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Abstract

With Web 2.0, storing methods and technologies are radically changed.

Nowadays we live in a world where the huge amount of data is dis-

tributed around di�erent places, strongly limiting the usage of tradi-

tional databases, like RDBMS. In the last years, a new type of databases

has found more and more space. They are called NoSQL, distributed

databases that have di�erent architectural features from the traditional

ones and they also guarantee properties like high availability and scal-

ability. However, they are not the solution to every problem of data

management. They show some signi�cant shortcomings that have an

impact on how model applications are built and operate. One of these

shortcomings is the absence of relational structures, useful to correlate

data. One of the research objectives is to improve these aspects, main-

taining the peculiar NoSQL database characteristics. This thesis aims at

o�ering to designers the possibility to exploit scalability of NoSQL still

adopting a relational model, so to take advantage from both approaches.

To this end, we de�ne a mapping model for data from a typical relational

structure into a NoSQL one, based on the queries known at design time

that will be performed on the database. The thesis presents the proposed

approach and exploits HBase as target NoSQL for the mapping. HBase

is particularly interesting because of its scalability and of its integration

with Hadoop, that is, a map/reduce-based parallelization approach to

support the execution of computations on large datasets. The approach

is compared with a traditional relational one and the result we have

achieved shows that it is promising in terms of improved performance on

query execution.





Estratto

Con l'avvento del Web 2.0, i metodi e le tecnologie per la gestione dei dati

son dovuti cambiare radicalmente. Al giorno d'oggi viviamo ormai in un

mondo dove la grande quantità di dati, distribuita su tutto il territorio,

limita fortemente l'utilizzo di database tradizionali, quali sono i RDBMS.

A partire da alcuni anni si parla infatti di NoSQL, database distribuiti che

presentano caratteristiche architetturali diverse da quelle tradizionali e

che garantiscono alta disponibilità e scalabilità in base al carico richiesto.

Dall'altro lato però, questo tipo di database presenta alcuni difetti che

hanno un impatto sul modo in cui operano le applicazioni. Uno di questi

difetti è la mancanza di strutture relazionali, utili per correlare dati.

Uno degli obiettivi di ricerca è migliorare questi aspetti, mantenendo le

caratteristiche peculiari dei database NoSQL. Questa tesi vuole o�rire ai

progettisti la possibilità di sfruttare la scalabilità di un database NoSQL,

adottando comunque un modello relazionale, in modo da trarre vantaggio

da entrambi gli approcci. Per questo, abbiamo de�nito un modello per

la mappatura di dati, da una tipica struttura relazionale ad una NoSQL,

basata sulle query che andranno eseguite sulla struttura �nale, conosciute

in fase di progettazione. La tesi presenta l'approccio proposto e valorizza

l'utilizzo di HBase come database NoSQL per la mappatura. HBase è par-

ticolarmente interessante per la sua scalabilità e per la sua integrazione

con Hadoop, un approccio di parallelizzazione basato su map/reduce, per

supportare l'esecuzione computazionale su grandi quantità di dati. L'ap-

proccio è paragonato con uno relazionale tradizionale, e il risultato che

abbiamo raggiunto mostra come sia promettente in termini di migliora-

mento delle prestazioni delle richieste ricevute.





Chapter 1

Introduction

Thanks to the increasing di�usion of technologies like cloud computing and smart-

phones, to the widespread use of data-intensive services like social networks, and to

the possibility of building complex systems, the importance of collecting and stor-

ing data concerning industrial and economical processes as well as people habits, is

growing more and more every day.

We are talking about very large amounts of data (they are called "Big Data" [14])

that have to be stored with increasingly velocity, and used and analyzed for di�erent

kind of purposes.

The new requirements involve technologies able to store huge quantities of not-

structured data (we are talking about 2.5 PetaBytes of data everyday, like �gure 1.1

shows), maintaining acceptable query performances, requirements not satis�able by

a traditional database.

Figure 1.1: Information stored

In front of these new urgent requests, NoSQL (Not SQL, means not relational)

1



1. Introduction

datastores found more and more space, characterized by the fact that they can reach

higher performances and be more adaptable (scalable) to workload changes, all based

on a distributed architecture, not centrally located as in traditional RDBMS.

For this reason, NoSQL datastores do not provide many of the structured mech-

anisms of storing data provided by RDBMS systems.

In fact, one of the main lacks of NoSQL datastores is that they do not provide

join structures or structured query languages, like SQL in RDBMS. This fact can

a�ect their performances on queries execution.

A challenging research objective is to improve the manageability of NoSQL data-

stores, still keeping their remarkable characteristics. This thesis aims at o�ering a

contribution towards the achievement of this challenge. It proves that this lack can be

partially avoided when the queries, that are going to be performed on the database,

are known at design time. This result is achieved proposing a way of mapping data

from an initial relational structure into a NoSQL datastore structure, based on some

given input query. In particular, we analyzed all Relational Algebra query operands,

proposing a feasible mapping model for all of them. This model allows the user to

exploit NoSQL features, still adopting a relational model, in order to take advantage

from both approaches. The �nal aim of this work is to compare this model with a

relational based model, focusing on di�erent performances obtained after query tests

execution.

In order to be able to perform this comparison, we chose a NoSQL datastore,

HBase. It is a column-based datastore, particularly adapt to store unstructured

data, providing excellent scalability and fault tolerance features. In particular, we

needed to understand how to con�gure it, and its splitting policies, useful to optimize

data distribution for our tests.

About the con�guration, we built a bash Linux-based script that avoids a long work

of copying �les into all cluster machines. We also built a Java tool that provides

all necessary structures and functions as a proof-of-concept for the mapping model

proposed.

The �nal part consists in text execution. Thanks to the bash Linux-based script

and to the Java tool, we were able to perform tests on a chosen dataset, signi�cant

for our model. Tests execution compares the results obtained by the proposed model

with a classical relational model, mapped into an HBase cluster. Test results show

how our model provides extremely better performances performing the execution of

the queries given at design time.

Outline of the Thesis

This document is structured as follows:

• Chapter 2 describes the State of the Art. In this section are presented the

main features of NoSQL databases and one of their possible classi�cation based

2



on the data model. In particular, we presented two databases, compared for

their architectural di�erences and characteristics, focusing on consistency and

availability requirements. At the end of this Chapter we describe architectural

and properties of the datastore we decided to use for our analysis, HBase.

• Chapter 3 presents two approaches of denormalization of data from a relational

point of view into a NoSQL-adaptable one. In particular, in this section is

presented the denormalization model for �rst approach, based on a E-R query

schema and the schema of the query, known at design time. The model analysis

is sustained by two examples and an analysis of its limits.

• Chapter 4 shows a deeper analysis on HBase, in order to be able to execute the

tests shown in Chapter 5. In particular, we analyzed HBase splitting policies,

useful to understand how to design a good row-key for our model. Secondly

is shown how to con�gure and install a working HBase cluster. At the end of

the Chapter we presented a Java tool able to denormalize entities following our

model equations.

• Chapter 5 shows the execution of some tests. We propose them to compare

our model with a relational based one. For each test we present its description,

execution and results.

• Chapter 6 is dedicated to �nal conclusions and possible future works.

3
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Chapter 2

State of the art

This Chapter introduces the main characteristics of NoSQL datastores, especially

focusing on the main di�erences between them and the traditional RDBMS.

Main NoSQL datastores properties will be introduced from a theoretical point of

view and they are classi�ed starting from a data-model perspective.

Then we compare two di�erent datastores, analyzing their di�erent architectures

structures and provided properties.

At the end of the Chapter we will focus on a particular NoSQL database, HBase,

presenting its general features and describing why we choose it for our work.

2.1 Introduction to NoSQL

The term NoSQL ("Not SQL", the query language used in relational databases)

was used for the �rst time to describe a relational database that omitted the use of

SQL in 1998. It does not have a single and unique de�nition but we can say that it

represents a new kind of databases (or better, datastores) that do not use relational

models, as traditional RDBMS, and that are increasingly used nowadays for their

main characteristics: horizontal scalability, high availability and schema-free. We

will see their de�nitions in the following paragraph.

Usually a NoSQL datastore is preferred over a RDBMS database when is neces-

sary a more e�cient way to store and manage huge amounts of data, while relational

databases �t well for data that is rigidly structured with relations and allows for

dynamic queries expressed in SQL language.

However, today web data is very di�erent: it is not well structured and it does

not need dynamic queries because many applications use prepared procedures and

statements.

In addition, RDBMS work well in centralized systems, while nowadays systems

are often fully distributed, thanks to a growing and cheaper utilization of cloud

services.
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By the fact that one of the most common scenarios of everyday data stored

from web, applications, or industrial and economical processes need to be used to

understand user's habits and preferences or to better optimize industries processes,

this amount of data need to be mostly read in a very e�cient way and in the shortest

possible time. NoSQL databases are the perfect way to store them and to optimize

this kind of queries for the reasons we are going to see in the following paragraphs.

2.2 NoSQL properties and characteristics

There is no a unique and formal de�nition of "NoSQL", but we can say that a

NoSQL datastore is a distributed database where there are few (or none) relations

and there is a very �exible data model.

All datastores marked as NoSQL are characterized by these particular features:

Horizontal Scalability: it is the ability of a system (a database) to handle a grow-

ing (or decreasing) amount of work in a capable and user-transparent way. This

property is achieved thanks to the possibility of "sharding" the data, or bet-

ter to split horizontally the data in a database. This function allows to access

smaller pieces of data in a faster and easily managed way and allows the system

to add or delete nodes from the datastore, without changing its structure and

without a loss of performances in reads or writes. The main problem that this

feature break out is that Join operations become very complex and ine�cient.

Fault tolerance: when the amount of data increases, the datastore is able to recover

after single or multiple failures. To do that, all NoSQL datastores provide

data replication, storing di�erent copies of the same piece of data; when a

single replica is lost, the datastore can use its copies and it does not lose any

information.

High availability: each data stored in a NoSQL database has to be reachable in

a very limited time; like fault tolerance, this features is provided thanks to

data replication. When the client asks the datastore for some data, the system

answers with the nearest copy of the data requested, reducing time needed to

answer and allowing multiple simultaneous answers to di�erent clients, also

when their number increases in a small time period.

Distributed and cloud oriented: NoSQL databases are based on a distributed

infrastructure, distributing data on di�erent nodes that can be managed in a

very elastic way.

This kind of con�guration permits to be more e�cient and have better perfor-

mances, distributing the workload on each node and not collect it on a single

central node.
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Flexible data schema (or schema-free): in contrast with traditional

RDBMS, the new NoSQL datastores have not a �xed data schema.

Unlike RDBMS �xed table structures, in this kind of systems di�erent types

of data can be stored. Due to this property, they are de�ned �free-schema�

databases.

All these properties make NoSQL datastores particularly suitable for di�erent sce-

narios:

• BigData Managment: this situation implies storing very huge amounts of

data, respecting its availability, scalability and distribution requirements. Most

of NoSQL datastores are involved in this scenario.

They have di�erent and complicated methods for replicating and managing

data, in order to resolve any kind of failure.

Google BigTable is the main example for this kind of scenario: it states a solid

storing basis for cloud services and for all Google web tools.

• RDBMS features: few of NoSQL datastores try to maintain the relational

model used in RDBMS. These ones try to resolve complex queries and also

queries with relations, not a peculiar structure in NoSQL. RavenDB 1 is prob-

abily the most known datastore that tries to emulate a RDBMS database and

its properties.

• Hashing tables: key-values NoSQL datastores can be used also as hashing

tables (also called "cache-tables") for RDBMS databases.

They are used as map-tables to get simple key values, after used in a RDBMS

database to get the full row information.

We add below another property that characterize NoSQL datastores: it is replication.

Replication

Replication means that all data stored in distributed databases are stored not only

in one single physical space.

This feature involves an improvement of database performance, allowing the load

balancer (the component that is responsible of assigning a node to each client oper-

ation) to distribute read operations over di�erent storing nodes, helping a very high

improvement for systems availability. Replication helps also the datastore to recover

rows of data when a node is o�ine or dead, providing a backup function.

The main problem caused by storing not one but many copies of a single piece of

data can be write operations. If all copies of same data are stored consistently, the

datastore can reach better performances to answers read operations.

1Hibernating Rhinos, http://ravendb.net/
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There are two main approaches that characterize NoSQL databases: the �rst is

to wait for the write of all copies before giving to clients the positive acknowledge

(synchronous writes).

The second is to guarantee the positive ack for the �rst copy and the asynchronous

update of the other replicas in a sequent time, providing the correct value for read

operations.

These two approaches are better explained later in this work with Brewer's "CAP

Theorem" (2.2.1).

2.2.1 CAP Theorem

To de�ne some NoSQL datastores features it is necessary to introduce a theorem

called "CAP Theorem�.

It was introduced by Brewer in 2000 [4] and consists of a simple concept: �it's im-

possible for a web service to provide Consistency, Availability and Partition-Tolerance

at the same time�. This statement is proved by contradiction in Brewer's paper.

All of these three properties listed before are nowadays expected from a real-world

web service. Their de�nition are the following:

• Consistency: all clients provide the same answer to the same request done

at the same time. It means that all copies of the same data should be updated

to latest values;

• Availability: every client that makes a request to a node, will provide always

an answer. It refers to the fact that all the queries that are performed must be

completed;

• Partition-tolerance: the system continues to work despite message loss, as

node or part of the system fails or if the network is divided in two or more

partitions. The system has to be able to supply an alternative way when these

problems arise.

As a result of the theorem, we can have a database with only one of these three kind

of combination properties: CA, CP or AP (�gure 2.1).

NoSQL databases �rst aim is to maintain the Partition-tolerance property, be-

cause they are designed as distribute systems: if they are designed choosing Consis-

tency and Availability properties, when a node failure occurs, �rst of all it can be

comparable to a loss of availability, and second it is impossible to recover its values

consistently with the correct ones.

From this point of view, a loss of Availability follows a Partition loss, so the

choice they have to do is to select either Consistency or Availability, in addition to

Partition Tolerance.
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Figure 2.1: CAP theorem

As we have already said in the previous paragraph, this choice is made, from a

certain point of view, when a datastore selects how to perform data writes. If it

prefers strong consistency, it will be described as "CP". "C" means consistency and

it mainly refers to this property of having all copies of same data consistent at any

point in time.

The other face of the medal is, instead, the Availability ("A") option: in systems

where availability is preferred over consistency, a write operation �nishes after the

�rst copy of data is stored and the other copies are considered "consistent in a not

speci�c future time". Last concept can be described with the de�nition of "Eventual

Consistency". This property can't be described with classic RDBMS set properties

(called "ACID", Availability, Consistency, Isolation and Durability), but it must be

described with a new one. This new set of properties is the subject of the next

paragraph.

2.2.2 A new set of properties: BASE

As we introduced in the previous paragraph, ACID properties can not be used to

describe NoSQL datastores. Through the years a new set of �exible properties has

been approached to explain most of NoSQL systems.

They are called BASE properties:

"BA" stands for Basically Available: it means that the the system responds to

any request at any time; it can be a "failure", but it will be a response. "E" stands

for �Eventually consistent� : as we already said, it means that in a NoSQL database

can exists a moment where all the copy of the same data are not updated at the

latest value.
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Can exist a state of the system (the �Soft state�, "S") where all data are not

completely consistent. BASE systems do not use two-phase locking (main feature

of Relational systems, characterized by ACID properties), but they guarantee that

sooner or later all data will be consistent.

These particular properties allow the system to be Basically Available all the

time, unlike the RDBMSes where all update transactions have to be atomic, causing

delays in answers.

All these features are peculiar for all NoSQL datastores that choose CAP Theo-

rem's AP perspective, due to the fact that Eventual Consistency does not guarantee

the "full C" property. They are the basis of Twitter, Google, Amazon and Yahoo

services that the majority of people in the world use everyday.

2.3 NoSQL Classi�cation

Over the past 10 years many di�erent NoSQL datastores have been developed

in order to answer speci�c companies requirements regarding high scalability perfor-

mance, maintenance or availability.

There are some di�erent approaches to classify all this kind of datastores. The

most used is the one that considers their data model structure. There are also other

classi�cations that rely on query models, and sharding or replication methods.

We will focus basically on data model classi�cation because it is probably the

best known method, quoting also other methods if it reveals necessary for a better

explanation.

With regard to the data model, all NoSQL databases can be classi�ed into four

macro-groups: key-value, column-oriented, document-based and graph-based. In the

following subsections we are going to explain each of these four categories.

2.3.1 Key-Value

All the rows stored in this kind of storage are represented under a form of a map

between keys and values (�gure 2.2).

Storing data with this method enables to write huge amounts of di�erent types

of data in a very easy way and to simply optimize its distribution. In fact the tables

can be easily divided horizontally (sharded) and data distributed on di�erent nodes

allocated on multiple machines.

These kind of databases are usually used like hash-tables because they can easily

be accessed using the key attribute. Storing data with di�erent and disordered keys

can be a disadvantage for sequential key-range queries.

The key-value databases are usually completely schema-free and the main opera-

tions (put, get, delete) are available. Examples of this kind of databases are Project
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Voldemort [10], Redis [18] and Amazon DynamoDB [16] .

Figure 2.2: Key-value datastore

2.3.2 Column-oriented

They are similar to key-value stores (2.3.1), as they classify data through a key

distribution. They can manage and distribute huge amount of rows over many and

di�erent physical machines.

These databases are the best for scaling-up and for managing big data volumes,

because they can be partitioned both horizontally (on rows) and vertically (on fam-

ilies).

Concerning the data model aspect, the majority of column-oriented databases

are inspired by Google Big Table [6] data model. They create collections of one or

more key/value pairs that match a record.

Column families are NoSQL objects that contain columns of related data. Each

row can have his own set of columns, di�erent from the other rows (they are called

�sparse datastores�), not requiring a pre-structured table. Each record comes with

one or more columns containing the information. Basically, these datastores are two

dimensional arrays whereby each row (key/record) has one or more key/value pairs

attached to it and these management systems allow very large and unstructured data

are kept and used.

For example, in �gure 2.3, the �rst row can have only columns "Name" and "Age",

while the other two can have all the three columns described ("Name", "Age" and

"State").

They are very powerful and be reliably used to keep important data of very large

size.
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There are many di�erent examples of this kind of datastores: HBase 2, Cassandra
3 and Hypertable 4.

Figure 2.3: Column-based datastore

2.3.3 Document-oriented

This category of database manages document-oriented data (semi-structured

data).

Each document can have a di�erent set of attributes that can be di�erent from

other documents collected in the same group. The document-based databases can

be considered like key-document datastores (similarly as key-value datastores), like

�gure 2.4 shows.

The main concepts provided on keys in 2.3.1 section are quite the same here. The

Value �eld here is more complex and structured. A Document has more attributes

or other nested documents, like XML �les. These type of documents can be �ltered

and scanned, but with lower performance then the Key-Value ones, because of their

data structure.

One of the most critical functionalities of these datastores is that they interact

with applications through Javascript Friendly JSON.

Query model and API are very rich and a set of high level features is provided,

like indexes, views, triggers, transactions, similar to RDBMS functionalities.

The most used document-oriented datastore used is MongoDB 5. Another exam-

ple can be CouchDB 6.

2Apache HBase, http://hbase.apache.org, The Apache Software Foundation.
3Apache Cassandra, http://cassandra.apache.org, Apache Software Foundation
4Hypertable Inc, http://hypertable.org/.
5Inc. MongoDB. http://www.mongodb.org/.
6Apache CoucheDB, http://couchdb.apache.org/, Apache Software Foundation
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Figure 2.4: Document-based datastore

2.3.4 Graph-based

Last family of NoSQL database is the Graph-based family. This kind of datastore

uses a graph representation to describe the entity structure.

Each node of the graph corresponds to an entity in the database and each edge

between two entities represents a relationship between them (�gure 2.5).

These kinds of database are quite di�erent from the others. In graph-oriented

datastores relationships are taken into account like a fundamental part of the database,

unlike all the other datastores previously described. Social relationships (social net-

works) and maps problems can be easily described and queried with this kind of

representation.

Due to the presence of relationships, ACID properties are generally provided.

Due to their particular structure, these databases provide query structures that

allow classical graph functions as path, distance, neighbor, etc. .

They are particularly used when the data model is complex with many con-

nections between entities and various degrees of other entities indirectly related to

them.

Examples of this type of datastores are Neo4j 7 and In�nite Graph 8.

7Inc. Neo Technology, http://http://www.neo4j.org/.
8Objectivity In�niteGraph, http://www.objectivity.com/in�nitegraph/.
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Figure 2.5: Graph-based datastore

After this classi�cation we have to say that each architectural structure gives to

each datastore di�erent properties. One of the best ways to classify them from this

point of view is to distinguish them from CAP Theorem's point of view, or better

considering them as "CP" or "AP" datastores, as we have already said in paragraph

2.2.1.

The remaining part of this Chapter shows this comparison, highlighting similar-

ities and di�erences between the two.

2.3.5 Consistency vs Availability

To better understand the di�erence between a datastore that provides Consis-

tency and one that provides Availability, we now present two datastores mentioned

during the previous classi�cation that belong to the two di�erent CAP theorem's

perspective (CP and AP), described in 2.2.1, trying to show their features and how

their architectural structure infers them speci�c properties.

The �rst is Amazon DynamoDB.

2.3.5.1 Amazon DynamoDB

One of the main representative key-value datastore is DynamoDB , as an example

of an "AP" datastore, by the fact that it is a highly available key-value storage

system.

14



2.3. NoSQL Classi�cation

As mentioned in "Dynamo: Amazon's Highly Available Key-value Store" [9],

Amazon platform needs some operational requirements in terms of performance, re-

liability and e�ciency, and to support continuous growth it has to be highly scalable.

Reliability is probably one of the most important requirements because "even the

slightest outage has signi�cant �nancial consequences and impacts customer trust".

To achieve this level of availability, Dynamo sacri�ces consistency under certain

failure scenarios.

Its main features are listed below:

• Data model: key-value hash column and an optionally sorting key column

for sorting data; each table is a collection of Items, each one formed by many

attributes. The primary key is required.

• CAP Theorem: it is an AP (Availability - Partition Tolerance) datastore.

BASE properties are guaranteed and is possible to set the eventual consis-

tency level (reaching strict consistency grades); its default value is low and it

maximizes the read throughput.

• RDBMS: no classical transactions are supported and a secondary index is not

implemented;

• MapReduce: MapReduce is a "programming model for processing large

datasets" [8]. In DynamoDB it is possible to perform MapReduce jobs.

• Partitioning: data can be auto-sharded into machines with key hashing mech-

anism. It is driven by table dimension or provisioned throughput.

• Replication: replication is performed by replication of data into di�erent

nodes (usually three copies). They are updated asynchronously so Eventual

Consistency is a feature of this datastore.

• Architecture:

Dynamo is a fully distributed datastore without a single point of failure and it can

be accessed via web service APIs. It can serve any level of request tra�c and store

any amount of data, paying a very low price for that.

Dynamo stores objects with keys in what can be represented as a peer to peer ar-

chitecture. Its structure can be represented as a ring, where all nodes are at same

level, as described in �gure 2.6.

Dynamo allows get and put operations, performed �nding the correct key value on

the hash-ring.

One of the main requirements of this database is that it must scale incrementally.

Dynamo's partitioning relies on consistent hashing to distribute the load across the

di�erent nodes. Each data is assigned to a single node by hashing the data item's
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key and the correct node is chosen walking clockwise from the hash location (�gure

2.6).

To achieve high availability, each data stored in Dynamo is replicated N times. Af-

ter storing the �rst copy, the remaining N-1 copies are stored at the N-1 clockwise

successor nodes in the ring. In the �gure, if replication factor is 3, B replicates the

key in nodes C and D, in addition to its copy. This fact makes Dynamo extremely

highly available and durable.

Dynamo provides Eventual Consistency, so it is possible that a put request returns

Figure 2.6: DynamoDB architecture

to its caller before the update has been applied to all replicas. If there are no node

failures, Dynamo guarantees that each read operation on that value is correctly per-

formed.

Dynamo, in fact, do not use a traditional quorum approach to maintain consistency

among the replicas, because it would be unavailable during server failures and net-

work partitions. It uses a "sloppy quorum". Quoting from the paper: "all read and

write operations are performed on the �rst N healthy nodes, which may not always

be the �rst N nodes encountered while walking the consistent hashing ring".

Considering again the �gure 2.6, if A is temporally down during a write operation,

its replica is sent to node D. This can maintain availability and durability. D stores

the replica knowing that that would be stored into node A. If D detects that node

A has been correctly recovered, the replica is sent to A and deleted in D, in order to

maintain the total number of replicas in the system.

Using this method, a write operation is rejected if and only if all nodes are not avail-

able.
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When a new node is added to the ring, a new key range is assigned to it. Due to

this allocation, some other existing nodes have to send some of their keys to that

new node. If a node is removed from the ring, the process is the same but reverse.

This approach distributes the load of keys uniformly on the ring, ensuring latency

requirements.

Most of the important techniques used by DynamoDB are summarized in the table

below. All these techniques are described in [9].

Problem Technique Advantages

Data Partitioning Consistent Hashing Incremental scalability.

High Availability
for writes

Vector clocks with
reconciliation during

reads

Version size is
decoupled from updates

rates.

Handling
temporary
failures

Sloppy Quorum and
hinted hand-o�

Provides high
availability and

durability guarantee
when some of the
replicas are not

available.

Recovering from
permanent
failures

Anti-entropy using
Merkle trees

Synchronizes divergent
replicas in the
background.

Membership and
failure detenction

Gossip-based
membership protocol
and failure detenction

Preserves symmetry
and avoids having a

centralized registry for
storing membership
and node liveness

information.

Table 2.1: Dynamo techniques ( [9])

As we said, all described techniques are designed to make Dynamo extremely

highly available, sacri�cing Strong Consistency. This fact permits to categorize Dy-

namo as an "AP" datastore, according to CAP theorem point of view.

We now introduce another datastore, BigTable, that is quite di�erent from Dynamo,

both from requirements and architectural points of view.

2.3.5.2 Google BigTable

BigTable project was presented for the �rst time in 2004 by Google. It is build

on its own �le system (Google File System) and few other Google technologies. Of

course it is mostly used for Google applications, such as Google Maps, Google Earth,

Google Code, YouTube, Gmail, etc. .

We have to say that there are di�erent classi�cations of this datastore, some
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referring to it as a "column-based store", some as a "key-value datastore". The

de�nition given by its own paper [6] is: �a distributed storage system for managing

structured data that is designed to scale to a very large size: petabytes of data across

thousands of commodity servers�.

The main reason it was conceived was �scale the capacity of their clusters by

simply adding more machines to the system as their resource demands change over

time�. One of its particular features is that it allows to add or delete nodes in the

order of seconds and it is able to manage huge amounts of data in a very small time.

These properties make BigTable one of the �rst datastores to prefer Consistency

over Availability, in addition to Partition Tolerance, following CAP Theorem's di-

rectives. In order to maintain all �ve (default) replicas of each row, BigTable allows

indeed a small loss of availability.

Replicas are stored synchronously so can occur a request failure when the data-

store is managing these data.

Its main characteristics are:

• It can be de�ned as "a sparse, distributed, persistent and multidimensional

sorted map": sparse because data stored can be very di�erent and belong

to di�erent columns; distributed because data can be stored in hundreds of

di�erent nodes; persistent is a way to ensure no data losses; multidimensional

due to its data model presented in the next point.

• Data model: the data model is a sort of three dimensions table with row-key,

column-key and timestamps as axes: each data stored is a meeting point of

these elements.

Columns can be grouped under the de�nition of Column Families, that are

simply a set of columns.

• MapReduce: MapReduce, "a programming model for processing and gener-

ating large data sets with a parallel, distributed algorithm on a cluster" [8],

is the main feature of this database, allowing fast answers to client requests,

sharding it into smaller queries.

• RDBMS: no secondary indexes, transactions atomic only on single rows.

• CAP Theorem: it is a CP (Consistency, Partition Tolerance) datastore. Each

read and write is atomic under a single row-key: it ensures data consistency

through the di�erent replicas.

• Partitioning: when a table reaches a certain amount of data (100-200 MB), it

is divided (sharded) into two subtables, in order to have better performances.

• Architecture:
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BigTable architecture is completely di�erent from Dynamo one. It is not structured

as a peer-to-peer but it can be described with a Master-Node structure. As we have

already said it uses its own File System (GFS) to store data �les. BigTable stores

data in tables called SSTables, that provide a "persistent, ordered immutable map

from keys to values". Each operation consists of looking up the value linked to each

key. Data are stored in blocks; each block has a starting point that is can be used

as to locate it.

BigTable provides also a highly-available and persistent distributed lock service called

Chubby [5]. It has the responsibility to maintain all the �ve replicas of each data

consistent in face of failure. It provides also a directory �le that can be used as a

lock, to perform atomic reads and writes.

These characteristics make BigTable quite di�erent from Dynamo. While Dynamo,

as we said, sacri�ces Strong Consistency on write operations to reach a higher avail-

ability, BigTable provides locking mechanisms to ensure Strong Consistency on all

copies of data written, accepting loss of Availability.

We have also to say that Chubby constitutes the single point of failure of BigTable,

since when Chubby is no available, BigTable becomes unavailable too.

As all Master-Slaves architectures, BigTable has one master server and many tablet

servers (slaves), dynamically added to respond to workload changes.

The master is responsible for assign tablets (a group of tablets form a table) to tablet

servers and balancing loads, while the tablet servers are responsible to manage a set

of tablets and receive read or write requests from the clients.

If a tablet has too many data, it is splitted into two smaller tablets (this process

is called "sharding"). This structure allows the client to communicate directly with

the tablet servers, avoid overloading the master.

All tables and tablets information and locations are traced in tables called META-

DATA. Chubby stores a �le that contains the �rst METDATA table location. This

one contains all the locations of other METADATA tables, each one collecting tables

and tablets locations. With this mechanism BigTable can address 234 tables using

only 128 MB of disk space. There are many other functions and features provided,

whose description is shown in [6].

We described Dynamo and BigTable, trying to underline their architectural di�er-

ences that bring us to consider Dynamo an highly Available datastore, while BigTable

a "Consistent and Partition Tolerant" one. When choosing the database to use for

our analysis, we took into account the better predisposition of a column-oriented

datastore like BigTable to store sparse and very di�erent types of data, but we also

decided to set aside "AP" databases like DynamoDB because of BigTable's feature

that guarantees strong consistency on write operations on single rows.

This particular property will be very useful for our considerations in the following

Chapter.
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Since it is not possible to use BigTable for our analysis (it's not distributed outside

Google), we tried to select one of its derived column-oriented datastores, useful for

our purposes. Finally, our choice fell on HBase.

Its dynamic data schema and the possibility to perform range based scan opera-

tions are additional reasons for our choice.

We now present HBase datastore, showing its features and architectural proper-

ties.

2.4 HBase

In this section we are going to present HBase datastore, as it will be the base for

our work. As de�nition, HBase is "an open source, distributed, sorted map datastore

modeled after Google Big Table". It means that:

• Open source: it is free downloadable from Apache website;

• Distributed: it can store and read data on a huge number of machines (from

1 to over tested 700);

• Sorted map: it provides a total ordering on its data-keys.

2.4.1 HBase architecture

Before analyzing HBase architectural structure, it's important to know that it

runs on top of HDFS, the Hadoop Distributed File System [3], that we are now going

to describe in the following paragraphs.

2.4.1.1 Hadoop

As presented in Apache WebSite 9, "Hadoop is an open source software framework

for storage and large-processing of data-sets on commodity cluster hardware".

It is composed of four di�erent modules: Common, Yarn, MapReduce and Dis-

tributed File System.

Common package contains the necessary Java ARchive (JAR) �les and scripts

needed to start Hadoop.

Yarn is a "resource-management platform responsible for managing compute

resources in clusters (available from versions 2.0)".

MapReduce is "a programming model for processing and generating large data

sets with a parallel algorithm".

The Hadoop File System is described in the paragraph below, as it is a consistent

part also of HBase architecture.

9http://www.apache.org/, Apache Software Foundation
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2.4.1.2 Hadoop HDFS

An Hadoop cluster usually consists of a single Namenode and many Datanodes.

The Namenode is the centerpiece of HDFS. It keeps the directory tree of all

�les in �le system and tracks where across the cluster the �le data is kept. Client

applications talks with Namenode when they need to locate �le.

These kind of systems do not support automatic recovery in case of Namenode

failover. This is a well known and recognized single point of failure in Hadoop.

There is an optional SecondaryNamenode that can be hosted on a di�erent ma-

chine. It is not like a second Namenode, but it only creates checkpoints of the system

and holds an older copy of Namenode metadata.

Datanodes store data in the HDFS. They are grouped into racks, a common name

to de�ne a group of datanodes.

Hadoop provides data replication, that can be set by the user (default value is 3).

If its value is set greater than 2, Hadoop provides the concept of "Rack Awareness",

that means that the system guarantees that two copies of the same data are stored in

a di�erent nodes of the same rack, while the remaining copy is stored in a completely

di�erent rack. This is a plus property that helps to reach further better performances

after a node failure.

All data received from clients are stored in blocks and all replica of these blocks

are stored synchronously, providing Strong Consistency on writes of single rows.

Blocks

Like all existing File Systems, Hadoop provides this fundamental unit, but with

bigger dimensions that in usual cases.

The common default dimension of a single block in File System is 512 KB, while

in Hadoop HDFS it is set to 64 MB or 128 MB 10.

This fact is justi�able by the fact that this File System needs to store huge

amounts of data in very small times, and this kind of setting allows it to reduce disk

seek time, that is the time needed by the hard disk controller to locate the speci�c

piece of stored data. This feature provided by Hadoop is one of the main reasons

that improves HBase performances.

Strong Consistency and Replication

As mentioned in Brad Hedlund's article [12], Hadoop provides strong consistency on

writes operations, storing all copies of the same value when this type of operation is

requested.

When Hadoop receives a write request, the Client asks the Namenode to do

that. The NameNode can give back to the client a list of n datanodes, where n is

10Apache Software Foundation. Hdfs-default settings, http://hadoop.apache.org/docs/r2.2.0/hadoop-
project-dist/hadoop-hdfs/hdfs- default.xml. Accessed: 2014-03-04.
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the replication value, where the client can write its data. Once the Namenode has

provided the location of the datanodes to the client application, the client can talk

directly to the Datanodes, asking them to store the data, as required.

The write operation is performed in blocks of data and each block can not be

stored if the previous block is not stored in all of the n nodes, like as a pipelined

write. This feature is quite similar to BigTable's Chubby function of performing

write operations.

Namenode also tracks all the blocks written in the File System and knows per-

fectly in each moment where are all �les. If a node or rack failure occurs, the Na-

meNode knows that there are less copies of a single block in the cluster, so provides

to store in a new datanode all the blocks lost.

In this section we presented the Hadoop features and File System, necessary to

understand HBase architecture, presented below. We start from the basic unit of

HBase tables, the Region, describing how they are organized and how they works,

focusing on Region splitting policies in paragraph ??.

2.4.1.3 Regions

HBase, like BigTable, has a Master-Node structure and stores �les in tables.

Each HBase table is associated to one or many Regions. They are the basic element

of availability and distribution for tables.

Regions are non-overlapping; it means that a single row key belongs to exactly

one region at any point in time. When a region is very large and contains a lot of

data, it can be splitted, according to HBase splitting policy. We are going to analyze

it in Section4.1.1.

Each region can hold data from only one table, but one table can have many

regions.

There are two default tables in HBase, -ROOT- and .META.: the �rst one (do

not used from version 0.96.0) keeps track of -META- table's location, while .META.

keeps a list of all regions in the system and for each region the starting key of data

that belongs to that �eld.

This simple table organization allows HBase to access all tables and regions in a

very optimized way, like BigTable does.

HBase system is composed by two main processes: Master Server and Region

Server.

1. Master Server is responsible for monitoring all Region Server instances in

the cluster, and is the interface for all meta data changes.

In a distributed cluster, the Master typically runs on the same machine of

Hadoop Namenode (2.4.1.2), but if this machine goes down, HBase is shut

down with a high probability of losing data.
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Since version 0.20.0 HBase supports multiple Masters to provide higher avail-

ability. With this con�guration, when the Master is down, an eligible Region

Server is chosen as new Master Server.

2. Region Server must manage and serve regions. In a distributed cluster, a

Region Server runs on an Hadoop Datanode machine.

An additional service used by an HBase cluster is Apache Zookeeper [13]: it is a

sort of external coordinator that con�gures and synchronizes Master Server(s) and

Region Server(s).

Following the formal de�nition it is a "distributed, open-source11 coordinator

service for distributed applications".

Its integration with Master and RegionServer nodes is shown in �gure 2.7.

Figure 2.7: HBase cluster architecture

2.4.2 Data Model

As we have already seen, HBase system runs on top of HDFS (Hadoop Distributed

File System), , that provides a fault-tolerant way of storing large quantities of sparse

data.

We also said that each table is composed by many regions, each one is structured

by the following dimensions:

Rows which are identi�ed by a string-key of arbitrary length.

11Apache Zookeeper, http://zookeeper.apache.org/, Apache Software Foundation
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Column Families which can occur in arbitrary number per row. As in Bigtable,

column-families have to be de�ned in advance, during the creation of the

table. The number of column families per table is not limited. Since

HBase stores the name of the column family per each row stored, a good

design implies short column family names.

Columns have a name and store a number of values per row which are identi�ed

by a timestamp (like in Bigtable). Each row in a table can have di�erent

number of columns, that can be de�ned at run-time. Client applications

may specify the ordering of columns within a column family.

Timestamp which is created when the instance is stored. Di�erent timestamps can

be assigned to the same value, so HBase can store di�erent copies of the

same data. The user can also modify the timestamp in order to create

di�erent versions of the same entity.

The typical representation of a HBase data model is described below:

Figure 2.8: HBase Data Model

In �gure 2.8 are described two di�erent HBase rows, each one characterized by

two column-families that group di�erent columns. Each of these columns can be

de�ned at run-time by the client (while column families need to be declared when

the table is �rst created) and can be very di�erent in each row. The annotation '@'

also describes the presence of timestamps, useful if we want to track the past copies.

HBase is a column-oriented datastore, it provides an important feature that other

datastores of the same data-model set (Cassandra for example) do not o�er, that

is Ordered Partitioning. This property implies that all rows are stored following

Row-Key order, that means that HBase provides row-Scans operations among a

range of Key-Values. This feature allows his datastore to provide better performances

than the others with this type of searches.
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Designing a good row-key on the basis of each single query implies only one or

few Scans operation for each query, instead of many queries on di�erent tables like

in RDBMS.

2.4.3 Replication

When we talk about HBase Replication we can distinguish between HBase repli-

cation and Hadoop replication.

The �rst means that HBase provides one (or multiple) copy of all data and

cluster structure. It means that copies of single rows and also of tables and regions

information are kept only to be used when the whole cluster is unavailable and to

restore it after a disaster. This replication is asynchronous and allows clusters to be

geographically distant. This also provides a gap of consistency between the copies

and can be not updated to the latest values every time.

Hadoop replication, as we have already said in HDFS paragraph (2.4.1.2), means

that all rows stored into its �le systems are saved together with one or two (or many)

replicas.

2.4.4 API

HBase is mostly written in Java, so there are some Java Native API, useful to

access and manage data faster.

In this paragraph are described the main classes and operations that are needed

by a user that wants to manage an HBase cluster.

HBaseAdmin: an interface to manage HBase database metadata and general admin-

istrative functions. It can create, drop, disable or enable tables or column

families.

HTableDescriptor: contains details about an HBase table such a descriptor of all

the column families.

HColumnDescriptor: stores information about an HBase column family such the

number of versions and it is used as input when creating a table or adding a

column.

HTable: it is used to communicate to a single HBase table.

Put: is used to perform Put operations (create or update) for a single row.

Get: is used when the user wants to get all information about a single row.

Scan: it is the same as Get operation but it is performed on multiple rows. An

optional StartRow and StopRow may be de�ned.
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2.5 Summary

In this chapter we presented a global description of NoSQL datastores and a

possible classi�cation based on their data models. We also showed how NoSQL

datastores are di�erent from traditional RDBMS.

We presented two particular databases, DynamoDB and Google BigTable, and

we showed why they are considered di�erent from CAP Theorem's (cfr 2.2.1) point

of view, due to their di�erent architectural characteristics. In the �nal section we

presented a particular column-oriented datastore, HBase, in union with its main

features, as important starting point of our work.
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Chapter 3

Denormalizing data starting from

a relational query schema

The previous Chapter shows how NoSQL databases do not provide strict struc-

tures to store data, as RDBMS do. This lack a�ects performance of queries that

need to perform a Join-like operation between di�erent tables in a NoSQL datastore.

This Chapter proposes a possible solution to this problem. In particular, it intro-

duces two di�erent mapping approaches that denormalize data from the relational

data model, predisposing it for a NoSQL environment. These mapping solutions are

based on queries known at design time. After this introduction, the second part of

the Chapter proposes a model for the �rst approach, analyzing it adaptability to all

possible Relational Algebra queries.

This model is also supported by two examples and, in the last section, we are

going to analyze its limits.

3.1 De�nition of the problem

As Chapter 2 shows, NoSQL datastores are used in front of high scalability and

performance requirements. They also do not support relationships as RDBMS do.

Operations like Cartesian product and join are provided as standard operations in

RDBMS, but they are not available in NoSQL datastores.

NoSQL datastores are often used in scenarios in which large amounts of data are

stored before being processed and analyzed. The queries the user is going to perform

are often known at design time, before storing all data. Most of queries performed

in Big Data scenarios are read queries, performed on di�erent tables through basic

standard logic query operators: union, join, selection, projection, etc. .

This work o�ers a solution for these types of scenarios. In particular, it identi�es

di�erent approaches to map a relational dataset structure into a NoSQL-adaptable

one. This objective is achieved given the E-R schema and the queries known at design
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time. The main aim of this work is to partially resolve NoSQL lack of performing

join operations, maintaining their important features like high availability, horizontal

scalability and partition tolerance.

The analysis of strong consistency, high availability and node sharding policies

of NoSQL databases guides us to two di�erent approaches.

In the following section we are going to present them, while in the second part

of the Chapter we are going to present a speci�c model for the �rst of them, trying

to analyze its adaptability to all possible Relational Algebra queries and to identify

its limits.

3.2 Possible approaches for data denormalization

This section shows two possible approaches identi�ed for data denormalization

from a relational entity structure into a NoSQL-adaptable one.

Starting from the analysis of strong consistency and availability requirements, we

achieve these two possible mapping solutions.

The scenario we are going to consider is the one where the user has a relational

data model and wants to map it in a NoSQL datastore, in order to exploit its features.

We also suppose that the user knows the queries he is going to perform and that they

are given at design time. We also suppose that the dataset is primarily designed for

read queries, as nowadays BigData datasets are.

We also point out that this denormalization process does not have to lose any

information about data structure or data relationships. The �nal dataset must be

formally equal to the one given as input.

We now present two di�erent approaches, achieved from the need to obtain dif-

ferent features:

1. The �rst approach wants to exploit strong consistency property, provided by

NoSQL datastores on single row write operation. This property prompted us

to �nd a way to store all data related by a query in a single row of the new

datastore.

So the new designed entity will collect all data from the entities involved in

a single query. This entity is designed in this way in order to be better pre-

disposed to answer to that particular query, probably reaching better perfor-

mance. The point this approach wants to solve is the lack of NoSQL datastores

to perform operations between tables, using data structuring to perform them

at design time and avoiding multiple scans or other expensive operations at

run-time.

2. The second approach is conceived to solve availability requirements. This ap-

proach, like the �rst, wants to denormalize data, starting from a relational
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schema of a dataset, in order to adapt it for a NoSQL-adaptable schema, given

a speci�c query. However, this time, all data requested by the query are mapped

into multiple rows.

This approach does not allow us to exploit strong consistency property of

NoSQL datastores. However, in order to reach the highest possible availabil-

ity, it needs to guarantee that all related rows of data are stored in the same

physical space.

This model opens to further considerations about arranging database nodes

before its population, managing insertions of data and maintaining consistent

information in the same table node. This particular point is addressed by

section 4.1.4.

We propose now a possible solution for the �rst approach, analyzing also its limits,

while the second approach is left as a possible future work.

3.3 Basic assumptions

Before presenting our solution to the �rst approach, it is necessary to introduce

some assumptions that can be useful to better understand the concepts explained in

the next sections.

First of all it is necessary to introduce Relational Algebra, as basis of global

relational query language. In a second phase we are going to introduce few operators

that will be used to de�ne our model's equations.

3.3.1 Relational Algebra

According to its de�nition [1], "Relational Algebra is a procedural language,

based on algebraic concepts. It consists of a collection of operators that are de�ned

on relations, and that produce relations as result".

It provides the main theoretical foundation for RDBMS, in particular for their

query languages. The basic operators of Relational Algebra are �ve: set union, set

di�erence, Cartesian product, projection and selection. The �rst three operations

must involve two operands, while the last two need only one. There are also other

operators that can be derived from these six primitive operators. They can be de�ned

as follows:

UNION: A∪B= {x|x ∈ A ∨ x ∈ B}. "All data that belongs to entities A or B, is

selected". The operands must be union-compatible, means that A and B

must have the same set of attributes.
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DIFFERENCE: A−B = {x|x ∈ A∧x /∈ B}. "All data that belongs to entity A but

not B, is selected". Like union operands, A and B must be di�erence-

compatible.

CARTESIAN PRODUCT: A× B = {x, y|x ∈ A∧y ∈ B}. "If entity A has n tuples

and B has m tuples, the result is the combination of n and m tuples".

Cartesian product relations must have di�erent attribute subsets.

SELECTION: σF (A) = {x|x ∈ A∧F (x) = T}. Given a condition F on A, it returns

a subset of tuples that respect the condition.

PROJECTION: πy(A) = {x[Y ]|x ∈ A}. It selects just few attributes of an entity to

be shown.

An additional operator frequently used in relational database queries:

NATURAL JOIN: A on B = σF (A×B) = {x∪y|x ∈ A∧y ∈ B∧Fun(x∪y)}. "If A
and B shares one attribute name, the result is a join of the two entities,

based on this shared attribute". It is probably the most used operator

when a query is generated. In this work we will prefer this one instead

of the Cartesian product, that is less frequently used. If the selection is

performed on attributes with di�erent names, the Join takes the name of

"THETA JOIN", where Theta (Θ) is the selection condition.

There is an another operator that is used in basic relational algebra, that is

RENAME: ρy←x(A) = {x[Y/X]|x ∈ A}. It simply renames the attribute's name; it

is often used before union or di�erence operators to have equal attributes

names. We will not consider it as a proper operation, by the fact that it

does not imply signi�cant changes to data stored in tables.

All operations work on one or more relations and the result is always a relation.

This property is called closure property and it allows nesting expressions, like in

arithmetic.

3.3.2 Operators and symbols

In this section are presented some operators that can be useful for the compre-

hension of the rules proposed in the next section. They are de�ned on purpose to

better understand the model we are going to introduce. The main symbols used are:

• A: a capital letter is used to assign a name to a table; a table is a collection of

rows stored in a database (a single row of a table is also called tuple).

• ΣattA: it is the sum of all the attributes of table A, except the primary-key

attribute;
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• A := B : given tables A and B, it means that all the tuples of table B have

to be included into table A. This symbol has di�erent aspects that must be

explained:

� If A has the same attribute names of B, no more attributes will be created;

� If A has di�erent attribute names from B, in A will be created attributes

with the same name of attributes of table B;

� πC,D(A) := πE,F (B) : "extract only attributes E and F from all the

attributes of table B and put them into table A under the attribute's

names C and D". Attribute list cardinality has to be the same in both of

the expression operands. Again, if table A already has C and D attributes,

they will not be created. On the other hand, attributes E and F for table

B must already exists;

� If B is composed by a single tuple, only a single tuple is inserted into A;

� if both A and B are a single tuple, tuple B is copied into A. In this case

if A already has attribute values �lled, they will be overwritten.

• A := [B]valid=bit: it is a shortcut symbol that is used only when we want

to assign the bit value "bit" into the attribute "valid" in all the tuples of A

included from B. We will better explain the attribute valid in section 3.4.2.

From this de�nition we can deduce the following rule, useful when multiple

assignments are made on the same value:

A := [(B)valid=x]valid=y =⇒ A := [B]valid=z where z = x ∧ y

We also point out few restrictions to our entity model, in order to be sure that the

rules we are going to explain will be well posed for all possible cases. They are the

following:

• Attributes can not be in complex form;

• Entity generalization concept is not supported.

Attributes in simple form In a general E-R schema, attributes can be presented

as complex values. They can be two or more aggregated values, one

nested in each other. Each one of them can be transformed in a sim-

ple value, simply following the transformation schema explained in the

following �gure:
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Figure 3.1: Transformation of nested attributes

No Entity generalization The concept of entity hierarchy can be resolved shar-

ing parent entity attributes among child (children) entity (entities) at-

tributes, as �gure 3.2 explains.

Figure 3.2: How to prevent from entity generalization

3.4 The model

In this paragraph we are going to explain our idea of denormalizing data, using

an E-R query schema as input, and organizing the new data schema according to

the queries that will be expressed on the data, trying to use the approach brie�y

explained previously (3.2).
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Figure 3.3: Entity-Relation (E-R) schema of a database

3.4.1 Input schema

The main idea is to conceive a model that, given an entity-relationship schema

that represents the structure of the database (like the one presented in �gure 3.3)

and a query schema of it, builds an output entity that collects denormalized data on

the basis of that speci�c query schema.

A query schema can be de�ned as a sub-model of the entity-relations schema.

On the basis of a single E-R schema, di�erent query schemas that involves di�erent

entities or relations can be constructed. For example, on the basis of the E-R schema

described in �gure 3.3, we can provide the query schemas described in �gures 3.4

and 3.5.

Figure 3.4: First relational query schema

As we can see they are built form the same E-R schema but they can involve

di�erent entities and relations. In addition, a query schema does not represent a

single speci�c query, but it can represent many. For example the query described by

�gure 3.22 can be simply A on B or it can be more complex as πidA,attA1,attA2

(
A ∪

ρidA←idB,attA1←attB1,attA2←attB2(B)
)
. This is due to the fact that each relation can

represent di�erent operators.

The relation "R3" in �gure 3.4 represents a relation on a single operand, like a

selection or a projection.

Relations between two entities can be union sets, di�erence sets or join sets.
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Figure 3.5: Second relational query schema

Each single query schema does not involve the whole database and all query

schemas performed on a single database can produce di�erent possible overlapping

sub-models.

Given this introduction about query schemas, our main purpose is now to build

a common single entity where all original data can be stored after having been

denormalized on the basis of a single query schema.

3.4.2 Output entity

The �nal entity we are going to build has to be best-adaptable for all possible

query schemas that can be performed on the initial E-R schema, taken as input. This

�nal entity is called "Q" and it can be deducted from the starting E-R schema with

few rules that we are going to explain in the next paragraph. These rules should

�t to all possible query schemas, they have to maintain all the original information

about the entities and the relationships and they do not have to cause any loss of

data. The �nal single entity is something like the one presented in the �gure below:

Figure 3.6: Single entity result "Q"

This new entity will have di�erent attributes:

• idA, idB and idC are the same attributes as the original ones;

• ΣattA,ΣattB and ΣattC are all other attributes from A, B and C;
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• KEY is the new key-value (its generation method will be discussed in chapter

4);

• valid is a single bit attribute used for store data validity, so this bit noti�es if

a row of data is valid for a query: "1" if yes, "0" if not. Since this process of

denormalization should not cause data losses, also the rows that do not match

the result of the query have to be stored in this entity. This attribute is used

to distinguish the valid ones among those are not valid. Every single query

performed on an entity like this has to return only the rows that have bit valid

equal to "1". All the other rows are stored in the database to not lose data

and information, but they do not satisfy the query request.

If two operations are performed consequently, the �nal valid attribute is equal

to the AND operation between valid bits of single operations.

• status : this attribute is composed by a set of bits that are predisposed to

be used by the application layer to correctly show the attributes that the user

wants to see. It is a sort of mapping between all the attributes of entity Q

(3.4.2) and the attributes the user want to see. We provide this attribute in-

stead of replicating the same row, the �rst with the attributes the user requires,

the second with all the others. From a certain point of view it is a translation

of projection operator. Its length is equal to the total number of the attributes

(excluded KEY, valid and status itself), and each bit position corresponds to

the attribute that has the same position in the attribute list.

For example, an hypothetical entity A has three attributes, att1, att2 and

att3; we suppose status attribute value equal to "110". Mapping the �rst bit

with att1, the second with att2 and the third with att3, the �nal user will

only get attributes with bit equal to "1". Hence, in this example, only att1

and att2 values will be returned.

We have to say that KEY, valid and status attributes will never be sent to the

�nal user, but they can be used by the application layer to understand which rows

and columns have to be returned as query answers. The KEY, as we will see, will be

designed in order to identify the set of rows that are denormalized in order to answer

to that speci�c query. With the bit valid it is possible to distinguish the "valid"

rows from those that do not answer to the query, while status attribute is useful to

understand which attributes have to be selected.

3.4.3 Equations

Given this notions we can proceed to explain the rules that allow us to switch

from the canonical ER representation to the one presented previously and called

"Q". For each single operation we will present a simple example, in order to better
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explain the concept. Referring to �gure 3.4, we can say that a relationship of a query

schema can have one or two operands. We focus now on relation "R3", with only

one operand. In particular it can be:

1. SELECTION (σF (A) ): in this case, all the tuples of A are stored in Q, the

ones that respect the condition F are copied with a "valid" attribute equal to

"1", the others with "0". This choice is made to be able to distinguish the

rows that answer correctly to the query from all the others, without losing any

data:

Q :=
[
σF (A)

]
valid=1

∪
[
A− σF (A)

]
valid=0

The �gure below shows an example of this operator on table A:

Figure 3.7: Selection example

KEY attribute is empty because its particular design will be better explained

in Chapter 4.

2. PROJECTION πattA(A) : in this case there is not an horizontal table splitting

but only a selection of the attribute the user wants to be shown. Since all the

values of all the attributes from the original tables must be stored into "Q",

this operator will be replaced by status value, as we already have explained

in paragraph 3.4.2.

Below is explained an example of this operation:

Figure 3.8: Projection example
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We will see that Q maintains the closure property of Relational Algebra, that

means that Q can be used as operand of another query. This opens to the

possibility to perform a query composed of two projections. This particular

case has already been addressed in section 3.4.2.

We explained all possible query operations that involve just one operand. We are

now going to explain queries with two operands.

Regarding relation "R1" of �gure 3.4, we notice that it has two operands, so it

can have three di�erent possibilities:

1. It is a UNION (A∪B), so "Q" contains all the tuples stored in both A and B,

and all of them are set to be valid:

πA.idA,ΣA.attA(Q) :=
[
πidA,ΣattA(A)

]
valid=1⋃

πB.idB,ΣB.attB(Q) :=
[
πidB,ΣattB(B)

]
valid=1

Example 3.9 shows how all the tuples are marked with valid bit equal to "1":

2. It can be a DIFFERENCE (A − B), so in Q only the rows of A that are not

stored in B are marked as valid, all the others are marked with "0":

Q :=
(
A− ρidA,ΣattA←idB,ΣattB(B)

)
valid=1⋃

Q :=
(
A−

(
A− ρidA,ΣattA←idB,ΣattB(B)

))
valid=0⋃

Q := (B)valid=0

In this case entities A and B must have the same attribute cardinality and

names, in order to be able to execute the di�erence operation, as shown in

example 3.10.
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3. Denormalizing data starting from a relational query schema

Figure 3.10: Di�erence example
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3. If R1 is a JOIN (A on B), we have to distinguish between 3 cases:

(a) Simple relation: the cardinality of the relationship is 0:1 or 1:1 on both

hands; it means that A (or B) is linked to at least zero, or one and at

most one, item of B (or A). So in Q " only the tuples that represent a

join between the two entities will be included as "1, as all the others are

marked with "0":

Q := (A on B)valid=1⋃
Q :=

(
A− πidA,ΣattA(A on B)

)
valid=0⋃

Q :=
(
B − πidB,ΣattB(A on B)

)
valid=0

A on B

(b) In this case as "Join" we mean a "Natural Join", that implies that A and B

entities must share an attribute name (it can be any of their attributes), as

�gure 3.11 shows. The de�nition explained above is also used for "Theta

Join" and all the the other Join-derived expressions. They are composed

by one or more operations, so they can be performed executing each single

operation in cascade.

(c) The relationship R1 is a one-to-many relation: each item of A (or B) can

be linked to 0 to n item of B (or A), while each item of B (or A) can be

linked with 0 or 1 item of A (or B).

In this particular case the solution we try to adopt is quite di�erent from

the one we already proposed.

These type of relations can be seen in two di�erent ways, depending on

which side of the relation we want to consider. We can in fact denormalize

n item of B in relation with an item of A or, on the other side, we can

store into Q at most one item of A related with a single item of B.

The solution is highly dependent on the scenario the one-to-many relation

is applied to: sometimes the �rst way of denormalization can be the best,

sometimes it would be better to use the second.

Before showing the equation for this type of relation, we now present an

entity Q that is slightly di�erent from the one we presented in the previous

paragraph.

Since there is the possibility of mapping all n entities of B in relation with

an entity of A all in the same row of Q, we have to make some changes to

its structure. The result of this change can be seen in �gure 3.12, where
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3. Denormalizing data starting from a relational query schema

it is shown how a single entity of A can be stored in the same row with

many items of B, as demonstrate the presence of multiple instances of idB

and ΣattB.

Figure 3.12: One-to-many entity Q

The formula to obtain this entity is the following:

Algorithm 3.1 One-to-many join equation

Q :=
(

for each a ∈ A
new q ∈ Q;
πA(q) := πA(a)valid=0

for each bi|bi ∈ B ∧ (bi on a) 6= ∅ do
πB(BA) := πB(bi)
πBi(q) := πB(bi)
πvalid(q) =

′ 1′

update status �eld
end for

add q

end for
)⋃

Q := πB(B −BA)
\\WHERE BAis a support table composed of all the tuples of B that are in join with
at least a tuple of A

Algorithm 3.1 means that: for each item of A, all linked B instances are

taken, pushed in the same row ("q") and stored in Q entity. The whole

row has a bit "valid" value set to '1', but the status �eld can hide, if

necessary, the values of a 'b' item located in the row. This is expected in

case of a previous operation on 'b', that excludes it from the �nal result.

Now we present the di�erent scenarios in which a one-to-many relation can

appear, and we are going to analyze each of them, supplying its solution

for each one.

i. There is only a OneToMany relationship involved in the query:
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Figure 3.13: OneToMany entity schema

This is the easiest scenario. We have to decide if it is the case to map

every item of B related with one item of A into Q, or to map each

duplicate copy of A with at most one of B. There is a trade-o� in the

choice; it can be guided by di�erent motivations: physical storage

optimization, relationship dimensions, or the number of attributes in

table A can induce us to choose one or the other depending on the

circumstances.

When the designer does not focus on disk optimization, the items of

table B are connected with a few items of table A or the number of

attributes of items in table A is not very large, can be a good solution

to duplicate the items of table A with each related item of table B

into a single row of entity Q.

If, on the other side, the dimension of the rows of table A is very big

or each item of table B is related to a very huge number of item of

table A, it will be better to store, into each row of the �nal entity Q,

a row with all the items of table B in relation with one item of table

A, structured like in �gure 3.12.

In our work, we do not focus physical space optimization: we are

denormalizing data in order to represent it on the basis of a query

model, so we claim that data replication and big disk space are ac-

ceptable. We also said that the main purpose of this denormalization

process is to �nd a way to store all the possible related data together

into a single row.

Starting from this point of view we decided to exploit the option of

mapping all items of table B with a single item of table A into a

single row of entity Q. The only case that can be excluded from this

solution can be when table 'A' has only one or at most two attributes

(in addition to the key attribute) and it is not related with any other

table. In this situation entities contained in 'A' can be considered as
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3. Denormalizing data starting from a relational query schema

a single attribute of table B and its content can be replicated for each

item of table B.

We will see in the Chapter 5 a single scenario of this type.

ii. There are two or many one-to-many relations arranged in a cascade:

Figure 3.14: Two OneToMany relations in cascade

this scenario can be the natural consequence of the �rst. The result

will be a row of entity Q that will collect a single item of table A, all

the item of table B related to it, and all the items of table C related

with those items of table B. Again, if the number of attributes of the

table are limited to one, they can be duplicated and stored with the

item of the table they are in relation with. For example if A had

only att1A attribute and B had only att1B attribute, �rst of all we

would duplicate each occurrence of item of table A in the same "Q

row" with each related item of table B. Since B had two attributes,

we would duplicate them with their related item of table C in the

�nal row of entity Q.

iii. There are two one-to-many relations but this time they are not in a

cascade situation:

Figure 3.15: Two OneToMany relations situation 2

again also in this situation, we apply what we said in the �rst point:

items of tables A and C, related with items of table B, are mapped

with it into a unique row of entity Q with one item of table B and

many 'a' and 'c' items.
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iv. There are, again, two one-to-many relations, arranged like in the �g-

ure below:

Figure 3.16: Two OneToMany relations situation 1

In this scenario, table B can be seen as a bridge-table, more frequently

seen in a many-to-many relations. The approach here can be di�erent,

and we delay it to the point c) of this list, where we are going to

analyze many-to-many relations.

(d) R1 is a many-to-many relation. Its representation is shown in �gure 3.17.

Figure 3.17: Many-to-many entity schema

As we can deduct and already said, NoSQL datastores are not the ideal

tool to represent this particular situation. The main problem is that Scan

queries on these type of datastore can be performed only on the KEY

attribute, so it can not be possible to optimize the query for each of the

two entities involved, as we can do in RDBMS.

We propose here three possible mapping solutions, describing an example

for each of them. For clarity, we remove KEY, valid and status attributes

from the tables of �gures 3.19,3.20 and 3.21 , in order to better focus on

the denormalizing solution of the many-to-many relation.

• Data replication among the copies of same data has to be limited

to the minimum, in order to reach consistency requirements, and to

build a second table for storing essential information about the other
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side. Many-to-many relations can be seen as two di�erent one-to-

many relations, so it can be decided to represent one of the two with

the method explained at the beginning of point b), and to represent

the other relation with a table that collects only the essential key val-

ues of all data, leaving to designers the task to get the correct values

when this relation is performed.

Figure 3.18 and �gure 3.19 describe an example that adopts this map-

ping approach. The original tables are represented in �gure 3.18

(where the table on the right represents the many-to-many relation).

The �rst table (1) in �gure 3.19 represent one side of the relation: all

rows from table A are listed with the entities of table B they are in

relation with. The second table (2) represents the opposite relation.

As we can see, in the last one are collected only the id's of the items

of table A. Performing a query on this table may not be enough to get

all requested information, so there could be the possibility of using

another Scan or Get operation.

Figure 3.18: many-to-many example tables

Figure 3.19: Many-to-many denormalization - �rst approach
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Adopting this kind of solution can be a good idea for limiting data

replication of all attributes of the same copies of data into the data-

store, avoiding consistency problems after following operations on

these data, but it can produce bad performances when the second

query is executed, due to the fact that only necessary attributes are

stored and it must be necessary to scan all the two tables created to

have a complete answer to that query.

• The second scenario is quite similar to the previous one, but it di�ers

for the fact that are collected in the second table not only the keys,

but also all attributes and data necessary to answer the query.

With this scenario a second copy of data collected in the �rst table can

be stored, causing possible future problems with consistency among

the di�erent copies of the same rows.

Figure 3.20 shows this mapping solution, taking as input the two

tables of �gure 3.18. The �rst table is the same as the one of the �rst

approach (cfr 3.19). The second di�ers for the fact that it collects

not only the id's of the items of table A, but also all the attributes.

Figure 3.20: Many-to-many denormalization - �rst approach

Unlike the �rst approach, this one can catch up better performances

when the second query is executed. The choice between the two

possibilities can be dictated by the structure of data model or perfor-

mance and consistency requirements, preferring minimum replication

over better performances or viceversa.

• The third approach is the one that we are going to use for the practical

work in the next chapters and it is quite di�erent from the other two

points.

One of the assumptions we made in 3.2 paragraph was that we need

to design the new entity model on the basis of the query schema(s)
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we know at design time, possibly reaching better performances on its

execution.

Starting from this point of view we allow strong data replication in

order to have data better stored and to answer client's requests in

the shortest possible time. We can now consider the many-to-many

relation as it is represented in relational databases. In RDBMS it

can be described as a bridge-table (or join-table), where are collected

the essential information about the two entities that belong to the

relation. Figure 3.21 describes this approach, always on the basis of

the tables given by �gure 3.18. As we can see, the central columns of

this table are the same as the Join Table of �gure 3.18, with all other

attributes of the two entities stored in the same row.

Figure 3.21: Many-to-many denormalization - third approach

From this point of view we can store in our entity Q not only the

key attributes of the entities, like in a relational approach, but also

all the other attributes and values that belongs to that two entities.

This approach is quite expensive from disk space usage perspective

(if table A has |n| rows and B has |m| rows, the join table could have

until |m*n| rows), but all data are better designed to answer to user

queries, allowing a possible substantial improvement of performances.

We can also say that, if the query does not require the entire relation

(for example, there is a selection before it), will be replicated only

the tuples requested, leaving all the others as they are in the original

bridge-table.

This situation is probably the main problem all designers have to deal with

when a not relational datastore is chosen. Due to their structure they are not

well designed to collect data structured as equal as in a relational database

(They are called "not relational" exactly for this reason!).
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3.4.4 Examples

The equations proposed in the previous paragraph maintain the important prop-

erty of closure already explained in 3.3.1 section: using these formalisms we are able

to combine them to respond to all possible composed queries.

It's important to highlight the fact that after every single operation (union, dif-

ference, join or select), an instance of Q is created. The sequent operation of the

query can be executed directly on this entity, and not on the original operands of the

�rst operation. Below are presented two examples of nested queries, using di�erent

entities and two di�erent relationships.

3.4.4.1 Example 1

The query we want to perform is a subset of the one already seen and it is rep-

resented in �gure 3.22.

Figure 3.22: Example 1 query schema

The mentioned �gure can represent a query like A on (B on C). Assuming that

R1 and R2 are one-to-one relations and the couples B-C and A-B both share an

attribute name, we apply the equations we presented in 3.4.3 paragraph:

B onR2 C =

Q := (B onR2 C)valid=1⋃
πB.idB,ΣB.attB(Q) :=

[
πidB,ΣattB

(
B − πidB,ΣattB(B onR2 C)

)]
valid=0⋃

πC.idC,ΣC.attC(Q) :=
[
πidC,ΣattC

(
C − πidC,ΣattC(B onR2 C)

)]
valid=0
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Figure 3.23: Example 1: A, B, C input tables

So, if we have input tables A,B,C like in �gure 3.23, the result of the previous

assignment can be as described in the following �gure. To a better understanding,

in Appendix are attached also the other intermediate tables.

Figure 3.24: Example 1: entity Q after �rst Join

Now we can use the Q entity as input for the second Join operation, thanks to

closure property. This and the next equations, used to obtain the result explained

by the following formula and shown in �gure 3.25, are appended in Appendix A.

The �nal result obtained is the subsequent:
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A onR1 (B onR2 C) =

πidA,ΣattA(Q
∗) :=

[
A onR1 (B onR2 C)

](a)
valid=1

∪
[
A onR1

(
B − πidB,ΣattB(B onR2 C)

)](b)
valid=0

∪
[
A onR1

(
C − πidC,ΣattC(B onR2 C)

)](c)
valid=0⋃

πidA,ΣattA(Q
∗) :=

[
A− πidA,ΣattA

((
A onR1 (B onR2 C)

)
∪
(
A onR1

(
B − πidB,ΣattB(B onR2 C)

))
∪
(
A onR1

(
C − πidC,ΣattC(B onR2 C)

)))](d)

valid=0⋃
πidB,ΣattB,idC,ΣattC(Q

∗) :=

[
πidB,ΣattB,idC,ΣattC

(
(B onR2 C)

∪
(
B − πidB,ΣattB(B onR2 C)

)
∪
(
B − πidC,ΣattC(B onR2 C)

))
− πidB,ΣattB,idC,ΣattC

((
A onR1 (B onR1 C)

)
∪
(
A onR1

(
B − πidB,ΣattB(B onR2 C)

))
∪
(
A onR1

(
C − πidC,ΣattC(B onR2 C)

)))](e)

valid=0

In particular these equations represent:

(a) Tuples that belong to the entire query, marked with "1" as validity;

(b) Tuples of A that are not in join with B tuples from B on C table, marked

with "0";

(c) Tuples of A not in join with C tuples from B on C table, marked with

"0" (∅);

(d) Tuples of A not in (a), (b) or (c), marked with "0";

(e) Tuples from B, C or B on C that are not in join with A, marked with

"0";
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In the �gure below is presented the Join between table A and table Q, that generates

table Q*:

Figure 3.25: Example 1: Q* table

3.4.4.2 Example 2

Figure 3.26: Example 2: query schema

This time we explain how a single operator works: taking �gure 3.26 as E-R

query schema, we can assume that R3 and R2 are two selections and R1 a union;

that schema may produce this kind of query: σatt1A≥40∧att2B≥200(A∪B). Thanks to

distributive property of selection over union, it can be transformed into the sequent

query:
(
σatt1A≥40(A)

)
∪
(
σatt2B≥200(B)

)
. Following the rules explained in 3.4.3 para-

graph, we can get the following passages:

First of all we apply selection rules on both entities A and B:

QA :=
(
σatt1A≥40(A)

)
valid=1

∪
(
A−

(
σatt1A≥40(A)

))
valid=0

QB :=
(
σatt2B≥200(B)

)
valid=1

∪
(
B−

(
σatt2B≥200(B)

))
valid=0

Then we use union's rule to get the �nal Q entity:
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Q = QA ∪QB =

πA.idA,ΣA.attA(Q) :=

((
σatt1A≥40(A)

)
valid=1

∪
(
A−

(
σatt1A≥40(A)

))
valid=0

)
valid=1⋃

πB.idB,ΣB.attB(Q) :=

((
σatt2B≥200(B)

)
valid=1

∪
(
B−

(
σatt2B≥200(B)

))
valid=0

)
valid=1

and using assignment operator properties:

Q = QA ∪QB =

πA.idA,ΣA.attA(Q) :=
(
σatt1A≥40(A)

)
valid=1

∪
(
A−

(
σatt1A≥40(A)

))
valid=0⋃

πB.idB,ΣB.attB(Q) :=
(
σatt2B≥200(B)

)
valid=1

∪
(
B−

(
σatt2B≥200(B)

))
valid=0

the representation of the �nal table is showed in Appendix A.

3.4.5 Considerations

In the previous paragraphs we showed the rules that generates the unique entity

Q and we proposed two practical examples. In this section we want to focus on few

aspects we don't mention in the previous section.

Join attributes

When we showed the Join rules, we presented them only for Natural Join, not for

other types of Join. As we can see, in Relational Algebra we can have di�erent kind

of Join: left and right join, full join, cross join, inner and outer join, etc. . All this

kind of operators can be somehow derived from original Cartesian product, as natural

Join, so all the rules we showed for natural join can be used for all the other types

of this operator. In fact they usually add a projection or a selection over the result

returned by Cartesian product, so they can be considered as two nested operations.

This statement implies also that Join on normal (not-key) attributes will produce a

correct result.

In example 1 (3.4.4.1) we also considered two one-to-one relationships and we

assumed that they were represented by idA attribute in B table and idB attribute

in C table. We also have to notice that the rules proposed for join are the same also

if we had an idB attribute in A table or an idC attribute in B table, as it can be

possible according to E-R logical schema for relational databases.

Relationship attributes
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Relationship attributes are particular attributes that don't belong to a speci�c entity

but to a speci�c relation. In relational database design they are added as a new

attribute of one of the entities that participate in the relation. So they can be

considered in our work as an entity attribute, sharing all the comments we have

already done for them. We will also see, in model evaluation section (Chapter6), an

example of this situation.

Loop relationships

It may happen that a set of entities and relationships can generate a loop. This situa-

tion can cause di�erent problems, especially if the relations involved are OneToMany

or ManyToMany relations. Analyzing this type of situation can be quite hard and

it may be dependent on the situation and the entities or relationships characteris-

tics. The immediate solution to this problem can be the duplication of one of the

entities involved in the loop, and it can be the less expensive in terms of disk space

occupation and in number of attributes. Otherwise it can be possible to eliminate a

relationship in order to replace it with a combination of other two that are part of

the loop. We leave the choice to the E-R schema designer, assuming that the E-R

schema given as input by our model do not includes loop relationships.

Self join-relationships

A self-join relationship is a Join where both operands are the same single entity.

In fact, if union and di�erence operators show particular properties (A ∪ A = A,

A−A = ∅) for that, join operations can be done over di�erent attributes of the same

table, in order to create a particular new connection. Using the rules we presented,

they can generate some copies of the same data, as the example below can show:

A onA.id=A.SonId A =

Q := (A onA.id=A.SonId A)valid=1⋃
Q :=

(
A− πA1.idA,ΣA1.attA(A onA.id=A.SonId A)

)
valid=0⋃

Q :=
(
A− πA2.idA,ΣA2.attA(A onA.id=A.SonId A)

)
valid=0

that produces the following result on Q:
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Figure 3.27: Self join example

as we can see we have data replication on the same instances, that may cause

problems of redundancy of equal values. A possible solution to this problem can be

considering both the projections of A (one for A1, one for A2) together, and not

separated:

A onA.id=A.SonId A =

Q := (A onA.id=A.SonId A)valid=1⋃
Q :=

(
A−

((
πA1.idA,ΣA1.attA(A onA.id=A.SonId A)

)
∪
(
πA2.idA,ΣA2.attA(A onA.id=A.SonId A)

)))
valid=0

in this case both A1 and A2 instances are considered only one time, avoiding data

replication of same rows.

3.5 Limits

In this paragraph we are going to analyze the negative aspects that this mapping

model can cause. The main limits identi�ed are:

• the �nal entity Q is optimized to respond to a given speci�c query: the rules

we explained in the previous section, as we have already said di�erent times,

maintain all information about the original data schema, all entity attributes

and all relation attributes that convey to the query, but also to all the other

entities not involved in it.

So Q entity represents under a di�erent way the same structure as the original
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one. Thanks to this feature all possible queries can be executed on Q entities,

having the same data results as we can have on the original ones.

Obviously they can be performed not just after one scan of the Q table, as

the query used to design it, but probably after few and complicated researches.

This can cost a loss of in terms of query performances and an increasing latency

time. If the frequency execution time of these di�erent queries is low and their

cost acceptable, the designer can take into account this option.

• the model is designed for read-only databases; insert, update and delete queries

are not taken into account in this analysis.

We can say that any of these operations performed on a database organized

following our model have to maintain its properties and characteristics, cor-

rectly answering to the query that generates it.

We will discuss in the �nal chapter about future possible works and features

linked to this thesis. One of them is to try to understand a possible way to

perform insert and update executions on entity Q, without violate its charac-

teristics.

3.6 Summary

In this chapter we presented two alternative strategies to denormalize data from a

typical relational structure into a NoSQL-adatptable structure. After few premises,

we proposed a mapping solution to the �rst of these strategies and we looked over

its advantages but also its limits. In the next chapter we will present architectural

characteristics of HBase, a NoSQL datastore, and we will show how to map data

from the model we proposed in this chapter to it.
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Figure 3.9: Union example
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Figure 3.11: One-To-One example
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Chapter 4

Applying denormalization on

HBase

This Chapter deals with the technical part of the thesis. In Chapter 3 we de-

scribed two possible approaches of data denormalization from a relational structure

into a NoSQL-adaptable one.

In particular, we proposed a model for the �rst of them.

We selected HBase, a columnar NoSQL datastore (shown in detail in Chapter

2), because it can guarantee both approaches requirements and we want to compare

query performances between the model proposed and a relational structured one.

We will show the entire evaluation process in Chapter 6. In this Chapter we are

going to show all intermediate phases from the end of the description of the model

to the beginning of test execution.

In particular, the �rst section of this Chapter shows a deepening on HBase node

splitting policies, focusing in particular on the possibility to design row-keys and

organize pre-splitted HBase tables, in order to better organize data distribution

among HBase regions. This analysis leads us to gain a solution adaptable for the

two approaches we have discussed in 3.2.

After this analysis we are going to show the main parameters that need to be

con�gured to install a full HBase cluster. We also provide in Appendix B, a brief

explanation of a self-made Linux based script that, given few essential parameters,

allows to automatically deploy a working HBase cluster.

Finally we show how data denormalization, showed in Chapter 3, is performed

by introducing a proof-of-concept Java tool whose main classes are appended in

Appendix C.
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4.1 Optimize data distribution

In this section we are going to show the analysis conducted on the possibility

of HBase to create prede�ned regions, integrated with studies on how to design an

adequate key, in order to better optimize the data distribution in our database.

After brief theory concepts, we will propose two possible solutions adaptable for

the approaches we showed in section 3.2.

4.1.1 HBase region splitting policy and pre-splitting methods

As Enis Soztutar's wrote in 1 : "In a HBase cluster, a region is only served by

a single Region Server at any point in time, which is how HBase guarantees strong

consistency within a single row. A table tipically consists of many regions, which

are in turn hosted by many region servers. When a table is �rst created, HBase, by

default, will allocate only one region for the table".

When a region is too large, HBase divides ("splits") it into two smaller regions.

The decision of splitting a region is taken following one of these splitting policies:

• CostantSizeRegionSplitPolicy2, used for HBase versions before 0.94, splits a re-

gion when the total data size for one of the stores (corresponding to a column-

family) in the region gets bigger than the con�gured parameter hbase.hre-

gion.max.�lesize, which has a default value of 10 GB.

• IncreasingToUpperBoundRegionSplitPolicy 3 used for HBase version after 0.94,

splits the regions using the number of regions hosted by its region server. When

a region reaches an amount of data equal to min( R^2 *

"hbase.hregion.memstore.�ush.size", "hbase.hregion.max.�lesize"),

where R is the number of regions of the same table hosted on the same region

server and the default memstore �ush size is usually 128 MB.

• Additionally we also mention a splitting method called KeyPre�xRegionSplit-

Policy 4: after having con�gured the length of the pre�x for the row keys, this

splitting policy ensures that the regions are not split in the middle of a group

of rows having the same pre�x.

When an HBase cluster is created, all requests will go to a single region server,

regardless of their number. For this reason, when it is started, this datastore cannot

use the whole capacity of the cluster, but operates on a single node.

1Enis Soztutar, http://hortonworks.com/blog/apache-hbase-region-splitting-and-merging/, Hor-
tonworks Inc.

2http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/regionserver/ConstantSizeRe-
gionSplitPolicy.html/

3http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/regionserver/IncreasingToUpper-
BoundRegionSplitPolicy.html,

4http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/regionserver/KeyPre�xRegion-
SplitPolicy.html/
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However, the main reason HBase does not do default pre-splitting (splitting the

regions before loading data) is because it can not know a-priori the data distribution.

The tables pre-splitting option is advisable only when the data distribution is

known. If key distribution of all data is known, it would be possible to organize the

regions of the cluster in order to distribute the workload in all region servers from

the beginning of the work.

This phase is very delicate because a pre-splitting will ensure that the initial

load can be more distributed throughout the cluster, but if the key distribution is

not known, HBase will not truly distribute the load. In fact if the region split point is

chosen poorly, there will be heterogeneous data distribution in the regions, limiting

cluster performances.

HBase provides di�erent client-side tools to manage this pre-splitting process.

Split points can be created choosing a prede�ned number of sub-regions and a

corresponding key value, as shown by the code below:

hbase(main):001:0> create 'table', 'cf1', SPLITS => ['a', 'g', 'm']

This HBase shell 5 command shows how to create a table with a single column

family ("cf") divided into four initial regions, providing three splitting points ("a",

"g" and "m"). This command divides all key space in four ranges, assigning each of

these ranges to each single region.

Regardless of pre-splitting type used, once a region reaches the default limit,

HBase will automatically continue to divide it into two regions.

HBase also allows clients to manually force splits by means of a shell command.

The following command can be used when a region gets too big and a region/table

need to be splitted:

hbase(main):001:0> split 'table', 's'

"s" means the point where HBase applies the region splitting. In this case all

data is distributed into two sub-regions: one that collects all data whose key starts

with a letter in A-R range and the other does the same thing in S-Z range.

After this introduction on HBase splitting policies and pre-splitting methods, we

now introduce how a row-key can be designed, in order to optimize data distribution

and facilitate region pre-splitting.

5Apache Software Foundation, http://wiki.apache.org/hadoop/Hbase/Shell
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4.1.2 Row-key design

HBase can query each table only by row-key. Key-ordering allows HBase to pro-

vide a scan interface, which allows to retrieve an ordered subset of data in optimized

way. For example:

Scan s = new Scan(Bytes.toBytes("startrow"),Bytes.toBytes("stoprow"));
ResultScanner scanner = table.getScanner(s);

This operation returns all the rows whose key is between "startrow" and "sto-

prow".

It is straight forward that a good key-design is fundamental to limit the number

of operations on the database and thus obtain better performance.

Starting from this analysis we have to say that there is not an absolute and

perfect solution for all scenarios, because it depends a lot on how the database is

designed and on the performed queries.

To better understand this point we propose this example:

EXAMPLE

To prove that is possible to reach better performance by properly choosing a good

row-key design, we propose the following example.

We want to perform a Scan operation structured as described in �gure 4.1 on a

full-�lled table with 1000 rows.

Column Possible Values Distribution Filtered Value

cf.A 1,2,3,4,5,6,7,8,9,0 uniform '4'

cf.B
all English

alphabet letters
(#26)

uniform 'C'

cf.C bit value [0/1] "0": 80% - "1": 20% '1'

Table 4.1: Scan example on HBase table: for each column it is shown the column
name (structured as ColumnFamily.ColumnName, all the possible values, their dis-
tribution and the value we want to �lter).

HBase selections on a Scan result are provided by Filters as the following code

shows:

Scan s = new Scan();
SingleColumnValueFilter �lter = new SingleColumnValueFilter( cf, column, Com-
pareOp.EQUAL, Bytes.toBytes("my value") );
scan.setFilter(�lter);
ResultScanner scanner = table.getScanner(s);
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The above operation consists of the complete scan of the given table and the

application of a value �lter on all obtained rows.

Referring to this example, we now propose di�erent scenarios of how a good key-

design can bring big improvements to query performances.

SCENARIO 1: the row key is a random value (for example an incremental

integer value).

This is the code for this speci�c Scan operation:

Scan s = new Scan();
SingleColumnValueFilter �lterA = new SingleColumnValueFilter( Bytes.toBytes("cf"),
Bytes.toBytes("A"), CompareOp.EQUAL, Bytes.toBytes("4") );
scan.setFilter(�lterA);
SingleColumnValueFilter �lterB = new SingleColumnValueFilter( Bytes.toBytes("cf"),
Bytes.toBytes("B"), CompareOp.EQUAL, Bytes.toBytes("c") );
scan.setFilter(�lterB);
SingleColumnValueFilter �lterC = new SingleColumnValueFilter( Bytes.toBytes("cf"),
Bytes.toBytes("C"), CompareOp.EQUAL, Bytes.toBytes("1") );
scan.setFilter(�lterC);
ResultScanner scanner = table.getScanner(s);

Each �lter is set in order to perform a selection over a single column, given a

de�ned value. The three �lters are applied in order, from the on performed on column

"cf.A". The whole cost in terms of considering unitary cost the e�ort to get a single

row is:

cost = 1000 (�lterA) + 1000/10 (�lterB) + 1000/(10*26)(�lterC) = 1103.85

SCENARIO 2: the row-key is designed following this way:

rowKey = [valueOfColumnA] + [random value number]. The "+" operand means

"concatenation", made between the two strings. The code this time will be quite

di�erent:

Scan s = new Scan(Bytes.toBytes("4"),Bytes.toBytes("5"));
SingleColumnValueFilter �lterB = new SingleColumnValueFilter( Bytes.toBytes("cf"),
Bytes.toBytes("B"), CompareOp.EQUAL, Bytes.toBytes("c") );
scan.setFilter(�lterB);
SingleColumnValueFilter �lterC = new SingleColumnValueFilter( Bytes.toBytes("cf"),
Bytes.toBytes("C"), CompareOp.EQUAL, Bytes.toBytes("1") );
scan.setFilter(�lterC);

This time we will Scan the table only for lines that begin with the value of '4'

(the ones that have '4' in cf.A value). The cost will be:
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cost = 100 (�lterB) + 100/26 (�lterC) 103.85

SCENARIO 3: the row-key is designed following this way:

rowKey = [valueOfColumnA] + [valueOfColumnB] + [a random value number].

Scan s = new Scan(Bytes.toBytes("4c"),Bytes.toBytes("4d"));
SingleColumnValueFilter �lterC = new SingleColumnValueFilter( Bytes.toBytes("cf"),
Bytes.toBytes("C"), CompareOp.EQUAL, Bytes.toBytes("1") );
scan.setFilter(�lterC);

The Scan selects all lines with row-key that starts with '4c' value. That gets the

same results as applying �lters on columns A and B. The cost will be:

cost = 100/26 (�lterC) 3.85

As we can see we have a very huge di�erence between performing the same query

in di�erent scenarios!

In scenarios 2 and 3 the key is designed in order to contain information about

the value of its columns, and we saw that as the information, contained within the

key grows, we are able to gain better performance.

We also have to point out that this row key design is performed in order to

respond to a particular single query.

A problem may arise when di�erent queries need to be performed on a single

row-key which was designed for answering to a di�erent query.

For example if we want to obtain the rows of the table showed in Scenario 2 with

column C value equal to '0', we have to Scan again all rows in the table, returning

only rows with value equal to '0'.

As we said before, there is not a single prede�ned choice: we can design a row-key

to predispose the rows to a speci�c query, but we can not do it for all queries we are

going to issue on that table.

The choice depends on two main di�erent parameters:

• query execution frequency: if a query is executed many times, it could be better

to design a row-key based on that query.

• distribution of data among the columns: if we want to perform a query like

the one described in table 4.1, without the �lter on column 'A', we can choose

to design the key in di�erent ways:
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� valueOfColumnC + random number; the total cost will be a �lter on

column B on rows with key equal to '1xxxxx' (=1000 ∗ 20% = 20)

� valueOfColumnB + random number; the total cost will be a �lter on

column C on rows with key equal to 'Cxxxxx' (=1000/26 = 38.46)

Sometimes, designing one table with the �rst method, and a second table

with the second method, can be a better solution rather then performing not

optimized queries.

We tried to make a complete overview on the main problems that arise when design-

ing a row key. Other observations and studies can be found at this link on Apache

Website 6.

After showing HBase splitting policies and possible pre-splitting methods, and

introducing possible key design studies, we are going to merge this knowledge, in

order to present a possible row-key design and region pre-splitting solution for the

two possible approaches that we have presented in section 3.2.

4.1.3 Splitting policy and key design for entities of the �rst ap-

proach

Considering the �rst approach described in section 3.2 and all observations made

in 4.1.1 and 4.1.2, in this paragraph we show our thoughts on how to design a row

key and organize a pre-splitting method for the �rst proposed approach (which was

completely analyzed in Chapter 3).

This analysis is shown in order to better optimize data distribution, in order to

be able to perform even more performant queries.

The table that will be stored in HBase is based on the entity (called entity "Q",

cfr 3.4.2) we produced with the model we conceived in section (cfr 3.4).

Starting from a E-R schema, the number of generated Q-entities will be much as

the number of queries known at design time.

Following the approach showed in the previous section about designing a row-key

(4.1.2), the �rst and crucial information we want to include in the KEY attribute is a

query identi�er. Since each query produces a di�erent denormalization of the data,

according to each query schema, each row of the �nal entity Q has to be classi�ed,

�rst of all, on the basis of the identi�er of that query:

rowKey = [identi�er of the query] + [something else] .

Starting from this point of view, we can try to add more information about the

data stored in each row.

However, our model optimizes the dataset, in order to be able to distinguish rows

that answer our queries from the one that do not.

6Apache Software Foudation, http://hbase.apache.org/book/rowkey.design.html
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This approach, indeed, maps a set of entities and relationships into an entity

Q on the basis of a query schema and produces an entity that will have all data

predisposed to answer to those speci�c queries. The unique information that we

need when performing those queries on the produced entity is gained by attribute

valid value. As we have already explained, this attribute helps to distinguish the

rows that generate a positive answer to a given query, so we decided to include this

information inside the key.

So the key we conceived will be composed as follows:

rowKey = [query identi�er] + [value of bit valid] + [random string (can be a

number or a string)] .

When a query is performed on such key, it will return only the rows that corre-

spond to its identi�er and that will have valid bit equal to '1'. This key-design will

guarantee only one Scan operation per each performed query, without any further

Get, Scan or Filter operations.

As regards HBase splitting policy for this approach, we do not have strong con-

sistency requirements that force us to store di�erent rows in the same physical node.

A possible future work can be the study of query frequency execution, in order to

speculate on how to assign each region to each query, distributing the workload on

all the cluster nodes. This could be a possible method of pre-splitting a table, but we

can not prove it will guarantee a performance improvement both from consistency

and workload optimization points of view.

4.1.4 Splitting policy and key design for the second approach

Even though we did not show a resolutive method with a practical solution to

the second approach (cfr 3.2), here we can show a possible splitting policy and the

consequent key design that can be adopted to better optimize data distribution

among the nodes of the cluster.

This study is guided by the fact that this approach was conceived to store con-

sistent rows in the same node, in order to be able to reach higher availability.

With consistent row we mean a set of rows that compose a complete answer to a

query.

For this second approach, unlike the �rst one, we have no information about how

this approach maps the original data. This analysis is left as a future work.

Notwithstanding, we can make few considerations about the possible splitting

policies that can be adopted by this second approach.

In the previous Chapter (section 3.2), we showed that, starting from an E-R

schema and a query-schema, we can create somehow a new mapping method that

will denormalize the data into a multiple row solution. Unlike the �rst approach,

here we can have di�erent rows that are somehow "in relation" and all of them have

to be found to return a complete answer to a query.
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We want related rows to stay in the same region and prevent HBase from split-

ting a region thus dividing related rows. This considerations led us to adopt the

KeyPre�xRegionSplitPolicy that was explained in section 4.1.1: this splitting policy

ensures that the regions are not split in the middle of a group of rows that have

the same pre�x. With a key designed in order to exploit this policy, and an HBase

cluster prepared for this option, we can be sure that related rows will be stored in

the same region.

We conclude here the analysis of HBase Region splitting, saying that this type

of analysis is still nowadays in development.

4.2 HBase Con�guration

In this section we give an overview of the steps needed to con�gure an HBase

cluster. HBase depends on Hadoop and Zookeper, as shown in section 2.4.1.

The �nal con�guration that we propose here will be also the one adopted for the

model evaluation, done Chapter 5.

HBase has two run modes: "Standalone" and "Distributed". As HBase Apache

guide7 explains, the Standalone mode means a not distributed HBase deployment

that runs on the local machine. This is not the con�guration we want to adopt

because, as we already said in Chapter 2, one of the main advantages of NoSQL

databases is the possibility scale across several machines.

Hence, the distributed mode is the one we are going to explore. In particular our

aim is to gain fully-distributed mode, that is, "where the daemons are spread across

all nodes in the cluster"7.

It is not easy to con�gure Hbase according to the distributed mode, as it is for

other NoSQL databases like MongoDB or Cassandra, because, before installation, it

requires a working Hadoop cluster and an active Zookeeper service.

As we have already seen at the end of Chapter 2, HBase runs on top of HDFS [3]

(cfr 2.4.1.2), so the �rst thing to do is to con�gure a working Hadoop cluster.

Paragraphs 4.2.1 and 4.2.2 explain in detail which parameters and �les have to

be modi�ed to do all the installation process.

Before starting to show them, it is necessary to point out few details:

• all commands and con�gurations presented will refer to a machine with Linux

based OS.

• the following paragraphs do not show all the possible parameters that can be

con�gured. The ones not mentioned there can be found in the HBase guide [11].

7Hbase, Apache Foundation, http://hbase.apache.org/book/
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• it is very important that all machines that are going to be part of the cluster

can communicate among each other through SSH protocol. The same private

key must be shared in each machine of the cluster.

• in all machine the hosts �le must contain usernames and ip addresses of all

the machines in the cluster;

• each machine requires a Java JDK installation. JDK 6 and 7 have been already

successfully tested, while we suppose JDK 8 will work, but it has not been well

tested yet.

4.2.1 Hadoop con�guration

Hadoop can be freely downloaded from Apache website 8.

There are two main di�erent versions of this framework, 1 and 2.

Hadoop 1 is the oldest version and it has some architectural limits: it is limited

up to 4000 nodes per cluster, it supports only one namespace for managing HDFS,

has a recognized bottleneck in JobTracker (a process that farms out MapReduce

tasks to speci�c nodes in the cluster 9) and only MapReduce jobs can be performed.

In contrast with the newest version of this framework which can run potentially

up to 10000 nodes per cluster, supports multiple namespaces for managing HDFS

metadata and introduces a new technology called Yarn 10, that splits the original

JobTracker's major functionalities (resource management and job scheduling).

A deeper explanation of the di�erences is provided by the o�cial guide [17].

The Hadoop version must be the same through all the machines in the cluster.

Before choosing it, we have to point out a problem that we met during the �rst

installation: HBase, like Hadoop, has di�erent versions: each version is not fully

compatible with all Hadoop versions. Table 4.2 shows the compatibility between

the two. As we can see, Hadoop 1 is compatible with HBase's 0.92, 0.94 and 0.96

versions, while Hadoop 2.x has been successfully tested with HBase 0.96 and 0.98.

The following table is shown on HBase Con�guration WebSite11:

8http://hadoop.apache.org/
9Apache Wiki, http://wiki.apache.org/hadoop/JobTracker

10Apache Foundation, http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html

11Apache HBase, http://hbase.apache.org/book/con�guration.html
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HBase-

0.92.x
HBase-0.94.x

HBase-

0.96.x

HBase-0.98.x

(support for

Hadoop 1.x is

deprecated)

HBase-0.98.x

(support for

Hadoop 1.x is

NOT

deprecated)

Hadoop-

0.20.205
S X X X X

Hadoop-

0.22.x
S X X X X

Hadoop-

1.0.0-1.0.2

(HBase

requires

Hadoop 1.0.3

at minimum)

X X X X X

Hadoop-

1.0.3+
S S S X X

Hadoop-1.1.x NT S S X X

Hadoop-

0.23.x
X S NT X X

Hadoop-2.0.x-

alpha
X NT X X X

Hadoop-

2.1.0-beta
X NT S X X

Hadoop-2.2.0 X

NT - pom.xml

has to be

changed

S S NT

Hadoop-2.3.x X NT S S NT

Hadoop-2.4.x X NT S S S

Hadoop-2.5.x X NT S S S

S = supported and tested
X = not supported

NT = it should run, but not tested enough

Table 4.2: Hadoop version support matrix

After downloading and unpacking the desired version in the correct directory,

there are few settings �les that have to be con�gured.

The fundamentals are core-site.xml, hdfs-site.xml and hadoop-env.sh.

In the �rst �le we need this two properties:
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<property>
<name>fs.default.name</name>
<value>hdfs://IP:PORT</value>
<description>namenode uri</description>
</property>

<property>
<name>hadoop.tmp.dir</name>
<value>HADOOP-DIR</value>
<description>temp directories</description>
</property>

This two properties are needed to con�gure the Namenode: the �rst indicates its

IP address and it access port; the second refers to its meta-data directory. All the

other possible properties can be found at 12.

As regards the second �le (hdfs-site.xml), one important property needs to be

con�gured:

<property>
<name>dfs.replication</name>
<value>VALUE</value>
<description> number of replication </description>
</property>

This property is used to con�gure the replication factor of the hadoop cluster.

hadoop-env.sh �le needs only the con�guration of "JAVA_HOME" variable, in

order to make Hadoop able to locate Java installation path. This is necessary because

Hadoop is written in Java.

There are also other two �les, called masters and slaves, that respectively must

be �lled in with the ip addresses of Secondary Namenode and Datanodes ip addresses.

All these �les must be copied in all the machines declared in the master and

slaves �les.

Before starting the whole cluster, the �le system must be formatted.

In order to do that, we have to run this command on Namenode machine:

$HADOOP_INSTALL_DIR/bin/hadoop namenode -format

We can now start the whole cluster, running the following command on Namenode

machine:

12Apache Hadoop, http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
common/core-default.xml
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$HADOOP_INSTALL_DIR/bin/start-dfs.sh

4.2.2 HBase con�guration

After installing Hadoop, we can do quite the same thing with HBase.

Again, we must con�gure two �les: hbase-site.xml and hbase-env.sh, similar

to the one con�gured for Hadoop, the last one needs "JAVA_HOME" to be con�gured;

hbase-site.xml needs following properties to be con�gured:

<property>
<name>hbase.master</name>
<value>IP-MASTER:PORT</value>
<description>master host port</description>
</property>

<property>
<name>hbase.rootdir</name>
<value>hdfs://IP-NAMENODE:PORT/hbase</value>
<description>directory shared by regionservers</description>
</property>

<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
<description>fully distributed</description>
</property>

<property>
<name>hbase.zookeeper.property.clientPort</name>
<value>PORT</value>
<description>Port at which the client will connect</description>
</property>

<property>
<name>hbase.zookeeper.quorum</name>
<value>IP(S)</value>
<description>list of servers in zookeeper quorum</description>
</property>

hbase.master property contains the IP address and port number (default: 54310)

of HBase Master machine.

hbase.rootdir value contains the Namenode IP address and port (the same pro-

vided in Hadoop con�guration).
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hbase.zookeeeper.property.clientPort contains the value of the port that Zookeeper

uses to listen for client connections.

The last property contains the IP addresses of all members of Zookeeper cluster,

because, as we have already said in section 2.4.1.3, Zookeeper is a distributed service.

In addition to these two �les also regionservers �le must be con�gured with

the IP addresses of all machines used as region servers.

Again, as it happened for Hadoop con�guration, we have to copy all these �les

in all HBase cluster nodes. After that we can start our HBase cluster, executing the

./bin/start-hbase.sh command from the HBase folder of the machine elected as HBase

Master. This will automatically run all processes, included the region server(s) ones.

The HBase installation process is quite long, especially if the cluster is composed

of a huge number of nodes. During the �rst installation process, we decided to build

up a Linux script able to auto con�gure and install an HBase cluster, that helped

us avoiding the long and tedious work of copying all installation �les in all cluster

machine.

Further information on this script can be found in Appendix B.

4.3 How mapping is executed

In the remaining part of this Chapter we are going to introduce the last technical

things we made before starting our model evaluation.

In particular we present how the realized tool technically performs the theoretical

denormalization we explained in section 3.4.

The tool is designed to provide appropriate classes and methods useful to perform

the rules of the model proposed in Chapter 3.

In particular, it provides the structures needed to perform these four phases:

• extracting a E-R schema from an XML File provided by the user;

• extracting some queries from an additional XML �le;

• create a new single entity Q that represents the denormalization of entities

given by the E-R schema, following the model showed in section 3.4;

We decided to use XML �les as input because they can be easily generated and

parsed. We added in fact a Java library, called JDOM 13, that gives us all function-

alities to process XML �les.

For better understanding how the tool works, few methods are reported in Ap-

pendix C.

E-R schema

13The JDOM Project, http://www.jdom.org/
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Figure 4.2: Tool main classes

The E-R schema is fundamental to logically understand the composition of the

database. This �le allows us to extract all entities and all relationships of the

database, making us deduce its logical schema. The �le must be provided by the

user. It has to be XML compliant with the DTD structure shown in �gure 4.1.

Figure 4.1: DTD - E-R schema

ERManager class is the class instantiated for this task. It is shown in �gure 4.2.

There are three methods that need to be mentioned: setEntityDescriptor, setRe-

lationDescriptor and setAttributeDescriptor ; they are the direct methods responsible
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for:

1. processing the XML �le and get all useful information about entities, relation-

ships and attributes;

2. creating a single entity for each of them: EntityDescriptor, RelationshipDe-

scriptor and AttributeDescriptor. These three classes are designed in order to

describe any kind of entity, relation or attribute. They are provided due to the

fact that we do not deal with a prede�ned number of entities or relationships,

but we have to be able to deal with any of the possible database structures.

They are described by �gure 4.3.

Figure 4.3: Entities and relationships class diagram

Extract a query

As it was conceived, our model needs a query schema as input, in order to denormalize

data. The user must provide the XML �le that represents the E-R query schema. It

has to be compliant with the DTD shown in �gure 4.4.
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Figure 4.4: DTD - Query schema

The method responsible for extracting a query is getAllQueries, inside Query-

Manager class (??). Since the query can be a composed one, this method processes

the input XML schema speci�c for the query and extracts all the possible nested

queries, in order to be able to perform them. The output is a list of queries that will

be used for the next step.

Denormalization

Once the E-R schema and the query are obtained, the next step is to put into practice

the model equation we conceived in 3.4.3.

In particular, the tool is structured as follows:

EntityQ class represents the output entity of the mapping process. It has all

the original attributes of the original Entity, plus key, valid and status attributes

(4.3).

EntityQManager is responsible for getting the queries, and create the correspond-

ing entity Q. The method instantiated to do that is createQFromEntity.

The tool provide also additional three methods, useful for creation and update

of KEY, valid and status attributes.

The following code shows how the KEY attribute is created:

private static String createKey(String query, String status)
int key = //variable is set to a random number
return String.valueOf(query+status+key);

As we can see, the key is composed by an initial number that identi�es the query,

the value of the status attribute and a random value, as we design at the beginning
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of this Chapter (4.1.1).

The second method is updateStatusQ that is responsible for updating the status

value. We described this process when we introduced entity Q (3.4.2). Since the Java

method that implements this process is quite verbose, we attached it in Appendix

C.

Last observation is on the update method concerning valid attribute. The fol-

lowing piece of code is explains how the update operation is performed:

public int updateValid(int old, int new){ new = new * old;
return new;
}

The tool provides the structure of a new entity, called entityQ, that represents

the result of our mapping process.

4.4 Summary

In this Chapter we showed a brief analysis of how the HBase splitting policy

can be managed in order to reach better query performance and guarantee given

requirements.

In the central part (4.2) we showed how an HBase cluster can be con�gured and

installed, setting the essential properties.

In the �nal section (4.3) we showed how all the phases of the denormalization

process, starting from an entity-relation and query schema as input, are technically

performed.

Both two last phases are supported by a Linux script and a Java tool, whose code

is explained in Appendix B and C.

All these considerations will be resumed in the next Chapter where we will set

up a working cluster to evaluate the model analyzed in Chapter 3.
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Chapter 5

Model evaluation

In this chapter we will describe the tests that we decided to implement for compar-

ing queries an original entity-relation based dataset and the corresponding Q-model

based datasets.

Following the model explained in Chapter 3, and using the con�guration and the

tool presented in Chapter 4, we carried out query execution tests to compare the

performance between the two models.

We will compare query tests on our model with query tests executed on the orig-

inal E-R data model, simply mapped in a HBase cluster, expecting an improvement

mainly on queries that involve a relation between at least two entities.

These tests will be used to determine which model is the best and in which

situation, according to all preliminary assumptions we have already made in the

previous Chapters.

5.1 Models

The tests we have executed consist in a comparison of two models:

1. Relational Model (R): given an E-R schema and its dataset, each table is

mapped into a single di�erent table of an HBase cluster with the same structure

and attributes as if they were stored in a RDBMS database.

All traditional rules used to translate a Logical Database Schema from a E-R

schema are maintained ( [1], section 7.3). In particular:

(a) in a many-to-many relation: each entity will generate a table with the

same name and the same attributes contained in the original entity, while

each relationship will generate a table with its name and attributes, and

the identi�ers of the entities involved.

(b) in a one-to-many relation: the translation is the same as a many-to-many

relation, but no relation table is generated. The identi�er attributes of a
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table are merged into the related table.

(c) in a one-to-one relation: each entity generates a table with the same

name and attributes, and the identi�er of one of the two tables is added

as attribute in the second table.

The tests performed on entities that follow this model will be called "TestR".

2. EntityQ-based Model (Q): given a E-R schema and its dataset, for each

query schema given at design time, an entity of the type "Q" (cfr 3.4.2) is

created with the rules explained in Chapter 3. This entity Q is mapped to a

table inside an HBase cluster as shown in section 5.3.2.

The KEY attribute is stored according to the solution we proposed in 4.1.3,

that is appending the value of valid attribute to the query identi�er (we

assume equal to a string with value "00000") as pre�x and adding a random

number value at the end.

The tests performed on entities that follow this model will be called "TestQ".

5.2 Dataset structure

To execute our tests we need an example dataset. In order to be signi�cant, we

would have preferred if this had at least three entities and two relationships (at least

one Many-To-Many relation).

The dataset we chose was found in the repository of University of California,

Irvine [2], is called "Restaurant & consumer data, recommender systems domain"

and it is described in �gure 5.1. This dataset was previously used to test di�erent

approaches, like "The collaborative �lter technique on rating entity" and "the con-

textual approach generated the recommendations using remaining eight data �les".

We decide to describe it with traditional E-R and logical schema to give a com-

plete view, even though we are not going to use a traditional RDBMS data model.

It is composed by four entities and four relations:

• USER (U): this entity describes the person's details. The dataset contains 138

rows and 19 attributes.

• GEO-PLACE (GP): this entity describes all restaurants details. The dataset

contains 130 rows and 21 attributes.

• REGIONAL_CUISINE (RC): this entity describes all the types of cuisine. The

dataset contains 103 rows and 2 attributes.

• PARKING (P): this entity describes all possible parking types. The dataset

contains 7 rows and 2 attributes.
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Figure 5.1: E-R schema

• USER_CUISINE (U_RC): it is a one-to-many relation between U and RC

tables. It represents the user's preferred regional cuisine.

• GEO-PLACE_CUISINE (GP_RC): it is a one-to-many relation between GP

and RC tables. It represents the type of cuisine o�ered by each restaurant.

• GEO-PLACE_PARKING (GP_P): it is a one-to-many relation between GP

and P tables. It represents the type of parking o�ered by each restaurant.

• RATING (U_GP): it is a many-to-many relation between U and GP tables.

It has 3 attributes and represents the users' evaluation about restaurants.

The E-R schema described above would generate this tables in a relational database:

1. USER (userID, latitude, longitude, the_geom_meter, smoker, drink_level,

dress_preference, ambience, transport, marital_status, hijos, birth_year, in-

terest, personality, religion, activity, color, weight, budget, height)

2. GEO-PLACE (placeID, latitude, longitude, the_geom_meter, name, ad-

dress, city, state, country, fax, zip, alcohol, smoking_area, dress_code, ac-

cessibility, price, url, Rambiance, franchise, area, other_services)

3. PARKING (parkID, lot)

4. REGIONAL_CUISINE (cuisineID, name)

5. U_GP (userID, placeID, rating, food_rating, service_rating)
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Attributes are not totally �lled. HBase is a good way to store this kind of dataset.

In �gure 5.2, attached at the end of the Chapter, we can see the XML ER schema,

expressed in term of the DTD shown in Chapter 4.1.

The dataset can be freely downloaded in csv format on the University Repository

Website 1 . In order to be able to use our Java tool, described in section 4.3, we

need to convert it in XML format. We used Microsoft Access [15] to do it.

5.3 Testing method

To execute tests, we are aware of a tool, called YCSB, Yahoo Cloud Service

Benchmark, 2 ( [7]), that is very useful to make random tests on all the main NoSQL

datastores: HBase, Cassandra, MongoDB, etc. .

This tool allows to perform the main database operations (insert, read and up-

date) and to collect their performance. This tool is a good way to perform tests

on our selected datastore, but is based on a random-values not-manipulable dataset

and provides many options that are not fundamental for our test work, such as the

number of client threads, the total number of random operations or di�erent preset

workloads.

It is not very feasible to the relational structure of the chosen dataset, by the

fact that it does not expect relation structures like the ones we have, so we found

di�culties in implementing its classes and methods.

We concluded to write our single class, on the basis of the test class of the YCSB

tool, for our test purposes. It is appended in Appendix C.

5.3.1 Testing enviroment

To execute our tests, as we have already said in Chapter 2, we chose HBase as

datastore, in particular we built up an HBase cluster with a single Master machine

(Hadoop Namenode plus HBase Master) and two slave machines (Hadoop datan-

ode plus HBase RegionServer). We do not focus on how many regions or in which

RegionServer the regions are built up since we are not testing how HBase reacts

to insert or scan queries, but we only want to test performances between the two

methods we have mentioned.

The main parameter we want to monitor is latency; we call latency the time

spent from the beginning of a single operation and its end. For operation we intend

any function that involve an action on the database. We are going to show latency

for the single insert or get operation, for all query operation (sum of all operations)

and average latency on insert operations.

1University of California, Irvine, http://archive.ics.uci.edu/ml/datasets.html
2Yahoo Cloud Serving Benchmark, https://github.com/brianfrankcooper/YCSB/wiki
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All tests are made from the same Java application and under the same constraints,

so we have to take into account the time taken to reach the node of the cluster. This

time has been monitored for all tests and we have calculated its variance value equal

to 2,89%.

5.3.2 HBase mapping

In section 4.3 we showed the tool we have implemented. In order to perform the

entities in the database, we built up a Java Application that exploit tool classes and

methods to be able to store the data into an HBase working cluster. This section

describes how we stored these entities into the HBase cluster.

As described in 2.4.4, HBase provides Java Client API to perform operations on

a working cluster, so we decided to perform these tests from a Java Application.

The entire process can be divided in two sub-phases: �rst of all we need to set

up a new HBase connection, in order to be able to communicate with the Master

node; to the complete set up, some Java libraries are necessary. We do not explain

here the details because they can be found in di�erent HBase Java guides. We refer

once again to Apache HBase Guide ( [11] Chapter 10).

In a second phase we create all necessary tables useful for our tests.

To perform testR we need to create a single table for each of the tables of the

original dataset (cfr 5.2), while for testQ we need only a single table, called "Q".

We implemented a method called "create" in HBaseConnection class that per-

form both functions: con�guration and table creation. The speci�c piece of code is

appended in section C.2.

After doing it, we can start executing our tests.

5.4 Tests description

In this section we are going to present and execute the test queries. Each query

will be performed for testQ and testR.

For each test we are going to divide its development in six parts:

1. aim and presentation of the test; as presentation we will show its query formal

equation, expressed in Relational Algebra (3.3.1) and its E-R schema, expressed

in term of the DTD shown in 4.4;

2. the dataset structure for both tests: testR and testQ;

3. speci�c operation performed for each model; in speci�c, how the query is tech-

nically executed on the database.

4. the test hypothesis: what we expect from each test execution.
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5. test results: each speci�c test result table exposes the number of rows involved,

the average latency of the single operation and the total latency of the entire

operation. We have to mention that we executed each test di�erent times,

depending on the test, and we report the average values of these executions.

Single test variance has been calculated and it can be considered nonsigni�cant.

6. Comment: after the execution, a comment on each single test result is provided.

Referring to the E-R schema in �gure 5.1, the test queries we are going to perform

are the following:

• Test 1 - insert query; we will perform the entire insertion of the dataset into

the database;

• Test 2 - selection query: we will perform a selection on a single attribute of

GeoPlace table;

• Test 3 - Join query: we will perform a Join between GeoPlace and Parking

tables;

• Test 4 - Complex and nested query: after a selection on table User, we will per-

form a Join between its result and tables GeoPlace and Regional Cuisine.

5.4.1 Test 1: insert

This �rst test analyzes the performance when inserting all the rows of our dataset

into an HBase cluster, for both models, R and Q.

Aim

For model R, it is necessary to insert all data just once, while for model Q we have

to insert all rows of a new and di�erent table each time we have a query known at

design time and we apply the denormalization method explained in Chapter 3.

This test is conceived to compare the two insert operations, trying to evaluate

performance between the two models and between each insertion of Q entities in the

database.

For this test, we do not provide a Relational Algebra query-schema, as we are

only testing the insertion of entities into the database.

TestR dataset structure

We have already mentioned in 5.1 that testR dataset is stored in HBase with the

same structure as if it was in a RDBMS, maintaining all the Relational rules of join

tables.

In particular, we mapped each table in the dataset into a single HBase table.

In particular, the original database tables give name to HBase tables and column
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families, while attribute names are mapped in HBase columns. Column families are

called like tables because HBase needs almost one column family per each created

table.

The key-values of the rows for each table are the key-values described by the

logical schema of the original dataset, listed in 5.2.

About the table that represents the many-to-many relation ("U_GP"), we de-

cided to store key-values built attaching placeID value to the userID value. Figure

5.3 describes an example to better understand the concept:

Figure 5.3: testR key-value design

This solution is not the unique solution, as we have already analyzed in paragraph

4.1.2 of the previous Chapter.

TestQ dataset structure

Since the fact that we do not have a static dataset for testQ but it depends on the

query given as input to create it, in this test we will monitor many model dataset

insertions.

The �rst is a simple model where all rows are inserted into the datastore, simply

adding only KEY, valid and status attributes for each row of the original dataset

(�gure 5.4).

The valid bit is set to "1" and status is built with all attributes enabled (cfr

3.4.2).

The other results collected are given from the Q-models of the other tests we

are going to show in the next paragraphs. As we will see they are datasets created

denormalizing the original data, each one on the basis of a single di�erent query.
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Figure 5.4: HBase testQ table

Operation

The operation needed for this type of query is the same for both testR and testQ

and it consists only in a sinlge Put operation, performed for each single HBase row

we want to insert. Put operations for testQ instances are a little bit di�erent from

testR, because attributes valid and status need to be taken in consideration. The

following is the Put operation for testR:

Put p = new Put(list.get(i).getIdAttribute());
for(int t= 0 ; t < list.get(i).getAttributes().size(); t++)
p.add(Bytes.toBytes("Q"),
Bytes.toBytes(list.get(i).getAttributes().get(t).getDescriptor().getClass()),
Bytes.toBytes(list.get(i).getAttributes().get(t).getValue())); }
table.put(p);

.

We present here testQ Put operation: it di�ers from the previous by the fact that

valid and status attributes must be stored.

Put p = new Put(((EntityQ)list.get(i)).getKey());
p.add(Bytes.toBytes("Q"),
Bytes.toBytes("status"),Bytes.toBytes(((EntityQ)list.get(i)).getStatus()));
p.add(Bytes.toBytes("Q"), Bytes.toBytes("valid")
,Bytes.toBytes(((EntityQ)list.get(i)).getValid()));
for(int t= 0 ; t < list.get(i).getAttributes().size(); t++)
p.add(Bytes.toBytes("Q"),
Bytes.toBytes(list.get(i).getAttributes().get(t).getDescriptor().getClass()),
Bytes.toBytes(list.get(i).getAttributes().get(t).getValue())); }
table.put(p);

.

Test hypothesis

What we expect from this test is that the total latency of an insert operation in

testQ is higher than in testR. This can be conceived for two reasons:
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• Basically, testQ dataset rows have two more attributes than testR dataset rows.

• In testR we insert the rows as they are, while in testQ the number of attributes

per single row can increase, as they can include all the attributes of all the

entities involved in the query.

Test 1 results

Each total insert operation into the database has been executed �ve times.

We show here four tables where are reported, in order, the Operation Type,

the number of Rows involved, the number of performed Put operation, the average

latency for inserting each row and the total latency of the entire process. The �rst

table refers to testR, while all the others refer to testQ insert operations.

R model
Table Op. Type #Rows AVG La-

tency/row
[ms]

Total
Latency [s]

P Put 7 113,571 0,795

GP Put 130 985,861 128,162

RC Put 103 100,87 10,39

U_GP Put 1161 251,319 291,781

U Put 138 975,138 134,569

All Put 1539 367,574 565,697

Table 5.1: TestR test 1

Q Model
Op. Type #Rows AVG La-

tency/row
[ms]

Total
Latency [s]

Put 1539 484,006 744886,602

Table 5.2: TestQ insert test 1

Q Model
Op. type #Rows AVG La-

tency/row
[ms]

Total
Latency [s]

Put 1539 477,124 734294,916

Table 5.3: TestQ insert test 2
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Q Model
Op. type #Rows AVG La-

tency/row
[ms]

Total
Latency [s]

Put 1531 476,319 729244,273

Table 5.4: TestQ insert test 3

Q Model
Op. Type #Rows AVG La-

tency/row
[ms]

Total
Latency [s]

Put 1327 670,734 890064,066

Table 5.5: TestQ insert test 4

Comment

From the results exposed in the above tables we can note two main observations:

• As expected (cfr Test Hypotesis), insert test is directly dependent on latency

of the single Put Operation;

• We can note from tables 5.1 and 5.2 that the di�erence between testR and testQ

when we insert a simple dataset is given by status and valid attributes.

• As we can see looking at tables 5.3, 5.4 and 5.5, the total latency of the entire

operation increases even though the number of rows decreases.

This is due to the fact that rows stored are less in number but they have more

columns and they collect more data.

5.4.2 Test 2: selection

The second test we are going to perform is based on a selection query that

involves GeoPlace entity. In particular we want to select all cheaper Restaurants. In

particular, we want all the restaurants that have a "low" value in "cost" attribute.

Aim

We designed this test in order to evaluate the power of modelQ when a Selection

query is given at design time.

It can be represented by the following Relational Algebra equation:

σprice=′low′(GP )
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and its query schema for our speci�c dataset is represented in �gure 5.5.

Figure 5.5: Query schema selection test

Dataset structure

The dataset used for this testR is the same as the one used for test 1. It is previosuly

described in section 5.4.1, and its schema is shown in �gure ??.

The dataset used for testQ is quite the same as Test 1, but this time it is applied

the Selection formula of the model presented in 3.4.3. Rows that answer to the query

are stored with bit valid equal to "1", with a consequent key that has a starting

pre�x equal to "000001". All remaining rows are stored with valid bit equal to "0".

Operation

For this test case, the operation performed by testR and testQ to obtain the same

result are quite di�erent.

In particular, to test model R we need to search for table "GP" and apply a �lter

on it, in order to select all the values that match with the requested one:

Scan s = new Scan();
SingleColumnValueFilter �lter = new SingleColumnValueFilter(Bytes.toBytes("GP"),
Bytes.toBytes("price"),CompareOp.EQUAL,Bytes.toBytes("low"));
s.setFilter(�lter);
ResultScanner result = table.getScanner(s);

Table of testQ is instead already designed to answer to this test, since the key is

predisposed too, as we showed in 4.1.3 and resumed in 5.1.

Then the operation is a simple Scan on a limited key-range values, in particular

on which ones begin with a string with "000001" pre�x:

Scan s = new Scan (Bytes.toBytes(�000001�), Bytes.toBytes("000002"));

As we will see, this will be the same query operation for all the queries that we

will perform to test model Q.

In this case the di�erence between the two queries is simply the di�erence between

a �lter on a single value of a speci�c column, and a Scan operation on a pre-de�ned

row-key range.
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Test hypothesis

We know, theoretically, that HBase Scan queries on a well designed key are faster

than the same query performed on the entire table with a selection on the expected

value ( [11]).

In addition, testR operation has to apply the selection on all "GP" rows, while

the testQ operation returns only the rows that are required.

Since the fact we do not deal with a huge amount of data, we can expect similar

performance values.

Test 2 results

This test has been executed 10 times for each select operation. We do not present

here the average latency for each row because it is represented by the Total Latency

value, due to the fact that there is only one operation. Table 5.6 shows testR results,

while table 5.7 shows the results for testQ.

R Model
Op. Type #Operations Total Latency [ms]

Scan with �lter 1 147,710

Table 5.6: TestR test 2

Q Model
Op. Type #Operations Total Latency [ms]

Scan on limited range 1 50,8557

Table 5.7: TestQ test 2

Comment

As we said at the beginning of the description of this test, Scan operation for testR

needs to locate the correct table, get all rows of that table and �nally apply the �lter

on them.

TestQ is, instead, a simpler Scan operation on a single table, performed only on

rows whose key has a starting String value equal to "000001".

We can see in tables 5.6 and 5.7 that the total latency measured by testQ is 3

times smaller than the one of testR. One of the possible reasons of this result can

be the number of columns of the table used. As it is structured, "GP" table has 21

di�erent columns. So, latency performance of testR can be highly a�ected by the

fact that it has to locate the correct attribute before applying the �lter.

5.4.3 Test 3: one to many relation

The test shown in this subsection involves a One-to-Many relation. We performed

a Join operation, involving two di�erent entities.
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In this case we want to get all GeoPlace's parkings, showing all attributes for

both entities.

Aim

With this test we want to prove the power of model Q on a Join operation that

involves two di�erent entities.

This test query can be expressed with the following expression:

GP on P

. Our aim is to extract both Parking and GeoPlace information, in order to get all

information about the type of parking for each Restaurant. Figure 5.6 shows the

query schema provided as input of the model.

Figure 5.6: Query schema Join o-t-m test

Dataset structure

As we said for test 1 and test 2, the dataset for testR is always the same, described

in 5.4.1 (Dataset structure describtion).

The structure of the dataset designed for testQ is the result of model's one-to-

many formula described in 3.4.3.

In particular, we can note here that entity "P" has only one attribute over the

identi�er one. So, "Q" is designed in order to have in the same row the entities of

"GP" and "P" that are related by the "GP_P" relation.

All rows with "P" and "GP" related in the same row have a valid attribute

equal to "1". All remaining rows are stored with valid attribute equal to "0".

Operation

As we said di�erent times, NoSQL datastores are not predisposed to perform Join

operations between di�erent tables.

To perform this particular operation for testR, we have to combine two searches,

one on the �rst table, and one, with the results obtained, on the second table.

In testR, the operation consists in a Scan, followed by a Get operation:
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Scan s = new Scan();
s.addColumn(Bytes.toBytes("GP"), Bytes.toBytes("P"));
ResultScanner result = table.getScanner(s);

...
//results stored in a list ...
foreach element in list
Get g = new Get(Bytes.toBytes(list.get(i).getKey()));
Result res = table.get(g);
endfor

Operation for testQ is always the same. It searches for all the rows that have

key whose value starts with a string equal to "000001". In this case the key range is

limited to the ending string "000002".

Scan s = new Scan (Bytes.toBytes(�000001�), Bytes.toBytes("000002"));

Test hypothesis

TestR complete operation is composed of di�erent single operations. TestQ is com-

posed by a single Scan operation on a �ltered key-space. This is the �rst reason that

induces us to expect better latencies in testQ. We also expect that testR latency

depends on the number of Get operations that are done after the �rst Scan, while

testQ latency is dependent only on the �nal number of rows returned.

Test 3 results

As test 2, we executed 10 tests for each of the two models presented below. For better

completeness, in testR model are added also the partial values of single operations,

in this case Scan and Get(s) operations.

R Model
Op. Type #Operations Total Latency [ms]

Scan 1 148,330

Get 123 5945,738

2 ops 124 12256,547 *

Table 5.8: TestR test 3
* it includes intermediate latency of getting Scan results and extracting the
correct value to use for Gets operations.

Q Model
Op. Type #Operations Total Latency [ms]

Scan 1 50,5467

Table 5.9: TestQ test3
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Comment

Unlike the second test, in this case there is a big di�erence between model R and

morel Q. This is given by the fact that testR needs to execute multiple operations.

As we can see from tables 5.8 and 5.9, the �nal performances are very di�erent.

TestQ total latency is quite the same as the one measured in Test 2 (table 5.7). This

is due to the fact that we performed the same operation.

TestR spends most of the time to extract the correct value from Scan results (see

"*" in table 5.8) and use it to get the correspondent "P" data. The total latency

of the intermediate operation a�ects performances as Scan operation returns all the

columns of "GP" table, and it takes a lot of time to Get the correct column equal to

"P".

This situation opens the possibility to future works, like studying a similar situ-

ation, focusing on the study of performances according to the number of each table

columns.

In testQ, since the presence of a single operation, there is no time spent to extract

information from the result of the previous operation. This fact highly in�uences

total latency, making it 200 times faster.

As we can observe, on 130 rows of table "GP", 123 are related with table "P",

so we are talking about a relation factor3 of 94%. This factor highly a�ects testR

performances, while it do not change very much testQ performances.

Our test results, as we have seen, strictly depend on the chosen dataset. An-

other possible future analysis can be the same comparison test, studied on di�erent

datasets.

5.4.4 Test 4: many to many relation

Last test involves the execution of a complex query. We want to get all only the

Regional Cuisines of the Restaurants ("GP") where "informal" dressed Users have

been. The query have to retrieve all attributes of all the involved entities.

Aim

It involves three di�erent entities and two di�erent relations:

RC on
(
GP on

(
(σdresscode=informal(U)

))
.

It represents a selection on an attribute of table User, and two Join operations

between tables User, GeoPlace and RegionCuisine. Its E-R diagram can be seen in

�gure 5.7.

3The relation factor shows how many items of a table are related with the items of another table,
given a relation between the two tables.
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5. Model evaluation

Figure 5.7: E-R schema test 4

Dataset structure

TestR dataset is described in 5.4.1.

As presented by �gure 5.3, we designed the row-key of "GP_P" table, allowing

to get GeoPlace information, given the identi�er of table User. This key is well

designed for the query we are going to perform for this test.

If we had designed a di�erent row-key, like attaching the User identi�er to the

GeoPlace identi�er, we would have performed the query starting from Regional_Cui-

sine table, leaving the Selection operation as last operation. In this case the Selection

reduces the number of tuples that are involved in the relation, implying an theoret-

ically faster execution.

Test Q dataset is denormalized in order to have attributes of entities GP, P, GP_P

and RC in the same row. The rules used to build the model are described in 3.4.3

section.

Rows that answer to the �nal query are stored with bit valid equal to "1", with

a consequent key that has a starting pre�x equal to "000001". All the other rows,

the ones that are from these entities but do not answer the query or the ones from

the other entities, are stored with valid bit equal to "0".

Operation

In testR, as usual, the operations performed on the datastore are the one expressed

by the following piece of code:
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Scan s = new Scan();
SingleColumnValueFilter �lter = new SingleColumnValueFilter(Bytes.toBytes(�U�),
Bytes.toBytes(�dress_preference�),CompareOp.EQUAL,Bytes.toBytes(�informal�));
s.setFilter(�lter);
ResultScanner result = table.getScanner(s);
...
//results extracted and put in a list
...
foreach element in list
Scan s1 = new Scan(list.getKey());
s1.addColumn(Bytes.toBytes(�U_GP�), Bytes.toBytes(�GP�));
ResultScanner result = table.getScanner(s1);
endfor
...
//results in lista1
...
foreach element in lista1
Get g = new Get(Bytes.toBytes(lista1.getKey()));
g.addColumn(Bytes.toBytes(�GP�), Bytes.toBytes(�RC�));
Result res = table.get(g);
endfor
...

//results in lista2
...
foreach element in lista2
Get g = new Get(Bytes.toBytes(lista2.getKey()));
get.addColumn(Bytes.toBytes(�RC�), Bytes.toBytes(�name�));
Result res = table.get("G");
endfor

As said when the dataset was presented (cfr 5.4.1) , we chose to start from the

Selection operation (represented by a �ltered Scan), and then perform the two Join

operations.

The �rst one is done on the join-table "U_GP", using key designed ad hoc (cfr

Dataset Structure section of this test) in order to get the GeoPlace identi�ers. Once

got them, we have to perform a Get operation to get the attribute value of the

related Regional Cuisine of each GeoPlace . Given this one, we can �nally retrieve

the attributes of the linked Cuisines.

Each time an operation ends, its results are stored in a list, ready to be used for

the sequent one.

For testQ, as it is conceived, the results of a given query, known at design time,

are characterized by row with KEY value that starts with the string "000001", while all

the others are stored with a key value that starts with the String value of "000000".

The operation, as usual, is a single Scan operation:
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Scan s = new Scan (Bytes.toBytes(�000001�), Bytes.toBytes("000002"));

Test hypothesis

As described in the previous section, testR operation is a very complex operation

that involves scanning di�erent tables di�erent times and getting �ltered or single

values.

TestQ is always the same single limited key-range Scan operation.

For this reason we expect a huge di�erence between testR and testQ, with clear

low latency in the second case.

Test 4 results

The following tables represents the test results for test 4. Again, as we have done

for test 3 (5.4.3), is shown the latency of all the intermediate operations. This test

has been executed 10 times.

R Model
Op. type #Operations Total Latency [ms]

Scan 1 50,811

Scan 35 20575,430

Get 325 15887,578

Get 239 11552,473

4 ops 600 50541,614 (*)

Table 5.10: TestR test4

* as done for test 3 (table 5.9), the total latency includes also the intermediate

operations needed to extract the results and use them in the following operation.

Q Model
Op. Type #Operations Total Latency [ms]

Scan 1 145,3147

Table 5.11: TestQ test4

Comment

Test 4, as Test 3, shows the di�erence between testR and testQ performances when

the query involves a single or many relations.

For each operation on each di�erent table, testR has to execute di�erent op-

erations, while testQ needs only to perform a single Scan operation to get all the

results.
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We deduce the relation factor of the many-to-many relation, given by the number

of Get operations done in the third step of testR (cfr table 5.8), divided by the total

rows of table "U_GP" (5.2) (325/1161 = 28%).

This value has a big in�uence on testR query performance, but not on testQ

ones.

TestR directly depends on that, as higher is the number of the rows involved,

higher will be the number of required operations.

Comparing testQ results from test 3 (table 5.9) and test 4 (table 5.11), we can

observe that the total latency is not in�uenced by the relation factor of GP-U relation,

but it is in�uenced by two other factors: the number of rows involved in the Scan

operation and the number of columns per each row involved.

In third test the number of rows with key-value equal to "00001xxxx" was equal

to 123, while, for the fourth test, the �nal rows are only twice, 239. However, total

latency of test 4 is 2,9 times bigger than test 3. This is deductible by the fact that

the rows stored in table Q of test4 involve a bigger number of columns, (45) than

test 3 (20).

5.5 Summary

In this Chapter we presented the tests done and the results obtained. All results

are quite in line with what we expected. We summarize the tests in table 5.12.

Test operation Test Best solution

Insertion 1 testR

Selection 2 testQ

Join on one-to-many relation 3 testQ

Join on many-to-many relation 4 testQ

Table 5.12: Test Results summary

In the table is shown which test obtained the smallest latency time, per each

performed test. We have to point out that this results are obtained using a random

chosen dataset and a speci�c con�guration of the datastore, so we know that numbers

can change if any of these parameter change.

We also notice that, despite a higher latency on insertion of data in testQ, query

performance are really di�erent, in particular when a Join operation is performed.

We showed how testQ can reach performance 200 times faster thatn testR, when a

query that involves a Join operation is performed. We can conclude that model Q can

be a good solution for mapping relational structured data into a NoSQL datastore,

in particular if the query involves at least one Join operation. For operations like

selection, model R is anyway a good solution.

93



5. Model evaluation

Figure 5.2: XML - entity-relational schema
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Chapter 6

Conclusion and future work

This �nal Chapter reports the conclusions about the work exposed in the previous

Chapters and it lays the groundwork for all subsequent future work.

6.1 Summary of work done

RDBMS have been the best way of storing data since '70s. However, nowadays

requirements have changed, and features like high availability, scalability and fault

tolerance are constantly required.

NoSQL databases are able to manage huge quantities of data and guarantee

the above features with extremely good performances. Nevertheless, they di�er in

architectural structures and features with respect to RDBMS, that make it di�cult to

use them. One of the main problem of adopting a NoSQL database is the absence, in

most of them, of structures that can help us to perform operations between di�erent

tables.

RDBMS represent a completely structured way of storing data. They provide

ad hoc querying facilities to interrogate the system and a structured query language

(SQL, Standard Query Language). NoSQL datastores can store unstructured data

very well but they do not provide any standard query language. These are the main

reason why RDBMS databases are still used nowadays to store data.

This work starts from this point of view, and tries to propose a data mapping

model between a relational structure into a NoSQL one, in order to transfer custom

data model that targets column base NoSQL databases.

We started our work assuming to have as input a dataset, designed primarily for

read queries, as nowadays BigData datasets are. We also assumed that these queries

are available at design time, during model development.

Starting from the entity-relation schema, and given a list of all the queries to be

performed on such schema, we proposed two approaches to denormalize data from

the original dataset, predisposing it on the basis of each query.
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The �rst approach proposes to map all data requested by a single query into a

single row of the target NoSQL datastore. This solution has been achieved after con-

siderations about the fact that most NoSQL databases guarantee strong consistency

on write operations that manipulate a single row. The second approach provides a

mechanism to map all data into multiple rows; it has been designed in such a way

that it guarantees that these rows are stored in the same physical space. This second

approach has been identi�ed in order to achieve high availability, in contrast with

consistency requirements guaranteed by the �rst approach.

We proposed a model, called model "Q", for the �st approach and we studied its

adaptability to all possible Relational Algebra queries. In particular, we showed how

this model solves the lack of relations between tables in a column NoSQL database,

i.e., HBase.

To test our model we needed to choose among many NoSQL databases. After a

deep analysis and comparisons between the di�erent features guaranteed by each of

them, our choice fell on HBase.

The main reason which led us to this choice was that this database guarantees

strong consistency on single row, and it also o�ers the possibility to design data

row-keys and do node pre-splitting studies, to accomplish to requirements expressed

by the second approach.

We analyzed this database and we proposed a way to design key solution for both

approaches. We also showed how to con�gure a complete HBase cluster, understand-

ing its correlation with Hadoop. Furthermore, we built a custom bash script able to

set up an HBase cluster very quickly.

This partially allowed us to partially automate the test we performed.

In fact, the �nal part consisted in executing test of model Q, in order to evaluate

its performance, in comparison to the classical relational model, called R, that maps

data from a RDBMS compliant dataset to a NoSQL database.

To practically execute this evaluation work, a Java application has been devel-

oped. In particular, it takes as input the entity-relations schema, a single query

schema and the whole dataset, and, following the model presented for the �rst ap-

proach, it denormalizes the given data into a single entity, ready to be stored in

HBase.

After choosing an input dataset, we compared performance between model R and

model Q, given di�erent queries, in order to test the validity of our approach.

The �rst contribution that this thesis o�ers is the identi�cation of two possi-

ble approaches for denormalizing data, from an E-R schema to a columner NoSQL

compliant schema.

We provided a mapping model for the �rst approach, while we introduced the

second approach in order to provide a valid alternative to the �rst one.

The last one can be found in the study of HBase datastore features, its con�gura-
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tion and installation process and the analysis of its pre-splitting policies, proposing

a possible key design solution, that allows to provide those availability guarantees

that our second approach aims to at providing.

6.2 Future works

This work represents a starting point to analyze possible mapping methods from

a relational schema to a columner NoSQL one.

The same mapping method can be also integrated with a study on insert and

update queries.

A parallel work can be done studying the method for the second approach, trying

to make the same analysis done in this thesis for the �rst one.

A deeper study of performance of the model proposed can be another possible

future development. A deep test execution, maybe in relation to the relationships in-

volved, or the study of the model performance when an expected query is performed,

are other possible point of analysis.

A third possible future work consists in studying if the model presented can be

mapped into a di�erent NoSQL datastore, maintaining all properties and guarantee-

ing all needed requirements. Starting from this point, similar performance analysis

can be done, comparing the one obtained here with the one obtained in a di�erent

database.
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Appendix A

Model Q examples

A.1 Introduction

This Appendix shows all the complete set of equations introduced in examples 1

and 2 presented in Chapter 3.

A.2 Example 1

This section shows the steps that allows us to generate the �nal table presented

in example 1 (3.25).

The example consists of performing the following query on the tables described

in RIF.

Figure A.1: A,B and C tables
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We continue here the intermediate phases of the process described in section

3.4.4.1.

We start from the following equation:

B onR2 C = Q := (B onR2 C)valid=1⋃
πB.idB,ΣB.attB(Q) :=

[
πidB,ΣattB

(
B − πidB,ΣattB(B onR2 C)

)]
valid=0⋃

πC.idC,ΣC.attC(Q) :=
[
πidC,ΣattC

(
C − πidC,ΣattC(B onR2 C)

)]
valid=0

Figure A.2 represents the intermediate tables that can be useful for better un-

derstanding the creation of entity Q.

Figure A.2: B join C tables

After this �rst Join operation, between B and C tables, we can use the resulting

entity Q as operator of the second Join operation with table A, producing table Q∗:

A onR1 Q = Q∗ := (A onR1 Q)valid=1⋃
πA.idA,ΣA.attA(Q∗) :=

[
πidA,ΣattA

(
A− πidA,ΣattA(A onR1 Q)

)]
valid=0⋃

πQ.idQ,ΣQ.attQ(Q∗) :=
[
πidQ,ΣattQ

(
Q− πidQ,ΣattQ(A onR1 Q)

)]
valid=0

We can now replace Q in the equation with its original formula:
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A onR1 (B onR2 C) =

Q∗ :=

[
A onR1

(
(B onR2 C)valid=1

∪
(
B − πidB,ΣattB(B onR2 C)

)
valid=0

∪
(
C − πidC,ΣattC(B onR2 C)

)
valid=0

)]
valid=1⋃

Q∗ :=

[
A− πidA,ΣattA

(
A onR1

(
(B onR2 C)valid=1

∪
(
B − πidB,ΣattB(B onR2 C)

)
valid=0

∪
(
C − πidC,ΣattC(B onR2 C)

)
valid=0

))]
valid=0⋃

Q∗ :=

[(
(B onR2 C)valid=1

∪
(
B − πidB,ΣattB(B onR2 C)

)
valid=0

∪
(
B − πidC,ΣattC(B onR2 C)

)
valid=0

)
− πidB,ΣattB,idC,ΣattC

(
A onR1

(
(B onR1 C)valid=1

∪
(
B − πidB,ΣattB(B onR2 C)

)
valid=0

∪
(
C − πidC,ΣattC(B onR2 C)

)
valid=0

))]
valid=0

we now exploit the distributive property of join over union:
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A onR1 (B onR2 C) =

(Q∗) :=

[(
A onR1 (B onR2 C)valid=1

)
∪
(
A onR1

(
B − πidB,ΣattB(B onR2 C)

)
valid=0

)
∪
(
A onR1

(
B − πidB,ΣattB(B onR2 C)

)
valid=0

)
⋃
Q∗ :=

[
A− πidA,ΣattA

((
A onR1 (B onR2 C)valid=1

)
∪
(
A onR1

(
B − πidB,ΣattB(B onR2 C)

)
valid=0

)
∪
(
A onR1

(
C − πidC,ΣattC(B onR2 C)

)
valid=0

))]
valid=0⋃

Q∗ :=

[(
(B onR2 C)valid=1

∪
(
B − πidB,ΣattB(B onR2 C)

)
valid=0

∪
(
C − πidC,ΣattC(B onR2 C)

)
valid=0

)
− πidB,ΣattB,idC,ΣattC

((
A onR1 (B onR1 C)valid=1

)
∪
(
A onR1

(
B − πidB,ΣattB(B onR2 C)

)
valid=0

)
∪
(
A onR1

(
C − πidC,ΣattC(B onR2 C)

)
valid=0

))]
valid=0

separating the equations:
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A onR1 (B onR2 C) =

Q∗ :=

[
A onR1 (B onR2 C)valid=1

]
valid=1

∪
[
A onR1

(
B − πidB,ΣattB(B onR2 C)

)
valid=0

]
valid=1

∪
[
A onR1

(
C − πidC,ΣattC(B onR2 C)

)
valid=0

]
valid=1⋃

Q∗ :=

[
A− πidA,ΣattA

((
A onR1 (B onR2 C)valid=1

)
∪
(
A onR1

(
B − πidB,ΣattB(B onR2 C)

)
valid=0

)
∪
(
A onR1

(
C − πidC,ΣattC(B onR2 C)

)
valid=0

))]
valid=0⋃

Q∗ :=

[(
(B onR2 C)valid=1

∪
(
B − πidB,ΣattB(B onR2 C)

)
valid=0

∪
(
B − πidC,ΣattC(B onR2 C)

)
valid=0

)
− πidB,ΣattB,idC,ΣattC

((
A onR1 (B onR1 C)valid=1

)
∪
(
A onR1

(
B − πidB,ΣattB(B onR2 C)

)
valid=0

)
∪
(
A onR1

(
C − πidC,ΣattC(B onR2 C)

)
valid=0

))]
valid=0

Using the assignment operator property, explained in 3.3.2 section, we can reach

this �nal equation, as reported in the Chapter:
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A onR1 (B onR2 C) =

πidA,ΣattA(Q
∗) :=

[
A onR1 (B onR2 C)

](a)
valid=1

∪
[
A onR1

(
B − πidB,ΣattB(B onR2 C)

)](b)
valid=0

∪
[
A onR1

(
C − πidC,ΣattC(B onR2 C)

)](c)
valid=0⋃

πidA,ΣattA(Q
∗) :=

[
A− πidA,ΣattA

((
A onR1 (B onR2 C)

)
∪
(
A onR1

(
B − πidB,ΣattB(B onR2 C)

))
∪
(
A onR1

(
C − πidC,ΣattC(B onR2 C)

)))](d)

valid=0⋃
πidB,ΣattB,idC,ΣattC(Q

∗) :=

[
πidB,ΣattB,idC,ΣattC

(
(B onR2 C)

∪
(
B − πidB,ΣattB(B onR2 C)

)
∪
(
B − πidC,ΣattC(B onR2 C)

))
− πidB,ΣattB,idC,ΣattC

((
A onR1 (B onR1 C)

)
∪
(
A onR1

(
B − πidB,ΣattB(B onR2 C)

))
∪
(
A onR1

(
C − πidC,ΣattC(B onR2 C)

)))](e)

valid=0

A.3 Example 2

In example 2 (cfr 3.4.4.2) we showed how the following query is performed on the

tables described in �gure RIF:

QA :=
(
σatt1A≥40(A)

)
valid=1

∪
(
A−

(
σatt1A≥40(A)

))
valid=0

The following �gure presents the �nal table of the example 2,
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Figure A.3: Example 2 �nal table
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Appendix B

HBase auto-con�guration script

B.1 Introduction

This Appedix shows how this script is con�gured and can be used. Instructions

are given for Linux-based operating systems. Despite this, the script can be extended

to any other operating system.

B.2 Prerequisites

It's very important, before running the script, that the cluster has this few char-

acteristics:

• Each machine does not have a Java Virtual Machine version installed; Hadoop

and Hbase does not work �ne with all the JVM versions, so it is advised to have

not installed a Java Machine in the cluster; the script is prepared for install a

correct JVM version on each of the nodes involved;

• SSH protocol has to be correctly installed on each machine;

• Each machine of the cluster can access to any other machine with password

less login;

• IPv6 net protocol has to be disabled, because it can cause some delays in script

execution.

B.3 Script

We now describe how the HBase auto-installation script modi�es all the necessary

�le settings of this datastore and runs a HBase cluster. To better understand the

description below we refer to the source code, at the this link 1 .

1https://github.com/zianello/denormalizing_data
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B. HBase auto-con�guration script

Any reference to "user" alludes to the people who want to use this script to install

an HBase cluster. The tool is composed of the following folders:

1. input folder: this folder contains all �les the user must modify; download

�le must be �lled with the Hadoop and HBase versions he wants to install and

con�gure. hadoop_namenodes , hadoop_secondarynamenodes , hbase_mas-

ters and slaves �les has to be �lled with the usernames and ip-addresses

(username@ip) of each machine the user wants to con�gure as Hadoop namen-

ode, Hadoop secondarynamenode, HBase Master and Slaves. Only the �rst

machine in hbase_masters �le will be the e�ective Master; all the the others

will become active Masters if the �rst goes down. In Replication �le must be

de�ned the degree of Hadoop replication.

2. hadoop_conf folder:it includes all necessary �les needed to con�gure Hadoop;

3. hbase_conf folder: it contains hbase-env.sh and hbase-site.xml �les;

4. main.sh: this �le is the �le the user has to start to con�gure the whole cluster;

5. configuration.sh: this script �le is used by main.sh �le and it modi�es all

the hadoop_conf folder and hbase_conf folder's �les with the input parameters

included in input folder;

6. conf folder: this folder is empty and it will be �lled with all Hadoop and

HBase necessary �les, ready to be copied in all the machines of the cluster.

This folder contains a .sh �le that will do all needed operations on each cluster

machine.

B.3.1 How it works

There are four main execution steps:

1. main.sh . The user has to execute this �le. First of all the script installs a Java

Virtual Machine: if the user refuses to install it, the script will �nish. If the

script goes ahead, con�guration.sh �le will be invoked. This �le is responsible

of copy all con�guration �les present in hadoop_conf and hbase_conf folder

in conf folder. Once copied, it sets all the properties list in 4.2.1 and 4.2.2

with the information given by the user in input folder (cfr B.3). Master and

NameNode port are setted by default at 54310 and 9000. conf folder contains

now all necessary set �les.

2. For each machine, declared as Namenode, SecondaryNamenode, Datanode,

HMaster or RegionServer by the user, the script will follow this few steps:

• conf folder is copied into each machine;
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• The script will verify on each machine if a JVM have already been in-

stalled. If no, it will install it;

• A local script is started on the machine: it downloads the correct version

of Hadoop or HBase, extracts it and copies all necessary �les included in

conf folder into Hadoop and HBase downloaded folders.

3. The Namenode is formatted;

4. Hadoop and HBase instances are started.

B.4 Comments

This script is designed for a basic installation of an HBase cluster; for further

settings and properties, we can refer to the De�nitive Guide [17].

The following con�gurations has been successfully set up:

with "H" we mean Hadoop, as with "HB" we refer to HBase:

• Machine 1: H Namenode, H SecondaryNamenode, HB HMaster, Zookeeper

Machine 2: H Datanode, HB Regionserver

Machine 3: H Datanode, HB Regionserver

Hadoop version: 1.2.1 / HBase version: 0.94.19 / Replication factor: 2

• Machine 1: H Namenode, H SecondaryNamenode, HB HMaster, Zookeeper

Machine 2: H Datanode, HB Regionserver

Machine 3: H Datanode, HB Regionserver

Machine 4: H Datanode, HB Regionserver

Hadoop version: 1.2.1 / HBase version: 0.94.19 / Replication factor: 1

• Machine 1: H Namenode

Machine 2: HB HMaster, H SecondaryNamenode, Zookeeeper

Machine 3: H Datanode, HB Regionserver

Machine 4: H Datanode, HB Regionserver

Hadoop version: 1.2.1 / HBase version: 0.94.19 / Replication factor: 2

• Machine 1: H Namenode

Machine 2: HB HMaster, Zookeeeper

Machine 3: H SecondaryNamenode, H Datanode, HB Regionserver

Machine 4: H Datanode, HB Regionserver

Hadoop version: 1.2.1 / HBase version: 0.94.19 / Replication factor: 2

• Machine 1: H Namenode, HB HMaster, Zookeeper

Machine 2: H Datanode, HB Regionserver

Machine 3: H SecondaryNamenode
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Machine 4: H Datanode, HB Regionserver

Hadoop version: 1.2.1 / HBase version: 0.94.20 / Replication factor: 3

• Machine 1: H Namenode, H SecondaryNamenode, HB HMaster, Zookeeper

Machine 2: H Datanode, HB Regionserver

Machine 3: H Datanode, HB Regionserver

Hadoop version: 2.2.0 / HBase version: 0.96.2 / Replication factor: 2

A cluster with HBase version 0.94.x and Hadoop version 2.0.1 was tested, with no

positive result (cfr 4.2.1).
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Appendix C

Tool and Tests Java methods

This section shows a list of Java methods. The �rst section shows methods built in

our Java Tool, explained in Chapter 4.

The second section shows methods used in Chapter 5 to perform tests execution.

For each method is explained its main task and what produces.

For a complete overview, the entire set of classes and methods can be found at 1.

C.1 Tool Methods

This section shows main Java methods used in the tool presented in Chapter 4.

C.1.1 ERManager class

This class is the main responsible of extracting the correct information about the

E-R structure of the dataset.

The following three methods show how the root element of the E-R query schema

is taken as input.

Each of the following three methods extracts information about entities

relationships and attributes from the XML �le and creates a list of them.

public static List<EntityDescriptor> setEntityDescriptor(Element root){}

public static List<RelationshipDescriptor> setRelationsDescriptor(Element root){}

1https://github.com/zianello/denormalizing_data

public static AttributeDescriptor setAttributeDescriptor(Element rel, Element el){}
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C.1.2 entityQ Manager

In this section are shown three methods of entityQManager:

public EntityQ createQfromEntity(EntityList en, EntityDescriptor descQ){}

The above method gets the original entit

private static String createKey(String status){}

The method createKey is responsible of creating the key value of Q entity, as it has

been described in Chapter 4.

private static String updateStatusQ(String newStatus, EntityQ �nalE){}

Last method is responsible of updating the Status attribute, given its old value. As

shown in Chapter 3, the result is the AND operation between its value and the new

value assigned.

C.2 Test methods

This section shows the methods implemented in order to create an HBase

connection and to create the necessary tables. Last two classes are classes used to

get tests results, as explained in Chapter 5.

public static void StartHbaseR(List<EntityDescriptor> objects, String name) throws
IOException{}

This method is used to start a new HBase connection and to create, per each single

EntityDescriptor object given as input, a single HBase table (with name "name").

This method is used to perform testR.

public static void StartHbaseR(List<EntityDescriptor>, String name){}

This one is the same as the previous, but it is used to create only one table, called

Q. This method is used by testQ.

public static void insertRowsR(EntityQList list, String name) throws IOException{}
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The method proposed above inserts all entities given as input in a single HBase

table called whose name is given by the String "name".

public static void measurements(int i ,int latency){}

This method is used to save the measurements of a single operation. It receives the

latency of the operation (measured monitoring the SystemTime), and the number

of operations it measures.

public static void resetUnit(){}

Last method is used to reset partial measurements of a query. It is used by testR in

test 3 and 4 to give partial latencies of the di�erent operations.
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