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Abstract

Even though brain tumors account for only 2-3% of all cancers, they are re-
sponsible for 7% of the years of life lost from cancer before the age of 70. Among
them, the most aggressive is the glioblastoma, a highly malignant cancer that arises
in the neuroglia, the supportive tissue of the neurons. Glioblastoma presents long
extensions that infiltrate deeply the white matter, following the alignment of the
fibers. From the medical viewpoint, this peculiarity makes it difficult to treat. For
the same reasons, in the last years, biomathematical modeling applied to infiltrative
brain tumor has gained in importance. Indeed, a good model could offer a better
understanding of the microstrucutral dynamics of the cancer and thus it could be
helpful to predict its evolution. In this study, we propose a diffuse interface binary
mixture model which consists of a fourth order non-linear equation for the can-
cerous cellular fraction coupled with a reaction diffusion equation for the nutrient
component. The model takes into account the mechanical dynamics, e.g. adhe-
sive forces or viscous interactions among cells, and the chemotactic cellular move-
ment in response to certain environment factors. Moreover, we include brain tissue
heterogeneity and anisotropy in the model by the introduction of patient-specific
diffusion tensor imaging data, thanks to which we manage to probe brain fibers
architecture. The aim of this research is to demonstrate the importance of consid-
ering anisotropy, heterogeneity and patient-specific data into mathematical models
in order to better predict the tumor growth. Specifically, we deal with the theoret-
ical and the numerical framework of the mathematical model proposed. Starting
from a real MR of a patient affected by glioblastoma and using imaging techniques,
we create a patient-specific computational mesh and we extract the necessary data
from the DTI medical images. Then we develop numerical codes making use of
an open-source software name FEniCS. To study the anisotropic development of
the tumor in relation to the biological parameters presented in the model, we per-
form a sensitivity analysis on a homogeneous geometry. Finally, we provide two
numerical tests that simulate common clinical situations.



Sommario

Sebbene i tumori cerebrali rappresentino solamente il 2-3% delle diagnosi tu-
morali, essi sono i responsabili del 7% di morti annue causate dal cancro prima dei
70 anni di età. Tra di essi il più aggressivo è il glioblastoma, un cancro altamente
maligno che si sviluppa nella neuroglia, il tessuto di supporto dei neuroni. Il glio-
blastoma presenta lunghe estensioni che infiltrano la materia bianca in profondità,
seguendone lallineamento delle fibre, e che rendono questo tipo di tumore molto
difficile da trattare. Per questa ragione, negli ultimi anni, la modellizzazione ma-
tematica dei tumori cerebrali infiltrativi ha acquisito sempre più importanza. Un
buon modello può infatti offrire una migliore comprensione delle dinamiche mi-
crosttrutturali del cancro e di conseguenza potrebbe essere utile nel predire la sua
evoluzione. In questo progetto, proponiamo un modello di miscela binaria ad inter-
faccia diffusa che consiste di unequazione del quartordine per la frazione volumica
cellulare accoppiato con unequazione di diffusione reazione per la componente dei
nutrienti. Il modello prende in considerazione le dinamiche meccaniche, come
le forze di adesione o le interazioni viscose che hanno luogo tra le cellule, e il
movimento chemotattico cellulare causato da fattori chimici presenti nellambiente
extracellulare. Inoltre, abbiamo introdotto nel modello leterogeneità e lanisotro-
pia, caratteristiche peculiari del tessuto cerebrale, utilizzando i dati medici reali del
tensore di diffusione, grazie al quale possiamo anche conoscere larchitettura delle
fibre cerebrali. Lo scopo di questa ricerca è dimostrare limportanza di introdurre
leterogeneità, lanisotropia e i dati paziente-specifici nel modello matematico cosı̀
che la predizione della crescita tumorale sia migliore e più veritiera. Nello specifi-
co, in questo lavoro di tesi, ci siamo occupati dello sviluppo teorico e numerico del
modello proposto. In particolare, attraverso tecniche di imaging medico, abbiamo
creato una mesh computazionale di un cervello estrapolando la geometria da una
risonanza magnetica di un paziente affetto da glioblastoma e abbiamo estratto i dati
reali da introdurre nel modello dalle immagini mediche del tensore di diffusione.
Abbiamo inoltre sviluppato codici numerici utilizzando un software open-source
chiamato FEniCS. Per studiare la crescita anisotropa del tumore in relazione ai
parametri biologici presenti nel modello, abbiamo realizzato unanalisi di sensiti-
vità su una geometria omogenea. Infine, abbiamo proposto due test numerici che
simulano situazioni cliniche comuni.
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Introduction

Primary brain tumors are the most aggressive and lethal forms of cancer [75],

and, although they account for only 2-3% of all human malignancies, they are nev-

ertheless responsible for 7% of lives lost from cancer before the age of 70 per year

[19]. In human brain, moreover, more than 120 different tumor types can be found

among which gliomas are the most prevalent form [23]. They are tumors that arise

from neoplastic glial cells, the supportive tissue of the neurons, and account for the

30-40% of all brain and central nervous system primary tumors and the 80% of the

all malignant brain tumors [21, 23].

The most common and also the most malignant glioma is the glioblastoma, which

will be the clinical focus of this dissertation. Despite of therapies (surgery resec-

tion, chemotherapy or radiotherapy), glioblastoma has a life expectancy, after been

diagnosed, of only fourteen months [69, 75], while only 5% of patients has a five

years survival [21]. Thus, this disease represents a real challenge for present day

oncology. Moreover, its capability of penetrating diffusely along the white mat-

ter fibers leads to a wide tumoral area underestimated by conventional imaging

technology, such as computed tomography (CT) and magnetic resonance imag-

ing (MRI). Consequently, invasive glial neoplasms are difficult to be completely

resected, and while all visible tumor cells can be removed, the invisible infiltrat-

ing tumor components are left behind. For this reason, the extent of resection in

glioblastoma medical treatment has been a big dilemma in the last decades. Fur-

thermore, another challenging aspect of surgery is related to the location of the

tumor. As a matter of fact, tumor resection could be potentially harmful if the tu-

5



Introduction 6

mor is located near a sensitive area of the brain such those which control language,

movement, vision or other important functions.

To better detect tumors and evaluate their invasiveness, in the early 90s a new imag-

ing technique called Diffusion Tensor Imaging (DTI) was developed [30]. The DTI

is the only non-invasive method for characterizing the microstructural organization

of tissue in vivo, so it is understandable why this technique has attracted huge in-

terest and has enjoyed a rapid uptake by clinical and neuroscientific communities.

At the same time, a big help to present day oncology is potentially represented

by biomathematical modeling. During the last decades, indeed, the capability of

tumor to grow and invade the surrounding tissue has gained also the attention of the

mathematical and the physical research communities. The goal of this new field

of research is to understand the dynamics behind tumor growth and expansion in

relation to the specific features of the environment in which the neoplasm is evolv-

ing in order to provide a good mathematical model able to predict tumor evolution,

to improve therapy planning and to prognosticate the result of a specific form of

treatment. Thus, during the last fifty years, driven by the ambition of providing a

good and truthful model, theoreticians have proposed different mathematical mod-

els, covering various morphological and functional aspects of carcinogenesis.

As concerns the field of infiltrative brain tumor, such as gliomas, the basic spatio-

temporal model was suggested by J.D. Murray in the early 1990s. He proposed

a simple conservative diffusion equation for cells concentration observing that the

main aspect of the cancer was the uncontrolled proliferation of cells and the capa-

bility of them to invade and diffuse in the host tissue. The model can be stated as:

the rate of change in tumor cell population =

the diffusion (motility) of tumor cells + the net proliferation of tumor cells.

Under the assumption of a classical gradient-driven Fickian diffusion, this state-
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ment leads to the mathematical formulation of the following equation:

∂c

∂t
= ∇ · (D∇c) + ρc (1)

where c(x, t) is the tumor cell density at location x and time t, D is the diffusion

coefficient representing the net motility of glioma cells and ρ represents the net pro-

liferation rate of glioma cells [22]. In the last ten years, Swanson et al. have been

working on the development of this kind of model, introducing brain anisotropy

[71], angiogenesis [73], and modeling therapeutic response [72].

In contrast to diffuse models, in the mid-1990s, multiphase models, whose the-

oretical framework has to be found in the theory of mixture, started to be used in

biological research and in particular in the study of tumors. The multiphase ap-

proach was novel insofar as the tumor is considered as a continuum comprising

two or more interacting constituents, called phases. The mechanical aspects of bi-

ological tissues are also introduced in governing equations, which are now driven

from mass and momentum balances. Among multiphase models, an interesting

model was proposed by Byrne and Preziosi [8] in the early 2000s. They proposed

a binary model in which the tumor cells phase and the extracellular water phase

are taken into account and they showed that cellular motion is a consequence of

interaction between cells instead of being determined by random motility. In the

same period Ambrosi and Preziosi [1] have explained the necessity to propose

some postulates for cell velocity and the corresponding displacement field in order

to close the model, derived from the mixture theory. In the same area of research,

in 2007 Lowengrub et al. [83] developed, analyzed and numerically simulated a

diffuse interface continuum model, which was derived using the energy variation

statement and thus it was thermodynamically consistent.

Following [1, 8, 83] in the present work we propose, analyze and simulate a

diffuse interface binary mixture model of glioblastoma tumor growth. The model

is well posed and consists of a fourth order non-linear equation for the tumoral
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cells’ volume fractions coupled with a reaction-diffusion equation for the nutrient

component. We consider the oxygen as the main source of supply and we hy-

pothesize that the vasculature is homogenous in the whole domain. The model

takes into account the mechanical aspects involved in tumor evolution, such as ad-

hesive forces or viscous interactions, and the micro-local environment conditions

such as the oxygen levels. Hence, in the governing equation of the cellular frac-

tion we consider a term of flux of mass which, biologically, is due to a particular

phenomenon of cellular migration called chemotaxis. Indeed, it has been experi-

mentally demonstrated [16] that a cell can perform a directed migration in response

to certain increasing gradient of chemoattractants, such as nutrients. Furthermore,

observing that the glioblastoma is a highly infiltrative tumor, whose extensions dif-

fuse deeply along white matter structures, we introduce the concept of anisotropy

thanks to patient-specific diffusion tensor imaging data. As mentioned, this tech-

nique provides a tensor that describes the spatial diffusion of the water molecules

in cerebral tissues and, comparing the diffusion values along each direction, we are

able to know which is the structure of the fibers and which are the preferential di-

rections of movement. Indeed, a water particle will move more easily along a fiber

than perpendicularly to it because, along that path, it will not find any obstacles. In

consequence, handling with the diffusion tensor we obtain a new tensor that we call

tensor of preferential directions and that we include in the chemotactic term. By

the inclusion of the anisotropic tensor of preferential directions, the model is thus

able to reproduce the cellular motion along the fibers of the white matter. Finally,

we suppose that the oxygen particles coherently with the water molecules and thus

the diffusive behavior of the nutrients can be actually described by the water diffu-

sion tensor, obtained directly from the medical images.

In our work we also deal with the implementation of the computational mesh and

the numerical codes necessary to simulate the model. In particular, we obtain the

computational mesh extracting the geometry from a magnetic resonance of a pa-

tient affect by glioblastoma, gently provided by Istituto Neurologico Carlo Besta,
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and we discretize and numerically solve the problem using the finite elements

method implemented in FEniCS. Consequently, we focus on simulating two spe-

cific clinical cases: the first concerns the growth of a butterfly glioblastoma, a kind

of astrocytoma that arises in the midline of the brain and assumes a peculiar shape;

the second deals with a common medical situation in which the glioma is not com-

pletely removed by surgical intervention and tumoral cells are left behind. We thus

investigate the potential occurrence of metastasis in the site of resection.

The work is organized as follows: in Chapter 1, we describe the biological

framework of the research, such as the phenomenon of carcinogenesis, and in par-

ticular we focus on brain tumors and on glioblastoma malignancy and features. In

Chapter 2, diffusion MRI technique is briefly described and the details on dif-

fusion tensor imaging, useful to understand the mathematical model, are given.

The first part of Chapter 3 is dedicated to the theory of mixture while in the sec-

ond part the mathematical model is introduced. In the last part of this chapter the

ranges of the biological parameters of the glioblastoma are discussed. In Chapter

4 the numerical formulation is provided. In the first part we describe the imaging

and the computational techniques used to create the 3D brain mesh. In the second

part of the chapter, it is explained how the diffusion tensor information are intro-

duced in the model and how the tensor of the preferential directions is obtained.

Finally in the last part of Chapter 4, the continuous and discrete weak formulation

is developed and some details about the numerical method adopted are provided.

In Chapter 5, the sensitivity analysis to the biological coefficients present in the

model is presented. In Chapter 6 we describe and numerically simulate the cases

of interest mentioned before. All the codes we make use of and more details about

numerical methods are provided in Appendix A.



Chapter 1

Biological Framework

In this chapter we provide a biological framework of the problem in order to

better understand which reasons are guiding our work and why a mathematical

model of glioblastoma is highly required. So, in the first section we briefly explain

the process of carcinogenesis, which literally means ”the creation of a cancer”. In

the second section we focus on brain tumors and, among them, we concentrate on

a specific group of brain cancers named gliomas. In the third section we illustrate

the features of the glioblastoma, whose biological description is the object of this

dissertation.

1.1 What is a cancer?

A multicellular organism can thrive only when all its cells function in accor-

dance with the rules that govern cell growth and reproduction. In a healthy body

cells control their proliferation and program their death (apoptosis) in the various

tissues so as to optimize body repair and healing. Sometimes it can happen that

this process breaks down, i.e. a mutation or an epimutation occurs in the DNA of

a cell and it acquires abnormal functions. In a normal cell, when the DNA is dam-

aged the cell either repairs the harm or the cell dies. In abnormal cells, the DNA

is not repaired and the cell doesn’t die as it should but it survives and continues to

10
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proliferate, generating new cells that have the same damaged DNA. This leads to a

mass of abnormal cells that grows out of control: the tumor (figure 1.1).

A tumor can be benign, not cancerous, which grows slowly and typically has clear

borders that do not spread into other tissues, or malignant, i.e. the cancer, which

grows rapidly, invades the surrounding tissue and metastasizes.

The formation of a cancer is a multistage process in which abnormal cells

change the micro-environment to favor their survival. As a matter of fact, at the be-

ginning, the cancer is just a microscopic nodule which does not have access to the

vascular network and receives nutrients and growth factors via diffusion through

the host (healthy) tissue. For example, the typical distance an oxygen molecule

will diffuse before being uptake is approximately 100µm [13, 17, 57]. As time

proceeds, tumor cells accumulate and the insufficiency of the existing vasculature

to supply all cancerous cells may cause acute and chronic lack of oxygen (leading

to hypoxia) and nutrient (e.g. glucose, leading to hypoglycemia). An avascular

tumor cannot grow beyond a certain size, generally 1-2 mm3 [46]. Thus, a tumor

only grows further if the cancerous cells acquire through mutations the ability to

release pro-angiogenic growth factors (TAFs) in order to drive angiogenesis.

The angiogenesis is the formation of new capillaries throughout the tumor mass

which is induced by growth factors (e.g. VEGF) secreted by tumoral cells [80]. In

this way the tumor has a direct supply of nutrients and growth promoting factors.

Once a tumor is vascularized, it can grow larger and even shed cells into vessels,

leading to satellite tumors in distant parts of the body (metastases) (figure 1.2). The

formation of metastasis is the predominant cause of mortality due to cancer [40].
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Figure 1.1: Physiologically cells grow and multiply in an orderly way. If a mutation
in the DNA of a cell occurs, this mechanism breaks down and cells grow out of
control. A mutation in the DNA could be caused from exposure to exogenous
agents such as UV light, X-rays, chemicals, tobacco products, and viruses or for
endogenous factors (naturally occurring), figure from [50].

Figure 1.2: Once a tumor is vascularized, cancerous cells manage to move through-
out the body using the blood or lymph systems, destroying healthy tissue in a pro-
cess called invasion and it leads to metastasis, figure from [50].

.
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1.2 Introduction to brain tumors

1.2.1 An overview of brain tumors

There are over than 120 types of brain tumors and spinal cord tumors: they can

appear in the brain itself or in lymphatic tissue, in cranial nerves, in the meninges

or in the pituitary or in the pineal gland. Brain tumors are named after the type of

cells they arise from or the area they grow in. For instance, gliomas, the majority

of malignant brain tumors in adult, take the name from the neoplastic glial cells as

well as meningiomas take their name from the meninges, thin layers that envelope

the central nervous system (CNS) [79]. Tumors can be divided in primary tumors,

i.e. tumors that start in cells of the brain and may spread to other parts of the brain

or to the spine, but rarely to other organs, or metastatic or secondary brain tumors,

that begin in another part of the body and then spread to the brain [66]. In table 1.1

we classificate and describe the principal primary CNS tumors on the basis of the

type of cell or tissue they arise from [79].

Concerning the epidemiology of the disease, in Europe, the standardized incidence

of primary CNS cancers ranges from 4.5 to 11.2 cases per 100,000 men and from

1.6 to 8.5 per 100,000 women, while the 5-year survival rate is 17% for males and

19% for females. The statistic estimations have been obtained by Crocetti et al.

[14] studying patients affected by CNS cancers in the period between 1995 and

2002.

1.2.2 Classification of gliomas

Gliomas make up 80% of all malignant brain tumors [21] and, despite their

frequency, the etiology of these tumors remains largely unknown. The common

gliomas affecting the cerebral hemispheres of adults are named ”diffuse” gliomas

due to their propensity to infiltrate extensively throughout the brain parenchymia.

These gliomas are classified histologically as astrocytomas, oligodendrogliomas,
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Tumor Type Cell / Tissue
Origin Cell / Tissue Description Tumor Description

Gliomas Neuroglia It is the supportive (gluey)
tissue of the brain (figure
1.3). It maintains the ionic
milieu of nerve cells, it
modulates the rate of nerve
signal propagation and the
synaptic action by control-
ling the uptake of neuro-
transmitters, and prevents
from neural injury [61].

see subsection (1.2.2)

Medulloblastoma Neuroectodermal
cells

They are very early forms
of nervous system that are
probably involved in brain
cell development.

It develops in the cere-
bellum and it is highly
malignant. It affects
children.

Meningioma Meninges They are layers of tissue that
line and protect the brain.

It accounts for 1 out
3 primary brain tu-
mors and they are
usually benign. Many
meningiomas are
asymptomatic.

Piutary tumors Piutary gland
and hypothala-
mus

They both make hormones
that help regulate the activ-
ity of many other glands in
the body, such as thyroid
gland.

They account for the
8% of tumor and they
are nearly benign.
Symptoms are related
with an excess or a lack
of hormones produced
by the glands.

Pineal tumors Pineal gland It is a small endocrine gland
situated deep within the
brain, between the cerebral
hemispheres. It makes mela-
tonin, the hormone that reg-
ulates sleep.

They accounts for only
1 to 2% of brain tumors.

Schwannomas Schwann cells These cells surround and
insulate cranial nerves and
other nerves.

They make up about
the 8% of CNS tu-
mors. They are al-
most always benign and
can arise in any nerves.
In relation to the func-
tion of the nerve they
start from, Schwanno-
mas can cause differ-
ent sympstoms, such
as acoustic or balance
problems.

Table 1.1: Classification and description of the principal primary Central Nervous
System tumors on the basis of the type of cell or tissue they arise from [79].
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ependymomas, or tumors with morphological features of both astrocytes and oligo-

dendrocytes, termed oligoastrocytomas. Astrocytomas arises from astrocytes, star-

like cells (figure 1.3) that help support and nourish neurons and maintain an appro-

priate chemical environment for neuronal signaling. Oligodendrogliomas are tu-

mors formed by oligodendrocytes, the cells that make myelin, a fatty substance that

surrounds and isolates the nerve cell axons and which helps neurons to send elec-

tric signals. Ependymomas come from ependymocytes, the glial cells that make up

the ependyma, the membrane that lines the ventricles of the brain and the central

canal of the spinal cord. Gliomas are further categorized on the basis of the patho-

logic evaluation and the histological degrees of malignancy of the tumor. The most

widely used current classification of human gliomas is the one proposed by the

World Health Organization in 2007 [39] which we schematize in table 1.2. In table

1.3 we report population-based incidence rates (per 100000 person per year), age,

sex and survival of patients which have been affected by gliomas in 1992-1997 in

US [52] .

Figure 1.3: Neuroglia performs a supportive function for neurons. It is composed
by microglial, that is the main form of active immune defense in the central nervous
system and accounts for the 10-15% of the glial cells, and macroglial, derived from
the ectodermal tissue, that is mainly composed by astrocytes (cells with a star-like
appearance), oligodendrocytes, ependymocytes and Schwann cells. Figure taken
from [61].
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WHO grading system

Grade Description Type of glioma
I Benign and slow growing

Cells look almost normal under a microscope
Usually associated with long-term survival
Rare in adults

Pilocytic astrocytoma

II Relatively slow growing
Sometimes spreads to nearby normal tissue and
comes back (recurs)
Cells look slightly abnormal under a microscope
Sometimes comes back as a higher grade tumor

Diffuse astrocytoma
Oligodendroglioma
Oligoastrocytoma

III Malignant = cancerous
Actively reproduces abnormal cells
Tumor spreads into nearby normal parts of the brain
Cells look abnormal under a microscope
Tends to come back, often as a higher grade tumor

Anaplastic Astrocytoma
Anaplastic Oligodendroglioma
Anaplastic Oligoastrocytoma
Anaplastic Ependymoma

IV Most malignant, fast growing
Easily spreads into nearby normal parts of the brain
Actively reproduces abnormal cells
Cells look very abnormal under a microscope
Tumor forms new blood vessels to maintain rapid
growth
Tumors have areas of dead cells in their center
(called necrosis)

Glioblastoma
- Gliosarcoma
- Giant Cell Glioblastoma

Table 1.2: WHO grading system applied to gliomas: grade I is assigned to the more
circumscribed tumors with low proliferative potential, grade II defines diffusely
infiltrative tumours, grade III is assigned to those showing anaplasia and mitotic
activity and grade IV (glioblastoma) describes tumours that show microvascular
proliferation and/or necrosis [39, 21].

1.3 Glioblastoma Multiforme

In the present work, we focus on glioblastoma (GBM) tumor, an astrocytoma

grade IV, the most common and aggressive among gliomas, that accounts for 15%

of all primary central nervous system tumors and 55% of all gliomas [21].

On the basis of clinical presentation, glioblastomas have been further subdivided

into the primary or secondary GBM subtypes. The vast majority of glioblastomas

are primary glioblastomas (90% of GBMs) which develop rapidly de novo in el-
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Tumor WHO
grade

Incidence
Rate

M:F
ratio

Mean
age at

diagnosis

Survival
1

year
2

years
5

years
10

years
Pilocytic
astrocytoma

I 0.23 1.09 17 95% 93% 89% 86%

Diffuse
Astrocytoma

II 0.13 1.46 47 73% 60% 45% 34%

Oligodendroglioma II 0.34 – 42 88% 80% 66% 47%
Ependymoma/
Anaplastic
Ependymoma

II/
III

0.23 1.29 35 86% 79% 66% 55%

Anaplastic
Astrocytoma

III 0.49 1.20 50 60% 43% 28% 19%

Anaplastic
Oligodendrocytes

III 0.10 1.15 46 75% 57% 38% 25%

Glioblastoma IV 2.96 1.26 62 28% 8.2% 2.9% 1.8%

Table 1.3: Population-based data of incidence rates (per 100,000 person per year),
age and sex, and survival of patients with gliomas in 1992-1997 in United States
adjusted to the 2000 US (see [52])

derly patients, without clinical or histologic evidence of a less malignant precursor

lesion. In contrast, secondary glioblastomas progress from low-grade diffuse as-

trocytomas or anaplastic astrocytomas. They manifest in younger patients, have a

lesser degree of necrosis, are preferentially located in the frontal lobe, and carry

a significantly better prognosis. Histologically, primary and secondary glioblas-

tomas are largely indistinguishable, but they differ in their genetic and epigenetic

profiles [53, 55].

Glioblastoma was observed for the first time in 1863-1865 by Virchow, known

as the father of pathology, who was the first to identify a large group of intracra-

nial tumors whose origin was in the glial tissue of the brain. He gave the name

glioma to these new growths and he described such neoplasm as slow-growing, in-

filtrating vascular masses with hemorrhages, cysts and degenerated areas. In 1925

Globus and Strauss [15] proposed the name spongioblastoma multiforme since,

to the naked eye, glioblastoma appears as a well circumscribed mass, globular or

spherical, with a highly variegate cut surface due to necrosis, fatty degeneration

and hemorrhages and it is characterized by a necrotic core surrounded by anaplas-
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tic cells [27]. In 1926 the term glioblastoma multiforme was introduced as an

alternative form of spongioblastoma by Percival Bailey and Harvey Cushing [2],

two American surgeons who created the first major system of classification for

brain tumors. They claimed that glioblastoma originates from primitive precursors

of glial cells called glioblasts. In 1979 the first edition of the World Health Organi-

zation (WHO) Classification of Tumors of the Nervous System was published and

glioblastomas were not yet recognized as astrocytic neoplasms but listed in a group

of ”poorly differentiated and embryonal tumors ” [55]. Only after the introduction

of immunohistochemistry it has been discovered that glioblastoma is actually an

extreme manifestation of anaplasia and dedifferentiation of astrocytes.

For unknown reasons, glioblastoma occurs commonly in Caucasians, Asians

males over 50 years old, without any genetic predisposition [54]. The prevalent

symptom is a progressive memory, personality, or neurological deficit [66], in

addition to common symptoms such as seizure, nausea, vomiting and headache.

Glioblastoma has median survival of about 14.6 months while for 30% of the cases

survival could reach two years, [33]. However, there are reports that some patients

can live for more than 10 years after diagnosis. A common feature among those

patients is that they are typically younger than 40 years at the time of diagnosis [9,

65].

1.3.1 Hallmark features

Glioblastoma is defined by the hallmark features of uncontrolled cellular pro-

liferation, diffuse infiltration, propensity for necrosis, robust angiogenesis, intense

resistance for apoptosis and rampant genomic instability [19]. As reflected by the

old epithet multiforme, GBM presents with significant heterogeneity on the cy-

tophatologycal, transcriptional and genomic levels. The tumor may take on a vari-

ety of appearances, depending on the amount of hemorrhage, necrosis, or its age.
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These tumors may be firm or gelatinous. Considerable regional variation in appear-

ance is characteristic. Secondary to necrosis, some areas are firm and white, some

are soft and yellow, and still other are cystic with local hemorrhage. Moreover,

glioblastomas have a large variability in size and infiltration beyond the visible tu-

mor margin is always present [62].

Glioblastoma forms in the cerebral white matter and grows quickly along the fibers

or along vessels and it seems that it follows the physical structures in the extracel-

lular matrix of the neighboring brain [23]. The tumor may arise in any part of

the Central Neural System but the frontal and the temporal lobes are the most fre-

quently affected. The central part of the brain is often involved, and a classical

appearance is provided by the butterfly type, in which the tumor extends in both

hemispheres [27] as depicted in figures 1.4. Malignant cells carried in the cere-

brospinal fluid may invade and migrate away from the main tumor within the brain;

however, glioblastomas rarely spread elsewhere in the body.

(a) C+ T1 WI Coronal (b) C+ T1 WI Axial

Figure 1.4: C+ (contrast-enhanced) T1 MRI WI (weighted) of a butterfly glioblas-
toma. If the tumor arises in the central part of the brain, it spreads in both hemi-
spheres and thus it shows a butterfly appearance.
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1.3.2 Diagnosis and treatment

Brain tumors are very difficult to be treated due to the following factors: tu-

mor cells are very resistant to conventional therapies, many drugs cannot cross the

blood brain barrier to act on the tumor and brain has a very limited capacity to

repair itself [34]. Moreover, concerning glioblastoma, its treatment remains even

more difficult. As a matter of fact, this tumor is heterogeneous, it is often lo-

cated in a region that is beyond the reach of local control and its highly diffusive

nature makes the complete removal almost impossible. Therefore, the treatment

of patients with malignant gliomas is made on different levels and encompasses

surgery, radiotherapy, and chemotherapy.

For the diagnosis, conventional imaging techniques, such as computed tomog-

raphy (CT or CAT scan) and magnetic resonance imaging (MRI), are commonly

used to pinpoint the tumor. Depending on the patient, other exams could be re-

quested; e.g. magnetic resonance spectroscopy (MRS) is used to examine the tu-

mor’s chemical profile and determine the nature of the lesions seen on the MRI.

Upon an initial diagnosis, the first step in treating the glioblastoma is to remove

as much of tumor as possible, without injuring brain tissue (figure 1.5). In the

last years, the diffusion tensor imaging technique, which will be described in more

details in Chapter 2, has gained in importance since it provides parametric maps

that help to visualize different aspects of the tissue micro-structure which may help

the neurosurgeons to avoid disrupting important nerve connections within the brain

itself. However, high-grade tumors are surrounded by a zone of migrating, infiltrat-

ing tumor cells that invade surrounding tissues and thus removing the entire tumor

could be very difficult and, almost always, impossible. Anyway, gross tumor re-

section immediately decompresses the brain reducing the intracranial pressure and,

due to the consequent reduction in neoplastic cells in the surgical cavity, probably

increases the likelihood of response to radiotherapy and/or chemotherapy; it may,

moreover, delay progression. Always after surgery, when the wound is healed,
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radiation therapy can begin. The goal of radiation therapy is to kill tumor cells

selectively while leaving normal brain tissue unharmed. In standard external beam

radiation therapy, multiple sessions of standard-dose ”fractions” of radiation are

delivered to the tumor site as well as a margin in order to treat the zone of infiltrat-

ing tumor cells. Each treatment induces damage to both healthy and normal tissue

but by the time the next treatment is given, most of the normal cells have repaired

the damage, but the tumor tissue has not. In addition, the patient is treated con-

comitant with chemotherapy, by which special drugs designed to kill tumor cells

are administrated. Nowadays, the standard drug used is the temozolomide, which

has shown to give survival benefits with minimal additional toxicity. The current

standard of care, that is the Stupp protocol, has led to a significant improvement

in patient survival. This protocol consists of adjuvant radiotherapy after resection

plus continuous daily temozolomide (75 mg per square meter of body-surface area

per day, 7 days per week from the first to the last day of radiotherapy), followed

by six cycles of adjuvant temozolomide (150200 mg per square meter for 5 days

during each 28-day cycle) [68]. Because traditional methods of treatment are un-

likely to result in a prolonged remission of GBM tumors, researchers presently are

investigating several innovative treatments in clinical trials [49, 74].

(a) T1 Axial (b) Post T1 MDC- Axial

Figure 1.5: Example of glioblastoma resection. The figures have been gently pro-
vided by the Istituto Neurologico Carlo Besta.
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Diffusion Tensor Imaging

Diffusion imaging is a magnetic resonance imaging method introduced in the

mid-1980s [37]. It focuses on the random translational motion of molecules, mainly

water, which, during the typical diffusion time of about 50 msec [37, 47], move in

the brain over a distance of 10µm [37, 47], bouncing, crossing, or interacting with

many tissue components such as cell membrane, fibers and macromolecules. Since

these movements encounter different obstacles and vary in according to the tissue

or certain pathological modifications (such as intracellular edema, abscess, tumor),

diffusion data provides indirect information on the structure surrounding these wa-

ter molecules and on the geometric organization of the brain. Indeed, the overall

effect observed in a diffusion MRI image voxel reflects, on a statistical basis, the

displacement distribution of the water molecules present within this voxel and it al-

lows to probe tissue structure at a microscopic scale, well beyond the usual image

resolution. A useful analogy is the shape of ink dropped on a piece of paper. After

the ink is dropped, it begins to spread due to the thermal motion of its molecules

and the shape of the ink stain can reveal something about the underlying structure

of the paper. If the shape of the ink stain is circular, it is called isotropic diffusion.

If the stain is elongated along a precise direction, it is called anisotropic diffusion.

Diffusion-weighted (DW) magnetic resonance (MR) imaging is currently the only

MR imaging technique that provides in vivo information on water diffusion within

22
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tissues, involving the use of phase-defocusing and phase-refocusing gradients. We

briefly describe this technique in the first section of the present chapter.

A further development of DWI is the diffusion tensor imaging (DTI) technique,

which was introduced in the mid-1990s [37]. It studies the directions of wa-

ter molecule motion to characterize diffusion behavior in biological tissues and

it makes use of the concept of anisotropy to estimate the axonal organization of

the brain. Namely, water moves more easily along the axonal bundles rather than

perpendicular to those bundles for the fact that there are fewer obstacles in that di-

rection. Thus, studying the directions of diffusion of water molecules, it is possible

to gain access to the microscopic organization of the tissue in which the diffusion

takes place. The information of the anisotropic structure of the tissue are summa-

rized in a tensor of diffusivity, which gives the name to this technique. We describe

DTI method in section 2.

2.1 Diffusion Weighted Measurements

In order to better understand the diffusion tensor imaging technique, it is useful

to briefly illustrate how diffusion-weighted imaging (DWI) works. In particular,

in the following we explain how the MR signal is recorded and the relationship

between the diffusion of water molecules in tissues and the intensity of the sig-

nal measured by MR imaging. As mentioned, diffusion weighted imaging (DWI)

focuses on measuring the random Brownian motion of water molecules within a

voxel of tissue and it is based on diffusion weighted sequences by which medical

images are obtained. These images present a contrast which is namely influenced

by the difference of motion of water molecules.

The information that can be acquired from a DW MRI image are: S, the MR signal

recorded into a voxel, PD, the proton density which represents the water concen-

tration, T1 and T2, the relaxation times (decay times) after excitation which are

related to environment factors, and D, the diffusion coefficient. These parameters
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are related by the equation

S = PD
(

1− e−TR/T1
)
e−TE/T2e−bD (2.1)

where TR and TE are respectively related to the timing of excitation (called repe-

tition time) and the preparation period (called echo time) of the MR signal whereas

b is the diffusion weighted factor. In this equation it is important to note that the

magnitude of signal from water S is the information we obtain from the MR scan-

ners while TR, TE and b are imaging parameters that we can control and, changing

these parameters, we can change the contribution (weighting) of T1,T2 and D to

the signal [47].

To understand the b term, we first have to introduce the concept of magnetic field

gradient pulse. In figure 2.1, the effect of a gradient pulse is explained with a

schematic diagram.

We consider the signals generated by two different water molecules (red and blue

circles) in two different position along the Y axis (for instance). In time period

I, both molecules see the homogeneous magnetic field applied and thus the spins

have the same frequency. Then, in time period II, the Y gradient is applied and the

spin in blue position is exposed to a lower magnetic field than the one in the red po-

sition and so it resonates at a lower frequency. After the gradient pulse ends (time

period III), the signals from the water molecules begin to have the same frequency

but their phases are shifted according to

∆ϕ = ϕ1 − ϕ2 = γGδ(y1 − y2) (2.2)

where γ is the gyromagnetic ratio of proton, G is the constant gradient strength,

δ is the duration of the gradient pulse application and yi the position of the spin

with respect to the gradient. In time period IV, an other Y gradient is applied with

the opposite polarity and, interestingly, the phase shift is unwound. In fact, in this

period, water molecules in the blue position start to resonate at higher frequency
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Figure 2.1: Magnetic field gradient and their effects on the MRI signal [47]. Y
gradients are applied at time periods II and IV. The durations of the period II and IV
are the same, but the orientations of the gradient are opposite. Water signals from
two different locations are shown by red and blue colors. The signal frequency
is proportional to the strength of the magnetic field B0, represented by the green
arrows. The figure is taken in [47].

and then the perfect refocusing of the phase occurs.

However, the perfect refocusing of the phase occurs only if the particles do

not change their initial position. For this reason, in the diffusion measurement, the

phase difference ∆ϕ is used to compute water motion in the direction of the gradi-

ent of the magnetic field.

In order to better explain the concept, we consider the figure 2.2, in which water

molecules and the relative spin phase, sketched as circles with black arrows, are

illustrated within a voxel. When the first gradient is applied, a phase shift depend-

ing on the position of the spin is introduced between the molecules and the spins

are dephased. After a time interval ∆t, a second gradient pulse for the phase refo-

cusing is applied. The refocusing is perfect only when the water molecules do not

move between the two pulses. If there is translational motion of water molecules,

perfect refocusing would fail. Because the signal at each voxel represents the sum
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of the signal from all the water molecules in that sample, the imperfect refocusing

leads to a signal loss. It is important to notice that, as show by equation (2.1), the

higher the diffusion coefficient D is, the more signal loss we expect. The term b

is related to the intensity of the gradient application G and to the time separation

between the two gradient pulses ∆t [44] :

b = γ2G2δ2

(
∆t− δ

3

)
. (2.3)

The important point is that we can control the amount of the b values as all the

quantities in (2.3) can be set, and we can expect a different amount of signal loss. In

fact, the longer the separation ∆t is and the more time there is for water molecules

to move around which is reflected in a higher signal loss.

Figure 2.2: The effect of gradients application on the motion of water molecules.
If there is molecular diffusion, a total phase shift is introduced. In absence of water
motion, gradients have no consequence. The figure belongs to [47].



CHAPTER 2. DIFFUSION TENSOR IMAGING 27

Consequently, in order to compute the diffusion coefficient of water molecules

it is sufficient to perform two measurements with different b values, while other

imaging parameters (TE and TR) remain the same. In particular, one of the two

measurements must be done with a null b value. So, the signal loss due to the

diffusion precess is governed by the Stejskal-Tanner equation [67]:

S = S0e
−bD (2.4)

where S0 is the signal intensity without diffusion sensitization, that is obtained

from (2.1) setting b = 0. In this way, the diffusion coefficient, D, can be calculated

from the signal intensity differences between these two studies:

D = −1

b
ln

(
S

S0

)
. (2.5)

Since biological tissues can be considered anisotropic mediums because of the

architecture of the tissue itself or the presence of obstacles, the D diffusion param-

eter is substitute with an apparent diffusion coefficient ADC [36]:

S = S0e
−bADC . (2.6)

The reason for which the adjective apparent is used is related to the fact that what

is measured is not the real diffusion coefficient. For instance, the ADC of water

in parenchymia is much smaller than that of the cerebrospinal fluid. This could

be due to the more viscous environment but also due to many obstacles. Namely,

when the barriers are aligned along one orientation, theADC depends on the mea-

surement orientation, e.g. measurements along the structures lead to higher ADC

(less obstacles) and viceversa measurements perpendicular to them lead to smaller

ADC (more barriers).

In other words, to sum up the present section, in order to estimate the apparent dif-

fusion coefficient along a specific direction it is necessary to apply a magnetic field
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Figure 2.3: In practice, different degrees of diffusion-weighted images can be ob-
tained using different values for the b factor. The larger the b factor, the more the
signal intensity (S) becomes attenuated in the image. This attenuation is modu-
lated by the diffusion coefficient. Infact, the signal in structures with fast diffusion
(for example, water-filled ventricular cavities) decays rapidly with increasing b,
whereas the signal in tissues with low diffusion (for example, grey and white mat-
ter) decreases more slowly. By fitting the signal decay as a function of b, one ob-
tains the apparent diffusion coefficient (ADC) for each elementary volume (voxel)
of the image, [35]. Nowadays, it is used a b value in the range of 700-1000 s/mm2,
[78]

along that direction and perform two measurements, one of which with a null b:

thus, a misure along the X , Y , and Z axis will lead to the computation of ACDx,

ACDy and ACDz . In the next section, the diffusion tensor imaging, a technique

that summarize and the information from the ACDs is introduced.

2.2 Diffusion Tensor Imaging Technique

In tissues, such as brain gray matter, where the measured apparent diffusivity

is largely independent of the orientation of the tissue (i.e. isotropic), it is usu-

ally sufficient to characterize the diffusion proprieties of the tissue with the ADC.

However, in anisotropic media, such as in white matter, where the measured diffu-

sivity is known to depend upon the orientation of the tissue, a single ADC cannot

characterize the orientation-dependent water mobility. In this case, a mathemat-

ical object, describing molecular mobility along each direction and correlations
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between these directions, is required. This object is a second order tensor called

diffusion tensor [3] and it consists of 9 components that are included in a 3 × 3

symmetric matrix (i.e. Dij = Dji, with i, j = x, y, z). The diffusion tensor D has

the following form:

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dzx Dzy Dzz


whereDxx,Dyy,Dzz represent the magnitude of diffusivity along the x, y, z direc-

tions and Dxy, Dxz , Dyz represent the magnitude of diffusion along one direction

arising from a concentration gradient in an orthogonal direction (see figure 2.4).

According to (2.4), the signal attenuation of the MR signal is

S = S0e
−bD = S0e

−
∑

ij bijDij (2.7)

= S0e
−(bxxDxx+byyDyy+bzzDzz+2bxyDxy+2bxzDxz+2byzDyz) (2.8)

with

bij = γ2GiGjδ
2

(
∆t− δ

3

)
. (2.9)

In this formalism, the diffusion-weighting factor b incorporates the direction and

magnitude of the applied diffusion gradient vector (Gx, Gy, Gz).

In order to describe the diffusion, the components of the tensor have to be

evaluated. Since the tensor is symmetric, only six components are independent and

consequently seven diffusion measurements are required at least for each voxel of

the image: one measurement is necessary to evaluate S0, while six measurements

are made along six non collinear directions.

We remark that the values of the components depend on the orientation of the

sample respect to the laboratory reference system, defined by the directions of the

spatial encoding gradients. Hence, the tensor cannot be uniquely described.

However, it exists a reference frame [x′, y′, z′] that coincides with the principal

directions of diffusivity and thus it is determined by the local anatomy. In the
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Figure 2.4: Components of the diffusion tensor D. Diagonal elements Dxx, Dyy,
Dzz are proportional to the diffusion displacement coefficients (ADCs) along the
three directions of the experiment coordinate system. Off-diagonal elements are
proportional to the correlations (covariances) of displacements along these direc-
tions (figure from [24]).

reference frame, the off diagonal terms are null (i.e. the orthogonal directions

appear non correlated) and the tensor is reduced to a diagonal matrix (figure 2.5).

This is called main axes reference system and it can be mathematically obtained by

the diagonalization of the diffusion tensor. Hence, the problem consists in finding

the eigenvalues and the eigenvectors of the matrix D:

Dei = λiei for i = 1, 2, 3 (2.10)

which in matrix form is

DE = ΛE (2.11)
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Figure 2.5: Diffusion components in relation to fibers orientation. Figure (a): Dxx

and Dyy are determined by measurements along the x− and y− directions. Figure
(b): the values are computed in the reference system which coincides with the
direction of the fibers. The figure is taken from [24].

with

E = ( e1 | e2 | e3 ) and Λ =


λ1 0 0

0 λ2 0

0 0 λ3

 (2.12)

where Λ is the matrix of the eigenvalues and E is the orthogonal matrix of the

eigenvectors.

The most intuitive way to conceptualize the information provided by the diffu-

sion tensor is to view it geometrically by the diffusion ellipsoid [3]. An ellipsoid is

a 3D representation of the diffusion distance covered in space by molecules in the

diffusion time interval ∆. This ellipsoid, which can be displayed for each voxel of

the image, is easily calculated from the eigen-diffusivities. Its equation is

(
e1√

2λ1∆

)2

+

(
e2√

2λ2∆

)2

+

(
e3√

2λ3∆

)2

= 1. (2.13)

In particular, the three eigenvectors e1, e2, e3 and the three eigenvalues λ1, λ2, λ3

describe respectively the directions and lengths of the ellipsoid’s axes in descend-

ing order of magnitude (see figure 2.7, first row). The largest eigenvector, termed

the ”primary eigenvector ” and its associated eigenvalue λ1 indicate, respectively,

the direction and magnitude of the greatest water diffusion. The primary eigenvec-
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tor is important for fiber tractography algorithms because this vector indicates the

orientation of axonal fiber bundles. Therefore, λ1 is also termed longitudinal dif-

fusivity, because it specifies the rate of diffusion along the orientation of the fibers.

The second and third eigenvectors are orthogonal to the primary eigenvector, and

their associated eigenvalues λ2 and λ3 give the magnitude of diffusion in the plane

transverse to axonal bundles. Hence, they are also known as radial diffusivities.

The figure 2.6 shows a schematic depiction of diffusion properties through the dif-

fusion ellipsoid scheme.

Finally, it is possible to analyzed the diffusion tensor data by a number of rota-

tionally invariant diffusion parameters, derived from the 3 eigenvalues, in order to

provide information on tissue microstructure and architecture for each voxel.

The mean diffusivity Dav, which characterizes the overall mean-squared displace-

ment of molecules and the overall presence of obstacles to diffusion within a voxel

(average ellipsoid size), is evaluated as follows:

Dav =
Tr(D)

3
=
Dxx +Dyy +Dzz

3
. (2.14)

Among the various scalar indexes proposed to characterize diffusion anisotropy,

the most widely used is the fractional anisotropy (FA) which describes how much

molecular displacement vary in space (ellipsoid eccentricity) and it is related to the

presence of oriented structures. Its formula is:

FA =

√
1

2

√
((λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2)√

λ2
1 + λ2

2 + λ2
3

. (2.15)

This is a very convenient index because it is scaled from 0, isotropic medium, to

1, anisotropic medium, indicating perfectly linear diffusion occurring only along

the primary eigenvector. The fiber orientation information inherent in the primary

eigenvector can be visualized on 2D images by assigning a color to each of 3 mu-

tually orthogonal axes (see figure 2.7, bottom right).
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Figure 2.6: Scheme of diffusion properties via ellipsoid visualization for isotropic
unrestricted diffusion, isotropic restricted diffusion, and anisotropic restricted dif-
fusion [48].

Figure 2.7: Depiction of the eigenvalues, mean diffusivity, FA and a color map of
the fiber orientation. In the first row, λ1, λ2, λ3 are shown with the same intensity
scaling. The eigenvalues are always ordered in descending order of intensity with
the first eigenvalue being the greatest. In the second row, the mean diffusivity, the
fractional anisotropy and a color map of the orientation of the primary eigenvector
are shown. The figure is taken from [48].



Chapter 3

Mathematical Model

In this chapter, we provide the derivation of a mathematical model suitable to

describe a tumoral mass growth. The theoretical framework of our approach comes

from the continuum theory of mixture, which is briefly introduced in section 3.1.

The theory of mixture, which has its roots in the continuum mechanics, is based

on balance equations and conservation principles and it has been widely applied to

systems which can be studied as a mixture of interacting continua. In the second

section, we present a two-species diffuse interface model of tumor growth. It is

a general model formulated for a tumor comprising viable tumor cells and water,

i.e. interstitial fluid which may contain dead cells and other substances. A single

vital nutrient (e.g. oxygen) is taken into account in the model and it is assumed

that the density of the extra-cellular matrix (ECM) remains constant in time and

space and does not significantly degrade or remodel as the tumor mass grows. In

the last part of the chapter, we specifically deal with glioblastoma and we estimate

the biological parameter introduced in our mathematical model.

3.1 A continuum theory of mixtures

The starting point of our research is the theory of mixture. The literature on

this subject is very rich, dating back to the early work on simple mixtures of Fick

34
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and Darcy during the middle of the XIX century and progressing to the general

continuum theories advanced by Truesdell, the pioneer of the modern continuum

models of mixture fluids, in the last years of the 50s [51]. The purely mechanical

model developed by Truesdell was essentially extended and corrected by Muller

(1968), who gave rise to the modern thermodynamical theory of miscible mixtures

[82]. Then, the important and comprehensive article of Bowen [6] and the mono-

graph of Rajagopal and Tao [63] provided a wide review of the relevant literature

on the subject.

Inspired by the article of Bowen [6], in the following we report some basic

notations of the mixture theory and we provide a brief discussion on the mass

balance equation under the incompressibility condition.

3.1.1 Kinematics

The fundamental idea underlying the mixture theory is that a material body or

a mixture B can be composed of N constituent species called phases B1, B2, ..., BN

and in any instant of time, each point of the domain is occupied simultaneously by

particles of all components. It is convenient to describe B in the Eulerian reference

and represent all fields of the model as functions of the spatial variable x ∈ B

and time t ∈ T . We introduce a fixed reference configuration so that the spatial

position occupied by a material point at time t is

x = χα(Xα, t) (3.1)

where χα is the deformation function of the αth constituent and Xα is the position

of a particle of the αth constituent in its reference configuration. Then, the velocity

of a particle in Xα at time t is defined by

vα =
∂χα(Xα, t)

∂t
. (3.2)
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Thus, if Ψ is any function of (x, t), the material derivative of Ψ following the

motion of the αth constituent is

Ψ̇α =
∂Ψ(x, t)
∂t

+∇Ψ(x, t)vα. (3.3)

Given V the total volume of B containing a point (x, t) and mα(x, t) the mass of a

single constituent Bα, we define the apparent mass density ρα of each constituent

αth as

ρα(x, t) =
mα(x, t)
V (x, t)

(3.4)

and consequently the apparent mass density of the mixture at (x, t) is

ρ(x, t) =

N∑
α=1

ρα(x, t). (3.5)

Then, we introduce the true mass density γα of the αth constituent by the relation

γα(x, t) =
mα(x, t)
Vα(x, t)

(3.6)

where Vα(x, t) is the volume occupied by a single Bα. It is then possible to define

a new quantity φα, as follows:

φα(x, t) =
ρα(x, t)
γα(x, t)

=
Vα(x, t)
V (x, t)

. (3.7)

This quantity is called volume fraction and it physically represents the volume of

the αth constituent per unit volume of the mixture. Consequently, we have the

following relation for each αth constituent:

ρα = φαγα. (3.8)
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A mixture is said to be saturated if the constituents satisfy

N∑
α=1

φα(x, t) = 1. (3.9)

Finally, it is useful to introduce the concept of incompressiblility. In a theory

of mixtures, the αth constituent is incompressible if γ̇α is zero which physically

means that γα can only depend on Xα. Consequently, it is usually assumed that,

when the αth constituent is incompressible, γα is constant. In any case, the mixture

is incompressible when every constituent in the mixture is incompressible.

3.1.2 The mass balance equation for mixtures

We suppose that the general mixture B occupies a fixed spatial region Ω in R3

with surface ∂Ω and we introduce a general term modeling the inter-component

mass exchange per unit volume Γα(x, t). Each of the N constituents must satisfy

its own mass balance equation, which written in the integral formulation reads

∂

∂t

∫
Ω
ραdV = −

∮
∂Ω
ραvα · ndS +

∫
Ω

ΓαdV, (3.10)

where n is the outward vector of the element of surface dS. Requiring that (3.10)

holds for every spatial volume, we can localize the mass balance equation for the

αth constituent and, by means of the divergence theorem, we can obtain the Eule-

rian local form of (3.10) which is

∂ρα
∂t

+∇ · (ραvα) = Γα. (3.11)

Then using equation (3.3) and the vector calculus identity ∇ · (fψ) = ψ · ∇f +

f∇ ·ψ, where f is a scalar function and ψ a vector field, equation (3.11) yields to

ρ̇α + ρα∇ · vα = Γα. (3.12)
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If the αth constituent is incompressible, i.e. γ̇α = 0, from (3.8) we have that

ρ̇α = φ̇αγα and it is possible to write (3.12) in term of the volume fraction φα

φ̇α + φα∇ · vα =
Γα
γα
, (3.13)

or equivalently
∂φα
∂t

+∇ · (φαvα) =
Γα
γα
. (3.14)

Finally, we should introduce the mass balance equation for the mixture. We define

the mixture density at (x, t) as

ρ =
N∑
α=1

ρα =
N∑
α=1

γαφα (3.15)

and the mixture velocity at (x, t) as the mass-weighted average of the constituent

velocities:

v =
1

ρ

N∑
α=1

ραvα =
1

ρ

N∑
α=1

γαφαvα. (3.16)

For a closed system, i.e. without any external sources, the mixture density is con-

served:

∂tρ+∇ · (ρv) = 0 (3.17)

and consequently if the N equations (3.11) are summed, the mass exchange terms

and the component velocities are constrained to satisfy

N∑
α=1

Γα = 0 and
N∑
α=1

∇ · (φαvα) =

N∑
α=1

Γα
γα
. (3.18)

Moreover, if the densities are matched, i.e. γα = γ, the mixture velocity is incom-

pressible:

∇ ·

(
N∑
α=1

φαvα

)
= 0. (3.19)
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3.2 Diffuse interface model for tumor growth

3.2.1 Model formulation

Following [8, 10], we consider a simple binary model of a tumor lesion: a

mixture composed by a cellular phase of proliferating cancerous cells with volume

fraction φc and a liquid phase of both host cells and interstitial fluid environment,

in which dead cells may be present, with volume fraction φl. In the present work

we consider healthy cells to behave as liquid phase. These two phases fill all the

available space and consequently the saturation relation holds:

φc + φl = 1. (3.20)

We associate a velocity with each phase: vc is the average velocity for the cell

phase and vl for the liquid phase.

As described in subsection 3.1.2, we propose a model whose governing equations

are driven from mass balances for both constituents. For both phases, we take into

account a volumetric source of mass production/loss, Γi , i = c, l, and a flux of

mass due to chemotactic movements, symbolized by Kc. The mass balances for

the cancerous cell phase and the liquid phase are expressed as follows:

γ

[
∂φc
∂t

+∇ · (φcvc)
]

= Γc +∇ ·Kc (3.21)

γ

[
∂φl
∂t

+∇ · (φlvl)
]

= Γl −∇ ·Kc (3.22)

where, as defined in section 3.1, γ is the true mass density of both constituents. In-

deed, we make the biological hypothesis that the interstitial liquid and the tumoral

cells have the same density equal to the water density γ, which is a reasonable as-

sumption since being cells are composed mostly of water. It is also assumed that

γ is constant, which physically means that both constituents are incompressible.

Since we are considering a close mixture, the mass transfer rates between the two
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phases are matched, i.e. Γc = −Γl, which biologically represents a volume con-

version rate among them. Effectively, as the liquid phase contains both dead cells

and healthy living cells, we have that when a cancerous cell dies, it becomes part of

the liquid phase. Viceversa, if a healthy cell turns into a cancerous cell, it belongs

to the cellular phase.

As mentioned, we consider a flux of mass driven by an increasing chemotactic gra-

dient of nutrients in the formKc = −knρcT∇n, where kn is a specific chemotactic

parameter, T is a tensor defining the preferential directions of the chemotactic mo-

tion along the alignment of fibers and n is the oxygen concentration. This tensor

is obtained handling with the diffusion tensor D, described in Chapter 2. How to

compute T will be explained in Chapter 4 section 2. The introduction of the tensor

T in modeling the flux of mass is particularly important as glioblastoma progres-

sion has been demonstrated to preferentially grow along the directions of the white

matter fibers [11]. In other words, including the tensor T, we manage to describe

the anisotropic extension of glioblastomas. At the same time, the termKc is able to

describe the tendency of tumor cells to direct their movements up to the gradient of

a chemoattractant and down to the gradient of a chemorepellent. The term ∇ ·Kc

appears both in (3.21) and (3.22) but with opposite signs: biologically, this means

that when the cancerous cells move in a region driven by an increasing gradient of

nutrients, then the host tissue and the interstitial fluid should move in turn. In fact,

in each point of the domain the saturation relation must hold.

Finally, if both constituents are incompressible, the mixture is incompressible, i.e.

∇ · (φcvc + φlvl) = 0 (3.23)

and consequently, (3.21) and (3.22) can be rewrite in the equivalent form:

∂φc
∂t

+∇ · (φcvc) =
Γc
γ
−∇ · (knφcT∇n) (3.24)

∇ · (φcvc + (1− φc)vl) = 0. (3.25)
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At this point, in order to close the system it is necessary to define the convective

velocities vc and vl thought the introduction of proper laws. Probably, defining the

relative movement of the phases is the most delicate point in dealing with this kind

of models. This can be done either on the basis of phenomenological arguments

[1], or writing momentum balance equations [12] or by a thermodynamical ap-

proach [83].In the following, using the third method, we introduce the constitutive

laws for the velocities.

3.2.2 Constitutive equations

In this section we propose an energy formulation for viscous interactions and

mechanical forces which lead to cell-cell and cell-matrix adhesion. The purpose

is to define constitutive - thermodynamically consistent - equations for the phase

velocities in order to close the model [1]. At biological level, cells are able to

adhere to each other or to the extracellular matrix they are in contact with through

adhesion molecules called CAMs located at the cellular plasma membrane [45,

59]. Moreover CAMs could play a pivotal role in cancer progression and invasion

and contribute to a variety of functions including signal transduction, cell growth

and differentiation [56].

These interaction mechanisms can be modeled by the expression of Helmholtz free

energy for the cancerous phase [83], which can be written as an integral taken over

the entire tumor/host domain:

Fc =

∫
Ω

(
ψ(φc) +

ε2

2
|∇φc|2

)
dΩ. (3.26)

In the above equation, ψ represents the bulk free energy per unit of volume due

to local interactions while the second (gradient energy) term models larger range

interactions among the components and penalizes bigger gradients of cellular con-

centrations. In particular, the thickness of the diffuse interface between the tumor

and host tissue depends on the constant ε with a width that ranges between 1-100
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µm [17]. Specifically, smaller values of ε lead to a less diffuse interfacial region is

[83].

Then, we hypothesize that the energy dissipation in the system is due only to vis-

cous interactions among cells and thus, mathematically, we have that

W =

∫
Ω

(
Mφc

2
(vc − vl)2

)
dΩ (3.27)

where M is the friction parameter, that we will take as a constant.

Following Doi and Onuki [43], we use a variational approach to the previous

energy formulation in order to obtain constitutive laws for the velocities vc and

vl. The Rayleigh’s principle indicates that the system dynamic can be obtained by

minimizing Rayleighian, defined as

R = W +
dFc
dt

. (3.28)

Equation (3.28) guarantees that the expression for phase velocities respects the sec-

ond law of the thermodynamics.

Generally speaking, this principle is a simply variational statement for general ki-

netic equation for the thermodynamic quantities xi (i = 1, 2):

dxi
dt

= −
∑
j

Lij(x)
∂F (xi)

∂xj
(3.29)

where F is the thermodynamic free energy and Lij are the kinetic coefficients.

Calling Mij the inverse matrix of Lij , equation (3.29) becomes:

∑
j

Mij
dxj
dt

= − ∂F
∂xi

. (3.30)

Equation (3.30) can be stated in a variational principle: solving equation (3.30) is
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equivalent to minimize the Rayleighian

R =
∑

Mij ẋiẋj +
∑ ∂F

∂xi
ẋi (3.31)

with respect to ẋi. Finally, callingW =
∑
Mij ẋiẋj the dissipation function, since

it represents the energy dissipation for given ẋi, and Ḟ =
∑ ∂F

∂xi
ẋi the free energy

change due to ẋi, (3.28) is obtained.

We define the Rayleigh coefficient for the tumor model replacing the expres-

sion of the adhesion energy (3.26) and the dissipation energy (3.27) in the defini-

tion given by Doi and Onuki (3.28) and we impose the incompressibility constraint

introducing the Lagrange multiplier p. The functional to be minimized is

R =

∫
Ω

[
Mφc

2
(vc − vl)2 +

(
∂ψ

∂φc
− ε2∆φc

)
(Γc +∇ ·Kc −∇ · (φcvc)) +

−p∇ · (φcvc + φlvl)] dΩ. (3.32)

Then we compute the functional derivative with respect to vc and vl and we impose
δR
δvi = 0 with i = c, l. The constitutive equations are:

Mφc(vl − vc) + φl∇p = 0 (3.33)

Mφc(vc − vl) + φc∇
(
∂ψ

∂φc
− ε2∆φc

)
+ φc∇p = 0. (3.34)

Eliminating the pressure p in the equations (3.33) and (3.34), we obtain the relative

movement of the two phases

vc − vl = −1− φc
M
∇
(
∂ψ

∂φc
− ε2∆φc

)
. (3.35)

If there aren’t any external forces and the mixture is characterized by a high vis-

cosity, the center of mass doesn’t move, i.e. v = φcvc +φlvl = 0. In this case, it is
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possible to explicate the velocity of the cell phase by a Darcy-like law, as follows:

vc = −K(φc)∇Σ (3.36)

K(φc) =
(1− φc)2

M
(3.37)

where K is a motility coefficient possibly depending on the volume fraction and Σ

is the excess of pressure exerted by the cells which is defined by

Σ =
∂ψ

∂φc
− ε2∆φc = f(φc)− ε2∆φc. (3.38)

Moreover if equations (3.33) and (3.34) are summed, we have that∇p = −φc∇Σ:

the interstitial pressure p and the excess of pressure Σ have the same typical value χ

and therefore the term ε/
√
χ gives a characteristic distance of interaction between

cells, typically estimated by the cell size.

Conclusively, it is important to explain the biological meaning of Σ in (3.36). We

consider the case of a homogeneous system, i.e. ∇φc = 0, so that Σ is simplified to

f(φc) = ∂ψ
∂φc

. For physical consistency, cell-cells interactions should be attractive

under a certain density of cells and repulsive at higher densities. Mathematically,

it exists a threshold value φe called state of equilibrium [1] for which f(φe) = 0

and no excess pressure is exerted on neighbors. Thus, for φc < φe, f(φc) < 0

and cells are attracted to each other, while for φc > φe, f(φc) > 0 and cells

experience a repulsive force. Unlike the Cahn-Hilliard type proposed in [83], we

use a phenomenological form of f(φc) [1, 8, 10] that obeys to the physical and

biological constraints explained above:

f(φc) = E
φ2
c (φc − φe)

1− φc
(3.39)

where E is the Young Modulus of the brain matter. A schematic scheme of cells

behavior in relation to Σ(φc) is depicted in figure 3.1 [1, 8, 10].
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Figure 3.1: Schematic diagram showing the behavior of cells in relation to Σ(φc)
in the case of a homogeneous tissue. Two cells which are far apart ignore each
other, but, if the distance between them falls below a certain value, fact that could
be caused by an increase of density, they are attracted to each other. When cells in
contact are pulled apart, an adhesive force competes with cell separation and if they
are are too close, they experience a repulsive force. The repulsive force becomes
infinite in the limit as the cells are packed so densely that they fill the whole control
volume [8]. In the figure, the black arrows represent the forces experienced by the
black cells due to the presence of the red cells (and conversely).

3.2.3 Nutrient diffusion

In this section we investigate the relation between nutrients availability and

tumor growth and we propose a governing equation for the nutrient concentration

n. In the present work, we consider oxygen as the main nutrient for tumoral cells

and we suppose that the vasculature is homogeneous in the whole domain. We do

not take into account the angiogenesis, that is the formation of new blood vessels,

in the model. In this situation, tumoral cells receive oxygen and growth factors

only via diffusion through the host tissue (figure 3.2). As mentioned earlier, the

term Γc in (3.21) represents the cell proliferation/death rate and it is assumed to be
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dependent linearly on the concentration of the diffusing nutrient n:

Γc
γ

= νc
ρc
γ

(
n

ns
− δc

)
(1− φc) = νcφc

(
n

ns
− δc

)
(1− φc) (3.40)

where νc is the tumoral cell proliferation rate, ns is a typical nutrient concentration

inside the tissue and δc is the rate of apoptosis in hypoxia conditions. Splitting

(3.40), the term νcφc(n/ns)(1 − φc) corresponds to the rate of volume growth

due to mitosis while νcφcδc(1 − φc) is the rate of volume loss due to apoptosis,

which is actually caused by scarceness of nourishment. The volumetric cell pro-

liferation/death term is weighed by (1 − φc) because as φc gets close to 1, the

proliferation/death decreases: as a matter of fact, when φc is equal to 1 the system

is in the saturation state and all the available space is filled by the cancerous vol-

ume fraction, which has reached its maximum values.

Then we propose a diffusion reaction equation for the nutrients concentration n.

At a first approximation, we model the host tissue at equilibrium, where the net

nutrient uptake therein is negligible compared to the uptake by tumor cells. In

particular, we assume that whatever oxygen is uptake by the host tissue it is instan-

taneously replaced by the normal vasculature. This is not the case of the tumor,

where the uptake in general exceeds the supply, as discussed before [83]. There-

fore the distribution of nutrients is described by the following PDE:

∂n

∂t
= ∇ · (D∇n) + Sn(ns − n)− δnφcn. (3.41)

where D is the diffusion tensor, δn is the rate of consumption of nutrients by tumor

cells, Sn is the blood tissue transfer rate of nutrients and ns is the physiological

concentration of oxygen in blood at the capillaries. In particular, each component

of tensor D expresses the diffusion value of water molecules along a specific direc-

tion. Since we make the biological assumption that oxygen is carried by water, then

the local values of tensor D describe how nutrients diffuse effectively in a specific

point of the brain. As regards the terms with Sn and δn, we have that Sn(ns − n)
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Figure 3.2: We consider oxygen as the main nutrients for cancerous cells and we
suppose that they receive the supplies only via diffusion through the host tissue.

describes the source of nutrients from the vasculature and δnφcn models the nutri-

ent uptake by cells.

3.3 Parameter estimation

One of the major limiting factors in the usefulness of mathematical models lies

within the ability to parameterize them. In fact, in literature it is possible to find

a wide range of parameters and the goal of mathematicians is to find out which

parameters best suit the model in order to obtain a realistic outcome. In this sec-

tion, we discuss the evaluation of the biological values found in literature for the

parameters used in the previous equations.

First of all, we need to evaluate the interstitial fluid pressure χ, the cell volume

fraction at mechanical equilibrium φe and the inter-phase friction parameter M .

For many years, the research on tumor pathophysiology, that is the study of the

functional changes associated with a disease, lagged behind that on cellular events

of cancer. Recently, that field of study has gained in importance and, in particular,

the alterations of the vasculature and the interstitium have begun to be object of

study. In fact they seem to have a specific role in the growth of the tumor and in
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its clinical development. For example, brain tumors are characterized by a higher

interstitial fluid pressure (IPF) compared to that of the normal brain tissue, which

is around 106.64 Pa [5]. In [26], the intratumor pressure has been examined as a

function of tumor size. They found out that as the tumor size increases, IPF rises

presumably due to the proliferation of tumor cells in a confined area and due to a

reduction in tumor blood flow. Measurements in experimental tumors have given

an estimation of 1199 ± 333 Pa for the IPF [26]. Other reasons for the increased

IPF might be vessels abnormalities, fibrosis, contraction of the interstitial matrix

and enlargement of the extracellular space (ECS). In [7], the enlargement of the

ECS in different brain tumors has been studied and a value of 61,1% is given for

the glioblastoma. Since neoplastic tissues are formed by vascular, interstitial and

cellular space, it seems reasonable to estimate φe with 38,9 %. For what con-

cerns the hydraulic conductivity, it has been studied in [70] that it depends on the

tissue interstitial space volume fraction, cell diameter and tissue architecture (tor-

tuousity of the interstitial space) and it is defined as the ratio between the Darcy

permeability and the viscosity of the tissue. Thus, from (3.37) we are allowed to

estimate M as the inverse of the hydraulic conductivity obtaining values between

1377.9− 4286.7 mm−2 Pa day.

Then, we have to evaluate the characteristic distance of cells interactions which can

be approximated by the diameter of a cell which ranges between 10 and 20 µm,

values that have been observed in experimental data by [75, 77]. The proliferation

parameter can be estimated in vitro from typical doubling time of well oxygenated

glioma cells and it varies between 24 h and 48 h [17, 27], while an estimate of the

threshold for cell death rate due to anoxia is given by the range 0.15 - 0.5 [17, 20].

In order to obtain an evaluation of the oxygen consumption rate δn we make use

of the relation ln =
√
Dn/δn, where ln is the distance covered by a molecule of

oxygen before being uptake by a cancerous cell and Dn is the average oxygen dif-

fusion coefficient. In [13, 17, 57], ln is set to 100 µm while, in [4, 29, 42, 77], Dn

is evaluated with 86.4 mm2day−1. Then, we have to evaluate Sn and ns. The first
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is the oxygen production rate from the source of nutrient, i.e. blood supply, and its

value, which is hard to estimate, is set to 104 day−1 in [10] while the second is the

initial oxygen concentration outside the tumor and it has been evaluated with 0.07

mM in [81] is evaluated to be 0.07 mM.

Unfortunately, data on the chemotactic coefficient of glioma cells in response to

oxygen concentration are not present in literature, thus we refer to typical chemo-

tactic coefficient found for bacteria in response to glucose. In particular in [16] it

was estimated to be equal to 1296 mm2 mM−1 day−1. Finally, the Young modulus

E is set to 694 Pa in [11].

Of course more biological experiments are highly requested to derive biological

parameters which are consistent with the object of the research.

In table 3.1 we report a scheme of the biological parameters previously introduced.

Parameter Description Value References
φe Cell volume fraction 0.38 [7]
M Interphase friction 1377.9-4286.7 mm−2 Pa day [70]
χ IPF in healthy brain 106.64 Pa [5]
χ IPF in GBM 866-1530 Pa [26]

ε/
√
χ GBM cell size 10 - 20 µm [81, 75, 77]

νc GBM cell proliferation rate 0.5-1 day−1 [17, 27]
δc Threshold of O2 for anoxia 0.15 -0.5 [17, 20]
Dn O2 diffusion coefficient in brain 86.4 mm2day−1 [4, 29, 42, 77]
δn O2 consumption rate of the brain 8640 day−1 [4, 29, 42, 77]
Sn Blood tissue transfer rate of O2 104 day−1 [10]
ns O2 concentration in brain vessels 0.07 mM [81]
ln O2 penetration length 0.1 mm [13, 17, 57]
kn Chemotactic coefficient 1296 mm2 mM−1 day−1 [16]
E Young modulus 694 Pa [11]

Table 3.1: Estimation of the model parameters taken from literature in healthy and
diseased brain.

3.4 The complete model formulation

To conclude the chapter, in the following, we sum up the governing equations

for the glioblastoma tumor growth.
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Figure 3.3: Excess stress Σ/E exerted by the cells in a homogeneous tissue
(f/E = Σ/E as∇φ = 0) with real data.

In order to perform numerical simulations, it is useful to adimenzionalize (3.24)

and (3.41) with respect to nutrient concentration. In particular, given ns the phys-

iological concentration of oxygen in blood vessels, we have that the adimensional

concentration n̂ is obtained as

n̂ =
n

ns
, (3.42)

where n is the dimensional variable. In this way, both n̂ and φc belong to the

interval [0, 1], and it will be easier to understand the numerical results. Regarding

space and time variables, we will not consider dimensionless quantities. Indeed,

the aim of the present work is to perform numerical simulations on a real geometry,

using patient-specific data.

Dropping the hat and the index for the cell phase, the governing equations can be
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written as

∂φ

∂t
= ∇ ·

(
φ(1− φ)2

M
∇(f(φ)− ε2∆φ)

)
+ νφ(n− δ)(1− φ)−∇ · (knTφns∇n)

(3.43)

∂n

∂t
= ∇ · (D∇n) + Sn(1− n)− δnφn. (3.44)



Chapter 4

Numerical Implementation

In the present chapter, we give details on the numerical implementation of the

model presented in chapter 3.

In the first section, we illustrate how to obtain a computational mesh from medi-

cal images. In particular, numerical simulations of biological phenomena require

very complex domains and thus it is essential to create a well refined mesh close

to the reality without exceeding in computational costs. We start from a series of

MRIs of a patient affected by glioblastoma, which have been gently provided by

the Istituto Neurologico Carlo Besta. To obtain the labeled map of the brain, we

make use of a software called Slicer3D [64]. Then, we manage to create the com-

putational mesh using an open-source software named Vmtk (Vascular Modeling

Tool Kit, [31]) through a Python interface. Vmtk has been realized on the basis

of other open-source libraries such as ITK (Insight segmentation and registration

ToolKit [25]), VTK (Visualization ToolKit [32]) and Tetgen (Quality Tetrahedral

Mesh Generator [76]). To visualize and analyze the images we use an open-source

software based on the VTK library named Paraview [58].

In the second section of this chapter, we describe how we include diffusion ten-

sor medical data in the model. In particular, we illustrate the difference between

the diffusion tensor D and the tensor of preferential directions T. We also intro-

duce the problem of medical images registration and the use of an open source

52
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software named FSL [18], which offers two robust registration tools named FNIRT

and FLIRT.

In the third section, the continuum and discrete weak statements of the model are

introduced. We use linear tetrahedron P1 elements to discretize the problem and

we realize numerical simulations making use of an open-source software called

FEniCS [60], which is capable of providing efficient solutions of differential equa-

tions using the finite elements method.

4.1 Mesh creation

4.1.1 Medical image segmentation

The segmentation of images is the process of identifying and labeling regions

of interest within an image. The usual starting point in medical image segmenta-

tion is a grey scale MR image, as shown in figure 4.1. As discussed in chapter 2,

the grey intensity is correlated to the tissue’s diffusion proprieties. To obtain infor-

mation about tissues and their features it is necessary to identify brain areas and put

the labels on the different regions. To achieve this goal, we start from a series of

MRIs and we use a software package for visualization and computation of medical

images, called Slicer3D. The procedure is performed using a module implemented

in the software called EMSegmenter, thanks to which anatomical structures can be

automatically segmented. We identify four areas of interest, i.e. gray matter, white

matter, cerebrospinal fluid and background, and we specify the labels to associate

to each of this region. Then, since the algorithm uses anatomical atlas, we link the

probabilistic atlases to the anatomical structures defined above and finally we can

run the algorithm and create the labeled map we need. The segmented image ob-

tained is depicted in figure 4.2. Once the brain segmentation is done, we manually

segment the glioblastoma tumor region using a module named Editor, as shown in

figure 4.3.
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(a) Axial slice (b) Sagittal slice (c) Coronal slice

Figure 4.1: In the above figures axial, sagittal and coronal slices of the T1 3D TFE
mdc rest SENSE we used for image segmentation are depicted. It is possible to see
the tumor region indicated by the white arrow.

(a) Axial slice (b) Sagittal slice (c) Coronal slice

Figure 4.2: Segmented image of the brain. The white region represents the white
matter, while the grey areas indicate the grey matter. The cerebrospinal fluid is
labeled by the blue color. At this step, the tumor is not segmented yet and due to
the grey intensity of tumor’s voxels, the cancerous region is seen as grey matter by
EMSegmenter .

Figure 4.3: After the whole brain segmentation, glioblastoma is manually seg-
mented slice by slice and then overlapped to the labelled map. In the figure, three
slices of the brain map in the tumoral interval are illustrated, from the bottom to
the top of the head.
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4.1.2 Mesh generation

After the creation of the brain labeled map, we need to obtain the computa-

tional mesh. To achieve our goal, we use some algorithms belonging to the vmtk

library. Firstly, the brain surface is extracted from the labeled map, re-meshed with

triangulation and cleaned and smoothed, as shown in figure 4.4. It is really impor-

tant to obtain a regular triangulation without holes or intersection of edges. At this

step, the mesh is still a 2D surface embedded in R3. Once the surface is smooth and

perfectly regular, the next step concerns the creation of the tetrahedral mesh. To

perform the 3D computational mesh, we use an automatic mesh generator software

called Tetgen, [76]. Then, the resulting unstructured grid is refined near the area

where the cancer grows: in this way, the computational cost is kept under control

as the numerical solution is computed in a more precise way only in the region of

interest, as exemplified in figure 4.5. After the mesh refinement, it is necessary to

superpose the labelled map to the grid such that the information of the tissues are

passed on the geometry, as depicted in figure 4.6.

To perform the mesh creation process we use numerical codes which have been

proposed in a previous research [41] developed at the Politecnico di Milano. A

special thanks is given to M.Manica and E. Faggiano

(a) Surface before smoothing process (b) Surface after smoothing process

Figure 4.4: Figure (a): the surface is extracted from the labeled map using the
vmtkmarchingcubes algorithm. Figure (b): the rough surface is smoothed and
cleaned in order to obtain a regular surface triangulation.
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(a) Clipped mesh plane xy - before the refinement

(b) Clipped mesh plane xy - after the refinement

(c) Clipped mesh plane xy - detail of the refined area

Figure 4.5: Clip of the 3D mesh before (figure (a)) and after (figures (b) and (c)
) the refinement of the tumoral area. In this way the computed solution is more
accurate in the area of interest and computational costs are kept under control.
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(a) Clipped labeled mesh - view plane xy

(b) Clipped labeled mesh - view plane yz

Figure 4.6: Labeled mesh. Thanks to the algorithm proposed by M.Manica [41]
, the information about biological tissues are passed on the mesh. The red area
represents the cerebrospinal fluid, the light blue area represents the white matter
while the dark blue area stands for the grey matter. The brain is cut with an oblique
plane in order to show the interior area.
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4.2 Modeling tensor D and tensor T

In this section, we describe how we deal with the diffusion tensor medical data,

gently provided by the Istituto Neurologico Carlo Besta, and how we manage to

include real data in the model. We start from these biological facts:

• cerebral matter is heterogeneous: diffusion in grey matter is isotropic while

in white matter it is anisotropic. Indeed water diffusion is relatively unim-

peded in the direction parallel to the fiber orientation while it is highly re-

stricted and hindered in the directions perpendicular to the fibers of the white

matter;

• glioblastoma presents an infiltrative nature and grows in white matter more

than in grey matter, following the alignment of the fibers;

• cells have the capability to migrate and tend to move towards higher concen-

tration of nutrients.

As described in chapter 2, diffusion tensor imaging is based on the computation of

water diffusion in biological tissue. Water diffusion is caused primarily by random

thermal fluctuations and it is modulated by the interactions with obstacles in the

environment such as cellular membranes, organelles and ECM fibers. Thus, diffu-

sion tensor D is able to reveal the microstructure of the tissues and to describe the

degree of anisotropy and the orientation of diffusion. Our work is driven by the

idea that knowing the microstructure of the brain and the preferential directions of

water diffusion could be helpful in predicting more truthfully the development of

glioblastoma since anisotropy influences nutrients diffusion and cells’ movements.

Therefore, we include the tensor D in the diffusion term of equation (3.44). As

mentioned in subsection 3.2.3, in this way we are allowed to know locally the value

of the oxygen diffusion coefficient in each point of the domain and consequently to

obtain a patient-specific model. Moreover, we add the tensor T in the flux of mass

of the cellular fraction in (3.43). It expresses the preferential directions of motility
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and it is the mathematical object that includes anisotropy in the model.

In the following we describe how to obtain tensor the D and the tensor T from

diffusion tensor medical images.

The starting point are the six maps of the DTI in greyscale, each of which rep-

resents a component of the diffusion tensor, as shown in figure 4.7. We remind

that the tensor is symmetric, i.e. Dij = Dji, and that the diagonal components

Dxx, Dyy, Dzz represent the diffusion variances along the x, y, z axis while the

off diagonal terms Dxy, Dxz , Dyz represent the diffusion covariance. A diffusion

value is associated to the voxels of each image: for example the voxels within the

area occupied by the lateral ventricles, where there is fluid, have a value of 2999

m2s−1, while the voxels in a region of white matter have an intensity in the range

of 800-1100 m2s−1. Thus, the former are brighter while the latter appear darker.

Figure 4.7: The six medical images of the diffusion tensor. Each of them represents
a component of the tensor. Along the diagonal there are Dxx, Dyy, Dzz , while the
off diagonal images represent the covariance terms Dxy, Dxz , Dyz . The tensor is
symmetric, i.e. Dij = Dji
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In order to obtain tensor D, we need to specify that DTI medical images must

be registered with the T1-MRI image used for creating the computational mesh.

As a matter of fact, the six images of the DTI are the result of a phase of post-

processing of DWIs acquired during medical examinations and thus they are not

necessarily registered with the T1 data. We register Dij images on the T1 used for

the mesh creation thanks to an opens source software called FSL [18], which offers

two fully automated and accurate registration tools named FLIRT and FNIRT .

Once the medical images are aligned, the extrapolation of the data from each of the

Dij images can be obtained by an algorithm [41] that associates the diffusion value

of a specific voxel in the medical image to the right tetrahedron which occupies the

same location (of the voxel) in the computational mesh, as illustrated in figure 4.8.

The resulting data are then simply included in the model thanks to specific FEniCS

functions, as exemplified in the codes of appendix A.

Now, we focus on how the tensor of the preferential directions is obtained. For

each voxel of the medical image, the tensor D can be written as

D = DnD̂ (4.1)

where Dn is the mean diffusivity which is defined as 1/3Tr(D) and indicates the

intensity of the diffusion process, whereas D̂ takes into account the anisotropy of

the random movements in the different directions. We remind that the trace of a

tensor is rotationally invariant and that the mean diffusivity is an inverse measure

of the tissue density and it gives an indication of the anisotropy of the tissues and,

indeed, it is very similar for both grey matter and white matter and higher for CSF.

We illustrate the mean diffusivity on the mesh cut along the plane xy in figure 4.9.

Supposing that cells can be chemotactically move along the same path of water

diffusion, following the alignment of the fibers, the identification

D̂ = T (4.2)
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is possible. The tensor

T =


Txx Txy Txz

Txy Tyy Tyz

Tzx Tzy Tzz


is defined for each tetrahedron of the mesh and expresses the preferential direction

of diffusion within the element. Each component of T is obtained weighting the

corrisponding component of the tensor D with the mean diffusivity:

Tij =
Dij

1/3 (Dxx +Dyy +Dzz)
, with i, j = x, y, z. (4.3)

Moreover, comparing the components it is possible to know if the tissue is isotropic

or anisotropic. In fact, in CSF and in grey matter Txx ≈ Tyy ≈ Tzz ≈ 1 and

Txy ≈ Txz ≈ Tyz ≈ 0: in these regions the tensor T becomes the identity tensor

and the diffusion is isotropic. In white matter, instead, Tii with i = x, y, z varies

between 0 and 3 and Tij with i = x, y, z between −1 and 1, excluding the value 0

and consequently the diffusion is anisotropic. For instance, if we consider a region

where Txx ≈ 3, Tyy and Tzz should be almost zero which means that water will

move more easily along x-direction. In figure 4.10 we illustrate the components of

tensor T on a mesh clipped along the xy plane in the middle point of z-axis.

As for the tensor D, the components Tij are then included in the relative govern-

ing equation thanks to specific FEniCS tools, as explained in appendix A. We

should mention that we create the components of the tensors as objects defined

on each tetrahedron of the mesh. Thanks to these specific FEniCS tools, we are

able to transform the components as object defined on the degrees of freedom. In

particular, the ”changing” is done interpolating linearly the components that result

continuos on the whole domain.
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Figure 4.8: Patient-specific components of tensor D depicted on the computational
mesh cut along the plane xy. Comparing the images of the diagonal components
of the tensor D, it can be noticed that the diffusion coefficient is high in CSF (red
colored areas), while it is lower and very similar for both GM and GM. As concerns
the off diagonal elements, it is possible to observe that the diffusion coefficient can
assume negative values. Voxels intensities are expressed in mm2 day−1.

Figure 4.9: Mean diffusivity mapped on the computational mesh cut along the
plane xy. We remind that the mean diffusivity is computed as 1/3Tr(D), it is
an inverse measure of the tissue density and, thus, it is very similar for both grey
matter and white matter and higher for CSF. Voxels intensities are expressed in
mm2 day−1.
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Figure 4.10: Patient-specific components of tensor T depicted on the computa-
tional mesh cut along the plane xy. Comparing the images of the diagonal com-
ponents of the tensor T it is possible to observe the anisotropy of the white matter:
for instance, x-axis seems to be the preferential direction in corpus callosum, e.g.
Txx is almost red in this area, while Tyy and Tzz are darker blue. In the brain areas
occupied by grey matter and CSF, the components are almost similar and equal to
one, e.g. the mesh is light blue coloured. Comparing the off diagonal elements of
tensor T, it is possible to notice that Tij varies between−1 and 1 and, in particular,
it is almost zero in isotropic areas.
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4.3 Model implementation

4.3.1 Continuous weak formulation

We consider a bounded domain Ω ∈ R3, representing the brain, and a time pe-

riod [0, T ], T <∞, representing the time interval in which the tumor is evolving.

The aim is to determine the unknown fields φ(x, t) and n(x, t) such that ∀ x ∈ Ω

and ∀ t ∈ [0, T ] the following equations are satisfied:

∂φ

∂t
−∇ ·

(
φK(φ)∇

(
f(φ)− ε2∆φ

))
− νφ(n− δ)(1− φ) +∇ · (knnsφT∇n) = 0

(4.4)

∂n

∂t
−∇ · (D∇n)− Sn(1− n) + δnφn = 0. (4.5)

where K(φ) and f(φ) are defined as in (3.37) and (3.39) respectively, the param-

eters are chosen on the basis of biological values found in literature, which have

been reported in Table 3.1, and the tensor D and the tensor T have the form dis-

cussed in section 4.2.

In order to have a well-posed problem, it is necessary to impose initial conditions

for φ and n, i.e. the cancer cell distribution and the nutrient distribution for t = 0.

As mentioned, glioblastoma grows infiltratively and differs from many solid tu-

mors because it is characterized by a smooth gradient of tumor cell density instead

of presenting a sharp interface at the host/tumor boundary. Thus, it seems reason-

able to hypothesize that φ(x, 0) = φ0(x) follows a normal distribution in space: we

suppose that it reaches a maximum value bigger than φe in the center of the tumor

and decreases to zero, as shown in figure 4.11. Furthermore, we make the hypoth-

esis that the brain area with φ0(x) < ε+ represents the healthy tissue, where ε+ is

a threshold value that we set equals to 0.02. For numerical simulations described

in Chapter 5 and in Chapter 6 section 1, we make the assumption that the initial

tumor configuration has a spherical shape, as depicted in figures 4.12 and 4.13.
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Figure 4.11: The cellular fraction follows a normal profile: it reaches a maxi-
mum value bigger than φe and decreases smoothly to zero. The brain tissue where
φ0(x) < 0.02 represents healthy tissue. The values of the x-axis are expressed in
mm and x = 0 represents the center of the tumor.

(a) Initial φ distribution - plane xy (b) Initial φ distribution - plane xy - isoline

Figure 4.12: Initial distribution of φ in the brain mesh, clipped mesh along the
plane xy. Figure (a): as it is possible to notice, φ reaches its maximum value in the
center of the tumor and decreases smoothly to zero. Figure (b): the threshold value
ε = 0.02 is specified by the isoline.
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(a) Almost spherical shape of the tumor at
t = 0

(b) Clipped tumor at t = 0

Figure 4.13: In the left figure, it is shown the initial tumor configuration obtained
thresholding φ at 0.02. It presents almost a spherical shape. In the right figure, it is
depicted the clipped tumor: it is possible to notice that the distribution of φ has its
maximum in the center of the tumor and decreases getting closer to the boundaries.

Regarding the initial oxygen concentration n(x, 0) = n0(x), we solve the steady

version of the nutrient governing equation, i.e. ∀ x ∈ Ω we have to determine the

unknown field n0(x) such that the following equation is satisfied:

∇ · (D∇n0) + Sn(1− n0)− δnφ0n0 = 0. (4.6)

where φ0 is the initial cancerous distribution. As it is illustrated in figure 4.14, the

oxygen concentration is equal to 1 outside the tumor area and decreases getting

closer to the core of the glioblastoma, in accordance with the increase of φ0 in this

area.

In order to solve the problem, it is also mandatory to define boundary conditions for

the governing equations. Since part of the boundary of the domain is represented by

the cranial skull where the glioblastoma can not expand and for the fact that rarely

brain tumors metastasize outside the brain, we impose a null Dirichlet condition

and a null Neumann condition for the cell volume fraction at the boundary:

∀ t ∈ [0, T ] φ = 0, on ∂Ω, (4.7)

∀ t ∈ [0, T ] ∇φ · n̂ = 0, on ∂Ω, (4.8)



CHAPTER 4. NUMERICAL IMPLEMENTATION 67

Figure 4.14: Initial distribution of n in the brain in a section along plane xy. As
it is expected, the oxygen concentration decreases inside the glioblastoma, reach-
ing the minimum value in the center of the tumor. Outside that area, the oxygen
concentration is not affected by the presence of the tumor.

where n̂ is the outward boundary normal.

For the nutrients we choose the Dirichlet condition

∀ t ∈ [0, T ] n = 1, on ∂Ω, (4.9)

since we suppose that the brain boundary is far enough from the tumor location and

consequently the oxygen concentration is maintained constant by the vasculature.

Finally, as (4.4) is a fourth-order equation, it is useful to rephrase it as two coupled

second-order equations, as follows:

∂φ

∂t
−∇ · (φK(φ)∇Σ)− νφ(n− δ)(1− φ) +∇ · (knnsφT∇n) = 0 (4.10)

Σ = f(φ)− ε2∆φ. (4.11)

In order to obtain the weak formulation of the model, we multiply each equa-

tion by a smooth test function taken from a specific functional space (that will be

introduced later) and we integrate over the domain. Then, using the Green identity,
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i.e.
∫

Ω v∆u dΩ = −
∫

Ω∇u · ∇v dΩ +
∫
∂Ω v∇u · n̂ dS, we obtain:

∫
Ω

∂φ

∂t
v dΩ−

∫
∂Ω

v φK(φ)∇Σ · n̂ dS +

∫
Ω

φK(φ)∇Σ · ∇v dΩ +

−
∫

Ω

νφ(n− δ)(1− φ)v dΩ +

∫
∂Ω

knnsTφ∇n · n̂ v dS −
∫

Ω

knnsTφ∇n · ∇v dΩ = 0,

(4.12)∫
Ω

Σw dΩ−
∫

Ω

f(φ)w dΩ + ε2
∫
∂Ω

w∇φ · n̂ dS − ε2
∫

Ω

∇φ · ∇w dΩ = 0, (4.13)∫
Ω

∂n

∂t
q dΩ−

∫
∂Ω

D∇n · n̂ q dS +

∫
Ω

D∇n · ∇q dΩ−
∫

Ω

Sn(1− n)q dΩ +

+

∫
Ω

δn φn q dΩ = 0. (4.14)

For the functional spaces, we will choose v, w and q in V = [H1
0 (Ω)]3, where

H1
0 (Ω) =

{
v ∈ L2(Ω) with ∇v ∈ L2(Ω) : v = 0 on ∂Ω

}
(4.15)

We need to point out that for the equation (4.14) we are making an asymmetric

choice for the functional spaces. In fact, for the nutrient concentration we impose

a non homogenous Dirichlet condition and consequently we look for a solution

n(x, ·) in Q = [H1(Ω)]3, where

H1(Ω) =
{
v ∈ L2(Ω) with ∇v ∈ L2(Ω)

}
, (4.16)

while the function test is taken in [H1
0 (Ω)]3. For a good weak formulation, we

should substitute a new variable n̂ = n − 1 to n. In this way, the new variable

satisfies a homogeneous Dirichlet condition and it can be taken in [H1
0 (Ω)]3, as the

test function. Actually, as it will be explained in appendix A, the software we use

to implement the governing equations naturally imposes Dirichlet conditions and

the above issue doesn’t have to be taken in consideration.

Therefore, with the choices (4.15), the weak statement of equations (4.4) and

(4.5) reads:

find φ ∈ L2([0, T ]; [H1(Ω)]3) and n ∈ L2([0, T ]; [H1(Ω)]3) with boundary and
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initial conditions as discussed above, such that:

∫
Ω

∂φ

∂t
v dΩ +

∫
Ω

φK(φ)∇Σ · ∇v dΩ−
∫

Ω

νφ(n− δ)(1− φ)v dΩ

−
∫

Ω

knnsTφ∇n · ∇v dΩ = 0, ∀ v ∈ V (4.17)∫
Ω

Σw dΩ−
∫

Ω

f(φ)w dΩ− ε2
∫

Ω

∇φ · ∇w dΩ = 0, ∀w ∈ V (4.18)∫
Ω

∂n

∂t
q dΩ +

∫
Ω

D∇n · ∇q dΩ−
∫

Ω

Sn(1− n)q dΩ

+

∫
Ω

δn φn q dΩ = 0, ∀ q ∈ V. (4.19)

4.3.2 Numerical model

To solve the model numerically, we need to transform the continuous varia-

tional problem (4.17), (4.18), (4.19) into a discrete variational problem. First of all,

we proceed performing a spatial discretization with finite element. We use linear

tetrahedron (P1) elements to discretize the problem. Consequently, the semidis-

crete variational problem is :

∀ t ∈ [0, T ] , find φh = φh(t) ∈ Vh ⊂ V and nh = nh(t) ∈ Qh ⊂ Q such that:

∫
Ω

∂φh
∂t

vh dΩ +

∫
Ω

φhK(φh)∇Σh · ∇vh dΩ−
∫

Ω

νφh(nh − δ)(1− φh)vh dΩ

−
∫

Ω

knnsTφh∇nh · ∇vh dΩ = 0, ∀ vh ∈ Vh (4.20)∫
Ω

Σh wh dΩ−
∫

Ω

f(φh)wh dΩ− ε2
∫

Ω

∇φh · ∇wh dΩ = 0, ∀wh ∈ Vh (4.21)∫
Ω

∂nh
∂t

qh dΩ +

∫
Ω

D∇nh · ∇qh dΩ−
∫

Ω

Sn(1− nh)qh dΩ

+

∫
Ω

δn φh nh q dΩ = 0, ∀ qh ∈ Vh. (4.22)

with φ0
h and n0

h the discrete initial conditions.

For the time discretization, we use the second-order accurate Crank-Nicholson al-

gorithm. Given N time steps, we set a time interval ∆t = T
N such that ∀ t ∈ [0, T ]

it exists un = u|t=n∆t with n = 0, ....N and u = φ, Σ, n. If we call

u∗ = un+ 1
2 =

1

2
un+1 +

1

2
un with u = φ, Σ, n (4.23)
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the discrete variational problem can be written as:

given φnh and nnh , find φn+1
h ∈ Vh and nn+1

h ∈ Qh ∀n = 0..N such that:

∫
Ω

φn+1
h vh dΩ−

∫
Ω

φnhvh dΩ + ∆t

∫
Ω

φ∗hK(φ∗h)∇Σ∗
h · ∇vh dΩ

−∆t

∫
Ω

νφ∗h (n∗h − δ)(1− φ∗h)vh dΩ−∆t

∫
Ω

knnsTφ∗h∇n∗h · ∇vh dΩ = 0, ∀ vh ∈ Vh

(4.24)∫
Ω

Σn+1
h wh dΩ−

∫
Ω

f(φn+1
h )wh dΩ− ε2

∫
Ω

∇φn+1
h · ∇wh dΩ = 0, ∀wh ∈ Vh

(4.25)∫
Ω

nn+1
h qh dΩ−

∫
Ω

nnhqh dΩ + ∆t

∫
Ω

D∇n∗h · ∇qh dΩ−∆t

∫
Ω

Sn(1− n∗h)qh dΩ

+ ∆t

∫
Ω

δn φ
∗
h n

∗
h qh dΩ = 0, ∀ qh ∈ Vh. (4.26)

Once the discrete weak statement is obtained, we are able to perform numerical

simulation on the brain mesh. We make use of an open source software called

the FEniCS project which finds in Python its natural programming language. In

relation to our aims, one of the main advantage of using FEniCS as computational

resource is that it offers an automatic approach to nonlinear variational problem.

So, we can use the built-in classes and solve the nonlinear problem in few lines

of code. In appendix A.2 we illustrate more deeply the FEniCS project and we

include the Python codes we have implemented to solve the problem with some

comments.



Chapter 5

Sensitivity Analysis

In the present chapter we investigate how biological parameters influence tu-

mor and nutrients behavior. In particular, the analysis is driven by the necessity

of understanding which among them play a fundamental role in the anisotropic

diffusion of nutrients and the anisotropic growth of of the tumor. Thus, in the

first section we perform the adimensionalization of the homogenous (in term of

diffusion) and anisotropic (in term of preferential directions) mathematical model

introduced in Chapter 3 in order to recognize which are the parameters that should

be considered in the analysis. We identify two pairs of parameters on which we

perform the tests, described in sections 5.2.1 and 5.2.2. In those sections, the rela-

tive outputs are given. Finally we make some considerations in order to figure out

what is the behavior of the tumor in relation to the values of the parameters.

5.1 Preparing the test cases

In this section, we provide the dimensionless form of equations of the math-

ematical model described in Chapter 3 and we analyze the role of biological pa-

rameters in the governing equations. We choose to perform the sensitivity analysis

on the parameters using a model that does not take into account the inhomogeneity

of diffusion in the tissue. In this way, it will be easier to understand and study the

71
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effects due to the introduction of an anisotropic tensor T. Thus, we use the rela-

tion D = DnT, where Dn is the typical oxygen diffusion coefficient introduced in

section 3.3, and the model to adimensionalize results in:

∂φ

∂t
= ∇ ·

(
φ(1− φ)2

M
∇(f(φ)− ε2∆φ)

)
+ νφ(n− δ)(1− φ)−∇ · (knTφns∇n)

(5.1)

∂n

∂t
= DnT ∆n+ Sn(1− n)− δnφn. (5.2)

We define

x̂ =
x

ln
and t̂ = tν (5.3)

the adimensional space and time variables, where ln is the characteristic length of

oxygen diffusion and ν is the characteristic cell proliferation rate, as discussed in

section 3.3, and the adimensional quantities

f̂ =
f

χ
and ε̂2 =

ε2

χl2n
. (5.4)

Substituting (5.3) and (5.4) in (5.1) and (5.2) and rearranging the terms, we have

that the model reads

∂φ

∂t̂
=

χ

νl2nM
∇̂ ·
(
φ(1− φ)2∇̂Σ̂

)
+ φ(n− δ)(1− φ)− kn ns

l2nν
∇̂ ·
(
φT∇̂n

)
(5.5)

Σ̂ = f̂ − ε̂2∆̂φ (5.6)

∂n

∂t̂
=
Dn

l2nν
·
(
T∆̂n

)
+
Sn

ν
(1− n)− δn

ν
φn . (5.7)

In equation (5.5), we call

D =
χ

l2nMν
and K =

knns
l2nν

.
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Then dropping the hat and reminding that the relation ln =
√
Dn/δn holds, we

obtain the following dimensionless form of the model:

∂φ

∂t
= D∇ ·

(
φ(1− φ)2∇Σ

)
+ φ(n− δ)(1− φ)−K∇ · (φT∇n) (5.8)

Σ = f(φ)− ε2∆φ (5.9)

∂n

∂t
=
δn
ν

(T∆n) +
Sn

ν
(1− n)− δn

ν
φn . (5.10)

As we see, the first coefficient D is responsible of the isotropic diffusion and de-

pends on χ andM , whileK is the coefficient responsible of the anisotropic diffusion

and relies mostly on the chemotactic coefficient kn. Consequently, to study the

behavior of the cellular fraction in term of anisotropic growth it is sufficient to

simulate test cases in which M and kn assume different values. This is done in

subsection 5.2.1. In equation (5.7), the characteristic parameters are Sn and δn,

which govern nutrients production and uptake respectively. In particular, their re-

lationship is responsible of oxygen availability in tissues and consequently it deter-

mines tumor development, since chemotactic flux depends on nutrients gradient.

In subection 5.2.2 we provide test cases in which we analyze glioblastoma growth

with respect to Sn and δn.

Once we have identified the biological parameters to consider, we perform the

numerical tests.

The model we use, thought, is only time dimensionless. In fact, we deal with a

real geometry (a patient’s brain) and space adimensionalization would be mean-

ingless, whereas time adimensionalization is required, because in this way we are

able to provide the analysis without being influenced by cell proliferation rate ν.

Substituting the non dimensional quantity t̂, governing equations are:

∂φ

∂t̂
= ∇ ·

(
φ

(1− φ)2

Mν
∇Σ

)
+ φ(n− δ)(1− φ)−∇ · kn

ν
(φT∇n) (5.11)

Σ = f(φ)− ε2∆φ (5.12)

∂n

∂t̂
=
Dn

ν
T ∆n+

Sn

ν
(1− n)− δn

ν
φn. (5.13)



CHAPTER 5. SENSITIVITY ANALYSIS 74

For sake of simplicity, we choose ν = 1 day−1.

About the tests, we use numerical codes described in appendix A.2. We perform

very simply simulations, without introducing real DTI data as discussed in section

4.2, but only assuming as a test case the tensor

T =


3 0 0

0 0 0

0 0 0


which imposes as preferential direction for oxygen diffusion and cell chemotaxis

the x axis. Moreover, we hypnotize that the tumor is located in the center of the

brain and it is initially spherical at the time of diagnosis, that in the model cor-

responds to t = 0. Thus, the initial configuration of φ for is represented by a

normally distributed cellular fraction concentration, as depicted in figures 5.1 and

5.2. We will compare each of the test cases paying attention to:

• profile and maximum value reached by φ at the end of the test;

• anisotropy of the tumor shape, as exemplified in figure 5.3;

• tumor volume at the end of simulation;

• nutrients profile at t = 0 and at the end of the simulation.

In order to facilitate the comparison, only for these sensitivity tests, we set a thresh-

old for the tumoral area at ε+ = 0.1. The isoline is depicted in figure 5.2.



CHAPTER 5. SENSITIVITY ANALYSIS 75

Figure 5.1: Initial profile of the cancerous volume fraction in function of the dis-
tance from the center of the tumor. We hypnotize that it follows a normal distribu-
tion with its maximum in φ > φe.

(a) Clipped mesh, plane xy (b) Clipped mesh, plane xy - isoline

Figure 5.2: Initial concentration of φ in the brain at the time of diagnosis on the
clipped mesh cut along the plane xy. Figure (b): detail of the isoline φ = 0.1,
value at which we compare tumor dimension.
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Figure 5.3: To understand how much some biological parameters weight on φ and
n, we pay attention to tumor shape: the red line represents the tumor dimension
along x-axis which we call in the following ∆x, the yellow line represents ∆y and
the green line ∆z.

5.2 Sensitivity analysis

5.2.1 Cellular evolution: parameters M and kn

In this part of the chapter, we investigate the effects of the interphase friction

parameter and the chemotactic parameter on the tumor development. We have

performed 16 simulations, considering the combined effects of four different values

of M and four different values of kn. Since in literature M is estimated to be

between 1377.9 mm−2Pa and 4286.7 mm−2 Pa, we have chosen four values with

different orders of magnitude as test values, considering also limit situations in

which the parameters are out the range reported in literature: M= 100 mm−2Pa, M=

1000 mm−2Pa, M = 5000 mm−2Pa and M = 10000 mm−2Pa. On the other hand,

the chemotactic parameter is estimated to be equal to 1296 mm2 mM−1 day−1,

value that have been discovered studying batteries’ behavior in an environment

rich of glucose. Thus, because literature is poor about chemotaxis of glioma cells,

we suppose that the chemotactic response of glial cells to nutrients is lower than

that of the bacteria. Also in this case, we have chosen values with different orders

of magnitude: kn = 1 mm2 mM−1 day−1, kn = 100 mm2mM−1day−1, kn = 500

mm2mM−1day−1 and kn = 1000 mm2mM−1day−1.

The other biological parameters set in the simulations are reported in table 5.1.
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χ = 900 Pa E= 694 Pa δn = 1000 day−1

ce = 0.389 δ = 0.3 Sn = 104 day−1

Dn = 86.4 mm2day−1 ns = 0.07 mM

Table 5.1: Biological parameters - analysis I

As earlier explained, we have performed simply simulations, starting from a

spherical tumor located in the center of the brain and setting the x-axis as the

preferential direction of nutrient diffusion and cell chemotaxis. We analyze the

numerical result at the 60th iteration, that means 6 days after the diagnosis. In

table 5.3, we record φmax, tumor dimension ∆x, ∆y, ∆z, tumor volume and the

image of the clipped mesh along the plane xy. The results are then discussed in

section 5.3.

5.2.2 Nutrient evolution: parameters δn and Sn

In this section, we compare the tissue transfer rate of nutrients Sn and the oxy-

gen consumption rate of tumor cells δn in order to figure out how nutrients avail-

ability weights on tumor development. In literature Sn is estimated to be equal to

104 day−1 and consequently we choose three values with different orders of mag-

nitude as test cases: Sn= 103 day−1, Sn= 104 day−1 Sn= 105 day−1. For δn, we

have found a value of 8640 day−1 in literature. Thus, we use as test values δn=

1000 day−1, δn= 4000 day−1, δn= 8000 day−1. Regarding the other biological

parameters, we use the values reported in table 5.2, while for the numerical frame-

work, we follow the the guidelines described previously. In table 5.4, we report the

results of the test cases, at iteration 90, i.e. 9 days after the diagnosis. The results

are then discussed in section 5.3.

χ = 900 Pa E= 694 Pa kn = 100mm2 mM−1 day−1

ce = 0.389 δ = 0.3 M = 5000 mm−2Pa
Dn = 86.4 mm2day−1 ns = 0.07 mM

Table 5.2: Biological parameters - Sensitivity analysis II
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M = 100 M = 1000 M = 5000 M = 10000

kn =
1

φmax = 0.862
∆x= 22.7 mm
∆y = 23.1 mm
∆z= 23 mm

V =2010.08 π mm3

φmax = 0.949
∆x= 23.1 mm
∆y = 23.1 mm
∆z= 23 mm

V =2036.65 π mm3

φmax = 0.962
∆x= 23.1 mm
∆y = 23.1 mm
∆z= 23 mm

V =2036.65 π mm3

φmax = 0.964
∆x= 23.1 mm
∆y = 23.1 mm
∆z= 23 mm

V =2036.65 π mm3

kn =
100

φmax = 0.847
∆x= 24.4 mm
∆y = 23.3 mm
∆z = 22.9 mm

V =2169.72 π mm3

φmax= 0.925
∆x= 24.4 mm
∆y= 23.1 mm
∆z = 23 mm

V =2160.62 π mm3

φmax = 0.936
∆x= 24.4 mm
∆y= 23.1 mm
∆z= 23 mm

V =2160.62 π mm3

φmax = 0.938
∆x= 24.4 mm
∆y= 23.1 mm
∆z= 23 mm

V =2160.62 π mm3

kn =
500

φmax = 0.808
∆x= 32.7 mm
∆y = 23.1 mm
∆z= 22.9 mm

V =2908.17 π mm3

φmax = 0.869
∆x= 32.7 mm
∆y = 23.1 mm
∆z= 22.9 mm

V =2908.17 π mm3

φmax = 0.877
∆x= 32.7 mm
∆y = 23.1 mm
∆z= 22.9 mm

V =2908.17 π mm3

φmax = 0.878
∆x= 32.7 mm
∆y = 23.1 mm
∆z= 22.9 mm

V =2908.17 π mm3

kn =
1000

φmax = 0.779
∆x= 40.4 mm
∆y = 22.3 mm
∆z= 22.7 mm

V =3408.48 π mm3

φmax = 0.832
∆x= 40.4 mm
∆y = 22.9 mm
∆z= 22.9 mm

V =3408.48 π mm3

φmax = 0.839
∆x= 40.4 mm
∆y = 22.9 mm
∆z= 22.9 mm

V =3408.48 π mm3

φmax = 0.840
∆x= 40.4 mm
∆y = 22.9 mm
∆z= 22.9 mm

V =3408.48 π mm3

Table 5.3: Numerical results at the iteration 60. In the table, values of M are
expressed in mm−2Pa, while values of kn are given in mm2 mM−1 day−1. In order
to compare the test cases, we record φmax, tumor dimension, that is ∆x, ∆y, ∆z
and the tumor volume.
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δn = 1000 δn = 4000 δn = 8000

Sn = 103

φmax = 0.790
∆x= 43.2 mm
∆y = 26.9mm
∆z= 26.7 mm

V =5171.25πmm3

φ decreases
iteration 70

φ decreases
iteration 30

Sn = 104

φmax = 0.983
∆x= 29.8 mm
∆y = 27.5 mm
∆z = 27.3 mm

V =3728.72 πmm3

φmax= 0.920
∆x= 37.1 mm
∆y= 27.1 mm
∆z = 27.2 mm

V =4557.85 πmm3

φmax = 0.835
∆x= 42.3 mm
∆y = 26.9 mm
∆z= 26.8 mm

V =5082.48 π mm3

Sn = 105

φmax = 0.995
∆x= 27.6 mm
∆y = 27.5 mm
∆z=27.3 mm

V =3453.45 πmm3

φmax = 0.992
∆x= 27.7 mm
∆y = 27.5 mm
∆z= 27.3 mm

V =3465.96 πmm3

φmax = 0.987
∆x= 29 mm

∆y = 27.5 mm
∆z= 27.3 mm

V =3628.62 π mm3

Table 5.4: Numerical results at iteration 90. In the table, values of δn and Sn are
expressed in day−1. In order to compare the test cases, we record φmax, tumor
dimension, that is ∆x, ∆y, ∆z and the tumor volume. An image of the tumor
region on the clipped mesh along plane xy is provided for each test case. As we
see, for test cases with Sn = 103 and δn = 4000 and δn = 8000, the cellular
fraction decreases. This means that nutrients production is not enough to supply
cells nourishment and consequently the cells scatter and the tumor disappears. Of
course, this situation is biologically impossible. For these tests, we provide an
image of the tumor region 7 days after the diagnosis for the former and 3 days after
the diagnosis for the latter.
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5.3 Observations and conclusions

We start commenting on the results of section 5.2.1. Observing tumor data

recorded in table 5.3, we can say that if M increases, the maximum volume frac-

tion φmax recorded at the given time step increases too. In fact with bigger values

of M, the isotropic diffusion decreases and thus, cancerous cells tend to accumu-

late. Moreover, looking at one of the four rows of the table, it is possible to notice

that tumor dimension does not change in relation to the increasing of M. Conse-

quently, the value given to M does not influence the tumor extension at the given

time step. We now pay attention to tumor/host interface: observing table 5.5 we

assert that for increasing values of M, the interface host/tumor gets sharper. This

fact is claimed in literature too. In [83], it is claimed that the value of ε determines

the sharpness of the interface host/tumor, e.g. for smaller ε, the interface becomes

smoother. Regarding our model, the term in ε is multiplied by the reciprocal of M

and thus, for bigger M, the ε term decreases.

We concentrate now on the role of kn in the development of the tumor. Examining

the results of table 5.3, it is possible to notice that, for kn equal to one, the tumor is

almost spherical, while, for bigger values of the chemotactic parameter, it assumes

an ellipsoidal configuration. This fact happens because the tensor T is weighted by

the term kn and then, an enlargement of kn has the effect of intensify the move-

ment of the cells along that preferential direction (the x-axis is these cases). Then,

it also happens that, for increasing value of kn, the maximum value φmax reached

at the given time step decreases due to the scattering of the tumoral cells forced by

higher chemotaxis, while the total volume occupied by the tumor increases. For

concluding, the interface tumor/host gets smoother for increasing value of kn as

the cells have more freedom to move, as illustrated in table 5.5.

Concerning the results collected in table 5.4, first of all, we observe that if the value

of the nutrient supply Sn is not as high as cells need for sustaining proliferation,

the cellular fraction φ decreases and the tumor tends to disappear. In fact, Sn is the

parameter that regulates nutrients supply from blood vessels to tumor cells and, if
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its value is not high enough to fulfill nutrients consumption, the tumor is not able

to expand as the proliferation is limited by nutrients availability. Furthermore, of

course, if the values of Sn grow, then the maximum value φmax reached by φ at

the given time step increases while the volume occupied by the tumor decreases.

On the other hand, for the same the value of Sn but for increasing values of δn,

φmax decreases but the volume increases. To explain the behavior of the volume,

we have to pay attention to the anisotropic configuration assumed by the tumor. It

happens that for a high value of Sn the tumor is almost isotropic and some slight

anisotropy is recorded only for increasing δn. It seems that the relation between Sn

and δn influences not only the availability of nutrients in the environment and, in

consequence, cell proliferation, but it affects also the term∇n and thus the chemo-

tactic motion of cells. As a matter of fact, that relationship determines the value of

n0,min, the minimum value reached by nutrient concentration at t = 0, and then

the gradient of n: for the same value of δn, it happens that n0,min increases with

the increases of Sn and thus ∇n decreases. On the other hand, for the same value

of Sn, n0,min decreases with the increase of δn and consequently ∇n increases. If

follows that the anisotropic growth along the x-axis is bigger for lower values of

Sn and higher values of δn. Regarding the test cases in which φ decreases, it could

also happen that, besides the low cells proliferation, ∇n is so big that chemotaxis

avoids cells to accumulate. The profiles of n0 for each of the test cases are summa-

rized in table 5.6. Finally, in table 5.7, the profiles of φ and n at the 90th iteration

are depicted. Profiles are obtained as described in picture 5.4.

Figure 5.4: In the figure it is explained how φ and n profiles are obtained in tables
5.5 and 5.7. We plot the variables over the white line depicted, which is aligned
with the x axis and crosses the tumor in the midline of the z axis.
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M = 100 M = 1000 M = 5000 M = 10000

kn = 1

kn = 100

kn = 500

kn = 1000

Table 5.5: Profile of the cellular fraction φ at iteration 60. Values of M increase
horizontally and are expressed in mm−2Pa, while values of kn grows vertically
and are given in mm2 mM−1 day−1. Examining the profiles, we claim that for
increasing values of M and for decreasing values of kn the interface host/tumor
gets sharper. Profiles are obtained as described in picture 5.4.
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δn = 1000 δn = 4000 δn = 8000

Sn = 103

n0,min= 0.717 n0,min= 0.38 n0,min= 0.23

Sn = 104

n0,min= 0.961 n0,min= 0.861 n0,min= 0.756

Sn = 105

n0,min= 0.995 n0,min= 0.984 n0,min= 0.984

Table 5.6: In the table, we are comparing the profile of n at t = 0 for each of
the test cases. The values of Sn increases vertically, while the values of δn grows
horizontally. Both are expressed in day−1. For increasing values of δn, n0,min

decreases and consequently the gradient of n becomes higher, while for growing
values of Sn, n0,min gets closer to 1 and the gradient of n decreases.
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1000 4000 8000

Sn = 103

Sn = 104

Sn = 105

Table 5.7: Profile of the cellular fraction φ (above plot, red line) and of the oxygen
concentration n (below plot, blue line) at iteration 90. Values of δn increase hori-
zontally, while values of Sn grows vertically. Both are expressed in day−1. Profiles
are obtained as described in picture 5.4.



Chapter 6

Numerical Tests

In this chapter, we present and discuss two medical-relevant tests performed

with the model proposed in Chapter 3.

In the first test, introduced in section 6.1, we investigate the development of a but-

terfly glioblastoma, a type of GBM that arises in the corpus callosum (CC) and

spreads symmetrically in the hemispheres imitating butterfly wings. As it will be

discussed, the CC is a bundle of white matter fibers which connects the two sides

of the brain and it is an area characterized by high anisotropy. For these reasons,

beyond of the medical interest, this simulation is important for its mathematical

implications too. In fact, it is a good way to evaluate the anisotropic heterogeneous

model, studying the tumor shape and the preferential direction of oxygen diffu-

sion and cell motion due to the presence of patient-specific tensors T and D. In the

second section, we describe and simulate the common medical situation in which

a partial surgical resection is performed and some cancerous cells are left behind.

We investigate the development and the diffusion of the survival cells. This test has

a huge medical interest, since treating gliomas a complete resection is not practi-

cable: these tumors, indeed, penetrate too deeply into white matter fibers and, in

many situations, removing all the diseased cells is impossible.

85
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6.1 Simulating butterfly glioma

Butterfly glioma is the name given to a glioblastoma which crosses the corpus

callosum and grows symmetrically in the two hemispheres, simulating butterfly

wings. Corpus callosum is the largest collection of white matter within the brain,

formed by over 200 million axons, which is approximately 10 cm in length, C-

shaped and located above the thalamus, under the cortex and in the middle of the

two hemispheres (figure 6.1). It has the function of connecting the two sides of

the brain and to facilitates communication thanks to its high myelin content. Not

uncommonly glioblastoma arises in this area, more frequently in the frontal lobes,

crossing via the genu of the corpus callosum, as depicted in figure 6.2(a); less fre-

quently, posterior butterflies are also encountered, figure 6.2(b).

As mentioned, the corpus callosum is a region characterized by high anisotropy:

in figure 6.3, it is depicted the plot of the fractional anisotropy over the brain. This

index, introduced in Chapter 2, describes the degree of anisotropy of a diffusion

process. A value of zero means that diffusion is isotropic, i.e. it is unrestricted (or

equally restricted) in all directions, while a value of one means that diffusion oc-

curs only along one axis and is fully restricted along all other directions. In corpus

callosum, the fractional anisotropy reaches values close to one, which means that

the motion is forced along only one direction. In the following, we will investigate

how cells move in this region of the brain.

6.1.1 Numerical implementation of the clinical case

To simulate the development of a butterfly glioma, we locate the initial tumor

in the genu of the corpus callosum, as depicted in figure 6.4. Furthermore, we

suppose that φ0 follows a normal distribution reaching a maximum value slightly

greater than φe, and that the oxygen concentration is obtained solving the station-

ary problem, as illustrated in section 4.3. The initial configurations of φ and n over
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the computational mesh are sketched in figure 6.5.

Figure 6.1: The anatomy of the corpus callosum, T1-mdc image gently provided
by Istituto Neurologico Carlo Besta. It is located above the thalamus and under the
cerebrum. Four different areas are identified: the rostrum, the genu, the body and
the splenium.

(a) Frontal butterfly glioblastoma (b) Frontal butterfly glioblastoma

Figure 6.2: Frontal (left) and occipital (right) butterfly glioblastoma, figures from
[62].
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Figure 6.3: Visualization of the fractional anisotropy index on the brain of the
patient. In anisotropic regions, FA is close to one and thus the voxels are brighter.
The image has been gently provided by Istituto Neurologico Carlo Besta.

The most important and interesting term to analyze is the tensor T. In table 6.1

we illustrate the tensor components Tii, with i = x, y, z over a mesh clipped along

each plane. In the figures appearing in table 6.1, the tumor location is indicated by

the white cross. Observing the collected figures, we assert that Txx is the highest

component in the region of interest: in fact it reaches values between two and three,

while Tyy and Tzz are close to zero in that region. Consequently, cancerous cells

will be forced to move along the x-direction and we expect that the tumor will grow

anisotropically, losing its initial spherical shape.

Concerning the numerical model, as biological parameters we choose M = 5000

mm−2 Pa, Sn = 104 day−1, δn = 1000 day−1, ν = 0.25 day−1, kn = 20 mm2 mM−1

day−1 in CSF and kn = 100 mm2mM−1day−1 in GM and WM (more details are

given in figure 6.6) and we use the codes illustrated in appendix A. As mentioned,

the components of tensor T and D are then included in the numerical model by

linear interpolation.

In the next section, the numerical results are illustrated.
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(a) Clipped mesh, plane xy (b) Clipped mesh, plane yz

Figure 6.4: Initial location of the glioblastoma tumor (light gray sphere) overlapped
to the labeled computational mesh. We remind that the red area, the dark blu area
and the light blu area represent, respectively, the CSF, the grey matter and the white
matter. We have located the tumor in the genu of the CC.

(a) Clipped mesh, plane xy. Map of φ0. (b) Clipped mesh, plane xy. Map of n0.

Figure 6.5: The initial configuration of φ and n plotted on the mesh, which has
been cut along the plane xy. We refine the mesh in tumor area in order to have a
well-refined solution keeping under control computational costs.
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plane xy plane xz plane yz

Txx

Tyy

Tzz

Table 6.1: Diagonal components of T over the brain mesh cut along each plane.
Comparing the three components on each plane, we observe that Txx is the com-
ponent that has the higher value in the region of interest assuming a value between
two and three whereas Tyy and Tzz are almost zero. As a matter of fact, it has been
demonstrated [28] that corpus callosum fibers go from an hemisphere to the other.
In consequence, the x-axis is the preferential direction of cells motion and nutri-
ents diffusion in the corpus callosum. In the figures, the tumor location is indicated
by the white cross.
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(a) kn - Clipped mesh, plane xy (b) kn - Clipped mesh, plane yz

Figure 6.6: Plot of kn over a clipped mesh along xy and yz planes. The chemo-
tactic parameter acquire different values in relation to the tissue it deals with. In
particular we assume that the chemotactic motion is reduced in the fluid since there
are no fibers and thus we set kn equals to 20 mm2mM−1day−1 here and equals to
100 mm2mM−1day−1 in the tissues. The present hypothesis is reasonable because
brain tumors do not grow inside ventricles.

6.1.2 Numerical results

As mentioned earlier, we are interested in examining how the tumor follows

the brain structures. Thus, to study the relation between tumor shape and diagonal

components of the tensor T, we perform a further simulation with homogenous

diffusion and isotropic motion in the whole domain. In other words, we simu-

late a new model that has been obtained substituting to the tensor D the relation

D = DnT, where Dn is defined as in table 3.1, and to the tensor T the identity

matrix. In the following, we will call butterfly simulation the test with real data,

and isotropic simulation the new test defined ad hoc.

We have performed both simulations till iteration 250, i.e. 25 days after the

first diagnosis of the tumor. In table 6.2, we compare φ and n concentration over

the computational mesh cut along the xy plane in both test cases at time steps t=5

days, t=10 days, t=15 days, t=20 days, t=25 days. We observe that, in the but-

terfly simulation, the glioblastoma loses the initial spherical shape and assumes a

configuration that reflects the structure of the tensor T; whereas, in the isotropic

simulation, the glioblastoma maintains the spherical configuration. The maximum

values reached by the cellular concentration in both tests are comparable, with a
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φmax that is slightly higher for the butterfly simulation.

Butterfly simulation Isotropic simulation
φ n φ n

t=5

t=10

t=15

t=20

t=25

Table 6.2: Plot of φ and n concentration over the computational mesh cut along the
xy plane for both butterfly and isotropic simulations.
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As concerns the dimension of the glioblastoma at t=25 days, we have that ∆x

= 21 mm, ∆y = 18 mm, ∆z = 17.3 mm for the butterfly simulation; and ∆x = 17.6

mm, ∆y = 18.2 mm, ∆z = 18.5 mm for the isotropic case. As expected, due to the

structure of the tensor T, ∆x is bigger in the first case. Thus, more interesting is the

qualitative aspect that the tumor acquired in the case of the butterfly simulation. In

figures 6.7 we overlap the thresholded φ at t=5, 15 and 25 days to the Txx mesh cut

along the plane xy. Observing the figures, we assert that tumor shape follows the

x-axis in the region in which Txx is higher (red region) assuming a triangular con-

figuration. Concerning the other components, we have shown in table 6.1 that Tyy

and Tzz assume lower values in the CC and thus the chemotactic motion of cells

along those directions is avoided. We confirm this hypothesis observing the tumor

volume at the time step t=25 days overlapped to the maps of Tii on the mesh cut

along each plane, which we report in table 6.3. The tumor presents an elongated

shape along the x direction with a flat top part. It is interesting that it appears al-

most isotropic in the yz plane. Hence, in the region out of the corpus callosum, the

values assumed by the three components are comparable and thus the glioblastoma

grows isotropically. The clipped φ concentration in plane yz is shown in figure 6.8.

(a) φ at t = 5 days (b) φ at t = 15 days (c) φ at t = 25 days

Figure 6.7: Thresholded volume fraction φ (indicated by the white arrow) plot-
ted over the Txx component (in transparency), at times t=5 days, t=15 days and
t=20 days. It is possible to notice that the concentration of the cellular fraction is
anisotropic and follows the preferential direction determined by the Txx compo-
nent.
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(a) φ at t = 25 days (b) φ at t = 25 days (c) φ at t = 25 days

Figure 6.8: Thresholded volume fraction φ (indicated by the white arrow) in rela-
tion to the values assumed by the components Tii in the corpus callosum shown at
time steps t=25 days along the plane yz. It is possible to notice that the tumor as-
sumes a isotropic shape along this plane since the values assumed by Tii are similar
in the region outside the CC.

plane xy plane xz plane yz

Txx

Tyy

Tzz

Table 6.3: Tumor volume at time step t=25 days overlapped to the maps of Tii over
the brain mesh cut along each plane. Comparing the resulting volume, we assert
that the glioblastoma assumes an elongated shape along the x direction, as it is
possible to see in plane xy with a flat superior part, as shown in plane xz, and an
isotropic shape in plane yz.
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Finally, tumor growth has to be examined on the basis of the heterogeneous

chemotactic coefficient defined. As shown in figure 6.6, we have made the hy-

pothesis that the chemotactic coefficient assumes a lower value in the ventricles

because of the absence of fibers that facilitate cellular motion. Indeed, the lateral

ventricles are located below the corpus callosum, separated by a thin layer of white

and grey matter called septum pellicidum, where butterfly glioblastoma is not al-

lowed to spread into. In figure 6.9 we illustrate the thresholded φ concentration

over the heterogeneous chemotactic parameter mapped on the computational mesh

at time steps t=5 days, t=15 days and t=25 days. For the particular choice of param-

eters, the effect of the lower chemotactic coefficient is not sufficiently appreciable.

Indeed, we remark that cancer cells motion depends also on the term (∇Σ)/M ,

which is homogeneous in the whole domain. For completeness, in figure 6.10 we

show the thresholded φ concentration at t = 25 days in relation to the heterogeneous

chemotactic coefficient also for the isotropic simulation. In this case too, the pres-

ence of a different chemotactic value for the tissue and the fluid is not sufficiently

clear for the same reason described previously. More tests are needed in order to

figure out which should be the better choice of the biological parameters.

(a) φ at t = 5 days (b) φ at t = 15 days (c) φ at t = 25 days

Figure 6.9: φ concentration in relation to the chemotactic coefficient in the ROI at
time steps t=5 days, t=15 days and t=25 days.
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(a) φ at t = 25 days (b) φ at t = 25 days

Figure 6.10: φ concentration in relation to the chemotactic coefficient in the case
of the isotropic simulation. The effect of a reduced chemotactic motion into the
lateral ventricles is not sufficiently appreciable also in the present test.

6.2 Simulating glioblastoma regrowth after resection

In this section, we describe and numerically simulate the medical situation

in which glioblastoma cannot be completely removed during the surgical opera-

tion and some cancerous cells are left behind. Indeed, in some clinical cases the

complete resection of the cancer is impossible: often the tumor is located near a

sensitive area of the brain with vital functions or it happens that the cancerous cells

are too infiltrate into fibers and thus difficult to be reached during the medical in-

tervention. Indeed, it is important to remember that gliomas are highly infiltrating

tumors and complete removal is impossible in almost every case. Anyway, the

partial removal of the tumor mass helps to relieve patient’s symptoms by reducing

pressure on the brain and in a second time surviving cells are treated by radiation

therapy and chemotherapy.

In the following the description of the simulation and the relative numerical re-

sults is reported. We are interested in discovering how glioblastoma surviving cells

develop and regrow in time, without any supplementary treatment (we suppose,

indeed, that the patient is not treated by chemo or radiotherapy after intervention).
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6.2.1 Numerical implementation of the clinical case

We start from a T1 MRI gently provided by Istituto Neurologico Carlo Besta,

which is the same medical image used for creating the computational mesh de-

scribed in chapter 4. Then, we manually segment the real tumor, making use of

Slicer3D [64] and of its module named Editor. We associate two labels to the tu-

mor region as depicted in figure 6.11. The pink area represents the mass of the

tumor that has been removed during medical resection, while the green region in-

dicates the cancerous cells that remain after the intervention.

Using the process described in Chapter 4, we build the mesh and we pass the re-

gions’ information to the geometry. In this way, we are able to distinguish three

different regions on the mesh: the healthy tissue, the mass of the resected tumor

and the mass of surviving cells, as depicted in figure 6.12. In figure 6.13, a 3D

sketch of the clinical case is depicted.

Before starting the simulation, we need to make different assumptions on the model’s

behavior in relation to the region on which the governing equations are imple-

mented. In particular, we have to specify how the model deals with the cavity, i.e.

the region occupied by glioblastoma before surgery.

(a) Axial slice - T1 mdc (b) Sagittal slice - T1 mdc

Figure 6.11: Manually segmentation of the different regions of interest. We sup-
pose that the region labeled by the pink color is the mass of the glioblastoma that
has been removed by surgery, while the area indicated by the green color represents
the mass of surviving cells.
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(a) Clip of the mesh, plane xy (b) Crinckle clip of the mesh, plane xy

Figure 6.12: (a) Three regions are identified on the mesh: the blu region is the
healthy tissue, the orange region identifies the tumor mass removed, the red region
represents the surviving cells. (b) The mesh is refined in the area of interest.

(a) Brain mesh and tumor region in trans-
parency

(b) Tumor computationally reconstructed
and survival cells

Figure 6.13: 3D sketched of the tumor mass resected and surviving cells. The blue
region represents the glioblastoma computationally reconstructed while the white
region identifies the area occupied by cancerous cell which are left behind.

In the region of resection, the following hypotheses hold:

• there is only the liquid phase, i.e. φl = 1 and φc = 0;

• the diffusion of nutrients is isotropic, i.e.

D = Dn


1 0 0

0 1 0

0 0 1


where Dn is the typical oxygen diffusion coefficient in CSF that we have

estimated to be between 180 and 250 mm2day−1 from the real data;



CHAPTER 6. NUMERICAL TESTS 99

• the chemotactic motion of cells is isotropic because there are no fibers and

no directions are preferential and consequently the tensor T is

T =


1 0 0

0 1 0

0 0 1


• the chemotactic coefficient kn, because of the absence of fibers, assumes a

lower value, as depicted in figure 6.14;

• the production rate parameter Sn is zero in the center of the cavity and tends

to the normal healthy value of 104 day−1 following a normal profile, as de-

picted in figure 6.15, since in the resected area no tissue and no vasculature

is present.

Concerning the other biological parameters, we choose M = 5000 mm−2 Pa, δn =

1000 day−1 and ν = 0.25 day−1.

(a) kn value - clip of the mesh plane xy (b) kn value - detail

Figure 6.14: Value of the chemotactic coefficient kn depicted on the mesh cut along
plane xy. We make the hypothesis that the chemotactic parameter assumes a lower
value is the cavity because of the absence of fibers. The location of the tumor is
indicated by the white cross.
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(a) Sn - clip of the mesh plane xy (b) Sn - clip of the mesh plane yz

Figure 6.15: Sn concentration depicted on the mesh cut along (a) xy the plane and
(b) the yz plane. We suppose that the production rate is almost null in the center
of the cavity and reaches its normal value in the healthy tissue. The location of the
tumor is indicated by the white cross.

Finally, for sake of completeness, in figures 6.16 and 6.17 respectively we illus-

trate the diagonal components Tii and Dii, with i = x, y, z on the computational

mesh cut along the plane xy. As we notice, no preferential directions are high-

lighted by the tensor T in the region where survived cells are located, specified

by the white cross in the image. As concern the tensor D, we have assumed that

oxygen diffusion coefficient is higher in the area of resection.

As mentioned, the tensors’ components are then included automatically and con-

tinuously in the model thought linear interpolation. To simulate the model we use

the codes illustrated in appendix A.

(a) Txx component of T (b) Tyy component of T (c) Tzz component of T

Figure 6.16: Diagonal elements of tensor T on the mesh clipped along the xy
plane. In the area of the removed tumor, Tii are equal to one. The tumor location
is specified by the white cross.
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(a) Dxx component of D (b) Dyy component of D (c) Dzz component of D

Figure 6.17: Diagonal elements of tensor D on the mesh clipped along the xy
plane. In the area of the removed tumor, D is an isotropic tensor, whose elements
are equal to a certain value Dn.

6.2.2 Numerical results

The present test simulates the development of a secondary tumour mass start-

ing from some cells of the primary tumour that have not been removed. Thereby,

the mesh has to be highly refined, as shown in figure 6.18, in order to keep under

control computation errors that arise from a slightly smooth interface host/tumor

with the consequence of long times of computation. The following observations

on the development of the cellular fraction and the consumption and diffusion of

nutrients are made paying attention to the hypothesis assumed on the model’s be-

havior in the region of resection.

Figure 6.18: Detail of the refined mesh in the region of interest. In transparency, the
red area represents the portion of the glioblastoma that has been removed, whereas
the blu area represents the surviving cells, that have been left behind.
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In table 6.4, we examine the concentration of φ and n over the computational

mesh cut along the xy plane 5 days, 10 days, 15 days and 20 days after the vir-

tual resection, which corresponds to the initial numerical time step. The collected

figures show that the cellular volume fraction φ increases, whereas the oxygen con-

centration n decreases. The tumor expands also in the surrounding tissue and its

volume raises. In figures 6.19 and 6.20, we report the configuration of φ and n

over the computational mesh clipped along the planes xz and yz at the time steps

t = 0 days, t = 10 days and t = 20 days.

We now pay attention to how the concentration of φ and n is distributed in

the neoplastic region. The detailed image is sketched in figure 6.21. We observe

that the region of the minimum concentration of oxygen does not correspond to the

region of the maximum concentration of φ, as we expect. The reasons have to be

found in how we have defined the diffusion coefficient, the chemotactic coefficient

and the production rate coefficient in the region of interest. As concerns the distri-

bution of the oxygen, n reaches its minimum value in the resection area. Indeed,

the oxygen diffusion coefficient is higher in the cavity and consequently substrates

diffuse easily and, moreover, Sn is lower in this region and thus, the nutrients con-

sumed are less replaced. The maximum value of φ, instead, is reached in the area

where the initial tumoral mass is located. This behavior could be caused by the fact

that in the region of resection the motion of the cancerous cells is prevent because

of a lower value of kn. The figures 6.22 and 6.23 explain exhaustively this fact.

Finally, in figure 6.24, we observe the evolution of the tumor volume at time

steps t = 0 days, t = 10 days and t = 20 days. At the beginning, it is slightly C-

shaped with a small spherical satellite mass of diseased cells on its left, which is

made visible for the first time thanks to a 3D visualization. At the final time step,

it presents a more rotund aspects with a bigger satellite mass. To understand how

the tumor has grown, we overlap the initial configuration to the final one. We no-

tice that the tumor has grown more in the region surrounding the cavity than inside

it. This fact is probably due to the heterogeneity of the chemotactic coefficient,
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which is higher outside the region and lower inside it such that cells are facilitated

to move into the healthy fibers, and to the nutrient production rate coefficient Sn,

which is almost null in the center of the tumor and assumes its physiological values

in the healthy tissue.

φ n

t = 5 days

t = 10 days

t = 15 days

t = 20 days

Table 6.4: The concentration of φ and n at the given time steps depicted over the
computational mesh cut along the xy plane.
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(a) φ at t=0 days, plane xz (b) φ at t=10 days, plane xz (c) φ at t=20 days, plane xz

(d) n at t=0 days, plane xz (e) n at t=10 days, plane xz (f) n at t=20 days, plane xz

Figure 6.19: Concentration of φ and n over the computational mesh clipped along
the plane xz in the midline of the tumor at the time steps t = 0 days, t = 10 days, t
= 20 days.

(a) φ at t=0 days, plane yz (b) φ at t=10 days, plane yz (c) φ at t=20 days, plane yz

(d) n at t=0 days, plane yz (e) n at t=10 days, plane yz (f) n at t=20 days, plane yz

Figure 6.20: Concentration of φ and n over the computational mesh clipped along
the plane yz in the midline of the tumor at the time steps t = 0 days, t = 10 days, t
= 20 days.
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(a) φ concentration at t=20 days (b) n concentration at t=20 days

Figure 6.21: Detail of φ and n concentration on the clipped mesh over the plane
xy. Particularly interesting is the distribution of the variables’ concentration in the
diseased region.

(a) Clipped φ concentration over clipped Dxx

mesh, plane xy
(b) Clipped n concentration over Dxx clipped
mesh, plane xy

Figure 6.22: Clipped thresholded φ and n concentration over clippedDxx mesh cut
along plane xy at time step t = 20 days. The thresholded tumor has been obtained
setting ε+ = 0.02, whereas the oxygen concentration has been thresholded at 0.99.
The resected region is illustrated meshed in order to highlight its borders.
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(a) Thresholded φ concentration over kn con-
centration clipped mesh

(b) Thresholded n concentration over kn con-
centration clipped mesh

Figure 6.23: Clipped thresholded φ and n concentration in relation to the heteroge-
neous chemotactic coefficient depicted over the clipped mesh cut along plane yz at
time step t = 20 days. The thresholded concentration has been obtained as in figure
6.22.

(a) Tumor volume at t=0 days (b) Tumor volume at t=10 days

(c) Tumor volume at t=20 days (d) Clipped tumor volume at t=20 days

Figure 6.24: Volumetric growth of glioblastoma tumor at time steps t = 0 days, t =
10 days and t = 20 days, obtained thresholding φ at ε+ = 0.02 as defined in Chapter
4. In figure (d) the initial configuration of the tumor (which occupies the region
sketched by the black line) is overlapped to the clipped tumor volume at t=20 days.



Conclusions and Future works

In this project we have developed a mathematical model in order to predict the

invasion and the growth of a glioblastoma, a highly malignant brain tumor charac-

terized by an infiltrative nature. Starting from the mixture models found in litera-

ture, we have proposed a new model that takes into account the heterogeneity and

the anisotropy of the brain tissues thanks to the introduction of a chemotactic flux

of mass and the patient-specific diffusion tensor imaging data, gently provided by

the Istituto Neurologico Carlo Besta. The research has been inspired by the consid-

eration that including real data in the mathematical model would have led to a more

truthful prediction of the tumor evolution. Thus, we have created a computational

mesh starting from a MR image of a patient affected by glioblastoma and we have

extracted geometric information from the diffusion tensor. Thanks to imaging tech-

nique and numerical codes, we have succeeded in creating a local diffusion tensor

and including anisotropy and heterogeneity in the model. Moreover, we have de-

fined a new local tensor, which we have called tensor of the preferential directions,

comparing each component of the diffusion tensor to the mean diffusivity in each

point of the domain. This mathematical object encapsulates the information on the

real geometry of the brain and thus it allows to describe the anisotropic motion of

the tumor cells. The new tensor, indeed, weights the chemotactic term presented

in the governing equation of the cellular fraction and thus forces the cells to move

along specific directions.

In a second time, to simulate the mathematical model, we have discretize the prob-

lem using the finite elements method and we have developed numerical codes mak-
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ing use of an open-source software called FEniCS.

In particular, we have performed a sensitivity analysis of the biological parame-

ters present in the model in order to figure out which ones among them has more

influence on the anisotropic tumor behavior. We have done two analysis: the first

has considered the combined effects of the interphase friction parameter and the

chemotactic friction parameter on the cellular evolution, while the second has con-

sidered the combined effects of the production of nutrients and the consumption

of nutrients. We have discovered that the chemotactic coefficient has a huge influ-

ence on the anisotropic behavior of the tumor and that the relationship between the

production and the consumption of nutrients determines not only the availability

of nutrients in the environment and, in consequence, cell proliferation, but it also

affects the chemotactic motion of cells.

Finally, to test the model, we have simulated two common clinical situations of

medical interest. The first has concerned the development of a butterfly glioblas-

toma, a type of glioma that arises in the corpus callosum which is a bundle of

white matter fibers located between the two hemispheres and characterized by

high anisotropy. The characteristic feature of this tumor is that it spreads into

both hemispheres symmetrically, simulating butterfly wings. Hence, we have lo-

cated a virtual glioblastoma of small size in the genu of the corpus callosum and

we have examined its development at given time steps. The resulting data show a

tumor shape that actually follows the architecture of the brain region in which it

is located. Unfortunately, we haven’t succeeded in simulating the butterfly wings.

The heterogeneity of the brain tissue and the reproduction of the real geometry of

the cancer is a hard challenge for biomathematical modeling. In our case, more

simulations are needed in order to test different parameters and to include more

patient-specific data.

Then, we have simulated the medical situation in which the brain tumor has not

been completely removed and some diseased cells have been left behind. Indeed,

almost always, gliomas cannot be completely removed due to their high infiltrative
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nature. Although after the medical intervention patients are treated with radiother-

apy or chemotherapy, we have not considered any treatment in the model. The

numerical results have suggested a tumor that tends to expand in the healthy tissue

instead of accumulating in the region of resection.

As concerning the future works, first of all, more biological researches on the

parameters present in the model are needed. Indeed, it is hard to find truthful

parameters relative to glioblastoma tumors. Furthermore, since the novelty of the

present research lies in the introduction of patient-specific data and real geometry,

it would be interesting observing how the numerical results change in relation to

different patients. At the same time, it would be also useful to follow the tumor

evolution of a single patient. As a matter of fact, the structure of the brain fibers

changes as the tumor grows and thus, it would be necessary to have more medical

data at given time steps in order to compare the numerical results with the real

development of the tumor. Finally, some possibile improvements that concern the

formation of new vessels (angiogenesis) or the medical treatments given to a patient

could be introduced in the mathematical model.



Appendix A

Code Documentation

In this appendix we present the codes we have implemented for the solution

of the tumor growth problem defined in the previous part of this work. Firstly,

however, we describe briefly how we have obtained a smooth and regular brain

tetrahedral mesh. Thus, in the first section we explain step by step the process

we employed, illustrating summarily the algorithms and the pieces of code written

by M. Manica [41] and modified for our aims. Then, in the second section, we

focus on the codes developed for the main problem. We use an open-source soft-

ware called the FEniCS project, through a Python interface. The entire codes are

reported with a brief explanation.

A.1 Mesh Construction - Numerical background

In order to create a mesh, we make use of a library named Vmtk. It is ”a

collection of libraries and tools for 3D reconstruction, geometric analysis, mesh

generation and surface data analysis for image-based modeling of blood vessels”

[31]. Even thought it has been developed for blood vessels, thanks to its powerful

tools, it is possible to adapt vmtk-algorithms to succeed in our purpose.

First of all, we create a labeled map of the brain (e.g. BLM.mhd) starting from

110



APPENDIX A. CODE DOCUMENTATION 111

a series of T1-MRIs, as described in chapter 4.1. In this map a label is assigned to

each region: label 2 is given to the background, label 13 to the grey matter, label

14 to white matter and 25 to cerebrospinal fluid. The quickest and most simple

way of creating a surface model is to contour the image using the Marching Cubes

algorithm. This algorithm is able to extract a surface that we call surf.vtp from the

labeled map at a certain level (e.g. level 3). In this way, we manage to extract the

brain surface from the background.

vmtkmarchingcubes -ifile BLM.mhd -l 3 -ofile surf.vtp

At this point, the rough surface has to be cleaned and smoothed in order to do

not have intersections of edges or topological problems, and then re-meshed.

vmtksurfaceconnectivity -ifile surf.vtp --pipe
vmtksurfacesmoothing -passband 0.001 -iterations 100 --pipe
vmtksurfacedecimation -reduction 0.95 --pipe
vmtksurfaceviewer --pipe vmtksurfaceremeshing
-elementsizemode area -area 10 -minarea 4 --pipe
vmtksurfaceviewer -ofile surf_re.vtp

Once the surface is perfectly smoothed, the tetrahedral mesh is performed call-

ing TetGen in meshing.py and refined in the tumoral area by the algorithm named

refinement.py. The final step consists in overlapping the brain label map to the

tetrahedral mesh using label.py, so that the biological features of the tissues are

passed to the computational object. The final mesh is now ready for the numerical

simulations. In the following we report portions of the codes used; for the integral

versions see [41].

# --- meshing.py --- #
...
reader=vtk.vtkXMLPolyDataReader()
reader.SetFileName("/home/cristina/TESI/Mesh_Creat/surf_re.vtp")
...
sizingFunctionArray.SetName("SizingFunction")
...
# Call tetgen
tetgen=vmtkscripts.vmtkTetGen()
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tetgen.Mesh= stm.Mesh
tetgen.GenerateCaps = 0
tetgen.UseSizingFunction = 1
tetgen.Refine=0
tetgen.SizingFunctionArrayName = "SizingFunction"
tetgen.Order = 1
tetgen.Quality = 1
tetgen.PLC = 1
tetgen.NoBoundarySplit = 1
tetgen.RemoveSliver = 0
tetgen.OutputSurfaceElements = 0
tetgen.OutputVolumeElements = 1
tetgen.Execute()
...

# --- refinement.py --- #
...
for i in range(mesh.GetNumberOfPoints()):
pb=mesh.GetPoint(i)
dist=sqrt(pow((pb[0]-205),2) + pow((pb[1]-290),2) + pow((pb

[2]-27),2))
if dist <= 30:

sizingFunctionArray.SetTuple1(i,1.2)
else:

sizingFunctionArray.SetTuple1(i,3)
...

# --- label.py --- #
...
# Mesh reader
reader = vtk.vtkUnstructuredGridReader()
reader.SetFileName("Mesh_re.vtk")
reader.Update()
mesh=reader.GetOutput()
...
# Metaimage reader
ireader = vmtkscripts.vmtkImageReader()
ireader.InputFileName = "BLM.mhd"
ireader.Execute()
img = ireader.Image
...
# Label assignment
for ig in range(ncells):
mesh.GetCellPoints(ig,ptlst)
mesh.GetPoints().GetPoints(ptlst,pt)
barycenter(pt,pb)
pt.Reset()
im=ploc.FindClosestPoint(pb)
print iml.GetComponent(im,0)
if iml.GetComponent(im,0)==2.0:

cell_label.SetTuple1(ig,25)
else:
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cell_label.SetTuple1(ig,iml.GetComponent(im,0))
writer = vtk.vtkUnstructuredGridWriter()
writer.SetFileName("Mesh_lab.vtk")

At this point, we deal with the components Dij , with i, j = x, y, z of the dif-

fusion tensor D. As mentioned, it is possible that the six images representing Dij

have to be registered on the T1 used for the mesh creation. We use an open source

software named FSL: it offers two robust and easy-to-use tools for medical image

registration called FNIRT and FLIRT. Firstly, we register the image of the Dxx

component and then we use the transformation matrix to register the other compo-

nents. The commands utilized are:

Flirt -in Dxx.nii -ref GBM_T1_3D_TFE_rest_SENSE_10_1.nii -omat
outputmatrix.nii -dof 6 -out Dxx_reg.nii

Flirt -in Dij.nii -ref GBM_T1_3D_TFE_rest_SENSE_10_1.nii -applyxfm
-init outputmatrix.nii -dof 6 -out Dij_reg.nii

Once the components are registered to the reference image, their format is

switched from the nifti file format to the mhd file format and therefore ready for

the labeling process. We create six computational meshes on which to each cell the

projected value is associated.

A.2 Code implementation - The FEniCS project

To perform numerical simulation we rely on a open source software named the

FEniCS project trough a Python interface. It is a software specialized in automated

solution of differential equation by finite element and it is actually a collection of

inter-operable components, including the problem-solving environment DOLFIN,

the form compiler FCC, the finite element tabulator FIAT, the just-in-time com-

piler Instant, the code generation interface UFC and the form language UFL [38],

as depicted in figure A.1.
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Figure A.1: DOLFIN functions as the main user interface of FEniCS and handles
the communication between the various components of FEniCS and external soft-
ware. Solid lines indicate dependencies and dashed lines indicate data flow [38].

First of all, we have to convert the seven meshes (the brain mesh and the six

components of the diffusion tensor) from the .vtk format to the .xml format, the

one supported by FEniCS, making sure that the cells information (tissue labels and

diffusion values) are given to the new XML meshes, that we call brain.xml and

Dij.xml.

vmtkmeshreader -ifile Mesh_lab.vtk -entityidsarray "cell_labels"
--pipe vmtkmeshwriter -entityidsarray "cell_labels"
-writeregionmarkers 1 -ofile brain.xml -f "dolfin"

vmtkmeshreader -ifile Mesh_Dij.vtk -entityidsarray "Dij_labels"
--pipe vmtkmeshwriter -entityidsarray "Dij_labels"
-writeregionmarkers 1 -ofile Dij.xml -f "dolfin"

In order to be able to use diffusion tensor information collected into the XML
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meshes, we have implemented a code which reads the diffusion values and stores

them as mesh function. In the same code, we compute Tij , the six components of

T, the tensor of preferential directions and we stock them as mesh function too.

Then these data will be read in the main code in a second time.

# DefineT.py

from dolfin import *

#Read of the XML meshes
mesh = Mesh("brain.xml")

mvc_Dxx = MeshValueCollection("size_t", mesh, "Dxx.xml")
meshf_Dxx = MeshFunction("size_t", mesh, mvc_Dxx)
values_Dxx = meshf_Dxx.array()

mvc_Dyy = MeshValueCollection("size_t", mesh, "Dyy.xml")
meshf_Dyy = MeshFunction("size_t", mesh, mvc_Dyy)
values_Dyy = meshf_Dyy.array()

mvc_Dzz = MeshValueCollection("size_t", mesh, "Dzz.xml")
meshf_Dzz = MeshFunction("size_t", mesh, mvc_Dzz)
values_Dzz = meshf_Dzz.array()

mvc_Dxy = MeshValueCollection("int", mesh, "Dxy.xml")
meshf_Dxy = MeshFunction("int", mesh, mvc_Dxy)
values_Dxy = meshf_Dxy.array()

mvc_Dxz = MeshValueCollection("int", mesh, "Dxz.xml")
meshf_Dxz = MeshFunction("int", mesh, mvc_Dxz)
values_Dxz = meshf_Dxz.array()

mvc_Dyz = MeshValueCollection("int", mesh, "Dyz.xml")
meshf_Dyz = MeshFunction("int", mesh, mvc_Dyz)
values_Dyz = meshf_Dyz.array()

# Components of D
o11=MeshFunction("double",mesh,3)
o22=MeshFunction("double",mesh,3)
o33=MeshFunction("double",mesh,3)
o12=MeshFunction("double",mesh,3)
o13=MeshFunction("double",mesh,3)
o23=MeshFunction("double",mesh,3)

# Components of T
t11=MeshFunction("double",mesh,3)
t22=MeshFunction("double",mesh,3)
t33=MeshFunction("double",mesh,3)
t12=MeshFunction("double",mesh,3)
t13=MeshFunction("double",mesh,3)
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t23=MeshFunction("double",mesh,3)

trace = MeshFunction("size_t",mesh,3)

n=len(values_Dzz)
i=0

while (i<n):
trace[i] = (values_Dxx[i] + values_Dyy[i] + values_Dzz[i])
if (trace[i]!=0):

o11[i] = float(values_Dxx[i])
o22[i] = float(values_Dyy[i])
o33[i] = float(values_Dzz[i])
o12[i] = float(values_Dxy[i])
o13[i] = float(values_Dxz[i])
o23[i] = float(values_Dyz[i])
t11[i] = 3*values_Dxx[i]/trace[i]
t22[i] = 3*values_Dyy[i]/trace[i]
t33[i] = 3*values_Dzz[i]/trace[i]
t12[i] = float(3*values_Dxy[i])/trace[i]
t13[i] = float(3*values_Dxz[i])/trace[i]
t23[i] = float(3*values_Dyz[i])/trace[i]

if (trace[i] ==0):
o11[i] = 86.4
o22[i] = 86.4
o33[i] = 86.4
o12[i] = 0.0
o13[i] = 0.0
o23[i] = 0.0
t11[i] = 1.0
t22[i] = 1.0
t33[i] = 1.0
t12[i] = 0
t13[i] = 0
t23[i] = 0

i=i+1

# Saving D components and T components
o11_file = File("o11.xml.gz")
o22_file = File("o22.xml.gz")
o33_file = File("o33.xml.gz")
o12_file = File("o12.xml.gz")
o13_file = File("o13.xml.gz")
o23_file = File("o23.xml.gz")
o11_file<< o11
o22_file<< o22
o33_file<< o33
o12_file<< o12
o13_file<< o13
o23_file<< o23

t11_file = File("t11.xml.gz")
t22_file = File("t22.xml.gz")
t33_file = File("t33.xml.gz")
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t12_file = File("t12.xml.gz")
t13_file = File("t13.xml.gz")
t23_file = File("t23.xml.gz")
t11_file << t11
t22_file << t22
t33_file << t33
t12_file << t12
t13_file << t13
t23_file << t23

In the following, the main code is reported. The problem consists of a second

order non-linear equation coupled with a Poisson-like equation and with reaction-

diffusion equation. We create a mixed function space using linear continuous La-

grange basis such that each tetrahedron has four degrees of freedom. Since we deal

with a nonlinear problem, we have to make use of the NewtonSolver() built in class.

We choose MUMPS (MUltifrontal Massively Parallel Sparse direct Solver) as lin-

ear solver and the incremental criterion as convergence criterion. In the main code,

there are few C++ lines in which the external files containing the components of

the tensors D and T are read and stored in objects that FEniCS can introduce in the

equations. In particular, thanks to the Expression tool, the components are linearly

interpolated on the dof of the varibles.

# Model.py

from dolfin import *
import numpy

# ---- Create Mesh and function space ---- #

mesh = Mesh("brain.xml")
V = FunctionSpace(mesh,"Lagrange",1)
ME = MixedFunctionSpace([V,V,V])

mvc_lab = MeshValueCollection("size_t", mesh, "brain_labels.xml")
meshf_lab = MeshFunction("size_t", mesh, mvc_lab)
values_label = meshf_lab.array()

#Resection simulation only
#mvc = MeshValueCollection("size_t", mesh, "tumor.xml")
#meshf = MeshFunction("size_t", mesh, mvc)
#values = meshf.array()

class InitialConditions(Expression):
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def eval(self,values,x):
values[0]=0.45*exp( -( (x[0]-242)**2 + ( x[1]-229)**2+ (x

[2]- 27)**2 )/9)
#Resection simulation only
values[0]= 0.39*((x[0]-205)**2+(x[1]-290)**2+(x[2]-28)

**2<=115)+0.0*((x[0]-205)**2+(x[1]-295.5)**2+(x[2]-27)

**2>=115)
values[1]=0.0
values[2]=1.0

def value_shape(self):
return(3,)

class MyTumor(NonlinearProblem):
def __init__(self, L, a, bc):

NonlinearProblem.__init__(self)
self.L = L
self.a = a
self.bc = bc

def F(self, b, x):
assemble(self.L, tensor=b)
self.bc.apply(b, x)

def J(self, A, x):
assemble(self.a, tensor=A)
self.bc.apply(A)

class DirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

return on_boundary

# ---- Problem ---- #

#Define trial Function and test function
du = TrialFunction(ME)
v,w,q = TestFunctions(ME)

#Define functions
u = Function(ME)
u0 = Function(ME)

#Split mixed function
dc,dmu,dn = split(du)
c,mu,n = split(u)
c0,mu0,n0 = split(u0)

#Create initial conditions and interpolate
u_init = InitialConditions()
u.interpolate(u_init)
u0.interpolate(u_init)

# Resection simulation only
#dm = V.dofmap()
#tt = Function(V)
#for cell in cells(mesh):

#if (values[cell.index()]==1):
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#tt.vector()[dm.cell_dofs(cell.index())[:]]=0.0
#if (values[cell.index()]==0):

#tt.vector()[dm.cell_dofs(cell.index())[:]]=1.0

#dofs_V0=ME.sub(0).dofmap().dofs()
#lun=len(dofs_V0)
#for ind in range(0, lun ):

#u.vector()[dofs_V0[ind]]=u.vector()[dofs_V0[ind]]*tt.vector
()[ind]

#u0.vector()[dofs_V0[ind]]=u0.vector()[dofs_V0[ind]]*tt.
vector()[ind]

# --- Diffusion steps (Resection only) --- #

#s_1= Function(V)
#assign(s_1, u.sub(0))
#dt = 0.1 # time step
#s = TrialFunction(V)
#r = TestFunction(V)
#a = s*r*dx + dt*inner(nabla_grad(s), nabla_grad(r))*dx
#L = s_1*r*dx
#A = assemble(a) # assemble only once, before the time stepping
#s = Function(V) # the unknown at a new time level
#T = 0.3 # total simulation time
#t = dt
#print "Ok+++"
#while t <= T:

#b = assemble(L)
#solve(A, s.vector(), b)
#t += dt
#s_1.assign(s)

#file_ss = File("out_ss.pvd", "compressed")
#file_ss << s
#print "Ok"
# Assignment
#assign(u.sub(0), s)
#assign(u0.sub(0),s)

# ---- Parameter estimation ---- #

#Oxygen phase
#class defineS(Expression):

#def eval(self,values,x):
#values[0]= -1e4*exp ( - ((x[0]-205)**2+(x[1]-290)**2+(x

[2]-28)**2 ) /115 ) +1e4
#values[1]=0.0
#values[2]=0.0

#def value_shape(self):
#return(3,)

#Define functions
#S_n_exp = Function(ME)
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#S_init = defineS()

#S_n_exp.interpolate(S_init)
#S_n= Function(V)
#assign(S_n, S_n_exp.sub(0))

#dm = V.dofmap()
#k = Function(V)
#for cell in cells(mesh):

#if (values[cell.index()]==1):
#k.vector()[dm.cell_dofs(cell.index())[:]]=20

#if (values[cell.index()]==0):
#k.vector()[dm.cell_dofs(cell.index())[:]]=100

dm = V.dofmap()
k = Function(V)
for cell in cells(mesh):

if (values_label[cell.index()] == 25 ):
k.vector()[dm.cell_dofs(cell.index())[:]]=20

if (values_label[cell.index()] == 13):
k.vector()[dm.cell_dofs(cell.index())[:]]=100

if (values_label[cell.index()] == 14):
k.vector()[dm.cell_dofs(cell.index())[:]]=100

delta_n = 1000 #dayˆ-1
S_n = 1e4 #dayˆ-1
gamma = 0.25 #dayˆ-1
# Cellular Phase
c_e = 0.389
M = 5000 #mmˆ-2 Pa day - range [1377.9 ; 4286.7]
n_s = 0.07 #mM micromolarity
X1 = 106.64 #Pa
X2 = 900 #Pa - range [866 ; 1530]
E = 694 #Pa
delta_c = 0.3

theta = 0.5
dt = 1e-1

# ---------------------------------------- #
# Code for C++ evaluation of D
defineMatrix_code_O = """

class Components_DT_O : public Expression
{
public:

// Create expression with 6 components
Components_DT_O() : Expression(6) {}

// Function for evaluating expression on each cell
void eval(Array<double>& values, const Array<double>& x, const

ufc::cell& cell) const
{
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const uint D = cell.topological_dimension;
const uint cell_index = cell.index;
values[0] = (*o11)[cell_index];
values[1] = (*o12)[cell_index];
values[2] = (*o13)[cell_index];
values[3] = (*o22)[cell_index];
values[4] = (*o23)[cell_index];
values[5] = (*o33)[cell_index];

}

// The data stored in mesh functions
std::shared_ptr<MeshFunction<double> > o11;
std::shared_ptr<MeshFunction<double> > o12;
std::shared_ptr<MeshFunction<double> > o13;
std::shared_ptr<MeshFunction<double> > o22;
std::shared_ptr<MeshFunction<double> > o23;
std::shared_ptr<MeshFunction<double> > o33;

};
"""

# Define DT components expression and matrix

o11=MeshFunction("double",mesh,"o11.xml.gz")
o22=MeshFunction("double",mesh,"o22.xml.gz")
o33=MeshFunction("double",mesh,"o33.xml.gz")
o12=MeshFunction("double",mesh,"o12.xml.gz")
o13=MeshFunction("double",mesh,"o13.xml.gz")
o23=MeshFunction("double",mesh,"o23.xml.gz")

o = Expression(cppcode=defineMatrix_code_O)
o.o11 = o11
o.o12 = o12
o.o13 = o13
o.o22 = o22
o.o23 = o23
o.o33 = o33
mat_O = as_matrix([[o[0], o[1], o[2]], [o[1], o[3], o[4]],[o[2], o

[4], o[5]] ])

# ---------------------------------------- #

# Code for C++ evaluation of T
defineMatrix_code_T = """

class Components_DT_T : public Expression
{
public:

// Create expression with 6 components
Components_DT_T() : Expression(6) {}

// Function for evaluating expression on each cell
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void eval(Array<double>& values, const Array<double>& x, const
ufc::cell& cell) const

{
const uint D = cell.topological_dimension;
const uint cell_index = cell.index;
values[0] = (*t11)[cell_index];
values[1] = (*t12)[cell_index];
values[2] = (*t13)[cell_index];
values[3] = (*t22)[cell_index];
values[4] = (*t23)[cell_index];
values[5] = (*t33)[cell_index];

}

// The data stored in mesh functions
std::shared_ptr<MeshFunction<double> > t11;
std::shared_ptr<MeshFunction<double> > t12;
std::shared_ptr<MeshFunction<double> > t13;
std::shared_ptr<MeshFunction<double> > t22;
std::shared_ptr<MeshFunction<double> > t23;
std::shared_ptr<MeshFunction<double> > t33;

};
"""

# Define T components expression and matrix

t11=MeshFunction("double",mesh,"t11.xml.gz")
t22=MeshFunction("double",mesh,"t22.xml.gz")
t33=MeshFunction("double",mesh,"t33.xml.gz")
t12=MeshFunction("double",mesh,"t12.xml.gz")
t13=MeshFunction("double",mesh,"t13.xml.gz")
t23=MeshFunction("double",mesh,"t23.xml.gz")

t = Expression(cppcode=defineMatrix_code_T)
t.t11 = t11
t.t12 = t12
t.t13 = t13
t.t22 = t22
t.t23 = t23
t.t33 = t33
mat_T = as_matrix([[t[0], t[1], t[2]], [t[1], t[3], t[4]],[t[2], t

[4], t[5]] ])

# ---------------------------------------- #

# Form compiler options
parameters["form_compiler"]["optimize"] = True
parameters["form_compiler"]["cpp_optimize"] = True
parameters["form_compiler"]["representation"] = "quadrature"

# ---- Define nutrient initial condition ---- #

# Define Dirichlet boundary condition
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def Boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, Constant("1.0"), Boundary)

# Define variational problem
m = TrialFunction(V)
t = TestFunction(V)

a = inner(mat_O*grad(m), grad(t))*dx + delta_n*c0*m*t*dx + S_n*m*t

*dx
L = S_n*t*dx

# Compute solution
m = Function(V)
problem = LinearVariationalProblem(a, L, m, bc)
solver_m = LinearVariationalSolver(problem)

prm_m=solver_m.parameters
prm_m[’linear_solver’] = ’mumps’
solver_m.solve()

# Assignment
assign(u.sub(2), m)
assign(u0.sub(2),m)

# ---- NonLinearProblem ---- #

# Dirichlet boundary condition
g1 = Constant(0.0)
bc2 = DirichletBC(ME.sub(0), g1, DirichletBoundary())

g2 = Constant(1.0)
bc2 = DirichletBC(ME.sub(2), g2, DirichletBoundary())

bc=[bc1, bc2]

#Crank -Nicholson method
n_mid = (1.0-theta)*n0 + theta*n
mu_mid = (1.0-theta)*mu0 + theta*mu
c_mid = (1.0-theta)*c0 + theta*c

c = variable(c)
K_c = c*(1-c)**2/M
f = E*(c**2)*((c-c_e)/(1-c))

X = Function(V)
dofs_V0=ME.sub(0).dofmap().dofs()
nn=len(dofs_V0)
for ii in range(0,nn):

if (u.vector()[dofs_V0[ii]]>1e-9):
X.vector()[ii]=X2

if (u.vector()[dofs_V0[ii]]<=1e-9):
X.vector()[ii]=X1
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lmba = Function(V)
for jj in range(0, nn):

lmba.vector()[jj]=1e-4*(X.vector()[jj])

L0 = c*v*dx -c0*v*dx + dt*inner(K_c*grad(mu_mid), grad(v))*dx - dt

*gamma*c_mid*(1-c_mid)*(n_mid-delta_c)*v*dx - dt*k*n_s*c_mid*
inner(mat_T*grad(n_mid), grad(v))*dx

L1 = mu*w*dx - f*w*dx - lmba*inner(grad(c), grad(w))*dx
L2 = n*q*dx -n0*q*dx + dt*inner(mat_O*grad(n_mid),grad(q))*dx - dt

*S_n*q*dx + dt*S_n*n_mid*q*dx + dt*delta_n*c_mid*n_mid*q*dx
L = L0+L1+L2

J = derivative(L,u,du)

# Create nonlinear problem and Newton solver
problem = MyTumor(L,J,bc)
solver = NewtonSolver()
prm=solver.parameters
prm[’linear_solver’] = ’mumps’
solver.parameters["relative_tolerance"] = 1e-6
solver.parameters["convergence_criterion"] = "incremental"
solver.parameters[’maximum_iterations’] = 50

# Saving output files
file_c = File("/u/dati/laureandi/colombo/Farfalla/out_c.pvd", "

compressed")
file_n = File("/u/dati/laureandi/colombo/Farfalla/out_n.pvd", "

compressed")

#Step in time
t=0.0
file_c << (u.split()[0], t)
file_n << (u.split()[2], t)
T=1000*dt
i=1

while(t<T):
print i
t+=dt
u0.vector()[:]=u.vector()
X = Function(V)
dofs_V0=ME.sub(0).dofmap().dofs()
nn=len(dofs_V0)
for ii in range(0,nn):

if (u.vector()[dofs_V0[ii]]>1e-9):
X.vector()[ii]=X2

if (u.vector()[dofs_V0[ii]]<=1e-9):
X.vector()[ii]=X1

lmba = Function(V)
for jj in range(0, nn):

lmba.vector()[jj]=1e-4*(X.vector()[jj])
solver.solve(problem, u.vector())
if (i%10 ==0):

file_c << (u.split()[0], t)
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file_n << (u.split()[2], t)
i=i+1
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