
POLITECNICO DI MILANO

Corso di Laurea Specialistica in Ingegneria Informatica
Dipartimento di Elettronica, Informazione e Bioingegneria

SimDroidUI: a new method of UI-based

Clustering of Android applications

Necst Lab

Novel, Emerging Computing System

Technologies Laboratory

Relatore: Prof. Stefano Zanero

Correlatore: Prof. Federico Maggi

Tesi di Laurea di:

Giuseppe Palese, matricola 783238

Anno Accademico 2013-2014

To my family, to my friends...

Abstract

With the growing popularity of smartphones, and consequently of appli-
cation stores, a method for comparing Android applications is needed. In
response, researchers proposed various approaches to capture application
similarity by comparing source code. Because they rely on calculating dif-
ferences between code used by the developers, such approaches are good for
detecting pirated applications, code reuse, and for bug fixing. However, they
are ineffective where a comparison of just the front-end of the application
is needed; this is required to compare applications with similar usage and
similar User Interface (UI), even with different code structure. A method
for analyzing application front-end has been proposed in previous works,
but this method often needs to execute applications in a remote emulator.

In light of this, we propose a new approach for similarity analysis among
Android applications by comparing the application front-end without ex-
ecuting Android application. The key intuition is that we can consider
application UIs as hierarchies of view elements. This assumption allows
us to compare application front-ends by comparing sequences of elements.
Two applications can be considered as much visually similar as many part
these hierarchies they have in common. Moreover, we can improve our ap-
proach by grouping together applications with the same UI and by obtaining
a summary of the common UI elements. As a consequence, the operation
of clustering brings to quickly identifying series of applications similar to a
given one without comparing a new sample with the whole database.

We experimentally demonstrate that our approach builds ”clusters” that
are good representation of UI similarity. Our results show that SimDroid-UI
is able to identify application similarity more quickly and effectively than
previous works. Finally, we prove that cluster created by SimDroid-UI tends
to put together applications with the same type of usage for the final user,
rather than similarity at source code level.

I

Sommario

Negli ultimi anni siamo stati testimoni di una notevole diffusione di smart-
phone e conseguentemente di numerosi negozi virtuali per la distribuzione
di applicazioni Android.

L’enorme quantità di applicazioni ormai esistente sui mercati rende nec-
essario il ricorso a metodi sempre più evoluti per il loro confronto e la loro
classificazione. Accanto al mercato ufficiale di Google Play sono sorti e si
sono progressivamente diffusi numerosi mercati alternativi che mettono a
disposizione degli utenti variegate applicazioni non facilmente controllabili.
Questo solleva numerosi problemi di sicurezza e di difesa della proprietà in-
tellettuale, poiché non è agevole individuare, tra le stesse, quelle malevole o
quelle che violano i diritti d’autore.

In letteratura esistono diversi metodi, basati sul confronto tra appli-
cazioni Android, per fronteggiare tali problematiche. La maggior parte
di essi analizza il codice sorgente. Tuttavia, nel tempo tali metodi hanno
mostrato limiti e si sono rivelati inefficaci in relazione alla necessità di con-
frontare le Interfacce Utente. Sui mercati sono infatti rinvenibili applicazioni
che, pur apparendo graficamente simili, sono caratterizzate da codici sor-
gente differenti tra loro.

Attualmente esiste un metodo che compara le interfacce utente delle
applicazioni basandosi esclusivamente sull’analisi di immagini e non sulla
struttura delle interfacce; esso per di più richiede lunghi tempi di esecuzione.

Il nostro approccio propone un nuovo ed efficiente metodo di misura della
similarità tra due applicazioni Android che guarda la struttura dell’interfaccia
utente e che risulta scalabile in caso di ampi database di applicazioni. L’idea
sottostante a detto approccio è quella che una qualsiasi applicazione Android
è rappresentata mediante una serie di layout proposti all’utente. Questi ul-
timi sono paragonabili a degli alberi tra i quali sussiste un insieme di relazioni
del tipo padre-figlio. Applicazioni con la stessa Interfaccia utente presenter-
anno alberi simili. Ad esempio due applicazioni che presentano entrambe, in
una schermata, una lista di campi testuali, saranno rappresentate da simili
relazioni padre-figlio, dove i figli sono i campi testuali e il padre è l’oggetto
che li raggruppa.

Abbiamo esaminato lo stato dell’arte del tree mining, focalizzandoci
sui migliori metodi di confronto tra alberi di elementi. Questi ricercano,

III

all’interno di un database di alberi (chiamato foresta), le strutture ricor-
renti, rappresentate da sotto-alberi. Due alberi, e dunque due applicazioni,
risulteranno tanto più simili, quanti più sotto-alberi essi hanno in comune.
Essendo la lista di pattern di una applicazione considerabile come insiemi
di elementi, è stato possibile ricorrere alla Similarità di Jaccard, ben nota
in letteratura, che esprime un valore oggettivo di similarità tra due insiemi.

Più in dettaglio, con SimDroid-UI , abbiamo implementato un metodo di
raggruppamento (clustering) di applicazioni Android basato sulla similarità
di Jaccard.

In sostanza, SimDroid-UI offre due funzionalità: (1) raggruppa un database
di applicazioni rispetto alla loro similarità visiva e (2) ricerca le applicazioni
più simili partendo da un nuovo campione.

A partire dunque dai raggruppamenti creati, SimDroid-UI ricerca gli el-
ementi simili rispetto ad una specifica applicazione, permettendo di ritrovare
velocemente, all’interno di un ampio database di applicazioni, la lista delle
applicazioni più simili al campione.

La novità del nostro metodo sta nel fatto che, a differenza dei metodi di
similarità già presenti in letteratura, non ha bisogno di confrontare ripetuta-
mente le singole applicazioni con il nuovo campione, in quanto utilizza una
rappresentazione tramite cluster che permette di individuare subito la parte
del database contenente le applicazioni più simili.

Abbiamo quindi confrontato SimDroid-UI con pHash e Androsim, due
dei principali metodi di ricerca di applicazioni simili, utilizzando Puppet-
droid, un progetto di analisi dinamica di malware Android. Esso si basa
sulla comparazione visiva per simulare l’utilizzo umano di una applicazione
Android e risulta tanto più accurato quanto più efficiente è il metodo di
similarità utilizzato.

I risultati sperimentali hanno dimostrato che il nostro metodo riesce a
produrre gruppi di applicazioni che ben rappresentano la similarità delle
singole applicazioni. Inoltre, i raggruppamenti si avvicinano alla divisione
semantica che un utente fa rispetto alla tipologia di utilizzo. Abbiamo
provato che SimDroid-UI è più efficace nella ricerca di applicazioni simili
visivamente, confrontandolo con altri approcci esistenti in letteratura. In-
fine, i test hanno evidenziato come il nostro metodo sia più veloce rispetto
a quelli che non utilizzano tecniche di clustering e a quelli che necessitano
dell’esecuzione dell’applicazione.

Vero è che non esiste un metodo unico di calcolo dello similarità tra due
applicazioni, ma quello che si sceglie di adottare è spesso il più funzionale allo
scopo della ricerca. Il nostro metodo può infatti facilmente essere affiancato
ai metodi già presenti, per fornire un valore di similarità tra due applicazioni
da un diverso punto di vista.

Riassumendo, i contributi originali di questa tesi sono i seguenti:

> abbiamo proposto un nuovo metodo per valutare la similarità tra due

applicazioni Android.

> abbiamo proposto un metodo di raggruppamento di applicazioni basato
su similarità visiva;

> abbiamo proposto un metodo di ricerca all’interno di un dataset effi-
cace e scalabile;

> abbiamo implementato il nostro approccio in SimDroid-UI , un tool
che offre all’utente un servizio di ricerca di applicazioni simili tra loro;

> abbiamo valutato sperimentalmente il sistema, dimostrando che i rag-
gruppamenti creati sono validi e riescono a rappresentare le varie tipolo-
gie di applicazioni presenti sul mercato.

Contents

Abstract I

Sommario III

Contents IX

List of figures XII

List of tables XIII

List of listings 1

1 Introduction 3

2 Background and state of the art 7

2.1 The Android platform . 7

2.1.1 Overview . 7

2.1.2 Android Architecture 8

2.1.3 Android markets . 12

2.1.4 Malicious Applications 13

2.1.5 Open challenges . 14

2.2 The PuppetDroid project . 17

2.2.1 Approach overview . 17

2.2.2 The basic workflow of PuppetDroid 17

2.2.3 System Details . 19

2.2.4 Open challenge: finding similar applications 21

2.3 State of the Art . 21

2.3.1 Code-Based applications 22

2.3.2 Other approaches . 25

3 Approach to UI Clustering 29

3.1 Android UI representation . 29

3.1.1 Layout Representation 30

3.1.2 Hierarchies of views 31

VII

3.1.3 Structure Analysis . 32

3.1.4 Frequent Subtree Mining 33

3.2 Clustering . 36

3.2.1 Graph concepts . 37

3.2.2 Agglomerative Hierarchichal Clustering 40

3.2.3 The Jaccard Similarity 40

3.3 Clustering . 40

3.4 Searching process . 41

4 Implementation 45

4.1 Preprocessing . 45

4.1.1 APK decompilation 45

4.2 Transformation . 47

4.2.1 The XAML structure 48

4.2.2 The smali structure 50

4.2.3 List of Views . 53

4.3 Tree Mining . 53

4.3.1 Canonical Representations for Labeled Trees 53

4.3.2 CMTreeMiner . 54

4.4 Clustering . 56

4.4.1 Class Structures . 56

4.4.2 Agglomerative Hierarchical Clustering 57

4.5 Search . 58

4.6 Request manager . 60

5 Test results 63

5.1 Test environment . 63

5.1.1 Parameter tuning . 64

5.1.2 Methodologies . 66

5.2 Algorithm Results . 66

5.2.1 Human evaluation . 67

5.2.2 Similarities . 68

5.2.3 Consumed views . 70

5.3 Comparison of algorithms . 72

5.3.1 introduction . 72

5.3.2 Validation strategy . 72

5.3.3 Views . 73

5.3.4 Execution time . 76

5.4 Conclusions . 76

6 Conclusions and future work 79

A Bipartite Matching Problem 81
A.1 Maximum Bipartite Matching 81
A.2 Maximum Bipartite Matching and Max Flow Problem 82

Bibliography 86

Acronyms 91

List of Figures

2.1 Android marketshare from 2nd quarter 2011 to 2nd quarter
2014 . 8

2.2 The Android architecture layers and modules 9

2.3 Android Operating System fragmentation from April 2012 to
July 2014 . 10

2.4 Android Platform Versions distribution 11

2.5 Android Platform Versions distribution cake 11

2.6 Android screen resolution fragmentation 12

2.7 Puppetdroid workflow . 18

2.8 Examples of Puppetdroid touch event management 20

2.9 The Juxtapp workflow . 22

2.10 The DStruct workflow . 26

2.11 The pHash workflow . 27

3.1 Simple layout structure . 30

3.2 Listview Usage Example . 31

3.3 Example of joining two Rooted Trees 34

3.4 Tree Mining dataset example 34

3.5 Tree Miner enumeration process 34

3.6 Subtree Matching Process . 42

3.7 Bipartite matching example 43

4.1 APK Decompiled Structure 46

4.2 Layout folder . 47

4.3 Layout inclusion transformation 50

4.4 Transformation of SMALI into a layout file 52

4.5 An ordered tree . 54

4.6 Pattern file returned from tree miner 56

5.1 Intra-cluster similarity with respect to minimum support . . . 65

5.2 Maximum similarity during execution 66

5.3 3D graph of cluster similarity 69

5.4 Bar graph of cluster similarity 69

5.5 3D graph of consumed views between clusters 71

XI

5.6 Bar graph of consumed views between clusters 71
5.7 Consumed views algorithm comparison 75
5.8 Execution time comparison of similarity computation 78
5.9 Execution time for search with respect to dataset size 78

A.1 Bipartite Matching example 81
A.2 An example of flow graph . 82
A.3 Maximum flow example . 83

List of Tables

4.1 View classes example . 49
4.2 APK class structure . 56
4.3 Pattern class structure . 57

5.2 Similarity matrix example among applications 64
5.3 Confusion matrix . 67
5.5 Similarity matrix example among clusters 68
5.7 Consumed Views among clusters 70
5.9 Consumed views algorithm comparison 74
5.11 Execution time comparison of similarity computation 77

XIII

List of Listings

4.1 Apktool execution command 46
4.2 XAML file example . 48
4.3 A smali file example . 50
4.4 List Adapter . 53
4.5 CMTreeMiner execution command 54
4.6 Node-Edges format . 54
4.7 OpenMP example . 55
4.8 Subtree Format . 55
4.9 McQuitty Cluster distance . 58
4.10 Direct clustering join operation 58
4.11 Subtree Match algorithm pseudocode 59
4.12 Cluster association . 60
4.13 Sorting operation . 60
A.1 BPM C++ code . 83
A.2 maxBPM C++ code . 84
A.3 BPM driver program example 85

1

2

Chapter 1

Introduction

In past years we were witness to a large spread of smartphones and, as
consequence, of a large number of virtual markets for the distribution of
Android applications.

Because of the huge amount of applications available on the markets, the
need for methods to compare and categorize applications arose. Besides the
Google Play official market, lots of alternative markets grew; applications
in these markets are unlikely to be under control. This creates problems
of security and intellectual property rights, because it is difficult to find
malicious and pirated applications.

In literature, different methods to face such problems in comparing An-
droid applications exist, and they are all based on the comparison between
Android applications. Most of them analyze source code.

However, these approaches are ineffective to compare User Interface (UI)
more than code. In the market, it is possible to find applications that are
similar with respect to the UI, although they have very different source code.

Currently, a method that compares UI exists, focusing on comparing
images produced during execution (without dealing with the UI structure);
the core problem of this approach is that it requires emulation of the appli-
cations, thus comparison is very slow.

Our work proposes a new and efficient way of measuring similarity be-
tween two Android applications; it focuses on the structure of the applica-
tion UI and has the advantage of performance escalation with respect to the
application database size.

The idea behind our approach is that an Android application is a com-
bination of layouts that are proposed to the user. These layouts can be
represented as a tree structure, composed by series of parent-child relation-
ships. Applications with the same UI will have similar tree structure. For
example, considering two applications that present both a list of text field;
the corresponding structures will be similar, as they will contain both a main
element that groups the type of elements.

We examined the Tree Mining state of the art, focusing on the best
methods to compare trees. Most of them search recurrent substructures into
a "forest" of trees. Two trees (and so two applications), can be considered to
be the more similar the more substructures they have in common. Because
the list of patterns that an application includes can be considered as sets,
we could use Jaccard Similarity, a well-known similarity measure between
two sets. Furthermore, SimDroid-UI implements a method for grouping
(clustering) applications based on the Jaccard Similarity.

SimDroid-UI offers two functionalities to the final user: (1) groups a
database of applications with respect to visual similarity and (2) searches
most similar applications to a new sample.

Using clusters created in the first phase, SimDroid-UI searches for sim-
ilar elements to a new specific applications not in the current database,
leading to quickly find, inside a large dataset, a list of the most similar
applications.

The novelty of our method is that, unlike the methods of similarity
already present in the literature, it does not need to repeatedly compare
the individual applications with the new sample, as it uses a representation
of clusters that allows to identify immediately the part of the database
containing the most similar applications.

Then we compared SimDroid-UI with pHash and Androsim, two of the
main methods for searching similar applications, using Puppetdroid, a dy-
namic analysis tool that detects Android malwares. Based on visual com-
parison, it simulates the human use of an Android application and the more
efficient is the method of similarity used, the more accurate the tool results.

The experimental results showed that our method is able to produce
groups of applications that well represent the similarity of the individual
applications. We proved that SimDroid-UI is more effective in the search of
visually similar applications, comparing it with other existing approaches in
the literature. Finally, tests highlighted that our method is faster than those
that do not use clustering techniques and those that require the execution of
the application. The truth is that there is no unique method for calculating
similarity between two applications, but often the most effective method in
relation to the research purpose is choosen. Our method can be easily used
in conjunction with other methods already present, providing a similarity
value from a different perspective.

Summarizing, the innovative contributions of the our thesis are the fol-
lowings:

> we propose a new approach to evaluate similarity between two Android
applications;

> we propose an efficient method for grouping applications considering
their visual similarity;

4

> we propose an effective and scalable searching method within a dataset;

> we implemented our approach in a tool, called SimDroid-UI , that
offers a similar application searching service to the user;

> we experimentally evaluated the system, demonstrating the validity of
the created groups and proving that they are able to represent in some
way the types of applications in the markets.

The document is organized as follows.
In Chapter 2 we introduce the Android platform, focusing on security

issues and malware analysis. We describe Puppetdroid, a malware analysis
tool that uses similarity comparison to perform analysis. Then we analyze
the state of the art for our research, focusing on the problem of comparing
Android applications.

In Chapter 3 we describe our approach and the problems we faced; we
represent application UI as a tree and we compare applications by comparing
structures; in order to achieve our goal, we defined a similarity measure and
the clustering process.

In Chapter 4 we illustrate the details of our implementation, SimDroid-
UI , describing how the files where elaborated and transformed and how we
grouped applications using a clustering method.

In Chapter 5 we present our test evaluation, performing a comparison
between intra and extra cluster similarity; then we compare our approach
with two main alternative methods for application similarity, pHash and
Androsim.

In Chapter 6 we discuss the whole system implemented, presenting con-
clusion of our work; finally we describe the future work planning schedule.

5

6

Chapter 2

Background and state of the

art

This chapter is organized as follows.

In Section 2.1 we introduce Android platform, presenting a general overview
of the operating system (section 2.1.2) and of the markets (section 2.1.3).
Then we focuses on the issues and open challenges (section 2.1.5).

In Section 2.2 we describe the Puppetdroid Project, a dynamic analysis
software that needed a comparison of UI similarity and that we used to
testing purpose.

In Section 2.3 we analyze the State of the Art in Android application
similarity measurement separating code-based approaches (Section 2.3.1)
from non code-based approaches (Section 2.3.2).

2.1 The Android platform

2.1.1 Overview

Due to its characteristics [1, 2, 3, 4], Android is the world’s most popu-
lar mobile operating system. The increasing interest arises from two core
aspects: its open source nature and its architectural model.

Being an open-source project, Android can be fully analyzed and under-
stood, which enables feature comprehension, bug fixing, further improve-
ments regarding new functionalities and, finally, porting to new hardware.

Another aspect that is important to consider is Android Virtual Machine
(VM) environment. Android applications are Java-based, and this factor
entails the use of a VM environment, with both its advantages and known
problems.

Android was made publicly available during the fall of 2008. Since its
official public release, it has captured the interest of companies, developers
and the general audience. The platform has been constantly improved over

Figure 2.1: Android marketshare from 2nd quarter 2011 to 2nd quarter 2014

time boths in terms of features and supported hardware, even extendeing it
to new types of devices different from the originally intended mobile ones.

Android powers more than one billion smartphones and tablets. On
September 2014 its market share was 47% [5]. It continues to dominate the
global smartphone market, with over 255 million units shipped and nearly
85% of the market share in the second quarter of 2014 1 [6].

2.1.2 Android Architecture

Android is an open-source software architecture provided by the Open Hand-
set Alliance, a group of 84 technology and mobile companies whose objective
is to provide a mobile software platform.

The Android platform includes an operating system, middleware and ap-
plications. As for the features, Android incorporates the common features
found nowadays in any mobile device platform, such as: application frame-
work reuse, integrated browser, optimised graphics, media support, network
technologies, etc. [7]

The Android architecture, depicted in Figure 2.2 [8], is composed by five
layers: Applications, Application Framework, Libraries, Android Runtime
and finally the Linux kernel.

The uppermost layer, the Applications layer, provides the core set of
applications that are commonly offered out of the box with any mobile
device.

The Application Framework layer provides the framework Application

1Samsung was the largest vendor of Android-based devices, followed by Huawei, Lenovo
and LG.

8

Figure 2.2: The Android architecture layers and modules

Programming Interfaces (APIs) used by the applications running on the
uppermost layer. Besides the APIs, there is a set of services that enable
access to Android core features such as graphical components, information
exchange managers, event managers and activity managers, as examples.

Below the Application Framework layer, there is another layer contain-
ing two important parts: Libraries and the Android Runtime. The libraries
provide core features to the applications. Among all the libraries provided,
the most important are libc, the standard C system library, tuned for em-
bedded Linux-based devices; the Media Libraries, which support playback
and recording of several audio and video formats; Graphics Engines; Fonts;
a lightweight relational database engine and 3D libraries based on OpenGL
ES.

Regarding the Android Runtime, besides the internal core libraries, An-
droid provides its own VM, as previously stated, named Dalvik. Dalvik was
designed from scratch and it is specifically targeted for memory-constrained
and CPU-constrained devices. It runs Java applications but unlike the stan-
dard Java VMs, which are stack-based, Dalvik is an infinite register-based
machine.

Dalvik uses its own byte-code format name Dalvik Executable (.dex),
with the ability to include multiple classes in a single file. It is also able to
perform several optimizations during dex generation when concerning the
internal storage of types and constants by using principles such as minimal
repetition, per-type pools and implicit labeling.

By applying these principles, it is possible to have dex files smaller than

9

Figure 2.3: Android Operating System fragmentation from April 2012 to July 2014

a typical Java archive (jar) file. During install time, each dex file is verified
and optimizations such as byte-swapping and padding, static-linking and
method in-lining are performed in order to minimize the runtime evaluations
and at the same time to avoid code security violations.

The Linux kernel, version 2.6, is the bottommost layer and is also a
hardware abstraction layer that enables the interaction of the upper layers
with the hardware layer via device drivers. Furthermore, it also provides the
most fundamental system services such as security, memory management,
process management and network stack.

Fragmentation

The openness of the Android Platform allows the manufacturers and carriers
to alter it at will, making arbitrary customizations to fit the OS to their
hardware and distinguish their services from what their competitors offer.
Further complicating this situation is the fast pace with which the Android
Open Source Project (AOSP) upgrades its OS versions.

Figure 2.3 shows the Operating System fragmentation of Android plat-
form from April 2012 to July 2014. Since 2009, 19 official Android versions
have been released. Most of them have been heavily customized, which
results in tens of thousands of customized Android branches coexisting on
billions of mobile phones around the world. This fragmented ecosystem not
only makes development and testing of new apps across different phones a
challenge, but it also brings in a plethora of security risks when vendors
and carriers enrich the system’s functionalities without fully understanding
the security implications of the changes they make. Figure 2.5 shows the
Android Operating System version distribution at September 2014.

10

Version Codename Distribution

2.2 Froyo 0.6 %
2.3.X Gingerbread 9.8 %
4.0.X Ice Cream Sandwitch 8.5 %
4.1.X Jelly Bean 22.8 %
4.2.X Jelly Bean 20.8 %
4.3.X Jelly Bean 7.3 %
4.4.X Kitkat 30.2 %

Figure 2.4: Android Platform Versions distribution

Figure 2.5: Android Platform Versions distribution cake

Because device makers are free to enhance the Android operating system
with user interface additions, and because vendors do not update all their
customers’ devices with the latest version of the Android OS, there is a
huge number of Android hardware/software combinations on the market.
Not only it add confusion among users, it becomes increasingly difficult
for the developer to guarantee the 100% application compatibility on every
installed device [9, 10]. Figure 2.6 shows screen resolution fragmentation
among device distribution. This bring developer to customize application
based to device hardware, software version, screen resolution and screen
dimension.

11

Figure 2.6: Android screen resolution fragmentation

2.1.3 Android markets

Android applications are distributed both through the official store of Google
Play and through many so-called alternative marketplaces.

Google Play

Google Play, formerly the Android Market, is a digital distribution plat-
form operated by Google. It serves as the official app store for the Android
operating system, allowing users to browse and download applications de-
veloped with the Android SDK and published through Google [11]. Google
Play also serves as a digital media store, offering music, magazines, books,
movies, and television programs.

Google uses an in-house automated antivirus system, called Google Bouncer,
to remove malicious applications uploaded on to the marketplace. Bouncer
is credited with reducing malware by 40 percent between the first and the
second quarter of 2011.

Alternative markets

There are a number of alternative Android marketplaces, web services whose
primary purpose is to distribute Android applications. According to this
definition, researchers were able to find 89 alternative marketplaces as of
June 2013, run by companies or individuals [12].

The raison d’etre of such alternative markets are: country gaps (i.e.,
the Google Play Store is inaccessible from certain countries), promotion
(i.e., markets tailored to help users find new interesting applications), and
specific needs (i.e., markets that publish applications that would be bounced

12

by the Google Play Store) [12]. But there are also risks connected to the
existence of alternative Android app markets, in particular malware. The
security policy on different Android app stores will vary. Some will perform
safety checks similar to Google, others will not. Other problems you may
encounter relate to a poor user experience. There are also app stores that
carry pirated versions of apps and games.

2.1.4 Malicious Applications

Lookout mobile security has reported that malware resulted in a loss of US$1
million in 2012. According to a 2014 research study released by RiskIQ, ma-
licious apps introduced through Google Play store have increased 388% be-
tween 2011 and 2013. The study also revealed that the number of malicious
apps removed annually by Google has dropped drastically, from 60% in 2011
to 23% in 2013. Apps for personalizing Android phones led all categories as
most likely to be malicious.

The two types of markets can be analyzed w.r.t. malware and similarity
of Android applications, which is an active research topic. This requires
analyzing the application package file (APK), a compressed archive that
contains resources (e.g., media files, manifest) and code, including Dalvik
executables or libraries, or native code (e.g., ARM or x86). Dynamic, static
and hybrid program analysis approaches have also been ported to Android
[12].

Regarding malware distribution, since the first measurements conducted
in 2011 [13], a lot has changed: researchers, security vendors and media
continuously raise concerns about the explosive growth of Android malware.
According to a recent estimate, as of 2013, companies have invested about
US$9 billion in mobile device and network security, and installation of anti-
malware software has become a de-facto requirement for mobile devices.
Over the years, the number of malware increased significantly and continues
to expand.

Since the first detected Android malware in August 2010, well over 300
malware families and more than 650,000 individual samples of malware for
Android have been recorded [13], a tiny fraction of the existing types of
malware for the traditional PC, but a growing threat. Android malware has
grown quickly in a short space of time and looks set to keep growing apace
with our use of mobile devices.

Malware authors on traditional platforms use obfuscation techniques like
dead code insertion, register reassignment, subroutine reordering, instruc-
tion substitution, code transposition, and code integration to evade detec-
tion by traditional defenses like antivirus [14], which typically use signature
based techniques and are unable to detect the previously unseen malicious
executables.

A previous research on malicious applications on popular Android mar-

13

kets showed that in 2011 the majority of malicious or otherwise unwanted
Android applications were distributed through alternative marketplaces.
The experiments with 204.040 apps collected from five different Android
markets in May-June 2011 revealed 211 malicious ones: 32 from the official
Android market (0.02% prevalence) and 179 from alternative marketplaces
(prevalently ranged from 0.20% to 0.47%). It shows a relatively low malware
prevalence on studied Android markets (0.02% on official Android market
and 0.20% to 0.47% on other alternative marketplaces). Such prevalence is
certainly less than that of malicious web contents. However, due to the cen-
tralized role they played in the smartphone app ecosystem, such prevalence,
though low, can still compromise a tremendous number of smartphones and
cause lots of damages. [14]

Detection methods for attacks on mobile devices have been proposed to
reduce the damage from the distribution of malicious apps. However, mech-
anisms that provide more accurate ways of discerning normal and malicious
apps on common mobile devices must be developed [15].

As Android applications become increasingly ubiquitous, we need algo-
rithms and tools to protect applications from product tampering and piracy,
while facilitating valid product updates. Since it is easy to derive Java
source code from Android byte code, Android applications are particularly
vulnerable to tampering.

To systematically detect malicious apps in existing Android Markets,
there are three key goals to achieve: accuracy, scalability, and efficiency.
Accuracy is a natural requirement to effectively detect malicious apps in
current marketplaces with low false positives and negatives; scalability and
efficiency are challenging as we need to accommodate the large number of
apps that need to be scanned [16].

The current Android markets rely mainly on two approaches for iden-
tifying misbehaving applications: a review-based approach and a reactive
approach. The former generally involves experts manually investigating and
reviewing applications for security problems, and the latter leverages user
ratings, reportings, and policing to identify problematic applications. Nei-
ther of these approaches is scalable and reliable given the hundreds of thou-
sands of applications available. This necessitates ways to quickly and auto-
matically search through large application datasets and reduce the number
of possible misbehaving applications to a small set for further examination.

2.1.5 Open challenges

Similarity check

One approach to addressing the problem of identifying misbehaving ap-
plications is to determine the similarity among Android applications (by
comparing applications from the official Android market to third party mar-

14

kets – similarity analysis approach) with the goal of detecting known buggy
code patterns and vulnerabilities, repackaged and pirated applications, and
known malware in Android markets. Detecting code reuse in Android ap-
plications offers a first chance in detecting applications that may negatively
impact the user’s security and experience or defraud developers of revenue
[17].

Unlike Apple’s App Store, Android markets tend not to vet applications
but rather rely on user feedback. This relaxed policy makes it easier for
people to clone, modify, and redistribute applications.

Although considerable research has been conducted on clone detection,
unfortunately, existing techniques are not suitable for detecting app clones
on Android Markets. Method-level similarity could be used to get similar
apps. However, similar apps are not always app clones. Similar apps cause
can be one of these three categories [18]:

a) Apps from the same author;

b) Apps developed using the same framework or using common third-
party libraries (e.g. advertisement libraries);

c) App clones.

The similarity comparison research has the goal to separate separate c)
from a) and b).

Malware analysis

Malware to be analyzed so as to understand the associated risks and inten-
tions. The malicious program and its capabilities can be observed either by
examining its code or by executing it in a safe environment.

Static analysis Disassemble/Debugger tools like IDA Pro (https://hex-rays.

com/products/ida/index.shtml) and Smali (https://code.google.com/

p/smali/) displays the malware’s code as assembly instructions, which pro-
vide a lot of insight into what the malware is doing and provide patterns to
identify the attackers. Memory dumper tools like ADB (http://developer.

android.com/tools/help/adb) line used to obtain protected code located
in the system’s memory and dump it to a file. This is a useful technique to
analyze packed executables which are difficult to disassemble.

Binary obfuscation techniques, which transform the malware binaries
into self compressed and uniquely structured binary files, are designed to
resist reverse engineering and thus make the static analysis very expensive
and unreliable. Moreover, when utilizing binary executables (obtained by
compiling source code) for static analysis, the information like size of data

15

structures or variables gets lost thereby complicating the malware code anal-
ysis [19]. The evolving evasion techniques being used by malware writers to
thwart static analysis led to the development of dynamic analysis [20].

Dynamic Analisys Analyzing the behavior of a malicious code (inter-
action with the system) while it is being executed in a controlled environ-
ment (virtual machine, simulator, emulator, sandbox etc.) is called dynamic
analysis. Before executing the malware sample, the appropriate monitoring
tools like APIMonitor (http://www.rohitab.com/apimonitor) or Strace
(http://linux.die.net/man/1/strace) must be activated.

Various techniques that can be applied to perform dynamic analysis
include function call monitoring, function parameter analysis, information
flow tracking, instruction traces and autostart extensibility points etc. [19].
Dynamic analysis is more effective as compared to static analysis and does
not require the executable to be disassembled. It discloses the malwares’
natural behavior which is more resilient to static analysis. However, it is
time intensive and resource consuming, thus elevating the scalability is-
sues. The virtual environment in which malwares are executed is different
from the real one and the malwares may perform in different ways result-
ing in artificial behavior rather than the exact one. In addition to this,
sometimes the malware behavior is triggered only under certain conditions
and can’t be detected in virtual environment. Several online automated
tools exist for dynamic analysis of malwares, e.g. Droidbox (https://code.

google.com/p/droidbox/), TaintDroid (http://appanalysis.org/), An-
drubis (https://anubis.iseclab.org/) and DroidScope (https://code.

google.com/p/decaf-platform/wiki/DroidScope). The analysis reports
generated by these tools give in-depth understanding of the malware behav-
ior and valuable insight into the actions performed by them. The analysis
system is required to have an appropriate representation for malwares, which
are then used for classification either based on similarity measure or feature
vectors.

However a large number of new malware samples arriving at anti-virus
vendors every day requires an automated approach so as to limit the number
of samples that require close human analysis. Several Artificial Intelligence
techniques, particularly machine-learning based techniques have been used
in the literature for automated malware analysis and classification.

16

2.2 The PuppetDroid project

Puppetdroid [21] is a project that provides dynamic analysis method by
automatic code-exercising and stimulation techniques. The reason behind
this project is that a human user is able to exercise certain behaviors of a
malware that a dynamic analysis tool by code stimulation fails to unveil.

The first goal of the project is to provide a sandboxed environment to
safely perform manual tests on (malicious) applications and, at the same
time, record user interaction with the UI of the application. The second goal
is to automatically exercise unknown applications, leveraging stimulation
traces previously recorded on similar applications.

2.2.1 Approach overview

PuppetDroid’s approach is to let applications run on a remote sandbox
while users seamlessly interact with their UI as if they were running locally
on their devices. More precisely, in order to records stimulation traces, each
sandbox uses a remote frame-buffer protocol to collect stimulation traces,
which represent the sequence of UI events performed by the user, as well as
the list of UI elements actually stimulated during the test. It records raw
events from input and re-injects them to another input device: such events
are correlated to the respective UI elements (e.g., buttons, or other view
objects), and information is collected about the behaviors exhibited by the
exercised applications, through dynamic analysis.

Furthermore, it leverages the collected stimulation traces to automati-
cally exercise new applications; this operation is due to the fact that using a
stimulation close to human behavior, the code tested during dynamic anal-
ysis is much greater. The hypothesis is that by re-using stimulation traces
better results are obtained (in terms of discovered behaviors) than with
random UI testing. A naive approach where is blindly tried to exercise an
application with every stimulation trace in the system is not accurate or
efficient, but the trace must be executed in application compliant with the
concept of UI similarity.

When a new sample is to be analyzed, firstly samples are looked for
similar (or equivalent) for which we have a stimulation trace. Then, only
stimulation traces of the most similar known application are used.

2.2.2 The basic workflow of PuppetDroid

The user can interact with PuppetDroid in two ways: using the web appli-
cation (to upload the APKs they want to test, to see the results of tests
previously executed tests and to leverage our re-execution functionality) or
using the Android application, to manually exercise a given application.

As shown in Figure 2.7 the workflow can be divided into eight steps:

17

Figure 2.7: Puppetdroid workflow

1. APK upload: through the web front-end the user uploads the APK
he/she wants to test;

2. Sample storage: after performing some consistency and security checks,
the uploaded sample is stored into the PuppetDroid sample repository.

3. Chose application: through the Android application the user selects
the app they wants to test

4. Start test: using the chosen application, a new test session can be
started. The Android application contacts our main server and sends
the request.

5. Send task to worker : the main server checks if there is an available
worker and, if found, sends the task request to it.

6. Sandbox initialization: the selected worker retrieves the APK to be
tested from the sample repository and initializes the sandbox that will
hold the test session.

7. VNC session: when the sandbox is ready, a VNC channel is estab-
lished with the Android application and the user can interact with the
sandbox.

18

8. Check test results: the user can now view test results using the web
front-end.

2.2.3 System Details

Recording of stimulation traces The low-level input events generated
while the user interacts with an application on their device are recorded.
The input events are translated in a sequence of PointerEvent or KeyEvent
messages that are sent to a VNC server. For each event, the timestamp,
event type, action (0 is “up”, 1 is “down”, 2 is “move”), x position, y position
coordinates on the screen, and pressed button key are saved.

During recording it is kept track of which view object (e.g., button identi-
fier) consumed each input event during recording, in order to find that same
view object during re-execution. For this, it is relied on the ViewServer,
which allows to “walk” the hierarchy of displayed objects. More precisely,
the VNC server performs the following steps when a new input event is
received:

1. Process PointerEvent message.

2. Send a command to the ViewServer, to get the name and hash code
of the focused window (i.e., Activity).

3. Retrieve view hierarchy of the window sending DUMPQ command to
ViewServer.

4. Search view hierarchy for the deepest-rightmost view object containing
the coordinates of the input event.

5. Store the paths to the previously found view nodes.

Two similar applications may have some subtle UI differences that can
make a re-execution test fail (e.g., slightly shifted buttons). The collected
information are combined to extract the list of paths to the views that
actually consumed the touch events. The activity that has consumed each
event is logged, and the path to all the deepest nodes in the hierarchy that
can consume the touch event; then a sequence of view objects stimulated is
built.

Re-execution of stimulation traces For each event in the recorded
sequence, the view object and ratio information to properly re-scale the
horizontal and vertical coordinates is used. Then, the resulting events are
written into the /dev/input device.

Touch events are treated with special care to avoid the following rare
corner case, which can occur if the view that receives the input event is not
the view that eventually consumes it. More precisely, when a touch event is

19

Figure 2.8: Examples of Puppetdroid touch event management

handled by the Android Touch System, the Activity.dispatchTouch-Event()
method of the currently running Activity is called. This method dispatches
the event to the root view in the hierarchy and waits for the result: If no view
consumes the event, the Activity calls onTouchEvent() in order to consume
itself the event before terminating. When a view object receives a touch
event, the View.dispatchTouchEvent() is called: This method first tries to
find an attached listener to consume the event, then tries to consume the
event itself calling.

If neither there is a listener nor the onTouchEvent() method is imple-
mented, the event is not consumed and it flows back to the parent. When
a ViewGroup (that contains a series of subviews) receives a touch event, it
iterates on its children views in reverse order and, if the touch event is inside
the view, it dispatches the event to the child. If the event is not consumed
by the child, it continues to iterate on its children until a view consumes the
event. If the event is not consumed by any of its children, the ViewGroup
acts as a View and tries to consume itself the event. Eventually, if it is not
able to consume the event it sends back to the parent.

Figure 2.8 shows two examples of touch events management: in the
former, the event flows down through the hierarchy, and since it is not
consumed by any view, it goes back to the Activity. In the latter, the event
is consumed by the second View child of the ViewGroup object. The system
avoids this corner case because it recorded which activity has consumed
each event, and the path to all the deepest nodes in the hierarchy that can
consume the touch event.

20

2.2.4 Open challenge: finding similar applications

In case a stimulation trace for an application A is not available, besides
searching by MD5, it is possible to rely on visual similarity to find similar
applications. For Puppetdroid, the requirement is to find an application B,
for which a stimulation trace exists. The application B must be compliant
with the structural implementation of the UI, in terms of pattern to the
object (node) that consumed an event. It leverages the concept of visual
similarity, that as been implemented in Puppetdroid through screenshot
comparison by perceptual hashing computation (Section 2.3.2).

During the execution of both A and B, using the same stimulation trace,
the same view objects must be found, in order to stimulate application B
emulating a human usage. The presence of a view object in the original
sample layout that is not present in the layouts of similar applications is a
corner case that can make re-execution incomplete or even fail; it happens
because Puppetdroid cannot correctly retrieve the same objects during the
process of consuming views. The problem of this implementation is that
may occur that two applications produce the same appearance for image
comparison but the layouts contain different kind of object.

A more specific but explanatory example is the case of context change;
for example, during the stimulation of the original sample, the user clicked
on a link embedded in a TextView object. Re-executing the test on a similar
application, the content of the TextView changed, with consequent vanishing
of the link. Hence, clicking on the TextView in the original sample led to
open a new window, while the same click on the similar application did not
generate any transition, making the re-execution test fail.

The cause of this limitation is that Phash, by comparing screenshots,
does not compare a hierarchy of views, but makes a "blind" search, getting
away from the meaning of comparing UI structure. To avoid this specific
cases of dynamic layouts, a similarity criterion that can recognize whether
two layouts are very similar, yet with a significant tiny variation (e.g, absence
of a single, small button) is needed. A further improvement that can avoid
re-execution to fails is a method that retrieve applications that have similar
flows during execution.

2.3 State of the Art

In this section we will analyze the State of the Art of methods that compare
applications and evaluate application similarity. We can distinguish between
(1) code-based tool (Section 2.3.1) , that use to compare code produced by
the developer to compute similarity and (2) non code-based tool (Section
2.3.2).

21

Figure 2.9: The Juxtapp workflow

2.3.1 Code-Based applications

Juxtapp

Juxtapp [22] is an architecture that automatically examines code contain-
ment in Android applications.Code containment it’s defined to be a measure
of the relative amount of code in common between two Android applications.
The main technique used is feature hashing. Feature hashing is a popular
and powerful technique for reducing the dimensionality of the data being an-
alyzed. Using a single hash function, feature hashing compresses the original
large data space into a smaller, randomized feature space, in which feature
hashing, representation, and pairwise comparison are all efficient.

As shown in figure 2.9, Juxtapp consists of the following steps for ana-
lyzing Android applications:

1. application preprocessing;

2. feature extraction;

3. similarity and containment analyses.

For each application APK, its DEX file is extracted and converted into
a complete XML representation of the Dalvik program, including program
structure. From the XML file, each basic block is extracted and labeled
according to which package it came from within the application. For each
basic block, only the op-codes are retained and most operands are discarded.
The result is a basic block (BB) file for each application.

22

Feature Extraction. K-grams of opcodes and feature hashing are used to
extract features from applications. From each BB file, k-grams are extracted
using a moving window of size k and they are hashed. K-grams across basic
blocks are ignored. For each hashed value, the corresponding bits are set in
a bitvector, which represents the features in the application, to indicate the
existence of the k-gram.

Similarity. Two applications are considered to be similar if their bitvec-
tor representations of k-grams are similar. The Jaccard similarity is cal-
culated dividing the number of features in common between applications
by the total number of distinct features the applications have. More for-
mally, the Jaccard similarity between bitvectors A and B is defined as
J (A, B) = |A ∩ B|/|A ∪ B| , and this value represents the similarity be-
tween applications. Using this similarity metric, it’s possible to perform
agglomerative hierarchical clustering [23] on all of the bitvectors to group
similar applications together into clusters.

Containment. Containment analysis on the bitvectors is performed to
determine the percentage of code in common among applications. Contain-
ment is defined as the percentage of features in application A that exist
within application B . This value is computed by dividing the number of
features common in both applications by the number of bits in A . More
formally, containment C(A|B) = |A ∩ B|/|A|.

Androsim

Androsim (http://code.google.com/p/androguard) leverage Normalized
Compressed Distance (NCD) to approximate Kolmogorov complexity and to
calculate the distance between two elements using real world compressors.
In particular, given a compressor C, the NCD of two elements A and B is
defined by:

dNCD(A, B) =
LA|B − min(LA, LB)

max(LA, LB)
(2.1)

where L is the length of a string, LA = L(C(A)) and A|B is the concate-
nation of A and B. The compressor C must be normal, i.e it has to satisfy
the 4 inequalities:

1. Idempotency: C(xx) = C(x), andC(ǫ) = 0, where ǫ is the empty
string;

2. Monotonicity: C(xy) ≥ C(x);

3. Symmetry: C(xy) = C(yx);

23

4. Distributivity: C(xy) + C(z) ≤ C(xz) + C(yz).

Moreover, the compressor must be able to calculate C(x) within an ac-
ceptable amount of time. The algorithm, used to calculate the similarity
between two applications, works as follows:

> extract the lists of methods from the bytecode of the two samples;

> identify identical methods using an hashing comparison;

> generate signatures for remaining methods;

> identify similar methods using NCD.

The global idea is to associate each method of the first application with
others of the second application, excluding identical methods, by using NCD
with an appropriate compressor. Finally, according to the number of identi-
cal methods and the distance between the remaining ones, a similarity score
is given as output. The difference computation is based on “strings" and
"hashes" properties of elements. In case of Android applications, elements
are methods or classes. The "string" is the signature of a method and the
"hash" is the sequence of instructions of it.

Androsim uses control flow graph (CFG) of the methods along with spe-
cific instructions of the CFG such as "if" or "goto". All the instructions, like
sparse/packed switch, are translated to "goto" instructions without details.
It’s interesting to see that even if the basic blocks are in a different order,
the Kolmogorov complexity is preserved. If each basic block is reorganized
in the signature, it’s possible to see that the results are quite the same (so
basically the NCD bypasses a basic CFG obfuscation). This tool detects
and reports:

> the identical methods;

> the similar methods;

> the deleted methods;

> the new methods;

> the skipped methods.

Moreover, a similarity score (between 0.0 to 100.0) is calculated upon the
values of the identical methods (1.0) and the similar methods using the BZ2
compressor. The algorithm just illustrated is very efficient in calculating the
similarity between two applications: however pair-wise comparison does not
scale if you have to calculate similarity on a large amount of applications.

24

2.3.2 Other approaches

DStruct

DStruct [24] is a simpler system that examines applications at a higher
level than Juxtapp and represents applications by their directory structures.
This avoids all of the problems that are associated with the application
code and provides another metric for determining application similarity.
All of the files and directories and their relationships among each other
make up the directory structure of the application. The approach relies
on the observation that applications with different functionality typically
have different directory structures, and applications that are similar, such
as different versions of the same app, will have similar directory structures.

There are several methods to represent the directory structures of ap-
plications so that we can apply comparison techniques to them. The leaves
of the tree are the files and the non-leaf nodes are the directories of the
application. A file leaf is a child of a directory node if the directory contains
that file. The method for labeling nodes is crucial as it affects how closely
the tree represents the directory structure of the application and, hence, in-
fluences the similarity computations among pairs of applications. It explore
several methods for labeling nodes:

> using the names of the files;

> extracting the extensions of them;

> computing their md5 sums;

> using the Linux file command.

Each of these approaches can encounter different cases that lead to false
positives and false negatives. Once two applications are represented as trees,
we can compute the tree edit distance between them. The distance between
two trees is considered to be the number of edit operations to transform
one tree to another. Edit operations include (1) changing one node label
to another, (2) deleting a node, after which all children of the deleted node
become children of that node’s parent, (3) and inserting a node, after which a
consecutive subsequence of siblings among the children of the node’s parent
become the children of the node. The greater the edit distance, the more
different the two trees are from one another. For this purpose, it is possible to
use Zhang-Shasha Algorithm. This algorithm is used because it is simple and
works fast, but there are other algorithms that may perform more accurately
or even faster. Then, the percent difference between two trees is calculated
as their edit distance divided by the number of nodes of the bigger tree.

diff(T1, T2) =
(treeeditdistance)

max(|T1|, |T2|) ∗ 100%
(2.2)

25

Figure 2.10: The DStruct workflow

It is possible also to use the difference values to perform hierarchical
clustering to group similar applications together. In 2.10 the workflow of
DStruct is shown.

PHash

Puppetdroid Project relies on an similarity measure of applications that
focuses more on visual similarity with respect to coding similarity. Using
Perceptual Hash (https://www.phash.org), the system get an hash of app
screenshots so that two applications will be as much similar as more the
hash computed will be similar.

In practice, to lookup a suitable stimulation trace for application A, the
perceptual hash of its screenshots is calculated. Then, in order to find an
application B, the system seek for an application which screenshots min-
imize the Hamming distance from A’s screenshots according to their re-
spective perceptual hash. The hashes of the known applications offline are
pre-computed, and they are indexed in a tree, which allows lookup in loga-
rithmic time. The system instantiates an emulator, installs the APK of A
and leverages the screencap utility to take a screenshot once the application
has started, unless it can retrieve it from Google Play.

Given an image in input, a perceptual hashing algorithm creates a metric
fingerprint that is robust to image re-scaling, rotation, deformation, skew
and compression. Thus, if two images are visually similar, their respective
hashes, which are 64-bits unsigned integers, are very close. In particular,
perceptually similar images have a hamming distance within bounds that

A perceptual hash is a fingerprint of a multimedia file derived from various
features from its content. Perceptual image hash functions produce hash
values based on the image’s visual appearance. A perceptual hash can also
be referred to as e.g. a robust hash or a fingerprint. Finally, using an
adequate distance or similarity function to compare two perceptual hash
values, it can be decided whether two images are perceptually different or
not. Perceptual image hash functions can be used e.g. for the identification
or integrity verification of images.

The most frequently used functions are:

> Discrete Cosine transform (DCT) based

> Marr-Hildreth operator based;

> Radial variance based;

26

Figure 2.11: The pHash workflow

> Block mean value based image hash function.

When a perceptual hash functions is used to authenticate media objects,
even a small number of false positives is unacceptable. For an adversary, it
must be impossible for any media object x to construct a perceptually differ-
ent media object y such that H(x) = y. Likewise for perfect unpredictability,
a equal distribution of the hash values is needed.

A problem when developing perceptual hash functions is that authentic
media objects can not be precisely separated from not authentic ones. There-
fore proposes a continuous interpretation of authentic: “An image which is
bit by bit identical to the original image is considered completely authentic
(authenticity measure of 1.0). An image which has nothing in common with
the original image would be considered not authentic (authenticity measure
of 0.0). All other images would be partially authentic. Partially authentic is
a loosely defined concept and measurement of the authenticity is subjective,
and changes from application domain to application domain.”

Feature extraction and processing Normally the media content must
be preprocessed in order to be processed by a perceptual hash function. In
the case of an image, such required preprocessing steps can be to resize the
image to a given resolution or to convert it to levels of gray.

Modelling of perceptual hash A perceptual hash is calculated using
the features extracted in the previous step.

27

Database look-up To compare two perceptual hashes, special search al-
gorithms and distance/similarity functions according to the used perceptual
hash function must be used. The most often used are the Bit Error Rate
(BER), the Hamming distance and the Peak of Cross Correlation (PCC).
The first two measure the distance between two hash values, whereas the
latter measures the similarity between two hash values.

Hypothesis testing Based on a pre-defined threshold it is determined if
there is a match. Therefore the determination of an adequate threshold, in
accordance with the actual application scenario, is critical.

28

Chapter 3

Approach to UI Clustering

The problem of finding visual similar application in a dataset of sample is a
matter of comparing structures of application UI. The comparison should be
valid without running the application, to reduce memory and time needed
from the process. In order to quickly compare a new sample with the whole
dataset, we can create a model to represent similar applications, using clus-
ters. This chapter describes the approach to the clustering process. Each
application is preprocessed to obtain a good representation of the UI before
clustering.

In Section 3.1 we analyze how UI is developed in Android systems; in
particular in 3.1.1 we describe how layouts displayed are created. In 3.1.2
we explain relations among views and in 3.1.3 we introduce the problem of
mining tree structured data from layout file.

In Section 3.1.4 we describe the problem of mining frequent subtrees
introducing TreeMiner and its variant CMTreeMiner.

In Section 3.2 we introduce the concept of graph clustering (3.2); we
illustrate our hierarchical clustering (3.2.2) approach of how to group appli-
cations based on tree representations (3.3), using the similarity measure in
Section 3.2.3.

In Section 3.4 we show how to use the created cluster to search for similar
APK with respect to a new sample; implementation details can be seen in
Chapter 4.

3.1 Android UI representation

In this Section we describe how developers use Android SDK to build the UI
of an applications and the problems we deal with to create a structure that
well represents the UI of an application. Such method will avoid Android
screen fragmentation problem that we described in Section 2.1.2.

LinearLayout

EditTextView Button

Figure 3.1: Simple layout structure

3.1.1 Layout Representation

In Android applications, the UI is created by using an XML file depicting
a structure of the user interface that the final user sees as a hierarchy of
elements.

There are (1) elements that simply group other elements, acting like a
father, and (2) elements which represent a visible object that the user can
interact with. For example, to build a view which contains a field where the
user can input text, with a button to confirm, the developer must create
a structure with three elements (Figure 3.1): the first element will contain
the other two and will be the parent. This structure will be described in
the xml file corresponding to the view. A view is an object that represents
contents to the user. There are multiple types of views defined in Android
Software Development Kit [3]. There (1) views that represent a concrete
content like text (TextView), image (ImageView) or Clock (Clock) and (2)
views that group content like list (ListView) or sequence (LinearLayout).

This tree structure can be composed dynamically as the user makes use
of the application. A list of elements (for example a list of conversations in
a message app) can be represented by a parent object of type ListView that
contains one or more elements of any kind. If the developer doesn’t know a
priori the amount of elements that will be shown in the UI, he can create
two files of layout and combine them by code. In the application shown
in Figure 3.2a, developer uses a main structure with a ListView that will
contain several elements and a second structure that will be inserted once
for each entry of the list. The secondary structure has no limitation in the
number of elements.

The combined view that will be shown will be the one in Figure 3.2d in
case that there will be 3 elements in the list.

Sometimes the developer can also build a view without creating a XML
structure, but only defining it by code. In this case, the elements of the

30

(a) ListView example

ListView

(b) Main Layout file structure

LinearLayout

ImageView TextView

(c) Secondary Layout file structure

LV

LL

IV TV

LL

IV TV

LL

IV TV

LL

IV TV

LL

IV TV

LL

IV TV

(d) Joined dynamic layout created during execution

Figure 3.2: Listview Usage Example

view will be written using the code. In our approach we search into the
code to build the layout file that represent a code-defined view. Further
details about how it can be done are described in the chapter 4.1. In our
approach, an APK will contain a certain amount of files that will represent
views as tree structure and that are combined together during execution
of the application. Relationships among elements of the files can be found
and, by manipulation of the layout files, it is possible to create a series of
structures that will represent all the views of the application.

3.1.2 Hierarchies of views

Google supplies developers of an enormous amount of elements to build
layouts and these elements may have several characteristics in common. The
developer can define with more precision the properties and the operations

31

that the View will have, by using an element that have general properties
of another view, but some peculiar characteristics.

For example, an element as a TextView represents a text shown to the
user; an EditTextView is also text field but with a particular option to be
modified by the user during the execution. Also a Button is a particular
TextView because in a sense it is a View that displays text (the operation
associated to the button) but with the ability to be "clickable" by the user
to perform an action.

The Android toolkit for developing applications defines a hierarchy of
Views to represent the heredity of properties of the classes.

In our approach, views that directly inherits properties from another
object will be considered as the same object, in order to compare same kind
of objects.

Besides default views in the Google toolkit, developers can create their
own by inferring the properties of the new class from another. For example,
a new View called MyTextView can be created by describing it as a special
TextView. This view will have all properties inherited from a TextView, plus
other added by the developer. As a matter of fact, the new MyTextView can
be considered as a TextView for similarity purpose (under these mentioned
considerations).

With these considerations, we can represent the layouts that the appli-
cation displays to the user as a sequence of tree structures.

3.1.3 Structure Analysis

In order to define a UI similarity, we can now compare the structure of
the layouts of the applications. The idea behind our approach is that two
applications which have a similar User Interface will have similar structure
layout. For example, if we consider two messaging apps, they will have for
sure:

a conversation list represented with an object ListView with a series of
object (the conversations) each with a TextView (the conversation
name) and an ImageView (the contact picture);

a conversation view represented with a ListView each with a TextView
(messages in the conversation) plus a EditTextView (where the user
can type a message) and a button (to send the message).

The more structures two applications will have in common, the more
they will be considered similar. Now the problems moves to find frequent
structures in dataset of trees. This problem is called Frequent Subtrees
Mining

32

3.1.4 Frequent Subtree Mining

Mining frequent subtrees from database of labeled treed is a new research
field that has many practical applications in areas such as computer net-
works, Web mining, bio-informatics, XML document mining, etc. These
applications share a requirement for the more expressive power of labeled
trees to capture the complex relations among data entities. Although fre-
quent subtree mining is a more difficult task than frequent itemsets mining,
most existing frequent subtree mining algorithms borrow techniques from
the relatively mature association rule mining area.

Given an alphabet Σ of items and a database D of transactions T ⊆ Σ ,
we say that a transaction supports an itemset if the itemset is a subset of the
transaction. The number of transactions in the database that support an
itemset S is called the frequency of the itemset. Given a threshold minsup,
the frequent itemset mining problem is to find the set F ⊂ 2Σ of all itemsets
S for which support(S) ≥ minsup.

Given a threshold minfreq, a class of trees C, a transitive subtree relation
P � T between trees P, T ∈ C, a finite data set of trees D ⊆ C , the
frequent tree mining problem is the problem of finding all trees P ⊆ C such
that no two trees in P are isomorphic and for all P ∈ P : freq(P, D) =
∑

T ∈D d(P, T) ≥ minfreq, where d is an anti-monotone function such that
∀T ∈ C : d(P ′, T) ≥ d(P, T) if P ′ � P . We will always denote a pattern tree
– a tree which is a part of the output P – with a P, and text tree – which is
a member of the dataset D– with aT. The subtree relation P � T defines
whether a tree P occurs in a tree T. The simplest choice for function d is
given by the indicator function:

d(P, T) =

{

1 P � T
0 otherwise

(3.1)

In this simple case the frequency of a pattern tree is defined by the
number of trees in the data set that contains the pattern tree. We call
this frequency definition, which closely matches that of itemset frequency, a
transaction based frequency.

TreeMiner

The TreeMiner algorithm developed by Zaki [25] for mining frequent ordered
embedded subtrees follows the combined depth-first/breadth-first traversal
idea to discover all frequent embedded subtrees from a database of rooted
ordered trees. Other than the general downward closure property (i.e., all
subtrees of a frequent tree are frequent), TreeMiner takes advantage of a
useful property of the string encodings for rooted ordered trees: removing
either one of the last two vertices at the end of the string encoding of a rooted
ordered tree P(with correspondent adjustment to the number of backtrack

33

Figure 3.3: Example of joining two Rooted Trees

Figure 3.4: Tree Mining dataset example

symbols) will result in the string encoding of a valid embedded subtree of P.
This is illustrated in Figure 3.3. If one of the two last vertices in t3, t4, t5
and t6 is removed, either t1 or t2 results. Please note that the removal of
the second-to-last vertex of t3 yields tree t2 as we are considering embedded
subtrees here. Tree t2 is not an induced subtree of t3, could not grow from
t2 when mining induced subtrees.

Figure 3.4 gives a running example of a database consisting of two trans-
actions (with transaction-ids t1 and t2, respectively). For simplicity, we
assume the minimum support s=100%. 3.5 shows the part of the enumer-
ation lattice that contains all frequent 2-subtrees with A as the prefix and
all frequent 3-subtrees with AB as the prefix. From the figure we can see
that the candidate generation for TreeMiner is very similar to the combined
depth-first/breadth-first lattice traversal of frequent itemset mining.

Figure 3.5: Tree Miner enumeration process

34

Mining maximal and closed frequent subtrees

In our approach, the tree representations of XML can considered as rooted
trees; in particular, considering structural views, the order of the children
doesn’t matter so we chose to mine unordered trees instead of ordered ones.
As consequence, we decided to use CMTreeMiner by Yun Chi [26] to retrieve
frequent subtrees.

All the algorithms described discover all frequent subtrees from a database
of labeled trees. The number of all frequent subtrees, however, can grow
exponentially with the sizes of the tree-structured transactions. Two con-
sequences follow from this exponential growth. First, the end-users will be
overwhelmed by the output and have trouble to gain insights from the huge
number of frequent subtrees presented to them. Second, mining algorithms
may become intractable due to the exponential number of frequent subtrees.
The algorithms presented by Wang et al. [27] and Xiao et al. [28] attempt
to alleviate the first problem by finding and presenting to end-users only
the maximal frequent subtrees. A maximal frequent subtree is a frequent
subtree none of whose proper supertrees are frequent. Because they both
use post-processing pruning after discovering all the frequent subtrees, these
two algorithms did not solve the second problem. Later, Chi et al. [29, 26]
presented an algorithm, CMTreeMiner, to discover all closed frequent sub-
trees and maximal frequent subtrees without first discovering all frequent
subtrees. A subtree is closed if none of its proper supertrees has the same
support as it has. Given a database Dand a support s, the set of all frequent
subtrees F , the set of closed frequent subtrees C and the set of maximal fre-
quent subtrees M have the following relationship: M ⊆ C ⊆ F .

To compare tree structures, we use CMTreeMiner algorithm that ex-
tracts the most frequent subtree structure in the dataset, with respect to
a given minimum value of frequency, called "minimum support"; in other
words the minimum support is the minimum amount of time the pattern
is present in the dataset. For each subtree pattern found, the algorithm
returns the subtree found and the trees, which are the applications, where
the structure is present.

The algorithm searches for closed and maximal frequent subtree pattern.
As from generic theory of pattern mining, we have:

> frequent: a pattern P is frequent if it appears an amount of time which
is greater than the minimum support.

> closed: a pattern P is closed if there is no super-pattern (a pattern
that contains P) with the same support (frequency) of P.

> maximal: a pattern P is maximal if none of its direct super-pattern (a
pattern that immediately contains P) which is frequent.

35

Let’s make an example. Considering the following dataset, we want to find
the closed and maximal pattern with min-support 2:

1. a b

2. b c d

3. a b c d

4. a b d

5. a b c d

> closed: c, d, e, ac, bc, ce, de,abc, acd

> maximal: ce, de, abc, acd

ac, which has support 3 (it appears in 1,2 and 4) is closed because all its
super-patterns {abc, acd, ace} have a support lower than ac; but it is not
maximal, because abc and acd are frequent (even if support is lower, it is
greater than minimum support).

The advantages of mining closed and maximal trees are:

> they are valuable, because they provide a compact representation of
frequent itemsets;

> they form the smallest representation of frequent patterns and so they
are more practical to use when a dataset is big;

> they are useful in removing redundant patterns.

As the result of the Tree Mining algorithm, we will have a list of rela-
tionships between pattern subtrees and applications.

3.2 Clustering

We decide to create groups (clusters) of applications to build a synthetic but
meaningful representation of a group of applications that are similar. This
will allow to:

> characterize groups of applications by patterns;

> quickly search the membership of a new sample to the dataset.

36

3.2.1 Graph concepts

A labeled graph G = (V, E, Σ, L) consists of a vertex set V, an edge set E, an
alphabet Σ for vertex and edge labels, and a labeling function L : V ∪E → Σ
that assigns labels to vertices and edges. A graph is directed if each edge is
an ordered pair of vertices; it is undirected if each edge is an unordered pair
of vertices. A path is a list of vertices of the graph such that each pair of
neighboring vertices in the list is an edge of the graph. The length of a path
is defined by the number of edges in the path. A cycle is a path such that
the first and the last vertices of the path are the same. A graph is acyclic
if the graph contains no cycle. An undirected graph is connected if there
exists at least one path between any pair of vertices, disconnected otherwise.

Graph clustering

Graph clustering refers to clustering of data in the form of graphs. Two
distinct forms of clustering can be performed on graph data. Vertex cluster-
ing seeks to cluster the nodes of the graph into groups of densely connected
regions based on either edge weights or edge distances. The second form of
graph clustering treats the graphs as the objects to be clustered and clus-
ters these objects on the basis of similarity. The second approach is often
encountered in the context of structured or XML data.

Graph clustering is a form of clustering that is useful in a number of prac-
tical applications including marketing, customer segmentation, congestion
detection, facility location, and XML data integration.

We have a (possibly large) number of graphs which need to be clustered
based on their underlying structural behavior. This problem is challenging
because of the need to match the structures of the underlying graphs and
use these structures for clustering purpose. Such algorithms are discussed
both in the context of classical graph data sets as well as semistructured
data. In the case of semistructured data, the problem arises in the context
of a large number of documents which need to be clustered on the basis of
the underlying structure and attributes. It has been shown by Aggarwal,
Ta, Feng, Wang, and Zaki [30] that the use of the underlying document
structure leads to significantly more effective algorithms.

In our approach, the problem is to cluster entire graphs in a multi-graph
database. Such situations are often encountered in the context of XML data,
since each XML document can be regarded as a structural record, and it
may be necessary to create clusters from a large number of such objects. We
note that XML data is quite similar to graph data in terms of how the data
is organized structurally. The attribute values can be treated as graph labels
and the corresponding semi-structural relationship as the edges. It has been
shown by Aggarwal et al. [31], Dalamagas, Cheng, Winkel, and Sellis [32],
and Lian, Cheung, Mamoulis, and Yiu [33] that this structural behavior can

37

be leveraged in order to create effective clusters. Since we are examining
entire graphs in this version of the clustering problem, the problem simply
boils down to that of clustering arbitrary objects, where the objects in this
case have structural characteristics. Many of the conventional algorithms
discusses by Jain and Dubes [34] (such as k-means type partition algorithms
and hierarchical algorithms) can be extended to the case of graph data.

There are two main classes of conventional techniques, which have been
extended to the case of structural objects. These techniques are as follows:

> Structural distance-based approach: this approach computes structural
distances between documents and uses them in order to compute clus-
ters of documents; for example the XClust algorithm [30] was designed
to cluster XML schemas in order to efficient integration of document
type definition (DTDs) of XML sources. It adopts the agglomera-
tive hierarchical clustering method which starts with clusters of single
DTDs and gradually merges the two most similar clusters into one
larger cluster. The method by Chawathe [35] computes similarity mea-
sures based on the structural edit-distance between documents. This
edit-distance is used in order to compute the distances between clusters
of documents. S-GRACE is a hierarchical clustering algorithm [36]. In
the work by Lian et al., an XML document is converted to a structure
graph (or s-graph), and the distance between two XML documents is
defined according to the number of the common element-subelement
relationships, which can capture better structural similarity relation-
ships than the tree edit-distance in some cases.

> Structural summary-based approach: in many cases, it is possible to
create summaries from the underlying documents. These summaries
are used for creating groups of documents which are similar to these
summaries, in order to improve algorithmic efficiency without com-
promising cluster quality. The first summary-based approach for clus-
tering XML documents was presented by Dalamagas et al. [37]. In
this work, the XML documents are modeled as rooted, ordered labeled
trees. A second approach for clustering XML document is presented
by Aggarwal et al. [31]. This technique is a partition-based algorithm.
The primary idea in this approach is to use frequent-pattern mining
algorithms in order to determine the summaries of frequent structures
in the data. The technique uses a k-means type approach in which
each cluster center comprises a set of frequent patterns which are lo-
cal to the partition for that cluster. The frequent patterns are mined
using the documents assigned to a cluster center in the last iteration.
The documents are then further reassigned to a cluster center based
on the average similarity between the document and the newly created
cluster centres from the local frequent patterns. In each iteration the
document assignment and the mined frequent patterns are iteratively

38

reassigned until the cluster centers and the document partitions con-
verge to a final state. It has has been shown by Aggarwal et al. That
such a structural summary-based approach is significantly superior to
a similarity function-based approach, as presented by Chawathe [35].
The method is also superior to the structural approach by Dalamagas
et al. [37] because of its use of more robust representations of the
underlying structural summaries.

Topology of trees

There are many types of trees. Here we introduce three: unrooted unordered
trees (free trees), rooted unordered trees, and rooted ordered trees. In the
order listed, the three types of trees have increasing topological structure.

> Free tree A free tree is an undirected graph that is connected and
acyclic.

> Rooted unordered tree A rooted unordered tree is a directed acyclic
graph satisfying (1) there is a distinguished vertex called the root that
has no entering edges, (2) every other vertex has exactly one entering
edge, and (3) there is a unique path from the root to every other
vertex. In a rooted unordered tree, if vertex v is on the path from the
root to vertex w then is an ancestor of w and w is a descendant of v.
If, in addition, (v, w) ∈ E, then v is the parent of w and wis a child of
v. Vertices that share the same parent are siblings. A vertex that has
no descendant other than itself is called a leaf. The depth or level of a
vertex is defined as the length of the path from the root to that node.

> Rooted ordered tree A rooted ordered tree is a rooted unordered tree
that has a predefined ordering among each set of siblings. The order
is implied by the left-to-right order in figures illustrating an ordered
tree. So for a rooted ordered tree, we can define the left and the right
siblings of a vertex, the leftmost and the rightmost child or sibling,
etc.

The size of a tree T, denoted as |T|, is defined as the number of vertices
the tree has. A forest is a set of zero or more disjoint trees.

For free trees and rooted unordered trees, we can define isomorphisms
between two trees. Two labeled free trees T1 and T2 are isomorphic to each
other if there is a one-to-one mapping from the vertices of T1 to the vertices
of T2 that preserves vertex labels, edge labels, and adjacency. Isomorphism
for rooted unordered trees are defined similarity except that the mapping
should preserve the roots as well. An automorphism is an isomorphism that
maps a tree to itself.

In our approach, we use to create summary of XML files as Aggarwal’s
by frequent subtree mining but we chose to use a hierarchical clustering

39

algorithm (as XClust) to group applications based on the pattern found in
the dataset.

3.2.2 Agglomerative Hierarchichal Clustering

We developed a Agglomerative Hierarchical Clustering (AHC) algorithm
specific for our domain. Starting from a list of elements, the AHC repeats
simple steps:

1. defines similarity among all elements;

2. joins the two most similar elements creating a new element;

3. deletes joined elements;

4. repeats until a certain condition is verified.

As known by Clustering theory, we also needed to define a similarity
measure, a join operation and a stopping criterion for the algorithm. We
choose the Jaccard similarity measure that is useful to compare two sets,
that in our case are the list of patterns of an application.

3.2.3 The Jaccard Similarity

The Jaccard Similarity Index is a measure of similarity of sets. Let’s suppose
to have two sets of elements; in this case, it is calculated as:

J (A, B) =
|intersection(A, B)|

|union(A, B)| (3.2)

This value is always symmetric, that means Sim(C1,C2)=Sim(C2,C1).

3.3 Clustering

We beging by creating one cluster for each application; each group will
contain an application of the dataset. Similarity among clusters is computed
considering the common patterns of the applications inside clusters.

To compute the Jaccard Index (that is, the similarity value) between two
clusters, we consider as sets the list of patterns contained in the applications.

We can compute the similarity as an average of the similarity of the single
applications in the cluster. Generically speaking, if a cluster A contains
N apps {a1, a2, . . . , aN } ad cluster B contains M apps {b1, b2, . . . , bM } the
similarity of A with B would be the average of the Jaccard Indexes computed
for every combination of ai with bi, considering as set the patterns of ai and
the patterns of bi.

Once we have computed all the values, we can join the most similar
clusters, creating a new cluster that contains all of the applications of both

40

the joined clusters. At each step of the algorithm, the most similar couple
of clusters will be joined.

The stopping criterion has been determined empirically by looking at the
decrease of the maximum similarity value. Let’s consider a single step of
the algorithm with a maximum similarity value among the clusters of Si; if
this value is much lower than the maximum similarity value in the previous
step Si−1, then the clustering operation stops and the current amount of
clusterffd

To obtain a list of patterns related to each cluster, we consider the most
common patterns of the applications inside.

Let’s consider a cluster C with N apps {a1, a2, . . . , aN } and each applica-
tions ai contain patterns Pi{pi1, pi2, . . . , piM}. The patterns representation
of the cluster will be those which are in common for every combination of
ai. This operation is done by combining (by union) intersections among the
sets of patterns of each application inside the cluster and can be computed
during the clustering process itself.

pattern(C) =
=

⋃

((Pi ∩ Pj))
= (P1 ∩ P2) ∪ (P1 ∩ P3) . . . (PN−1 ∩ PN)
= ({p11, p12, . . . , p1M } ∩ {p21, p22, . . . , p2M }) ∪ . . .

· · · ∪ ({p(N−1)1, p(N−1)2, . . . , p(N−1)M } ∩ {pN1, pN2, . . . , pNM })
(3.3)

With this operation, a pattern representation for each cluster is obtained;
a representation like this is useful to give a meaning to a cluster, and for
searching (section 3.4).

3.4 Searching process

If a new application must be added to the dataset or, simply, an user wants
to know which applications are the most similar to his sample, the new appli-
cation must be connected to a cluster. This operation can be done without
computing a similarity value with each application, but only calculating sim-
ilarities with respect to clusters; in this way, it will reduce drastically the
amount of time of the searching process.

Before assigning the application to a cluster, if the APK was not in the
dataset before, we need to know which patterns in the dataset are contained
in the application.

The approach is the same mentioned in Section 3.1.2, so we can produce
a tree representation of the application UI.

Tree comparison A method for comparing two trees and check if a tree
is contained in another tree is needed to know which subtrees patterns are

41

START

ai = A, bi = B
NodeA =
NodeB ? FALSE

Compute com-
binations of

(Child(A),Child(B))

Biparite

Matching

Exists?
FALSE

TRUE

No

Yes

forall (ai, bi)

No

Yes

Figure 3.6: Subtree Matching Process

contained in the application tree as shown in Figure 3.6.

The algorithm works as follows. Taken into account two nodes (of two
tree A and B), it checks if the nodes are equal. If the nodes are check, for
the two trees to be equal also the subtrees starting from that couple of nodes
must be equal. So it recall himself to check if child nodes are equal. The
comparison of two subtrees must be coherent in structure, that means we
have to find a correspondence between the subtrees of A with the subtrees
of B with this rules.

> for every subtree ai of A a subtree bi of B must exist that is equal;

> for the created combinations every bi must be used only once.

This problem is known as the Maximum Bipartite Matching problem: in
a bipartite graph, a bipartite matching is a set of the edges chosen in such

42

(a)ST1

(b)ST2

(c)ST3

(d)ST4

(e)ST5

(f)ST6

(g)ST7

(h)ST8

(i)ST9

(j) st1

(k) st2

(l) st3

(m) st4

(n) st5

(o) st6

TreeT

PatternP

Figure 3.7: Bipartite matching example

a way that no two edges share an endpoint; a maximum matching in which
the maximum number of edges possible is used. In our case, the nodes are
the subtree (divided with respect to belonging) and edges are relationships
among subtrees that satisfy: bi is contained in ai. The solution is to convert
the graph into a flow network and looking for the maximum flow. See Section
4.5 and Appendix A for details.

Using tree comparison we can establish which patterns are contained in
the APK and we can calculate a similarity value between an application and
a clusters.

The new APK sample will be assigned to the cluster (or the clusters)
that has the maximum Jaccard Index value.

At this point, we can be pretty sure, as our tests prove (see chapter 5)
that the applications inside the cluster will be the most similar ones to the
sample sought with respect to the whole dataset.

If we want to know which applications inside the cluster are the most

43

similar to a new sample given, we can use the Jaccard similarity again,
considering the sets of patterns that the new sample contains with respect
to the patterns of each application.

The search algorithm can order the application in the cluster with respect
to the Jaccard Index computed for the new app and return the N most
similar applications.

44

Chapter 4

Implementation

This chapter describes the tool that has been defined and developed in
Python. Following steps of KDD, the algorithm can be divided in 4 parts:
preprocessing, transformation, treemining, clustering.

Initially, APKs are selected from an input folder that can be set by the
user and are decompiled using Apktool in order to obtain resources files
that represent the UI of the application and the Dalvik machine files which
represent the application logic.

Obtained data are cleaned, reorganized and indexed to get a file which
is a good representation of the UI flow that is presented to the normal user
utilization. This operation is performed by transformation of the XAML file
of Android with the aid of the .smali files which are created by decompilation
tools.

At this point, the created files are considered as a tree and are given to
the tree-mining algorithm, that returns a list of the most frequent patterns
among the trees and the trees (referring to the APKs) in which the patterns
where found.

The clustering algorithm developed (1) defines a measure of similarity
both for patterns and applications and (2) cluster APKs based on this. This
method allows to quickly search which cluster and which applications are
the most similar ones without comparing the whole dataset (of applications)
but comparing the frequent patterns found in the new sample with the list
of patterns related of each cluster.

4.1 Preprocessing

4.1.1 APK decompilation

The system takes in input the APKs found in a given path and, for each one
of them, Apktool process is launched in a separate thread, using the pool
Python module. Apktool creates a folder with the name of the APK that
contains all the file related to the APK.

apkname

AndroidManifest.xml
bin
libs
smali
asset
res

drawable
icon.png

layout

main.xml
view1.xml
view2.xml

layout-hdpi
view-big.xml

values
strings.xml

Figure 4.1: APK Decompiled Structure

To decompile an apk we can invoke Apktool simply with the command:

1 Apktool d HelloWorld . apk

Listing 4.1: Apktool execution command

The problem who has to be taken into account is that some parts of
the final application may not be obtained because of various obfuscation
techniques that developer can adopt. Fortunately, obfuscation techniques
often involve logic of the application and not the resources files used. So
even if Dalvik files presents obfuscated names, the resources cannot contain
a different identification of the layout type.

After decompilation (Figure 4.1), with respect to previous situation now
we have:

AndroidManifest.xml in a readable format;

smali a folder which contains a structure of the classes.dex file in a more
readable format;

bin a folder containing binary files;

lib native libraries that the application may use via NDK;

asset the asset folder;

46

apkname
. . .

layout

main.xml
view1.xml
view2.xml

layout-hdpi

view2.xml
. . .

Figure 4.2: Layout folder

res folder containing all resources used by the application.

The files necessary to the system are in the res and smali folders.
Res folder contains the resources files used by the application. We can

divide them in various categories:

> drawable: external resources (as images) that are included in the ap-
plication;

> layout: resources that define the architecture of the UI in an Activity
or a component of the UI;

> menu: defines the structure of the application menu that can be in-
voked by the user;

> raw: raw files as, often used for certificates;

> values: support files for defining array, colors, dimensions, strings and
styles.

For our purpose, we can forget about all except for the layout category.
After decompilation, we will find a variable number of layout folders. Usually
there is always a folder called layout or layout-port which contains all the
default layouts of the application (Figure 4.2). Moreover, developer can
define resolution-specific layouts and landscape-specific layouts.

For example the folder layouts-hdpi will contain layouts that will be
different to the default one within device with bigger resolution and the
folder layouts-ldpi will contain layouts for device with smaller resolution.

4.2 Transformation

The ElementTree Python module supplies classes and methods to import,
manipulate and export XML files as a tree structure with child and parent
relationships.

Preprocessing phase of decompiled file starts with the exploration of the
XML files to produce a more representative tree structure of the APK.

47

4.2.1 The XAML structure

Let analyze the XML files used by Android to define the layouts of the
applications. They are called XAML files. There is no DTD associated
with this kind of XML, because the rules that the XML files must follow
are defined by the Android SDK. As we said before, using Android’s XML
vocabulary, you can quickly design UI layouts and the screen elements they
contain, in the same way you create web pages in HTML — with a series
of nested elements. Each layout file must contain exactly one root element,
which must be a View or ViewGroup object. Once you’ve defined the root
element, you can add additional layout objects or widgets as child elements
to gradually build a View hierarchy that defines your layout. For example,
in Listing 4.2 we can see an XML layout that uses a vertical LinearLayout
to hold a TextView and a Button.

1 <?xml version=" 1 .0 " encoding=" utf −8" ?>
2 <LinearLayout xmlns :andro id=" h t t p : // schemas . android . com

/apk/ r e s / android "
3 android : layout_width=" match_parent "
4 andro id : l ayout_he ight=" match_parent "
5 a n d r o i d : o r i e n t a t i o n=" v e r t i c a l " >
6 <TextView a n d r o i d : i d="@+id / text "
7 android : layout_width= " wrap_content "
8 andro id : l ayout_he ight= " wrap_content "
9 a n d r o i d : t e x t=" Hel lo , I am a TextView " />

10 <Button a n d r o i d : i d=\"@+id / button "
11 android : layout_width=" wrap_content "
12 andro id : l ayout_he ight=" wrap_content "
13 a n d r o i d : t e x t=" Hel lo , I am a Button " />
14 </ LinearLayout>

Listing 4.2: XAML file example

When the developer compiles applications, each XML layout file is com-
piled into a View resource. The layout resource from the application code
can be loaded in an Activity.onCreate() callback implementation. It can
be done by calling setContentView(), passing it the reference to the lay-
out resource in the form of: R.layout.layoutfilename. The structure of the
XML will represent a hierarchy of layouts that will compose the final view
presented to the final user.

In Table 4.1 there are examples of view classes that can be defined to
describe a layout, similar to that one in Figure 3.2 (b).

The developer can define layout attributes (using XML attributes) as
size, padding and margin to describe characteristics of the layout.

There is also a hierarchy of the class type that are defined, for example, a

48

Table 4.1 View classes example
TYPE Description

AbsSpinner An abstract base class for spinner widgets.
AutoCompleteTextView An editable text view that shows completion suggestions automatically while the

user is typing.
Button Represents a push-button widget.
CheckBox A checkbox is a specific type of two-states button that can be either checked or

unchecked.
Chronometer Class that implements a simple timer.
EditText EditText is a thin veneer over TextView that configures itself to be editable.
FrameLayout FrameLayout is designed to block out an area on the screen to display a single

item.
GridLayout A layout that places its children in a rectangular grid.
GridView A view that shows items in two-dimensional scrolling grid.
ImageView Displays an arbitrary image, such as an icon.
LinearLayout A Layout that arranges its children in a single column or a single row.
ListView A view that shows items in a vertically scrolling list.
MediaController A view containing controls for a MediaPlayer.
NumberPicker A widget that enables the user to select a number from a predefined range.
ProgressBar Visual indicator of progress in some operation.
RadioButton A radio button is a two-states button that can be either checked or unchecked.
RadioGroup This class is used to create a multiple-exclusion scope for a set of radio buttons.
RelativeLayout A Layout where the positions of the children can be described in relation to each

other or to the parent.
ScrollView Layout container for a view hierarchy that can be scrolled by the user, allowing

it to be larger than the physical display.
SearchView A widget that provides a user interface for the user to enter a search query and

submit a request to a search provider.
TableLayout A layout that arranges its children into rows and columns.
TextClock Can display the current date and/or time as a formatted string.
TextView Displays text to the user and optionally allows them to edit it.
VideoView Displays a video file.

simple field that allows the user to insert text can be added to the layout by
using android.widget.EditText which is subclass of android.widget.TextView,
which, in turn, is subclass of android.widget.View.

In our approach, all the layout XML files in layout and drawable folders
are joined together in a unique XML file. All the tags which refer to another
layout file are substituted with the corresponding XML file nested inside the
current tree and the source is deleted.

Layouts file can be nested recursively so that another layout will be
considered as child of the current. This operation can be done by putting
the name of the layout file as value instead of the type of the view.

Let’s now consider this case: there are three identical layouts, except
for one tag which is in the first case AutocompleteEditText, in the second
case SearchEditText, and in the third case EditText. All this three classes of
layout component represent three variants of EditText, because in the SDK
both AutocompleteEditText and SearchEditText are known direct subclasses
of the third. The algorithm has been build to consider always the inheritance
of the class in the preprocessing phase, so that, in this case, the two tags
are substituted by the tag EditText.

49

1 <LinearLayout>
2 <inc lude>
3 " . / sublayout . xml "
4 </ inc lude>
5 <Button/>
6 </ LinearLayout>

(a) Main layout file

1 <EditTextView/>
2 <EditTextView/>

(b) sublayout.xml content

⇓
1 <LinearLayout>
2 <EditTextView/>
3 <EditTextView/>
4 <Button/>
5 </ LinearLayout>

(c) Combined layout file

Figure 4.3: Layout inclusion transformation

4.2.2 The smali structure

1 . c l a s s pub l i c Lcom/ t e s t / he l l ow or ld / Hel loWorldAct iv i ty ;
2 . super Landroid /app/ Act iv i ty ;
3 . source " Hel loWorldAct iv i ty . java "
4

5 # d i r e c t methods
6 . method pub l i c c o n s t r u c t o r ()V
7 . l o c a l s 0
8

9 . pro logue
10

11 invoke−d i r e c t {p0 } , Landroid /app/ Act iv i ty ;−>()V
12

13 return−void
14 . end method
15

16 # v i r t u a l methods
17 . method pub l i c onCreate (Landroid / os /Bundle ;)V
18 . l o c a l s 2
19 . parameter " savedIns tanceState "
20

21 . pro logue

50

22

23 invoke−super {p0 , p1 } , Landroid /app/ Act iv i ty ;−>onCreate (
Landroid / os /Bundle ;)V

24

25 new−i n s t a n c e v0 , Landroid / widget /TextView ;
26 invoke−d i r e c t {v0 , p0 } , Landroid / widget /TextView;−>(

Landroid / content /Context ;)V
27

28 . l o c a l v0 , t ext :Landro id / widget /TextView ;
29 const−s t r i n g v1 , " He l lo World , Android "
30

31 invoke−v i r t u a l {v0 , v1 } , Landroid / widget /TextView;−>
setText (Ljava / lang /CharSequence ;)V

32

33 invoke−v i r t u a l {p0 , v0 } , Lcom/ t e s t / he l l ow or ld /
Hel loWorldAct iv i ty ;−>setContentView (Landroid /view/View
;)V

34

35 return−void
36 . end method

Listing 4.3: A smali file example

Breaking up the sections in Listing 4.3, we have:

1. class declarations from lines 01-03;

2. a constructor method from lines 06-14;

3. a larger onCreate() method from lines 17-36.

This is an example of how to create a TextView by code; the TextView
can be a layout for instance. The corresponding layout file will contain a
single TextView element. A developer can define a personalized layout by
code; in this case, in the XML file, the layout will be indicated with the
reference to the code where the view has been defined, corresponding to the
.smali file.

In our approach, we check these smali files to retrieve the views that
was written by code and create a new layout file that represents the view.
All the tags with a SMALI file link are substituted with the view defined in
the corresponding file. Every field found (after checking to be a real layout)
is inserted as child of this element and the element takes the name of the
superclass the SMALI.

This case is valid also for external extension of the app (Facebook login,
actionbarsherlok, etc. . .) that are placed inside the layouts file with link to
the path of the layout file or the code where the layout is defined.

51

1 .class public Lcom/km/launcher/Folder;
2 .super Landroid/widget/LinearLayout;
3 .source "Folder.java"
4

5 # interfaces
6 .implements Lcom/km/launcher/DragSource;
7 .implements Landroid/widget/AdapterView$

OnItemLongClickListener;
8 .implements Landroid/widget/AdapterView$OnItemClickListener;
9 .implements Landroid/view/View$OnClickListener;

10 .implements Landroid/view/View$OnLongClickListener;
11

12 # instance fields
13

14 .field protected mCloseButton:Landroid/widget/Button;
15

16 .field protected mContent:Landroid/widget/ListView;
17

18 .field protected mDragger:Lcom/km/launcher/DragController;
19

20 .field protected mLauncher:Lcom/km/launcher/Launcher;
21

22 # direct methods
23 ...
24

(a) Example of smali file

⇓
1 <LinearLayout>
2 <Button/>
3 <ListView/>
4 </LinearLayout>
5

Figure 4.4: Transformation of SMALI into a layout file

52

4.2.3 List of Views

Some layouts can be built at runtime by including another layout file (cor-
responding to a single XML file) multiple times.This operation is very com-
mon when developers want to represent a list of elements whose size can be
modified during execution. We showed an example in Figure 3.2. An Ar-
rayAdapter class must be defined and must be attached to the corresponding
layout; by default, ArrayAdapter creates a view for each array item by call-
ing toString() on each item and placing the contents in a TextView.

1 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
2 android.R.layout.simple_list_item_1, myStringArray);
3

4 ListView listView = (ListView) findViewById(R.id.listview);
5 listView.setAdapter(adapter);

Listing 4.4: List Adapter

In the smali file corresponding to the ListView object, a new-instance
method can be found. In our approach we seek for smali files in which a list
element is connected to a group of views and we attach to the corresponding
element (ListView in this case) multiple child elements (in this case the
TextView).

All the ListView with no child are searched in the SMALI files and if a
corresponding invoke-direct method is found, two child are inserted in the
XML files with the layout passed as argument in the method. We arbitrarily
choose to add two child elements to symbolize a list of sub-elements.

At this point we will have a file that describes layout of the UI very close
to that executed at runtime, without needs of executing the application.

The tree mining algorithm used now use a specific format for the tree to
analyze. So before passing trees to CMTreeMiner they are transformed in a
text file that will be passed as argument to the tool.

4.3 Tree Mining

4.3.1 Canonical Representations for Labeled Trees

A canonical representation is a unique way to represent a labeled tree. Es-
pecially for unordered trees and free trees, the choice for a canonical rep-
resentation has far-reaching consequences on the efficiency of the total tree
miner. A canonical representation facilitates functions such as comparing
two trees for equality and enumeration of subtrees.

In [38, 39] Luccio et al. introduced the following recursive definition for
a pre-order string: (1) for a rooted ordered tree T with a single vertex r,

53

Figure 4.5: An ordered tree

the pre-order string of T is ST = lr0 , where lr is the label for the single
vertex r, and (2) for a rooted ordered tree T with more than one vertex,
assuming the root of T is r (with label lr) and the children of r are r1, . . . , rK

from left to right, then the pre-order string for T is ST = lrSTr1
. . . STrK

0,
where STr1

, . . . , STrK
are the pre-order strings for the bottom-up subtrees

Tr1 , . . . , TrK
rooted at r1, . . . , rK , respectively. Luccio’s pre-order strings for

the rooted ordered tree in Figure 4.5 is ST = ABD0E0F00CG000.

4.3.2 CMTreeMiner

CMTreeMiner can be simply called by the command:

1 CMUnorderedTreeMiner min_support trees_file output_file

Listing 4.5: CMTreeMiner execution command

We need to define a minimum support for the trees, that is the minimum
amount of trees that must contain the subtree for a pattern to be considered
valid. The format used as input file of the mining method should be a text
file with the list of trees in a Node-Edges format, as described below:

1 Tree_ID_1
2 Number_of_Nodes
3 Node_label_1
4 Node_label_2
5 ...
6 Node_label_N
7 Edge_label_1 Node_ID_A Node_ID_B
8 Edge_label_2 Node_ID_C Node_ID_D
9 ...

10 Edge_label_M Node_ID_E Node_ID_F
11 Tree_ID_2
12 ...
13 ...
14 Tree_ID_T

54

15 ...

Listing 4.6: Node-Edges format

The method developed creates a trees_file.txt which contains the XML
(related to the APKs) following this conversion method.

Tree_ID is the identifier of the app;

Node_label_i is the value of the layout node (passed as a number), an
appropriate structure have been created to have a relation layout_-
name-layout_ID;

Node_ID_A/B is the identifier of the corresponding nodes in the previ-
ous list;

Edge_label_j is an hash calculated from the combination (Node_label_-
A, Node_label_B).

The algorithm performs with a time complexity which is logarithmic with
respect to maximal frequent subtrees count. The algorithm has been slightly
modified to use multiprocessing computation using OpenMP (http://openmp.org/).
We found two main for cycles and applied OpenMP rule with a trivial syn-
tax.

1 #pragma omp for

2 for (long s = 0; s < potential.size(); s++)
3 {
4 if (potential[s].support >= threshold)
5 {
6 DO SOMETHING
7 }
8 }

Listing 4.7: OpenMP example

Then we needed to compile the algorithm with a compatible version of
gcc using -fomp option.

In the default configuration, CMTreeMiner returns as output only the
amount of frequent subtrees found in data. So we modified the algorithm to
be compliant with our software to return a structure of the frequent patterns
found in a patterns.txt file.

1 Tid: 0
2 Vertices Number: 4
3 2 3:−−4_5 −−3_2 −−2_1

55

patterns.txt

Tid
Vertices Number
Edges List

Node label
Child count
Child ID
Edge label
... ...

automorphism
canonical string
application id list
support

Figure 4.6: Pattern file returned from tree miner

4 9 1:−−1_1
5 2 1:−−1_2
6 2 1:−−1_5
7 automorphism: 1 2 3 4
8 canonical string: 4 0 2 1 9 30001 2 2 30001 5 2 30002
9 id list: 2 4 8 10 10 12 15 16 17

10 support is: 9

Listing 4.8: Subtree Format

In the listing there is an example of patterns.txt file returned. As we can
see we have all informations about maximal frequent subtrees.

4.4 Clustering

4.4.1 Class Structures

Two main classes are built by the system: application and pattern. The
application class contains all informations about an APK file:

Table 4.2 APK class structure

Name Description

id identification of the APK, used for clustering
filename the source file name
package the package name found in manifest file

tree ElementTree class representation of the resources
patterns list of subtrees id found into the APK
XMLfile path to the XML file created in previous steps

56

Table 4.3 Pattern class structure

Name Description

Id identification of the pattern, used for clustering
nodes number amount of nodes of the tree

support support count of the tree
apps list of ids of application classes that contain the subtree

file path path to the XML file that describe the subtree

The pattern class contains all informations about the mined frequent
subtrees:

To cluster apps, the system only needs the list of application classes
created (in preprocessing phase) and the list of pattern classes created (in
transformation phase). There are three assertions that the system checks:

∀patternP, a ∈ P.apps =⇒ ∃applicationA ∧ A.id = a ∧ P.id ∈ A.patterns
(4.1)

∀appA, p ∈ A.patterns =⇒ ∃patternP ∧ P.id = p ∧ A.id ∈ P.apps (4.2)

∀patternP, |p.apps| = P.support (4.3)

The first two assertions can be explained because logically there is a N-N
(N to N) relationship between apps and patterns.

For both classes, an object serialization has been defined using Python
pickle module. The pickle module implements a fundamental, but powerful
algorithm for serializing and de-serializing a Python object structure. Pick-
ling is the process whereby a Python object hierarchy is converted into a
byte stream, and unpickling is the inverse operation, whereby a byte stream
is converted back into an object hierarchy. We don’t need to save the entire
tree representation of APKs by converting the ElementTree class into an
XML file during pickling process.

4.4.2 Agglomerative Hierarchical Clustering

This phase has been build to be executed in parallel using the good Python
module for multi-threading pool. This module supports spawning processes
using an API similar to the threading module. The multiprocessing pack-
age offers both local and remote concurrency, effectively side-stepping the
Global Interpreter Lock by using subprocesses instead of threads. Due to
this, the multiprocessing module allows to fully leverage multiple processors

57

on a given machine. It runs on both Unix and Windows machines. We im-
plemented a simple typical Agglomerative Clustering, defining a similarity
measure, a join operation and a stopping criteria for the algorithm.

Initial clusters are created from the applications and joined using com-
mon patterns in the similarity measure; as consequence, the number of ini-
tial clusters is equal to the number of application processed. The similarity
value between two clusters C1 and C2 has been computed using the Mc-
Quitty method of distance [34].

1 for app1 in cluster1.apps as C1:
2 for app2 in cluster2.apps as C2:
3 jaccard_values <− calculate_jaccard_similarity(app1.patterns,app2.patterns):
4 return avg (jaccard_values)

Listing 4.9: McQuitty Cluster distance

A list of Jaccard values is computed and the average value is returned
depending on the chosen linkage option.

The initial similarity matrix is a NxN square matrix where N is the
number of applications. This matrix is symmetric, because similarity com-
putation is symmetric.

At each step of a Hierarchical clustering, the algorithm performs:

1. the two most similar clusters are joined together;

2. joined clusters are removed from similarity matrix;

3. new cluster is added to the matrix;

4. similarity measure of new cluster with respect to the others is com-
puted.

The operation of joining two clusters creates a new cluster with:

1 C.apps= sum(C1.apps, C2.apps)}

Listing 4.10: Direct clustering join operation

The stopping criterion has been determined by tests by looking the de-
crease of maximum similarity value, detail in section 5.1.1; when the stop-
ping criterion verifies, algorithm stops and returns a set of clusters.

4.5 Search

Class representation of a cluster, at the end of AHC process contains:

58

apps list of application contained

patterns list of most frequent pattern of the cluster

source link to the couple of cluster that originated this cluster

The searching process allows to quickly associate a new sample to a clus-
ter and get a list of most similar apps without checking the whole database.
When a new APK is given to the searching algorithm, the preprocessing
and transformation phases are performed on the sample: the application
is decompiled, resources and SMALI files are extracted and elaborated and
application class is created, including the ElementTree class representation
of the UI. To find the most similar cluster we simply need to know which
frequent subtrees are present in the tree representation of the application.
We have developed a method searchsubtree which compares two trees and
determines if one is included in the second.

1 subtreematch(NodeA,NodeB)
2 if (NodeA != NodeB) then
3 return False
4 end if

5 for all a in NodeA.children do
6 for all b in NodeB.children do
7 subtreematch (a,b)
8 end for

9 end for

10 if bipartiteMatching (NodeA.children,NodeB.children) then
11 return True
12 else

13 return False
14 end if

Listing 4.11: Subtree Match algorithm pseudocode

The algorithm uses a parallel computing technique to separate branches
of the seek process among threads, using the pool Python module.

Let’s analyze the part of the branches association: let’s suppose to have
a tree T1 and a tree T2 and we have to check whether T2 is contained in
T1. T1 has four child branches B1 {A,B,C,D}; T2 has four child branches
B2 {E,F,G,H}.

The algorithm performs these operations:

1. checks if parent node of T1 and T2 is equal;

2. for each combination of (child of T1, child of T2) calls recursively to
check which branches of T2 are contained in the branches of T1;

59

3. finds a combination of B1={A,B,C,D} with B2={E,F,G,H} so that for
each branch in B2 there is an element of B1 that contains the branch;

4. if all the conditions are satisfied, returns True.

The third operation is called Unweighted maximum bipartite matching
problem, which is a well known Operation Research problem. Finding a max-
imum bipartite matching in a bipartite graph G=(V=(X,Y),E) is perhaps
the simplest problem.

The Augmenting path algorithm finds it by finding an augmenting path
from each x ∈ X to Y and adding it to the matching if it exists. As each
path can be found in O(E) time, the running time is O(V E). This solution
is equivalent to adding a super source s with edges to all vertices in X, and
a super sink t with edges from all vertices in Y, and finding a maximal flow
from s to t. All edges with flow from X to Y then constitute a maximum
matching.

In our implementation, we decided to use the Hopcroft–Karp algorithm,
which is an improvement of the Augmenting path algorithm and runs in
O(

√
V E) time. For detail about the algorithm check the appendix.

The final application class will contain the list of the patterns contained
(that verify subtree match method).

In order to find the most similar cluster, we use the same formula applied
in clustering using pattern clusters:

1 Cluster(App) = C argmax(calculate_jaccard_similarity(app.patterns,C.patterns))
for C in Clusters

Listing 4.12: Cluster association

Moreover, the algorithm orders applications in the cluster following the
Jaccard similarity value of two applications:

1 sorted(Cluster.apps,key=lambda x: calculate_jaccard_similarity(App.patterns,x
.patterns))

Listing 4.13: Sorting operation

Both operations can be performed in parallel and are computed in linear
time O (N).

4.6 Request manager

We developed a class that can receive requests and perform operations de-
scribed above. The Python module bind himself to a specific port and accept

60

TLS over SSL connection.. The request and response is simply an exchange
of messages that both the server (SimDroid-UI) and the client (the user)
must know in advance. In this scenario requests become:

ID operation Description Parameters

1 clustering clusters data dataset-path
2 get clusters return last created clusters
3 search search a new sample APK path

61

62

Chapter 5

Test results

In 5.1 we define how test were performed using the Request Manager mod-
ule created. In particular, in Section 5.1.2 we will describe different tests
that have been on the dataset of 5.1. In 5.2 we will show and comment the
results obtained using our clustering algorithm; we test our clusters using
three metrics. In Section 5.2.1 we compare our clusters to the associations of
a human thought; in Section 5.2.2 we evaluate similarity of the clusters with
respect to the similarity of the whole dataset; in Section 5.2.3 we use Pup-
petdroid’s rerun test to obtain a measure of effectiveness of our algorithm.
In 5.3 we will compare our algorithm search process with Phash 2.3.2 and
Androsim 2.3.1; in particular we will focus the comparison of views that are
recovered 5.3.3 and execution time of the runs 5.3.4. In 5.4 we summarize
the results obtained in the tests.

5.1 Test environment

In this section we will define the methodologies used to test our algorithm.
This will bring to have different prospective of the advantages of our re-
search.

Request manager We used the Request Manager process described in
Section 4.6 to receive requests of both clustering and search. Multiple clus-
tering request were sent to the process to obtain various configuration of
clusters with respect to min-support parameter; for a subset of the dataset,
multiple search requests were sent, to obtain a list of most similar apps to
each singularly-given application.

Dataset The dataset is composed of 120 samples of applications, that
differs for categories, tyoe, sources and size. We took applications that
goes from 120Kb to 80Mb from both official and unofficial market (2.1.3).
Applications belong to different categories with respect to Google Play 2.1.3

separation (entertainment, productivity, social, etc.) and in terms of kind
of usage of the final user (messaging, calendar, camera, etc.).

Similarity matrix In order to compare both clusters and applications
similarity, we built an application similarity matrix for each algorithms con-
sidered. This matrix is an NxN matrix where N is the number of sample
analyzed. Note that Androsim [40] uses an asymmetric similarity measure
and as consequence, the similarity matrix itself is not symmetric. Table 5.2
shows an example of similarity matrix calculated for a subset of the real
dataset.

Table 5.2 Similarity matrix example among applications

Sim app001 app002 app003 app004 app117 app118 app119 app120
app001 1 0.698 0.023 0.643 0.432 0.221 0.302 0.341
app002 0.324 1 0.652 0.834 0.456 0.673 0 0.207
app003 0.249 0.531 1 0.222 0.114 0.124 0.32 0.459
app004 0.764 0 0.43 1 0.018 0.883 0.344 0.133

app117 0.543 0.435 0.532 0.492 1 0.07 0.221 0
app118 0.298 0.719 0 0.045 0.866 1 0.348 0
app119 0.823 0.403 0.535 0.538 0.563 0.494 1 0.244
app120 0.089 0.641 0 0.18 0.547 0 0.32 1

Puppetdroid integration To have a real idea of view element and sub-
tree relations among a couple of application, we made use of Puppetdroid
(2.2). The tool tries to execute stimulation traces by seeking for views path
into a second application with respect to that in the first tested one. We
think that this can be a good measure for real similarity comparison. This
project relies a lot on application visual similarity, in terms of real visu-
alized structure (composition of views), so if its test found few views in a
compared application, this means that the two applications are unlikely to
have a similar UI structure.

5.1.1 Parameter tuning

The developed algorithm needed some parameters to be tuned, Minimum
support and Stopping Criterion for clustering

Minimum support We need to define a minimum support for the trees,
that is the minimum amount of trees that must contain the subtree for a
pattern to be considered valid. If this value is too small, frequent subtrees
returned will contain a large number of patterns of low significance. If
the value is too large, Tree-Miner algorithm will take away valid patterns
because of low support.

We made a lot of experiments to define the minimum support value in
relation with the amount of apps to be clustered. In Figure 5.1 we plot

64

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

MinSupport [%]

S
im

il
ar

it
y

A
v
er

ag
e

Similarity percentage

Figure 5.1: Intra-cluster similarity with respect to minimum support

the average similarity value under minsupport percentage (with respect to
dataset size) used for tree mining. As we can see, we have a maximum value
in between 2% and 2,5%, so we can assume that a reasonable value should
be between 1/40 and 1/50 of the amount of APKs considered.

Stopping criterion The stopping criterion value as been defined by ex-
periment. We notice that at a certain point, the maximum similarity value
of the clusters decreases radically. By experiment we find a minimum
δMaxSim for which the clusters can be considered optimal. From that
point onwards, the Jaccard similarity values among clusters become mean-
ingless. As shown in Figure 5.2, the δMaxSim there is a point, between
the 90th and 100th step of the algorithm, for which the maximum similarity
value has a strong drop.

When can infer that, if maximum similarity value is 40% lower than the
one in the previous step, the clustering process can be stopped.

65

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

Clustering Steps

S
im

il
ar

it
y

A
v
er

ag
e

Similarity percentage

Figure 5.2: Maximum similarity during execution

5.1.2 Methodologies

We developed different methodologies for testing our clustering algorithm,
focusing on evaluate both the meaning (clusters division can be understood
by human) and the effective UI similarity computed.

We can divide our evaluation in four distinct tests:

> Human evaluation: cluster created are related with respect to groups
that a human would create based on its kind of usage of the application

> Similarities: similarities among clusters is coherent with respect to
application similarity, so that looking for a cluster instead of comparing
the whole dataset of application will give nevertheless the most similar
applications.

> Views comparison: The similarity value will be effectively a measure
of structural layout comparison, that means that more applications
are similar, much more the layouts structures of one can be recovered
in the other (in terms of path to retrieve a view from layout root).

> Execution Time: The clustering process based on tree structure anal-
ysis should bring a much more fast search execution with respect to
comparing all APK sample in the dataset.

5.2 Algorithm Results

In this section we will present the results produced by our approach in the
various tests that have been listed in the previous section (5.1.2).

66

5.2.1 Human evaluation

We tried to find a human comprehensible meaning to created clusters. To
evaluate this aspect, we asked some users to associate a type applications
based on the really use he makes (limited to at 12 groups at max).

Type Amount

calendar 6
clock/alarm 7
list-management 9
launcher 5
game 9
multimedia 10
news 10
messaging 12
social 13
utilities 16
file explorer 10
file editor 13

The test has the aim to verify that if two applications are of the same
type (given from the user), they must belong to the same cluster. This is
called a classification test based on unsupervised clustering. We can compute
precision P and accuracy A of our approach as:

{

P = T P
T P +F P

A = T P +T N
T P +T N+F P +F N

(5.1)

where:

> TP = applications pair correctly in the same cluster

> TN = applications pair correctly not in the same cluster

> FP = applications pair wrongly in the same cluster

> FN = applications pair wrongly not in the same cluster

Table 5.3 Confusion matrix

Pred-YES Pred-NO 7140

Real-YES TP = 408 FN = 1113 1521

Real-NO FP = 187 TN = 5432 5619

7140 595 6545 7140

In the table 5.3 we depicted the confusion matrix. Sample are assigned
quite correctly and in table present both high TP and TN value then low FP
and FN. The computed precision value is 0,685 and the relative accuracy is

67

0,817. This means that our clusters tend to group together apps that offer to
the final user the same kind of usage. The explanation to this phenomenon
is that, in general, apps that have similar tasks must have similar UI. This
bring a developer to define a UI of his application leading from other similar-
task applications.

5.2.2 Similarities

The aim of this test if to check if applications into the same cluster, at the
end of the clustering process, are much more similar with respect to appli-
cations outward the cluster. This would prove that searching by computing
cluster-to-application similarity will bring to find out almost the same sim-
ilar applications in comparison with computing application-to-application
similarity.

Table 5.5 shows the average of the similarities among applications for
couple of clusters.

AverageSimij =

∑

(a,b)a∈Ci,b∈Cj
Sim(a, b)

|(a, b)a ∈ Ci, b ∈ Cj | (5.2)

Table 5.5 Similarity matrix example among clusters

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
c1 0.621 0.299 0.100 0.182 0.149 0.191 0.153 0.119 0.064 0.099
c2 0.166 0.557 0.242 0.148 0.091 0.144 0.107 0.310 0.343 0.055
c3 0.064 0.207 0.608 0.033 0.252 0.070 0.255 0.051 0.179 0.305
c4 0.185 0.170 0.219 0.734 0.243 0.252 0.109 0.151 0.163 0.223
c5 0.254 0.143 0.266 0.105 0.634 0.160 0.319 0.200 0.271 0.232
c6 0.270 0.168 0.348 0.174 0.188 0.606 0.181 0.251 0.116 0.261
c7 0.194 0.141 0.210 0.233 0.352 0.136 0.720 0.049 0.297 0.308
c8 0.205 0.151 0.084 0.106 0.119 0.355 0.167 0.584 0.338 0.318
c9 0.051 0.200 0.063 0.095 0.283 0.133 0.223 0.181 0.659 0.235
c10 0.230 0.133 0.242 0.217 0.262 0.225 0.067 0.334 0.180 0.670

We can see that the matrix is symmetric (for the symmetric definition
of the similarity of two clusters check Section 4.4.2) and diagonal element
are much higher with respect to the other elements. That table 5.5 proves
that in our system we will have a much bigger intra-cluster similarity and a
much lower extra-cluster similarity, as shown in plot in Figure 5.3 and 5.4.
Much more the diagonal shape will be sharp, much more the clusters will
be separated.

68

Figure 5.3: 3D graph of cluster similarity

Figure 5.4: Bar graph of cluster similarity

69

5.2.3 Consumed views

The aim of this test is to check the effective structural similarity of two appli-
cations considered similar. We expect to have an approximate dependence
between the similarity value and the views that Puppetdroid succeeded in
layout recover during execution. If two applications present to the user simi-
lar layouts during executions, then Puppetdroid can find the same structural
path starting from the layout root up to the view element were the action is
consumed (for example where the click of a button make effect on a single
element). We created a subset of the dataset with 40 APK and for every
application in the subset we ran a "Manual Puppetdroid test" [21] to let the
program register user input (focused in stimulating views). Then we com-
puted the application permutations in the subset (which for Puppetdroid
are not symmetric) which brings to 40*39 = 1560 permutations. For each
permutation (A,B) we ran a "Puppetdroid rerun test of B using A inputs" to
test the input registered in application A under the execution of application
B.

Table 5.7 Consumed Views among clusters

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
c1 69.67 29.92 10.83 18.24 15.45 20.54 18.34 10.64 4.10 8.30
c2 18.66 64.42 23.06 15.36 8.47 10.14 2.06 31.16 34.01 6.65
c3 4.11 17.63 72.92 4.01 25.48 6.05 19.84 4.91 15.44 34.23
c4 14.94 12.02 26.29 78.53 27.95 22.99 10.64 7.26 8.78 20.80
c5 24.53 8.72 29.53 6.61 71.30 15.60 37.12 19.15 32.52 19.43
c6 32.39 9.39 33.31 17.30 20.13 69.12 19.28 24.17 12.74 28.96
c7 17.30 9.76 22.80 18.37 35.06 16.38 79.17 5.87 26.00 29.80
c8 13.85 14.48 5.33 10.35 13.09 33.04 18.82 64.13 29.77 29.79
c9 3.78 22.78 2.76 7.84 33.99 5.17 18.35 14.56 74.24 21.01
c10 20.39 15.98 18.25 21.23 31.38 17.46 4.47 34.03 10.86 73.22

Table 5.7 shows for each cluster the average of views consumed in ex-
ecution divided by the case the two applications tested where in the same
cluster or not. The element in the first column represent:

IntraClusterV iews(i) = Avg(V iews(a, b)), {a, b}, a 6= b ∧ a, b ∈ Ci (5.3)

While for the second column:

ExtraClusterV iews(i) = Avg(V iews(a, b)), {a, b}, a 6= b ∧ a ∈ Ci ∧ b /∈ Ci

(5.4)
As displayed in Figures 5.5 and 5.6, for each cluster created, the views

that are correctly consumed are much more with respect to the views that
fails to be located.

70

Figure 5.5: 3D graph of consumed views between clusters

Figure 5.6: Bar graph of consumed views between clusters

71

5.3 Comparison of algorithms

5.3.1 introduction

We decided to compare our algorithm with two different Android similarity
computation algorithm: Androsim (2.3.1) and Phash (2.3.2). This two algo-
rithms are great differences in terms of methodology that strongly influence
this comparison; we can enumerate these differences in:

1. PHash need to run the applications (in an emulator) while androsim
need to decompile the APK

2. PHash focuses on visual appearance while androsim focuses on meth-
ods

3. PHash similarity function is symmetric while androsim’s is not

We expect PHash to be the slowest because of the need of running a
emulator (and mean in terms of resources) while Androsim to be inefficient
while applications presents similar UI but extremely different code.

Similarity matrices To compare algorithms we computed a similarity
matrix for each algorithm. These matrices are NxN matrices with N number
of application in the dataset (which contains 120 sample). As result every
matrix will show 1400 elements (every combination of application). Matrices
are similar to that one in Table 5.2 Note that both SimDroid-UI and PH
ash similarity matrices are symmetric while Androsim’s is not.

5.3.2 Validation strategy

The validation method applied is a k-fold cross validation strategy ([41])
with k = 10. The cross validation process used start by dividing the dataset
into k parts (10 in our case, that produces subsets of 12 applications). A
brief explanation on how the validation is performed using this k groups is
the following:

1. remove a subset from the dataset

2. build model (that means build application similarity) with new dataset

3. evaluate using removed subset

4. add the subset in the dataset again

5. repeat until all k subset are used

This process tries to avoid overfitting problem that may caused by using
same samples for the model building (clustering) and for the testing.

For our domain the steps become:

72

1. remove a subset of 12 applications from the dataset

2. construct similarity matrix with new dataset of APKs

3. using the 12 removed APKs, evaluate searching process for each APKs,
analyzing most similar applications returned with respect to visual
correspondence (by Puppetdroid) and execution time

4. add the 12-APKs subset in the dataset again

5. repeat until all 120 APKs are used

In point 3, for every application in the dataset a search process three
searching process are launched, one for each algorithm; the total amount of
searching process is 120*3 = 360.

Searching process For our approach, the searching process involve using
the method described in section 4.5. For PHash and Androsim we extrapo-
lates the most similar apps returned by the correspondent process.

Three "Speacial Search" were acted executed too with three new type of
APKs constructed as follows. Starting from an APK, new APKs are built
by modifying source code:

1. an APK variant with .DEX file strongly modified - classes and methods
are modified but UI representation remains the same; called variant-
DEX

2. an APK variant with Resources file strongly modified - layouts are
modified but no changes in the code were applied; called variantRES

3. an APK variant with both DEX and Resources file modified; called
variantBOTH

5.3.3 Views

As in section 5.2.3, we make use of Puppetdroid to display a measure of
goodness of most similar APKs found with respect to one new sample given.

We decided to evaluate the average of the percentages of Consumed
Views of the 5 most similar APKs.

Goodness(algorithmi, appj) = Avg(
CV (appj ,appk)

CV (appj ,appk)+NCV (appj ,appk))

∀appj ∈ Most5Sim(algorithmi, appj)
(5.5)

Let’s try to explain this computation considering our SimDroid-UI . For
the app A the process follows this steps:

1. find the 5 most similar APKs wrt A using SimDroid-UI

73

2. for each APK ri returned:

(a) launch Puppetdroid to test APK ri using input of APK A

(b) get the amount Consumed Views and the amount of Not Con-
sumed Views (views which haven’t been found again in ri

(c) compute the percentage of CV with respect to (CV+NCV)

3. average results

The results of this tests are shown in table 5.9 and plot in Figure 5.7.

Table 5.9 Consumed views algorithm comparison

SimDroidUI pHash Androsim

apk1 77 51 25
apk2 87 35 48
apk3 55 60 16
apk4 73 69 25
apk5 95 10 27
apk6 90 56 20
apk7 82 10 33
apk8 94 27 47
apk9 39 49 40
apk10 36 40 52
apk11 61 20 22
apk12 31 22 43
...
apk115 90 16 6
apk116 34 19 29
apk117 60 48 23
apk118 94 31 17
apk119 63 67 7
apk120 86 34 3
VariantDEX 78 54 22
VariantRES 54 43 4
VariantBOTH 54 13 12

We can notice that the percentage of views found again in the APKs
chosen by our SimDroid-UI are nearly always greater with respect to that
returned by androsim and phash and much greater in average. As already
demonstrated in literature ([21]), phash brings to better results with respect
to androsim.

74

Figure 5.7: Consumed views algorithm comparison

Special APKs

Analyzing the special APKs search results (Figure 5.9) we had:

> for variantDEX androsim give worse result while PHash and SimDroid-
UI still gives good APKs

> for variantRES androsim give best results as it would be expected;
then SimDroid-UI shows to be more robust with respect to PHash.

> for variantBOTH all the three algorithms properly return random re-
sults.

75

5.3.4 Execution time

We will compare the execution time of the three algorithms in both com-
puting a similarity measure between two sample and the action to search
a new sample similarity with respect to an already built database. The
graph in Figure 5.8 shows the similarity computation time with respect to
the increase of sample size (table 5.11).

The long execution times and the high escalation with respect to file
size of PHash is caused by the need of the algorithm to run the application
and taking the first screen, that means it must run an emulator, install the
APK and start the application that is much more influenced by the file size.
SimDroid-UI is quite influenced by the size of APK because it is influenced
only by the size of the layouts file,that we approximate to have always the
same ratio of code size (comparing different APK size). In real applications,
as much the APK size is bigger, much more the ratio between code size and
layouts file size will be bigger. On the other hand, because we compared
graph structured data, as we said in section 3.2.1, the complexity is quadratic
order with respect to number of nodes, that we expect to increase along
with APK size. Androsim is quite faster with respect to our SimDroid-UI
because it uses a feature-hash comparison when hashes are computed from
string value of the methods.

The graph in Figure 5.9 shows the search process execution time with
respect to the increase of dataset size.

We can notice that SimDroid-UI is quite linear because of the cluster
method we have applied, searching by cluster instead of scanning all ap-
plications reduce drastically time for comparing a new sample, even if the
dataset increase in size. With PHash method, because it implemented a
DBScan clustering algorithm, searching process is quite faster and does not
scale too much with respect to dataset size; the only problem is the constant
time it needs to execute the new sample. Androsim, because of it does not
implement a clustering method but compare each a new sample with the
entire dataset, its searching process is linear with respect to the database
size.

5.4 Conclusions

We proved that our clusters are quite good in terms of grouping applications
with the same scope to the end user by comparing the semantic grouping
by human being with our clusters and get quite good values of precision
and accuracy. By comparing inter with extra cluster similarity, we have
proved that our cluster representation using patterns is good with respect
to similarity of application contained inside a cluster. By comparing Pup-
petdroid consumed views, we proved that SimDroid-UI returns applications
very good in terms of visual similarity; the application returned contains lot

76

Table 5.11 Execution time comparison of similarity computation

SimDroidUI pHash Androsim

apk1 18 77 45
apk2 3 66 20
apk3 10 73 24
apk4 8 123 48
apk5 20 95 17
apk6 15 40 17
apk7 1 111 57
apk8 9 103 48
apk9 9 99 33
apk10 10 68 19
apk11 16 47 41
apk12 13 88 31
...
apk115 5 117 42
apk116 14 52 38
apk117 13 41 46
apk118 10 108 15
apk119 3 122 38
apk120 8 60 37
VariantDEX 11 110 43
VariantRES 4 48 59
VariantBOTH 20 93 18

of patterns in common with the one input so that Puppetdroid is able to
find the same type of view during re-execution of input. We compared our
approach with two opposite Android similarity approach, PHash and An-
drosim. We saw that SimDroid-UI was the best in terms of visual similarity
produced because, using structural data as similarity measure, it can com-
pare the hierarchy of the views instead of (1) coding (Androsim) and (2)
final appearance (PHash). Finally we saw that in terms of execution, our
clustering approach, as for PHash, allows to search a new sample in the
whole dataset without looking every single data, and scaling well as dataset
size increases.

77

Figure 5.8: Execution time comparison of similarity computation

0 20 40 60 80 100 120

0

20

40

60

Database Size

E
x
ec

u
ti

on
T

im
e

Androsim
pHash

SimDroidUI

Figure 5.9: Execution time for search with respect to dataset size

78

Chapter 6

Conclusions and future work

The goal of our work was to propose a different similarity measure for An-
droid applications in order to compare applications with respect to the UIs
results instead of the source code. Our key intuition is that file that rep-
resents the UI elements can be represented as trees and for comparing UIs
we can compare the structure of these trees. We designed and developed
SimDroid-UI , a tool for grouping similar applications with respect to their
visual appearance. We added a search functionality to quickly compare a
new sample with clusters (groups), created in order to obtain a list of similar
applications without seeking into the whole database.

In order to build SimDroid-UI , we dealt with various challenges. Firstly,
we faced the problem of extracting a tree representation of an APK, by com-
bining informations from several decompiled files: the problem was solved
applying techniques to combine XML files, and using ElementTree Python
module to convert the resulting XML files into a tree. Secondly, we faced
the problem of retrieving common structures among the whole dataset; we
decided to use CMTreeMiner (Section 3.1.4), a tool for mining frequent
subtrees in a database of rooted unordered trees. Third, we analyzed the
problem of creating groups of applications by comparing substructures: we
defined a similarity measure using the Jaccard Similarity value computed
between two sets and we applied a hierarchical clustering algorithm in order
to obtain clusters of applications. We had experimentally evaluated a good
stopping criterion for the algorithm and defined a representation of a cluster
able to summarize the applications included.

Then we defined a way to compare a new sample to the created clusters.
This brought to quickly associate a new sample to a group of applications.
We believe the searching process can help in different situations both for
security and recommendation process (extensively used in markets).

We tested our solution using Puppetdroid, a tool for automatic dynamic
analysis of Android malwares, in order to get a real evaluation of the simi-
larity application returned by SimDroid-UI .

79

Our experiments proved that clusters, created by SimDroid-UI , can be
considered a good representation of the UI similarity among applications and
that each group could be associated to an application type. Furthermore,
we experimentally demonstrated that our searching process is able to return
applications that have similar structural representation of the UI in less time
with respect to pHash and Androsim approaches.

Our main contribution to the State of the Art have been (1) the def-
inition of a new approach to compare applications based on UI and (2)
the development of an efficient searching process to quickly retrieve simi-
lar applications that is not much influenced by the dataset size. Moreover,
we created a request manager module to process application and retrieve
similar applications transparently.

We plan to fully integrate SimDroid-UI in Puppetdroid, in order to
improve its results as we demonstrated, by using our request manager.

Moreover, we plan to scale our product to use different clustering process
and different Tree Mining algorithms as alternatives to CMTreeMiner. In
order to achieve this, we have to allow the SimDroid-UI user to choiche
which cluster algorithm and which Tree Mining algorithm use. This would
be done by modifying request manager to become a full API module that
can be transparently used by an user.

80

Appendix A

Bipartite Matching Problem

A.1 Maximum Bipartite Matching

A matching in a Bipartite Graph is a set of the edges chosen in such a way
that no two edges share an endpoint. A maximum matching is a matching
of maximum size (maximum number of edges). In other words, a matching
is maximum if any edge is added to it, it is no longer a matching. There can
be more than one maximum matchings for a given Bipartite Graph. There
are many real world problems that can be formed as Bipartite Matching.
For example, consider the following problem: there are M job applicants
and N jobs. Each applicant has a subset of jobs that he/she is interested
in. Each job opening can only accept one applicant and a job applicant can
be appointed for only one job. Find an assignment of jobs to applicants in
such that as many applicants as possible get jobs.

Figure A.1: Bipartite Matching example

82 Appendix A. Bipartite Matching Problem

A.2 Maximum Bipartite Matching and Max Flow

Problem

To face the problem it needs to consider the Ford–Fulkerson method. This
is an algorithm which computes the maximum flow in a flow network. It
was published in 1956 by L. R. Ford, Jr. and D. R. Fulkerson. The idea
behind the algorithm is as follows: as long as there is a path from the source
(start node) to the sink (end node), with available capacity on all edges
in the path, we send flow along one of these paths. Then we find another
path, and so on. A path with available capacity is called an augmenting
path. So the Maximum Bipartite Matching (MBP) problem can be solved
by converting it into a flow network. Following are the steps:

1) Build a Flow Network. There must be a source and sink in a flow
network. So we add a source and add edges from source to all applicants.
Similarly, add edges from all jobs to sink. The capacity of every edge is
marked as 1 unit.

Figure A.2: An example of flow graph

2) Find the maximum flow. We use Ford-Fulkerson algorithm to find the
maximum flow in the flow network built in step 1. The maximum flow is
actually the MBP we are looking for.

To implement the above approach first of all there are to defineLet us
first define input and output forms. Input is in the form of Edmonds ma-
trix which is a 2D array ‘bpGraph[M][N]‘ with M rows (for M job applicants)
and N columns (for N jobs). The value bpGraph[i][j] is 1 if i’th applicant is
interested in j’th job, otherwise 0.
Output is number maximum number of people that can get jobs.

A simple way to implement this is to create a matrix that represents adja-
cency matrix representation of a directed graph with M+N+2 vertices. Call
the fordFulkerson() for the matrix. This implementation requires O((M+N)*(M+N))
extra space. Extra space can be be reduced and code can be simplified using

A.2. Maximum Bipartite Matching and Max Flow Problem 83

Figure A.3: Maximum flow example

the fact that the graph is bipartite and capacity of every edge is either 0 or
1. The idea is to use DFS traversal to find a job for an applicant (similar
to augmenting path in Ford-Fulkerson). We call bpm() for every applicant,
bpm() is the DFS based function that tries all possibilities to assign a job
to the applicant.

In bpm(), we one by one try all jobs that an applicant ‘u’ is interested
in until we find a job, or all jobs are tried without luck. For every job we
try, we do following.
If a job is not assigned to anybody, we simply assign it to the applicant and
return true. If a job is assigned to somebody else say x, then we recursively
check whether x can be assigned some other job. To make sure that x
doesn’t get the same job again, we mark the job ‘v’ as seen before we make
recursive call for x. If x can get other job, we change the applicant for job ‘v’
and return true. We use an array maxR[0..N-1] that stores the applicants
assigned to different jobs. If bmp() returns true, then it means that there
is an augmenting path in flow network and 1 unit of flow is added to the
result in maxBPM().

1 // A C++ program to find maximal Bipartite matching.
2 #include <iostream>
3 #include <string.h>
4 using namespace std;
5

6 // M is number of applicants and N is number of jobs
7 #define M 6
8 #define N 6
9

10 // A DFS based recursive function that returns true if a
11 // matching for vertex u is possible
12 bool bpm(bool bpGraph[M][N], int u, bool seen[], int matchR[])
13 {
14 // Try every job one by one

84 Appendix A. Bipartite Matching Problem

15 for (int v = 0; v < N; v++)
16 {
17 // If applicant u is interested in job v and v is
18 // not visited
19 if (bpGraph[u][v] && !seen[v])
20 {
21 seen[v] = true; // Mark v as visited
22

23 // If job ’v’ is not assigned to an applicant OR
24 // previously assigned applicant for job v (which is matchR[v])
25 // has an alternate job available.
26 // Since v is marked as visited in the above line, matchR[v]
27 // in the following recursive call will not get job ’v’ again
28 if (matchR[v] < 0 || bpm(bpGraph, matchR[v], seen, matchR))
29 {
30 matchR[v] = u;
31 return true;
32 }
33 }
34 }
35 return false;
36 }

Listing A.1: BPM C++ code

1 // Returns maximum number of matching from M to N
2 int maxBPM(bool bpGraph[M][N])
3 {
4 // An array to keep track of the applicants assigned to
5 // jobs. The value of matchR[i] is the applicant number
6 // assigned to job i, the value −1 indicates nobody is
7 // assigned.
8 int matchR[N];
9

10 // Initially all jobs are available
11 memset(matchR, −1, sizeof(matchR));
12

13 int result = 0; // Count of jobs assigned to applicants
14 for (int u = 0; u < M; u++)
15 {
16 // Mark all jobs as not seen for next applicant.
17 bool seen[N];
18 memset(seen, 0, sizeof(seen));
19

20 // Find if the applicant ’u’ can get a job
21 if (bpm(bpGraph, u, seen, matchR))
22 result++;
23 }
24 return result;
25 }

A.2. Maximum Bipartite Matching and Max Flow Problem 85

Listing A.2: maxBPM C++ code

1 // Driver program to test above functions
2 int main()
3 {
4 // Let us create a bpGraph shown in the above example
5 bool bpGraph[M][N] = {
6 {0, 1, 1, 0, 0, 0},
7 {1, 0, 0, 1, 0, 0},
8 {0, 0, 1, 0, 0, 0},
9 {0, 0, 1, 1, 0, 0},

10 {0, 0, 0, 0, 0, 0},
11 {0, 0, 0, 0, 0, 1}
12 };
13

14 cout << "Maximum number of applicants that can get job is "
15 << maxBPM(bpGraph);
16

17 return 0;
18 }

Listing A.3: BPM driver program example

Output: Maximum number of applicants that can get job is 5

86 Appendix A. Bipartite Matching Problem

Bibliography

[1] H. Shewale, S. Patil, V. Deshmukh, and P. Singh, “Analysis of android
vulnerabilities and modern exploitation tecniques,” Ictact Journal on
Communication Technology, vol. volume 05, pp. 863–867, March 2014.

[2] C. Maia, L. Nogueira, and P. L.M., “Evaluating android os for embed-
ded real-time systems,” 6th International Workshop on Operating Sys-
tems Platforms for Embedded Real-Time Applications (OSPERT 2010),
Brussels, Belgium., no. TR 100604, pp. 63–70, 2010.

[3] “Google inc. android user interface.” http://developer.android.

com/guide/topics/ui/index.html.

[4] Wikipedia The Free Encyclopedia, “Android.” http://en.wikipedia.

org/wiki/Android.

[5] “Market share statistics for internet technologies - mobile/tablet
operating system market share.” http://www.netmarketshare.com/

operating-system-market-share.aspx, Sept. 2014.

[6] IDC, “Smartphone os market share.” http://www.idc.com/prodserv/

smartphone-os-market-share.jsp, 2014.

[7] S. Holla and M. Katti, “Android based mobile application develop-
ment and its security,” International Journal of Computer Trends and
Technology, Department of Information Science & Engg, RV College of
Engineering, Bangalore, India, pp. 486–490, 2012.

[8] “Android.” https://source.android.com/devices/tech/index.

html.

[9] Open Signal, “Android fragmentation.” http://opensignal.com/

reports/2014/android-fragmentation, 2014.

[10] A. Menti and M. Zago, “Attacco ad android: obiettivi, rischi e contro-
misure.” http://profs.scienze.univr.it/~mastroen/Attacco_ad_

Android_Menti_Zago.pdf, 2013.

87

88 BIBLIOGRAPHY

[11] Wikipedia The Free Encyclopedia, “Google play.” http://en.

wikipedia.org/wiki/Google_Play.

[12] M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner, E. Athana-
sopoulos, F. Maggi, C. Platzer, S. Zanero, and S. Ioannidis, “Andradar:
Fast discovery of android applications in alternative markets,” in Detec-
tion of Intrusions and Malware, and Vulnerability Assessment (S. Di-
etrich, ed.), pp. 51–71, 2014. In Proceedings of the 11th Conference
on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA). London, UK.

[13] Sophos Mobile, “Mobile security threat report 2014,” 2014. In Pro-
ceedings of 2014 Mobile World Congress by Vanja Svajcer, Principal
Researcher, SophosLabs.

[14] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets,” NDSS, Feb. 2012.

[15] Y. Joung Ham, D. Moon, H. Lee, J. Deok Lim, and J. Nyeo Kim,
“Android mobile application system call event pattern analysis for de-
termination of malicious attack,” International Journal of Security and
Its Applications, vol. 8, no. 1, pp. 231–246, 2014.

[16] L. M. Security, “Lookout mobile security: State of mobile security
2012.” Technical report, Lookout Mobile Security, September 2012.

[17] C. Crussell, J. and Gibler and H. Chen, “Attack of the clones: Detect-
ing cloned applications on android markets,” in Computer Security –
ESORICS 2012 (S. Foresti, M. Yung, and F. Martinelli, eds.), pp. 37–
54, 2012. In Proceedings of the 17th European Symposium on Research
in Computer Security, Pisa, Italy.

[18] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on Android markets,”
in 36th International Conference on Software Engineering(ICSE 2014)
(A. York, ed.), pp. 175–186, 2014. In the Proceedings of the 36th
International Conference on Software Engineering, Hyderabad, India,
May 31-June 07, 2014.

[19] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM Computing Sur-
veys, Feb 2012.

[20] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for mal-
ware detection,” in ACSAC’07, pp. 421–430, 2007. In Proceedings
of 23rd Annual Computer Security Applications Conference, Miami
Beach.

BIBLIOGRAPHY 89

[21] A. Gianazza, F. Maggi, A. Fattori, L. Cavallaro, and S. Zanero, “Pup-
petdroid: A user-centric ui exerciser for automatic dynamic analysis
of similar android applications,” ArXiv e-prints, Feb. 2014. Computer
Science - Cryptography and Security.

[22] S. Hanna, L. Huang, S. Wu, E. and Li, C. Chen, and D. Song, “Juxtapp:
A scalable system for detecting code reuse among android applications,”
in Detection of Intrusions and Malware, and Vulnerability Assessment
(U. Flegel, E. Markatos, and W. Robertson, eds.), pp. 62–81, July
2012. In Proceedings of 9th International Conference, DIMVA 2012,
Heraklion, Crete, Greece.

[23] R. Duda, P. Hart, and D. Stork, Pattern Classification. John Wiley
and Sons, 2000.

[24] S. Li, “Juxtapp and dstruct: Detection of similarity among android
applications,” Master’s thesis, EECS Department, University of Cali-
fornia, Berkeley, May 2012.

[25] M. Zaki, “Efficiently mining frequent trees in a forest,” ACM New York,
July 2002. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

[26] Y. Chi, Y. Yang, Y. Xia, and R. Muntz, “Cmtreeminer: Mining both
closed and maximal frequent subtrees,” in Advances in Knowledge Dis-
covery and Data Mining, Springer Berlin Heidelberg, May 2004. In Pro-
ceedings of 8th Pacific-Asia Conference, PAKDD 2004, Sydney, Aus-
tralia, May 26-28, 2004.

[27] K. Wang and H. Liu, “Discovering typical structures of documents: A
road map approach,” ACM New York, Aug. 1998. In Proceedings of
the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval.

[28] Y. Xiao, J. Yao, Z. Li, and M. Dunham, “Efficient data mining for
maximal frequent subtrees,” IEEE Computer Society Washington, Nov.
2003. In Proceedings of the Third IEEE International Conference on
Data Mining.

[29] Y. Chi, Y. Xia, Y. Yang, and R. Muntz, “Mining closed and maximal
frequent subtrees from databases of labeled rooted trees,” IEEE, 2005.

[30] M. Lee, L. Yang, W. Hsu, and X. Yang, “Xclust: Clustering xml
schemas for effective integration,” in In Proceedings of the Eleventh
International Conference on Information and Knowledge Management,
pp. 292–299, 2002.

90 BIBLIOGRAPHY

[31] Xproj: A Framework for Projected Structural Clustering of XML Doc-
uments, 2007.

[32] T. Dalamagas, T. Cheng, K.-J. Winkel, and T. Sellis, “Clustering xml
documents using structural summaries,” 2004. In Proceedings of EDBT
2004 Workshops, Heraklion, Greece, March 14-18 2004.

[33] N. Mamoulis, W. Cheung, and W. Lian, “Similarity search in sets and
categorical data using the signature tree,” pp. 75–86, 2003. In Proceed-
ings of International Conference On Data Engineering, 2003.

[34] A. Jain and R. Dubes, Algorithms for Clustering Data. Prentice-Hall,
Inc. Upper Saddle River, NJ, USA, 1998.

[35] S. Chawathe, S. Abiteboul, and J. Widom, “Managing historical
semistructured data,” Theory and Practice of Object Systems, vol. 5,
pp. 143–162, 1999.

[36] W. Lian, D. Cheung, N. Mamoulis, and S. Yiu, An Efficient and Scal-
able Algorithm for Clustering XML Documents by Structure. IEEE, NJ,
USA, 2004.

[37] T. Dalamagas, T. Cheng, K.-J. Winkel, and T. Sellis, “A methodol-
ogy for clustering xml documents by structure,” Informastion Systems,
vol. 31, pp. 187–228, 2006.

[38] F. Luccio, A. Enriquez, P. Rieumont, and L. Pagli, “Exact rooted
subtree matching in sublinear time,” in In Proceed. 9-th ANaC-
C/ACM/IEEE Intern.Congress on Comp.Sc. (CIIC’02), pp. 27–35, Ac-
cademic Pubblication Ltd, 2002.

[39] F. Luccio, A. Enriquez, P. Rieumont, and L. Pagli, “Bottom-up subtree
isomorphism for unordered labeled trees,” in International Journal of
Pure and Applied Mathematics, vol. 38, pp. 325–343, Accademic Pub-
blication Ltd, march 2007.

[40] “Androguard.” http://code.google.com/p/androguard.

[41] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation,” in Encyclo-
pedia of Database Systems, pp. 532–538, Springer US, 2009.

Acronyms

AOSP Android Open Source Project
API Application Programming Interface
BER Bit Error Rate
CFG Control Flow Graph
DCT Discrete Cosine Transform
DEX Dalvik EXecutable
DM Data Mining
DTD Document Type Definition
DVM Dalvik Virtual Machine
HTML HyperText Markup Language
JAR Java ARchive
JVM Java Virtual Machine
KDD Knowledge Discovery in Databases
NCD Normalized Compressed Distance
PCC Peak of Cross Correlation
URL Uniform Resource Locator
VM Virtual Machine
VNC Virtual Network Computing
XAML eXtensible Application Markup Language

