in the controller scope as the name of the JS file. This JS file is already
available in the Hello World template mentioned before. We just modify it by adding all of
the form fields as columns of type string, as shown with the code below. Then we save the
model and we use it later as our database. If there was validation to be implemented, it has to
be added in this file, by extending the model with the validate(attrs) method.

Later on we create alloy collections, which are ordered sets of models and inherit from the
Backbone.Collection class [17]. Alloy collections are automatically defined and available in
the controller scope as the name of the model [18]. Moreover, this data is only available in a
single session of the app. In order to make it persistent between sessions, we must utilize
some local storage or remote server storage. This is currently out of scope and there are many
questions and parameters in order to make this work, hence they are not covered in this thesis.

5.2.2. Window Element

We use element and component as synonyms. In this part we use more element, since it’s used
in the IFML XML semantic.

In the Alloy framework, the view component represents the UI of the application, comprised
of XML file (ex: index.xml) and Titanium style sheets file (ex: index.tss). The XML markup
defines the structure of the view, while the TSS file contains the styling elements applied to
the XML markup. It is similar to the relationship between HTML and CSS. There are also
controllers (ex: index.js) that contain the application logic used to control the UI and
communicate with the data model.

So, we create these three files for each of the IFML windows in model, and place them in the
corresponding project directory (controllers, styles and views), as shown in Figure 15.

34

Figure 15 Titanium project structure

After this, each of the windows has a separate view in the app. But, in order to use them, there
must be a defined navigation between them. There are multiple ways to navigate from one
view to another, like: click on a list item, click on a button in the view, through a menu button
or by navigating through a tabbed window component.

There are several different ways to manage windows in Titanium:
● simple window
● tabbed window
● split-window
● navigation window

Each of them have their own distinguished features and markup. From here comes the
necessity to introduce certain rules on how to use IFML to build mobile apps. We must define
ways how we build the IFML model itself, so the generator can recognize and map certain
types of windows in Titanium. For this thesis we map all the IFML windows into simple
Titanium windows, without navigation, split windows or tabs. We also used the isDefault
attribute to mark the start screen of the app. Therefore, there has to be only one window in the
IFML model with this attribute set to true. Note that not all of the proposed mapping options
shown in Table 3.1 are developed in this thesis.

After parsing the IFML model with an XML parser, we iterate through all of its
interactionFlowModelElements. These elements are the children of the root
interactionFlowModel element which represents the whole IFML model. We implement a
switch statement which takes the window elements and sends them to the window
transformation class. The code chunk follows below.

35

The next step creates the necessary files for each of the window elements. The Hello
World template contains an empty titanium window, named empty.xml. We copy this
file with the name of the IFML window element into the /app/views directory. The
same procedure is done for the TSS and JS files, which are copied to the /app/styles
and /app/controllers directories respectively. This directory structure was shown
above in Figure 15.

5.2.3. Form, List and Details Elements

These elements have to be children of some window element. Therefore, we iterate
through the window’s children elements. Similarly as before, we implement a switch
statement which propagates the form elements to the form transformation class
(formParser), the list elements to the list transformation class (listParser), and the details
elements to the details transformation class (detailsParser).

Since we already created the files for each window, we modify those files through each of the
transformation classes. The classes add the necessary XML elements and JS code in order to
have the elements as in the model. While implementing this transformations we noticed some
limitations of IFML:

● List element does not specify what data to display in the list items. Therefore, we
chose one attribute as the list item text, the default one from the data model.

● List element requires a data collection. We bind it to the alloy collection mentioned in
subsection 5.2.1, since there is no list attribute to specify the data source.

● Form element fields have no type specified, so we set it to string. Ideally each form
field should have its own type defined in the model.

● Details element does not specify what data to display, so we display all of the fields.

5.2.4. Action, View Element, Select and Submit Events

These are the four event types that we cover in this thesis. As an addition to the XML
markup, we must also create JavaScript functions for each of the events. If we look at the
Select Event for example, first we check if there is a select event defined in the model and
then we store three global variables:

● hasClick - a global boolean variable that tells us if the list has a select event or not.
● targetWindow - a global string variable that contains the value of the

trgtInteractionFlowElement attribute of the list’s NavigationFlow element
● clickFunction - the name of the function in the JS file that should be called when

clicking a list item

In the code below we can see how these three global variables are created while processing
the list element with the listParser class.

36

If the event target element is a window, we presume that when this event is triggered, we need
to open the target window in the app. The parameter binding element helps us understand
which parameters should be transferred from the source window to the target window. To
implement this we use the args input parameter when we open the new window. The
JavaScript code below, which is generated by the list transformation class, illustrates that
binding.

The biggest problem comes with the action event. The action event is triggered by an IFML
action element. The only logical transformation would be to create a JS function from the
action element, which as an output triggers an action event (save data, load data, calculate,
activate/deactivate phone feature, open window, close window, etc.). Since there is no support
in IFML for this kind of information, we presume that the form element needs to save data.
Therefore, we create a new model with the information from the form, we add that to the
alloy collection and we close the current window to return to the main window. This might
not work in other scenarios. For example, when we don’t want to save the data or when the
form is located in the main window it will close the app once we call the close() method at the
end of the JS function. An example of action event can be seen below.

Now, we can go deeper into the example application developed for this thesis. At the same
time we can explain why certain decisions were made, as well as pinpointing the major
drawbacks of IFML when used for modeling cross-platform mobile applications.

37

6. Case Study: Book Library Example

6.1. Application Structure in IFML

As mentioned before, we use IFML for expressing the content and user interaction of the
front-end of the example application. As a tool for creating this model we used the IFML IDE
Eclipse plugin [19]. At the time of writing this thesis, the plugin was still in early beta stage,
so not all the components and features were available to us.

We are going to model a Book Library App, which is the Book Library example project from
Appcelerator Titanium: Creating Your First Titanium App Example [20]. We will use this
project to practically test the developed ITPG.

All the decisions throughout the modeling process, as well as the discussions and
considerations are strongly based on the context of this example. This is to avoid the possible
ambiguities that might come along using a more extensive example.

As with most of the projects in the software domain, especially application development, we
start by brainstorming ideas and concepts on a whiteboard. We choose the case of a Book
Library App as the most simple and most convenient for elaborating the topic of this thesis.
The functionality of this application is simplified in order to ease the process of mapping
elements and code generation. By this, we are able to demonstrate how a cross-platform
mobile application is generated out of a model-driven approach based on IFML and cross-
compilation.

Using the general structure of mobile applications mentioned in subsection 2.2, we can say
that the top level view of the app is the Book list window. This is the first window of the app
and also the main window of our app. It contains the list of books, button to add a book and
an action on each list item to open the each book details view. The other two views of the app
are part of the detail/edit view according to the general structure presented in Figure 3. Add
book window contains the form for creating a new book, and buttons to confirm and cancel
the action. Book window contains the detailed data available for each book (title, author, year,
description).

The next step is modeling the app’s content and events according to IFML notation. We have
three different windows as content of this app, for which we use the IFML Window
component:

● The main (Book list) window is utilizing the IFML List component to display the list
of books available.

● The Add book window contains the IFML Form component for creating a new book.
● The Book window uses the IFML Details component to show the detailed data

available for each book.
There are three events that can be taken by the user in this example app:

38

● Add book - triggered by pressing a button on the main window. We model this event
with the IFML View Element Event component. This event opens the Add book
window.

● View book details - this event is triggered by an IFML Select Event component
attached to the Book list.

● Create book - this event is triggered by pressing on a button located in the Add book
window, firing the Add book action which is modeled by the IFML Action
component. Moreover, the action has an IFML Action Event which returns the user
back to the Book list window.

Note that all the styles for this application were created manually, with the goal to improve
the look and feel of this example. The styles (TSS files) were not in the scope of the
implementation. The final model of this example is shown in Figure 16 below.

Figure 16 IFML model for simple Book Library App

After uploading the model of this example project to the ITPG tool, the generation produces a
log like the one shown in Figure 17 below.

39

Figure 17 Part of the printed log from the ITPG tool

This log tells us that the generation was finished and that the whole IFML model was mapped
successfully. Next, we import the generated project with the “Existing Folder as New
Project” option in Titanium Studio. On the next screen it is important to check the “Alloy”
and “Mobile” project types in order to be able to run this project properly. The last step is to
run this project on a simulator or a connected device.

40

6.2. Example Break Down

The following screenshots are taken right after running the project on a Samsung Galaxy S3
device, without any modifications made in Titanium Studio. We’ll shortly explain what is
shown on these screenshots and what actions are available for the user.

When we first launch the app, we create the alloy collection as a database, which was
generated by the data model transformation class.

The first screenshot (left) is the start screen of the mobile app. As modeled, the start screen is
represented by the Book List window. There is only one sample book in the list, the one that
was hardcoded in the list transformation class while mapping the IFML list component. On
this window, there is also the Add Book button in the top right corner. Clicking this button
takes us to the second screenshot (right), which represents the Add Book window. This
window contains the form component with all the fields and a Save button.

Book List window Add Book window

On the next screenshot (left) we fill the form and press Save. The action creates a new alloy
model with the data from the fields and appends it to the alloy collection that was created on
the start. After that we close this window and we go back to the start screen (right).

Now there are two books in the book list. One is the old one, and one is the book we just
created with the form. From here there is only one more action that the user can take, and that
is opening the details view.

41

Filled Add Book form New book in the list

By clicking on an item in the list, the Book Details window opens, which is shown on the last
screenshot. This window contains the details view and shows all the information about that
book.

Book Details window

42

7. Related Work

There is already a significant number of research done towards model-driven approaches for
mobile applications development. Some of the work is more abstract and in some sense more
theoretical. However, there is a notable amount of work that proposes concrete solutions with
practical implementation. We list the related work, starting from the theoretical one and
continuing with the more concrete one:
(i) Florence T. Balagtas-Fernandez in his paper [26] proposes the MobiA tool, which is a
prototype based on a conducted survey among non-expert users willing to create their own
mobile applications. With regards to the participant’s wishes for the tool, it has been designed
to be graphical in nature, and features a drag-and-drop functionality. This tool is shown in
Figure 18 below.

Figure 18 Initial MobiA prototype [26]

(ii) Mirco Franzago et al. in their paper [22] present the main principles and modelling
languages of a collaborative modelling framework for mobile applications. The proposed
modelling framework should enable designing apps at the right level of abstraction, and a
multi-site, real-time modelling across different stakeholders at the same time. The proposed
framework should also abstract the implementation-specific details to non-technical
stakeholders in order to maximize reuse, and enable early validation through incremental
prototypes and analysis. A schema of the collaborative development process is shown in
Figure 19 below.

43

Figure 19 Collaborative development process [22]

(iii) In yet another paper [29], Abilio G. Parada et al. propose an MDE approach for Android
applications development, which addresses modeling with standard UML notation. They
conducted a case study in which an Android application was modeled in UML and code was
generated from it, using the extension of GenCode. They only made a transformation from
UML class and sequence diagrams to the target Android Java code, without consider any
optimization in the generated code. As future work, they will consider the good practices for
Android development, and thus generate more efficient code.
(iv) Chi-Kien Diep et al. in their paper [28] take advantage of web technology and model-
driven approach to develop a web-based designer which provides friendly interface and
highly extensible transformation architecture. The system provides an Online Integrated
Development Environment for cross-platform graphical user interface, which allows native
code project generation. Experiments with volunteers have shown that this solution can save
up to 25-51% time to create the GUI of an application to three different platforms: Android,
iOS and Windows Phone. The designer has limited functionalities, but there are intentions to
support higher level of model abstraction and enhance user management to package the
system into a commercial product. Figure 20 shows the main view of the designer application.

44

Figure 20 Web-based designer application screenshot [28]

(v) Glenn Cavarle et al. in their paper [25] present a solution named Dali which uses
Smalltalk together with some Model Driven Engineering to allow multi-platform application
design. When the application is mature enough, the idea is to finally generate a native target
application. Dali provides a framework that can be used to design desktop as well as simple
mobile applications. The set of available widgets and adapters remains to be expanded.
Unfortunately, a Dali model provides the mean to generate target platform code, but
generating a real application remains to be experimented;
(vi) Some work even focuses on performance optimization and power consumption of mobile
applications, like the paper of Chris Thompson et al. [27]. Their approach addresses these
challenges by enhancing model-driven engineering (MDE) tools to enable developers to
quickly understand the consequences of architectural decisions. Their approach can help
drawing conclusions long before implementation. This would significantly reduce production
costs and time while substantially increasing battery life and overall system performance.
From their experience, they could conclude the following points:

○ By utilizing MDE it becomes possible to quantitatively compare design decisions and
deliver some level of optimization with regards to power consumption,

○ Developing applications for platforms such as Android require extensive testing as
hardware configurations can greatly influence performance, and

○ It is impossible to completely profile a system configuration because ultimate device
performance and power consumption depends on user interaction, network traffic and
other applications on the device.

(vii) Marco Brambilla et al. in their paper [7] present a mobile extension of OMG’s standard
IFML (Interaction Flow Modeling Language) for mobile application development. Their
modeling on existing apps proves that the language is expressive enough to satisfy all the
typical development needs on mobile. Moreover, they have real industrial experience, which
gives positive feedback on the applicability, effectiveness and efficiency of this approach.
Their planned future work covers the implementation of more refined code generators and the
study of design patterns for model-driven mobile applications design. The developed
modeling tool is shown in Figure 21 below.

45

Figure 21 Snapshot of the open source IFML modeling tool [7]

(viii) Henning Heitkotter et al. in their paper [24] introduced the MD2 model-driven
framework for cross-platform development of mobile applications. While not being a general
purpose tool that can be used for any kind of app, it has proven to be feasible for typical
business apps even in its prototypic state. This framework runs as a set of plugins for Eclipse
and it is based on a textual domain-specific language (DSL). The tool utilizes the MVC
(model-view-controller) software architectural pattern, therefore you must write the model,
the view and the controller in their DSL. The source code for both iOS and Android is
automatically generated and ready to be installed. The Eclipse environment where the MVCs
are created is shown in Figure 22 below.

Figure 22 MD2 Eclipse environment

The biggest difference between our approach and MD2 is the input model. While MD2 uses a
textual modeling language, we use a graphical modeling language (IFML). Moreover, writing
the MVC model for MD2 will most probably be done by an experienced developer, while in
our case a broader user base can create the IFML model.

46

Another very important difference is the output. As we can see, MD2 generates final native
apps by itself, while we generate a Titanium project and we deploy the final native apps
through Titanium Studio. While first evaluation results of the MD2 framework are promising,
and most data-driven business apps can already be implemented, it is currently still limited
with respect to certain functionalities (e.g. advanced device features). They are continuously
working on MD2 by refining it, extending it, and applying it to additional scenarios [23].

Similar approach can be found in other development tools, like Applause [21] for example. It
is a toolkit for creating cross-platform mobile applications. It consists of a DSL to describe
mobile applications and a number of code generators that will use these descriptions to
generate native applications for the major mobile platforms (iOS, Android, Windows Phone).
This toolkit is based on Eclipse and Xtext.

Both of these tools, the MD2 and Applause, provide generated native apps as output. On the
other hand, our ITPG tool generates only a Titanium project. This project needs to be
imported in Titanium Studio and the native app deployed from there, hence the name of the
thesis does not contain development. We only provide an easier and faster way to start a
cross-platform mobile project. The real development environment stays within Titanium
Studio, where the developers can modify, add or remove code if necessary.

This is a relatively new field of research, so limited number of tools and frameworks are
available. However, it is an attractive topic and we can see new tools and papers emerging
every day.

47

8. Conclusion and Future Work

As already discussed in the introduction, mobile phones are here to stay, and so are mobile
applications. Cross-platform mobile development helps people build applications faster, with
less resources and helps them increase their market reach. The main goal of this thesis was to
prove that we can optimize this approach even more, by introducing a comprehensive mobile
modeling language (IFML) and a code generation tool (ITPG). This two can be used to
prototype more concepts and prototype them faster, but at the same time they help us
experiment easily with components and choose what best fits the need of our application
structure.

Since IFML focuses more on the view part, observed from an MVC point of view, we find it
very intuitive and expressive when it comes to building a mobile application structure.
Moreover, its graphical approach helps us build more user centric apps, simply because to
build a model in IFML, one must think and act like a user.

Another thing we found really useful was the DataBinding for view components, list views
and detail views. The DataBinding specifies the data source which can be anything from an
XML file to a table in a database. It also contains conditional expressions and visualization
attributes which determine the specific content obtained from the data source and the content
shown to the user respectively.

Although IFML is a very robust and intuitive graphical modeling language, we found several
features that can be improved in order to make it friendlier and more complete when it comes
to modeling mobile applications. Regardless the fact that IFML is a view oriented language
(in the MVC architecture), we still think the model and the controller must be covered as well
in order to have a more complete mobile modeling language. Simple mapping components
that transform to SQLite databases could be the first step in covering the model part of an
MVC application. On the other hand, since the controllers are usually binded with the
windows (screens) in mobile apps, all action and event components in IFML should belong
somewhere in these controllers. Therefore, a more precise mapping of components that
contain JavaScript code could help us create a more powerful and more capable code
generator.

Besides extending IFML to cover all three parts of MVC, we should consider a deeper
component compatibility. In our case, we feel like the IFML components could be extended
with additional attributes in order allow a seamless transformation from IFML to Titanium. In
many places we found that Titanium supports different types of the same component, while
that is not the case with IFML. For example, Titanium supports several types of the Window
element: simple, tabbed, split-window and navigation. In contrary, IFML has no window
element types, so it is very hard to create an effective code generator when it comes to the
Window component. This is the main and most important UI element in any mobile app, but
improvements regarding support for different types of the same component can be made in
components such as the List or the general View Component.

48

The general View Component is supposed to cover all sorts of elements, from buttons to
image galleries. This is not the best approach, since all of these elements have unique
properties and attributes, making it hard to depict them with one single component. Therefore,
the third and final major improvement of IFML would be increasing the set of components.
Many common and necessary mobile UI elements like menus, drawers, spinners, as well as
mobile specific gestures such as swipe or pinch, and sensors such as GPS sensor or
accelerometer could not be used in IFML models. This mobile specific features are essential
when modeling mobile applications.

Nevertheless, many of these features are coming with the AutoMobile project as we already
mentioned before, so things are moving forward when it comes to model-driven mobile
application development.

When it comes to the possible future work regarding the code generator we developed, there
are three things that I would focus the attention on:

● Offer multiple outputs - Add other platforms for which the tool could generate code,
such as Phonegap or even native iOS and Android code generation.

● Generate database out of forms - While developing the example app in this thesis,
the idea of generating the database out of the forms in the app seemed more and more
practical. Starting from the fact that forms are the most commonly used mechanisms
for data input, it makes perfect logic to derive the actual database tables out of them.

● Step by step wizard - developing an online tool that offers the user to create the IFML
model online, choose various customization options, select the output (Titanium,
Phonegap, native iOS, native Android, etc.) and finally download the generated
project.

49

9. Bibliography

Note: URLs have been last accessed on 30th of November 2014.

[1] Fergal MacErlean. “First Neanderthal cave paintings discovered in Spain”, New
Scientist, 10 February 2012.
http://www.newscientist.com/article/dn21458-first-neanderthal-cave-paintings-discovered-in-spain.html

[2] John Heggestuen. “One In Every 5 People In The World Own A Smartphone, One In
Every 17 Own A Tablet [CHART]”, Business Insider, 15 December 2013.
http://www.businessinsider.com/smartphone-and-tablet-penetration-2013-10

[3] “Global mobile statistics 2014 Part A: Mobile subscribers; handset market share;
mobile operators”, mobiForge, 16 May 2014.
http://mobiforge.com/research-analysis/global-mobile-statistics-2014-part-a-mobile-subscribers-handset-
market-share-mobile-operators?mT#mobiletablet

[4] “Phone Finder results”, GSMArena.com.
http://www.gsmarena.com/results.php3?

[5] “Modeling language”, Wikipedia.
http://en.wikipedia.org/wiki/Modeling_language

[6] “The AutoMobile project”.
http://automobile.webratio.com/

[7] Brambilla, Marco, Andrea Mauri, and Eric Umuhoza. "Extending the Interaction
Flow Modeling Language (IFML) for Model Driven Development of Mobile
Applications Front End." In Mobile Web Information Systems. Springer International
Publishing, 2014. 176-191.

[8] Jim Cowart. “Pros and Cons of the Top 5 Cross-Platform Tool”, Developer
Economics, 12 November 2013.
http://www.developereconomics.com/pros-cons-top-5-cross-platform-tools/

[9] Dmitry Chervov. “PhoneGap vs Titanium”, Sphere Consulting Inc Blog, 2 June 2014.
http://blog.sphereinc.com/2014/06/phonegap-vs-titanium/

[10] “Titanium Studio”, Appcelerator Inc.
http://www.appcelerator.com/titanium/titanium-studio/

[11] “Titanium Platform Overview”, Appcelerator Docs.
http://docs.appcelerator.com/titanium/3.0/#!/guide/Titanium_Platform_Overview

[12] Donald A. Norman. The Design of Everyday Things: Revised and Expanded Edition.
Basic Books, 2013.

[13] Elaine McVicar. “Designing for Mobile, Part 1: Information Architecture”, UX
Booth, 25 September 2012.
http://www.uxbooth.com/articles/designing-for-mobile-part-1-information-architecture/

50

http://www.newscientist.com/article/dn21458-first-neanderthal-cave-paintings-discovered-in-spain.html
http://www.businessinsider.com/smartphone-and-tablet-penetration-2013-10
http://mobiforge.com/research-analysis/global-mobile-statistics-2014-part-a-mobile-subscribers-handset-market-share-mobile-operators?mT%23mobiletablet
http://mobiforge.com/research-analysis/global-mobile-statistics-2014-part-a-mobile-subscribers-handset-market-share-mobile-operators?mT%23mobiletablet
http://www.gsmarena.com/results.php3?
http://en.wikipedia.org/wiki/Modeling_language
http://automobile.webratio.com/
http://www.developereconomics.com/pros-cons-top-5-cross-platform-tools/
http://blog.sphereinc.com/2014/06/phonegap-vs-titanium/
http://www.appcelerator.com/titanium/titanium-studio/
http://docs.appcelerator.com/titanium/3.0/%23!/guide/Titanium_Platform_Overview
http://www.uxbooth.com/articles/designing-for-mobile-part-1-information-architecture/

[14] Elaine McVicar. “Designing for Mobile, Part 2: Interaction Design”, UX Booth, 26
March 2013.
http://www.uxbooth.com/articles/designing-for-mobile-part-2-interaction-design/

[15] “App Structure”, Android Developers.
http://developer.android.com/design/patterns/app-structure.html

[16] Brambilla, Marco, Jordi Cabot, and Manuel Wimmer. "Model-driven software
engineering in practice." In Synthesis Lectures on Software Engineering 1, no. 1
(2012): 1-182.

[17] “Backbone.js”.
http://backbonejs.org/

[18] “Alloy Collection and Model Objects”, Appcelerator Docs.
http://docs.appcelerator.com/titanium/latest/#!/guide/Alloy_Collection_and_Model_Objects

[19] “Interaction Flow Modeling Language”, WebRatio.
http://www.webratio.com/portal/content/en/ifml-standard

[20] “Creating Your First Titanium App”, Appcelerator Docs.
http://docs.appcelerator.com/titanium/3.0/#!/guide/Creating_Your_First_Titanium_App

[21] “APPlause”.
http://applause.github.io/

[22] Franzago, Mirco, Henry Muccini, and Ivano Malavolta. "Towards a collaborative
framework for the design and development of data-intensive mobile applications." In
Proceedings of the 1st International Conference on Mobile Software Engineering and
Systems, pp. 58-61. ACM, 2014.

[23] Heitkötter, Henning, and Tim A. Majchrzak. "Cross-Platform Development of
Business Apps with MD2." In Design Science at the Intersection of Physical and
Virtual Design, pp. 405-411. Springer Berlin Heidelberg, 2013.

[24] Heitkötter, Henning, Tim A. Majchrzak, and Herbert Kuchen. "Cross-platform
model-driven development of mobile applications with md 2." In Proceedings of the
28th Annual ACM Symposium on Applied Computing, pp. 526-533. ACM, 2013.

[25] Cavarlé, Glenn, Alain Plantec, Vincent Ribaud and Christophe Touze. “Towards
agile cross-platform application development with Smalltalk and Model Driven
Engineering.” In International Workshop on Smalltalk Technologies, Cambridge
England, 2014.

[26] Balagtas-Fernandez, Florence T., and Heinrich Hussmann. "Model-driven
development of mobile applications." In Automated Software Engineering, 2008. ASE
2008. 23rd IEEE/ACM International Conference on, pp. 509-512. IEEE, 2008.

[27] Thompson, Chris, Jules White, Brian Dougherty, and Douglas C. Schmidt.
"Optimizing mobile application performance with model–driven engineering." In

51

http://www.uxbooth.com/articles/designing-for-mobile-part-2-interaction-design/
http://developer.android.com/design/patterns/app-structure.html
http://backbonejs.org/
http://docs.appcelerator.com/titanium/latest/%23!/guide/Alloy_Collection_and_Model_Objects
http://www.webratio.com/portal/content/en/ifml-standard
http://docs.appcelerator.com/titanium/3.0/%23!/guide/Creating_Your_First_Titanium_App
http://applause.github.io/

Software Technologies for Embedded and Ubiquitous Systems, pp. 36-46. Springer
Berlin Heidelberg, 2009.

[28] Diep, Chi-Kien, Quynh-Nhu Tran, and Minh-Triet Tran. "Online model-driven IDE
to design GUIs for cross-platform mobile applications." In Proceedings of the Fourth
Symposium on Information and Communication Technology, pp. 294-300. ACM,
2013.

[29] Parada, Abilio G., and Lisane B. de Brisolara. "A model driven approach for Android
applications development." In Computing System Engineering (SBESC), 2012
Brazilian Symposium on, pp. 192-197. IEEE, 2012.

52

	Abstract
	Astratto
	List of Abbreviations
	1. Introduction
	2. Mobile Application Design Principles
	2.1. Application Structure
	2.2. General Structure

	3. The Interaction Flow Modeling Language (IFML)
	3.1. IFML Main Concepts
	3.2. IFML Example
	3.3. The AutoMobile Project

	4. Cross-Platform Mobile Development Tools Overview
	4.1. Choosing the Right Tool
	4.2. Why Titanium?

	5. Going from IFML to Titanium
	5.1. Mapping IFML to Titanium
	5.1.1. Visual Constraints and Heuristics
	5.1.2. Component Mapping Proposal

	5.2. Mapping Implementation
	5.2.1. Constructing the Data Model
	5.2.2. Window Element
	5.2.3. Form, List and Details Elements
	5.2.4. Action, View Element, Select and Submit Events

	6. Case Study: Book Library Example
	6.1. Application Structure in IFML
	6.2. Example Break Down

	7. Related Work
	8. Conclusion and Future Work
	9. Bibliography

