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Abstract

The main objective of this thesis is to provide an evaluation of the most
important multi-party key exchange algorithms, that are generalizations of
the more famous two-party Diffie-Hellman key exchange, proposed in the
literature. This analysis is carried out not as a simple theoretical review,
but with a very precise practical target: the application of multi-party key
exchange algorithms to secure Building Automation Systems (BAS). This
target is reached through implementing and testing various multi-party key
exchange algorithms on a realistic benchmark, that simulates the devices
commonly deployed on BAS. The experimental validation has provided sig-
nificant indications about which are the best solutions that should be em-
ployed in this specific context.
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Sommario

Il principale obiettivo di questa tesi è di fornire una valutazione dei più
importanti algoritmi di scambio di chiavi fra più partecipanti, cioè gener-
alizzazioni del più famoso scambio di chiavi Diffie-Hellman, proposti nella
letteratura. Questa analisi non è limitata a una semplice rivisitazione teor-
ica, ma ha un preciso scopo pratico: l‘applicazione dei suddetti algoritmi alla
messa in sicurezza dei Building Automation System (BAS). Questo obiettivo
viene raggiunto attraverso l‘implementazione e la verifica di vari algoritmi
di scambio di chiavi generalizzati su una realistica piattaforma di test, che
simula i dispositivi normalmente utilizzati nei BAS. La valutazione speri-
mentale messa in atto ha fornito indicazioni significative riguardo quale sia
la miglior soluzione adottabile in questo contesto specifico.
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Introduction

During the last years there has been an increasing attention around the
so called Building Automation Systems (BAS), mainly due to the advan-
tages provided by modern IT solutions. BAS aim at improving control and
management of mechanical and electrical systems in buildings. The main
goal of a BAS is to provide increased comfort while keeping an efficient use
of all available resources. It is important to specify that building automation
systems are not limited only to the field of domotronics, i.e. simple home
automation networks, with a relatively small number of devices for the re-
mote control of appliances or features, that are becoming popular in modern
luxury houses. Indeed these systems scale up to large installations with
thousands of devices, covering a vital role in the functioning of important
infrastructures such as office buildings, hospitals, data centers, and hotels.
They typically connect building actuators and sensors to data networks, in
order to realise distributed systems able to achieve control and monitoring
of different infrastructure services (e.g. lighting, security alarms, HVAC).

The general trend is that of making these systems more and more per-
vasive and involved in critical aspects, therefore the security features offered
by the network technologies underlying these infrastructures are of consid-
erable importance. In this context there are a lot of realistic scenarios that
constitute a serious threat and that must be avoided. Let us think for exam-
ple to the case of an adversary, either an insider or on outsider one, able to
gain access priviliges to the nodes of the BAS and thus subverting their nor-
mal functioning. The consequences may be of different severity, depending
on the type of devices connected to the network. Unfortunately it happens
that the technology behind these systems have been developed and deployed
without security in mind. As an example of this fact, it is worth to mention
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Introduction

a work presented this year at the famous Black Hat Briefings conference [14].
In this work the author shows the vulnerabilities of a building automation
protocol, the KNX protocol, focusing on a real world example: the automa-
tion network of an hotel. The main reason behind these vulnerabilities is
the complete lack of encryption, a characteristic shared by all the most im-
portant building automation protocols, that allows any kind of attack: from
simple passive eavesdropping of packets circulating on the network, to more
sophisticated attacks such as injection of forged packets or denial of service.

The introduction of strong cryptographic primitives in these protocols
would allow to guarantee important security properties and thus thwarting
the kind of attacks mentioned previously; in order to achieve this objective
a crucial point is the use of a shared ephemeral key, agreed among all the
nodes of the building automation system. Since many different key exchange
protocols have been proposed in the academic literature, the purpose of this
work is to provide a comprehensive study of the most relevant ones, focusing
on their applicability to the specific context of building automation systems.
This thesis provides both a theoretical analysis of these algorithms and also
an experimental evaluation of their efficiency when implemented on embed-
ded platforms, like those usually found in building automation systems.
Chapter 1 provides an overview of the most important building automation
protocols, focusing on their functionalities especially from the security point
of view.
Chapter 2 discusses the general problem under analysis and introduces the
key agreement protocols that have been taken under consideration in this
work.
Chaper 3 provides an overview of the theory behind elliptic curves, the cryp-
tographic technology that has been chosen to implement the key agreement
protocols.
Chapter 4 presents the experimental setup and summarizes the results ob-
tained by this study.
Finally in Chapter 5 there are the conclusions derived from this work and
the possible future developments.
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Chapter 1

State of the Art

This chapter will describe the most important building automation pro-
tocols that have been considered in this study, describing their characteristic,
strengths, weaknesses and security features. Particular attention will be ded-
icated to the first protocol, the KNX protocol, since it has been chosen as
the reference protocol for the implementation of the key exchange algorithms
that have been analyzed. After that three other protocols will be presented:
LonWorks, BACnet and Modbus.

1.1 KNX

The KNX protocol [2] is a standardized (EN 50090, ISO/IEC 14543) net-
work protocol, defined in 2002, specifically designed to operate in the context
of building automation. KNX is the successor to three previous standards:
the European Home Systems Protocol (EHS), BatiBUS, and the European
Installation Bus (EIB or Instabus), it is based on the OSI model and it
is adopted by more than 300 manufacturers from more than 30 countries.
The standard supports different physical communication media, both wired
and wireless ones. The decision of employing this protocol as the reference
for the implementation relies on the fact that it is an open standard, quite
widespread on the market, and on its tight connectivity constraints: indeed
the maximum bandwidth available on wired means with KNX is of 19.2
kbit/s. In the following two sections we provide an overview of the technical
details of the protocol and of the security features offered by it.
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CHAPTER 1. State of the Art

Figure 1.1: KNX datagram structure

1.1.1 KNX Datagram Overview

Figure 1.1 shows the complete structure of a standard KNX datagram;
the different layers of the OSI model implemented in the protocol have been
highlighted.

Layer 1 (Physical Layer) The principal aim of the services provided by
layer 1 is to shield layer 2 from the physical means used for transmis-
sion. It is thus ensured that the upper layers of the network remain
independent of the transmission physics used, so that the transmission
media could be changed without having any effect upon the upper lay-
ers. As we have previously reported KNX supports multiple types of
media both wired and wireless. In Chapter 4 we will describe how the
physical layer was implemented in the tests.

Layer 2 (Data Link Layer) The data link layer comprises a header made
of the control field, the sender and receiver addresses and a trailer field
used to detect transmission errors. The control field contains informa-
tion about the priority of the packet (KNX defines 4 different levels of
priority) and if the packet is a repeated one or not. As it is possible
to note from figure 1.1 the protocol features 16 bit long addresses, ac-
comodating up to 65536 devices. An important characteristic of KNX
is the support of both unicast and multicast communications, in fact,
it is possible to specify if the receiver address has to be interpreted as
a group address, i.e. an address identifying multiple devices, instead
of a normal one referring to a single node. It is obviously possible to
realise broadcast communication (since it is a particular case of multi-
cast communication), simply setting to zero the receiver address. The
trailer field is a bitwise parity code, computed bytewise on the entire
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message. CSMA/CA is used for bus access control. The KNX proto-
col specifies that telegrams should be immedeately acknowledged at the
link layer, sending acknowledgment messages with a length of a single
byte. Three different type of acknowledgement are defined: immediate
acknowldge (IACK), immediate not acknowledge (INACK) and busy
(BUSY).

Layer 3 (Network Layer) The header of the network layer is composed
of a single byte coding different informations:

• The first bit indicates whether the receiver address needs to be
interpreted as an individual address or a group address;

• The following three bits indicates the value of the routing counter,
which will play a role in the routing of the telegram across the
network;

• The following 4 bits indicate the length of the useful information
in the telegram (actually the length of the transport protocol data
unit).

Layer 4 (Transport Layer) The transport layer contains information about
the type of communication. KNX distinguishes between two different
types of communications: control data and data; the packets from each
one of these communications can be optionally numbered, giving rise to
four possible combinations, therefore the first two bits of the transport
layer’s header are devoted to the coding of the communication type.
The next 4 bits indicate, only in the case of a numbered communication
type, the sequence number.

1.1.2 KNX Security Features

As it is possible to note from the previous description, up to version
2.0, the standard KNX protocol doesn’t offer any kind of explicit security
feature. The datagram’s payload is not encrypted, thus not providing the
confidentiality of the communication. Furthermore there are no means to
guarantee integrity (the check field provided by layer 2 can be easily bypassed
by an attacker), authentication, or freshness of the messages. Although
different solutions to secure this specific protocol have been proposed in the
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literature, e.g. [7], [12], none is actually in use. At the start of this year (2014)
was presented, after four years from the previous release, the new version of
the KNX standard: version 2.1. Unfortunately, even if KNX claims to be an
open standard, the official KNX specifications are free for KNX Members,
but they have to be ordered via the KNX Online Shop for the others.

1.2 LonWorks

LonWorks [11] is a network protocol developed by Echelon Corporation
that has become a standard (ISO/IEC-14908). The LonWorks system com-
prises a specific communication protocol called LonTalk, a specific micro-
controller, and a network management tool. LonWorks provides a simplified
routed network with at most 255 subnets, each one able to address up to
127 nodes. Similarly to what we have seen for KNX, also this protocol
supports multicast communications: indeed LonWorks defines 256 different
group addresses. The medium access strategy employed in this protocol is
CSMA/CD, allowing a maximum bandwidth of 1.25 Mbit/s.

This protocol is equipped with a security measure based on a single key
shared among all devices. This key is used only to guarantee authentication
of the sender (i.e. ensuring that the sender is a node of the network), through
a challenge-reponse protocol. This protocol works as follows: the sender
delivers a message setting the so called authentication bit. After having
received this request, the receiver replies with a 64 bit random number (which
is the challenge of the protocol). The sender receives this random number and
calculates a 64 bit hash value over the content of the message and the random
number itself using the shared secret key. This hash value (which is the
response of the protocol) is sent back to the receiver that performs the same
calculation comparing the result with the received value. The protocol can
be trivially extended to the case of multicast communication (i.e. a sender
authenticating to more nodes comtemporarily). It is clear that this security
measure is insufficient, in fact there are some desirable security properties
that cannot be granted, e.g. confidentiality: although authenticated the
messages are sent in plaintext. Moreover this sort of membership check is
rather rudimentary and suffers of a considerable number of flaws:

• The authentication is limited to the sender, the receiver is not verified;
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• The challenge-response protocol can only be initiated by the sender,
the receiver does not have the opportunity to demand secured requests;

• The length of the secret key is limited to 48 bits, clearly insufficient to
prevent offline bruteforcing;

• There is a complete lack of a secure mechanism to distribute the shared
key or to change it.

1.3 BACnet

BACnet [15] is a protocol stack devised in 1987 by the American Society
of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) that
became an ISO standard in 2003 (ISO-16484-5). The BACnet specification
is under continous development, extensions to the current BACnet standard
are summarized in specific documents called BACnet Addenda. The main
characteristic of this protocol is its flexibility: it allows to choose which
network transport stack should be used for its commands. More precisely,
the BACnet protocol defines a number of data link/physical layers, such
as: ARCNET, Ethernet, BACnet/IP, Point-To-Point over RS-232, Master-
Slave/Token-Passing over RS-485, and the LonTalk protocol discussed one
section above.

From the point of view of security the situation has changed since the
publication of the so called "Addendum g" (one of the aforementioned BAC-
net addenda). BACnet Addendum g replaces the old and vulnerable security
concept of BACnet. The update from Addendum g makes it similar to what
has been proposed for LonWorks, i.e., it is based on the establishment of
common keys shared between all the nodes, while the security desiderata are
guaranteed through the use of symmetric key ciphers. The required shared
secret keys have to be distributed to the devices in advance, or they have to
be retrieved from a key server during runtime. The latter solution, which
does not employ any key exchange protocol, is not ideal for multiple reasons:

• First of all the use of a single key server introduces a single point of
failure. It would be possible to use multiple key servers, at the cost of
an increased complexity of the overall system, but the standard doesn’t
provide this possibility.
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• If the distribution of the keys is handled by the key server, it happens
that the distribution to the devices sets up in advance which of them
are able to communicate with each other in a secure way and which
are instead prevented in doing so. To allow more flexible settings it
would be necessary to introduce multiple keys, but this option is not
present in the specification.

• The use of asymmetric schemes, like the ones studied in this work, can
avoid the need for a trusted, online key server.

1.4 Modbus

Modbus [10] is a serial communication protocol developed by Schneider
Electric in 1979 in order to be used on the programmable logic controllers
(PLCs) produced by the same company. Modbus is based on an underly-
ing transport protocol, typically a TCP/IP stack (even if other options are
possible). Communications are usually realised over Ethernet, thus allowing
both unicast and multicast communications. The use of Ethernet implies
that the access strategy to the shared medium is CSMA/CD and a high
maximum transmission speed is available (up to 1 Gbit/s). This protocol is
a sort of de facto standard in industrial applications, due to its simplicity
and robustness and also to the facts that is openly published and free of
royalties. Unfortunately, since it was developed in the late ’70 and specifi-
cally tailored to industrial applications, it doesn’t offer any kind of security
features.
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Chapter 2

Problem Description

This chapter is devoted to a general description of the problem of secur-
ing a Building Automation System and the associated Building Automation
Network (BAN). In particular we will focus on the threat model that is rea-
sonable to assume in this type of systems and on the security properties that
we are interested in. After that, we will provide a description of the key
agreement protocols that have been studied

2.1 Threat Model and Security Desiderata

To provide a sound analysis of the security of BAS it is important to de-
scribe the threat model taken under consideration, highlighting the security
properties we are interested in. As we have already said the typical configu-
ration of a BAS consists of nodes (sensors and actuators) communicating on
a shared medium. In the following we specify the security desiderata needed
in this particular context:

Confidentiality If the communication between the nodes happens in clear-
text, as it is the case in the aforementioned protocols, it is reasonable
to assume that an attacker may be able to eavesdrop it. The sensitivity
of the informations circulating on the BAN is related to the attached
devices, but it is not difficult to imagine cases where confidentiality is a
desirable property, e.g, at commands directed to door control systems
or video streaming coming from security cameras.

9
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Authentication Considering that the common medium is usually easily ac-
cessible (via direct connection to the wires or generation of EM trans-
missions), it is reasonable to assume an attacker able to inject arbitrary
messages on the BAN. This is another serious threat, basically gener-
ated by the lack of an authentication, that can lead to the unwanted
scenario of an attacker able to send commands to the actuators of
critical buildings.

Message integrity Even without injecting forged packets, an attacker may
be able to interfere with the normal network functioning, simply tam-
pering with legitimate packets. Therefore it is important to assess the
integrity of the circulating messages.

Replay attacks The purpose of these kind of attacks is to force the system
into doing something simply recording normal messages and repeating
them later on. Considering the fact that messages containing actua-
tor commands that cause physically evident actions (e.g. open a door,
turning on/off ligths) can be fully inferred from an attacker through
environmental observations, these attack strategies may be a valid op-
tion for a malicious adversary. Therefore the freshness of the messages
must be granted by some means.

Forward secrecy A system is said to have forward secrecy, if the compro-
mise of a long-term private key (at some point in the future) does not
compromise the security of communications made using that key in
the past. Since an attacker may be able to acquire a BAN node and
to retrieve the long term key contained in it, thus compromising the
confidentiality of previously recorded communications, the property of
forward secrecy is relevant in order to mitigate this issue.

Availability Furthermore an attacker may try to compromise the availabil-
ity of nodes realizing some sort of denial of service attack. In general
it is important to detect when a node is no longer available, either
to counteract a possible attack or to take appropriate maintenance
actions, should the disappearance be caused by a node failure.
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2.2 Securing BAS

After having described the threat model and stated the security desider-
ata, we must specify the security services and cryptographic technologies
that are adequate in this context. Moreover it is important to consider that
the solution must comply with another requirement: the tight computational
and communication constraint imposed by the target devices commonly de-
ployed in BANs.

A possible solution would be to apply the well-known Kerberos proto-
col [19], which guarantees mutual authentication, confidentiality and pro-
tection from replay attacks. This protocol is built on fast symmetric key
cryptography, a characteristic that fits nicely the aforementioned computa-
tional constranints. There are multiple reasons for which, even if it is a viable
option, the Kerberos protocol has been discarded in favor of other solutions:

• Kerberos cannot provide all the security desiderata stated above. For
example, the availability of the nodes of the BAN or the forward secrecy
property are not granted.

• One of the main disadvantages of Kerberos is that it has a single point
of failure. It requires continuous availability of a central server; when
this server is down the system is locked.

• Even if asymmetric key primitives are less efficient, with the intro-
duction of Elliptic Curve Cryptography (ECC) it is possible to use
asymmetric algorithms even on low-end embedded devices.

All these reasons point towards the adoption of an ad-hoc solution employing
lightweight key agreement schemes to derive ephemeral cryptographic keys,
to be used with fast symmetric-key primitives.

Antonini, Barenghi and Pelosi, in a recent work published in 2013 [1],
have designed a complete protocol, based on a key agreement scheme, that is
able to provide the aforementioned properties. The protocol, whose messages
are depicted in Figure 2.1, is organized in three phases: bootstrap, regular
functioning and key refreshment. During the bootstrap phase the value of
the secret ephemeral cryptographic key is set by the installer to the same
value for all nodes. Subsequently, the nodes are forced to perform a multi-
party key agreement procedure to determine the first value of the shared
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Command NonceMgmt Cmd Ack

BAN
Command

BAN command nonce00 1

BAN 
Notification

Delivery Notification nonce10 1

Beacon Beacon nonceX0 0

Add Node 
Command

Add Node Command nonce01 1

Add Node 
Notification

Delivery Notification nonce11 1

Key 
Agreement 

Key Agreement MessageX1 0

Figure 2.1: Description of the messages in the secure protocol proposed by
Antonini, Barenghi and Pelosi

ephemeral symmetric key to be used. Once this key agreement is completed,
we enter in the regular functioning mode. The confidentiality requirement
is satisfied by encrypting the whole payload with a strong symmetric cipher,
exploiting the shared key. The integrity of the messages is granted by ap-
pending at the end of each message a Message Authentication Code (MAC)
(indicated as T in Figure 2.1), which prevents an attacker from both tamper-
ing with the contents of messages and injecting forged ones. To ensure the
availability of the nodes the transmission time is logically divided into time
slots, scheduled to the nodes according to the lexicographical order of their
respective addresses. Each node willing to transmit will have to wait the
start of the corresponding time slot, in case nothing has to be transmitted a
beacon message will be sent; in this way any disruption of the transmission of
a node can be promptly detected. Finally, the forward secrecy is ensured by
the last phase of the protocol: the rekeying. Indeed, after a predetermined
number of exchanged messages, the network’s members will engage in a new
key agreement procedure to renew the shared epeheral secret key.

The central point around which the entire protocol is built is the key
agreement algorithm. It has to be both sound, i.e., it should not be broken
by a motivated adversary, and efficient since the procedure will be repeated
multiple times throughout the BAS lifecycle. In the following section we will
provide a thorough analysis of the most important multi-party key agreement
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protocols described in the literature.

2.3 Key Agreement Protocols

This section will provide a theoretical insight of the group key agreement
protocols that have been considered in this work. Since all the algorithms
that will be covered are an attempt to generalize the Diffie-Hellman key ex-
change, it is worth to analyze this protocol. After that we will introduce
the key exchange algorithms proposed by Burmester and Desmedt, the al-
gorithms of Steiner et al. and the MKA algorithms devised by Antonini,
Barenghi and Pelosi.

2.3.1 Diffie-Hellman Key Exchange

Algorithm 2.3.1: Diffie-Hellman Key Exchange
Globals: (G, ·) = 〈g〉, finite cyclic group with order n = |g|
Output: Shared secret: k = ga0a1

begin
Private ephemeral key: ai

random←− Zn \ {0, 1}
Public ephemeral key: kpub,i = gai

Send kpub,i to the other peer
Receive kpub,j
k = kpub,j

ai = ga0a1

return k

This scheme was first published by Whitfield Diffie and Martin E. Hell-
man in 1976 [9]. The Diffie-Hellman key exchange protocol allows two parties
that have no knowledge of each other to determine a shared secret key over
an insecure communications channel. This key can then be used to encrypt
subsequent communications (e.g. using a symmetric key cipher).

As shown in Algorithm 2.3.1 each peer randomly selects1 a private ephemeral
key ai ∈ {2, . . . , n−1} and then computes and sends to the other one a public
key kpub,i = gai . Each participant completes the key exchange exponentiat-

1When we say "randomly select" we always intend that the values are selected inde-
pently and with an uniform distribution
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ing the public key of the other peer with its own private key:

k = kpub,j
ai = ga0a1

The security of the Diffie-Hellman scheme against passive adversaries, i.e.
that can only passively eavesdrop messages over the communication channel,
is based on a supposedly computationally hard problem, the Computational
Diffie-Hellman problem:

Definition 2.1 (CDHP). Let (G, ·) be a finite cyclic group with order n =

|G|, and denote as g ∈ G one of its generators: (G, ·) = 〈g〉. Given two
positive integers a0, a1 ∈ Zn \ {0, 1}, the Computational Diffie Hellman
Problem (CDHP) is defined as the one of computing g, a0, a1, given as input
(G, g, ga0 , ga1).

The Diffie-Hellman protocol is not effective against active adversaries, i.e.
that can put themselves in the middle of the communication channel per-
forming a so called Man In The Middle Attack. The reason for this is that the
Diffie-Hellman protocol provides a non-authenticated key exchange, therefore
authenticantion should be provided by some other mean. This characteristic
is shared by all the other key exchange protocols that will be presented here.
Another important property that is ensured by the Diffie-Hellman protocol
is forward secrecy, that has been already cited in the previous section, we
report here its formal definition:

Definition 2.2 (Forward secrecy). A system is said to have forward secrecy,
if the compromise of a long-term private key (at some point in the future)
does not compromise the security of communications made using that key
in the past.

The multi-party key agreement protocols that will be introduced in the
following sections can be roughly divided into two cathegories:

• Those that are natural generalizations of the Diffie-Hellman key ex-
change, i.e, the algorithms proposed by Steiner et al. and the MKA of
Antonini, Barenghi and Pelosi;

• Those that are not natural generalizations of the Diffie-Hellman key
exchange, i.e. the algorithms proposed by Burmester and Desmedt.
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Algorithm 2.3.2: Burmester-Desmedt Key Exchange (BD1)
Globals: (G, ·) = 〈g〉, finite cyclic group with order n = |g|
Input: U : {U0, . . . , Ut−1} ordered set of protocol partecipants
Output: Shared secret: k = ga0a1+a1a2+...+at−1a0

begin
ai

random←− Zn \ {0, 1}
zi = gai

Broadcast zi
Receive zi−1 and zi+1

Xi =
(
zi+1

zi−1

)ai
Broadcast Xi

for Uj ∈ U |Uj 6= Ui do
receive Xj

k = ztaii−1 ·X
t−1
i ·Xt−2

i+1 · . . . ·Xi−2
return k

A multi-party key exchange algorithm is considered as a natural generaliza-
tion of the Diffie-Hellman key exchange if it satisfies the following definition:

Definition 2.3. A multi-party key exchange is defined as a natural gener-
alization of the Diffie-Hellman key exchange if all the partecipants compute
the key:

k = g
∏
ai

where ai is the private ephemeral key chosen by the generic i-th partecipant.

2.3.2 Burmester-Desmedt Key Exchange

Mike Burmester and Yvo G. Desmedt proposed two different systems to
perform key exchange in a group of t ≥ 2 partecipants. The first solution
is described in [5], while the second more recent solution in [6]. These two
schemes will be treated separately in the following subsections.

First Burmester-Desmedt Key Exchange (BD1)

An important prerequisite of this algorithm is that the partecipants
should be ordered and each partecipant should be aware of this ordering.
As specified by Algorithm 2.3.2, given a publicly known finite cyclic group
(G, ·) = 〈g〉 with n = |g| elements, each partecipant randomly selects a pri-
vate ephemeral key ai ∈ {2, . . . , n − 1} and computes zi = gai . The first
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round of the algorithm is completed broadcasting zi to all the other nodes.
After that, in the second round of the algorithm, each partecipant, after
having received the exponentiations of the preceding node zi−1 and of the
following node zi+1, computes and broadcasts Xi =

(
zi+1

zi−1

)ai 2. After having
received all the other values each partecipant will compute the shared key k
as: k = ztaii−1 ·X

t−1
i ·Xt−2

i+1 · . . . ·Xi−2. Following this procedure all the nodes
will compute the same key:

k = ga0a1+a1a2+...+at−1a0

Indeed, set:
Ai−1 = (zi−1)

ai = gai−1ai

Ai = zi−1
ai ·Xi = gaiai+1

Ai+1 = zi−1
ai ·Xi ·Xi+1 = gai+1ai+2

. . .

We have that the key computed by the i-th partecipant can be expressed as:

ki = Ai−1 ·Ai ·Ai+1 · . . . ·Ai−2

From the above relation it follows that the key is a second order cyclic
function of the ai. It is interesting to note that for t = 2 we get X1 = X2 = 1

and k = g2a0a1 , which is not the same key computed through the Diffie-
Hellman key exchange, since this protocol, as stated previously, is not a
natural generalization of it. In their work the authors prove that this scheme
is secure against a passive adversary (i.e. it provides confidentiality). As
noted discussing the Diffie-Hellman key exchange, this protocol, by itself,
doesn’t guarantee authentication.

From the point of view of efficiency we note two nice properties:

• The number of rounds of the protocol doesn’t depend on the number
of nodes involved (indeed it is constant and equal to 2);

• The exponentiations (which are the most expensive operations) are
"cheap". Indeed each node will perform t + 1 exponentiations, but

2The indexes are taken modulo the number of partecipants
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apart from three of them the exponent is at most t− 1.

The efficiency of this scheme comes to a price, indeed, as we have stated be-
fore, the partecipants must be ordered and each partecipant must be aware
of this ordering. Moreover there is another important practical aspect to
consider: during the protocol the communications are performed using si-
multaneous broadcasts by all the nodes, however the ability to perform n

simultaneous broadcasts is not a feature available in most network environ-
ments. Therefore a more realistic version of this algorithm would be obtained
imposing that each broadcast is performed separately from the others, thus
giving rise to 2t rounds instead of only 2.

Second Burmester-Desmedt key exchange (BD2)

In their second work Burmester and Desmedt try to enhance the previous
one describing a new, more efficient protocol. The characteristic of this
scheme is that it is based on a strong precondition: a spanning tree of the
network to which the partecipating nodes are connected must be available.
The main idea of this protocol is that a single node, corresponding to the
root of the spanning tree, establishes the shared key that is then propagated
to all the other nodes. The authors develop two different versions of the same
algorithm, a sequential version in which the key is propagated through one
level of the tree at a time and a multicast version where the key propagation
is parallelized. In order to show how is it possible to propagate the key
selected by the root node to all the other partecipants, let us consider the
first algorithm proposed by the authors. First of all each node performs a
key exchange with its adjacent nodes (e.g. through a Diffie-Hellman key
exchange), let kij be the key exchanged between two generic nodes. Starting
from the top of the tree (i.e. from the root, which is the node responsible
for starting the propagation), each node sends to its adjacent nodes the
encrypted key, computed in this way: Xij = K · kij . Trivially each adjacent
node will retrieve the key simply calculating: K = Xij · kij−1.

As we have already said, this algorithm requires the availability of a span-
ning tree of the underlying network. Since this is not a feature available in
most building automation protocols, we consider a version of this algorithm
that works without the spanning tree. Actually what we obtain dropping
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Algorithm 2.3.3: Burmester-Desmedt Key Exchange (BD2)
Globals: (G, ·) = 〈g〉, finite cyclic group with order n = |g|
Input: U : {U0, U1, . . . , Ut−1} set of protocol partecipants
Output: Shared secret: k
begin

k
random←− G, U0 selects the key

ai
random←− Zn \ {0, 1}

zi = gai

Ui sends zi to U0, U0 broadcasts z0
U0 computes k0i = za0i , Ui computes k0i = zai0
for i = 1 to t− 1 do

Xi = k · k0i
Send Xi to Ui

k = Xi · k0i−1
return k

this hypothesis is a special case of the more general algorithm proposed by
the authors. Indeed, without a spanning tree, the network can be considered
as having a star topology, where the center of the star is the root node and
all the other partecipants are adjacent to it. The resulting procedure is rep-
resented in Algorithm 2.3.3, similarly to what happens in the Diffie-Hellman
key exchange each node computes a private-public keypair. All the child
nodes send their public key to the root node U0, while U0 broadcasts its own
public key. After this first phase the central node computes the shared key
with each one of the adjacent nodes and uses it to encrypt the key that it has
previously chosen. Each adjacent node, after having received the encrypted
key, will be able to retrieve the original one applying the procedure discussed
before.

The evident drawback of this protocol is that the root node has to perform
t−1 more operations with respect to the other ones. This is a consequence of
not constructing the spanning tree as supposed by the original algorithm, the
usefulness of the spanning tree is exactly that of balancing the computational
load between all the partecipants. Another more practical aspect to consider,
is that all the nodes send their public keys to the central node at the same
time. Similarly to what we have seen for the previous protocol, when we
stated that it is difficult to admit the possibility of having simultaneous
broadcasts by all the nodes, it is not possible in a practical implementation
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Algorithm 2.3.4: Generalized Diffie-Hellman 2 (GDH2)
Globals: (G, ·) = 〈g〉, finite cyclic group with order n = |g|
Input: U : {U0, U1, . . . , Ut−1} set of protocol partecipants
Output: Shared secret: k
begin

1. Receive set of values from the preceding node

2. Compute the new cardinal value, exponentiating the old one for ai

3. Construct new set of values

4. Forward output values to the successive node

5. Waiting for the final set of values from member Ut−1

6. Compute shared key

to perform n−1 simultaneous unicast communications towards a single node,
because most network architectures cannot receive more thant one packet at
the same time. The solution to this issue is again to perform this transmission
in distinct moments, thus increasing the number of rounds of the protocol.

2.3.3 Generalized Diffie-Hellman

This section is dedicated to the presentation of an entire family of proto-
cols, called generalized Diffie-Hellman, introduced by the work of Steiner et
al. [18]. As suggested by the name these protocols are natural extensions of
the 2-party Diffie-Hellman to the n-party case. The definition of family of
protocols is due to the fact that the authors propose a general protocol, from
which it is possible to derive different schemes; three of these schemes are
then explained in their work. As in all the other protocols, the parteciptans
U0, U1, . . . , Ut agree on a finite cyclic group (G, ·) = 〈g〉 of order n = |g| and
choose a private key ai ∈ {2, . . . , n − 1}. The main idea on which all these
protocols are based is that given ga0...ai−1ai+1...at−1 member Ui can easily
compute the shared key k = g

∏
ai simply "adding", through exponentiation,

its own private key. We have taken under consideration the second algorithm
proposed by the authors, basing this choice on the fact that it is the most
interesting from the point of view of efficiency.
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In the first phase of the protocol the i-th node receives i values from the
preceding one. The first value in this set is the so called cardinal value, i.e.
a value containing i − 1 exponents, while all the other values contain i − 2

exponents. The recipient has to compose a new set of i+1 values, containing
one cardinal value with i exponents and i values with i − 1 exponents, and
to forward it to the successive node. At the end Ut−1 receives a set of
t values, the first one, that is the cardinal value, has the form ga0a1...at−2 .
Therefore the last node is the first one able to compute the shared key, simply
exponentiating the received cardinal value to its own exponent. After that, it
will process all the remaining t−1 values, adding to each one of them its own
exponent, and finally broadcasts this batch of values to the other nodes. The
remaining group members will be able to compute the shared key, selecting
the appropriate value and exponentiating it to their own exponent. As a
running example, let’s consider a 4 nodes BAN, U = {U0, U1, U2, U3}:

1. Node 0 begins the key exchange by sending to node 1 its own public
value: {ga0}

2. Node 1 sends to node 2: {ga0a1 , ga0 , ga1}

3. Node 2 sends to node 3: {ga0a1a2 , ga0a1 , ga0a2 , ga1a2}

4. Node 3 will compute the shared key using the cardinal value: ga0a1a2

and then it computes and broadcasts {ga0a1a3 , ga0a2a3 , ga1a2a3}

5. Each node will compute the shared key from the appropriate interme-
diate value

An interesting characteristic of this protocol is the minimal number of
messages exchanged between the nodes, indeed only t messages are sent. It is
easy to see that at least t messages are required in any group key agreement
protocol, i.e. each partecipant has to contribute to the key exchange with
at least one message. Moreover in this protocols, unlike to what we have
seen in the previous ones, there are neither simultaneous broadcasts nor
simultaneous unicasts. A distinguishing characteristic of this protocol with
respect to the previous ones, that can be considered a drawback, is that the
message size is not constant but grows linearly; indeed each node adds a new
value to the ones it has received.
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2.3.4 Antonini-Barenghi-Pelosi Multi-party Key Agreement
(MKA)

Algorithm 2.3.5: Multi-party Key Agreement (MKA)
Globals: (G, ·) = 〈g〉, finite cyclic group with order n = |g|
Input: U : {U0, U1, . . . , Ut−1} set of protocol partecipants
Output: Shared secret: k = g

∏t−1
i=0 ai

begin
ai

random←− Zn \ {0, 1}
kUi = g
for r = 0 to t− 2 do

kUi,r = (kUi)
ai

Broadcast kUi,r

tmp =
∏

Uj 6=Ui

kUj

kUi = (tmp · (kUi)
−r)

1
r+1

k = kaiUi

return k

The MKA algorithm [1] has been specifically designed for the case of
BAN networks. This protocol is another example of true generalization
of the Diffie-Hellman key exchange, indeed each partecipant will select a
private ephemeral key ai and, after the protocol execution, will compute
the key g

∏t−1
i=0 ai . The first step of the protocol, as shown in Algorithm

2.3.4, consists in the selection by each partecipant of a private ephemeral
key ai ∈ {2, . . . , n − 1} and initialization of the local shared secret kUi to
the group generator g. After that the protocol repeats the same steps for
t− 1 rounds. During each round, every partecipant broadcasts the result of
the exponentiation kUi

ai and then waits for the t− 1 values computed in the
same way by the other nodes. All the received values are accumulated in a
temporary variable. The last operation performed in each round updates the
value of the local shared secret kUi , to both combine the secret exponents
of the other parties and remove the dependence from the local secret ai. At
the end of the loop the value of the shared common secret for the i − th
partecipant will be equal to: ga0a1...ai−1ai+1...at−1 , therefore the shared key
can be computed simply adding the i-th ephemeral key ai, computing kUi

ai .
Theorem 2.3.1 formalizes the correctness of the algorithm.
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Theorem 2.3.1. (Algorithm Correctness) Given a finite cyclic group
(G, ·) with generator g ∈ G and order n = |g|, each partecipant Ui in a set
U = {U0, U1, . . . , Ut−1} runs Algorithm 2.3.4 to compute a shared ephemeral
secret k = g

∏t−1
i=0 ai , where each ai ∈ {2, . . . , n − 1} denotes the ephemeral

secret of the i-th partecipant.

In order to tackle to demonstrate the security provided by this algorithm,
the authors introduce a definition of Computational Multi-party Key Agree-
ment Problem, which basically is a generalization of the Computational Diffie
Hellman Problem defined in 2.1.

Definition 2.4 (CMKAP). Let (G, ·) be a finite cyclic group of generator
g ∈ G and order n = |g|. Given an integer t ≥ 2 and a set of values
ai ∈ {2, . . . , n − 1}, 0 ≤ i ≤ t − 1, the Computational Multi-party Key
Agreement is defined as the one of computing k = g

∏
ai given all the values

kUi,r by Algorithm 2.3.4 for all 0 ≤ r ≤ t− 1.

The security of the protocol is then verified by the following theorem,
that states the equivalence between the CDHP and the CMKAP.

Theorem 2.3.2. Turing Equivalence of CDHP and CMKAP Solving
the CMKAP problem for t ≥ 2 participants is polynomially equivalent to
computing the solution of the Computational Diffie-Hellman problem on the
same finite cyclic group.

The demonstration of Theorem 2.3.2 and Theorem 2.3.1 is provided in
Appendix A.
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Table 2.1: Protocol Comparison. n indicates the number of protocol parte-
cipants.

BD1 BD2 GDH2 MKA

round 2 2(n− 1) n n− 1

tot. messages 2n 3(n− 1) n n(n− 1)

sent messages 2 1 1 n− 1
per Ui 2n− 1 for U0

rec messages n+ 1 2 2 (n− 1)2

per Ui n− 1 for U0 1 for U1 and Un

exponentiations n+ 1 2 i+ 1 3n− 2
per Ui 2(n− 1) for U0

exponentiations n(n+ 1) 4n− 2 (n+3)n
2 − 1 n(3n− 2)

symmetry Y N N Y

2.4 Protocol Comparison

In order to compare the key exchange algorithms, we now introduce a
set of metrics which are relevant to the evaluation:

Rounds: The number of rounds is important in order to evaluate the time
complexity of the protocol.

Total messages: The number of messages exchanged is a relevant charac-
teristic, especially in network with a limited bandwith like KNX.

Messages sent and received The number of messages sent and received
by a node is important in relation with the limitation of the underlying
network technology.

Exponentiations: Exponentiations are by far the most expensive algebric
operations, therefore it’s important to minimize them.

Symmetry: Symmetry, i.e. all the nodes performing the same operations,
is another desirable property that can simplify the deployment of a
protocol.
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Table 2.1 summarizes the scores of the discussed protocols with respect to
the above metrics. Considering the number of rounds, BD1 comes out as the
clear winnder from the point of view of protocol efficiency. Unfortunately, as
we have previously pointed out, its efficiency is based on the assumption of
being able to perform n simultaneous broadcasts. If we drop this hypothesis
(which is reasonable in practical applications), the protocol doesn’t compare
with the others as favorably as before. The time complexity may be signif-
icantly influenced by the number of exponentiations, which is the heaviest
arithmetic operation. As it is possible to see all the algorithms seem to have
a similar number of exponentiations, one may argue that BD2 and GDH2
are better than the others, but in these algorithm the computational load is
not fairly balanced, a characteristic that may result in loss of performance.
Finally, considering the number of messages, GDH2 appears to be the best
protocol (i.e. the one producing the lowest number of messages). It is im-
portant to remark that in this algorithm the dimension of a message is not
constant, but grows during the execution of the key exchange, because the
number of group elements exchanged increases linearly.
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Chapter 3

Adoption of ECC in Key
Agreement Protocols

A critical aspect highlighted in the previous chapters is that BAS are
characterized by very tight computational constraints, therefore the pro-
posed security measures, including the key agreement schemes, should be
implemented in an efficient way. Considering the state of the art of cryp-
tographic technologies, Ellicptic Curve Cryptography (ECC) [8] is the best
solution in terms of both security margin and efficiency. In the first part of
this chapter we will analyse elliptic curve arithmetic, giving an introductory
explanation of the underlying theory, while in the second part we will see
how the key agreement protocols are defined using ECC.

3.1 Elliptic Curve Cryptography

ECC was introduced in 1985 by Victor Miller and Neal Koblitz, but it
was only around the late 1990’s that elliptic curve systems started being
employed widely on a commercial scale, due to the introduction of standard-
ized elliptic curve protocols. The security of elliptic curve cryptosystems is
based on the discrete logarithm problem (ECDLP) in a finite cyclic group
composed by the points of an elliptic curve. An important characteristic is
that the ECDLP has fully exponential computational complexity, provided
that a proper choice of the curve parameters and base fields are made, in
turn means that, given a certain security margin ECC requires significantly
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smaller key size with respect to other public key cryptosystems, such as
RSA or discrete logarithm defined over Fpm . The limited key size is benefi-
cial for both the computational load and the storage space required by ECC
algorithms, making this solution ideal for embedded systems.

3.1.1 Elliptic Curves

Figure 3.1: Elliptic curves over R

Definition 3.1. An elliptic curve E over a field K is defined by an equation:

E(K) = {(x, y) ∈ K2 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ K}

where the curve has to be non-singular, i.e. every point of the curve should
have a unique tangent line.

The definition is given for a generic field K, indeed in figure 3.1 we have
the example of two elliptic curves defined over the field of real numbers R.
However, for cryptographic purposes, only elliptic curves over finite fields
F2m and Fpm are considered. The above equation, also called Weierstrass
equation, can be simplified using an admissible change of variables:
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• if K = Fpm , the reduction is performed using the change of variables:

(x, y)→
(
x− 3a1

2 − 12a2
36

,
y − 3a1x

216
− a1

3 + 4a1a2 − 12a3
24

)
transforming the curve equation into:

E(Fpm) : y2 = x3 + ax+ b a, b ∈ Fpm , p > 3

The non-singularity constraint can be imposed as:

∆ = 4a3 + 27b2 6= 0

• if K = F2m and a1 6= 0, the reduction is performed using the change of
variables:

(x, y)→
(
a1

2x+
a3
a1
, a1

3y +
a1

2a4 + a3
2

a13

)
transforming the curve equation into:

E(F2m) : y2 + xy = x3 + ax2 + b a, b ∈ F2m

Such a curve is called non-supersingular and the non-singularity con-
straint can be imposed as:

∆ = b 6= 0

3.1.2 Group Law

In order to define a cryptosystem based on the ECDLP, the set of points
of the elliptic curve should form a proper algebraic structure (i.e. a cyclic
group). The simplest structure that satisfies the group properties is defined
as (G,+), where G is a set of curve points and the internal composition law,
i.e. the + operation, is the so called chord and tangent rule. Together with
this addition operation, the set of points E(K) forms an additive abelian
group.
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Figure 3.2: Geometric addition and doubling of elliptic curve points

Definition 3.2 (Chord and Tangent Rule). Let P,Q ∈ E(K) be two points
and r = PQ be the straight line passing through P and Q (or the tangent
line if P = Q). Denote with R the third point intercepted by the straight line
r = PQ (elliptic curves can be expressed as y2 = f(x), therefore being f(x)

a 3rd degree polynomial it will always intercept a straight line in at most 3
points). Denote with r′ = RO the vertical line passing through R (and O,
which is the only point on the line at infinity that satisfies the projective
form of the Weierstrass equation). The sum of the two points P and Q,
denoted as S = P +Q, is defined to be the third point intercepted by r′ over
E(K).

Figure 3.2 shows an example of the geometric interpretation of the com-
position law on the elliptic curve E(R) : y2 = x3−x. The generic formulae to
apply the composition law on curves defined over Fpm and F2m are provided
in Appendix B.
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It is easy to show that the group properties are satisfied by the algebraic
structure composed by the points of a generic elliptic curve E(K) and the
chord and tangent rule:

1. Associativity. ∀P,Q,R ∈ E(K), P + (Q+R) = (P +Q) +R

2. Identity. ∀P ∈ E(K), P +O = O + P = P

3. Inverse. ∀P ∈ E(K), ∃!Q = (−P ) ∈ E(K) : P +Q = O

4. Commutativity. ∀P,Q ∈ E(K), P +Q = Q+ P

3.1.3 Group Order and Structure

After having defined a proper composition law and verified that it satisfies
the group properties, there are two important open problems: the computa-
tion of the number of points of the curve, i.e. the order of the group, and the
conditions under which this group is cyclic, i.e. the structure of the group.

There is an interesting result about the order of an elliptic curve group,
the Hasse theorem:

Theorem 3.1.1 (Hasse Theorem). The number of points of an elliptic curve
E(Fq) lies between:

q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q

The exact number of points can be computed in polynomial time via
either the Schoof’s algorithm or the Schoof-Elkis-Atkin algorithm.

The structure of the group of points E(Fq) is described by theorem 3.1.2.
We use Zn to denote a cyclic group of order n.

Theorem 3.1.2. Let E be an elliptic curve defined over Fq. Then E(Fq) is
isomorphic to Zn1 ⊕ Zn2 where n1 and n2 are uniquely determined positive
integers such that n2 divides both n1 and q − 1

A corollary of this theorem provides a sufficient condition for an elliptic
curve set of points to be a cyclic group.

Corollary 3.1.3. If #E(Fq) can be factorized in the product of distinct
primes, then the group G = (E(Fq),+) is cyclic
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3.1.4 Elliptic Curve Discrete Logarithm Problem

The hardness of the elliptic curve discrete logarithm problem is the cor-
nerstone upon which the security of ECC is based.

Definition 3.3. Given an elliptic curve E defined over a field Fq, a point
P ∈ E(Fq) of order n, and a point Q ∈ 〈P 〉, the Elliptic Curve Discrete
Logarithm Problem (ECDLP) requires to find an integer k ∈ [0, n− 1] such
that

Q = [k]P = P + P + . . .+ P︸ ︷︷ ︸
k−times

The integer k is called the discrete logarithm of Q.

Since the security of all EC cryptoschemes is based on this problem, it is
important to properly choose the parameters of the elliptic curve in use, to
avoid all the possible attacks. The most trivial way to solve the ECDLP is to
perform a sort of brute force attack, computing all the multiples of the base
point P , until Q is found. In the worst case n point multiplications will be
required, while on average only n/2 operations should be performed; there-
fore to circumvent this attack it is sufficient to pick a sufficiently large n. In
general n ≥ 280 represents a good threshold to guarantee the unfeasability
of this attack. However, the best attack strategies against the ECDLP are
two other methods to compute discrete logarithms: the Pohlig-Hellman al-
gorithm and Pollard’s rho algorithm. This approach has a fully exponential
time complexity of O(

√
p), where p is the largest prime divisor of the elliptic

curve group of order n. To circumvent this attack it is necessary to select a
value of n that is divisible by a sufficiently large prime number p. In practice,
only curves with nearly prime cardinality are considered, in particular those
curves where: #E(Fq) = cp, p > 2160. The idea is to employ the subgroup
of prime order p (the existence of which is guaranteed by the inverse of La-
grange’s theorem for finite abelian groups), which is surely cyclic (because
of the prime order) and robust against the aforementioned attacks (provided
that p is sufficiently large).
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Table 3.1: Comparable strenghts as reported by NIST SP 800-57

Bits of Symmetric FFC IFC ECCsecurity key
[bit] algorithms [bit] [bit] [bit]

80 2TDEA L = 1024
k = 1024 f = 160− 223

N = 160

112 3TDEA L = 2048
k = 2048 f = 224− 255

N = 224

128 AES-128 L = 3072
k = 3072 f = 256− 383

N = 256

192 AES-192 L = 7680
k = 7680 f = 384− 511

N = 384

256 AES-256 L = 15360
k = 15360 f = 512+

N = 512

3.1.5 Level of security

To conclude this overview of ECC we provide a brief analysis of the
level of security guaranteed with respect to other cryptographic technologies,
both symmetric and asymmetric. Two algorithms, having key sizes X and
Y , provide the same level of security if the computational effort needed to
break them or retrieve the keys is approximately the same. It is common to
express the security margin of an algorithm for a given key size in terms of the
amount of work it takes to try all keys for a symmetric algorithm that has no
short cut attacks 1. An algorithm that has a Y bit key, but whose strength is
comparable to an X bit key of such a symmetric algorithm is said to provide
a "security strength of X bits". Table 3.1 provides comparable security
strenghts according to the National Institute of Standard and Technology
(NIST) [17].

• Column 1 indicates the number of bits of security provided by the
algorithm and key sizes of a particular row;

1i.e. the most efficient attack is to try all possible keys
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• Column 2 indicates the symmetric key algorithm that has been con-
sidered as a reference for a certain security level;

• Column 3 indicates the minimum parameters for asymmetric algo-
rithms based on Finite Field Cryptography (FFC) (e.g. DSA, DH).
L is the size of the public key, while N is the size of the public key;

• Column 4 indicates the minimum parameters for asymmetric algo-
rithms based on Integer Factorization Cryptography (IFC), where the
most relevant example is surely the RSA algorithm. The value of k,
that is commonly considered the key size, corresponds to the bit size
of RSA field modulus;

• Column 5 indicates the range of f , the bit size of the order of 〈g〉, the
subgroup generated by g to be used in the ECC based algorithms.

The data reported in the table reflect the great advantage provided by
ECC: the reduced key size with respect to other asymmetric key algorithms
necessary to achieve a certain security margin. This characteristic results in
more efficient implementations, making ECC a worthy choice when dealing
with low power embedded devices.
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3.2 Key Agreement Protocols in ECC

This section is dedicated to a general revision of the key agreement proto-
cols covered previously, considering them as realized using ECC. The main
difference is a substantial change of notation: instead of using the classic
multiplicative notation, we adapt the algorithms to the additive notation
typically employed when dealing with elliptic curves.

3.2.1 Elliptic Curve Diffie-Hellman

The Elliptic Curve Diffie-Hellman (ECDH) is the implementation of the
Diffie-Hellman key exchange using ECC. In this version of the algorithm
the two parties have to agree on an elliptic curve, generate public-private
key pairs performing the usual exchange to estalish a shared secret over an
insecure channel.

Algorithm 3.2.1: Elliptic Curve Diffie-Hellman Key Exchange
Globals: (G,+) = 〈P 〉, G ⊆ E(Fq), n = |G|
Output: Shared secret: k = [a0 · a1]P
begin

Private ephemeral key: ai
random←− Zn \ {0, 1}

Public ephemeral key: kpub,i = [ai]P
Send kpub,i to the other peer
Receive kpub,j
k = [ai]kpub,j = [a0 · a1]P
return k
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3.2.2 Elliptic Curve Burmester-Desmedt

Algorithm 3.2.2: Elliptic Curve BD1
Globals: (G,+) = 〈P 〉, G ⊆ E(Fq), n = |G|
Input: U : {U0, . . . , Ut−1} ordered set of protocol partecipants
Output: Shared secret: k = [a0 · a1 + a1 · a2 + . . .+ at−1 · a0]P
begin

ai
random←− Zn \ {0, 1}

zi = [ai]P
Broadcast zi
Receive zi−1 and zi+1

Xi = [ai](zi+1 − zi−1)
Broadcast Xi

for Uj ∈ U |Uj 6= Ui do
receive Xj

k = [t · ai]zi−1 + [t− 1]Xi + [t− 2]Xi+1 + . . .+Xi−2
return k

Algorithm 3.2.2 presents the first Burmester-Desmedt key exchange up-
dated to additive notation. Note how multiplications between group elements
become additions. As expected the division operation between zi+1 and zi−1
becomes a subtraction, i.e. an addition of the inverse of the point, computed
summing zi+1 to the inverse of zi−1.

Algorithm 3.2.3: Elliptic Curve BD2
Globals: (G,+) = 〈P 〉, G ⊆ E(Fq), n = |G|
Input: U : {U0, U1, . . . , Ut−1} set of protocol partecipants
Output: Shared secret: k
begin

k
random←− G, U0 selects the key

ai
random←− Zn \ {0, 1}

zi = [ai]P
Ui sends zi to U0, U0 broadcasts z0
U0 computes k0i = [a0]zi, Ui computes k0i = [ai]z0
for i = 1 to t− 1 do

Xi = k + k0i
Send Xi to Ui

k = Xi + (−k0i)
return k

Algorithm 3.2.3 shows instead the adaptation of the second Burmester-
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Desmedt protocol to elliptic curves.

3.2.3 Elliptic Curve GDH and MKA

Algorithm 3.2.4: Elliptic Curve Multiparty Key Agreement (MKA)
Globals: (G,+) = 〈P 〉, G ⊆ E(Fq), n = |G|
Input: U : {U0, U1, . . . , Ut−1} set of protocol partecipants
Output: Shared secret: k =

[∏t−1
i=0 ai

]
P

begin
ai

random←− Zn \ {0, 1}
kUi = P
for r = 0 to t− 2 do

kUi,r = [ai]kUi

Broadcast kUi,r

tmp =
∑
Uj 6=Ui

kUj

kUi =
[

1
r+1

]
(tmp+ [−r]kUi)

k = [ai]kUi

return k

The adaptation of the Generalized Diffie-Hellman algorithm to elliptic
curves is really effortless: each partecipant, instead of computing a sequence
of exponentiations on the received group elements, performs scalar point
multiplication (i.e. repeated addition). The new version of the Multiparty
Key Agreement Protocols is shown in Algorithm 3.2.4. It is interesting to
note that the Diffie-Hellman key, that is computed by both these protocols,
is now expressed as:

k =

[
t−1∏
i=0

ai

]
P
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Chapter 4

Experimental Results

This chapter contains the experimental results and the implementation
details of this work and it is logically divided into two parts. In the first
part we present our experimental setup, discussing both the platform chosen
for our evaluation and the implementation details, including for example the
cryptographic library that has been used. Successively, in the second part,
we show and discuss the results of this work.

4.1 Experimental Setup and Implementation

This section is dedicated to a general description of how the protocols
have been implemented and tested. First of all we provide the technical
details of the hardware platform that have been used. We move on discussing
how the algorithms have been implemented, the cryptographic library used
and the employed elliptic curve standards. Finally we briefly talk about how
the metrics of interest have been measured.

4.1.1 Hardware Platform

The platform selected for the implementation of the key agreement algo-
rithms is an evaluation board produced by STMicroelectronics, precisely the
STM32F407VGT6 Discovery microcontroller. The board mounts an ARM
Cortex-M4 32 bit processor and is equipped with 1 MB of flash memory
and 192 KB of RAM. The power supply is provided through USB bus and
the memory is written using the onboard ST-LINK/V2 interface, an in-
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Figure 4.1: STM32F4 Discovery

circuit debugger and programmer provided directly by STMicroelectronics
for different families of microcontrollers. The board features a wide range of
peripherals such as: general purpose timers, multiple UART 1 transceivers,
motion sensors, audio sensors, cryptographic core and general purpose IO
pins. The Cortex-M4 belongs to the Cortex-M family, a group of 32 bit
RISC processors specifically designed by ARM for embedded applications,
supporting both Thumb and Thumb 2 instruction sets. The core’s working
frequency can be set up to 168 MHz. The choice of this particular platform
is based mainly on two reasons. First of all in order to be able to perform
a realistic simulation of the algorithms under exam, it is important to test
them on a platform similar to those usually deployed on the field. According
to this requirement we have chosen the STM32F4 Discovery board which
is suited to simulate the computational constraints found in BAS. Another
non negligible aspect to consider is the assessment of our work: from this
perspective it is desirable to adopt a workbench that is widely employed
and accepted by the research community. The STM32F4 evaluation board
satisfies this requirement, allowing interested readers to reproduce the same
results presented here.

1Universal Asynchronous Receiver Transmitter
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Table 4.1: Comparison between the performances of the PolarSSL imple-
mentation of NIST curves and Brainpool curves, considering the number of
handshake per second performed with ECDH https://polarssl.org/kb/
cryptography/elliptic-curve-performance-nist-vs-brainpool

Elliptic Curve Number of Op.
[handshake/sec]

P-521 15
P-384 20
P-256 41
P-224 63
P-192 85

BP-512 2
BP-384 4
BP-256 8

4.1.2 Cryptographic Library

The algorithms have been implemented using the PolarSSL library, ver-
sion 1.3.7 [3]. This library, which is entirely written in C, provides all the
tools for an SSL/TLS implementation as a series of loosely coupled mod-
ules. Unlike other implementation of SSL/TLS, such as OpenSSL, PolarSSL
is designed to fit on small embedded devices, which makes it ideal for our
application. It is also highly modular: each component can be used sepa-
rately from the rest of the framework, thus limiting the code size. The most
important module provided by PolarSSL is the ecp module, which basically
offers all the functions to implement ECC. PolarSSL supports only curves
defined over prime fields (i.e. defined over Fp) from different standards, in
particular:

• Five NIST standard curves: P-192, P-224, P-256, P-384 and P-521 [16]

• Three Brainpool curves: BP-256, BP-384, BP-512 [13]

• The special curve 25519 [4]

• Three Koblitz curves: KP-192, KP-224, KP-256

All the test have been carried out using the standard NIST curve P-256,
which offers a good balance between efficiency and security margin. Indeed
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Table 4.2: Memory size of the TLS ECPoint record for PolarSSL’s EC. The
special curve 25519 is not reported here because it is not a standard one.

Elliptic Point Dimension
Curve [byte]

P-192 50
P-224 58
P-256 66
P-384 98
P-521 132.25

BP-256 66
BP-384 98
BP-512 130

KP-192 50
KP-224 58
KP-296 76

Brainpool curves, although accepted as a standard, are significantly slower,
because the prime moduli of the underlying field are chosen randomly to
guarantee extra security, while NIST curves employ particular prime mod-
uli to accelerate computations. The result of this design choice is visible
in Table 4.1, provided directly by PolarSSL’s authors, that shows the num-
ber of handshake per second of ECDH performed by the different curves.
The special curve 25519, which was designed to provide the same security
guarantees of Brainpool curves with an higher level of efficiency, has been
discarded because at the moment is not part of any standard (this is why it
is called "special"). The points of these curves are the objects effectively ex-
changed during key agreement algorithms, therefore, in order to to facilitate
their transmission, the library offers the possibility to export these points
in a standard data structure, that is the TLS ECPoint record (defined in
RFC 4492). Table 4.2 shows the memory sizes of the exported points for
the various elliptic curves supported by PolarSSL. Since we have decided to
employ a standard NIST curve, the interested reader will find the details
about these curves in Appendix B.
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4.1.3 Experimental Setup

We have already remarked that KNX, which was described in Chap-
ter 1, has been chosen as the reference protocol for our analysis, indeed its
tight bandwidth is well suited to verify the feasability of the key agreement
schemes. The various layers of the protocol have been implemented with
an ad-hoc library, that provides the functions to perform packets encapsula-
tion and decapsulation. The data are physically transmitted exploiting the
UART interfaces provided by the microcontroller. These peripherals perform
serial transmission of data, allowing to configure data format and transmis-
sion speed. During our experiments the transmission speed has been set to
19200 bit/s, that is the maximum transmission speed offered by the KNX
protocol.

The main interest of our experiments is to measure the efficiency of the
key agreement protocols, that is their running time, in order to evaluate the
feasability of their implementation in BAS. Unfortunately it is not possible
to measure the running time of our tests through conventional methods,
because the evaluation board is a bare metal environment, i.e. without
operating system. Therefore the measurements have been carried out using
a digital oscilloscope to monitor specific output pins of the microcontroller.
The idea is to associate to each portion of code of interest a certain output
pin. Before executing the target code the corresponding pin is set up and
at the end it is set down, using the oscilloscope to measure the elapsed time
interval.

4.2 Performances

Table 4.3 reports the measurements concerning the running time of the
algorithms. For each key agreement scheme we have implemented a test
that performs a key exchange between two different microcontrollers, mea-
suring the execution time on one of the two boards as explained before.
The only exception is the Generalized Diffie-Hellman, where the formulation
of the protocol prevents its realization with only two parties, forcing us to
implement the key exchange with three parties, using one board to contem-
porarily simulate two nodes. During these experiments we have measured
multiple things: the total running time of the algorithms, the running time
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Table 4.3: Performance measures for all the key agreement protocols. The
times reported in the table are expressed in seconds.

Freq. Metric BD1 BD2 MKA GDH2
[MHz] 1 2 1-2 3

16 Total time 39.82 61.5 82 78.93 211 159
Group Op.s 39.82 61.5 39.03 78.64 131.64 79

64 Total time 13.96 12.2 19.15 15.6 41.33 31.74
Group Op.s 13.84 12.043 13.715 15.514 25.643 15.38

168 Total time 5.32 4.716 7.344 5.963 17.26 12.76
Group Op.s 5.288 4.588 5.233 5.906 11.127 5.86

of each scalar point multiplication (i.e. the most time consuming arithmetic
operation), time necessary to perform packet encapsulation and transmis-
sion, and packet decapsulation. We have performed each measurement with
multiple clock frequencies, in order to verify if the algorithms can be scaled
down to less powerful devices. The two columns corresponding to the second
Burmester-Desmedt key exchange and the Generalized Diffie Hellman have
been split because these protocols are asymmetric, therefore different nodes
perform substantially different operations, thus requiring separate monitor-
ing. One may note that we have only reported the total running time and
the time spent performing group operations (that is the sum of all scalar
point multiplications), the reason is that the encapsulation and transmission
time and the delay for packets decapsulation were invariant with respect to
all tested clock frequencies. This is reasonable since the transmission speed
was kept constant at 19200 bit/s during all the tests and the delays due to
packet encapsulation or decapsulation are negligible. In particular the time
spent to encapsulate and transmit a packet of data (we recall that a standard
KNX frame is 23 bytes long with 15 bytes of payload) is around 15 ms, thus
completely dominated by the time spent computing arithmetic operations,
which are the real bottleneck of the algorithms.

For the sake of completeness we have also compared the key exchange
algorithms with a symmetric block cipher, specifically AES-128. Our mi-
crocontroller, like many others available on the market, features a hardware
implementation of AES, which is able to compute the encryption of a single
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block (128 bit) in 14 cycles of the internal bus. As it is reasonable to expect
the key exchange algorithms are orders of magnitudes slower than a block
cipher, indeed the transmission of a KNX packet encrypted using AES is per-
formed in 16 ms. Considering that the encapsulation and transmission time
of a packet is around 15 ms, the delay due AES encryption is substantially
negligible.

Observing the reported data it is possible to make some interesting con-
siderations. The first algorithm proposed by Burmester and Desmedt is the
most efficient, especially when the clock frequency is very low. Nonetheless
both the second algorithm proposed by the same authors and the MKA pro-
vide similar performances at higher clock frequencies, while the Generalized
Diffie-Hellman appears to be the less efficient protocol, even considering that
the key exchange is performed on three nodes instead of only two. It is pos-
sible to note that, when the clock frequency is reduced from 168 MHz to 64
MHz, the running times scale correctly with a factor of 2.625. Instead, when
the clock frequency is scaled down to 16 MHz, the measured values scale
with a factor of 5, while one would expect a factor of 4 (since the processor
speed has been divided by 4). The motivation lies in the fact that the access
to the flash memory is regulated by the number of wait states, which should
be set according to CPU clock frequency. The higher the clock frequency is,
the higher the number of wait states should be, otherwise the program will
not be able to cope with the requests in time. In our tests the number of wait
states has been fixed to 5, a value that is reasonable if the clock frequency
is set at 150 MHz or more. At lower clock frequencies, this has a more sig-
nificant impact on the execution times, thus causing the observed skew in
timings. As it can be seen, the slowdown is the same for all the algorithms,
thus effectively pointing to the aforementioned architectural issue to be the
cause of our problems.

In conclusion our performance analysis suggests that the algorithms pro-
posed by Burmester-Desmedt and the multi-party Key Agreement of Antonini-
Barenghi-Pelosi are more efficient than the solution proposed by Steiner, with
the BD1 appearing as the clear winner. In our opinion also the MKA al-
gorithm should be considered as a valid option, because, contrarily to what
happens with BD1, it doesn’t require any preconditions. We recall that,
as explained in detail in Chapter 2, the BD1 protocol requires the parteci-
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Table 4.4: Code sizes of the tests. The table reports the sizes of the various
sections of the ELF executable of each test, in particular: code segment
(.text), initialized data segment (.data), uninitialized data segment (.bss)

Test .text .data .bss Total
[byte] [byte] [byte] [byte]

BD1 44388 36 33064 77488
BD2 node 44284 36 33064 77384
BD2 root 44372 36 33064 77472
GDH2 1-2 44644 36 33064 77744
GDH2 3 44340 36 33064 77440
MKA 44516 36 33064 77616

pating nodes to be numbered. The BD2 algorithm instead should not be
considered as an ideal solution for multiple reasons. First of all, although
its performance measures are not bad at all, the unbalanced distribution of
the computational load may become a huge problem with an higher number
of nodes. Secondly the instrinsic asymmetry of the algorithm may intro-
duce other issues in phase of deployment. Finally, the solution proposed by
Steiner, as we have already said, is not particularly appealing. Indeed it is
an asymmetric protocol and it is not efficient. A good characteristic of this
algorithm is the low number of messages (and so of packets) exchanged by
the nodes, but it is of little interest considering that the real bottleneck of the
system are the arithmetic operations. In general we argue that, employing
one of these algorithm, it is possible to implement a transparent multi-party
key exchange procedure. This critical operation can be performed in back-
ground, when the network is less loaded (e.g. during night time) or at fixed
intervals, depending on the desired degree of security.

4.2.1 Code size

Code size is another critical metric in embedded environments, because
today’s CPUs should fit in increasingly smaller packages in order to reduce
chip area and consequently the overall cost. We have measured code size
considering the ELF executable file of each test. Table 4.4 provides the
resulting sizes, detailing the dimension of the different sections of the exe-
cutable. The tests have been compiled to the Thumb instruction set, using
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a cross compilation toolchain provided and maintained directly by ARM. It
is possible to see that the code sizes of the algorithms are very similar one
to the other, therefore it is not possible to rank them with respect to this
metric. Furthermore the memory occupation is sufficiently low, indeed we
recall that the microcontroller used as benchmark platform features only 192
KB of RAM and 1 MB of flash memory. Therefore the memory occupancy
is below 40%, and thus it is adequate to implement these algorithms in the
restrained environments of low power embedded devices.
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Chapter 5

Conclusion

This work has proposed a comprehensive study of the most important
multiparty key exchange algorithms in the context of BAS. We have proposed
a security analysis that highlighted how the most widespread BAS protocols
are vulnerable to different kinds of attacks, due to the lack of security mech-
anisms in their design. This study should be considered complementary to
the work published by Antonini, Barenghi and Pelosi [1], in which the au-
thors propose a secure protocol for BAS. The central idea of this protocol
is to employ a multiparty key exchange algorithm, that is a generalization
of the famous Diffie-Hellman key exchange, to establish a shared secret key
that is subsequently used to implement certain security desiderata. To this
end the authors propose a multiparty key exchange algorithm of their own
invention. The main limitation of their work is that they don’t consider
pre-existing solutions and they don’t provide an experimental evaluation of
the proposed algorithm. In our study we have tried to complete their work,
providing a comparison of the most important key exchange algorithms pro-
posed in the literature and an experimental evaluation of their efficiency.
The implementation of the tested algorithms have been adapted to the par-
ticular environment of BAS, characterized by low power embedded devices
with significant constraints in terms of memory and computational capacity.

The main limitation of this thesis, in our opinion, resides in the ex-
perimental part. Indeed this could be enhanced, testing the algorithms on
different platforms and on a more realistic setting. A possible future de-
velopment could be that of testing the key exchange procedures on a real



Conclusion

network, implementing also the protocol proposed in [1], thus verifying the
feasability of the complete solution.
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Appendix A

Theorem Demonstrations

A.1 Proof of Theorem 2.3.1

Let A = {a0, a1, . . . , at−1} be the set of private keys chosen by the t ≥ 2

protocol partecipants in the set U . Denote as Az,r+1, with 0 ≤ r ≤ t− 2,
z ∈

{
1, . . . ,

(
t

r+1

)}
, the generic element of the power-set 2A composed by r

elements of A and denote as µz,r+1 =
(∏

a∈Az,r+1
a
)
the monomial obtained

by the product of the values included in Az,r+1. A monomial that includes
ai as factor is denoted as µz,r+1

(i), while one that does not contain ai is
denoted as µz,r+1

(\i). The whole algorithm can be described as a set of
recursive equations involving the value kUi and the number of iterations
r ∈ {0, . . . , t− 2}:

kUi,−1 = g r = −1

kUi,0 = g
∑

z µz,1 , for all z = 1, . . . , t s.t. µz,1 6= µz,1
(i) r = 0

kUi,r =
(
gr

∑
z µz,r+1

(i)+(r+1)
∑

z µz,r+1
(\i) · (kUi,r−1)

−air
) 1

r+1
r > 0

It can be easily verified that the last instruction in the body of Algorithm
2.3.1 computes the same value of the above relation (for r ≥ 0), that is:

kUi,r = g
∑

z µz,r+1
(i)

for all z = 1, . . . ,

(
t

r + 1

)
s.t. µz,r+1 6= µz,r+1

(i)

Therefore at the end of the last iteration the exponent of the generator g
comes down to a single monomial µz,t−1 = (a0 · . . . · ai−1 · ai+1 · . . . · at−1).
The algorithm returns the desired shared key raising this monomial to the
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power of the missing ephemeral key ai.

�

A.2 Proof of Theorem 2.3.2

First of all we will show that CDHP ≤ CMKAP. Let OCMKAP (G, g,L, t)
be an oracle able to solve the CMKAP on (G, ·) = 〈g〉, with t parties, taking
L as the input list of intermediate values kUi,r. It is possible to solve the
CDHP invoking the oracle in the following way: OCMKAP (G, g, (ga0 , ga1), 2).
The oracle will compute ga0a1 because ga0 and ga1 correspond to kU0,0 and
kU1,0 computed by the MKA with two partecipants. This proof by it-
self would be sufficient to guarantee the security of MKA against a pas-
sive adversary, since the hypothetical existence of a method to solve ef-
ficiently the CMKAP would imply the possibility to solve efficiently the
CDHP, resulting in a violation of the intractability of CDHP. Nonetheless
the proof can be extended proving the complete equivalence of the the
two problems, that is proving CMKAP ≤ CDHP. Similarly to what we
have done before let’s assume to have an oracle able to solve the CDHP:
OCDHP (G, g, gx, gy). Consider the values kUi,0 (i.e. the values broadcasted
by the partecipants in the first round of the algorithm), they are all of the
type gai . Now let’s call k01 the value containing the ephemeral key corre-
sponding to nodes 0 and 1, that is k01 = ga0a1 . This value can be computed
as: k01 = OCDHP (G, g, kU0,0, kU1,0). We can iterate the procedure to com-
pute k012 = ga0a1a2 , by doing: k012 = OCDHP (G, g, k01, kU2,0). It is clear
that iterating this procedure t−1 times we recover the complete key g

∏t−1
j=0 ai ,

thus solving the CMKAP.

�

50



Appendix B

Appendix on ECC

B.1 Composition Law and Point Representation

Table B.1: Composition law for elliptic curves defined over a generic finite
field with characteristic greater than 3: E(Fpm) : y2 = x3 + ax+ b, p > 3

P1 + P2

x3 = y1−y2
x1−x2

2 − x1 − x2

y3 = y1−y2
x1−x2 (x1 − x3)− y1

[2]P1

x3 =
(
3x12+a
2y1

)2
− 2x1

y3 =
(
3x12+a
2y1

)
(x1 − x3)− y1

−P1 (x1,−y1)

Considering elliptic curves defined over Fpm , p > 3 Table B.1 reports
the explicit formulas to apply the composition law (chord & tangent rule).
In particular, given the points P1 = (x1, y1) and P2 = (x2, y2), we have:

• Point addition: P1 + P2 = (x3, y3)

• Point doubling: [2]P1 = (x3, y3)

• Point inversion

On the other hand Table B.2 reports the same formulas for elliptic curves
defined over binary fields F2m .
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Table B.2: Composition law for elliptic curves defined over a generic binary
field (non-supersingular curve): E(F2m) : y2 + xy = x3 + ax2 + b

P1 + P2

x3 =
(
y1+y2
x1+x2

)2
+ y1+y2

x1+x2
+ x1 + x2 + a

y3 = y1+y2
x1+x2

(x1 + x3) + x3 + y1

[2]P1

x3 = x1
2 + b

x12

y3 = x1
2 +

(
x1 + y1

x1

)
x3 + x3

−P1 (x1, x1 + y1)

As one may note for both types of curves the formulas of point addtion
and doubling require a field inversion and several field multiplications. For
implementation purposes this is a serious problem, because division in finite
fileds is an expensive operation, that cannot be implemented as efficiently as
multiplications. This issue is solved considering elliptic curves in projective
coordinates.

Definition B.1. Let K be a field. Let c and d be positive intergers. One
can define an equivalence relation ∼ on the set K3 \ {(0, 0, 0)} of nonzero
triples over K by

(X1, Y1, Z1) ∼ (X2, Y2, Z2) if X1 = λcX2, Y1 = λdY2, Z1 = λZ2, λ ∈ K\{0}

The equivalence class containing (X,Y, Z) is denoted as:

(X : Y : Z) = {λcX,λdY, λZ}, λ ∈ K \ {0}

and (X,Y, Z) is called the representative point of the class. The set of all the
projective points is called projective plane and is indicated as P(K)2. In gen-
eral every point of a class can serve as its representative, if Z 6= 0 then there
exists a unique point in its equivalence class (x, y, 1) where x = X/Zc and
y = Y/Zd. This allows to state that there is a one-to-one correspondence

between the set of projective points:

P(K)∗ = {(X : Y : Z), X, Y, Z ∈ K, Z 6= 0}
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and the set of affine points:

A(K) = {(x, y), x, y ∈ K}

The projective plane is identified with the affine one plus the adjoint of the
points that have Z = 0, which are called points at infinity. A generic point
at inifinity (X,Y, 0) can’t be put in correspondence with any affine point,
instead it is possible to establish a one-to-one correspondence with the di-
rection of the straight lines having slope m = Y/X. In practise implementa-
tions several projective coordinate systems are employed, depending on the
characteristics of the specific application. The most important coordinate
systems are derived from the previous definion:

Standard projective coordinates obtained setting c = 1 and d = 1. In
this system each affine point (x, y) is represented by three coordinates
X,Y, Z using the following relation: x = X

Z , y = Y
Z .

Jacobian Coordinates which are used for NIST standard curves. In this
case c = 2 and d = 3, therefore a point (x, y) is represented as (X,Y, Z)

where x = X
Z2 , y = Y

Z3 .

López-Dahab system characterized by c = 1 and d = 2, therefore the
relation is x = X

Z and Y
Z2 .

Modified Jacobian system the same relations are used but four coordi-
nates are stored and used for calculations (X,Y, Z, aZ4).

Chudnovsky Jacobian system where the Jacobian point (X : Y : Z) is
represented as (X : Y : Z : Z2 : Z3).
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Table B.3: Bit length of the underlying fields for NIST recommended curves.

Bit Length of n Bit lenght of p
[bit] [bit]

160-223 192
224-255 224
256-383 256
384-511 384
≥ 512 521

B.2 Standard NIST Curves supported by PolarSSL

The official document of NIST [17], as we have seen in Chapter 3, defines
5 levels of security. Each level of security is characterized by a different key
length, defined as the bit length of the order of the generator of the group.
For each key length two kinds of fields are provided:

• A prime field Fp which contains p elements, which are the integers
modulo p.

• A binary field F2m which contains 2m elements. The elements of this
kind of field are the polynomials defined over F2 of degree lower than
m.

The PolarSSL library, up to version 1.3.7, supports only elliptic curves de-
fined over prime fields, discarding the other proposed by the standard. For
this type of curves defined over Fp, the security strength is dependent not
only on the number of points n, but also on the length of the binary ex-
pansion of p, that is the prime modulus of the underlying field. Table B.3
provides the bit lengths of the various underlying fields of the curves pro-
vided in this appendix. The first column lists the ranges for the bit length of
n. The second column reports the value of p used for the curves over prime
field.

NIST curves are actually pseudo random curves, that is curves whose
coefficients are generated from the output of a seeded cryptographic hash
function. If the domain parameter seed value is given along with the coeffi-
cients, it is possible to perform the validation of domain parameters. This
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is done in order to guarantee that the curve has not been selected appro-
priately, with some kind of ad-hoc weakness. The generic NIST prime field
curve has the following form (in affine coordinates):

E(Fp) : y2 ≡ x3 − 3x+ b (mod p)1

The arithmetic of this class of curves is implemented expoliting two different
projective coordinates.

• Standard projective coordinates. The projective equation of the curve
is expressed as

Y 2Z = X3 + aXZ2 + bZ3

The point at infinity, indicated here as O, corresponds to (0 : 1 : 0).
The inverse of a point X : Y : Z is computed as X : −Y : Z.

• Jacobian projective coordinates. The projective equation in this case
becomes

Y 2 = X3 + aXZ4 + bZ6

The point at infinity is (1 : 1 : 0), while the inverse of a point (X : Y :

Z) is again (X : −Y : Z)

For each curve the standard specifies all the domain parameters:

• The prime modulus p, which is chosen appropriately as a generalized
Mersenne prime in order to speed up the computation of field multi-
plications.

• The order n, which is always a big prime number.

• The 160-bit input seed to the SHA-1 based algorithm (i.e., the domain
parameter seed).

• The output c of the SHA-1 based algorithm.

• The coefficient b (satisfying b2c ≡ −27 (mod p)).

• The generator.

1Parameter a is fixed to -3 to speed up computations
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The five prime field curves proposed are identified by the bit lenght of the
prime modulus: P-192, P-224, P-256, P-384 and P-521. The arithmetic
operations of point addition and point doubling are implemented in the Po-
larSSL library respectively with Algorithm B.2.2 and Algorithm B.2.1, ex-
ploiting both affine and Jacobian coordinates. As it is possible to note both
algorithms don’t make use of field inversions.
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Algorithm B.2.1: Point doubling (y2 = x3 − 3x + b, affine-Jacobian
coordinates)
Input: P = (X1 : Y1 : Z1) in Jacobian coordinates
Output: 2P = (X3 : Y3 : Z3) in Jacobian coordinates
if P = O then

return O
T1 = Z2

1

T2 = X1 − T1
T1 = X1 + T1
T2 = T2 · T1
T2 = 3T2
Y3 = 2Y1
Z3 = Y3 · Z1

Y3 = Y 2
3

T3 = Y3 ·X1

Y3 = Y 2
3

Y3 = Y3/2
X3 = T 2

2

T1 = 2T3
X3 = X3 − T1
T1 = T3 −X3

T1 = T1 · T2
Y3 = T1 − Y3
return (X3 : Y3 : Z3)
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Algorithm B.2.2: Point addition (y2 = x3 − 3x + b, affine-Jacobian
coordinates)
Input: P = (X1 : Y1 : Z1) in Jacobian coordinates, Q = (x2, y2) in

affine coordinates
Output: P +Q = (X3 : Y3 : Z3) in Jacobian coordinates
if Q = O then

return (X1 : Y1 : Z1)
if P = O then

return (x2 : y2 : 1)
T1 = Z2

1

T2 = T1 · Z1

T1 = T1 · x2
T2 = T2 · y2
T1 = T1 −X1

T2 = T2 − Y1
if T1 = 0 then

if T2 = 0 then
(X3 : Y3 : Z3) = 2(x2 : y2 : 1)
return (X3 : Y3 : Z3)

else
return O

Z3 = Z1 · T1
T3 = T 2

1

T4 = T3 · T1
T3 = T3 ·X1

T1 = 2T3
X3 = T 2

2

X3 = X3 − T1
X3 = X3 − T4
T3 = T3 −X3

T3 = T3 · T2
T4 = T4 · Y1
Y3 = T3 − T4
return (X3 : Y3 : Z3)
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