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Sommario

In ogni sistema informatico, bug e vulnerabilità sono da sempre causa di problemi di si-

curezza e di malfunzionamenti. Con la complessità sempre crescente del software aumenta in

proporzione anche il numero di problemi riscontrati. Tra i principali effetti collaterali che bug e

vulnerabilità possono portare la privilege escalation ha un ruolo sicuramente primario, poichè

permette ad un aggressore di sfruttare delle vulnerabilità per eseguire operazioni afferenti a

livelli di privilegio più elevati di quelli dell’utente di base, ad esempio.

Molte soluzioni sono state proposte sia per eradicare il problema sia per identificare e

bloccare gli attacchi, ovvero i tentativi di sfruttare le suddette vulnerabilità. Tutti i lavori

presentati si concentrano sul problema di privilege escalation di un attaccante a livello di sis-

tema operativo, ossia l’evitare che un aggressore riesca, sfruttando vulnerabilità a programmi

privilegiati, nell’acquisizione di diritti di amministrazione che gli permetterebbero di prendere

il controllo della macchina. È stato inoltre dimostrato che non solo i sistemi operativi sono

affetti da questo problema ma anche applicazioni con una logica multiutente, cioè applicazioni

che mostrano, in funzione della tipologia di utente, solo una sotto parte delle funzionalità di

tutta l’applicazione.

Il mio lavoro propone un meccanismo di privilege separation contro questi tipi di attacco a

supporto di applicazioni con logica multiutente. Il mio sistema, PRIVMUL, propone un nuovo

modo per scrivere o adattare questo tipo di applicazioni e ne garantisce un’esecuzione sicura,

con lo scopo di proteggere funzionalità e dati appartenenti a profili diversi dal profilo che sta

eseguendo l’applicazione. PRIVMUL integra applicazioni, scritte utilizzando le API messe a

disposizione, con il sistema operativo che ne garantisce un’esecuzione sicura.

PRIVMUL annulla i privilegi di accesso delle pagine di memoria ai profili diversi da quello

che sta eseguendo l’applicazione. Per fare ciò ho creato un meccanismo che permette allo

x
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sviluppatore di specificare dei profili utente al momento della compilazione dell’applicazione.

PRIVMUL inoltre si propone di proteggere da possibili leak di dati sempre a causa di vul-

nerabilità presenti nell’applicazione. Per eliminare questa possibilità PRIVMUL traccia ogni

dato creato e distrutto all’interno dell’applicazione ne impedisce l’accesso non autorizzato.

PRIVMUL, per essere flessibile, supporta il cambio di profilo durante l’esecuzione attraverso

un meccanismo di autenticazione.

I risultati sperimentali indicano che l’aumento del tempo di esecuzione introdotto dal

meccanismo di autenticazione di PRIVMUL non compromette l’usabilità dell’applicazione.

I test di tracciamento delle allocazioni presentano invece un aumento consistente del tempo

di esecuzione se il numero di allocazioni dinamiche è elevato. Ad ogni modo, considerando il

tipo di applicazione per cui PRIVMUL è stato disegnato, e cioè applicazioni con una grossa

interazione con l’utente, l’aumento del tempo di esecuzione rimane trascurabile se comparato

con il tempo operativo dell’utente.



Summary

In every computer system, bugs and vulnerabilities have always been cause of many secu-

rity problems and malfunctioning. The size and the number of people that design and build

these systems are growing and with them also the probability that mistakes are acciden-

tally inserted. Privilege escalation is one of the most well known problems correlated with

bugs and vulnerabilities where an attacker, exploiting a privileged software, is able to execute

functionalities that belong to privilege levels higher than his/her user profile.

Several works in this area try to either prevent or defeat privilege escalation in computer

systems. Most of them work on the specific privilege separation inside the Operating System

(O.S.), trying to avoid that the exploitation of a privileged software brings an attacker to gain

administrative privilege level that will allow the attacker to have the machine control. However,

a recent work shows that not only operating systems are suitable for privilege escalation but

also multi-user logic application could suffer from this issue. It shows how a user could access

functionalities of other users’ profiles exploiting the new GEM vulnerabilities class.

In this work, I present a new security mechanism that applies privilege separation to multi-

user logic application to defeat privilege escalation and data leak. PRIVMUL, the system I

present, provides a new mechanism to write or adapt this kind of application. PRIVMUL

links the application to the operating system, through new provided APIs, that guarantee the

safe execution of every operation.

The approach I propose protects the code and data of other profiles from unauthorized

access by the current profile that is running the application. To achieve this protection PRIV-

MUL temporarly removes all the access rights on the memory pages to profiles that are

different from the current one. It also aims to protect dynamic data providing a chunk based

tracker along with the support of the operating system. PRIVMUL, to be flexible, supports

xii
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a runtime profile switch through an authentication mechanism.

The experimental results show that this approach introduces an acceptable overhead that

does not impact the overall usability of the protected application.





Chapter 1

Introduction

In modern software systems, due to their complexity, it is not hard to find security bugs, also

known as vulnerabilities, which can be leveraged by malicious adversaries to manipulate the

control or data flow of a program during its execution.

For example, I want to highlight the vulnerability CVE-2009-0065 that was found in the

Linux kernel (v 2.6) where the attacker was able to exploit a bug inside the SCTP stack in

a reliable way. This bug exploit allowed to provide a remote connect-back shell on all x86-64

hosts running that specific kernel [31]. Another example of vulnerability is the set composed by

CVE-2013-0977, CVE-2013-0987 and CVE-2013-0981 where the attacker was able to privilege

escalate the iOS operating system avoiding the system sandbox and breaking out the virtual

machine guest. It was counted that this set of three vulnerabilities was working on at least 5

million of iPhone devices during February 2013 [32]. Only these two cited cases by themselves

could target million of machines and devices all over the Internet. They could target private

users’ devices as well as production servers making users’ and companies’ softwares and data

at risk. Looking at the Secunia report [23] for the number of vulnerabilities found in the past

few years, I can see a growing trend, from 8369 vulnerabilities in 2008 to 13073 in 2013.

The latter case of vulnerability falls in the category of privilege escalation bugs, because

it allows an attacker to execute code or access data he or she was not meant to. It shows what

I can achieve thanks to privilege escalation and data leaking through memory corruption

vulnerabilities. The source of the problem is rooted in the intrinsic difficulty of designing and

implementing a correct access control mechanism, a problem which becomes very challenging

1
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in complex software. In particular, software designers and programmers need to create proper

privilege distribution management and enforcement procedures and make sure that, from

compile to runtime, no errors are introduced. This is clearly very challenging if the language or

programming environment offer no support for, or when it is simply too expensive to redesign

an existing large system. The bigger the systems are the greater the number of security

problems brought by mistakes in their management is. So the management of privileges among

the components of a system has always been a huge problem to solve. In general, the privilege

distribution problem could be almost completely solved during the system design phase, by

defining which are the least privileges each component needs or which isolation I can apply to

the component itself [22]. However, in modern software industry what usually happens is that

either the design and development costs or the performance constraints lead to a monolithic

approach of constructing the system. Without a deep analysis on how the system could be

divided into several independent and cooperative pieces, reducing the risk of improper use of

them is limited.

For an attacker who takes over a monolithic system, it is simpler to control it, if the

privileges are the same for every component. To explain this idea with a concrete example I

can think of an O.S. where all the components have root privileges (executed by root). In this

case if an attacker is able to gain the control (that means having arbitrary code execution)

over of one them, such as the network component, he/she can then increase his/her control

doing everything (e.g., writing in every location he/she wants inside the filesystem). With

proper Privilege Separation or Isolation this would not be either so easy or possible at all.

Depending on the system I am considering (generic application, operating system etc.)

the possible solutions change. There are solutions that try to prevent this kind of issue and

others that try to detect and block the execution when an improper privilege escalation is

detected. Some of the detection approaches try to verify that either data or the execution flow

or both are correct when the application is running. Some of those techniques are described in

Chapter 3. Instead, among the preventing approaches there are approaches that define access

policies such as SELinux [24] to restrict privileges on a per-application base and others that

define new ways to build this sensitive applications, for instance, creating different processes

that cooperate instead of having a single monolithic piece of code. The work presented in

this thesis is contained by the latter kind of approach. Related to this I should first mention
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Privilege Separation and Least Privilege, which have been firstly introduced by Provos et al. in

[21], that are two possible approaches which can be used to limit or to avoid security problems.

The Privilege Separation is the practice of dividing an application/system into two parts,

a privileged one and an unprivileged one. This is done to reduce the privileged part to the

minimum dimension possible, in such a way I can reduce the probability that inside that part

of the program there are vulnerabilities. The smaller the privileged component is, the lower

the risk of vulnerabilities is. Usually the implementation of this concept represents two parts

as two distinct processes that communicate through Inter-Process Communication (IPC).

The Least Privilege is the practice of creating multiple components out of a single appli-

cation/system, each component being created by a single significant operation. The difficult

aspect here is to find the least number of instructions to accomplish the operation. Every

component is represented by a process. The main difference between Privilege Separation and

Least Privilege is that the second one is more fine grain than the first one. Least Privilege

does not represent macro functionalities but it tries to protect basic operations.

In the last few years, significant progress has been made to apply Privilege Separation and

Least Privilege concepts to already existing programs. [21] shows how Privilege Separation can

be applied to an already existing program manually. Clearly, the main disadvantage of this

solution is that manually dividing a big application implies long operations and that who is

dividing the application should know the whole code base to avoid to break the divided pro-

gram flow somehow. In [14], the author wants to improve the separation process by providing

a library that includes all the basic operations needed in the partitioning phase. The main

drawback of this solution is that it still requires manual operations to divide an application.

Moreover, if I want to privilege separate an operation that is not included in the provided set

I must patch the library to add it that could mean the introduction of new security flaw. [3]

is the first work that tries to separate the privileges of the program in a semi-automatic way.

Regarding the concept of Least Privilege, the work [33] by Wu et al. proposes to use the

dynamic data dependency analysis on many traces of execution of an application to define

different components. This approach really depends on how good the execution traces are so

if the coverage does not include all the possible scenarios the whole partitioning system does

not work properly.

In this work, however, I slightly modify and extend the Privilege Separation approach,
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considering several parts kept in the same process. First, I consider multiple privilege levels;

this means that I can have a whole hierarchy of privileges and not only the two standard

levels proposed by Provos (the admin and the normal level). Second, I consider applications

with multi-user logics. This is important because I can apply my approach to all of those

programs where I can define more than two different users, like a company application where

different users from different area of the company use the same program to access different

functionalities. I can protect one user profile’s functions from improper access by the users of

other area of the company. None of the previous approaches has ever considered to protect

this particular kind of applications that are critical almost as well as all the server daemons

that are the goals of all the other works. Third, I achieve the previous two points while keeping

original application architecture unaltered. This makes my system less obtrusive in terms of

migration costs. Moreover, since my solution does not require to split the original application

architecture into multiple processes running at different privilege levels, no IPC overhead is

introduced.

In this thesis with PRIVMUL, I introduce an innovative approach to design, write and

run multi-user logic applications. Under the hood, PRIVMUL creates a strong and flexible

link between the application and the O.S. that guarantees, in a non compromised kernel, fully

secure execution also in case of vulnerable applications due to developers’ mistakes.

My key observation is that privilege separation, in application with multi-user logic, allows

an attacker to execute code that does not belong to his/her profile and this happens because

the code of the other profiles is loaded along with the code of the attacker profile. To this

end the key intuition is to protect all the code and data of other profiles as far as the active

profile is not eligible to access them. In this way even if the application has multiple profiles,

the user, for the whole session, can run only the functionalities of his/her profile. The same

idea of protecting perfectly solves the data leak problem. In this case the kind of data with

which I should work are Global Variable (G.V.) and dynamic allocated data.

In my system, I use the same mechanism of tagging explained by Brumley, but the attribute

I define permits to express an infinite number of levels instead of the only two (priv/unpriv)

defined in his work. This tagging mechanism allows to specify the different privilege levels

inside the source code of the application. PRIVMUL takes the annotated source code and

builds the binary keeping in mind every privilege level defined. It writes into the binary meta-
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data, describing the privilege levels layout, that are read by the O.S. when the application

is launched. O.S. guarantees the protection of higher privilege levels when a lower privilege

level is running. It also validates transition among privilege levels providing an authentica-

tion mechanism when the application wants to access an higher privilege level. During the

application execution the O.S. keeps track of different memory allocations and protect them

from other privilege levels as well as it is done for the application functionalities.

In summary, my contributions are the following:

• I propose PRIVMUL, a novel code-tagging mechanism in LLVM/Clang to design ap-

plications with multi-user logic while avoiding privilege escalation or user data leaking

due to memory corruption vulnerabilities.

• I implemented PRIVMUL as a GNU/Linux kernel module that supports application

with N > 2 different levels of privilege inside the application logic.

• I designed and implemented a mechanism to track and protect dynamically allocated

data during execution.



Chapter 2

Background

Any software may contain vulnerabilities. In most cases, vulnerabilities could bring serious

consequences including the compromise of the overall security of a system. A motivated at-

tacker could do various things if he or she is able to find and exploit those vulnerabilities. The

most common kinds of attacks allow to steal information in a company network, to compro-

mise and remotely control a machine to do illegal operations, to escalate privileges inside a

system, to cause denial of service and so forth.

In Section 2.1 and 2.2 I introduce the background concepts on software vulnerabilities. I

focus on the classes of vulnerabilities that lead to privilege escalation or data leak in multi-user

logic applications. Those include both classic (e.g., memory corruption) and recent vulnera-

bilities (e.g., GUI Element Misuse [18]). The generality of the PRIVMUL approach makes it

applicable to prevent vulnerability classes that are not described here for brevity. PRIVMUL

is based upon LLVM, Linux, ELF and Glibc. In 2.2.1 I introduce LLVM/Clang compiler

infrastructure, giving a brief description of its structure with a focus on the parts used in

PRIVMUL. In 2.2.2 I introduce the Linux kernel, the O.S. I used for the implementation. In

2.2.3, I describe the ELF format, focusing on its header because PRIVMUL uses it to store

all the metadata attached to the application executable. In Section 2.2.4, I present the Glibc

libraries, with particular emphasis on the loader and the memory allocator.

6
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2.1 Vulnerabilities

2.1.1 Memory Corruption Vulnerabilities

Memory Corruption Attacks refers to attacks that allow an attacker to deterministically alter

the execution flow of a program by submitting crafted input to an application [29]. In gen-

eral, a necessary condition for memory corruption vulnerabilities to occur is that the program

language demands the memory management to the programmers. The two most famous lan-

guages where I can find this class of vulnerabilities are C and C++, which are still used when

performance is paramount or when the hardware should be programmed directly.

Table 2.1: Programming Language Statistics

Programming Language Nov 2013 Nov 2014 Ratings

C 1 1 17.469%

Java 2 2 14.391%

Objective-C 3 3 9.063%

C++ 4 4 9.063 %

C# 5 5 4.985%

Programming language diffusion statistics from TIOBE software

Looking at some statistics, it is clear that C is still the most used language along with

Java, and C++ is in the Top5 [27].

Memory corruption vulnerabilities have been gaining increasing attention and are still

present in modern software. It is worth mentioning some of the milestones that have marked

the history of these vulnerabilities. The first documented attack that exploited a memory

corruption vulnerability has been found in 1972 and is described in a US Air Force document

[1].

By supplying addresses outside the space allocated to the users programs, it is often possible

to get the monitor to obtain anauthorized data for that user, or at the very least, generate a

set of conditions in the monitor that causes a system crash.

There exist several ways to exploit memory errors. Depending on the specific nature of the

vulnerability, an attacker reads-writes some primitives to implement exploits, and corrupts
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different memory areas. For a thorough historical overview, I refer the reader to [29], and limit

my attention to the basis of the main techniques. One of the first techniques still common

today is the stack-based buffer overflow presented in 1996 by Elias Levy (also known as Aleph

One) in [19]. This attack was already known many years before Levy’s work but he was the

first who published an detailed systematization. In fact in 1988, Robert Tappan Morris Jr.

wrote and released the Morris Worm, the first computer worm distributed on the Internet,

which propagated through the exploitation of a buffer overflow inside the fingerd daemon

[29]. In this technique, an attacker is able to get arbitrary code execution using a developer’s

mistake in the management of a buffer index. For example considering the following code:

Listing 2.1: Vulnerable Program to Buffer Overflow Example

#include <stdio.h>
#include <string.h>

int main(void)
{

char buff [15];
int password = 0;

printf("\n Enter the password : \n");
gets(buff);

if(strcmp(buff , "p4ssw0rd"))
{

printf ("\n Wrong Password \n");
}
else
{

printf ("\n Correct Password \n");
password = 1;

}

if(password)
{

/* Now Give root or admin rights to user*/
printf ("\n Root privileges gained \n");

}

return 0;
}

In the Listing 2.1, the program asks a user the password to gain privileges. Below, it is shown

a possible interaction that exploits the overflow to gain privileges without actually inserting

the correct password.
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Listing 2.2: Exploitation Example

>./overflow

Enter the password :
AAAAAAAAAAAAAAAAAAAA

Wrong Password

Root privileges gained

An attacker can easily exploit the application above. He/She has only to insert more characters

than the buffer length (e.g., Listing 2.2). The developer’s mistake is that the input length is

not controlled and the attacker has full control on the content of the buffer on the stack. This

implies an overflow of the buffer and all the cells of memory contiguously to the buffer are

overwritten as well. In this example the next variable after the buffer is the password variable

that is used to evaluate the authentication and it is initialized to zero. After the input of the

string, the password variable is overwritten by the overflow and its value is not zero anymore.

Once the execution reaches the password check, the program recognizes that the password is

invalid but the program keeps allowing the attacker to access to the privileged function.

Even such a simple vulnerability could allow an attacker to do privilege escalation if the

bug is located in a privileged piece of code. Another famous type of memory corruption is the

format string bug, first discovered in 1999 by Tymm Twillman during security auditing the

proftpd daemon [28]. The problem was known before that date but [28] is the first correctly

crafted attack that could be used to privilege escalate inside a system. This bug is introduced

when an attacker is able to control the format string (e.g., printf). Supplying placeholders

such as %x, %n, %u in a proper order permits to access and overwrite memory on the stack

including for instance the saved instruction pointer register values of the saved function frame.

Furthermore, the list of memory corruption vulnerabilities includes heap-based vulnera-

bilities that can allow code execution and possibly privilege escalation. Two of these attacks

are the “double free”, explained in [10], and the heap overflow, explained in [5], [26] and [17].

One of the first heap-based attacks was crafted in 1998 by Christien Rioux for Windows 95.

The attacks listed above are only main examples, variations of them could be found every

day to improve the reliability on the attack success or avoid some new security mechanism.
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2.1.2 GUI Element Misuse Vulnerabilities

GUI element misuse is a new class of vulnerability discovered by Mulliner et al. [18]. GUIs are

very common in nowadays applications because they are more intuitive for basic users than the

command line. It is very easy to control the operations of a system using the mouse or visual

menus instead of typing long commands. Essentially, the authors found many applications

where the privilege levels policies were enforced by the use of the GUI features rather than

the usual policy schemes the operating system was offering. They discovered cases where the

application was using a disabled button to deny the access to a certain functionality instead

of using the system-level policy functions.

This kind of vulnerability is not based on the execution of other pieces of code provided by

an attacker but it allows an attacker to access functionalities that should not be accessible to

him/her. With this class of vulnerability all the memory protections implemented so far are

totally ineffective because they allow execution of code that is already present in the vulnerable

program. Notably, PRIVMUL covers this class of vulnerability because it enforces application

policies at system rather than at application level (or, worse, at GUI level). System policies

can be tampered with by an attacker only if the attacker has root access to the machine.

2.2 Toolchain

2.2.1 LLVM/Clang Compiler Infrastructure

The LLVM Project is a collection of modular and reusable compiler and toolchain technologies

[16]. It started as a research project and now is one of the most developed compilers. Its

popularity is due to its flexibility and extensibility. It is composed by several other projects.

The most important are the Clang front-end and the LLVM Core libraries.

Clang is a C/C++/Objective C and Objective C++ front-end for LLVM. It has a very

good expressive diagnostics to identify bugs and problems in a program and it supports the

C++11 standard syntax. It is a fast front-end with a low memory use compared to the main

competitors such as GCC. It supports also GCC syntax elements (e.g., specific attributes).

In Section 5 I describe how I modified the front and back end to allow the programmer to

specify access-control policies by means of new attributes for global variable and function.
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The LLVM Core libraries provide a modern source- and target-independent optimizer.

This compiler back-end receives the program from the front-end already transformed in a

intermediate representation. It has two different chains of optimization passes. The first chain

that elaborates the code works on the intermediate representation and it brings general and

common transformations to the code. After that, the transformed intermediate representation

code is translated into machine code of the specified target. The produced machine code is

further elaborated to optimize the code for the specific target. A common optimization is the

if-conversion, which works on architectures that support predicated instructions (e.g., ARM

and Hexagon).

2.2.2 The Linux Kernel

“Linux is a clone of the operating system Unix, written from scratch by Linus Torvalds with

assistance from a loosely-knit team of hackers across the Net. It aims towards POSIX and

Single Unix Specification compliance.”[30]

Probably, Linux is one of the most well known open source Unix-like O.S.. It has always

been under heavy development since its first release back in 1991. It is for sure the most

targeted O.S. for research purposes. Its applicability goes from the desktop computers to

servers passing through embedded devices (such as routers, tablets, smartphones) and super

computers. Furthermore, it supports several architectures, the main being x86, x86_64, ARM,

Sparc and MIPS.

The Linux kernel offers many development interfaces. For the purpose of this work I

provide a brief summary of Kernel Modules (2.2.2), System Calls (2.2.2), Netlink Interfaces

(2.2.2).

Kernel Modules

Linux Kernel Modules (LKM) are the most used ways to extend the Linux kernel. In many

configurations they do not require a re-compilation of the whole kernel but only of the module

source code files. In fact, compiled modules can be loaded and unloaded at runtime without

influencing the overall execution of the O.S..

LKM are mainly used for [15]:
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• Device Drivers - All the drivers that allow to control an external piece of hardware

such as a webcam.

• Filesystem Drivers - LKM allow to extend the Linux kernel to support non standard

filesystem. Two main examples of this usage are the famous FUSE project [12] and the

ZFS support [34].

• System Calls - Instead of including system call in the kernel image it is possible, using

LKM, to add it without modifying the main kernel image. Usually this is the suggested

way to include new system calls because the Linux kernel developers try to keep the

system call table as stable as possible.

• Network Drivers - LKM could be used to include support either for a new or for a

custom network protocol.

• TTY line disciplines - With LKM it is possible to write terminal drivers too. For

example you can create your own TTY for the console that automatically corrects what

you are typing or you can write your own serial port to emulate a serial communication.

• Executable Interpreters - An executable interpreter loads and runs an executable.

Linux is designed to be able to run executable in various formats, and each one must

have its own executable interpreter. For instance, the Linux kernel does not natively

support the Java bytecode. Using a LKM I can add this feature to the kernel and run

Java bytecode as a standard executable.

System calls

System calls represent the most basic and used interface to the kernel functionalities. They

are mainly used to request the kernel special operations that may require either the use of

hardware components or privileged operations. In the Linux kernel system calls are identified

by a number. Of course, they change according to the supported architectures. This means

that, for instance, the read system call has a different identifier in x86, in x86_64 and in ARM.

In Linux the system call interfaces are pretty stable and they are changed very infrequently by

the kernel developers. For this reason system call should be avoided if you want to integrate

some functionalities in the kernel mainline. In other O.S. such as Microsoft Windows system



CHAPTER 2. BACKGROUND 13

calls change in every version, in fact Microsoft suggests to use wrapper libraries to guarantee

compatibility across versions.

Netlink Sockets

Netlink sockets, as described in [13], are a special IPC to send information back and forth

between kernel and user-space processes. This kind of communication is preferred to system

calls, ioctls or proc filesystem because it is very easily integrable with the kernel and, from

the user-space application point of view, it is like using a traditional socket. Netlink sockets

are pretty flexible because every netlink could have its own protocol. Netlink is asynchronous

because it provides a socket queue to smooth the burst of messages. From the kernel perspec-

tive only the protocol number should be added to the netlink.h file and a LKM should be

written to configure the interface for the user-space applications.

2.2.3 ELF (Executable and Linkable Format)

Since 1999, the ELF is the standard binary format for executable under all the Unix O.S. [9].

It has been developed by the Unix System Laboratory for the System V release 4 (SVR4)

Application Binary Interface (ABI).

The ELF format is flexible and extensible. It represents both object files and executable

files. In the object representation (Linking View) the file is divided into Sections. In the

executable representation (Execution View) the file is divided and loaded into Segments.

The ELF format is composed by several different headers. The main one is the ELF header

that contains all the information related to all the other headers (section and segment headers)

such as the offset from the beginning of the executable binary (e_phoff and e_shoff ), the

number of segments (e_phoff ) or sections (e_shoff ) that are inside the file. Its structure is

depicted in the Listing 2.3.

Listing 2.3: Elf Header Structure

typedef struct {
unsigned char e_ident[EI_NIDENT ];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
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Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

} Elf32_Ehdr;

Every section is described by one header. Sections contain the information in an object

file, except the ELF header, the program header table, and the section header table. The C

struct that represents a section header is depicted in the Listing 2.4.

Listing 2.4: Section Header Structure

typedef struct {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

} Elf32_Shdr;

The most notable fields of this struct are sh_name, which is the index into the section

header string table, sh_offset, which represents the offset from the beginning of the file to

the first byte in the section, and sh_size, which represents the size in bytes. In my system,

as described in Chapter 5, I use these parameters to save the information for every privilege

level (user profile).

The ELF format has several standard sections such as .text, where the code is usually

contained, or .debug where the debug information, if any, is stored. It also allows developers

to introduce new sections at compile time depending on the needs. In my case I used this

feature of the ELF format so as to forward useful information, such as the names for every

profile, in the process and to give a first profiles partition.

Last, the program header table is an array of structures, each describing a segment. In a

segment, one or more sections could be contained. The C struct that represents one segment

header is the Listing 2.5.
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Listing 2.5: Segment Header Structure

typedef struct {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

} Elf32_Phdr;

In this struct there are many notable fields; one of this is the p_type. This field content

changes the meaning of the other fields in the struct. Possible values are PT_LOAD that

means loadable segment (.text, .bss, .data and other are contained into this kind of segments

that are mapped by the dynamic loader in memory), PT_PHDR that specifies the location

and the size of the program header table itself, and PT_NULL for the empty or meaningless

segments that are ignored.

2.2.4 Glibc

Glibc is a C library version from the GNU project. It is used as main C library in most of

the systems with Linux kernel. it provides interfaces to all the common system calls of the

Linux kernel to allow application compatibility among different versions of the kernel. For the

purpose of this work, I need to highlight the loader and the allocator.

Loader

The Glibc loader is called ld.so. In the execution chain, its job is to open a binary, read the

ELF and the segments headers and map all the PT_LOAD segments into memory. Then, it

starts reading all the shared libraries used by the application and tries to load and map them

as well. In Section 5.3.1 I describe how I modified this element of the Glibc to achieve new

functionalities needed by my system.

Allocator

The allocator refers to the set of C functions that allow a program to manage the heap.

Without this set of functions for a programmer the management of the heap would be still
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possible but with a significant effort. The allocator caches pieces of memory when previous

allocation are freed by the application and keeps them in a list of chunks. When a new

allocation happens, the allocator tries to satisfy the request looking for the cached elements

in the list. If those elements cover the request, the allocator removes those chunks from the list

and returns the pointer to them, thus saving an expensive call to the glsOS. This operation

guarantees a performance improvement for the application.

The Glibc allocator is the standard one and it is for general-purpose applications. It was

written by Doug Lea and adapted to multiple threading by Wolfram Gloger. Citing from the

source code comment

This is not the fastest, most space-conserving, most portable, or most tunable mal-

loc ever written. However it is among the fastest while also being among the most

space-conserving, portable and tunable. Consistent balance across these factors

results in a good general-purpose allocator for malloc-intensive programs.

Other allocators exist and are used for more specialized kinds of applications. They may

give better performance for some kind of applications and worse for others.
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State of the Art and Research Gaps

In this chapter I describe the state of the art regarding Privilege Separation. The Privilege

Separation concept was elaborated by Provos et al. in [21] together with the Least Privilege

concept. On the application of the Privilege Separation concept two other main works exist

which try to automatize the system application process. The first one is Privman proposed

by Kilpatrick in [14] and the second one is Privtrans proposed by Brumley in [3]. I describe

these works and illustrate where and what this thesis contributes.

3.1 Privsep: Preventing Privilege Escalation

In [21] Provos et al. present the concept of Privilege Separation and they show how it could be

applied to all the privileged services in a Unix O.S.. The operation of Privilege Separation is

manually done on the source code of the application. In their work the authors take OpenSSH

as main example, being OpenSSH one of the most targeted software for remote privilege

escalation attacks.

The idea behind this work is to reduce the amount of privileged code as much as possible

to lower the probability of programmer’s mistakes and so vulnerabilities. They logically divide

the application into two different components. The first component is called monitor and it

contains all the privileged operations the application may ask. The second component is the

unprivileged program and for every privileged operation this second process should ask the

monitor to perform it. The monitor and the unprivileged programs are two different processes

isolated one from the other. The two processes are allowed to communicate through IPC (such

17
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as shared memory, pipes, sockets).

In the authors’ implementation, OpenSSH is divided into two processes and a socket

is created to allow the communication between the two elements. The monitor waits for

requests from the unprivileged process that manages the connection with the remote user.

If the unprivileged process asks for a non permitted operation the monitor terminates. The

authors also show that the privilege separated OpenSSH does not penalize performance.

This work achieves Privilege Separation through a manual operation on the source code.

Moreover, the authors’ approach divides the program into two different processes creating

an IPC communication. This could be done with small services but the complexity of this

operation grows along with the program size. In my approach the Privilege Separation is

achieved without dividing the binary into multi processes. This makes the application of

the Privilege Separation easier even with huge programs. Furthermore my approach improves

flexibility because it allows multiple levels of privileges. There is no IPC communication among

processes but only communication through the kernel to authenticate the more privilege

request.

3.2 Privman: A Library for Partitioning Applications

Privman improves the applicability of Privilege Separation. The author finds the manual ap-

proach to divide application presented in [21] limiting, so he decides to propose a library to

guide the process. The author’s library allows an application to be divided into a privileged

server and a main application. As in [21], the main application has to ask to the server to

perform the privileged application. The library already supports most of the usual privileged

operations such as file-access functions, PAM authentication, bind() and daemon(). Further-

more, the server could be configured with a series of policies written into a configuration

file.

Compared with the approach presented in this thesis, Kilpatrick’s library has the same

limitations of Privsep. It considers only two privilege levels. Also, it provides only few privilege

separation functions. For unsupported functions a developer should include them extending

the library itself. In my approach, this issue is not present because the tagging mechanism

works independently from the underline function that should be privilege separated.
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3.3 Privtrans: Automatically Partitioning Programs for Privi-

lege Separation

Privtrans is one of the most relevant works on Privilege Separation. Brumley et al. propose

an approach where the Privilege Separation is applied in an automatic way. The authors

provide the developers a new mechanism of annotation that allows to define, in a monolithic

software, which parts are privileged and which ones are not. The mechanism of tagging is

provided through a C attribute with one parameter. The parameter of the attribute could

be either priv or unpriv depending on the case. Privtrans receives the annotated source

code and applies a C to C transformation. At the end it produces two distinct programs, one

called monitor where there are all the privileged operations and a slave where there are the

unprivileged operations.

Moreover the authors extend the applicability of the Privilege Separation concept consid-

ering also a distributed setting where the monitor is not running on the same machine of the

slave. When the code partition happens, Privtrans replaces all the privileged calls with wrap-

pers that supports RPC. Using this mechanism they can hide the monitor location thanks to

the RPC library they are providing, and place it either locally or remotely without impact

the modification they are bringing to the slave code.

As introduced by Privman, also here the monitor supports the specification of policies

that permit or deny operations. These policies are written in C code inside the monitor itself.

Also in this work the authors use OpenSSH to evaluate their implementation.

Privtrans has some common characteristic with the work presented in this thesis. Also

in my work there is an annotation mechanism to identify the privilege levels inside a certain

application but in my work the number of possible levels is variable and not fixed to priv

and unpriv. However, my tagging mechanism does not aim to split the application. Instead,

it aims to keep the monolithic application structure (very hard to be split into multiple pro-

cesses) and just to internally reorder the program itself. If the new RPC library is vulnerable

some privileged functionalities may be exposed to the slave without the correct authoriza-

tion allowing privilege escalation. They also demand the creation of certain new privileged

operation to developers that could introduce mistakes in that very delicate interface. The

main difference between my approach and Brumley’s approach is that Privtrans mitigates
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the privilege escalation problem through privilege separation in user-space, while, PRIVMUL

enforces policies through the O.S. that makes the vulnerable surface much smaller and hard

to exploit.

3.4 Related Work

In this section I overview the main techniques used today to mitigate memory corruption

vulnerabilities and give some comments on why they do not solve the problem entirely. Since

the first memory corruption vulnerability was found, several research works have been pro-

posed to mitigated this class of vulnerabilities, by make the attacks either unreliable or not

possible at all. The most relevant protection mechanisms are ASLR, StackGuard, StackShield,

StackGhost, Non-Executable Data Pages and FormatGuard.

3.4.1 Address Space Layout Randomization

ASLR makes many attacks unreliable. It maps applications to random address spaces, which

change at each execution. With ASLR, the attacker must guess (or brute force) where the

elements (shellcode, libraries, code segment) are loaded to successfully exploit the application.

The success probability for an exploit decreases along with the amount of feedback an attacker

receives from the application. Moreover, If the attack is performed over the network and in the

system a back-up process to restart the failed application is not present, the attacker has only

one possible chance to exploit the application. This makes the ASLR protection mechanism

very effective.

However, against this security mechanism, Tyler Durden in [8] finds a possible leak of the

running programs address space thanks to a partial IP overwrite. This shows that the overall

idea is pretty strong to defeat various exploits but its implementation is crucial.

3.4.2 StackGuard

This technique, presented by Cowan et al. in [7], works at compile time. It could work in

two different ways; detecting the change of the return address before the function returns, or

preventing any overwriting of the return address.

The detection of modification is achieved by using a canary placed before the saved return
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address on the stack. This canary is checked before the function returns to the saved address

location and if the canary is corrupted it means that an attempt of overwriting has happened.

This makes the overwrite of the saved IP address very complicated and feasible only in case

an attacker could precisely overwrite the address bytes on the stack. The authors in this work

also presents an enhancement of the canary where they randomly choose the canary values.

This random canary is picked up using the crt0 library when the program starts. In this way

it would be harder for an attacker to craft a reliable overflow string due to the always different

canary on the stack.

In [7], the authors also present a tool called MemGuard designed to protect the return

address when a function is called and remove the protection when the function returns. This

protection is similar to a canary. It is composed by a prologue and an epilogue, which are

responsible for the protection and un-protection of the saved IP on the stack. This protection

mechanism introduces an overhead of 1800 times for a write operation, so the authors suggest

to use it only for debbuging.

However [4] demonstrates how to exploit stack overflow vulnerabilities even if StackGuard

is used. Even more, the authors of this attack consider an environment where the stack is

non-executable. The only assumptions are:

• A pointer located on the stack after the buffer

• Overflow bug that allows to overwrite the pointer

• One *copy() function (e.g., strcpy, memcopy) that takes the pointer as destination and

user-specified data as the source, and no pointer initialization between the overflow and

the copy.

3.4.3 StackShield

This attack also works for StackShield that is a GCC extension. Stackshield tries to avoid

buffer overflows copying the saved IP at the beginning of the DATA segment where the

overflow cannot overwrite. Then, StackShield compares the saved value on the stack and

the saved value in the DATA segment and terminates the application if the two values are

different.
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3.4.4 StackGhost

StackGhost, presented in [11] by Mike Frantzen and Mike Shuey, is an approach to mitigate

buffer overflow vulnerabilities and some format string bugs using a Sun Microsystem’s Sparc

processor architecture feature. The Sparc architecture instead of copying data to and from

the stack, it provides a set of registers containing all the function information. This is done to

speed-up the process of storing and recovering a previous function frame. The mechanism is

similar in spirit to the fastcall calling convention, but here it is used effectively to pass frame

information back and forth, and not just to pass parameters.

Every function frame has 24 registers equally divided into input, output and local registers.

Inside two contiguous function frames, the eight input registers of the former frame correspond

to the eight output registers of the latter frame. The RET address is saved and passed among

all the function frames. The problem is that the number of physical registers is limited and

I cannot have too many nested function frames. To solve this, the kernel copies the values

inside the common registers into the stack, starting from the registers of the oldest frames.

This call back to the kernel is where StackGhost plays a key role. In brief, it performs XOR

operations between the return pointer and a fixed (or per-process) cookie or by encrypts the

saved stack frame.

However, the Sparc architecture already provides strong protection due to the fact that it

uses registers instead of the stack if the nested call sequence is not too long. It may happen

that StackGhost is never called because the registers are enough for all the function frames.

3.5 Non-executable Data Pages

Many stack-based overflow attacks require that the shellcode and the overflow buffer are both

placed on the stack. An attacker usually tries to reach his/her own shellcode on the stack and

execute it. By removing the executable flag to the data segments the Grsecurity team (ex PaX

team) [25] shows that stack-based buffer overflow exploits are no longer feasible. Many im-

plementations of the “writable XOR executable” concept exist for various architecture. Many

architectures allow this specification at hardware level, others such as x86 should implement

the concept at the operating system (memory manager) level.

This technique could also be circumvented, as shown by Alexander Peslyak (also known
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as Solar Designer) in [20] where he presents a new technique called “return to libc” that

cat bypass non-executable data pages protections. In essence, the concept of return to libc

consists in executing code that is already present on the victim’s machine (i.e., in the libc).

This technique has evolved over the years, creating a family of exploitation methods known

as return oriented programming (or ROP in short), against which only control-flow-integrity-

based protection work.

3.6 FormatGuard

Usually format string happens because the number of % directives is controlled by the attacker

and there are not enough elements in the parameter list of the printf to satisfy the % directives

number. In this way the printf function starts to read other elements from the stack basing

on the % directives it finds that are not supposed to be read. FormatGuard [6] mitigates

format-string vulnerabilities. The idea is to count the number of parameters and compare it

to the number of % directives found in the format string.

FormatGuard works in the C preprocessor of the compiler, with a set of macros that tries

to detect every possible mistake in the format string use. An alert is provided at compile-time

if a suspicious case is detected.

3.7 Discussion

The targeted application between my work and the presented works (Privsep, Privman and

Privtrans) is different. They consider privilege escalation at O.S. level, instead, mainly I

aim multi-user application trying to defeat all kind of vulnerabilities such as the new GEM

vulnerability class. None of the previous work has never considered the security of those kind

of applications. Furthermore none of them could protect from the GEM attacks. My approach

goal is to hide privilege levels while the application is running if the profile is not eligible to

access them. So even if the application is vulnerable it is not possible to privilege escalate the

system because the privileged operation are not accessible in other memory pages.

Even if my approach has been designed on multi-user application I don’t exclude the

applicability of my approach to also protect from privilege escalation at O.S. level. This could

not be true for all the other works presented in this chapter.



Chapter 4

Proposed Approach

PRIVMUL solves the two distinct problems of privilege escalation and data leaking presented

in the previous chapters. To this end, I introduce a new way to design, write and run multi-user

logic applications. Under the hood, PRIVMUL creates a strong and flexible link between the

application and the O.S. that guarantees, in a non compromised kernel, fully secure execution

also in case of vulnerable applications due to developers’ mistakes.

My key observation is that privilege escalation, in application with multi-user logic, allows

an attacker to execute code that does not belong to his/her profile and this happens because

the code of other profiles is loaded along with the code of the attacker profile. Therefore, my

key intuition is to protect all the code and data of other profiles as far as the active profile is

not eligible to access them. In this way even if the application has multiple profiles, each user

can run only the functionalities of his/her profile. This also solves the data leaking problem. To

this end, I protect both G.V. (with a partitioning at compile time) and dynamically allocated

data (with a runtime protection).

PRIVMUL is composed by several elements that work in a chain. It starts with the appli-

cation design and ends with the application execution.

In general, PRIVMUL relies on a tagging mechanism (described in the Section 4.2) that

works on the source code of the application. Then, it propagates the tagging (as described

in Section 4.3) to achieve effective data and code partitioning (as described in Section 4.4).

Once loaded, the application code and data are kept partitioned in their representation in

memory, and the O.S. is informed about such partitioning (e.g., name, position in memory of

24
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every privilege level profile). This operation is described in Section 4.5. Only one profile can

be loaded and running at the same time and the application can change it through a request

to the O.S.. The O.S. is considered the reference monitor that authenticates each change of

profile according to the partitioning. This authentication functionality proposed at the O.S.

level is described in Section 4.6. O.S. is also designated for tracking all the data that the

application uses, keeping record of which profile created those data and allowing only that

profile to access it later on. This last operation done by the O.S. is described in Section 4.7.

4.1 Threat and Attacker Model

The case scenario I consider for this work is a large, multi-user logic application that is running

on a shared machine. The typical use case is a kiosk application with several profiles, or a

large enterprise application (e.g., SAP) installed on a shared machine with several employees

each having a distinct profile. Different users can use this machine in different moment in

time and each user, depending on his/her own profile, can access some of the functionalities

of the application. Our attacker model is a user that has access to the machine and is able

to exploit a vulnerability that leads the application to execute functionalities or to read data

outside the user (i.e., attacker) authorization profile.

I reduce the trusted element to the kernel, which is the only part that I assume to be non

compromised (e.g., no root kit has been planted). Consequently, the attacker has no root-

access to the machine, and thus no possibility to tamper the binary file or interfere with the

loading phase of the application.

4.2 Tagging mechanism

My approach is based on information inserted in the source code, which can be manually

inserted by developers or automatically deducted by the system. Ideally, the Tagging Mech-

anism receives the source code and optionally the tag information and creates the tagged

source code. The tag itself could be represented in various way. It could be something added

to the code or a particular modification of the code itself (Figure 4.1).
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Figure 4.1: This is the first part of the model. The tags could be provided by either developers or some other

tagging mechanism. Developers also have to set the global variable called NUM_OF_LEVELS that will be

used in all the following automatic operations on the source code and at runtime
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The way tagging is performed depends on the decision taken in other modules of the

system. I identified two possible schemes. The onion scheme (Figure 4.2) where level 3 profiles

share code and data with level 2 profile, and so on. In the tree scheme (Figure 4.3), admin-

level profile (root of the tree) can access every any code and data, whereas leaf-level profile

are accessible by any other intermediate level and can access only its code and data. These

tagging schemes must result in a source code with the metadata related to single-user profiles

included. This might depend on which scheme is elected, the onion or the tree. The output

of PRIVMUL contains information related to which piece of code and which global variables

belong to a certain user profile.
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Figure 4.2: Onion scheme of levels. This should not be confused with the CPU ring, it represents other kind of

privileges that are application specific. Furthermore in my model the levels go from 0 (administration level) to

NUM_OF_LEVEL, represents the most accessible level in the hierarchy. In the example NUM_OF_LEVEL

is equal to 3.
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Figure 4.3: Tree scheme of levels. The root of the tree (level 0) represents the admin-level profile that can

access every any code and data of all the nodes below. The leaf-level profile (level 10), instead, is accessible

by any other intermediate level and can access only its code and data. The intermediate profiles on different

branches (such as 4, 5 and 7) do not share neither code nor data among each others.

4.3 Tagging Propagation

The second module of PRIVMUL that analyzes the code is the tagging propagation block

(see Figure 4.4), which helps the developers to automatically propagate tagging information.

Without this block tagging propagation should be completed manually on all the functions

thus increasing the chances that the developer could inadvertently introduce errors. Therefore,
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although the task performed by this module is quite simple, it is very important.

In the onion scheme, for each non-tagged callee node in the graph it verifies all the callers

and, if all of them have a tag, picks the caller tag most accessible in the onion hierarchy and

assigns it to the callee node.

In the tree, If a callee is called by other levels on different branches, to satisfy all the

accessibility constraints, it is tagged with the leaf level. For instance considering the level

distribution as in Figure 4.3, if I am tagging a non-tagged function called by two other

functions from level 3 and 5, the only way this new node could be accessible by both is

staying at the bottom of the tree into the leaf-level because the leaf-level is the only level

shared by all the branches.

This phase propagates the tags only on the functions. It is not related to the tags of the

G.V.. This implies that every G.V. that should not be accessible by somebody must be tagged

manually.

During the propagation, the module requests interaction with the developers that can

force some decision to the propagation or base all the operations on an algorithm.
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Figure 4.4: This is the second part of the model, where the binary is instrumented for the system through a

series of components. The output will be a binary that will contain the metadata required by the privilege-

separation support in the loader and O.S. to work.
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4.4 Code and Data Separation

In this module (see Figure 4.4) the code with all the propagated tags is processed to be

separated. This module is the responsible of the transformation of the tagged source code

into an executable binary. The most notable property of the resulting binary is that code

and global data are divided into smaller sections; the binary is still a single, standalone file

but each section is isolated according to the privilege levels. Together with the binary, this

module encodes the metadata about each privilege level. The metadata could be stored in a

separated file or inside the binary. The binary layout is very important because the O.S. will

be able to protect data and code accesses based on such elements.

4.5 Operating System Initializer

This module of the system initializes the O.S. using the information provided by the previous

modules. Therefore, it reads either the binary or the external files produced and then informs

the O.S.. The communication between this block and the O.S. occurs before the application

execution. The O.S. is informed about the access control model used to correctly manage

privilege-level switching.

Referring to Figure 4.5, This module is represented by the connections ¬ and ­. The

¬ connection is the first in temporal order and it shows the operation of the binary layout

information sending (Metadata) to the O.S.. The ­ connection, instead, shows the usual

dynamic linking operation and the following application execution (Loading). After this

phase is completed the state of the system is in Running Program.
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Figure 4.5: Runtime application interaction with PRIVMUL . In this figure it is showed how the application is

managed by PRIVMUL from the loading in memory to the end of the execution. With ¬ and ­ are represented

the O.S. initialization (Metadata) and the Loading of the binary. These two operations happen once at the

beginning of the execution. After them, the status of the system is in Running Program. If a request for

switching to a different profile happens (Privilege Request) the Authorization Mechanism is activated.

The Authorization Mechanism is composed by the connection ®, ± and ². The program asks to the O.S.

Kernel to switch. The kernel activates an Authentication method (Auth. Request), which prompts the

user to enter (Token Request) a proper authentication token (password, smart card). Depending on the

correctness of the token (Token Input), a Success/Fail answer is sent to the O.S. Kernel, which will

either allow or deny the user-profile switching. Furthermore, the Running Program could perform an allo-

cation or deallocation (Alloca/Dealloc) during its execution. This activates the Dynamically Allocated

Data Protection composed by the connections ¯ and °. This request is received by the Allocator or

Deallocator. Before perform the operation, it communicates to the O.S. Kernel which is the operation to

trace. When the O.S. Kernel ends in updating its metadata with the new operation answers back to the

Allocator or Deallocator that will perform the operation and forward the result to the Running Program

(Chunk/Nothing).
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4.6 Authorization Mechanism

In a real scenario, applications change execution status from a privilege level to another.

Therefore, I introduce an authorization mechanism that verifies the profile to allow the O.S.

to grant or deny a change request.

I consider it as a separate module because it could be also a third-party application

interfaces to the O.S. or, in general, there could be different kinds of authentication methods

working together. The implementation may range from a the simple password to more complex

factors like smart cards.

An important part is how this module is invoked by the O.S.. The first and basic way to

do that is to let the application ask the O.S. to invoke the authentication. The second method

is to change the O.S. in such a way that it could be able to automatically detect the changes

and invoke the authentication. In my implementation I use the former method because I want

to keep my system as lightweight as possible, providing security without interfering with the

application execution.

Another decision that must be taken in this module is what to do when the authentication

fails. I can either close the application or redirect the application to a recovery function where

the status of the application is received and continued. I decided to allow a developer to

define a clean exit point for the application. The latter option is more robust and elegant but

rather complex, so from the developer point of view it would decrease the overall usability of

PRIVMUL.

As shown in Figure 4.5, the three round trip connections from the running application

to the user, here called ®,± and ², represent the authorization mechanism. The application

asks the O.S. (Privilege Request) to switch to a different profile. The O.S. activates an

authentication daemon (Auth. Request), which prompts the user to enter (Token Request)

a proper authentication token (password, smart card). Depending on the correctness of the

token (Token Input), a Success/Fail answer is sent to the O.S., which will either allow or

deny the user-profile switching.
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4.7 Dynamically Allocated Data Protection

This module could be either integrated with the O.S. or an external component. The idea

here is that this module receives information for each dynamic allocation and deallocation

and it keeps track of every single chunk of memory of the application.

Each chunk is assigned to a privilege level, according to proper privilege level policies.

One example of policy could be to assign to each newly allocated chunk the privilege level of

the profile that is active during the allocation. Other more sophisticated methods could rely

on static analysis to deduct the best level.

Elements ¯ and ° in Figure 4.5 explain how an allocation and deallocation is received

(Alloc/Dealloc) and stored by the tracking mechanism that then is designated to forward

the request to be completed to the system (Alloc/Dealloc Trace).
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Proposed Implementation

In this section I describe the proof-of-concept implementation of PRIVMUL in details.

I developed PRIVMUL using the onion scheme (see Figure 4.2). I implemented the binary

preparation inside the LLVM/Clang compiler infrastructure. I added three transformation

passes to the compiler chain. I modified Glibc (dynamic loader and dynamic memory allocator)

and Linux kernel, adding three system calls and one module. Furthermore, I implemented a

daemon for the authentication that uses PAM libraries to support different authentication

methods. Along with an high level descriptions, during this chapter I provide a real example

to show the PRIVMUL usage on a small program which code is reported in Listing 5.1.

Listing 5.1: Running Example Source Code

#include <iostream >
int fun1() __attribute__ (( privilegeSeparation (3)));
int fun2() __attribute__ (( privilegeSeparation (5)));
int fun3(); /* NON TAGGED FUNCTION */
int fun4() __attribute__ (( privilegeSeparation (4)));
int __attribute__ (( privilegeSeparation (5))) shared = 0;
int fun1()
{

shared = 1;
fun3();
return shared;

}
int fun2()
{

shared = 2;
fun3();
fun4();
return shared;

}
int fun3()

35
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{
shared = 3;
return shared;

}
int fun4()
{

return 5;
}
int main(void)
{

int res1 = fun2();
int res2 = fun1();
std::cout << res1 << ", " << res2 << std::endl;
return 0;

}

5.1 Compile Time

All the transformations depend on the annotations provided by the developers. I implemented

the transformation passes inside the LLVM/Clang compiler infrastructure.

5.1.1 Tagging Mechanism

The tagging mechanism defines a new attribute that allows developers to express the least

accessible level for a function or a global variable. At compile time, the new attribute is pro-

cessed by Clang (compiler front-end), which already supports attributes by forwarding their

name to the subsequent pass or LLVM along side the associated function or G.V. identifier.

Since I need to keep track of the attribute parameter, I modified Clang to forward the

parameter value to LLVM. The attribute is considered valid for both functions and global

variables declarations and specifies the privilege level of functions and global variables. For

instance, Listing 5.2 exemplifies a function f() of privilege level 2 and a global variable at

privilege level 6. In this example, the developer wants to prevent the code of function f()

from accessing the memory area where the variable e will be stored at runtime.

Listing 5.2: Attribute Function and Global Variable Usage Example

void f() __attribute__ (( privilegeSeparation (2)));
int e __attribute__ (( privilegeSeparation (6)));

The parameter indicates the privilege level which ranges between 0 and a tunable constant
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called NUM_OF_LEVELS. This particular level is considered accessible by all the other

levels. The main() function is automatically set to NUM_OF_LEVELS by PRIVMUL to let

the program start. If the developer tries to use a greater level of NUM_OF_LEVELS, he or

she receives a compile time error.

5.1.2 Tagging Propagation

This is the first transformation pass. It analyzes attribute values specified by the developers

and propagates them to the non-tagged functions. Clearly, the developer can tag every function

and G.V.. However, it is better to limit the effort of the developer to the bare minimum and

let PRIVMUL’s modified compiler do the rest in order to minimize the chances of introducing

errors.

First this pass finds the Call Graph (C.G.) nodes that represent the main() function

(the root) and then walks the C.G. breath first. Every tagged node are expanded, putting

the children in the list of non visited nodes, continuing until the list is empty. For each non

tagged node it checks if all parent nodes have already been tagged. In this case the algorithm

tries to find the most accessible level among all the parents and use it to tag the child (see

example in Figure 5.1). On the other hand, if not all the parents have been tagged, the node

is put at the end of the list of non visited nodes. When the list of non visited nodes is empty

the algorithm checks that all the nodes have the correct tag. If it finds one node without a

tag it restarts the analysis from the root node. It runs till all the nodes have a tag. When the

algorithm detects that the propagation is not converging, it aborts the compilation. In this

case the developers must provide some more tags to help the algorithm in its operations.
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Figure 5.1: Tags propagation on a toy call graph example. Between the levels 3 and 5 the algorithm choose 5

for the non-tagged function fun3 because it is the most accessible between the two. Functions of level 3 are

still able to see the code of fun3 as showed by the dashed arrow.

Listing 5.3: Compilation output of the real example. In this output it is notable the tag assigned to the fun3()

(non tagged in the source code) that is called by fun1() and fun2() with respectively privilege levels 3 and

5. The algorithm chose to propagate 5 because it is the most accessible between the two.

------------------TAGS PROPAGATION -----------------------
Function _{cxx_global_var_init tag .text.startup
Function _Z4fun1v tag .fun_ps_3
Function _Z4fun3v tag .fun_ps_5 <-- fun3()
Function _Z4fun2v tag .fun_ps_5
Function _Z4fun4v tag .fun_ps_4
Function main tag .fun_ps_9
Function _GLOBAL_I_a tag .text.startup
----------------SYSTEM CALL INSERTION ---------
Returning callsite: Caller = _Z4fun1v Callee = _Z4fun3v
Returning callsite: Caller = _Z4fun2v Callee = _Z4fun3v
Returning callsite: Caller = _Z4fun2v Callee = _Z4fun4v
Returning callsite: Caller = main Callee = _Z4fun2v
Returning callsite: Caller = main Callee = _Z4fun1v
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5.1.3 System Calls Insertion and Error Handler

PRIVMUL protects code and data of all the levels that are higher than the current level,

but, at the same time, allows a certain flexibility during the execution of the program. The

application should be able to switch level at runtime. To do so, PRIVMUL leverages a new

system call to inform the Linux kernel that the application requested for a level switch. This

system call presents in every call site of the program when the caller has a lower level of

execution than the callee. After the call site there should be a second system call to inform

the kernel that the application should release the privileges acquired with the previous. To

avoid the manual intervention of the developers, I provide an automatic algorithm, so as

to avoid any mistakes, making the adoption of PRIVMUL as easy as possible. To this end,

whenever this transformation pass encounters a call site, it inserts an if-like snippet like the

one exemplified in Listing 5.4. A real example is exemplified in Listing 5.5 where a function

of level 5 is asking to move to level 4.

Listing 5.4: Error Handler Usage Example

if (syscall_upgrade () != 1) {
exit_wrapper ();

}
call();
syscall_downgrade ();

Listing 5.5: Disassembled binary with system call insertion: these assembly lines are taken from the compiled

binary of the real example presented. They represent a piece of the fun2() where fun4() is called since fun4()

belongs to level 4 and fun2() to level 5, to be able to execute fun4() I need more privileges. For this reason

the if-like structure described above is automatically inserted by the compiler pass. The result is as follow:

movl $0x4 ,0x4(%esp) <--
movl $0x160 ,(%esp) | syscall_upgrade ()
call 8048640 <syscall@plt > <-- to level 4

cmp $0x1 ,%eax <-- if syscall res is equal
je 804 b8ba <_Z4fun2v +0x3a > <-- to 1 jump to call()

otherwise go to exit()

movl $0xffffffff ,(%esp)
call 80486c0 <exit@plt > <-- exit(-1)

call 804 a870 <_Z4fun4v > <-- call();

movl $0x5 ,0x4(%esp) <--
movl $0x160 ,(%esp) | syscall_downgrade ()
call 8048640 <syscall@plt > <-- to level 5
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Figure 5.2: Transformation passes effect on the intermediate representation

In case of failure because the user is not eligible for the requested level, a wrapper is called.

PRIVMUL allows the developer to specify his/her own wrapper with the name exit_wrapper,

where he or she can decide to either continue the application recovering its status or let the

program exit. If nothing is specified from the developer, the system will substitute that specific

call with a direct call to exit(-1) avoiding segmentation fault.

5.1.4 Code and Data Re-ordering

The last code modification is the re-ordering of all the functions. Every piece of code and data

is, at this point, tagged with a certain level. With a very simple LLVM pass each function and

each global variable are ordered in an ascending fashion way according to the privilege level.

Then, each element is inserted in a new section of the binary. To this end I exploit the ELF

format, which allows the creation and insertion of new non standard sections. The name of

the section will be created merging the level number and either a function or a global variable.

In the case of function the name will be like fun_ps_X for every function that will belong to

the level X. The same occurs for data, with creating something like dat_ps_X. This pass also

keeps track of all the levels used by the program under analysis and generates and writes a

custom linker script into the same folder. In the next section, the custom linker script will be

explained in details.
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5.2 Link Time

In this phase PRIVMUL has created an object file and a linker script, which is used to generate

a new segment for each fun_ps or dat_ps section in the final binary. This partitioning at

segment level is necessary to forward in the process all the information about which area of

memory belongs to each level of privilege. Furthermore, PRIVMUL, after the binding between

segments and sections, aligns the start address of each segment to the beginning of the next

page of memory (see example in Figure 5.2). This is necessary because otherwise the kernel

sees a wrong layout when the application is launched, because one or more segments are

merged together when the binary is mapped in memory. This generates wrong operations

during the runtime.

Listing 5.6: Physical Header Overwrite

PHDRS
{
headers PT_PHDR PHDRS ;
interp PT_INTERP ;
text PT_LOAD FILEHDR PHDRS ;
fun_ps_3 PT_LOAD ;
fun_ps_4 PT_LOAD ;
fun_ps_5 PT_LOAD ;
fun_ps_9 PT_LOAD ;
data PT_LOAD ;
dat_ps_5 PT_LOAD ;
dat_ps_9 PT_LOAD ;
dynamic PT_DYNAMIC ;

}

Listing 5.7: Physical header overwrite effect on a real binary: looking into the binary header it is possible to

inspect the effects of PRIVMUL on the real application. In program headers are visible more LOAD segments

than a normal binary where usually the LOAD segments are two (code and data). The second part shows the

section to segment mapping, it shows which are the sections contained in the LOAD segments reported in the

first part of the following listing.

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x08048034 0x08048034 0x00160 0x00160 R 0x4
INTERP 0x000194 0x08048194 0x08048194 0x00034 0x00033 R 0x4

[Requesting program interpreter: /lib/ld-linux.so.2]
LOAD 0x000000 0x08048000 0x08048000 0x05a5c 0x05a5c R E 0x1000
LOAD 0x006850 0x08049850 0x08049850 0x0001f 0x0001f R E 0x1000
LOAD 0x006870 0x0804a870 0x0804a870 0x0000a 0x0000a R E 0x1000
LOAD 0x006880 0x0804b880 0x0804b880 0x0005d 0x0005d R E 0x1000
LOAD 0x0068e0 0x0804c8e0 0x0804c8e0 0x00140 0x00140 R E 0x1000
LOAD 0x006ee4 0x0804eee4 0x0804eee4 0x0015c 0x0320c RW 0x1000
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LOAD 0x007040 0x08050040 0x08050040 0x00004 0x00004 RW 0x1000
LOAD 0x007044 0x08051044 0x08051044 0x00004 0x00004 RW 0x1000
DYNAMIC 0x006ef4 0x0804eef4 0x0804eef4 0x00144 0x00144 RW 0x4

Section to Segment mapping:
Segment Sections ...
00
01 .interp
02 .interp .note.ABI -tag .hash .gnu.hash .dynsym .dynstr .gnu.version

.gnu.version_r .rel.dyn .rel.plt .init .plt .text .fini .rodata .eh_frame_hdr

.eh_frame
03 .fun_ps_3
04 .fun_ps_4
05 .fun_ps_5
06 .fun_ps_9
07 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss
08 .dat_ps_5
09 .dat_ps_9
10 .dynamic .got .got.plt

Listing 5.8: Linker script example: This script parts are automatically inserted in the standard script of ld

(the GNU linker) when the application is compiled. The number of elements added to the script depends on

the number of different privilege levels used by the application. The line . = . 0x1000; added at the end of

each privilege level block is used to move the elements that follow in other pages of memory.

1 [...]
2 .text :
3 {
4 *(. text.unlikely .text.* _unlikely)
5 *(. text.exit .text.exit .*)
6 *(. text.startup .text.startup .*)
7 *(. text.hot .text.hot.*)
8 *(. text .stub .text.* .gnu.linkonce.t.*)
9 /* .gnu.warning sections are handled specially by elf32.em. */

10 *(. gnu.warning)
11 } : text
12 . = . + 0x1000;
13 /* ADDITIONAL ELEMENTS FOR FUNCTION SECTIONS ALIGNMENT */
14 .fun_ps_3 :
15 {
16 *( fun_ps_3)
17 } : fun_ps_3
18 . = . + 0x1000;
19 [... the same for level 4 and 5]
20 .fun_ps_9 :
21 {
22 *( fun_ps_9)
23 } : fun_ps_9
24 . = . + CONSTANT (COMMONPAGESIZE) - SIZEOF (. fun_ps_9);
25 /**********************************************/
26 [...]
27 .data :
28 {



CHAPTER 5. PROPOSED IMPLEMENTATION 43

29 *(. data .data.* .gnu.linkonce.d.*)
30 SORT(CONSTRUCTORS)
31 } : data
32 . = . + 0x1000;
33
34
35
36 /* ADDITIONAL ELEMENTS FOR DATA SECTIONS ALIGNMENT */
37 .dat_ps_5 :
38 {
39 *( dat_ps_5)
40 } : dat_ps_5
41 . = . + 0x1000;
42 .dat_ps_9 :
43 {
44 *( dat_ps_9)
45 } : dat_ps_9
46 . = . + CONSTANT (COMMONPAGESIZE) - SIZEOF (. dat_ps_9);
47 /***********************************************/
48 [...]

The code in Listing 5.6 is the responsible for the section-segment binding. More precisely it

defines the program headers, which describe how the program should be loaded into memory

(see real ELF Header case in Listing 5.7). Usually, the code in Listing 5.6 is not specified in

the normal script used by the linker but to achieve a finer customization of the binary I had

to use it.

In Listing 5.8, I can identify the two additional pieces I inserted to align all the sections.

On one hand, from the line 13 to the 25 is showed the function sections alignment. This piece

is placed right below the .text block that usually it is the only one specified for the code

of the application. On the other hand, from the line 36 to 47 I can see the global variable

sections alignment. This block is placed right below the .data block where usually almost

all the global variable are placed in a standard binary. As I have already mentioned, every

additional elements inside the link script is automatically generated from the information

found inside the source code of the application.

5.3 Run Time

At this point, the binary has been produced and is ready to be run. The next subsections

explain the runtime execution in details. Section 5.3.1 explains how the O.S. is instrumented

by the application before it is executed. The other Section 5.3.2 showes how the application,
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Figure 5.3: PRIVMUL implementation in the Linux environment

communicating with the O.S., is able to be executed safety (Figure 5.3).

5.3.1 Dynamic Loader

Before the first instruction of a PRIVMUL-modified binary is executed lots of things take

place. This phase is called load time. I hereby describe briefly what usually happens in this

phase and then I show how I made the kernel aware of the memory application layout required

by PRIVMUL.

When an application is run, the kernel, that receives the request, passes control to ld.so

(or ld-linux.so.2), which takes care of shared libraries (if any are used). This implies that

all the shared libraries addresses must be resolved in the in-memory image of the application
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before the entry-point receives the control. Because the libraries addresses may vary from

one execution to execution (e.g., version changes, security mechanisms such as control-flow

integrity checks or address space layout randomization).

Moreover, after the dynamic linking phase the ld.so starts to map all the LOAD segments

of the application in memory according to the information in the ELF header. Only when all

the segments are mapped, the application is ready to be executed; at this point ld.so gives

the control to the real entry point of the application.

Therefore, I used ld.so to propagate the memory layout information from the binary to

the process, because it is always executed before the application and it shares the same PID.

Furthermore, it is already responsible for parsing the ELF header to load the segments from

the segments table header. To this end, I extended the header parsing as follows. Segments

are unnamed so I needed the name of the section contained in the segment because the name

indicates which is the privilege level contained. This metadata is important for the kernel

to perform its operations. I used the existing pointer to the header file to obtain all the

information related to the section header. Then, comparing section and segment start and

end addresses, I reconstruct section-segment binding. Finally, I constructed a linked list of

PrivSec_t elements, which is the list of elements that needs to be sent to the kernel.

Listing 5.9: Section-segment mapping element

struct PrivSec_t{
char name [100];
Elf32_Addr add_beg;
Elf32_Addr add_end;
struct PrivSec_t *next;

};

The struct in Listing 5.9 is composed by:

• name: the string that contains the name of the section. It would be something like

fun_ps_X or dat_ps_X.

• add_beg, add_end: the begin and end addresses of the segment. They will be used

by the kernel to mprotect a segment when I need to protect it from unauthorized access.

• next: pointer to the next element in the linked list.

Referring to Figure 5.3, the sys_ps_switch is the first routine that executes when PRIV-
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MUL starts the application. It sends the layout read by the loader to the kernel. Instead, the

ELF loading arrow indicates when the loader, after all the dynamic libraries addresses have

been resolved, passes the control to the application.

5.3.2 Linux Kernel

In my implementation I decided to use the Linux kernel because it is very well documented

and offers plenty of interfaces. I implemented several new APIs (system calls) to allow the

interaction between the application and the O.S.. From hereinafter I explain the goals and

implementation of each element.

System calls

The interaction of the application with the kernel is done through three system calls.

The first one is ps_info.

Listing 5.10: System Call ps_info Prototype

asmlinkage long sys_ps_info (struct PrivSec_t *h, int level)

This function copies the memory layout from user space to kernel space, and attaches a list

of PrivSec_t to the task_struct of the application. The task_struct of an application

is the image representation of the running application inside the kernel. It contains all the

information regarding the process (e.g., pid, gid, locks).

Listing 5.11: Memory Chunk Information Element

struct PrivSec_dyn_t{
int ps_level;
int size;
void *mem;
struct PrivSec_dyn_t *next;

};

The sys_ps_info() is executed in ld.so before the control is passed to the application. I

decided to put this operation inside ld.so because it was easy to collect all the information

about the layout and, at this point, the information provided could not have been tampered by

an attacker. For obvious security reasons PRIVMUL allows this system call to be invoked only

once for each process. Indeed, if an attacker could use this system call during the execution,
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he or she would be able to obtain access to all the code and data segments by simply pushing

new information to the kernel. For the same reason, after the execution of ps_info, also

mprotect is locked and not executable anymore from the process.

The second system call added to the Linux kernel is called ps_switch.

Listing 5.12: System Call ps_switch Prototype

asmlinkage long sys_ps_switch(int new_level)

It allows an application to request the a switch from the current level to another, specified

the unsigned integer parameter new_level.

When switching to a higher level, the kernel wakes up a daemon that blocks the application

code reativation until the user has entered the credentials. In the mean time the process is

moved by the O.S. into the wait state and it will be waked up only at the end of the ps_switch

system call. If the authentication succeeds, the kernel unlocks all the respective code and

memory areas and returns the control to the application. Otherwise, the program exits using

a wrapper (either written by the developer or automatically inserted by PRIVMUL). I report

in Listing 5.13 the status of the memory mapping of the running example taken during the

execution of each function.

Listing 5.13: Memory mapping status: the reported lines are directly taken from the procfs interface of the

kernel (/proc/PID_REAL_EXAMPLE/maps) in different moment of the application execution.

#In the main function at the beginning of the program most of the segments
#are not accessible (level 9).
08048000 -08049000 r-xp 00000000 08:03 3408569 /root/test -application/prova
08049000 -0804 a000 ---p 00006000 08:03 3408569 /root/test -application/prova <<
0804a000 -0804 b000 ---p 00006000 08:03 3408569 /root/test -application/prova <<
0804b000 -0804 c000 ---p 00006000 08:03 3408569 /root/test -application/prova <<
0804c000 -0804 d000 r-xp 00006000 08:03 3408569 /root/test -application/prova
0804d000 -0804 e000 r-xp 00005000 08:03 3408569 /root/test -application/prova
0804e000 -08050000 rw-p 00006000 08:03 3408569 /root/test -application/prova
08050000 -08051000 ---p 00007000 08:03 3408569 /root/test -application/prova <<
08051000 -08052000 rw-p 00007000 08:03 3408569 /root/test -application/prova
08052000 -08053000 rw-p 00000000 00:00 0
b74a4000 -b74a7000 rw-p 00000000 00:00 0
b74a7000 -b7653000 r-xp 00000000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7653000 -b7655000 r--p 001 ac000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7655000 -b7656000 rw-p 001 ae000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7656000 -b7659000 rw-p 00000000 00:00 0
[...]

#In the fun2 the program is running as level 5, the segments for the fun2 and
#the shared variable are now accessible.
08048000 -08049000 r-xp 00000000 08:03 3408569 /root/test -application/prova

/proc/PID_REAL_EXAMPLE/maps
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08049000 -0804 a000 ---p 00006000 08:03 3408569 /root/test -application/prova
0804a000 -0804 b000 ---p 00006000 08:03 3408569 /root/test -application/prova
0804b000 -0804 c000 r-xp 00006000 08:03 3408569 /root/test -application/prova <<
0804c000 -0804 d000 r-xp 00006000 08:03 3408569 /root/test -application/prova
0804d000 -0804 e000 r-xp 00005000 08:03 3408569 /root/test -application/prova
0804e000 -08050000 rw-p 00006000 08:03 3408569 /root/test -application/prova
08050000 -08051000 rw-p 00007000 08:03 3408569 /root/test -application/prova <<
08051000 -08052000 rw-p 00007000 08:03 3408569 /root/test -application/prova
08052000 -08053000 rw-p 00000000 00:00 0
b74a4000 -b74a7000 rw-p 00000000 00:00 0
b74a7000 -b7653000 r-xp 00000000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7653000 -b7655000 r--p 001 ac000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7655000 -b7656000 rw-p 001 ae000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7656000 -b7659000 rw-p 00000000 00:00 0
[...]

#From fun2 is called fun3 with the same privilege level and fun4 that belongs
#to level 4. Its segment is switched to accessible along with level 5 segments
#because level 5 is accessible by level 4 in the onion scheme.
08048000 -08049000 r-xp 00000000 08:03 3408569 /root/test -application/prova
08049000 -0804 a000 ---p 00006000 08:03 3408569 /root/test -application/prova
0804a000 -0804 b000 r-xp 00006000 08:03 3408569 /root/test -application/prova <<
0804b000 -0804 c000 r-xp 00006000 08:03 3408569 /root/test -application/prova
0804c000 -0804 d000 r-xp 00006000 08:03 3408569 /root/test -application/prova
0804d000 -0804 e000 r-xp 00005000 08:03 3408569 /root/test -application/prova
0804e000 -08050000 rw-p 00006000 08:03 3408569 /root/test -application/prova
08050000 -08051000 rw-p 00007000 08:03 3408569 /root/test -application/prova
08051000 -08052000 rw-p 00007000 08:03 3408569 /root/test -application/prova
08052000 -08053000 rw-p 00000000 00:00 0
b74a4000 -b74a7000 rw-p 00000000 00:00 0
b74a7000 -b7653000 r-xp 00000000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7653000 -b7655000 r--p 001 ac000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7655000 -b7656000 rw-p 001 ae000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7656000 -b7659000 rw-p 00000000 00:00 0
[...]

#After fun4 the execution comes back to the main and the mapping accordingly changes
#to level 9 again stepping through from level 4 to 5 and then from level 5 to 9.
08048000 -08049000 r-xp 00000000 08:03 3408569 /root/test -application/prova
08049000 -0804 a000 ---p 00006000 08:03 3408569 /root/test -application/prova
0804a000 -0804 b000 ---p 00006000 08:03 3408569 /root/test -application/prova
0804b000 -0804 c000 ---p 00006000 08:03 3408569 /root/test -application/prova
0804c000 -0804 d000 r-xp 00006000 08:03 3408569 /root/test -application/prova
0804d000 -0804 e000 r-xp 00005000 08:03 3408569 /root/test -application/prova
0804e000 -08050000 rw-p 00006000 08:03 3408569 /root/test -application/prova
08050000 -08051000 ---p 00007000 08:03 3408569 /root/test -application/prova
08051000 -08052000 rw-p 00007000 08:03 3408569 /root/test -application/prova
08052000 -08053000 rw-p 00000000 00:00 0
b74a4000 -b74a7000 rw-p 00000000 00:00 0
b74a7000 -b7653000 r-xp 00000000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7653000 -b7655000 r--p 001 ac000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7655000 -b7656000 rw-p 001 ae000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7656000 -b7659000 rw-p 00000000 00:00 0
[...]

#At this point of the execution the privileged call to fun1 is performed. The mapping



CHAPTER 5. PROPOSED IMPLEMENTATION 49

#is changed again and it reaches level3 that in our example is the outer layer of the
#onion that means it can access all the other levels.
08048000 -08049000 r-xp 00000000 08:03 3408569 /root/test -application/prova
08049000 -0804 a000 r-xp 00006000 08:03 3408569 /root/test -application/prova <<
0804a000 -0804 b000 r-xp 00006000 08:03 3408569 /root/test -application/prova <<
0804b000 -0804 c000 r-xp 00006000 08:03 3408569 /root/test -application/prova <<
0804c000 -0804 d000 r-xp 00006000 08:03 3408569 /root/test -application/prova
0804d000 -0804 e000 r-xp 00005000 08:03 3408569 /root/test -application/prova
0804e000 -08050000 rw-p 00006000 08:03 3408569 /root/test -application/prova
08050000 -08051000 rw-p 00007000 08:03 3408569 /root/test -application/prova <<
08051000 -08052000 rw-p 00007000 08:03 3408569 /root/test -application/prova
08052000 -08053000 rw-p 00000000 00:00 0
b74a4000 -b74a7000 rw-p 00000000 00:00 0
b74a7000 -b7653000 r-xp 00000000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7653000 -b7655000 r--p 001 ac000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7655000 -b7656000 rw-p 001 ae000 08:03 5384798 /usr/src/root -glibc/lib/libc -2.18. so
b7656000 -b7659000 rw-p 00000000 00:00 0
[...]

The third system call is the ps_tracemalloc Listing 5.14, which manages dynamic mem-

ory allocations. Typically, dynamic memory is allocated at runtime by functions such as

malloc or valloc, destroyed by functions such as free, and modified by functions such as

realloc.

Listing 5.14: System Call ps_tracemalloc Prototype

asmlinkage long sys_ps_tracemalloc(void *ptr , int size , char *cmd)

I prepended these functions in the Glibc libraries with this system call such that every

time new memory is requested the kernel saves the newly allocated memory area in a specific

list attached to task_struct of the process. Similarly, I instrumented free-like functions such

that the kernel removes the memory from the list of chunks under protection. In the case

where a certain area is changed, the operations kernel side are not always necessary for the

allocator itself, instead PRIVMUL has always to perform this system call to keep the metadata

updated. The PrivSec_dyn_t data structure, detailed in Listing 5.11, is used in the kernel to

keep track of dynamically allocated memory areas. The ps_level field represents the current

privilege level when the area of memory is requested. If a piece of data created by level n

cannot be accessed by a level m unless m ≥ n. The second field of the structure is the size

of the chunk. This is useful to be protected or unprotected at runtime. The third field in the

struct is the raw pointer to the memory area. The fourth element is the pointer to the next

element in the list.



CHAPTER 5. PROPOSED IMPLEMENTATION 50

Authentication and Authorization

Referring to Figure 5.3, ® together with the ± and ² groups represent the authorization

mechanism. The implementation of the authorization is composed by a user space daemon

(its behavior depends on the authentication method performed), a kernel netlink interface

and the system call described in the previous section. Before the application is executed, the

netlink interface is activated through a LKM and the daemon starts. This could be done

manually or automatically when needed. When the application calls the system call to switch

privilege level, the system call writes into the netlink channel (where the daemon is waiting

for data) the privilege level that the application wants to switch to. The daemon starts a

request of authentication for that level using the PAM subsystem. Then, it writes back to

the system call through the netlink interface an appropriate message indicating whether or

not the authentication has been granted. At this point, the system call thread is waked up to

return the result to the program. According to the result, the application will gracefully exit

or continue. The netlink communication channel is secure according to the attacker model

defined in Section 4.1 (i.e., attackers without root access to the machine).

The arrows labeled as ± in Figure 5.3 the netlink interface that communicates with the

PAM daemon from the kernel. Instead, the arrow labeled as ² indicates the communication

between the PAM daemon and the user through the standard input and output.

I decided to use PAM because it is very well tested and widely used. PAM is modular,

very versatile, and supports several combinations of authentication mechanisms (e.g., pass-

words, smart cards, fingerprints etc.). For instance Listing 5.15 shows how a password based

authentication can be enabled by editing /etc/pam.d/ps_login.

Listing 5.15: PAM module configuration example

# /etc/pam.d/ps_login

auth required pam_unix.so shadow nullok
account required pam_unix.so
session required pam_unix.so
password required pam_cracklib.so retry =3



Chapter 6

Experimental Results

In the evaluation of PRIVMUL I quantified the overhead of PRIVMUL, to evaluate its impact

on the overall usability. Regarding the authorization mechanism, I can conclude that the real

impact depends on the number of operations performed by a function. If the function has

few instructions, the percentage of the overhead is considerably high; on the other hand, if

the number of instructions computed is around 900,000 or higher, the overhead is acceptable.

Regarding the dinamically allocated memory tracking mechanism I can conclude that the

slowdown on average introduced is about 8x (4x in the best case and 11x in the worst case,

according to my measurements).

6.1 Goals

I created two tests to evaluate the performance losses, one for each component of PRIV-

MUL that could induce runtime overhead to the instrumented application. I can safely ignore

compile-time overhead and the load-time overhead as they are paid only once.

• Authorization phase: I measured the execution time of a function with and without

PRIVMUL.

• Dynamic memory allocation: I measured the execution time of a function call that

made intense use of the dynamically allocated data, with and without PRIVMUL

To measure the exact time of the system call execution, avoiding the overhead due to the

clock() library function, which uses a system call to obtain the clock information I computed

51
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time directly from the tick counter register, which is included in all modern Intel processors.

To this end, I used the assembly instructions reported in Listing 6.1 and 6.2.

Listing 6.1: CPU Tick Count Start

static inline uint64_t cycle_start(void)
{

uint32_t cycles_low , cycles_high;

asm volatile (
"cpuid\n"
"rdtsc\n"
"movl %%eax , %0\n"
"movl %%edx , %1\n"
: "=r" (cycles_low), "=r" (cycles_high)
:
: "%rax", "%rbx", "%rcx", "%rdx"

);

return (uint64_t) cycles_high << 32 | (uint64_t) cycles_low;
}

Listing 6.2: CPU Tick Count Stop

static inline uint64_t cycle_stop(void)
{

uint32_t cycles_low , cycles_high;

asm volatile (
"rdtscp\n"
"movl %%eax , %0\n"
"movl %%edx , %1\n"
"cpuid\n"
: "=r" (cycles_low), "=r" (cycles_high)
:
: "%rax", "%rbx", "%rcx", "%rdx"

);

return (uint64_t) cycles_high << 32 | (uint64_t) cycles_low;
}

I instrumented the sys_ps_switch() system call to make the measure. The mean time for the

system call is 560370.33 CPU cycles when an upgrade is requested (on 1000 times repetition).

This cycles number means, with a 3.6 Ghz processor, 155,65µs. On the other hand, the mean

time for the system call is 6882.66 CPU cycles when a downgrade is requested. With a 3.6

Ghz processor, it means 1,96µs. The reader should keep in mind that the gap that is in the

graphs includes the context switch time between user space and kernel space that is not kept

into account in the second measure of this test.
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6.2 Experiment Setup

I made all the experiments in a fully virtualized machine (VirtualBox) running a Gentoo

Linux guest with the PRIVMUL-patched kernel (version 3.9.11) and Glibc, with the modified

loader and tracking mechanism (stable version 2.18). The machine was also instrumented with

a LLVM/Clang compiler infrastructure (version 3.5) with the inclusion of my transformation

passes. The virtual machine had 2 i7-3520M cores with 3.60 GHz (max turbo frequency) and

4GB of RAM.

I recorded two user profiles as system users and I set a password for each of them.

Clearly, my measurements did not include the interaction time (i.e., time required by

the user to type the password), as this varies from user to user, and is influenced by the

authentication method employed. To this end, I slightly modified the authentication daemon

such that the authentication was always successful without any password input. All the tests

described were single-process tests. In all the executions, to avoid the introduction of random

switch of core due to scheduler decision, I bound each process (using the set affinity) to one

core.

6.3 Experiment 1: Authentication and Authorization

In this test, for a single switch I wanted to show how much overhead is introduced by the

authorization loop (i.e., arrows ®, ±, and ² in Figure 5.3). I made two versions of this specific

test. In the first one the number of instructions executed by the function is around 900,000. In

the second one, it is around 9,000. I took the time from the point before the call to the return

to the caller as the Listing 6.3 shows. I repeated the experiment 10,000 times and calculated

mean and standard deviation.

Listing 6.3: Piece of code that measures the execution time for experiment 1

[...]
for(i=0; i <10000; ++i) {

start = cycle_start ();
test1_priv(i);
stop = cycle_stop ();
time_spent = (stop - start) / MAX_FREQ;

}
[...]
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Figure 6.1: Violin plot of the test results on the long function (900,000 instructions).

By comparing Figure 6.1 and Figure 6.2 I conclude that the real impact of my system

depends on the number of operations performed by the function. If the function has few

instructions (Figure 6.2), the percentage of the overhead is considerably high; on the other

hand, if the number of instructions computed is around 900,000 or higher (Figure 6.1), the

overhead is acceptable.
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Figure 6.2: Violin plot of the test results on the short function (9,000 instructions).

6.4 Experiment 2: Dynamic Memory Allocation

In this experiment I wanted to measure the overhead of the dynamically allocated memory

tracking mechanism. To this end, I wrote two tests. The first test, reported in Listing 6.4, is

a function that allocates and deallocates a fixed amount of memory. In both cases I repeated

the experiment 5,000 times comparing the average of the results when the application was

using the instrumented libraries and the case of un-instrumented one.

Listing 6.4: First test with one allocation and deallocation

[...]
for(i=0; i <5000; ++i) {

start = cycle_start ();
int *p = (int *) malloc(sizeof(int) * 1000);
free(p);
stop = cycle_stop ();
time_spent = (stop - start) / MAX_FREQ;

}
[...]
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Figure 6.3: Distribution of the results of the first memory test, one allocation and deallocation of a piece of

fixed amount of bytes.

The second test, reported in Listing 6.5, consists of a function where I made 500 allocations

and deallocations of a different amount of memory every allocation and deallocation but the

same sequence from time to time, which is for triggering the caching mechanism inside the

allocator.

Listing 6.5: Second test with 500 variable-size allocations and deallocations

[...]
for(i=0; i <5000; ++i) {

int j;
start = cycle_start ();
for (j=0; j <500; ++j){

int *p = (int *) malloc(sizeof(int) * j);
free(p);

}
stop = cycle_stop ();
time_spent = (stop - start) / MAX_FREQ;

}
[...]



CHAPTER 6. EXPERIMENTAL RESULTS 57

0.000

0.002

0.004

0.006

With PRIVMUL Without PRIVMUL

T
im

e 
[s

]

Figure 6.4: Distribution of the results of the second memory test, on 500 allocations and deallocations of

different size (the sequence of allocation is the same for every run).

Figure 6.3 shows the overhead introduced by PRIVMUL (in ms), which is mainly due to the

system calls that update the kernel side information. Notice that, without PRIVMUL the

allocator does not release all the memory when the free is invoked. Some of the memory stays

unallocated but assigned to the process to gain performance for next requests of memory by

the application. So, for the normal allocator not all the operation requires requests to the

kernel. With PRIVMUL, instead, in order to keep all the kernel metadata updated I needed

to introduce kernel communication for almost all the cases of allocation, deallocation and

resizing of memory area, which resulted in about 8x slowdown on average (4x in the best case

11x in the worst case, according to my measurements).

Figure 6.4 show the overhead on 500 allocations and deallocations. Again the kernel com-

munication introduced for each memory operation is the main cause of the overhead - as

expected.



CHAPTER 6. EXPERIMENTAL RESULTS 58

6.5 Conclusions

PRIVMUL’s overhead is significant on applications that use in-memory objects that are

quickly created and destroyed. However, if I consider applications that fit the goals of PRIV-

MUL (i.e., large applications that make several interaction with the user and execute long

functions), the overhead is acceptable (4x to 11x). Considering the effor required by the de-

veloper to secure a large application, the benefit brought forth by PRIVMUL is remarkable:

At the price of a simple annotation that specifies the access level of data or code, PRIV-

MUL takes care of all the rest. In other words, the balance between usability vs. security vs.

performance overhead of PRIVMUL is significant.



Chapter 7

Discussion and Future Work

7.1 Limitations

The advantages offered by PRIVMUL are remarkable, because it allows the developers to

express access-control policies by means of simple source-code-level annotation, pretty much

like it happens in object oriented languages (e.g., Java), yet with more expressive power (i.e.,

multi-level policies) and without requiring verbose annotations.

PRIVMUL has only two conceptual limitations, and a relatively small number of technical

limitations (which are mainly bound to the current implementation).

PRIVMUL implies the availability of the source code. As stated above, the first restriction

of PRIVMUL is that it is designed to work on the source code of the application. This is a

problem in the case I want to secure proprietary application where the source code is not

available because only the binary is provided.

Related to this source code limitation I can find another issue; most of the applications

with a multi-user logic are not designed with the proper privilege level scheme in mind (such

as the tree or the onion schemes discussed in 4.2). So small modifications of the program

may be required to port the source code to use PRIVMUL. This change of the program may

require in-depth knowledge of the codebase.

To overcome this problem would be possible if we move the tagging block forward in the

process. The solution would work directly on the binary code using a mix of static analysis

and user inputs to re-order the binary pieces and tag each of the functions. Working on the
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binary would allow us to apply my approach in every kind of compiled application even if the

source code is not available.

Secondly, PRIVMUL involves a O.S. customization. PRIVMUL assumes that there exist

a trusted element to allow or deny critical operations inside the applications. In my proposed

design, the trusted element is O.S.. It was the trusted block. As none of the modern O.S. had

the features I needed, I had to modify the Linux kernel.

In a real case scenario of PRIVMUL I suppose to deal with enterprises systems. In those

environments, being unable to use Microsoft Windows-based application may be a show stop-

per. However, PRIVMUL is based on concepts and facilities that are available in any modern

O.S., including Microsoft Windows. Therefore, I believe that PRIVMUL can be easily ported

to other systems.

To solve this problem I can move the trusted component out from the O.S.. The new

trusted component could be another piece of software that is able to manage the memory of

the application through a driver or some external module of the O.S.. It has to be noticed

that external drivers and modules could extend the O.S. without including any modification

to the core of it. I can think to also use APIs given by the O.S. such as the ReadProcessMem-

ory/WriteProcessMemory under Microsoft Windows to bring protection from this external

trusted component to the applications.

It supports only compiled language such as C and C++. I rely on compile-time mod-

ifications and some additional loader operations. The possibility of porting PRIVMUL to

interpreted or partially-compiled languages such as Python, Perl or Ruby highly depends on

the expressiveness of the intermediate bytecode. If it carries enough metadata (e.g., variables,

functions), the concepts implemented in PRIVMUL can be easily ported. The modification

that I applied in the Linux kernel would clearly need to be ported in the language inter-

preter. More precisely, most of the information used by PRIVMUL are collected and stored

inside the binary at compile time. Then those pieces of information are loaded and moved to

the kernel. In interpreted languages the compilation phase happens just before the execution

thanks to the interpreter, the Just-In-Time compiler (JIT compiler) or both. This kind of

compilation does not consider the overall binary but just small pieces of code (function-level,

file-level or codefragment-level) that are going to be executed immediately after. This implies

modifications in the interpreter in order to be able to manage the code segments.
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A potential issue brought by interpreted languages is that they usually have a separated

memory manager, between the application and the O.S., which mixes allocations for the

application itself with the allocation of the interpreter.

It does not support full multi-thread. In PRIVMUL the protection is given by hiding

the code and data of other profiles. This forces multithreading at a profile level only. The

threads must be started inside a profile and they should terminate before a switch of user

profile. What could happen if the application is not written with this constraint in mind is

that some threads would see, at certain point of execution, their code mprotected and not

accessible anymore. This is a technical limitation. Indeed, given enough time and development

effort, the concepts of PRIVMUL can be extended at thread level, taking into account shared

memory as belonging to threads according to the annotations specified by the developer. After

all, threads are functions.

Finally, PRIVMUL is not optimal for memory intensive application.

7.2 Future Work

This section describes the main future works

In Subsection 7.2.1 I provide some details on how PRIVMUL could support the multi-

threading. In Subsection 7.2.2 I present a possible work to bring a fully-automatic mechanism

for the detection of privilege levels in PRIVMUL and, in Subsection 7.2.3 I briefly describe a

possible application of the PRIVMUL approach to an interpreted language. Finally, in Sub-

section 7.2.4 I explain how to reduce the overhead brought by PRIVMUL on the application

performance.

7.2.1 Multithreading Support

PRIVMUL works on single thread applications with multi-user logic. Removing this limitation

would allow to apply PRIVMUL to general-purpose applications such as web-servers, where

the parallel execution is common.

When a program is using multithreading the pages of memory where the code is written

are in common among all the threads. To overcome this issue, to design and implement new

parallel APIs would be useful. At system level, those parallel APIs should be able to allow us
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to clone the pages of memory involved in the thread execution as many times as the number of

threads are. In this way I would be able to have a finer grain of control on the regions of code

to be protected. Techniques along this idea are implemented in lightweight hypervisors such

as Xen (especially in para-virtualization mode), where shadow pages need to be maintained

to keep track of which guest (i.e., Xen domain) is accessing which page, and being able to

apply proper access control policies to avoid data leaking between virtual machines.

However, this solution creates a new challenge; instead of using the light-weight multi-

threading, the approach will fall in the usual heavy multi-processing. To avoid this, it would

be necessary to work on how I can apply the least privilege concept, reducing the amount of

code I will clone for each thread to the minimum.

Other possible problems that could emerge could be the use of shared data among those

threads or, in general, the management of those threads at the end of the execution. This

could be a major limitation of the future work previously proposed on PRIVMUL, because it

depends on the kind of job those threads are doing.

7.2.2 Automatic Detection Privilege Level Distribution

Relieving the developer from the effort of annotating code inside an application, the first step

would be to study the C.G. of different applications with multi-user logic in such a way to find

a common pattern. Then, I expect to create an automatic mechanism that makes educated

guesses on the privilege separation. This idea could be designed and implemented in three

different ways: on the source code of the application, directly on the binary or both.

What I expect to find out is that the C.G. of the application will match, more or less, the

two schemes defined in Section 4.2. If the implementation is successful at the binary level,

this will bring PRIVMUL also to work on proprietary software.

7.2.3 Interpreted Language Support

The last main future work I have planned is to look at interpreted languages and their virtual

machines to see if the paradigm of PRIVMUL could be implemented also for those environ-

ments.

Interpreted languages do not suffer of memory corruption vulnerabilities due to the fact

that programmers don’t have to think how to create or delete objects. However, those lan-
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guages are not perfect and programmers could introduce logical vulnerabilities that can bring

an attacker to abuse of an application. It has been also demonstrated that vulnerabilities are

presented by Brezinski in [2].

Exploring this family of languages could be very interesting because of their portability

on different O.S.. It is also very fascinating to understand how much further I can apply

PRIVMUL in the interpretation chain and see if I can avoid modifying the kernel of the O.S.

using the virtual machine. If the kernel modification were no more necessary, the PRIVMUL

approach would be usable also on other platforms rather than the only open source one.

7.2.4 Performance Improvement

Another improvement of PRIVMUL would be to modify the memory tracker to be faster

than the actual implementation. A possible idea here would be to work on the whole page of

memory instead of working on every single chunk of memory. This will allow to update the

kernel side information only when a new page of memory is given to the application. This

would reduce the number of the queries to the O.S., cutting down the overhead introduced

by PRIVMUL.



Chapter 8

Conclusions

This thesis presents PRIVMUL, a novel and comprehensive approach to mitigate privilege

escalation and data leak problems in applications that present multi-user logic.

Multi-user logic means that the application contains a certain number of functionalities

which are divided into different profiles. The application could be used by one profile at a

time, so only few functionalities are shown to the user. The problem in these applications is

that the other functionalities are only hidden from the running profile using methods such as

disabling a button or not showing the voice in the main menu. These methods are not effective

when, in a running profile, an attacker is able to find a memory corruption vulnerability that

gives him/her either the control of the application (brings the execution at a random location)

or the possibility to read a random location in memory (leak of data that are created by other

profiles in a previous session).

PRIVMUL avoids privilege escalation caused by memory corruption vulnerabilities. To

this end, it protects (static) data and code according to simple policies that can be specified

by the developer. The same concept is applied to dynamically allocated data thanks to the

dynamic memory tracker proposed, which follows each allocation for every profile and protect

them when needed.

PRIVMUL is a framework that provides new APIs to write multi-user logic applications

in such a way that the O.S. is able to control and protect certain area of code and data when

needed. Furthermore, these APIs could be used to instrument and adapt already existing

applications with few modifications in case the source code is available. In this work, I in-
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troduced two possible schemes of privilege distribution, the onion and the tree scheme. They

must be kept in mind by developers when the application is written or adapted, in such a way

that it would be possible for PRIVMUL to properly work.

PRIVMUL follows the application from the source code writing phase to the execution. It

is composed by a static section (in which the application is partitioned) and a runtime section

(where PRIVMUL actively interacts with the application). In the application it includes

binary metadata that are generated during the building phase of the binary and then are

brought to the O.S. kernel when the application is launched. In this way the O.S. is able to

guarantee the integrity of the execution.

I implemented PRIVMUL in the GNU/Linux environment, keeping the kernel as the only

trusted component to supervise the application execution. The Linux kernel is instrumented

by the modified Glibc loader that I implemented, called ld.so, which, together with the usual

segments structure, reads the sections information placed in the ELF header by the linker.

The metadata is collected and stored during the compilation phase thanks to the three trans-

formation passes that I wrote and a custom linker script generated by one of such passes. The

pass generates, from scratch, a linker script for every analyzed binary. I wrote these passes

for the LLVM/Clang compiler infrastructure.

During the execution, the application can change profile through a system call. The ker-

nel receives the requests and compares the current profile with the new one. In case the

application switches to higher privileges, an authentication and authorization routine starts.

Authentication and authorization are implemented through a daemon that the kernel contacts

via a netlink socket. This daemon uses PAM to authenticate the profile. The kernel starts the

daemon and waits that the daemon authenticates the user. After the daemon that is running

in a privileged mode has completed the authentication, it sends back the result to the kernel.

If everything happens correctly, the kernel will change the permissions on the segments in

memory and the new profile is unlocked.

PRIVMUL’s overhead is significant on applications that use in-memory objects that are

quickly created and destroyed. However, if I consider applications that fit the goals of PRIV-

MUL (i.e., large applications that make several interaction with the user and execute long

functions), the overhead is acceptable (4x to 11x). Considering the effor required by the de-

veloper to secure a large application, the benefit brought forth by PRIVMUL is remarkable:
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At the price of a simple annotation that specifies the access level of data or code, PRIV-

MUL takes care of all the rest. In other words, the balance between usability vs. security vs.

performance overhead of PRIVMUL is significant.

Clearly, the current approach and its implementation have some limitations. On the ap-

proach side, PRIVMUL is requires the source code of the application, which may be an

issue for legacy scenarios. Also, PRIVMUL requires O.S. modifications, which make PRIV-

MUL not immediately applicable to applications designed for closed-source systems. Similarly,

PRIVMUL is not directly applicable to interpreted languages such as Python, Ruby or Perl.

However, the generality of the approach does not exclude future extensions for interpreted

languags. Last, multi-threading support is not implemented as it require an extensive amount

of re-working (e.g., for handling shared memory and other IPC mechanisms).

In this thesis, I tackled the problems of privilege escalation and data leaking in applica-

tions with multi-user logic. The system security community have been studing these kinds

of vulnerabilities at the O.S. level and proposed many solutions. However, I am the first to

tackled these threats at the application level, proposing a solution that allows developer to

write such fine-grained policies as thos of PRIVMUL.

This thesis was inspired by the new class of vulnerabilities presented by Mulliner et al.

in [18] where the authors showed how, in many applications, the separation among users

(usually the normal user and the administrator) was done naïvely by selectively hiding or

displaying GUI elements (e.g., grayed-out buttons). They showed how the GUI could be

misused to achieve privilege escalation in an application (avoiding access control schemes

enforced). PRIVMUL gives an answer to this issue by providing a mechanism that can effective

enforce ACLs on the application where the reference monitor is trusted in the O.S..

I believe that further work could be done in this direction to avoid this kind of threats

at the application level. Indeed, even if the attack surface may be smaller than that of other

threats, the consequences of privilege escalation are extremely serious. This is why studying

these problems should be continued and ot provide flexible and usable solutions.
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