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Abstract

Quality is an important aspect of a product. High quality product ensures

the functionality of assembled products and the interchangeability among

products from different manufacturers. To verify product quality, tolerance

verification (geometrical measurement) by means of coordinate measuring

systems has to be carried out. Advancement of manufacturing technology

enables a significant reduce of critical dimensions, together with an increase

of geometric complexity. This creates challenges in coordinate metrology:

tolerances become tighter. Optical-based metrology instruments are a po-

tential option to verify these tolerances. But of course also in this case

traceability is a fundamental aspect to ensure reliable measurement results.

This thesis addresses the problem of traceability of a focus-variation

microscope as 3D coordinate measuring system. First, the traceability of

the instrument will be discussed considering its performance. Proposals for

reference artifacts and procedures to conduct performance verification ac-

cording to the ISO10360-8 and ISO10360-3 standards are presented. These

proposals consider both 3-axis and 4-axis configurations of the instrument.

Second, an approach is presented for task-specific uncertainty evalua-

tion by simulation, coherent with the ISO15530-4 standard. The proposed

simulation approach is based on spatial statistic model considering the cor-

relation among captured points. To support the simulation and consider all

significant error sources, characterization studies to investigate the influ-

encing factors of measurement by focus-variation microscopy are presented,

too. Finally, industrial case studies are carried out to validate the simulator

developed. The validation conforms to the ISO15530-4 standard.

As a byproduct of this study, algorithms to associate ideal substitute

geometries to sampling points will be discussed. An improvement of non-



linear least square fitting is presented, based on the optimization of the

initial solution through chaos method.

Keywords: uncertainty evaluation, performance verification, 3D measure-

ment, fitting geometry, optical metrology
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Chapter 1

Introduction

1.1 Performance verification and uncertainty of measure-

ment in coordinate metrology

In modern manufacturing, quality is a main concern of the manufacturing organization

[Loch et al. [2003]]. Technology advancement in manufacturing enables to scale down

critical dimension with the increase of part geometric complexity [Hansen et al. [2006]].

This situation poses new challenges in quality control of a product. High quality prod-

uct guarantees part interchangeability among manufacturers. To guarantee the quality

of a product, tolerance verification has to be carried out in accordance with the de-

sign specifications to decide whether the product/part conforms to the specifications

or not. The tolerance verification process should be carried out by means of coordinate

metrology. In coordinate metrology, traceability is the main issue in order to obtained

a reliable measurement result. VIM [BIPM et al. [2008]] defines traceability as:

”property of a measurement result whereby the result can be related to a reference

through a documented unbroken chain of calibrations, each contributing to the mea-

surement uncertainty ”

There are three fundamental issues related to traceability issue in coordinate metrol-

ogy, which are calibration of metrology instrument properties for error compensation,

performance evaluation of metrology instrument and uncertainty of measurement (fig.

1.1). VIM [BIPM et al. [2008]]. For all the three fundamental issues in traceability,
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CHAPTER 1. INTRODUCTION

Figure 1.1: Metrology fundamental of calibration and traceability.

standardized procedures and calibrated artifacts are needed to address these issues.

The calibrated artifact is used to create an unbroken-chain link to the international

standard of length. Calibration is defined according to VIM [BIPM et al. [2008]] as:

”operation that, under specified conditions, in a first step, establishes a relation between

the quantity values with measurement uncertainties provided by measurement standards

and corresponding indications with associated measurement uncertainties and, in a sec-

ond step, uses this information to establish a relation for obtaining a measurement

result from an indication ’ ’

In the calibration process, the systematic error of the coordinate metrology in-

strument is quantified and then compensated to increase the instrument’s accuracy

regardless of the imperfection of the components geometry. Error compensation can

be applied both by hardware and software/numerical adjustment. In software com-

pensation, error models (cinematic, dynamic, and thermal error) of the machine are

derived and fitted by the calibration data. Afterward, the volumetric error of the in-

strument can be mapped and then compensated for each position in the working volume

[Schwencke et al. [2008]],[Ibaraki and Knapp [2012]],[Leach [2009]],[Leach [2011]].

In general, the calibration step should be carried out by the manufacturer to be able

to supply an accurate machine to the customer. Hence, there should be a procedure
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to verify the stated accuracy of the instrument for both the manufacturer and espe-

cially for the customer. This procedure is called performance verification. Performance

verification is a procedure to verify the maximum error which can be obtained by the

instrument in the whole measuring volume (Maximum Permissible Error/MPE), both

for length measurement error and probing error. These two parameters become the

basis for the manufacturer to accept their manufactured instrument and for the user to

consider purchasing an instrument and to re-verify the purchased instrument coming

from the manufacturer. This procedure is standardized in ISO 10360 series for various

types of instruments, including both contact and non-contact instrument.

After performance verification, the last fundamental issue in metrology is measure-

ment uncertainty. In every measurement result, it is not complete only to present the

measurement result without the stated uncertainty of the measurement. Hence, to

make the measurement results reliable and comparable, the measurement uncertainty

has to be quantified such that confidence interval of the results can be stated and can

be compared when the measurements are carried out by different instruments and in

different conditions. In real situations, it happens that on the user side they will con-

duct inspection of the incoming parts received from the supplier to verify that the parts

supplied by the vendor are according to their specification. A fundamental concept of

measurement uncertainty is it is task specific [Wilhelm et al. [2001]],[ISO/TS15530-1

[2013]]. Task specific means that every different type of measurement, such as those for

different shapes, materials, positions, and measurement strategies, etc, will have their

own unique measurement uncertainty. Estimation of measurement uncertainty should

be precise in the sense that it is not under-estimated or over-estimated. Under/over-

estimation of measurement uncertainty will result in unwanted consequences to the

total production cost [Moroni et al. [2011]].

The importance of measurement uncertainty can be found both in the pre-production

and post-production phase. Illustrations of the importance of measurement uncertainty

for both pre-production and post-production phase are shown in fig. 1.2. In pre-

production, high measurement uncertainty will significantly reduce process capability

[Kunzmann et al. [2005]]. Fig. 1.2a explains the influence of uncertainty in prepro-

duction phase. Before a mass production is carried out, it is required to conduct a

process capability test, in which a series of short run is carried out and tolerances are

3



CHAPTER 1. INTRODUCTION

verified. Standard deviation calculated from this measurement series is used to calcu-

late the process capability (Cp). Subsequently, measurement uncertainty will greatly

affect the process capability. High measurement uncertainty will under-estimate the

process capability. On the other hand of post-production, an invalid decision of prod-

uct acceptance-rejection (conformance) test in post-production is proportional to the

increase of uncertainty [ISO14253-1 [1998]]. There are three main zones defined in

ISO14253-1 related to conformance/non-conformance test as shown in fig. 1.2b, which

are conformance zone, non-conformance zone, and uncertainty range (U range). They

definition according to ISO 14253-1 are:

Conformance zone: ”Specification zone reduced by the expanded uncertainty of mea-

surement, U”

Non Conformance zone: ”Zone(s) outside the specification zone extended by the ex-

panded uncertainty of measurement, U”

uncertainty range: ”Range(s) close to the specification limit(s) where neither con-

formance nor non-conformance can be proved taking into account the uncertainty of

measurement. The uncertainty range(s) is(are) located around the specification limit

(one-sided specification) or specication limits (two-sided specification) and has the width

of 2 U”

where specification zone is defined as ”Specified values of the characteristic giving up-

per and/or lower bounds of the permissible value”. The decision made should be based

on these zone, which are (with reference to fig. 1.2b):

1. Conformance Zone: If the measurement result of a part is inside this zone, then the

part is accepted.

2. Non Conformance Zone: If the measurement result of a part is inside this zone,

then the part is rejected.

3. Uncertainty range (U range): If the measurement result of a part is inside this zone,

then one can not state whether the part is accepted or rejected.

4
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Figure 1.2: Effect of uncertainty (a) in pre-production phase and (b) in post-production

phase.

Based on this standard, high measurement uncertainty will reduce the conformance

zone (fig. 1.2b). Moreover, it increases cost of manufacturing process in order to make

the process still within a tight conformance zone.

A manufactured part is going to the micro-scale level, in term of dimensions and

structure, driven by the need of micro-scale applications [Masuzawa [2000]], [Alting

et al. [2003]]. Furthermore, the advance of information and communication technology

(ICT) and supply chain system have endorsed a global manufacturing system where an

assembled product is constituted by many sub-parts from different suppliers all around

the world [Huang et al. [2013]]. As a consequence, a measurement will be carried

out in different places, by different operators, and using different instruments. Thus,

quantification of measurement uncertainty to guarantee measurement traceability is

very important.

At the micro-scale level, there are two types of measurement: micro-geometric

measurement and surface texture measurement (fig. 1.3). Micro-scale level can be

both micro-size and micro-feature in a large size object. Both of the measurement

types are important. Micro-geometric measurement is usually a measurement related

to dimensional characteristic (length, radius, diameter, thickness, etc) and geometrical

characteristic (flatness, cylindricity, roundness, location, etc). While for surface mea-

surement, this deals with characterization of a parameter of the texture of a surface,

such as the roughness, waviness, bearing area, etc.

The measurement of micro-geometric features and surface textures, together with

their relation with the functionality of the part is becoming the focus by considering
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Figure 1.3: Type of micro-measurement.

its important role in micro manufacturing [Jiang and Whitehouse [2012]], [Whitehouse

[2011]]. For example, quality control of micro-geometric feature, such as MEMS for

lab-on-chip product, guarantees the assembly of this product. Other important roles

of micro-geometric feature are in biotechnology and medicine, micro drug delivery to

deliver the medicine directly to the target inside the body is very important to increase

the effectiveness of the curing processes, micro-biological sensors are needed for analysis

of biological process, replication technique at the micro-scale which is micro-injection

molding need micro-fluidics devices and dealing with micro-channel, micro-tool mea-

surement, micro-mold, etc. Also for surface texture measurement, it guarantees the

performance of a combustion engine because the surface texture of the cylinder block

has to be designed such that it contains a bearing area to reserve the oil as well as

a contact area to support the piston such that the engine operates as expected. An-

other examples are engineered surface texture to produce a hydrophobic glass for car

window such that a dirt can not attach to the window glass and surface-texture micro

dimple to increase bonding strength between two surfaces. In this thesis, we focus on

micro-geometric measurement.

Going to micro-geometric measurement, there are two main methods for such mea-

6



1.1. PERFORMANCE VERIFICATION AND UNCERTAINTY OF
MEASUREMENT IN COORDINATE METROLOGY

surement, which are contact and non-contact methods. The contact method is already

practiced since the beginning of measurement and then scaled down in the micro-

scale. In the contact method, the measurement process is already well understood

and a rigorous model of the measurement is available for meso-scale level. In fact,

contact instrument is also undergoing development for micro-scale geometric measure-

ment. Some commercial contact-based instrument for micro geometric measurement

are currently available such as ZEISS F25 and TrinNano CMM. In fact, the limita-

tion of these contact instrument is that the diameter of the stylus tip, e.g. smallest

diameter for F25 stylus tip is 100 µm. This situation limits the accessibility of a micro

feature. In addition for contact method, there are some parts that risk being damaged

as the parts size decreases and micro-feature accessibility issues. Moreover, measure-

ment speed is also becoming a major drawback of this method. On the other hand,

non-contact methods give more flexibility and higher speed for micro-scale measure-

ments which are important for in-line part inspection. For non-contact method, it is

divided into two sub-groups, which are optical and non-optical method. Example of

non-optical method are atomic force microscopy (AFM), ultrasound microscopy (UM),

and computed-tomography (CT-scan).

AFM measured a surface structure without physically touching the surface, instead

by sensing the force generated between the instrument’s tip and the atom of the surface.

The limitation of this instrument is that the tip diameter is around 30 µm. Due

to this reason, accessibility issues is still faced and and measurement speed is very

slow. Moreover, vertical range of the instrument is around 20 µm and 150 × 150µm

scanning area. This small measuring range significantly reduces instrument’s flexibility

to measure various size of micro-part.

UM uses an ultrasonic transducer to send ultrasonic wave to the sample and sub-

sequently, analyze the behavior of the wave whether they are transmitted, reflected or

deflected [Hellier and Shakinozsky [2012]]. Resolution of the scanning is proportional

to frequency of the wave. Non-contact UM, which is one of several type of UM, is more

promising since there is no direct contact between the surface and UM sensor. This

type is called Electromagnetic Acoustic Transducer Ultrasound Microscopy (EATUM)

and is shown in fig. 1.4. EATUM is very suitable UM method for micro-geometry

measurement. The main advantage of this instrument is it can measure internal part

of the sample which solves the accessibility problem that the lens-based instruments

7



CHAPTER 1. INTRODUCTION

Figure 1.4: Electromagnetic Acoustic Transducer Ultrasound Microscopy (EATUM) [Hel-

lier and Shakinozsky [2012]].

have. Attention should be considered that a complete knowledge of the behavior of ul-

trasonic wave in interacting with a material should be required; otherwise measurement

accuracy will significantly decrease.

CT-scan working principle starts from an X-ray source. This X-ray will propagate

through the work piece material. The electromagnetic energy of the X-ray is attenuated

due to material absorption and scattering. This attenuation depends on the length of

travel into the absorbing material, material composition and material density. The

attenuated X-ray, which pass through the material, is detected in the X-ray detector

panel. The detected X-ray will form a 2D gray image. Thanks to Radon transformation,

3D voxel model of the work piece can be reconstructed from the detected X-ray on the

panel detector [Kruth et al. [2011]]. There are two common types of CT-scan: Cone

beam and Fan beam (fig. 1.5). Main advantages of CT-scan, as ultrasound microscopy,

are ability to measure internal part as well as the surface of a sample and ability to

measure different types of material. A significant limitation currently occur in CT-scan

is poor metrological performance. Its resolution is much lower compared to most of

other non-contact method. In fact, the measurement result is affected by the thickness

homogeneity of the sample. Moreover, high data storage to process the data and

reconstruct the 3D voxel model is required.

In this thesis, non-contact optical instrument type is used. Unfortunately, for non-

contact (both optical and non-optical methods), the interaction between the measured

8
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Figure 1.5: CT-System (left) Cone beam CT and (right) Fan beam CT [Kruth et al.

[2011]].

artifact and the instrument is not very well understood compared to that of the contact

method [Schwenke et al. [2002]], [Hocken et al. [2005]], [Hansen et al. [2006]]. Hence,

the uncertainty of micro-scale measurement by optical measurement is still consid-

erably higher than the contact method [Tosello et al. [2009]], [Tosello et al. [2010]],

[Carmignato and Savio [2011]]. Fig. 1.6 illustrates the flow and complexity of non-

contact measurement for estimation of measurement uncertainty. In this figure, an

example of micro-geometric measurement by an optical instrument is shown. A manu-

factured micro feature is measured with a certain measurement plan (parameters and

procedure). Dimensional and geometrical data are derived such that tolerance verifica-

tion can be carried out. In this stage, the results have to be compared with the nominal

value. As being explained in ISO14253-1 that to decide a part conform or not conform

to the specification, uncertainty of the measurement results should be quantified. An

invalid decision can cause a subsequent problems. For example, if a defected part is ac-

cepted, in the next assembly process, the components can not be assembled altogether

which cause another source of cost, such as production delay, etc. Other condition is

that, if a good part is rejected, it has to be re-worked or scrapped. This will become a

significant lost if the part is a high cost one. To quantified the uncertainty, the main

requirement is that the error sources of the measurement coming from the instrument,

measurement plane, environment, and other factors have to be understood and also

9
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Figure 1.6: Optical micro measurement and the role of measurement uncertainty.

quantified.

1.2 Optical micro metrology

Originally, non-contact micro optical metrology comes from surface metrology instru-

ments. Indeed, the basic working principles of optical micro-metrology are described in

ISO25178-6 series. In addition, a relatively new application of X-ray tomography in 3D

measurement will be briefly described. Non-contact instruments provide advantages

over the contact one, such as flexibility and speed. The instruments are able to capture

part surface data without a risk to damage the surface. In relatively short time, many

points can be captured in one measurement cycle. Beside these advantages, the instru-

ments have some limitations especially those equipped with microscope objective lens

[Leach and Haitjema [2010]]. Firstly, largest slope of a surface which can be measured

depends on the numerical aperture (NA) of the lens. NA can be formulated as:

NA = n sinα (1.1)

where n is the refractive index of medium between the lens and the part surface and α

is acceptance angle of the aperture. Secondly, minimum resolution of the instrument
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is limited by the wavelength of light used. Resolution is defined as minimum distance

between two distinguishable lateral features. Resolution of a perfect optical system

following Rayleigh criterion is given by:

r = 0.61
λ

NA
(1.2)

where λ is the wavelength of the light. And finally, measurement result should be

interpreted carefully and it is more difficult compared to the contact one due to the

complex interaction between electromagnetic wave (light) and the part surface.

Basically, non-contact instruments are divided into two classes: instruments which

measure real part surface and those that measure only the statistical surface parameter

such as scatter light method (area-integrating method) [Leach and Haitjema [2010]].

The later class is not considered in this study. There are various method used by

non-contact instrument to measure the real part surface. These methods are listed in

[ISO25178-6 [2010]]. Moreover, most of the methods are explained in more detail in

[Leach [2011]].

1.2.1 Confocal Microscopy

In confocal microscope, a light source illuminates a pinhole object to the workpiece

through the objective lens to create a point illumination. The light is reflected back to

the objective lens and then deflected by a semi-transparent mirror to second pinhole,

placed in front of photo detector and acts as spatial filter. The instruments will scan

vertically within a certain given range. A point which is in focus position will have

higher intensity value on the detector. Hence, the height (Z)-position of the point is

determined by fitting the intensity data to get the position in which the intensity is

the highest. This type of instrument has vertical and lateral resolution in the range of

2-150 nm and 150-5000 nm, respectively.

1. Confocal Microscope

Construction of confocal microscope is depicted in fig. 1.7a. A monochromatic light

source, which is a laser source, is used in this configuration. The discrimination pinhole,

located in front of the detector, rejects the light which is out of focus (thicker than the

depth of focus of the objective lens). At each instance, only single point on the work-

piece is illuminated. As such, a beam scanning procedure of the light should be carried
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Figure 1.7: Schematic view of (a) Confocal microscope, (b) Chromatic Confocal Micro-

scope [ISO25178-602 [2010]].

out to illuminate all the field of view (FOV) of the surface (area scanning) [ISO25178-

602 [2010]]. There are three types of available beam scanning: Confocal Laser Scanning

method by using multiple mirrors to scan the beam, Spinning-disk (Nipkow Disk) by

using a series of moving pinhole on a disc, and Programmable Array Microscope (PAM)

by using electronically controlled spatial light modulator (SLM) which produces a set

of moving pinhole. The advantages of this method are possibility of using high NA

lens such that a high slope angle of surface can be measured (up to 700), very high

lateral resolution, and independent of the surface color. Meanwhile, the drawback of

this system are longer measuring time due to light beam scanning procedure and some

difficulties in illuminating part of the surface due to the need of coaxial illumination.

2. Chromatic Confocal Microscope

Advantages of non-monochromatic light to evaluate the z coordinate of a point are

utilized by chromatic confocal microscope [ISO25178-602 [2010]]. The only difference

with the confocal one is the use of chromatic objective lens. Different focus distance will

be obtained by different wavelengths and only the focus one will pass the discrimination

hole. In this instrument, the detector used is replaced by spectrograph, a device which

analyzes the chromatic property of the light and identifies the maximum intensity

wavelength (fig. 1.7b). The advantage is that there is no vertical scanning needed

to identify the z of a point. The z-range is limited by the difference between the

focal distance of the shortest optical wavelength and the longest one. This method
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is relatively faster than the classic confocal one since there is no vertical scanning.

In fact, its drawbacks are limited vertical range, lower lateral resolution, and surface

color influence. For the resolution, this instrument has around 0.01-10 nm for the

vertical resolution, which is the highest among other methods. Meanwhile, for lateral

resolution, the range is 400-600 nm.

1.2.2 Interferometry

Micro-geometric and surface topography measurement by interferometric technique in-

volve an analysis of interference fringe between incident light from the work piece

surface and reference light to the reference mirror. There are two common types of this

instrument: Phase-shifting Interferometry and Coherence Scanning Interferometry.

1. Phase-Shifting Interferometry (PSI)

In this instrument type [ISO25178-603 [2011]], beam splitter directs two beams, a beam

of light to the reference flat, and smooth, mirror and a beam to the part surface. These

two beams reflect back to the splitter and form a fringe in an image sensor. This

fringe is a superimposed signal from the two beams and has a series of dark and white

band. Hence, a difference of optical path is created and the shift (fringe) variations are

measured. A piezoelectric actuator is used to translate the reference mirror to create

the difference optical path. Schematic view of PSI is depicted in fig. 1.8. Calculation

of relative surface height Zij at point ij-th is formulated as:

Zij =
λφij
4π

(1.3)

where λ is the wavelength of the light and φij is the fringe variation at ij-th location.

Laser is commonly used for the illumination. PSI is able to have 1 nm repeatabil-

ity for height measurement [Leach [2011]]. Limited Z-range and small working distance

(distance between the lens and object to b observed) are some drawbacks of this system.

2. Coherence Scanning Interferometry (CSI)

CSI is also known as white-light interferometry, which uses white light as its illumina-

tion instead of monochromatic one, such as laser source (fig. 1.9). Relative Zij position

is obtained by using localization of interference fringe during the vertical scanning. As
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Figure 1.8: Phase-shifting Interferometry [ISO25178-603 [2011]].

Figure 1.9: Coherence Scanning Interferometry [ISO25178-604 [2011]].].

14



1.2. OPTICAL MICRO METROLOGY

such, the localization can be determined from the highest-contrast fringe at each pixel

within the field of view. This system is very similar to microscope with coaxial illumi-

nation with additional beam splitter to create the interference signal. Fringe intensity

on Michelson interferometry is demonstrated as:

|E|2 = 2E2
0

(
1 + cos

(
2π

λ
∆x

))
(1.4)

where E0 is the amplitude interference beam electric field, λ is the wavelength of

monochromatic light, and ∆x is the length difference between the incident and ref-

erence beams. Strong point of this system is its very high vertical resolution. In

addition, it can produce a complete 3D area surface data by a single vertical scan us-

ing a Charge-Coupled Device (CCD) image sensor. In contrary, its lens has small NA

which make it not able to measure high slope surface angle (maximum limit is around

150). Finally, problems will occur if the surface is too much diffused since the incident

light is not reflected back.

1.2.3 Point Auto-Focus Instrument (PAF)

Working principle of PAF is automatically focusing a point of laser beam with a very

small diameter (commonly 1 µm) to part surface [ISO25178-605 [2011]]. Area measure-

ment is obtained by moving the XY-stage through the FOV area since it is working

for a point measurement for each scanning cycle. Fig. 1.10 illustrates the instrument

part and working principle. The position of the reflected laser beam from the part

surface in the image sensor changes when the lens directs the beam on the surface in

different vertical location. The lens displacement to get the laser on focus position at

each surface is equal to the surface height. The advantages of PAF are independent of

surface color and transparency such that it is very useful in lens geometry and surface

measurement and high measurement accuracy [Leach [2011]]. Besides, the limitation

which can be observed in this instrument are small vertical range, limited lateral res-

olution constrained by the objective optical resolution, and limited vertical resolution

due to auto-focus repeatability and vertical linear axis resolution.

1.2.4 Digital Holography Microscopy (DHM)

DHM is an area measuring method from a single image taken in few microsecond,

resulting around 20 frame per second (FPS) in live mode [Leach [2011]]. Basic working

15



CHAPTER 1. INTRODUCTION

Figure 1.10: Point autofocus probe [ISO25178-605 [2011]].

principle of DHM is by analyzing the hologram on the image sensor (1.11). This

hologram is resulted from interference of two waves. The first wave is the one reflected

back from the part surface (O) and the reference one (R). The obtained hologram can

be expressed as:

IH = R2 +O2 +R ∗O +RO∗ (1.5)

where * is denoting the complex conjugate, R is reference wave and O is objective wave.

Subsequent filtering and reconstruction process from the obtained hologram have to be

carried out to get the final surface data [Leach [2011]]. Vertical resolution of this in-

strument solely depends on the wavelength of the light, which can be easily certified

and stabilized compared to mechanical displacement. A very high vertical resolution

of 0.1 nm can be obtained by DHM since there is no mechanical scan and insensitive

to vibration with 0.001 nm of repeatability. Since, DHM working from an image acqui-

sition, it can provide high speed measurement. In addition, transparent sample can be

measured with DHM. On the other hand, limitations of DHM are parasitic interference
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Figure 1.11: Digital Holography Microscope [Leach [2011]].

and statistical noise resulted by its off-axis geometry, limitation of vertical range which

is limited by the wavelength of the light, sample limitation for light scattering and very

thin surface.

1.3 Focus-Variation Microscopy (FVM)

In this study, FVM instrument is used. The main reason is this instrument has con-

siderably large working volume of 100x100x100 mm. In addition, with 5X lens, a large

working distance of the objective lens and the work piece surface can be obtained. This

specification give the instrument capability to be used as micro CMM for micro 3D

geometric measurement. Moreover, with the 4-axis rotation unit, the instrument can

solve many undercut problems of the workpiece surface, which is a great advantage for

geometrical measurement. This instrument is currently being drafted in ISO standard

[ISO/DIS25178-606 [2013]]. FVM scans vertically a surface to locate the z-position in

which the highest focus variation value is obtained within a FOV area [Leach [2011]].

Each scan process captures the image of the workpiece surface by sensing the incom-

ing radiance of the surface to the charge-couple device (CCD) image sensor. It was
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Figure 1.12: Focus Variation Instrument [Leach [2011]].

originally proposed by Nayar and Nakagawa [Nayar and Nakagawa [2011]] and further

developed into a commercial high resolution optical 3D micro metrology [Danzl et al.

[2010]]. Fig. 1.12 depicts the working principle of FVM. When the surface (on each

point position within the FOV area) is in focus, the point image will be sharp and its

difference compared to its neighborhood will be high, as such the variation of the focus

will be higher compared to the value which is not in focus position (de-focus). This

situation is illustrated in fig. 1.13a. The FOV area size depends on the objective lens

used. It is inversely proportional to the magnification level of the lens. The higher

the magnification lens used, the lower the FOV area will be. There are three types

of illumination which can be used to capture the surface: standard coaxial light, ring

light, and polarized light for highly reflective surface. Technical specification of this

instrument related to its objective lens is shown in table 1.1. The FVM instruments

provides three types of illumination: axial-light, ring-light, and polarized light. Polar-

ized light is used to measure very high reflective surfaces. Furthermore, there are four

types of basic user defined parameters: exposure time (brightness), contrast, vertical

resolution, and lateral resolution. These parameters are the primary parameters which

have to be defined by the user. The focus measure (FM) on each z-position Fz(x, y) is

formulated as:

FZ(x, y) = FM(regw(IZ(x, y))) (1.6)
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Figure 1.13: Determination of focus variation value and its Z-location [Leach [2011]].

Specification 5X 10X 20X 50X 100X

Minimum lateral sam-

pling distance [µm]

1.76 0.88 0.44 0.18 0.09

Maximum vertical reso-

lution [nm]

410 100 50 20 10

Working distance (WD)

[mm]

23.5 17.5 13 10.1 3.5

Filed of View (FOV) X

x Y [mm x mm]

2.858 ×
2.175

1.429

×1.088

0.715 ×
0.544

0.286 ×
0.218

0.109 ×
0.15

Table 1.1: Details specifications related to the objective lens. Working distance is defined

as Distance between workpiece surface and objective lens
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where regw(IZ(x, y)) is the local region of the image IZ(x, y) at position Z and centered

at (x, y) coordinate. The most common calculation for FM is:

FM =
1

n2

∑
regW (Iz,x,y)

(
GVi − ḠV

)2
(1.7)

where GVi is the grey value of the i − th pixel and ḠV is the average grey value of

regw(IZ(x, y)) . After FZ(x, y) is obtained for each (x, y) and z-level of the vertical

scanning, a function will be fitted to determine the z-location where the focus variation

value (FM) is the highest (fig. 1.13b). There are several methods of fitting this function:

maximum value method, polynomial fitting, and point spread function (PSF) curve

fitting [Leach [2011]].

The maximum value method is the easiest method and the fastest one. Instead,

this method has tge least accurate fitting result. this method is formulated as:

depth Z = arg(max FZ), for z1 ≤ z ≤ zn (1.8)

The second alternative method for the fitting task is by using polynomial fitting. The

method uses least square technique. The fitting result will be more accurate will some

trade of in the computation speed. the polynomial function to be fitted and the fitting

criterion are:

p(z) = az2 + bz + c (1.9)

arg min
a,b,c

∑
z1≤z≤zn

(Fz − [az2 + bz + c])2

The solution of eq. 1.9 can be nominally solved by deriving function p(z) as p′(z) =

2az + b = 0. Hence, the maximum z can be calculated as:

zmaximum = − b

2a
(1.10)

The third alternative is fitting by PSF of the optical system. This method gives the

highest accurate fitting result to obtained zmaximum, but the computation speed will

be the slowest since the fitting procedure is computationally extensive.

In general, optical instrument is prone to outliers, which are points numerically very

far (significantly larger) compared to the other points. Due to this reason, the a post

processing has to be carried to remove the outliers in order to get a good measurement

result. Example of outliers removal is depicted in fig. 1.14.

20



1.4. RESEARCH QUESTIONS

Figure 1.14: Outlier removal after points acquisition [Leach [2011]].

Advantages of FVM method are its capability in measuring the highest slope angle

of a surface compared to other techniques, relatively higher speed measurement, abil-

ity to capture the surface true texture and color, possibility to utilize many types of

illumination systems (including combination of them) to be able to measure various

type of surfaces. For the limitation, this instrument needs minimum surface roughness,

required for focus variation calculation, of 10 nm to guarantee that the variation of a

point compared to its surrounding can be calculated. In addition to a very smooth

surface, this instrument can not measure transparent sample such as optical lens.

1.4 Research questions

This research focuses on micro-geometric measurement focus variation microscopy (FVM)

instrument. There are three researches questions that arise from this field, which are:

1. What is performance verification in FVM instrument?

2. What are the error sources which influence measurement uncertainty in FVM

instrument?

3. How is it possible to estimate ”task-specific” uncertainty in FVM instrument?

1.5 Thesis aims and structure

This thesis will address the three research questions mentioned above. Firstly, prob-

lems in performance verification of optical instrument are described. The ISO 10360

standards series exist as a guidance for performance verification of non-contact (or com-

bination of contact and non-contact) measurements [ISO10360-7 [2011]], [ISO10360-8

[2013]], [ISO10360-9 [2011]], [ISO10360-11 [2011]]. Indeed, there are no detailed pro-

cedures and artifacts for this verification. In this thesis, a procedure and its artifact
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for performance verification of optical instrument are proposed for FVM instrument.

Secondly, error sources which contributes to measurement uncertainty are studied. Fi-

nally, A proposal for the estimation of ”task-specific” by simulation method will be

presented. To validate the proposed uncertainty estimation method, real case studies

are presented for both dimensional (size) and geometrical (form) measurements.

Therefore, the thesis is structured as follows:

1. Chapter 2: Performance verification for optical metrology in general and specif-

ically for FVM are introduced. State of the art study related to this aspect has

been carried out. Proposal for artifact and procedure for performance verification

for both 3-axis and 4-axis configuration are presented and discussed.

2. Chapter 3: A simulation-based approach is proposed to estimate task-specific un-

certainty considering significant error sources involved in measurement by means

of FVM. These error sources related to the instrument are proposed and studied

based on the theory of image formation. From this study, FVM (optical) instru-

ment has a lot more error sources which influence the measurement result and

its uncertainty. Filtering procedures are discussed to handle the outliers found in

the obtained points from FVM measurement. Finally, validation of the proposed

simulation approach is presented.

3. Chapter 4: Related to uncertainty evaluation, case studies are proposed and

presented. The case studies consist of size (dimensional) and form measurement.

A comparison among results from several filtering procedure are also discussed.

4. Chapter 5: A general conclusion which summarizes all stated problems and the

proposed solution is presented. After the general conclusion, a future outlook

from the current results is given.

5. Appendix A: Related to this study, fitting and automatic measuring algorithm

are very important. The state of the art of these algorithms are presented. An

improvement for the least-square fitting of non-linear geometry is proposed and

discussed. Moreover, this fitting is used for the least-square fitting in the whole

thesis.
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Performance verification of

focus-variation measuring system

2.1 State of the art

Performance verification of coordinate metrology instruments (both contact and non-

contact) is an important activity to assure the traceability of the instrument to the

international standard of length [BIPM et al. [2008]]. Both manufacturers and users of

the instrument need the performance verification for their instrument acceptance and

re-verification. Detail procedure and reference (calibrated) artifact are needed. ISO

10360-series provides the general principle and error parameters to be quantified and

verified.

Performance verification for conventional contact instrument such as coordinate

measuring machine (CMM) is already well-known and well-diffused into both instru-

ment manufacturer and user and is standardized in ISO10360 part 1-5. In addition,

common reference artifacts for the procedure are available, such as gage block and

ball-bar. On the other hand, despite the various and emerging method for non-contact

instruments, detail procedure as well as the reference artifact to support the procedure

and create the traceability path is still lacking. For micro-geometric and surface tex-

ture measurement, most of the methods are based on optical distance sensing as can be

found in [ISO25178-6 [2010]]. In [ISO10360-8 [2013]], the standard deals with this type

of instrument. ISO10360 series standard also provide guidance for performance verifi-

cation of other non-contact instrument. For measurement method by image probing,
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Figure 2.1: Measurement direction for volumetric length measurement error [ISO10360-8

[2013]].

based on 2D image measurement, it is standardized in [ISO10360-7 [2011]]. The main

drawback of this instrument is that it can not produce 3D surface data; hence many

measurements can not be carried out by this instrument, such as for profile/surface

texture and depth of a feature measurement and of course 3D geometric measure-

ment. Finally, for micro measurement by CT-scan, and may also includes ultrasonic

microscopy since they share similar capability which is measuring internal part, the

performance verification guide can be found in [ISO10360-11 [2011]].

FVM instrument is grouped as optical distance probing in which a 3D point cloud is

obtained and the measurement procedure is carried out from the obtained point cloud.

As such, ISO10360-8 is followed. In ISO10360-8, maximum permissible errors have to

be verified. These errors include length measurement error as the main performance

characteristic, probing form error, probing size error (for unilateral probing, such as

in non-contact method) and flatness error (only for non-contact instrument). This

standard do not include rotation axis error, as such for rotation axis performance

verification, only ISO10360-3 is available as a guide.

Length measurement error describes the maximum error which can be obtained

inside the whole measuring volume. As such, the procedure always required measure-

ments along four diagonal of the measurement volume and along the three x-, y-, and

z- axis (fig. 2.1). The four diagonals directions are compulsory. For each of these direc-

tions, there should be five different length measurements. At least 66% of the measuring

length in the specified direction should be covered for the length error measurement
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Figure 2.2: probing error definition and flatness error evaluation [ISO10360-8 [2013]]

verification. In addition, since most of non-contact instruments captured a sphere in

unilateral direction, additional probing size error is introduced. Length measurement

error describes global error of the measuring system. The length measurement error is

defined as:

EUni:X:ODS = LUni.meas − LUni.cal for unidirectional measurement (2.1)

EBi:X:ODS = LBi.meas − LBi.cal for bidirectional measurement

where LUni.meas and LBi.meas are the measured distance/length by means of unidirec-

tional and bidirectional measurement, respectively. Bidirectional measurement means

that the measurement are taken from two different direction, for example measurement

a sphere by means of tactile instrument in which the tactile approaching the sphere

from two different directions for two diametrically opposite points. Meanwhile, uni-

directional means that the measurement is taken from one direction only as can be

found in optical instruments. LUni.cal and LBi.cal are the calibrated value of the dis-

tance/length for both unidirectional and bidirectional. symbol X is to define the type

of instrument (in this case ”Tr”) and from which the distance measurement is derived,

for example from the measurement of a sphere. ODS indicates that the measurement

is associated with least-squared fitting.

The two other errors which have to be evaluated are probing error and flatness

measurement error. These two other requirement is shown in fig. 2.2. For the probing
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error, it is divided into two groups by which it is derived. They are probing error

by representative points and probing error by point cloud. Specially for probing error

by point cloud, it is not obligatory to be performed if a CMM is equipped with sensor

measuring individual discrete points. Main difference of the two types of probing errors

are for the one derived by representative points, the fitting procedure is applied to

selected 25 points taken from the obtained point clouds uniformly and equally spaced.

Meanwhile for the one by point cloud, the fitting procedure is applied to the whole

obtained point cloud and commonly the value will be larger than the other type of

probing error. The detail of the probing error parameters are explained as follow.

The probing error by representative points consist of two type of error, which are

probing size error (PSize:X:ODS) and probing form error (PForm:X:ODS). Probing errors

(form and size) represent an error of sensing a single point of the part surface and

also, it represents a local error. Probing form error is obtained by calculating the form

error of a sphere fitted by Gaussian fitting procedure meanwhile probing size error is

obtained from radius deviation of the fitted sphere. Subsequently, with reference to fig.

2.2left, PSize:X:ODS is defined as:

PSize:X:ODS = Dmeas −Dcal (2.2)

where S refers to size, X is type of sensor behavior which is Tr in this case. Tr means that

the sensor is moved by CMS. According to ISO10360-8, optical instrument has three

types of sensor configuration, which are translatory, articulating and stationary (fig.

2.3). Dmeas and Dcal are measured and calibrated diameter, respectively. PSize:X:Opt

is obtained by fitting a sphere with least-square fitting method from selected 25 points.

Mean while, PForm:X:Opt is defined as:

PForm:X:ODS = max|douter − dinner| (2.3)

where douter and dinner are the distance of the farthest points in which all of other

points lie in between.

The second type of probing error is the error calculated from obtained point cloud.

There are two types of probing error go this type, which are probing dispersion value

PForm.Sph.D95%:X:ODS and probing size error all PForm.Sph.All:X:ODS . The probing dis-

persion value is determined by a spherical shell which contained 95% of the points. It
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Figure 2.3: Type of sensor type [ISO10360-8 [2013]]

is calculated as:

PForm.Sph.D95%:X:ODS = max|douter − dinner|95% points (2.4)

Meanwhile, the probing error size all is calculated as:

PForm.Sph.All:X:ODS = Dmeas −Dcal from all points (2.5)

The other requirement of this standard is flat measurement error. This evaluation

is important with relation to surface texture measurement and is related to noise of the

vertical axis. The standard required a calibrated flat standard artifact to be measured

in two positions (fig. 2.2right). The flatness error measurement is defined as:

EForm:X:ODS = max|douter − dinner| (2.6)

where X refers to identical meaning as previously stated for length measurement and

probing error In conclusion, ISO10360-8 required three type of performance verifica-

tion, which are: length measurement error, probing (size and form) error and flat

measurement error.

2.1.1 Procedure and artifact: Existing implementation

Performance verification of a 3D geometric measuring system requires both procedure

and calibrated artifact. Reference or calibrated artifacts are very important for the

traceability chain of the instrument to the international standard of length (defini-

tion of meter). A calibrated artifact should be a simple one to ease manufacturing
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Figure 2.4: (a) Artifacts used in comparison study (b) Results of the performance com-

parison conducted by Carmignato et el. [Carmignato et al. [2010]].

and calibration process, thus reducing the artifact cost. Beside, simple design will

ease the verification procedure [Marinello et al. [2008]]. Also for procedure, it should

be practical such that can be implemented in reasonable time. Many studies have

been conducted regarding the procedure and artifact for performance evaluation of

non-contact metrology instruments in macro-scale metrology. The studies consist of

straight forward accuracy comparison by inter-laboratory or round robin test as well

as procedure development. In [Carmignato et al. [2010]], they conducted comparison

study of the performance of optical metrology instrument by sequence of industrial

tests. The results show that difference accuracy performance of the measurement re-

sults was obtained which is defined as deviation from the reference value (fig. 2.4b).

The comparison used three types of artifacts (fig. 2.4a).

Also for macro optical metrology, [Gestel et al. [2009]] proposed a calibrated flat

measurement (fig. 2.5) for performance evaluation of laser scanner. This flat form

is selected since the plane geometry to be fitted is a linear optimization problem and

robust fitting procedure is already available. Their proposed procedure is to evaluate

the deviation of flatness value from the reference value by varying the depth of scanning

and scanning in and out of plane orientation. They found that, the accuracy is best

when the scanning depth is near the object and systematic error of the deviation can

be reduced by warming up the instrument.
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Figure 2.5: (a) options of artifacts, (b) selected flat surface artifact Gestel et al. [2009]].

A famous gage repeatability and reproducibility (GR&R) test can be used for fast

analysis of the performance of instruments [Burdick et al. [2005]]. This technique uses

Analysis of Variance (ANOVA) model considering random effect to assess a measur-

ing instrument. The test basically measured and compared variance contributed by

the instrument with respect to the total variability of the measurement contributed

by other factor other than the instrument, such as operator, measurement day, etc.

There are two important parts four GR&R study, they are repeatability and repro-

ducibility. Here, repeatability is defined as variation calculated from the results of

identical part measurements under identical condition (identical instrument, operator,

etc). Meanwhile, reproducibility is defined as variation calculated from measurement

results obtained from different conditions, such as: different operator, different mea-

surement day, different parameter, etc on the same part. From the comparison of these

repeatability and reproducibility, one can consider whether an instrument is suitable

to do the measurement or otherwise. This test has been well-established for metrology

instrument analysis.

A proposal from Neuschaefer-Rube et al. [2013] suggested a hemisphere artifact.

The artifact was made on a zerodour plate with size of 90 x 90 mm. Total of nine

spheres were put on the plate with certain configuration. Radius of the spheres are 2.5

mm. Distance among center of the spheres are the material measure of the proposed

artifact. The artifact was calibrated with tactile CMM with calibration uncertainty of

0.2 µm. The artifact can be used for optical transmission illumination instrument with
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Figure 2.6: Existing artifact related to micro optical metrology.

subsequent image processing to be able to capture the sphere surface for distance mea-

surement. This hemisphere artifact is illustrated in fig. 2.6a. Physikalisch-Technische

Bundesanstalt (PTB) proposed a spherical calottes artifact for micro optical metrology

performance evaluation [Neuschaefer-Rube et al. [2008]]. The artifact is shown in fig.

2.6b. Form of the artifact is a cube with 3x5x5 spherical calottes with radius of each

sphere is 400 µm. The material of the artifact is titanium and was manufactured by

means of sink and wire electrical discharge machining (EDM). The distance between

sphere center is the material measure. Conventional CMM was used to calibrate the

artifact with expanded calibration uncertainty of 1 µm. The idea of this artifact is

there a single mismatch position of the calottes, allowing five different parallel length

measurement distance as required by ISO10360-8. Similar to sphere cube calottes,

PTB [Neuschaefer-Rube et al. [2008]] also developed a sphere plate calottes (fig. 2.6c).
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The artifact is made of zerodour glass-ceramic manufactured by polishing and grinding

processes. There are 4x4 array of 3 mm spherical calottes. CMM was used for the

calibration with expanded calibration uncertainty of 1.5 µm.

A proposal for reference artifact (fig. 2.6d) to evaluate the performance of focus-

variation based measuring machine has been proposed by [Hiersemenzel et al. [2013]].

The shape of the artifact is a multi-diameter cylinder having stainless steel made spheres

on each face of the cylinder. The spheres are arranged such that they are aligned on

face and body diagonals. The spheres have 1 mm of diameter. The measurements

of the sphere center, in order to calculate spheres distances, were carried out with

50X lens. Ring light and polarizer were used for illumination. Resolutions set for the

measurement are 2.93 µm and 0.68 µm, for lateral and vertical resolution, respectively.

Distance among center of the spheres and sphere diameter are used to asses its length

measurement error. One of measurement result with this artifact is a distance between

sphere of 7.122 mm (σ = 1µm). For comparison, the result from CMM measurement is

7.112 mm (σ = 0.06µm). Their main goal is to fully implement ISO10360-8 for FVM

instrument as well as to provide a way for fast interim check.

Two micro ball plates artifact were proposed by PTB [Neuschaefer-Rube et al.

[2008]]. First is a micro ball plates with 6x6 array stainless steel spheres were proposed.

The spheres have radius of 1 mm (fig. 2.6e). The nominal distance of the spheres is 4

mm. The second type is similar artifact with smaller stainless steel spheres with radius

of 0.25 mm (fig. 2.6f). The nominal distance between spheres is 1.3 mm. Both the

artifacts, the sphere has around Rz of 500 µm and were glued on canonical cavities on

the plate. Special for the second artifact which has smaller spheres, a surface roughen

process was applied with ultrasonic bath utilizing polishing agent.

Furthermore, a proposal of a metalized liquid crystal polymer (LCP) by electroless

nickel as reference artifact of injection molded micro part measurement was reported

by [Tosello et al. [2009]]. The artifacts are used for accuracy assessment optical non-

contact instrument. In addition, they are also used for calculating the task-specific

measurement uncertainty of injection-molded hearing aid component (fig. 2.6g). Efforts

to asses the errors in measuring free-form have also been proposed. First effort is

proposed by Savio for tactile CMM measurement [Savio and De Chiffre [2002]],[Savio

et al. [2002]]. In their proposal, calibrated artifact for free-form measurement can be

resembled from combinations of several simple artifacts and their location. The types
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of artifacts and their location configurations can be chosen to resemble the free-form

part as close as possible. In [Neuschaefer-Rube et al. [2013]] and [Neuschaefer-Rube

et al. [2008]], an artifact with various type of form (micro contour reference standard)

was developed in PTB (fig. 2.6h). The contour consist of cylinder segment, slope

areas and steps with different size and dimension. The main goal is to proposed a

traceable artifact for specific form measurement task with optical instrument. The

idea is derived from artifact for tactile stylus instrument acceptance and re-verification

testing. EDM was used to manufactured the artifact with generated surface roughness

Rz=1.4 µm. This level of roughness is suited for optical instrument. National Physical

Laboratory (NPL) proposed a calibrated artifact for free-form surface measurement

performance verification (2.6i). This artifact is constituted by combination among

basic features having both concave and convex spherical shapes. Moreover, as can be

found in [Neuschaefer-Rube et al. [2008]], a micro hole standard artifact made by PTB

was proposed for verification of tactile-optical instrument (fibre-gauge). It is shown in

fig. 2.6j. The artifact embodied a calibrated micro-hole of (nominally) 0.125 mm of

diameter and 2 mm in depth. Also for tactile-optical instrument, a micro-gear standard

was proposed by PTB. It is consisted of micro-planetary gear with outer diameter of

6 mm 2.6j. A rough ball is also combined in side the artifact. This ball has 2 mm

diameter which is used to define the coordinate. By this artifact, measurement results

with different orientation can be obtained. Back-light illumination can be used to

measure the artifact due to its cutouts design.

2.1.2 What is lacking?

Optical metrology instruments have recently obtained a wide diffusion in the market

and application. Instead, a unified calibration procedure, and especially a unified cal-

ibration artifact for micro-geometric measurement, is still lacking [Acko et al. [2012]].

This lacking is illustrated in 2.7. ISO10360-8 defines instrument traceability by per-

forming verification test. It only defines the general requirement and the parameter

that have to be derived in the verification process, e.g. direction in performing the test

(4-diagonals and 3-linear axis). Instead, detail procedure and artifact are not defined.

There are already studies to propose a method or procedure to asses the accuracy of

non-contact micro-measurement instrument. There are proposals for procedure and

artifact for performance verification of instruments based on optical distance sensor.
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Figure 2.7: Traceability gap for optical instrument.

Unfortunately, the proposed studies (the artifact and procedure) for verification proce-

dure are not completely following the standard guide ISO10360-8. For example, there

is not yet available a verification procedure implements performance verification along

diagonals and linear axis covering at least 66% length of measuring directions. Subse-

quently, from various types of the proposed artifacts, none of them fully comply with

the ISO10360-8 standard. In addition, in order to increase the instrument capability to

access the part surface, such as undercut surface, an additional rotational axis (4th-axis)

is added by the manufacturer. The verification of this rotational axis is not currently

addressed in ISO10360-8. By this, ISO10360-3 also has to be considered for the per-

formance verification of the instrument. Hence, effort should be done to elaborate and

develop proposal so that the ISO10360-8 standard as well as ISO10360-3 standard can

be applied and used both by the manufacturer and user of the instruments.

2.2 Focus-Variation microscopy configurations

The focus-variation based optical instrument used has a maximum working volume

of 100 x 100 x 100 mm with maximum working distance (with 5X lens) of 23.5 mm.

In addition, with the 5X lens, the resulted FOV is about 2.8 x 2.1 mm. With this
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technical specification, the instrument can be used as a CMM machine, thus, a micro

optical CMM for geometry measurement. Micro optical CMM has advantages over

micro tactile CMM, such as accessibility to part surface (without the risk to damage

it) and ability to acquire many points within short time as well as more comprehen-

sively covering of a surface measurement (related to geometrical tolerancing). Besides,

in general, optical CMM is easier to use compared to the tactile one in term of mea-

surement planning. In spite of the advantages, traceability is the main issue for optical

CMM. In this section, new artifact and new procedure for performance verification

of optical CMM are presented. The performance verification complies with IS10360-8

and ISO10360-3. They are divided into two types of instrument configurations: 3-axis

configuration and 4 (3+1)-axis configuration. In different configuration, the artifact as

well as the verification procedure will be different. In addition, total measuring volume

will be reduced when 4-axis configuration is set. As such, performance verification

should be separately addresses for both types of configuration. In this performance

verification, objective nose piece of 5X magnification lens was used since it has the

maximum working distance. As consequence, it will reduce the risk of collision be-

tween the objective nose piece and the part. In addition, it gives also maximum FOV

so as to cover more measurement area with single image FOV measurement. In each

type of performance verification, a reference calibrated artifact will be proposed since

this artifact is a fundamental element to achieve instrument traceability. The role of

the proposed artifacts in the traceability chain is presented in fig. 2.8. As can be seen

in this figure, the proposed artifacts (along with the procedure) link the traceability of

optical CMM to tactile CMM, which is traced to the definition of meter trough laser

interferometry.

2.3 Measurement with 3-axis configuration

In this configuration, a maximum measuring volume capability of 100x100x100 mm can

be obtained (fig. 2.9). The stage gives X-Y axis movement, and Z-axis movement is

from the optical head. Maximum Permissible Error (MPE) of length measurement will

be verified based on ISO10360-8 requirements [ISO10360-8 [2013]].
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Figure 2.8: The role of the proposed artifacts in the traceability chain.

Figure 2.9: Focus-variation based instrument in 3-axis configuration.
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Figure 2.10: 2D Technical drawing of the proposed artifact for 3-axis configuration per-

formance verification.

2.3.1 Proposed Artifact

In our proposed artifact, the whole volumetric error assessment is considered. The

artifact consists of precision spheres made of steel. They are supported by rods of

different length to set the height of the sphere inside the measuring volume. A square

steel plate is used as base. Metal glue was used to paste the spheres on the rods. Glue

was chosen to avoid mechanical deformation of the spheres by e.g. welding or screwing.

Technical drawing of the proposed artifact for this type of performance verification

is shown in fig. 2.10. Fig. 2.11 shows the side and top view of the artifact. The

selected balls are grade G10 steel balls [ISO3290-1 [2008]], characterized by a roughness

tolerance on Ra of 20 nm and form and diameter tolerance both equal to 250 nm. The

highest G3 grade balls based on [ISO3290-1 [2008]] can not be used since it cannot be

measured by a focus variation instrument. As explained in Leach [Leach [2011]], focus
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Figure 2.11: The proposed artifact for 3-axis configuration performance verification.

variation needs certain level of roughness such that the focus of a point relative to its

neighbors can be differentiated (there is a contrast with respect to the neighborhood

pixel). Otherwise, no point can be captured on the surface of the part. The minimum

roughness required for point sampling is 10 nm.

The key idea of the artifact design is the selection of sphere diameter and location.

Spheres were selected by two differing diameters: 2 mm and 5 mm shown in green

and red respectively in 2.11. Spheres of 2 mm diameter have been selected such that

they can be measured with only single image field by using a 5x magnification lens.

5 mm diameter balls are used so that image stitching will be needed to capture the

surface of the sphere. Therefore, the performance verification considers the stitching

procedure of the obtained surface to have a comprehensive evaluation by taking into

account stitching error.

Finally, the balls reciprocal locations were designed in order to comply with the ISO

10360-8 standards series [ISO10360-8 [2013]] for performance verification. Four series of

balls are present in the artifact, each one characterized by differing configuration: two

in-line configurations at constant height (0 mm and 50 mm) and one diagonal configu-

ration (2.11). By 900 rotating the artifact, all positions configuration for performance

verification stated in ISO 10360-8 can be achieved. Based on this, the volumetric mea-

surement error can be assessed. In each configuration, for both in-line and diagonal,

there are four spheres which have different reciprocal distances. The distances among
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the spheres in each configuration are different. By this five different length measure-

ments can be carried out by defining a series of spheres couples with minimum number

of spheres used. As consequence, the artifact is easier to manufacture and calibrate. In

this study, only two configurations were used: in-line configuration with height of 50

mm and diagonal configuration (the horizontal configuration is additional) since with

these two configurations, the main requirement of ISO10360-8 can be satisfied. This

in-line configuration was rotated to evaluate the x- and y-axis distance measurement.

Lengths among spheres in each configuration are then calibrated by mean of certified

tactile CMM.

2.3.2 Calibration of artifact

The calibration was carried out to determine the reciprocal location of the spheres.

The artifact calibration was carried out according to a multiple strategies measure-

ment. This procedure does not require a reference artifact which can reduce the cost

of calibration process. Instead, calibration uncertainty is determined by varying the

orientation of the artifact while performing the calibration. The idea of this procedure

is to carry multiple different strategies to measure the artifact such that volumetric

error of the CMM can also be taken into account in the calibration uncertainty (more

precise estimation). This is an alternative way for the calibration of unique artifacts.

A tactile CMM with E0,MPE = 2 + L
300µm (where L is the measured length in mm)

was used. The notation E0,MPE is defined in ISO standard [ISO10360-2 [2009]].

Four different orientations were selected. On each orientation, five measurement

repetitions were carried out to be able to evaluate the repeatability contribution to the

total calibration uncertainty. After the locations of the spheres are calibrated, the dis-

tance between two spheres can be calculated. The relative distances are derived from

the measurement of the coordinates of the center of the spheres obtained by fitting the

points measured on the spheres themselves. With this procedure, the obtained calibra-

tion uncertainties can be smaller than the instrument’s E0,MPE . The reasons are the

random error in determining the sphere center is reduced by least-square (Gaussian)

fitting of several hundreds of points. Second, the scale error is compensated by com-

paring the measured length with the measured reference gage block. Third, averaging

effect from total 20 measurements is also reducing the random error. Table 2.1 shows
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Orientation

(J=1)

Orientation

(J=2)

Orientation

(J=3)

Orientation

(J=4)

Cycle (i=1) y11 y12 y13 y14

Cycle (i=2) y21 y22 y23 y24

Cycle (i=3) y31 y32 y33 y34

Cycle (i=4) y41 y42 y43 y44

Cycle (i=5) y51 y52 y53 y54

Average

(Yj)

Y1 Y2 Y3 Y4

Standard

Deviation

(Sj)

S1 S2 S3 S4

Table 2.1: Data sheet for the calibration procedure.

table for measurement data in the calibration process. The table consists of four differ-

ent orientations. In each orientation, replications are carried out five times. Average

and standard deviation are calculated for each orientation.

There are two values calculated from the calibration process: calibrated length and

calibration uncertainty. The calibrated length ycorr is defined as:

ycorr = y − EL (2.7)

where y is the average of all measurements carried out to the measured object and EL

is average distance measurement error. EL is calculated by:

EL = L ELprop (2.8)

where L is the measured length and ELprop is error proportional to the measured length

L. To determine ELprop , measurement of reference length standard (in this case gage

block) was carried out. The selected length of reference standard (gage block) is the

one closest to the measured distance L. Hence, ELprop is calculated by:

ELprop =
1

n

n∑
i=1

Limeasstd − Lcalstd
Lcalstd

(2.9)

where Lcalstd is calibrated length of the selected gage block. Limeasstd is the i-th length

measurement of the selected gage block and n is number of gage block measurement in

different orientation of the CMM working volume.
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After determining the calibrated length (distance), the calibration uncertainty is

determined as follow:

U = k

√
u2
rep

n1
+
u2
geo

n2
+ u2

corr (2.10)

where k is uncertainty expanded factor with 95

Uncertainty related to repeatability of CMM measurement urep is calculated as:

urep =

√√√√ 1

n2

n2∑
j=1

S2
j (2.11)

where Sj is standard deviation of measurement in j-th each orientation and n2 is

number of orientation which is equal to 4. Sj is calculated as:

Sj =

√√√√ 1

n1 − 1 i

n1∑
i=1

(yij − yj)2 (2.12)

where yij is the i-th measurement in j-th orientation,yj is the average of measurement

in j-th orientation. Number of replications in each orientation is denoted as n1 = 5. yj

is defined as:

yj =
1

n1

n1∑
i=1

yij (2.13)

Subsequently, uncertainty contributor due to CMM and part geometric error ugeo is

determined as:

ugeo =
1
√
n2

√√√√ 1

n2 − 1

n2∑
j=1

(yj − y)2 (2.14)

where the average of the total measurement is calculated as:

y =
1

n1n2

n2∑
j=1

n1∑
i=1

yij (2.15)

Finally, length correction uncertainty is calculated as:

ucorr =
L

Lcalstd

√(
Ucalstd

2

)2

+
u2
measstd

n3
(2.16)
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Figure 2.12: Artifact calibration: four different position orientations and the process.

where L is the nominal distance of the selected gage block. Ucalstd is the expanded

uncertainty of the calibrated length of the selected gage block from the calibration

certificate. umeasstd is the standard deviation of the selected gage block measurements

and calculated as:

umeasstd =

√√√√ 1

n3 − 1

n3∑
i=1

(Limeasstd + Lmeasstd)2 (2.17)

while Lmeasstd is the average of selected gage block measurement Limeasstd, and deter-

mined by (n3 = 3):

Lmeasstd =
1

n3

n3∑
i=1

Limeasstd (2.18)

Note that since it is only a single part, then the uncertainty originating from man-

ufacturing process and uncertainty due to temperature difference in measuring other

similar parts are not taken into account.

The artifact calibration process is shown in 2.12. The selection of the four different

positions should be carefully addressed since in each position the locations of all spheres

should be different. Thus, the configuration is skewed to comply with this requirement.

The obtained calibration uncertainty is between 300 nm and 800 nm (depending on
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Type Lengths [mm]

Horizontal 15.5345(2), 20.4984(3), 52.09833(8), 72.5966(1), 88.1312(1)

Vertical 27.10321(2), 42.8299(2), 43.2367(2), 69.8460(2), 86.0548(2)

Diagonal 48.9354(2), 62.0765(2), 80.0656(2), 93.6609(2), 139.2402(3)

Table 2.2: List of length distances with their calibration uncertainty expressed according

to GUM [100:2008 [2008]].

Workpiece Exposure time Contrast Vertical

resolution

Lateral

resolution

Stopper 1.45 ms 0.81 0.4 µm 7.82 µm

Table 2.3: The measurement parameters used to measure the artifact’s spheres in the

performance verification test.

the considered length). Detail results of calibration of the lengths are depicted in table

2.2.

2.3.3 Performance verification: proposed procedure and results

The performance verification focuses on the evaluation of the instrument’s moving

stage comply with ISO10360-8. The measurement parameters used to measured the

steel sphere for the performance verification test is detailed in table 2.3. This measure-

ment parameters are also used for the performance verification of FVM instrument with

4-axis configuration since the artifacts use identical sphere type. Figure 2.13 shows the

procedure of the verification process. In this figure, four compulsory volume diagonal

directions and two X and Y axis directions are presented. These four diagonals mea-

surements are obtained by rotating the artifact 900 clockwise. It is worth to note that,

in diagonal 3 configuration, the last sphere on the bottom can not be measured since

collision between the objective nose piece and the tallest sphere can not be avoided.

The reason is, if the height of the tallest sphere is reduced, the minimum requirement of

66% of the volume height coverage can not be achieved as required by the ISO 10360-8.

Due to the configuration of the optical CMM, verification in exactly Z-axis direction

is impossible. As replacement, additional one direction which is an arbitrary diagonal

direction was carried out to have seven directions measurement verification as required

by the followed standard. Fig. 2.14 2.13 shows the alternative for the 7th position as
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Figure 2.13: Performance verification procedure for 3-axis system configuration.
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Figure 2.14: Alternative for the 7th position.

required by standard. In this figure, the measurement of the sphere on the bottom can

be used as the 7th position. Other alternative is the y-direction measurement after

translating the artifact to the right. The objective lens used for this performance eval-

uation has a 5x magnification such that the largest field of view (FOV) and working

distance can be obtained. Vertical resolution of the z-stage was not maximized (default

value) since it is a form measurement rather than a surface roughness measurement.

By this, the acquisition time can be reduced. Since the length is the distance between

two sphere centers, sphere measurements were carried out. The center of the sphere

was obtained by averaging from three measurement of the sphere. To measure the 2

mm spheres, only single image measurement was utilized, thus there is no stitching pro-

cess to capture the required sphere surface. On the contrary, stitching of four images

was carried out to measure 5 mm diameter spheres. Therefore, the stitching process

is taken into account in the evaluation of the center of the spheres. By considering

stitching error, the verification results will have more comprehensive representation of

the instrument’s error.

The points of the spheres are supposed to be independent each other. Since there

is no intersection between the clouds of points describing each sphere, the calculated

locations and distance among the spheres depend only on accuracy of the X-Y stage.

In each sphere configuration, the measurement is carried out in reciprocal direction

(forward-backward-forward) to take into account the hysteresis of the stage. The goal

is to calculate the error for each length measurement. The errors were obtained by

calculating the difference between the measured length by the instrument and the

calibrated length (as conventional true value). Time needed to complete one direction
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Figure 2.15: Length measurement errors in the X-direction.

in the verification procedure (forward-backward-forward measurements) is about 50

minutes. The time is obtained by considering the speed when moving from one sphere

to the other such that minimizing vibration of the system. Hence, the total time needed

to conduct the performance verification is about 300 minutes.

The errors in X and Y axis are depicted in fig. 2.15 and 2.16 respectively. The

errors in diagonal directions, instead, are presented in fig. 2.17. As it can be observed,

the maximum error of length measurement is approximately 35 µm. This error oc-

curred in the diagonal direction. It can be caused by the combination of all the three

axis imperfections (volumetric error) contributing in the diagonal length measurement.

Beside, the spread of the measurement error is still considerably large to be considered

as metrological instrument. Moreover, the error does not include yet probing form and

probing size error [ISO10360-8 [2013]]. In fig. 2.17, an incremental pattern is apparent.

An incremental pattern is typical in the case in which the axis presents a scale error;

this can be concluded as systematic error and that at least the y axis requires a calibra-

tion to compensate the scale factor. Finally, all plots of error from X, Y, and the four

diagonals as well as the 7-th position (auxiliary) which is selected by taking arbitrary

horizontal diagonal directions are shown in fig. 2.18. In this figure, the probing errors
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Figure 2.16: Length measurement errors in the Y-direction.
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Figure 2.17: Length measurement errors in All 4 diagonals.
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Figure 2.18: Length measurement errors for the X-axis, Y-axis, and 4 diagonals.

(size and form) are not yet included. As such, the plotted errors is still errors from

unilateral measurement. From the figure, one can observed that the errors are within

(the plot line):

±(5 + L
4 )

It is worth noting that temperature compensation was not applied. This contributes

to the measurement error, but not very significantly, because the artifact is quite small,

and the environment temperature was controlled (20± 0.50C). Instead, it will include

in the uncertainty of the verification process [Savio [2006]]. In addition, a possible

factor which contributes to the errors is the surface fitting algorithm, which depends

on a series of operator defined parameters. The uncertainty of the reference distance

which is used to define the error is calculated by:

u(E) =
√
u2(εcal) + u2(εα) + u2(εtemp) + u2(εalign) + u2(εfixture) (2.19)

where u(εcal) is the calibration uncertainty, u(εα) is error of determined coefficient ther-

mal expansion (CTE), u(εtemp) is uncertainty due to temperature variation, u(εalign)
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is error caused by misalignment and u(εfixture) is fixturing error. The last two con-

tributors are neglected in this case since they are only considered in tactile CMM

measurement. u(εα) and u(εtemp) are defined as:

u(εα) = L× |t− 200| × u(α) (2.20)

and:

u(εtemp) = L× α× u(t) (2.21)

where α is the coefficient thermal expansion of the artifact material and t is the mea-

surement temperature. The maximum u(E) calculated for the maximum length (L=140

mm) of distance between sphere is 0.30002 µm.

Following ISO10360-8, optical instrument is not a bidirectional measurement like

the one of tactile CMM. The length measurement from optical instrument is defiend

as unilateral measurement, LUni.meas and LUni.cal, for measured and calibrated length.

Hence, to state the final maximum permissible error, probing size error and probing

form error should be included. The rule of determining EBi.Sph.1×25;Tr;ODS;MPE , MPE

for bidirectional measurement, according to ISO10360-8 is:

In the case of :

LUni.meas − LUni.cal + PSize.sph.1×25;j;ODS > 0, then

EBi.X;ODS;MPE < LUni.meas − LUni.cal + PSize.sph.1×25;j;ODS + PForm.sph.1×25;j;ODS

In the case of :

LUni.meas − LUni.cal + PSize.sph.1×25;j;ODS = 0, then

EBi.X;Tr;ODS;MPE < PForm.sph.1×25;j;ODS

and

EBi.Sph.1×25;Tr;ODS;MPE > −PForm.sph.1×25;j;ODS
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In the case of :

LUni.meas − LUni.cal + PSize.sph.1×25;j;ODS < 0, then

EBi.X;ODS;MPE > LUni.meas − LUni.cal + PSize.sph.1×25;j;ODS − PForm.sph.1×25;j;ODS

By following this rule, adding the probing size error of PSize.Sph.1×25;Tr;ODS =

2 µm and a probing form error of PForm.Sph.1×25;Tr;ODS = 8 µm, the final max-

imum length measurement error are EUni.Sph.All;Tr;ODS;MPE = ±(5 + L
4 ) µm and

EBi.Sph.All;Tr;ODS;MPE = ±(15 + L
4 ) µm for unidirectional and bidirectional, respec-

tively. All parameters follow definition in ISO360-8 [ISO10360-8 [2013]].

The flatness measurement error is stated according to ISO10360-8 as:

EForm.P la.D95%:j:ODS = dmax − dmin (2.22)

where EForm.P la.D95%:j:ODS is the flatness error from associated plane in which 95% of

all measured points are included. For Flatness measurement error, an approximately

flat aluminum sample was used.This sample was calibrated by means of CMM, similar

for size (dimensional) calibration method. Calibration results is 25.1(8) µm (see section

3.3.1.2 for calibration procedure). The errors are derived from diagonal position and

skewed position as recommended position from the standard (see fig. 2.2right). Stitch-

ing operation should be included in the flatness error measurement. It is worth to note

that, the two flatness error used two different types of illumination levels, which are 114

µs and 142 ms for skewed and diagonal positions respectively. It is because diagonal

position needs more illumination to be able to capture the surface. The results from

flatness measurement error from two type of positions are:

skewed position:

EForm.P la.D95%:j:ODS = 20.125 µm

diagonal position:

EForm.P la.D95%:j:ODS = 16.8 µm
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Finally, The results of performance verification with the proposed artifact and pro-

cedure are:

Probing error from representative points=

Probing Size Error= PSize.Sph.1×25;Tr;ODS = 2 µm

Probing Form error= PForm.Sph.1×25;Tr;ODS = 8 µm

Probing error from point cloud (≈ 2000000 points)=

Probing Size Error All= PForm.Sph.All:Tr:ODS = 6 µm

Probing Size Error All after 3-sigma-based filtering (see section 3.3.1.3)

= PForm.Sph.All:Tr:ODS = 6 µm

Probing Dispersion value= PForm.Sph.D95%:Tr:ODS = 224 µm

Probing Dispersion value All after 3-sigma-based filtering (see section 3.3.1.3)

= PForm.Sph.D95%:Tr:ODS = 127 µm

Length Measurement Error =

EUni.Sph.All;Tr;ODS;MPE = ±(5 + L
4 ) µm

EBi.Sph.All;Tr;ODS;MPE = ±(15 + L
4 ) µm

Flat Measurement Error=

EForm.P la.D95%:j:ODS = 20.125 µm for skewed position

EForm.P la.D95%:j:ODS = 16.8 µm for diagonal position

2.4 Measurement with 4-axis configuration

One of the advantages of FVM instrument is its ability to conduct measurement with

4-axis configuration. This type of measurement configuration has many potential ap-

plications, such as in micro-tool, micro-mold, or micro-device manufacturing. By this,

major accessibility issue can be solved, such as measurement of undercut surface. Re-

cently, Not only focus-variation based optical instrument but also many other optical

instrument manufacturers integrate the 4-axis (rotation axis) into their system as can

be seen in fig. 2.19. There are manufacturers produce instrument with additional ro-

tational axis as the 4th-axis other than the one shown in the figure. In the pure 3-axis
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Figure 2.19: Many system manufacturer integrating the 4th-axis (rotation axis) to im-

prove system accessibility.

configuration, the total measuring volume is 100x100x100 mm. However, a reduction in

measurement volume to 40x40x40 mm occurs if the additional rotational axis is used,

as shown in fig. 2.20.

ISO10360-8 does not consider performance verification of optical CMMs with a

rotational axis. Hence, the rotational axis (the 4th-axis) has to be verified following

ISO standard [ISO10360-3 [2007]]. This standard provides procedure to conduct perfor-

mance verification for rotary table (rotational-axis) as well as the parameter which have

to be derived. Artifact requirement for this type performance verification is an artifact

which has two spheres placed on diametrically opposite position. The spheres should

have approximately equal distance to the center (equal radius) with different height

with respect to a defined reference base. Fig. 2.21a shows the artifact requirement.

For the verification procedure, a local reference system should be set on the sphere at

higher position with respect to the reference base (fig. 2.21a). Total of 28 rotations have

to be carried out to quantified the rotational error of the rotary (rotational) axis. From

the 28 rotations, 14 rotations are clock wise and otherwise for the other 14 positions.

For the clock-wise rotation, center of sphere A (at lower height position ) are measured

on each rotation position. Measurement of the center of sphere B are carried out for

the other rotation direction (anti-clockwise) ISO10360-3 [2007]. Parameters which have

to be quantified are the maximum permissible error, which are MPEFR, MPEFA and
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Figure 2.20: Focus variation instrument and its measuring volume in 4-axis configuration.

Figure 2.21: (a) Illustration of artifact requirement for rotary table (rotational axis) per-

formance verification and (b)Illustration of the quantified error in rotation axis performance

verification [ISO10360-3 [2007]]
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MPEFT . These parameters represent maximum permissible error in radial, axial, and

tangential directions, respectively. The illustration of radial, tangential and axial errors

are presented in fig. 2.21b.

2.4.1 Proposed Artifact

There are three artifacts proposed for performance verification of this configuration,

which are artifact 1, artifact 2, and artifact 3. The first two artifacts (artifacts 1 and

2) are used separately to evaluate the length measurement error and the rotation axis

error. Artifact 3 combines the functionality of artifacts 1 and 2 and is used both for

performance verification of the length measurement error and the rotation axis error

in the reduced volume. The material used in the presented artifact is not consider for

a long time stability since the main purpose is to proposed the artifact configuration

and the solution for the verification procedure by using the proposed artifact. Instead,

the artifact is considered to be still stable for short-term period (one year).

2.4.1.1 Artifact 1: Length measurement error

Artifact 1 consists of an aluminum base plate, steel screws, and seven G5 grade steel ball

bearings with a diameter of 5 mm. The specifications for G5 grade ball bearings are set

according to ISO standard [ISO3290-1 [2008]]. The size of the artifact is designed to be

40×40×40 mm, corresponding to the reduced measurement volume of the instrument.

Bolts were used to increase the pre-load of the screws to augment their stiffness. Metal

glue was used to fix the balls to the screw heads. Fig. 2.22 depicts the 2D technical

drawing of the proposed artifact 1 and fig. 2.23 presents the manufactured proposed

artifact 1. steel balls with a 5 mm diameter were chosen because the image field of

the lens used is smaller than the ball diameter. This is performed so that the image

stitching process involved could be used to determine the center of the balls during

the sphere feature association procedure. Adopting a 5X objective lens yields a field of

view (FOV) equal to 2.8× 2.1 mm and a working distance of 23.5 mm and reduces the

risk of collision between the artifact and the objective nose piece.

There are two ball position configurations: in-line and diagonal (fig. 2.23, right).

The in-line configuration allows the verification of performance along the X- or Y-axes,

and the volumetric diagonal can be evaluated by measuring the diagonal configuration.

Similar idea to the previous artifact, in each configuration, there are four balls with
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Figure 2.22: Artifact 1: 2D Technical Drawing.

Figure 2.23: Artifact 1: length measurement error verification.
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different reciprocal distances. Consequently, the minimum number of balls is used to

provide five different length measurements for each configuration, as required in the

ISO10360-8 [ISO10360-8 [2013]]. Each configuration has one ball in the center to use

the minimum number of balls, reducing manufacturing cost and calibration time. Table

2.4 lists the reciprocal distances of the balls.

2.4.1.2 Artifact 2: Rotation axis error

Artifact 2 has a simpler design. Only two 5 mm diameter G5 grade steel ball bearings

are needed to fulfill the requirements of the ISO standard [ISO10360-3 [2007]]. Spheres

A and B are approximately located at an identical radius of 20 mm, are diametrically

opposite of each other and are positioned at different heights with respect to the artifact

base. The artifact is made of aluminum to reduce the weight (95 g) due to the 2 kg

maximum payload limit of the spindle. Technical drawing of artifact 2 is shown in

fig. 2.24 while fig. 2.25 presents the manufactured artifact. In this performance

verification, calibration of artifact is not needed, since the procedure only measure

a relative distance instead of absolute one. Also due to this reason, the test is not

affected by misalignments between the artifact and axis of the rotation unit as long

as the artifact is rigid during the performance verification [Savio [2006]]. The test is

briefly recalled as follow. Total of 28 positions of rotation measurement are carried

both for sphere A and sphere B. From the 28 positions, it covers both clock-wise and

anti-clockwise rotation. The final result indicators are the radial, tangential and axial

maximum error [ISO10360-3 [2007]].

2.4.1.3 Artifact 3: Combination of length measurement error and rotation

axis error

Artifact 3 combines the functionality of artifacts 1 and 2 so that the verification of

the length measurement and rotation axis errors can be performed with only a single

artifact. The artifact has a size of 40 × 40 mm with weight of 118 g. Similarly with

the previous two artifacts, it is composed of a rectangular aluminum plate mounted on

a cylindrical gripper that is inserted into the spindle chuck. Spindle load limitations

need to be considered. Fifteen G5 grade steel ball bearings with a diameter of 5 mm

are used. Thirteen balls are glued to a prepared ”seat” on the aluminum base. The

13 balls are used for the length measurement error evaluation. The remaining two are
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Figure 2.24: Artifact 2: 2D Technical drawing.

Figure 2.25: Artifact 2: rotation table (axis) error verification.
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Figure 2.26: Artifact 3: 2D Technical Drawing.

glued onto screws and used for the rotation axis error evaluation. Technical drawing

of the proposed artifact 3 is shown in fig. 2.26 and the manufactured one is shown in

fig. 2.27.

The thirteen balls shown in 2.27 have four configurations: horizontal, vertical, diag-

onal 1 (from top-left to bottom-right), and diagonal 2 (from bottom-left to top-right).

The horizontal and vertical configurations are used to evaluate the X- and Y-axes,

respectively, whereas the other two diagonal configurations are used to evaluate the

volumetric diagonal of the measurement volume by rotating the artifact +450 and

−450. In each configuration, similarly to artifact 1, four balls are separated at different

distances. Table 2.4 lists the five different lengths used in each configuration. The other

two balls on the sides are used for the rotation axis error evaluation. As required by

the ISO 10360-3 standard [ISO10360-3 [2007]], these balls are approximately located at

a radius of 20 mm, are diametrically opposite and are at different distances from the
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Figure 2.27: Artifact 3: innovative artifact for both performance verification of length

measurement error and rotation axis error.

Figure 2.28: Skewed orientation in calibration (a) for artifact 3, and (b) for artifact 1.

chuck. Finally, for flat measurement error evaluation, a reference flat plane could be

easily manufactured on this artifact to fulfill the requirements of the measurement test

in ISO 10360-8.

2.4.2 Calibration of artifact

Calibration for the length, which is distance between two spheres, was carried by similar

method with the length calibration for artifact used in 3-axis performance verification.

The calibration was applied to artifact 1 and artifact 3. Figure 2.28 presents the

calibration process of these artifacts. The calibration expanded uncertainty obtained for

the distance between two sphere centers in artifact 1 is between 300 nm and 800 nm and

is between 200 nm and 700 nm for artifact 3, depending on the length considered. From
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Artifact Configuration Lengths [mm]

Artifact 1 In-line 9.3523(2); 11.7205(2); 20.0393(3);

29.3908(1); 41.1065(1)

Artifact 1 Diagonal 12.3996(1); 20.8125(1); 30.9691(2);

51.7087(1); 64.10263(1)

Artifact 3 Horizontal 8.5638(2); 11.9611(2); 19.9900(3);

20.5243(1); 40.5142(1)

Artifact 3 Vertical 8.0663(1); 12.5476(1); 19.8484(3);

32.3944(1); 40.4602(1)

Artifact 3 Diagonal 1 9.2722(1); 19.4042(2); 28.6665(1);

48.0651(1); 57.3362(1)

Artifact 3 Diagonal 2 9.5514(1); 18.7434(3); 28.9887(1);

38.5335(1); 57.2725(1)

Table 2.4: List of length distances for artifacts 1 and 3 with their calibration uncertainty

expressed according to the GUM [100:2008 [2008]].

Table 2.4, all results of the length calibrations with their uncertainties are presented

following GUM format.

2.4.3 Performance verification: proposed procedure and results

2.4.3.1 Length measurement, probing and flatness error (ISO 10360-8)

In this performance verification, artifact 1 and 3 were used. In the verification pro-

cedure, the error, similarly with the procedure for 3-axis configuration, is defined as

a deviation in the distance between the two sphere centers obtained by the optical

instrument from the calibrated distance values (as the conventional true values). The

procedures are different for each artifact. Figure 2.29b and fig. 2.29c shows the place-

ment of artifact 1 and artifact 3 respectively.

The procedure for artifact 1 is described as follows. Firstly, position 1 is selected

such that the in-line configuration of the balls is in the horizontal position, with respect

to the operator’s view. In this position, the length measurement evaluations are carried

out for the X-axis and for volumetric diagonal 1 (Top-Left-Corner to Bottom-Right-

Corner). After that, the artifact is manually rotated 900 (clock-wise) such that the

in-line configuration of the balls is in the vertical position with respect to the operator’s
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Figure 2.29: (a) Performance verification using artifact 3 rotated by −450, (b) placement

of artifact 1, and (c) placement of artifact 3.

view. Length measurement evaluations are performed for the Y-axis and for diagonal 2

(Top-Right-Corner to Bottom-Left-Corner). Subsequently, diagonal 3 (Bottom-Right-

Corner to Top-Left-Corner) and diagonal 4 (Bottom-Left-Corner to Top-Right-Corner)

can be evaluated by rotating the artifact 900 (clock-wise). Figure 2.30 shows the detail

procedure in all four positions.

The procedure for measuring artifact 3 is much simpler since it combines function-

ality from the two artifacts. With this artifact, operator involvement is only to mount

the artifact holder to the spindle chuck and to check the inclination angle (Figure

2.29c). For the X- and Y-axis length measurement evaluation, the artifact is set to an

approximately flat position before performing the verification procedure. Volumetric

errors for diagonals 1 and 2 are evaluated after rotating the spindle −450 (2.29a) before

the verification of these diagonals is carried out. Finally, for diagonals 3 and 4, the

verification is performed after rotating the spindle +450, opposite to diagonal 1 and

diagonal 2 measurements. The detail procedure is presented in fig. 2.31.

Similar purpose with the one applied for 3-axis performance verification artifact,

the sphere diameter used is larger than the FOV of the 5X objective lens. Hence, the

measurement of the center of each ball required the stitching of four image fields, such

that the error in the stitching process is also taken into account. After obtaining the

spheres center location, the relative distance can be calculated. In every verification

direction, the measurement is carried out reciprocally (left-to-right-to-left), such that

the hysteresis of the stage is taken into account. From this, three measurements for

each length type are obtained. The seventh position of the verification procedure, as

required by the standard, for both artifact 1 and 3 was realized by measuring arbitrary
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Figure 2.30: Performance verification procedure (ISO10360-8) by using artifact 1.
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Figure 2.31: Performance verification procedure (ISO10360-8) by using artifact 3.
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Figure 2.32: Length measurement errors in the X-direction (artifact 1 and 3).

diagonal direction due to the fact that it is impossible to have Z-axis direction for

the verification procedure since the objective nose is always from the top. The results

from the performance verification in the X-direction are presented in fig. 2.32. In

this direction, the maximum error obtained from artifacts 1 and 3 is approximately

4.25 µm and 3.18 µm, respectively. Figure 2.33 shows the verification results in the

Y-direction. Considering these measurement results, artifact 3 gives maximum error of

4.8 µm, which is approximately 1.5 µm higher than artifact 1.

Error results for the diagonals are presented in fig. 2.34. It is noted that artifact 3

contains two different diagonal configurations (table 2.4), such that two sets of errors

are plotted. It is possible to note that the maximum error observed from the diago-

nal measurement is equal to 11.3 µm and 11.8 µm for artifacts 1 and 3, respectively.

To comply with ISO 10360-8, total seven positions have to be verified. Thus, addi-

tional length verification was carried out. For artifact 1, the additional position is by

measuring the diagonal spheres configuration following Y-direction (fig. 2.30 bottom).

Meanwhile, for artifact 3, the seventh position measures the vertical sphere configura-

tion after rotating the artifact around 300. Fig. 2.35 shows the length error for this

position. Finally, from fig. 2.36 , which presents all measurements error (along the x, y
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Figure 2.33: Length measurement errors in the Y-direction (artifact 1 and 3).

Diagonals - direction

-13
-11

-9
-7
-5
-3
-1
1
3
5
7
9

11
13

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Length [mm]

E
rr

o
r 

[u
m

]

Artifact 3 - Diagonal 1

Artifact 1 - Diagonal
Artifact 3 - Diagonal 2
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Figure 2.35: Length measurement errors for the seventh direction (artifact 1 and 3).
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and four diagonals as well as the seventh position) for both artifacts, it is worth noting

that the dispersion of the errors seems to increase and that the error always seems to

be less than (the plotted line):

±(5 + L
8 )

From this results, one can observe that with smaller working volume, there is accuracy

improvement from ±(5 + L
4 ) to ±(5 + L

8 ). The maximum u(E) calculated for the

maximum length (L=58 mm) of distance between sphere is 0.3 µm.

In general, the results show good agreement between the two artifacts. One of the

reasons for the difference in the errors evaluated using artifacts 1 and 3 are caused by the

different types of lengths among the balls that are measured. To confirm this conclusion,

a Kolmogorov-Smirnov test was conducted to compare the statistical distribution of the

length measurement errors carried out on artifacts 1 and 3. The resulting p-value of

0.78 suggests there is no evidence to refuse the null hypothesis that the distributions

are identical. The time needed for performance verification is similar to the one for

the 3-axis configuration which is around 50 minutes for each measurement direction.

Hence, total six hours is needed for the verification following ISO10360-8.

From these results, it is possible to evaluate the performance of the system as well.

By considering a probing size error of PSize.Sph.1×25;Tr;ODS = 2 µm and a probing form

error of PForm.Sph.1×25;Tr;ODS = 8 µm, we can state that the length measurement error

are EUni.Sph.All;Tr;ODS;MPE = ±(5+L
8 ) µm and EBi.Sph.All;Tr;ODS;MPE = ±(15+L

8 ) µm

[ISO10360-8 [2013]].

Similar to the verification with 3-axis configuration, the flatness error measurement

was also carried out. The flatness error was measured from the flat surface of the bot-

tom surface of artifact 3. The measured flat surface and its verification procedure are

shown in fig. 2.37. The surface was calibrated with calibration results of 7.7(6) µm

(see section 3.3.1.2 for calibration procedure).

skewed position:

EForm.P la.D95%:j:ODS = 14.3 µm

diagonal position:
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Figure 2.37: Top row: The flat surface of artifact 3 selected for flatness error verification.

Bottom row: the procedure for flatness error verification.

EForm.P la.D95%:j:ODS = 10.5 µm

for comparison, the flatness measurement error from a calibrated flat aluminum

(as being described in flatness measurement error in 3-axis configuration), the flat-

ness error are: EForm.P la.D95%:j:ODS = 20.125 µm for the skewed position and for

EForm.P la.D95%:j:ODS = 16.8 µm diagonal position. Maximum flatness error with re-

spect to the calibrated value are 6.6 µm and 4.9µm for measurement with artifact 3

and flat aluminum, which is 1.7 µm difference.

Finally, the summarize of the performance verification results can be stated as:

Probing error from representative points=

Probing Size Error= PSize.Sph.1×25;Tr;ODS = 2 µm

Probing Form error= PForm.Sph.1×25;Tr;ODS = 8 µm

Probing error from point cloud (≈ 2000000 points)=

Probing Size Error All= PForm.Sph.All:Tr:ODS = 6 µm

Probing Size Error All after 3-sigma-based filtering (see section 3.3.1.3)
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= PForm.Sph.All:Tr:ODS = 6 µm

Probing Dispersion value= PForm.Sph.D95%:Tr:ODS = 224 µm

Probing Dispersion value All after 3-sigma-based filtering (see section 3.3.1.3)

= PForm.Sph.D95%:Tr:ODS = 127 µm

Length Measurement Error =

EUni.Sph.All;Tr;ODS;MPE = ±(5 + L
8 ) µm

EBi.Sph.All;Tr;ODS;MPE = ±(15 + L
8 ) µm

Flat Measurement Error=

EForm.P la.D95%:j:ODS = 14.3 µm for skewed position

EForm.P la.D95%:j:ODS = 10.5 µm for diagonal position

2.4.3.2 Rotation axis error (ISO 10360-3)

The procedure used for the rotation axis performance verification conforms to standard

[ISO10360-3 [2007]]. There is a slight difference between the procedures stated in this

standard regarding the determination of the reference. Due to the instrument’s inherent

characteristics, the reference is determined as follows (2.25right). The zero point is

set at the center of sphere B. The Z-axis is parallel to the lens axis. The X-axis is

along the spindle axis and the Y-axis is set perpendicular to the X-Z plane. A full 3600

rotation was evaluated for both artifacts. An unreachable position at a rotation position

between +450 to +900 from the initial flat position (00) was observed due to a collision

between the objective nose piece and the artifact. For each predetermined rotation

angle, the center of each sphere is calculated by acquiring four images of the sphere

and stitching them together. The procedure for rotation axis performance verification

by using artifact 2 and 3 is presented in fig. 2.38.

A comparison of the results obtained from artifacts 2 and 3 in 2.39 , 2.40 , and

2.41 shows the axis rotation error in the X-, Y-, and Z-direction, respectively. The

maximum errors of each rotation angle are plotted. Errors at positive rotation angles

were obtained from sphere A and errors at negative rotation angles were obtained from

sphere B. From the performance verification of artifact 2, the maximum rotation axis

errors for the X-, Y-, and Z-directions are approximately 5 µm, 7.5 µm, and 14.7 µm,
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Figure 2.38: Rotation axis performance verification (ISO10360-3) by using artifact 3 (up)

and artifact 2 (bottom).

Figure 2.39: Rotation axis error in X-direction (artifact 2 and artifact 3).
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Figure 2.40: Rotation axis error in Y-direction (artifact 2 and artifact 3).

Figure 2.41: Rotation axis error in the Z-direction (artifacts 2 and 3).
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respectively. Additionally, for artifact 3, the maximum errors obtained are approxi-

mately 7.6 µm, 9.3 µm, and 17.3 µm for the X-, Y-, and Z-directions, respectively.

In both artifacts, the maximum errors are observed along the Z-direction. A slightly

larger maximum error was observed in all directions for artifact 3, compared to the

one obtained by artifact 2, ranging from 1.8 µm to 2.6 µm. This can be caused due to

different distance of the spheres to the base and due to different in weight

In general, the obtained errors from both artifacts show good agreement. To

strengthen this conclusion, a Kolmogorov-Smirnov test was again conducted to compare

the statistical distribution of the length measurement errors for artifacts 2 and 3. The

resulting p-value of 0.30 suggests that there is no evidence to refuse the null hypothesis

that the distributions are identical. Finally, it is possible to evaluate the performance

of the system with a rotary axis as follows: MPEFR = 18 µm, MPEFT = 10 µm, and

MPEFA = 8 µm. Total time needed for the rotation axis error verification is about

four hours which is two hour for each spheres.

2.5 Conclusion

In this chapter, artifacts and procedures for performance verification of a focus-variation

based optical instrument are proposed. They are separated into two parts: for 3-axis

configuration and for 4-axis configuration of the instrument. For 3-axis configuration,

a full measuring volume is considered. The performance verification is applied only

for the three translation axis, which are X, Y and Z-axis. The verification test follows

ISO10360-8 for length measurement error verification. The limit of the proposed artifact

for performance verification test of this configuration is that when diagonal 3 position

is measured, the last sphere on the bottom can not be measured due to objective nose

piece collision with the highest sphere.

While for 4-axis configuration performance verification, the verification is conducted

using two approaches. First, the performance verifications were conducted separately

using two artifacts for each length measurement error (ISO10360-8) and rotation axis

error (ISO10360-3). Secondly, a single hybrid artifact is used for both types of per-

formance verification. The results show good agreement between the two approaches.

The use of a single artifact is an improvement (allowing the possibility of checking the

rotational and volumetric performance without manually changing the system), and a
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step forward in the evolution of verification procedures. The main limitation of the

proposed artifacts for both 3-axis and 4-axis performance verification is that it allows

only the procedure to be carried out with 5X objective lens.

The developed artifacts and procedures can be generalized for other type of optical

instrument by adjusting their measuring volume considering the instrument objective

nose piece and working distance to avoid collision with the artifact while performing

the verification test.
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Chapter 3

Task-specific uncertainty of focus

variation measurement

3.1 State of the art

3.1.1 Task-specific uncertainty of measurement

In coordinate metrology, measurement uncertainty estimation is very important as it

has impact on process capability estimation and tolerance verification as well as as-

suring the measurement traceability to the definition of meter[Leach [2009], Wilhelm

et al. [2001]]. For part conformance test, it is required that uncertainty of measure-

ment from inspection process should be quantified and stated according to [ISO14253-1

[1998]]. Traceability property is very important in the global market such that part

interchangeability can be realized. In general, a complete measurement result should

be presented as:

Y ± U, U = ku (3.1)

Where U is expanded measurement uncertainty of a measurement result Y which de-

fines a range in which the true value lies and k is coverage factor. Commonly, k is

estimated as k = 2 for 95% coverage. Hence, the measurement reliability is determined

by its uncertainty (to be able to conduct measurement comparison). Not only in geo-

metric measurement, but also in other measurement: mass, pressure, etc, uncertainty

is important [Possolo [2013a], Possolo [2013b], Cox et al. [2013]]. Moreover, they are

”Task Specific” [Wilhelm et al. [2001], ISO/TS15530-1 [2013]]. Task specific means
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that every specific feature and specific measurement plan (e.g. strategy), it has its own

different uncertainty. Thus, making the estimation is not an easy task. Not only in

ordinary measurement, but also in calibration measurement, the uncertainty should be

stated such that the calibration is traceable. For example, Acko [Acko [2003]] exper-

imentally analyzed the uncertainty of reference squareness-artifact calibration. Mean-

while, Gusel et al [Gusel et al. [2009]] investigated the measurement uncertainty for

calibration of reference surface plates flatness. ISO 15530 series provide standard to

estimate the task-specific uncertainty. Currently, there are two methods which have

final release of the standard [ISO/TS15530-1 [2013]]. They are uncertainty of mea-

surement by the use of calibrated or reference artifact [ISO/TS15530-3 [2011]] and by

the use of simulation [ISO/TS15530-4 [2008]]. Uncertainty determination by the use

of multiple measurement strategies without calibrated artifact is still not yet published

[ISO/DTS15530-2 [2003]]. In the following subsection, available methods (including

one which are not published in standard) to estimate measurement uncertainty will be

presented followed by previous study and discussion.

3.1.1.1 GUM method

All uncertainty contributors involved in the measurement should be quantified and then

are combined using the defined error budgeting procedure based on GUM [100:2008

[2008]]. It is the main reference in metrology to evaluate measurement uncertainty.

According to GUM, final measurement is the results of any uncertainty propagation in

each related elements of the measurement procedure, including the parameter calcula-

tion. To follow GUM, a mathematical functional relationship between the measurand

Y and its input quantities Xi which is Y = fX1, X2, · · · , Xn has to be established.

The final uncertainty is propagated through their computational chain. Based on this

document, the combined standard uncertainty of a measurement is defined as:

u(Y ) =

√√√√ n∑
i=1

(
∂f

∂Xi

)2

u2(Xi) + 2
n−1∑
i=1

n∑
j=i+1

∂f

∂Xi

∂f

∂Xi
u(Xi, Xj) (3.2)

Where: Y = f(X(1), X(2), X(3), · · · , X(n)) is the functional relationship between the

inputs X(1), x(2), · · · , X(n) and output Y and n is number of inputs. The partial

derivative of Y = f(·) with regards to X(n) is defined as ∂f
∂X(n) . The last term of the

equation represents the correlation between inputs. If the value of this last term is 0,
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then there is no correlation among data (or the correlation is negligible). There are

two methods to evaluate u(Xi) , which are: Type A and type B methods. Type A

evaluation is obtained by statistical analysis of n repeated observations. Meanwhile,

type B evaluation is based on expert judgment, long term experience of the opera-

tor, calibrated certificate, historical data, manufacturer specification, and published

information.

In ISO/TS standard [ISO14253-2 [2011]], implementation of GUM is described as

Procedure for Uncertainty Management (PUMA). PUMA is based on iterative GUM

method and is carried out until the expanded combined uncertainty is acceptable. A

target uncertainty is set. A combined standard uncertainty is calculated by:

uc =
√
u2

1 + u2
2 + u2

3 + · · ·+ u2
n (3.3)

Where u1, · · · , u)n are uncertainty contributors. PUMA methods is difficult to im-

plement due to its repetitive nature to directly follow GUM method. In fact, many

measurement is a complex one and there is no close mathematical form function of

the measurement. There are two alternatives of standards which are more practical

to implement for the uncertainty estimation compared to GUM and PUMA method.

They are ISO15530-3 and ISO15530-4.

3.1.1.2 The use of calibrated artifact Method: ISO 15530-3

The most common implementations for measurement uncertainty determination are

ISO/TS 15530-3 [ISO/TS15530-3 [2011]], also known as comparison method. According

to this method, the expanded uncertainty is calculated as:

U = k
√
u2
cal + u2

p + u2
b + u2

w (3.4)

ucal is standard uncertainty of the calibrated artifact stated in the calibration certifi-

cate. up is standard uncertainty related to measurement procedure and is calculated

as standard uncertainty from n measurements (usually 20). ub is standard uncertainty

related to systematic error of the measurement procedure evaluated by using calibrated

artifact (20 measurements). uw is standard uncertainty related to the contribution of

manufacturing variations, such as variation of thermal expansion coefficient, form er-

rors, roughness, elasticity and plasticity. This uncertainty is estimated by measuring

around 20 pieces of manufactured parts. Finally, k is a coverage factor and selected as

k = 2 for coverage probability of 95%.
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3.1.1.3 Simulation method: ISO/TS 15530-4

This method is based on computer simulation by taking into account the most impor-

tant uncertainty contributing to the measurement task [ISO/TS15530-4 [2008]]. Basi-

cally, this method was designed for tactile Coordinate Measuring Machine (CMM). By

using this method, every input quantities and uncertainty contributors considered in

the simulation have to be stated. The combined standard uncertainty is calculated as:

uc =

√√√√u2
sim +

n∑
i=1

u2
i (3.5)

Where usim is standard uncertainty estimated by simulation. The value is derived from

number of simulation runs. From these number of runs, all measurement results are

stored and statistical analysis is carried out to estimate usim. ui is standard uncertainty

contributed by error sources which are not considered in the simulation.

3.1.1.4 Other methods

There are some other methods besides those found in the published standard. They are

multiple measurement strategy, which is based on in different position and orientation

to estimates uncertainty without using calibrated artifact, statistical estimation from

long measurement historical data and direct expert judgment.

3.1.1.5 Previous studies to estimate measurement uncertainty

Many works have been reported by using the method to estimate measurement uncer-

tainty of micro/nano scale parts by using optical/non-contact metrology instruments.

Research results have been presented to verify the efficiency of the micro/nano mea-

surement [Tosello et al. [2009], Tosello et al. [2010], Carmignato and Savio [2011],

Carmignato et al. [2010]] as well as replica method for measurement of transparent sur-

face [Gasparin et al. [2010a], Gasparin et al. [2010b]] by the knowledge of measurement

uncertainty. In [Tosello et al. [2009]], they estimated uncertainty of measurement of

micro-injection molding part. The measurement is a diameter and height. Both tactile

and non-contact instrument were used, since the calibrated artifact used for non-contact

instrument is derived from the calibration by tactile measurement. They proposed this

step since there is no available representative artifact for micro injection molding part.
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Hence, then they proposed their own artifact and used the tactile instrument for the

calibration of the artifact (fig. 2.6g). For height (Z) measurement, a step measurement

(by mounting two standard gauge block on optical glass) by tactile CMM was carried

out and the estimated uncertainty is defined as (following the ISO15530-3 2004):

UTCMM,J = k
√
u2
cal + u2

p + u2
wl + u2

glass + |b| (3.6)

where TTCMM,J is the combined standard uncertainty of the step measurement by

tactile CMM. k is a coverage factor of 2. ucal is standard calibration uncertainty of

the gauge block. up is standard uncertainty of the measurement procedure which is

calculated as standard deviation of 5 repeated measurements between two adjacent

gauge on the optical glass. uw is temperature related standard uncertainty which is

calculated as maximum range of operating temperature of the measurement. uglass is

standard uncertainty of planarity of the optical glass. And finally, b is systematic error

calculated as a difference between the value obtained from the gauge blocks calibration

certificate and the measured values by tactile CMM. After TTCMM,J is calculated, they

determined the calibration uncertainty as combination of TTCMM,J and uncertainty

due to measured work piece, material, probe tip and shaft. The combined calibration

uncertainty by tactile CMM is:

Ucal(TCMM,J)(J) = k
√
u2
TCMM,J + u2

p,j + u2
p,j (3.7)

Where j is the type of measurands, up,j is standard deviation of repeated measurements

for j-th measurand, and uw,j is temperature related standard uncertainty for j-th mea-

surand which is maximum range of measurement j-th temperature condition. Finally,

after Ucal(TCMM,J)(J) were obtained, they used this as calibrated artifact uncertainty

to estimate the uncertainty of optical measurement system as:

UOCMM (j) = k
√
u2
cal(TCMM)(j) + u2

p,j + u2
w,j + |b| (3.8)

Where UOCMM (j) is the combined standard uncertainty of the micro-injection-molded

part measured by the optical instrument.

In other study, [Tosello et al. [2010]] estimated uncertainty of measurement for SEM

and AFM instrument, since these instruments are important for the measurement of
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master-disk to manufacture High Definition-Digital Versatile Disk (HD-DVD). In their

study, the uncertainty budget was defined as:

U(i) = k
√
u2
resi + u2

ci + u2
cali + u2

repi + u2
noisei (3.9)

Where U(i) = the measurement uncertainty of the i-th measurand, ures(i) = instru-

ment resolution which depends on the pixel resolution and scanning direction along

horizontal or vertical directions, uc(i) = variability of the calibration factor calcu-

lated as standard deviation of 5 different calibration factors c(i) obtained from 5

repeated independent calibrations, ucal(i)= standard uncertainty of calibration arti-

facts used for scanner calibration, urep(i) = measurement repeatability and defined as

urep(i) = max(uAFM(i), ufeatures(i), udisc(i)). uAFM(i) = standard deviation of the same

5 measurements by AFM on the same feature on different scanning area, ufeatures(i)

= standard deviation of 5 different features measurements on the same scanning area,

udisc(i)= standard deviation of 5 different features on 5 different scanning areas mea-

surements. Both from the results of these two studies by Tosello et al [Tosello et al.

[2009] and Tosello et al. [2010]], they found that the measurements carried out by opti-

cal instrument still have considerably higher measurement uncertainty compared to the

tactile one. As such U/T , which is the ration between uncertainty and its measurand

tolerance higher. This makes the efficiency of the measurement by optical instrument

is lower than the tactile CMM method.

[Carmignato and Savio [2011]] studied the traceability property of volume measure-

ment due to its many advantages for engineering application such as volume calibration

of fluid container, measurement of wear, and other cavities inspection. Volume mea-

surement by CMM (tactile/optical) has more advantages compared to conventional

gravity method such as possibility to evaluate shape and localized volume loss, and

by CT system, possibility to evaluate internal cavities. In their study, there were two

interesting parameters, which are relative volume uncertainty U(V )
V = 3U(d)

d and volume

uncertainty to surface ratio U(V )
S = 3

CsU(d). Dimensional measurement uncertainty is

defined as U(d), where d is a one-dimensional measurement. The procedure they used

to determine U(d) is following ISO15360-3 [ISO/TS15530-3 [2011]]. U(V )
V is defined as

U(d)dVd which is a multiplication of dimensional uncertainty and the first derivation of

Volume function with respect to its dimensional element. Shape factor CS is formulated
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Figure 3.1: wear measurement by (a) tactile CMM, (b) optical CMM, and (c) CT system

[Carmignato and Savio [2011]].

Figure 3.2: (a) calibrated surface profile, (b) micro-injection molding artifact.

as d SV . Three types of instrument were used: tactile CMM, Optical CMM by laser scan-

ning and CT-scan system. In their report, uncertainty of optical CMM and CT system

are higher than the tactile one as expected. Fig. 3.1 shows local wear measurement

results from these three types of instruments. (a) Tactile CMM, (b) optical CMM, and

(c) CT system. [Gasparin et al. [2010a], Gasparin et al. [2010b]] studied the uncer-

tainty of measurement by replication technique. This technique is a potential emerging

technique to measure difficult surface, such as transparent surface or to measure an

area in which putting the part on the measurement table is impossible e.g. small area

of a very large part. They studied this uncertainty for two types of measurement ap-

plications: surface texture measurement [Gasparin et al. [2010a]] and micro-geometric

measurement [Gasparin et al. [2010b]]. Both hard and soft polymers were used to

replicate the shape or texture of the surface. Curing agent was added to harden the

polymer. For surface texture measurement uncertainty study, they used a calibrated

surface profile artifact. Meanwhile, for geometric one, they used triangular texture

surface produce by micro-injection molding process. Fig 3.2a and fig. 3.2b depict the

calibrated artifact for accessing the uncertainty of measurement of replication tech-
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nique for surface-texture and micro-geometric measurement, respectively. There are

reports for direct implementation of substitution/comparison method (ISO15530-3) to

estimate uncertainty in CT-Scan measurement. In [Yague-Fabra et al. [2013]], they im-

plement this method to estimate uncertainty of 3D edge detection in CT measurement.

Uncertainty estimation of aluminum measurement by means of CT has been presented

in Schmitt and Niggemann [2010]. Ontiveros et al [Ontiveros et al. [2012]] applied the

method to estimate uncertainty from measurement of toggle for hearing aid application

made of liquid crystal polymer (LCP) and miniaturized dog-bone specimen made of

acetal polyoxymethylene (POM). Uncertainty estimation of dose engine part measured

by CT system is reported by Muller et al []. Finally, other method of uncertainty es-

timation based on ISO14253-2 [ISO14253-2 [2011]] is reported by muller et al [Muller

et al. [2013]]. This method is an industrial approach which does not need real part cal-

ibration. With this method, they found that the main uncertainty contributor is from

the ”reference” component uncertainty which is not a real calibrated artifact, instead

it is calculated from uncalibrated part measured by CMM. Its uncertainty estimation

takes into account the maximum permissible error of CMM, instead of uncertainty from

calibration certificate.

One of the major drawbacks of the method describe in the standard [ISO/TS15530-

3 [2011]] are flexibility and cost. Since measurement uncertainty is a task-specific, a

different calibrated artifact will be required for uncertainty evaluation of every differ-

ent part, leading to an increase of cost and time to implement the procedure. ISO

15530-4 [ISO/TS15530-4 [2008]] provides a method which are more flexible, fast, and

subsequently lower cost to evaluate task-specific uncertainty. This method is based on

Monte Carlo computer simulation. With this method, the task-specific uncertainty can

be realized by which a measurement (part geometry, strategy, part orientation, etc) can

be simulated and the uncertainty can be estimated. The basic requirement of GUM

[100:2008 [2008]] method is a need of functional relationship between the input, and the

output, including the filtration algorithm such as in roughness measurement [krystek

[2001]]. In many case, the model of this functional relationship is difficult to build and

to analytically solve [Blateyron [2006]]. Hence, the GUM method to determine mea-

surement uncertainty is limited by the complexity of the functional relationship model

of the measured parameters. Simulation method based on Monte-Carlo simulation can

be a prominent choice to solve this problem as being explained in [Wilhelm et al. [2001],
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Figure 3.3: Simulation approach to evaluate measurement uncertainty by [Wilhelm et al.

[2001]]

Philips et al. [2003], Haitjema et al. [2001]]. Fig. 3.3 shows the famous proposed simu-

lation method (so-called Virtual CMM/VCMM) by Wilhelm et al. [2001]. The method

was originally proposed for measurement with tactile CMM. The concept of the pro-

posed simulation framework (VCMM) is explained as follow. Firstly, a series of points

is captured by the tactile CMM (1). The captured points (2) then are evaluated to com-

pute the substitute geometry with a certain evaluation software. From the substitute

geometry, the measurand parameters are derived to estimate the conformance of the

measured work piece. For the VCMM (simulation approach), the captured points from

the measurement (5) are perturbed by the error simulator (5a) incorporating all the

most significant error sources. The error sources for tactile CMM are part geometry,

probing, machine motion (kinematic and dynamic) error, environmental influences and

others contributors. The main drawback is that it is computationally intensive [Hait-

jema et al. [2001]], Ontiveros et al. [2012]]. Instead, due to the advance of computing

power and its availability to reasonably acquire, this issue can be handled.

The fundamental requirement to be able to utilize simulation method, also com-

monly called as Monte-Carlo (MC) simulation, is to derive the model of the mea-

surement process. It can be analytical-based or statistical-based model [Philips et al.

[2003]]. The model should incorporates all the error contributors during the measure-
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ment process to accurately simulate the measurement process and hence estimate the

uncertainty. Few works have been reported to use simulation method to determine the

task-specific measurement uncertainty, especially for non-contact instruments. This

method has been initially applied in tactile CMM, and is called virtual CMM [Wilhelm

et al. [2001]]. For CMM, a number of researches have been reported regarding the use of

simulation method. These can be found in [Aggogeri et al. [2011], Balsamo et al. [1999],

Schwenke et al. [1999], Baldwin et al. [2007]]. Kruth et al proposed to incorporate part

form error into the Monte Carlo simulation method to have better estimate of the task-

specific uncertainty [Kruth et al. [2009]]. [Moroni and Petro [2014]] utilized simulation

method based on the error signal of CMM to determine optimal inspection strategy

planning of geometric tolerance verification by minimizing inspection cost. The error

signal method is proposed by [Drop et al. [2001]]. This method is applied by measuring

a line standard to obtained the error signal of a specific bridge-type CMM.

For non-contact measurement, [Evans [2008]] implemented this method to evaluate

the uncertainty of peak-to-valley surface form error measured by interferometer-based

instrument. This parameter is common in inspection of lens. They convolved Monte

Carlo method with the uncertainty matrix and found that this method provides a ro-

bust estimation. Giusca et al. [Giusca et al. [2011]] applied simulation method for micro

scale surface area measurement. They developed the geometric model of xy-stage of

their own developed surface-areal measurement instrument. From this model, they can

apply Monte Carlo simulation to estimate the measurement uncertainty. Monte-Carlo

simulations for CT-scan uncertainty of measurement have been reported in [Reisinger

et al. [2011], Sukowski and Uhlmann [2011], Hiller and Reindl [2012]]. Based on report

in [Reisinger et al. [2011] and Hiller and Reindl [2012]], they built the CT simula-

tion model based on ray tracing to generate simulated detected object in the detector

panel. Hence, they can simulate the CT measurement by means of virtual CT which

is based on the Virtual CMM framework [Wilhelm et al. [2001]]. The virtual CT

framework and Monte Carlo framework are depicted in 3.4. One should note that, in

determining uncertainty, any systematic error (bias) in the measurement chain should

be compensated and the uncertainty related to the compensation process should be

taken into account or this bias should be taken into account when determining the

combined measurement uncertainty [Hartig and Krystek [2009]]. Schmitt and Nigge-

mann also implemented simulation method for CT measurement uncertainty estimation
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Figure 3.4: (a) Framework for the virtual CT prepared for Monte Carlo Simulation, and

(b) the relation between output-input quantities in Monte Carlo Simulation [Hiller and

Reindl [2012]].

[Schmitt and Niggemann [2010]]. In their simulation method, data correlation among

points is not considered. Furthermore, analysis of instrument repeatability and repro-

ducibility can be useful information in relation with the measurement uncertainty. The

repeatability value describes the performance variation of the instrument within the

same measurement conditions. The performance variation of the instrument in differ-

ent measurement condition, such as different operator, different part or toll, different

day-time, etc is represented by the value of reproducibility [Montgomery [2001]].

3.1.1.6 Discussion

GUM method is the main reference, but this method is suitable if the measurement

task and device are simple since it requires measurement function. This function relates

the measurand (characteristic to be measured) and the input quantities. In reality, a

measurement task and devices is very complex and can not be mathematically pre-

sented in a close-form as such mathematical derivation can not be carried out to follow

GUM method. The iterative PUMA method seems too complex due to its repetitive

procedure. Many implementations can be found by substitute method. Since uncer-

tainty is task specific, it has to be estimated for each different feature and measurement

plan/ The GUM, PUMA, Substitute, and multiple measurement strategy are time con-

suming for task-specific uncertainty estimation due to many measurement experiments
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should be carried out. Moreover, many measured work pieces are difficult to handle

and properly placed in different orientation to follow the procedure. In addition for

substitute method, a calibrated artifact similar for each measurement task is needed.

This induced problems such as how the work piece can be calibrated (in the case of

complex part shape) and the high cost of calibration can only be justified if it is used

for mass production run. Due to these reasons, these methods are not practical to be

implemented by industry. Simulation method seems to be the most promising one to

estimate the task-specific uncertainty. The reason is that there is a need of general ap-

proach to estimate task-specific uncertainty such that it can be used for every specific

feature. As being stated before, one consideration for simulation method is that it is

computationally extensive, but with the advance of computing technology nowadays

and common availability to acquire, this situation can be handled.

3.1.2 What is lacking?

Uncertainty estimation based on simulation, defined in ISO[ISO/TS15530-4 [2008]] has

advantages over substitution (comparison) and the use of calibrated artifact method

as stated in ISO[ISO/TS15530-3 [2011]] and others methods. Despite the advantages

of simulation method for uncertainty estimation [ISO/TS15530-4 [2008]] of measure-

ment by non-contact instrument, the use of it is still less compared to the method by

using calibrated artifact [ISO/TS15530-3 [2011]] especially for optical instrument. In

addition, the simulation method is less diffused even though there is already released

standard. From the literature, many studies use simulation method by using the ana-

lytical model of the measurement, especially the geometric one. In fact, other statistical

model can be a great advantage. In optical measurement, constructing the analytical

model is more complex compared to the contact one, especially modeling the interac-

tion between the electromagnetic wave (light) and the work piece [Leach and Haitjema

[2010]]. By using statistical model, the analytical modeling of the measurement is not

necessarily built. Moreover, there is still a lack for the practical procedure in estimating

uncertainty by simulation. Hence, in this thesis, simulation method utilizing statisti-

cal techniques for the simulation of the perturbation point is proposed. The proposed

perturbation method will take into account correlation among the measured points.
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Figure 3.5: Classification of measurement by focus-variation based instrument.

3.2 Proposed method for estimation of measurement un-

certainty based on simulation approach

In general, measurement by the focus-variation instrument used in this study is divided

into two classes: 3-axis configuration measurement and 4-axis configuration measure-

ment. Each of them can be split into single and multiple area measurement. In multiple

area measurement, if the area measurements are adjacent, stitching procedure can be

utilized to combine all the area measurements. Otherwise, stage error will be involve

to the whole measurement if they are not adjacent each other. To summarize, essen-

tially, there are three types of obtaining the measurement results: without stitching

(single area measurement), without stitching (multiple area measurements incorporat-

ing stage error), and with stitching. This classification is shown in 3.5. These various

type of measurement classifications increase the difficulties of measurement uncertainty

estimation.

As mentioned in the state of the art section, uncertainty determination by simu-

lation seems to be the most suitable solution for task-specific uncertainty. There are

three types of task-specific uncertainty based on this method [Philips et al. [2003]],

they are: simulation based on mathematical model of instrument-related error, such as
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Figure 3.6: Framework of the simulation approach and the proposed error simulator (blue

box).

kinematics and dynamic errors, simulation based on random point perturbation, and

simulation based on empirical (statistical) model.

In this work, an error simulator based on statistical model is proposed, This simu-

lator works inside the simulation framework based on [Wilhelm et al. [2001]] for points

perturbation. The proposed error simulator model and the whole framework of the

simulation approach is shown in fig. 3.6 (blue box). The framework is explained as

follow. It consist of two paths, the first one (with black arrow) is to determine the mea-

surement results in which the conformance/non-conformance test will be verified. The

second path (red arrow) is to estimate the measurement result uncertainty. The flow

of the first path is a set of point clouds is captured from FVM instrument. This points

cloud is then processed and evaluated to associate the points with a specific substitute

geometry. From this fitted substitute geometry, the dimensional and geometrical mea-

surement results are derived. For the second path, from the captured points, a points

perturbation process is carried out. This is done by the proposed error simulator. The

perturbed points resulted from the error simulator are processed and evaluated with

the identical evaluation software, used to evaluate the original captured points. The

points perturbation process is repeated for many number of times. The measurement
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result from each simulation run is stored. From all the stored measurement results,

a statistical evaluation is carried out to estimate the measurement uncertainty. The

estimation is derived by calculating standard deviation from the stored results (GUM

Annex 3). After estimating the measurement uncertainty, the complete measurement

result can be stated as: Y ± U .

The proposed error simulator model utilized a spatial statistic method which emerges

from a Geo-spatial study [Cressie [1993]]. Fundamental idea of spatial statistic is that

points are correlated each other depends on length of their spatial distance with respect

to each other. The technique is used to simulate error of points for the perturbation

procedure in the simulation run. A perturbed point p′i is obtained by multiplying a

point pi, obtained from the measurement, with perturbation variance matrix Terr,

which can be written as:

p′i = Terr pi (3.10)

and matrix Terr is defined as:

T =


1 −εθz εθy εx
εθz 1 −εθx εy
−εθy εθx 1 εz

0 0 0 1

 (3.11)

where εθa is rotation error around a-axis and εa is translation error along a-axis. Hence,

the perturbation matrix contains six types of error of a point, which are translation

error along x, y, and z-axis and rotation error around x, y, and z-axis (roll, pitch, yaw).

These errors represent the volumetric error contribution in the measurement process.

A function of spatial statistic technique is used to generate these errors. The function

is generated from a multi-variate random distribution based on the selected variogram

function. There are three main variogram functions which commonly used in this

process. They are Gaussian, exponential, and spherical models. The functions are

selected base on experimental data of variogram. A variogram of an observed random

field Z, which is a function of spatial location, is defined as:

var[Z(x)− Z(y)] (3.12)
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Figure 3.7: Presentation of a variogram function with its s, n ,r parameters.

Where x and y refer to a certain location (a point). Assuming the function of Z has a

constant mean, the equation can be written as:

var[Z(x)− Z(y)] = E[(Z(x)− Z(y))2] (3.13)

=
1

N

N∑
i=1

[Z(x)− Z(yi)]

From this point, a semi-variogram which describes the spatial autocorrelation of mea-

surement points can be defined as:

γ(x, y) = γ(h) =
1

2
E[(Z(x)− Z(y))2] (3.14)

where h is distance (lagging) between point x and y. Eq. 3.14 can be presented as

a graph as shown in 3.7. From this graph, there are three parameters that define a

semi-variogram; they are sill (s), nugget (n), and r (range) [Cressie [1993]]. Nugget is a

non-zero limit such as the variogram model is discontinuous in the origin. It represents

any random error which is not included in measurement uncertainty contributors. Sill

(s) resembles the variance of points which are contributed by many uncertainty sources,

such as illumination, part orientation, etc. Range (r) is the limit value which determines
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the limit in which the data is still correlated each other see (3.7) and it. These parame-

ters can be used to describe isotopic variogram model. To be more comprehensive, these

errors should represent the most uncertainty contributors in the measurement process.

Hence, the parameter to generate this variogram should also include the uncertainty

coming from sources of error in the measurement process. Hence, characterization and

analysis of error sources and quantification of their influences have to be studied. The

quantified error sources and their influence are used to support the model of error sim-

ulator to have a better estimate in simulating the variation during the measurement.

These factors will be studied and presented in the following section. The definition of

the three model of Gaussian, exponential, sphere, variograms are:

Gaussian Variogram:

γ(h) =

{
0 h = 0

n+ s
(

1− exp
(
−3 ||h||

2

r2

))
h 6= 0

(3.15)

Exponential Variogram:

γ(h) =

{
0 h = 0

n+ s
(

1− exp
(
−3 ||h||r

))
h 6= 0

(3.16)

Spherical Variogram:

γ(h) =

{ 0 h = 0

n+ s

(
3||h||
r −

1
2

(
||h||
r

)3
)

0 < ||h|| ≤ r

n+ s ||h|| ≥ r

(3.17)

3.3 Uncertainty characterization

The purpose of this section is to support the proposed error simulator such that the

simulator includes the significant error sources, involved in the measurement by means

of FVM instrument. This section is divided into three sub-sections. The first part,

the procedures which support the study of influences factor for the measurement with

FVM instrument are presented. The procedures include substitute geometry fitting,

calibration of flatness (form) and filtering methods to deal with outliers. Following this

part, the study of influencing factors is carried out by identifying relevant source of

error in the measurement. Finally, a summary will be derived regarding the influencing

factors which affect the results of measurement by means of FVM instrument.
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3.3.1 Fitting procedure, flatness (form) calibration and filtering

3.3.1.1 Fitting procedure: line, plane, and sphere

There are three types of geometries used to conduct the study of uncertainty analy-

sis; they are line, plane, and sphere. The first two are linear geometries and the last

one is non linear geometry. From these basic substitute geometry, a more complex

measurement can be derived as will be presented in the case studies section, such as

perpendicularity measurement. The classification of linear and non-linear geometries is

based on types of their defining parameters, linear or non-linear form [Shakarji [1998]].

Plane geometry was used the most in the study. Line geometry is used to study edge

measurement and sphere geometry for point variability study. Two main parameters

were calculated for the analysis. They are sigma of residual and form error (flatness

error for the plate sample and sphere form error). The selection of sigma of residual

is to understand the overall measurement noise, representing random noise, with re-

gard to the different measurement conditions and types of material to be measured.

Meanwhile, form errors are selected to represent the variation of every single point in

different conditions. Since, form errors calculation is affected by every single point on

the boundary as there is no averaging effect when fitting is carried out [Moroni and

Petro [2008]]. Systematic error is estimated for thermal drift study of the instrument.

Distance to reference plane and distance between two sphere centers from a continuous

measurement sequence were calculated to estimate this error. Two types of fitting were

used: least square and minimum zone fitting.

1. Least Square Fitting (LSQ)

LSQ fitting is used in verification of dimensional tolerance, such as distance, size,

etc. It is a solution of non-linear optimization solution of eq. 2.13. The solution of

this optimization is presented by Shakarji [Shakarji [1998]]. Thanks to line and plane

which have linear defining parameters, the optimization problem can be converted

from unconstrained non-linear to constrained linear optimization problem and an exact

solution exist to obtain the global optimum solution. Hence, there is no uncertainty

contribution from this fitting procedure. The unconstrained non-linear optimizations
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are formulated as:

arg min
a,x

n∑
i=1

|a× (xi − x)|2 for Line (3.18)

arg min
a,x

n∑
i=1

|a · (xi − x)|2 for Plane

where a is the unit normal vector, xi is the i-th point, x is the point on line/plane,

and n is number of points. Basically, these equations are minimizing the sum of square

of orthogonal distance of each of the points to the fitted geometry. The procedure for

fitting line and plane from points is explained as follow. One have matrix M which

contain all the points. M is defined as [x1 y1 z1; · · · ;xn yn zn]. For line and plane, the

parameters to be fitted are a point on line/plane and the unit normal vector. A point

on line/plane can be obtained by averaging from all the points position. Thus, it is

the centroid. For the unit normal vector, Eigen vectors from the matrix M are derived.

Singular value decomposition (SVD) can be used to find these vectors. Hence, unit

normal vector for a line is the Eigen vector corresponds to the largest singular value.

And for a plane, it is the one correspond to the smallest singular value. Meanwhile,

sphere is classified as non-linear geometry. Finding solution for this fitting problem is

more difficult and iterative algorithm is commonly used. Lavenberg-Marquardt (LM)

algorithm is suggested by [Shakarji [1998]] to solve the fitting problem. Details of the

fitting and algorithm for sphere as well as the improved version of the fitting algorithm

are elaborated in Appendix A.

All the orthogonal distances of a point to the fitted geometry (line, plane and sphere)

were calculated and the statistical description of the collected distance were extracted.

The sigma of residual is the statistical standard deviation of all these distances, thus

the standard deviation of the fitting error. The illustration of sigma of residual calcu-

lation is depicted in fig. 3.8a in the case of plane.

2. Minimum Zone Fitting (MZ)

Based on ASME Y14.5.1M [ASMEY14.5.1 [1994]], geometric tolerance verification

requires MZ fitting for the procedure. This tolerance verification deals with form error

evaluation. Form error is a zone (tolerance zone) in which all the obtained points from

measurement lie inside the zone. The form error is illustrated in fig. 3.8b for a flatness
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Figure 3.8: (a) distance of a point to the fitted plane, (b) flatness error.

error. The zone t is a solution of non-linear optimization as:

t = arg min
param

j(max di −min di) (3.19)

Where param is the defining parameter for the substitute geometry and di is the

distance of points i-th to the substitute geometry. The procedures used in this study to

approximate and solve this optimization problem are by first fitting substitute geometry

by LSQ solution and find the different between the maximum and the minimum distance

(error) of all the points to the fitted LSQ geometry.

3.3.1.2 Flatness (form) calibration

The calibration process utilized method of multi-position measurements. The calibra-

tion was carried out by a bridge-type CMM with MPEE = 2µm + L
300µm. There

are three plate samples were calibrated for their flatness values. They are aluminum,

stainless steel, and titanium. These three plates are in the form of rigid thick plate,

while the other samples used in this study are in the form of sheet metal such that a

deflection may occurs on them. The other reason of the selection of these samples are

aluminum, stainless steel, and titanium can be found in many metal-based industrial

product, e. g. casting, cutting tool, mold, biomedical application, etc. Furthermore,

especially for stainless steel and titanium, these metals have surface which can be con-

sidered as lambertian (see next chapter). The lambertian surface is preferable for FVM

instrument since it is better in determining the focus variation of a point. By this,

the identification of a surface becomes easier. The calibration for flatness is similar
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Figure 3.9: flatness calibration.

to that one for distance (length) calibration (see section 3.1.2). Instead, there is no

correction to the calibrated value. Hence, there is no uncertainty contribution due to

correction of measured value (ucorr). The calibrated value is an average result from all

measurements. As such, the uncertainty contributor is simpler compared to the length

calibration. The expanded uncertainty for form error calibration becomes:

U = k

√
u2
rep

n1
+
u2
geo

n2
(3.20)

where urep and ugeo are calculated by using (eq. 3.5) and (eq. 3.8), respectively. We

can observe that the uncertainty contributors are only from the uncertainty of the

repeatability of the CMM and from the form error of the measured part and CMM

geometric error. The measurement data in the calibration process is arranged identical

to the one presented in table 3.1. The four positioning and the calibration procedure

are depicted in fig. 3.9. Meanwhile, the calibration results for the three material plates

are presented in table 3.1.
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Metarial Types

aluminum Stainless Steel Titanium

Flatness [µm] 25.1(8) 4.77(5) 4.1(2)

Table 3.1: Results of the flatness calibration and their uncertainty (represented according

to GUM [100:2008 [2008]]).

3.3.1.3 Data filtering for outliers removals

After acquiring the data from the instrument, filtering procedure has to carried out to

remove outliers in the data points obtained by FVM instrument. They will be used for

initial validation of the proposed simulation approach and for case studies. There are

four types of areal filtering used for the obtained points: 3-sigma-based filter, median

filter, Linear Gaussian areal filter (LG) [ISO16610-61 [2012]], and Robust Gaussian

Regression (RGR) areal filter [ISO16610-71 [2014]] and media filter. The 3-sigma-

based filter is the filter which will be used in the section uncertainty characterization

and validation (chapter 3.3 and 3.4) which is based on removing points having distance

to an ideal geometry more than three times of the standard deviation of all residuals.

All the remaining points after outliers removal are the original points obtained from

the acquisition. Basically, the LG and RGR types of filter are originally for the use in

surface texture measurement in which the long and short-scale of surface components

should be separated before characterizing the surface [ISO16610-1 [2006]]. In this case,

these filters are used to deal with outliers as comparison methods to the 3-sigma-

based filtering and median filtering method. The main difference of these two filters

compared with the 3-sigma-based filter and median is that the resulted points after

applying filtering procedure are synthetic points. Meanwhile, for 3-sigma and median

filter, the remaining points are the original one. These points are resulted from a certain

calculation with respect to its neighbors. General filtering can be formulated as:

z(x, y)
filter→ w(x, y) (3.21)

Where z(x, y) and w(x, y) are the original and filtered-points at point (x, y). The

filtered points can contain long-scale, short-scale, and certain-scale components. They

depend on the type of filter applied [Leach [2013]]. High-pass filter transmits the short-

scale (high-frequency) components while the low-pass filter transmits the long-scale
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(low-frequency) components. Certain-scale can be transmitted with a certain band-

filter (transmitting components with specific length of scale). In this case, since the

goal is to remove outliers, low-pass filters are used.

Linear Gaussian areal filter is based on ISO16610-61. This filter is linear since

it fulfills the requirement that if a linear filter is applied to two sets of surface data

which are additively superimposed, then the resulted filtered surface is identical to the

addition of the two surfaces data set which are separately filtered. Linear filter can be

formulated as:

az1(x, y) + bz2(x, y)
Linearfilter→ aw1(x, y) + bw2(x, y) (3.22)

Fundamentally, linear filter is a moving average with respect to neighborhood of a

point with a weighing function of certain size. The moving average of linear filtering is

formulated as:

w(x, y) =

∫ ly

0

∫ lx

0
s(x− u, y − v)z(u, v) du dv (3.23)

where ly and lx are the height and width of the surface area, respectively. s(·) is the

weighing function with filter size of u and v in x− and y−direction, with distance

between point du and dv, respectively. In order to prevent a surface with a constant

topography height such that it is not affected by the filter, normalization is applied to

eq. 5.3 becomes:

w(x, y) =

∫ ly
0

∫ lx
0 s(x− u, y − v)z(u, v) du dv∫ ly
0

∫ lx
0 s(x− u, y − v) du dv

(3.24)

The type of a linear filter is determined by the type of its weighing function. For

Gaussian linear filter, the weighing function is:

s(x, y) =
1

αλc
e−π(

x
αλ) 1

αλc
e−π(

y
αλ) (3.25)

As such, by substituting eq. 3.25 into eq. 3.24, the Gaussian linear filter is represented

as:

w(x, y) =

∫ ly
0

∫ lx
0

1
αλc

e−π(
x
αλ) 1

αλc
e−π(

y
αλ)z(u, v) dudv∫ ly

0

∫ lx
0

1
αλc

e−π(
x
αλ) 1

αλc
e−π(

y
αλ) dudv

(3.26)
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Digital implementation of eq. 3.27 can be directly applied into:

w(x, y) =

∑ny−1
l=0

∑nx−1
k=0

1
αλc

e−π(
x
αλ) 1

αλc
e−π(

y
αλ)z(u, v) ∆u∆v∑ny−1

l=0

∑nx−1
k=0

1
αλc

e−π(
x
αλ) 1

αλc
e−π(

y
αλ) ∆u∆v

(3.27)

ISO16610-71 describes Robust Gaussian Regression areal filter. This filter is a non-

linear filter. The basic concept of robust regression filter can be formulated as:

arg min
w(x,y)

(∫ ∫
ρ(z(x, y)− w(x, y))2s(x− u, y − v) dudv

)
(3.28)

where ρ is a lost-function. This function is selected such that the outliers will not

influence the filtered points as in the case of regression method if this lost function is

not applied in eq. 3.28. The residual in the regression method is estimated from the

difference between the surface point to the second-degree polynomial surface applied

to the points. As such, eq. 3.28 can be expanded as:

arg min
βh,j−h

ρ(z(u, v)−
2∑
j=0

2∑
h=0

βh,j−h(x, y)(x− u)h(j − v)j−h)2S(x− u, y − v) dudv

(3.29)

Where β(·) is the estimated parameter for second-degree polynomial. In ISO16610-

71[ISO16610-71 [2014]], the lost function is replaced with a new weighing function .

This weighing function is the first derivation of the lost function according to Beaton

[ISO16610-71 [2014]] and is formulated as:

ψB(u, c) =
1

2

∂ρB(u)

∂u
=

{
u
(

1−
(
u
c

)2)2

0
(3.30)

Finally, according to ISO16610-71, the Robust Gaussian Regression filter is:

arg min
βh,j−h

(

∫ ly

0

∫ lx

0
(
ψB(z(x, y)− w(x, y), c)

z(x, y)− w(x, y)
(z(u, v)−

2∑
j=0

2∑
h=0

(3.31)

βh,j−h(x, y)(x− u)h(j − v)j−h)2s(x− u, y − v) dudv))

The standard describes in detail the digital implementation of this filter.

Median filter is also a type of filter which depends on its neighbors to determine

whether a point is an outliers or a normal point. The filter procedure is as follows. For
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each point z(i, j), a relative distance S(i, j) is a distance between z(i, j) to its neighbors

within a specific window of size m× n, {m,n ∈ integers}. S(i, j) is calculated as:

S(i, j)m,n = |z(i, j)− z(i±m, j ± n)| (3.32)

where m, n = 0 · · ·w

Filtered point zfiltered(i, j) depends on a value V (i, j) which is the median of S(i, j)m,n.

The filtering procedure is defined as:

V (i, j) = median (S(i, j)m,n) (3.33)

zfiltered(i, j) =

{
z(i, j), V (i, j) < T
nearest z(i, j), otherwise

T is a threshold value to determine whether a point z(i, j) is an outliers or ordinary

point. To determine T , firstly, all the values of V (i, j) ∀z(i, j) are calculated. Sub-

sequently, V (i, j) is sorted in ascending order. Finally, the value T is selected as the

99%-th position of the sorted V (i, j). Median filter is the most computationally inten-

sive compared to the other type of filters used in the case study since sorting procedure

to determine median is needed.

3.3.2 Influencing factors

Optical instruments, especially based on image sensor, are greatly affected by the type

of materials to be measured. Basically, materials are classified into three groups based

on how they reflect incident light. They are lambertian, specular, and combination of

them [Forsyth and Ponce [2003]]. Interaction between incident light (electromagnetic

wave) and part surface is illustrated in fig. 3.10a. In the figure, the radiosity is depended

on its radiance received from the illumination source. a point (xs, ys) is a point on the

surface of the illumination source. Meanwhile, a point on surface receiving illumination

is defined as (x, y). Radiance L(x, xs → x) is defined as amount of energy at a point

travel per unit time per unit area perpendicular to the direction of the radiance per

unit solid angle and its unit is [Wm−2sr−1]. The unit per steradian [sr−1] seems to

be a strange definition. But, it looks reasonable since definition of illuminated point

on a surface patch is modeled as a hemisphere visible from the source fig. (3.10a).

Thus, the solid angle [sr−1] is an infinitesimal area of the incoming radiance entering
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Figure 3.10: (a) Interaction between surface and incident light, (b) Lambertian surface,

(c) Specular surface.

the hemisphere. The intensity of the image is linearly depended on the radiosity and

formulated as:

B(x, y) = ρ(x, y)

∫
Ω

L(x, y, xs, ys→ x, y)

(
cosθs cosθ

d2

)
(3.34)

Where L(x, y, xs, ys→ x, y) is its radiance and ρ(x, y) is the albedo which is a ration of

outgoing radiance to the input radiance and a dimensionless fraction which has value

from 0 to 1. Thus, 0 means that no light is reflected and vise versa.

Lambertian surface equally reflects the intensity they receive to any direction, in

other words, their response is linear. Practically, a lambertian surface will appear simi-

lar from any angle of view. The opposite is a specular surface. This surface has spurious

reflection with regard to the incoming intensity; hence create a non-linear response to

the image sensor. The appearance of specular surface varies based on the viewing angle,

thus its directional. Fig. 3.10b and 3.10c respectively illustrate lambertian and specu-

lar surface. Based on this theoretical background, optical measurement is influenced by

the variability of the incoming radiance to the image formation sensor. Fig. 3.11 show

the Ishikawa diagram that influence the uncertainty of optical measurement based on

the theory.

From the figure, there are four main groups of error sources related to measurement

using optical FVM instrument. They are machine (instrument’s parameters), material

(part shape and illumination), methods (procedure) and environment (environment

and drift). FVM instrument has four main parameters which have to be defined by the

user and directly impact the measurement results. The parameters are exposure time
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Figure 3.11: Ishikawa diagram to describe many contributors of uncertainty.

to define the power of the illumination, contrast level, and both vertical and lateral res-

olution. Procedure used when measurement is carried out most likely to have influence

to the measurement result variation. For example, how the operator place the sample

(approximately flat or tilted), what objective lens is used, and whether the measure-

ment involves single image or stitched-multiple image measurement will contribute the

the result variation. Finally, part shape (e. g. edge, peak, valley, etc) and illumination

(axial, ring light and polarizer) have impact to the measurement result since they affect

the incoming radiance received by the CCD sensor of the instrument. Light coming

from the ambient environment, e. g. room light, and drift of the instrument due to

long measurement acquisition may have the impact on the measurement result.

Various kinds of materials were used in this study. It is worth noting that all

the measurement repetitions were run automatically and continuously without any

intervention by developing scripting programming and run by the instrument. In this

way, the repeatability results will be more guaranteed and the automatic run of the

instrument will minimize other uncertainty source such as operator factor.

Measurement noise statistic, which represents the random error, is considered as

a Gaussian (normal) distribution. To support this consideration, residuals from one

measurement of the aluminum, stainless steel, and titanium plates are analyzed. A

residual is defined as distance between a point to the least-squared (LS) fitted ideal
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Mean [µm] Sigma [µm]

Aluminum −2.28× 10−7 4.49

Stainless Steel 1.62× 10−6 1.37

Titanium −9.15× 10−6 2.00

Table 3.2: Mean and sigma of the residuals for aluminum, stainless steel, and titanium

plate measurement.

Figure 3.12: Distribution of the residual.

substitute geometry. The statistical analysis is carried by using Shapiro−Wilk method

for normality test. This test is chosen due to the fact that this test is the most insen-

sitive one with regard to data containing outliers, even though the outliers will lower

the resulted test statistic [Huber-Carol et al. [2002]]. From this result, the obtained

p-value are 0.02, 0.03, and 0.08 for aluminum, stainless steel, and titanium respectively.

It shows that the residual statistic follow the considered distribution as being assumed

with mean approximately zero and a certain value of deviation. The means and de-

viations of all residuals from the three material measurements are shown in table 3.2.

From the table, the means of the residuals are very close to zero with a certain standard

deviation (σ). In addition by visual observation shown in 3.12 , the residuals are very

close to Gaussian distribution. Measurement parameters used to obtained the points

to observe the error behavior are detailed in table 3.3.

Statistical analyses have been carried out to study the possible influence factors and
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Material Exposure time Contrast Vertical

resolution

Lateral

resolution

Aluminum 114.4 µs 1.33 0.4 µm 7.82 µm

Stainless Steel 116.4 µs 1 0.4 µm 7.82 µm

Titanium 224 µs 1 0.4 µm 7.82 µm

Table 3.3: The measurement parameters used to study the error behavior.

to understand how these factors affect the measurement results. Analysis of Variance

(ANOVA) method is used for the statistical analyses [Montgomery [2001]]. A basic

filtering by removing points having distance to the fitted geometry > 3σ is applied

before analysis is carried out. In general for this study, number of points removed

(those with distance to the ideal substitute geometry > 3σ) are around < 0.6% from the

total captured points. By knowing these factors, it can be used as base for uncertainty

estimation. Furthermore, it contributes to the development of a good measurement

procedure to reduce the uncertainty. Subsequently, the studies are consisted of:

1. Influence of ambient light and changing the magnification lens.

2. Influence of different types of illuminations.

3. Influence of different level of surface steepness from different materials.

4. Influence of edge measurement (peak-valley shape).

5. Long measurement (drift) behavior.

6. Single point uncertainty.

7. Influence of primary user-defined measurement parameters (Instrument’s param-

eters).

3.3.2.1 Influence of ambient light and different magnification lens.

Since the FVM instruments sensor is a Charge-Couple Device (CCD) base image sensor,

signal received by the CCD element is a combination of signal (light) reflected from the

work piece and the signal (light) of the ambient where the measurement is conducted

(fig. 3.13). Hence, the measurement result greatly dependents on illumination, both

from the optical system and from the environment. Based on this, influence of ambient

light variation was studied. A lambertian surface of a random structured injection-

molded polymer surface was used. The material and one of the measurement results

are shown in fig. 3.14. In this test, there are four different types of measurement
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Figure 3.13: Illustration of signal acquisition on the image plane.

Figure 3.14: (a) Random-structure injection-molded polymer, (b) One of the measure-

ment result by 10X objective lens utilizing axial-light.
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Figure 3.15: The influence ambient light.

conditions. They are measurement with 5X lens in lighted and dark room (acquisition

mode type 1 and type 2 respectively) and with 10X lens in lighted and dark room

(acquisition mode type 3 and type 4 respectively). In each condition, 20 measurements

were repeated. For all the repeated measurement in each acquisition conditions, the

measured sample area is identical except that smaller area will be obtained with 10X

lens since it has smaller FOV. Polarized light was used for the measurement with 5X

lens with high brightness to be able to capture the surface data. Statistical ANOVA

analyses were carried out to compare and analyze the obtained results. These results

are depicted in fig. 3.15. Individual plot and their means are presented. For type 1

and 2, they are shown in the left side (of the red border line) of each figure and the

right side for type 3 and type 4. Mean plot and interaction plot between the two factor

(Lens type and ambient light) are shown in fig. 3.16 and fig. 3.17 respectively.

From the results, different ambient illuminations do not affect the sigma of residual

for both 5X and 10X objective lens. Also for flatness, there is no significant effect
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Figure 3.16: Mean plot of the two factors.

Figure 3.17: Interaction plot of the two factors.
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Factors Difference Statistical test

from dark to lighted room +0.01 µm not-significant

from 5X to 10X objective lens −1 µm significant

Table 3.4: Summary of ambient light and different magnification lens.

for both 5X and 10X lens measurement results. The calculation of sigma of error

and flatness involved ≈1000000 acquired points. For different magnification lens, it

is clear that, there is a significant difference in the obtained results. The noise of

measurement is lower for the acquisition by 10X lens (higher magnification). The reduce

of noise by 10X lens is around 1.5 µm. Giusca et al [Giusca et al. [2014]] also reported

similar observation in the case of measurement noise calibration for surface topography

measurement. In their report, lower measurement noises were obtained with higher

magnification lens. It occurs because with different magnification lens, the numerical

aperture (NA) of the optical system is different. A higher magnification lens provides

higher NA value. As such, higher steep surface can be measured with lens having higher

NA. Moreover, the increase of magnification lens will increase the lateral resolution.

The reason is by increasing the magnification lens, the FOV will be reduced with the

same size of CCD image sensor. It means that the sampling distance (distance between

pixel/points) will be lower and thus increase the lateral resolution. Subsequently, the

surface observed by the optical system with lens having higher NA compared to the

one with lower NA will be different which leads to different measurement results. From

this point, it is not wise to directly compare the measurement results obtained with

different magnification lens. For the interaction between the lens type and ambient

light, from ANOVA test, there is no significant effect due to the interaction between

them. Table 3.4 presents summary of this study.

3.3.2.2 Influence of different types of illuminations.

Since there are three different illumination sources that can be selected by the user,

it is essential to study variability caused by these different illuminations. The first

study used random-structures injection-molded surface (fig. 3.14) and the second one

used aluminum plate (fig. 3.18a). The study using the polymer material consists of

two different acquisition modes: 5x lens with ring-light and 5X lens with polarizer.
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Figure 3.18: Acquisition results from six different material samples (a) aluminum, (b)

steel, (c) patterned Lambert and specular, (d) black-layered coated steel, (e) stainless steel,

(f) titanium.

The measurements were repeated 20 times and around 1000000 points were involved

in the calculation of noise sigma and flatness. All analyses were conducted by using

statistical ANOVA analysis. Fig. 3.19 shows the results. They show that the two

different illuminations between ring-light and polarized light significantly affect the

results. The sigma of residual calculated from points obtained by ring-light is lower

around 0.6 µm compared to the one obtained by polarized light.

The second study used aluminum plate sample material which is considered as

specular surface. The plate was measured in four different positions and each position

was varied with a degree of 00, 50, 100 and 150 by the use of 3D rotation unit. Position

1 and 2 are position in which the axis of the rotation unit is horizontal and position

3 and 4 for the vertical one. Each of these positions was rotated clockwise and anti-

clockwise. The positioning is depicted in fig. 3.20. Five measurements were repeated

for each position and each orientation. Hence, total of 80 measurements were carried

out for each illumination type. The results are shown in 3.21. The first row of the

figures shows the sigma of residual and the second row shows the flatness error. In this

study, the three illuminations were used: axial light, ring light, and polarizer. All of

them were used with 5X objective lens. Based on ANOVA statistical analysis, all the
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Figure 3.19: Influence of different illumination for random-structured injection-molded

polymer.

Figure 3.20: Setup for multi-position measurements.
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Figure 3.21: Influence of different illumination for aluminum plate in different position

of measurements.

three illumination types are significantly different in their results, both for the sigma of

residual and the flatness as shown in fig. 3.21 . This figure seperately presents the mean

plot for each positioning and degree orientation. Moreover, they are also significantly

different by variation of position and orientation angle. At 00 and 50, polarized light

gives the lowest sigma of residual while ring light gives the lowest of flatness. Axial light

has the highest sigma of residual and flatness. For all the four positions, polarized light

gives the lowest sigma of residual. For further analysis, fig. 3.22 and fig. 3.23 shows the

mean and interaction plot for all the three combined factors (illumination type, position

and degree of skewness), respectively. From these two figures, the levels of illumination

are 1=axial light, 2=ring light and 3=polarized light. From the combined mean plot, it

shows that for aluminum sample (which is categorized as specular), by using polarized
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Figure 3.22: Mean plot for all the combined factors (Illumination type, position and

degree of skewness).

Figure 3.23: Interaction plot for all the combined factors (Illumination type, position

and degree of skewness).
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Factors Difference Statistical test

ring light to polarized (specular) −0.6 µm significant

ring light to polarized (Lambert) +0.45 µm significant

Table 3.5: Summary of different type of illumination.

No. Material Surface Type

1. Aluminum Specular

2. Black-layer coated steel Lambertian

3. Stainless steel Lambertian

4. Steel Specular

5. Titanium Lambertian

6. Patterned Lambert+Specular composite Lambertian+Specular

Table 3.6: Materials used and their classification.

light, the sigma of residual decrease around 0.8 µm and increases by around 0.7µm when

the degree of skewness is increased. Moreover, There is a significant interaction between

type of illumination and degree of skewness. Meanwhile, not significant interaction

between illumination type-position and position-degree. In general, it seems that the

increase of degree orientation, the sigma of residual and the flatness error also increase

except for axial light which seems to decrease. As summary, the changes of sigma of

residual from ring-light to polarized light for both Lambert (random injectioned-molded

surface) and specular (aluminum) surface are depicted in table 3.5.

3.3.2.3 Influence of different level of surface steepness from different ma-

terials.

Different materials have different behavior of reflecting the incident light toward them

back to the CCD sensor. Hence, it contributes to the variability of the results by

different sample material. This study purposes to validate this hypothesis. There are

six different materials used in this study, and they are listed in table 3.6 along with

their surface type. Fig 3.18 shows the measurement results for all the six materials

placed perpendicular to the axis of objective lens. The classification is based on the

appearance of the surface from different angle view, either similar or depend on its

directional.
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Figure 3.24: Measurement results from different orientation degree for (a) titanium (Lam-

bertian) and (b) aluminum (Specular) with 5X lens.

These samples were placed on a cylinder rod. Then, the cylinder rod was mounted

on the 3D rotation unit as shown in fig. 3.20. By this, four different positions and

degree orientation can be obtained to study the effect of these variations. Each four

locations were varied of 00, 50, 100 and 150. Positions 1,2,3,4 were equal to the previous

study as shown in fig. 3.20. 5X objective lens was used with default setting of lateral

and vertical resolution. Acquisition results obtained from different degree orientations

are depicted in fig. 3.24 for the case of aluminum and titanium. The exposure time

(brightness) and contrast were adjusted accordingly to be able to capture good surface

points. In one measurement cycle, 1000000 data points were obtained. There were

five replications for each position and orientation so that 80 measurements for each

material type have to be carried out. Results are shown in fig. 3.26 for aluminum,

black-layer coated steel, stainless steel, steel, and titanium. Note that, for aluminum,

it is again included for a whole view of the result comparison. In addition, this study

is also carried out for a patterned Lambert and specular surface (see fig. 3.25). All

results are compared by statistical ANOVA analyses.

From the results of six materials (fig. 3.26), they show that different positions and

degree orientation significantly affect the measurement results. For patterned lambert

and specular surface, since it has significant larger error, it is shown separately in fig.

3.27 For steel, the measurement results can be obtained only for up to 50 of steepness.

As such, the plot only presents data up to this degree. In addition, the value of the
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Figure 3.25: (a) Patterned Lambert+specular sample and acquisition result when rota-

tion axis parallel to (b) x-direction and (c) y-direction.

Figure 3.26: Influence of different position and orientation degree for different materials.
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Figure 3.27: Influence of different position and orientation degree for Patterned Lambert

and Specular surface.
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Measurement

Type

Calibrated

Flatness [µm]

Mean flatness

at 00 orienta-

tion [µm]

Difference

Aluminum (axial

Light)

25.1 27.031 1.937

Stainless Steel

(axial light)

4.77 8.082 3.312

Titanium (axial

light)

4.1 12.034 7.934

Table 3.7: Comparison between the measured flatness and the calibrated value.

calculated sigma of residual can not be directly compared each other. The black-layer

coated steel and steel are in a sheet form so that there is a possibility of deflection

of these sheet during the measurement, thus increase the sigma of residual. Also for

aluminum, it has higher calibrated flatness value compared to that of stainless steel

and titanium. Hence, it has higher sigma of residual compared to these two materials.

There are comparable results for stainless steel and titanium since both of them have

similar calibrated flatness value. For this result, similar value of the sigma of residual

for different positions can be observed. But, different results can be observed for these

measurements with regard to different degree orientation. A linearly decreasing trend

for sigma of residual is observed for titanium. A different situation occurs for the

stainless steel. With this material, it seems to have similar sigma of error with respect

to different orientation except for orientation at 50. In this orientation the value is

significantly bigger compared to that one from the other degree orientation. Range of

variation of the error for aluminum (axial light), stainless steel, and titanium are 5 µm,

2 µm and 2 µm, respectively. In general, it can be observed that the sigmas of residual

of the three lambertian surfaces less vary compared to the specular one. It is coherent

with the definition of lambertian surface in which the incident light is reflected equally

to the whole direction instead of only a single direction as can be observed in the

specular surface. For comparison to the calibrated flatness value, the resulted flatness

error for aluminum, stainless steel, and titanium are presented in table 3.7 . From the

table, there are difference for the measured flatness observed ranging from 1.9 µm to

7.9 µm, depending on the material types. In general, the range of sigma of residual for
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material range Statistical test

Aluminum 2.5 µm significant

Stainless steel 2 µm significant

Titanium 1 µm significant

Table 3.8: Summary of range of sigma of residual with respect to different placement and

tilted angle.

Figure 3.28: Peak and valley edge measurement.

aluminum, stainless steel and titanium surface are shown in table 3.8.

3.3.2.4 Influence of edge measurement (peak-valley shape).

[De Chiffre and Hansen [1995]] observed problem of measuring convex (peak shape)

and concave (valley shape) edge since it affects the measurement results and contribute

to the measurement uncertainty. Possible reason is because of inter-reflection effect

from the surrounding wall in valley-shape measurement as reported by [Phong [1975]]

and [Forsyth and Zisserman [1989]]. Based on this, the comparison study of the effect

of measured shape (peak or valley shape) to the sigma of residual was carried out.

This experiment used part of a fixture support which has saw-teeth profile. The sigma

is calculated as the distance of obtained points to the fitted line, as ideal geometry.

The part is made of steel and coated with grey-color layer, which makes the surface

as lambertian surface. Fig. 3.28 shows the part and the measurement process. The

peak and valley-shape edge measurement were obtained by measurement of the saw-

teeth profile. The measurement was carried out with 5x objective lens and polarized

axial-illumination to be able to capture the points. Replication was carried out 50
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Figure 3.29: Influence of concave (valley): level 1 and convex (peak): level 2 measure-

ment.

times for each measurement type. Around ≈30000 points and ≈45000 points were

obtained for valley and peak edge measurement, respectively. Subsequently, a line

is fitted from the obtained points to calculate the sigma of residual. Results of this

influence study are depicted in fig. 3.29. The horizontal axis has two level, which are

level 1 for valley-edge measurement and level 2 for peak-edge measurement. From the

statistical comparison, it shows that the sigma of residuals is significantly different in

both measurement conditions, and peak-edge measurement has lower sigma of residual.

Also from the number of points obtained, peak-edge measurement can capture more

points compared to the valley-edge one. Obtaining point on a valley shape can be more

difficult, it can be caused due to the inter-reflection effect of the illumination light,
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Factors sigma of residual from a fitted line

Peak 13 µm

Valey 11.5 µm

Table 3.9: Summary of different type of illumination.

Sigma (σ)[µm] Form error[µm]

Measurement

type

x-

direction

y-

direction

z-

direction

Mean Sigma

(σ)

Single Image 1.2 1.9 17.7 13.27 2.39

Multiple images 0.54 0.76 8.7 13.5 1.45

Table 3.10: Repeatability of a single point.

reflected to the CCD image sensor of the FVM instrument. Table 3.9 shows the mean

of the sigma of the residual when measuring peak and valey surface.

3.3.2.5 Single point uncertainty (stitching/no-stitching).

This study is to observe the variability of a single point by measurement of sphere

made of steel. The point is center point of a fitted sphere. There are two types of

sphere measurement for this study. The first type is sphere measurement from only

single image and the second one is from multiple images to involve stage movement and

stitching process. Number of repetition for each type of measurement is 50 times. For

sphere from single image measurement, total points obtained were ≈750000. The other

measurement obtained ≈3250000 points. As mentioned in [ISO10360-8 [2013]], only 25

points were selected from all the points for the sphere fitting procedure. Table 3.10

provides detail of the results. One can observe that the repeatability of the center point

obtained from stitched sphere is higher than the one from single image only. Hence, by

stitching procedure there is an averaging effect to the obtained points to suppress the

random noise. The result from the stitched points has around 50% higher repeatability.

Table 3.11 presents the difference of sigma of residual from points with and without

stitching.
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Factors Difference Statistical test

without stitching to with stitching −0.9 µm significant

Table 3.11: Summary of different type of illumination.

3.3.2.6 Long measurement (drift) behavior.

The behavior of the instrument in a long measurement is important to be investigated.

It is worth to study drift behavior of the instrument due to thermal-related issue. To

study this phenomenon, two types of measurement were conducted. The first one is a

calibrated titanium plate measurement while steel sphere measurement was carried out

for the second one. The measurement of plate did not involve stitching error as only

a single image was used in the study. Meanwhile, the study by sphere measurement

involved stitching operation from four images. Multiple image fields were used to obtain

the sphere surface. A G10 grade ball bearing was used for the sphere measurement.

ISO standard [ISO3290-1 [2008]] contains the details specification of this ball bearing.

Based on the standard, this ball bearing has 0.25 µm of diameter and form deviation

and roughness Ra of 0.02 µm. The measurement used 5x magnification lens with

default lateral and vertical resolution for this lens.

For the plate measurement, there were 30 continuous measurements with total time

span around 5 hours. Continuous measurement means that the instrument automati-

cally measured the surface in a repetitive way without any intervention to the instru-

ment. This can be realized by developing a measurement script and run by the FVM

instrument. Around 1000000 points were involved in data processing for each mea-

surement cycle. There are three parameters to be calculated from the measurements.

They are sigma of residual, flatness, and distance to reference plane. Sigma of residual

represents the measurement noise (random noise) behavior in long term measurement.

Behavior of every single point can be observed from the flatness value. For systematic

error, distance to reference plane was calculated to represent the measurement sys-

tematic error behavior. Detail illustration of distance to reference plane is shown in

3.30. In this figure, the reference plane P was selected as the first fitted plane from the

points obtained by the first measurement cycle. Then, the distance to reference plane

is defined as distance of a point on a plane, which is the centroid from all the obtained

points, to the reference plane P. Result of the thermal-related measurement behavior is
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Figure 3.30: Illustration of distance to reference plane.

shown in 3.31. For single image measurement, without stitching and stage movement,

we can observe that the random noise is stable in this period of time measurement.

The range of the sigma of residual is 0.0067 µm within 95% confidence level (2σ). The

results of the flatness calculation show a decreasing trend up to 10th measurement se-

quence. It shows the flatness value become stable 100 minutes after the instrument

run. Similar behavior is also observed for laser scanner even though in this instrument,

the effect is not as significant as the laser scanner has [Gestel et al. [2009]]. The flatness

interval (2σ) for the first 100 minutes measurement is 1.25 µm. Meanwhile, after the

period of 100 minutes the interval becomes 0.62 µm. Systematic error, represented as

distance to reference plane, is stable up to the 19th measurement which correspond to

the period of around the first 190 minutes. Note that, the value is shifted one position

to the left, since the 1st sequence is not included as the reference plane. Starting from

20th measurement, juggling phenomenon of the results can be observed. Confidence

interval (2) for the distance to reference plane value for the first 190 minutes (stable

behavior) is 0.16 µm, meanwhile after this period, the interval becomes 2.72 µm.

Results of long-term sphere measurement by sphere involving stage movement and

stitching are presented in 3.32. The measurement of the sphere surface involved four
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Figure 3.31: Thermal drift behavior (without stitching) by plane measurement.
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Figure 3.32: Thermal drift behavior (with stitching) by sphere measurement.
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images and then they are stitched together into single point cloud. The measurement

was run continuously for 46 measurements with total time span of around 6 hours. Total

points obtained from a measurement cycle are ≈3000000 points. Instead, not all points

were used for the sphere fitting. Only selected 25 points were involved in the sphere

fitting. The selection of 25 points from total points obtained is based on [ISO10360-8

[2013]]. Parameters calculated from the measurement after sphere fitting are sigma of

residual, distance of two consecutive centers, and sphere form error. Similar to the

plate measurement, sigma of residual can present the random noise behavior. Sphere

form error to describe every single point movement. The systematic error is represented

by distance of the two consecutive centers. Different behavior can be observed from

the result by measuring sphere. For all the three parameters, they show a similar

behavior. Stable results are observed for the first 40 measurements, which correspond

to the first 320 minutes of measurement. After this period, the measurement results

are shifted and the variation increase. The shifting of the means for these parameters

from the period before to after 320 minutes of measurement are about 3 µm for sigma

of error and 40 µm for form error. While for the shifting between the mean of the

center distance before 320 minutes measurement period and the center distance of the

last measurement of this period and the first measurement after the period is about

25 µm.

3.3.2.7 Influence of primary user-defined measurement parameters (In-

strument’s parameters).

The previous sub-section studied the factors which can not be controlled by the user

or operator of the instrument. Instead, this sub-section studies controllable factors

which can be set by the user to get optimal captured points. This study is important

to investigate the effects of the four basic parameters which should be defined by the

user before they start the measurement. Moreover, these basic parameters are also

relevant to other optical instrument. The four parameters are lateral resolution, ver-

tical resolution, exposure time (brightness), and contrast. For this investigation, plate

titanium was used since from the previous study, it gives a good result and is classified

as a lambertian surface. Table 3.12 presents details for the study of lateral and vertical

resolution and the levels correspond to the level show in fig. 3.33. The details for study

of exposure time and contrast are presented in table 3.13. The levels shown in fig. 3.33
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Type Level Resolution Lateral

points

distance

[µm]

Number

of ob-

tained

points

Replication

Lateral 1 Highest 1.75 ≈2000000 25

Lateral 2 Medium

(default)

2.62 ≈1000000 25

Lateral 3 Medium to

low

4.66 ≈300000 25

Lateral 4 Lowest 7.82 ≈100000 25

Vertical 1 Highest 2.62 ≈1000000 25

Vertical 2 Medium

(default)

2.62 ≈1000000 25

Vertical 3 Medium to

low

2.62 ≈1000000 25

Vertical 4 Lowest 2.62 ≈1000000 25

Table 3.12: detail of lateral and vertical resolution influence study.

Type Level Classification Value

Set

Lateral

points

dis-

tance

[µm]

Number

of ob-

tained

points

Replication

Exposure

time

1 Highest 339

µs

2.62 ≈1000000 25

Exposure

time

2 Medium (de-

fault)

240

µs

2.62 ≈1000000 25

Exposure

time

3 Lowest 110

µs

2.62 ≈
1000000

25

Contrast 1 Highest 1.5 2.62 1000000 25

Contrast 2 Medium (de-

fault)

1 2.62 ≈1000000 25

Contrast 3 Lowest 0.5 2.62 ≈1000000 25

Table 3.13: detail of brightness and contrast influence study.
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Figure 3.33: Influence of different vertical and lateral resolution.

124



3.3. UNCERTAINTY CHARACTERIZATION

Figure 3.34: Interaction plot between vertical and lateral resolution.

are explained in this table. All measurements were repeated 25 times. 5X objective lens

and axial illumination were used. Statistical analyses have been used for the influence

study of these parameters to the measurement results. It is worth to note that the

resolution medium (level 2) is the default parameter from the instrument software for

the chosen lens. Also for the brightness and contrast, level 2 (classification medium) is

the default one.

First part is the study of lateral and vertical resolution influence to the measurement

results. The range of level for both lateral and vertical resolution is based on the

resolution limit of 5x magnification of the objective lens. The results of this study are

presented in fig. 3.33 and are statistically analyzed by ANOVA test. One can observed

that there is a clear different behavior by varying the lateral and vertical resolution to

the sigma of residual and flatness error results. The decrease of the sigma of residual

by lowering the lateral resolution is observed. Instead, this situation does not happen

to the different vertical resolution. The sigma or residuals are statistically equal after

varying the vertical resolution. Interaction plot between lateral and vertical resolution

is depicted in fig. 3.34. From this figure, there is no significant interaction between

lateral and vertical resolution and it supports the conclusion of the reduce of sigma of

error by lowering lateral resolution.
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Figure 3.35: Illustration of lateral resolution.

Figure 3.36: Illustration of vertical resolution.

There is a difference in the way of single point detection between the variation

of lateral and vertical resolution. In lateral resolution, by lowering it (larger lateral

distance), the points between the two distances of the higher resolution will be replaced

by a single point which is obtained by averaging of these points. This effect is illustrated

in fig. 3.35. In this figure, the new substitute point is averaged from its neighbor points

depending on the lateral distance set. Hence, by averaging effect, the noise of the

instrument is suppressed. As such, the sigma of residual and flatness error are reduced

when the lateral resolution is decreased. Different way of point detection is observed in

vertical resolution as depicted in fig. 3.36. There is no averaging effect by lowering the
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vertical resolution. As shown in the figure, instead of averaging effect, a cutting effect

is observed. In this effect, a surface point will be skipped, thus undetected, if it is lie

between the two vertical distances. Hence, the level of the noise will be identical with

varying vertical resolution as long as the lateral resolution is set equally. These results

can be applied in practice for geometric measurement, especially, form measurement.

As stated by Evans [Evans [2008]] and Giusca et al [Giusca et al. [2014]] that optical

instrument has considerably larger noise compared to the contact one. Moreover, form

measurement is very sensitive to noise. Hence, this noise should be compensated or

otherwise included in the uncertainty estimation. Subsequently, for form measurement,

a larger lateral resolution is preferable to suppress the measurement noise and the value

depends on the material to be measured.

To analyze further regarding the effect of lateral resolution, various levels of decima-

tions were carried out to observe the decrement of flatness error with the increase of the

deviation levels. The decimations were applied to the obtained points of a measurement

cycle of calibrated titanium plate. There are two types of the obtained points: type

1 which is the points obtained from a measurement with default lateral resolution of

the instrument and type 2 which is obtained with the lowest lateral resolution. There

are six level of decimation: 1X, 2X, 4X, 8X, 16X, and 32X. Decimation value tells

that a point is calculated from average of points within a grid of ndec × ndec. Details

of the decimation levels and its corresponding flatness and lateral point distance are

presented in table 3.14. Fig. 3.37 shows that, even after 32X decimation (which is the

maximum value for decimation), the flatness value is still higher than the calibrated

value as much as 0.7 µm. There are some possible explanations of higher result in ge-

ometric deviation values. Firstly, since the points measured by tactile CMM are much

less dense compared to the result by optical instrument, some high-frequency surfaces

are not captured, leading to underestimation of the flatness. Secondly, intrinsic filtering

effect of the sphere of the CMM stylus reduces the magnitude of surface data so as the

flatness value. Finally, bias contribution from the instrument contributes to the higher

flatness value.

The next two studies for the basic user-defined parameters are exposure time

(brightness) and contrast. The selected range for exposure time and contrast were

based on the range in which a good surface data points can be obtain. Fig. 3.38

presents the results of these influence studies. The levels of the varied variable (hori-
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Type Decimation No. of

points

Lateral

point

distance

[µm]

flatness

[µm]

1

1X 905268 2.61 31.82798576

2X 226044 5.21 29.22729111

4X 56511 10.43 24.76902962

8X 14008 20.93 20.54240418

16X 3468 41.87 13.15038395

32X 850 83.73 6.732644558

2

1X 100464 7.82 17.52181435

2X 25116 15.64 13.88383389

4X 6279 31.28 11.66873646

8X 1530 63.26 9.627437592

16X 374 129.41 7.262669086

32X 88 228.81 4.821956158

Type1: Default lateral resolution with 5X lens

Type2: Lowest lateral resolution with 5X lens

Table 3.14: Flatness value with regards to level of decimation.
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Figure 3.37: Relation between flatness value and level of decimation.
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Figure 3.38: Influence of different level of exposure time and contrast.
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Figure 3.39: Interaction plot between vertical and lateral resolution.

zontal axes) are set from the highest to the lowest. Level 2 of the exposure time, which

is medium, is a default value in the sense that this value was obtained from the software

recommendation after running the automatic illumination procedure. Meanwhile, the

default value of contrast is 1 (level 2). For the sigma of residual, it shows a decreasing

trend when both the exposure time and contrast are set to lower value. From the

statistical analyses of ANOVA, all these three different levels have significant effect to

the measurement results. Moreover, interaction plot between exposure time and con-

trast is shown in fig. 3.39. from this figure and from ANOVA test, while there is no

significant interaction between lateral and vertical resolution, a significant interaction

between exposure time and contrast is observed. The lowest sigma of residual can be

obtained when both exposure time and contrast are set at the lowest value. Finally,

to summarize the influence of user defined parameters, table 3.15 shows the affect of

these parameters.

3.3.3 Summary

From this study, summary can be derived with regard to measurement of optical instru-

ment, especially instrument based on focus-variation method. The summary could be

a useful consideration for geometric measurement using focus-variation based optical
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Factors Difference Statistical test

High to low lateral resolution −3 µm significant

High to low vertical resolution −0.01 µm not-significant

High to low exposure time −0.3 µm significant

High to low contrast −0.2 µm significant

Table 3.15: Summary of different type of illumination.

instrument. Fig. 3.40 summarizes the main result from uncertainty characterization.

1. Measurement with optical instrument is more complex than that of the contact

one, since it is more sensitive to many factors, especially illumination and material

type which are not found in the contact instrument. Hence, measurement results

obtained by this method should be analyzed further before making conclusions

from them.

2. A priori knowledge of the sample, especially the type of the surface, will be a great

advantage. Especially for focus-variation based instrument, surface roughness

influences the effectiveness of measurement. To ensure measurement repeatability,

not only all parameters e.g. illumination type have to be identical, but also the

positioning of the sample should be hold identical for all measurement repetition.

Different sample orientations result in significantly different measurement results.

For a specular surface, illumination utilizing axial light is not recommended.

Hence, the measurement for a certain type of measurement should be very specific

for a certain condition, both for the one related to the measurement parameters

and material-related aspect.

3. Using a higher magnification lens, it will reduce the random noise (error). Instead,

trade-off should be made between the reduced random noise and the increase of

measurement time as well as accessibility issue with regard to collision avoidance

between objective nose-piece and work piece.

4. Optical measurement result is prone to outliers. To deal with these outliers, fil-

tering of data before processing have to be applied, especially if the measurement

involve a geometric characteristic verification as minimum-zone fitting to evaluate

them is sensitive to outliers.
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5. Lower lateral resolution and decimation procedure can be effective to suppress

the random error and to remove or reduce outliers of form error measurement.

Moreover, stitching procedure has an averaging effect to the data points. As a

consequence, it reduces the random error.
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Lateral Res.
Vertical 

Res.
Exposure 

Time
Contrast 00 (flat) 50 100 150 Axial 

Light
Ring 
Light

Polarized
Specular 
Aluminum

Lambert 
Polymer

Lambert 
Titanium

Lambert 
other

1 3.51 µm 2.51 µm 240 µs 1 ● 5X ● without Flat ● 5.2
2 7.82 µm 2.51 µm 240 µs 1 ● 5X ● without Flat ● 2.6
3 14 µm 2.51 µm 240 µs 1 ● 5X ● without Flat ● 1.9
4 23.48 µm 2.51 µm 240 µs 1 ● 5X ● without Flat ● 1.4
5 7.82 µm 0.4 µm 240 µs 1 ● 5X ● without Flat ● 2.75
6 7.82 µm 2.51 µm 240 µs 1 ● 5X ● without Flat ● 2.76
7 7.82 µm 12.4 µm 240 µs 1 ● 5X ● without Flat ● 2.75
8 7.82 µm 23.09 µm 240 µs 1 ● 5X ● without Flat ● 2.76
9 7.82 µm 0.4 µm 339 µs 1 ● 5X ● without Flat ● 3.02
10 7.82 µm 0.4 µm 240 µs 1 ● 5X ● without Flat ● 2.79
11 7.82 µm 0.4 µm 110 µs 1 ● 5X ● without Flat ● 2.73
12 7.82 µm 0.4 µm 240 µs 1.5 ● 5X ● without Flat ● 2.92
13 7.82 µm 0.4 µm 240 µs 1 ● 5X ● without Flat ● 2.78
14 7.82 µm 0.4 µm 240 µs 0.5 ● 5X ● without Flat ● 2.7
15 7.82 µm 0.4 µm 11.7 ms 0.9 ● 5X ● without Flat ● 5.2
16 3.91 µm 0.1 µm 412 µs 1 ● 10X ● without Flat ● 3.75
17 7.82 µm 0.4 µm 167.5 ms 0.9 ● 5X ● without Flat ● 3.25
18 7.82 µm 0.4 µm 383 ms 1.18 ● 5X ● without Flat ● 3.7
19 7.82 µm 0.4 µm 114.4 µs 1.33 ● 5X ● without Flat ● 4.4
20 7.82 µm 0.4 µm 114.4 µs 1.33 ● 5X ● without Flat ● 3.8
21 7.82 µm 0.4 µm 114.4 µs 1.33 ● 5X ● without Flat ● 6.5
22 7.82 µm 0.4 µm 114.4 µs 1.33 ● 5X ● without Flat ● 7.5
23 7.82 µm 0.4 µm 114.4 µs 1.33 ● 5X ● without Flat ● 5.2
24 7.82 µm 0.4 µm 114.4 µs 1.33 ● 5X ● without Flat ● 5.1
25 7.82 µm 0.4 µm 14.21ms 1.11 ● 5X ● without Flat ● 4.5
26 7.82 µm 0.4 µm 14.21ms 1.11 ● 5X ● without Flat ● 4.6
27 7.82 µm 0.4 µm 14.21ms 1.11 ● 5X ● without Flat ● 7.3
28 7.82 µm 0.4 µm 14.21ms 1.11 ● 5X ● without Flat ● 6.9
29 7.82 µm 0.4 µm 25.2 ms 0.92 ● 5X ● without Flat ● 4
30 7.82 µm 0.4 µm 25.2 ms 0.92 ● 5X ● without Flat ● 4.2
31 7.82 µm 0.4 µm 25.2 ms 0.92 ● 5X ● without Flat ● 5.5
32 7.82 µm 0.4 µm 25.2 ms 0.92 ● 5X ● without Flat ● 6
33 7.82 µm 0.4 µm 224 µs 1 ● 5X ● without Flat ● 2.9
34 7.82 µm 0.4 µm 224 µs 1 ● 5X ● without Flat ● 2.8
35 7.82 µm 0.4 µm 224 µs 1 ● 5X ● without Flat ● 2.7
36 7.82 µm 0.4 µm 224 µs 1 ● 5X ● without Flat ● 2.6
37 7.82 µm 0.4 µm 60. 3 ms 1.78 ● 5X ● without Peak ● 13
38 7.82 µm 0.4 µm 30. 62 ms 1.78 ● 5X ● without Valey ● 11.5
39 7.82 µm 0.4 µm 1.45 ms 1 ● 5X ● with Sphere ● 1.45
40 7.82 µm 0.4 µm 1.45 ms 1 ● 5X ● without Sphere ● 2.39

No.

Degree of tilted 
position

Illumination TypeLens 
Magnification 

(5X/10X)

Mean 
Sigma of 
residual 

[µm]

Instrument's parameters Surface Type
Shape of 
surface

Stitching 
(with/without)

3.3.2.4

3.3.2.5

3.3.2.2

Section 
reference

3.3.2.7

3.3.2.1

3.3.2.3

Figure 3.40: Summary of main results from uncertainty characterization study.
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Figure 3.41: Points selection for variogram parameter determination.

3.4 Identification of variogram model

A variogram model should be selected to be used by the error simulator. From the

result of uncertainty characterization study, different materials have their own error

bahaviour. Hence, a variogram model has to be identified for each type of material.

To select the variogram model and value of parameters sill (s), nugget (n), and range

(r), experiment to obtain points from cross-section of calibrated plate of aluminum,

stainless steel, and titanium measurement were carried out. Three cross-sections of the

measurement data points both horizontally and vertically were taken as shown in fig.

3.41. From each cross-section, the semi-variogram was calculated based on eq. 3.14.

This procedure is shown in fig 3.42. Subsequently, the parameters s, n, and r can be

determined from the first section when the plot of semi-variogram starts to flatten from

increasing trend as shown in fig. 3.43. By this figure, the behavior of data correlation

will become clear.

Results of semi-variogram plot to determine the variogram parameters are presented

in fig. 3.44 and 3.45 for horizontal and vertical direction, respectively. In each figure,

there are three types of data plots. They are the semi-variogram plot for each line 1,2

and 3 as depicted in fig. 3.41(left). Hence, the variogram parameters for aluminum,

stainless steel, and titanium can be estimated. The procedure to estimate the suitable

variogram model and their parameters is by fitting least square curve to the experi-

mental variogram data. The variogram fitting is carried for all the three variogram
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Figure 3.42: Semi-variogram determination from the measured points.

Figure 3.43: The first section of semi-variogram plot to determine the auto-correlated

area (the first 50 lags).
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Figure 3.44: Semi-variogram from horizontally cross-sectioned points (the first 100 lags

points = 250 µm).

Figure 3.45: Semi-variogram from vertically cross-sectioned points (the first 100 lags

points = 250 µm).
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Figure 3.46: Variogram model fitting for aluminum (lag unit is in µm)

model, which are Gaussian, exponential and spherical. Selections of the model and

its s, n, r parameters are by observing the statistical parameter of R2 which represent

the fitness of the fitting to the data. The experimental data of variogram which are

used in the model fitting is the data from horizontal cross-section. The consideration

of selecting the horizontal cross-section data is by comparing fig. 3.44 and fig. 3.45,

one can observed that they are more correlated in horizontal direction compared to the

vertical one. The plots of the variogram model fitting for aluminum, stainless steel and

titanium are shown in fig. 3.46, fig. 3.47 and fig. 3.48 respectively. Details of the

variogram model fitting are depicted in table 3.16, table 3.17 and table 3.18. Finally,

the setelcted variogram model and parameters for the three materials are presented in

table 3.19.
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Figure 3.47: Variogram model fitting for stainless steel (lag unit is in µm)

Fitted Vari-

ogram model

s (sill) [µm] n (nugget)

[µm]

r (range)

[µm]

R2

Exponential 31.232 0 114.63 0.5615

Spherical 33.1 0 53.33 0.5242

Gaussian 30.26 0 41.121 0.5037

Table 3.16: Details of the fitted variogram model for aluminum material.

Fitted Vari-

ogram model

s (sill) [µm] n (nugget)

[µm]

r (range)

[µm]

R2

Exponential 2.788 0 56.4 0.7859

Spherical 2.537 0 97.169 06807

Gaussian 2.48 0 36.488 0.6392

Table 3.17: Details of the fitted variogram model for stainless steel material.
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Figure 3.48: Variogram model fitting for titanium (lag unit is in µm)

Fitted Vari-

ogram model

s (sill) [µm] n (nugget)

[µm]

r (range)

[µm]

R2

Exponential 3.9189 0 16.5176 0.687

Spherical 3.8911 0 40.9285 0.7121

Gaussian 3.888 0 17.986 0.7154

Table 3.18: Details of the fitted variogram model for titanium material.

140



3.5. INITIAL VALIDATION

Material s (sill) [µm] n (nugget)

[µm]

r (range)

[µm]

Selected

variogram

model

Aluminum 31.232 0 114.63 Exponential

Stainless Steel 2.788 0 56.4 Exponential

Titanium 3.888 0 17.968 Gaussian

Table 3.19: Determined variogram parameters for aluminum, stainless steel, and titanium

as well as the maximum sigma of random noise obtained from the experiment.

3.5 Initial validation

This section will present validation of the estimated statistic model which will be used

to estimate measurement uncertainty by means of simulation procedure. In doing so,

the simulation should be carried out. The simulation procedure is explained as follows.

First, a set of point cloud is obtained from the instrument. Subsequently, from this set

of point cloud, simulated errors are added to the points by a perturbation process. This

procedure is carried out for number of repetitions. For each repetition, calculation of

desired measurement is carried out and then stored. standard deviation is calculated

from the stored measurement results from each simulation run as the estimation of

measurement uncertainty.

There are two validations which will be carried out. Firstly, the validation of the

selected semi-variogram parameters of statistical error model was conducted. Secondly,

the validation was carried out for the simulated uncertainty. The validation was car-

ried out for measurement of aluminum, stainless steel, and titanium. Estimated semi-

variogram parameters used to simulate the error is based on previous section which is

presented in table 3.19. The simulated error is only applied for the z-coordinate of the

points since the instrument is basically generate a 3D map (2.5 D) from the acquisition

process.

Fig. 3.49 and 3.50 present the results of cross-sectioned data points obtained from

one of measurement execution and thus obtained from the simulation. From this obser-

vation, a good agreement can be observed between the real and perturbed data, both

for horizontally and vertically cross-sectioned data points.

For the simulated uncertainty validation, It was carried according to ISO15530-4
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Figure 3.49: Validation of the variogram model by comparing the real and perturbed

data in horizontal direction.
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Figure 3.50: Validation of the variogram model by comparing the real and perturbed

data in vertical direction.
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Figure 3.51: Simulated flatness for aluminum, stainless steel, and titanium.

validation procedure. According to this standard, there are four methods to validate

the estimated uncertainty by means of simulation, which are: physical testing on an

individual CMM, computer-aided verification and evaluation, comparison with specific

reference results, and statistical long term investigation. In this study, physical testing

on an individual CMM is selected for the validation process. With this procedure, the

validation is carried out by calculating an index En. The index is given by:

En =
|ymea − ycal|√(
U2
sim + U2

cal

) < 1 (3.35)

where ymea and ycal are measurement value and calibrated value with their correspond-

ing expanded uncertainties Usim and Ucal, respectively. The calibrated value ycal and

its uncertainty ucal are determined by multi-position strategy method as explained

in section 4.2 (Flatness/form calibration). The expanded uncertainty is estimated by

multiplying usim and ucal by a factor of 2 (k = 2), by assuming normal distribution.

Fig. 3.51 depicts the distribution of simulated flatness for aluminum, stainless steel,

and titanium. The results were obtained from about 500 simulation runs and they

follow a Gaussian distribution. The calculation of En is carried out for each single

measurement. A good agreement can be concluded if approximately 95% of the val-

ues of En from all measurements are less than one. In this case around 100 or more

measurements were carried out. For this initial validation, before measurement results

are derived, the obtained points were filtered by means of 3-sigma-based filter to deal

with the outliers. Based on ISO/TS15530-4, the uncertainty from simulation has to be

combined with other uncertainty contributors which are not taken into account by the

simulation process. Hence, the final estimation of combined measurement uncertainty
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by simulation is formulated as:

usim =

√
u2
est +

∑
u2
i (3.36)

where usim is total uncertainty estimation obtained by sum of square of uest and ui.

uest and ui are uncertainty obtained from simulation and uncertainty of other i-th

influences quantities which are not taken into account in simulation and are estimated

by another suitable way. In our case, the proposed method combined all uncertainties

inside the parameter sill (s) of the simulator model by sum squared them with the

original sill parameters of the material type. Hence, the final estimated uncertainty

usim is only from the results of simulation uest and other uncertainty contributors ui

are not considered.

Fig. 3.52 shows the En values of each flatness measurement of Aluminum, Stainless

steel, and Titanium. The calibrated values (along with the calibration uncertainty) for

their flatness are presented in table 3.2. Expanded uncertainties Usim (k = 2) obtained

from the simulation are 13.96 µm, 7.66 µm, 10.14 µm for aluminum, stainless steel

and titanium, respectively. From the validation results, the En values are higher than

95% which show good agreement of the estimated uncertainty. En values obtained for

aluminum, stainless steel, and titanium are 97%, 96%, and 98% respectively. The semi-

variogram parameter used is stated in table 3.19 since the flatness measurement was

carried approximately on flat orientation. It is worth noting that, since the simulated

points come from a real measurement, they already include the form deviation of the

part. As such, the form deviation is not simulated in the process as has been pointed

out by Kruth et el. [Kruth et al. [2009]].

3.6 Conclusion

In this chapter, two studies have been presented. Firstly, characterization of uncertainty

of measurement by optical instrument is carried out. The purpose of this study is to

understand the factors that influence the measurement results. Secondly, simulation

method to estimate measurement uncertainty along with the validation method has

been proposed.

From uncertainty characterization study, the results show that different material

will have different response by the focused-variation based optical instrument. As
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Figure 3.52: En value of simulated uncertainty validation by flatness measurement of

Aluminum, Stainless steel, and Titanium.

can be predicted, the instrument defines a point by calculating the contrast value

(variance value) from the pixel intensity value of its neighbors. This pixel intensity

is strictly related to the reflectance from the measured surface. Different material

will have different reflectance with respect to the incoming (incident) light receive by

the work piece surface. This also explains the different results obtained by measuring

equal surface with different orientation (steepness). Different orientation will affect

the reflectance of the part surface. As a consequence, different materials should be

treated differently, or can be grouped based on the similarity of the material having

similar reflectance behavior. In addition, not only material type, but also type of

illumination will directly affect the measurement results. As can be observed from the

result, illumination with polarizer will give a higher measurement uncertainty. It is

worth noting that measurement result obtained from different magnification lens can

not be directly compared. The reason is different magnifications lens will have different

NA (numerical aperture). Higher magnification lens will have higher NA resulting in

capability to capture higher steep surface. Hence, the observed surface will be different

with respect to the instrument. Finally, to have comparison of measurement result by

means of optical instrument, all controllable parameter, mainly related to illumination
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and lens, should be approximately hold constant.

The simulation method to estimate measurement uncertainty starts from the ob-

tained points from the instrument. The obtained points are from a single real measure-

ment result which also contains the part deviation. Subsequently, point perturbation is

carried out by taking into consideration the correlation of a point with other neighbor

points by means of spatial statistic method, called Gaussian process. The Gaussian

process is used to simulate the error of a point. The error is then added to the original

point. The simulation is repeated for certain times and the statistic of the simulation

results, the standard deviation, is calculated to estimate the uncertainty. To validate

the simulation approach, the method in ISO 15530-4 is used by calculating a value

En for each measurement. The validation results show that more than 95% of En is

less than one which means that the simulated uncertainty is in good agreement with

the real measurement results. The main drawback of simulation method is that it is

computationally intensive compared with comparison method with calibrated artifact,

since optical instrument involve millions of data points. Instead, simulation method

provides flexibility and reduces experimental cost.
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Chapter 4

Case studies

To further validate the simulation approach to estimate measurement uncertainty, case

studies are presented. As mentioned in the previous section 3.4 (initial validation of

the simulation approach), the work piece variation is already included in the initial

data points obtained from one measurement. All captured points are filtered before

associating to a specific substitute geometry to remove outliers (see section 3.3.1.3).

The quantification of simulation parameters (s, n and r) are based on the results in

uncertainty characterization study (section 3.3). All the calibrations for the case study

were carried out by means of certified tactile CMM with E0,MPE = ±
(
2.2 + L

300

)
µm.

The calibration procedure can be referred in section 2.3.2 for calibration of size or

dimensional quantities and section 3.3.1.2 for calibration of geometric (form) quantities.

By recalling section 3.4, the validation follows one of method suggested by the ISO/TS

15530-4 standard which is physical testing on an individual CMM. This method a

value En has to be calculated to determine the goodness of estimated measurement

uncertainty by means of simulation. The value is calculated as (see section 3.4 for the

detail explanation):

En =
|ymea − ycal|√(
U2
sim + U2

cal

) < 1 (4.1)

where where ymea and ycal are measurement value and calibrated value with their

corresponding expanded uncertainties Usim and Ucal, respectively.
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Figure 4.1: Work piece for the slot depth measurement.

Workpiece Exposure time Contrast Vertical

resolution

Lateral

resolution

Micro milled slot 88.32 µs 0.2 0.4 µm 7.82 µm

Table 4.1: The measurement parameters used for case study 1.

4.1 Case study 1: Depth measurement of micro milled

slot

Measurement of slot depth is carried out in this case study. Fig. (4.1) shows the milled

workpiece as well as definition of slot depth. The work piece is made of steel and

the slot was milled by a micro milling machine. Micro milling process with end mill

was used to create the slot by means of KERN EVO micro-milling machine. The slot

depth is defined as a height between the top surface and the bottom surface of the slot.

Measurement parameters used to captured the points are shown in table 4.1. These

parameters are used to acquire both bottom and upper surface. A 5X magnification lens

was used. Meanwhile, fig. 4.2 shows the example of data points obtained. Measurement

was taken with 5X objective lens and captured the bottom and upper surface. Since,

the depth is a length measurement; the calibration is following the procedure explained

in section 2.3.2. The calibrated slot depth ycal (ucal) obtained is 692.7(7) µm. The

calibration process is presented in fig. 4.3. The material of the part (and also the

material for case study 2 and 5) is made of steel. Hence, the semi-variogram for

this material has to be calculated to estimate the error parameters in the simulation
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Figure 4.2: One of the obtained points for the slot measurement.

Figure 4.3: Calibration process for stopper part
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Figure 4.4: Semi-variogram of steel material to determine the error simulation parame-

ters.

Fitted Vari-

ogram model

s (sill) [µm] n (nugget)

[µm]

r (range)

[µm]

R2

Exponential 13.0325 0 34.5677 0.7454

Spherical 34.4359 0 33.31 0.7946

Gaussian 34.4334 0 14.8056 0.8008

Table 4.2: Fitted model for steel variogram experimental data.

procedure. The step is similar as being presented in section 3.2. The plot of calculated

semi-variogram is depicted in fig. 4.4. The experimental variogram data is fitted by

least-square fitting method to find the best fit model among Gaussian, exponential and

spherical variogram model. The plots of the fitted model to the variogram experimental

data are shown in fig. 4.5. Table 4.2 shows the fitted variogram parameters. The

selection of the model is based on the largest R2 value. Based on this criterion, the

selected variogram model is the Gaussian one since it has the largest R2 value. Next

step is by adding other uncertainty sources to the sill (s). The other uncertainty sources

added are uncertainty due to placement variation and exposure time variation. From

the uncertainty characterization study, the range of variation due to different positions
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SLOT

Figure 4.5: The fitted variogram to the experimental steel variogram data.

(including tilted position) and due to exposure time variation are around 1.5 µm and

0.3 µm. These other uncertainty sources are added to the sill (s) by sum of squared

them with the obtained sill of steel material: sill =
√

34.42 + 1.52 + 0, 32=34.434 µm.

Finally, the simulation parameters for sill, nugget, and range are 34.434 µm, 0 µm, and

14.8 µm, respectively.

Number of simulation runs is about 500 runs. From the simulation, estimated

expanded uncertainty Usim of 0.45 µm is obtained. It is derived by calculating the

standard uncertainty from the statistic of the stored 100 measurement results (after

multiplying by k = 2). En value is calculated for each 100 measurement runs ymea.

The measurement calculations of slot height were obtained from the filtered points by

using the four filtering methods, which are 3-sigma-based, LG, and RGR filtering and

median filter. Total 93% of the calculated En has the value of < 1 for the measurement

results obtained by using 3-sigma-based filter. On the other hand, En values of more

than 95% are obtained from the other three filters. In fig. 4.6, the calculated En values

are presented.
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Figure 4.6: En values for the slot measurement.

Workpiece Exposure time Contrast Vertical

resolution

Lateral

resolution

Micro wire 193.2 ms 0.44 0.6 µm 3.9 µm

Table 4.3: The measurement parameters used for case study 2.

4.2 Case study 2: Micro wire measurement

This case study is a size measurement. A steel-wire with diameter of 310 ± 2 µm

(from the specification of the manufacturer) is used in this case study. The function

of the wire is as a hole-gage to measure diameter of a small hole; in this case it is

used to measure the water jet nozzle diameter. Fig. 4.7 shows the steel wire and the

measured data with the optical instrument. Table 4.3 shows the parameters used to

measured the micro wire. Objective lens used was 10X magnification lens. To be able

to obtained a complete cylinder, the rotation unit of FVM instrument was used. By

this, a complete 3600 measurement was obtained. The final obtained points from this

type of measurement comes from a stitching operation of sequence of images taken by
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4.2. CASE STUDY 2: MICRO WIRE MEASUREMENT

Figure 4.7: The cylinder and the obtained point cloud.

rotating the rotation axis. This operation was automatically run by the instrument.

Total of 85 measurements were carried out to validate the simulated uncertainty.

Simulation parameters for sill, nugget, and range are identical with the one used in

slot measurement (case study 1) which are 34.434 µm, 0 µm, and 14.8 µm, respectively.

Gaussian variogram model is used. The obtained extended simulated uncertainty Usim

from 500 runs is 5.64 µm. The wire is not calibrated. Hence, ymea and ucal are

estimated as the nominal value for ymea and T√
3

for ucal by considering a rectangular

distribution ranging from 310−T to 310+T . The k value for the extended uncertainty

is equal to 2. Hence, the calibrated value and its uncertainty are ymea = 310 µm and

Ucal = 2.31 µm respectively. En value is calculated for each measurement. From 85

measurements, total of 98% have En value less than 1. Fig. 4.8 plot the En value of

each measurement. Moreover, if one assumes that the wire is a perfect cylinder (with 0

deviation), the En value of around 95% is still obtained from the 85 measurements. In

this case study, only 3-sigma-based filter was used. The reason is that the data points

of the cylinder measurement is resulted from elaboration of data stitching process. As

such, the points obtained are no longer in the 2D grid-format (3D map format) as can

be obtained in planar measurement. Moreover, converting the points coordinate from

Cartesian to cylindrical coordinate system is not relevant since the data format is no

longer well structured.
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Figure 4.8: En values for the wire diameter measurement.
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4.3. CASE STUDY 3: FLATNESS OF WATER JET CUT

Figure 4.9: Aluminum part cut by water jet and one example of measured surface for

both position.

4.3 Case study 3: Flatness of water jet cut

In this case study, a flatness measurement of an aluminum bar cut by water jet process

is presented. This case study is an unrelated geometric tolerance in which there is no

reference datum needed [ISO1101 [2004]][ASMEY14.5 [2009]]. The part used in this

case study is not a micro, instead it is a macro part. Even though the part is a macro

part, the area measured is a small portion from a large surface area. Even though

it is not a micro part, the motivation of this case study is to validate a geometric

measurement by optical instrument. The definition of geometric tolerance based on

ASME [ASMEY14.5.1 [1994]] is a minimum separation of two identical geometry to be

verified which includes all the part surface. This standard contains the mathematical

definition of geometrical tolerancing. From this definition, to accurately estimate a

geometric tolerance, the points obtained from the measurement should cover the entire

surface of interest. As such, by using optical instrument, more comprehensive surface

points can be obtained compared to that if the measurement carried out by tactile

CMM. With optical instrument, many points can be obtained in considerably shorter

time compared to the tactile one. Moreover, optical instrument has easier procedure

in planning the measurement compared to tactile system.

Fig. 4.9 shows the part used in this case study. There are two positions where the

flatness measurements were carried out: position 1 and position 2. Position 1 is the
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Workpiece Exposure time Contrast Vertical

resolution

Lateral

resolution

Position 1 195 µs 1 0.4 µm 7.82 µm

Position 2 195 µs 1 0.4 µm 7.82 µm

Table 4.4: The measurement parameters used for case study 3.

upper side position in which the water jet velocity is still high. Meanwhile, position 2 is

the lower side of the exit of the jet. In this area, striations phenomenon will be observed

due to reduced jet velocity. At this area, the flatness will be higher as the cutting

quality reduces. Measurement parameters used to captured the points are shown in

table 4.4. The objective lens used for the measurement was 5X magnification lens. Total

measurement conducted for both positions are 120 measurements. For each position,

the measurements were carried out in three different orientations: approximately flat,

skew to the left and skew to the right. The skew direction is around 50 and 100.

Since the measurement is not conducted only at approximately flat position and with

different exposure time, hence the sill parameter in the error model should includes

also the uncertainty due to different orientation and different exposure time, which

have range about 3 µm and 0.3 µm. The uncertainty due to orientation represents

fixturing or sample placement error when placing the work piece to be measured. The

uncertainty is square-summed with the original sill (Aluminum material). The value of

sill (s) becomes 31.345 µm compared to the original value of 31.232 µm. The nugget

and range parameters are 0 µm and 114.63 µm, respectively. Variogram model used is

the exponential one. The calibrated flatness values ycal and their uncertainty ucal are

36.7(4) µm and 81.9(5) µm for position 1 and position 2 respectively. The calibration

is based on the method explained in section 3.3.1.2. All the flatness measurements

calculation are obtained from the filtered points. There are four types of filtering,

which are 3-sigma-based filter, LG filter, and RGR filter. From simulation, the obtained

uncertainties Usim (k = 2) are 21.004 µm and 16.457 µm for position 1 and position

2, respectively. Fig. 4.10 and fig. 4.11 depicts the En value for every measurement

at position 1 and position 2, respectively. From the graph, it can be observed that

more than 95% of the measurement results (from four different filtering methods) have

En < 1.
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Figure 4.10: En value of flatness measurements at position 1.
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Figure 4.12: Illustration of the function of the stopper.

4.4 Case study 4: Perpendicularity of stopper from water

jet cut

This case study is a related-geometric tolerance which is perpendicularity. Hence, a

reference datum measurement is needed. As reported by [Petro and Moroni [2010]],

in related geometric tolerance verification, the measurement uncertainty is also con-

tributed by the uncertainty of reference datum. For this reason, the measurement

should capture both reference surface and the surface of which the perpendicularity

should be measured. The part used in this case study is a stopper. It is made of

stainless-steel and is used to limit the movement of a glass rode inside an accelerom-

eter. The accelerometer is used in a high speed train to measure its acceleration and

deceleration. The glass rode will oscillate when the train accelerates and decelerates. A

sensor will measured the magnitude of this oscillation and correlate the value to the ac-

celeration value. Hence, by this oscillation, the acceleration and deceleration of a high

speed train can be estimated. The illustration of function of the stopper is depicted

in fig. 4.12. Fig. 4.13 details 2D and 3D design of the stopper and the manufactured

part. The trajectory of the cut is set and optimized so as to eliminate acceleration

and deceleration effect of the water jet on the inner corner of the stopper. The goal is

to improve the homogeneity of the surface quality. Hence, circular-like geometries are

found at both inner corner of the stopper (fig. 4.13).
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Figure 4.13: Stopper part: 2D drawing, 3D design and the manufactured part by water

jet cut.
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Workpiece Exposure time Contrast Vertical

resolution

Lateral

resolution

Stopper 1.23 ms 1 0.4 µm 7.82 µm

Table 4.5: The measurement parameters used for case study 4.

Figure 4.14: Procedure for surface acquisition and perpendicularity measurement. 1:

measurement position and acquisition, 2: world coordinate system (WCS), 3: Transforma-

tion of the obtained surface points from not aligned orientation to aligned orientation with

regard to WCS, 4: perpendicularity measurement value, t.

Since perpendicularity needs datum surface, the measurement of the part should

capture both the reference and toleranced surface. Therefore, the measurement was

carried out in skew orientation with 5X objective lens to be able to capture both surfaces

(fig. 4.14 Step 1). Measurement parameters are depicted in table 4.5. The use of 5X

lens is to be able to capture both surfaces since it has the highest FOV. Total 3 images

fields along the scanning direction were obtained to capture all the measured surfaces.

The complete procedure in processing the obtain points to calculate perpendicularity

is presented in fig. 4.14.

The procedure for the calculation of perpendicularity is (fig. 4.14):

1. Capture the reference and the measured plane. Fit the reference plane and ob-

tained the unit normal vector of the reference plane aref .

2. Calculate the angle of aref with respect to world coordinate system (WCS) to

obtain its spatial θy and planar rotation θz. The spatial and planar rotation can
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Figure 4.15: Illustration of θy and θz.

be obtained by:

θy = tan−1

(
r

a3

)
(4.2)

r =
√
a2

1 + a2
2 + a2

3

θy = tan−1

(
r

a3

)
(4.3)

Fig. 4.15 shows the detail of this sub-step.

3. Inverse transform (rotate) aref with respect to its spatial and planar rotation

such that Part coordinate system (PCS) is aligned with respect to WCS (step 3).

The rotation is carried out by:

a′ref = Trotationaref (4.4)

Trotation = Ry(θy)Rz(θz)

where Ry and Rz are rotation matrices along y- and z- axis, respectively.

4. Rotate a′ref 900 about y-axis and consider it as unit normal vector of measured

plane amea.

amea = T900y=axisa
′
ref (4.5)
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Figure 4.16: One of measured surface for the perpendicularity measurement.

5. Inverse transforms all the points (on reference and measured plane) with respect

to the obtained planar θz and spatial θy rotation.

X′i = TrotationXi (4.6)

6. Fit a plane to points on measured plane. The point on plane is the centroid of

points on measured plane and its normal vector is amea.

7. Calculate the maximum and minimum distance of the points from the fitted plane

as the perpendicularity.

Example of captured surface is presented in fig. 4.16. Note that, before the proce-

dure is applied, points at and near the edge should be removed (fig. 4.17) since these

points will affect the perpendicularity measurement. Moreover, tactile CMM can not

reach this area when calibration was carried out. Finally, to validate the simulation

En value of each measurement was calculated. The measurements are obtained from

filtered points by using three filtering methods: 3-sigma-based, LG, and RGR filter.

Around 500 runs were carried out for the simulation. The calibrated perpendicularity

value ycal (ucal) is 13.2(2) µm. Fig. 4.18 shows the calibration process for the stopper

part. It is determined by the procedure explained in section 3.3.1.2 (form calibration).

In this measurement, since the steep angle is higher than the one in characterization
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Figure 4.17: Points which have to be removed before perpendicularity measurement is

carried out.

Figure 4.18: Calibration process for the stopper part.
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Figure 4.19: En value for each perpendicularity measurements.

study, different contrast and exposure time (brightness) were applied such that the

surface can be captured. Hence, the sill is sum-squared with additional uncertainty

due to different tilted position, contrast and exposure time. The variation range of

the sigma of residual due to different contrast, exposure time, and tilted positioning

are 0.2 µm, 0.3 µm and 2 µm, respectively (with reference to section 3.3. uncertainty

characterization). Subsequently, the sill value becomes 3.5 µm and for the other nugget

and range parameters are identical to the one used in the simulation validation section

for stainless steel material. The simulation used exponential variogram model. The ob-

tained expanded simulated uncertainty Usim (k=2) is 13.295 µm. From the calculation

of En value of 120 measurements, 95% of the measured values, obtained from 3-sigma-

based filtering, are less than one. Fig. 4.19 shows the plot of En values. Meanwhile,

the En values of measurements obtained from LG filtering and RGR filtering are 0%

and 12%, respectively. These are caused due to the points filtered by these LG and

RGR methods are synthetic points. By this, the fitted plane, both for the reference

and measured one, will be different from the original one (different orientation). Hence,

the perpendicularity of the measured plane will be changed. This effect is not occur in

un-related geometric measurement (ex: flatness), since the plane orientation does not

affect the flatness measurement.
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Figure 4.20: The sphere used in the case study.

Workpiece Exposure time Contrast Vertical

resolution

Lateral

resolution

Stopper 1.45 ms 0.81 0.4 µm 7.82 µm

Table 4.6: The measurement parameters used for case study 5.

4.5 Case study 5: Sphere size and form measurement

This case study involves two types of measurement: form and size measurement. The

form is an unrelated geometric-tolerance verification of spherecity. Meanwhile, radius

of the sphere is a size measurement, which is dimensional-tolerance verification. Fig.

4.20 shows the sphere used in the case study. Measurement parameters used in this

case study is identical to the one used for measuring spheres of the artifact used in

performance verification test. Table 4.6 presents the detail of the parameters. The

sphere is a ball bearing grade G10 based on ISO standard [ISO3290-1 [2008]]. The value

for the steel ball based on the standard is 2.5±0.00025 mm with maximum form error of

0.25 µm. Fitting of the sphere was carried out from selected 25 points from the obtained

point cloud as suggested in [ISO10360-8 [2013]]. Due to this reason, filtering operation

was not applied to calculate both the diameter and the form error. Meanwhile, the

fitting procedure is the improved-version of standard LM algorithm (appendix A).

Simulations are carried out for 500 runs. The parameter of the simulation is similar to

the one used in slot height measurement case study with additional uncertainty source

due to different contrast measurement, which is 0.2 µm. Hence, the s,n and r parameter

of the simulation are 34.44 µm, 0 µmand 14.8 µm respectively. Gaussian variogram
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Figure 4.21: En value for both form error and radius measurement.

model was used. The sphere was calibrated by the similar multi-position strategy

(section 3.3.1.2 for form error calibration and section 2.3.2 for radius calibration). The

calibration results for form error and radius of the sphere are 4.27(1) µm and 2493(1.2)

µm, respectively. Meanwhile, simulated expanded uncertainty Usim, k = 2 for form

error is 15.369 µm and for size error is 7.48 µm. En value was calculated for each 50

measurements. The results show that more than 95% of the En < 1 are obtained. For

form error, the 100% of En values are less than one. Meanwhile for radius measurement,

around 99% of En values are less than one. The resulted En values are shown in fig.

4.21.

4.6 Case study 6: Micro turning insert automatic rake

angle measurement algorithm

A rake angle measurement is presented in this case study. This measurement is classi-

fied as dimensional tolerance verification. Motivation of this case study is that micro

manufacturing becomes more diffused due to its important for new application prod-

uct. Hence, micro machining plays an important role for such process [Dornfeld et al.
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Figure 4.22: (a) The instrument, (b) Points cloud, (c) Triangle-mesh of the points cloud.

[2006]]. As a consequence, metrology of micro cutting tool is demanding. From ma-

chining process point of view, rake angle is a very important quantity. This case study

develops algorithm for automatic rake angle measurement of micro-turning tool from

their acquired points. The algorithm is useful to ensure repeatability of the measure-

ment, which is not provided by most instruments software. Moreover, it is useful for the

estimation of task-specific uncertainty (ISO15530-4) and automatic in-line inspection

systems. Fig. 4.22 shows the micro-insert turning tool measurement.

Unlike micro-milling, the tool size of micro-turning is not necessarily in micro-scale.

As such, small insert tool is still used for micro-turning in millimeter scale [Dornfeld

et al. [2006]]. The developed algorithm steps are:

1. Point normal vector and curvature estimation. It is worth to note that Triangle-

mesh of the points cloud is utilized as input for the algorithm which can be

exported directly from the instrument software. In addition, triangle-mesh format

is a common representation of a 3D model due to its flexibility to present complex

free-form surfaces with a neutral and simple format.

2. Reference plane and cutting plane construction.

3. Point segmentation and line fitting.

4. Rake angle calculation.

4.6.1 Algorithm steps

STEP 1: Point normal vector and curvature estimation.

The algorithm for curvature calculation is adapted from [Hamann [1993]]. For each
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Figure 4.23: Normal and mean curvature of the points.

point Pi, its normal vector n is estimated by
∑n

i=1
ni
N where ni is normal of all adjacent

faces and N is number of adjacent faces at the point (4.23 left). Subsequently, the mean

curvature H = (k1+k2) is calculated ∀ point Pi . k1 and k2 are two principal curvatures

of Pi. As such, all points lie on edge will have considerably significant value of compared

to others points which are not lie on the edge (4.23center). k1andk2 are determined

from the platelets, which are all the points adjacent to point Pi (4.23 right).

Procedure to calculate k1 and k2 is as follows. For each point Pi, plane PL is defined

by implisit function of:

(n · (x−Pi)) = nx(x−Px) + ny(y −Py) + nz(z−Pz) (4.7)

Subsequently, Plateletj which are all platelet of Pi are projected to the defined plane

PL. The projected Plateletj on PL is called as Plateletpj and calculated as:

Plateletpj = Plateletj − djn (4.8)

where dj is the orthogonal distance of Plateletj to plane PL. Each point of Plateletpj

is, then, translated into a coordinate system centered on Pi with basis unit vector

defined by < u,v >. In order to do this, a difference vector dj between Plateletpj and

Pi is calculated as dj = Plateletpj −Pi. This difference vector dj can be represented

in the form of linear combination of < u,v > as:

dj = (dj · u)u + (dj · v)v (4.9)

Hence, the component local coordinate based on < u,v > of Plateletpj is:

(pj , qj)
T = (dj · u,dj · v)T (4.10)
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< u,v > is calculated as:

u =
a

||a||
and v = n× u (4.11)

where a is a vector perpendicular to n(a · n = 0), which is:

a =

{ 1
nx(−(ny + nz), nx, nx)T
1
ny (ny,−(nx+ nz), ny)T

1
nz (nz, nz,−(nx+ ny))T

(4.12)

A second degree of polynomial f having absisca of and ordinate is defined as:

f(p, q) =
1

2

(
(c1p

2
j + 2c2pjqj + c3q

2
j )
)

(4.13)

and in matrix form: p
2
1 2p1q1 q2

1
...

...
...

p2
n 2pnqn q2

n


c1

c2

c3

 =

d1
...
dn

 (4.14)

to solve c by least square estimation, eq. 4.14 becomes:p
2
1 2p1q1 q2

1
...

...
...

p2
n 2pnqn q2

n


p
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1 2p1q1 q2

1
...

...
...

p2
n 2pnqn q2

n


c1

c2

c3
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1 2p1q1 q2

1
...

...
...

p2
n 2pnqn q2

n


d1

...
dn

 (4.15)

Finally, after solving c1, c2, c3, the two priciple curvatures k1 and k2 are the root of

k2 − (c1 + c3)k + c1c3 − c2
2.

STEP 2: Reference plane Pr and cutting plane P construction.

The Pr is determined from the points on edge. It can be done by selecting the points

having significant value (above determined threshold=10) of H. The plane is con-

structed by a point on plane and its normal direction. Orthogonal fitting is used by

finding the eigen vector correspond to the minimum Eigen values of M , which is a n×3

matrix containing the edge points Pi coordinates. While, point on plane is the centroid

(mean) of all considered points. The plane equation used, from n · (Pi − P̂i) = 0 , is

defined similar to 4.7.

The plane Pr (plane lie on the cutting edge) is used to determined plane P which

is perpendicular to plane Pr. The unit normal of Plane P is obtained by rotating unit

normal of plane Pr 900 around an axis, which is orthogonal to the cutting edge line,
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Figure 4.24: Constructed planes, point segmentation and fitting, rake angle calculation.

and the point on P is identical with the point on Pr (4.24left).

STEP 3: Point segmentation and line fitting.

Segmentation is applied to the intersection points between the cutting plane P and the

triangle-mesh model of the tool (4.24center). In this algorithm, parametric equation of

line is used. A line from two points Pt1,Pt2 is defined as Pt = Pt1 + t(Pt2 −Pt1)

where t is a scalar quantity (scale) used to define the point on the line. By substituting

this parametric equation to plane equation, then, t can be calculated as:

t =
−[APt1x +BPt1y + CPt1z +D]

A(Pt2x − Pt1x) +B(Pt2y − Pt1y) + C(Pt2z − Pt1z)
(4.16)

After obtaining t, intersection points between cutting plane P and the triangles can be

obtained. Subsequently, point segmentation can be carried out. First, the points far

from Pr are deleted. Subsequently, the intersection points are sorted (ascending) with

regard to x− and then y−coordinate position by using selection sort algorithm. Fi-

nally, the points are scanned starting from the left-edge point (4.24center). This point

is identified by checking the point which has the minimum y−coordinate. The first 15

points are scanned and a line is orthogonally fitted. Then, the scanning is continued for

the next point and the sigma of the error σ of the fitting is calculated, if σnew < σ,then

the point is stored. This step is carried out until there are three consecutive points

contribute to have σnew > σ, when the line is re-fitted.
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Figure 4.25: Micro-turning insert, points cloud obtained, results statistic.

Workpiece Exposure time Contrast Vertical

resolution

Lateral

resolution

Stopper 1.226 ms 1 0.4 µm 7.82 µm

Table 4.7: The measurement parameters used for case study 6.

STEP 4: Rake angle calculation.

Rake angle θ is angle between line of segmented point and line projected to Pr (4.24cen-

ter). To calculate this angle, the unit normal of the fitted-line nline from STEP 3 is

projected into Pr (4.24right). The projected normal is calculated as:

nlineproj = nline − nplane Pr||nplane Pr[nline · nplane Pr]|| (4.17)

Finally, the rake angle θis calculated as the angle between nline and nlineproj.

4.6.2 Algorithm Implementation

In this implementation, insert tool for micro-turning was used and measured by the

focus variation instrument (4.25). The material of the tool is tungsten carbide. The

measurement parameters used are shown in table 4.7. Firstly, the s, n, r parameters of

the variogram model are quantified with similar method in the other material presented

in the previous section. Fig. 4.26 shows the semi-variogram plot in horizontal direc-

tion with consideration that the data is horizontally more correlated. The obtained
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Figure 4.26: Semi-variogram plot of the cutting tool surface measurement data.

parameters for s, n, and r are 2 µm, 0.05 µm, and 25 µm respectively. About 100

simulation runs were carried by perturbing the points with errors model of a Gaussian

process using the obtained parameters. In each simulation, rake angle is automatically

calculated and stored. The results statistic of the rake angle are mean = 11.28930 and

sigma = 1.40. In this case, the comparison is only carried out with result from manual

measurement. From the manual procedure, the obtained rake angle is about 10.7610.

As a matter of fact, for comparison, the manual measurement significantly depends on

operator as can be seen in 4.27.

4.7 Conclusion

The case studies consist of two main measurement tasks: dimensional (including size)

measurement and geometric measurement. From case studies presented, the results of

uncertainty estimation by the proposed simulation approach show a good agreement

with the real measurement. A good agreement is obtained by calculating En value

which are around 95% are less than (some case studies have En value near to 95%). The

validation method is based on ISO 15530-4 standard. In addition, there are important

aspects which can be derived:
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Obtained points 
cloud of the insert

Manual determination of cutting plane
Difficulty: precise and repeatable cutting plane orientation

Obtained intersection point Manual determination of two lines to 
calculate and obtained the rake angle
Difficulty: determining the correct two 
lines defining the rake angle

10.7610

Figure 4.27: Semi-variogram plot of the cutting tool surface measurement data.
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1. A database of Gaussian process parameters (s,n, and r) can be created for many

type of materials. The procedure is simple. For each material, a flat measurement

is carried out. From the obtained data, semi-variogram plot can be derived for

each horizontal and vertical profile to estimate the Gaussian process parameters.

These parameters will be used for the simulation to estimate the uncertainty

according to the proposed framework.

2. Outliers removal has always to be carried out. The reason is that data points

obtained by means of optical instrument is prone to outlier. This outlier will affect

the measurement results, especially measurement for geometric characteristic.

From the results of case studies, the basic 3-sigma based filter can be used in

many types of measurement situations to deal with outliers.

3. Selection of fitting method to derive a measurement results from data points has

to be correctly chosen. For dimensional and size measurement, LSQ fitting (best

fitting/Gaussian fitting) should be used. Meanwhile for geometric measurement,

Based on ISO 1101 and ASME Y14.5, MZ fitting (MinMax fitting or Chebyschev

fitting) should be selected.
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Chapter 5

General conclusion and future

works

In this study, there are two main results which have been presented. The first is

procedure and calibrated artifact for performance verification of focus-variation based

instrument, both for 3-axis and 4-axis configurations. Secondly, uncertainty characteri-

zation to study the influence factors which affect the results of focus-variation based and

a simulation approach, as well as its validation, to estimate measurement uncertainty

have been presented. In addition, improvement in LSQ fitting for non linear geometries,

automatic measurement algorithms for certain measurement, and case studies are also

discussed.

The proposed procedure and artifacts for performance verification comply with

ISO 10360-8 and ISO 10360-3. The verification is separated into different procedure

and artifacts for each 3-axis and 4-axis configuration. In 3-axis configuration, total

measuring volume of the instrument is 100 x 100 x 100 mm. A reduce in volume

is observed if the instrument is set into 4-axis configuration since the rotational-axis

occupied part of the total measuring volume. In this configuration, the measuring

volume becomes 40 x 40 x 40 mm to avoid the collision among the objective nose-

piece, work piece and the rotational-axis unit. A hybrid artifact which can be used

to verified both the performance for length measurement (ISO 10360-8) and rotational

axis (ISO 10360-3) has also been reported. The procedures and artifacts are useful for

both instrument manufacturers and users.

The results from uncertainty characterization show that measurement by means of
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FVM instrument is affected by many factors. The influence factors are grouped into

four: Environment and drift (ambient light, drift), procedure (different objective lens,

multi-position, stitching), instrument parameters (vertical and lateral resolution, ex-

posure, contrast), and part shape and illumination (peak-valley shape, material types,

illumination types). All of them are statistically significant in affecting the measure-

ment results except the ambient light.

The proposed simulation-based approach to estimate measurement uncertainty com-

ply to ISO 15530-4 is a suitable method to estimate task-specific measurement uncer-

tainty, especially in non-contact measurement. The proposed method considers the

correlation among points obtained by the optical instrument. Thanks to the spatial

statistic method of Gaussian process, the error of a point can be modeled and simulated

by taking into account the correlation among points. Parameters for the error simula-

tion have to be estimated separately for each material type, since each material have

different response to the incident light. As such, different material will have different

response by the instrument. The validation is carried out and the results show that

the simulated uncertainty have a good agreement with a real measurement with the

optical instrument.

In addition, an improvement to the LSQ fitting of non-linear geometry is presented.

The idea is to refine the initial guest of the solution such that it is near to the optimal

solution since standard LSQ method is prone to be trapped in local optima in the

searching process for the optimum value. Automatic perpendicularity measurement

and rake-angle measurement of micro turning tool from the obtained point cloud are

also presented. Finally, case studies are presented to apply the proposed simulation

approach in estimating measurement uncertainty and measuring algorithm. From the

case study, the simulated uncertainty is verified by calculating the En value (based on

ISO 15530-4) which is more than 95% is less than one.

There are aspects which have to be further investigated and studied for future works.

Procedure and artifact for performance verification involving simultaneous movement

of translational and rotational axis is needed to quantify the instrument error while

measuring this kind of measurement, for example cylindrical tool measurement. From

the result comparison obtained by optical and contact instrument, it is observed that

the measurement results of geometric tolerance verification by optical instrument are

always higher than the calibrated value obtained by contact CMM. Subsequently, a
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bias can be observed. Hence, this bias has to be studied such that a compensation

technique can be applied. Finally, regarding the uncertainty estimation by means of

simulation method (ISO 15530-4), it is highly computational intensive. A method to run

the simulation more efficient should be developed such as utilizing parallel processing

technique.
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Appendix A

Performance improvement in

non-linear geometric fitting

A.1 State of the art

Optical instrument is able to obtain many points. Hence, further process has to be

carried out to obtain the final measurement result. The basic process is to associate

(fitting) these points with specific feature. Data association is the basic function of

data analysis software [Hopp [1993]]. Hence, algorithm has a fundamental role in the

whole measurement cycle.

A.1.1 Fitting and automatic-measurement algorithm

There are two main functions of measurement algorithm: association (fitting) of points

to a specific geometry and specific measurement algorithm. Firstly, fitting of points

to geometry has to be carried out to verify both dimensional and geometric tolerance.

In mechanical tolerancing, geometric tolerance is important in offering a better way in

communicating the design intent of the designer [ISO1101 [2004], ASMEY14.5 [2009],

Armillotta and Semeraro [2011], Morse [2012]]. Secondly, specific measurement algo-

rithm is used to be able to automatically calculate a certain measurement task.

Dimensional tolerance is defined by ”+/-” symmetric-tolerance (two-sided toler-

ance), for example: length tolerance, diameter/radius tolerance, angle tolerance, etc.

Verification of dimensional tolerance is straight forward. The ideal geometry is fitted

or associated from the obtained point cloud and the derived dimension from this fitted
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geometry is compared to its nominal design whether it is inside the tolerance zone or

outside the tolerance zone. Only dimensional tolerance is not sufficient to represent

the design intent of the designer and can wrongly convey the design message from the

designer to the shop floor (manufacturing process). A new paradigm of tolerancing

is geometric tolerance. Geometric tolerancing is a language of the designer to talk

to the manufacturing engineer. Different with dimensional tolerance, geometric tol-

erance is a one-sided tolerance system in which only the maximum allowable value is

stated and the minimum value is always zero. Geometric tolerances are divided into

five main classes: form, profile, orientation, location, and run-out [ISO1101 [2004] and

ASMEY14.5 [2009]]. The first two classes are un-related feature tolerance in which

there is no datum needed. These types of tolerance are used to tolerance the datum

surface. The later three are related-feature tolerance since datum reference is needed

in the verification procedure.

The role of geometry association for tolerance verification is illustrated in A.1. Ge-

ometry association algorithm can be divided into three classes: Least Square (LSQ)/

Gaussian/ Best) fitting, MinMax (Chebyschev/ Minimum Zone) fitting, and other fit-

ting such as minimum circumscribe, maximum inscribe, etc. This classification is based

on the type of objective function. LSQ fitting is used for dimensional tolerance veri-

fication. Shakarji [Shakarji [1998]] divides basic geometry into linear (line and plane)

and non-linear (circle, sphere, cone, and torus) geometry based on their defining pa-

rameter. Other than these basic geometries, they are grouped into free form surface.

Meanwhile, MinMax fitting is used for geometric tolerance verification and conform to

the description of ASME Y14.5.1-M [ASMEY14.5.1 [1994]].

1. Least Square Fitting (LSQ)/Gaussian)

LSQ fitting is the standard fitting method since it is considered more robust with

regard to noise [Moroni and Petro [2011]]. The fundamental idea of LSQ is to minimize

the sum of square of the distance function from a point to its fitted geometry. It is

formulated as unconstrained non-linear optimization problem:

arg min
param

F =
n∑
i=1

d2
i (param) (A.1)

where param is the defining parameters of the geometry to be fitted. For line and

plane, an optimum solution exists by solving Eigen value problem to fit these geometries
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Figure A.1: Geometric fitting is a critical step in metrology.

[Shakarji [1998]]. Meanwhile, other basic geometries are solved by means of iterative

algorithm as explained in [Shakarji [1998]] and is as standard LSQ fitting algorithm used

in National Institute of Standard and Technology (NIST). This iterative algorithm is

based on Levenberg-Marquardt (LM) [Marquardt [1963]].

Beside NIST standard algorithm for solving LSQ fitting, there are also other type

of solutions. Jiang [Jiang [2000]] proposed a decomposition approach. The idea is to

reduce the number of parameters which should be optimized by decomposed them into

smaller optimization problem. By rewriting eq. A.1 as:

~aopt = arg min
a

n∑
i=1

d(pi, f(~a)) (A.2)

Optimal parameter vector is defined as ~aopt with size of k number of parameters.

d(pi, f(~a) is the distance cost which should be minimized. pi is the i-th point and

f(~a) is a function defining the geometry. The idea is to decomposed ~aopt having k

number of parameter into ~a1 with k1 number of parameters and ~a1 with k1(∼= k − k1)

number of parameters. There are 2n−2 total possible decomposition. Hence, it becomes

~a = ~a1 ~a2:

~aopt = arg min
a1

(
n∑
i=1

d(pi, f( ~a1, ~a2))

)
(A.3)

Einecke et al [Einecke et al. [2010]] used Hookes-Jeeves optimization method applied to

direct surface fitting from 3D data, instead of common Gauss-Newton step or Steepest-
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Decent step. This method is a direct method which does not need derivatives of the

objective function. Blenko et al [Blenko et al. [2002]] studied Lagrangian multiplier

and sequential constraint satisfaction method for fitting geometry with a constraint.

This situation is commonly found in the Computer Aided Design (CAD) system. Their

study also noticed the problem of initial value determination to start the iterative pro-

cesses.

2. MinMax (Chebyschev) fitting

MinMax/Chebyschev fitting is inherently a non-linear optimization problem [Shakarji

[2012], Carr and Ferreira [1995a], Carr and Ferreira [1995b]]. This method is best to in-

terpret the tolerance zone based on ASME standard [ASMEY14.5 [2009], ASMEY14.5.1

[1994]] and ISO standard [ISO1101 [2004]]. The implementation of MinMax fitting is

called Minimum Zone fitting (MZ). The geometry of MZ fitting is a geometry which

lies in the middle of minimum separation of two identical and parallel geometries con-

taining all the data points [Shakarji [2012]]. MZ fitting is defined as a solution of the

following non-linear optimization problem:

arg min
param

(
max
i
|di(param)

)
(A.4)

Eq. A.4 is computationally more expensive to solve compared to LSQ fitting (Eq. A.1).

In addition, MZ fitting is less robust to noise compared to the LSQ one. MS fitting is

only affected by points on the boundary meanwhile LSQ fitting considers all the points,

thus it has an averaging effect. Since MZ fitting is not robust and very sensitive, a

careful measurement should be carried out since only a single noise point will greatly

affects the fitting results. Fig. A.2 illustrates the different between LSQ fitting and MZ

fitting. As can be observed from this figure, MZ fitting is only considering the points

on the boundary meanwhile LSQ considers all the points and has an averaging effect.

Hence, LSQ suppresses random error in the points. Finally, effective algorithm plays

an important role to solve this optimization problem.

Carr and Ferreira [Carr and Ferreira [1995a], Carr and Ferreira [1995b]] elaborated

in detail for minimum tolerance zone fitting as stated in ASME Y.14.5 [ASMEY14.5

[2009]]. Anthony et al [Anthony et al. [1996]] proposed a reference algorithm for MZ.
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Figure A.2: (a) LSQ fitting (averaging effect) and (b) MZ fitting [Shakarji [2012]].

They convert MZ objective function into constrained linear optimization as:

arg min
param

MinS (A.5)

s.t. S − di(param) ≥ 0

Shakarji [Shakarji [2004]] also proposed solution method to solve MZ fitting problem.

In this method, he used a heuristic search of simulated annealing (SA) by consid-

ering its computational efficiency since SA algorithm is considered as one of efficient

meta-heuristic technique [Syam and Al-Harkan [2010]]. His proposed procedure is sum-

marized as follows:

1. Fit the associate geometry to the data by LSQ fitting.

2. Rotate and translate the data based on the computed LSQ fitting.

3. Search for the optimum solution with simulated annealing technique.

Moroni and Petro [Moroni and Petro [2008]] proposed a very efficient algorithm

for solving the MZ fitting problem. They call their proposed method as Loop Control

Algorithm (LCA) which is a modification of Speeded-up Brute Force Attack algorithm.

Their method only considers the points on the border of the tolerance zone. These

points are defined as essential points. Their innovative idea directly discards the non-

contacting points and chooses the next point to be included in the essential subset

as the most external point from the tolerance zone. Pairel [Pairel [2009]] proposed

algorithm of virtual gage for checking geometric tolerance.
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A computational geometry techniques have been exploited by Samuel and Shun-

mugam [Samuel and Shunmugam [1999], Samuel and Shunmugam [2000], Samuel and

Shunmugam [2001], Samuel and Shunmugam [2002], Samuel and Shunmugam [2003]]

for form error evaluation (geometric tolerance verification). Evaluation of straightness

and flatness are studied in [Samuel and Shunmugam [1999]]. They used convex-hull

method. To compute convex-gull, divide-and-conquer algorithm was implemented. Fi-

nally, the minimum zone is calculated as antipodal pairs of the convex hull. Antipodal

pair of a convex hull is a pair of points which are supporting parallel line or plane

of the convex hull (A.3a). In other words, it can be interpreted as clipper holding

the convex hull. Circularity/roundness form error, MI circle and MC circle evaluation

are reported in Samuel and Shunmugam [1999], Samuel and Shunmugam [2000]]. The

method is based on convex-hull. Equi-distant (Voronoi) diagram (ED) and equi-angular

diagram (EA) are used to asses the circularity form error. Illustration of equi-distant

and equi-angular line and diagram is presented in A.3b. MC and MI circle are evaluated

from the farthest ED and the nearest ED diagram, respectively in A.3c. EA diagram

is used for the alternative of evaluating MC and MI circle by the method of limacon.

The extension of these ED and EA diagram into sphere form error evaluation are pre-

sented in [Samuel and Shunmugam [2001], Samuel and Shunmugam [2002], Samuel and

Shunmugam [2003]].

Heuristic search [Trafalis and Kasap [2002]], as a general optimization solver, can

also be utilized for MZ evaluation. Genetic Algorithms (GA) is highly utilized to

evaluate roundness error are reported in [Rossi et al. [2011], Rossi and Lanzetta [2013],

citemea2013]. The GA is modified to improve its effectiveness and efficiency, especially

minimizing the computation time for large cloud of sample points. In [[Rossi and

Lanzetta [2013]] and Mea et al. [2013]], studies related to optimal blind sampling for

roundness to relate and to find the optimum sample size are presented. The fitness

function for their GA is defined as:

MZE = minR(x, y) (A.6)

=
{ min[maxr(x, y, θi)−minr(x, y, θi)]
s.t. (x, y) ∈ Er(x,y,θ)

3. Other fitting

Besides LSQ fitting and MinMax fitting, there are exist other types of geometric.
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Figure A.3: (a) 2D convex hull which shows the parallel support line from antipodal

pairs [Samuel and Shunmugam [1999]] and (b) Illustration of ED and EA diagram [Samuel

and Shunmugam [2000]], and (c) MZ fitting from superimposed MC and MI circle fitted

by farthest ED and nearest Ed diagram respectively [Samuel and Shunmugam [2000]].

Minimum-total-distance (MTD) fitting [Shakarji [2012]] is a fitting method which solves

the following optimization problem:

arg min
param

n∑
i=1

|di(param)| (A.7)

MTD fitting is the unsigned version of LSQ fitting. The fundamental idea of this

fitting is it is constrained to follow the majority of points. Thus, MTD fitting is

considering the median of the data points. This fitting method may useful in the case

of associating a datum plane which can simulate the contact between the planar feature

of a work piece and a surface plate [Shakarji [2012]]. MTD fitting is depicted in A.4a.

From this figure, one can observe that the ”false” points (in red) can be neglected by

the fitting algorithm.

There are a special fitting method only for certain geometry of circle, sphere and

cylinder. These special fittings are Maximum-Inscribed (MI) fitting and Minimum-

Circumscribed (MC) fitting (A.4b). They are constrained optimization. MI fitting is
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Figure A.4: (a) MTD fitting and (b) MI and MC fitting.

defined as:

arg Max
param

r (A.8)

s.t. ∀di(paramP ) ≥ 0

While MC fitting is defined as:

arg min
param

r (A.9)

s.t. ∀di(paramP ) ≤ 0

Gannebaud and Gross [Guennebaud and Gross [2007]] proposed a method to fit a sphere

taking advantage of the normal vector of the points. In addition, they use algebraic

distance instead of geometric (Euclidean) distance. Algebraic sphere is defined as the

0-isosurface Su(x) = [1, xT , xTX]u where u = [u0, u1, u2, u3] is the sphere defining

parameters. The algebraic sphere function is:

u(x) = arg min
u,u6=0

||W
1
2 (x)Du|| (A.10)

where W (x) =

w0(x) 0 0

0
. . . 0

0 0 wn−1(x)

 is n× n diagonal weight matrix,

D =

1 pT0 pT0 p0
...

...
...

1 pTn−1 pTn−1pn−1

 is n× (d+ 2) design matrix.
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n is the number of points and wi(x) is weight of the point pi . Their main goal is to fit

a complex surface with algebraic point set surfaces, constructed from algebraic sphere

fitting.

Rusu et al [Rusu et al. [2003]] studied and improved weighted total least squares

(WTLS) circle fitting by using inversion transformation and providing different weight

for each point observation. The WTLS circle fitting is a solution of optimization:

arg min
a,b

N∑
i=1

wi[(ui − ûi)2 + ((vi − v̂i)2] (A.11)

where wi is a certain weight . (ûi, v̂i) is a closest point on a line v = a+ bu for a certain

point . The coordinate of (ûi, v̂i) is defined as:

ûi =
bvi + ui − ab

1 + b2
and v̂i = a+ b

bvi + ui − ab
1 + b2

(A.12)

Beside proposing solution for MZ fitting, Anthony et al [Anthony et al. [1996]] also

proposed solution for MI and MC fitting by converting them into constrained linear

optimization problem. For MC fitting, the constrained linear optimization becomes:

arg min
param

S (A.13)

s.t. S − ri(param) ≥ 0

And for MI fitting, it is converted into:

arg min
param

S (A.14)

s.t. S + ri(param) ≥ 0

The solution by Anthony et al [Anthony et al. [1996]] after converting unconstrained

non-linear optimization into constrained linear optimization for MZ, MI, and MC fitting

is by applying Kuhn-Tucker first order condition form:

Feasibility : (A.15)

ci(u∗) ≥ 0

Firstorder :

λi∗ ≥ 0

where u∗ is the parameter to be optimized. The second order condition form is defined

as Hessian matrix H(u∗, λ∗). Hence, their solution approach to their algorithm is:
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Figure A.5: Automatic cutting edge detection of cylindrical mill [Moroni and Petro

[2013]].

1. Form and solve Kuhn-Tucker equations K(u, λ) = 0 for u∗ and Lagrange multi-

pliers λ∗.

2. Check the optimality conditions: first order and second order.

3. If λi∗ < 0 drop a constraint from ia (for example drop a constraint in which λi∗

is the most negative); If ci(u∗) then drop a constraint to ia. Return to step 1.

Beside algorithm development for geometry fitting from points, algorithm for au-

tomatic measurement of specific measurement-task is also important. This situation

involve many 3D noised points which make the procedure is not an easy task. Fur-

thermore, efficient algorithm is needed such that the computation cost is reasonable

for industrial application. Only with this procedure, measurement repeatability can

be assured. Moroni and Petro [Moroni and Petro [2013]] developed algorithm to au-

tomatically segment the edge area of a cylindrical mill. The algorithm starts from

triangular-mesh file. It has fundamental contribution for further automatic calculation

of tool geometry, such as rake angle as well as tool wear measurement. Fig. A.5 shows

the functionality of the developed algorithm.
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A.1.2 What is lacking?

Regardless many studies in formulating geometric fitting as well as finding their so-

lution, there are some aspects which needs further investigation. In many situations,

the obtained points from the instrument do not cover all or majority of the part sur-

face which will be fitted. Hence, these situations make the fitting procedure more

difficult, such as fitting a cylinder from points which only cover half or quarter of the

whole cylinder surface. Computation performance of the fitting process is becoming

more relevant aspect. The reason is that, non-contact instruments are able to obtained

many points, even millions, in one measurement cycle. The algorithm used to compute

the fitting process should be efficient so that the measurement result can be obtained

in reasonable time, depending on the situation. Finally, from the literature review,

more studies are devoted for geometry fitting (association) studies. In fact, since mea-

surands are varying and some of them complex, automatic measurement algorithm is

urgently required. Only by this algorithm, measurement repeatability can be guaran-

teed. Furthermore, for instruments to be used for in-line quality inspection, automatic

measurement is required. Automatic measurement from 2D image for in-line inspection

of basic geometries, such as diameter, gap width, etc can be found, but for inspection

dealing with 3D points is still very rare.

A.2 Non-linear Fitting

There are two types of substitute geometries: linear and non-linear geometry. The

grouping criterion is based on their defined parameters. Line (both 2D and 3D) and

plane fall into linear geometry, as their defining parameters are linear. On the other

hand, other basic geometry such as circle, sphere, cylinder, cone and torus have non-

linear parameters defining their shapes. Hence, they are categorized as non-linear ge-

ometries. Direct solutions which result in exact method are available for linear geometry

fitting. Meanwhile, iterative method should be applied to fit a non-linear geometry. In

this section, LS tting of circle, sphere and cylinder will be addressed. Circle and sphere

geometries have many applications, for example sphere is a common artifact geometry

for calibration of dimensional metrology instruments [ISO10360-4 [2010]],[ISO10360-5

[2010]]. In addition, many mechanical products have rotational functionality which is

203



APPENDIX A. PERFORMANCE IMPROVEMENT IN NON-LINEAR
GEOMETRIC FITTING

constituted in the form of shafts and holes. Cylinder is a geometry representation of

these shaft-hole systems [Whitney [2004]].

The basis of LS tting is the minimization of an objective function constituted by

a sum of square of errors. Error is defined as the difference between estimated and

measured value. In dimensional metrology, error is usually assimilated to the local

geometrical deviation, i.e. the orthogonal distance between measured points and the

ideal substitute geometry (A.6). LS tting objective function is defined as:

arg min
P

F (P,xi) =
N∑
i=1

d2
i (P) (A.16)

where F is the distance function of points x to the fitted geometry. xi is a cloud of n

points sampled on a surface and P is set of parameters on which a distance function

di(P) depends on, so that di(P) is the distance of the i-th point from the substitute

geometry defined by P. For the circle, the distance function is ((A.6a left):

di(x0, r) = ||xi − x0|| − r =
√

(xi − x0)2 + (yi − y0)2 − r (A.17)

Where x0 = [x0,y0]T is the circle center, r is the circle radius, and xi = [xi,yi]
T is

the i-th point, and ||x|| is -norm of a vector x, e.g. ||v|| =
√

v2
1 + v2

2 + v2
3. Similarly,

for the sphere, the function can be formulated as:

di(x0, r) = ||xi − x0|| − r =
√

(xi − x0)2 + (yi − y0)2 + (zi − z0)2 − r (A.18)

Where x0 = [x0,y0, z0]T is the sphere center, r is the sphere radius, and xi =

[xi,yi, zi]
T is the i-th point. The distance function of a point to a cylinder is more

complex (see A.6a right):

di(x0,n, r) = d3dp2Axis − r =
||xi − x0 × n||

||n||
(A.19)

where r is the radius of the cylinder and d3dp2Axis is defined as distance between 3D

point xi to the axis of cylinder (a straight line). The axis is defined by a point x0

belonging to it and a direction vector n (A.6b). It can be observed that the objective

function F which has to be minimized is a non-linear multi-modal function which has

many local minima and/or maxima.
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Figure A.6: (a) Definition of point distance for circle (sphere) and cylinder, (b) definition

of point distance for 3D-line.

A.3 Levenberg-Marquardt Algorithm

Levenberg-Marquardt (LM) algorithm is a well-known approximation method for solv-

ing non-linear least square problems that has applications in many elds [Marquardt

[1963],Nash [1979]]. The main principle of LM algorithm is the blending between

steepest-decent (gradient search) step method and Gauss-Newton step method. When

the current solution is far from the optimal, the LM method acts like a steepest-decent

method. Subsequently, LM method will become a Gauss-Newton when the solution

is near optimal. The basis of steepest-decent method is searching with regard to the

direction of the gradient. Let F be the function to optimize, and xk be the candidate

solution at step k. Since in this case minimization is the problem to solve, the next

step in the searching procedure is:

xk+1 = xk − λsOF (A.20)

where OF = (∂F/∂x, ∂F/∂y, ∂F/∂z) is the gradient of the objective function as well as

the search direction, and λs is the step size which determines how far the next candidate

solution will be from the current one. Hence, if the value of λs is set very small, then it
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will take longer to reach convergence. Otherwise, if the value of λs is very large, there

is a high probability that the searching process will over-step the optimum value. In

Gauss-Newton method, linearization by using Taylor expansion series is deployed. The

series are:

Of(p) = Of(p0 + (p− p0)TO2f(p0) + · · ·+
[
(p− p0)T

]n
Onf(p0)︸ ︷︷ ︸

Higher order form

(A.21)

Commonly, higher order expansions are not considered. Not only the algorithm is more

efficient to reach the convergence, but also the form is mathematically tractable to solve

p. By setting Of(p) = 0, the next step of the Gauss-Newton can be calculated as:

pj+1 = pj − (JT
dJd)−1JT

dd(pj) (A.22)

Where d(pj) is the vector of the residual (distances) at step j, and Jd is the Jacobian

matrix of this vector of distance functions. Note that Taylor expansion series is accurate

only for a small range of region, the so-called trust region. This small region is a

region where the non-linear estimation of a function by using Taylor expansion is still

reasonably valid. It implies that Gauss-Newton method is valid for searching through a

small area of the neighborhood. Subsequently, the method is effective when the initial

guess is near the optimum solution.

The LM method combines the advantages of steepest-decent and Gauss-Newton

methods. A vector of input parameters p0, which includes the parameters that will

be optimized, is supplied to the LM algorithm, along with matrix M which is a n× 3

matrix of all the data points, defined as: [x1 y1 z1; · · · · · · · · · ;xn yn zn], so that

an optimized vector of parameters p is obtained. The LM method used here is based

on the LM used by NIST [Shakarji [1998]] for their algorithm testing system. The LM

algorithm is shown in Table A.1.

λ is LM variable, which is increased and decreased by 10 and 0.04, respectively,

according to NIST suggestion [Shakarji [1998]]. J0 is a Jacobian matrix which elements

on its i-th row are Odi(p0) , which are the first-order partial derivatives of di respect to

each parameter which has to be estimated for each i-th point. For circle, the parameters

p0 are x0, y0 of its center and radius r. For sphere, only one additional element z0 for

its 3D position of the center is added to the parameters. Finally, the parameters for

cylinder are x0, y0, z0 which is a point on the axis, having vector of cosine direction
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Algorithm 1: Levenberg-Marquardt Algorithm

Input: Vector p0 which is the initial guess for the pa-

rameter and matrix M which is the point cloud

to be fitted.

Output: Vector p which is the fitted parameter

1: Set λ = 0.0001

2: DO { decrease λ

3: set U = JT
0 J0

4: set v = JT
0 d(p0)

5: set F0 = dT(p0)d(p0)

6: DO { increase λ

7: set H = U + λ (I + diag(U))

8: solve Hx = −v

9: set pnew = p0; set F = dT(pnew)d(pnew)

10: IF converge THEN return p0 = pnew

11: UNTIL Fnew < F0 or stop criterion is true

12: IF Fnew < F0 THEN p0 = pnew

13: UNTIL stop criterion is true

Table A.1: LM Algorithm.
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Figure A.7: Illustration of Schweifel and Square of circle distance multimodal function.

(normal) n(n1,n2,n3) , and finally its radius r. The number of column of matrix J0

corresponds to the number of parameters to be estimated, and the number of rows

corresponds to number of points the substitute geometry will be fitted to.

The central idea of this LM method lies on the equation Hx = −v. If this equation

is enlarged into JT
0 J0 + λ

(
I + diag

(
JT
0 J0x

))
= −JT

0 d(p0), one can observe that if λ

is zero or small, LM behavior become Gauss-Newton method. In the opposite, if λ is

large, then the off-diagonal elements of JT
0 J0 will have less effect such that LM behaves

like steepest-decent method. The term I+diag(JT
0 J0) is used instead of DTD.This is a

weighted distance matrix (depending on the geometry which will be estimated), based

on Nash [Nash [1979]] suggestion, such that Hx = JT
0 J0 + λ

(
I + diag

(
JT
0 J0x

))
=

−JT
0 d(p0) becomes positive definite.

A.4 Initial Point Problem

LM iterative method mentioned in the previous section depends significantly on the

initial guess of a set of solutions, p0 [Rardin [2006]]. This situation is similar to any

other iterative algorithm. The function to be optimized is a multi-modal function with

a complex contour and many local optimums. Subsequently, the risk exists that the

search is trapped in a local optimum region. The illustration of multi-model function

is shown in A.7 (left) by using Schweifel function and square of the summation of a

circle distance function, which is F =
∑N

i=1 d
2
i , where di is declared in eq. A.17.

As mentioned before, the LS nonlinear function which to be minimized to fit ge-

ometries is multi modal. Hence, it has many local minima, only one being the global
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Figure A.8: Different initial solutions affect the nal solution. (a) Initial guess is far from

optimal, (b) initial guess is near optimal.

optimum. If the optimization process gives a local minimum solution, then the solution

is sub-optimal. The searching procedure can be trapped in local minima depending on

where the initial guess is put. Subsequently, as it can be presumed, the result is signi-

cantly affected by the initial guess [Rardin [2006]]. For example, the objective function

to fit a circle is shown in A.7(right). The surface is constructed by varying the (x, y)

center position of the circle. The different colors show how the surface changes as the

candidate radius r changes. Even though in this case the optimization zone is convex,

different levels of radius r create different separated optimization zones. This can trap

the searching process in one of the optimization zones. Therefore, it is possible the

final solution is not a global optimum, depending on the initial solution. Fig. A.8

illustrates how initial guess as starting solution affects the final results. If the initial

guess is far from optimum, an unexpected final result can be obtained (A.8a). On the

other hand, a good initial guess significantly improves the final solution reducing the

objective function value (A.8b).

A.5 Chaos Optimization

Chaos is defined as a semi-randomness property. This property is generated by a

nonlinear deterministic equation. It creates a chaotic dynamic step which can easily

escape from local optima. The concept is different with using rejection-accepting prob-

ability test in random-based algorithms, such as improvement heuristic search [Syam

and Al-Harkan [2010]]. Searching through regularity of chaotic motion, represented by

one-dimensional logistic map, is its fundamental recipe [Luo et al. [2008]]. Chaos op-
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Figure A.9: Logistic map. (a) time-series plot of logistic map, (b) paired-plot between

two consecutive chaos variables.

timization (CO) uses these chaos properties, which are ergodicity, stochastic property,

and regularity [Tavazoei and Haeri [2008]]. The one-dimensional logistic map used is:

tk+1 = λc(1− tk) (A.23)

Where λc ∈ {3.56, 4} is a control argument and k is iteration number. Yang [Yang et al.

[2009]] recommended 0 ≤ t0 ≤ 1 where t0 /∈ {0,0.25,0.5,0.75,1.0}. The behavior of

eq. A.23 becomes chaotic in the sense that its value is drastically changed within the

limit of λc and tk presenting the regularity of chaotic motion. Fig. A.9 shows the plot

of time series of this function and paired-plot between two consecutive chaos variables.

This CO is used to improve the initial guess of LM non-linear fitting iterative

method, so that the initial guess is near the optimal solution, thus preserving the

computation time, which is very important when the sample size is large (millions of

points). The combination of CO algorithm with LM algorithm to improve the initial

guess can be found in table A.2.

To adjust small ergodic range around pi∗, the parameters are set as λ = 0.45

[Tavazoei and Haeri [2008]], λ = 4 [Yang et al. [2009]], rmax = 50, and Kmax = 50.

The value λ = 4 is set such that a signicant difference in the long term will be obtained

from a small change of t. As it can be seen from A.9right, with a small change in two

consecutive t, a chaotic behavior will be observed in the time series manner (A.9left).

The value of Kmax and rmax were chosen to minimize the overhead computational cost

in determining the initial point. The statements IF ar+1
i > ari THEN ar+1

i = ari , λ ∈
{0, 0.5} and IF br+1

i < bri THEN br+1
i = bri , λ ∈ {0, 0.5} are to encourage movement

farther from the initial bounding area, set in the beginning of the search. With reference
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Algorithm 2: Chaos search to improve the initial guess in LM method

Input: Vector p0 is the initial guess for the parameter (1 : n −
param)

Goal: New vector p0 is the improved initial guess by

Min F (pi), pi ∈ {ai,bi}, let pk = (p1 : pk)

where: p=(p1, · · · , pn) and t=(t1, · · · , tn)

1: Set k = 0, r = 0, Set kmax = 10, rmax = 30

2: Produce randomly. t0 ∈ {0,1} and /∈ {0, 0.25, 0.5, 0.75, 1.0}
3: Set tk = t0, t∗ = t0, a0 = p−MPE, b0 = p + MPE

Where: a = (ai, · · · ,an), b = (bi, · · · ,bn)

4: Set p∗ = p0 → initial guess parameter

5: DO WHILE { r < rmax;

DO WHILE { k < kmax;

6: Set pi = ari + tri (b
r
i − ari )

Calculate F k = sumN
i=0d

2
i (pi)

7: IF F k < F∗ THEN

F∗ = F (pk), p∗ = pk, t∗ = tk

8: k = k + 1; tki = λtk−1
i (1− tk−1

i ), λ ∈ {3.54, 4}
9: }END k-th iteration; r = r + 1

10: ar+1
i = pi ∗ −λ(bri − ari ) and

br+1
i = pi ∗+λ(bri − ari )

11: IF ar+1
i > ari THEN ar+1

i = ari , λ ∈ {0, 0.5}
12: IF br+1

i < bri THEN br+1
i = bri , λ ∈ {0, 0.5}

13: IF r, rmax THEN produce t0 ∈ {0, 1} by random, k =

0, tk = t0 GO TO (7)

ELSE Chaos Optimization (CO) is terminated.

14: return p0 = p∗; } END r-th iteration

15: Insert the new p0 into Algorithm 1: LM Algorithm

Table A.2: Chaos Algorithm.
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Figure A.10: Illustration of data generated for circle, sphere, and cylinder.

to Fig. A.8(right), the initial guess is expected to be placed on the correct optimization

zone to find the global optimum.

A.6 Implementation and Discussion

A.6.1 Performance Improvement

Points with random error according to uniform distribution and normal distribution

were generated as presented in table A.3. For Chaos-LM method, initial point guess

of the initial solution of LM optimization iteration was improved by sending it to CO

method. In LM algorithm, the stopping rule is set as maximum iteration = 1000 and

100 for the Chaos-LM method. Fig. A.10 visualizes the generated data by plotting the

points cloud. The algorithm is implemented in MATLAB and run on an Intel Centrino

Core 2 Duo 2.2 GHz.
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Type of Data
Number of points and Nominal Parameter

Circle Sphere Cylinder

Uniform Range (µm) (x,y,r) =

(15,15,20)

mm

(x,y,z,r) =

(15,15,15,20)

mm

(x,y,z,r) =

(15,15,15,5)

and n (1,1,1)

mm

Type 1 [-2.2,2,2] 1000 pts grid [30x30] grid [25x25]

Type 2 [-5,5] 1000 pts grid [30x30] grid [25x25]

Normal sigma σ

Type 1 1.1 1000 pts grid [30x30] grid [25x25]

Type 2 2.5 1000 pts grid [30x30] grid [25x25]

Table A.3: Details of data generation.

The initial guess of the center of circle and sphere is the centroid. The centroid

location for each x, y, z is the average of the points
∑n

i=1
xi
n . The centroid is also the

initial guess of point on the axis of a cylinder. For the radius, its initial estimation is:

r0 =
1

2

(
(max xi −min xi) + ((max yi −min yi)

2

)
(A.24)

for the circle, and:

r0 =
1

2

(
(max xi −min xi) + ((max yi −min yi) + ((max zi −min zi)

3

)
(A.25)

For the sphere and cylinder. For the special case of a cylinder, its initial guess for

cosine direction of the axis is derived by fitting a 3D line to the point clouds. The

fitting method is implemented with a method according to NIST [Shakarji [1998]].

Two levels of sigma for the data deviation were considered. Type 1 represents only

the uncertainty of the instrument (Maximum Permissible Error/MPE), while type 2

simulates the uncertainty due to the part and the instrument. Type 2 data represents a

more realistic situation since an inspected part always contains feature deviation from

its nominal [Kruth et al. [2009]].

Results from 100 runs show that the combination of these methods, Chaos and

LM, increases the accuracy of the fitting process. The indication is that the fitted

geometry has less residual error, in term of the magnitude of their norm of sum of square

residuals, while preserving the computation cost. Table A.4 provides the complete
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Figure A.11: Substitute full circle tting results of (a) LM method and (b) Chaos-LM.

results of the fitting of full geometry point clouds both with only LM method and

with Chaos-LM method. Chaos-LM encourages the initial guess of the solution to

move to a better starting point, thanks to the property of the chaotic motion which

non-repeatedly searches through a set of states in a certain bounded domain [Jiang

[1998]]. Sensitiveness of the final solution of LM method to where the initial guess starts

is related to the Taylor approximation in the Gauss-Newton method, which depends

highly on the non-linearity degree of the neighborhood. The quality of this Taylor

approximation, which is usually until first term approximation, decreases for higher

non-linear function. Because of this, a trapped condition during searching process can

occur. Fig. A.11, A.12 and A.13 propose some visualizations of the fitting result for

circle, sphere and cylinder respectively. From this, one can observe that the Chaos-

LM fitting (fig. A.11, A.12, and A.13 right) finally lie on the middle of the point

cloud. This is coherent with the fundamental behavior of least-square fitting which is

an average over the considered data (in this case the point cloud). Plot of the norm of

residual and Central Processing Unit (CPU) time for circle, sphere, and cylinder are

respectively presented in fig. A.14 and A.15. In the special case of a cylinder fitting

result, the computation time slightly increases compared to the LM method. Indeed,

the improvement in the sum of squared residuals is significant. Furthermore, from the

graph one can observe that the variation interval of the CPU time for this cylinder

fitting is intersecting each other, so they are not significantly different.

A very important condition, difficult to address with standard approaches to fitting,

arises when the cloud of points does not cover the whole feature, e.g. only a hemisphere

has been sampled. This may be due to access limitation of the sensor to capture part
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Figure A.12: Substitute full sphere tting results of (a) LM method and (b) Chaos-LM.

Figure A.13: Substitute full cylinder tting results of (a) LM method and (b) Chaos-LM.
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Random Error
Levenberg-Marquardt Algorithm

Circle Sphere Cylinder

Type [µm] ||r|| (µ ±
3σ) [mm]

CPU (µ±
3σ) [s]

||r|| (µ ±
3σ) [mm]

CPU (µ±
3σ) [s]

||r|| (µ ±
3σ) [mm]

CPU (µ±
3σ) [s]

U [-2.2,2.2] 75.2584 ±
0.0627

0.8334 ±
0.0502

4.1007 ±
0.2632

1.0459 ±
0.1059

71.427 ±
0.0646

0.5114 ±
0.0512

U [-5,5] 75.26 ±
0.0548

0.8081 ±
0.0244

7.6507 ±
1.2160

0.5935 ±
0.0442

71.4316 ±
0.1288

0.6317 ±
0.0825

N (σ=1.1) 75.2265 ±
0.0166

0.825 ±
0.0376

1.5108 ±
0.0202

1.0353 ±
0.1272

71.4232 ±
0.0150

0.6368 ±
0.0766

N (σ=2.5) 75.225 ±
0.0375

0.8754 ±
0.1270

1.6651 ±
0.0453

1.0694 ±
0.1653

71.4252 ±
0.0363

0.6276 ±
0.0804

Random Error
Chaos and Levenberg-Marquardt Algorithm

Circle Sphere Cylinder

Type [µm] ||r|| (µ ±
3σ) [mm]

CPU (µ±
3σ) [s]

||r|| (µ ±
3σ) [mm]

CPU (µ±
3σ) [s]

||r|| (µ ±
3σ) [mm]

CPU (µ±
3σ) [s]

U [-2.2,2.2] 5.6646 ±
1.6784

0.5578 ±
0.0539

2.79 ±
0.2570

0.5634 ±
0.05555

5.7257 ±
2.0102

0.6225 ±
0.0277

U [-5,5] 4.3562 ±
1.3061

0.5551 ±
0.0338

6.2199 ±
0.4602

0.5628 ±
0.1088

5.7994 ±
2.9641

0.6706 ±
0.0515

N (=1.1) 5.1907 ±
1.2732

0.5677 ±
0.1053

0.4279 ±
0.1524

0.5458 ±
0.0569

6.9329 ±
2.9690

0.6788 ±
0.0907

N (=2.5) 5.469 ±
1.4621

0.5442 ±
0.0836

0.8185 ±
0.0991

0.4663 ±
0.0512

6.9169 ±
1.6543

0.6987 ±
0.1103

Table A.4: Simulation results of the full-geometric point cloud fitting.
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Figure A.14: Norm of residual of LM method and Chaos-LM method for full point cloud

geometry fitting.
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Figure A.15: CPU time of LM method and Chaos-LM method for full point cloud

geometry fitting.
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Figure A.16: Substitute Half circle point cloud tting results of (a) LM method and (b)

Chaos-LM.

surface, like e.g. in the case of laser scanning instruments, or to the real incompleteness

of the sphere, like in the case of a circular groove. Both LM and Chaos-LM methods are

applied to half-circle, half-sphere, and half-cylinder point clouds. This is a significantly

more difficult situation compared to fitting a complete cloud of points. One of the

reasons is that the estimation of initial solution tends to be less accurate since, in

general, the initial estimation is based on the symmetrical properties of the geometry

to be fitted. The data generation is identical to the one considered for the full-geometry

case as presented in table A.3. From this data generation, half of the cloud of points is

then discarded to get the half-geometry. The number of runs in the simulation and the

performance measures of both fitting methods are identical to the previous ”normal

case”. Details of all results of the simulation runs are presented in table A.5. One can

observe that the accuracy of fitting half-geometry point clouds is significantly improved

by Chaos-LM method compared to only LM method. Instead, the CPU time needed for

Chaos-LM to have better result is higher than the one of the LM method. Since there

are increments in CPU time to get a better result of Chaos-LM method, the comparison

of the two algorithms in this case has to be further investigated. Graphical presentation

of the fitting results for half-circle, half-sphere and half-cylinder are provided in fig.

A.16, A.17, and A.18 respectively to intuitively understand the significant result of

accuracy improvement by Chaos-LM in the case of half-geometries fitting. Finally, to

graphically explain the results in table A.5, fig. A.19 andA.20 respectively plot the

norm of residual and CPU time of the half-geometries fitting.
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Random Error
Levenberg-Marquardt Algorithm

Circle Sphere Cylinder

Type [µm] ||r|| (µ ±
3σ) [mm]

CPU (µ±
3σ) [s]

||r|| (µ ±
3σ) [mm]

CPU (µ±
3σ) [s]

||r|| (µ ±
3σ) [mm]

CPU (µ±
3σ) [s]

U [-2.2,2.2] 88.0124 ±
0.0087

0.8263 ±
0.0610

41.9479 ±
0.4454

0.2918 ±
0.0128

41.2638 ±
0.0271

0.6307 ±
0.0412

U [-5,5] 88.0106 ±
0.0209

0.8364 ±
0.0869

41.1334 ±
0.9747

0.2931 ±
0.0153

41.2651 ±
0.0510

0.6273 ±
0.0557

N (=1.1) 88.0143 ±
0.0021

0.4542 ±
0.0535

21.2072 ±
0.0603

0.2916 ±
0.0155

41.2643 ±
0.0067

0.4978 ±
0.0159

N (=2.5) 88.0149 ±
0.0053

0.4634 ±
0.0551

21.1117 ±
0.1741

0.2957 ±
0.0285

41.2636 ±
0.0140

0.6243 ±
0.0895

Random Error
Chaos and Levenberg-Marquardt Algorithm

Circle Sphere Cylinder

Type [µm] ||r|| (µ ±
3σ) [mm]

CPU (µ±
3σ) [s]

||r|| (µ ±
3σ) [mm]

CPU (µ±
3σ) [s]

||r|| (µ ±
3σ) [mm]

CPU (µ±
3σ) [s]

U [-2.2,2.2] 14.8104 ±
7.5609

1.2904 ±
0.0361

8.5878 ±
4.8903

0.5509 ±
0.0450

18.9191 ±
3.1847

1.2009 ±
0.0611

U [-5,5] 15.9923 ±
12.0558

1.2212 ±
0.1456

9.2163 ±
6.3610

0.413 ±
0.0247

18.7634 ±
3.0584

1.2185 ±
0.1001

N (=1.1) 15.0230 ±
13.5643

1.2944 ±
0.0831

4.9317 ±
4.002

0.4170 ±
0.0269

18.7751 ±
3.5261

1.0946 ±
0.1623

N (=2.5) 16.7502 ±
12.1930

1.3000 ±
0.08

4.9572 ±
2.3395

0.55 ±
0.0335

19.1193 ±
4.0786

1.2163 ±
0.0627

Table A.5: Simulation results of the half-geometric point cloud fitting.
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Figure A.17: Substitute Half sphere point cloud tting results of (a) LM method and (b)

Chaos-LM.

Figure A.18: Substitute Half cylinder point cloud tting results of (a) LM method and

(b) Chaos-LM.
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Figure A.19: Norm of residual of LM method and Chaos-LM method for Half point cloud

geometry fitting.
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Figure A.20: CPU time of LM method and Chaos-LM method for half point cloud

geometry fitting.
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Convergence curve analyses are presented in two parts which are for full- and half-

geometries fitting. One should note that in both cases, the value of convergence curve

can not reach zero since error exist on the points to be fit due to the simulated per-

turbation. The selected type of simulation is uniform distribution in the range of -5m

and 5 m U [-5,5]. For each group, three convergence curves are shown corresponding to

circle, sphere and cylinder. On the x-axe of the graph, there are two types of iteration.

For LM method, it corresponds to LM number of iterations which ranges from 100 to

1000 iterations. For Chaos-LM, this axis corresponds to the number of chaos iteration

in the range from 10 to 100 iterations. In the case of full-geometric fitting, the conver-

gence rate is much faster in the case of circle and cylinder. Fig. A.21, fig. A.22, and

fig. A.23 depict the convergence curves for the full-geometries case. The convergences

rate of LM method for circle and cylinder fitting are much slower, as the small gradient

of the curve compared to the Chaos-LM one denotes. In the case of the sphere, both

LM and Chaos-LM method have a similar convergence rate though Chaos-LM method

is faster with respect to the LM one. Clearer trapped phenomena of LM method in

fitting can be observed in the case of half-geometries fitting problem. The convergence

curves for the half-geometries are shown in fig. A.24, A.25, A.26 respectively. From all

these three figures, the LM method does not show improvement as the number of LM

iterations is increased. This situation clearly shows that LM has been trapped in some

local optimum region. It means that, although the number of iteration is increased, the

result of LM can not give a better result so one can say it is early converged. On the

other hand, a different situation can be seen for the Chaos-LM method. This method

can escape from a local optimum with an increase of the chaos iterations. The reason

is that, by using chaotic movement and increasing the number of iterations, more re-

gions are visited to explore new better feasible solution that can give a better result.

Chaos-LM can show a significant improvement and convergence result without a large

number of iteration increments. From the investigation of the convergence, one can

observe that the best number of chaos iterations for Chaos-LM is around 30.

The chaos optimization to improve the initial guess is effective in LS fitting problem.

The chaos search encourages the initial guess of the solution to move to a better starting

point that is nearer to the true solution thanks to the property of the chaotic motion

that non-repeatedly searches through a set of states in a certain bounded domain

[Jiang [1998]]. With this property, the searching process can cover a wider search
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Figure A.21: Convergent rate for fitting full circle point cloud.

Figure A.22: Convergent rate for fitting full sphere point cloud.
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Figure A.23: Convergent rate for fitting full cylinder point cloud.

Figure A.24: Convergent rate for fitting half circle point cloud.
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Figure A.25: Convergent rate for fitting half sphere point cloud.

Figure A.26: Convergent rate for fitting half cylinder point cloud.
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space within a small number of iteration. This is a different property compared to

improvement heuristic search such as genetic algorithm, tabu search, etc [Trafalis and

Kasap [2002]]. Generally, improvement heuristic searches algorithm need larger number

of iterations to increase the visited feasible solution around the search space in which

the computational cost becomes problematic.

Combinations of Chaos and LM algorithms have a linear complexity in term of the

relation between number of points processed and the increase in computation time. One

can see that they are constructed from two algorithms, which are the Chaos and the

LM algorithm. Each of them contains two nested loops inside their algorithm. Since

the two loops of the algorithm are not related to the number of the points n, which are

the points to be fitted, the relation of the algorithm steps to their inputs is only in the

calculation to evaluate the objective function through all number of points. Let the

total order of the algorithms be f(n) = n1 + n2 = n + n = 2n where subscript 1 and

2 correspond to algorithm 1 (chaos) and 2 (LM), respectively. Hence, the algorithm

efficiency is O(n) since ∃n0 > 0 and k > 0 ⇒ ∀n > n0, f(n) ≤ k g(n) such that

f(n) = n1 + n2 = O(n).

A.6.2 Case Studies

To test the Chaos-LM method in a real fitting situation, a case study was carried out.

It is derived from Kawalec and Magdziag [Kawalec and Magdziak [2012]]. In their

case, a calibrated ring gauge was used since they focused on comparison of methods to

solve the circle fitting problem. Instead, in the proposed case study, measurement of a

calibrated ceramic sphere of a ”ZEISS” CMM for stylus qualification was used as shown

in A.27. The sphere has a calibrated radius of 14.991 mm. The CMM machine used

was ”ZEISS PRISMO HTG” with MPEE = 2µm+ L
300µm. The choice of sphere is due

to the fact that a 3D geometry fitting can be applied and a sphere is a good example

of a common artifact for CMMs. The strategy used to obtain the points was by means

of scanning strategy. The point cloud to be fit is a half-geometry. There are two types

of point clouds. The first type is low density cloud and the second type is high density

(A.28). The low density point cloud contains 312 points. A total of 3435 points were

collected for high density point cloud. The initial parameter of the sphere, for both

LM and Chaos-LM method, has been chosen near the optimal. The initial x and y are

from the average of respectively x− and y−position of the points, and z is selected from
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Figure A.27: Measurement of calibrated ceramic sphere with Bridge-type CMM.

maximum z-position of the points minus the known nominal radius of 15 mm. Table

A.6 summarizes both the fitting results and the deviation from the calibrated radius of

the sphere. From the results, the fitted radius of the sphere from Chaos-LM method is

much better than the LM one. Note that the results of LM method are already from

50000 iterations. Both in the low and high density cases, the procedures are run with

the same number of iteration. In the case of low density, the accuracy is even better

than in the high density one since for high density, more solution space is obtained

such that an increase of iterations can produce similar results with regard to the lower

density result. Visualization of the fitting results is provided in A.29 both for low and

high density points respectively.

Another case study was carried out by measuring and fitting an industrial-made

cylinder work piece made of hardened steel having nominal diameter of 6 mm. The

measurement procedure is shown in A.30a. Total points obtained were 190 points by

circular path scanning strategy of three segments. Fig. A.30b presents the fitting

result. The blue points are the obtained points. Meanwhile, the red points are the

fitted cylinder with its axis line in green. Since the geometry is symmetry, the selection
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Figure A.28: Obtained point cloud. (a) Low density, (b) High density.

Figure A.29: Sphere fitting of (a) low density, (b) high density.
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x (mm) y (mm) z (mm) radius

(mm)

deviation from

calibrated ra-

dius (mm)

Calibrated

Value

- - - 14.9911 -

High Den-

sity

LM Method 68.2182 -66.1638 41.9932 14.9111 0.08001

Chaos-LM

Method

67.5716 -66.7949 42.2488 14.9919 0.00080

Low Den-

sity

LM Method 68.261 -66.1605 41.9712 14.9009 0.09020

Chaos-LM

Method

67.5458 -66.7681 42.2524 14.9904 0.00070

Table A.6: Results of fitting half-calibrated sphere for high and low density point cloud.

for initial parameters is identical to the one set in the simulation run of section 6.1

for cylinder case. The results show the improvement of Chaos-LM fitting. Details of

the results are depicted in table A.7. The cylinder is not calibrated. Subsequently, the

norm of residual ||r|| is presented to compare the fitting quality. In this case, Chaos-LM

gives better result. Moreover, from the table, it can be observed that the fitting result

by LM is outside the tolerance limit, meanwhile the Chaos-LM result is inside.

A.7 Concluding Remarks

The problem of fitting non-liner geometries has been addressed. This problem is crit-

ical in dimensional metrology to assure the quality of manufacturing products. The

geometries considered are circle, sphere and cylinder due to their various and common

use in applications such as metrological calibration and mechanical assembly. The in-

creasing capability of modern metrology instruments in sampling high density clouds

of points in short time demands accurate and fast fitting procedures. Both cases of fit-

ting full- and half-geometries are presented. From the fitting of full-geometries, results

show that the use of chaos optimization to improve the initial guess for LM non-linear
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Figure A.30: (a) Measurement of industrial cylinder, (b) The fitting results.

x

[mm]

y

[mm]

z

[mm]

nx ny nz Diameter

[mm]

||r||
[mm]

Nominal

Value

- - - 6 ± 0.01 -

LM

Method

39.7946 37.5621 39.6751 -0.007 -0.0181 -0.9191 5.928 3.489

Chaos-

LM

Method

39.6788 37.2259 38.9024 -0.0531 -0.0571 -1.8548 6.0018 1.8278

Table A.7: Results of fitting industrial cylinder.
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least square fitting has significantly improved the accuracy of the fitting and kept the

computational time small. A slower fitting is observed in the case of half-geometries.

Even though slower, Chaos-LM method can give the expected results by escaping from

local optima. LM method is trapped and early converged in the case of half-geometries

fitting, so that no improvement of the result can be obtained by increasing the number

of iterations. Convergent rate efficiency of the proposed method is significantly higher

in the case of incomplete points cloud. It seems that the LM method could have higher

probability to be trapped in the local optima in this case. Two real case studies are

presented. The case studies are to fit a calibrated sphere from point clouds represent-

ing half of the sphere geometry and to fit an industrial-made cylinder. The Chaos-LM

method gives expected results. Finally, a note should be highlighted that a filtering

procedure of the point cloud may be needed before the fitting process is carried out,

since least-square fitting procedure is not completely robust to the outliers points. The

future direction of this work is to identify the link between the non-linear problem and

chaos property such that an adaptive region bounding and chaotic motion generation

can be determined precisely.
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