
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

A Witnessing Annotation Framework for Low-Level

Virtual Machine Compiler Infrastructure

Thesis of:
Giacomo Tagliabue,

matricola 780312

Advisor (Politecnico di Milano):
Pierluca Lanzi
Advisor (University of Illinois at Chicago):
Lenore Zuck

A.A 2013/2014

To Dasha

and my family,

with love

ii

ACKNOWLEDGEMENTS

This work couldn’t be completed without the work, help, advice, presence of persons

other than myself. I will try to appropriately thank all of them.

I want to express my sincerest gratitude to my advisor Lenore Zuck. Thank you also for

giving to me the opportunity to work and contribute to this project. I would like to thank

the people that I had the honor to work with in the past year: Niko Zarzani, Professor

Rigel Gjomemo, Phu Phung, and Professor and advisor Venkat Venkatakrishnan. Heartfelt

thanks to Kedar Namjoshi, without whose constant support, advice and guidance this work

wouldn’t have seen the light.

I would like to thank Professors Stefano Zanero, Marco Santambrogio, Pier Luca Lanzi

at Politecnico di Milano, for helping and inspiring before and during the master’s degree.

Same Sincere thanks to Lynn Thomas, for assisting me whenever the need.

I want to thank my housemates Claudio, Daniele, Giovanni, Gabriele, Luca for tolerating

me during the hardest moments. Thank you, Dasha, the main source of happiness and

mental stability in my life. A lot of thanks to my family, who gave me the opportunity to be

here. Thanks Papà, Mamma e Claudia, I missed you all the time.

Thanks to Michele Spagnuolo for sharing his Thesis template with me to use it in this

very work.

Last but not least, I owe a lot to the Computer Science community in general, and to

some amazing personalities in particular. Even if you don’t know me, Thank you Linus

iii

ACKNOWLEDGEMENTS (Continued)

Torvalds, Chris Lattner, Jimbo Wales, Jeff Atwood, Joel Spolsky, Leonardo de Moura, LLVM

and CLANG community members. I will repay my debt somehow.

For all the other friends, professors and colleagues that I didn’t name in this very brief

list: thank you all.

GT

iv

PREFACE

This thesis is the result of a part of the research activity that has been conducted for the

“Crowd Sourced Formal Verification” project, funded by the Defense Advanced Research

Projects Agency (DARPA) and carried out by University of Illinois at Chicago, Bell Labs,

University of California, Los Angeles and other research groups, In which I was involved

as a research assistant.

The project aims at developing a system for proving formal correctness of computer

programs. The system would be capable of enhancing automated verifier tools capabilities

with human intellectual skills at solving problems, (e.g., puzzle games). This project takes

a radically different approach to producing correct software and offers interesting new

challenges to formal methods and compiler theory. In particular, the way the users will

interact with the program is by playing a puzzle level of a video game. Each level is a

translation of the properties of the program to be verified. The result of the crowd-sourced

verification will be a set of formally verified properties about a program or a piece of code

that an automated verifier alone could hardly infer or prove. The annotations that are

sought ensure correctness over critical parts from a security point of view, such as proving

buffer overflows or integer overflows. A list of the most common security holes can be

found in the Mitre 25 list drawn by CWE1. These annotations are then inserted within the

1http://cwe.mitre.org/top25/

v

PREFACE (Continued)

program and used by a compiler trained to handle this additional information and exploit

it for eventually optimizing the execution of the program and to ensure its correctness.

My personal research activity falls into the project as part of the research to build a

compiler, such as the one described above. CSFV is a 3-year long-term project, and the

final results are yet to be attained.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Problem definition . 5
1.1.1 How to augment the scope and the quality of the optimization 5
1.1.2 How to propagate assertions from end to end of an optimiza-

tion pass . 5
1.1.3 How to check the correctness of the transformation and the

propagation . 6
1.2 Proposed solution . 7

2 THE TRANSFORMATION WITNESS . 10
2.1 Introduction . 10
2.2 Definitions . 11
2.3 Simulation relations . 15
2.4 Invariant propagation . 20
2.5 Generalization . 21

3 WITNESS FOR COMMON OPTIMIZATIONS 23
3.1 Constant Propagation . 24
3.2 Dead Code Elimination . 25
3.3 Reordering Transformations . 28
3.4 Loop Invariant code motion . 28

4 DESIGN AND IMPLEMENTATION . 31
4.1 LLVM . 31
4.2 SMT solver . 35
4.2.1 Z3 . 35
4.3 Overview of transformation passes 36
4.4 ACSL Passes . 37
4.4.1 Variable Renaming . 43
4.4.2 Constant Propagation . 45
4.4.3 Dead Code Elimination and Control Flow Graph Compression 46
4.4.4 Loop Invariant Code Motion . 48

5 RESULTS, CONCLUSIONS AND FUTURE WORKS 53
5.1 Results . 53
5.1.1 Times . 53
5.1.2 Issues . 55

vii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

5.2 Conclusions and Related Works 55
5.3 Future Works . 57

APPENDIX . 59

CITED LITERATURE . 61

VITA . 63

viii

LIST OF TABLES

TABLE PAGE

I RESULT TIMES FOR CONSTANT PROPAGATION, DCE AND CFGC 54
II RESULT TIMES FOR LOOP INVARIANT CODE MOTION 54

ix

LIST OF FIGURES

FIGURE PAGE

1 McCarty’s 91 function . 2
2 McCarty’s 91 function . 3
3 Overall architecture . 7
4 Witness-generating optimization pass 8
5 Example of graph G . 12
6 Stuttering Simulation . 16
7 Stuttering Simulation with ranking . 17
8 Relation hierarchy . 19
9 Constant propagation example . 24
10 Dead code elimination example . 26
11 Control-Flow-Graph compression example 27
12 Loop Invariant Code Motion example 29
13 ACSL pass workflow . 40
14 Constant propagation example . 46
15 Dead Code Elimination example . 47
16 CFG of a generic Loop . 49
17 LOOP INVARIANT CODE MOTION EXAMPLE 50

x

LIST OF ABBREVIATIONS

ACSL ANSI/ISO C Specification Langage. x

CPU Central Processing Unit. x

FOL First Order Logic. x

IR Intermediate Representation. x

LLVM Low-Level Virtual Machine. x

SAT Satisfiability (theories). x

SMT Satisfiability Modulo Theory. x

SSA Single Static Assignment. x

TV Translation Validation. x

xi

SUMMARY

This work has been part of the ongoing results in a research project on compilers,

formal methods and computer security to build a “ defensive optimizer compiler”.

Modern compilers contain several complex, highly specified, effective optimizations

that aim to transform the input program into an equivalent more efficient one. Efficiency

can be measured in terms of speed of execution, allocated memory space or energy con-

sumption of the machine running the program. These optimizations are based on very

developed heuristics that can obtain very significant results on the output program. How-

ever, these algorithms are not able to get some properties that could lead to further opti-

mizations. Properties that, for example, need a formal verification prover to be caught, or

that can be inserted externally, for example by the programmer himself.

This thesis presents a compiler framework that allows to build optimizations that are

capable to exploit this additional information, so as to permit further optimization, and

that will be formally verified for correctness. The framework is built upon Low Level Vir-

tual Machine (LLVM) [1], a compiler infrastructure characterized by high modularity and

reusability. First an overview of the problem is given, then a theoretical solution is devel-

oped and explained. It is seen that this solution can have different implementations on

the LLVM infrastructure. To enforce the correctness of these transformations and provide

a method to carry the properties through different steps of the optimization, a witness is

developed for every transformation. The witness can be checked independently to estab-

xii

SUMMARY (Continued)

lish the correctness of the transformation and, if correct, helps transfer invariants from

the source to the target program. The thesis presents implemented witnesses for some

common optimizations.

xiii

AMPIO ESTRATTO

Il lavoro presentato in questa tesi è frutto di un progetto di ricerca nell’ambito di com-

pilatori, metodi formali e computer security che ha come obiettivo la definizione ed im-

plementatazione di un “defensive optimizer compiler”, ovvero un compilatore in grado di

attuare ottimizzazioni sul codice sorgente che siano formalmente sicure.

Oggigiorno, i moderni compilatori contengono molteplici complesse e altamanete speci-

fiche ottimizzazioni che concorrono a trasformare un codice sorgente in input in un codice

più efficiente e allo stesso tempo equivalente dal punto di vista funzionale. L’efficienza

puo essere misurata in termini di velocità di esecuzione, spazio di memoria allocato o

consumo energtico della macchina che esegue il programma. Tuttavia questi algoritmi

contengono delle euristiche che non sempre sono in grado di estrarre invarianti e propri-

età che potrebbero potenzialmente portare a ulteriori ottimizzazioni. Proprietà che, per

esempio, necessitano di algoritmi di verifica formale per essere catturate, che possono

essere inserite esternalmente, per esempio dal programmatore stesso tramite annotazioni

sul codice. Inoltre, in domini critici è fondamentale che la trasformazione effettuata dal

compilatore non modifichi il comportamento del programma per ogni possibile input.

Questa tesi presenta un framework che permette di costruire ottimizzazioni che sono

capaci di sfruttare queste annotazioni per ottimizzare ulteriormente il codice e assicurare

che dette trasformazioni siano formalmente corrette. Il framework è e basato sulla Low

xiv

AMPIO ESTRATTO (Continued)

Level Virtual Machine (LLVM) [1], un compilatore-infrastruttura caratterizzato da un alto

livello di modularità e riusabilità.

Prima di tutto, viene fornita un’introduzione al problema e un approccio teorico per la

soluzione. Viene mostrato come la soluzione può avere differenti design e implementazioni

usando l’infrastruttura offerta da LLVM. Per dimostrare la correttezza di queste trasfor-

mazioni e fornire un metodo per trasportare gli invarianti e le proprietà attraverso i dif-

ferenti passi di ottimizzazione, un “witness”, o testimone, viene generato per ogni trasfor-

mazione. Il witness puo’ essere verificato indipendentemente da un sistema di risoluzione

teoremi per stabilire la correttezza della trasformazione e, se corretta, aiutare a trasferire

gli invarianti dal codice di input a quello di output della trasformazione. La tesi presenta

l’implementazione dello witness per alcune famose e comuni trasformazioni.

xv

CHAPTER 1

INTRODUCTION

Modern compilers contain several complex, highly specified, effective optimizations

that aim to transform the input program into an equivalent more efficient one. The effi-

ciency is usually evaluated in terms of gains in execution speed of the optimized application

in respect to the non optimized version, but also other measures (e.g. spatial efficiency)

can be used. Famous compilers, such as LLVM and GCC, implement more than 60 differ-

ent optimization algorithms. The importance of deep and capable optimizations in modern

computer science is vital, as modern applications become more and more complex, and

resources, such as the ones in mobile devices, are often very limited. Furthermore, The

implementation of effective optimizations is fostered by the fact that modern architectures

stress out parallelism execution of the code. Because of these reasons, improving the

optimization processes is a key task in compiling performing and responsive applications.

That being said, if an optimization process is not correct, the output program may have

a semantically different behavior from the input program. This of course is a disruptive

drawback for every application, especially for applications that operate in critical contexts

(military, aerospace, banking, etc.). In these contexts, the correctness of the optimizers

is more important than their effectiveness. Hence is very important to use well tested

optimizers that we are confident they produce correct code.

1

2

Enhancing both the scope and the quality of the optimizations is a difficult task. Basi-

cally, an optimization on some source program A is possible if a property or invariant is

found such that permits to modify the program in a target program B equivalent to A (i.e.

for each possible input, the output produced by A is equal to the output produced by B)

wherein the execution time of B is lesser than the execution time of A, or, more generally,

is more efficient. These properties can be fairly trivial or more difficult to be discovered.

For example the property “variable x is never used” allows the elimination of the declara-

tion and the definition of x. In compiler theory there exist several optimization passes that

build def-use chains to find these kind of properties. The pass subsequently exploits these

invariants to eliminate useless code and speed-up the execution of the target program.

Another example shows that some properties can be more difficult to discover automat-

ically. Consider the code in Figure 1.

mc91(int n)
{
if (n > 100) {
return n - 10;

} else {
return mc91(mc91(n+11));

}
}

Figure 1: McCarty’s 91 function

3

mc91opt(int n)
{
if (n > 100) {
return n - 10;

} else {
return 91;

}
}

Figure 2: McCarty’s 91 function

This famous function has the following property:

mc91(n) =


n− 10, if n > 100

91, otherwise

Hence, the function can be transformed in the more efficient version in Figure 2.

However, the transformation from mc91 to mc91opt requires finding a property that is

difficult to obtain from the code of the function. Running LLVM and GCC optimizers don’t

lead to the removal of the recursion.

This example demonstrated that the scope of the optimizations can still be enhanced

by finding additional information and properties about the code. This corresponds to the

intuitive principle that if the compiler “gets to know” more about the input program, it can

obtain better optimized code. In order for the compiler to know more, one can think of two

methods:

4

• Refine further the compiler analysis

• Convey additional information from external sources

Compiler theory focused on the first solution. Although this approach delivered very

good result, it’s far from finding all the interesting properties of a program (where “inter-

esting” means properties that can lead to an optimization).

Consider the case where some properties are computed by an external static analyzer

(e.g. an analyzer combined with an SMT solver) or given by a human (for example, the pro-

grammer writing the contract of a function). The aim of the thesis is to build a framework

that can exploit this additional information so as to broaden the scope of the optimization.

Since the optimization process is composed of different transformation passes, it is

necessary that the additional information can be used by any of the transformations, and

furthermore that the information is still correct after the previous transformations. This

is not a trivial problem, since some optimization passes may modify the structure and

the control flow of the source program, thus invalidating the invariants. In order to be

propagated throughout a transformation pass, an invariant might be modified to preserve

its validity. To solve this problem the thesis describes the concept of witness generator to

check the validity of the transformation and to carry the invariants from the source to the

target program. The generated witness can then be checked independently to prove the

correctness of the output; having an independently verifiable proof of the correctness of a

transformation can be of great advantage in highly critical contexts and applications.

5

1.1 Problem definition

The thesis aims to solve three different, yet intertwined, problems. More precisely, the

problems are in a consequential order, i.e. by solving the first one the second arises, and

by solving the second one the third arises:

a) How to augment the scope and the quality of the optimization?

b) How to propagate assertions from end to end of an optimization pass?

c) How to check the correctness of the transformation and the propagation?

1.1.1 How to augment the scope and the quality of the optimization

As stated before, this work tries to solve this problem by conveying additional informa-

tion from external sources. Thus the problem can be reformulated in another way: “how

to let the compiler understand additional information to be used to augment the scope and

the quality of the optimization?” If we think, for example, hand-inserted annotations within

the code, like JML specification for Java, it could be useful for the optimization, if these

assertions are proven correct, to use them as additional information. The annotations are

usually written in a first order logic-like language.

1.1.2 How to propagate assertions from end to end of an optimization pass

Let Psource be a program to be optimized and Ptarget the output program of the opti-

mization pass, which is equivalent to Ptarget. Let Isource be a set of properties of Psource.

The problem is to find a set of properties Itarget valid in Ptarget that are equivalent in some

way to Isource for Psource. A traditional transformation pass can be formulated as a function

6

T : P → P , where P is the set of all programs, such that Ptarget = T (Psource). To solve the

considered problem, the transformation definition is modified in this way: a transformation

W is a function W : (P × I) → (P × I), where I is the set of all sets of properties about

programs, such that (Ptarget, Itarget) = T (Psource, Isource).

1.1.3 How to check the correctness of the transformation and the propagation

The formulation of problem in Section 1.1.2 leads to the problem on how to formulate

an automatic checker that verify that, given that the properties about the source program

are correct:

a) The target program is equivalent to the source program

b) The soundness and correctness of the properties is preserved in the target program

For point a) different approaches are described in literature of formal methods and

compilers. Naively proving correctness of a transformation over all legal inputs, as con-

ducted in [2], is obviously infeasible most of the times. An alternative way of certifying each

instance is translation validation ([3], [4]), which employs heuristics to guess a witness for

every instance of a sequence of unknown transformations. The use of heuristics, however,

limits its applicability. Besides the drawbacks described above, these two solutions don’t

offer any method to deal with point b).

Such joint problems don’t find a solution in the current approaches, hence the need of

a new approach arises.

7

Psource

Isource

Pass W0 Pass W1 Pass W2

P0, I0 P1, I1 Ptarget, Itarget

Figure 3: Overall architecture

1.2 Proposed solution

This thesis presents a framework to solve the problems stated above. The architecture

is designed around that of a standard optimizing compiler, which consists of a sequence of

optimization passes. Every pass takes as input a program, conducts its own analysis of the

program (possibly making use of information gathered in earlier passes), and produces a

program as output, optimized according to some metric (computation time, space, energy,

etc.).

We build upon this basic architecture by augmenting each analysis pass so that it cor-

rectly transmits the information obtained initially from annotations to all passes. As each

pass may arbitrarily transform its input program, it is necessary to transform the informa-

tion as well in order to retain its usefulness for subsequent passes (Figure 3).

To obtain this result, the existing optimizations are modified in two ways. First, trans-

formation passes are built to understand the annotations passed externally and use them

to optimize the code. The annotation are written in a FOL-like language that the optimizer

8

can use. A Witness Generator is built for every optimization; the witness Generator gener-

ates a witness that can be proved independently to check the validity of the transformation

(Figure 4).

The approach for generating the witness is to set a stuttering simulation relation be-

tween source and target programs. Stuttering simulation, as defined in [5], in this context

comes more useful than regular strict simulation, as the target program may have fewer

instructions than the source. It is shown [3] that establishing a stuttering simulation re-

lation from target to source is a sound and complete method for proving correctness, as

opposed to strict simulation.

The framework is built upon the Low-Level Virtual Machine compiler (LLVM). The

choice is driven by the fact that LLVM represent a state of the art, modern, modular com-

piler, with a well maintained and documented codebase. LLVM optimization passes work

on an intermediate language called LLVM Intermediate Representation (IR), as presented

in [6]. The IR is a Static Single Assignment (SSA) based representation that provides type

Transformation
Pass

Witness
Generator

Psource Ptarget

Isource Itarget

Figure 4: Witness-generating optimization pass

9

safety, low-level operations, flexibility, and the capability of representing “all” high-level

languages cleanly. It is the common code representation used throughout all phases of the

LLVM compilation strategy.

This work is structured as follows. Chapter 2 introduces the concepts of witness and

invariant propagation. They will be analyzed from a formal point of view, and some key

properties of the witness are demonstrated. It is described that stuttering simulation is

a sound and complete witness relation for generic code transformation, and that the very

witness relation can be used to propagate the invariants. In Chapter 3 the theoretical con-

cepts shown previously are applied to some common optimizations in order to exemplify

the critical points. For every optimization presented, a corresponding witness is described.

In Chapter 4 the design of the actual framework is presented and the key details of the

implementations are described. It also describes how the transformations presented in

the previous chapter are implemented. Chapter 5 describes the results obtained by the

framework and the goals that will be pursued in the future, as well as provide with a con-

clusive overview of the work, comparing it to some related researches, and it introduces

the limitation of the current framework, and how it can be extended.

CHAPTER 2

THE TRANSFORMATION WITNESS

2.1 Introduction

To carry the annotations from the source program to the target, a witness relation is

built for every transformation. The generated witness is also used to check the correct-

ness of the transformation, since it can be verified independently from the transformation.

This makes the witness a very convenient and powerful abstraction, because proving its

correctness is simpler than proving the formal correctness of a transformation, that is gen-

erally very complex. In a modern compiler, for example, even the simplest transformation

can be made up of thousands of line of code. Witnessing a transformation is a new idea in

the field of formal methods and compilers, and as such, it needs a formal definition that can

be used in the theorems and hypotheses about its properties. From a theoretical point of

view, the layout of witness generation is simple, yet, defining and proving its completeness

requires some non-trivial demonstrations. In this chapter the concept of stuttering simu-

lation is also introduced, and it is shown that establishing a stuttering simulation relation

from target to source is a sound and complete method for proving correctness.

The theory that is being presented inside this chapter was developed by Zuck and

Namjoshi, in the paper called “Witnessing Program Transformations” [7]. A briefer ap-

proach is given in [8], where the results of this work are summarized.

10

11

2.2 Definitions

The definitions presented in this section are basically the one used in [7], with some

minor changes to fit the implementation.

Definition 1 Program

A program is described as a tuple (V,G, T, I), where

• V is a finite set of (typed) variables

• G is a finite directed graph (it can be, for example, the control-flow graph)

• T is a function specifying, for every edge (i, j) ∈ G, a symbolic transition condition

denoted Ti,j(V, V
′). Primed variables are used to denote the value of the program

variables at the program state after the transition

• I(V) is an initial condition for the program

Every transition relates current and next-state values of the variables. G has two dis-

tinguished nodes, S and F. The S node has no incoming edges, and the F node has no

outgoing edges, meaning that from F no transition can be triggered (see Figure 5). In this

work we assume that every program P is deadlock-free, meaning that only the node F has

no enabled outgoing transition.

A state of a program is given by a pair (l, v), where l is a node of G and v is type-

consistent assignment of values to each variable in V . A state is defined as initial if and

only if l = S ∧ I(v) holds. A state is final if and only if l = F.

A transition system can be defined w.r.t. the program definition as follows.

12

S

2

43

5 F

x=1
y=1

x=0
y=2

s

f

State (S, s)

State (F, f)

Figure 5: Example of graph G. A pair (l, v) is a state. State (S, s) is initial, State (F, f) is
final

Definition 2 Transition System

A transition system T is given by a tuple (S, I,R) where:

• S is a set of states,

• I is the subset of initial states (i.e. inputs),

• R ⊆ S × S is a transition relation

13

A program P (V,G, T, I) (as definied in Definition 1) induces the transition system where

the states are interpretations of V , the initial states are the those in I, and the relation R

is that defined symbolically by T . Using the definition of transition system instead of the

program in the simulation definition will simplify them, without losing generality.

Moreover, a program computation of lenght n is a sequence of states s0, s1, . . . sn where

s0 is initial and for each pair si = (li, vi), si+1 = (li+1, vi+1) of consecutive states on the

sequence, (li, li + 1) is an edge in G, and the transition condition Ti,i+1(vi, vi + 1) holds.

A computation can have infinite length. A computation is terminating if sn = (F, vn). A

computation is maximal when no transition can be enabled from the last state, i.e., when

it’s terminating or infinite.

Definition 3 State Matching

Let T , S be two programs and TT (ST , IT , RT),TS(SS , IS , RS) the corresponding transition

relations. States t ∈ ST and s ∈ SS match, denoted t ' s, if t and s assign the same value

to every variable v ∈ V ′ = VS ∩ VT .

Definition 4 Path Matching

For Programs T and S a maximal computation τ of program T is matched by a maximal

computation of σ of program S if the following conditions all hold:

• The starting state of T and S match

• if (FT , v) ∈ τ for some variable assignment v, then for some w, (FS , w) ∈ σ

• if σ has no final state, neither does τ

14

Definition 5 Implementation

Given two programs, T and S, T implements S if for every maximal computation τ of T ,

there is a maximal computation σ of S that matches it.

If T implements S, then every terminating computation of T has a corresponding ter-

minating computation of S starting from a matching initial state such that the final states

(if any) also match. Hence, the input-output relation of T is included in that of S, w.r.t.

the common variables. Moreover, if T has a non-terminating computation from some ini-

tial state, non-termination is also possible for S from a matching state. This disallows, for

example, pathological “implementations” where T has no terminating computations, so

that the input-output relation of T (the empty set) is trivially contained in the input-output

relation of S.

Definition 6 Transformation Function

A transformation is a partial function on the set of programs. A transformation δ is correct

if for every program S in its domain, T = δ(S) implements S.

In practical terms, a transformation is partial because it needs not to apply to all pro-

grams. Indeed, much of the effort in compiler optimization is on the analysis required to

determine whether a particular transformation can be applied. This is a very important

point, that enforces the idea that, from a theoretical point of view, verifying the witness is

much easier than verifying the whole transformation. It should be remembered also that

the witnessing approach doesn’t try to verify the correctness of the transformation over

15

all legal inputs. As translation validation approach [9], the witness aims at verifying that an

instance of transformation produced an output that implements the input.

2.3 Simulation relations

Now we introduce two different kind of transition relations: Step and Stuttering Simu-

lation. Both of them can be used as witness format, since, as it will be pointed out below,

both can guarantee that the target program is a correct implementation of the source. The

basic difference between the two relations is in terms of the kind of transformation that

can be witnessed. A proof of the properties of the simulation is sketched but not formally

expressed. The complete demonstrations are laid out in [7].

Definition 7 Step Simulation

Given the transition systems T and S, a relation X ⊆ ST × SS is a step simulation if:

• the domain of X includes all initial states of T

• for any (t, s) ∈ X, t and s satisfy the same propositions and for every t′ such that

t, t′ ∈ RT , there is a s′ such that (s, s′) ∈ RS and (t′, s′) ∈ X.

It is shown in [7] that step simulation guarantees that the target program is a correct

implementation of the source:

Theorem 1 Step Soundness [7]

For programs T and S, T implements S if there is a step simulation X(SS × ST) from the

states of every T -computation to the states of S-computation such that:

• for every initial state sT of T there is an initial state sS such that (sT , sS) ∈ X

16

• for every final state tT of T , if (tT , tS) ∈ X then tS is a final state of S

Thus, checking the single-transition conditions of step simulation, together with the

two additional conditions of Theorem 1, is enough to show that T implements S. These

checks can be encoded as correctness questions and resolved with an automatic decision

procedure.

However, it is not always possible to draw a transition relation between a correctly

implemented target and its source program. In fact, if a step simulation relation can be

defined, for every step taken in the target transition, there is a corresponding step in

the source transition. This obviously requires the two transitions to have the same exact

length.

Stuttering Simulation Relation, the next witness format that is described, relaxes this

exact, 1-1 matching by permitting τ and σ to be matched in segments, as illustrated in

Figure 6.

τ

σ

Figure 6: Stuttering Simulation

17

It has been demonstrated [5] that the segments can be replaced by single steps, adding

an additional dimension to the stuttering simulation relation. This is done by adding a

ranking function Rank : (T, S) → N which decreases strictly at each stuttering step. In

this work a simpler form of stuttering simulation is necessary.

t t′

s s′

X X

(a) Case 1

t t′

s s′

X
X

V

≺

(b) Case 2

t t′

s

X
X

≺

(c) Case 3

Figure 7: Stuttering Simulation with ranking

Definition 8 Stuttering Simulation with Ranking function

Given Transition systems B and A, a relation X ⊆ ST × SS augmented with a partial

ranking function, Rank : (ST , SS) → N, over a well-founded domain (N,≺), is a stuttering

simulation if:

• the domain of X includes all initial states of T and

18

• for any (t, s) ∈ X, t and s satisfy the same propositions and for every t′ such that

(t, t′) ∈ RT , one of the following holds:

– There is s′ such that (s, s′) ∈ RS ∧ (t′, s′) ∈ X (Figure 7a), or

– There is s′ such that (s, s′) ∈ RS ∧ (t, s′) ∈ X ∧ rank(t, s′) ≺ rank(t, s) (stuttering

on A, Figure 7b), or

– (t′, s) ∈ X and rank (t′, s) ≺ (t, s) (stuttering on B, Figure 7c).

A graphical explanation of this definition is given in Figure 7. It is immediate to ob-

serve how step simulation is a specialization of stuttering simulation. If we define three

sets REL,ST UT ,ST EP as the set of all general relations, step simulation relations and

stuttering simulation relations respectively, we have ST EP ⊂ ST UT ⊂ REL (Figure 8).

This result will help to clarify some considerations. While REL can define every transfor-

mation relation from program A to B, not all are correct (i.e, B = X(A) implements A). On

the other hand, this is true for all the step simulations (Theorem 1), yet, as already stated

before, step simulation is too restrictive in terms of transformations that can be simulated.

In fact, it can be applied only when the the transformation doesn’t rearrange, eliminate or

add instructions. Therefore, stuttering simulation is the best candidate to accommodate all

kind of transformations, as it is, we’ll observe, a sound and complete simulation. It must

be considered also that the definition of stuttering simulation adds an additional dimen-

sion to the relation, that is the one defined by the ranking function that accompanies the

stuttering simulation to guarantee that the lengths of the matched segment are finite. The

19

figure doesn’t take into account the ranking function, so it is a simplification of the actual

property of stuttering simulation. In fact, as it is shown in [7], without the ranking function

it wouldn’t be possible to demonstrate the completeness of the stuttering simulation.

REL

ST UT

ST EP

Figure 8: Relation hierarchy

Theorem 2 Soundness [7]

Let X be a stuttering simulation relating states of a program T to those of program S.

Then T is a correct implementation of S when the following conditions all hold:

• For every initial state s of S, there is an initial state t of T such that (t, s) ∈ X and

t ' s.

20

• Final states of S or T are X-related to only final states of the other program. More-

over, if t and s are X-related final states of T and S, then t ' s.

The conditions expressed in the soundness theorem gives the definition of Witness

Relation:

Definition 9 Witness

Let S and T be programs related by a stuttering simulation relation W from the state space

of T to that of S. W is a Witness relation if the soundness conditions hold:

• For every initial state u of T , there is an initial state v of S such that (u, v) ∈ W and

u ' v.

• Final states of S or T are W -related to only final states of the other program. More-

over, if u and v are W -related final states of T and S, then u ' v.

In other words, that means that the stuttering simulation is a sound witness.

Based on Manolios [10], Namjoshi and Zuck proved that stuttering simulation is sound

and complete.

2.4 Invariant propagation

A relation that satisfies the Witness format can also be used to “propagate” the asser-

tions from end to end of the transformation pass, making the additional transformation to

be used also in different part of the transformation process, rather than just by the first

one. This result of this property is what the second problem pointed out in the introductory

21

section. Propagation informally means that if an assertion θ is true for a subset of source

states S′
S ∈ SS , the propagated assertion θ′ must be true for all and only the target states

S′
T ∈ ST where every state t ∈ S′

T is related to some state s ∈ S′
S by the witness relation

W . Now a more formal description will be provided.

First we define the concept of pre-image of θ under W , denoted (〈W 〉θ), as the set

{(m, t)|(∈ l, s : ((m, t), (l, s)) ∈W ∧ θ(l, s)}. The following theorem holds:

Theorem 3 Invariant Propagation [7]

Let W be a stuttering simulation witness for a transformation from program T to program

S. If θ is an invariant for S, the set 〈W 〉θ is an invariant for T . Moreover, if θ is inductive,

so is 〈W 〉θ.

The sketch of the proof for the correctness of 〈W 〉θ as invariant at Target is as follows.

Let θ be an invariant holding for every state of a program S. For every valid computation

τ of program T , there must exist, from the definition of witness relation, a computation σ

of program S such that ∀t ∈ τ,∃s ∈ σ,W (t, s). It is true also that ∀s ∈ σ, s ∈ θ. The last

formula holds because σ is a computation of S (where θ holds). Combining the last two

formulas ensues that
⋃
t∈τ
∈ 〈W 〉θ. Hence, 〈W 〉θ is a correct invariant for program T .

2.5 Generalization

The transition relation can be generalized and adjusted to the concept of control-flow

graph (CFG) of a program P . In this generalization, the states of a program refers only to

the beginning of a basic block of the graph, and the transition relation maps every node

of the CFG of the program to its successors. Hence, every transition can cover more than

22

one instruction. The generalization is useful for two different reasons. This restricts the

cases where step simulation is not sufficient and stuttering simulation is necessary,

Consider the example of Dead Code Elimination. As it will be shown in the following

chapter, DCE transformation can be witnessed by a stuttering simulation relation. How-

ever, if we generalize the transition relation to work over the basic blocks rather than

single instructions, step simulation is sufficient to prove the correctness of this transforma-

tion. This is due to the fact that Dead code elimination doesn’t change the CFG structure.

Hence, it follows that stuttering simulation is usually necessary when the transformation

reorders, eliminates, or add nodes of the Control Flow Graph.

The second reason is that many compilers, such as LLVM, build the CFG of the func-

tion as a preliminary step before every optimization pass. This implies that building the

generalized relations over the existing CFG is a more efficient approach than building

instruction-wise transitions.

CHAPTER 3

WITNESS FOR COMMON OPTIMIZATIONS

In this Chapter the witnesses for several standard optimizations are defined. These

optimizations are chosen for their commonality and in order to illustrate features of the

witness generation. We consider constant propagation, dead code elimination, control-flow

graph compression and loop optimizations.

Some transformations can be witnessed with a simple step simulation, however other

transformations require the simulation to be stuttering, as the transformation can result

in the target being shorter or longer than the source. As a side result of the examples, it

is shown that the analysis required to check if a transformation can be triggered is more

difficult than the witness generation procedure, showing that witness generation can be, in

theory, an efficient transformation checker. Witness generation, essentially, makes explicit

the implicit invariants gathered during the analysis. These examples confirm also the

concept that, from a theoretical point of view, a witness can be generated for every kind of

optimization, even though the complexity of the optimization will impact on the complexity

of the witness. The examples are taken from [7], and modified to highlight the details that

this chapter wants to stress out.

The actual implementation for some of these transformations will be exposed in Chap-

ter 4. Therefore all the details concerning the implementation will be put aside, in order

to focus on the key concepts both of witness generation and invariant propagation.

23

24

L1: x = 1+2;
L2: y = x+x;
L3: y = y+1;
L4: x = y;

(a) Source

L1: x = 3;
L2: y = 6;
L3: y = 7;
L4: x = 7;

(b) Target

Figure 9: Constant propagation example

3.1 Constant Propagation

In the Constant Propagation pass, the analysis checks if any variable has a static as-

signed constant value. In the example of Figure 9 all the values are constant-folded up.

The witness generation for constant propagation basically draws from the invariants

generated during the analysis. The invariant, called constant(l), simply describes the set

of variables that have a statically computed constant value at location l. For example, the

invariant at L3 is x = 3 ∧ y = 6.

The witness relation is expressed in a symbolic form. The general shape of the relation

for constant propagation is the following: a target state (m, t) is related to a source state

(l, s) if and only if:

• labels are identical (i.e., m = l),

• variables have identical values (i.e., for every variable x, s(x) = t(x)), and

• variables in the source system have values given by their invariant (i.e., constants(l)

holds at s)

25

Where for every variable x in the source, x̄ indicates its corresponding version in the

target. For example, in symbolic form, the relation includes the clause

@L3 ∧@L̄3 ∧ (x = x̄) ∧ (y = ȳ) ∧ (z = z̄) ∧ x = 3 ∧ y = 6

It’s necessary that the invariants hold at the source location, because this establishes

the correspondence between target and source. For instance, the transition from L2 to

L3 is matched by the transition from L̄2 to L̄3 only because the value of x is defined as

constant in constant(L2)

3.2 Dead Code Elimination

Dead code elimination analyzes the code, building use-define chains for every assign-

ment instruction, and marks all those instructions for which use set is empty. This means

that the assigned value is not being used in any of the program computation and removing

it doesn’t change the semantics of the code. In this context, dead code elimination is split

in two separate phases, the second being a restrictd instance of control flow graph com-

pression. If the transition from location m to location n assigns a value to a variable v that

is dead (i.e., not live) at n, this assignment may be replaced with a skip statement. This is

illustrated in Figure 10 which performs dead-code detection for the output of the constant

propagation analysis. The result of the liveness analysis is a set, denoted live(l), for each

location l of the source program.

26

L1: x = 3;
L2: y = 6;
L3: y = 7;
L4: x = 7;

(a) Source

L1: x = skip;
L2: y = skip;
L3: y = 7;
L4: x = 7;

(b) Target

Figure 10: Dead code elimination example

Here is described a general procedure for generating a witness for DCE. A target state

(m, t) is related to a source state (l, s) if and only if:

• labels are identical (i.e., m = l), and

• every variable that is live at l has the same value as the corresponding variable at m.

I.e., for every variable x such that x ∈ live(l) : s(x) = t(x).

For example, in symbolic form, the relation includes the clause

@L̄4 ∧@L4 ∧ (y = ȳ)

as only the variable x is live at L4. For any correct dead code elimination transformation,

the relation defined above is a strong simulation witness.

Continuing the example from the result of dead code elimination, the control flow

graph has unnecessary skip statements. These may be removed using the rewrite rule

27

L1: x = skip;
L2: y = skip;
L3: y = 7;
L4: x = 7;

(a) Source

L3: y = 7;
L4: x = 7;

(b) Target

Figure 11: Control-Flow-Graph compression example

skip;S → S, for any statement S. This compresses the control flow graph. Other instances

of compression may occur in the following situations:

• a sequence such as goto L1; L1:S is replaced with L1:S, or

• the sequence S1; if (C) skip else skip; S2 is replaced with S1;S2.

In all these cases the computation in the target is shorter than the one in the source,

The general witness definition relates a target state (m, t) to a source state (l, s) if s = t

and either l = m or l lies on a linear chain of skip statements from m in the source graph.

For a correct control-flow graph compression, the defined relation is a stuttering sim-

ulation witness. Moreover, as a result of the closure property for stuttering simulation,

it is possible to take the witnesses for constant propagation W1, dead-code elimination

W2, and control-flow graph compression W3 and compose them to form a single witness

W = W1;W2;W3for the transformation from the program in Figure 9a to the program in

Figure 11b.

28

3.3 Reordering Transformations

A reordering transformation is a program transformation that changes the order of ex-

ecution of the code, without adding or deleting any statements. It preserves a dependence

if it preserves the relative execution order of the source and target of that dependence, and

thus preserves the semantical meaning of the program. Reordering transformations cover

many loop optimizations, including fusion, distribution, interchange, tiling, and reordering

of statements within a loop body.

A generic loop can be described, as introduced in [3], by the statement for i ∈ I by ≺I

do B(i) where i is the loop induction variable and I is the set of the values assumed by i

through the different iterations of the loop. The set I can typically be characterized by a set

of linear inequalities. While in [3] “structure preserving” and “Reordering” transformation

passes are treated differently, here we follow [7] and let the witness relation to be defined

so that it allows for uniform treatment of the two types of transformations.

3.4 Loop Invariant code motion

Loop invariant code motion (also referred to as “hoisting”) moves some instructions

from the inner to the outer body of a loop without affecting the semantics of the program.

Usually a reaching definitions analysis is used to detect whether a statement or expression

is loop invariant. For example, if all reaching definitions for the operands of some simple

assignment are outside of the loop, the assignment can be moved out of the loop. Moreover,

in order to move instructions outside the loop, LICM analysis must guarantee that there is

at least one iteration for every different computation case of the program. See for example

29

L0: i = 1;
L1: while(i<100){
L2: c = 3;
L3: i = i + 1;

}

(a) Source

L0: i = 1;
L2: c = 3;
L1: while(i<100){
L3: i = i + 1;

}

(b) Target

Figure 12: Loop Invariant Code Motion example

Figure 12 which is a simplified version of an example from [11]. Since the loop is going to

be executed at least once, the assignments to a and c, which are not dependent on any

statement in the loop body, can be moved outside of the loop.

The transformation analyzer will detect the lack of dependencies of the statement in

L2 on the other statements in the body, together with the fact that the loop is guaranteed

to be executed at least once. The witness is generated in the following fashion. The

simulation maps the first statements of the target program (In this case L0) and the first

iteration of the target loop into the first iteration of the source loop. This mapping of course

stutters, as there are more instructions in the target program segment than in the source

program segment. Thus, the corresponding symbolic (stuttering simulation) will include

the following clause: L3 ∧ L̄3 ∧ i = ī ∧ c = c̄ ∧ c = 3. From the second iteration onwards,

when i > 1, the two loops are linked one by one in a stuttering simulation (since one target

instruction in the target loop is mapped over two instructions in the source loop).

30

There is also a more general Loop invariant code motion that combines “hoisting”

(where the instructions are moved before the loop body, as seen above) and “sinking”

(where the instructions are moved after the loop body). For sinking, it must be checked

that the moved instruction is not used inside the loop and that the loop is executed at least

once. Given that, the witness generation follows the one described for the hoisting loop

invariant code motion.

CHAPTER 4

DESIGN AND IMPLEMENTATION

In this chapter we describe the implementation of the theoretic transformations de-

scribed in Chapter 2: witness generation, witness checking and invariant propagation.

The source code is available as a git repository1. Basically it is a fork from the original

LLVM repository where the additional passes and structures are being added. Description

on how to run the program and basic examples are given in Appendix A.

We introduce an overview of the technologies being used, particularly LLVM and Z3.

These are open-source projects, the source code is downloadable from their respective

websites2 3.

4.1 LLVM

LLVM (Low-Level virtual machine) is a compiler that provides a modern source- and

target-independent optimizer, along with code generation support for many popular CPUs.

These libraries are built around a well specified code representation, known as the LLVM

intermediate representation ("LLVM IR"). The LLVM Core libraries are well documented,

1https://bitbucket.org/itajaja/llvm-csfv

2LLVM website: llvm.org

3Z3 website: z3.codeplex.com

31

https://bitbucket.org/itajaja/llvm-csfv
llvm.org
z3.codeplex.com

32

they present a very modular and understandable code and offer various tools to help the

programmer in using them.

A fundamental design feature of LLVM is the inclusion of a language-independent type

system, namely LLVM Intermediate Representation (IR). The LLVM representation aims

to be light-weight and low-level, while being expressive, typed, and extensible at the same

time. It aims to be a “universal IR”, by being at a low enough level that high-level ideas may

be cleanly mapped to it. By providing type information, LLVM can be used as the target of

optimizations: for example, through pointer analysis, it can be proven that a C automatic

variable is never accessed outside of the current function, allowing it to be promoted to a

simple SSA value instead of a memory location.

The LLVM IR can be represented in three equivalent forms:

• As in-memory data structure

• As Human readable Assembly-like text format

• As a bytecode representation for storing space-optimized and fast-retrievable files

LLVM is able to convert consistently and without information loss from one form to

another, depending on the result one wants to achieve. LLVM optimizer accepts any of

these three forms as input, then, if the input is in assembly or bytecode form, it converts it

in the in-memory format to perform the optimizations, and then it can reconvert it in one

of the requested three forms. Additionally, it can call the back-end driver to convert the IR

into machine code.

33

LLVM programs are composed of Modules, each of which is a translation unit of the

input programs. Each module consists of functions, global variables, and symbol table

entries. Modules may be combined together with the LLVM linker, which merges function

(and global variable) definitions, resolves forward declarations, and merges symbol table

entries. Listing 4.1 shows the code for the HelloWorld Module.

; ModuleID = ’hello.c’
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64

:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"

@.str = private unnamed_addr constant [14 x i8] c"Hello World!\0A\00", align 1

define i32 @main(i32 %argc, i8** %argv) nounwind uwtable {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
%3 = alloca i8**, align 8
store i32 0, i32* %1
store i32 %argc, i32* %2, align 4
store i8** %argv, i8*** %3, align 8
%4 = call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([14 x i8]* @.str, i32 0, i32

0))
ret i32 0

}

declare i32 @printf(i8*, ...)

Listing 4.1: Example of IR code

In LLVM (as in many other compilers) the optimizer is organized as a pipeline of distinct

optimization passes each of which is run on the input and has a chance to transform the

34

code. Common examples of passes are the inliner (which substitutes the body of a function

into call sites), expression re-association, loop invariant code motion, etc. Depending on

the optimization level, different passes are run: for example at -O0 (no optimization) the

Clang front-end for C program runs no passes, at -O3 it runs a series of 67 passes in its

optimizer (as of LLVM 2.8).

Each LLVM pass is written as a C++ class that derives (indirectly) from the Pass class.

Most passes are written in a single .cpp file, and their subclass of the Pass class is defined

in an anonymous namespace (which makes it completely private to the defining file). An

example of pass is given in Listing 4.2

#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

namespace {
struct Hello : public FunctionPass {
static char ID;
Hello() : FunctionPass(ID) {}

virtual bool runOnFunction(Function &F) {
errs() << "Hello: ";
errs().write_escaped(F.getName()) << ’\n’;
return false;

}
};

}

char Hello::ID = 0;
static RegisterPass<Hello> X("hello", "Hello World Pass", false, false);

Listing 4.2: Example of pass

35

Every function pass overrides a runOnFunction() method, that will be run on every

function, and will perform customs analysis and transformation over the targeted piece of

code.

4.2 SMT solver

When the witness is generated, its correctness must be proved. The theory of formal

methods offers different techniques to prove the correctness of a formula against a pro-

gram representation. Especially, Satisfiability Theories (SAT) and its extension Satisfiabil-

ity Modulo Theory (SMT) allow to determine whether a given First order logic formula is

satisfiable or not with an arbitrary assignment of variables. While SAT solvers can handle

only boolean variables, SMT solvers can handle different logical theories. SMT solvers are

broadly used in formal methods to formally prove the correctness of a program given some

FOL constraints ([12], [13]) and several automated solvers has being proven to proficiently

solve difficult SMT problems.

4.2.1 Z3

Z3 is a widely employed SMT automated solver developed by Microsoft research, whose

code is freely available for academic research. It handles several different theories such

as empty-theory (uninterpreted function theory), linear arithmetic, nonlinear arithmetic,

bit-vectors, arrays and data types theory. Besides accepting user input at runtime, it ex-

poses interfaces for python, OCaml, Java, .NET languages, C and C++. The C++ APIs are

integrated in the ACSL Passes to generate and check the witness, as it will be described

later. An example of how the APIs work is given in Listing 4.3.

36

We selected Z3 for its performance, number and quality of features (mostly in terms of

implemented theories), easiness to use. Moreover, its C++ API are concise, understand-

able, well documented and almost plug-and-play for all main platforms.

4.3 Overview of transformation passes

The current version of LLVM implements many analysis and transformation passes1,

from the basic common to the most highly engineered ones. They are roughly subdivided

into analysis, transformation and utility passes. Among the transformation passes, we can

count Dead Code Elimination, Constant Propagation, Sparse Conditional Constant Prop-

agation, Instruction Combine, Function Inlining, Loop invariant code motion, Loop un-

rolling, Loop Strengthen Reduction etc. Different optimizations can run at different layers

of the intermediate representation. Depending on its functionality, a pass can run on the

overall module, on each function, on each Basic Block, on each loop, or on each instruc-

tion. Herein the passes that are taken mostly in consideration are the function passes,

which are the most common ones and can perform significant optimizations. The passes

are then organized together by a Pass Manager that decides the order of execution of the

passes, and whether to re-execute a pass another time after the code has been changed.

The decisions are made based on a set of constraints, and they happen transparently from

implementing a new optimization. The following passes are chosen by their commonality,

ease of study and for clearly highlighting some of the critical parts of the framework.

1The complete list is found at http://llvm.org/docs/Passes.html

http://llvm.org/docs/Passes.html

37

4.4 ACSL Passes

In this section the design and implementation for the transformations listed in Chap-

ter 3 is described. We will refer to these transformations as “ACSL passes”1, to distinguish

them from the ordinary optimizations that don’t have witness generation. Some care is

needed while carrying the theoretical concepts and structures to an actual implementa-

tion: the abstraction layer where these objects are to be put doesn’t permit the concepts

to remain in a mathematical form, therefore there are some critical points that one must

take care of when translating from theory to practice.

The state, as defined in chapter 2, is “a pair (l, v), where l is a node of G and v is

type-consistent assignment of values to each variable in V ”. Since, during static analysis

is not always possible to assign a value to every variable, it won’t be possible to deal with

states as they are described in the definitions. In particular, because of the presence of

uncertainty about variable values, a program state may not necessarily correspond to a

unique state in the abstract program. Nevertheless, it suffices that the transition relation

(function) refers only the variables that have an assigned values. That is, being x a variable

with unassigned value, if the transition relation makes no reference to x, then it doesn’t

matter that x is not assigned a value. Therefore in the context of this work we explicitly

choose symbolic representation.

1The name refers to the annotation language, even if the transformation can be not directly
related to ACSL at all. This name comes from a convention used before writing this work

38

The goal of the witness is to check if the target program implements the source, that is

to check whether or not the target program is a stuttering simulation of the source.

The process that has being followed to build an ACSL Pass is similar for every pass. The

starting base is the LLVM source, in particular, the code of the optimization that is going

to be implemented is modified to add the witness generator. First, the analysis phase

of the pass is augmented to store all the invariants found by the analysis in a way that

they will be able to be used by the witness. Every optimization will, of course, perform a

different analysis, and every result can be stored among the other invariants. The invariant

then is linked to a location in the code. If the invariant is the result of the analysis of a

single instruction, mapping the invariant to a location is effortless (the location will be

the analyzed instruction itself). If the invariant is the result of an analysis that involves

more than a single instruction, a location where the invariant holds has to be found, which

depends on the transformation pass. The witness generation phase follows the analysis

and the transformation passes. It construct a witness for each analyzed part of code. To

this end, is necessary to have the generated invariants, the source program relation and

the target program relation. Subsequently, the generated witness can be discharged to the

Z3 solver to check it satisfiability.

To carry the invariants from one pass to the next, we need a structure to preserve the

information gathered during the analyses as well as the one that is provided externally. The

class Invariant Manager exposes static methods to access a data structure where all the

invariants are stored. The manager takes care of mapping the invariant to its location, and

39

exposes utilities to iterate over the annotations and to retrieve the invariant at a specified

location. It also keeps in memory the global values needed by the Z3 API to perform the

requested operations.

A generic work flow of the pass is given in Figure 13. The gray ellipses represents

objects and the teal boxes represent actions or components that takes the objects in input

that produces the objects in output. Now we analyze each basic component of the generic

ACSL optimization.

40

Witness
Generator

Optimizer
Analyzer

External
Invariants

Source
program

Invariants
Target

Program

W

Witness
Checker

Translator

TranslatorS T

Invariant
Propagator

T

Propagated
Invariants

Figure 13: ACSL pass workflow

The Optimizer/Analyzer is where the transformation occurs. This component is basi-

cally the original LLVM transformation, it usually takes the Source Program and produces

the Target program. In the ACSL version it is augmented to also consider a list of External

41

Invariants as input and to produce, in addition to the source program, a list of Invariants

that is made up of the external invariants plus the eventual invariants found during the

analysis of the function.

The Witness Generator takes care of generating the transformation-specific Witness

Relation W. It takes as input the Invariants produced by the Analyzer and the Source

Program and traverses the source to produce the Witness Relation for the given program.

The produced output is a mathematical relation W in the state space of the program.

The Translator component transforms the LLVM intermediate representation into a

transition system. As described in chapter 2, the transition system is composed by a set

of states, a subset of initial states and a transition relation in the state space. For conve-

nience, the set of states is encoded as a propositional formula, which is a more convenient

form for the SMT solver. The translator takes as input both the source and the target

programs and produces two different relations, respectively S and T.

The Witness Checker is where the Witness Relation is tested against the target and

source transition system to see if it is a Stuttering Simulation (in some cases the step

simulation is enough, and it is more efficient to check the latter than the former). The

Checker relies on the Z3 solver to prove the satisfiability of the formula. If the witness

checker proved the transformation not to be correct, it will halt the optimization process

and produce an alert message.

If the witness checker proved the transformation to be correct, the Invariant Propa-

gator is called to transform the list of invariants into Propagated Invariants that comply

42

with the target program. The Invariants are produced calculating the pre-image of θ under

W (〈W 〉θ) as discussed in Chapter 2 . Z3 deals also of computing the propagated invari-

ants. the set will be eventually stored in the Invariant Manager, substituting the former

set of invariant.

To summarize, the overall structure is as follows. For every optimization, there are two

outputs, source and external invariants, and two inputs, target and propagated invariants.

Every transformation pass has its own witness generator. The analysis phase needs to

be augmented to use the additional invariant input and produce new enriched invariants.

The translator, witness checker and invariant propagator are transformation-independent,

hence a single implementation of these component suffices to handle all the possible trans-

formations.

As stated at the beginning of Chapter 4, LLVM IR has three different representation.

The Invariant and Invariant Manager structures work with the in-memory representation

as all the LLVM transformation passes do. Thus, when the IR gets converted, it loses all the

annotations’ information, as there is yet no conversion functionality for the annotations.

Because of this limitation, the ACSL Passes are run at once before any other transformation

pass, then the annotations can be dropped and then the standard LLVM optimizations can

be run later, as they don’t make use of the additional information provided.

The current implementation of the annotation framework deals only with variables of in-

teger types, the transformation and the related examples described below will accordingly

show how integer variables are handled. Future extensions of the framework will presum-

43

ably include other types (floats, chars, arrays etc.) and other transformations specifically

built for these types could be implemented. It also only deals with a subset of the LLVM

IR, more precisely integer binary operators, phi, compare, conditional and unconditional

branch and return instructions.

A note on the examples. The examples shown in the next chapters are written in LLVM

IR text-format. They are kept as simple as possible, in order to introduce as few syntax

constructs as possible. Whereas a basic knowledge of the LLVM IR will foster the compre-

hension of these examples, they will hopefully remain meaningful even to a less expert eye.

Furthermore, they do not aim at explaining any IR characteristic, rather, they attempt to

highlight the ongoing transformations. The examples are written to be a faithful transla-

tion of the pseudocode shown for the examples in Chapter 2. The main notable difference

between the pseudocode is the fact that, being the IR in SSA form, all the multiple assigned

variables are split in several new variables, one for each different assignment. Converting

ordinary code into SSA form is primarily a simple matter of replacing the target of each

assignment with a new variable, and replacing each use of a variable with the “version” of

the variable reaching that point. Therefore the code has the same behavior and is subject

to the same transformation process. The target version of every example is obtained by

simply running the transformation over the source.

4.4.1 Variable Renaming

The first transformation considered is not a real optimization, and its goal is to demon-

strate the theoretical concepts developed in the previous chapter in a simple way without

44

getting lost in unnecessary details. Not being an optimization, a corresponding transforma-

tion in LLVM does not exist, and the (very simple) code that deals with the transformation

has being written from scratch. We will examine the basic mechanisms of the witness

generator.

Since this transformation doesn’t change the structure of the code, there is no need

to check that the witness is a stuttering simulation. It is sufficient to check if it is a

consistent step simulation, thus simplifying the verification. The formula to be checked is

the following:

∀u ∈ IB, ∃s ∈ IB, X(u, s)∧

∀u, v ∈ SB, s ∈ SA, (X(u, s) ∧RB(U, V)) =⇒ (∃t ∈ SA, X(v, t) ∧RA(S, t))

where s and t are source states, t and v are target states, AA and AB are the set of source

and target states, IA and IB the subset of initial states, RA and RB the transition relation

and X the witness. The set of state is computed symbolically. This is the generic formula

that has to be checked for step simulation. Universal quantifiers cannot be easily handled

by the SMT solvers, hence they are removed and the satisfiability of the negation of the

formula is checked. If it is unsatisfiable the formula is valid, otherwise, the Solver will

show an assignment of the values where the negation is satisfied, which can be read in

debugging.

In the Variable renaming case, the witness produced is in the form v = Tv for every

variable v in the source and Tv in the target, at every program location l, that is, W :=

45

(L = L̄) ∧ ∀v, v = v̄. There is no analysis in this pass, and external invariants are not used

either. The transformation pass simply takes every named instruction and add a prefix

to its name, updating also all the uses of the instruction. The witness generator will also

iterate over the named instruction and build a witness relation of the form above for any

of them.

4.4.2 Constant Propagation

For Constant propagation the LLVM pass iterates over each instruction in a function

and checks if it is constant propagatable. The core of the optimization is the LLVM built-in

method ConstantFoldInstruction() that provides a powerful abstraction over the IR: it

finds if an instruction can be statically computed as constant. If so, the optimization pro-

ceeds substituting all the uses of the instruction with the computed constant. An example

is given in Figures 14a and 14b (respectively source and target).

As the example shows, the declaration instruction remains; this however, is an expected

behavior, since it will be deleted at once by other passes, like dead code elimination. The

witness-augmented pass also builds an invariant for every folded instruction, and it aug-

ments the effectiveness using also the information given by the external invariants. This

will allow in theory to find more instructions to be propagated than using only LLVM’s

ConstantFoldInstruction(). Again, to find if an instruction has a constant value, the

invariant is solved with Z3.

The Witness is written as the formula described in Chapter 3. In this case, as in the

transformation in Subsection 4.4.1, the witness checker will prove if the witness is a step

46

define i32 @main(i32 %argc, i8** %argv)
nounwind uwtable {

%x = add i32 10, 0
%y1 = mul i32 %x, %x
%z1 = mul i32 2, %x
%z2 = add i32 %z1, 30
%z3 = mul i32 3, %z2
%cmp = icmp slt i32 %z3, %y1
br i1 %cmp, label %1, label %2

; <label>:1 ; preds = %0
%y2 = add i32 %y1, 1
br label %3

; <label>:2 ; preds = %0
%y3 = add i32 %y1, 2
br label %3

; <label>:3 ; preds = %2, %1
%z4 = phi i32 [%y2,%1], [%y3,%2]
%z5 = add i32 %z4, 10
ret i32 %z5

}

(a) Source

define i32 @main(i32 %argc, i8** %argv)
nounwind uwtable {

%x = add i32 10, 0
%y1 = mul i32 10, 10
%z1 = mul i32 2, 10
%z2 = add i32 20, 30
%z3 = mul i32 3, 50
%cmp = icmp slt i32 150, 100
br i1 false, label %1, label %2

; <label>:1 ; preds = %0
%y2 = add i32 100, 1
br label %3

; <label>:2 ; preds = %0
%y3 = add i32 100, 2
br label %3

; <label>:3 ; preds = %2, %1
%z4 = phi i32 [101, %1], [102, %2]
%z5 = add i32 %z4, 10
ret i32 %z5

}

(b) Target

Figure 14: Constant propagation example

simulation. This suffices to prove the correctness of the transformation, since constant

propagation is a structure preserving transformation.

4.4.3 Dead Code Elimination and Control Flow Graph Compression

In Dead code elimination (DCE) the instructions that are not being used are systemat-

ically removed from the function. In this implementation, DCE and Control Flow Graph

Compression (CFGC) are treated as a unique transformation. DCE makes use of the

method isInstructionTriviallyDead that automatically checks if the instruction doesn’t

47

define i32 @main(i32 %argc, i8** %argv)
nounwind uwtable {

%x = add i32 10, 0
%y1 = mul i32 10, 10
%z1 = mul i32 2, 10
%z2 = add i32 20, 30
%z3 = mul i32 3, 50
%cmp = icmp slt i32 150, 100
br i1 false, label %1, label %2

; <label>:1 ; preds = %0
%y2 = add i32 100, 1
br label %3

; <label>:2 ; preds = %0
%y3 = add i32 100, 2
br label %3

; <label>:3 ; preds = %2, %1
%z4 = phi i32 [101, %1], [102, %2]
%z5 = add i32 %z4, 10
ret i32 %z5

}

(a) Source

define i32 @main(i32 %argc, i8** %argv)
nounwind uwtable {

br i1 false, label %1, label %2

; <label>:1 ; preds = %0
br label %3

; <label>:2 ; preds = %0
br label %3

; <label>:3 ; preds = %2, %1
%z4 = phi i32 [101, %1], [102, %2]
%z5 = add i32 %z4, 10
ret i32 %z5

}

(b) Target

Figure 15: Dead Code Elimination example

have any use and if removing it doesn’t have side effects. The example in Figure 15 shows

DCE’s behaviors for the output of the previous Constant Propagation example.

Dead Code Elimination per se doesn’t present stuttering, but, when combined with

CFGC, stuttering behavior may be introduced, as the CFG can be potentially shrunk. This,

however, can be avoided by constructing the transition relation differently than previously

described, grouping them on the basic block level, so that the transition relation represent

the transition between the basic block, that represents a “macro instruction” that is the

48

result of all the instructions in the basic block. In this way, since DCE and CFGC do not

reorder, eliminate or create blocks, it can be viewed as non stuttering over the block macro

instructions.

Dead code elimination can use injected invariants that assert that some branches of the

CFG are never taken, therefore potentially reducing the number of uses of an instructions

to zero, in which case the instruction can be eliminated from the function.

4.4.4 Loop Invariant Code Motion

Loop invariant code motion (LICM) promotes instructions out of the loop. The LLVM

implementation of LICM deals with hoisting and sinking in the same transformation pass,

but the ACSL optimization deals (for now) only with hoisting. LICM is a reordering trans-

formation that inspects every loop, starting from the most nested to the outer ones. Since

it deals with loops, unlike the optimizations described so far - that are FunctionPass sub-

classes, LICM inherit from the LoopPass class. The LoopPass performs a static analysis

over the loop and identify different elements of the loop (Figure 16). We’ll briefly describe

them to better understand the LICM.

The Header is the entrance block of the loop, the first to be executed. Every other block

inside the loop is marked as Latch. The Exiting block is a block in the loop whose at least

one successor is outside the loop. There are also two other elements that do not directly

belong to the loop, but are needed to define it. The Preheader block is any predecessor

of the header block outside of the loop, and the Exit block is any successor of the exiting

block outside the loop.

49

L0

L1

L2

L3

preheader

header
exiting

latch

exit

Figure 16: CFG of a generic Loop

Hoisting is possible when an instruction in the latch or header blocks uses only in-

structions that are in the preheaders of the loop (or in their predecessor) and the loop is

guaranteed to execute at least once. In the example in Figure 17, the instruction %c =

add i32 %a, %b is moved from the latch block l2 to the preheader block l0. In LICM the

witness is built in the following way: if a statement is moved from a loop block B to the

preheader block H, B and H̄ is put into relation with B, where the bar means, as usual a

target location. Morover, the variable values are preserved (∀x ∈ V, x = x̄) , except for the

variables that have assignment in these blocks.

The generated witness for this transformation may stutter, as LICM is a reordering

transformation. In the example above, l0 → l1 → l2 in the target stutters in l0 in the

50

define i32 @main(i32 %argc, i8** %argv)
nounwind uwtable {

l0:
%a = add i32 3, 0
%b = add i32 2, 0
br label %l1

l1:
%i0 = phi i32 [1, %l0], [%i1, %l2]
%cmp = icmp sle i32 %i0, 100
br i1 %cmp, label %l2, label %l3

l2:
%c = add i32 %a, %b
%i1 = add i32 %i0, %c
br label %l1

l3:
ret i32 0

}

(a) Source

define i32 @main(i32 %argc, i8** %argv)
nounwind uwtable {

l0:
%a = add i32 3, 0
%b = add i32 2, 0
%c = add i32 %a, %b
br label %l1

l1:
%i0 = phi i32 [1, %l0], [%i1, %l2]
%cmp = icmp sle i32 %i0, 100
br i1 %cmp, label %l2, label %l3

l2:
%i1 = add i32 %i0, %c
br label %l1

l3:
ret i32 0

}

(b) Target

Figure 17: Loop invariant code motion example. The CFG of the loop is given in Figure 16

source. This requires the witness checker to prove the correctness for the following for-

mula:

∀u ∈ IB,∃s ∈ IB, X(u, s)

∧∀u, v ∈ SB, s ∈ SA, (X(u, s) ∧RB(U, V)) =⇒ (

(∃t ∈ SA, X(v, t) ∧RA(S, t))

∨(∃t ∈ SA, X(u, t) ∧RA(S, t) ∧X(u, s) ≺ X(u, t))

∨(X(v, s) ∧X(u, s) ≺ X(v, s)

)

51

As before, the universal quantifier is eliminated and the formula is negated before being

discharged to the SMT solver.

The external annotations can be plugged to the LoopInfo class that takes track of

all the invariants regarding a loop and is queried by the loop transformation during the

analysis phase. Invariants can be explicitly injected in the LoopInfo with the method

makeLoopInvariant.

52

void demorgan() {
context c;

expr x = c.bool_const("x");
expr y = c.bool_const("y");
expr conjecture = !(x && y) == (!x || !y);

solver s(c);
// adding the negation of the conjecture as a constraint.
s.add(!conjecture);
switch (s.check()) {
case unsat: std::cout << "de-Morgan is valid\n"; break;
case sat: std::cout << "de-Morgan is not valid\n"; break;
case unknown: std::cout << "unknown\n"; break;

}
}

Listing 4.3: Example of an SMT problem with Z3 API for C++

CHAPTER 5

RESULTS, CONCLUSIONS AND FUTURE WORKS

5.1 Results

Based on the LLVM optimization framework, we were able to develop a program that

has all the functionalities required in order to have a working annotation framework and

a witness transformation system. The program was tested with several IR functions. The

programs were written in C, converted to Intermediate Representation with CLANG, and

a mem2reg pass was run to remove instruction types not processable by the ACSL trans-

formations. The test cases have been uploaded to the repository. The translator was able

to fully translate from Intermediate Representation to a transition relation between either

single instructions or basic blocks of instructions. The witness generator for Constant

Propagation, Dead Code Elimination and Control Flow Graph Compression proved to be

correct both with stuttering and step simulation. For testing purposes the transformations

were slightly “modified” to be buggy; indeed, a correctness proof could not be generated.

The generation and verification of the witness didn’t suffer a considerable overhead of time

w.r.t. their corresponding optimizations

5.1.1 Times

To calculate the overhead incurred by Z3 for generate and verify the witness in general

run, times were measured for different runs. The test cases were run in sequence and the

53

54

TABLE I: RESULT TIMES FOR CONSTANT PROPAGATION, DCE AND CFGC
Pass execution timing report (ms)

Constant Propagation DCE + CFGC
LLVM ACSL Diff LLVM ACSL Diff

Test 1 (11 LOC) 1.1 14.1 13.0 0.5 9.2 7.7
Test 2 (28 LOC) 1.2 49.7 48.5 0.4 18.3 17.9
Test 3 (28 LOC) 1.0 54.8 53.8 1.2 40.1 38.9
Test 4 (10 LOC) 1.1 16.0 14.9 0.4 8.8 8.4
Test 5 (96 LOC) 1.5 445.3 443.8 1.0 106.9 105.9
Test 6 (37 LOC) 1.1 116.5 115.3 0.8 88.3 86.5
Test 7 (24 LOC) 1.1 27.2 26.1 0.4 25.5 25.1

Average 1.01 103.37 101.36 0.67 42.38 41.71

TABLE II: RESULT TIMES FOR LOOP INVARIANT CODE MOTION
Pass execution timing report (ms)

Loop Invariant Code Motion
LLVM ACSL Diff

Test 1 (24 LOC) 0.1 49.6 49.5
Test 2 (130 LOC) 0.5 340.5 340.5

Average 0.3 200.06 200.03

tool time-passes of the LLVM optimizer was run together with different instances of the

passes. For each test case and transformation, two runs were performed, one with the

ACSL version of the pass, and one with the regular LLVM version. The run times were

compared to calculate the overhead; Tables I and II show the results.

Although the results show a considerable overhead on small samples, it appears to not

grow linearly with the size of the code. Furthermore, the code can be analyzed to improve

55

performance and tested for memory leakage and other implementation details, that are

outside of the proof of concept that these results wanted to demonstrate.

5.1.2 Issues

The witness generator for Loop Invariant code motion showed some false positives,

proving correct some incorrect transformations. This is due to the fact that LLVM loop

analysis is deep and articulated, and an instruction can be moved for different reasons

other than the ones that the witness is able to describe. The solution to the problem

can be either to modify the witness generator to include all the case produced by LICM

analysis, or to reduce the scope of the analysis and perform further optimization in a

separate transformation pass.

The LLVM Annotation Framework presented here is still on developement phase and

it will then be part of a bigger framework that handles how the external invariants are

imported and fully exploited. This is a related work that goes beyond the scope of this

work.

5.2 Conclusions and Related Works

Showing the correctness of program transformations, in particular compiler optimiza-

tions, is a long-standing problem. There are numerous works that target specific compilers

and languages. In [14], Leroy gives a nice technical and historical view of approaches to

this question. A first approach is that of verification: to formally prove each transforma-

tion correct, over all legal input programs. This is the approach taken, for example, by

the CompCert project [2]. However, formally verifying a full-fledged optimizing compiler, as

56

one would verify any other large program, is practically infeasible, due mainly to the size

of the code of the passes, evolution over time, and, possibly, proprietary considerations.

The Translation Validation approach offers an alternative to the verification of transla-

tors in general and of compilers in particular. Using the translation validation approach,

rather than verify the compiler itself one constructs a validating tool which, after every

run of the compiler, formally confirms that the target code produced is a correct transla-

tion of the source program. The work in [15] developed a tool for translation validation that

succeeded in automatically verifying translations involving approximately 10,000 lines of

source code in about 10 minutes. Its success critically depended on some simplifying as-

sumptions that restrict the source and target to programs with a single external loop, and

assumed a very limited set of optimizations. Subsequent approaches like the one in [16] con-

sidered translation validation for less restrictive languages, allowing, for example, nested

loops. They also considered a more extensive set of optimizations. However, the meth-

ods proposed there were restricted to structure preserving optimizations. They could not

directly deal with more aggressive optimizations such as loop distribution and loop tiling

that are often used in more advanced optimizing compilers, nor could they handle simpler

optimizations which relied on stuttering for correctness.

The approach presented offers similarity to translation validation, but it differs as it

requires that the optimization is known and can be analyzed and modified. This gives

the opportunity to add a witness generator which produces a different witness for every

transformation that undergoes a generic program at compile time. This makes the witness

57

approach, in principle, applicable to any optimization: stuttering simulation witnesses are

proved to be complete and sound regardless of the transformation considered.

In practice, the real limitation is given by the possible high complexity that a witness

can reach. The logics needed to express witness may not have decision procedures, so

that fully automated checking is not possible. However, using SMT solvers, particullary

Z3 in this context, it was possible to evaluate the witnesses expressed in this work. The

complexity could also arise from the externally provided invariant, of which nothing can

be known a priori. This can hamper the logics used by Z3 and result in situations were it

couldn’t be able to produce a result.

A solution for the problem of propagating invariants across transformations is also

provided. This will be useful in the case where the annotations are given to the compiler so

it could make use of them to perform further and better performing optimizations without

having to improve the scope of the internal analysis. This problem had not been addressed

in the general form discussed here.

Regarding formal verification works over the LLVM framework, LAV [17] that statically

checks program assertions and errors, and KLEE [18], capable of automatically generating

tests that achieve high coverage on a diverse set of complex and environmentally-intensive

programs.

5.3 Future Works

The framework described in this work is at an early stage of implementation, and needs

to be improved in several aspects and tested thoroughly. Even if the design and the basic

58

structure has been implemented, in order for the project to be used in significant real case

projects, some extensions are necessary.

The first important feature that needs to be expanded is the Intermediate Representa-

tion support. Currently the framework doesn’t support store and load instructions to the

memory and function calls. Including them in the witness generation and in the translator

will require some non trivial modifications, especially for memory instructions. In fact, in-

cluding them, means that the IR will not be a “pruned” SSA, and the generated invariants

will need to be checked more carefully.

The framework can also be improved in other directions, for example by expanding the

supported types with floats or charachters. Introducing pointer and arrays, though neces-

sary for including real case scenarios, will need some effort, in order to correctly deal with

aliasing issues. Certainly, several optimizations can be added to the framework, beginning

from Conditional Contant Propagation and some Loop Reordering transformations, such

as Loop Reversal, Interchange or Skewing Transformations.

APPENDIX

BRIEF PROGRAM GUIDE, INSTRUCTIONS AND EXAMPLES

These are the steps to correctly compile and use the framework.

1. Download the repository from https://bitbucket.org/itajaja/llvm-csfv

2. Compile and install Z3 following the instruction provided in the source code. In this

work the version 4.3.1 of Z3 was used

3. Compile LLVM running make in the project root folder

4. (Optional) Install the LLVM executable with make install

5. The Witness-augmented optimizations are in the folder lib/Transforms/Acsl/witness/.

They are compiled separately and dinamically linked to the LLVM optimizer

6. run make in the witness folder

7. To run an ACSL pass over an IR file, run the following command

<PROJECT_FOLDER>/Debug+Asserts/bin/opt -load /usr/lib/libz3.so -load

<PROJECT_FOLDER>/Debug+Asserts/lib/Acsl.so -acslcp <InputFile.s>

where acslcp can be substituted by any other optimization name.

To run an ACSL pass over a C program, run the following command

<PROJECT_FOLDER>/Debug+Asserts/bin/clang -load /usr/lib/libz3.so -load

<PROJECT_FOLDER>/Debug+Asserts/lib/Acsl.so -mem2reg -acslcp <InputFile.c>

59

https://bitbucket.org/itajaja/llvm-csfv

60

APPENDIX (Continued)

8. To show debug strings, add the option -debug-only=’acsl’

9. To add any other ACSL pass, follow the structure of the existing ones, the run make

inside the witness folder

CITED LITERATURE

1. Lattner, C. A.: LLVM: An infrastructure for multi-stage optimization. Doctoral disser-
tation, University of Illinois, 2002.

2. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with
a proof assistant. In ACM SIGPLAN Notices, volume 41, pages 42–54. ACM, 2006.

3. Zuck, L., Pnueli, A., Goldberg, B., Barrett, C., Fang, Y., and Hu, Y.: Translation and run-
time validation of loop transformations. Formal Methods in System Design, 27(3):335–
360, 2005.

4. Barrett, C., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., and Zuck, L.: Tvoc: A translation
validator for optimizing compilers. In Computer Aided Verification, pages 273–286.
Springer, 2005.

5. Namjoshi, K.: A simple characterization of stuttering bisimulation. In Foundations
of Software Technology and Theoretical Computer Science, pages 284–296. Springer,
1997.

6. Lattner, C. and Adve, V.: Llvm: A compilation framework for lifelong program
analysis & transformation. In Code Generation and Optimization, 2004. CGO 2004.
International Symposium on, pages 75–86. IEEE, 2004.

7. Namjoshi, K. S. and Zuck, L. D.: Witnessing program transformations. In Static
Analysis, pages 304–323. Springer, 2013.

8. Namjoshi, K. S., Zuck, L. D., and Tagliabue, G.: A witnessing compiler: A proof of
concept. In Runtime Verification, 2013.

9. Pnueli, A., Siegel, M., and Singerman, E.: Translation validation. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 151–166. Springer,
1998.

10. Manolios, P.: A compositional theory of refinement for branching time. In Correct
Hardware Design and Verification Methods, pages 304–318. Springer, 2003.

11. Muchnick, S. S.: Advanced compiler design implementation. Morgan Kaufmann Pub-
lishers, 1997.

12. Griggio, A.: An effective SMT engine for Formal Verification. Doctoral dissertation,
University of Trento, 2009.

13. Moskal, M. J.: Satisfiability modulo software, 2009.

14. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

61

CITED LITERATURE (Continued) 62

15. Pnueli, A., Shtrichman, O., and Siegel, M.: The code validation tool (cvt). International
Journal on Software Tools for Technology Transfer (STTT), 2(2):192–201, 1998.

16. Rinard, M. C. and Marinov, D.: Credible compilation with pointers. In In Proceedings
of the Workshop on Run-Time Result Verification, 1999.

17. Vujošević-Janičić, M. and Kuncak, V.: Development and evaluation of lav: an smt-based
error finding platform. In Verified Software: Theories, Tools, Experiments, pages 98–
113. Springer, 2012.

18. Cadar, C., Dunbar, D., and Engler, D.: Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX
conference on Operating systems design and implementation, pages 209–224, 2008.

19. Dijkstra, E. W.: Guarded commands, nondeterminacy, and formal derivation of pro-
grams. In Programming Methodology, pages 166–175. Springer, 1978.

20. Abadi, M. and Lamport, L.: The existence of refinement mappings. Theoretical Com-
puter Science, 82(2):253–284, 1991.

Giacomo Tagliabue

VITA

Education Bachelor of Science Degree in Engineering of Computing
Systems
Politecnico di Milano
2008 - 2011

Master of Science Degree in Computer Science
University of Illinois at Chicago, Chicago, IL
2012 - 2013

Master of Science Degree in Engineering of Computing
Systems
Politecnico di Milano, Politecnico di Torino
2011 - current

Master thesis An Annotation Framework for the LLVM Compiler Infras-
tructure
Lenore Zuck, Professor (for reference, contact: lenore@uic.edu)
Topics: Compilers, formal methods

Technological skills Languages
Java, C#, PHP, C
technologies
Andorid, Java EE, ASP.NET, OpenGL
Tools
LATEX, Git, SVN, Matlab
Databases
SQL family
OSs
Windows and Linux

63

Giacomo Tagliabue VITA (Continued)

Working Experience DARPA / University of Illinois
Research Assistant
2012-2013
Employed in DARPA’s CSFV (Crowd Sourced Formal Verification)
Project.CSFV investigates extensions of compilers’ optimizations
using formal verification.
Skills and technologies used:

• C++

• Understanding and hacking of the LLVM-CLANG compiler
infrastructure

• ACSL annotation language for C programs

• Z3 SMT solver

• OCaml

• Bison - Yacc

Mark-Up Consulting Srl
Software Developer
2011-2012
Design, development, and maintenance of projects for business
consulting and staff training.
Skills and technologies used:

• PHP development and deploy, using Moodle Framework

• Client-Server application development in C#:

– WPF - Windows Presentation Framework

– WCF - Windows Communication Framework

• MySql and SQLite Databases

64

	1Introduction
	 Problem definition
	 How to augment the scope and the quality of the optimization
	 How to propagate assertions from end to end of an optimization pass
	 How to check the correctness of the transformation and the propagation

	 Proposed solution

	2The Transformation Witness
	 Introduction
	 Definitions
	 Simulation relations
	 Invariant propagation
	 Generalization

	3Witness for Common Optimizations
	 Constant Propagation
	 Dead Code Elimination
	 Reordering Transformations
	 Loop Invariant code motion

	4Design and Implementation
	 LLVM
	 SMT solver
	 Z3

	 Overview of transformation passes
	 ACSL Passes
	 Variable Renaming
	 Constant Propagation
	 Dead Code Elimination and Control Flow Graph Compression
	 Loop Invariant Code Motion

	5Results, Conclusions and Future Works
	 Results
	 Times
	 Issues

	 Conclusions and Related Works
	 Future Works

	 APPENDIX
	 CITED LITERATURE
	VITA

