
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Online Exploration of Graphs with an
Autonomous Robot: A Theoretical Analysis

AIRLab
Artificial Intelligence and Robotics Laboratory

Relatore: Prof. Francesco Amigoni
Correlatore: Dott. Alberto Quattrini Li

Tesi di Laurea Magistrale di:
Alessandro Riva, matricola 800753

Anno Accademico 2013-2014

Alla mia famiglia

Contents

Abstract VII

Sommario IX

Ringraziamenti XI

1 Introduction 1

2 State of the Art 5
2.1 Practical Results . 5
2.2 Theoretical Results . 7

2.2.1 Graph Edges Exploration 8
2.2.2 Graph Vertices Exploration 10
2.2.3 Summary of Graph Exploration 12

3 Exploration Process Model 15

4 Worst Case Analysis 19
4.1 Universal Bounds . 19
4.2 Distance Criterion . 25
4.3 Information Gain Criterion . 34
4.4 Combination of Distance and Information Gain 36
4.5 Comparison of Bounds . 37
4.6 Experiments on Random Generated Graphs 40

5 Average Case Analysis 47
5.1 Average Case vs. Worst Case . 49
5.2 Indoor Environments . 51

5.2.1 Tree Environments . 53
5.2.2 Simple Loop Environments 61

6 Conclusions 71

I

Bibliografia 75

List of Figures

2.1 Simulations with AC-A* and the framework VECA for goal-directed
exploration [Smirnov et al., 1996]. 6

2.2 The traveled distance using a realistic laser sensor and an unrealis-
tic footprint sensor [Quattrini Li et al., 2012]. 7

2.3 Simple geometrical enviroment [Gabriely and Rimon, 2010]. . . 8
2.4 Complex geometrical enviroment. HereD is the robot size [Gabriely

and Rimon, 2010]. 9
2.5 The worst case graph for Greedy Mapping with parameter n =

3 [Koenig et al., 2001]. 11
2.6 The worst-case analysis for Greedy Mapping varing the parameter

n [Koenig et al., 2001]. 12

4.1 The tree exploration after the perceptions in v0 and v1. The arrows
mean the branches for each vertex, while, the labels mean their
explored depth. 20

4.2 The worst case for the ratio |V |/k with |V | = 25, r = 5 and k̄ = 7. 21
4.3 For |V | = 12 and r = |V |

2 − 1 = 5 there are at most two frontier
vertices v1 and v2. 23

4.4 The worst case for r = |V |
2 − 1 = 5 and |V | = 12. 24

4.5 Worst-case graph for Sd with m = 3 and r = 2. 30
4.6 The trend of worst-case bounds of Sd with respect to UBTK and

LBKTS , considering |V | = 1000 and r ∈ {0, · · · , b |V |−1
2 c}}. . . . 37

4.7 The trend of r̄ for worst-case bounds. 38
4.8 The trend of worst-case bounds of Sd (Sdg) and Sg (for clarity,

is a zoomed portion of the complete plot), considering |V | = 1000

and r ∈ {0, · · · , b |V |−1
2 c}. 40

4.9 The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 100, · · · , 150, |E| = 2|V | and r = 0. 41

4.10 The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 500, |E| = 1000 and r ∈ {1, · · · , 7}. 42

III

4.11 The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 500, |E| = 1200 and r ∈ {1, · · · , 7}. 42

4.12 The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 500, |E| = 1400 and r ∈ {1, · · · , 7}. 43

4.13 The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 1000, |E| = 2500 and r ∈ {1, · · · , 7}. 43

4.14 The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 1000, |E| = 3000 and r ∈ {1, · · · , 7}. 44

4.15 The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 1000, |E| = 3500 and r ∈ {1, · · · , 7}. 44

4.16 The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 1500, |E| = 4000 and r ∈ {1, · · · , 7}. 45

4.17 The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 1500, |E| = 4750 and r ∈ {1, · · · , 7}. 45

4.18 The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 1500, |E| = 5500 and r ∈ {1, · · · , 7}. 46

5.1 Example of graph where in the average case Sd performs better
than Sdg. 52

5.2 Example of graph with labels (C ‘corridor’; E ‘entrance’; R ‘room’). 53
5.3 An example of random G1 graph with room (light grey) and corri-

dor (dark grey) vertices and |C | = 50, dK = 0.3. 59
5.4 The real mean distance traveled, computed enumerating all the

rooms configuration ({0, · · · , 17} rooms) with |C | = 35 66
5.5 The real mean distance traveled, computed enumerating all the

rooms configuration ({0, · · · , 20} rooms) with |C | = 40 66
5.6 An example of random G2 graph with room (light grey) and corri-

dor (dark grey) vertices and |C | = 100, dK = 0.2. 68

List of Tables

2.1 Classification of representative papers from theoretical computer
science on exploration according to several dimensions. 13

4.1 Some values of |V | and the corresponding r̄, such that the worst-
case upper bound on traveled distance for Sd is UBSd

= 4n edge
traversals . 28

4.2 Values of the perception radius r (rounded to the next integer) such
that the gain on the upper bound (with respect the maximum gain,
namely, for r = b |V |−1

2 c, and the minimum gain corresponding to
r = 0) is ETG = {50%, 60%, 70%, 80%, 90%} for some |V |. . . 39

5.1 Performance on random generated G1 environments. The mean
gain and its standard deviation, the mean error and its standard
deviation with respect to 0 are reported. 58

5.2 Number of edge traversals between corridor vertices on graphs be-
longing to G1. The mean distance traveled over the corridors and
its standard deviation, the mean error and its standard deviation
with respect to 0 are reported. 62

5.3 Performance on random generated G2 environments. The mean
gain and its standard deviation, the mean error and its standard
deviation with respect to 0 are reported. 67

V

Abstract

Exploration of unknown environments plays a significant role in many mobile
robot applications, like map building, coverage, and searching. In literature, explo-
ration strategies are usually defined and evaluated following two rather different
approaches. On the one hand, they are defined in practical contexts of real (or re-
alistically simulated) robots and are empirically assessed by testing them in some
environments. On the other hand, exploration strategies are defined in theoretical
settings (e.g., exploration of graphs) and are assessed using theoretical tools like
worst-case bounds. Being inherently an online task, exploration is usually greed-
ily addressed by letting a robot evaluate some candidate destination locations in
order to choose where to go next. In this thesis, we provide a theoretical analysis
of some exploration strategies. We consider a single robot exploring an initially
unknown environment represented by an undirected graph. The goal of the robot
is to find an exploration path (not necessarily closed) that perceives a given frac-
tion of vertices of the graph with the minimum number of edge traversals (atomic
movements from a vertex to an adjacent vertex). We assume that the robot learns
of the vertices, and of the corresponding edges, within a given perception range
from its current position. Our results significantly complement some of the worst-
case bounds on the number of edge traversals required to explore a generic graph
presented in the literature, explicitly embedding in the analysis the sensor range of
the robot, and considering exploration strategies based on information gain and on
combination of information gain with distance. We also provide an average-case
analysis (which, to the best of our knowledge, has never appeared in the literature)
of exploration strategies in classes of graphs that model realistic indoor environ-
ments. The main contribution of this thesis is a theoretical analysis that integrates
and possibly better explains the experimental results obtained with real (and real-
istically simulated) exploring robots.

VII

Sommario

L’esplorazione di ambienti sconosciuti è fondamentale in molte applicazioni in cui
sono utilizzati robot mobili, come la costruzione della mappa di un edificio, la
ricerca e i problemi di covering. In letteratura, le strategie di esplorazione sono
solitamente definite e valutate in due modi differenti. Da una parte, sono definite
in un contesto pratico, con robot reali (o realisticamente simulati) e valutate em-
piricamente attraverso test in diversi ambienti. Dall’altra parte, sono definite in un
contesto teorico (e.g., esplorazione di grafi) e valutate attraverso strumenti teorici,
come limiti nel caso pessimo. Essendo un’attività effettuata online, l’esplorazione
è tipicamente affrontata in modo greedy, lasciando al robot la valutazione delle
possibili posizioni future in cui muoversi. In questa tesi sono analizzate, da un
punto di vista teorico, alcune strategie di esplorazione. Lo scenario considerato è
quello in cui un singolo robot mobile esplora un ambiente inizialmente sconosci-
uto, rappresentato da un grafo non orientato. L’obiettivo del robot è trovare un
percorso di esplorazione (non necessariamente chiuso) che percepisca una certa
percentuale di vertici del grafo, con il minor numero possibile di archi attraversati
(movimenti atomici da un vertice a un vertice adiacente). Il robot percepisce i ver-
tici e i loro archi corrispondenti, all’interno di un certo raggio di percezione dalla
sua posizione corrente. I risultati di questa tesi completano in modo significativo
alcuni dei limiti relativi al caso peggiore (rispetto al numero di attraversamenti di
archi richiesto per esplorare un generico grafo) presenti in letteratura, considerando
esplicitamente nell’analisi il raggio del sensore del robot, e considerando strategie
di esplorazione basate sull’information gain o sulla combinazione fra information
gain e distanza. In questa tesi vengono anche analizzate, dal punto di vista del caso
medio, alcune classi di grafi che modellano ambienti indoor realistici. Il princi-
pale contributo di questa tesi è un’analisi teorica che ha lo scopo di contribuire a
spiegare meglio i risultati sperimentali ottenuti nell’esplorazione con robot reali o
realisticamente simulati.

IX

Ringraziamenti

Desidero ringraziare il professor Francesco Amigoni per la grande umanità e la
grande disponibilità mostratami durante tutto il lavoro di tesi, nonché per gli utili
consigli e il tempo speso ad aiutarmi.

Ringrazio il dottor Alberto Quattrini Li, che è stato per me un’ottima guida,
dandomi sempre tutto l’aiuto di cui avevo bisogno. Non avrei potuto sperare di
trovare una persona migliore.

Un ringraziamento speciale va alla mia famiglia, a cui devo questi cinque anni
di soddisfazioni e fatiche, che mi hanno reso la persona che sono. Grazie per
avermi sempre supportato; per essermi stati vicini nei momenti più duri cosı̀ come
in quelli più felici.

Ringrazio tutte le persone conosciute in questi anni, con cui ho condiviso gioie
e ansie, dentro e fuori dall’università. In particolare Marco, compagno di tanti
progetti e di moltissime discussioni.

Infine ringrazio i miei amici più cari, per essermi sempre stati d’aiuto con la
loro presenza e le loro parole.

XI

Chapter 1

Introduction

Exploration is a fundamental task for autonomous mobile robots that operate in a
large number of applications, such as map building [Thrun, 2002], coverage [Choset,
2001], and search [Calisi et al., 2005]. A robot placed in an initially unknown en-
vironment has to discover the position of the obstacles. Specifically, the robot
iteratively perceives the surrounding environment through a sensor, integrates the
sensor data into a map, chooses where to move, and go to the selected destination
location. The mainstream approach to exploration of initially unknown environ-
ments is greedy [Tovey and Koenig, 2003]. This Next Best View approach oper-
ates by cyclically evaluating some candidate destination locations that are usually
selected on the frontiers between the known and the unknown portions of the en-
vironment [Yamauchi, 1997]. The evaluation is performed according to an explo-
ration strategy that considers different criteria in a utility function measuring the
appeal of candidate locations. A simple exploration strategy considers only the
distance from the current position of the robot, and selects the closest candidate lo-
cation [Yamauchi, 1997]. This simple criterion is rather popular, especially in prac-
tical applications, even if there exists strategies which perform better in the worst
case. For instance, one of these strategies is the depth-first search, which always
moves the robot from its current position to an adjacent candidate location. If such
adjacent candidate location does not exist, depth-first search back-tracks to reach
the next closest candidate location. It is easy to prove that the traveled distance for
this kind of strategy, in the worst case, is linear with respect to the number of differ-
ent candidate locations in the environment, while, greedy strategies may becomes
super linear, as shown for the distance criterion in [Koenig et al., 2001]. Neverthe-
less, depth-first search does not have the following good properties, which, instead,
characterize greedy strategies (as noted in [Koenig et al., 2001]):

• Simple Integration into Robot Architectures: greedy strategies are robust
with respect to the errors of robot components. Moreover, if a robot has

1

2 CHAPTER 1. INTRODUCTION

to preempt exploration to reach some known location (for instance a power
outlet, to recharge the batteries), then it should be able to resume exploration
from that location, instead of having to come back to the location where
exploration was stopped. Greedy strategies exhibit this behavior by defini-
tion, while, depth-first search is strongly sensible to the last position reached
(because of the back-tracking).

• Prior Knowledge: greedy strategies can benefit of prior knowledge about
portions of the environment (possibly previously acquired by the robot or
provided to it). The reason is that they use all of their knowledge about the
environment when determining which unvisited (or unperceived) location is
closest to the robot and how to get there quickly. Instead, the basic definition
of depth-first search does not consider that knowledge, since it could lead to
inconsistent states (how is back-tracking defined on a prior known area?).

• Distributed Search: greedy strategies can be performed in parallel, allow-
ing to explore an unknown environment through several robots that share in-
formation on parts of the environment they explored individually. For depth-
first search, the robot, sharing information, may have the same problems of
having prior knowledge about parts of the environment.

The back-tracking, which is the strong point of depth-first search in the worst case,
becomes easily a strong limitation. Thus, because of their flexibility, greedy strate-
gies are widely adopted in real applications (see, e.g., [Thrun et al., 1998]). Other
works on greedy strategies include also criteria related to the expected information
gain of the candidate locations. For example, in [Stachniss and Burgard, 2003] the
cost of reaching a candidate location is linearly combined with its benefit, while
the method of [Gonzáles-Baños and Latombe, 2002] combines the distance and
the expected information gain of the candidate location in an exponential func-
tion. The assessment of such exploration strategies (those that exploits information
gain) performed in the field of robotics is mainly empirical. A number of meth-
ods are experimentally evaluated in selected settings and their performance com-
pared [Amigoni, 2008, Julia et al., 2012]. While the computational geometry and
the theoretical computer science communities have studied the problem of explo-
ration, the derived bounds are often relative to specific, and sometimes not fully
realistic, contexts (e.g., rectilinear polygonal environments [Deng et al., 1998] or
closed tours for graph exploration [Kalyanasundaram and Pruhs, 1994]). To the
best of our knowledge, very few works have considered more realistic settings for
providing bounds on the quality of solutions produced by exploration strategies,
prominently the work in [Tovey and Koenig, 2003]. In their approach, a single
robot should explore all the vertices of an undirected graph, whose edges have uni-

3

tary cost, with a sensor that allows to perceive the current vertex and an arbitrary
number of other vertices. An upper bound independent of the sensor range is given
for the number of edges that a robot has to traverse to visit all the vertices in the
graph. Given that the upper bound does not consider any other perceived vertex
beyond the one in which the robot currently is, it is like the robot operates under
the fixed graph scenario, namely it learns of each vertex (and of the corresponding
incident edge) adjacent to a vertex that it visits.

In this thesis, we significantly complement the analysis of Tovey and Koenig
[2003] explicitly embedding in the analysis the sensor range r, and considering ex-
ploration strategies based on information gain and on combination of information
gain with distance. We adopt a termination criterion based on the goal percentage
p of the number of vertices to explore with respect to the total number of vertices
in the environment.

To perform the analysis we first introduce a model that extends the fixed graph
scenario, which allows the robot, once it reaches a vertex, to learn all the vertices
(and the corresponding incident edges) within a certain distance r from the current
position. The need for this extension is basically due to the nature of the informa-
tion gain. To approach the information gain on a graph model, we introduce the
concept of “gain” in terms of perceived vertices thanks to a more powerful sensor
compared to the one employed in a fixed graph scenario.

Our contributions follow two directions: a worst-case analysis on this extended
model and an average-case analysis in the fixed graph scenario, which, to the best
of our knowledge, has never appeared in the literature.

We start proving some universal bounds on the number of candidate location
selections, and on the traveled distance for very large values of the sensor range
r. Then, we revisit the worst-case bounds found by Tovey and Koenig [2003] and
Koenig et al. [2001], according to our setting, for an exploration strategy that se-
lects the closest candidate location from the current position of the robot. We ana-
lyze how those worst-case bounds changes increasing the value of the sensor range
r, pointing out the significance of the model extension. Furthermore, we provide
worst-case bounds for an exploration strategy, that selects among the candidate lo-
cations, maximizing the information gain, providing, also, a universal worst-case
upper bound. We consider one more strategy which combines distance and infor-
mation gain, selecting the candidate location closest to the current position of the
robot, and breaking ties maximizing the information gain. We complete the worst-
case analysis performing some simulations of the three exploration strategies on
random generated graphs.

About the average-case analysis, we consider the gain, in terms of traveled
distance, provided by a tie breaker function that maximizes the information gain,
over the use of a random tie breaker for a distance-based criterion, in a fixed graph

4 CHAPTER 1. INTRODUCTION

scenario. We tackle this problem for certain classes of graphs that model indoor
environments. In particular, we consider two classes. The first one is a tree of
corridors and the second one is a simple corridor loop; in both cases some rooms
are attached to the corridor(s).

In those classes, the information gain leads the exploration favoring room en-
trances, which have information gain higher than corridor vertices.

This thesis is structured as follows. Chapter 2 presents a survey of works about
exploration, divided into those that deal with graph exploration, and those that an-
alyzes the geometrical features of the environment. Moreover we also presents
some works that experimentally evaluate information-gain based strategies. Chap-
ter 3 formulates the problem we study and presents the model we use in this thesis.
Chapter 4 shows worst-case upper and lower bounds on the number of edge traver-
sals for three different exploration strategies: one based on the distance criterion,
one on the information gain criterion, and one that combines both criteria. Chap-
ter 5 analyzes the performance in the average case for two strategies: the first one
based on the distance criterion and the second one that combines distance and in-
formation gain criteria. Finally, Chapter 6 concludes the thesis.

Chapter 2

State of the Art

Exploration strategies are usually defined and evaluated following two rather dif-
ferent approaches. On the one hand, they are defined in practical contexts of real
(or realistically simulated) robots and are empirically assessed by testing them in
some environments. Examples of this approach are reported by Amigoni [2008]
and Julia et al. [2012]. On the other hand, exploration strategies are defined in theo-
retical settings (e.g., exploration of graphs) and are assessed using theoretical tools
like worst-case bounds [Tovey and Koenig, 2003] and competitive ratio [Quattrini
Li et al., 2012], which is the ratio between the cost of the solution found by an
online algorithm and that of the optimal solution found by an offline algorithm.

2.1 Practical Results

On the practical side, several evaluation functions have been developed to decide,
at each step, where to move next. The trivial distance criterion (namely, to choose
always the nearest unscanned location) is often combined to other sophisticated
policies in order to achieve the best performance (in terms of time or traveled dis-
tance), since, in robotic navigation, each useless displacement amounts to a waste
of resources. Gonzáles-Baños and Latombe [2002] exploits the concept of infor-
mation gain, referring to the expected amount and quality of the information that
will be revealed at each new view. In the experiments this criterion seems to per-
form better than the plain distance criterion. The same concept has been used
by Amigoni and Caglioti [2010] to develop A-C, an information-based exploration
strategy for mapping, which has been shown to perform very well on real robots.
Nevertheless, the evaluation of these strategies is only empirical and does not guar-
antee any performance bound.

Another interesting variation of the exploration problem is analyzed by Smirnov
et al. [1996]. The authors consider a search problem on a partial known or un-

5

6 CHAPTER 2. STATE OF THE ART

Figure 2.1: Simulations with AC-A* and the framework VECA for goal-directed
exploration [Smirnov et al., 1996].

.

known graph, considering two strategies: the first one is pure exploration strategy,
which does not know anything about the target position; the second, called Agent
Centered A* (AC-A*), uses the target position as heuristic (with an approach very
similar to A*). They show that both approaches have disadvantages: the first one
does not utilize available knowledge to cut down the search effort, and the second
one relies too much on the knowledge, even if it is misleading. Therefore, they
developed a framework for goal-directed exploration, called VECA, that combines
the advantages of both approaches by automatically switching from exploitation to
exploration on parts of the state space where exploitation does not perform well.
VECA provides better performance guarantees than previously studied heuristic-
driven exploitation algorithms, and experimental evidence suggests that this guar-
antee does not deteriorate its average-case performance.

In [Quattrini Li et al., 2012] authors deal with a more powerful sensor range.
In this work the environment is modeled as a grid and the goal is to map an initially
unknown environment given a starting position. The best path is computed offline
using A* over all the possible exploration states. The sensors considered are of two
types: a laser range finder sensor that perceives the state of any cell whose center
can be connected to the position of the robot with a straight line segment of maxi-
mum length r and crossing only free cells (without passing between occupied cells
that share a vertex); a (less realistic) footprint sensor that perceives the state (free

2.2. THEORETICAL RESULTS 7

Figure 2.2: The traveled distance using a realistic laser sensor and an unrealistic
footprint sensor [Quattrini Li et al., 2012].

or occupied) of any cell whose center lies within the circle centered in the robot
with radius r. Some experimental results, reported in Figure 2.2, show that using a
footprint sensor obtains similar results to those obtained by using real sensor.

2.2 Theoretical Results

On the theoretical side, works can be further classified according to the abstraction
level at which environments are represented. The computational geometry commu-
nity considers geometrically-represented environments (e.g., rectilinear polygonal
environments in the work of Deng et al. [1998]). Gabriely and Rimon [2010] de-
termined some classes of environments based on their geometrical features and,
for which the competitive ratio of any exploration strategy is found. In particu-
lar three different complexity have been found: linear, quadratic, and exponential.
The bounds take into account realistic and physical settings, such as the robot size.
Examples of geometrical environments are given in Figure 2.3 and Figure 2.4.

Surveys such as those of Ghosh and Klein [2010] and of Isler [2001] report sev-

8 CHAPTER 2. STATE OF THE ART

Figure 2.3: Simple geometrical enviroment [Gabriely and Rimon, 2010].

eral ad hoc strategies used to explore real polygonal environments with or without
polygonal obstacles.

The theoretical computer science community, instead, usually considers more
abstract graph-based representation of environments that disregards their geometry
to focus on their topological and combinatorial aspects. In this field, the exploration
task is usually formulated as follow: a robot has to explore an initially unknown
graph G = (V,E), where the vertices V correspond to the locations where it can
move and the edges E represent the direct connections between these locations.
During the exploration process, the robot uniquely learns of each vertex (and of
the corresponding incident edge) adjacent to a vertex that it visits. This scenario is
called fixed graph scenario.

2.2.1 Graph Edges Exploration

There are typically two variants of the exploration task studied with a graph-based
representation of the environment. One is that of visiting all the edges. Deng and
Papadimitriou [1999] show that in Eulerian graphs (namely those that contain cy-
cles which use a graph edge only once, also called Eulerian cycle) the minimum
competitive ratio for any exploring algorithm is 2. Furthermore, they show that, for
non-Eulerian graphs, this ratio is unbounded when the deficiency of the graph (i.e.,

2.2. THEORETICAL RESULTS 9

Figure 2.4: Complex geometrical enviroment. Here D is the robot size [Gabriely
and Rimon, 2010].

the number of edges to be added to make the graph Eulerian) is unbounded. The au-
thors propose an algorithm that explores a graph with deficiency d using 2O(d log d)

edge traversals. Panaite and Pelc [2000] investigate the impact of the amount of a
priori knowledge of the graph on the exploration performance. It is theoretically
shown that the best exploration algorithm is 2-competitive (considering the number
of edge traversals to explore the graph) when no a priori knowledge is available
about the graph. In particular they consider two different kinds of knowledge: the
topology of the graph and the sense of the direction. Moreover, they restrict their
attention to trees exploration and they prove that it is possible, for the universe of
trees, to lower the minimum feasible competitive ratio to 4

3 .

The work by Fraigniaud et al. [2005] considers a slightly different problem. In-
stead of considering the exploration time complexity, for example measured as the
number of edge traversals required to explore the whole graph, the authors theoreti-
cally look at the minimum memory size the robot requires to explore a graph. They
prove that the worst-case space complexity is Θ(D log d) to explore all graphs of
diameter D and maximum degree d. (The diameter of a graph is the length of
the “longest shortest path” between any two graph vertices; the maximum degree
refers to the maximum number of incident edges to a graph vertex.) Furthermore
they show that, for any K-state robot (namely a finite state machine with K states)
and any d ≥ 3 there exists a planar graph of maximum degree d with at most
K + 1 vertices that the robot cannot explore, or, equivalently, a robot that explores
any planar graph with n vertices requires at least dlog ne memory bits. They leave
open the problem to decide whether this latter bound is tight, or if, for any K-state
robot, there exists a graph of size o(K) that this kind of robot cannot explore.

10 CHAPTER 2. STATE OF THE ART

2.2.2 Graph Vertices Exploration

The second variant of the graph-based exploration task is that of visiting all the
vertices of a graph. Usually, the optimal solution is calculated as a minimal-length
tour that visits all the vertices of an undirected graph and returns to the starting one.
One of the first algorithms devised for such online Traveling Salesman Problem is
called Nearest Neighbor, which always chooses to move to the closest unvisited
vertex. Rosenkrantz et al. [1977] prove that such algorithm is at most log(|V |)-
competitive (where |V | is the number of vertices in the graph), meaning that the
ratio between the length of the solution it produces and that of the optimal solution
is at most log(|V |).

Kalyanasundaram and Pruhs [1994] present a variant of the Depth-First Search
algorithm, called ShortCut, which finds an exploration tour visiting all the vertices
of an edge-weighted connected graph. The searcher operates under the fixed graph
scenario and moves (traveling on known edges) to unvisited boundary vertices ad-
jacent to at least a visited vertex. The main difference between ShortCut and DFS
is the concept of blocking. At any point in time during the exploration of the graph,
a boundary edge e = (u, v) is said to be blocked, if there is another boundary edge
e′ = (u′, v′) with u′ explored and v′ unexplored which is shorter than e and for
which the length of any shortest known path from u to v′ is at most (1 + δ)|e|. No-
tice that δ is the key parameter of the strategy and decides when ShortCut behavior
diverges from DFS. ShortCut is proved to be (at most) 18-competitive on planar
graphs. In the last part of the paper, the authors explain how to adapt ShortCut
to develop a competitive algorithm for visual TSP, requiring that the planar graph,
used by the searcher, contains a minimum spanning tree as a subgraph. The ques-
tion whether ShortCut has constant competitive ratio in general has remained open
in this paper.

The case of exploration of cycles under the fixed graph scenario is analyzed by
two works. The work of Miyazaki et al. [2009] shows an algorithm that builds a
tour to explore the vertices of a graph and proves that its competitive ratio is 1+

√
3

on simple cycles. In addition, they show that for unweighted graphs a standard
Depth-First Search is 2-competitive. Asahiro et al. [2010] prove that the weighted
Nearest Neighbor algorithm, which chooses the next vertex to visit according to a
weighted distance cost, achieves a competitive ratio of 1.5 on cycles. Moreover,
authors show that no exploration strategy can have a competitive ratio less than
1.25 on cycles.

The work of Megow et al. [2012] considers again the fixed graph scenario and
answers the open questions left by Kalyanasundaram and Pruhs [1994]. Their main
result is an involved lower bound construction that shows how the competitive ratio
of ShortCut is not constant in general.

2.2. THEORETICAL RESULTS 11

Figure 2.5: The worst case graph for Greedy Mapping with parameter n =

3 [Koenig et al., 2001].

Anyway, they shows that ShortCut algorithm (here called Blockingδ algorithm,
to underline the importance of the concept of blocking and the δ parameter) has a
constant competitive ratio for a class of graphs wider than planar graphs. More
precisely, Blockingδ is 2(2 + δ)(1 + 2/δ)(1 + 2g)-competitive for graphs of genus
at most g (a graph has genus at most g if it can be drawn without crossing itself on
a sphere with g handles; a planar graph has genus 0). Another contribution given in
this paper is the definition of a new algorithm called hierarchical depth first search
(hDFS), which is 2k-competitive on graphs with at most k distinct weights.

An important remark concerns the difference between the traditional TSP prob-
lem and an exploration problem. While in the former the graph is known from the
beginning, the latter has to deal with the partial knowledge of the graph, which
is obtained incrementally during the exploration. Moreover all the above results
consider exploration tours that require the searcher to return to the starting vertex.
This constraint is not usually imposed in practical robotic exploration, where the
goal is to find an exploration path. As recognized by Kalyanasundaram and Pruhs
[1994], the combinatorics of the two problems are significantly different.

One of the most notable works that deal with exploration paths is that of Tovey
and Koenig [2003], which shows that a robot (basically operating in the fixed
graph scenario), adopting an exploration strategy that considers the distance as
criterion, namely that selects the closest unvisited vertex, has an upper bound of
O(|V | log |V |) edge traversals. The same bounds hold also for other variants of
the distance-based exploration strategy, choosing the closest unscanned vertex and
the closest informative vertex. The first variant considers a more powerful sensor
which allows the robot to perceive (scan) vertices beyond the threshold imposed

12 CHAPTER 2. STATE OF THE ART

Figure 2.6: The worst-case analysis for Greedy Mapping varing the parameter
n [Koenig et al., 2001].

by the fixed graph scenario. The second variant considers the closest scanned ver-
tex which has some unscanned vertices as neighbors. In both cases, the algorithm
terminates when all the vertices have been scanned. This paper is the conclusion of
a series of related works (Koenig [1998], Koenig et al. [2001]), where the main re-
sult achieved is the proof of the non-optimality of the Nearest Neighbor algorithm
(here called Greedy Mapping). In particular, authors showed that, in the worst case,
the complexity of the Greedy Mapping is Ω(log |V |

log log |V | |V |). The proof is based on
the construction of a sophisticated class of graphs, characterized by a parameter
n (an example of such graph is given by Figure 2.5). It has been shown that, for
those worst-case graphs, |V | is Θ(nn), while the number of edge traversals is, in
the worst case, Ω(nn+1). This proves, after some math, the lower bound. In Fig-
ure 2.6, the results obtained computing the number of vertices and the number of
edge traversals for some worst-case graphs are reported.

Note that, as all the works presented in this section consider the fixed graph
scenario, we have that the timing of the perception is discrete (if we intend percep-
tion as referring to the integration of the data coming from sensors in the current
map). Also, the sensor range is basically ε, where ε is a small value close to 0, as
just the incident edges of the current vertex can be perceived. Note that just the
work of Tovey and Koenig [2003] considers a variant in which a more powerful
sensor is available. Nevertheless, the provided theoretical results are independent
of r and thus as the results obtained with a sensor range ε.

2.2.3 Summary of Graph Exploration

Summarizing, we classify the main theoretical works described above, according
to the following dimensions and report them in Table 2.1:

2.2. THEORETICAL RESULTS 13

Paper Goal Solution Optimality crite-
rion

Graph

[Deng and Papadimitriou, 1999] E P # edge traversals directed, strongly
connected

[Panaite and Pelc, 2000] E P # edge traversals undirected, con-
nected

[Fraigniaud et al., 2005] E T memory size anonymous, undi-
rected

[Rosenkrantz et al., 1977] V T traveled distance complete, weighted,
undirected

[Kalyanasundaram and Pruhs, 1994] V T traveled distance weighted, planar
[Miyazaki et al., 2009] V T traveled distance trees and cycles
[Asahiro et al., 2010] V T traveled distance weighted undirected

graph
[Megow et al., 2012] V T traveled distance undirected, con-

nected, weighted
[Tovey and Koenig, 2003] V P # edge traversals undirected, con-

nected, unweighted

Table 2.1: Classification of representative papers from theoretical computer sci-
ence on exploration according to several dimensions.

• Goal: visit all edges (E) or all vertices (V).

• Solution: the solution can be a closed tour (T) or a path (P).

• Optimality criterion: the criterion that is optimized can be the number of vis-
ited vertices (steps) and the number of edge traversals (distance, unweighted
or weighted).

• Type of graph: for example, general graphs or planar graphs.

Some other variants of the graph exploration problem include the non-ability of
the robot to uniquely recognize already visited vertices [Rekleitis et al., 1999], the
constrained exploration of a graph, where a robot is tethered or must return from
time to time to a fixed point [Awerbuch et al., 1999, Albers et al., 2002, Duncan
et al., 2006], the exploration of directed graphs [Forster and Wattenhofer, 2012],
and the use of multiple explorers [Higashikawa et al., 2014, Das et al., 2007].

Chapter 3

Exploration Process Model

In this chapter we describe the model of the exploration process that we will adopt
in this thesis.

The environment is represented by a graph G = (V,E), where the vertices
V correspond to the locations where an autonomous mobile robot can move and
the edges E represent the direct connections between these locations. The graph
is assumed to be undirected, connected, and finite. For sake of simplicity, we
assume that edges have unitary costs (as in the work of Tovey and Koenig [2003]).
Generalizing our results to weighted graphs could be an interesting future work.

The robot starts exploring in a vertex v0 ∈ V at a time step 0 having no a priori
knowledge about the graph G. The robot is equipped with a sensor with a finite
range r ∈ R>0 (also called perception radius in the rest of the thesis) that perceives
all vertices within the range r. More formally, a robot in vi at time step i, perceives
the vertices in Pi = {v′ ∈ V | d(vi, v

′) ≤ r} and updates its knowledge about
already perceived (known) vertices as Vi = Vi−1 ∪ Pi, where Vi−1 is the set of
known vertices at the previous step i − 1 and d(vi, v

′) is a function that computes
the geodesic distance between the two vertices vi and v′ in G. Note that when
i = 0, then Vi−1 = ∅.

Since we consider a discrete model, although r can be any real number, we will
refer to r to denote brc, with a slight abuse of notation.

The perception model allows the robot to acquire knowledge about the incident
edges of vertices v′ ∈ Pi and to recognize whether there is an edge between two
known vertices v′, v′′ ∈ Vi. At each time step i, we also have the set of partially
perceived vertices on the frontier, namely the candidate vertices, Fi = {v′ ∈ V |
v′ /∈ Vi ∧ (∃(v′′, v′) ∈ E | v′′ ∈ Vi)}, (similarly to the model of Tovey and
Koenig [2003]). Note that if r = ε (where ε is a small constant that tends to 0

and allows to perceive just the vertex where the robot finds itself and the incident
edges), then, vertices are perceived only when physically visited by the robot, as

15

16 CHAPTER 3. EXPLORATION PROCESS MODEL

in the fixed graph scenario. Although the perception of all vertices at distance
up to r from the robot current vertex could be unrealistic in some scenarios (due
to the presence of obstacles), this footprint model leads to interesting theoretical
results that are in accordance with many results obtained experimenting with real or
simulated exploring robots (as in the work of Quattrini Li et al. [2012]). Moreover,
the results are valid for search problems where the perception radius is not a visual
sensor (e.g., radiation detection with mobile robots).

We assume that the perception of the robot is discrete: the robot perceives
the surrounding environment and updates Vi to Vi+1 only when in the next position
vi+1 and not continuously while moving (time-discrete perception is often assumed
by online exploration algorithms, see [Amigoni et al., 2013]).

At each time step i, the robot always chooses to move to one of the candidate
vertices Fi. Although it would be possible to define a motion model for which the
robot can move to any vertices v ∈ Vi∪Fi, we impose to move on frontier vertices,
as usually done with real exploring robots. Since we are interested in the theoretical
analysis of the online exploration strategies, we assume that the perceptions and the
movements of the robot are error-free (i.e., deterministic). As a consequence, the
robot perfectly knows its position in the environment.

In summary, the robot operates according to the following steps:

1. starting from an initial vertex v0; at a generic time step i, while being in vi,

2. it perceives the surrounding environment generating Pi;

3. it integrates the perceived data within Vi;

4. it reaches a vertex in Fi, chosen according to an exploration strategy S , and
starts again from 1.

This process continues until a percentage p ∈ (0, 1] of the vertices of G are
perceived by the robot, namely until |Vi||V | ≥ p. Note that the exploration terminates
at some finite time step k because the robot chooses vertices that provide some new
information about the graph (i.e., it is |Vi+1| > |Vi|) and the graph is finite. So,
in the end, the robot follows a sequence of vertices P = 〈v0, v1, · · · , vk〉, called
exploration path, where vi+1 ∈ Fi, with 0 ≤ i < k (v0 is the starting vertex).

We consider exploration strategies that evaluate a candidate vertex v ∈ Fi from
the current position vi adopting the following criteria:

• di(vi, v) is the geodesic distance between vi and v in G′i = (Vi ∪ {v}, E′i),
which is the graph Gi induced by Vi on G, augmented with v and with the
edges (in E) between v and vertices in Vi,

17

• g(v, Vi) is the expected information gain at v, and is equal to the number of
vertices the robot perceives in v minus those already known. More formally,
at time step i, given a frontier vertex v, g(v, Vi) = |P (v)\Vi|. Being v /∈ Vi,
the function g() could be estimated from datasets of environments, but here
we assume it as granted. In the particular case of r = ε (ε → 0) we define
g(v, Vi) as the number of edges incident to v that are connected to vertices
not in the current map Vi at time step i.

We consider three exploration strategies:

• Sd, which selects locations by simply minimizing the distance d() (as for
example in [Tovey and Koenig, 2003]),

• Sg, which chooses candidate locations maximizing the information gain g()

(as, e.g., in [Amigoni, 2008]),

• Sdg, based on Sd but breaking ties favoring vertices with larger information
gain g() (thus providing a more informed version of Sd).

In all the three cases, further ties are broken randomly with uniform probability.
The problem we address is the following. Given a sensor range r ∈ R>0,

a percentage p ∈ (0, 1] of the environment to map, and an exploration strategy
S ∈ {Sd,Sg,Sdg}, can we determine some performance bounds on the explo-
ration path P in terms of number of edges traversed by the robot in any undirected,
connected, and finite graph G? Moreover, given a certain class of indoor environ-
ments, can we estimate the average number of edges traversed by the robot?

Chapter 4

Worst Case Analysis

Here we provide a comparison of the three exploration strategies by presenting
some bounds on their worst-case performance, measured as traveled distance (num-
ber of edge traversals). Bounds will be given according to the total number of
vertices |V | in the graph, and the perception radius r.

4.1 Universal Bounds

To study the upper bounds on the traveled distance of the exploration strategies,
let us first derive an upper bound on the number of frontiers selected as destina-
tion locations (namely, on k, which is the cardinality of the exploration path P

minus 1) according to the number of vertices to explore |V | and the sensor range
r, independently of the exploration strategy.

Theorem 1. Given a robot sensor range r ∈ N, the maximum number of frontier
selections in the exploration sequence P is

k̄ =

2
|V | − 1

r + 1
− 1 if r is odd

2|V |
r + 2

− 1 if r is even

on any finite undirected connected graph G = (V,E), where the weight of each
edge is 1.

Proof. The proof develops on bounding the number of selected frontiers in the
exploration sequence P on any spanning tree of the connected graph G.

First let us show that, given an exploration path on any connected graph, the
same sequence can be obtained on one of its spanning trees. Let us consider a
generic exploration path P = 〈v0, v1, · · · , vk〉 on a given connected graph G =

19

20 CHAPTER 4. WORST CASE ANALYSIS

v 1

v 0

r

r ‒ 1

r ‒ 2

r ‒ 2

r +
 1

r ‒ 1

r

⌊ r
2
⌋

Figure 4.1: The tree exploration after the perceptions in v0 and v1. The arrows
mean the branches for each vertex, while, the labels mean their explored depth.

(V,E). Let us build a spanning tree T = (V,E′) of G as follows. We choose the
vertex v0 as the root. For each step i (0 ≤ i ≤ k) of the exploration path, the set
of edges E′ is built as follows: we add the edges belonging to the graph induced
by Pi/Vi−1 on G, such that the induced graph is loop-free (the edges removal can
be arbitrary). Moreover, except for i = 0, we add (v, vi) to E′, where v ∈ Vi−1

which is the edge that connects the frontier vi to a vertex v in the current known
graph Vi−1. That edge belongs to the shortest path between vi−1 to vi found in the
current known graph Vi−1. Thus, by construction, the graph T is a tree.

Now let us prove by induction the following statement: at each step i, vi+1 ∈ Fi
both on G and T , namely it is possible to have the same exploration path P on G
and on T . At step 0 (base case), V0 = P0, hence v1 ∈ F0 both in G and T , as the
robot perceives the same vertices and by construction of T . Also, by construction,
v1 is reachable in T . At a generic step j < i (the inductive step), vj+1 ∈ Fj and
vj+1 is reachable in T .
We say that Vi coincides on both G and T for any exploration strategy S if, at the
step i, given the set of the perceived vertices V G

i exploring G, and the set of the
perceived vertices V T

i exploring T , we have V T
i = V G

i = Vi. Now, let us show that
at step i, Vi coincides on both G and T , if the robot is in vi and Vi−1 coincides in
bothG and T . Choosing j = i−1, the statement holds by the inductive hypothesis

4.1. UNIVERSAL BOUNDS 21

v 5

v 1
v
7

v
3

v
6

v
2

v
0

v
4

Figure 4.2: The worst case for the ratio |V |/k with |V | = 25, r = 5 and k̄ = 7.

(the robot is in vi−1). By construction, ∃v ∈ Vi : (v, vi+1) ∈ E′. Thus, at step i,
vi ∈ Fi on both G and T , therefore, on both T and G, there exists a path from vi−1

to vi. This leads Vi to coincide on G and T , and so, when in vi, vi+1 ∈ Fi. Hence,
the statement on the fact that the same exploration path P can be obtained on G
and T holds.

Now we bound the number of selected frontiers in P on any tree built as shown
above, by showing the worst-case graph in terms of number of selected frontier
vertices k. Let us recall that the robot can discover vertices at distance less or equal
than r from v0 (in general from any vertex vi). Thus, frontier vertices are at least
at distance r + 1 from a vertex vi. Let us call line of v toward w all the vertices on
the shortest path from v to w (which is unique because of the tree structure). Note
that each perception Pi, on a frontier vertex vi chosen from vi−1, does not add,
to Vi−1, vertices belonging to other lines of vi−1 towards other frontier vertices,
since they are all the distance greater than r. Let us focus just on the subtree rooted
in v1 (reasonings on other subtrees are basically the same). To find this bound,
we look at where to attach vertices in the graph in order to minimize the number
of perceived vertices by the robot at a time step i. There are basically just two
possibilities where to attach vertices: either to attach them directly to lines that
start from v0 or to subtree rooted in some other frontier vertices vi, i > 0. Once
the robot is in v1, it can choose other frontier vertices discovered at time step 1

22 CHAPTER 4. WORST CASE ANALYSIS

(in the subtree rooted in v1). Those frontier vertices are at distance r + 1 from v1.
Otherwise, it can go back to a vertex v between v0 and v1, and then go to another
frontier vertex reachable from v. Given a line starting from v, the depth of the tree
(rooted in v0) the robot can reach depends on the distance of v from v0 and v1. The
worst case in terms of k (namely the minimum number of vertices that should be
added to have another frontier) happens when v is at distance d r2e from v0 or v1. In
that case, the number of vertices required to reach a new frontier vertex is b r2c+ 1.
This is clear in Figure 4.1. Note that having more than one line starting from v0 is
not the worst case in terms of k because r+ 1 vertices are necessary to have a new
frontier vertex. Thus, for finding the worst case for k it is better to attach vertices to
v so that lines starting from v to frontier vertices are composed of b r2c+ 1 vertices.
This scenario can be seen as a star graph, where the length of each line that starts
from v to a leaf is b r2c + 1 = d r+1

2 e. The number of such lines is the maximum
number of frontier k in the exploration path P . An example of explorations on a
star graph is given in Figure 4.2.

It is easy to check that, in case of odd r, |V | = 1 + r+1
2 k, where k is both

the number of leaves of the star and the cardinality of the exploration path. After
some math k = 2 |V |−1

r+1 and because v0 is not counted in the frontier selection

k̄ = 2 |V |−1
r+1 − 1. In case of even r, similar reasonings lead to |V | = (k + 1) r+2

2

and thus k̄ = 2 |V |r+2 − 1.

Note that k̄ can be a rational number if the star graph is not a perfect star (namely,
one ray is shorter than the others). If we are interested in the exact length we may
take bk̄c.

It is easy to see that the upper bound in Theorem 1 is tight, as we are consider-
ing the worst-case graph and the possible perceptions of the robot for the number of
frontiers of the exploration path. For sake of simplicity we will take k̄ = 2 |V |−1

r+1 −1

as upper bound, namely the value of k̄ for r odd, which is an upper bound for r
even. Note also that when r = ε (ε → 0), then we have the trivial bound on the
number of selected frontiers k̄ = |V | − 1, namely, the robot has to visit all the
vertices.

Now, let us show bounds on the number of edge traversals during exploration.
The following result allows us to restrict our analysis to small range r, because, if
r is greater than a value that depends on the size of the graph, the worst-case upper
bound on the number of edge traversals is linear for any exploration strategy.

Theorem 2. Given a robot sensor r ≥ b |V |−1
2 c, for any exploration strategy S ,

the upper bound on the number of edge traversals is

UB =
3

2
(|V | − 1)

4.1. UNIVERSAL BOUNDS 23

v
0

v
1

v
2

Figure 4.3: For |V | = 12 and r = |V |
2 − 1 = 5 there are at most two frontier vertices

v1 and v2.

on any finite undirected connected graph G = (V,E), where the weight of each
edge is equal to 1.

Proof. Let us start considering r = b |V |−1
2 c. To prove the proposition, we incre-

mentally build the worst-case graph, considering separately the case of even and
odd |V |.

If the value of |V | is even, r = |V |
2 − 1. Thus, starting from an arbitrary v0, the

maximum number of frontier selections is 2 for any |V | ≥ 6 because of Theorem 1
(as shown in Figure 4.3). Basically, we have two steps in the exploration path:
from v0 to a vertex v1 and from v1 to a vertex v2. The distance between v0 and v1

is always of length r + 1. Thus, the first part of our worst-case graph is composed
by V0, which contains at least a line of |V |2 vertices, plus v1. If the remaining |V |2 −1

vertices are attached to v0 or v1 there are no more frontier vertices, because they
are within the range r of a perception performed from v0 or v1. If they are attached
to a vertex on the line between v0 and v1, forming a new line of vertices, there
could be a new frontier vertex v2, which is not within the range r of a perception
performed at v0 and v1. Let us show where the line of vertices containing v2 should
be attached to have the worst case. The worst case happens when it is attached at
distance 1 from v0, on the line that links v0 and v1. It is easy to check that this
shape maximizes the distance d(v1, v2), since d(v0, v1) is necessarily fixed to r+1.

24 CHAPTER 4. WORST CASE ANALYSIS

v
0

v
1

v
2

Figure 4.4: The worst case for r = |V |
2 − 1 = 5 and |V | = 12.

Hence, UBeven = d(v0, v1) + d(v1, v2) = (r + 1) + 2r = |V |
2 + 2(|V |2 − 1) =

3
2 |V | − 2.

If |V | is odd, there are still at most 2 frontier selections. Following the same
reasoning, the number of vertices between v0 and v1 is r = |V |−1

2 . Thus, the
number of vertices we can use to compose our worst-case graph is |V |− (r+ 2) =

|V | − |V |−1
2 − 2 = |V |−3

2 . If they are attached to v0 or v1, again, there are no more
frontier vertices, but also if they are attached at distance 1 from v0 or v1. In case
the value of |V | is odd, the worst case happens when the new line, which contains
v2, is attached at distance 2 from v0, on the line that links v0 and v1. Hence,
UBodd = d(v0, v1)+d(v1, v2) = (r+1)+2r−1 = |V |−1

2 +2(|V |−1
2) = 3

2 |V |−
3
2 .

Note that we have the following relationship between the case of |V | even and odd
UBeven ≤ UBodd = UB. Also note that considering a greater r the upper bound
found trivially holds, as, each increment of r implies an increment of d(v0, v1) but
an equal decrement of d(v1, v2). After a certain radius the number of frontiers has
lowered to 1 and the trivial upperbound bound becomes |V |−1. If the sensro range
r is greater than |V | − 1 the number of frontier selections is 0 as the number of
edge traversals.

4.2. DISTANCE CRITERION 25

4.2 Distance Criterion

Now, let us show how the upper bound on the number of edge traversals changes
according to r (with r ∈ N and r < b |V |−1

2 c, for Theorem 2), differently from
UBTK = |V | + 2|V | ln(|V |), the worst-case bound on the performance of Sd

which has been provided by Tovey and Koenig [2003] and that is independent of r.

Theorem 3. Given a robot sensor range r ∈ N>1, the worst-case upper bound on
traveled distance for Sd is

UBSd
= 2|V |

(
ln

2(|V | − 2) + r(r − 1)

(r + 1)2
− r(r − 1) + (|V | − 2)

(r + 1)(|V | − 2)
+ 2

)
edge traversals, on any finite undirected connected graph G = (V,E), where the
weight of each edge is equal to 1

Proof. First, let us introduce a lemma (proved in Tovey and Koenig [2003]) that
we are going to use to prove the theorem. Lemma 6.2 of Tovey and Koenig [2003]
states the following.

Define St = {vi ∈ V |ri ≥ t} for an orderly marking sequence
{vi, ri,M i} on a given connected graph G = (V,E). Then, it holds
that |St| ≤ 2|V |/t.

An orderly marking sequence is basically an exploration path, which includes the
vertices the robot visits during the exploration. The symbols used in the above
Lemma have the following correspondence with the symbols we use: vi = vi,
M i = Vi, and ri = d(vi−1, vi)− 1, namely the radius of a circle centered on vi−1,
which is given by the distance between the current frontier vi and the preceding
frontier vi−1 minus 1 (because of the movement towards the frontier) in the ex-
ploration path. Note that, as ri represents the radius within which, from vi−1, all
the vertices are in Vi−1. Intuitively, St represents all the vertices vi that are at a
distance of at least t + 1 from the next vertex vi+1. By construction, each pair of
frontier vertices in the exploration path are at least at distance r + 1.

Considering the worst case on the traveled distance, the exploration path has a
number of selected frontiers equal to k̄, according to Theorem 1. Let us define h as
the number of different t-classes St, where St is defined as above. h is a positive
integer with value at most k̄.

To enumerate all the t-classes used in our exploration path, let us define a func-
tion f() which orders them, starting from f(1) = the smallest t-distance (which
must be greater than or equal to r); until f(h) = the biggest t-distance in the ex-
ploration path (which must be less than or equal to |V | − 2, because the maximum

26 CHAPTER 4. WORST CASE ANALYSIS

travelable distance between two different vertices is |V | − 1). Let us also define
f(h+ 1) = |V | − 1, f(0) = 0, |S|V |−1| = 0.

We can find the traveled distance (number of edge traversals) with the following
formula (which exploits k̄ and the radius ri that should be summed to 1 to have the
actual traveled distance):

k̄∑
i=1

1 + ri = k̄ +
k̄∑
i=1

ri

(disregarding the order of the selected frontiers in the path)

= k̄ +
h∑
t=0

f(t) · (|Sf(t)| − |Sf(t+1)|)

(by applying some math and given the fact that |S|V |−1| = 0)

= k̄ +

h−1∑
t=0

(f(t+ 1)− f(t)) · |Sf(t+1)|

(Lemma 6.2 of Tovey and Koenig [2003])

≤ k̄ + 2|V |
h−1∑
t=0

f(t+ 1)− f(t)

f(t+ 1)
. (4.1)

We have to find the set of values of f() that maximize the above sum. Because
of the Theorem 1, in general, the h counterimages of f() do not cover all the
codomain {r, ..., |V | − 2}. It is easy to see that the worst case happens when all
the missing counterimage values are between r + h − 1 and |V | − 2. Thus, when
f(1) = r; f(2) = r+ 1; ...; f(h− 1) = brc+ h− 1; and f(h) = |V | − 2. Hence
(4.1) becomes:

= k̄ + 2|V |

(
h−2∑
t=0

f(t+ 1)− f(t)

f(t+ 1)
+
f(h)− f(h− 1)

f(h)

)

(using the considerations on the values of f() and doing some math)

≤ k̄ + 2|V |

(
h+r−1∑
t=r+1

1

t
+ 2− f(h− 1)

f(h)

)

(limit approximation for the sum and explicitly reporting the first and last value of
f())

≈ k̄ + 2|V |
(

ln
h+ r − 1

r + 1
− h+ r − 1

|V | − 2
+ 2

)

4.2. DISTANCE CRITERION 27

Now we have to find the value of h that maximizes the formula. Analyzing the
first and second derivative with respect to h ∈ {1, · · · , k̄}, we find that

∂

∂h

(
ln
h+ r − 1

r + 1
− h+ r − 1

|V | − 2

)
=

|V | − h− r − 1

(|V | − 2)(h+ r − 1)

The only root is h = |V | − r − 1 which is a feasible maximum just for r = 1.
For any 1 < r < b |V |−1

2 c and a sufficiently large |V |, it is easy to check that the
maximum value is for h = k̄. Using k̄ for r odd as upperbound, after some math,
we have

2|V |
(

ln
2(|V | − 2) + r(r − 1)

(r + 1)2
− r(r − 1) + (|V | − 2)

(r + 1)(|V | − 2)
+ 2

)
− 2

r + 1

which is slightly lower than UBSd
, thus:

≤ 2|V |
(

ln
2(|V | − 2) + r(r − 1)

(r + 1)2
− r(r − 1) + (|V | − 2)

(r + 1)(|V | − 2)
+ 2

)

Corollary 3.1. Given a robot sensor range dr̄e, where r̄ ∈ R>1 such that the
following transcendental equation is satisfied

ln
2(|V | − 2) + r̄(r̄ − 1)

(r̄ + 1)2
=
r̄(r̄ − 1) + (|V | − 2)

(r̄ + 1)(|V | − 2)

the worst-case upper bound on traveled distance for Sd is UBSd
= 4|V | edge

traversals, on any finite undirected connected graphG = (V,E), where the weight
of each edge is equal to 1.

Proof. The proof trivially derives from the result of the Theorem 3.

UBSd
= 2|V |

(
ln

2(|V | − 2) + r̄(r̄ − 1)

(r̄ + 1)2
− r̄(r̄ − 1) + (|V | − 2)

(r̄ + 1)(|V | − 2)
+ 2

)
Because of the hypotesis, we have that

ln
2(|V | − 2) + r̄(r̄ − 1)

(r̄ + 1)2
=
r̄(r̄ − 1) + (|V | − 2)

(r̄ + 1)(|V | − 2)

Thus, since the UBSd
function is monotonic with respect the sensor range r, the

upper bound, for dr̄e becomes

UBSd
= 4|V |

28 CHAPTER 4. WORST CASE ANALYSIS

Number of vertices |V | Sensor radius dr̄e
5 · 10 12

5 · 102 70

5 · 103 347

5 · 104 1662

5 · 105 7833

5 · 106 36615

Table 4.1: Some values of |V | and the corresponding r̄, such that the worst-case
upper bound on traveled distance for Sd is UBSd

= 4n edge traversals

The strong implication of Theorem 3 is that linearity is achievable through
perception radii less than b |V |−1

2 c, as we can see in Table 4.1. The radius r̄, such
that the worst-case upper bound is linear, increases less than linearly with respect
to the number of vertices to explore. Moreover, incrementing r from r̄ to b |V |−1

2 c
Sd gains just |V |2 + 1 edge traversals, as upper bound.

Note that, if we consider the bound independent of r that in our setting corre-
sponds to r = ε (ε → 0)), we have a bound slightly different of that in Tovey and
Koenig [2003]. However, by including in the limit approximation the first term r

r

and the last term f(h)−f(h−1)
f(h) we considered apart from the sum

∑h−2
t=0

f(t+1)−f(t)
f(t+1) ,

we exactly obtain the same bound of Tovey and Koenig [2003], as it would be

k̄ + 2n

h−2∑
t=0

f(t+ 1)− f(t)

f(t+ 1)
≤ k̄ + 2n

h+r∑
t=r+1

1

t

≈ k̄ + 2n ln
h+ r

r + 1

≤ k̄ + 2n ln
k̄ + r

r + 1

With r = ε (ε → 0) and k̄ = |V | the upper bound on the traveled distance is
|V | + 2|V | ln |V |. Considering instead r = 1 and substituting the maximum we
found in the proof (namely, h = |V | − r − 1) we have

k̄ + 2|V |
(

ln
h+ r − 1

r + 1
− h+ r − 1

|V | − 2
+ 2

)
= k̄ + 2|V |

(
ln
|V | − 2

2
+ 2

)
= |V |+ 2|V |

(
ln
|V | − 2

2
+ 2

)
Nevertheless for sake of simplicity we will refer to the upper bound of Theorem 3
as the general upper bound for any r.

4.2. DISTANCE CRITERION 29

The following theorem presents a lower bound for Sd. Because of the com-
plexity of the extended formula, in this case we give just the order of the bound,
according to the perception radius r and the number of vertices |V |.

Theorem 4. Given a robot sensor range r ∈ N>0, the worst-case lower bound on
the traveled distance for Sd is

LBSd
= Ω

(
log |V | − 2 log(r + 1)

log log |V |
|V |
)

edge traversals, on any finite undirected connected graph G = (V,E), where the
weight of each edge is equal to 1.

Proof. The proof is structured in two parts. First we show how the worst-case
graph is constructed, depending on the sensor range r. This construction is based
on the worst-case graph in [Koenig, 1998]. Then, we show that, on that graph, the
robot (re)traverses a certain part of the graph several times.

The worst-case graph consists of three main components. The first one, that
we call stem, is a line graph, whose number of vertices is mm, where m ≥ 3 is a
parameter that allows to obtain the robot behavior briefly described above. Let us
call the vertices on the stem v0, v1, v2, ..., vmm , where v0 is the vertex where the
robot starts the exploration. The second main component is a loop of level i, where
w + 1 ≤ i ≤ m, and

w = dlogm(r + 1)e

which is a parameter that depends on the sensor range r and defines the way the
loops are attached to the stem, with which loops share just one vertex. The num-
ber of loops of level i is mm−i. Loops of different levels i have different length.
Specifically, the number of vertices of loops of level i = w + 1 is 3mw. When
i > w + 1, the number of vertices of each loop of level i is

d(i− w
2

+ 1) ·mwe+

i−1∑
j=w+1

mj .

The loops are attached to the vertices on the stem in the following way. We start
to attach loops of level i in an incremental way to vertices on the stems, distanced
by mi: first all loops of level i are attached to the stem starting from vmm , next all
loops of level i + 1 are attached to the stem starting from v0, then loops of level
i + 2 starting from vmm , and so on, until i = m. The third main component of
the worst-case graph we are building is a number of lines attached either to the
stem or the loops. The number of vertices of those lines is r + 1. Let us call the
lines attached to the stem lines of level i = w. They are attached similarly to how

30 CHAPTER 4. WORST CASE ANALYSIS

v
0

Figure 4.5: Worst-case graph for Sd with m = 3 and r = 2.

loops are attached to the stem, that is, starting from v0 and distanced of mw. Then,
all the loops of level i > w have a line attached to a vertex of the loop. When
i = w + 1, the line is attached at distance d3

2m
we from the vertex on the stem.

When i > w + 1, the lines are attached to a vertex in the loop in such a way that
there are two paths of the same length from the vertex that the loop shares with the
stem and the vertex that the loop shares with the line. Figure 4.5 shows an example
of such graph.

Therefore, the number of vertices of the worst-case graph described above is
(ignoring floors and ceils for simplicity):

|V | ≈ mm +
m∑

i=w+1

mm−i(r + (i− w)mw + 2
i−1∑
j=w

mj)+

+ 3mm−1 + (mm−w + 1)(r + 1)

= mm + r
mm −mw

mw(m− 1)
+
mm+1 −mw+2 + wmw+1 − wmw

(m− 1)2
+

+ 2
mm(m− w)

m− 1
− 2

mm −mw

(m− 1)2
+ 3mm−1 + (mm−w + 1)(r + 1)

Notice that |V | is θ(mm).
The robot, which starts in v0 and employs Sd as exploration strategy, explores

the graph described above as follows. First, the robot explores all the vertices of
the stem and of the loops of all levels, ending up in vmm . Let us prove the reason

4.2. DISTANCE CRITERION 31

why in this first traversal of the stem the robot does not explore the lines attached
to the stem or to the loops. To get the distance of the frontiers on the lines, let us
remind that, as shown in the proof of the maximum length of the sequence (see
Theorem 1), ignoring all the single lines at the first traversal, the robot perceives
at least a number of vertices of the lines b r2c and at most r. Considering that the
robot starts exploring a loop of level i = w + 1 from its vertex shared with the
stem, the distance between the frontier on the line attached to that loop and the
robot position, when it explored the loop, is at least

3mw + b3
2
mwc+ br

2
c+ 1− (2r + 1).

That distance is computed by considering the path that the robot should travel by
backtracking to the loop and could be easily derived by knowing that the robot
started from the vertex of the loop shared with the stem, the sensor range r of
the robot, and the length of the loop. Instead, the distance between the last frontier
vertex of the loop and the closest frontier vertex on the stem is at most 3r+2. (Note
that the other path between the last frontier vertex of the loop and the frontier vertex
on line of the same loop is greater than 3r + 2 by construction.) To prove that the
robot chooses the frontier vertex on the stem the following inequality should hold

3r + 2 < 3mw + b3
2
mwc+ br

2
c+ 1− (2r + 1).

After some math, we have

9

2
r + 4 <

9

2
mw

As mw−1 − 1 < r ≤ mw − 1, that inequality becomes

9

2
mw − 1

2
<

9

2
mw

which is always true. For any loop of level i > w + 1, the inequality is still
always true. Moreover, the distance from the last frontier vertex selected by the
robot on the loop of level i to the nearest frontier vertex on the line of level w is
always greater than or equal to the distance to the nearest frontier vertex on the
stem. Thus, the frontier vertices on the lines are never chosen in the worst case at
the first traversal.

Then, the robot traverses the stem from vmm to v0 exploring the lines at level
w. Next, from v0 to vmm the robot explores the lines at level w + 1. This way
of traveling over the vertices of the stem goes on until the lines of the last level m
are explored. This behavior is caused by the fact that the distance from the current
selected frontier vertex on a line of loop of level i− 1 to the nearest frontier vertex

32 CHAPTER 4. WORST CASE ANALYSIS

on a line of a loop of level i − 1 is less or equal than the distance to the nearest
frontier vertex on the lines loop of level i. The minimum difference between the
two distances happens when two loops of level i− 1 and i are attached to the same
vertex of the stem. By construction, those distances are mi and

d(i− w
2

+ 1) ·mwe+
i−1∑

j=w+1

mj + d+ 1

where d is the number of perceived vertices of the lines and can have values b r2c ≤
d ≤ r, respectively. Thus, considering the maximum distance from the vertex on
the stem shared by the loops at level i− 1 and i to the frontier vertex on the line of
the loop of level i − 1 (d1 = r) and considering the minimum distance to the line
of loop of level i (d2 = b r2c) we have the following:

mi + d(i− w
2

+ 1) ·mwe+
i−1∑

j=w+1

mj + d1 + 1 ≤

≤ d(i+ 1− w
2

+ 1) ·mwe+
i∑

j=w+1

mj + d2 + 1

(simplifying the equal terms)

d1 − d2 ≤ d
i+ 3− w

2
·mwe − d i+ 2− w

2
·mwe

(substituting d1 and d2 with their bounds)

dr
2
e ≤ d i+ 3− w

2
·mwe − d i+ 2− w

2
·mwe

(remind that r ≤ mw − 1)

dm
w − 1

2
e ≤ d i+ 3− w

2
·mwe − d i+ 2− w

2
·mwe.

Notice that, if mw is even, the difference on the right-hand side is mw

2 , thus the
inequality is always true. If mw is odd and i + 3 − w is odd, the difference is
equal to mw+1

2 , while, if i + 3 − w is even, becomes mw−1
2 . In either case the

inequality is always true. In the particular case of i = w, we get to the same result,
as mw−1

2 ≤ d3
2 · m

we − mw, which is always true. This proves that, after the
first stem traversal, when traversing the stem, the robot explores all the lines of the
loops at the same level i.

4.2. DISTANCE CRITERION 33

The number of edge traversals is:

LBSd
≥ (m− w)mm +

m∑
i=w+1

mm−i

r + 2(i− w)mw + 4

i−1∑
j=w

mj

+

+ 3mm−1 + (mm−w + 1)(r + 1)

= (m− w)mm + r
mm −mw

mw(m− 1)
+ 2

mm+1 −mw+2 + wmw+1 − wmw

(m− 1)2
+

+ 4
mm(m− w)

m− 1
− 4

mm −mw

(m− 1)2
+ 3mm−1 + (mm−w + 1)(r + 1)

Note that LBSd
is Ω((m−w)mm). Hence, as |V | is θ(mm), w ≤ logm(r+1)+1,

and, because m ≥ logmm

log logmm as shown in Koenig [1998], we have that LBSd
is

Ω

((
log |V |

log log |V |
− logm(r + 1)

)
|V |
)

Changing the log base we have the following result

logm(r + 1) =
log(r + 1)

logm

≤ 2 log(r + 1)

log log |V |

Since it holds that

logm2 ≥ log(m logm)

2 logm ≥ log logmm

logm ≥ 1

2
log logmm

Putting all together we have as final result the lower bound

LBSd
= Ω

(
log |V | − 2 log(r + 1)

log log |V |
|V |
)

Corollary 4.1. Given a robot sensor range dr̄e, where r̄ ∈ R>0 such that

r̄ =

√
|V |

logc |V |
− 1

where c is an arbitrary positive constant, the worst-case lower bound on traveled
distance for Sd is LBSd

= Ω(|V |) edge traversals, on any finite undirected con-
nected graph G = (V,E), where the weight of each edge is equal to 1.

34 CHAPTER 4. WORST CASE ANALYSIS

Proof. Given an arbitrary positive constant c, the lower bound is linear if LBSd
=

Ω(c · |V |). Namely, considering the lower bound found in Theorem 4 we have that
the following relation must holds

log |V | − 2 log(r + 1)

log log |V |
= c

Thus, after some basic math

log(r + 1) =
1

2
log |V | − c

2
log log |V |

= log

√
|V |

logc |V |

And finally we obtain the radius such that the worst-case lower bound on traveled
distance for Sd is linear, as

r̄ =

√
|V |

logc |V |
− 1

4.3 Information Gain Criterion

Now let us analyze the worst case of Sg.
For this strategy the upper bound we found could seem not so tight, since it is

the worst case upper bound for any exploration strategy. Anyway, as we will see
studying the lower bound, it is not so far to be tight.

Theorem 5. Given a robot sensor range r ∈ N>0, the worst-case upper bound on
the traveled distance for Sg is

UBSg =

(
|V | − |V | − 1

r + 1

)(
2
|V | − 1

r + 1
− 1

)
edge traversals, on any finite undirected connected graph G = (V,E), where the
weight of each edge is equal to 1.

Proof. The proof trivially derives from considering the following scenario: the
robot at each time step i could have to traverse all the vertices perceived up to
i (which possibly could be the worst case for any strategy). More formally, we
have that

∑k̄−1
i=0 |Vi| + 1. To maximize the number of traversed vertices at each

time step i, as we assume that the robot can perceive just one vertex at a time,
we have an additional term that takes into account all the initial perceived vertices
|P0| = |V0| = |V | − k̄.

4.3. INFORMATION GAIN CRITERION 35

In the following we derive the upper bound by doing some math.

k̄−1∑
i=0

|Vi|+ 1 ≤
k̄∑
i=1

(|V | − k̄ + i)

= (|V | − k̄)k̄ +
k̄∑
i=1

i

= (|V | − k̄)k̄ +
k̄(k̄ + 1)

2

= k̄

(
|V | − k̄ + 1

2

)
=

(
|V | − |V | − 1

r + 1

)(
2
|V | − 1

r + 1
− 1

)

Assuming r = ε (ε → 0) we have to consider k̄ for r even. It results that the
worst-case upper bound for Sg is |V |(|V |−1)

2 , as k̄ = |V | − 1, which coincides with
the well-known upper bound for any exploration strategy in a fixed graph scenario
O(|V |2). This is not surprising since this bound is itself an upper bound for any
exploration strategy with a certain perception radius r. This is guaranteed by the
first inequality used in the proof, namely

k̄−1∑
i=0

|Vi|+ 1 ≤
k̄∑
i=1

(|V | − k̄ + i)

which ensure that the way to maximize the number of known vertices traversed, at
each time step i, is to perceive |V | − k̄ vertices at time step 0, and then, to perceive
just 1 vertex at each time step i, 1 ≤ i ≤ k̄.

We are now interested to find a lower bound for Sg. The following result
allow us to compare strategies between them and to verify the goodness of the
upper bound we just found. As we will see, the weakness of a purely information
gain-based strategy is manifested on sparse graphs.

The following theorem presents a lower bound for Sg.

Theorem 6. Given a robot sensor range r ∈ N, the worst-case lower bound on the
traveled distance for Sg is

LBSg =
r + 1

2

(
|V | − r
r + 1

)(
|V | − r
r + 1

− 1

)
edge traversals, on any finite undirected connected graph G = (V,E), where the
weight of each edge is equal to 1.

36 CHAPTER 4. WORST CASE ANALYSIS

Proof. Let us consider a line graph. The robot starts from the middle of the line. In
case of even number of vertices we can choose arbitrarily one of the two vertices in
the middle. The proof develops from the idea that the robot can go back and forth
to frontier vertices traveling over all of the already perceived vertices. Trivially the
number of chosen frontiers along the exploration path is k ≥ |V |−r

r+1 − 1. At each
time step the robot can perceive r + 1 vertices, thus the lower bound is

k∑
i=1

(i(r + 1)) = (r + 1)
k(k + 1)

2

≥ r + 1

2

(
|V | − r
r + 1

)(
|V | − r
r + 1

− 1

)

Assuming again r = ε (ε → 0), we have the worst-case lower bound for Sg is
|V |(|V |−1)

2 , which, also in this case, coincides with the well-known lower bound for
any exploration in a fixed graph scenario Ω(|V |2). Apparently, Sg performs fairly
bad with respect to Sd in the wort case.

4.4 Combination of Distance and Information Gain

Now we wonder if, adopting the information gain as tie breaker it improves or
worsen the performance of Sd. The following proposition ensure that, in the worst
case, the currently known bounds are equal for Sd and Sdg.

Proposition 1. The worst-case upper bound on the traveled distance for Sdg is
UBSdg

= UBSd
and the lower bound is LBSdg

= LBSd
on any finite undirected

connected graph G = (V,E), where the weight of each edge is equal to 1.

Proof. To prove the upper bound we can notice that at each step i, the frontier
set of Sdg is a subset of the frontier set of Sd. Thus, the set of all the possible
exploration paths, on a given G, for Sdg, is a subset of all the possible exploration
paths, on that G, for Sd. Thus the upper bound for Sd holds.

Looking at the worst-case lower bound graph for Sd we can notice that, the
behavior of Sdg necessarily diverges from that of Sd, when r = mw − 1 for a
given w (1 ≤ w ≤ m). This happens at the first stem traversal, because the robot
cannot choose to enter in a loop before to explore the entire stem. In those cases
it is trivial to add O(mm) single vertices on the loops, at distance r + 1 from the
stem, to make feasible the behavior described for Sd.

From a worst-case point of view, Sd and Sdg are probably too similar to find
out significative differences. Analysis of their differences in the average case is
provided in the next chapter.

4.5. COMPARISON OF BOUNDS 37

4.5 Comparison of Bounds

Note that, despite the derived bounds have the same asymptotic complexity of those
that do not embed r in the computation of the bounds, the bounds we found have
lower actual values, because we explicitly considered the sensor range r. This
analysis is of interest especially when dealing with robots as their movements are
physical and not just computational.

Figure 4.6 shows the trend of the worst-case bounds for Sd (Sdg) compared
to the ones found by Tovey and Koenig [2003] (UBTK) and Koenig et al. [2001]
(LBKTS), and to the worst-case bounds of Sg, considering |V | = 1000 and r ∈
{1, · · · , b |V |−1

2 c}. Note that the plot of the curves related to the lower bounds
shows just the their trends and not their actual values, as they depend on the worst-
case graphs built as shown in the related proofs above.

0 100 200 300 400 500
r

0

2000

4000

6000

8000

10000

12000

14000

16000

#
 e

d
g
e
 t

ra
v
e
rs

a
ls

UB
d

LB
d

UBTK

LBKTS

Figure 4.6: The trend of worst-case bounds of Sd with respect to UBTK and
LBKTS , considering |V | = 1000 and r ∈ {0, · · · , b |V |−12 c}}.

In Figure 4.6, we can see that UBTK is higher than UBSd
(except for the case

of r < 2 as we discussed in the Section 4.2). This can be explained by the fact that
UBTK does not fully consider the more powerful sensor that allows to perceive
more vertices. Similar explanation for the fact that LBSd

is lower than LBKTS . In
particular, in order to generalize for any r the robot behavior in the worst case, we

38 CHAPTER 4. WORST CASE ANALYSIS

0 2000 4000 6000 8000 10000
n

0

100

200

300

400

500

600
r

rUB

rLB|c=1/2

rLB|c=1

rLB|c=2

Figure 4.7: The trend of r̄ for worst-case bounds.

added several vertices not strictly necessary in the case of r = ε. In Figure 4.7
we plotted the trend of r̄ (the perception radius such that the worst-case bound is
linear, given a certain number of vertices to explore) for UBSd

and LBSd
, and given

|V | = {10, · · · , 10000}. For clarity, let us call r̄UB and r̄LB the r̄ of Corollary 3.1
and Corollary 4.1, respectively.

For any radius greater than r̄UB we have that the number of edge traversals is
lower than 4n in the worst case; for any radius lower than r̄LB(c) we have that the
number of edge traversals is not linear in the worst case. Since we gave just the
order of the lower bound and because linearity holds for any positive constant c
such that Ω(c · |V |), three values of r̄LB(c) are plotted, for c = {1

2 , 1, 2}. For any
radius between r̄UB and r̄LB(c) the number of edge traversal may be or may not
be linear. From the graph we can see that the trend of both r̄UB and r̄LB is clearly
sublinear with respect the number of vertices to explore, as we already discussed
for r̄UB and as was evident from the closed form of r̄LB (Corollary 4.1).

Also, we can observe that for low values of r, a small increase of r leads to
a large decrease of UBSd

. Instead, we have almost constant trend after a certain
value of r. More generally, our analysis shows theoretically that increasing r,
the exploration process is shortened, which is an intuitively evident result sound
with several experimental findings (e.g., [Amigoni, 2008]), but also that it is not

4.5. COMPARISON OF BOUNDS 39

|V |
ETG

50% 60% 70% 80% 90%

500 10 14 20 31 66
1000 12 18 26 41 90
2000 15 22 32 52 119
5000 19 29 44 73 167

10000 23 35 56 94 215
20000 27 43 70 122 278
50000 34 57 96 171 394
100000 41 70 122 223 515
200000 48 86 155 290 676

Table 4.2: Values of the perception radius r (rounded to the next integer) such
that the gain on the upper bound (with respect the maximum gain, namely,
for r = b |V |−12 c, and the minimum gain corresponding to r = 0) is ETG =

{50%, 60%, 70%, 80%, 90%} for some |V |.

convenient to increase the perception radius after a certain value, even if the sensor
is perfect (e.g., the footprint sensor in [Quattrini Li et al., 2012]). A first result
about this value is given by Corollary 3.1. Other numerical results are shown in
Table 4.2. More precisely, assumed as ETG = 100% the gain, in terms of edge
traversals, obtained on the Sd upper bound in correspondence of r = b |V |−1

2 c and
ETG = 0% the gain for r = 0 (UBTK), in Table 4.2 radii are computed (rounded
to the next integer) such that the gain is ETG = {50%, 60%, 70%, 80%, 90%} for
some |V |. Through this numerical analysis, we can note that, half of the potential
gain we may have in the worst-case, increasing the perception radius, corresponds
to very small r. In particular, for |V | = 2 · 105 to achieve ETG = 50%, we need
just a sensor radius r = 48.

In Figure 4.8 Sg and Sd are compared through their worst-case bounds. We
can see that UBSg is higher than UBSd

, as we expected, while LBSg crosses LBSd

at r ≈ |V |
4 (this trend holds also for other values of |V |). Anyway, this does not

mean that the lower bound of Sg is lower than the lower bound of Sd, since, is
easy to check that the behavior shown for Sd on its worst-case graph, it is feasible
also for Sg (similarly to how we proved the lower bound for Sdg). Thus, the
real lower bound of Sg is max(LBSg ,LBSd

). Moreover, the upper bound and the
lower bound of Sd are fairly close after a certain (relatively) small radius (r ∼ 50

in Figure 4.6) and have the same trend. A last remark concerns the number of
vertices to explore. So far we have considered to explore all the vertices V in the
graph, but usually, in robotics, this is not required. Often it is enough to explore
a certain percentage p of the environment, as, for example, in search and rescue

40 CHAPTER 4. WORST CASE ANALYSIS

0 100 200 300 400 500
r

0

5000

10000

15000

20000

25000

30000
#

 e
d
g
e
 t

ra
v
e
rs

a
ls

UB
d

LB
d

UB
g

LB
g

Figure 4.8: The trend of worst-case bounds of Sd (Sdg) and Sg (for clarity,
is a zoomed portion of the complete plot), considering |V | = 1000 and r ∈
{0, · · · , b |V |−12 c}.

scenarios. It is easy to check that we can easily change |V | to d|V | · pe in each
formula and have again sound bounds.

4.6 Experiments on Random Generated Graphs

In this section for completeness we present some results obtained by the strategies
we consider on random generated graphs. Results are presented varying the per-
ception radius r, the number of vertices, and the number of edges. For each setting
fifty random graphs have been generated through the method of Erdős and Rényi
[1964].

As discussed in the model, for r = 0, there is no specific reason because Sdg

performs better than Sd. While, for radii greater than 0 results are sound with
respect to the experiments on real and simulated robots in other works (Gonzáles-
Baños and Latombe [2002], Amigoni and Caglioti [2010]), since Sdg performs
better than Sd. Even if this kind of results was expected, it was absolutely not
obvious, since this model (a graph model) is completely different to the others
where information gain-based strategies have been tried. Moreover, for very low

4.6. EXPERIMENTS ON RANDOM GENERATED GRAPHS 41

values of the sensor radius, Sg performs worse than Sd and Sdg which is sound
with bounds, while, after a certain radius it performs better than Sd converging
to Sdg. Increasing again the sensor radius, the number of edge traversals for the
strategies converge to 0. From experiments we can notice that, the impact of the
information gain is slightly higher increasing the number of edges.

100 110 120 130 140 150
n

100

200

300

400

500

600

700

#
 e

d
g
e
 t

ra
v
e
rs

a
ls

Sd
Sg
Sdg

Figure 4.9: The number of edge traversals for Sd, Sg, and Sdg, considering |V | =
100, · · · , 150, |E| = 2|V | and r = 0.

42 CHAPTER 4. WORST CASE ANALYSIS

1 2 3 4 5 6 7
r

0

100

200

300

400

500

600

700

800

900
#

 e
d
g
e
 t

ra
v
e
rs

a
ls

Sd
Sg
Sdg

Figure 4.10: The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 500, |E| = 1000 and r ∈ {1, · · · , 7}.

1 2 3 4 5 6 7
r

0

100

200

300

400

500

600

700

#
 e

d
g
e
 t

ra
v
e
rs

a
ls

Sd
Sg
Sdg

Figure 4.11: The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 500, |E| = 1200 and r ∈ {1, · · · , 7}.

4.6. EXPERIMENTS ON RANDOM GENERATED GRAPHS 43

1 2 3 4 5 6 7
r

0

100

200

300

400

500

600
#

 e
d
g
e
 t

ra
v
e
rs

a
ls

Sd
Sg
Sdg

Figure 4.12: The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 500, |E| = 1400 and r ∈ {1, · · · , 7}.

1 2 3 4 5 6 7
r

0

200

400

600

800

1000

1200

1400

#
 e

d
g
e
 t

ra
v
e
rs

a
ls

Sd
Sg
Sdg

Figure 4.13: The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 1000, |E| = 2500 and r ∈ {1, · · · , 7}.

44 CHAPTER 4. WORST CASE ANALYSIS

1 2 3 4 5 6 7
r

0

200

400

600

800

1000

1200
#

 e
d
g
e
 t

ra
v
e
rs

a
ls

Sd
Sg
Sdg

Figure 4.14: The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 1000, |E| = 3000 and r ∈ {1, · · · , 7}.

1 2 3 4 5 6 7
r

0

200

400

600

800

1000

#
 e

d
g
e
 t

ra
v
e
rs

a
ls

Sd
Sg
Sdg

Figure 4.15: The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 1000, |E| = 3500 and r ∈ {1, · · · , 7}.

4.6. EXPERIMENTS ON RANDOM GENERATED GRAPHS 45

1 2 3 4 5 6 7
r

0

500

1000

1500

2000

2500
#

 e
d
g
e
 t

ra
v
e
rs

a
ls

Sd
Sg
Sdg

Figure 4.16: The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 1500, |E| = 4000 and r ∈ {1, · · · , 7}.

1 2 3 4 5 6 7
r

0

200

400

600

800

1000

1200

1400

1600

1800

#
 e

d
g
e
 t

ra
v
e
rs

a
ls

Sd
Sg
Sdg

Figure 4.17: The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 1500, |E| = 4750 and r ∈ {1, · · · , 7}.

46 CHAPTER 4. WORST CASE ANALYSIS

1 2 3 4 5 6 7
r

0

200

400

600

800

1000

1200

1400

1600

#
 e

d
g
e
 t

ra
v
e
rs

a
ls

Sd
Sg
Sdg

Figure 4.18: The number of edge traversals for Sd, Sg, and Sdg, considering
|V | = 1500, |E| = 5500 and r ∈ {1, · · · , 7}.

Chapter 5

Average Case Analysis

In this chapter we compare Sd and Sdg in the average case, since, from the worst
case analysis they seem more promisingly than Sg. Because of the difficulties to
evaluate the average performance in generic graphs, we consider some classes of
graphs, focusing the analysis to the case of r = ε (ε → 0), and we estimate the
number of edge traversals given partial information, such as, in an indoor environ-
ment, the corridors structure and the number of rooms for each corridor.

In the average-case analysis we have to deal with two different sources of ran-
domness. The first one is due to the fact that Sd and Sdg break ties randomly, and
thus, given a graph, several exploration paths could be possible. The second one is
due to the fact that we may want to consider a certain set of different graphs (possi-
bly all the graphs) with a certain probability, and not a single fixed graph (since the
environment could be unknown, or we may want to achieve a result for an entire
class of graphs with similar features).

So, we have to deal with two means. First, a mean over all the feasible paths
(according to the strategy) on a given graph. Then, a mean over all the graphs
that belong to a certain set (which may be the universal graphs set) with a certain
probability distribution.

Before we go any further, let us introduce some notation. Given Sd strategy,
we know that, at each step i, while the robot is in vi, there is a subset

F dimin
= arg min

v∈F d
i

d(vi, v) ⊆ F di

of vertices in the frontier set F di that have the same (minimum) distance from vi.
In a similar way we define F dgimin

.

So, depending on how a vertex is chosen from either F dimin
or F dgimin

for Sd and
Sdg, respectively, the robot could have better or worse performance. As we saw in
the previous chapter, and in particular studying the lower bound for Sd and Sdg

47

48 CHAPTER 5. AVERAGE CASE ANALYSIS

(Theorem 4 and Proposition 1), a wrong tie breaking could lead to a super-linear
number of edge traversals. The same behavior shown in Theorem 4 would not be
feasible if the robot decides to explore first all the single lines. Our conjecture is
that the super linearity behavior of Sd is due to the wrong tie breaking, as we will
see in Section 5.1.

Now we define a function that, given a graph G = (V,E), and a starting vertex
v0, returns the average number of edge traversals on G. For this purpose, let us
define a function Γ() for both the strategies, Sd and Sdg, that we will use in our
analysis. For Sd we define this function as

Γd(G, vi, Vi) =

1

|F dimin
|
∑

v∈F d
imin

d(vi, v) + Γd(G, v, Vi ∪ Pi+1) if
|Vi|
|V |

< p

0 if
|Vi|
|V |
≥ p

where p is the goal percentage, namely, the percentage of vertices in the environ-
ment we have to explore. Since this function only depends on Fimin we can define
the same function for Sdg as

Γdg(G, vi, Vi) =

1

|F dgimin
|

∑
v∈F dg

imin

d(vi, v) + Γdg(G, v, Vi ∪ Pi+1) if
|Vi|
|V |

< p

0 if
|Vi|
|V |
≥ p

Intuitively, Γ() is a recursive function that, at a given step i, for each vertex v

in Fimin , weights uniformly the distance from the current position to v, plus the
value of Γ() computed in v. If the number of remaining vertices to explore is 0

(namely, the ratio between |Vi| and |V | is larger than the goal percentage p) the
recursion stops and the value of Γ() is 0 for any vertex. Given these functions, it is
fairly natural, now, to define the average number of edge traversals on G given the
starting vertex v0 as

Γd(G, v0) = Γd(G, v0, P0)

and for Sdg as

Γdg(G, v0) = Γdg(G, v0, P0)

These functions allow us to deal with the first of the two sources of randomness we
discussed above. We will see how to deal with the second source of randomness,
defining each specific class of environments.

5.1. AVERAGE CASE VS. WORST CASE 49

5.1 Average Case vs. Worst Case

From a theoretical point of view it is interesting to note that the perfect tie breaker
for Sd, at each step i, breaks as follow

v̂ = arg min
v∈F d

imin

d(vi, v) + Γd(G, v, Vi ∪ Pi+1) (5.1)

This can be done if the environment is known and the path is computed offline.
Then, be S ∗

d an exploration strategy that minimizes the distance and breaks tie
perfectly (as in (5.1)), then we formulate the following conjecture.

Conjecture 1. The worst-case bound on the traveled distance for S ∗
d is Θ(|V |)

edge traversals, for any sensor radius r, on any finite undirected connected graph
G = (V,E), where the weight of each edge is equal to 1.

We believe that tie breaking is the main issue in the Sd worst case. However,
from the average-case viewpoint, to break ties randomly can be a smart choice.
Looking at the behavior shown in Theorem 4, we can notice that the probability to
break ties in such a way that the robot continuously re-traverse all the stem, is very
low, and most of the times Sd behaves linearly on that worst-case graph.

Focusing on the worst-case graph Ḡ for Sd and r = ε (ε → 0) shown in
[Koenig et al., 2001] and reported in Figure 2.5, we know that |V | = Θ(nn) and,
in the worst case, LB = Ω(nn+1), for any n ≥ 3. However, consider for example
the first stem traversal of the robot: at each step, the robot has to decide whether to
continue on the stem or to go the frontier vertex on the line of the loops as they are
at the same distance from a current robot position. Thus, the probability that the
robot traverses the stem without exploring the lines is less than(

1

2

)α
where α is the total number of loops plus all the nn−1 single vertices attached
directly to the stem, namely

α =
n−1∑
i=0

ni =
nn − 1

n− 1
≈ nn−1

Thus, the weight of that specific path on Γd(Ḡ, v0) tends to 0 increasing n, since

lim
n→∞

nn+1

2nn−1 = 0

This does not prove that Γd(Ḡ, v0) is linear but, at the same time, the presence of
a single super linear path does not exclude this possibility. This example clarifies
the main difference between the worst case and the average case. Let us formalize
this concept. First we give the following definition.

50 CHAPTER 5. AVERAGE CASE ANALYSIS

Definition 1. Given a finite undirected connected graph G = (V,E), where the
weight of each edge is equal to 1, a starting vertex v0 ∈ V , and an exploration
strategy Sx, we define N (x)

h (G, v0) as the sum of the probabilities for the explo-
ration paths to be chosen by Sx, such that their number of edge traversals is
Ω(h(|V |)).

Now we are ready to enunciate the following theorem.

Theorem 7. Consider a finite undirected connected graph G = (V,E), where the
weight of each edge is equal to 1, a starting vertex v0 ∈ V , and an exploration
strategy Sx. For any function f(), if there exists a function h() such that

N
(x)
h (G, v0) · h(|V |) = Ω(f(|V |))

then Γx(G, v0) = Ω(f(|V |))

Proof. By definition Γx(G, v0) is the sum of the lengths L1, L2, ..., Ln of all the
possible n paths on G, starting from v0, and according to Sx. Each path length
in the sum is weighted with the probability for the path to be chosen (according to
Sx). Namely

Γx(G, v0) = p1 · L1 + p2 · L2 + ...+ pn · Ln

Since the result we want to achieve is

lim
|V |→∞

Γx(G, v0)

f(|V |)
> 0

let us consider the following limit

lim
|V |→∞

p1 · L1 + p2 · L2 + ...+ pn · Ln
f(|V |)

for all the Li such that Li = Ω(h(|V |)) we substitute h(|V |) obtaining a limit
asymptotically lower than or equal to the previous one. Let us rename asL1, ..., Ln′

all the n′ paths Li such that Li 6= Ω(h(|V |))

lim
|V |→∞

[
p1 · L1 + ...+ pn′ · Ln′

f(|V |)
+
N

(x)
h (G, v0) · h(|V |)

f(|V |)

]

by hypothesis we have that

lim
|V |→∞

N
(x)
h (G, v0) · h(|V |)

f(|V |)
> 0

5.2. INDOOR ENVIRONMENTS 51

thus, because pi ≥ 0 and Li ≥ 0

lim
|V |→∞

[
p1 · L1 + ...+ pn′ · Ln′

f(|V |)
+
N

(x)
h (G, v0) · h(|V |)

f(|V |)

]
> 0

and thus, because the following limit is greater than or equal to the previous one

lim
|V |→∞

p1 · L1 + p2 · L2 + ...+ pn · Ln
f(|V |)

> 0

since Γx(G, v0) = p1 · L1 + p2 · L2 + ...+ pn · Ln we proved the theorem, as

lim
|V |→∞

Γx(G, v0)

f(|V |)
> 0

Basically, this theorem asserts that the order of a lower bound for Γ(), in gen-
eral, does not depend on a single path length, but, possibly, by a set of paths of
length Ω(h(|V |)). More precisely, in Γ(), each path length is weighted by the
probability for that path to be chosen by the strategy, thus, we are interested in the
product between the sum of the probabilities for all the paths of the same length,
and that length. Clearly, we are not interested in the specific length of a certain
path, but in the order of that path length, so we exploited the concept of Ω() to
achieve this result.

Now let us consider Sdg. If Conjecture 1 is true, the information gain would
not be a perfect tie breaker, since, as we saw in Proposition 1, in the worst case,
Sdg is Ω

(
log |V |−2 log(r+1)

log log |V | |V |
)

. Moreover, in general, considering the average
number of edge traversals, we can find some environments for which Sd performs
better than Sdg and vice versa. For example, in Figure 5.1, if the robot is equipped
with a sensor with range r = ε (ε → 0) and starts from the leftmost vertex v, it
visits one of the vertices in the cycle for both Sd and Sdg, and then reaches the
vertex v′ where there is a branch. Here, Sd has probability 1

2 to go to the left and
visit the last vertex in the cycle, while Sdg has probability 1 of visiting the right
portion of the graph, visiting the last vertex in the cycle at the end of the process,
thus re-traversing (almost) the whole graph.

5.2 Indoor Environments

To deal with the second source of randomness discussed at the beginning of this
chapter, we have to define a set of possible graphs and a probability distribution
over that set. So, we decided to focus our analysis considering some restricted
classes of graphs that can model realistic indoor environments, on which we will

52 CHAPTER 5. AVERAGE CASE ANALYSIS

v v'

Figure 5.1: Example of graph where in the average case Sd performs better than
Sdg.

try to estimate the impact of the information gain on the exploration performance.
Let us define vertex-labeled (finite undirected connected) graphs G = (V,E) for
which:

• some vertices C ⊆ V are labeled as ‘corridor’,

• the other vertices R ⊆ V are labeled as ‘room’ (C∩R = ∅ and C∪R = V),

• some connected sub-graphs Ri are defined on G, where all vertices are la-
beled as ‘room’ (in the following, with slight abuse of notation, we refer to
Ri to indicate the set of vertices of such sub-graph;

⋃
Ri = R),

• E = {v ∈ R | ∃=1w ∈ C : (v, w) ∈ E} are the room-type vertices that
act as doorways between rooms and corridors; they are further labeled as
‘entrance’,

• ¬∃v ∈ R, w ∈ C : v /∈ E ∧ (v, w) ∈ C (within a room only the entrance
vertices can be attached to the corridors).

Basically, these labeled graphs are semantic maps of indoor environments that can
be built autonomously by mobile robots [Mozos et al., 2005]. A realistic portion
of an indoor environment and the corresponding labeled graph are shown in Fig-
ure 5.2.

Let us also define a cluster of rooms as a set of Ri, whose entrance vertices
are attached to the same corridor vertex. For example, in Figure 5.2, R1 and R2

compose a cluster.
More formally, a cluster of rooms of a given vertex v ∈ C is a set Kv = {Ri |

w ∈ Ri ∩ E , (v, w) ∈ E} (we call K the union of all non-empty clusters Kv).
Moreover, let us define a function that we will use the next results.

Definition 2. We call placement function a function q : 2C → N such that, given
a partition A of C , then |K| =

∑
a∈A q(a).

5.2. INDOOR ENVIRONMENTS 53

C C C C C

C C

C C

E

RR

C

C

E

E

RR

E

RR

E

RRRR

E

RR RR

E

RR RR
E

RR RR

R
1

R
2

Figure 5.2: Example of graph with labels (C ‘corridor’; E ‘entrance’; R ‘room’).

Basically q() is a function that, given a subset of vertices of C , returns the
number of clusters attached to vertices in that subset. In the next sections, we
define some classes of graphs on the set of graphs labeled as above.

5.2.1 Tree Environments

In this section we will define and analyze environments that are basically trees of
corridors with attached rooms. Each room is connected to the rest of the environ-
ment through a single entrance. More formally, we say that G = (V,E) belongs
to G1 if it satisfies the following properties:

Property 1 The subgraph on G induced by vertices in C is a tree, where each leaf
is attached to a vertex v with δ(v) = 2,

Property 2 ∀Ri : ∃=1v ∈ Ri ∧ v ∈ E ,

Property 3 Given Ri and called v the entrance vertex v ∈ Ri ∩ E , vertices v′ ∈
Ri \ E are at distance 1 from v,

Property 4 ∀v ∈ E : δ(v) > 2,

Property 5 ∀v ∈ C : ∃e ∈ E : (v, e) ∈ E
⇒ ∀w ∈ C : (v, w) ∈ E ⇒ δ(w) ≤ 2, (namely, given a corridor ver-
tex v attached to an entrance vertex e, all the neighbor corridor vertices
w should not have more than 1 other vertex, beyond v, attached to the
them).

54 CHAPTER 5. AVERAGE CASE ANALYSIS

Given an arbitrary starting vertex v0 ∈ C (the root) and the set of leafs J =

{v ∈ C | δ(v) = 1}, we call C j the shortest path from v0 to the leaf j ∈ J (the
path is unique due to Property 1).

In the following result we estimate the difference between the average perfor-
mance of Sd and Sdg on a set of possible graphs that belongs to G1.

Given a graph G = (V,E) ∈ G1 and a starting vertex v0 ∈ V ∩C , we define a
set of graphs that have the same corridors structure (and the same corridors length)
of G, the same number of clusters for each corridor C j , but different clusters po-
sition along the corridors, such that q(N(v0) ∪ v0) = 0 (where N(v0) returns the
set of neighbor of v0). We assume the probability distribution over this set as a
uniform distribution. Since G could be any graph on that set, we average the dif-
ference between Γd() and Γdg() uniformly over all the clusters dispositions. Thus,
we have the following proposition.

Proposition 2. Consider a graph G = (V,E) that belongs to G1, a starting vertex
v0 ∈ V ∩ C , a goal percentage p = 1, and a sensor range r = ε (ε → 0). An
estimate for the difference between the average performance of Sd and Sdg on G
is ∑

j∈J
Bj · (|C j | − 2)

q(C j)

q(C j) + 1
− 2
|J | − q(J)

|J |

where Bj is the product of the inverse of the corridor branching factors encoun-
tered along C j and q() is a placement function.

Proof. Considering Sdg, because of Properties 4 and 5, while the robot explores
a corridor, it explores every room it encounters before continuing going along the
corridor. A room, when chosen, is completely explored, due to Properties 2 and 3
and to the fact that the starting vertex v0 ∈ C . Also, Property 2 guarantees that
after a room Ri has been explored, the robot does not directly go to another room
Rl (i 6= l) without first going back to a vertex in C . This is clearly visible in
Figure 5.2: no matter which starting vertex is considered, Sdg, while exploring the
corridor, will explore first the encountered rooms (i.e., the probability of choosing
a vertex in the corridor is 0 when there are rooms attached to the current vertex).
Moreover, because of Property 3, the mean tour cost for visiting a room (starting
from the corridor vertex where v ∈ Ri∩E is attached), T (Ri), is the same for Sdg

and Sd. Further, we have to account the difference between an exploration path
that ends on the corridor or in a room. Thus, for Sdg, averaging over the clusters
position as a uniform distribution, we have

E[Γdg(G, v0)] ≈
∑
Ri

T (Ri) +
∑
j∈J

Bj(|C j |+ 2
∑

l∈J,l 6=j
|C l|)− 2

q(J)

|J |

5.2. INDOOR ENVIRONMENTS 55

Bj is the product of the inverse of the corridor branching factors encountered along
C j , and thus it is the probability of C j to be explored at the very end of the explo-
ration process.

Instead, for Sd, while the robot explores a corridor, it could choose not to
explore some encountered rooms. Hence, it could happen that, once the robot has
reached a leaf, it should go back to explore rooms left behind (recall that corridor
vertices form a tree because of Property 1). This can be seen in Figure 5.2, as Sd,
when the robot’s current vertex is in the corridor and there are neighbor vertices
labeled as ‘room’, has a probability strictly greater than 0 to choose a vertex in the
corridor, possibly leaving a room as the last area to explore. The number of edge
traversals to visit the rooms is the same as Sdg because of Property 3. Moreover,
for the same reasons of Sdg, when a room is chosen for the exploration, it is wholly
explored. The only difference between Sd and Sdg is during the exploration of
the last corridor C j . With Sd the robot could have to go back to some unexplored
rooms left along the last C j and could end the exploration in a room.

Defined Rj
last the unexplored room left along C j , which has the closest en-

trance vertex to the starting point v0, let us call ∆j the distance between Rj
last and

the leaf j, and Λj the difference between a tour and a path to explore a room Ri

on C j , on average, weighting each difference with the probability that room Ri is
Rj

last.
In summary, for Sd, averaging over the clusters position, we have that

E[Γd(G, v0)] ≈
∑
Ri

T (Ri) +
∑
j∈J

Bj(|C j |+ ∆j − Λj + 2
∑

l∈J,l 6=j
|C l|)

There should be also the term −2 multiplied by the probability for Sd to end in a
room, but it is neglected because is close to 0. The latter probability corresponds
to the probability to explore all the cluster in C times the probability that a cluster
is attached to a leaf j.

Note that Λj (the average difference between a tour and a path to explore a
room attached to a corridor C j) is always equal to 2 because of Property 3. Having
no a priori knowledge about the size of the clusters, we approximate the probability
to completely explore a given cluster Kv of rooms (before to go ahead along the
corridor) as a constant value pK , which can be seen as the mean of the probabilities
to completely explore each cluster Kv. Under this hypothesis, the probability of
not exploring a number m of clusters Kv along corridor C j is a binomial S ∼
B(q(C j), 1 − pK). We want to estimate ∆j through an aleatory variable D such
that ∆j ≈ E[D]. D represents the distance traveled to reach Rj

last knowing that the
number of clusters in C j is q(C j). Note that D depends on how many unexplored
rooms are in C j , once the robot reaches j. Thus, to find E[D] we are interested
in E[D | S]. This conditional expectation can be approximated imagining the

56 CHAPTER 5. AVERAGE CASE ANALYSIS

corridor as a continuous line and the relative position of the clusters as independent.
The traveled distance to explore S = m clusters left, is an aleatory variable Z =

max(X1, X2, ..., Xm) where Xv ∼ U(0, |C j | − 2) (minus two because of the
starting vertex constraint: q(N(v0) ∪ v0) = 0) is the position of the cluster Kv

along C j . Thus, the cumulative distribution function of Z is:

FZ(t) = P (Z ≤ t)

(Because of the definition of Z)

= P (X1 ≤ t ∧X2 ≤ t ∧ ... ∧Xm ≤ t)

(Since we assumed the uniform distributions as indipendent)

= P (X1 ≤ t) · P (X2 ≤ t) · ... · P (Xm ≤ t)

(Substituting the cumulative distribution function for a uniform distribution)

=

(
t

|C j | − 2

)m
.

Now we can compute the probability density function:

fZ(t) =
dFZ(t)

dt
= m · tm−1

(|C j | − 2)m

and applying the definition of the expected value for a continuous aleatory variable

E[D | S = m] = E[Z]

=

∫ |C j |

0
m · tm−1

(|C j | − 2)m
· t · dt

=
m

(|C j | − 2)m

∫ |C j |

0
tm · dt

=
m

m+ 1
(|C j | − 2)

In the hypothesis that pK < 1, an estimate for the mean gain is:

E [Γd(G, v0)− Γdg(G, v0)] = E [Γd(G, v0)]− E[Γdg(G, v0)]

(Substituting the expected values)

≈
∑
j∈J

Bj
(
∆j − Λj

)
+ 2

q(J)

|J |

5.2. INDOOR ENVIRONMENTS 57

(Splitting the sum)

=
∑
j∈J

Bj∆j −
∑
j∈J

Bj · 2 + 2
q(J)

|J |

(Because ∆j ≈ E[D])

≈
∑
j∈J

BjE [D]− 2 + 2
q(J)

|J |
(5.2)

Thus, remembering that ∆j ≈ E[D] = E [E [D | S = m]] where E [D | S = m]

is the quantity found above and that S ∼ B(q(C j), 1 − pK), we have that (5.2)
becomes

≈
∑
j∈J

Bj

q(C j)∑
m=0

(
q(C j)

m

)(
p
q(C j)−m
K (1− pK)m · m

m+ 1
(|C j | − 2)

)+

− 2
|J | − q(J)

|J |

(Simplifying this known sum)

=
∑
j∈J

Bj

[
q(C j)(1− pK)− pK(1− pq(C

j)
K)

(q(C j) + 1)(1− pK)
(|C j | − 2)

]
− 2
|J | − q(J)

|J |

(Approximating pK(1− pq(C
j)

K) ≈ 0)

≈
∑
j∈J

Bj · (|C j | − 2)
q(C j)

q(C j) + 1
− 2
|J | − q(J)

|J |

Notice that the placement function can be any function that satisfies Defini-
tion 2. For instance, if the number of clusters depends only on the corridor length
we can define a density parameter dK such that |K| ∼ dK |C |. The formula in
Proposition 2 becomes∑

j∈J
Bj · (|C j | − 2)

dK(|C j | − 2)

dK(|C j | − 2) + 1
− 2(1− dK) (5.3)

(Also in this case, the minus two are because of the starting vertex constraint:
q(N(v0) ∪ v0) = 0)

In order to assess the validity of our estimate of Proposition 2, some simu-
lated experiments have been conducted in randomly generated environments that

58 CHAPTER 5. AVERAGE CASE ANALYSIS

dK = 0.2 dK = 0.3 dK = 0.4

|C | Gain Error Gain Error Gain Error
50 13.8 (3.1) -2.1 (3.8) 15.4 (1.9) -1.0 (2.2) 16.9 (1.2) 0.1 (1.2)
100 14.7 (1.7) 0.2 (2.2) 15.9 (3.0) -1.5 (3.3) 21.8 (1.3) 0.4 (1.3)
150 17.0 (2.9) -3.0 (4.2) 28.8 (3.3) 0.4 (3.3) 63.3 (2.1) 0.5 (2.1)
200 66.1 (3.6) -0.3 (3.7) 57.1 (3.6) 0.6 (3.6) 66.5 (3.8) 0.4 (3.8)
250 70.1 (4.1) -0.1 (4.1) 76.7 (7.0) -2.6 (7.4) 104.5 (5.5) -2.4 (6.0)

Table 5.1: Performance on random generated G1 environments. The mean gain
and its standard deviation, the mean error and its standard deviation with respect
to 0 are reported.

belongs to G1. In particular we referred to (5.3), using a placement function which
depends only on the corridors length, since we attached clusters randomly (and
thus the probability to attach a certain cluster to a corridor is proportional to the
corridor length). More precisely, each corridor tree has been generated randomly
with a mean number of leaves equal to 5. Each cluster has a random number of
rooms generated with a uniform probability between 1 and 4. Then the clusters
have been attached to the tree randomly (preserving the properties). We varied the
number of clusters |K| ∼ dK |C | as dK = {0.2, 0.3, 0.4}. Since the shape of each
single room does not influence the gain of Sdg over Sd (because of the properties)
we decided to choose a full connected subgraph of three vertices each. Finally, the
starting position has been chosen from those satisfying the constraint. An example
of these random generated environments is given in Figure 5.3. The results of the
simulations are shown in Table 5.1.

Our results (over 600 randomly generated graphs) actually suggest that Sd

always performs worse than Sdg, which is a predictable result, given the shape of
the environment we considered. For example, considering |V | = 150 and a number
of clusters |K| ∼ dK |V |, for dk = 0.4 the difference between the mean traveled
distances of Sd and Sdg is 62.78 (2.02 standard deviation) edge traversals. On
average the gain seems to be almost independent of the number of rooms in each
cluster. It seems just to depend on the way corridors are attached. This makes the
estimate fairly good, since there is no assumption about the clusters size. The error
between the estimate on the gain of Proposition 2 and the real one seems to be
limited. We notice that the goodness of the estimate depends on the ratio between
the cardinality of the set of leaves |J | and that of corridor vertices |C |. For example,
in one of the experiments the error was −2.1 (3.8), over a gain of 13.8 (3.1), for
|C | = 50, |J | = 5, and dK = 0.2. This could be explained by the fact that if
|J |/|C | is high (in the example it is 0.1), the gain of Sdg over Sd is smaller and,
because of the approximations in the computation of the estimate (shown in the

5.2. INDOOR ENVIRONMENTS 59

Figure 5.3: An example of random G1 graph with room (light grey) and corridor
(dark grey) vertices and |C | = 50, dK = 0.3.

60 CHAPTER 5. AVERAGE CASE ANALYSIS

proof), the percentual error is higher. Intuitively, corridors are generally shorter
when the ratio |J |/|C | is higher and so Sd has to re-traverse less vertices to visit
unexplored rooms. Instead, considering |C | = 200 (with |J | = 6 and dK = 0.2),
|J |/|C | = 0.03 and the error percentage is smaller (namely, −0.3 (3.7) over a
mean gain of 66.1 (3.6)). Moreover, we noted that there is a slight overestimate,
probably due to the approximations we made in the proof which, anyway, seems
not to grow with the gain nor with the number of corridor vertices.

In general, the gain estimate given in Proposition 2 can be seen as the gain, in
terms of edge traversals, that Sd would have if, at each step i, it prefers to choose
room locations than corridor locations from F dimin

. Thus, this result is valid for
a wider class of functions that act as tie breaker than g() (the information gain),
such as those that exploit room landmarks or semantic inference, or, in general,
for any tie breaker that can recognize a room frontier location with respect to a
corridor frontier location (and then decides to break ties according to this knowl-
edge, choosing first to explore the room locations). Moreover, we can notice that,
on average, the Sd exploration path tends to be a tour over the corridor vertices.
This happens on a larger class of environments than G1, that we call G ′1, which is
characterized by Property 1, Property 2, and Property 3. It is easy to check that
Property 4 and Property 5 (which could be reasonable for certain kinds of indoor
environments) are needed to guarantee that Sdg explores all the rooms as soon as
possible. Thus, given a graph G = (V,E) that belongs to G ′1, for any starting ver-
tex v0 ∈ C , the Sd exploration path tends to be a tour over the corridor vertices.
This means that, on average, the last room that Sd explores is often close to the
starting vertex.
To show better this fact, let us define a version of Γd() function that does not take
into account the edge traversals due to the rooms exploration, as

ΓC
d (G, v0) =

∑
j∈J

Bj

|C j |+ ∆j + 2
∑

l∈J,l 6=j
|C l|

(Including j in the sum)

=
∑
j∈J

Bj

(
2
∑
l∈J

(
|C l|

)
−
(
|C j | −∆j

))
(Splitting the sum)

= 2
∑
j∈J

Bj
∑
l∈J

(
|C l|

)
−
∑
j∈J

Bj
(
|C j | −∆j

)
(The first two sums are indipendent of each other)

= 2
∑
l∈J

(
|C l|

)∑
j∈J

Bj −
∑
j∈J

Bj
(
|C j | −∆j

)

5.2. INDOOR ENVIRONMENTS 61

(Since the sum of all the Bj is equal to 1)

= 2
∑
l∈J

(
|C l|

)
−
∑
j∈J

Bj
(
|C j | −∆j

)
where ∆j is still the distance between Rj

last and the leaf j.
If T (G, v0) = 2

∑
j∈J |C j | is the length of tour over the subgraph on G induced

by vertices in C , then (averaging, again, over all the clusters positions) we have

E[T (G, v0)− ΓC
d (G, v0)] = E[T (G, v0)]− E[ΓC

d (G, v0)]

=
∑
j∈J

Bj
(
|C j | −∆j

)
≈
∑
j∈J

Bj

(
|C j | − |C j | q(C j)

q(C j) + 1

)

=
∑
j∈J

Bj · |C j |
(

1− q(C j)

q(C j) + 1

)
As before, if we can define a dK in the environment, we have∑

j∈J
Bj |C j |

(
1− dK |C j |

dK |C j |+ 1

)
which tends to 0 for any sufficiently large dK . This is clear from Table 5.2 which
shows the number of edge traversals over the corridors in G1 random graphs, re-
porting the error and its standard deviation with respect to 0. Since we considered
dk ≥ 0.2, the exploration path, on average, is always almost a tour over the corri-
dor vertices. Moreover, increasing the density parameter dK , the number of edge
traversals between corridor vertices is slightly closer to 2|C j |. The only excep-
tion is in correspondence of |C j | = 50, where the traveled distance is higher for
dK = 0.2 than for dK = 0.3. We can explain this fact considering that, such
distance it does not depend only on the number of clusters in the environment, but
also to the corridor structures. In any case, the difference on the traveled distance
from dK = 0.2 and dK = 0.4 is rather small (for instance, with |C j | = 250

the difference is just 3.7 over a traveled distance that starts from 489.9 (3.1) for
dK = 0.2 to 493.6 (1.1) for dK = 0.4. Furthermore, we can notice that the stan-
dard deviation of the real traveled distance is lower for low values of dK , which
was predictable, since, increasing the number of cluster, the freedom on the way to
attach the clusters diminishes.

5.2.2 Simple Loop Environments

Now let us consider another class of indoor environments characterized by a simple
loop, which represents a corridor and to which some rooms are attached. More

62 CHAPTER 5. AVERAGE CASE ANALYSIS

dK = 0.2 dK = 0.3 dK = 0.4

|C | Distance Error Distance Error Distance Error
50 93.3 (0.9) -1.0 (1.7) 92.2 (1.1) -1.9 (2.3) 94.1 (0.6) -0.2 (1.2)

100 190.1 (3.5) -2.6 (4.3) 191.8 (2.1) -2.2 (4.1) 194.2 (0.7) -1.2 (1.2)
150 289.2 (5.0) -2.1 (7.7) 293.2 (1.5) -0.1 (3.5) 292.7 (1.2) -0.9 (2.7)
200 390.4 (2.3) -1.8 (2.8) 392.3 (2.7) -2.2 (6.4) 396.2 (1.4) 1.0 (4.8)
250 489.9 (3.1) -4.0 (6.8) 492.5 (1.7) -2.4 (6.1) 493.6 (1.1) 0.9 (3.8)

Table 5.2: Number of edge traversals between corridor vertices on graphs belong-
ing to G1. The mean distance traveled over the corridors and its standard deviation,
the mean error and its standard deviation with respect to 0 are reported.

formally we say that G = (V,E) belongs to G2 if satisfies four of the previous five
properties (already defined in Section 5.2.1 and which are summarized here):

• Property 2 (There exists at most one entrance for each room),

• Property 3 (All the vertices of a given room are at most at distance 1 from
the entrance),

• Property 4 (The degree of each entrance is greater than 2),

• Property 5 (Given a corridor vertex v attached to an entrance vertex e, all
the neighbor corridor vertices w should not have more than 1 other vertex,
beyond v, attached to them),

and the following new properties

Property 6 The subgraph on G induced by vertices in C is a loop,

Property 7 Each cluster is composed by at most one room.

As for G1, in the following result we estimate the difference between the aver-
age performance of Sd and Sdg on a set of possible graphs that belong to G2. As
in Section 5.2.1, given a graph G ∈ G1 we define the set of graphs that have the
same corridor structure (namely, the same loop length) of G, but different clusters
position. We assume again the probability distribution over this set as a uniform
distribution.

Because of Property 7 the number of clusters coincides with the number of
rooms. So, for clarity, let us rename it as R = |K|.

Proposition 3. Consider a graph G = (V,E) that belongs to G2, a starting vertex
v0 ∈ V ∩ C , a goal percentage p = 1, and a sensor range r = ε (ε → 0). An

5.2. INDOOR ENVIRONMENTS 63

estimate for the mean difference between the average performance of Sd and Sdg

on G is

|C |

[
1− 2−R

(
3

11
R2 +

21

44
R+ 1 +

e

2

R∑
i=3

(
R

i

)
1

i

)]

Proof. Considering Sdg, again, because of Properties 4 and 5, while the robot
explores the corridor loop, it explores every room it encounters before continuing
going along the corridor and a room, when chosen, is completely explored, due to
Properties 2 and 3 and to the fact that the starting vertex v0 ∈ C . Also, Property 2
guarantees that after a room Ri has been explored, the robot does not directly go
to another room Rl (i 6= l) without first going back to a vertex in C . Also here,
because of Property 3, the mean tour cost for visiting a room (starting from the
corridor vertex where v ∈ Ri ∩ E is attached), T (Ri), is the same for Sdg and
Sd. Thus, for Sdg, averaging over the rooms positions, we have that

E[Γdg(G, v0)] ≈
∑
Ri

[T (Ri)] + |C |

To be precise we should take account of the difference, in terms of edge traversals,
between an exploration path that ends on the loop or in a room, but we neglect
it (and also the minus one in |C |, due to the fact that the last edge in the loop is
not traversed). For Sd, as we saw in the proof of Proposition 2, while the robot
explores a corridor, it could choose not to explore some encountered rooms. Hence,
it could happen that, once the robot has completely explored the loop, it should go
back to explore rooms left behind. The number of edge traversals to visit the rooms
is the same as Sdg because of Property 3. The only difference between Sd and
Sdg is that, after the first loop traversal, Sd could have to re-traverse part of the
loop to explore the rooms left.

We define ∆ as the mean distance traveled during the second loop traversal,
plus |C | (the distance traveled at the first loop traversal). For Sd, averaging over
the rooms positions, we have

E[Γd(G, v0)] ≈
∑
Ri

[T (Ri)] +

(
1

2

)R
|C |+ ∆

Also in this case we neglected the difference between an exploration path that
ends on the loop or in a room and the minus one in |C |. Notice that, because of
Proposition 7, the probability to leave back a room during the first loop traversal is
1
2 . Similarly to the case of the tree, the probability of not exploring a number m of
rooms along the corridor loop is a binomial S ∼ B(m, 1

2). In general, ∆ is rather
hard to determine, even if we relax the constraints about the rooms positions. For

64 CHAPTER 5. AVERAGE CASE ANALYSIS

m = 1 and m = 2, ∆ can be found enumerating all the possible rooms positions,
and it is approximately

(
1
4 + 1

)
|C | and (5

11 + 1)|C |, respectively. For m ≥ 3

we proceed as follows. First we assume the loop as a continuous line and the
rooms’ positions as independent (as in the tree case), and then we find the mean
distance from the closest unexplored room as Zm = min(X1, X2, ..., Xm) where
Xi ∼ U(0, |C |2) is the distance, from the current position to the corridor vertex
where the entrance of an unexplored room is attached. Thus, let be l = |C |

2 . The
cumulative distribution function of Z is

FZ(t) = P (Z ≤ t)

(Basic probability theorem)

= 1− P (Z > t)

(Because of the definition of Z)

= 1− P (X1 > t ∧X2 > t ∧ ... ∧Xm > t)

(Since we assumed the uniform distributions as indipendent)

= 1− P (X1 > t) · P (X2 > t) · ... · P (Xm > t)

(Substituting the cumulative distribution function for a uniform distribution)

= 1−
(
l − t
l

)m
The probability density function is

fZ(t) =
dFZ(t)

dt
= m · (l − t)m−1

lm

and then, applying the definition of the expected value for a continuous aleatory
variable

E[Z] =

∫ l

0
m · (l − t)m−1

lm
· t · dt

=
m

lm

∫ l

0
(l − t)m−1 · t · dt

=
l

m+ 1

(Substituting l)

=
|C |

2(m+ 1)

5.2. INDOOR ENVIRONMENTS 65

Now, a rough approximation for the traveled distance is given considering

E[D | S = m] = |C |+ E[Zm] + E[Zm−2] + E[Zm−3] + ...

≈ |C |+ E[Zm−1] + E[Zm−2] + E[Zm−3] + ... (5.4)

This sum is not valid when it is larger than |C |2 , since the uniform distributions of
the distance, from the current position to the corridor vertex where the entrance of
an unexplored room is attached, cannot be considered between 0 and |C |2 anymore.
To avoid this issue we can consider that, if the robot has covered half of the loop,
the remaining distance that it has to travel, is the distance from the furthest room not
explored yet. Thus, once the robot reaches the half of the loop, given α unexplored
rooms, the remaining distance can be estimated as Z ′ = max(X1, X2, ..., Xα),
similarly to what we did in the proof of Proposition 2. We have to find when (5.4)
reaches |C |2 , namely, we have to find the number of rooms α such that

m−1∑
i=α

E[Zi] =
|C |
2

(substituting E[Zi])

m−1∑
i=α

|C |
2(i+ 1)

=
|C |
2

(exploiting the limit approximation)

|C |
2

(lnm− ln(α+ 1)) =
|C |
2

(after some math)

a =
m

e
− 1

Thus, for m ≥ 3

E[D | S = m] ≈ |C |
2

+
α

α+ 1

|C |
2

= |C |+ |C |
2

+
m− e
m

|C |
2

=
4m− e

2m
|C |

The goodness of this approximation is shown in Figure 5.4 and Figure 5.5.
In summary we have that

E[Γd(G, v0)− Γdg(G, v0)] = E[Γd(G, v0)]− E[Γdg(G, v0)]

66 CHAPTER 5. AVERAGE CASE ANALYSIS

0 2 4 6 8 10 12 14 16
#rooms

0

5

10

15

20

25

30

35
m

e
a
n
 #

e
d
g
e
 t

ra
v
e
rs

a
ls

Real
Approx

Figure 5.4: The real mean distance traveled, computed enumerating all the rooms
configuration ({0, · · · , 17} rooms) with |C | = 35

0 5 10 15 20
#rooms

0

5

10

15

20

25

30

35

40

 m
e
a
n
 #

e
d
g
e
 t

ra
v
e
rs

a
ls

Real

Approx

Figure 5.5: The real mean distance traveled, computed enumerating all the rooms
configuration ({0, · · · , 20} rooms) with |C | = 40

5.2. INDOOR ENVIRONMENTS 67

dR = 0.2 dR = 0.3 dR = 0.4

|C | Gain Error Gain Error Gain Error
50 32.1 (1.1) -2.8 (3.1) 37.6 (1.3) -2.6 (2.9) 40.4 (1.1) -2.4 (2.6)

100 80.8 (2.0) -4.7 (5.2) 87.7 (1.7) -2.9 (3.3) 90.8 (0.9) -2.2 (2.4)
150 132.1 (2.4) -3.8 (4.5) 138.0 (2.1) -2.7 (3.4) 140.8 (0.9) -2.3 (2.5)
200 180.3 (3.3) -5.7 (6.6) 186.9 (0.9) -3.8 (4.0) 191.0 (2.8) -2.2 (2.4)
250 231.4 (3.5) -4.7 (5.8) 236.6 (2.0) -4.2 (4.6) 242.7 (3.4) -1.7 (2.1)

Table 5.3: Performance on random generated G2 environments. The mean gain
and its standard deviation, the mean error and its standard deviation with respect
to 0 are reported.

which is

=

(
1

2

)R
|C |+ ∆− |C |

(Substituting ∆ ≈ E[D])

≈ E[D]−

(
1 +

(
1

2

)R)
|C |

(Substituting E[D])

= |C |
(

1

2

)R [5

4

(
R

1

)
+

16

11

(
R

2

)
+

R∑
i=3

(
R

i

)
4i− e

2i

]
−

(
1 +

(
1

2

)R)
|C |

(Simplifyng the terms)

= |C |
(

1

2

)R [8

11
R2 +

23

44
R+ 1 +

R∑
i=3

(
R

i

)
4i− e

2i

]
− |C |

(Splitting the sum)

= |C | − |C |
(

1

2

)R [3

11
R2 +

21

44
R+ 1 +

e

2

R∑
i=3

(
R

i

)
1

i

]

= |C |

[
1−

(
1

2

)R(3

11
R2 +

21

44
R+ 1 +

e

2

R∑
i=3

(
R

i

)
1

i

)]

Also in this case we performed some simulated experiments generating ran-
dom graphs belonging to G2. We varied the room density parameter dR (number

68 CHAPTER 5. AVERAGE CASE ANALYSIS

Figure 5.6: An example of random G2 graph with room (light grey) and corridor
(dark grey) vertices and |C | = 100, dK = 0.2.

of rooms over the number of corridor vertices) and the number of corridor ver-
tices. An example of the random generated graphs that belongs to G2 is given in
Figure 5.6. The results are reported in Table 5.3. We can notice that, as for Propo-
sition 2, there is an evident overestimate (and maybe a little bias) probably due
to the approximations we made. Nevertheless, increasing the loop length we have
that the percentage error lower significantly and the estimate seems to scale very
well also in terms of standard deviation.

If we consider a larger class of environments G ′2 characterized by Property 2,
Property 3, Property 4, Property 5, and Property 6 (namely, like G2 but each cluster
can be composed by more than one room), then, the formula of Proposition 3 is
an estimate of the lower bound of the mean gain for any graph that belongs to
G ′2 (recall that R = |K| is the number of clusters). To prove this fact consider

5.2. INDOOR ENVIRONMENTS 69

the probability to leave back an unexplored cluster at the first loop traversal. This
probability is trivially 1

2 for any graph that belongs to G2. Instead, for a graph
that belongs to G ′2 this probability is greater than or equal to 1

2 : each cluster Kv is
composed by at least one room, hence, once the robot reaches v, the probability to
go ahead along the loop, leaving back at least one unexplored room, is greater than
or equal to 1

2 . Thus, for Sd, and for equal number of clusters, the mean number of
clusters left at the first loop traversal is higher for a graph that belongs to G ′2 than
a graphs that belongs to G2. Since, at the second loop traversal, the mean traveled
distance is a monotonic function with respect to the number of rooms left (as we
can notice in the proof of Proposition 3), the formula of Proposition 3 is an estimate
of the lower bound of the mean gain for any graph that belongs to G ′2.

This result is generalizable, as for the tree environments in Section 5.2.1, for
a wider class of functions that act as tie breaker than g() (the information gain),
namely, for any tie breaker that can distinguish a room frontier location from a cor-
ridor frontier location (and then decides to break ties according to this knowledge,
choosing first to explore the room locations).

Chapter 6

Conclusions

We have proposed a model for the graph exploration problem that extends the
fixed graph scenario, considering a robot equipped with a sensor able to perceive
vertices within a generic range r, and that adopts a termination criterion based on
the percentage p of the graph to perceive. Furthermore we introduced the concept
of information gain in exploration strategies operating on graphs. This allows to
approach a formal analysis of the performance of the strategies that exploit this
concept, introduced and evaluated only experimentally (see, e.g., [Amigoni, 2008])
so far.

We provided worst-case bounds for three exploration strategies: Sd, which, at
a given time step, selects the frontier that minimizes its distance from the current
robot position, Sg, which, at a given time step, selects the frontier that maximizes
the information gain, and Sdg which acts as Sd and breaks ties as Sg. The derived
bounds explicitly take into account not only the number of vertices of a graph to
explore as currently done in the literature ([Tovey and Koenig, 2003] and [Koenig
et al., 2001]), but also the value of the sensor range r. Moreover, the number of
vertices in the bounds can be any fraction of the total vertices in the environment,
according to the goal percentage p.

The main motivation of this work is that it integrates and possibly better ex-
plains the experimental results obtained with real (and realistically simulated) ex-
ploring robots. For example, according to some results obtained in specific envi-
ronments, including information gain in the exploration strategies does not shorten
the paths for completely exploring the environments [Julia et al., 2012, Stachniss
and Burgard, 2003]. Moreover, in the literature, it is shown that, in exploration,
increasing sensor range reduces the traveled distance ([Quattrini Li et al., 2012]).
Our analysis confirms that finding in the worst case. Furthermore, for Sdg, we
have proved that the worst-case bounds are the same of those of Sd. Practical ex-
periments on random generated graphs have shown that, for a sensor range r ≥ 1,

71

72 CHAPTER 6. CONCLUSIONS

using information gain as tie breaker is sufficient to improve the exploration per-
formance, in terms of traveled distance, with respect to the plain distance criterion.

To the best of our knowledge, ours is the first work that analyzes exploration
strategies in the average case. In particular, we identify two specific classes of
graphs modeling indoor environments, where we calculate the average reduction
in the traveled distance, that information gain can provide over considering only
distance, when the sensor range is r = ε (ε −→ 0).

The first class of indoor environments we considered is a tree of corridors with
rooms. We defined this class of graphs through five properties. Then we removed
some of them considering a larger class of environments, showing that, the ex-
ploration path of Sd, tends to be a tour over the corridor vertices. Finally, we
generalized the results to a wider class of tie breakers, namely, those that are able
to distinguish a frontier room location from a frontier corridor location. The exper-
imental results in some randomly generated graphs of the above class corroborate
the average-case analysis.

The second class of indoor environments we considered is characterized by a
simple loop corridor, to which some rooms are attached. We showed that the es-
timate found in Proposition 3, between the average performance of Sd and Sdg,
is a lower bound for a larger class of graphs. Also in this case, we performed
experiments, which indicate that the approximation of the mean traveled distance
we provided is very close to the real mean (computed enumerating all the feasible
rooms dispositions). Then, we tested the goodness of the estimate on random gen-
erated graphs belonging to this class of loop environments. Even if there is a slight
overestimate in the approximation, it is clear from the results that the error per-
centage diminishes, increasing the number of corridor vertices (namely, the loop
length). Finally, similarly to what we did for the first class of the indoor environ-
ments, we generalized this result for a wider class of tie breakers (again, those that
are able to distinguish a frontier room location from a frontier corridor location).

There are several directions of interest for future works. One could to extend
the average-case analysis by considering more general class of graphs and percep-
tion radii r ≥ 0.

About the worst-case analysis, our results could be generalized for weighted
graphs by modifying edges whose weight is greater than 1 with a line graph in
such a way that the weight of each edge of the line graph is less or equal than one.
However, applying the worst-case bound on such modified graph is loose, so it
could be interesting to find a lower worst-case bound.

Moreover, we suggest a conjecture (Section 5.1) about the perfect tie breaking
of Sd, that would be interesting to prove. The implication of that conjecture can
strengthen the motivations behind the analyses on how and which heuristics could
be used to break ties.

73

Furthermore we introduced a brief comparison between the average-case and
the worst-case complexities in robotic exploration and, along this line, it is worth
to deepen whether, in the fixed graph scenario, the average complexity of Sd, on a
given graph (that we measured through Γd()), is Ω(logn

log lognn) as well.
Finally, it is worth to analyze the impact that uncertainty on perception, lo-

comotion, and information gain evaluation has on the worst and average case.
Moreover, it could be interesting to address other cases, like constrained explo-
ration [Duncan et al., 2006], in which a robot should, for example, stay within a
certain distance from a base station, and use of multiple robots [Brass et al., 2011].

In a broader view, the analysis done in this thesis can provide some insights for
defining new exploration strategies and the corresponding bounds so that robotic
exploration is improved.

Bibliography

S. Albers, K. Kursawe, and S. Schuierer. Exploring unknown environments with
obstacles. Algorithmica, 32:123–143, 2002.

F. Amigoni. Experimental evaluation of some exploration strategies for mobile
robots. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 2818–2823, 2008.

F. Amigoni and V. Caglioti. An information-based exploration strategy for envi-
ronment mapping with mobile robots. Robotics and Autonomous Systems, 5(58):
684–699, 2010.

F. Amigoni, A. Quattrini Li, and D. Holz. Evaluating the impact of perception
and decision timing on autonomous robotic exploration. In Proceedings of the
European Conference on Mobile Robots (ECMR), pages 68–73, 2013.

Y. Asahiro, E. Miyano, S. Miyazaki, and T. Yoshimuta. Weighted nearest neighbor
algorithms for the graph exploration problem on cycles. Information Processing
Letters, 110:93–98, 2010.

B. Awerbuch, M. Betke, R. Rivest, and M. Singh. Piecemeal graph exploration by
a mobile robot. Information and Computation, 152(2):155–172, 1999.

P. Brass, F. Cabrera-Mora, A. Gasparri, and J. Xiao. Multirobot tree and graph
exploration. IEEE Transactions on Robotics, 27(4):707–717, 2011.

D. Calisi, A. Farinelli, L. Iocchi, and D. Nardi. Autonomous navigation and ex-
ploration in a rescue environment. In Proceedings of the IEEE International
Workshop on Safety, Security, and Rescue Robotics (SSRR), pages 54–59, 2005.

H. Choset. Coverage for robotics: A survey of recent results. Annals of Mathemat-
ics and Artificial Intelligence, 31(1-4):113–126, 2001.

S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro. Map construction of
unknown graphs by multiple agents. Theoretical Computer Science, 385(1–3):
34–48, 2007.

75

76 BIBLIOGRAPHY

X. Deng and C. Papadimitriou. Exploring an unknown graph. Journal of Graph
Theory, 32(3):265–297, 1999.

X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environment
I: The rectilinear case. Journal of the ACM, 45(2):215–245, 1998.

C. Duncan, S. Kobourov, and A. Kumar. Optimal constrained graph exploration.
ACM Transactions on Algorithms, 2(3):380–402, 2006.

P. Erdős and A. Rényi. On the strength of connectedness of a random graph. Acta
Mathematica Academiae Scientiarum Hungarica, 12(1-2):261–267, 1964.

K. Forster and R. Wattenhofer. Directed graph exploration. In R. Baldoni, P. Floc-
chini, and R. Binoy, editors, Principles of Distributed Systems, volume 7702 of
Lecture Notes in Computer Science, pages 151–165. Springer, 2012.

P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a
finite automaton. Theoretical Computer Science, 345(2–3):331–344, 2005.

Y. Gabriely and E. Rimon. Competitive complexity of mobile robot on-line mo-
tion planning problems. International Journal of Computational Geometry and
Applications, 20(03):255–283, 2010.

S. Ghosh and R. Klein. Online algorithms for searching and exploration in the
plane. Computer Science Review, 4(4):189–201, 2010.

H. Gonzáles-Baños and J.-C. Latombe. Navigation strategies for exploring indoor
environments. The International Journal of Robotics Research, 21(10-11):829–
848, 2002.

Y. Higashikawa, N. Katoh, S. Langerman, and S. Tanigawa. Online graph explo-
ration algorithms for cycles and trees by multiple searchers. Journal of Combi-
natorial Optimization, 28(2):480–495, 2014.

V. Isler. Theoretical robot exploration. Technical report, Computer and Information
Science, University of Pennsylvania, 2001.

M. Julia, A. Gil, and Ó. Reinoso. A comparison of path planning strategies for
autonomous exploration and mapping of unknown environments. Autonomous
Robots, 33(4):427–444, 2012.

B. Kalyanasundaram and K. Pruhs. Constructing competitive tours from local in-
formation. Theoretical Computer Science, 130:125–138, 1994.

BIBLIOGRAPHY 77

S. Koenig. Exploring unknown environments with real-time search or rein-
forcement learning. In Proceedings of Neural Information Processing Systems
(NIPS), pages 1003–1009, 1998.

S. Koenig, C. Tovey, and W. Halliburton. Greedy mapping of terrain. In Proceed-
ings of the IEEE International Conference on Robotics and Automation (ICRA),
pages 3594–3599, 2001.

N. Megow, K. Mehlhorn, and P. Schweitzer. Online graph exploration: New results
on old and new algorithms. Theoretical Computer Science, 463:62–72, 2012.

S. Miyazaki, N. Morimoto, and Y. Okabe. The online graph exploration problem
on restricted graphs. IEICE Transactions on Information Systems, E92-D(9):
1620–1627, 2009.

O. Mozos, C. Stachniss, and W. Burgard. Supervised learning of places from range
data using AdaBoost. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 1742–1747, 2005.

P. Panaite and A. Pelc. Impact of topographic information on graph exploration
efficiency. Networks, 36(2):96–103, 2000.

A. Quattrini Li, F. Amigoni, and N. Basilico. Searching for optimal off-line explo-
ration paths in grid environments for a robot with limited visibility. In Proceed-
ings of the National Conference on Artificial Intelligence (AAAI), pages 2060–
2066, 2012.

I. Rekleitis, V. Dujmović, and G. Dudek. Efficient topological exploration. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 676–681, 1999.

D. Rosenkrantz, R. Stearns, and P. Lewis. An analysis of several heuristics for
the traveling salesman problem. SIAM Journal of Computation, 6(3):563–581,
1977.

Y. Smirnov, S. Koenig, M. Veloso, and R. Simmons. Efficient goal-directed explo-
ration. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
292–297, 1996.

C. Stachniss and W. Burgard. Exploring unknown environments with mobile robots
using coverage maps. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 1127–1134, 2003.

S. Thrun. Robotic mapping: A survey. In Exploring Artificial Intelligence in the
New Millenium, pages 1–35. Morgan Kaufmann, 2002.

78 BIBLIOGRAPHY

S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Henning, T. Hof-
mann, M. Krell, and T. Schmidt. Map learning and high-speed navigation in
RHINO. In D. Kortenkamp, R. Bonasso, and R. Murphy, editors, AI-based Mo-
bile Robots: Case Studies of Successful Robot Systems. MIT Press, 1998.

C. Tovey and S. Koenig. Improved analysis of greedy mapping. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3251–3257, 2003.

B. Yamauchi. A frontier-based approach for autonomous exploration. In Pro-
ceedings of IEEE International Symposium on Computational Intelligence in
Robotics and Automation (CIRA), pages 146–151, 1997.

