
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Explicitly Isolating Data and Computation in High Level

Synthesis: the Role of Polyhedral Framework

Relatore: Prof. Marco Domenico SANTAMBROGIO

Correlatore: Dott. Ing. Riccardo CATTANEO

Tesi di Laurea di:

Gabriele Pallotta

Matricola n. 755308

Anno Accademico 2013–2014

This page has intentionally been left blank

iii

We are the hammer! The polyhedral hammer!

Contents

1 Introduction 1

1.1 Background . 2

1.1.1 On Power Utilization . 3

1.1.2 Power Efficiency . 5

1.1.3 Programmability . 6

1.1.4 Trend Analysis in High Performance Computing 7

1.2 Hardware Acceleration . 11

1.2.1 What is Hardware Acceleration 11

1.2.2 Why to employ Hardware Acceleration 12

1.2.3 High Level Synthesis . 13

1.2.4 Optimize High Level Synthesis 14

1.2.5 Input languages to High Level Synthesis (HLS) tools 15

1.3 Application Domain . 17

1.3.1 Staticness . 18

1.3.2 Affinity . 18

1.3.3 Pureness . 19

1.4 Long Term Vision . 21

2 State of the Art 23

2.1 Polyhedral Model . 25

2.1.1 Polyhedral Model . 26

2.1.2 Order of Execution . 28

2.1.3 Definition of Topic Related Terms 29

iv

CONTENTS v

2.1.4 Polyhedral Analysis . 31

2.1.5 Dependence Analysis . 32

2.1.6 Conclusion . 41

2.2 Memory Architecture . 42

2.3 Related Work . 44

2.3.1 Polyhedral Model . 45

2.3.2 Memory Architecture . 46

2.3.3 Hardware Design . 46

2.4 Tools . 49

2.5 Polyhedral Analysis (PA) and HLS Limitations 52

3 Problem Statement 53

3.1 The Problem . 53

3.2 Problem Approach . 53

3.3 My contribution . 54

3.4 Delimiting the Perimeter of Interest 55

4 Proposed Methods 58

4.1 Hardware Constraints . 58

4.1.1 DSP Slices . 59

4.1.2 BRAM Blocks . 60

4.1.3 How Advanced Directives Shape Design Space 60

4.2 First Approach . 63

4.2.1 Components . 65

4.2.2 Flow . 65

4.2.3 Limitations . 65

4.3 Final Approach . 66

4.3.1 Components . 67

4.3.2 Methodology . 68

5 Experimental Results 75

5.1 Practical Examples . 75

5.1.1 Jacobi 2D stencil computation 77

CONTENTS vi

5.1.2 2mm kernel . 79

5.1.3 3mm kernel . 82

5.1.4 2-D convolution kernel . 84

5.1.5 BiCG Sub-kernel . 86

5.2 Implementation Results . 88

6 Conclusions and Future work 96

6.1 Conclusions . 96

6.2 Future works . 97

Bibliography 105

List of Figures

1.1 CPU horsepower . 8

1.2 GPU horsepower . 9

1.3 FPGA horsepower . 10

1.4 Hardware implementation of IF statement 12

2.1 Sequential execution of a program 24

2.2 Parallel execution of a program . 24

2.3 Geometrical representation of iteration domain of statement S2 of 5. 28

2.4 Sample of a Polyhedral Process Network (PPN) the values on the

edge are only to show their weight. 31

2.5 On the left: How a matrix is in our imagination; on the right: How

a matrix is saved on memory . 42

4.1 Direction of BRAM and DSP usage. 59

4.2 fig:Execution flow without pipelining 62

4.3 fig:Execution flow with pipelining 62

4.4 Dataflow Directive Behavior . 63

4.5 First Toolchain . 64

4.6 Second Toolchain . 67

4.7 Left: Components synthesis without PM optimization; Right: Com-

ponents synthesis with PM optimization 68

4.8 Representation of the dependencies between different iterations of

the outermost loop . 71

4.9 Iteration domain of the block inside the outermost loop 72

vii

LIST OF FIGURES viii

4.10 Split of the iteration domain of the block inside the outermost loop 72

5.1 Gain Ratio Virtex-7 vs ZedBoard . 76

5.2 Jacobi 2-D Computation . 77

5.3 Two Matrices Product . 80

5.4 Two Matrices Product With the transpose 81

5.5 3mm computation scheme . 83

5.6 2-D Convolution Computation . 85

5.7 Schema Parallel Hardware Design of vector-matrix multiplication,

where the vector is a column vector 87

5.8 Schema Parallel Hardware Design of vector-matrix multiplication,

where the vector is a row vector . 88

5.9 Jacobi 2-D resource chart . 90

5.10 2mm resource chart . 91

5.11 3mm resource chart . 91

5.12 2-D Concolution resource chart . 92

5.13 BiCG resource chart . 92

5.14 Schema Parallel Hardware Design 93

5.15 Area used on Jacobi 2-D . 94

List of Tables

5.1 Simple HLS . 89

5.2 Split-Down . 89

5.3 Split-Down, with directives and memory optimization enabled . . 90

5.4 Theoretical best . 90

ix

List of Algorithms

1 Example of a static code . 18

2 Example of an affine non static code 19

3 Example of a pure code . 20

4 Example of a non pure code . 20

5 Example of an algorithm . 27

6 Static Affine Nested Loop Program (SANLP): An example pseudo

code of a SANLP . 30

7 Read After Read (RAR): An example pseudo code of a RAR de-

pendency . 32

8 RAR: An example pseudo code of a RAR dependency 34

9 Read After Write (RAW): An example pseudo code of a RAW de-

pendency . 34

10 Write After Read (WAR): An example pseudo code of a WAR de-

pendency . 34

11 WAR: An example pseudo code of a WAR dependency simplification 35

12 Write After Write (WAW): An example pseudo code of a WAW

dependency . 35

13 WAW: An example pseudo code of a WAW dependency simplifi-

cation . 35

14 Loop example: An example pseudo code of a completely paral-

lelizable loop . 36

15 Loop example: An example pseudo code of a completely paral-

lelizable loop unrolled . 36

x

LIST OF ALGORITHMS xi

16 Loop-Carried Read After Write (RAW) Dependencies example . . . 37

17 Loop example: An example pseudo code of a completely paral-

lelizable loop unrolled . 37

18 Loop example: An example pseudo code of a completely paral-

lelizable loop unrolled . 38

19 Loop-Carried Write After Read (WAR) Dependencies example . . . 38

20 Loop-Carried Write After Read (WAR) Dependencies example un-

rolled . 39

21 Loop-Carried Write After Write (WAW) Dependencies example . . 39

22 Loop-Carried Write After Write (WAW) Dependencies example un-

rolled . 40

23 Dependencies Within an Iteration . 40

24 Dependencies Within an Iteration: unrolled 41

25 Dependencies Within an Iteration . 41

26 Unroll: An example pseudo code of a normal code 61

27 Unroll: An example of an unrolled code 61

28 Pseudo code of Second Methodology tool 70

29 Example of nested loops . 71

30 Jacobi 2D stencil sequential code on 300x300 matrix 78

31 2mm sequential code . 82

32 3mm sequential code . 84

33 2D Convolution sequential code . 85

34 BiCG Sub-kernel sequential code . 86

List of Abbreviations

AST Abstract Syntax Tree

API Application Programming Interface

ASIC Application-specific integrated circuit

CANDL Chunky ANalyzer for Dependencies in Loops

CLAN Chunky Loop ANalyzer

CLAY Chunky Loop Alteration wizardrY

CLOOG Chunky LOOp Generator

CPU Central Processing Unit

DA Dependence Analysis

DMA Direct Memory Access

FIFO First In First Out

FLOPS Floating Point Operation Per Second

FPGA Field Programmable Gate Array

GPU Graphic Processing Unit

HLS High Level Synthesis

HDL Hardware Description Language

ID Iteration Domain

xii

LIST OF ABBREVIATIONS xiii

LeTSeE LEgal Transformation SpacE Explorator

LLVM Low-Level Virtual Machine

MP-SoC Multi Processor-System on Chip

PA Polyhedral Analysis

PM Polyhedral Model

PPN Polyhedral Process Network

PPU Physics Processing Unit

PoCC Polyhedral Compiler Collection

PRDG Polyhedral Reduced Dependency Graph

RAR Read After Read

RAW Read After Write

RTL Register-Transfer Level

SAC Single Assigned Code

SANLP Static Affine Nested Loop Program

SCM Sequential Communication Media

SCoP Static Control Parts

SOLOMON Simultaneous Operation Linked Ordinal MOdular Network

SLD System Level Design

VHDL VHSIC Hardware Description Language

WAR Write After Read

WAW Write After Write

YAML YAML Ain’t Markup Language

Summary

The increased computational power required by modern large-scale comput-

ing system is pushing the adoption of heterogeneous components into main-

stream. While Graphics Processing Units are frequently adopted as core com-

putational elements, FPGA based heterogeneous systems are being investigated

and adopted due to their claimed superiority in power efficiency. However, the

lack of proper approaches and methodologies to systematically push the perfor-

mance of such devices are among the principal factors limiting the adoption of

these devices into mainstream. In this paper, I investigate the adoption of Poly-

hedral Analysis to extract data level parallelism from sequential code, defining

a methodology for High Level Synthesis aimed at FPGA based system. I show

how our approach systematically produces speedups proportional to the amount

of data level parallelism available in the input programs.

xiv

Sommario

La sempre più elevata richiesta di capacità computazionali richieste dai mo-

derni sistemi di elaborazione su larga scala sta rendendo sempre attuale e pres-

sante l’esigenza di introdurre soluzioni eterogenee. Se da un lato è ormai conso-

lidato l’uso di GPU come elementi fondamentali del calcolo numerico, dall’altro

vi è un sempre più crescente interesse verso sistemi basati su FPGA, e ciò è do-

vuto soprattuto alla loro intrinseca efficenza energetica. Uno dei principali limiti

che ne stanno limitando un’adozione ancora più massiccia, è la mancanza di ap-

procci teorici, metodologici e sistematici. Nel presente lavoro rivolgerò grande

attenzione all’adozione delle Analisi Poliedrale allo scopo di estrarre il paralleli-

smo a livello dati dal codice sequenziale costituente gli algoritmi di calcolo presi

in esame. Verrà evidenziata una metodologia per la Sintesi ad Alto Livello rivolta

ai sistemi basati su FPGA. Mostrerò come l’approccio proposto produca sistema-

ticamente notevoli aumenti di velocità di calcolo, aumenti proporzionali al livello

di parallelismo delle strutture dati ricavabile dai programmi di calcolo forniti in

ingresso.

xv

1

Introduction

“We [the Moderns] are like dwarves perched on the shoulders of giants [the

Ancients], and thus we are able to see more and farther than the latter. And this

is not at all because of the acuteness of our sight or the stature of our body, but

because we are carried aloft and elevated by the magnitude of the giants.”

– Bernardo of Chartres

In this Chapter I introduce technologies involved in this work and what power

efficiency means in the context of computing systems. Also, I describe the ratio-

nale behind my work and the goal I am trying to achieve considering the current

technological trends in hardware development.

1

1. INTRODUCTION 2

1.1 Background

In the last two centuries, industry and technology grew on two assumptions

about energy: infinite availability of raw materials, and a cost of energy that can

be neglected. In the past, energy costs were one or more order of magnitude

lower than technical costs.

In recent decades, many energetic crisis have muted the entire landscape. As

energy related costs are becoming more and more significant, and overall re-

sources costs arise as they are become scarcer and scarcer, it is mandatory to

extract the most from every resource spent. Governments of the major industrial

countries, in E.U. and U.S., created specific entities to control and improve the en-

ergy usage of they respective countries. Wasting energy isn’t affordable anymore,

and science has to put forth, too.

In this section, I will analyze some of the key aspects that lead inefficient

usage of electricity supplies in high performance computing and the major ap-

proaches to address this problem.

In particular I discuss:

• On Power Utilization

• Power Efficiency

• Programmability

• Trend Analysis in High Performance Computing

In the following pages I will introduce some basic terms usually used in elec-

tronics and physics to describe electrical and thermal behavior os silicon circuits

in order to explain mutual relation between current, power consumption and

frequency.

1. INTRODUCTION 3

1.1.1 On Power Utilization

The most simplified but overall valid model to electrically power consump-

tion in digital circuits has two terms:

• static

Pstatic = Istatic ∗ Vdd (1.1)

• dynamic

Pdynamic = Pcap + Ptransient ∝ (CL + C) ∗ V2
dd ∗ f (1.2)

• total power can be obtained adding static and dynamic power:

Ptotal = Pstatic + Pdynamic (1.3)

From the equation we note that dynamic power follows a quadratic relation

with voltage and linear relation with frequency. During actual computation the

dominant term used to be the dynamic part. However, new developments are

changing the ratio between static and dynamic power, leading to the static part

to be comparable to the dynamic. In fact, reduction of feature size, capacitance’s

will greatly decrease so dynamic power will become comparable to static power

and we must take into account both terms.

In order to increase computational power, from an electronic point of view,

we mainly have two ways:

• increase frequency

• increase the number of transistors

If we increase frequency, the gain in computational power is linear. Unfortu-

nately, since transistors have physical limits, we cannot reduce the voltage below

a given threshold voltage. So, when we aim for higher frequency we also need

1. INTRODUCTION 4

greater voltage to allows correct charging of capacitors. As we previously stated,

an increment in voltage yields a quadratic increase in power consumption.

If we increase the number of transistors we can get more computational power

lowering frequency, avoiding the dramatic heat dissipation due to voltage in-

crease. On the other hand, more transistors means bigger static power consump-

tion, and allow wider and multiple (potentially parallel) components [1].

In processing units we can identify two different sets of transistors are used:

• Those employed to produce computation

• Those employed to perform non computational tasks such as prefetching

data, caching and decoding instructions; i.e. to improve performance of

regular but most importantly irregular computation

By allocating transistors to the first set, a processor gains an increment in

the computations per Watt ratio. On the other hand, transistors dedicated to the

second set lower the same ratio, but allow better software programmability and

greatly simplify software designs.

1. INTRODUCTION 5

1.1.2 Power Efficiency

In a world where technological development poses more and more challenges,

the scientific community is facing the problem os relatively scarcer and scarcer

affordable computational resources (with respect to problem size). On the other

hand, extreme-scale computing will enable the solution of vastly more accurate

predictive models and the analysis of massive quantities of data [2, 3].

In order to solve these kind of problems, industrialized nations are aiming

at Exascale computing systems. A machine, to be classified as exascale, must be

capable of processing at least one exaFLOPS (1018FLOPS). Problems amenable

to these machines only includes [4]:

• Efficiency and safety of nuclear energy sector (4th generation, specifically

[2])

• Reverse engineering of the human brain

• Dramatically improved regional climate models capable of better predict-

ing changes such as sea level rise, droughts and floods, and severe weather

patterns

These are only few problems an exascale machine could solve [5]. However,

in order to generate such vastly amount of computational power. With current

technological solutions, it is require too much power. The rising need of exascale

machines brought DOE, and other scientific organizations to issue the exascale

initiative [6]. One of the most important limitations imposed by this challenge is

to create said machines with a power budget of roughly 20 MW of power.

Due to these limitations in high performance computing, it is mandatory to

refer as performance not as raw computational power, but as how many calcula-

tions you can do for every single Watt spent to do so.

1. INTRODUCTION 6

1.1.3 Programmability

In CPUs and GPUs a great amount of power is spent on operations that do

not produce actual computation. In the past, a lot of work was made to improve

performance of irregular or general code from processing units. Since proces-

sors were created to perform a lot of different tasks, they needed a method to do

so: the basic fetch-decode-execute cycle was invented. When performance became

an issue, companies upgraded this technology by implementing the instruction

pipeline, allowing for much shorter critical paths, and then, higher operational

frequencies. When they discovered the basic principles of data locality they im-

plemented caches, and again when they understood how to predict mutual be-

havior in conditional statements they introduced the branch history tables. As the

race for performance continue, engineers struggle to refine and enhance proces-

sors with the goal to further improve their throughput. All of the above solu-

tions have been introduced for while (mostly never) scarifying programmability

mainly due to market reasons. Eventually, another huge problem arise: power

consumption.

All of the improvements done so far were developed with throughput in

mind. No - or few - considerations were made on power consumption. As tran-

sistors feature shrunk and reached their physical miniaturization limits, proces-

sors became ultra-dense components unable to be powered on completely, unless

melting them was the actual goal. This was the advent of the Dark Silicon [7] era,

where we not only limit operating frequency but also the amount of parallel com-

putation that it is possible to carry out inside a single chip package.

However, more efficient patterns and architectures exist. Their drawback re-

lates to the programmability model as they relies on many different specialized

components that must be programmed accordingly. GPUs belong to this family.

Given their parallels nature, a huge effort must be put to program them in order

to achieve the best performance available.

1. INTRODUCTION 7

As we see later, GPUs are not the only family. Actually exists another archi-

tecture that is able to deliver a huge amount of throughput with very low power

usage, at the cost of programmability, as they are the most dissolute device to

program (with regards to CPUs, and even GPUs).

1.1.4 Trend Analysis in High Performance Computing

Current technologies cannot deliver increasing processing power on the as-

sumption of Moore’s law about number of transistors: such a high number with

such a high power density generates too much heating that cannot be dissipated

in the limited space of a regular die.

Modern datacenters requires big investments in electricity supplies not only

to supply electronic equipments but to cool them down, too. Additionally elec-

tricity power drawn by the datacenter is hitting limits imposed by utilities com-

panies in most places, as well. As power efficiency not only reduces costs in

electronics but allow bigger savings in conditioning systems, governments are

putting a lot of resources to incentive the researches of new techniques to reduces

the energy consumed by those systems [8].

The most relevant trend harnessing this problem is heterogeneous computing.

Heterogeneous computing refers to systems that use more than one kind of pro-

cessing units. These are systems that gain performance not just by assembling

more components of the same type, but by adding customized processing units,

usually incorporating specialized processing capabilities to handle particular tasks.

Since these components are suited only for a specific task a far lower number

of transistors are usually required in order to process them. Specialized compo-

nents usually work at lower frequency, too, reducing, as stated in 1.1.2, the overall

power consumption of the system. For these reasons, mathematical co-processors

where introduced in late 80’s. This was the first example of heterogenous sys-

tem. A more relevant and modern example in this direction is the introduction

of GPUs, that were initially used to accelerate the compute-intensive work of

texture mapping and polygon rendering. Afterwards, units were added to accel-

erate geometric calculations such as the rotation and translation of vertices into

1. INTRODUCTION 8

different coordinate systems.

This is due to the nature of the computation a CPU was built for: irregular

computation. Irregular computation - in this context - means that instruction flows

are hardly (if not at all) predictable at compile time, and even when they are, data

access pattern might not be regular at all. Since CPUs internal structure has a

limited amount of logic dedicated to actual computation, only a relatively lower

number of numeric operations can be performed at a time. On the other hand,

GPUs, due to their simpler and parallel internal structure, are better suited to

scientific computation as they provide multiple identical components that can

simultaneously execute the same instruction. Even if GPUs consumption are very

high, given an highly (data) parallel workload, they are capable of delivering

much more FLOPS per Watt due to the intrinsic parallelism of their architecture

and the amount of logic actually designed to computation.

Figure 1.1: CPU horsepower

Another reason for CPU vs GPUs power efficiency is due to the abstraction

layer that implements its software programmability. For this reason, Graphic Pro-

cessing Unit (GPU)s have been extended in the last decade to support generic

computation and are the current heterogeneous component of election (at least

in high performance computing).

1. INTRODUCTION 9

Another important direction in heterogeneity is the introduction of physics

chips: they offload physics calculations from the CPU, and are performed on ded-

icated hardware circuit (for example PhysX[9], is a proprietary realtime physics

engine middleware SDK, born from an hardware solution by Ageia, that called it

Physics Processing Unit (PPU)).

Figure 1.2: GPU horsepower

Phi cores [10] are based on the same idea of the multicore architecture, but

relying on more, less complex micro processors. The basic idea that led to the

creations of such component is that these cores can retain many of the existing

programming models that most developers are familiar with.

Trends show that we need to find a different approach that reduces power

consumption, while increasing power efficiency and parallelization. Elaborating

on these and other trends, we look forward to a component that transcends this

abstraction layer and uses all the power it drains to make effective computation.

Another technology on the rise that shows an interesting set of features is

basically the FPGA. FPGAs are component designed with a completely different

1. INTRODUCTION 10

goal in mind. FPGAs have no mathematical or logic components per se, but have

to be arranged in order to implement those functionalities. Another aspect of

FPGAs is Dark silicon: In FPGAs only transistors in configured circuits are pow-

ered on. In this way it is possible to achieve increased power efficiency.

Figure 1.3: FPGA horsepower

However, FPGAs must be configured in order to obtain power efficient pro-

cessing units out of them. Such process is very complex as it involves hardware

design. This needs to be repeated for every problem at hand, resulting in a very

time consuming process. However, the creation of custom architectures fitted on

the algorithm will results in huge energy savings, incrementing the power effi-

ciency of the system. Not all the problems can take advantage of this approach,

but many can be efficiently implemented.

Programmability is an issue as Field Programmable Gate Array (FPGA)s are

programmed in a very different manner than CPUs and GPUs. Current research

- both industrial and academic - is focusing on improving the experience of soft-

ware developers as they should only concentrate on software algorithms leaving

1. INTRODUCTION 11

a sophisticated toolchain the burden to implement it as dedicated circuits (for

example, Xilinx[11] with SDAccel SDK [12]).

As the FPGAs approach is radically different to the CPUs and GPUs, the next

Section is dedicated to how computation is described for this devices.

1.2 Hardware Acceleration

In this section I describe what is hardware acceleration and why it is em-

ployed to achieve higher power efficiency than today’s solutions.

1.2.1 What is Hardware Acceleration

Hardware acceleration is a technique that consists in implementing some, or

all, parts of an algorithm via dedicated hardware circuits. Said circuits produce

the same results as their software counterparts [13, 14, 15, 16]. Traditionally, the

hardware designer was in charge to creating the circuits by hand. So, he had

to have a great understanding of hardware components and how they could be

connected in order to achieve the corresponding algorithmic operation. The en-

tire workflow is very time consuming, involved and error prone but nonetheless

required when the goal is to achieve the best performance available. This work-

flow will make extensive use of Hardware Description Language (HDL), which

are difficult to understand and manage for most software designers who usually

are the ones in charge of coding algorithms. To make a comparison between hard-

ware and software development, HDL based development resembles the use of

Assembly to optimize custom routines in C/C++ development. Since HDLs were

developed to describe hardware circuits, they are characterized by a low level of

abstraction. Thus, hardware designers must take into account every single detail

such as signals, state machines and their behavior over time. Also, debugging at

this level is very complex and an hardware and electronic knowledge is required

to understand waveforms, timing constraints and their impact in the final design.

1. INTRODUCTION 12

Figure 1.4:
Hardware implementation

of IF statement

1.2.2 Why to employ Hardware Acceleration

As explained before in Section 1.1 and subsection 1.2.1, the implementation of

a dedicated hardware component has the major benefit of speeding up portions

of an application. In fact, it is usually true that there is no CPU program that can

run as fast as a dedicated circuit given that the latter is comparable in terms of

technology and frequency to the former. This is due to the overhead needed to

maintain the CPUs as a general processor as possible (i.e. in order to compute

anything the software developer can think of).

This is also the reason why GPUs were introduced: a dedicated hardware

capable of running specialized instructions to compute graphics-like processing

(i.e. data parallel codes) very fast. This kind of device features a lot of dedicated

circuitery to do a specific task, such as transform geometric primitives or triangle

setup/clipping; nevertheless, a lot of small and simple processing units run in

parallel, achieve better performance than a CPU in graphics computation. Addi-

tionally, even if the GPUs were invented to do graphics computation, in recent

years it is becoming more and more common to exploit their intrinsically parallel

architecture to achieve better performance on specific workloads, like scientific

computating. These devices are more difficult to program than CPUs (mainly due

to the heterogeneous nature of the resulting system) but can be programmed in

a similar fashion. However, few drawbacks affect GPUs, in order to maintain the

processing as general as possible for computation. For example, although GPUs

usually feature high throughput and very high internal memory bandwidth, it is

usually very difficult to make GPUs work at their full capacity and rarely saturate

1. INTRODUCTION 13

the internal bandwidth.

As programming GPUs is a very complex task, major vendors put a lot of ef-

forts into introducing a set of a APIs and libraries to make the process easier. No-

table examples are Nvidia Cuda [17] and AMD Mantle [18] frameworks. More-

over they show relatively low power efficiency with regards to FPGA [19, 20, 21]

on most workloads, for the aforementioned reasons.

We pay overhead when we have a lot of data dependent behavior inside the

application. If the algorithm is static and every implementation detail can be

known at compile time (apart from the true values of the data needed to process)

then we can create a very small circuit that operates very fast multiple times,

requiring less time and far less power.

To summarize, GPUs can be considered suboptimal for high consumption,

low power efficiency.

This is where FPGAs play an important role. As we can tailor the processing

system around the application, by stripping away all the intermediate steps, we

achieve higher power efficiency. Unfortunately, the development of even a small

component is a very complex process. I recent years, in fact, a lot of effort was put

into automating the creation of such systems by means of High Level Synthesis

(HLS). HLS tools can synthesize circuits from languages such as C or C++ instead

of the less handy VHDL or Verilog, enormously speeding up the development of

hardware based systems.

1.2.3 High Level Synthesis

While HLS tools have been heavily studied in the past, only in the recent years

we have seen effective industrial tools available in the market. Current research is

focusing on efficiently converting numeric or image processing algorithms writ-

ten in behavioral languages directly into hardware implementations in order to

achieve better performance and lower consumption while highering the layer of

abstraction in order to gain in designer programmability. This has been possible

in the recent years because High Level Synthesis (HLS) tools have become pow-

erful and flexible enough to allow relatively easy and fast synthesis of hardware

1. INTRODUCTION 14

circuits. Previously, hardware development required plenty of specific knowl-

edge in order to develop a fully working accelerator. High Level Synthesis (HLS)

tools impose less requirements on designers and dramatically speeding up the

development of a working system. However, without proper care, this comes at

the cost of introducing large overheads and slow-downs compared to manually

designed implementations. This is due to the lack of knowledge that High Level

Synthesis (HLS) tools have in order to do optimizations on the resulting compo-

nents. In order to cope with these limitations, High Level Synthesis (HLS) tools

has special directives that can be used to optimize the resulting components, with

the only downside that these directives need to be specified by the designer and

are not derived automatically.

1.2.4 Optimize High Level Synthesis

HLS has a lot of directives allowing to generate different components [22, 23],

each with its own specific performance profile. Some of them are useful to incre-

ment the throughput, other to minimize the area and others again are explicitly

used for lowering the power consumption. For example the dataflow directive

can be used to parallelize function calls and/or nested loops creating different

blocks of circuits inside a single core, each capable to run concurrently. This di-

rective also looks at and preserves the dependences in the code to maintain the

correctness of the output. Another useful directive is the pipeline directive. This

directive tells the HLS tools to use more resources in order to create a pipeline

inside the core, or in case this directive is used with the dataflow directive, to cre-

ate a pipelined block inside the core. Other directives such as, array map, array

reshape or array partition serve the purpose to optimize the number of BRAMs

used inside the FPGA. Another useful directive is unroll. This feature can par-

tially or completely unroll a loop in order to run in parallel all its iterations of

a loop body. As mentioned in 1.2.4, these directives have to be explicited by the

hardware designer.

1. INTRODUCTION 15

1.2.5 Input languages to HLS tools

Current hardware circuits can be generated in very different ways.

First of all, we can generate a Register-Transfer Level (RTL) description of the

circuits from manually derived VHDL or Verilog, each describing the hardware

behavior. This is the standard, inefficient workflow in hardware design.

As previously stated in 1.2.2, HLS tools are getting more and more powerful,

closing the gap between automatic and manual implementation; plus, they allow

the creation of RTL from high level language such as C/C++, or with the newer

OpenCL C [24].

The reason we HLS vendors choose C/C++ is a three fold argument:

• The vast majority of the legacy code for numeric computation are written

in C/C++

• Designer are already productive and familiar with imperative/procedural

languages such as C/C++

• Designer can rapidly explore the impact of standard directives (i.e design

modes) to find better trade offs between latency, area used, power con-

sumption and throughput

While these are industrial considerations we cannot overlook, there are other

reasons to choose C/C++, namely:

• most syntax analyzers and compilers are written for C/C++ so its easy to

get robust tools to further enhance code deriving from them

• It’s easy to simply port algorithms from a platform to another and to HW,

too, as C is well defined and standardized

• Support a familiar "hardware level of abstraction", providing a link be-

tween high-level source code and low-level implementation [25]

It’s a matter of fact that there is no specific reason we cannot start from an-

other language (say Java, Haskell or other languages) but C/C++ is the de-facto

1. INTRODUCTION 16

standard in industrial development. The vast majority of software developers

write complex algorithms relying on C/C++ features, so it would be very un-

productive to force them to learn another language and revolutionize all their

fine-tuned coding practices.

1. INTRODUCTION 17

On the other hand, other languages can be better as they can leverage dif-

ferent, more hardware friendly formal semantics to produce better parallelizable

codes.

Those features are, among the others:

• No aliasing (i.e. Fortran)

• All parameter passing is done by value (we solve from language itself some

synchronization issues, i.e. Haskhell, but we do not resolve communication

issues)

• Passing arguments by value will waste memory very quickly and so we

need to rethink the algorithm in a more efficient way

Note that other languages can also use other means to get parallel/optimized

computation: for example, in Haskhell you get for free fast lightweight threads,

parallel sparks and futures, software transactional memory, core affinity control

and so on. However, such features mostly cannot be ported to HDL (even if there

are project like [26, 27, 28, 29, 30, 31, 32, 33] that aim for it).

However, since the leading industry focuses on subsets of C-like syntax lan-

guage, for the rest of the thesis I will consider HLS tools targeting C/C++.

1.3 Application Domain

The class of problem I am targeting are all the scientific workloads. In fact, these

algorithms can be easily written as:

• Static

• Pure

• Affine

imperatives codes.

We focus this kind of workloads because all of the information needed are

known at compile time. All the transformations on the source code can thus be

1. INTRODUCTION 18

done only analyzing the code statically. As most scientific workloads share these

characteristics, we are able to analyze them more efficiently and, as we will see

later, effectively and automatically parallelize the computation.

Now I describe how and when a code is static, pure and affine.

1.3.1 Staticness

Given a C code, we can define it static if:

• All loop bounds are known at compile time

• There are no data dependenct conditional statements

Pseudocode 1 Example of a static code

1: define M 10

2: define N 10

3: for i=1 to N do
4: for j=i to M do
5: if j <= 2 then
6: b[j] = Func()
7: end if
8: end for
9: end for

1.3.2 Affinity

Given a code we can define it affine if accesses to arrays happen using inde-

ces, constants or linear combinations of the indeces of the enclosing loops. For

example, Code 1 is also affine since data are also accessed linearly using j alone.

An example of an affine but not static code is:

1. INTRODUCTION 19

Pseudocode 2 Example of an affine non static code

1: define M 10

2: define N 10

3: for i=1 to N do
4: for j=i to M do
5: if j <= a[i] then
6: b[i*2][j+3*i] = Func()
7: end if
8: end for
9: end for

Note: in line 5 the if-statement depends on data value, breaking the second

condition for staticness. Each index in code 2 is a linear combination of enclosing

indexes and constants.

1.3.3 Pureness

Before specifying a condition fora a pure code, it is useful to define what a

pure function is.

Pure functions

A function is pure if:

• No read and write happen without the compiler knowing about it

• Result must not depend on hidden values (to the compiler) or any global

state information

• It must not alter any input mutable parameter

• No global (i.e. shared) data

Pureness restricts code by not allowing to pass value by reference, in order

not to share a global state.

Thusly, code is pure when all function calls are pure function.

1. INTRODUCTION 20

The following pseudo code shows an example of a pure code.

Pseudocode 3 Example of a pure code

1: define M 10

2: define N 10

3: func foo()
4: a[]
5: for i=1 to N do
6: for j=i to M do
7: if j <= 2 then
8: b[j] = Func(a[i])
9: end if

10: end for
11: end for
12: endfunc

The following code is not pure, since it accesses a global variable via reference.

Pseudocode 4 Example of a non pure code

1: define M 10

2: define N 10

3: a[]

4: func foo()
5: for i=1 to N do
6: for j=i to M do
7: if j <= 2 then
8: Func(&a[i])
9: end if

10: end for
11: end for
12: endfunc

1. INTRODUCTION 21

Beauty of pure functions

Pure functions map well on parallel hardware, since it won’t be required

any global memory and potentially critical bottleneck in most systems. Indeed,

implementing global state on hardware will require hardware synchronization

mechanism, wasting precious resources and will introduce wait states for all the

components that rely on that information. Pure code prevents by design these

kind of side effects.

1.4 Long Term Vision

Trends described in 1.1.4, strongly hint to a future where heterogenous sys-

tems are the norm. More and more datacenters and supercomputers are relying

on heterogeneity to achieve faster and faster computing speed while maintaining

the power consumption as low as possible.

Historically, FPGAs have been slower, less energy efficient and generally achieved

less functionality than their fixed ASIC counterparts, but they allowed to quickly

prototype components or build up circuits when ASIC production would be too

expensive. Nowadays, thanks to technology advancements, FPGAs can realisti-

cally be seen as the next core heterogenous components in (near) future super-

computing. Right now, researchers are porting algorithms on this platform to

achieve better throughput at lower power consumption than their GPUs coun-

terpart [34, 35, 36, 37, 38, 39].

In a world where energy is an ever scarcer resource, we will rely more and

more on this technology to achieve better power efficiency. What is restraining

the use of FPGA is the higher learning curve and very complex design tools,

compared to CPU and GPUs.

But, as the green-scientific becomes the hot topic, given the trends, FPGAs will

implement more and more scientific algorithms, for improved power efficiency.

This work elaborates on a novel way in support this trend

1. INTRODUCTION 22

The rest of the dissertation is based on this prediction, thus presenting the cor-

responding state-of-art in high performance computing in Chapter 2. The prob-

lem statement follows in Chapter 3. An innovative methodology to extend the

discipline is described in Chapter 4. The results are shown in Chapter 5 and final

conclusion are drawn in Chapter 6.

2

State of the Art

The state-of-the-art in this field of research has ancient roots. Since the early

60’s , after the advent of first integrated circuits computers, researchers started to

think of a way to achieve better performance from this machine. In 1966 A.J. Bern-

stein explained which general conditions allow parallel processing and the mem-

ory organization needed in a multicomputer system in order to achieve it. In that

paper [40] he asserted that, even at that time, the idea of processing a program in

parallel was not new: in those days was designed a sophisticated machine called

"Simultaneous Operation Linked Ordinal MOdular Network (SOLOMON) com-

puter" [41] which could solve problems composed of a number of identical, inde-

pendent calculations, for example involved in the solution of partial differential

equations. In the same paper Bernstein showed that the decision if two tasks can

be executed in parallel depends on quality of algorithm and on specific imple-

mentation. At that time he inferred that knowing the assumption: "two program

blocks are parallel if and only if they produce the same results when performed

sequentially or in parallel for all possible sets of input data", is equivalent to solve

"the halting problem for an arbitrary Turing Machine T starting with an arbitrary

initial tape".

This problem is well known in literature, and is also known to be an unde-

cidable problems. Even if, the terms undecidable means that there is no program

that can answer if two parts of a program can run in parallel, Bernstein came up

with the condition (Bernstein condition’s) that allow us to know if some parts of

23

2. STATE OF THE ART 24

Figure 2.1: Sequential execution of a program

a program can be run at the same time. We can summarize those conditions in

the following statement: "There must be no dependency between the parts of a

program".

Figure 2.2: Parallel execution of a program

As of what we wrote our work seems pretty useless, but the lack of a generic

algorithm it doesn’t mean that there is no algorithm. Obviously, it must be a prob-

lem specific algorithm that can answer if two parts can run in parallel. So if we

can reduce some problem to a known problem which we already know how to

parallelize, we can also infer how we can parallelize it. This is exactly what we

are aiming using the framework known as Polyhedral Model (PM). The PM can

be applied only on algorithm written using static code. So we can argue that any

2. STATE OF THE ART 25

problem written with code of which information are all known at run time can be

taken and analyzed automatically using PM. Snatching what part of a problem

can be parallelized is of utmost importance in speeding up every application, it

is even more important since we want to create an hardware architecture in order

to hardware-accelerate algorithms. The main motivation to accelerate algorithms

through hardware circuits is the upcoming and foreseeing end of the "Moore’s

law". Previously, in 1965, Moore had predicted that the number of transistors on

a semiconductor (and thus the overall chip performance) would double every

two years . Moore also stated that "no physical quantity can continue to change

exponentially forever", due to the miniaturization of transistors that would reach

its physical limits and it could not further allow to produce faster processors. The

law has demonstrated to be correct for many years and it continued to be valid in

different ways, by producing more powerful processors, multi-core processor ar-

chitectures. Multi-core processors consist of processors, usually of the same type,

built and integrated into a single chip. In recent years, we saw the rise of hetero-

geneous architectures, which have dedicated components suited for dedicated

tasks, and as the time passed the area on chip becomes more and more used on

dedicated components.

Since an algorithm that suits best for hardware acceleration can also be opti-

mized with PM, we want to exploit the latter to generate better hardware.

In the following section we will introduce the PM.

2.1 Polyhedral Model

In Chapter 1 I talked about the new trends in computer technologies. As the

number of transistors on a single die started to rise, power consumption ad heat

dissipation became more and more complex to manage [7]. Multi-cores architec-

tures have been introduced to mitigate increasing consumption problem keeping

the same computational power. These architectures operate at generally lower

frequencies, but with multiple cores we can achieve even better performance,

rising the Moore’s law to a whole new level. With the advent of these true par-

2. STATE OF THE ART 26

allel architectures new problems appeared, such as consistency of data between

cores, needs to re-think code to get better parallelization, lock and synchroniza-

tion issues, only to name a fews. To squeeze all the power from parallel hardware

architecture we need new skills to perform complex loop nest restructuring in or-

der to write better optimizing and parallelizing tools. The polyhedral model has

demonstrated its potential to enhance performance over a variety of targets. In

this Chapter we will discuss the theoretical terms needed to understand how

polyhedral analysis works and why we need it in order to exploit parallelism

from static code.

Let’s introduce some definitions:

2.1.1 Polyhedral Model

A polyhedron is set of rational values described by affine inequalities.

Polyhedron

The intersection of a finite set of closed linear half-spaces is called a Polyhe-

dron and is specified by a system of linear equalities and inequalities;

P :
{
~x ∈ Qn|A~x > ~b

}
(2.1)

where A is j x n matrix, ~b is a j-vector and n is the dimension of space that

contains the polyhedron. Smallest affine subspace which spans the polyhedron

determines the dimension of the polyhedron.

Parameterized Polyhedron

Parameterized Polyhedron P(~p) is described as linear function of p which is

an m-vector of parameter;

P : {~x ∈ Qn|A~x + B~p > ~c} (2.2)

where A and B are constant matrixes and ~c is a constant vector. Input pro-

gram (source code) is usually represented in some internal representation form

2. STATE OF THE ART 27

in compiler’s domain. In most conventional compilers this form is the Abstract

Syntax Tree (AST). This form allows manipulation and optimization on the code.

Polyhedral Model is one this special representation form considered useful for

parallelizing codes. The model is applied to affine nested loops in compiler opti-

mizations to efficiently analyze and transform the source code.

Iteration Domain

Set of values of an iteration vector for which a statement is executed. D(S)

stands for the Iteration Domain of statement S. An iteration vector ~x of a state-

ment is built from the iterators of surrounding for and while loops of the state-

ment. If a while loop is not mentioned explicitly, a virtual iterator w : 0 6 w is

associated with that loop. For Example, if we take the sample of pseudo code

below:

Pseudocode 5 Example of an algorithm

1: parameter M 1 10

2: parameter N 1 10

3: for k=1 to M do
4: S1: y[k] = F1()
5: end for
6: for i=1 to N do
7: for j=i to M do
8: if j <= 2 then
9: S2: y[j] = F2()

10: end if
11: S3: [] = F3(y[j])
12: end for
13: end for

We can derive the linear inequalities that describe the geometry of the poly-

hedron corresponding to the Iteration Domain (ID) of the statement S2:

2. STATE OF THE ART 28

D = P(M, N) =


(i, j) ∈ Q2|



1 0

−1 0

−1 1

0 −1

0 −1


i

j

 >



1

−N

0

−M

−2


,


1 0

−1 0

0 1

0 −1


M

N

 >


1

−10

1

−10




=
{
(i, j) ∈ Q2|1 6 i 6 N ∧ i 6 j 6 M ∧ j 6 2 ∧ 1 6 M 6 10 ∧ 1 6 N 6 10

}
(2.3)

The following graphical representation can be useful to better understand

what is the region of the polyhedron.

Figure 2.3: Geometrical representation of iteration domain of statement S2 of 5.

2.1.2 Order of Execution

Statements evaluate data in affine nested loops. Evaluation of a statement W

on iterator ~x is called an operation and denoted as 〈W, ~x〉, where ~x ∈ D(W).

Execution order of all operations of all statements is called the schedule.

2. STATE OF THE ART 29

〈W,~x〉 ≺ 〈R,~y〉 ≡ ~x[1...NWR]� ~y[1...NWR]∨(~x[1...NWR] = ~y[1...NWR]∧W/R) (2.4)

This equality describe a schedule. If the iterator ~x always precedes iterator ~y

or if the iterator~x is equal to iterator~y but the statement W precedes the statement

R, then operation 〈W, ~x〉 is evaluated before operation 〈R, ~y〉.

2.1.3 Definition of Topic Related Terms

In this Subsection I will define all the main terms I will use in the following

Sections when discussing about Polyhedral Model (PM) and Polyhedral Analysis

(PA).

Static Control Parts

Static Control Parts (SCoP) are a subclass of general loops nests that can be

represented in the polyhedral model. A SCoP is defined as a maximal set of con-

secutive statements, where loop bounds and conditionals are affine functions of

the surrounding loop and the parameters (constants whose values are unknown

at compilation time). The iteration domain of these loops can always be specifed

using a set of linear inequalities defining a polyhedron.

Static Affine Nested Loop Program

A Static Affine Nested Loop Program (SANLP) consists of a set of statements

and function calls, each possibly enclosed in loops and/or guarded by functions.

Loops do not have to be perfectly nested. All lower and upper bounds of the

loops, expressions in conditions and array accesses have to be affine functions of

the enclosing loop iterators and static parameters. Parameters are symbolic con-

stants: their value should be determined at compile time, no change is allowed

during run-time. Data communication between functions must be explicit.

2. STATE OF THE ART 30

Pseudocode 6 SANLP: An example pseudo code of a SANLP

1: parameter N 10 100

2: for j=1 to 6*N-3 do
3: A[j] = Func1()
4: end for
5: for j=1 to N do
6: for i=j to 3*j-2 do
7: if i+j < 4*N-6 then
8: A[i] = Func2(A[2*i-1], A[2*i+1])
9: end if

10: Func3(A[i])
11: end for
12: end for

Polyhedral Reduced Dependency Graph

A graph where nodes represent computation and edges represent communi-

cation. Nodes communicate point-to-point via unique multi-dimensional arrays

which suit original data dependencies.

Polyhedral Process Network

Target Polyhedral Process Networks (PPN) [42, 39] is a special case of Kahn

Process Networks (KPN) model of computation. A PPN consists of concurrent

autonomous processes that communicate data in a point-to-point fashion over

bounded FIFO channels using a blocking read/write on an empty/full FIFO as

synchronization mechanism. Everything about the execution of a PPN is known

at compile-time. Automatic synthesis can perform calculation of buffer sizes which

guarantee a deadlock-free execution.

2. STATE OF THE ART 31

Figure 2.4:
Sample of a PPN

the values on the edge are only to show their weight.

2.1.4 Polyhedral Analysis

In most cases, a completely sequential execution can be parallelized with-

out compromising the correctness of the execution. The order of the instruc-

tions can be rearranged without changing the program functionality and respect-

ing the ordering constraints. If we can rearrange statements, we implicitly get

a big canche to execute them in parallel. Ordering constraints are dictated by

the data dependency relations existing in the sequential program. Therefore, the

first main step of the parallelization is to perform data dependency analysis. The

analysis helps to extract the dependent statements and presents an initial pro-

gram in a way where data dependencies are made explicit. Thus, the initial pro-

gram is translated into the Single Assigned Code (SAC) form or its analogous

form called Polyhedral Reduced Dependency Graph (PRDG) which is a compact

mathematical representation of the dependency relations in terms of polyhedra.

In PRDG the nodes represent statements of the initial program and the edges rep-

resent data dependencies. The PRDG model exploits multi-dimensional arrays

for data communication,while he target model PPN, requires First In First Out

(FIFO) channels as communication medium. Therefore, another step is needed to

2. STATE OF THE ART 32

convert multi-dimensional memory access scheme into managed dataflow over

FIFO channels. This is called Linearization.

2.1.5 Dependence Analysis

In compiler theory, dependence analysis produces execution-order constraints

between statements. We say statement S2 depends on S1 if S1 must be executed

before S2. Is it possible to individuate two major classes of dependencies:

• control dependencies

• data dependencies

Dependence analysis is important because determines whether or not it is

safe to reorder or parallelize statements.

Control Dependencies

An instruction is control dependent on a preceeding instruction if the effect

of the latter determines whether the former should be executed or not.

Pseudocode 7 RAR: An example pseudo code of a RAR dependency

1: if A == B then
2: A = A + B
3: end if
4: B = A + B

In this example instruction 2 is control dependent on instruction 1. Intuitively

we can give the two conditions of control dependance between two statement S1

and S2:

• S1 could be possibly be executed before S2

• the outcome of S1 will decide whether S2 will be executed

Defining the dominance and post-dominance concept we can give a simpler

definition of control dependency:

2. STATE OF THE ART 33

Dominance: In control flow graphs, a node d dominates a node n if every path

from the entry node to n must go through d.

Post-Dominance: Analogous to the definition of dominance above, a node z is

said to post-dominate a node n if all paths to the exit node of the graph starting

at n must go through z.

Given the above definitions of dominance and post-dominance, we can say

that a statement S2 is said to be control dependent on another statement S1 if and

only if:

• S2 post-dominates all Si

• S2 does not post-dominate S1

Where an Si is a statements after S1 but before S2, and must be true for all Si.

Data Dependencies

A data dependency in computer science is a situation in which a program

statement (instruction) refers to the data of a preceding statement. In compiler

theory, the technique used to discover data dependencies among statements (or

instructions) is called dependence analysis.

There are four types of data dependencies:

• input dependency, called Read After Read (RAR)

• flow dependency, called Read After Write (RAW)

• anti-dependency, called Write After Read (WAR)

• output dependency, called Write After Write (WAW)

Only three of them have consequence on the code. Since RAR dependencies

only read data and are not harmful are not considered as hazards. Here are in-

cluded them only for the sake of completion.

2. STATE OF THE ART 34

Read After Read (RAR) We have an input dependency when we have:

Pseudocode 8 RAR: An example pseudo code of a RAR dependency

1: B = A[i]
2: C = A[i]

Since this is not a real dependency, because no data is modified, there are no

problem if we fall in this case.

Read After Write (RAW) We have flow dependency if an instruction depends

on the result of a previous instruction:

Pseudocode 9 RAW: An example pseudo code of a RAW dependency

1: A = 3
2: B = A
3: C = B

This dependency are often called true dependency. In fact, this dependences

aren’t avoidable. In the simple example above is not possible to run in paral-

lel the three instruction since each instruction depends on the another previous

istruction, hence a level instruction parallelism is not an option.

Write After Read (WAR) We have an anti dependency when we have:

Pseudocode 10 WAR: An example pseudo code of a WAR dependency

1: B = 3
2: A = B + 1
3: B = 7

An anti-dependency is an example of a name dependency. That is, renaming

variables we could remove the dependency:

Here we have removed the WAR dependency but we have introduced a flow

dependency between statement 2 and 3.

2. STATE OF THE ART 35

Pseudocode 11 WAR: An example pseudo code of a WAR dependency simplifi-
cation

1: B = 3
2: B2 = B
3: A = B2 + 1
4: B = 7

Write After Write (WAW) We have an output dependency when we have:

Pseudocode 12 WAW: An example pseudo code of a WAW dependency

1: B = 3
2: A = B + 1
3: B = 7

As with anti-dependencies, output dependencies are name dependencies. That

is, they may be removed through renaming of variables, as in the following mod-

ification of the previous example:

Pseudocode 13 WAW: An example pseudo code of a WAW dependency simpli-
fication

1: B2 = 3
2: A = B2 + 1
3: B = 7

In real-word mathematical algorithms we have much complex, code, not lim-

ited to simple instructions. We usually have multiple loops, with variable nested

deep and complex conditions and dependencies. So we need to take analyze and

understand mutual dependencies between different variables in different level of

nesting. At this I must introduce the definition of the Loop-Carried Dependencies

[43]

Loop-Carried Dependencies Since loops are a way to run the same instruction

with different data in an automatic way, the question we will want to answer is:

"Can two different iterations execute at the same time, or is there a data depen-

dency between them?"

2. STATE OF THE ART 36

Consider the following loop:

Pseudocode 14 Loop example: An example pseudo code of a completely paral-
lelizable loop

1: for i=1 to N do
2: A[i] = A[i] + B[i]
3: end for

Looking at this loop, to answer the question above one should first answer:

"Is it possible for any two values of I and J, to calculate the value of A[I] and A[J]

at the same time?"

The answer will be more obvious if we manually unroll some iteration of the

loop:

Pseudocode 15 Loop example: An example pseudo code of a completely paral-
lelizable loop unrolled

1: A[i] = A[i] + B[i]
2: A[i+1] = A[i+1] + B[i+1]
3: A[i+2] = A[i+2] + B[i+2]

Looking at the unrolled loop is trivial to understand that this loop is com-

pletely parallelizable. Since no statement depend on another, you don’t need the

results of the first to determine the second. In fact, mixing up the order of the

calculations won’t change the results in the least. Relaxing the serial order im-

posed on these calculations makes it possible to execute this loop very quickly

on parallel hardware.

Obviously this is an ideal case, in which the are no dependencies between state-

ment. Loop-Carried Dependencies aren’t different kind of dependencies than the

ones expressed before, hence we can have the same three main types of hazard:

flow, anti and output dependencies. The only differences is that are between dif-

ferent iteration of the same statement.

2. STATE OF THE ART 37

Loop-Carried Read After Write (RAW) Dependencies To understand hazard

these dependencies carry, look at the following example:

Pseudocode 16 Loop-Carried Read After Write (RAW) Dependencies example

1: for i=1 to N do
2: A[i] = A[i-1] + B[i]
3: end for

This loop can look similar to the previous example, but one of the subscripts

is changed. Again, it’s useful to manually unroll the loop and look at several it-

erations together:

Pseudocode 17 Loop example: An example pseudo code of a completely paral-
lelizable loop unrolled

1: A[i] = A[i-1] + B[i]
2: A[i+1] = A[i] + B[i+1]
3: A[i+2] = A[i+1] + B[i+2]

In this case, there is a dependency issue. The value of the third statement

depends on the second one, and the second one depends on the first. You can find

this kind of dependency in a broad range of mathematical algorithms. However,

it is impossible to run such a loop in parallel (as written); the processor must

wait for intermediate results before going on. In some cases, flow dependencies

are impossible to fix: calculations are so dependent each other that we have no

choice but waiting for previous instructions to complete. In different scenarios

dependencies derive from the way the calculations are expressed. For instance,

the above loop can be changed to reduce dependency. By replicating some of the

arithmetics, we can make second and third iteration dependent on the first, but

not on each other.

2. STATE OF THE ART 38

The number of operations has been increased – we have an extra sum – but

we reduced the dependency between iterations:

Pseudocode 18 Loop example: An example pseudo code of a completely paral-
lelizable loop unrolled

1: for i=1 to N do
2: A[i] = A[i-1] + B[i]
3: A[i+1] = A[i-1] + B[i+1] + B[i]
4: end for

Reducing dependency we get a slightly better performance on modern work-

station, and a clear advantage on special parallel hardware.

Loop-Carried Write After Read (WAR) Dependencies This type of dependence

is a whole different story than the RAW dependency. Let’s loook at this code:

Pseudocode 19 Loop-Carried Write After Read (WAR) Dependencies example

1: for i=1 to N do
2: A[i] = B[i] * E
3: B[i] = A[i+2] * C
4: end for

In this loop, there is an anti dependency between the variable A[i] and the

variable A[i+2]. We must be sure that the instruction that accesses A[i+2] reads

that memory before previous instruction alters that value. Clearly, this is not a

problem if the loop is executed serially, but we are looking for opportunities to

overlap instructions. As we did before, it’s useful to separate code and look at

several iterations together.

2. STATE OF THE ART 39

We can directly unroll the loop and find some sort of parallelism:

Pseudocode 20 Loop-Carried Write After Read (WAR) Dependencies example
unrolled

1: A[i] = B[i] * E
2: B[i] = A[i+2] * C
3: A[i+1] = B[i+1] * E
4: B[i+1] = A[i+3] * C
5: A[i+2] = B[i+2] * E -> output dependency
6: B[i+2] = A[i+4] * C
7: A[i+3] = B[i+3] * E
8: B[i+3] = A[i+5] * C

Statements 1-4 could all be executed simultaneously. Once those statements

completed execution, statements 5-8 could execute in parallel. Using this ap-

proach, there are sufficient intervening statements between the dependent state-

ments that it’s possible to see some parallel performance improvements.

Loop-Carried Write After Write (WAW) Dependencies The third class of data

dependencies, output dependencies, is of particular interest to users of parallel

computers, particularly multiprocessors. Output dependencies involve getting

the right values to the right variables when all calculations have been completed.

Otherwise, an output dependency is violated. The loop below assigns new val-

ues to two elements of the vector A with each iteration:

Pseudocode 21 Loop-Carried Write After Write (WAW) Dependencies example

1: for i=1 to N do
2: A[i] = C[i] * 2
3: A[i+2] = D[i] + E
4: end for

2. STATE OF THE ART 40

As always, we won’t have any problems if we execute the code sequentially.

But if several iterations are performed together, and statements are reordered,

then incorrect values can be assigned to the last elements of A. For example, in

the naive vectorized equivalent below, A[i+2] takes the wrong value because the

assignments occur out of order:

Pseudocode 22 Loop-Carried Write After Write (WAW) Dependencies example
unrolled

1: A[i] = C[i] * 2
2: A[i+1] = C[i+1] * 2
3: A[i+2] = C[i+2] * 2
4: A[i+2] = D[i] + E <- violated WAW dependencies
5: A[i+3] = D[i+1] + E
6: A[i+4] = D[i+2] + E

Whether or not you have to worry about output dependencies depends on

whether you are actually parallelizing the code. Your compiler will be conscious

of the danger, and will be able to generate legal code – and possibly even fast

code, if it’s clever enough. But output dependencies occasionally become a prob-

lem for programmers.

Dependencies Within an Iteration We have looked at dependencies that cross

iteration boundaries but we haven’t looked at dependencies within the same it-

eration. Consider the following code fragment:

Pseudocode 23 Dependencies Within an Iteration

1: for i=1 to N do
2: D = B[i] * 17
3: A[i] = D + 14
4: end for

When we look at the loop, the variable D has a flow dependency. The second

statement cannot start until the first statement has been completed. At first glance

this might appear to limit parallelism significantly.

2. STATE OF THE ART 41

When we look closer and manually unroll several iterations of the loop, the

situation gets worse:

Pseudocode 24 Dependencies Within an Iteration: unrolled

1: D = B[i] * 17
2: A[i] = D + 14
3: D = B[i+1] * 17
4: A[i+1] = D + 14
5: D = B[i+2] * 17
6: A[i+2] = D + 14

Now, the variable D has flow, output, and anti-dependencies. It looks like this

loop has no hope of running in parallel. However, there is a simple solution to

this problem at the cost of some extra memory space, using a technique called

promoting a scalar to a vector. We define D as an array with N elements and

rewrite the code as follows:

Pseudocode 25 Dependencies Within an Iteration

1: for i=1 to N do
2: D[i] = B[i] * 17
3: A[i] = D[i] + 14
4: end for

Now the iterations are all independent and can be run in parallel. Within each

iteration, the first statement must run before the second statement.

2.1.6 Conclusion

Since the major problem in achieving better parallelization without breaking

correctness is to understand the dependence relations between the statements,

knowing them is a huge step forward in writing better hardware. The PM, even

if only in static code, can find and represent in an exact way such dependencies.

2. STATE OF THE ART 42

2.2 Memory Architecture

In an usual Von Neumann architecture memory tends to be the slowest com-

ponent of a computational system. Even if code can access valid memory ad-

dress, practice shows that code usually demonstrated statistically access data

near to previously accessed data, in a short interval of time. Based on this fact, we

call temporal and spatial locality, caches have been introduced. Caches are usu-

ally much faster than RAM but have the downside of bigger silicon area, bigger

power consumption and much higher cost. The idea is to put the hot data in the

cache for the most part of the computation. We pay relatively high penalty if we

access addresses outside the cache (called cache miss) so cores must be designed

so that the working set fits in cache in order to be faster. Historically, multidimen-

sional arrays has been layered row by row on memory where cells that differ only

for the rightmost index are consecutive.

Figure 2.5:
On the left: How a matrix is in our imagination;
on the right: How a matrix is saved on memory

2. STATE OF THE ART 43

Hardware fetching/copy mechanism usually implements an hardware counter

with starting address and number of byte to be copied. Copying chunks of data

loads consecutive rows of arrays. Direct Memory Access (DMA) techniques ex-

ploits a similar concept in order to pass data between main memory and periph-

erals. We will pay much attention to memory accesses and reshaping memory

when we later discuss how to optimize algorithms to achieve better performance,

lowering communication costs. In Field Programmable Gate Array (FPGA)’s we

usually have two types of memories: BRAM and RAM. BRAM resides inside the

FPGA and can be configured as part of the programmable logic. BRAM usually

implements a caching mechanism between functional units we will create. RAM

has usually more room than BRAM, and is used to contain main data. The phys-

ical transfer between those two components happens via a synthesized DMA

controller that works on the same principles I described above: base address and

size. The same considerations apply both when passing data and when retrieving

back from computational unit. Usually it is better to pay higher communication

costs to pass down more data than needed for a single pass: doing so we allow

hardware circuits to more efficiently transfer data. In fact, the higher cost paid is

the setup needed for start/end the transfers. A larger transfer better amortize this

cost. Similar situation happens when implementing a computational kernel on

Graphic Processing Unit (GPU)s: every small stream processor has its own cache,

with all the data located in the global RAM. GPU’s algorithm must pay a penalty

between shared memory and small caches. Additional care must be taken as data

could be transferred to/from main memory accessed by the Central Processing

Unit (CPU). Generally speaking, is not possible to give a general rule to modify

an existing algorithm to perform better reducing memory access penalties. Even

less is possible to handle every problem automatically as each problem has its

own access pattern. However, if code is amenable to PA, this is less of an issue

due to, for example, tiling; more on this is described in [44, 45, 46].

2. STATE OF THE ART 44

2.3 Related Work

As previously stated in 1.2.4, in the recent years a lot of improvements on

High Level Synthesis (HLS) tools have been made in order to convert numeric or

image processing algorithms written in high level languages directly into hard-

ware implementations in order to achieve better performance and lower con-

sumption. Thanks to High Level Synthesis (HLS), hardware synthesis requires

less specific hardware knowledge in order to translate code and design hard-

ware. HLS can dramatically speed up the development of a design: all major

studies about automated synthesis show that HLS tools can speed up the gener-

ation of the hardware synthesis, too. Due to the many drawback HLS has, (such

as overhead of area used and slow down in respect to a manually crafted design)

studies show interests in a theoretical approach based on PA in order to achieve

better synthesized circuits that HLS alone cannot generate without the knowl-

edge and the skills of an hardware designer [47, 48, 49, 50, 51, 42, 52]. Even if PA

was introduced in 60’s, it is getting more and more important especially in com-

piler technology and in parallel computation. Using PA a compiler can achieve

better data locality as well as reorganize code to split computation on more pro-

cessing units [53]. On the hardware side, given the huge improvements in HLS

tools, all the techniques and benefits achieved by compilers through PA can be

applied on HLS as well. Current studies, such as [48, 54], exploit the PA in order

to create better synthesized circuits lowering the gap between manual and auto-

matic circuits generation.

To better explain the researches and studies that compose the state of the art,

we divide the researches into different categories. The first is only theoretical

and defines the state of the art in the Polyhedral Model. The latter focuses on the

generation of hardware circuits or architectures.

2. STATE OF THE ART 45

2.3.1 Polyhedral Model

As stated in [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67] the PM is

now mature enough and has reached production compilers. In particular, in [54]

authors propose a set of tools that can manipulate the polyhedral intermediate

representation. Thanks to their work and the development of their tools, PM is

able to deal with irregular control flow such as conditional code in loops: modern

tools take in account conditional dependencies and can generate polyhedrons

that correctly map and represent such constructs.

The tools proposed are:

• Chunky Loop ANalyzer (CLAN), translates all the scopes read in a file into

their polyhedral intermediate representation

• Chunky ANalyzer for Dependencies in Loops (CANDL), given an interme-

diate representation, finds all dependencies

• Chunky Loop Alteration wizardrY (CLAY), still under development, ap-

plies all the transformations on a polyhedral intermediate representation

and produces another intermediate representation

• Chunky LOOp Generator (CLOOG) [68], translates the polyhedral inter-

mediate back into high level language

These tools have been used in a lot of other works, where the most relevant

are Polly [50], Polyhedral Compiler Collection (PoCC)[69] and LooPo [70, 71, 72].

The first is a great LLVM add-on library that elaborates the LLVM-IR and applies

polyhedral transformation directly on the intermediate representation before in-

voking the LLVM backend. The second is a collection of different compilers that

can translate the input code, modify it and give back a polyhedral transformed

source file.

PoCC [69] also contains other two tools for data locality improvements: LeTSeE

[73] and PLuTO [53, 74]. The former performs transformation on code, achiev-

ing better data locality speeding up computation. The latter not only performs

data locality transformation taking in account the L1 cache depth, but also sports

2. STATE OF THE ART 46

support for openMP to achieve better parallelization on multi-core architecture.

LooPo is a polyhedral source to source compiler that aims in finding the best

transformation for nested loop.

2.3.2 Memory Architecture

In order to maximize the reuse of data and minimize the number of BRAM

usage on FPGA, a lot of work in literature has been done [75, 76, 77]. For exam-

ple, in [78] they describe an algorithm to achieve better communication order in

system with Sequential Communication Media (SCM) to optimize resource uti-

lization. In [79] they focus their attention about communication cost involved

in parallel computation, highlighting the importance of carefully design trans-

fer technics and approaches on system on chip architectures. Again, in [80] they

present an efficient approach for optimizing the on-chip memory allocation us-

ing loop transformations in imperfectly nested loops. Other works are described

in [81, 82]. In the first one they develop an algorithm to maximize parallelism

while minimize communication cost payed in loops, in the second work they an-

alyze how important is to optimize memory usage. [83] describes how HLS can

achieve 10%-30% reduction in FPGA resources and [13] is described an architec-

ture design specifically developed for accelerate fluid registration.

A completely different optimizations where described in [77]. All of the paper

briefly described before focuses on the utilization of the polyhedral model as a

help to obtain better circuits. The latter, instead, focuses on HLS techniques that

can optimize the synthesis with regard to current HLS tools.

The paper cited above are the most relevant ones on memory optimization,

but they are not the only ones that address how optimization at memory level (or

memory allocation) and memory accesses can impact on throughput.

2.3.3 Hardware Design

Before HLS came up, hardware design was very time consuming, very sus-

ceptible to the slightest error and required a lot of hardware knowledge and skill.

Thanks to HLS, the designer can obtain all the generation in a far faster way. One

2. STATE OF THE ART 47

of then main reasons to use HLS is that it can produce the right implementation

for common algorithms/tasks (think about FIFO buffer for example), that is not

safe to rewrite in code in Hardware Description Language (HDL). As discussed

before, automatic synthesis exploits a lot of useful improvement in the develop-

ment, but it pays an high cost: the used area in FPGA and the achieved perfor-

mance with HLS are far worst than the manually designed counterpart. Thanks

to the advancement in the PM we can manage to improve the circuits generated

with HLS. The main reason behind the poor performance of automatic synthesis

is that the designer must specify the various optimizations to extract the same

performance of a manually designed circuits. This can be done with PM. Indeed,

PM is a mathematical model, and thanks to the work described in 2.3.1, now is

mature enough to be used in compilers. Thanks to this representation is possi-

ble to calculate dependencies, find bounds, reorder instructions in a completely

automated way. It is even possible to infer the best optimizations an input code

must have in order to be synthesized at the best with the HLS tools [84]. There

are two different directions in research right now. Both of them uses the model of

computation proposed earlier called PPN [85], but differ greatly in the way each

research uses it. In Daedalus Framework, proposed in [86, 87], they use a tool for

derivation of process network called PNGen [51]. This tool takes a source file in

input and a accepts a function name as a parameter to be analized, and produces

the PPN associated with all the informations about channel size between depen-

dencies. After calculating the PPN, a tool named ESPAM [88] takes that represen-

tation and recreates the code each node has to compute. In Daedalus framework

the nodes are represented as computational unit, specified in a proper file called

’platform file’ that specifies the architectures used, so one or more nodes of a PPN

can be mapped onto it. After the map has been completed, all the system is syn-

thesized and streamed to FPGA using Vivado toolchain. This is a complete au-

tomated tool that starts from an high level language to hardware design without

writing down a single HLS line of code. Broadly speaking, Daedalus framework

maps a PPN onto a Multi Processor-System on Chip (MP-SoC). Even if it isn’t

directly our goal, we used PNGen to generate a PPN in order to create a network

2. STATE OF THE ART 48

of IP Cores that communicate via FIFO buffers. We took this approach in order to

explore if this solution were feasible, but we discovered it was not good for our

goal. This solution was too fine-grained and consumed too much area compared

to a simple synthesis using HLS directly on the "vanilla" code. We scored a huge

slowdown, too. The slown-down is obviously due to the hardware we use (a

Zync-7000 Zedborad) that a has fewer resources we needed in order to compare

the two implementations. We also noted that the area used by our solution was

too much compared to the area used by simple HLS, so we mark this solution as

unfeasible.

A divergent but similar approach has been developed in [89]. In fact, their

goal is to realize a MP-SoC architecture. However, how they achieve it is com-

pletely different, as one utilizes the knowledge on the code to better map the

code on the processors, while the latter relies on heuristics to do so.

The other direction was pointed out in [47, 84, 48]. In their works they propose

and automated framework capable of extracting the polyhedral model, restruc-

ture the code using some of the tools presented in 2.3.1 to achieve better data

access and reduce area utilization. They exploit the PPN model of computation

inside a single core using specific directives of HLS tools in order to generate

a circuits that is intrinsically parallel. Using PM they restructure the input code

so they can create a better PPN utilizing the dataflow directive. This directives

enable the HLS synthesis to perform data flow analysis and create different cir-

cuits that can run in parallels, adding all the needed synchronization between the

parallels parts created. Exploiting PM and creating a better input code is essen-

tial because it can change the way the synchronization of the tools is obtained,

possibly improving performance of the generated circuits. Indeed, they achieved

better performance than simple HLS, limited to a single core. What we are try-

ing to propose is using this approach in order to speed up performance and to

create a complete architecture, to be deployed even on multiple FPGA’s. Using

specific tools directives we can indeed generate better circuits but what about

using polyhedral not only to optimize the HLS generated, but also to create the

architectures capable of distributing the computation on multiple devices? Cur-

2. STATE OF THE ART 49

rent tools do not allow to span computation on multiple cards, but PM approach

is still valid to re-arrange source code. Another interesting approach about HLS

synthesis is currently under development at the ECE Department of the Univer-

sity of Toronto, where researcher are actively developing LegUp [90]. This tool

is actually a backend for Low-Level Virtual Machine (LLVM) compile infrastruc-

ture that reads LLVM-IR and generates the Register-Transfer Level (RTL) of the

corresponding source code.

Apart from [90], all the work previously cited focuses on enhancing the knowl-

edge of HLS tools, giving them specifically directives to the problem enhancing

the throughput of the generated components. As described in [91, 92, 93, 94],

optimization can be done at a completely different level. In fact, these papers

focalize on different HLS strategies in order to synthesizes better components.

However, this optimization are on whole different level of abstraction than

the work described in this thesis. This work focus on the utilization of already

built HLS tools to synthesize the components, while optimize the source code

used, in order to separate computation and data. No strategies on how the HLS

tools performs the synthesis are made.

2.4 Tools

In this section we briefly explain the tools available in the state of the art.

Daedalus Framework

Daedalus is an open source software framework that is developed by Lei-

den University (UL) and University of Amsterdam (UvA). Daedalus provides a

single environment to create a "system-level architectural exploration, high-level

synthesis, programming and prototyping of multimedia MP-SoC architectures".

Daedalus aims at the creation of a system-level design going from a sequential

application to a working MP-SoC prototype in FPGA technology. Deadalus could

offer great potentials for quickly experimenting with different MP-SoC architec-

tures and exploring design options during the early stages of design.

2. STATE OF THE ART 50

PLuTO

PLUTO is an automatic parallelization tool based on the polyhedral model.

The polyhedral model for compiler optimization provides an abstraction to per-

form high-level transformations such as loop-nest optimization and paralleliza-

tion on affine loop nests. Pluto transforms C programs from source to source for

coarse-grained parallelism and data locality simultaneously. The core transfor-

mation framework mainly works by finding affine transformations for efficient

tiling and fusion, but not limited to those.

LetSeE

LeTSeE is a platform dedicated to computing and exploring the legal affine

scheduling space of a statically controlled program. It has been built up as a li-

brary, offering services such as:

• a tunable algorithm for legal transformation space construction,

• various heuristics to traverse legal spaces,

• many auxiliary functions (graph manipulation, transformation generation,

etc.)

Chunky Loop ANalyzer

Chunky Loop ANalyzer (CLAN) is a tool to extract the polyhedral represen-

tation from the Static Control Parts (SCoP) of high level programs (written in C,

C++, C# or Java). It is an in-development tool, but at this state is capable of ex-

tracting almost all polyhedral representation of scientific programs. This tool is

based on the LLVM compiler infrastructure in order to validate the syntax of the

input code. CLAN analysis is derived from Clang [95] libraries.

Chunky Loop Alteration wizardrY

Chunky Loop Alteration wizardrY (CLAY) is a tool to apply high-level loop

transformation scripts to Static Control Parts (SCoP). It accepts all major loop

2. STATE OF THE ART 51

transformations (fusion, fission, skewing, interchange, tiling, unrolling etc.) as

well as data transformations. It is able to check for the legality of the transfor-

mation script as well as generating the code that implement this transformation

script.

Chunky ANalyzer for Dependencies in Loops

Chunky ANalyzer for Dependencies in Loops is a tool for data dependence

analysis of SCoP. This tool take in input the polyhedral representation of a SCoP

and output a new polyhedral representation that includes all the dependencies

domain between statement.

Chunky LOOp Generator

Chunky LOOp Generator (CLOOG) is a code generator for scanning Z-polyhedra:

it finds the code or pseudo-code where each integral point of one or more pa-

rameterized polyhedron or parameterized polyhedra union is reached. In or-

der to pass the PM between tools Chunky Loop ANalyzer, Chunky Loop Al-

teration wizardrY, Chunky ANalyzer for Dependencies in Loops and Chunky

LOOp Generator (CLOOG), it uses the OpenSCOP specification [96] data format.

Vivado Design Suite

Vivado is a design suite developed by Xilinx aimed to speed up the genera-

tion of hardware design of FPGA’s. It is composed of different tools:

• Vivado HLS: it reads C/C++ source files and generates the corresponding

RTL

• Vivado: it generates the bitstream reading tcl files, or composing manually

the design

• Software Development Kit: it allows to issue commands to the hardware

subsystem in cards, such as processors, DMA controllers, network cards

and synthesized components

2. STATE OF THE ART 52

LegUp

LegUp is an open source high-level synthesis tool being developed at the

University of Toronto. The LegUp framework allows researchers to improve C to

Verilog synthesis without building an infrastructure from scratch.

2.5 PA and HLS Limitations

Even if the current state-of-the-art is very promising we must point out the

following limitations:

• HLS requires deep knowledge of optimization directives and mutual re-

lationship, for example unroll directive in combination with pipeline directive

can lead to create a circuits that goes beyond physical resources of an FPGA.

We cannot automate this behavior in current HLS tools.

• PM can process and transform only affine code: even promising approaches

such as "weakly dynamics" [97] extend the domain of the PM to data values,

they cannot manage a whole class of algorithms based on recursion, pointer

arithmetic, aliasing, generic lists and so on.

• All current toolchains focus on single FPGA design. Most of them consider

only optimization on a single circuits. No one considers take in account

architectures based on multiple cards, mostly due to synchronization and

data exchange issues.

• HLS tools consider only a single card at time and produce bitstream ready

to be deployed only on that one.

• Current toolchain cannot predict the amount of area the algorithm will oc-

cupy without relying on HLS tools. This try-and-error approach is not vi-

able.

3

Problem Statement

In the previous Chapters 1 and 2 I presented the State-of-art and listed all

the major limitations of the approaches and tools currently employed. In this

Chapter 1 formally express the problem statement of this thesis.

3.1 The Problem

A lot of research focused on the automatic design of hardware components

by means of High Level Synthesis (HLS) [98, 99, 100, 80]. Sometimes it is possible

to find works aiming at the parallelization of specific scientific algorithms. Too

often, the generation and adaptation of these algorithms require a lot of time and

a deep knowledge of the computation to generate an efficient hardware version

on an FPGA. As the computational horsepower required by the scientific com-

munity rise year after year, we need to find a way to cope with demand with

more mature tools and power efficient solutions.

3.2 Problem Approach

Typical scientific algorithms are written (or can be or can be easily adapted) in

a mix of static, affine and pure code; for this, we can explicitly use the Polyhedral

Model (PM) to model, transform, and parallelize these types of workloads. As

stated in [101], the polyhedral optimization framework has been demonstrated

53

3. PROBLEM STATEMENT 54

as a powerful alternative to abstract-syntax-tree based loop transformations. As

such, the code can be better manipulated and enhanced for performance using

Polyhedral Analysis (PA). This can definitely improve current HLS tools. In fact,

a limit of actual HLS tools is the inability to infer the best directives to use in

order to generate the best circuits possible.

However, the optimization on the components generated by the HLS tools is

only a minor part of the process. Since these kind of algorithms are heavily data-

parallel, we cannot utilize only one custom component to speed up the compu-

tation. Instead, in order to enhance the throughput, we need to rely on multiple

hardware cores, each of them computing on different sets of data. The same vi-

sion must be kept when single card solution is no more enough to satisfy prob-

lems that go beyond resources (in terms of amount of data and/or computational

load): in such case the approach must be the same but scaling and adapting to

a new configuration implementing multiple cards, and taking into account all

synchronizations, data sharing/exchanging and time constraints.

3.3 My contribution

The challenge addressed in this essay is finding a methodology that can divide

computation between different isolated sub-kernels to obtain the parallelization of scien-

tific workloads.

In literature we can read a lot of approaches that use PM to model to achieve

advanced parallelization features and performance, often using e HLS tools: the

contribution can be considered innovative as the goal is to divide computation

on multiple sub-kernels in a way that is independent from the hardware, and

reserving the choice of specific cards / hardware features at a later stage, trying

to keep it as independent as possible from specific features, allowing to deploy

the kernels on range of hardware solutions as wide as possible.

As the target of this work is to modify the source code at a higher level, the

process must generate code that depends on hardware resource availability only

in the later stages of my toolchain.

3. PROBLEM STATEMENT 55

Only HLS tools can set constraints about the amount of HW resources: the

toolchain must be notified about these constraints and eventually can re-configure

on more discrete cards, or signaling that the physical implementation cannot sat-

isfy the algorithm. The manual configuration/intervention of the user must be

kept as low as possible, delegating all the decisions about transformation and

synthesis to the toolchain. One of the key aspect of this work, is the possibility

to split computation on multiple devices. Current HLS tools cannot do this without

explicit System Level Design (SLD) input from users. This is not a simple matter of

physical resources/layout settings: this estimate involves theoretical considera-

tions about models of computation which is out of the scope of HLS. But thanks

to the PM this heavy work can be done automatically.

One of the peculiarities of PM is the ability to know every dependence from

the source code. Even if the price to pay is working on relevant but relatively

limited sets of algorithms, this feature is too good to overlook. In fact, if we have

the power to automatically extract the dependence knowledge from the code, we

are also capable to infer the best parallelization cut to apply on the code to create

most independent sub-kernels.

Even if with that knowledge on some algorithms is not possible to choose

a cut without side effect, since we have the complete understanding of the flow

dependencies, we can also manage and handle them within parallels sub-kernels.

3.4 Delimiting the Perimeter of Interest

This work is the first step to validate the convenience of the automated ap-

proach presented so far. Since the beginning we chose to focus on the automatic

generation of an architecture starting from a scientific algorithm, in particular

we focused on "stencil code" that typically manages arrays using invariant small

computational kernel. This kind of algorithm can be expressed very well with

static code as data can be accesses using only indexes on a regular pattern. So

PM can achieve great results as mutual dependencies on data are typically low

and access can be precomputed at compile time by automatic tools. Thus we

3. PROBLEM STATEMENT 56

can extrapolate huge amount of parallelism via polyhedral transformation of the

code. Obviously, the PM was built with software in mind (i.e. shared memory,

multi-thread/multi-process), so we need to adapt the PM tools taking in account

physical characteristics of hardware circuits. Consider, for example, how physi-

cal circuits access matrices kept in RAM: PM tools generally do not consider row

vs. column access. We can reduce significantly access/exchange times leverag-

ing on typical row by row access. Note these tools such as PLuTO (see 2.3.1) can

perform optimization considering hardware details (L1 cache) improving data

locality, but don’t take in account physical layout of data. Generally speaking, an

algorithm written keeping in mind hardware data layout can achieve far better

performance. Keeping in mind previous consideration, the perimeter has been

delimited as follows:

• Computation must be split using PM

• No need to rewrite PM tools from scratch

• Results from PM processing must be ready to be synthesized indepen-

dently on discrete boards using HLS

• Some algorithms need to be rewritten to extrapolate better parallelism

To summarize I will focus on checking the structure of algorithm, deriving

functional dependencies using PM tool (Chunky Loop ANalyzer (CLAN) and

CANDL), divide tool output in discrete files leveraging on automatic splitting

yet performed (CLAY) and generate Tcl files needed to HLS tools.

While each step in this work is done manually, it is important to note that

they can be easily automated. The creation of the PM, the extraction of the de-

pendencies and the regeneration of the transformed code can be done automat-

ically since they are techniques explained in state-of-art polyhedral compilers.

The most difficult part to automate is the identification of the best splitting cuts

as it requires design space exploration techniques; while this is the most relevant

manual step, it could be automated, too.

3. PROBLEM STATEMENT 57

As we will see in next chapter, I had deliberately reduced the perimeter to a

substantially manual approach as results derived from a fully automatic toolchain

we experimented, brings to inefficient solution in terms of too many conditional

statements (even if needed) and thus to huge area usage and slow down, even in

software simulations.

4

Proposed Methods

In this chapter I will explain the major hardware constraints of the problem

that needs to be taken into account in order to exploit better performance from

circuits created with High Level Synthesis (HLS). Also, I will explain the main

ideas and procedures that brought me to the creation of the first toolchain and

the final methodology, and the way, in which quasi linear speed up is achieved,

along with separation of data and computation.

4.1 Hardware Constraints

Besides algorithmical and logical considerations, the real constraint that af-

fects problem domain is due to tight hardware limitations. Any solution the t:he

problem must respect resource constraint. The two most constrained resources in

data parallel, compute intensive application are:

• DSP slices

• BRAM blocks

58

4. PROPOSED METHODS 59

Figure 4.1: Direction of BRAM and DSP usage.

4.1.1 DSP Slices

DSP functional blocks usually implement mathematical computation. There

is a strong dependence between elementary arithmetic operations and number of

DSPs that must be synthesized on Field Programmable Gate Array (FPGA). The

percentage of DSPs usually has positive effects on computational speed without

sacrificing other types of functional blocks (i.e. BRAM, LUT). Referring to figure

4.1, it is better if we can move the design in the upper part of the diagram. Given

a workload, maximize DSPs usage is beneficial and, power efficiently, as the re-

sulting equivalent functionalities in LUTs slices increases latency, critical path

and energy required to move data (i.e signals) between less specialized compo-

nents.

4. PROPOSED METHODS 60

4.1.2 BRAM Blocks

BRAM blocks are dedicated to store data values. This is the premium re-

sources on FPGA. BRAM usage grows with the size of locality stored data. Even

minimal savings in BRAM usage allow us to:

• Implement advanced directives (for example data flow)

• Redistribute area to single components, allowing them to process more data

per single transfer from-to cores

4.1.3 How Advanced Directives Shape Design Space

Any approach about parallelism and hardware synthesis cannot leave aside

three important technics:

• Loop Unrolling

• Pipelining

• Dataflow Pipelining

Xilinx Vivado HLS [102, 103, 104, 105, 106] allows to specify three special

directives in order to enhance throughput. These directives resemble the above

technical aspects:

• set_directive_unroll (Loop Unrolling)

• set_directive_pipeline (Pipelining)

• set_directive_dataflow (Dataflow Pipelining)

Every single directive can greatly modify resulting design by varying area

occupation, number of DSP’s and BRAM’s involved and so on. Let’s consider in

detail all the above directives:

4. PROPOSED METHODS 61

set_directive_unroll (Loop Unrolling)

Unroll can be implemented into multiple stages of the process: in Polyhedral

Model (PM) or in HLS tools directives. The final effects are essentially the same:

• Huge speed up in throughput

• DSP’s slices are exhausted very quickly

• In some cases frees BRAM blocks (lesser need of intermediate buffers)

Notably the utilization of DSPs really depends on the HLS strategy adopted

by the tool. All of the above statements are made using a strategy that tends

to use DSP slices for calculation rather than LUT’s. In the following example is

shown the unroll directive functionality:

Pseudocode 26 Unroll: An example pseudo code of a normal code

1: for i = 0; i < N; i++ do
2: A[i] = B[i] + C[i]
3: end for

If we apply unroll the directives, said with a factor 4, the resultant code is:

Pseudocode 27 Unroll: An example of an unrolled code

1: for i = 0; i < N; i+=4 do
2: A[i] = B[i] + C[i]
3: A[i+1] = B[i+1] + C[i+1]
4: A[i+2] = B[i+2] + C[i+2]
5: A[i+3] = B[i+3] + C[i+3]
6: end for

HLS tools generates a component capable to run all four statements in paral-

lels, hence enhancing the throughput, but at the cost of a 4x area used.

set_directive_pipeline (Pipelining)

Enabling pipelining can enhance performance as removes serialization sched-

ule that HLS will produce by default, showed in figure 4.2, and produces a more

4. PROPOSED METHODS 62

parallel schema as showed in 4.3. This directive increases the use of DSPs so the

design schedule becomes that of in 4.1.1. Impact on BRAMs usage can vary, but

in general downs’t free them.

Figure 4.2: fig:Execution flow without pipelining

Figure 4.3: fig:Execution flow with pipelining

set_directive_dataflow (Dataflow Pipelining)

Dataflow directive enhances throughput by triggering the creation of parallel

blocks of functional units inside the same core. It can increase performance at

4. PROPOSED METHODS 63

the cost of larger BRAMs usage. In fact, this directive inserts memory buffers be-

tween functional blocks in order to preserve the correctness of the original com-

putation.

Figure 4.4: Dataflow Directive Behavior

Summary

To summarize, all these directives are fundamental part of work setting as

they can hugely improve the speed up and the resource utilization towards opti-

mal throughput/consumption ratio.

However, no optimization at the HLS strategies level will be made to further

improve the capabilities of this directives.

In the next sections I will explain what I have done towards the goal of the

thesis.

4.2 First Approach

The first project I looked at is the Daedalus framework [86]. It proposes an

automatic toolchain capable of creating an architecture starting from a high level

language, exploiting both PM and reconfigurable hardware. This toolchain aims

at the creation of an Multi Processor-System on Chip (MP-SoC) based architec-

ture. I relied on this method to represent the flow of the computation, extending

4. PROPOSED METHODS 64

the toolchain with custom cores.

After analyzing and testing Daedalus, I decided it was worth exploring a similar

direction using the PNGen tool [51], contained in the Daedalus toolchain. PN-

Gen is capable of generating a Polyhedral Process Network (PPN) of a specific

function (i.e. C/C++ functions) from an input file written in high level language.

Given the model of computation created by PNGen, I focused on using this poly-

hedral representation to meet my goal. I developed a tool capable of taking as in-

put the PPN generated by PNGen and producing the corresponding files needed

by HLS tools. As I started from the same idea of the Daedalus framework, each

node in PPN becomes an individual custom core, and every communication be-

tween nodes are translated to FIFO buffers. The final product is an automatic

toolchain that generates the hardware architecture files just ready to be synthe-

sized by the Vivado toolchain, and is briefly described in figure 4.5.

Figure 4.5: First Toolchain

4. PROPOSED METHODS 65

4.2.1 Components

The C/C++ file must be written with the limitations imposed by PM enun-

ciated in the previous chapters. This tool outputs a YAML file, containing the

topology of the corresponding PPN of the source file. I replaced the Daedalus

framework tool ESPAM with a custom tool that builds a different architecture

files. In fact, what I wanted wasn’t creating an MP-SoC based design, but generat-

ing a dedicated hardware modeled on the PPN previously computed by PNGen.

So my tool takes as input the topology YAML file generating the corresponding

C++ source and the Tcl script files ready to be synthesized. The other tools are

Vivado HLS and Vivado, which are necessary to perform the generation of the

RTL and bitstream automatically, since we target Xilinx FPGA’s.

4.2.2 Flow

Toolchain flow is pretty linear. As described in figure 4.5 and in subsection

4.2.1, the flow starts with a C/C++ file, containing only affine code, as input to

the PNGen tool. The tool I developed takes the output of PNGen, a YAML Ain’t

Markup Language (YAML) file describing the topology of the PPN and outputs

all the C++ and tcl files needed to generate the architecture. Using Vivado HLS

than I synthesized the accelerated cores, and with Vivado I connected them and

finally generate the bitstream, automatically. The software part, developed with

Xilinx SDK, related to the initialization of the design and the exchange of data

between main memory and the FPGA, is done manually. As previously stated,

my tool is developed to replace the ESPAM tool, part of the Daedalus toolchain.

This is exactly the point of divergence of my toolchain from Daedalus. I do not

want to develop an MP-SoC architecture: what I want is to generate directly the

hardware kernels needed for the computation.

4.2.3 Limitations

The toolchain is completely valid, functional and mostly automatic. However,

the first toolchain suffers from two huge problems:

4. PROPOSED METHODS 66

• Huge area used

• Huge slow downs

These two problems derive from the construction of PPN performed by PN-

Gen. Since this PPN is composed of nodes, each containing only one statement,

HLS tools are unable to optimize area and resources. Another reason of the bad

area utilization is the huge numbers of dependencies. Dependencies are trans-

lated into FIFO buffers, that must be enabled only on particular conditions, so we

need multiplexers to implement the conditional logic. The usage of FIFO buffers

and multiplexers at once results in great amount of resources spent. Another side

effect of buffers and multiplexers is the creation of multiple critical paths even

at low frequency. However, the main reason of these drawbacks is the too fine-

grained logic network produced by PNGen.

As my experimental results demonstrated bad overall performance, whether

considering area or throughput, I revised the whole work in the light of what has

emerged during the tests. This considerations had an important role in the direc-

tions to take in further developments, but I will no more consider this toolchain

in the following of this work.

This has led to the final toolchain I am about to describe.

4.3 Final Approach

Taking in account all the limitations and issues arisen from the experiments

explained above, I started from a simple consideration, supported by experimen-

tal results: algorithms directly synthesized, without relying on the first toolchain

performs much better than the polyhedral counterpart. This is due to an incorrect

usage of PM: the too fine-grained approach of PNGen creates too many channels

between hardware implementation of software statements, separate dependen-

cies, adds to many controls. On the other hand, the directly synthesized com-

ponents don’t need so many channels, as all the communications are directly

implemented by generated HLS.

4. PROPOSED METHODS 67

Since the goal is to parallelize computation, the main idea is to create as many

components as FPGA bears, each of them computing the same operations. How-

ever, those components will not use all the data, but only on a restricted subset

to enhance throughput.

As a result, I came up with the following methodology.

4.3.1 Components

Figure 4.6: Second Toolchain

In Figure 4.7 is described the toolchain scheme. It is very similar to the one

proposed in the first toolchain but has one less stage since we drop the usage of

PNGen to extract the PM. Since I stopped relying on PNGen, I needed to take one

step back in order to extrapolate the PM from the source file. What I have done

is to directly employed the tools used so far, and look at how they generate and

manipulate the PM. This led me to the discovering of four major tools, some of

which were used inside PNGen, too, and other PM tools described before. As a

reminder, I will list them here:

4. PROPOSED METHODS 68

Figure 4.7: Left: Components synthesis without PM optimization; Right: Components synthesis
with PM optimization

• Chunky Loop ANalyzer (CLAN) (2.4)

• Chunky Loop Alteration wizardrY (CLAY) (2.4)

• Chunky ANalyzer for Dependencies in Loops (CANDL) (2.4)

• Chunky LOOp Generator (CLOOG) (2.4)

4.3.2 Methodology

The current developed methodology is fully working, although, as of now,

all the intermediate steps are done manually. However, all the passages can be

made automatic.

In fact, once the source code is transformed in the polyhedral representation,

everything is known about that code. From a theoretical point of view my code

transformations does not differ from transformation a compiler performs to op-

timize the code. I will start using the statement representation present in polyhe-

dral model generated by CLAN. Note that a similar approach is used in CLOOG.

4. PROPOSED METHODS 69

An important step outside of the methodology is to rethink the original al-

gorithm to implement parallelism. This is not mandatory as our toolchain can

process unmodified code, but polyhedral tools I use will not be able to extract

the disjoined domains I need to produce efficient parallelized code. In fact, if you

process an algorithm written without having parallelization in mind, the poly-

hedral tools will produce worse code due to the huge amount of flow depen-

dence (see chapter 2.1.5). This initial set up cannot be automated as we explained

in theoretical considerations expressed in Chapter 2. The core idea is to avoid

separating each statement in single computational unit as I did writing the first

toolchain, since this approach introduces a great overhead and slowdowns pre-

venting synthesis tools to exploit advanced dependence analysis optimizations.

Also, this approach aims at the creation of a parallelized version of scientific al-

gorithms. So, I want to generate multiple sub-kernels that are capable to compute

on less data, favoring parallelism. Obviously, this division in multiple pieces will

introduce some communication costs, but as I will show in the next chapter, these

costs are overcome from the huge throughput gained. The important aspect is

that all of the optimizations that can be introduced with the help of Polyhedral

Analysis (PA), are completely orthogonal from HLS directives.

4. PROPOSED METHODS 70

Pseudocode 28 Pseudo code of Second Methodology tool

pmRepr← callClan(InputFile)
if pmRepr != regular then
exit(−1)

end if
deps← callCandl(pmRepr)
deep← findParallelDeep(pmRepr,deps)
inputTransf← compute the best split
transformedPM← callClay(pmRepr,deps, inputTransf)
if transformedPM is not valid then
exit(−1)

end if
cFileNames = []
tclFileNames = []
tclArchitectureFileName

for all Scop in transformedPM do
listBlocks← getBlocksAtDeep(pmRepr,deep)
for all block in listBlocks do
cFileNames.append(writeCFile(block))
tclFileNames.append(writeTclFile(block))

end for
tclArchitectureFileName = writeArchitectureTclFile(listBlocks)

end for

Note: usually there is only one Static Control Parts (SCoP) so the outer Scop

iterator can be removed.

Before starting to analyze the pseudo code 28 and all the transformations in-

volved, we need to understand what split iteration domain means.

Split Iteration Domain If, for example, we want to split the code shown below,

we need to separate the whole domain of the iteration in sub-parts.

4. PROPOSED METHODS 71

Pseudocode 29 Example of nested loops

1: for t=0 to TSTEPS do
2: for i=1 to NI-1 do
3: for j=1 to NJ-1 do
4: B[i][j] = 0.2 * (A[i][j] + A[i][j-1] + A[i][1+j] + A[1+i][j] + A[i-1][j])
5: end for
6: end for
7: for i=1 to NI-1 do
8: for j=1 to NJ-1 do
9: A[i][j] = B[i][j]

10: end for
11: end for
12: end for

If we look at the dependencies, it is evident that we have a flow dependency

between the statement on line 4 and the one on line 9. Additionally, there is a

loop-carried flow dependency between statement on line 9 and statement on line

4. So we cannot make any split on the domain of the first loop (loop with index

t). So, if we want to parallelize this code, we need to look deeper in the nested

loops. If we eliminate the outermost loop, the resultant code will be more easy to

parallelize as the loop carried dependency has been removed, so we can conclude

that the inner block of instructions can be parallelized. It will appear clear after

looking at the polyhedral representation of the domain iteration.

Figure 4.8:
Representation of the dependencies

between different iterations
of the outermost loop

4. PROPOSED METHODS 72

Figure 4.9:
Iteration domain of the block

inside the outermost loop

Between one iteration and the others there is no dependency so we could, for

example, divide the iteration domain and separate the computation in two sub,

independent parts, as in the following figure.

Figure 4.10:
Split of the iteration domain

of the block inside the outermost loop

4. PROPOSED METHODS 73

We can create two computational kernels, the first that computes the green

part, and the second that computes the red one.

Pseudo code 28 above describes the essential pass designers should follow in

order to create the architecture. After selecting the code to be analyzed, CLAN

must be invoked in order to get the PM of the source code marked by prag-

mas. Once the polyhedral representation has been generated for that SCoP, the

next step is to extract knowledge about the dependencies which is performed

by CANDL. Since we have the knowledge of both dependencies and polyhedral

model, we can iteratively find the nesting deep in which there are no flow de-

pendencies(Read After Write (RAW)) between that loop and the outer ones and

split it with CLAY. Even if PA is able to perform various transformations on the

code, for my purpose I choose to rely only on the split domain transformation

as the main goal is to create an highly parallel architecture. After the new poly-

hedral model representation is created by CLAY, we can pass it to CLOOG and

generate back a polyhedral transformed C code. The split code is separated in

different files as I need to create different IP cores from different sub-kernels.

Using CLOOG I automatically generate the source and tcl files needed for HLS

tools, creating the tcl file needed for the architecture generation, too. After all

these steps have been done, the global toolchain will call Vivado HLS for every

pair of (cFileNames[i], tclFileNames[i]) and in the last pass the toolchain will run

Vivado passing the architecture tcl. In the end, the resulting architecture will be

composed by a processor and an AXI DMA1 controller for every accelerator. All

the communication are done utilizing the AXI4Stream2 interface protocol.

Due to the creation of independent components, the generated architecture

can be easily ported on a multi-FPGA environment with relatively little effort: we

can map kernels with no restriction on a specific FPGA using a similar approach

to the aforementioned described. A very different issue is not on the theoretical

side but will be the real hardware implementation in design tools were we need

to add all the necessary hardware glue between FPGAs.

1AXI DMA: An advanced DMA transfer technique available on FPGA that adheres to AXI
protocols.

2AXI4Stream: An advanced transfer protocol used to implement streaming functionality be-
tween hardware components.

4. PROPOSED METHODS 74

In this methodology no memory optimization has been done utilizing PM. As

I already mentioned, this optimization can extend to my methodology and can

be added later without compromising the validity of the work.

5

Experimental Results

In this Chapter I will present the results obtained using the final methodology

described in the previous Chapter.

5.1 Practical Examples

The kernels we tested came from the Polybench suite [107]. Some of the ker-

nels had to be slightly revised in a more FPGA-friendly way (i.e. adopting smaller

arrays, adding channels and so on). These tests are made with the aim to validate

the methodology in order to explore further optimizations in the future.

It’s not a secret that the Zedboard isn’t so spacious. Let’s admit that using a

ZedBoard is substantially different than using a real Field Programmable Gate

Array (FPGA), given the low frequency achievable on very complex design, but

once we get good results on it, we are assured we can move to real FPGA’s with

the same logic approach and scalability, getting far better results. Let’s consider,

for example, a Virtex-7: it can bring a lot more resources, a more advanced tran-

sistor generation and a bit higher clock frequency. Hence, apart from some differ-

ences in efficient energy usage, they are not so different. In figure 5.15 we show

how we expect the result on a Virtex-7 should be. The linear behavior shown

on the Zedboard is preserved as the architectures will be the same, but since the

Virtex-7 has more resources available is possible to generate more parallel cores

and so speed up further the computation. Also, since the Virtex-7 is able to create

75

5. EXPERIMENTAL RESULTS 76

a circuits with higher frequency than a ZedBoard we should see an even higher

throughput. Now, that we can assume that a prototype on a smaller FPGA is

valid, we can come back to the parallel implementation of the kernels.

Figure 5.1: Gain Ratio Virtex-7 vs ZedBoard

We tested the following kernels:

• Jacobi 2D stencil computation kernel

• 2mm, two matrix multiplication kernel

• 3mm, three matrix multiplication kernel

• 2-D convolution kernel

• BiCG Sub-kernel

5. EXPERIMENTAL RESULTS 77

5.1.1 Jacobi 2D stencil computation

Th Jacobi 2-D stencil is an iterative computational kernel that, taken in input a

matrix, computes the mean value on five points accessed in a cross shape pattern

for every elements as described in figures 5.2. It is the kernel for many linear

algebra and image analysis algorithms.

Figure 5.2: Jacobi 2-D Computation

Let’s just briefly analyze the code below. The code is composed of an outer

loop, that we call iteration loop, and of two blocks each containing two nested

loops. The first internal block computes the mean value and the second updates

the matrix. The outer loop works on multiple passes getting the convergence af-

ter some iterations. Obviously, since the computation of the mean value and the

matrix update are done in a sequential way, these two blocks cannot be run in

parallel. In fact, as it is clear from the following code, statement on line 7 and

on line 12 are dependent: specifically, there is a Read After Write (RAW) depen-

dence between the two. The other dependence in the code is a RAW loop carried

dependence (see 2.1.5) between the same two statements, but now the directions

are reversed. This dependence limits the parallelization that can be made on the

code, but also help us in building up the parallel kernels. Indeed, if we look at

5. EXPERIMENTAL RESULTS 78

the computation statement (line 7) it is clear that each iteration doesn’t depend

on the others. So the two operations in both blocks can be separated in order to

enhance the throughput.

Pseudocode 30 Jacobi 2D stencil sequential code on 300x300 matrix

1: #define NI 300
2: #define NJ 300
3:
4: for t=0 to TSTEPS do
5: for i=1 to NI-1 do
6: for j=1 to NJ-1 do
7: B[i][j] = 0.2 * (A[i][j] + A[i][j-1] + A[i][1+j] + A[1+i][j] + A[i-1][j])
8: end for
9: end for

10: for i=1 to NI-1 do
11: for j=1 to NJ-1 do
12: A[i][j] = B[i][j]
13: end for
14: end for
15: end for

So, if, for example, we change the first parameter NI from 300 to 75, (exactly a

quarter of the original computation) it is possible to run four different kernels to

compute the mean value and update the matrix. At this point one can argue that

the loop carried dependence prevent us from doing so. This is correct, but to an

extent: in fact, the correct number to split the computation is not exactly 75, due to

the border effects this type of computations produce. The correct numbers in this

case is 76 for the first and the last block and 77 for the two middle blocks. This will

be true if we split the computation on the matrix only on the row dimension. This

approach can be generalized for every number of splits. Obviously, this is not

the only cut we can produce: it is possible to split the computation by columns,

or create squares. It is even possible to cut with oblique lines. When we come

to implementation, unfortunately, the data access pattern and transfers between

hardware units becomes expensive. So, the best performances are achieved cut-

ting down the row dimension, as doing so we pay a lower communication cost.

Due to the loop carried dependence coming from to the iteration loop, it is not

5. EXPERIMENTAL RESULTS 79

possible to re-organize dependencies further. In this case, once every computa-

tion inside an iteration is completed, before starting the next iteration we must

update the whole matrix or create dedicated channels between kernels in order

to update the data. We chose to opt for the straight solution, where we update

at each iteration the whole matrix. Note that this approach, limits neither its va-

lidity, nor the scalability: our current and most important goal is to demonstrate

that Polyhedral Model (PM) can be used to isolate computation and data. Adding

complexity in this phase (splitting in more sophisticated ways, adding more com-

munications channels and so on, to get better throughput) even is feasible, but

still, is orthogonal. The implementation on FPGA of this kernel is made using a

software module I wrote to manage the splitting and the update of the matrix at

each iteration, while the hardware parts consists of four kernels. At each iteration

the software sends to the four kernels the data needed and waits for the compu-

tation. Once every kernel has finished, the CPU merges the data and continues

to the next iteration.

5.1.2 2mm kernel

The 2mm kernel is a matrix multiplication of the form: A× B× C. If we look

at the equation D = A× B and at its expanded mathematical representation:


d1,1 d1,2 · · · d1,m

d2,1 d2,2 · · · d2,m
...

...
. . .

...

dn,1 dn,2 · · · dn,m

 =


a1,1 a1,2 · · · a1,k

a2,1 a2,2 · · · a2,k
...

...
. . .

...

an,1 an,2 · · · an,k

×

b1,1 b1,2 · · · b1,m

b2,1 b2,2 · · · b2,m
...

...
. . .

...

bk,1 bk,2 · · · bk,m


(5.1)

A single element in D can be computed as the sum of the product of a single

row of A and a single column of B, resulting in the formula:

dx,y =

k∑
i=1

ax,i × bi,y (5.2)

5. EXPERIMENTAL RESULTS 80

This can be extended to multiple matrices, so if we have A1 ×A2 × · · · ×An,

with sizes s0 × s1, s1 × s2, · · · × sn−1 × sn the formulae will be:

(A1A2 · · ·An)i0,in =

s1∑
i1=1

s2∑
i2=1

· · ·
sn−1∑

in−1=1

(A1)i0,i1(A2)i1,i2 · · · (An)in−1,in (5.3)

Unfortunately, 5.3 can not be used since it would require too many resources,

since it requires almost all the entire matrices to compute only one value. On the

other side, the two matrices multiplication is simpler than multi matrices prod-

uct, so it can be easily implemented in a parallel and efficient way without wast-

ing memory and communication time, as I can allocate BRAM only for one row

and one column for each element dx,y . Since I want to parallelize the computa-

tion, I choose to separate the workload on four kernels, each of them computing

exactly one quarter or the resulting matrix.

Figure 5.3: Two Matrices Product

In the above figure, I highlight the part of the matrices involved in computa-

tion of the first quarter of the resulting matrix. Since I want to split the matrices

in four equal parts and given the nature of the matrix product operation, in or-

der to compute one quarter, I need exactly one half of each matrix involved in

the operation. In particular, in order to compute the first quarter of C, C1, I need

the upper half of A, A1, and the left part of B, B1. For the other three kernels the

computation is similar: C2 needs A1 and B2, C3 needs A2 and B1, C4 needs A2

and B2. With this method I am able to split the computation on as many kernels

5. EXPERIMENTAL RESULTS 81

as we want, and achieve higher throughput. Another important consideration to

enhance throughput is about how to pass the data through the computational

unit, be them software or hardware. In fact, in order to efficiently compute all the

operations I need to exploit the data layout. As Jacobi 2-D, in which I split the

matrices by horizontal stripe due to the sequentiality of the matrix representa-

tion in memory, I need a similar access pattern for both the matrix involved in

the product operation. In Figure 5.3 it is clear that the first matrix is accessed by

horizontal band while the second is accessed by vertical band. The vertical band

imply huge overhead in order to collect the data needed to the computation.

Figure 5.4: Two Matrices Product With the transpose

In Figure 5.4 I represent how a matrix multiplication should be to be efficient

regards memory communication. If I use this method it will clearly produce un-

correct results, but if instead of B we choose the transpose of B, BT , and change

the result equation in:

dx,y =

k∑
i=1

ax,i × by,i (5.4)

I am able to compute the product of two matrices more efficiently as I take in

account the data layout.

The best method to accelerate 2mm is then to compute as fast as possible the

first product and then compute the second one. This is due to the dependence I

spoke about before when showing Equation 5.3.

5. EXPERIMENTAL RESULTS 82

Pseudocode 31 2mm sequential code

1: for i=0 to NI do
2: for i=0 to NJ do
3: for i=0 to NK do
4: C[i*NJ + j] += A[i*NK + k] * B[k*NJ + j]
5: end for
6: end for
7: end for
8: for i=0 to NI do
9: for i=0 to NL do

10: for i=0 to NJ do
11: E[i*NL + j] += C[i*NJ + k] * D[k*NL + j]
12: end for
13: end for
14: end for

Looking at the sequential code above it, is clear that is not possible to perform

the multi-matrices computation without consuming a huge amount of resources,

a price that is not affordable. So, my hardware implementation is composed of

only a product of two matrices. The software part, instead, splits the computation

and sends the data to the kernels as described above, and after the first product

is complete, I start another product between the resultant matrix and the last

matrix.

5.1.3 3mm kernel

The 3mm kernel is a three multiplication matrix of the form: A× B× C×D.

This kernel is similar to 2mm. It differs only in the number of matrices multi-

plied. Since there are four matrices to multiply, and knowing that the product of

matrices is associative, we can rearrange the kernels in a very parallel way. In

fact, thanks to the associativity, we are able to compute A × B and C × D with-

out compromising the correctness of the computation. After the two products are

computed, we can multiply the resultant matrices.

5. EXPERIMENTAL RESULTS 83

Figure 5.5: 3mm computation scheme

For the parallelization part we used the same steps described in the 2mm ker-

nel. The only difference is that I synthesize two matrix multipliers instead of one.

This schema allows us to produce the two resultant matrices at the same time

(matrices E and F from 5.5). Looking at the below sequential code below, similar-

ities between 3mm and 2mm are clear. In fact, the same considerations explained

on matrix multiplication are true in this case, too. The implementation on FPGA

is also similar to the one for the previous kernel. My hardware implementation

is composed of two1 computational units for two matrix products. The software

part splits the computation and sends the data to the hardware cores: after both

matrices (matrices E and F from 5.5) are computed, the last product is triggered.

1Every computation unit is built up using 4 different cores

5. EXPERIMENTAL RESULTS 84

Pseudocode 32 3mm sequential code

1: for i=0 to NI do
2: for i=0 to NJ do
3: for i=0 to NK do
4: E[i][j] += A[i][k] * B[k][j]
5: end for
6: end for
7: end for

8: for i=0 to NJ do
9: for i=0 to NL do

10: for i=0 to NM do
11: F[i][j] += C[i][k] * D[k][j]
12: end for
13: end for
14: end for

15: for i=0 to NI do
16: for i=0 to NL do
17: for i=0 to NJ do
18: G[i][j] += E[i][k] * F[k][j]
19: end for
20: end for
21: end for

5.1.4 2-D convolution kernel

The 2-D convolution kernel produces the convolution of an input matrix and

some convolution matrix. This type of kernels is mostly used in image process-

ing, like sharpening or edge detection, or more complex and relevant algorithms

like convolutional neural networks.

Even if the matrix convolution is a product of matrices, is not the usual mul-

tiplication operation between them. In fact, is not a row by column product, but

is an element by element operation. Let A be the input matrix, B the convolution

matrix, C the resultant matrix, x and y the index of row and column of the ele-

ment we are computing, respectively, and with the assumption that each matrix

has zero as the first index of row and column, the mathematical relation (exclud-

ing the border element that are not computed) is:

5. EXPERIMENTAL RESULTS 85

Figure 5.6: 2-D Convolution Computation

cx,y =

+1∑
i=−1

+1∑
j=−1

ax+i,y+j × b1+i,1+j (5.5)

This convolution is a nine points operation. It means it takes nine elements of the

input matrix in order to compute one elements of the output matrix. The snippet

below shows an example of how a convolution code looks like. In this example

(taken from Polybench [107]) the convolution matrix is composed by a single

value instead of a group inside a matrix, but the meaning is the same.

Pseudocode 33 2D Convolution sequential code

1: for i=1 to NI-1 do
2: for i=1 to NJ-1 do
3: B[i][j] = c11 * A[i - 1][j - 1] + c12 * A[i + 0][j - 1] + c13 * A[i + 1][j - 1] + c21

* A[i - 1][j + 0] + c22 * A[i + 0][j + 0] + c23 * A[i + 1][j + 0] + c31 * A[i - 1][j
+ 1] + c32 * A[i + 0][j + 1] + c33 * A[i + 1][j + 1]

4: end for
5: end for

Even if the meaning of the operation is different, parallelizing this kernel in-

volves almost the same operation done with Jacobi 2-D stencil (see 5.1.1). In fact,

we have the same border effect, so splitting the workload on multiple kernels re-

quires we pass the hardware units all the data needed, and in particular we need

to pass an additional row for the first and the last kernels, and additional two

rows for each kernels in between. Since this computation is not iterative, once

5. EXPERIMENTAL RESULTS 86

the hardware unit has computed all the elements assigned, the computation is

finished. So, the software part only operates the splitting of the data, sends them

to and retrieves them from the hardware components, while the hardware con-

sists of four cores.

5.1.5 BiCG Sub-kernel

In numerical linear algebra, the bi-conjugate gradient stabilized method (of-

ten abbreviated as BiCGSTAB) is an iterative method developed by H. A. Van Der

Vorst for the numerical solution of non-symmetric linear systems [108]. Inside

the Polybench suite is present the sub-kernel for computing the two direction

vectors.

Pseudocode 34 BiCG Sub-kernel sequential code

1: for i=0 to NI do
2: s[i] = 0
3: end for

4: for i=0 to NI do
5: q[i] = 0
6: for i=0 to NJ do
7: s[j] = s[j] + r[i] * A[i][j]
8: q[i] = q[i] + A[i][j] * p[j]
9: end for

10: end for

Looking at the above code (Algorithm 34) it is clearly that the two vectors can

be computed completely independently from each other. Analyzing the state-

ments on line 7 and 8 in the code, they look similar, yet different. This two

statements implement the same kind of operation: vector-matrix multiplication.

Broadly speaking, the BiCG Sub-kernel can be viewed as a two matrix-vector

product run in parallel. Being a particular case of matrix-matrix product, it can

be extremely parallelized.

5. EXPERIMENTAL RESULTS 87

Figure 5.7:
Schema Parallel Hardware Design of vector-matrix multiplication,

where the vector is a column vector

In Figure 5.7 is shown how a matrix-vector product can be parallelized, given

that the vector can be synthesized with the resources available on the FPGA.

This is exactly how the statement on line 8 of algorithm 34 can be computed in

parallel. Since one is a column vector (i.e. q) and the other is a row vector (i.e. s)

they have to be computed in two different ways. In the case of the computation

on line 7 I have to choose one of two possible solutions. As I can see the algorithm

is written to exploit the same matrix (i.e. A) for both computation. So I have to

choose between:

• Compute the row vector utilizing the transpose of the input matrix

• Compute the multiple partial row vectors and sum them at the end

In the first case I change the algorithm to compute the row vector s as we

compute the column vector q. But we have to pay the time needed to compute

the transpose. In the second one I create more row vectors, each one will contain

the partial sum, and then sum them together to obtain the final values (as we can

see in figure 5.8).

5. EXPERIMENTAL RESULTS 88

Figure 5.8:
Schema Parallel Hardware Design

of vector-matrix multiplication,
where the vector is a row vector

In this case I have to pay a little error in computation due to the additional

final sum needed to compute the resulting vector. As the generation of the trans-

pose in this case does not give any advantage, but actually slows down the entire

process, I choose to opt for the second approach. My hardware solution is com-

posed of eight kernels, four for each vector-matrix product. The software part, as

the previous kernel, splits the data and passes them to the hardware. At the end

of the computation I need to reorder the partial vectors in to the final ones. This

is also the final work of the software part.

5.2 Implementation Results

For each kernel described in the previous section, I had implemented three

different versions:

• Simple HLS

• Split-Down

• Split-Down, with directives and memory optimization enabled

• Theoretical best

5. EXPERIMENTAL RESULTS 89

Simple HLS means that I took the kernel code, and I simply added the in-

terfaces needed to communicate between the main memory and FPGA to imple-

ment a functional hardware design.

Split-Down means that we implemented a parallel version of the kernel with-

out relying on hardware optimization.

Split-Down, with directives and memory optimization enabled means that

I implemented a parallel version of the kernel enhancing BRAMs usage and set-

ting the High Level Synthesis (HLS) tools to use dataflow and pipelining direc-

tives to optimize the generated hardware circuits.

Theoretical best means the best possible acceleration with only one Zed-

board, increasing the number of parallel cores synthesized. I can assume a linear

increment in performance rising hardware resources.

Kernel Dimension BRAM (%) DSP (%) Watt Time (ms)
Jacobi 2-D 300x300 matrices 93 4 1,558 117
2mm 200x200 matrices 93 2 1,547 800
3mm 140x140 matrices 92 4 1,572 1120
2-D Convolution 300x300, 9x9 conv. 97 4 1,568 45
BiCG 300x300 matrix 94 5 1,554 11,75

Table 5.1: Simple HLS

Kernel Dimension BRAM (%) DSP (%) Watt Time (ms)
Jacobi 2-D 300x300 matrices 97 9 1,66 52
2mm 200x200 matrices >100%. N.A. N.A. N.A.
3mm 140x140 matrices >100% N.A. N.A. N.A.
2-D Convolution 300x300, 9x9 conv. 97 15 1,707 16
BiCG 300x300 matrix 100 18 1,691 3,64

Table 5.2: Split-Down

5. EXPERIMENTAL RESULTS 90

Kernel Dimension BRAM (%) DSP (%) Watt Time (ms)
Jacobi 2-D 300x300 matrices 9 13 1,618 30
2mm 200x200 matrices 9 9 1,6 152
3mm 140x140 matrices 19 15 1,640 209
2-D Convolution 300x300, 9x9 conv. 9 18 1,682 7,8
BiCG 300x300 matrix 24 18 1,742 1,7

Table 5.3: Split-Down, with directives and memory optimization enabled

Kernel Dimension BRAM (%) DSP (%) Watt Time (ms)
Jacobi 2-D 300x300 matrices 54 78 1,738 6
2mm 200x200 matrices 72 72 1,760 21
3mm 140x140 matrices 95 74 1,746 42
2-D Convolution 300x300, 9x9 conv. 45 90 1,790 1,6
BiCG 300x300 matrix 96 72 1,856 0,725

Table 5.4: Theoretical best

As expected, the generation of parallelized hardware gives better results than

plain conversion of sequential code. Since we are targeting Xilinx FPGA’s, given

the availability of the Zedboard, the problem dimension fills the FPGA’s BRAM.

While this precious resource is almost used completely, all other resources like

LUTs or DSPs were almost unused, a clear sign of bad usage of board resources.

Figure 5.9: Jacobi 2-D resource chart

5. EXPERIMENTAL RESULTS 91

Figure 5.10: 2mm resource chart

Figure 5.11: 3mm resource chart

5. EXPERIMENTAL RESULTS 92

Figure 5.12: 2-D Concolution resource chart

Figure 5.13: BiCG resource chart

So I created the parallel version with four cores for each kernel. Since I need

to pass data to the computational unit, I had to determine the correct method. I

opted to synthesize one DMA controller for each core in order to send and receive

data in a completely asynchronous way. Other implementations can be made, but

I chose this solution, as it delivers better speed up since each DMA controller can

transfer data independently from each other.

5. EXPERIMENTAL RESULTS 93

Figure 5.14: Schema Parallel Hardware Design

The real comparison must be done between the two parallel versions of the

tested kernels. As we can see in 5.2, not all the kernels could be synthesized on

the target FPGA, as the usage of the BRAM could be excessive. As we noted

above, the 2mm and 3mm kernels are not available in their simpler split-down

version as the resources requested outpace by far the resources available on the

FPGA. So in this case we cannot make a true comparison, but based on the im-

plementation of the others kernels, we can show that generating a circuit using

data flow and pipelining directives delivers a huge speed up. In the "simple HLS"

and "Split-Down" versions these directives have not been used since the limited

BRAM resources on the Zedboard reached its physical limits. We had to rear-

range the kernel code to stay inside its limits creating a smaller "cache" inside

each core in order to use them.

5. EXPERIMENTAL RESULTS 94

(a) Floorplan Simple HLS

(b) Floorplan Split Down HLS

(c) Floorplan Split Down plus reshape memory and di-
rectives HLS

Figure 5.15: Area used on Jacobi 2-D

5. EXPERIMENTAL RESULTS 95

Since I treat hardware cores in a way similar to OS’s threads, software and

hardware implementations are very similar. Thus we can reduce the problem of

design hardware to the one of creating a threaded software. So if we are able to

manipulate the original code and create a parallel version, then we can gener-

ate a correct architecture that is capable of do the same process of software but

in hardware. Clearly, the software implementation will not be written as nor-

mal threaded code, but since our problem is describing the circuits behavior, we

should consider more hardware-friendly implementation of the original code.

6

Conclusions and Future work

6.1 Conclusions

In the current work, I explained how Polyhedral Model (PM) can be used to

restructure the code to achieve better parallelization obtaining as a final result an

increase of the efficiency of hardware circuits. The methodology proposed faces

the problem of creating an architecture suitable for the problem. In my experi-

mental test I show a slight increase in power consumption in the more parallel

architecture respect to straight implementation, but is largely compensated by a

speed up ranging from 3x to 7x in total calculation time. In fact, the worst power

consumption increase is of the order of 6%(about 100mW), a small price spent

compared to the huge gain in throughput which directly translates into better

power efficiency. You should note that the real price comes from the total energy

consumed as it comes from the product of total time of computation multiplied

by Watts spent. As I explained in the previous chapter this methodology can be

considered valid only for algorithm intrinsically parallels. Also, I need to limit

the expressivity of the language to be pure: implementing synchronized access

to shared data not only will result in bottlenecks, but also a lot of effort should be

put to design this features. However, as the focus, is on scientific algorithms, this

is not a real issue, as most of those algorithms already are expressed in this form.

96

6. CONCLUSIONS AND FUTURE WORK 97

6.2 Future works

The first goal is to implement the final toolchain. The second goal is to tighten

the integration between task carried on by difference researchers, like for exam-

ple [78, 79, 80]. The third future goal will be to prove the feasibility of the multi-

Field Programmable Gate Array (FPGA) solution in order to implement mem-

ory intensive algorithms. I will conduct extensive tests on other various com-

putational kernels split on multiple FPGA retrieving statistics and performance

counts will demonstrate how the performance scales out. In Low-Level Virtual

Machine (LLVM) related area, we already use Clang (via Chunky Loop ANa-

lyzer (CLAN)) to translate code into PM. Till now we are using source-to-source

transformation to create C file to feed Xilinx tools. Following the typical LLVM

schema (front-end, IR, back-end) we could implements a different tool, that ex-

ploit directly the intermediate representation to generate the Register-Transfer

Level (RTL) of the circuits: in other words we could implement a typical LLVM

back-end. The first step in this direction will be analyze and profile what has been

already developed by LegUp project.

Bibliography

[1] Gordon E Moore and Life Fellow. Cramming More Components onto Integrated

Circuits. 86(1):82–85, 1998.

[2] index @ www.energy.gov.

[3] index @ science.energy.gov.

[4] The Opportunities and Challenges of Exascale Computing Fall 2010 Report on Ex-

ascale Computing.

[5] Avinash Sodani and D Ph. Race to Exascale : Opportunities and Challenges Intel

Corporation.

[6] Dimitri Kusnezov, Senior Advisor, and U S Doe. DOE Exascale Initiative. pages

1–12, 2013.

[7] Michael B Taylor. Is Dark Silicon Useful ? Harnessing the Four Horsemen of the

Coming Dark Silicon Apocalypse U " liza " on Wall :. 2005.

[8] index @ www.exascale-computing.eu.

[9] physx @ www.geforce.com.

[10] high-performance-xeon-phi-coprocessor-brief @ www.intel.com.

[11] Xilinx. www.xilinx.com.

[12] sdaccel @ www.xilinx.com.

[13] Jason Cong, Muhuan Huang, and Yi Zou. Accelerating Fluid Registration Algo-

rithm on Multi-FPGA Platforms. 2011 21st International Conference on Field Pro-

grammable Logic and Applications, pages 50–57, September 2011.

[14] Mohammad H Al-towaiq. Parallel Implementation of the Gauss-Seidel Algorithm

on k -Ary n -Cube Machine. 2013(January):177–182, 2013.

98

BIBLIOGRAPHY 99

[15] Juanjo Noguera and Fernando Martinez Vallina. Zynq-7000 All Programmable

SoC Accelerator for Floating-Point Matrix Multiplication using Vivado HLS. 1170,

2013.

[16] Vincenzo Rana, Alessandro A Nacci, Ivan Beretta, Marco D Santambrogio, David

Atienza, and Donatella Sciuto. Design Methods for Parallel Hardware Implemen-

tation of Multimedia Iterative Algorithms. (c):1–6, 2011.

[17] cuda_home_new @ www.nvidia.com.

[18] mantle @ www.amd.com.

[19] Shuai Che, Jie Li, Jeremy W. Sheaffer, Kevin Skadron, and John Lach. Accelerat-

ing Compute-Intensive Applications with GPUs and FPGAs. 2008 Symposium on

Application Specific Processors, pages 101–107, June 2008.

[20] Altera Corporation. Radar Processing : FPGAs or GPUs ? (May), 2013.

[21] Kuen Hung Tsoi and Wayne Luk. Axel : A Heterogeneous Cluster with FPGAs

and GPUs. 2010.

[22] Blue Book. High-Level Synthesis.

[23] P. Coussy, D.D. Gajski, M. Meredith, and a. Takach. An Introduction to High-Level

Synthesis. IEEE Design & Test of Computers, 26(4):8–17, July 2009.

[24] index @ www.altera.com.

[25] Dan Gajski, U C Irvine, and Irvine Ca. What Input-Language is the Best Choice for

High Level Synthesis (HLS)? pages 857–858, 2010.

[26] Matthijs Kooijman, Christiaan Baaij, and Jan Kuper. From Haskell To Hardware.

[27] Edward A Lee. Heterogeneous Concurrent Modeling and Design in Java (Volume

1 : Introduction to Ptolemy II). 1, 2008.

[28] Edward A Lee and Stephen Neuendorffer. Heterogeneous Concurrent Modeling

and Design in Java (Volume 2 : Ptolemy II Software Architecture). 2, 2008.

[29] Christophe Lucarz and Marco Mattavelli. Dataflow / Actor-Oriented language for

the design of complex signal processing systems. (Dasip), 2008.

[30] Christophe Lucarz, Marco Mattavelli, and Julien Dubois. A Platform for the De-

velopment and the Validation of HW IP Components Starting from Reference Soft-

ware Specifications. EURASIP Journal on Embedded Systems, 2008(1):685139, 2008.

BIBLIOGRAPHY 100

[31] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Ri-

mas Avižienis, John Wawrzynek, and Krste Asanovi. Chisel : Constructing Hard-

ware in a Scala Embedded Language.

[32] Richard Thavot, Romuald Mosqueron, Julien Dubois, and Marco Mattavelli. Hard-

ware synthesis of complex standard interfaces using CAL dataflow descriptions.

[33] Johan Eker. Specification of the C AL actor language. 2003.

[34] Christian Feichtinger, Johannes Habich, Harald Köstler, Georg Hager, Ulrich Rüde,

and Gerhard Wellein. A flexible Patch-based lattice Boltzmann parallelization ap-

proach for heterogeneous GPU–CPU clusters. Parallel Computing, 37(9):536–549,

September 2011.

[35] Alexandru Fiodorov. Improving Energy Efficiency with Special-Purpose Accelerators.

PhD thesis, Norwegian University of Science and Technology, 2013.

[36] Richard Membarth, Frank Hannig, Jurgen Teich, and Harald Kostler. Towards

Domain-Specific Computing for Stencil Codes in HPC. 2012 SC Companion: High

Performance Computing, Networking Storage and Analysis, pages 1133–1138, Novem-

ber 2012.

[37] Dmitry Nadezhkin. Parallelizing Dynamic Sequential Programs using Polyhedral Pro-

cess Networks.

[38] Alejandro Fernández Suárez. Domain Specific Languages for High Performance

Computing A Framework for Heterogeneous Architectures. pages 2012–2013,

2013.

[39] S. van Haastregt and B. Kienhuis. Automated synthesis of streaming C applica-

tions to process networks in hardware. 2009 Design, Automation & Test in Europe

Conference & Exhibition, pages 890–893, April 2009.

[40] A. J. Bernstein. Analysis of Programs for Parallel Processing. IEEE Transactions on

Electronic Computers, EC-15(5):757–763, October 1966.

[41] Daniel L Slotnick, W Carl Borck, and Robert C Mcreynolds. The solomon com-

puter*. 30(December):97–107, 1962.

[42] Sjoerd Meijer. Transformations for Polyhedral Process Networks.

[43] Charles Severans and Kevin Dowd. Understanding Parallelism - Loop-Carried

Dependencies.

BIBLIOGRAPHY 101

[44] Christian Lengauer. Loop Parallelization in the Polytope Model. pages 1–19.

[45] Paul Feautrier. The Polytope Model : Past , Present , Future What is a Model ? 2009.

[46] Amy W Lim and Monica S Lam. Maximizing Parallelism and Minimizing Syn-

chronization with A ne Transforms 2 Forms of Parallelism.

[47] Wei Zuo, Yun Liang, Peng Li, Kyle Rupnow, Deming Chen, and Jason Cong.

Improving High Level Synthesis Optimization Opportunity Through Polyhedral

Transformations. pages 9–18.

[48] Wei Zuo, Peng Li, Deming Chen, Louis-Noel Pouchet, and Jason Cong. Improv-

ing polyhedral code generation for high-level synthesis. 2013 International Con-

ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages

1–10, September 2013.

[49] C. Bastoul. Code generation in the polyhedral model is easier than you think. Pro-

ceedings. 13th International Conference on Parallel Architecture and Compilation Tech-

niques, 2004. PACT 2004., 2004.

[50] Programming Group. May 1, 2012 14:53 WSPC/INSTRUCTION FILE paper. 2012.

[51] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. pn: A Tool for Improved

Derivation of Process Networks. EURASIP Journal on Embedded Systems, 2007:1–13,

2007.

[52] Steven Derrien, Sanjay Rajopadhye, Patrice Quinton, and Tanguy Risset. High-

Level Synthesis of Loops Using the Polyhedral Model The MMAlpha Software.

[53] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanu-

jam, Atanas Rountev, and P. Sadayappan. Automatic transformations for

communication-minimized parallelization and locality optimization in the poly-

hedral model. In CC’08/ETAPS’08 Proceedings of the Joint European Conferences on

Theory and Practice of Software 17th international conference on Compiler construction,

pages 132–146, 2008.

[54] Mohamed-walid Benabderrahmane and Albert Cohen. The Polyhedral Model Is

More Widely Applicable Than You Think.

[55] M. E. Wolf and M. S. Lam. A Loop Transformation Theory and an Algorithm to

Maximize Parallelism.

BIBLIOGRAPHY 102

[56] Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira Rosen.

Polyhedral-Model Guided Loop-Nest Auto-Vectorization. 2009 18th Interna-

tional Conference on Parallel Architectures and Compilation Techniques, pages 327–337,

September 2009.

[57] Anders Nilsson and Karl-erik Å rzén. Static Analysis and Transformation of

Dataflow Multimedia Applications. (November), 2012.

[58] Tomofumi Yuki. AlphaZ and the Polyhedral Equational Model.

[59] Donatella Sciuto Advisor and Marco D Santambrogio Advisor. DATA LEVEL PAR-

ALLELISM WITH POLYHEDRAL PROCESS. 2014.

[60] Locality Analysis. Dependence Analysis and Loop Transformations.

[61] Andreas Simbürger, Sven Apel, Armin Größ linger, and Christian Lengauer. The

Potential of Polyhedral Optimization The Potential of Polyhedral Optimization.

(February), 2013.

[62] Mary Hall. Compiler-Based Autotuning Technology Lecture 3 : A Closer Look at

Polyhedral Compiler Technology Polyhedral Compiler Technology. 2011.

[63] Benoit Pradelle, Alain Ketterlin, and Philippe Clauss. Polyhedral parallelization

of binary code. ACM Transactions on Architecture and Code Optimization, 8(4):1–21,

January 2012.

[64] Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. Polyhedral Code Generation

in the Real World.

[65] Cédric Bastoul, Albert Cohen, Sylvain Girbal, and Saurabh Sharma. Putting Poly-

hedral Loop Transformations to Work.

[66] Arnamoy Bhattacharyya and José Nelson Amaral. Automatic speculative paral-

lelization of loops using polyhedral dependence analysis. Proceedings of the First

International Workshop on Code OptimiSation for MultI and many Cores - COSMIC ’13,

pages 1–9, 2013.

[67] Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Synthesizing Transforma-

tions for Locality Enhancement of Imperfectly-Nested Loop Nests. 29(5):493–544,

2001.

[68] A Loop Generator and For Scanning. C´ edric Bastoul. 2007.

[69] The Polyhedral and Compiler Collection. PoCC. 2013.

BIBLIOGRAPHY 103

[70] Martin Griebl and Christian Lengauer. The Loop Parallelizer LooPo 1 Why LooPo

? 2 Theoretical Background.

[71] Armin Gr. The Challenges of Non-linear Parameters and Variables in Automatic

Loop Parallelisation. 2009.

[72] Armin Größ linger. Precise Management of Scratchpad Memories for Localising

Array Accesses in Scientific Codes. CC ’09 Proceedings of the 18th International Con-

ference on Compiler Construction: Held as Part of the Joint European Conferences on The-

ory and Practice of Software, ETAPS 2009, pages 236–250, 2009.

[73] Louis-noël Pouchet, Cédric Bastoul, and Albert Cohen. LetSee : the LEgal Trans-

formation SpacE Explorator.

[74] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical

automatic polyhedral parallelizer and locality optimizer. Proceedings of the 2008

ACM SIGPLAN conference on Programming language design and implementation - PLDI

’08, page 101, 2008.

[75] I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt. Data reuse analysis technique

for software-controlled memory hierarchies. Proceedings Design, Automation and

Test in Europe Conference and Exhibition, pages 202–207, 2004.

[76] Paul Feautrier. Data ow Analysis of Array and Scalar References. (September):1–

37, 1991.

[77] Christian Pilato, Politecnico Milano, Politecnico Milano, and Politecnico Milano.

A Design Methodology to Implement Memory Accesses in High-Level Synthesis.

pages 49–58.

[78] J. Cong. Behavior and communication co-optimization for systems with sequential

communication media. 2006 43rd ACM/IEEE Design Automation Conference, pages

675–678, 2006.

[79] Jason Cong, Stephen Neuendorffer, Juanjo Noguera, and Kees Vissers. High-

Level Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 30(4):473–491, April 2011.

[80] Jason Cong, Peng Zhang, and Yi Zou. Optimizing memory hierarchy allocation

with loop transformations for high-level synthesis. Proceedings of the 49th Annual

Design Automation Conference on - DAC ’12, page 1233, 2012.

BIBLIOGRAPHY 104

[81] Amy W Lim, Gerald I Cheonp, and Monica S Lam. An Affine Partitioning Al-

gorithm to Maximize Minimize Communication Parallelism and. pages 228–237,

1999.

[82] Fabien Quiller E. Optimizing memory usage in the polyhedral model. ACM Trans-

actions on Programming Languages and Systems, 22(5):773–815, September 2000.

[83] Jason Cong, Vivek Sarkar, Glenn Reinman, and Alex Bui. Customizable Domain-

Specific Computing. IEEE Design & Test of Computers, 28(2):6–15, March 2011.

[84] Louis-Noel Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong. Polyhedral-

based data reuse optimization for configurable computing. Proceedings of the

ACM/SIGDA international symposium on Field programmable gate arrays - FPGA ’13,

page 29, 2013.

[85] Sven Verdoolaege. Polyhedral Process Networks. pages 1–35.

[86] H Nikolov, M Thompson, T Stefanov, A Pimentel, and Application-based Systems

Real-time. Daedalus : Toward Composable Multimedia MP-SoC Design. pages

574–579.

[87] Hristo Nikolov, Student Member, Todor Stefanov, and Ed Deprettere. Systematic

and Automated Multiprocessor System. 27(3):542–555, 2008.

[88] Hristo Nikolov, Todor Stefanov, and Ed Deprettere. Multi-processor system de-

sign with ESPAM. Proceedings of the 4th international conference on Hardware/software

codesign and system synthesis - CODES+ISSS ’06, page 211, 2006.

[89] Marco Lattuada, Fabrizio Ferrandi, and Milano Dipartimento. Performance Mod-

eling of Embedded Applications with Zero Architectural Knowledge. pages 277–

286, 2010.

[90] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,

Jason Anderson, Stephen Brown, and Tomasz Czajkowski. LegUp : High-Level

Synthesis for FPGA-Based Processor / Accelerator Systems. pages 7–10.

[91] Vito Giovanni Castellana and Politecnico Milano. An Automated Flow for the

High Level Synthesis of Coarse Grained Parallel Applications. pages 294–301,

2013.

[92] Silvia Lovergine and Fabrizio Ferrandi. Harnessing Adaptivity Analysis for the

Automatic Design of Efficient Embedded and HPC Systems. 2013 IEEE Inter-

national Symposium on Parallel & Distributed Processing, Workshops and Phd Forum,

pages 2298–2301, May 2013.

BIBLIOGRAPHY 105

[93] Roberto Cordone, Milano Dti, and Marco D Santambrogio. Using Speculative

Computation and Parallelizing techniques to improve Scheduling of Control based

Designs.

[94] Vito Giovanni Castellana, Fabrizio Ferrandi, and Milano Dipartimento. Schedul-

ing Independent Liveness Analysis for Register Binding in High Level Synthesis.

2013.

[95] http://clang.llvm.org/.

[96] A Specification. C´ edric Bastoul. 2014.

[97] Todor Stefanov. Converting weakly dynamic programs to equivalent process network

specifications. Phd thesis, Leiden University, 2004.

[98] Jörn W. Janneck, Ian D. Miller, David B. Parlour, Ghislain Roquier, Matthieu

Wipliez, and Mickaël Raulet. Synthesizing Hardware from Dataflow Programs.

Journal of Signal Processing Systems, 63(2):241–249, July 2009.

[99] Shuvra S Bhattacharyya, Gordon Brebner, and Johan Eker. How to make stream

processing more mainstream. pages 2–4.

[100] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peperstraete. Cvclo-Static

Dataflow 4. 44(2), 1996.

[101] Eunjung Park, Louis-Noel Pouche, John Cavazos, Albert Cohen, and P. Sadayap-

pan. Predictive modeling in a polyhedral optimization space. International Sympo-

sium on Code Generation and Optimization (CGO 2011), pages 119–129, April 2011.

[102] A X I Reference, Vivado Axi, and Reference Guide. Vivado Design. 1037:1–143,

2014.

[103] Design Suite. AXI4-Stream Infrastructure IP Suite Table of Contents. 2013.

[104] High-level Synthesis. Vivado Design Suite Tutorial. 871, 2013.

[105] High-level Synthesis. Vivado Design Suite User Guide. 902, 2013.

[106] Xilinx. Xilinx Vivado Design Suite Tcl Command Reference Guide (UG835). 835,

2012.

[107] Louis-Noël Pouchet. PolyBench/C the Polyhedral Benchmark suite.

[108] H A van der Vorst. BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-

CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput.,

13(2):631–644, 1992.

December 2, 2014

Document typeset with LATEX

	Introduction
	Background
	On Power Utilization
	Power Efficiency
	Programmability
	Trend Analysis in High Performance Computing

	Hardware Acceleration
	What is Hardware Acceleration
	Why to employ Hardware Acceleration
	High Level Synthesis
	Optimize High Level Synthesis
	Input languages to HLS tools

	Application Domain
	Staticness
	Affinity
	Pureness

	Long Term Vision

	State of the Art
	Polyhedral Model
	Polyhedral Model
	Order of Execution
	Definition of Topic Related Terms
	Polyhedral Analysis
	Dependence Analysis
	Conclusion

	Memory Architecture
	Related Work
	Polyhedral Model
	Memory Architecture
	Hardware Design

	Tools
	PA and HLS Limitations

	Problem Statement
	The Problem
	Problem Approach
	My contribution
	Delimiting the Perimeter of Interest

	Proposed Methods
	Hardware Constraints
	DSP Slices
	BRAM Blocks
	How Advanced Directives Shape Design Space

	First Approach
	Components
	Flow
	Limitations

	Final Approach
	Components
	Methodology

	Experimental Results
	Practical Examples
	Jacobi 2D stencil computation
	2mm kernel
	3mm kernel
	2-D convolution kernel
	BiCG Sub-kernel

	Implementation Results

	Conclusions and Future work
	Conclusions
	Future works

	Bibliography

