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Abstract

Even though brain tumors account for only 2-3% of all cancers, they are re-
sponsible for 7% of the years of life lost from cancer before the age of 70. Among
them, the most aggressive is the glioblastoma, a highly malignant cancer that arises
in the neuroglia, the supportive tissue of the neurons. Glioblastoma presents long
extensions that infiltrate deeply the white matter, following the alignment of the
fibers. From the medical viewpoint, this peculiarity makes it difficult to treat. For
the same reasons, in the last years, biomathematical modeling applied to infiltrative
brain tumor has gained in importance. Indeed, a good model could offer a better
understanding of the microstrucutral dynamics of the cancer and thus it could be
helpful to predict its evolution. In this study, we propose a diffuse interface binary
mixture model which consists of a fourth order non-linear equation for the can-
cerous cellular fraction coupled with a reaction diffusion equation for the nutrient
component. The model takes into account the mechanical dynamics, e.g. adhe-
sive forces or viscous interactions among cells, and the chemotactic cellular move-
ment in response to certain environment factors. Moreover, we include brain tissue
heterogeneity and anisotropy in the model by the introduction of patient-specific
diffusion tensor imaging data, thanks to which we manage to probe brain fibers
architecture. The aim of this research is to demonstrate the importance of consid-
ering anisotropy, heterogeneity and patient-specific data into mathematical models
in order to better predict the tumor growth. Specifically, we deal with the theoret-
ical and the numerical framework of the mathematical model proposed. Starting
from a real MR of a patient affected by glioblastoma and using imaging techniques,
we create a patient-specific computational mesh and we extract the necessary data
from the DTI medical images. Then we develop numerical codes making use of
an open-source software name FEniCS. To study the anisotropic development of
the tumor in relation to the biological parameters presented in the model, we per-
form a sensitivity analysis on a homogeneous geometry. Finally, we provide two
numerical tests that simulate common clinical situations.



Sommario

Sebbene i tumori cerebrali rappresentino solamente il 2-3% delle diagnosi tu-
morali, essi sono i responsabili del 7% di morti annue causate dal cancro prima dei
70 anni di eta. Tra di essi il pit aggressivo ¢ il glioblastoma, un cancro altamente
maligno che si sviluppa nella neuroglia, il tessuto di supporto dei neuroni. Il glio-
blastoma presenta lunghe estensioni che infiltrano la materia bianca in profondita,
seguendone lallineamento delle fibre, e che rendono questo tipo di tumore molto
difficile da trattare. Per questa ragione, negli ultimi anni, la modellizzazione ma-
tematica dei tumori cerebrali infiltrativi ha acquisito sempre pill importanza. Un
buon modello puo infatti offrire una migliore comprensione delle dinamiche mi-
crosttrutturali del cancro e di conseguenza potrebbe essere utile nel predire la sua
evoluzione. In questo progetto, proponiamo un modello di miscela binaria ad inter-
faccia diffusa che consiste di unequazione del quartordine per la frazione volumica
cellulare accoppiato con unequazione di diffusione reazione per la componente dei
nutrienti. Il modello prende in considerazione le dinamiche meccaniche, come
le forze di adesione o le interazioni viscose che hanno luogo tra le cellule, e il
movimento chemotattico cellulare causato da fattori chimici presenti nellambiente
extracellulare. Inoltre, abbiamo introdotto nel modello leterogeneita e lanisotro-
pia, caratteristiche peculiari del tessuto cerebrale, utilizzando i dati medici reali del
tensore di diffusione, grazie al quale possiamo anche conoscere larchitettura delle
fibre cerebrali. Lo scopo di questa ricerca ¢ dimostrare limportanza di introdurre
leterogeneita, lanisotropia e i dati paziente-specifici nel modello matematico cosi
che la predizione della crescita tumorale sia migliore e piu veritiera. Nello specifi-
o, in questo lavoro di tesi, ci siamo occupati dello sviluppo teorico e numerico del
modello proposto. In particolare, attraverso tecniche di imaging medico, abbiamo
creato una mesh computazionale di un cervello estrapolando la geometria da una
risonanza magnetica di un paziente affetto da glioblastoma e abbiamo estratto i dati
reali da introdurre nel modello dalle immagini mediche del tensore di diffusione.
Abbiamo inoltre sviluppato codici numerici utilizzando un software open-source
chiamato FEniCS. Per studiare la crescita anisotropa del tumore in relazione ai
parametri biologici presenti nel modello, abbiamo realizzato unanalisi di sensiti-
vita su una geometria omogenea. Infine, abbiamo proposto due test numerici che
simulano situazioni cliniche comuni.
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Introduction

Primary brain tumors are the most aggressive and lethal forms of cancer [75],
and, although they account for only 2-3% of all human malignancies, they are nev-
ertheless responsible for 7% of lives lost from cancer before the age of 70 per year
[19]. In human brain, moreover, more than 120 different tumor types can be found
among which gliomas are the most prevalent form [23]. They are tumors that arise
from neoplastic glial cells, the supportive tissue of the neurons, and account for the
30-40% of all brain and central nervous system primary tumors and the 80% of the
all malignant brain tumors [21, 23].

The most common and also the most malignant glioma is the glioblastoma, which
will be the clinical focus of this dissertation. Despite of therapies (surgery resec-
tion, chemotherapy or radiotherapy), glioblastoma has a life expectancy, after been
diagnosed, of only fourteen months [69, 75], while only 5% of patients has a five
years survival [21]. Thus, this disease represents a real challenge for present day
oncology. Moreover, its capability of penetrating diffusely along the white mat-
ter fibers leads to a wide tumoral area underestimated by conventional imaging
technology, such as computed tomography (CT) and magnetic resonance imag-
ing (MRI). Consequently, invasive glial neoplasms are difficult to be completely
resected, and while all visible tumor cells can be removed, the invisible infiltrat-
ing tumor components are left behind. For this reason, the extent of resection in
glioblastoma medical treatment has been a big dilemma in the last decades. Fur-
thermore, another challenging aspect of surgery is related to the location of the

tumor. As a matter of fact, tumor resection could be potentially harmful if the tu-
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mor is located near a sensitive area of the brain such those which control language,
movement, vision or other important functions.

To better detect tumors and evaluate their invasiveness, in the early 90s a new imag-
ing technique called Diffusion Tensor Imaging (DTI) was developed [30]. The DTI
is the only non-invasive method for characterizing the microstructural organization
of tissue in vivo, so it is understandable why this technique has attracted huge in-

terest and has enjoyed a rapid uptake by clinical and neuroscientific communities.

At the same time, a big help to present day oncology is potentially represented
by biomathematical modeling. During the last decades, indeed, the capability of
tumor to grow and invade the surrounding tissue has gained also the attention of the
mathematical and the physical research communities. The goal of this new field
of research is to understand the dynamics behind tumor growth and expansion in
relation to the specific features of the environment in which the neoplasm is evolv-
ing in order to provide a good mathematical model able to predict tumor evolution,
to improve therapy planning and to prognosticate the result of a specific form of
treatment. Thus, during the last fifty years, driven by the ambition of providing a
good and truthful model, theoreticians have proposed different mathematical mod-
els, covering various morphological and functional aspects of carcinogenesis.

As concerns the field of infiltrative brain tumor, such as gliomas, the basic spatio-
temporal model was suggested by J.D. Murray in the early 1990s. He proposed
a simple conservative diffusion equation for cells concentration observing that the
main aspect of the cancer was the uncontrolled proliferation of cells and the capa-
bility of them to invade and diffuse in the host tissue. The model can be stated as:
the rate of change in tumor cell population =

the diffusion (motility) of tumor cells + the net proliferation of tumor cells.

Under the assumption of a classical gradient-driven Fickian diffusion, this state-
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ment leads to the mathematical formulation of the following equation:

g; =V . (DVc)+ pc (1)
where ¢(x, t) is the tumor cell density at location x and time ¢, D is the diffusion
coefficient representing the net motility of glioma cells and p represents the net pro-
liferation rate of glioma cells [22]. In the last ten years, Swanson et al. have been
working on the development of this kind of model, introducing brain anisotropy
[71], angiogenesis [73], and modeling therapeutic response [72].

In contrast to diffuse models, in the mid-1990s, multiphase models, whose the-
oretical framework has to be found in the theory of mixture, started to be used in
biological research and in particular in the study of tumors. The multiphase ap-
proach was novel insofar as the tumor is considered as a continuum comprising
two or more interacting constituents, called phases. The mechanical aspects of bi-
ological tissues are also introduced in governing equations, which are now driven
from mass and momentum balances. Among multiphase models, an interesting
model was proposed by Byrne and Preziosi [8] in the early 2000s. They proposed
a binary model in which the tumor cells phase and the extracellular water phase
are taken into account and they showed that cellular motion is a consequence of
interaction between cells instead of being determined by random motility. In the
same period Ambrosi and Preziosi [1] have explained the necessity to propose
some postulates for cell velocity and the corresponding displacement field in order
to close the model, derived from the mixture theory. In the same area of research,
in 2007 Lowengrub et al. [83] developed, analyzed and numerically simulated a
diffuse interface continnum model, which was derived using the energy variation

statement and thus it was thermodynamically consistent.

Following [1, 8, 83] in the present work we propose, analyze and simulate a
diffuse interface binary mixture model of glioblastoma tumor growth. The model

is well posed and consists of a fourth order non-linear equation for the tumoral
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cells’ volume fractions coupled with a reaction-diffusion equation for the nutrient
component. We consider the oxygen as the main source of supply and we hy-
pothesize that the vasculature is homogenous in the whole domain. The model
takes into account the mechanical aspects involved in tumor evolution, such as ad-
hesive forces or viscous interactions, and the micro-local environment conditions
such as the oxygen levels. Hence, in the governing equation of the cellular frac-
tion we consider a term of flux of mass which, biologically, is due to a particular
phenomenon of cellular migration called chemeotaxis. Indeed, it has been experi-
mentally demonstrated [16] that a cell can perform a directed migration in response
to certain increasing gradient of chemoattractants, such as nutrients. Furthermore,
observing that the glioblastoma is a highly infiltrative tumor, whose extensions dif-
fuse deeply along white matter structures, we introduce the concept of anisotropy
thanks to patient-specific diffusion tensor imaging data. As mentioned, this tech-
nique provides a tensor that describes the spatial diffusion of the water molecules
in cerebral tissues and, comparing the diffusion values along each direction, we are
able to know which is the structure of the fibers and which are the preferential di-
rections of movement. Indeed, a water particle will move more easily along a fiber
than perpendicularly to it because, along that path, it will not find any obstacles. In
consequence, handling with the diffusion tensor we obtain a new tensor that we call
tensor of preferential directions and that we include in the chemotactic term. By
the inclusion of the anisotropic tensor of preferential directions, the model is thus
able to reproduce the cellular motion along the fibers of the white matter. Finally,
we suppose that the oxygen particles coherently with the water molecules and thus
the diffusive behavior of the nutrients can be actually described by the water diffu-
sion tensor, obtained directly from the medical images.

In our work we also deal with the implementation of the computational mesh and
the numerical codes necessary to simulate the model. In particular, we obtain the
computational mesh extracting the geometry from a magnetic resonance of a pa-

tient affect by glioblastoma, gently provided by Istituto Neurologico Carlo Besta,
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and we discretize and numerically solve the problem using the finite elements
method implemented in FEniCS. Consequently, we focus on simulating two spe-
cific clinical cases: the first concerns the growth of a butterfly glioblastoma, a kind
of astrocytoma that arises in the midline of the brain and assumes a peculiar shape;
the second deals with a common medical situation in which the glioma is not com-
pletely removed by surgical intervention and tumoral cells are left behind. We thus

investigate the potential occurrence of metastasis in the site of resection.

The work is organized as follows: in Chapter 1, we describe the biological
framework of the research, such as the phenomenon of carcinogenesis, and in par-
ticular we focus on brain tumors and on glioblastoma malignancy and features. In
Chapter 2, diffusion MRI technique is briefly described and the details on dif-
fusion tensor imaging, useful to understand the mathematical model, are given.
The first part of Chapter 3 is dedicated to the theory of mixture while in the sec-
ond part the mathematical model is introduced. In the last part of this chapter the
ranges of the biological parameters of the glioblastoma are discussed. In Chapter
4 the numerical formulation is provided. In the first part we describe the imaging
and the computational techniques used to create the 3D brain mesh. In the second
part of the chapter, it is explained how the diffusion tensor information are intro-
duced in the model and how the tensor of the preferential directions is obtained.
Finally in the last part of Chapter 4, the continuous and discrete weak formulation
is developed and some details about the numerical method adopted are provided.
In Chapter 5, the sensitivity analysis to the biological coefficients present in the
model is presented. In Chapter 6 we describe and numerically simulate the cases
of interest mentioned before. All the codes we make use of and more details about

numerical methods are provided in Appendix A.



Chapter 1

Biological Framework

In this chapter we provide a biological framework of the problem in order to
better understand which reasons are guiding our work and why a mathematical
model of glioblastoma is highly required. So, in the first section we briefly explain
the process of carcinogenesis, which literally means “the creation of a cancer”. In
the second section we focus on brain tumors and, among them, we concentrate on
a specific group of brain cancers named gliomas. In the third section we illustrate
the features of the glioblastoma, whose biological description is the object of this

dissertation.

1.1 What is a cancer?

A multicellular organism can thrive only when all its cells function in accor-
dance with the rules that govern cell growth and reproduction. In a healthy body
cells control their proliferation and program their death (apoptosis) in the various
tissues so as to optimize body repair and healing. Sometimes it can happen that
this process breaks down, i.e. a mutation or an epimutation occurs in the DNA of
a cell and it acquires abnormal functions. In a normal cell, when the DNA is dam-
aged the cell either repairs the harm or the cell dies. In abnormal cells, the DNA

is not repaired and the cell doesn’t die as it should but it survives and continues to

10
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proliferate, generating new cells that have the same damaged DNA. This leads to a
mass of abnormal cells that grows out of control: the tumor (figure 1.1).

A tumor can be benign, not cancerous, which grows slowly and typically has clear
borders that do not spread into other tissues, or malignant, i.e. the cancer, which

grows rapidly, invades the surrounding tissue and metastasizes.

The formation of a cancer is a multistage process in which abnormal cells
change the micro-environment to favor their survival. As a matter of fact, at the be-
ginning, the cancer is just a microscopic nodule which does not have access to the
vascular network and receives nutrients and growth factors via diffusion through
the host (healthy) tissue. For example, the typical distance an oxygen molecule
will diffuse before being uptake is approximately 100pm [13, 17, 57]. As time
proceeds, tumor cells accumulate and the insufficiency of the existing vasculature
to supply all cancerous cells may cause acute and chronic lack of oxygen (leading
to hypoxia) and nutrient (e.g. glucose, leading to hypoglycemia). An avascular
tumor cannot grow beyond a certain size, generally 1-2 mm?® [46]. Thus, a tumor
only grows further if the cancerous cells acquire through mutations the ability to
release pro-angiogenic growth factors (TAFs) in order to drive angiogenesis.

The angiogenesis is the formation of new capillaries throughout the tumor mass
which is induced by growth factors (e.g. VEGF) secreted by tumoral cells [80]. In
this way the tumor has a direct supply of nutrients and growth promoting factors.
Once a tumor is vascularized, it can grow larger and even shed cells into vessels,
leading to satellite tumors in distant parts of the body (metastases) (figure 1.2). The

formation of metastasis is the predominant cause of mortality due to cancer [40].
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How cancer starts

MNormal cells Abnormal Angiogenesis

Normal cells Abnormal cells Abnormal cells Malignant or
multiply invasive cancer
(Cancer in-situ)

Figure 1.1: Physiologically cells grow and multiply in an orderly way. If a mutation
in the DNA of a cell occurs, this mechanism breaks down and cells grow out of
control. A mutation in the DNA could be caused from exposure to exogenous
agents such as UV light, X-rays, chemicals, tobacco products, and viruses or for
endogenous factors (naturally occurring), figure from [50].

How cancer spreads

Primary cancer

o
Local invasion ARSI

Angiogenesis —
tumours grow their
own blood vessels

Lymph vessel

Metastasis -
cells invade other
parts of the body via
blood vessels and
lymph vessels

Figure 1.2: Once a tumor is vascularized, cancerous cells manage to move through-
out the body using the blood or lymph systems, destroying healthy tissue in a pro-
cess called invasion and it leads to metastasis, figure from [50].
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1.2 Introduction to brain tumors

1.2.1 An overview of brain tumors

There are over than 120 types of brain tumors and spinal cord tumors: they can

appear in the brain itself or in lymphatic tissue, in cranial nerves, in the meninges
or in the pituitary or in the pineal gland. Brain tumors are named after the type of
cells they arise from or the area they grow in. For instance, gliomas, the majority
of malignant brain tumors in adult, take the name from the neoplastic glial cells as
well as meningiomas take their name from the meninges, thin layers that envelope
the central nervous system (CNS) [79]. Tumors can be divided in primary tumors,
i.e. tumors that start in cells of the brain and may spread to other parts of the brain
or to the spine, but rarely to other organs, or metastatic or secondary brain tumors,
that begin in another part of the body and then spread to the brain [66]. In table 1.1
we classificate and describe the principal primary CNS tumors on the basis of the
type of cell or tissue they arise from [79].
Concerning the epidemiology of the disease, in Europe, the standardized incidence
of primary CNS cancers ranges from 4.5 to 11.2 cases per 100,000 men and from
1.6 to 8.5 per 100,000 women, while the 5-year survival rate is 17% for males and
19% for females. The statistic estimations have been obtained by Crocetti et al.
[14] studying patients affected by CNS cancers in the period between 1995 and
2002.

1.2.2 Classification of gliomas

Gliomas make up 80% of all malignant brain tumors [21] and, despite their
frequency, the etiology of these tumors remains largely unknown. The common
gliomas affecting the cerebral hemispheres of adults are named “diffuse” gliomas
due to their propensity to infiltrate extensively throughout the brain parenchymia.

These gliomas are classified histologically as astrocytomas, oligodendrogliomas,
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Tumor Type Cel(l)ii’gisue Cell / Tissue Description Tumor Description
Gliomas Neuroglia It is the supportive (gluey) | see subsection (1.2.2)
tissue of the brain (figure
1.3). It maintains the ionic
milieu of nerve cells, it
modulates the rate of nerve
signal propagation and the
synaptic action by control-
ling the uptake of neuro-
transmitters, and prevents
from neural injury [61].
Medulloblastoma | Neuroectodermal | They are very early forms | It develops in the cere-
cells of nervous system that are | bellum and it is highly
probably involved in brain | malignant. It affects
cell development. children.
Meningioma Meninges They are layers of tissue that | It accounts for 1 out
line and protect the brain. 3 primary brain tu-
mors and they are
usually benign. Many
meningiomas are
asymptomatic.
Piutary tumors Piutary  gland | They both make hormones | They account for the

and hypothala-
mus

that help regulate the activ-
ity of many other glands in
the body, such as thyroid
gland.

8% of tumor and they
are nearly benign.
Symptoms are related
with an excess or a lack
of hormones produced
by the glands.

Pineal tumors

Pineal gland

It is a small endocrine gland
situated deep within the
brain, between the cerebral
hemispheres. It makes mela-
tonin, the hormone that reg-
ulates sleep.

They accounts for only
1 to 2% of brain tumors.

Schwannomas

Schwann cells

These cells surround and
insulate cranial nerves and
other nerves.

They make up about
the 8% of CNS tu-
mors.  They are al-
most always benign and
can arise in any nerves.
In relation to the func-
tion of the nerve they
start from, Schwanno-
mas can cause differ-
ent sympstoms, such
as acoustic or balance
problems.

Table 1.1: Classification and description of the principal primary Central Nervous
System tumors on the basis of the type of cell or tissue they arise from [79].
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ependymomas, or tumors with morphological features of both astrocytes and oligo-
dendrocytes, termed oligoastrocytomas. Astrocytomas arises from astrocytes, star-
like cells (figure 1.3) that help support and nourish neurons and maintain an appro-
priate chemical environment for neuronal signaling. Oligodendrogliomas are tu-
mors formed by oligodendrocytes, the cells that make myelin, a fatty substance that
surrounds and isolates the nerve cell axons and which helps neurons to send elec-
tric signals. Ependymomas come from ependymocytes, the glial cells that make up
the ependyma, the membrane that lines the ventricles of the brain and the central
canal of the spinal cord. Gliomas are further categorized on the basis of the patho-
logic evaluation and the histological degrees of malignancy of the tumor. The most
widely used current classification of human gliomas is the one proposed by the
World Health Organization in 2007 [39] which we schematize in table 1.2. In table
1.3 we report population-based incidence rates (per 100000 person per year), age,
sex and survival of patients which have been affected by gliomas in 1992-1997 in

US [52] .

\ v dendrita r/ l/"
f -

Figure 1.3: Neuroglia performs a supportive function for neurons. It is composed
by microglial, that is the main form of active immune defense in the central nervous
system and accounts for the 10-15% of the glial cells, and macroglial, derived from
the ectodermal tissue, that is mainly composed by astrocytes (cells with a star-like
appearance), oligodendrocytes, ependymocytes and Schwann cells. Figure taken
from [61].



CHAPTER 1. BIOLOGICAL FRAMEWORK

16

WHO grading system

Grade Description Type of glioma

I Benign and slow growing Pilocytic astrocytoma
Cells look almost normal under a microscope
Usually associated with long-term survival
Rare in adults

II Relatively slow growing Diffuse astrocytoma
Sometimes spreads to nearby normal tissue and | Oligodendroglioma
comes back (recurs) Oligoastrocytoma
Cells look slightly abnormal under a microscope
Sometimes comes back as a higher grade tumor

I Malignant = cancerous Anaplastic Astrocytoma
Actively reproduces abnormal cells Anaplastic Oligodendroglioma
Tumor spreads into nearby normal parts of the brain | Anaplastic Oligoastrocytoma
Cells look abnormal under a microscope Anaplastic Ependymoma
Tends to come back, often as a higher grade tumor

v Most malignant, fast growing Glioblastoma
Easily spreads into nearby normal parts of the brain | - Gliosarcoma
Actively reproduces abnormal cells - Giant Cell Glioblastoma
Cells look very abnormal under a microscope
Tumor forms new blood vessels to maintain rapid
growth
Tumors have areas of dead cells in their center
(called necrosis)

Table 1.2: WHO grading system applied to gliomas: grade I is assigned to the more

circumscribed tumors with low proliferative potential, grade II defines diffusely
infiltrative tumours, grade III is assigned to those showing anaplasia and mitotic
activity and grade IV (glioblastoma) describes tumours that show microvascular
proliferation and/or necrosis [39, 21].

1.3 Glioblastoma Multiforme

In the present work, we focus on glioblastoma (GBM) tumor, an astrocytoma
grade IV, the most common and aggressive among gliomas, that accounts for 15%
of all primary central nervous system tumors and 55% of all gliomas [21].

On the basis of clinical presentation, glioblastomas have been further subdivided
into the primary or secondary GBM subtypes. The vast majority of glioblastomas

are primary glioblastomas (90% of GBMs) which develop rapidly de novo in el-
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Tumor WHO | Incidence | M:F Mean Survival
grade Rate ratio age at 1 2 5 10
diagnosis | year | years | years | years

Pilocytic I 0.23 1.09 17 95% | 93% | 89% | 86%
astrocytoma
Diffuse

11 0.13 1.46 47 73% | 60% 45% 34%
Astrocytoma
Oligodendroglioma 1T 0.34 - 42 88% | 80% 66% | 47%
Ependymoma/ W
Anaplastic I 0.23 1.29 35 86% | 19% | 66% | 55%
Ependymoma
Anaplastic 11 0.49 1.20 50 60% | 43% | 28% | 19%
Astrocytoma
Anaplastic 11 0.10 1.15 46 5% | 57% | 38% | 25%
Oligodendrocytes
Glioblastoma v 2.96 1.26 62 28% | 82% | 2.9% | 1.8%

Table 1.3: Population-based data of incidence rates (per 100,000 person per year),
age and sex, and survival of patients with gliomas in 1992-1997 in United States
adjusted to the 2000 US (see [52])

derly patients, without clinical or histologic evidence of a less malignant precursor
lesion. In contrast, secondary glioblastomas progress from low-grade diffuse as-
trocytomas or anaplastic astrocytomas. They manifest in younger patients, have a
lesser degree of necrosis, are preferentially located in the frontal lobe, and carry
a significantly better prognosis. Histologically, primary and secondary glioblas-
tomas are largely indistinguishable, but they differ in their genetic and epigenetic

profiles [53, 55].

Glioblastoma was observed for the first time in 1863-1865 by Virchow, known
as the father of pathology, who was the first to identify a large group of intracra-
nial tumors whose origin was in the glial tissue of the brain. He gave the name
glioma to these new growths and he described such neoplasm as slow-growing, in-
filtrating vascular masses with hemorrhages, cysts and degenerated areas. In 1925
Globus and Strauss [15] proposed the name spongioblastoma multiforme since,
to the naked eye, glioblastoma appears as a well circumscribed mass, globular or
spherical, with a highly variegate cut surface due to necrosis, fatty degeneration

and hemorrhages and it is characterized by a necrotic core surrounded by anaplas-



CHAPTER 1. BIOLOGICAL FRAMEWORK 18

tic cells [27]. In 1926 the term glioblastoma multiforme was introduced as an
alternative form of spongioblastoma by Percival Bailey and Harvey Cushing [2],
two American surgeons who created the first major system of classification for
brain tumors. They claimed that glioblastoma originates from primitive precursors
of glial cells called glioblasts. In 1979 the first edition of the World Health Organi-
zation (WHO) Classification of Tumors of the Nervous System was published and
glioblastomas were not yet recognized as astrocytic neoplasms but listed in a group
of ”poorly differentiated and embryonal tumors ” [55]. Only after the introduction
of immunohistochemistry it has been discovered that glioblastoma is actually an

extreme manifestation of anaplasia and dedifferentiation of astrocytes.

For unknown reasons, glioblastoma occurs commonly in Caucasians, Asians
males over 50 years old, without any genetic predisposition [54]. The prevalent
symptom is a progressive memory, personality, or neurological deficit [66], in
addition to common symptoms such as seizure, nausea, vomiting and headache.
Glioblastoma has median survival of about 14.6 months while for 30% of the cases
survival could reach two years, [33]. However, there are reports that some patients
can live for more than 10 years after diagnosis. A common feature among those
patients is that they are typically younger than 40 years at the time of diagnosis [9,
65].

1.3.1 Hallmark features

Glioblastoma is defined by the hallmark features of uncontrolled cellular pro-
liferation, diffuse infiltration, propensity for necrosis, robust angiogenesis, intense
resistance for apoptosis and rampant genomic instability [19]. As reflected by the
old epithet multiforme, GBM presents with significant heterogeneity on the cy-
tophatologycal, transcriptional and genomic levels. The tumor may take on a vari-

ety of appearances, depending on the amount of hemorrhage, necrosis, or its age.
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These tumors may be firm or gelatinous. Considerable regional variation in appear-
ance is characteristic. Secondary to necrosis, some areas are firm and white, some
are soft and yellow, and still other are cystic with local hemorrhage. Moreover,
glioblastomas have a large variability in size and infiltration beyond the visible tu-
mor margin is always present [62].

Glioblastoma forms in the cerebral white matter and grows quickly along the fibers
or along vessels and it seems that it follows the physical structures in the extracel-
lular matrix of the neighboring brain [23]. The tumor may arise in any part of
the Central Neural System but the frontal and the temporal lobes are the most fre-
quently affected. The central part of the brain is often involved, and a classical
appearance is provided by the butterfly type, in which the tumor extends in both
hemispheres [27] as depicted in figures 1.4. Malignant cells carried in the cere-
brospinal fluid may invade and migrate away from the main tumor within the brain;

however, glioblastomas rarely spread elsewhere in the body.

(a) C+ T1 WI Coronal (b) C+ T1 WI Axial

Figure 1.4: C+ (contrast-enhanced) T1 MRI WI (weighted) of a butterfly glioblas-
toma. If the tumor arises in the central part of the brain, it spreads in both hemi-
spheres and thus it shows a butterfly appearance.
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1.3.2 Diagnosis and treatment

Brain tumors are very difficult to be treated due to the following factors: tu-
mor cells are very resistant to conventional therapies, many drugs cannot cross the
blood brain barrier to act on the tumor and brain has a very limited capacity to
repair itself [34]. Moreover, concerning glioblastoma, its treatment remains even
more difficult. As a matter of fact, this tumor is heterogeneous, it is often lo-
cated in a region that is beyond the reach of local control and its highly diffusive
nature makes the complete removal almost impossible. Therefore, the treatment
of patients with malignant gliomas is made on different levels and encompasses

surgery, radiotherapy, and chemotherapy.

For the diagnosis, conventional imaging techniques, such as computed tomog-
raphy (CT or CAT scan) and magnetic resonance imaging (MRI), are commonly
used to pinpoint the tumor. Depending on the patient, other exams could be re-
quested; e.g. magnetic resonance spectroscopy (MRS) is used to examine the tu-
mor’s chemical profile and determine the nature of the lesions seen on the MRI.
Upon an initial diagnosis, the first step in treating the glioblastoma is to remove
as much of tumor as possible, without injuring brain tissue (figure 1.5). In the
last years, the diffusion tensor imaging technique, which will be described in more
details in Chapter 2, has gained in importance since it provides parametric maps
that help to visualize different aspects of the tissue micro-structure which may help
the neurosurgeons to avoid disrupting important nerve connections within the brain
itself. However, high-grade tumors are surrounded by a zone of migrating, infiltrat-
ing tumor cells that invade surrounding tissues and thus removing the entire tumor
could be very difficult and, almost always, impossible. Anyway, gross tumor re-
section immediately decompresses the brain reducing the intracranial pressure and,
due to the consequent reduction in neoplastic cells in the surgical cavity, probably
increases the likelihood of response to radiotherapy and/or chemotherapy; it may,

moreover, delay progression. Always after surgery, when the wound is healed,
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radiation therapy can begin. The goal of radiation therapy is to kill tumor cells
selectively while leaving normal brain tissue unharmed. In standard external beam
radiation therapy, multiple sessions of standard-dose “fractions” of radiation are
delivered to the tumor site as well as a margin in order to treat the zone of infiltrat-
ing tumor cells. Each treatment induces damage to both healthy and normal tissue
but by the time the next treatment is given, most of the normal cells have repaired
the damage, but the tumor tissue has not. In addition, the patient is treated con-
comitant with chemotherapy, by which special drugs designed to kill tumor cells
are administrated. Nowadays, the standard drug used is the temozolomide, which
has shown to give survival benefits with minimal additional toxicity. The current
standard of care, that is the Stupp protocol, has led to a significant improvement
in patient survival. This protocol consists of adjuvant radiotherapy after resection
plus continuous daily temozolomide (75 mg per square meter of body-surface area
per day, 7 days per week from the first to the last day of radiotherapy), followed
by six cycles of adjuvant temozolomide (150200 mg per square meter for 5 days
during each 28-day cycle) [68]. Because traditional methods of treatment are un-
likely to result in a prolonged remission of GBM tumors, researchers presently are

investigating several innovative treatments in clinical trials [49, 74].

(a) T1 Axial (b) Post T1 MDC- Axial

Figure 1.5: Example of glioblastoma resection. The figures have been gently pro-
vided by the Istituto Neurologico Carlo Besta.



Chapter 2

Diffusion Tensor Imaging

Diffusion imaging is a magnetic resonance imaging method introduced in the
mid-1980s [37]. It focuses on the random translational motion of molecules, mainly
water, which, during the typical diffusion time of about 50 msec [37, 47], move in
the brain over a distance of 10um [37, 47], bouncing, crossing, or interacting with
many tissue components such as cell membrane, fibers and macromolecules. Since
these movements encounter different obstacles and vary in according to the tissue
or certain pathological modifications (such as intracellular edema, abscess, tumor),
diffusion data provides indirect information on the structure surrounding these wa-
ter molecules and on the geometric organization of the brain. Indeed, the overall
effect observed in a diffusion MRI image voxel reflects, on a statistical basis, the
displacement distribution of the water molecules present within this voxel and it al-
lows to probe tissue structure at a microscopic scale, well beyond the usual image
resolution. A useful analogy is the shape of ink dropped on a piece of paper. After
the ink is dropped, it begins to spread due to the thermal motion of its molecules
and the shape of the ink stain can reveal something about the underlying structure
of the paper. If the shape of the ink stain is circular, it is called isotropic diffusion.
If the stain is elongated along a precise direction, it is called anisotropic diffusion.
Diffusion-weighted (DW) magnetic resonance (MR) imaging is currently the only

MR imaging technique that provides in vivo information on water diffusion within
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tissues, involving the use of phase-defocusing and phase-refocusing gradients. We
briefly describe this technique in the first section of the present chapter.

A further development of DWI is the diffusion tensor imaging (DTI) technique,
which was introduced in the mid-1990s [37]. It studies the directions of wa-
ter molecule motion to characterize diffusion behavior in biological tissues and
it makes use of the concept of anisotropy to estimate the axonal organization of
the brain. Namely, water moves more easily along the axonal bundles rather than
perpendicular to those bundles for the fact that there are fewer obstacles in that di-
rection. Thus, studying the directions of diffusion of water molecules, it is possible
to gain access to the microscopic organization of the tissue in which the diffusion
takes place. The information of the anisotropic structure of the tissue are summa-
rized in a tensor of diffusivity, which gives the name to this technique. We describe

DTI method in section 2.

2.1 Diffusion Weighted Measurements

In order to better understand the diffusion tensor imaging technique, it is useful
to briefly illustrate how diffusion-weighted imaging (DWI) works. In particular,
in the following we explain how the MR signal is recorded and the relationship
between the diffusion of water molecules in tissues and the intensity of the sig-
nal measured by MR imaging. As mentioned, diffusion weighted imaging (DWI)
focuses on measuring the random Brownian motion of water molecules within a
voxel of tissue and it is based on diffusion weighted sequences by which medical
images are obtained. These images present a contrast which is namely influenced
by the difference of motion of water molecules.

The information that can be acquired from a DW MRI image are: S, the MR signal
recorded into a voxel, P D, the proton density which represents the water concen-
tration, 77 and 75, the relaxation times (decay times) after excitation which are

related to environment factors, and D, the diffusion coefficient. These parameters
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are related by the equation
§ = PD (1= e TRIT) (~TE/Toe D @.1)

where T'R and T'E are respectively related to the timing of excitation (called repe-
tition time) and the preparation period (called echo time) of the MR signal whereas
b is the diffusion weighted factor. In this equation it is important to note that the
magnitude of signal from water S is the information we obtain from the MR scan-
ners while T'R, T'E and b are imaging parameters that we can control and, changing
these parameters, we can change the contribution (weighting) of 11,15 and D to
the signal [47].

To understand the b term, we first have to introduce the concept of magnetic field
gradient pulse. In figure 2.1, the effect of a gradient pulse is explained with a
schematic diagram.

We consider the signals generated by two different water molecules (red and blue
circles) in two different position along the Y axis (for instance). In time period
I, both molecules see the homogeneous magnetic field applied and thus the spins
have the same frequency. Then, in time period II, the Y gradient is applied and the
spin in blue position is exposed to a lower magnetic field than the one in the red po-
sition and so it resonates at a lower frequency. After the gradient pulse ends (time
period III), the signals from the water molecules begin to have the same frequency

but their phases are shifted according to
Ap = p1 — 2 = 7Go(y1 — y2) 2.2)

where -y is the gyromagnetic ratio of proton, G is the constant gradient strength,
0 is the duration of the gradient pulse application and y; the position of the spin
with respect to the gradient. In time period IV, an other Y gradient is applied with
the opposite polarity and, interestingly, the phase shift is unwound. In fact, in this

period, water molecules in the blue position start to resonate at higher frequency
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Figure 2.1: Magnetic field gradient and their effects on the MRI signal [47]. Y
gradients are applied at time periods Il and I'V. The durations of the period II and IV
are the same, but the orientations of the gradient are opposite. Water signals from
two different locations are shown by red and blue colors. The signal frequency
is proportional to the strength of the magnetic field By, represented by the green
arrows. The figure is taken in [47].

and then the perfect refocusing of the phase occurs.

However, the perfect refocusing of the phase occurs only if the particles do
not change their initial position. For this reason, in the diffusion measurement, the
phase difference Ay is used to compute water motion in the direction of the gradi-
ent of the magnetic field.

In order to better explain the concept, we consider the figure 2.2, in which water
molecules and the relative spin phase, sketched as circles with black arrows, are
illustrated within a voxel. When the first gradient is applied, a phase shift depend-
ing on the position of the spin is introduced between the molecules and the spins
are dephased. After a time interval At, a second gradient pulse for the phase refo-
cusing is applied. The refocusing is perfect only when the water molecules do not
move between the two pulses. If there is translational motion of water molecules,

perfect refocusing would fail. Because the signal at each voxel represents the sum
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of the signal from all the water molecules in that sample, the imperfect refocusing
leads to a signal loss. It is important to notice that, as show by equation (2.1), the
higher the diffusion coefficient D is, the more signal loss we expect. The term b
is related to the intensity of the gradient application G and to the time separation

between the two gradient pulses At [44] :
2252 g
b=~"G"S <At—3>. (2.3)

The important point is that we can control the amount of the b values as all the
quantities in (2.3) can be set, and we can expect a different amount of signal loss. In
fact, the longer the separation At is and the more time there is for water molecules

to move around which is reflected in a higher signal loss.

10-100 ms
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/
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Figure 2.2: The effect of gradients application on the motion of water molecules.
If there is molecular diffusion, a total phase shift is introduced. In absence of water
motion, gradients have no consequence. The figure belongs to [47].

without motion
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Consequently, in order to compute the diffusion coefficient of water molecules
it is sufficient to perform two measurements with different b values, while other
imaging parameters (T'E and T'R) remain the same. In particular, one of the two
measurements must be done with a null b value. So, the signal loss due to the

diffusion precess is governed by the Stejskal-Tanner equation [67]:
S = Spe P (2.4)

where Sy is the signal intensity without diffusion sensitization, that is obtained
from (2.1) setting b = 0. In this way, the diffusion coefficient, D, can be calculated

from the signal intensity differences between these two studies:

1 S
D= —Eln <50> . 2.5)

Since biological tissues can be considered anisotropic mediums because of the
architecture of the tissue itself or the presence of obstacles, the D diffusion param-

eter is substitute with an apparent diffusion coefficient ADC' [36]:
S = Spe t4PC, (2.6)

The reason for which the adjective apparent is used is related to the fact that what
is measured is not the real diffusion coefficient. For instance, the ADC of water
in parenchymia is much smaller than that of the cerebrospinal fluid. This could
be due to the more viscous environment but also due to many obstacles. Namely,
when the barriers are aligned along one orientation, the ADC' depends on the mea-
surement orientation, e.g. measurements along the structures lead to higher ADC
(less obstacles) and viceversa measurements perpendicular to them lead to smaller
ADC (more barriers).

In other words, to sum up the present section, in order to estimate the apparent dif-

fusion coefficient along a specific direction it is necessary to apply a magnetic field
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Figure 2.3: In practice, different degrees of diffusion-weighted images can be ob-
tained using different values for the b factor. The larger the b factor, the more the
signal intensity (S) becomes attenuated in the image. This attenuation is modu-
lated by the diffusion coefficient. Infact, the signal in structures with fast diffusion
(for example, water-filled ventricular cavities) decays rapidly with increasing b,
whereas the signal in tissues with low diffusion (for example, grey and white mat-
ter) decreases more slowly. By fitting the signal decay as a function of b, one ob-
tains the apparent diffusion coefficient (ADC) for each elementary volume (voxel)
of the image, [35]. Nowadays, it is used a b value in the range of 700-1000 s /mm?,
(78]

along that direction and perform two measurements, one of which with a null b:
thus, a misure along the X, Y, and Z axis will lead to the computation of ACD,,
ACD, and ACD,. In the next section, the diffusion tensor imaging, a technique

that summarize and the information from the AC Ds is introduced.

2.2 Diffusion Tensor Imaging Technique

In tissues, such as brain gray matter, where the measured apparent diffusivity
is largely independent of the orientation of the tissue (i.e. isotropic), it is usu-
ally sufficient to characterize the diffusion proprieties of the tissue with the ADC'.
However, in anisotropic media, such as in white matter, where the measured diffu-
sivity is known to depend upon the orientation of the tissue, a single ADC cannot
characterize the orientation-dependent water mobility. In this case, a mathemat-

ical object, describing molecular mobility along each direction and correlations
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between these directions, is required. This object is a second order tensor called
diffusion tensor [3] and it consists of 9 components that are included in a 3 x 3
symmetric matrix (i.e. D;; = Dj;, with 4, j = x,y, 2). The diffusion tensor D has
the following form:
Dyz Dy Da
D= | Day Dy, Dy
D.o D.y D::

where D, Dy, D, represent the magnitude of diffusivity along the z, y, z direc-
tions and Dy, D,., D, represent the magnitude of diffusion along one direction
arising from a concentration gradient in an orthogonal direction (see figure 2.4).

According to (2.4), the signal attenuation of the MR signal is

S = Spe™PP = Sy~ i bl 2.7)
— Soef(bzzDzz+bnyyy+bzzDzz+2bzyDzy+2bzzDzz+2byszz) (28)
with
0
bij = 72GiG46° <At — 3) : (2.9)

In this formalism, the diffusion-weighting factor b incorporates the direction and
magnitude of the applied diffusion gradient vector (G, Gy, G).

In order to describe the diffusion, the components of the tensor have to be
evaluated. Since the tensor is symmetric, only six components are independent and
consequently seven diffusion measurements are required at least for each voxel of
the image: one measurement is necessary to evaluate .Sy, while six measurements
are made along six non collinear directions.

We remark that the values of the components depend on the orientation of the
sample respect to the laboratory reference system, defined by the directions of the
spatial encoding gradients. Hence, the tensor cannot be uniquely described.

However, it exists a reference frame [2/,y/, 2’] that coincides with the principal

directions of diffusivity and thus it is determined by the local anatomy. In the
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Figure 2.4: Components of the diffusion tensor D. Diagonal elements D, Dy,
D, are proportional to the diffusion displacement coefficients (ADCs) along the
three directions of the experiment coordinate system. Off-diagonal elements are
proportional to the correlations (covariances) of displacements along these direc-
tions (figure from [24]).

reference frame, the off diagonal terms are null (i.e. the orthogonal directions
appear non correlated) and the tensor is reduced to a diagonal matrix (figure 2.5).
This is called main axes reference system and it can be mathematically obtained by
the diagonalization of the diffusion tensor. Hence, the problem consists in finding

the eigenvalues and the eigenvectors of the matrix D:

De; = M\je; for ¢=1,2,3 (2.10)

which in matrix form is

DE = AE @2.11)
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Figure 2.5: Diffusion components in relation to fibers orientation. Figure (a): D,
and D, are determined by measurements along the z— and y— directions. Figure
(b): the values are computed in the reference system which coincides with the
direction of the fibers. The figure is taken from [24].

with
A 0 0
E= ( e | () | e3 ) and A= 0 X O (2.12)
0 0 Mg

where A is the matrix of the eigenvalues and E is the orthogonal matrix of the

eigenvectors.

The most intuitive way to conceptualize the information provided by the diffu-
sion tensor is to view it geometrically by the diffusion ellipsoid [3]. An ellipsoid is
a 3D representation of the diffusion distance covered in space by molecules in the
diffusion time interval A. This ellipsoid, which can be displayed for each voxel of

the image, is easily calculated from the eigen-diffusivities. Its equation is

2 2 2
€1 €2 €3 _
<¢2A1A) +<¢2A2A> +<¢2A3A) =t @13

In particular, the three eigenvectors e, ez, e3 and the three eigenvalues A1, A2, A3
describe respectively the directions and lengths of the ellipsoid’s axes in descend-
ing order of magnitude (see figure 2.7, first row). The largest eigenvector, termed
the “primary eigenvector ~ and its associated eigenvalue \; indicate, respectively,

the direction and magnitude of the greatest water diffusion. The primary eigenvec-
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tor is important for fiber tractography algorithms because this vector indicates the
orientation of axonal fiber bundles. Therefore, A; is also termed longitudinal dif-
fusivity, because it specifies the rate of diffusion along the orientation of the fibers.
The second and third eigenvectors are orthogonal to the primary eigenvector, and
their associated eigenvalues Ao and A3 give the magnitude of diffusion in the plane
transverse to axonal bundles. Hence, they are also known as radial diffusivities.

The figure 2.6 shows a schematic depiction of diffusion properties through the dif-

fusion ellipsoid scheme.

Finally, it is possible to analyzed the diffusion tensor data by a number of rota-
tionally invariant diffusion parameters, derived from the 3 eigenvalues, in order to
provide information on tissue microstructure and architecture for each voxel.

The mean diffusivity D,, which characterizes the overall mean-squared displace-
ment of molecules and the overall presence of obstacles to diffusion within a voxel

(average ellipsoid size), is evaluated as follows:

Tr(D)  Dge+ Dy, + D
3 3 '

(2.14)

Among the various scalar indexes proposed to characterize diffusion anisotropy,
the most widely used is the fractional anisotropy (FA) which describes how much
molecular displacement vary in space (ellipsoid eccentricity) and it is related to the

presence of oriented structures. Its formula is:

FA— \/T\/((Al —22)?+ (h2 = A3) + (Mg — M1)?) 2.15)
2 VAT A+

This is a very convenient index because it is scaled from 0, isotropic medium, to

1, anisotropic medium, indicating perfectly linear diffusion occurring only along

the primary eigenvector. The fiber orientation information inherent in the primary

eigenvector can be visualized on 2D images by assigning a color to each of 3 mu-

tually orthogonal axes (see figure 2.7, bottom right).
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Isotropic, Isotropic, Anisotropic,
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Figure 2.6: Scheme of diffusion properties via ellipsoid visualization for isotropic
unrestricted diffusion, isotropic restricted diffusion, and anisotropic restricted dif-
fusion [48].

@

.

| Fiber Orientation

Figure 2.7: Depiction of the eigenvalues, mean diffusivity, FA and a color map of
the fiber orientation. In the first row, A1, A2, A3 are shown with the same intensity
scaling. The eigenvalues are always ordered in descending order of intensity with
the first eigenvalue being the greatest. In the second row, the mean diffusivity, the
fractional anisotropy and a color map of the orientation of the primary eigenvector
are shown. The figure is taken from [48].



Chapter 3

Mathematical Model

In this chapter, we provide the derivation of a mathematical model suitable to
describe a tumoral mass growth. The theoretical framework of our approach comes
from the continuum theory of mixture, which is briefly introduced in section 3.1.
The theory of mixture, which has its roots in the continuum mechanics, is based
on balance equations and conservation principles and it has been widely applied to
systems which can be studied as a mixture of interacting continua. In the second
section, we present a two-species diffuse interface model of tumor growth. It is
a general model formulated for a tumor comprising viable tumor cells and water,
i.e. interstitial fluid which may contain dead cells and other substances. A single
vital nutrient (e.g. oxygen) is taken into account in the model and it is assumed
that the density of the extra-cellular matrix (ECM) remains constant in time and
space and does not significantly degrade or remodel as the tumor mass grows. In
the last part of the chapter, we specifically deal with glioblastoma and we estimate

the biological parameter introduced in our mathematical model.

3.1 A continuum theory of mixtures

The starting point of our research is the theory of mixture. The literature on

this subject is very rich, dating back to the early work on simple mixtures of Fick

34



CHAPTER 3. MATHEMATICAL MODEL 35

and Darcy during the middle of the XIX century and progressing to the general
continuum theories advanced by Truesdell, the pioneer of the modern continuum
models of mixture fluids, in the last years of the 50s [51]. The purely mechanical
model developed by Truesdell was essentially extended and corrected by Muller
(1968), who gave rise to the modern thermodynamical theory of miscible mixtures
[82]. Then, the important and comprehensive article of Bowen [6] and the mono-
graph of Rajagopal and Tao [63] provided a wide review of the relevant literature
on the subject.

Inspired by the article of Bowen [6], in the following we report some basic
notations of the mixture theory and we provide a brief discussion on the mass

balance equation under the incompressibility condition.

3.1.1 Kinematics

The fundamental idea underlying the mixture theory is that a material body or
a mixture I3 can be composed of N constituent species called phases By, Ba, ..., By
and in any instant of time, each point of the domain is occupied simultaneously by
particles of all components. It is convenient to describe B in the Eulerian reference
and represent all fields of the model as functions of the spatial variable x € B
and time ¢t € 7. We introduce a fixed reference configuration so that the spatial

position occupied by a material point at time ¢ is
X = Xa(Xa, t) (3.1)

where x, is the deformation function of the o'’ constituent and X,, is the position
of a particle of the a” constituent in its reference configuration. Then, the velocity

of a particle in X, at time t is defined by

_ Oxa(Xq,t)

a . 2
v 5 (3.2)
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Thus, if ¥ is any function of (x,t), the material derivative of ¥ following the
motion of the a*" constituent is

_ 0¥(x,t)

T, v o .
BN + VU(x,t)v 3.3)

Given V the total volume of B containing a point (X, t) and m,,(X, t) the mass of a
single constituent B, we define the apparent mass density p,, of each constituent

atl as

pa(x,t) = ”;((f)) (34

and consequently the apparent mass density of the mixture at (X, t) is

N
p(x,t) =D palx,t). (3.5)
a=1
Then, we introduce the true mass density ~,, of the o'’ constituent by the relation
(3.6)

Ve (X7 t) =

where V,,(x, t) is the volume occupied by a single B,. It is then possible to define

a new quantity ¢, as follows:

<) = _ Va(x,t)
Pa(x,1) ( R (3.7)

This quantity is called volume fraction and it physically represents the volume of
the " constituent per unit volume of the mixture. Consequently, we have the

following relation for each o constituent:

Pa = PaTVa- 3-8
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A mixture is said to be saturated if the constituents satisfy

> balxt) =1. (3.9)

Finally, it is useful to introduce the concept of incompressiblility. In a theory
of mixtures, the o constituent is incompressible if 4, is zero which physically
means that v, can only depend on X,. Consequently, it is usually assumed that,
when the o constituent is incompressible, 7, is constant. In any case, the mixture

is incompressible when every constituent in the mixture is incompressible.

3.1.2 The mass balance equation for mixtures

We suppose that the general mixture B occupies a fixed spatial region €2 in R?
with surface 02 and we introduce a general term modeling the inter-component
mass exchange per unit volume T, (x,¢). Each of the N constituents must satisfy

its own mass balance equation, which written in the integral formulation reads

8/padV:—j{ pava-ndS—i—/FadV, (3.10)
ot Jo o0 Q

where n is the outward vector of the element of surface dS. Requiring that (3.10)
holds for every spatial volume, we can localize the mass balance equation for the
h

o™ constituent and, by means of the divergence theorem, we can obtain the Eule-

rian local form of (3.10) which is

dpa B
GtV (pava) = Ta. (3.11)

Then using equation (3.3) and the vector calculus identity V - (fe) = ¢ - Vf +

fV -4, where f is a scalar function and 1) a vector field, equation (3.11) yields to

ﬁa+PaV'Va =T,. (3.12)
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If the ot? constituent is incompressible, i.e. 7, = 0, from (3.8) we have that

Pa = (ﬁaya and it is possible to write (3.12) in term of the volume fraction ¢,

r

Po + GaV - Vo = =, (3.13)
Ya
or equivalently
09a L'y
— (PaVa) = —. 14
at+V(¢V) o~ (3.14)

Finally, we should introduce the mass balance equation for the mixture. We define

the mixture density at (x,t) as

N N
P=D Pa=)_ TYaba (3.15)
a=1 a=1

and the mixture velocity at (X, t) as the mass-weighted average of the constituent

velocities:
1 1Y
V= 7Zpava: *Z’Ya(bava- (316)
P a=1 pa:l

For a closed system, i.e. without any external sources, the mixture density is con-
served:

Ohp+V-(pv) =0 (3.17)

and consequently if the N equations (3.11) are summed, the mass exchange terms

and the component velocities are constrained to satisfy

N N N

> Ta=0 and ZV-(qﬁava):ZF—o‘. (3.18)

a=1 a=1 a=1 "¢

Moreover, if the densities are matched, i.e. v, = 7, the mixture velocity is incom-

pressible:

N
V- (Z gbava) =0. (3.19)
a=1
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3.2 Diffuse interface model for tumor growth

3.2.1 Model formulation

Following [8, 10], we consider a simple binary model of a tumor lesion: a
mixture composed by a cellular phase of proliferating cancerous cells with volume
fraction ¢. and a liquid phase of both host cells and interstitial fluid environment,
in which dead cells may be present, with volume fraction ¢;. In the present work
we consider healthy cells to behave as liquid phase. These two phases fill all the

available space and consequently the saturation relation holds:
Gc+ ¢y = 1. (3.20)

We associate a velocity with each phase: v, is the average velocity for the cell
phase and v; for the liquid phase.

As described in subsection 3.1.2, we propose a model whose governing equations
are driven from mass balances for both constituents. For both phases, we take into
account a volumetric source of mass production/loss, I';, ¢ = ¢, [, and a flux of
mass due to chemotactic movements, symbolized by K.. The mass balances for

the cancerous cell phase and the liquid phase are expressed as follows:

v [88<th + V- (cbcvc)] =T.+V- K, (3.21)
v [%’? +V- (qf)lvl)] =I-V-K, (3.22)

where, as defined in section 3.1, -y is the true mass density of both constituents. In-
deed, we make the biological hypothesis that the interstitial liquid and the tumoral
cells have the same density equal to the water density -, which is a reasonable as-
sumption since being cells are composed mostly of water. It is also assumed that
v is constant, which physically means that both constituents are incompressible.

Since we are considering a close mixture, the mass transfer rates between the two
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phases are matched, i.e. I'. = —I';, which biologically represents a volume con-
version rate among them. Effectively, as the liquid phase contains both dead cells
and healthy living cells, we have that when a cancerous cell dies, it becomes part of
the liquid phase. Viceversa, if a healthy cell turns into a cancerous cell, it belongs
to the cellular phase.

As mentioned, we consider a flux of mass driven by an increasing chemotactic gra-
dient of nutrients in the form K. = —k, p. TVn, where k,, is a specific chemotactic
parameter, T is a tensor defining the preferential directions of the chemotactic mo-
tion along the alignment of fibers and n is the oxygen concentration. This tensor
is obtained handling with the diffusion tensor D, described in Chapter 2. How to
compute T will be explained in Chapter 4 section 2. The introduction of the tensor
T in modeling the flux of mass is particularly important as glioblastoma progres-
sion has been demonstrated to preferentially grow along the directions of the white
matter fibers [11]. In other words, including the tensor T, we manage to describe
the anisotropic extension of glioblastomas. At the same time, the term /. is able to
describe the tendency of tumor cells to direct their movements up to the gradient of
a chemoattractant and down to the gradient of a chemorepellent. The term V - K
appears both in (3.21) and (3.22) but with opposite signs: biologically, this means
that when the cancerous cells move in a region driven by an increasing gradient of
nutrients, then the host tissue and the interstitial fluid should move in turn. In fact,
in each point of the domain the saturation relation must hold.

Finally, if both constituents are incompressible, the mixture is incompressible, i.e.

V- (¢peVe + d1vi) =0 (3.23)

and consequently, (3.21) and (3.22) can be rewrite in the equivalent form:

Ipe
ot

+ V- (¢eve) = I:Yc — V- (kn¢.TVn) (3.24)

V- ((bcvc + (1 - (bc)vl) =0. (3.25)
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At this point, in order to close the system it is necessary to define the convective
velocities v, and v; thought the introduction of proper laws. Probably, defining the
relative movement of the phases is the most delicate point in dealing with this kind
of models. This can be done either on the basis of phenomenological arguments
[1], or writing momentum balance equations [12] or by a thermodynamical ap-
proach [83].In the following, using the third method, we introduce the constitutive

laws for the velocities.

3.2.2 Constitutive equations

In this section we propose an energy formulation for viscous interactions and
mechanical forces which lead to cell-cell and cell-matrix adhesion. The purpose
is to define constitutive - thermodynamically consistent - equations for the phase
velocities in order to close the model [1]. At biological level, cells are able to
adhere to each other or to the extracellular matrix they are in contact with through
adhesion molecules called CAMs located at the cellular plasma membrane [45,
59]. Moreover CAMs could play a pivotal role in cancer progression and invasion
and contribute to a variety of functions including signal transduction, cell growth
and differentiation [56].

These interaction mechanisms can be modeled by the expression of Helmholtz free
energy for the cancerous phase [83], which can be written as an integral taken over

the entire tumor/host domain:

2
F. = D+ S f) ds. 3.26
| (w00 + 5 e (3.26)

In the above equation, v represents the bulk free energy per unit of volume due
to local interactions while the second (gradient energy) term models larger range
interactions among the components and penalizes bigger gradients of cellular con-
centrations. In particular, the thickness of the diffuse interface between the tumor

and host tissue depends on the constant e with a width that ranges between 1-100



CHAPTER 3. MATHEMATICAL MODEL 42

pum [17]. Specifically, smaller values of ¢ lead to a less diffuse interfacial region is
[83].
Then, we hypothesize that the energy dissipation in the system is due only to vis-

cous interactions among cells and thus, mathematically, we have that

_ (Mo 2
W—/Q< 5 (Ve Vl)>dQ (3.27)

where M is the friction parameter, that we will take as a constant.

Following Doi and Onuki [43], we use a variational approach to the previous
energy formulation in order to obtain constitutive laws for the velocities v. and
v;. The Rayleigh’s principle indicates that the system dynamic can be obtained by

minimizing Rayleighian, defined as

dF,

R=WwW
+ dt

(3.28)

Equation (3.28) guarantees that the expression for phase velocities respects the sec-
ond law of the thermodynamics.
Generally speaking, this principle is a simply variational statement for general ki-

netic equation for the thermodynamic quantities x; (i = 1, 2):

- = ZJ: Lij (:;;)ij (3.29)

where I’ is the thermodynamic free energy and L;; are the kinetic coefficients.

Calling M;; the inverse matrix of L;;, equation (3.29) becomes:

dCCj 8F
ZMWE i (3.30)

J

Equation (3.30) can be stated in a variational principle: solving equation (3.30) is
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equivalent to minimize the Rayleighian
. oF .
R=Y" Mjiii;+ i (3.31)
7

with respect to ;. Finally, calling W = " M;;d;&; the dissipation function, since
it represents the energy dissipation for given &;, and F= > %x’i the free energy

change due to x;, (3.28) is obtained.

We define the Rayleigh coefficient for the tumor model replacing the expres-
sion of the adhesion energy (3.26) and the dissipation energy (3.27) in the defini-
tion given by Doi and Onuki (3.28) and we impose the incompressibility constraint

introducing the Lagrange multiplier p. The functional to be minimized is

_ [ [ My 2 (OY K-V
R [ M- w2 (G~ @00, ) (0ot V- Ko = V- (0ove) +

—pV - (PeVe + rvy)] dS2. (3.32)

Then we compute the functional derivative with respect to v. and v; and we impose

‘g—f = 0 with ¢ = ¢, [. The constitutive equations are:

Mée(vi —ve) + & Vp =0 (3.33)

oY
Dpe

Eliminating the pressure p in the equations (3.33) and (3.34), we obtain the relative

M¢c(vc - Vl) + oV < - €2A¢c> + ¢:.Vp=0. (3.34)

movement of the two phases

Ve—v, = — L ;fcv (g;f’c — 62A¢c> . (3.35)

If there aren’t any external forces and the mixture is characterized by a high vis-

cosity, the center of mass doesn’t move, i.e. v = ¢.v. + ¢;v; = 0. In this case, it is
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possible to explicate the velocity of the cell phase by a Darcy-like law, as follows:

Ve = —K(¢:)VE (3.36)
. 2
K(¢e) = (Gl M¢ o) (3.37)

where K is a motility coefficient possibly depending on the volume fraction and >

is the excess of pressure exerted by the cells which is defined by

oY

Y —
(elop

— EA¢e = f(¢e) — €A (3.38)

Moreover if equations (3.33) and (3.34) are summed, we have that Vp = —¢.V:
the interstitial pressure p and the excess of pressure X have the same typical value y
and therefore the term €/, /X gives a characteristic distance of interaction between
cells, typically estimated by the cell size.

Conclusively, it is important to explain the biological meaning of ¥ in (3.36). We
consider the case of a homogeneous system, i.e. V¢, = 0, so that ¥ is simplified to
foe) = (%i. For physical consistency, cell-cells interactions should be attractive
under a certain density of cells and repulsive at higher densities. Mathematically,
it exists a threshold value ¢, called state of equilibrium [1] for which f(¢.) = 0
and no excess pressure is exerted on neighbors. Thus, for ¢. < ¢, f(P:) < 0
and cells are attracted to each other, while for ¢. > ¢., f(¢.) > 0 and cells
experience a repulsive force. Unlike the Cahn-Hilliard type proposed in [83], we
use a phenomenological form of f(¢.) [1, 8, 10] that obeys to the physical and
biological constraints explained above:

_ B (6= 00

f(¢e) = T (3.39)

where F is the Young Modulus of the brain matter. A schematic scheme of cells

behavior in relation to 3(¢.) is depicted in figure 3.1 [1, 8, 10].
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Figure 3.1: Schematic diagram showing the behavior of cells in relation to 3(¢.)
in the case of a homogeneous tissue. Two cells which are far apart ignore each
other, but, if the distance between them falls below a certain value, fact that could
be caused by an increase of density, they are attracted to each other. When cells in
contact are pulled apart, an adhesive force competes with cell separation and if they
are are too close, they experience a repulsive force. The repulsive force becomes
infinite in the limit as the cells are packed so densely that they fill the whole control
volume [8]. In the figure, the black arrows represent the forces experienced by the
black cells due to the presence of the red cells (and conversely).

3.2.3 Nutrient diffusion

In this section we investigate the relation between nutrients availability and
tumor growth and we propose a governing equation for the nutrient concentration
n. In the present work, we consider oxygen as the main nutrient for tumoral cells
and we suppose that the vasculature is homogeneous in the whole domain. We do
not take into account the angiogenesis, that is the formation of new blood vessels,
in the model. In this situation, tumoral cells receive oxygen and growth factors
only via diffusion through the host tissue (figure 3.2). As mentioned earlier, the

term I'. in (3.21) represents the cell proliferation/death rate and it is assumed to be
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dependent linearly on the concentration of the diffusing nutrient n:

E == ’/c& <n - 50) (1 - ¢c) = Vc¢c <n - 50) (1 - (bc) (3-40)
v Y Ns Ng

where 1, is the tumoral cell proliferation rate, n; is a typical nutrient concentration
inside the tissue and J. is the rate of apoptosis in hypoxia conditions. Splitting
(3.40), the term v.¢.(n/ns)(1 — ¢.) corresponds to the rate of volume growth
due to mitosis while v.¢.0.(1 — ¢.) is the rate of volume loss due to apoptosis,
which is actually caused by scarceness of nourishment. The volumetric cell pro-
liferation/death term is weighed by (1 — ¢.) because as ¢, gets close to 1, the
proliferation/death decreases: as a matter of fact, when ¢, is equal to 1 the system
is in the saturation state and all the available space is filled by the cancerous vol-
ume fraction, which has reached its maximum values.

Then we propose a diffusion reaction equation for the nutrients concentration n.
At a first approximation, we model the host tissue at equilibrium, where the net
nutrient uptake therein is negligible compared to the uptake by tumor cells. In
particular, we assume that whatever oxygen is uptake by the host tissue it is instan-
taneously replaced by the normal vasculature. This is not the case of the tumor,
where the uptake in general exceeds the supply, as discussed before [83]. There-

fore the distribution of nutrients is described by the following PDE:

% =V .- (DVn)+ S,(ns —n) — dnocn. (3.41)
where D is the diffusion tensor, J,, is the rate of consumption of nutrients by tumor
cells, S, is the blood tissue transfer rate of nutrients and n; is the physiological
concentration of oxygen in blood at the capillaries. In particular, each component
of tensor D expresses the diffusion value of water molecules along a specific direc-
tion. Since we make the biological assumption that oxygen is carried by water, then
the local values of tensor D describe how nutrients diffuse effectively in a specific

point of the brain. As regards the terms with S,, and J,,, we have that S, (ns — n)
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Figure 3.2: We consider oxygen as the main nutrients for cancerous cells and we
suppose that they receive the supplies only via diffusion through the host tissue.

describes the source of nutrients from the vasculature and 6,,¢.n models the nutri-

ent uptake by cells.

3.3 Parameter estimation

One of the major limiting factors in the usefulness of mathematical models lies
within the ability to parameterize them. In fact, in literature it is possible to find
a wide range of parameters and the goal of mathematicians is to find out which
parameters best suit the model in order to obtain a realistic outcome. In this sec-
tion, we discuss the evaluation of the biological values found in literature for the

parameters used in the previous equations.

First of all, we need to evaluate the interstitial fluid pressure x, the cell volume
fraction at mechanical equilibrium ¢, and the inter-phase friction parameter M.
For many years, the research on tumor pathophysiology, that is the study of the
functional changes associated with a disease, lagged behind that on cellular events
of cancer. Recently, that field of study has gained in importance and, in particular,
the alterations of the vasculature and the interstitium have begun to be object of

study. In fact they seem to have a specific role in the growth of the tumor and in
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its clinical development. For example, brain tumors are characterized by a higher
interstitial fluid pressure (IPF) compared to that of the normal brain tissue, which
is around 106.64 Pa [5]. In [26], the intratumor pressure has been examined as a
function of tumor size. They found out that as the tumor size increases, IPF rises
presumably due to the proliferation of tumor cells in a confined area and due to a
reduction in tumor blood flow. Measurements in experimental tumors have given
an estimation of 1199 =4 333 Pa for the IPF [26]. Other reasons for the increased
IPF might be vessels abnormalities, fibrosis, contraction of the interstitial matrix
and enlargement of the extracellular space (ECS). In [7], the enlargement of the
ECS in different brain tumors has been studied and a value of 61,1% is given for
the glioblastoma. Since neoplastic tissues are formed by vascular, interstitial and
cellular space, it seems reasonable to estimate ¢. with 38,9 %. For what con-
cerns the hydraulic conductivity, it has been studied in [70] that it depends on the
tissue interstitial space volume fraction, cell diameter and tissue architecture (tor-
tuousity of the interstitial space) and it is defined as the ratio between the Darcy
permeability and the viscosity of the tissue. Thus, from (3.37) we are allowed to
estimate M as the inverse of the hydraulic conductivity obtaining values between
1377.9 — 4286.7 mm~2 Pa day.

Then, we have to evaluate the characteristic distance of cells interactions which can
be approximated by the diameter of a cell which ranges between 10 and 20 pm,
values that have been observed in experimental data by [75, 77]. The proliferation
parameter can be estimated in vitro from typical doubling time of well oxygenated
glioma cells and it varies between 24 h and 48 h [17, 27], while an estimate of the
threshold for cell death rate due to anoxia is given by the range 0.15 - 0.5 [17, 20].
In order to obtain an evaluation of the oxygen consumption rate §,, we make use
of the relation [,, = \/m, where [,, is the distance covered by a molecule of
oxygen before being uptake by a cancerous cell and D,, is the average oxygen dif-
fusion coefficient. In [13, 17, 57], [,, is set to 100 pm while, in [4, 29, 42, 77], D,,

is evaluated with 86.4 mm?day—'. Then, we have to evaluate S,, and n,. The first
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is the oxygen production rate from the source of nutrient, i.e. blood supply, and its
value, which is hard to estimate, is set to 10* day_1 in [10] while the second is the
initial oxygen concentration outside the tumor and it has been evaluated with 0.07
mM in [81] is evaluated to be 0.07 mM.

Unfortunately, data on the chemotactic coefficient of glioma cells in response to
oxygen concentration are not present in literature, thus we refer to typical chemo-
tactic coefficient found for bacteria in response to glucose. In particular in [16] it
was estimated to be equal to 1296 mm? mM~! day~!. Finally, the Young modulus
Eis set to 694 Pain [11].

Of course more biological experiments are highly requested to derive biological
parameters which are consistent with the object of the research.

In table 3.1 we report a scheme of the biological parameters previously introduced.

Parameter Description Value References
e Cell volume fraction 0.38 [7]
M Interphase friction 1377.9-4286.7 mm~2 Pa day [70]
X IPF in healthy brain 106.64 Pa [5]
X IPF in GBM 866-1530 Pa [26]
e/\/X GBM cell size 10 - 20 pm [81, 75, 77]
Ve GBM cell proliferation rate 0.5-1 day ! [17, 27]
dc Threshold of Os for anoxia 0.15-0.5 [17,20]
D, O, diffusion coefficient in brain 86.4 mm?day ! [4,29, 42, 77]
On O3 consumption rate of the brain 8640 day_1 [4, 29, 42, 77]
Sh Blood tissue transfer rate of Os 10* dalyf1 [10]
s O concentration in brain vessels 0.07 mM [81]
ln O- penetration length 0.1 mm [13, 17, 57]
kn Chemotactic coefficient 1296 mm? mM ! day ™! [16]
E Young modulus 694 Pa [11]

Table 3.1: Estimation of the model parameters taken from literature in healthy and
diseased brain.

3.4 The complete model formulation

To conclude the chapter, in the following, we sum up the governing equations

for the glioblastoma tumor growth.
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Figure 3.3: Excess stress X/F exerted by the cells in a homogeneous tissue
(f/E = X/E as V¢ = 0) with real data.

In order to perform numerical simulations, it is useful to adimenzionalize (3.24)
and (3.41) with respect to nutrient concentration. In particular, given ns the phys-
iological concentration of oxygen in blood vessels, we have that the adimensional
concentration 7 is obtained as

n

A= (3.42)

g
where n is the dimensional variable. In this way, both 7 and ¢, belong to the
interval [0, 1], and it will be easier to understand the numerical results. Regarding
space and time variables, we will not consider dimensionless quantities. Indeed,
the aim of the present work is to perform numerical simulations on a real geometry,
using patient-specific data.

Dropping the hat and the index for the cell phase, the governing equations can be
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written as

N2
o=V (PTG~ @a0) )+ voln = 8)(1 — 0) = V- (b, Ton,Tn)

(3.43)

‘?Z — V- (DVn) + Su(1—n) — Suipr. (3.44)



Chapter 4

Numerical Implementation

In the present chapter, we give details on the numerical implementation of the
model presented in chapter 3.
In the first section, we illustrate how to obtain a computational mesh from medi-
cal images. In particular, numerical simulations of biological phenomena require
very complex domains and thus it is essential to create a well refined mesh close
to the reality without exceeding in computational costs. We start from a series of
MRIs of a patient affected by glioblastoma, which have been gently provided by
the Istituto Neurologico Carlo Besta. To obtain the labeled map of the brain, we
make use of a software called Slicer3D [64]. Then, we manage to create the com-
putational mesh using an open-source software named Vmrk (Vascular Modeling
Tool Kit, [31]) through a Python interface. Vmik has been realized on the basis
of other open-source libraries such as ITK (Insight segmentation and registration
ToolKit [25]), VTK (Visualization ToolKit [32]) and Tetgen (Quality Tetrahedral
Mesh Generator [76]). To visualize and analyze the images we use an open-source
software based on the VTK library named Paraview [58].
In the second section of this chapter, we describe how we include diffusion ten-
sor medical data in the model. In particular, we illustrate the difference between
the diffusion tensor D and the tensor of preferential directions T. We also intro-

duce the problem of medical images registration and the use of an open source

52
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software named FSL [18], which offers two robust registration tools named FNIRT
and FLIRT.

In the third section, the continuum and discrete weak statements of the model are
introduced. We use linear tetrahedron P; elements to discretize the problem and
we realize numerical simulations making use of an open-source software called
FERiCS [60], which is capable of providing efficient solutions of differential equa-

tions using the finite elements method.

4.1 Mesh creation

4.1.1 Medical image segmentation

The segmentation of images is the process of identifying and labeling regions
of interest within an image. The usual starting point in medical image segmenta-
tion is a grey scale MR image, as shown in figure 4.1. As discussed in chapter 2,
the grey intensity is correlated to the tissue’s diffusion proprieties. To obtain infor-
mation about tissues and their features it is necessary to identify brain areas and put
the labels on the different regions. To achieve this goal, we start from a series of
MRIs and we use a software package for visualization and computation of medical
images, called Slicer3D. The procedure is performed using a module implemented
in the software called EMSegmenter, thanks to which anatomical structures can be
automatically segmented. We identify four areas of interest, i.e. gray matter, white
matter, cerebrospinal fluid and background, and we specify the labels to associate
to each of this region. Then, since the algorithm uses anatomical atlas, we link the
probabilistic atlases to the anatomical structures defined above and finally we can
run the algorithm and create the labeled map we need. The segmented image ob-
tained is depicted in figure 4.2. Once the brain segmentation is done, we manually
segment the glioblastoma tumor region using a module named Editor, as shown in

figure 4.3.
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(a) Axial slice (b) Sagittal slice (c) Coronal slice

Figure 4.1: In the above figures axial, sagittal and coronal slices of the T1 3D TFE
mdc rest SENSE we used for image segmentation are depicted. It is possible to see
the tumor region indicated by the white arrow.

(a) Axial slice (b) Sagittal slice (c) Coronal slice

Figure 4.2: Segmented image of the brain. The white region represents the white
matter, while the grey areas indicate the grey matter. The cerebrospinal fluid is
labeled by the blue color. At this step, the tumor is not segmented yet and due to
the grey intensity of tumor’s voxels, the cancerous region is seen as grey matter by
EMSegmenter .

Figure 4.3: After the whole brain segmentation, glioblastoma is manually seg-
mented slice by slice and then overlapped to the labelled map. In the figure, three
slices of the brain map in the tumoral interval are illustrated, from the bottom to
the top of the head.



CHAPTER 4. NUMERICAL IMPLEMENTATION 55

4.1.2 Mesh generation

After the creation of the brain labeled map, we need to obtain the computa-
tional mesh. To achieve our goal, we use some algorithms belonging to the vmtk
library. Firstly, the brain surface is extracted from the labeled map, re-meshed with
triangulation and cleaned and smoothed, as shown in figure 4.4. It is really impor-
tant to obtain a regular triangulation without holes or intersection of edges. At this
step, the mesh is still a 2D surface embedded in R3. Once the surface is smooth and
perfectly regular, the next step concerns the creation of the tetrahedral mesh. To
perform the 3D computational mesh, we use an automatic mesh generator software
called Tetgen, [76]. Then, the resulting unstructured grid is refined near the area
where the cancer grows: in this way, the computational cost is kept under control
as the numerical solution is computed in a more precise way only in the region of
interest, as exemplified in figure 4.5. After the mesh refinement, it is necessary to
superpose the labelled map to the grid such that the information of the tissues are
passed on the geometry, as depicted in figure 4.6.

To perform the mesh creation process we use numerical codes which have been
proposed in a previous research [41] developed at the Politecnico di Milano. A

special thanks is given to M.Manica and E. Faggiano

(a) Surface before smoothing process (b) Surface after smoothing process

Figure 4.4: Figure (a): the surface is extracted from the labeled map using the
vimtkmarchingcubes algorithm. Figure (b): the rough surface is smoothed and
cleaned in order to obtain a regular surface triangulation.
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(c) Clipped mesh plane xy - detail of the refined area

Figure 4.5: Clip of the 3D mesh before (figure (a)) and after (figures (b) and (c)
) the refinement of the tumoral area. In this way the computed solution is more
accurate in the area of interest and computational costs are kept under control.
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(a) Clipped labeled mesh - view plane xy
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(b) Clipped labeled mesh - view plane yz

Figure 4.6: Labeled mesh. Thanks to the algorithm proposed by M.Manica [41]
, the information about biological tissues are passed on the mesh. The red area
represents the cerebrospinal fluid, the light blue area represents the white matter

while the dark blue area stands for the grey matter. The brain is cut with an oblique
plane in order to show the interior area.
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4.2 Modeling tensor D and tensor T

In this section, we describe how we deal with the diffusion tensor medical data,
gently provided by the Istituto Neurologico Carlo Besta, and how we manage to

include real data in the model. We start from these biological facts:

e cerebral matter is heterogeneous: diffusion in grey matter is isotropic while
in white matter it is anisotropic. Indeed water diffusion is relatively unim-
peded in the direction parallel to the fiber orientation while it is highly re-
stricted and hindered in the directions perpendicular to the fibers of the white

matter;

e glioblastoma presents an infiltrative nature and grows in white matter more

than in grey matter, following the alignment of the fibers;

e cells have the capability to migrate and tend to move towards higher concen-

tration of nutrients.

As described in chapter 2, diffusion tensor imaging is based on the computation of
water diffusion in biological tissue. Water diffusion is caused primarily by random
thermal fluctuations and it is modulated by the interactions with obstacles in the
environment such as cellular membranes, organelles and ECM fibers. Thus, diffu-
sion tensor D is able to reveal the microstructure of the tissues and to describe the
degree of anisotropy and the orientation of diffusion. Our work is driven by the
idea that knowing the microstructure of the brain and the preferential directions of
water diffusion could be helpful in predicting more truthfully the development of
glioblastoma since anisotropy influences nutrients diffusion and cells’ movements.
Therefore, we include the tensor D in the diffusion term of equation (3.44). As
mentioned in subsection 3.2.3, in this way we are allowed to know locally the value
of the oxygen diffusion coefficient in each point of the domain and consequently to
obtain a patient-specific model. Moreover, we add the tensor T in the flux of mass

of the cellular fraction in (3.43). It expresses the preferential directions of motility
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and it is the mathematical object that includes anisotropy in the model.
In the following we describe how to obtain tensor the D and the tensor T from

diffusion tensor medical images.

The starting point are the six maps of the DTT in greyscale, each of which rep-
resents a component of the diffusion tensor, as shown in figure 4.7. We remind
that the tensor is symmetric, i.e. D;; = Dj;, and that the diagonal components
Dy, Dy, D, represent the diffusion variances along the x, y, z axis while the
off diagonal terms D, D, D, represent the diffusion covariance. A diffusion
value is associated to the voxels of each image: for example the voxels within the
area occupied by the lateral ventricles, where there is fluid, have a value of 2999

2

m?2s~!, while the voxels in a region of white matter have an intensity in the range

of 800-1100 m?s~!. Thus, the former are brighter while the latter appear darker.

Figure 4.7: The six medical images of the diffusion tensor. Each of them represents
a component of the tensor. Along the diagonal there are D, Dy,, D.., while the
off diagonal images represent the covariance terms D, D,., D,.. The tensor is
symmetric, i.e. D;; = Dj;
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In order to obtain tensor D, we need to specify that DTI medical images must
be registered with the T1-MRI image used for creating the computational mesh.
As a matter of fact, the six images of the DTI are the result of a phase of post-
processing of DWIs acquired during medical examinations and thus they are not
necessarily registered with the T1 data. We register D;; images on the T1 used for
the mesh creation thanks to an opens source software called FSL [18], which offers
two fully automated and accurate registration tools named F'LIRT and FNIRT.
Once the medical images are aligned, the extrapolation of the data from each of the
D;; images can be obtained by an algorithm [41] that associates the diffusion value
of a specific voxel in the medical image to the right tetrahedron which occupies the
same location (of the voxel) in the computational mesh, as illustrated in figure 4.8.
The resulting data are then simply included in the model thanks to specific FEniCS
functions, as exemplified in the codes of appendix A.

Now, we focus on how the tensor of the preferential directions is obtained. For

each voxel of the medical image, the tensor D can be written as
D =D,D 4.1

where D, is the mean diffusivity which is defined as 1/37r(D) and indicates the
intensity of the diffusion process, whereas D takes into account the anisotropy of
the random movements in the different directions. We remind that the trace of a
tensor is rotationally invariant and that the mean diffusivity is an inverse measure
of the tissue density and it gives an indication of the anisotropy of the tissues and,
indeed, it is very similar for both grey matter and white matter and higher for CSE.
We illustrate the mean diffusivity on the mesh cut along the plane xy in figure 4.9.
Supposing that cells can be chemotactically move along the same path of water

diffusion, following the alignment of the fibers, the identification

D=T (4.2)
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is possible. The tensor

Tirw Toy T

zx
T=|T,y T, Ty
Tw Toy T

is defined for each tetrahedron of the mesh and expresses the preferential direction
of diffusion within the element. Each component of T is obtained weighting the
corrisponding component of the tensor D with the mean diffusivity:

D;;

T:: = ,
Y 1/3(Dyy + Dyy + D.»)

with 4,7 = 2,9, 2. 4.3)

Moreover, comparing the components it is possible to know if the tissue is isotropic
or anisotropic. In fact, in CSF and in grey matter T),, ~ Ty, ~ 1., ~ 1 and
Tyy =~ Ty, =~ Ty, ~ 0: in these regions the tensor T becomes the identity tensor
and the diffusion is isotropic. In white matter, instead, 7T;; with ¢ = z,y, 2 varies
between 0 and 3 and 7;; with 7 = x,y, z between —1 and 1, excluding the value 0
and consequently the diffusion is anisotropic. For instance, if we consider a region
where T, ~ 3, T}, and T, should be almost zero which means that water will
move more easily along x-direction. In figure 4.10 we illustrate the components of
tensor T on a mesh clipped along the zy plane in the middle point of z-axis.

As for the tensor D, the components T;; are then included in the relative govern-
ing equation thanks to specific FEniCS tools, as explained in appendix A. We
should mention that we create the components of the tensors as objects defined
on each tetrahedron of the mesh. Thanks to these specific FEniCS tools, we are
able to transform the components as object defined on the degrees of freedom. In
particular, the ”changing” is done interpolating linearly the components that result

continuos on the whole domain.
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Figure 4.8: Patient-specific components of tensor D depicted on the computational
mesh cut along the plane xy. Comparing the images of the diagonal components
of the tensor D, it can be noticed that the diffusion coefficient is high in CSF (red
colored areas), while it is lower and very similar for both GM and GM. As concerns
the off diagonal elements, it is possible to observe that the diffusion coefficient can
assume negative values. Voxels intensities are expressed in mm? day—!.
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Figure 4.9: Mean diffusivity mapped on the computational mesh cut along the
plane zy. We remind that the mean diffusivity is computed as 1/37r(D), it is
an inverse measure of the tissue density and, thus, it is very similar for both grey
matter and white matter and higher for CSF. Voxels intensities are expressed in

mm? day L.
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Figure 4.10: Patient-specific components of tensor T depicted on the computa-
tional mesh cut along the plane xy. Comparing the images of the diagonal com-
ponents of the tensor T it is possible to observe the anisotropy of the white matter:
for instance, x-axis seems to be the preferential direction in corpus callosum, e.g.
T is almost red in this area, while 7', and T, are darker blue. In the brain areas
occupied by grey matter and CSF, the components are almost similar and equal to
one, e.g. the mesh is light blue coloured. Comparing the off diagonal elements of
tensor T, it is possible to notice that T;; varies between —1 and 1 and, in particular,
it is almost zero in isotropic areas.
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4.3 Model implementation

4.3.1 Continuous weak formulation

We consider a bounded domain Q2 € R?, representing the brain, and a time pe-
riod [0, T], T < oo, representing the time interval in which the tumor is evolving.
The aim is to determine the unknown fields ¢(x, ¢) and n(x, ) such that V¥ x € €2
and V¢ € [0, T'] the following equations are satisfied:

%f — V- (¢K(9)V (f(¢) — €A9)) —vd(n — ) (1 — ¢) + V - (kyns¢TVn) = 0
(4.4)
% ~ V- (DVn) — S,(1—n) +d,¢n = 0. “.5)

where K (¢) and f(¢) are defined as in (3.37) and (3.39) respectively, the param-
eters are chosen on the basis of biological values found in literature, which have
been reported in Table 3.1, and the tensor D and the tensor T have the form dis-
cussed in section 4.2.

In order to have a well-posed problem, it is necessary to impose initial conditions
for ¢ and n, i.e. the cancer cell distribution and the nutrient distribution for ¢ = 0.
As mentioned, glioblastoma grows infiltratively and differs from many solid tu-
mors because it is characterized by a smooth gradient of tumor cell density instead
of presenting a sharp interface at the host/tumor boundary. Thus, it seems reason-
able to hypothesize that ¢(x,0) = ¢o(x) follows a normal distribution in space: we
suppose that it reaches a maximum value bigger than ¢, in the center of the tumor
and decreases to zero, as shown in figure 4.11. Furthermore, we make the hypoth-
esis that the brain area with ¢o(x) < e, represents the healthy tissue, where € is
a threshold value that we set equals to 0.02. For numerical simulations described
in Chapter 5 and in Chapter 6 section 1, we make the assumption that the initial

tumor configuration has a spherical shape, as depicted in figures 4.12 and 4.13.
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Figure 4.11: The cellular fraction follows a normal profile: it reaches a maxi-
mum value bigger than ¢, and decreases smoothly to zero. The brain tissue where
¢0(x) < 0.02 represents healthy tissue. The values of the z-axis are expressed in
mm and z = 0 represents the center of the tumor.
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(a) Initial ¢ distribution - plane zy (b) Initial ¢ distribution - plane xy - isoline

Figure 4.12: Initial distribution of ¢ in the brain mesh, clipped mesh along the
plane zy. Figure (a): as it is possible to notice, ¢ reaches its maximum value in the
center of the tumor and decreases smoothly to zero. Figure (b): the threshold value
€ = 0.02 is specified by the isoline.
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Figure 4.13: In the left figure, it is shown the initial tumor configuration obtained
thresholding ¢ at 0.02. It presents almost a spherical shape. In the right figure, it is
depicted the clipped tumor: it is possible to notice that the distribution of ¢ has its
maximum in the center of the tumor and decreases getting closer to the boundaries.

Regarding the initial oxygen concentration n(x,0) = ng(x), we solve the steady
version of the nutrient governing equation, i.e. Vx € €) we have to determine the

unknown field ng(x) such that the following equation is satisfied:
V- (DVno) + S (1 — n9) — Spbono = 0. (4.6)

where ¢ is the initial cancerous distribution. As it is illustrated in figure 4.14, the
oxygen concentration is equal to 1 outside the tumor area and decreases getting
closer to the core of the glioblastoma, in accordance with the increase of ¢g in this

area.

In order to solve the problem, it is also mandatory to define boundary conditions for
the governing equations. Since part of the boundary of the domain is represented by
the cranial skull where the glioblastoma can not expand and for the fact that rarely
brain tumors metastasize outside the brain, we impose a null Dirichlet condition

and a null Neumann condition for the cell volume fraction at the boundary:

vte[0,T] ¢=0, on 09, A4.7)

Vte[0,T] Vé-a=0, on O, (4.8)
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Figure 4.14: Initial distribution of n in the brain in a section along plane zy. As
it is expected, the oxygen concentration decreases inside the glioblastoma, reach-
ing the minimum value in the center of the tumor. Outside that area, the oxygen
concentration is not affected by the presence of the tumor.

where n is the outward boundary normal.

For the nutrients we choose the Dirichlet condition

Vitel0,T) n=1, on o9, 4.9)

since we suppose that the brain boundary is far enough from the tumor location and
consequently the oxygen concentration is maintained constant by the vasculature.
Finally, as (4.4) is a fourth-order equation, it is useful to rephrase it as two coupled

second-order equations, as follows:

%‘f — V- (oK ()VE) —vo(n —68)(1 — @) + V - (knnsdTVn) =0 (4.10)
¥ = f(¢) — €A¢. 4.11)

In order to obtain the weak formulation of the model, we multiply each equa-
tion by a smooth test function taken from a specific functional space (that will be

introduced later) and we integrate over the domain. Then, using the Green identity,
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ie. [ vAudQ=— [ Vu-VvdQ+ [,,vVu-ndS, weobtain:

¢ R
QEU dQ—/{qubK(qb)VZ~ndS—|—/ﬂq§K(¢)VZ~VU dQ +
— / vo(n —6)(1 — ¢)v d2 + / konsToVn -nv dS — / knnsToVn - Vo dQ =0,
Q a0 Q

4.12)

/EwdQ—/f(¢)wdQ+62/ wV¢-ﬁdS—62/V¢-deQ=O, (4.13)
Q Q o0 Q

on

—qu—/ DVn~ﬁqu+/DVn~quQ—/Sn(1—n)qu+
o Ot a0 Q Q

+/5n¢nqd9=0. (4.14)
Q

For the functional spaces, we will choose v, w and ¢ in V' = [H} ()3, where
Hj(Q) = {v e L*Q) with Vv e L*(Q) :v =0 on 9Q} (4.15)

We need to point out that for the equation (4.14) we are making an asymmetric
choice for the functional spaces. In fact, for the nutrient concentration we impose
a non homogenous Dirichlet condition and consequently we look for a solution

n(x,-)in Q = [H'(2)]3, where
H'(Q) = {v e L*Q) with Vv e L*(Q)}, (4.16)

while the function test is taken in [H}(£2)]3. For a good weak formulation, we
should substitute a new variable 7 = n — 1 to n. In this way, the new variable
satisfies a homogeneous Dirichlet condition and it can be taken in [H}(2)]3, as the
test function. Actually, as it will be explained in appendix A, the software we use
to implement the governing equations naturally imposes Dirichlet conditions and

the above issue doesn’t have to be taken in consideration.

Therefore, with the choices (4.15), the weak statement of equations (4.4) and
(4.5) reads:
find ¢ € L2([0,7];[HY(Q)]?) and n € L2([0, T); [H*(2)]?) with boundary and
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initial conditions as discussed above, such that:

/ 99, 40 + / 6K (6)VS - Vo dO) — / Vo — 8)(1— d)v dO
o Ot Q Q
— / konsToVn -VodQ =0, YveV 4.17)
Q

/deQ— fOwd—e* [ Vé-VwdQ=0, YweV (4.18)
Q Q Q

/@qdﬂ—l—/DVn-quQ—/Sn(l—n)qdﬂ

+/6n¢>nqdﬂ:0, Vqge V. (4.19)
Q

4.3.2 Numerical model

To solve the model numerically, we need to transform the continuous varia-
tional problem (4.17), (4.18), (4.19) into a discrete variational problem. First of all,
we proceed performing a spatial discretization with finite element. We use linear
tetrahedron (P;) elements to discretize the problem. Consequently, the semidis-
crete variational problem is :

Vit e [0,T], find ¢, = ¢p(t) € Vi, CV and ny, = np(t) € Qp C Q such that:

Obn

[ oo dn+ /Q oK (6) VS, - Vi, d — /Q vén(nn — 8)(1 — dn)un dO2

- / knnsTonVng - Vo, dQ =0, Yo, € Vi, (4.20)
Q

/ 5, wp, dQ 7/ f(én)wy, dQ — 62/ Von -Vw, d2=0, Yw, eV, 4.21)
Q Q Q

anh
o, ot

qn dQ +/ DVny, - Vg, dQ — / Sn(1—np)gn dQ2
Q Q

+ 5n ¢h npq dQ = 07 VQh € ‘/}L' (422)
Q

with ¢ and n)) the discrete initial conditions.
For the time discretization, we use the second-order accurate Crank-Nicholson al-
gorithm. Given IV time steps, we set a time interval At = % such that V¢ € [0, 7]

it exists u" = u|¢=par With n =0,....N and u = ¢, X, n. If we call

1 1
u* =yt = §un+1 + §u" with u=¢, ¥, n (4.23)
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the discrete variational problem can be written as:

given ¢} and n}, find d)Z’H €V}, and nZ‘H € Qp Vn =0..N such that:

/Q optuy, dQ — /Q o dQ + At /Q &1 K(67)VE;, - Vuy, dQ

- At/ vy, (ny, — 6)(1 — ¢ )vp dQ — At/ knnsTorVng - Vo, dQ =0, Yo, € V
Q Q
(4.24)

/ Sty dQ - / F(@p T wy, dQ — €2 / Vort - Vwy, d2 =0, Ywy, € V)
Q Q @

(4.25)
/anﬂqh Q) — /Q nyqn dQ + At/QDVnZ -V, dQ — At/QSn(l —n})qn dQ

+ At/ On Opmpqnd=0, Vg€ V. (4.26)
Q

Once the discrete weak statement is obtained, we are able to perform numerical
simulation on the brain mesh. We make use of an open source software called
the FEniCS project which finds in Python its natural programming language. In
relation to our aims, one of the main advantage of using FEniCS as computational
resource is that it offers an automatic approach to nonlinear variational problem.
So, we can use the built-in classes and solve the nonlinear problem in few lines
of code. In appendix A.2 we illustrate more deeply the FEniCS project and we
include the Python codes we have implemented to solve the problem with some

comments.



Chapter 5
Sensitivity Analysis

In the present chapter we investigate how biological parameters influence tu-
mor and nutrients behavior. In particular, the analysis is driven by the necessity
of understanding which among them play a fundamental role in the anisotropic
diffusion of nutrients and the anisotropic growth of of the tumor. Thus, in the
first section we perform the adimensionalization of the homogenous (in term of
diffusion) and anisotropic (in term of preferential directions) mathematical model
introduced in Chapter 3 in order to recognize which are the parameters that should
be considered in the analysis. We identify two pairs of parameters on which we
perform the tests, described in sections 5.2.1 and 5.2.2. In those sections, the rela-
tive outputs are given. Finally we make some considerations in order to figure out

what is the behavior of the tumor in relation to the values of the parameters.

5.1 Preparing the test cases

In this section, we provide the dimensionless form of equations of the math-
ematical model described in Chapter 3 and we analyze the role of biological pa-
rameters in the governing equations. We choose to perform the sensitivity analysis
on the parameters using a model that does not take into account the inhomogeneity

of diffusion in the tissue. In this way, it will be easier to understand and study the

71



CHAPTER 5. SENSITIVITY ANALYSIS 72

effects due to the introduction of an anisotropic tensor T. Thus, we use the rela-
tion D = D, T, where D, is the typical oxygen diffusion coefficient introduced in

section 3.3, and the model to adimensionalize results in:

_ 2
% _yg. (Mw«m - e2A¢>) L up(n— 8)(1— @) — V- (knTényVn)

ot M
(5.1)
?; = D, TAn+ Sp(l —n) — Suén. (5.2)
We define
i=2 and i=tv (5.3)

l

3

the adimensional space and time variables, where [,, is the characteristic length of
oxygen diffusion and v is the characteristic cell proliferation rate, as discussed in

section 3.3, and the adimensional quantities

[~
[\3)
[0
(Y]

f= =—. (5.4)

% XI5

Substituting (5.3) and (5.4) in (5.1) and (5.2) and rearranging the terms, we have
that the model reads

88‘? - yngﬁ : (¢(1 — ¢)2@2) +h(n—06)(1—¢) — kz;f; e (¢ T@n) (5.5)
S =Ff-A¢ (5.6)
Z?%o(TAﬂ)Jr%(ln)%qﬁn. (5.7)
In equation (5.5), we call

X knns
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Then dropping the hat and reminding that the relation I, = /D,,/d,, holds, we

obtain the following dimensionless form of the model:

g—i’ =DV - (¢(1 - ¢)*VE) +¢(n—6)(1 —¢) — KV - (¢TVn) (5.8)
2= f(¢) — *A¢ (5.9)
on 6, Sh On

Ezj(TAn)—i—?(l—n)—?@l. (5.10)

As we see, the first coefficient D is responsible of the isotropic diffusion and de-
pends on x and M, while K is the coefficient responsible of the anisotropic diffusion
and relies mostly on the chemotactic coefficient k,. Consequently, to study the
behavior of the cellular fraction in term of anisotropic growth it is sufficient to
simulate test cases in which M and k,, assume different values. This is done in
subsection 5.2.1. In equation (5.7), the characteristic parameters are .S,, and 0y,
which govern nutrients production and uptake respectively. In particular, their re-
lationship is responsible of oxygen availability in tissues and consequently it deter-
mines tumor development, since chemotactic flux depends on nutrients gradient.
In subection 5.2.2 we provide test cases in which we analyze glioblastoma growth

with respect to S, and d,,.

Once we have identified the biological parameters to consider, we perform the
numerical tests.
The model we use, thought, is only time dimensionless. In fact, we deal with a
real geometry (a patient’s brain) and space adimensionalization would be mean-
ingless, whereas time adimensionalization is required, because in this way we are
able to provide the analysis without being influenced by cell proliferation rate v.

Substituting the non dimensional quantity ¢, governing equations are:

a¢ _ (1 - ¢)2 kn

5 =V ((;SMVVZ) +¢(TL75)(1*¢)7V'7(¢TV71) (5.11)
Y= f(¢) —€A¢ (5.12)
871 Dn Sn 571,

5% b TAn—!—j(l—n)—?(bn. (5.13)
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For sake of simplicity, we choose v = 1 day~!.

About the tests, we use numerical codes described in appendix A.2. We perform
very simply simulations, without introducing real DTI data as discussed in section

4.2, but only assuming as a test case the tensor

300
T=10 00
0 00

which imposes as preferential direction for oxygen diffusion and cell chemotaxis
the z axis. Moreover, we hypnotize that the tumor is located in the center of the
brain and it is initially spherical at the time of diagnosis, that in the model cor-
responds to ¢ = 0. Thus, the initial configuration of ¢ for is represented by a
normally distributed cellular fraction concentration, as depicted in figures 5.1 and

5.2. We will compare each of the test cases paying attention to:
e profile and maximum value reached by ¢ at the end of the test;
e anisotropy of the tumor shape, as exemplified in figure 5.3;
e tumor volume at the end of simulation;
e nutrients profile at ¢ = 0 and at the end of the simulation.

In order to facilitate the comparison, only for these sensitivity tests, we set a thresh-

old for the tumoral area at e, = 0.1. The isoline is depicted in figure 5.2.
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05

Figure 5.1: Initial profile of the cancerous volume fraction in function of the dis-

tance from the center of the tumor. We hypnotize that it follows a normal distribu-
tion with its maximum in ¢ > ¢..

phi

Ea 021e-01

=03
=02

0.1

0.000e+00

(a) Clipped mesh, plane xy (b) Clipped mesh, plane xy - isoline

Figure 5.2: Initial concentration of ¢ in the brain at the time of diagnosis on the

clipped mesh cut along the plane xy. Figure (b): detail of the isoline ¢ = 0.1,
value at which we compare tumor dimension.
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Figure 5.3: To understand how much some biological parameters weight on ¢ and
n, we pay attention to tumor shape: the red line represents the tumor dimension
along x-axis which we call in the following Ax, the yellow line represents Ay and
the green line Az.

5.2 Sensitivity analysis

5.2.1 Cellular evolution: parameters M and k,,

In this part of the chapter, we investigate the effects of the interphase friction
parameter and the chemotactic parameter on the tumor development. We have
performed 16 simulations, considering the combined effects of four different values
of M and four different values of k,,. Since in literature M is estimated to be
between 1377.9 mm~2Pa and 4286.7 mm~2 Pa, we have chosen four values with
different orders of magnitude as test values, considering also limit situations in
which the parameters are out the range reported in literature: M= 100 mm~2Pa, M=
1000 mm~—2Pa, M = 5000 mm—2Pa and M = 10000 mm—2Pa. On the other hand,
the chemotactic parameter is estimated to be equal to 1296 mm? mM~! day !,
value that have been discovered studying batteries’ behavior in an environment
rich of glucose. Thus, because literature is poor about chemotaxis of glioma cells,
we suppose that the chemotactic response of glial cells to nutrients is lower than
that of the bacteria. Also in this case, we have chosen values with different orders
of magnitude: k, = 1 mm? mM~! day~!, k,, = 100 mm?’mM~'day !, k,, = 500
mm?mM~'day~! and k,, = 1000 mm?mM ~'day~!.

The other biological parameters set in the simulations are reported in table 5.1.
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x =900 Pa E= 694 Pa 0n, = 1000 day—1
ce =0.389 0=0.3 S, =10* day !
D,, =86.4 mm?day~! | n, =0.07 mM

Table 5.1: Biological parameters - analysis I

As earlier explained, we have performed simply simulations, starting from a
spherical tumor located in the center of the brain and setting the x-axis as the
preferential direction of nutrient diffusion and cell chemotaxis. We analyze the
numerical result at the 60" iteration, that means 6 days after the diagnosis. In
table 5.3, we record ¢4z, tumor dimension Ax, Ay, Az, tumor volume and the
image of the clipped mesh along the plane zy. The results are then discussed in

section 5.3.

5.2.2 Nutrient evolution: parameters ¢,, and S,

In this section, we compare the tissue transfer rate of nutrients .S;, and the oxy-
gen consumption rate of tumor cells §,, in order to figure out how nutrients avail-
ability weights on tumor development. In literature .S,, is estimated to be equal to
10* day~! and consequently we choose three values with different orders of mag-
nitude as test cases: S,= 103 day_l, S,=10% day_1 S,=10° day‘l. For 6,,, we

1in literature. Thus, we use as test values d,,=

have found a value of 8640 day™
1000 day~—!, 6,= 4000 day~!, §,= 8000 day~'. Regarding the other biological
parameters, we use the values reported in table 5.2, while for the numerical frame-
work, we follow the the guidelines described previously. In table 5.4, we report the
results of the test cases, at iteration 90, i.e. 9 days after the diagnosis. The results

are then discussed in section 5.3.

x =900 Pa E=694Pa | k, = 100mm> mM~! day~!
ce =0.389 5=03 M = 5000 mm—2Pa
D,, = 86.4 mm?day~! | n,=0.07 mM

Table 5.2: Biological parameters - Sensitivity analysis II
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M =100 M =1000 M = 5000 M =10000
Pmaz = 0.862 Gmaz = 0.949 Pmaz = 0.962 Pmaz = 0.964
Az=22.7 mm Az=23.1 mm Az=23.1 mm Az=23.1 mm
Ay =23.1 mm Ay =23.1 mm Ay =23.1 mm Ay =23.1 mm
Az=23 mm Az=23 mm Az=23 mm Az=23 mm
knl = | V=2010.08 7 mm® | V=2036.65 7 mm® | V=2036.65 7 mm® | V=2036.65 m mm>
Omaz = 0.847 Pmaz= 0.925 Pmaz = 0.936 Gmaz =0.938
Azx=24.4 mm Az=24.4 mm Ax=24.4 mm Az=24.4 mm
Ay =23.3 mm Ay=23.1 mm Ay=23.1 mm Ay=23.1 mm
Az =229 mm Az =23 mm Az=23 mm Az=23 mm
kl?)o: V=2169.72 7 mm® | V=2160.62 7 mm® | V=2160.62 # mm® | V=2160.62 7 mm®
Pmaz = 0.808 Gmaz = 0.869 Pmaz = 0.877 Gmaz =0.878
Az=32.7 mm Ax=32.7 mm Ax=32.7 mm Az=32.7 mm
Ay =23.1 mm Ay =23.1 mm Ay =23.1 mm Ay =23.1 mm
Az=22.9 mm Az=22.9 mm Az=22.9 mm Az=22.9 mm
’?5760= V=2908.17 7 mm® | V=2908.17 7 mm® | V=2908.17 # mm® | V'=2908.17 # mm®
Pmaz =0.779 Gmaz = 0.832 Pmaz = 0.839 Pmaz = 0.840
Az=40.4 mm Ax=40.4 mm Az=40.4 mm Az=40.4 mm
Ay =223 mm Ay =229 mm Ay =229 mm Ay =229 mm
Az=22.7 mm Az=22.9 mm Az=22.9 mm Az=22.9 mm
I;goa V=3408.48 7 mm® | V=3408.48 7 mm® | V=3408.48 ¥ mm® | V'=3408.48 7 mm?
phi
o‘mwﬁmuuﬁﬁmmn?‘rww

Table 5.3: Numerical results at the iteration 60. In the table, values of M are
expressed in mm~2Pa, while values of k,, are given in mm? mM~! day~'. In order
to compare the test cases, we record ¢,,qz, tumor dimension, that is Az, Ay, Az
and the tumor volume.
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4, = 1000 n = 4000 6 = 8000

Gmaz =0.790
Ax=43.2 mm
Ay =26.9mm ¢ decreases ¢ decreases
Az=26.7 mm iteration 70 iteration 30

S, =10% | V=5171.25rmm’
(z)ma:t =0.983 ¢maz= 0.920 ¢maz =0.835
Ax=29.8 mm Az=37.1 mm Az=42.3 mm
Ay =275 mm Ay=27.1 mm Ay =26.9 mm
Az=27.3mm Az =272 mm Az=26.8 mm

S, =10 | V=3728.72 tmm® | V'=4557.85 rmm® | V'=5082.48 7 mm®
Gmaz = 0.995 Omaz =0.992 Omaz =0.987
Ax=27.6 mm Az=27.7 mm Az=29 mm
Ay =275 mm Ay =27.5mm Ay =275 mm
Az=27.3 mm Az=27.3 mm Az=27.3 mm

S, =10° | V=3453.45 tmm® | V=3465.96 mm® | V'=3628.62 7 mm®

0.000e+00 025

05 0.7
MHH\IHWHHHIHX

phi
!i 1.000e+00

i

Table 5.4: Numerical results at iteration 90. In the table, values of §,, and \S,, are
expressed in day~!. In order to compare the test cases, we record ¢,qz, tumor
dimension, that is Az, Ay, Az and the tumor volume. An image of the tumor
region on the clipped mesh along plane zy is provided for each test case. As we
see, for test cases with S,, = 103 and §,, = 4000 and §,, = 8000, the cellular
fraction decreases. This means that nutrients production is not enough to supply
cells nourishment and consequently the cells scatter and the tumor disappears. Of
course, this situation is biologically impossible. For these tests, we provide an
image of the tumor region 7 days after the diagnosis for the former and 3 days after
the diagnosis for the latter.
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5.3 Observations and conclusions

We start commenting on the results of section 5.2.1. Observing tumor data
recorded in table 5.3, we can say that if M increases, the maximum volume frac-
tion ¢4, recorded at the given time step increases too. In fact with bigger values
of M, the isotropic diffusion decreases and thus, cancerous cells tend to accumu-
late. Moreover, looking at one of the four rows of the table, it is possible to notice
that tumor dimension does not change in relation to the increasing of M. Conse-
quently, the value given to M does not influence the tumor extension at the given
time step. We now pay attention to tumor/host interface: observing table 5.5 we
assert that for increasing values of M, the interface host/tumor gets sharper. This
fact is claimed in literature too. In [83], it is claimed that the value of € determines
the sharpness of the interface host/tumor, e.g. for smaller ¢, the interface becomes
smoother. Regarding our model, the term in € is multiplied by the reciprocal of M
and thus, for bigger M, the € term decreases.

We concentrate now on the role of &, in the development of the tumor. Examining
the results of table 5.3, it is possible to notice that, for k,, equal to one, the tumor is
almost spherical, while, for bigger values of the chemotactic parameter, it assumes
an ellipsoidal configuration. This fact happens because the tensor T is weighted by
the term k,, and then, an enlargement of k,, has the effect of intensify the move-
ment of the cells along that preferential direction (the x-axis is these cases). Then,
it also happens that, for increasing value of k,,, the maximum value ¢,,,,, reached
at the given time step decreases due to the scattering of the tumoral cells forced by
higher chemotaxis, while the total volume occupied by the tumor increases. For
concluding, the interface tumor/host gets smoother for increasing value of k,, as
the cells have more freedom to move, as illustrated in table 5.5.

Concerning the results collected in table 5.4, first of all, we observe that if the value
of the nutrient supply S, is not as high as cells need for sustaining proliferation,
the cellular fraction ¢ decreases and the tumor tends to disappear. In fact, .S,, is the

parameter that regulates nutrients supply from blood vessels to tumor cells and, if
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its value is not high enough to fulfill nutrients consumption, the tumor is not able
to expand as the proliferation is limited by nutrients availability. Furthermore, of
course, if the values of S, grow, then the maximum value ¢,,,, reached by ¢ at
the given time step increases while the volume occupied by the tumor decreases.
On the other hand, for the same the value of .S,, but for increasing values of §,,
®max decreases but the volume increases. To explain the behavior of the volume,
we have to pay attention to the anisotropic configuration assumed by the tumor. It
happens that for a high value of S, the tumor is almost isotropic and some slight
anisotropy is recorded only for increasing d,,. It seems that the relation between .S,
and d,, influences not only the availability of nutrients in the environment and, in
consequence, cell proliferation, but it affects also the term Vn and thus the chemo-
tactic motion of cells. As a matter of fact, that relationship determines the value of
10,min, the minimum value reached by nutrient concentration at ¢ = 0, and then
the gradient of n: for the same value of d,,, it happens that 7 ,,;, increases with
the increases of .S, and thus Vn decreases. On the other hand, for the same value
of Sy, no,min decreases with the increase of ¢,, and consequently Vn increases. If
follows that the anisotropic growth along the x-axis is bigger for lower values of
Sy, and higher values of §,,. Regarding the test cases in which ¢ decreases, it could
also happen that, besides the low cells proliferation, Vn is so big that chemotaxis
avoids cells to accumulate. The profiles of ng for each of the test cases are summa-
rized in table 5.6. Finally, in table 5.7, the profiles of ¢ and n at the 90" iteration

are depicted. Profiles are obtained as described in picture 5.4.

Figure 5.4: In the figure it is explained how ¢ and n profiles are obtained in tables
5.5 and 5.7. We plot the variables over the white line depicted, which is aligned
with the z axis and crosses the tumor in the midline of the z axis.
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M =100 M =1000 M = 5000 M =10000

K, = 1000 \ \ [
: / \ : / :

Table 5.5: Profile of the cellular fraction ¢ at iteration 60. Values of M increase
horizontally and are expressed in mm™2Pa, while values of k, grows vertically
and are given in mm? mM~! day~!. Examining the profiles, we claim that for
increasing values of M and for decreasing values of k,, the interface host/tumor

gets sharper. Profiles are obtained as described in picture 5.4.
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6, = 1000 o = 4000 4 = 8000

i \/ =1 i =1 i =l
S, =10° \/

no,min= 0.717 no,min= 0.38 no,min= 0.23
Sn =10* i

no,min= 0.961 no,min= 0.861 no,min= 0.756

b =i b =i
S =10°

no,min= 0.995 no,min= 0.984 no,min= 0.984

83

Table 5.6: In the table, we are comparing the profile of n at ¢ = 0 for each of
the test cases. The values of S, increases vertically, while the values of d,, grows

horizontally. Both are expressed in day™ .

1

For increasing values of d,,, 10 min

decreases and consequently the gradient of n becomes higher, while for growing
values of Sy, n,min gets closer to 1 and the gradient of n decreases.
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1000 000 8000
A
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Sn=10° |
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Table 5.7: Profile of the cellular fraction ¢ (above plot, red line) and of the oxygen
concentration n (below plot, blue line) at iteration 90. Values of §,, increase hori-
zontally, while values of S,, grows vertically. Both are expressed in day~!. Profiles
are obtained as described in picture 5.4.



Chapter 6

Numerical Tests

In this chapter, we present and discuss two medical-relevant tests performed
with the model proposed in Chapter 3.
In the first test, introduced in section 6.1, we investigate the development of a but-
terfly glioblastoma, a type of GBM that arises in the corpus callosum (CC) and
spreads symmetrically in the hemispheres imitating butterfly wings. As it will be
discussed, the CC is a bundle of white matter fibers which connects the two sides
of the brain and it is an area characterized by high anisotropy. For these reasons,
beyond of the medical interest, this simulation is important for its mathematical
implications too. In fact, it is a good way to evaluate the anisotropic heterogeneous
model, studying the tumor shape and the preferential direction of oxygen diffu-
sion and cell motion due to the presence of patient-specific tensors T and D. In the
second section, we describe and simulate the common medical situation in which
a partial surgical resection is performed and some cancerous cells are left behind.
We investigate the development and the diffusion of the survival cells. This test has
a huge medical interest, since treating gliomas a complete resection is not practi-
cable: these tumors, indeed, penetrate too deeply into white matter fibers and, in

many situations, removing all the diseased cells is impossible.
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6.1 Simulating butterfly glioma

Butterfly glioma is the name given to a glioblastoma which crosses the corpus
callosum and grows symmetrically in the two hemispheres, simulating butterfly
wings. Corpus callosum is the largest collection of white matter within the brain,
formed by over 200 million axons, which is approximately 10 cm in length, C-
shaped and located above the thalamus, under the cortex and in the middle of the
two hemispheres (figure 6.1). It has the function of connecting the two sides of
the brain and to facilitates communication thanks to its high myelin content. Not
uncommonly glioblastoma arises in this area, more frequently in the frontal lobes,
crossing via the genu of the corpus callosum, as depicted in figure 6.2(a); less fre-
quently, posterior butterflies are also encountered, figure 6.2(b).

As mentioned, the corpus callosum is a region characterized by high anisotropy:
in figure 6.3, it is depicted the plot of the fractional anisotropy over the brain. This
index, introduced in Chapter 2, describes the degree of anisotropy of a diffusion
process. A value of zero means that diffusion is isotropic, i.e. it is unrestricted (or
equally restricted) in all directions, while a value of one means that diffusion oc-
curs only along one axis and is fully restricted along all other directions. In corpus
callosum, the fractional anisotropy reaches values close to one, which means that
the motion is forced along only one direction. In the following, we will investigate

how cells move in this region of the brain.

6.1.1 Numerical implementation of the clinical case

To simulate the development of a butterfly glioma, we locate the initial tumor
in the genu of the corpus callosum, as depicted in figure 6.4. Furthermore, we
suppose that ¢ follows a normal distribution reaching a maximum value slightly
greater than ¢., and that the oxygen concentration is obtained solving the station-

ary problem, as illustrated in section 4.3. The initial configurations of ¢ and n over
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the computational mesh are sketched in figure 6.5.

corpus callosum ‘

rostrum,
splenium
-

Figure 6.1: The anatomy of the corpus callosum, T1-mdc image gently provided
by Istituto Neurologico Carlo Besta. It is located above the thalamus and under the
cerebrum. Four different areas are identified: the rostrum, the genu, the body and
the splenium.

(a) Frontal butterfly glioblastoma (b) Frontal butterfly glioblastoma

Figure 6.2: Frontal (left) and occipital (right) butterfly glioblastoma, figures from
[62].
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Figure 6.3: Visualization of the fractional anisotropy index on the brain of the
patient. In anisotropic regions, FA is close to one and thus the voxels are brighter.
The image has been gently provided by Istituto Neurologico Carlo Besta.

The most important and interesting term to analyze is the tensor T. In table 6.1

we illustrate the tensor components 7;;, with ¢ = x, y, z over a mesh clipped along
each plane. In the figures appearing in table 6.1, the tumor location is indicated by
the white cross. Observing the collected figures, we assert that T}, is the highest
component in the region of interest: in fact it reaches values between two and three,
while Ty, and T’ are close to zero in that region. Consequently, cancerous cells
will be forced to move along the x-direction and we expect that the tumor will grow
anisotropically, losing its initial spherical shape.
Concerning the numerical model, as biological parameters we choose M = 5000
mm~? Pa, S,, = 10* day™', §,, = 1000 day !, v = 0.25 day !, k;, = 20 mm? mM !
day~! in CSF and k, = 100 mm?mM~!day~! in GM and WM (more details are
given in figure 6.6) and we use the codes illustrated in appendix A. As mentioned,
the components of tensor T and D are then included in the numerical model by
linear interpolation.

In the next section, the numerical results are illustrated.
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(a) Clipped mesh, plane xy
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(b) Clipped mesh, plane yz

Figure 6.4: Initial location of the glioblastoma tumor (light gray sphere) overlapped
to the labeled computational mesh. We remind that the red area, the dark blu area

and the light blu area represent, respectively, the CSF, the grey matter and the white
matter. We have located the tumor in the genu of the CC.
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(a) Clipped mesh, plane zy. Map of ¢o. (b) Clipped mesh, plane xy. Map of no.
Figure 6.5: The initial configuration of ¢ and n plotted on the mesh, which has
been cut along the plane xy. We refine the mesh in tumor area in order to have a
well-refined solution keeping under control computational costs.
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Table 6.1: Diagonal components of T over the brain mesh cut along each plane.
Comparing the three components on each plane, we observe that 77, is the com-
ponent that has the higher value in the region of interest assuming a value between
two and three whereas T}, and 77, are almost zero. As a matter of fact, it has been
demonstrated [28] that corpus callosum fibers go from an hemisphere to the other.
In consequence, the z-axis is the preferential direction of cells motion and nutri-
ents diffusion in the corpus callosum. In the figures, the tumor location is indicated

by the white cross.
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(a) ky, - Clipped mesh, plane xy (b) ky, - Clipped mesh, plane yz

Figure 6.6: Plot of k,, over a clipped mesh along xy and yz planes. The chemo-
tactic parameter acquire different values in relation to the tissue it deals with. In
particular we assume that the chemotactic motion is reduced in the fluid since there
are no fibers and thus we set k,, equals to 20 mm?mM~'day ! here and equals to
100 mm?mM~!day ! in the tissues. The present hypothesis is reasonable because
brain tumors do not grow inside ventricles.

6.1.2 Numerical results

As mentioned earlier, we are interested in examining how the tumor follows
the brain structures. Thus, to study the relation between tumor shape and diagonal
components of the tensor T, we perform a further simulation with homogenous
diffusion and isotropic motion in the whole domain. In other words, we simu-
late a new model that has been obtained substituting to the tensor D the relation
D = D,T, where D, is defined as in table 3.1, and to the tensor T the identity
matrix. In the following, we will call butterfly simulation the test with real data,
and isotropic simulation the new test defined ad hoc.

We have performed both simulations till iteration 250, i.e. 25 days after the
first diagnosis of the tumor. In table 6.2, we compare ¢ and n concentration over
the computational mesh cut along the xy plane in both test cases at time steps t=5
days, t=10 days, t=15 days, t=20 days, t=25 days. We observe that, in the but-
terfly simulation, the glioblastoma loses the initial spherical shape and assumes a
configuration that reflects the structure of the tensor T; whereas, in the isotropic
simulation, the glioblastoma maintains the spherical configuration. The maximum

values reached by the cellular concentration in both tests are comparable, with a
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®maz that is slightly higher for the butterfly simulation.
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Butterfly simulation Isotropic simulation
o] n @ n
t=
t=10
t=15
t=20
t=25

Table 6.2: Plot of ¢ and n concentration over the computational mesh cut along the
zy plane for both butterfly and isotropic simulations.
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As concerns the dimension of the glioblastoma at t=25 days, we have that Ax
=21 mm, Ay = 18 mm, Az = 17.3 mm for the butterfly simulation; and Ax = 17.6
mm, Ay = 18.2 mm, Az = 18.5 mm for the isotropic case. As expected, due to the
structure of the tensor T, Ax is bigger in the first case. Thus, more interesting is the
qualitative aspect that the tumor acquired in the case of the butterfly simulation. In
figures 6.7 we overlap the thresholded ¢ at t=5, 15 and 25 days to the T, mesh cut
along the plane xy. Observing the figures, we assert that tumor shape follows the
z-axis in the region in which 7, is higher (red region) assuming a triangular con-
figuration. Concerning the other components, we have shown in table 6.1 that 77,
and T, assume lower values in the CC and thus the chemotactic motion of cells
along those directions is avoided. We confirm this hypothesis observing the tumor
volume at the time step t=25 days overlapped to the maps of 7}; on the mesh cut
along each plane, which we report in table 6.3. The tumor presents an elongated
shape along the z direction with a flat top part. It is interesting that it appears al-
most isotropic in the yz plane. Hence, in the region out of the corpus callosum, the
values assumed by the three components are comparable and thus the glioblastoma

grows isotropically. The clipped ¢ concentration in plane yz is shown in figure 6.8.

(a) ¢ att=>5 days (b) ¢ att=15 days (c) ¢ att =25 days

Figure 6.7: Thresholded volume fraction ¢ (indicated by the white arrow) plot-
ted over the T, component (in transparency), at times t=5 days, t=15 days and
t=20 days. It is possible to notice that the concentration of the cellular fraction is
anisotropic and follows the preferential direction determined by the 7}, compo-
nent.
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(a) ¢ att=25days (b) ¢ att=25 days (c) ¢ att=25days

Figure 6.8: Thresholded volume fraction ¢ (indicated by the white arrow) in rela-
tion to the values assumed by the components Tj; in the corpus callosum shown at
time steps t=25 days along the plane yz. It is possible to notice that the tumor as-
sumes a isotropic shape along this plane since the values assumed by 77;; are similar
in the region outside the CC.

plane xzy plane xz plane yz

Table 6.3: Tumor volume at time step t=25 days overlapped to the maps of 7;; over
the brain mesh cut along each plane. Comparing the resulting volume, we assert
that the glioblastoma assumes an elongated shape along the z direction, as it is
possible to see in plane xy with a flat superior part, as shown in plane xz, and an
isotropic shape in plane yz.



CHAPTER 6. NUMERICAL TESTS 95

Finally, tumor growth has to be examined on the basis of the heterogeneous
chemotactic coefficient defined. As shown in figure 6.6, we have made the hy-
pothesis that the chemotactic coefficient assumes a lower value in the ventricles
because of the absence of fibers that facilitate cellular motion. Indeed, the lateral
ventricles are located below the corpus callosum, separated by a thin layer of white
and grey matter called septum pellicidum, where butterfly glioblastoma is not al-
lowed to spread into. In figure 6.9 we illustrate the thresholded ¢ concentration
over the heterogeneous chemotactic parameter mapped on the computational mesh
at time steps t=5 days, t=15 days and t=25 days. For the particular choice of param-
eters, the effect of the lower chemotactic coefficient is not sufficiently appreciable.
Indeed, we remark that cancer cells motion depends also on the term (VX)/M,
which is homogeneous in the whole domain. For completeness, in figure 6.10 we
show the thresholded ¢ concentration at t = 25 days in relation to the heterogeneous
chemotactic coefficient also for the isotropic simulation. In this case too, the pres-
ence of a different chemotactic value for the tissue and the fluid is not sufficiently
clear for the same reason described previously. More tests are needed in order to

figure out which should be the better choice of the biological parameters.

(a) ¢ att=>5 days (c) ¢ att =25 days

Figure 6.9: ¢ concentration in relation to the chemotactic coefficient in the ROI at
time steps t=5 days, t=15 days and t=25 days.
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Figure 6.10: ¢ concentration in relation to the chemotactic coefficient in the case
of the isotropic simulation. The effect of a reduced chemotactic motion into the
lateral ventricles is not sufficiently appreciable also in the present test.

6.2 Simulating glioblastoma regrowth after resection

In this section, we describe and numerically simulate the medical situation
in which glioblastoma cannot be completely removed during the surgical opera-
tion and some cancerous cells are left behind. Indeed, in some clinical cases the
complete resection of the cancer is impossible: often the tumor is located near a
sensitive area of the brain with vital functions or it happens that the cancerous cells
are too infiltrate into fibers and thus difficult to be reached during the medical in-
tervention. Indeed, it is important to remember that gliomas are highly infiltrating
tumors and complete removal is impossible in almost every case. Anyway, the
partial removal of the tumor mass helps to relieve patient’s symptoms by reducing
pressure on the brain and in a second time surviving cells are treated by radiation
therapy and chemotherapy.

In the following the description of the simulation and the relative numerical re-
sults is reported. We are interested in discovering how glioblastoma surviving cells
develop and regrow in time, without any supplementary treatment (we suppose,

indeed, that the patient is not treated by chemo or radiotherapy after intervention).
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6.2.1 Numerical implementation of the clinical case

We start from a T1 MRI gently provided by Istituto Neurologico Carlo Besta,
which is the same medical image used for creating the computational mesh de-
scribed in chapter 4. Then, we manually segment the real tumor, making use of
Slicer3D [64] and of its module named Editor. We associate two labels to the tu-
mor region as depicted in figure 6.11. The pink area represents the mass of the
tumor that has been removed during medical resection, while the green region in-
dicates the cancerous cells that remain after the intervention.

Using the process described in Chapter 4, we build the mesh and we pass the re-
gions’ information to the geometry. In this way, we are able to distinguish three
different regions on the mesh: the healthy tissue, the mass of the resected tumor
and the mass of surviving cells, as depicted in figure 6.12. In figure 6.13, a 3D
sketch of the clinical case is depicted.

Before starting the simulation, we need to make different assumptions on the model’s
behavior in relation to the region on which the governing equations are imple-
mented. In particular, we have to specify how the model deals with the cavity, i.e.

the region occupied by glioblastoma before surgery.

(a) Axial slice - T1 mdc (b) Sagittal slice - T1 mdc

Figure 6.11: Manually segmentation of the different regions of interest. We sup-
pose that the region labeled by the pink color is the mass of the glioblastoma that
has been removed by surgery, while the area indicated by the green color represents
the mass of surviving cells.
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(a) Clip of the mesh, plane zy (b) Crinckle clip of the mesh, plane xy

Figure 6.12: (a) Three regions are identified on the mesh: the blu region is the
healthy tissue, the orange region identifies the tumor mass removed, the red region
represents the surviving cells. (b) The mesh is refined in the area of interest.

(a) Brain mesh and tumor region in trans- (b) Tumor computationally reconstructed
parency and survival cells

Figure 6.13: 3D sketched of the tumor mass resected and surviving cells. The blue
region represents the glioblastoma computationally reconstructed while the white
region identifies the area occupied by cancerous cell which are left behind.

In the region of resection, the following hypotheses hold:
e there is only the liquid phase, i.e. ¢; = 1 and ¢. = 0;

o the diffusion of nutrients is isotropic, i.e.

1 00
0 0 1

where D, is the typical oxygen diffusion coefficient in CSF that we have

estimated to be between 180 and 250 mm?day ! from the real data;



CHAPTER 6. NUMERICAL TESTS 99

e the chemotactic motion of cells is isotropic because there are no fibers and

no directions are preferential and consequently the tensor T is

1 00
T=1]0 10
0 01

e the chemotactic coefficient k,,, because of the absence of fibers, assumes a

lower value, as depicted in figure 6.14;

e the production rate parameter .5, is zero in the center of the cavity and tends
to the normal healthy value of 10* day~! following a normal profile, as de-
picted in figure 6.15, since in the resected area no tissue and no vasculature

is present.

Concerning the other biological parameters, we choose M = 5000 mm~2 Pa, §,, =

1000 day~! and v = 0.25 day .

(a) ky value - clip of the mesh plane zy (b) k,, value - detail

Figure 6.14: Value of the chemotactic coefficient k,, depicted on the mesh cut along
plane xy. We make the hypothesis that the chemotactic parameter assumes a lower
value is the cavity because of the absence of fibers. The location of the tumor is
indicated by the white cross.
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(a) Sy - clip of the mesh plane xy (b) S,, - clip of the mesh plane yz

Figure 6.15: S,, concentration depicted on the mesh cut along (a) xy the plane and
(b) the yz plane. We suppose that the production rate is almost null in the center
of the cavity and reaches its normal value in the healthy tissue. The location of the
tumor is indicated by the white cross.

Finally, for sake of completeness, in figures 6.16 and 6.17 respectively we illus-
trate the diagonal components 7;; and D;;, with ¢ = x,y, z on the computational
mesh cut along the plane xy. As we notice, no preferential directions are high-
lighted by the tensor T in the region where survived cells are located, specified
by the white cross in the image. As concern the tensor D, we have assumed that
oxygen diffusion coefficient is higher in the area of resection.

As mentioned, the tensors’ components are then included automatically and con-
tinuously in the model thought linear interpolation. To simulate the model we use

the codes illustrated in appendix A.
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(a) Tz component of T (b) Ty, component of T (c) T, component of T

Figure 6.16: Diagonal elements of tensor T on the mesh clipped along the zy
plane. In the area of the removed tumor, 7;; are equal to one. The tumor location
is specified by the white cross.
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(a) Dz component of D (b) D,y component of D (¢) D, component of D

Figure 6.17: Diagonal elements of tensor D on the mesh clipped along the xy
plane. In the area of the removed tumor, D is an isotropic tensor, whose elements
are equal to a certain value D,,.

6.2.2 Numerical results

The present test simulates the development of a secondary tumour mass start-
ing from some cells of the primary tumour that have not been removed. Thereby,
the mesh has to be highly refined, as shown in figure 6.18, in order to keep under
control computation errors that arise from a slightly smooth interface host/tumor
with the consequence of long times of computation. The following observations
on the development of the cellular fraction and the consumption and diffusion of
nutrients are made paying attention to the hypothesis assumed on the model’s be-

havior in the region of resection.

Figure 6.18: Detail of the refined mesh in the region of interest. In transparency, the
red area represents the portion of the glioblastoma that has been removed, whereas
the blu area represents the surviving cells, that have been left behind.
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In table 6.4, we examine the concentration of ¢ and n over the computational
mesh cut along the zy plane 5 days, 10 days, 15 days and 20 days after the vir-
tual resection, which corresponds to the initial numerical time step. The collected
figures show that the cellular volume fraction ¢ increases, whereas the oxygen con-
centration n decreases. The tumor expands also in the surrounding tissue and its
volume raises. In figures 6.19 and 6.20, we report the configuration of ¢ and n
over the computational mesh clipped along the planes xz and yz at the time steps
t =0 days, t = 10 days and t = 20 days.

We now pay attention to how the concentration of ¢ and n is distributed in
the neoplastic region. The detailed image is sketched in figure 6.21. We observe
that the region of the minimum concentration of oxygen does not correspond to the
region of the maximum concentration of ¢, as we expect. The reasons have to be
found in how we have defined the diffusion coefficient, the chemotactic coefficient
and the production rate coefficient in the region of interest. As concerns the distri-
bution of the oxygen, n reaches its minimum value in the resection area. Indeed,
the oxygen diffusion coefficient is higher in the cavity and consequently substrates
diffuse easily and, moreover, .S,, is lower in this region and thus, the nutrients con-
sumed are less replaced. The maximum value of ¢, instead, is reached in the area
where the initial tumoral mass is located. This behavior could be caused by the fact
that in the region of resection the motion of the cancerous cells is prevent because
of a lower value of k,,. The figures 6.22 and 6.23 explain exhaustively this fact.

Finally, in figure 6.24, we observe the evolution of the tumor volume at time
steps t = 0 days, t = 10 days and t = 20 days. At the beginning, it is slightly C-
shaped with a small spherical satellite mass of diseased cells on its left, which is
made visible for the first time thanks to a 3D visualization. At the final time step,
it presents a more rotund aspects with a bigger satellite mass. To understand how
the tumor has grown, we overlap the initial configuration to the final one. We no-
tice that the tumor has grown more in the region surrounding the cavity than inside

it. This fact is probably due to the heterogeneity of the chemotactic coefficient,
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which is higher outside the region and lower inside it such that cells are facilitated
to move into the healthy fibers, and to the nutrient production rate coefficient S,
which is almost null in the center of the tumor and assumes its physiological values

in the healthy tissue.

0} n
t =5 days
t =10 days
t =15 days
t =20 days

Table 6.4: The concentration of ¢ and n at the given time steps depicted over the
computational mesh cut along the zy plane.
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Figure 6.19: Concentration of ¢ and n over the computational mesh clipped along
the plane xz in the midline of the tumor at the time steps t = 0 days, t = 10 days, t

=20 days.

(a) ¢ att=0 days, plane yz

(b) ¢ at t=10 days, plane yz

(c) ¢ att=20 days, plane yz
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(e) n at t=10 days, plane yz

(d) m at t=0 days, plane yz

Figure 6.20: Concentration of ¢ and n over the computational mesh clipped along
the plane yz in the midline of the tumor at the time steps t = 0 days, t = 10 days, t
=20 days.
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(a) ¢ concentration at t=20 days (b) n concentration at t=20 days

Figure 6.21: Detail of ¢ and n concentration on the clipped mesh over the plane
xy. Particularly interesting is the distribution of the variables’ concentration in the
diseased region.
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(a) Clipped ¢ concentration over clipped D, (b) Clipped n concentration over Dy, clipped
mesh, plane xy mesh, plane xy

Figure 6.22: Clipped thresholded ¢ and n concentration over clipped D,, mesh cut
along plane xy at time step t = 20 days. The thresholded tumor has been obtained
setting e = 0.02, whereas the oxygen concentration has been thresholded at 0.99.
The resected region is illustrated meshed in order to highlight its borders.
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(a) Thresholded ¢ concentration over k., con- (b) Thresholded n concentration over k., con-
centration clipped mesh centration clipped mesh

Figure 6.23: Clipped thresholded ¢ and n concentration in relation to the heteroge-
neous chemotactic coefficient depicted over the clipped mesh cut along plane yz at

time step t = 20 days. The thresholded concentration has been obtained as in figure
6.22.
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(d) Clipped tumor volume at t=20 days

Figure 6.24: Volumetric growth of glioblastoma tumor at time steps t = 0 days, t =
10 days and t = 20 days, obtained thresholding ¢ at e = 0.02 as defined in Chapter
4. In figure (d) the initial configuration of the tumor (which occupies the region
sketched by the black line) is overlapped to the clipped tumor volume at t=20 days.



Conclusions and Future works

In this project we have developed a mathematical model in order to predict the
invasion and the growth of a glioblastoma, a highly malignant brain tumor charac-
terized by an infiltrative nature. Starting from the mixture models found in litera-
ture, we have proposed a new model that takes into account the heterogeneity and
the anisotropy of the brain tissues thanks to the introduction of a chemotactic flux
of mass and the patient-specific diffusion tensor imaging data, gently provided by
the Istituto Neurologico Carlo Besta. The research has been inspired by the consid-
eration that including real data in the mathematical model would have led to a more
truthful prediction of the tumor evolution. Thus, we have created a computational
mesh starting from a MR image of a patient affected by glioblastoma and we have
extracted geometric information from the diffusion tensor. Thanks to imaging tech-
nique and numerical codes, we have succeeded in creating a local diffusion tensor
and including anisotropy and heterogeneity in the model. Moreover, we have de-
fined a new local tensor, which we have called tensor of the preferential directions,
comparing each component of the diffusion tensor to the mean diffusivity in each
point of the domain. This mathematical object encapsulates the information on the
real geometry of the brain and thus it allows to describe the anisotropic motion of
the tumor cells. The new tensor, indeed, weights the chemotactic term presented
in the governing equation of the cellular fraction and thus forces the cells to move
along specific directions.

In a second time, to simulate the mathematical model, we have discretize the prob-

lem using the finite elements method and we have developed numerical codes mak-
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ing use of an open-source software called FEniCS.

In particular, we have performed a sensitivity analysis of the biological parame-
ters present in the model in order to figure out which ones among them has more
influence on the anisotropic tumor behavior. We have done two analysis: the first
has considered the combined effects of the interphase friction parameter and the
chemotactic friction parameter on the cellular evolution, while the second has con-
sidered the combined effects of the production of nutrients and the consumption
of nutrients. We have discovered that the chemotactic coefficient has a huge influ-
ence on the anisotropic behavior of the tumor and that the relationship between the
production and the consumption of nutrients determines not only the availability
of nutrients in the environment and, in consequence, cell proliferation, but it also
affects the chemotactic motion of cells.

Finally, to test the model, we have simulated two common clinical situations of
medical interest. The first has concerned the development of a butterfly glioblas-
toma, a type of glioma that arises in the corpus callosum which is a bundle of
white matter fibers located between the two hemispheres and characterized by
high anisotropy. The characteristic feature of this tumor is that it spreads into
both hemispheres symmetrically, simulating butterfly wings. Hence, we have lo-
cated a virtual glioblastoma of small size in the genu of the corpus callosum and
we have examined its development at given time steps. The resulting data show a
tumor shape that actually follows the architecture of the brain region in which it
is located. Unfortunately, we haven’t succeeded in simulating the butterfly wings.
The heterogeneity of the brain tissue and the reproduction of the real geometry of
the cancer is a hard challenge for biomathematical modeling. In our case, more
simulations are needed in order to test different parameters and to include more
patient-specific data.

Then, we have simulated the medical situation in which the brain tumor has not
been completely removed and some diseased cells have been left behind. Indeed,

almost always, gliomas cannot be completely removed due to their high infiltrative
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nature. Although after the medical intervention patients are treated with radiother-
apy or chemotherapy, we have not considered any treatment in the model. The
numerical results have suggested a tumor that tends to expand in the healthy tissue

instead of accumulating in the region of resection.

As concerning the future works, first of all, more biological researches on the
parameters present in the model are needed. Indeed, it is hard to find truthful
parameters relative to glioblastoma tumors. Furthermore, since the novelty of the
present research lies in the introduction of patient-specific data and real geometry,
it would be interesting observing how the numerical results change in relation to
different patients. At the same time, it would be also useful to follow the tumor
evolution of a single patient. As a matter of fact, the structure of the brain fibers
changes as the tumor grows and thus, it would be necessary to have more medical
data at given time steps in order to compare the numerical results with the real
development of the tumor. Finally, some possibile improvements that concern the
formation of new vessels (angiogenesis) or the medical treatments given to a patient

could be introduced in the mathematical model.



Appendix A

Code Documentation

In this appendix we present the codes we have implemented for the solution
of the tumor growth problem defined in the previous part of this work. Firstly,
however, we describe briefly how we have obtained a smooth and regular brain
tetrahedral mesh. Thus, in the first section we explain step by step the process
we employed, illustrating summarily the algorithms and the pieces of code written
by M. Manica [41] and modified for our aims. Then, in the second section, we
focus on the codes developed for the main problem. We use an open-source soft-
ware called the FEniCS project, through a Python interface. The entire codes are

reported with a brief explanation.

A.1 Mesh Construction - Numerical background

In order to create a mesh, we make use of a library named Vmzk. It is "a
collection of libraries and tools for 3D reconstruction, geometric analysis, mesh
generation and surface data analysis for image-based modeling of blood vessels”
[31]. Even thought it has been developed for blood vessels, thanks to its powerful

tools, it is possible to adapt vmtk-algorithms to succeed in our purpose.

First of all, we create a labeled map of the brain (e.g. BLM.mhd) starting from
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a series of T1-MRlIs, as described in chapter 4.1. In this map a label is assigned to
each region: label 2 is given to the background, label 13 to the grey matter, label
14 to white matter and 25 to cerebrospinal fluid. The quickest and most simple
way of creating a surface model is to contour the image using the Marching Cubes
algorithm. This algorithm is able to extract a surface that we call surf.vtp from the
labeled map at a certain level (e.g. level 3). In this way, we manage to extract the

brain surface from the background.

vmmtkmarchingcubes —-ifile BLM.mhd -1 3 -ofile surf.vtp

At this point, the rough surface has to be cleaned and smoothed in order to do

not have intersections of edges or topological problems, and then re-meshed.

vmtksurfaceconnectivity -ifile surf.vtp —--pipe
vmtksurfacesmoothing -passband 0.001 -iterations 100 —--pipe
vmtksurfacedecimation -reduction 0.95 --pipe
vimtksurfaceviewer --pipe vmtksurfaceremeshing
—elementsizemode area -area 10 —-minarea 4 —--pipe
vmtksurfaceviewer -ofile surf_re.vtp

Once the surface is perfectly smoothed, the tetrahedral mesh is performed call-
ing TetGen in meshing.py and refined in the tumoral area by the algorithm named
refinement.py. The final step consists in overlapping the brain label map to the
tetrahedral mesh using label.py, so that the biological features of the tissues are
passed to the computational object. The final mesh is now ready for the numerical
simulations. In the following we report portions of the codes used; for the integral

versions see [41].

# -—— meshing.py -—— #

reader=vtk.vtkXMLPolyDataReader ()
reader.SetFileName ("/home/cristina/TESI/Mesh_Creat/surf_re.vtp")

sizingFunctionArray.SetName ("SizingFunction")

# Call tetgen
tetgen=vmtkscripts.vmtkTetGen ()
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tetgen.Mesh= stm.Mesh
tetgen.GenerateCaps = 0

tetgen.UseSizingFunction = 1
tetgen.Refine=0
tetgen.SizingFunctionArrayName = "SizingFunction"

tetgen.Order =1

tetgen.Quality = 1

tetgen.PLC =1
tetgen.NoBoundarySplit = 1
tetgen.RemoveSliver = 0
tetgen.OutputSurfaceElements = 0
tetgen.OutputVolumeElements = 1
tetgen.Execute ()

# ——— refinement.py -——— #

for i in range (mesh.GetNumberOfPoints()):
pb=mesh.GetPoint (1)
dist=sqgrt (pow ( (pb[0]-205),2) + pow((pb[1]1-290),2) + pow( (pb
[21-27),2))
if dist <= 30:
sizingFunctionArray.SetTuplel (i,1.2)
else:
sizingFunctionArray.SetTuplel (1, 3)

# —— label.py —— #

# Mesh reader

reader = vtk.vtkUnstructuredGridReader ()
reader.SetFileName ("Mesh_re.vtk")
reader.Update ()

mesh=reader.GetOutput ()

# Metaimage reader

ireader = vmtkscripts.vmtkImageReader ()
ireader.InputFileName = "BLM.mhd"
ireader.Execute ()

img = ireader.Image

# Label assignment

for ig in range(ncells):
mesh.GetCellPoints (ig,ptlst)
mesh.GetPoints () .GetPoints (ptlst, pt)
barycenter (pt, pb)
pt.Reset ()
im=ploc.FindClosestPoint (pb)
print iml.GetComponent (im, 0)
if iml.GetComponent (im,0)==2.0:

cell label.SetTuplel (ig,25)

else:
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cell_label.SetTuplel (ig, iml.GetComponent (im, 0))
writer = vtk.vtkUnstructuredGridWriter ()
writer.SetFileName ("Mesh_lab.vtk")

At this point, we deal with the components D;;, with ¢, 7 = x,y, z of the dif-
fusion tensor D. As mentioned, it is possible that the six images representing D;;
have to be registered on the T1 used for the mesh creation. We use an open source
software named FSL: it offers two robust and easy-to-use tools for medical image
registration called FNIRT and FLIRT. Firstly, we register the image of the D,
component and then we use the transformation matrix to register the other compo-

nents. The commands utilized are:

Flirt —-in Dxx.nii -ref GBM_T1_3D_TFE_rest_SENSE_10_1.nii -omat
outputmatrix.nii -dof 6 -out Dxx_reg.nii

Flirt -in Dij.nii -ref GBM_T1_3D_TFE_rest_SENSE_10_1.nii -applyxfm
—init outputmatrix.nii -dof 6 —-out Dij_reg.nii

Once the components are registered to the reference image, their format is
switched from the nifti file format to the mhd file format and therefore ready for
the labeling process. We create six computational meshes on which to each cell the

projected value is associated.

A.2 Code implementation - The FEniCS project

To perform numerical simulation we rely on a open source software named the
FEniCS project trough a Python interface. It is a software specialized in automated
solution of differential equation by finite element and it is actually a collection of
inter-operable components, including the problem-solving environment DOLFIN,
the form compiler FCC, the finite element tabulator FIAT, the just-in-time com-
piler Instant, the code generation interface UFC and the form language UFL [38],

as depicted in figure A.1.



APPENDIX A. CODE DOCUMENTATION 114

Application _,m

Applications

Interfaces

Core components

’
*

mmy, g

n
‘_-’ ”-.‘

.
-

=

PETSE UBLAS WHIFEACEE [Nomm (g7 SCOUCH LUATIES

External libraries

TiHlines G [PRAIETS CEAL =0 SlEPe

Figure A.1: DOLFIN functions as the main user interface of FEniCS and handles
the communication between the various components of FEniCS and external soft-
ware. Solid lines indicate dependencies and dashed lines indicate data flow [38].

First of all, we have to convert the seven meshes (the brain mesh and the six
components of the diffusion tensor) from the .vtk format to the .xml! format, the
one supported by FEniCS, making sure that the cells information (tissue labels and
diffusion values) are given to the new XML meshes, that we call brain.xml and

Ihyxnﬂ.

vmtkmeshreader -ifile Mesh_lab.vtk -entityidsarray "cell_labels"
—--pipe vmtkmeshwriter -entityidsarray "cell_labels"
-writeregionmarkers 1 -ofile brain.xml -f "dolfin"

vmtkmeshreader -ifile Mesh_Dij.vtk -—-entityidsarray "Dij_labels"
—--pipe vmtkmeshwriter -entityidsarray "Dij_labels"
-writeregionmarkers 1 -ofile Dij.xml -f "dolfin"

In order to be able to use diffusion tensor information collected into the XML
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meshes, we have implemented a code which reads the diffusion values and stores
them as mesh function. In the same code, we compute 7;;, the six components of
T, the tensor of preferential directions and we stock them as mesh function too.

Then these data will be read in the main code in a second time.

# DefineT.py
from dolfin import =«

#Read of the XML meshes
mesh = Mesh ("brain.xml")

mvc_Dxx = MeshValueCollection("size_t", mesh, "Dxx.xml")
meshf Dxx = MeshFunction("size_t", mesh, mvc_Dxx)
values_Dxx = meshf_Dxx.array ()

mvc_Dyy = MeshValueCollection("size_t", mesh, "Dyy.xml")
meshf_ Dyy = MeshFunction("size_t", mesh, mvc_Dyy)
values_Dyy = meshf_Dyy.array ()

mvc_Dzz = MeshValueCollection("size_t", mesh, "Dzz.xml")

meshf_Dzz = MeshFunction("size_t", mesh, mvc_Dzz)
values_Dzz = meshf Dzz.array ()
mvc_Dxy = MeshValueCollection ("int", mesh, "Dxy.xml")

meshf_Dxy = MeshFunction ("int", mesh, mvc_Dxy)
values_Dxy = meshf_Dxy.array()

mvc_Dxz = MeshValueCollection("int", mesh, "Dxz.xml")
meshf_ Dxz = MeshFunction ("int", mesh, mvc_Dxz)
values_Dxz = meshf_Dxz.array ()

mvc_Dyz = MeshValueCollection("int", mesh, "Dyz.xml")
meshf_Dyz = MeshFunction ("int", mesh, mvc_Dyz)
values_Dyz = meshf Dyz.array ()

# Components of D
oll=MeshFunction
022=MeshFunction
033=MeshFunction
ol2=MeshFunction
0l3=MeshFunction
023=MeshFunction

"double", mesh, 3
"double",mesh, 3
"double",mesh, 3
"double", mesh, 3
"double",mesh, 3
"double",mesh, 3

( )
( )
( )
( )
( )
( )

# Components of T

tll=MeshFunction ("double",mesh, 3)
t22=MeshFunction ("double",mesh, 3)
t33=MeshFunction ("double",mesh, 3)
tl12=MeshFunction ("double",mesh, 3)
t13=MeshFunction ("double",mesh, 3)
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t23=MeshFunction ("double",mesh, 3)

trace = MeshFunction ("size_t",mesh, 3)

n=len (values_Dzz)

i=0

while (i<n):

trace[i] = (values_Dxx[i] + wvalues_Dyy[i] + values_Dzz[i])
if (tracel[i]!=0):
0ll[i] = float (values_Dxx[i])
022[1i] = float (values_Dyyl[i])
033[i] = float (values_Dzz[i])
0l2[i] = float (values_Dxy[i])
0l13[i] = float (values_Dxz[1])
023[1i] = float (values_Dyz[i])
t11[1i] = 3xvalues_Dxx[i]/trace[i]
t22[i] = 3xvalues_Dyy[i]/trace[1i]
t33[1] = 3xvalues_Dzz[i]/trace[i]
tl12[i] = float (3xvalues_Dxy[i])/trace[i]
t13[1] = float (3xvalues_Dxz[i])/trace[i]
t23[i] = float (3xvalues_Dyz[i])/trace[i]
if (tracel[i] ==0):
oll[i] = 86.4
022[1] = 86.4
033[1i] = 86.4
ol2[i] = 0.0
0l3[i] = 0.0
023[i] = 0.0
t11[i] = 1.0
t22[1] = 1.0
t33[1] = 1.0
t12[i] = 0
t13[1i] = 0
t23[1] = 0
i=i+1
# Saving D components and T components
0ll_file = File("oll.xml.gz")
022_file = File("o22.xml.gz")
033_file = File("0o33.xml.gz")
o0l2_file = File("ol2.xml.gz")
0l3_file = File("ol3.xml.gz")
023_file = File("023.xml.gz")
0ll _file<< oll
022_file<< 022
033_file<< 033
0l2_file<< 0l2
0l3_file<< 013
023_file<< 023
tll _file = File("tll.xml.gz")
t22_file = File("t22.xml.gz")
t33_file = File("t33.xml.gz")

116
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tl2_file = File("tl2.xml.gz")
tl13_file File("t1l3.xml.gz")
t23_file File("t23.xml.gz")
tll_file << tl11l
t22_file << t22
t33_file << t33
tl1l2_file << tl2
tl13_file << tl13
t23_file << t23

In the following, the main code is reported. The problem consists of a second
order non-linear equation coupled with a Poisson-like equation and with reaction-
diffusion equation. We create a mixed function space using linear continuous La-
grange basis such that each tetrahedron has four degrees of freedom. Since we deal
with a nonlinear problem, we have to make use of the NewtonSolver() built in class.
We choose MUMPS (MUItifrontal Massively Parallel Sparse direct Solver) as lin-
ear solver and the incremental criterion as convergence criterion. In the main code,
there are few C++ lines in which the external files containing the components of
the tensors D and T are read and stored in objects that FEniCS can introduce in the
equations. In particular, thanks to the Expression tool, the components are linearly

interpolated on the dof of the varibles.

# Model.py

from dolfin import =«
import numpy

# ———— Create Mesh and function space —--——- #

mesh Mesh ("brain.xml")
v = FunctionSpace (mesh, "Lagrange", 1)
ME MixedFunctionSpace ([V,V,V])

mvc_lab = MeshValueCollection("size_t", mesh, "brain_labels.xml")
meshf_lab = MeshFunction("size_t", mesh, mvc_lab)
values_label = meshf_lab.array()

#Resection simulation only

#mvc = MeshValueCollection("size_t", mesh, "tumor.xml")
#meshf = MeshFunction ("size_t", mesh, mvc)

#values = meshf.array ()

class InitialConditions (Expression) :
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def eval (self,values, x):
values[0]=0.45xexp( —( (x[0]-242)*x2 + ( x[1]-229)*%2+ (x
[21—- 27)*%x2 )/9)
#Resection simulation only
values[0]= 0.39% ((x[0]1-205) **2+(x[1]1-290) »*2+(x[2]-28)
*%2<=115)4+0.0*x ((x[0]—-205) »*2+ (x[1]1-295.5) %2+ (x[2]-27)
*x2>=115)
values[1]=0.0
values[2]=1.0
def value_shape (self):
return (3,)

class MyTumor (NonlinearProblem) :
def _ init__ (self, L, a, bc):

NonlinearProblem.__init__ (self)
self.L = L
self.a = a

self.bc = bc

def F(self, b, x):
assemble (self.lL, tensor=b)
self.bc.apply (b, x)

def J(self, A, x):
assemble (self.a, tensor=A)
self.bc.apply (A)

class DirichletBoundary (SubDomain) :
def inside(self, x, on_boundary):
return on_boundary

# ———— Problem -—-——— #

#Define trial Function and test function
du = TrialFunction (ME)
v,w,q = TestFunctions (ME)

#Define functions
u = Function (ME)
u0 = Function (ME)

#Split mixed function
dc,dmu,dn = split (du)
c,mu,n = split (u)

c0,mu0,n0 = split (ul)

#Create initial conditions and interpolate
u_init = InitialConditions ()

u.interpolate (u_init)

ul0.interpolate (u_init)

# Resection simulation only
#dm = V.dofmap ()
#tt = Function (V)
#for cell in cells (mesh):
#if (values[cell.index()]==1):
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#tt.vector () [dm.cell_dofs(cell.index())[:]11=0.0
#if (values[cell.index ()]==0):
#tt.vector () [dm.cell_dofs(cell.index())[:]11=1.0

#dofs_VO0=ME.sub (0) .dofmap () .dofs ()
#lun=len (dofs_VO0)
#for ind in range (0, lun ):
#u.vector () [dofs_VO[ind]]l=u.vector () [dofs_V0[ind]]*tt.vector
() [ind]
#u0.vector () [dofs_VO0[ind] ]=ul0.vector () [dofs_VO0[ind]]*tt.
vector () [ind]

# ——— Diffusion steps (Resection only) —-—— #

#s_1= Function (V)
#assign(s_1, u.sub(0))

#dt = 0.1 # time step

#s = TrialFunction (V)

#r = TestFunction (V)

#a = sxr+dx + dtxinner (nabla_grad(s), nabla_grad(r)) *dx

#L = s_l*r*dx

#A = assemble (a) # assemble only once, before the time stepping
#s = Function (V) # the unknown at a new time level

#T = 0.3 # total simulation time

#t = dt

#print "Ok+++"

#while t <= T:
#b = assemble (L)
#solve (A, s.vector(), b)
#t += dt
#s_1.assign(s)

#file_ss = File("out_ss.pvd", "compressed")
#file_ss << s
#print "Ok"

# Assignment
#assign(u.sub(0), s)
#assign (u0.sub(0),s)

# ———— Parameter estimation —--——— #

#0xygen phase
#class defineS (Expression) :
#def eval (self,values, x):
#values[0]= —-ledxexp ( — ((x[0]-205)*%2+(x[1]-290) **2+ (x
[2]1-28)%%2 ) /115 ) +led
#values[1]1=0.0
#values[2]=0.0
#def value_shape (self):
#return(3,)

#Define functions
#S_n_exp = Function (ME)
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#S_init = defineS()

#S_n_exp.interpolate (S_init)
#S_n= Function (V)
#assign(S_n, S_n_exp.sub(0))

#dm = V.dofmap ()
#k = Function (V)
#for cell in cells (mesh):
#if (values[cell.index()]==1):

#k.vector () [dm.cell_dofs(cell.index ()) [:]]1=20
#1if (values[cell.index () ]==0):
#k.vector () [dm.cell_dofs(cell.index()) [:]1]1=100
dm = V.dofmap ()
k = Function (V)
for cell in cells (mesh):
if (values_label[cell.index ()] == 25 ):
k.vector () [dm.cell_dofs(cell.index()) [:]1=20
if (values_label[cell.index ()] == 13):
k.vector () [dm.cell_dofs(cell.index())[:]1=100
if (values_label[cell.index ()] == 14):
k.vector () [dm.cell_dofs(cell.index()) [:]11=100

delta_n = 1000 #day -1

S_n = led #day -1

gamma = 0.25 #day -1

# Cellular Phase

c_e = 0.389

M = 5000 #mm~-2 Pa day - range [1377.9
n_s = 0.07 #mM micromolarity

X1 = 106.64 #Pa

X2 = 900 #Pa - range [866 ; 1530]

E = 694 #Pa

delta_c = 0.3

theta = 0.5

dt = le-1

i ——————————————e———— e #
# Code for C++ evaluation of D
defineMatrix_code_O = """

class Components_DT_O : public Expression

{
public:

// Create expression with 6 components

Components_DT_O() : Expression(6) {}

’

4286.7]

// Function for evaluating expression on each cell

void eval (Array<double>& values, const Array<double>& x,

ufc::cell& cell) const

const
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}i

const uint D = cell.topological_dimension;

const uint cell_index = cell.index;

values[0]

(#011) [cell_index];

values[1l] = (x0l2) [cell_index];
values[2] = (x0l3) [cell_index];
values[3] = (x022) [cell_index];
values[4] = (x023) [cell_index];
values[5] = (x033) [cell_index];

// The data stored in mesh functions
::shared_ptr<MeshFunction<double>

std

std:
std:
std:
std:
std:

wnn

:shared_ptr<MeshFunction<double>
:shared_ptr<MeshFunction<double>
:shared_ptr<MeshFunction<double>
:shared_ptr<MeshFunction<double>
:shared_ptr<MeshFunction<double>

V V. V V V V

oll;
0l2;
0l3;
022;
023;
033;

# Define DT components expression and matrix

oll=MeshFunction
022=MeshFunction
033=MeshFunction
ol2=MeshFunction
ol3=MeshFunction
023=MeshFunction

"double",mesh,
"double",mesh,
"double",mesh,
"double",mesh,
"double",mesh,
"double",mesh,

(
(
(
(
(
(

"oll.
"o22.
"o33.
"ol2.
"o0l3.
"o23.

xml .
xml .

xml .
xml .
xml .

xml .

gz")
gz")
gz")
gz")
gz")
gz")

= Expression (cppcode=defineMatrix_code_O)

ol2]],

[

o[l],

o
0.011 = oll

0.012 = 0l2

0.013 = 013

0.022 = 022

0.023 = 023

0.033 = 033

mat_O = as_matrix([[o[0], o[l],

[4]1, o511 1)
[ —=———=——=—=——==—===c====c==—=============== #

# Code for C++ evaluation of T
defineMatrix_code T = """

class Components_DT_T

{

public:

// Create expression with 6 components

Components_DT_T ()

// Function for evaluating expression on each cell

Expression (6)

{1

public Expression

o[4]], [o[2],

121
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void eval (Array<double>& wvalues, const Array<double>& x, const
ufc::cell& cell) const

const uint D = cell.topological_dimension;
const uint cell_index = cell.index;
values[0] = (xtll) [cell_index];

values[1] (#t12) [cell_index];

values[2] (*t13) [cell_index];

values[3] = (*xt22) [cell_index];

values[4] (#t23) [cell_index];

values[5] (*t33) [cell_index];

// The data stored in mesh functions

std::shared_ptr<MeshFunction<double> > tl1l1;
std::shared_ptr<MeshFunction<double> > t12;
std::shared_ptr<MeshFunction<double> > t13;
std::shared_ptr<MeshFunction<double> > t22;
std::shared_ptr<MeshFunction<double> > t23;
std::shared_ptr<MeshFunction<double> > t33;

}i

# Define T components expression and matrix

tll=MeshFunction
t22=MeshFunction
t33=MeshFunction
t1l2=MeshFunction
t13=MeshFunction
t23=MeshFunction

"double",mesh, "tll.xml.gz")
"double",mesh, "t22.xml.gz")
"double",mesh, "t33.xml.gz")
"double",mesh,"t12.xml.gz")
"double",mesh, "t13.xml.gz")

(
(
(
(
(
("double",mesh, "t23.xml.gz")

t = Expression (cppcode=defineMatrix_code_T)

t.tll = tl11

t.tl2 = tl2

t.tl3 = tl13

t.t22 = t22

t.t23 = t23

t.t33 = t33

mat_T = as_matrix ([[t[0], t[1l], t[2]], [t[l], tI[3], tl4]1]1,([t[2], t
(41, tls511 1)

[ —=———————=—=——==—===c===================== #

# Form compiler options

parameters|["form_compiler"] ["optimize"] = True

parameters|["form_compiler"] ["cpp_optimize"] = True

parameters|["form_compiler"] ["representation"] = "quadrature"

# ———— Define nutrient initial condition —-——— #

# Define Dirichlet boundary condition
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def Boundary (x, on_boundary) :
return on_boundary

bc = DirichletBC(V, Constant ("1.0"), Boundary)

# Define variational problem

m = TrialFunction (V)

t = TestFunction (V)

a = inner (mat_Oxgrad(m), grad(t))x*dx + delta_n*cOxmxtxdx + S_n*mxt
*dx

L = S_n*t*xdx

# Compute solution

m = Function (V)

problem = LinearVariationalProblem(a, L, m, bc)
solver_m = LinearVariationalSolver (problem)

prm_m=solver_m.parameters
prm_m[’linear_solver’] = ’'mumps’
solver_m.solve ()

# Assignment
assign(u.sub(2), m)
assign(u0.sub(2),m)

# ———— NonLinearProblem —--——— #

# Dirichlet boundary condition
gl = Constant (0.0)
bc2 = DirichletBC(ME.sub(0), gl, DirichletBoundary())

g2 = Constant (1.0)
bc2 = DirichletBC(ME.sub(2), g2, DirichletBoundary())

bc=[bcl, bc2]

#Crank —-Nicholson method

n_mid = (1.0-theta)*n0 + theta=*n
(1.0-theta) *mu0 + thetaxmu
(1.0-theta)*c0 + thetaxc

mu_mid
c_mid

c = variable (c)
K_c = c*x(l-c)xx2/M
£ = Ex (cx*x2)x ((c—c_e)/ (1-c))

X = Function (V)
dofs_V0=ME.sub (0) .dofmap () .dofs ()
nn=len (dofs_VO0)
for ii in range (0,nn):
if (u.vector () [dofs_VO[ii]]>1e-9):
X.vector () [i1]=X2
if (u.vector () [dofs_VO0[ii1]]l<=1le-9):
X.vector () [11]=X1
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lmba = Function (V)
for jj in range (0, nn):
Imba.vector () [jJjl=le-4x (X.vector () [J7])

L0 = c*vxdx —-cOxv*dx + dtxinner (K_cxgrad(mu_mid), grad(v))+dx - dt
*gammaxc_midx (1-c_mid) * (n_mid-delta_c) *v+dx — dtxks*n_sxc_midx
inner (mat_T*grad(n_mid), grad(v))xdx

Ll = murwxdx — f*wxdx - lmbaxinner (grad(c), grad(w))xdx

L2 = n*gxdx -nO0*gxdx + dt*inner (mat_Oxgrad(n_mid),grad(q))*dx - dt
*S_nxgxdx + dt*xS_nxn_mid+gxdx + dtxdelta_nxc_midxn_midrgrdx

L = LO+L1+L2

J = derivative (L, u,du)

# Create nonlinear problem and Newton solver

problem = MyTumor (L, J, bc)

solver = NewtonSolver ()

prm=solver.parameters

prm[’linear_solver’] = ’"mumps’
solver.parameters["relative_tolerance"] = le-6
solver.parameters|["convergence_criterion"] = "incremental"
solver.parameters[’'maximum_iterations’] = 50

# Saving output files

file_c = File("/u/dati/laureandi/colombo/Farfalla/out_c.pvd", "
compressed")

file_.n = File("/u/dati/laureandi/colombo/Farfalla/out_n.pvd", "
compressed")

#Step in time

t=0.0

file ¢ << (u.split () [0], t)
file_n << (u.split()[2], t)
T=1000«dt

i=1

while (t<T) :
print i
t+=dt
ul.vector () [:]=u.vector ()
X = Function (V)
dofs_V0=ME.sub (0) .dofmap () .dofs ()
nn=len (dofs_VO0)
for ii in range(0,nn) :
if (u.vector () [dofs_VO0[ii]]l>1e-9):
X.vector () [11]=X2
if (u.vector () [dofs_VO0[ii]]l<=1le-9):
X.vector () [11]=X1
lmba = Function (V)
for jj in range (0, nn):

Imba.vector () [jjl=le—-4x (X.vector () [jj])
solver.solve (problem, u.vector())
if (1%10 ==0):

file_c << (u.split () [0], t)
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file_n << (u.split () [2], t)
i=i+1
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