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Abstract 
 

In many civil structures, both historical and modern kind, tie-rods, or tie-beams, 

represent a useful and common tool to balance the lateral force at the base of arches 

and vaults. A measurement of the tensile axial load hold by them is an important 

feature for an effective health monitoring of the whole structure where the beams are 

inserted in. This thesis deals with a new method to estimate axial load in tie-rods by 

means of indirect measurements.  

The state of the art about the topic is largely oriented to employ dynamic 

measurements, because of advantages of an easier experimental set up then those 

required by static methods. However, the dynamic behaviour of a tie-rod is affected by 

few parameters, not only by the axial load, e.g. the boundary conditions as well as the 

geometrical and material property of the beam. Only a few of them can be evaluated 

with accuracy. In literature, only a few studies taken into account the uncertainties on 

parameters such as the actual free length of the tie-rods as well as the physical 

properties of the material which constitutes the beam. Moreover, most of methods rely 

on the solution of analytical model consistent only with constant cross-section beams. 

The innovative method proposed relies on the experimental estimation of the tie-rod 

eigenfrequencies and mode shapes in a limited number of points. Furthermore, the 

approach requires to develop a simple finite element model, which is then cross-

correlated with the experimental data by means of a model updating procedure. The 

effect of uncertainties on the aforementioned parameters is investigate in depth. The 

work aims to provide a reliable evaluation of the constraints behaviour by means of the 

mode shapes components measured in one/two points. In order to do that, two 

different ways as developed and compared. One of them works either measuring or not 

the input to the tie-rod. A set of eigenfrequencies are identified in order to provide a 

first evaluation of the axial load and then the modal updating procedure is performed to 

achieve a set of final value for each parameter. 

Extensive numerical simulations and experimental tests demonstrated the capability of 

the new approach to give accurate estimates of the tie-rod axial load, also accounting 

for the aforementioned uncertainties. The method overcome some limitations of the 

methods currently available in literature. Furthermore, the algorithm can work either 

measuring or not the input to the tie-rod. The possibility to use operational modal 

analysis allows to implement a continuous monitoring of the tie-rod axial load. 
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CHAPTER   1
 

 

Introduction and state of the art 

 

 

 

1.1 Introduction 
 

 

In architectural tradition, the insertion of metallic tie-rods, or tie-beams, in masonry 

structures is a commonly and reliable solution in order to balance the lateral force at 

the base of arches and vaults. In Italy, a lot of the historical buildings bear witness to 

the use of such structural elements since the 13th century. Thereafter, tie-rod 

application remained the usual procedure up to the advent of steel and reinforced 

concrete buildings, and much of European architectural heritage testifies to its 

widespread use. Moreover, the consolidation works carried out on a lot of historical 

buildings has led to insert tie-rods also where they are not originally placed, in order to 

help masonry structures in bearing the lateral loads.  

It was a standard practice to provide a pre-tensile load to the tie-rods when they are 

placed in the structure. Usually, the beam is heated to yield its thermal elongation. 

Then, after that the beam ends are constrained, the tensile axial load increases as soon 

as the tie-rod cools. Without carrying out a measurement of the load during the pre-

tension operation, e.g. by means of a strain gauge, then it is impossible to provide a 

direct measurement of the absolute load. However, because of the critical role that tie-

rods play in the stability of many historical buildings, it is useful to have a reliable 

methodology that enables non-destructive assessment of the pull tension on already 

operant tie-rods. Due to settlements of the structural ensemble where the tie-rods are 

placed, their tensile force can change. An overload applied on one of them could cause 
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the tie-rod to exceed the maximum elastic stress of the beam material. This state could 

yield to displacement larger than those bearable by the static balance of the structure 

itself. Moreover, the beam might not support any increase in load or, in a worst-case 

scenario, it could suffer a mechanical failure. This could be particularly dangerous in 

the event of any exceptional environmental forcing situations such as earthquakes. 

Giuriani et al. [1] proposed a simplified analytical model concerning the seismic 

vulnerability of arches, which estimated both tie over-tension and the collapse 

multiplier in transverse arch rocking condition. In particular, the seismic assessment of 

the transverse arch vulnerability has to be referred to both the tie yielding and the tie 

anchorage failure. Aimed at preserving the tie-rod in elastic range and limiting the 

overall displacement of the transverse arch rocking mechanism, an accurate evaluation 

of the axial force in the tie rod is an important goal. Conversely, due to any constraint 

yielding, the work of a tie-rod may become ineffective in ensuring structural 

equilibrium (i.e. tension is lower than that predicted at the design stage). This would 

yield subsidence in the static attitude of the whole structure. Moreover, in ancient or 

historical buildings, chemical corrosion can play a role in decreasing the strength of 

tie-rods, and this may lead to a redistribution of the loads among all the tie-rods in the 

structure. In any case, monitoring the evolution in time of a tie-rod tensile force could 

provide timely warning of any change in the overall structural health. Furthermore, 

when a restoration work is to be carried out on historical building in which tie-rods are 

present, sometimes it is necessary to replace some of them. Also in this case, it is 

indispensable to know the actual stress state of the rod, in order to arrange any 

temporary element capable of ensuring the balance of lateral load provided by the rod 

which will be removed.  

The only way to have an accurate measurement of the axial load may be to bond strain 

gauges or fix a load cell on the beam before tensing it. Obviously, this requirement is 

impossible to have on the ancient tie-rods of a historical building or in all previously 

installed tie rods. It may be a critical task also in more modern building, where tie-rods 

are employed. Without this condition, there is no non-destructive technique for direct 

in-situ measurement of the tensile force on the beam. So far, different methods have 

already been proposed in order to assess an indirect measurement of the axial load on 

slender beam.  Some of them are based on static measurements [2, 3, 4], others rely on 

dynamic type [5, 6, 3, 7, 8, 9, 10, 11, 12], still others use both kinds [13, 14]. In any case 

the axial force is not the only unknown variable. In real cases, also the parameters 

characterizing the constraints and the material specifications are almost unknown, 

especially when historical sites are considered. Several techniques concerning the 
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assessment of the axial stress in a beam have been generalized by taking into account 

both of tensile and compressive load. This approach aims to be suitable not only for the 

tie-rods at the base of arches and vaults but also for the struts and ties of a space truss 

structure, or the diagonal braces of a truss girder as well. However, the development of 

an experimental technique which should be reliable in the specific assessment of the 

axial load on an ancient tie-rod is a target that should take into account some 

particular conditions. For example, in many cases the tie-rods in historical buildings 

are placed in site not easily accessible, as Fig. 1-1 shows. 

 

Fig. 1-1: tie-rods in the nave of Duomo in Milan 

Normally, the boundary conditions at the ends of the beams are not completely known 

or it is  not easy to model their behaviour, as Fig. 1-2 and Fig. 1-3 can suggest.  

The last figure also highlights how many ancient tie-rods could show a deterioration of 

the material such as to cause a non-uniform cross section along the beam. Some of 

them may present a non-monolithic layout, such as the rod show in Fig. 1-5, which is 

composed by mean of multi-layer sheets. In some cases, tie-rods may support one or 

more added masses, as it is shown in Fig. 1-4. In many cases tie-rods are composed by 

two beams, which are joined and tight by means of a screwed coupling joint, which 

means to have a non-uniform mass-for-unit-length distribution and a local change in 

flexural stiffness as well [8]. 
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Fig. 1-2: tie-rods in Visso (MC) - Italy 

 
Fig. 1-3: tie-rods in Recanati (MC) - Italy 

All these issues suggest that a method based on the solution of a purely analytical 

model by means of inputs measured on a real tie-rod may show some limits, due to the 

simplified hypothesis request by the analytical approach available (i.e. Euler-Bernoulli 

beam theory). That approach yields good results in case of rods with characteristics 

very close to those requested by the model, but obviously could lead to biased results in 

case of not ideal conditions. 

 
Fig. 1-4: tie-rod with added mass in 

Loreto's Basilica (AN) - Italy 

 

 
Fig. 1-5: multi-layer tie-rod in Loreto's Basilica (AN) - Italy 

 

A technique based on finite element model (FEM) could provide the suitable flexibility 

in order to take into account particular configuration of the structure. Finite element 

formulations coupled with model updating techniques can lead to the goal. In  [15, 16, 

17] vibration response of the entire structure are used in order to identify the axial force 

of all frame elements, but the accuracy, even the reliability, strongly depends on the 

uncertainty of the FE model, as Rebecchi et al. [11] suggested. Amabili et al. [7] 
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proposed a technique that employs dynamic measurement, a Timoschenko beam 

model and a minimization procedure in order to assess the axial load in tie-rod. 

Gentilini et al. [9] prefer to employ genetic algorithms aiming to achieve results 

minimally affected by the initial guess of the target variables. In principle, to develop a 

FE model of the tie-rod which is object of the investigation can be a good way for 

achieve a technique working with different lay out of rod.  

Other significant issue should be taken into account in undertaking the development of 

a method aiming to the discussed question, i.e. the nature of the experimental 

technique requested by procedure. Since tie-rods are often placed at considerable 

heights and may have a remarkable span, the more easier and faster the measuring 

procedure are the more cost effective the method is. These issues leaded many works 

oriented to dynamic measurements, instead of the static kind. In addition, another 

important feature which is investigable in dynamic based method is the capability of 

the method to work also exploiting the environmental forcing. This opportunity can 

yield significant advantages in ensuring a effective structural health monitoring.  

Describing in more detail the state of the art present in literature, the techniques are 

divided according to the king of measurements that they employ, i.e. static or dynamic 

measurements.  

 

1.2 Static methods 
 

Briccoli Bati and Tonietti [2] introduced a technique based on a merely static 

identification. This method shows several advantages, e.g. the constraint conditions 

and Young’s modulus need not to be known and also the processing of the resulting 

experiment data is quite simple. In fact, the entire problem reduces to solving a system 

of three linear equations with three unknowns, by means of experimental data which 

are achieved by three points of measurements: two of them close to the rod ends and 

the other in the middle. In this positions the bending moment must be measured by 

means of strain gauges and the vertical displacements due to a transverse load applied 

are needed as well. Blasi and Sorace [13] raise the question about the poor reliability of 

measurement obtained through strain gauge applied in proximity of the tie-rod end 

sections, because of presumed bond effects. Briccoli Bati and Tonietti reply that there 

is no reason to limit the transverse load to be applied as consequent increase in the 
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tension value is modest. This arrangement would produce a higher value of bending 

moment at the rod ends, so the measurement would be less affected by uncertainty. 

However, the risk to yield an overload an ancient tie-rod makes it advisable to not 

overdo with the transverse load, in order to avoid any permanent damage on the 

structure. Experimental validation of the technique was undertaken, showing good 

results in terms of low percentage error between evaluated and measured axial force. 

Lately, alternative static measurement methods were present by Tullini et al. [3] and 

Tullini [4].  Both works follow a similar approach. In particular the reference model is 

constituted by a prismatic beam of length L, which is subjected to an axial force N and 

to a concentrate lateral load introduced by means of an added mass. Young’s modulus 

E and cross-section area moment J are assumed to be known constants. Making use of 

the nondimensional coordinate z=x/L and neglecting both the shear deformations and 

rotary inertia, lateral displacement 𝜈(𝑧) is ruled by the following governing equation 

(Timoshenko and Gere [18], Meirovitch [19]): 

 
𝐸𝐽

𝜕4𝜈(𝑧, 𝑡)

𝜕𝑥4
+ 𝑁

𝜕2𝜈(𝑧, 𝑡)

𝜕𝑥2
= 0 (1) 

The model used by Tullini et al. is a beam constrained by two end elastic-springs 

having flexural stiffness denoted by 𝑘0 and 𝑘1. This method needs the flexural 

displacements to be measured at three given cross sections in a bending test. 

According to this approach, the axial force as well as the flexural stiffness coefficient of 

the end constraints can be identified if the beam ends have infinite translation 

stiffness. So the procedure holds under condition that no displacement of the beam 

ends occurs. This is a quite restrictive assumption, as Tullini himself underlines in 

further work [4]. By means of experimental validations, taking into account a range of 

uncertainties in the flexural rigidity, the achieved results of the technique show that 

good agreement is obtained between estimated and measured values of the axial force, 

with percentage error equal or less than 10% for moderate or high value of tensile load. 

Conversely, the error rises for lower values of force, practically, the circumstances 

where static bending amplitude of the beam is more affected by the value of the 

constraints stiffness. In fact, the method is proving to be not very reliable to identify the 

flexural stiffness of the end constraints. 

Tullini proposed a more recently identification method [4] which generalizes the 

algorithm earlier described, in order to study the more general problem of a prismatic 

slender beam with unknown boundary conditions. Tie-rods extremities are generally 
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embedded in masonry walls making doubtful the beam length and the locations of the 

end constraints. To overcome this problem, the method adopts a substructure of 

assigned length L, composed by a prismatic beam with uniform cross sections, 

constrained by means of two sets of elastic ends which allow the later displacements 

and rotations. The constraint parameters are 𝑘𝜑𝜑
(𝑖)

, 𝑘𝜈𝜑
(𝑖)

, 𝑘𝜈𝜈
(𝑖)

, (𝑖 = 0, 1), which are 

collected by the 2𝑥2 stiffness matrices 𝐾0 and 𝐾1 (Fig. 1-6).  

 
Fig. 1-6: beam model and measurement position in Tullini’s method 

This upgrade needs to arrange five points where measure displacement or bending 

curvature along the beam which is subjected to a concentrate lateral load. 

The procedure is based on equation (1), which is solved by subdividing the beam into 

two intervals having length 𝑎 and 𝐿 − 𝑎, respectively.  Then, the solutions 𝜈𝐼 and 𝜈𝐼𝐼 

take form: 

𝜈𝐼(𝑧) = 𝐶1𝑐𝑜𝑠ℎ√𝑛𝑧 + 𝐶2𝑐𝑜𝑠ℎ√𝑛𝑧 + 𝐶3𝑧 + 𝐶4      for   0 < 𝑧 < 𝛼 (2a) 

𝜈𝐼𝐼(𝑧) = 𝐶5𝑐𝑜𝑠ℎ√𝑛𝑧 + 𝐶6𝑐𝑜𝑠ℎ√𝑛𝑧 + 𝐶7𝑧 + 𝐶8      for   𝛼 < 𝑧 < 1 (2b) 

where 𝛼 = 𝑎/𝐿 and 𝑛 = 𝑁𝐿2 𝐸𝐽⁄  is the nondimensional axial force.   

Five vertical displacements 𝜐0, 𝜐1, 𝜐2, 𝜐3, 𝜐4 are measured after the application of a 

lateral load P. Functions (2a) are arranged in order to impose the five vertical 

displacement 𝜐0, 𝜐1, 𝜐2, 𝜐3, 𝜐4. Hence, a system of eight linear functions makes 

coefficient 𝐶1, … , 𝐶8 dependent on the five experimental displacements 𝜐0, 𝜐1, 𝜐2, 𝜐3, 

𝜐4, the lateral load P and the unknown 𝑛. By imposing the internal conditions of the 

system, a transcendental equation is achieved and solved for the unknown constant 𝑛. 

Irrespective of the boundary condition, the solutions leads to the non-dimensional axial 

force. Provided that the Young’s modulus is known, the technique can evaluate the 
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axial force value. After arranging in a suitable way the analytical system, same results 

are achievable also making use of strain sensors.  

The technique was both numerically and experimentally validated, providing good 

results in term of tensile load as the previous work, but inaccurate estimates of the 

geometric and elastic material properties may influence the accuracy of the force 

identification. Tullini suggested that these effects might be reduced by increasing the 

number of sensors. A single model of simply supported beam was numerically studied 

in order to investigate how a scattered value of Young’s modulus may affect the 

estimate axial force. The results are reassuring but the study has not been generalized.  

Besides this, even if the data-processing is quite straightforward, this method is 

extremely sensitive to the experimental uncertainties. In addition, since tie-rods are 

usually positioned at considerable heights, the need of measuring vertical deflections 

with respect to reference fixed base or using strain sensors (i.e. to solder a set of strain 

gauge on the rod, moving across at the top of a nave) makes methods difficult in 

practice. 

 

1.3 Hybrid methods 
 

Sorace [14] advanced an hybrid technique, using static as well as dynamic 

measurements, which enables to indirectly solve a system consisting of a static 

equation, giving the central deflection of the beam after applying a load, and a 

dynamic equation, giving the first vibration frequencies of the rod.  Some problems may 

arise in the need to set up two different in-situ measurements. Tie-rod is modelled as 

constant cross-section beam whose restraints are schematized as two elastic rotational 

springs. Blasi and Sorace [13] have already presented an analytical closed-form relation 

between that model response and two parameters. Sorace generalized the method by 

means of a three-parameter model which takes into account different springs stiffness, 

by recording also the second vibration frequency. An analytical relation useful to 

estimate the Young’s modulus is proposed, by measuring the middle-section bending 

moment. Finally, the axial load is estimated only after an analytical identification of the 

constraints stiffness. The strict dependence of the axial load to the constraint stiffness 

may easily leads to incorrect results due to uncertainties on the identification of the 

other parameters (i.e. the Young’s modulus). The method does not take into account 

any uncertainty on the actual not constrained length of beam. An experimental 
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validation of the method was performed, providing differences between analytical 

estimates and experimental results slightly greater than 10%. 

 

1.4 Dynamic methods 
 

Focusing on the fully dynamic techniques, until a few years ago, the axial stress was 

evaluated by considering the tie-rod as a vibrating wire and measuring its first natural 

frequency.  The advantage in considering these methods is to have a closed-form 

expression to solve the problem. However, they generally underrate the tensile force 

not taking into account the bending stiffness of the beam and of the constraints. Due to 

the correspondence with many practical situations, methods which involve bending 

stiffness effects have attracted extensive attention in recent years.  

Lagomarsino and Calderini [6] present a method to assess the tensile axial load of tie-

rods by identifying the first three natural frequencies of the structure. Tie-rods are 

easily excitable structures, whose modal frequencies can be easily identified through 

spectral analysis. Based on these considerations, the method relies on the minimization 

of an error function which takes into account three rod’s eigenfrequencies. The tie-rod 

is assumed to be a beam, with uniform section. The density and the Young’s modulus 

of the material are considered as data of the problem. The beam’s length is assumed 

measurable on site with reasonable accuracy. However this assumption is effective if 

the constraints have not finite dimensions and are placed exactly where the tie-rod 

joints the walls. Boundary conditions neglect any transversal displacement on the 

beam ends. These conditions required by the method are rather restrictive moving to 

most of real cases.  

The method introduced by Tullini and Laudiero [3] aims to identify the beam axial load 

by means of one vibration frequency and three component of the corresponding mode 

shape. The technique is based on Euler-Bernoulli’s beam model, whose free-vibration 

equation of motion is (using the non-dimensional coordinate system 𝑧 = 𝑥 𝐿⁄ ):  

 
𝐸𝐽

𝜕4𝜈(𝑧, 𝑡)

𝜕𝑥4
− 𝑁𝐿2

𝜕2𝜈(𝑧, 𝑡)

𝜕𝑥2
+ 𝜌𝐴𝐿4

𝜕2𝜈(𝑧, 𝑡)

𝜕𝑡2
= 0 (3) 

   

where 𝜈(𝑧, 𝑡) is the transverse-displacement response varying with position x and time 

t. The Young’s modulus E, the density 𝜌, the cross-section area 𝐴 and the cross-section 
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area moment of inertia 𝐽 are assumed to beconstant, and known as well. The axial load 

is calculated by means of the analytical solution of the equation (3) on a reference 

model, which is constituted by a simply supported prismatic beam of length L, 

constrained at the ends by two end elastic-springs, whose stiffness is obtained by the 

method as well. The technique was experimentally validated providing good accuracy 

in identifying the axial load of the test rig. It should be stated that the Young’s modulus 

and the density of the beam were experimentally evaluated, which is an hard task in 

almost any real case. Moreover, results in terms of elastic parameters (e.g. the 

constrain stiffness) are not always satisfactory. This work does not take into account 

any possible transverse displacement in correspondence with the visible ends of the 

tie-rod, neglecting any uncertainty on the actual free span of the beam as well. 

The same authors and Rebecchi [11] generalized the above described method by 

studying the more general problem of a prismatic slender beam with unknown 

boundary conditions. The measurements of the mode shape components are 

undertaken on five positions distributed in an interval which is included in the span 

between the constraints of the beam: two at the interval extremities, two at the quarter 

sections and one at midspan.  Also this extended method relies on accurate values of 

Young’s modulus and density of a beam with constant cross-section. The experimental 

validation of the technique shows good results in terms of axial load identification. 

However, the method proves to be rather sensitive to the choice of the of the mode 

shape taken into account. The axial load is calculated by means of the solution of a 

transcendental equation dependent on bending moment of the beam (e.g. the Young’s 

modulus and the cross-section), the density of the material, one eigenfrequency and a 

set of  five corresponding mode shape amplitudes. By neglecting uncertainties of the 

material properties, the choice of where evaluating the mode shape amplitude may 

affected the accuracy of measurements. By trying to measure the mode shape 

component close to a node of that mode leads to lack of accuracy. Fox example, by 

taking into account the second mode shape of a beam, symmetrically constrained at 

the ends, it makes an hard task to perform an accurate measurement of the amplitude 

at the mid span. Finally, the method is able to give the axial load irrespective of 

boundary conditions but the constraints behaviour significantly affect the mode shapes 

and then the effectiveness in the choice of the position where measure their 

components. Experimental estimation of axial load shows a good matching with the 

measured tensile force according to the choice of the most appropriate mode shape, 

then a deeper investigation is need about this issue (i.e. in many real cases, the 
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dynamic properties of first mode shape is affected by the static flexural deformation of 

the tie-rod [20]). 

Garziera et al. [8] propose a method which shows the advantage of being adaptable to 

many different tie-rid layout. Moreover, it takes into account uncertainties about 

constraints behavior and the actual free length of the beam. The technique relies on 

the identification of a set of natural frequencies, whose number is greater than the 

unknowns. A suitable optimisation algorithm is performed in order to achieve the best 

match between the experimental results and the frequencies obtained by a finite 

element model. As the numerical model allows analysis of very complicated problems, 

the method easily take into account also added masses or variable cross-section in the 

beam. This possibility allows to generalize the axial load identification also to tie-rods 

built into two separate chunks connected by means of a screwed coupling joint. This 

represent a very common solution for many rods with circular cross-section (see Fig. 

1-7). The value of the added mass as well as the geometrical properties (i.e. the length) 

of the joint can be considered additional unknowns of the problem. The method relies 

on the optimization of an over-constrained problem, so the number of frequencies 

under investigation must overcome the number of unknowns. However, the accuracy in 

eigenfrequency identification becomes lower as soon as higher modes are taken into 

account.  This issue limits the number of unknowns accounted in the analysis. So, the 

method was tested on a real application where uncertainties on the material properties 

are neglected. Unfortunatly, no direct measurements on the actual tensile force acting 

on the tie-rods were available. Any experimental testing for validation was not provide 

as well. So there is no checks on the effectiveness of the method.    

 
Fig. 1-7: example of circular cross-section tie-rod with screwed coupling joint 
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A technique based on genetic algorithms is developed by Gentilini et al. [9]. The work 

aims to propose a procedure able to assess the axial load in a tie-rod, irrespective to 

initial values assumed for the structural parameters, able to identify the Young’s 

modulus and both the different stiffness of the constraints as well. The tie-rod is still 

modeled as a uniform Euler-Bernoulli beam restrained at the ends by means of linear 

rotational springs. The unknowns are evaluated via an objective function designed as 

discrepancy between the experimental and numerical natural frequencies. Because of 

a non-symmetric stiffness of the constraints leads to a natural frequencies variation, 

the method investigates the frequencies of one/some modified systems obtained from 

the original tie-rod by adding a concentrated mass in a non-symmetric position. The 

position and the value of the concentrated mass affect the mode shape of the beam. In 

order to perform a reliable frequency identification, optimal locations of the forcing 

point as well as for accelerometers have to be determinate. To this purpose, a finite 

element model of the tie-rod under investigation is used to assess the intervals where 

the node of each accounted mode shape are included, according to a reasonable range 

of change in the unknown parameters. However, the method neglects any 

uncertainties about the actual free length of the tie-rod. The technique was 

numerically tested but no experimental validation was performed. Anyway, it has been 

applied to a real case. The required experimental equipment is not more cumbersome 

than that any other typical dynamic test, but the procedure appears rather time 

expensive, because of the repeated measurements for different positioning of the mass 

and impact points as well. 

Li, et al. [10] take into account the first Tullini’s work [3] aiming to overcome any lack 

of accuracy in results due to uncertainties on the effective vibration length of the beam 

as well as the hypothesis of infinite translational stiffness at the ends. More or less in 

parallel with Tullini, the two groups of authors developed similar extensions of the 

aforementioned approach. 

Maes et al. [12] proposed a deeper investigation accounting for the shear deformation 

and the rotation inertia of the bar, e.g. the analytical solution of the method relies on 

Timoshenko beam theory. The transversal force and moment equilibrium for a free 

beam section is described by means of: 

 𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
+ 𝑁

𝜕2𝜈(𝑧, 𝑡)

𝜕𝑥2
= 𝜌𝐴

𝜕2𝜈(𝑧, 𝑡)

𝜕𝑡2
 (4) 
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𝑆(𝑥, 𝑡) +
𝜕𝑀(𝑥, 𝑡)

𝜕𝑥
= 𝜌𝐽

𝜕2𝛾(𝑥, 𝑡)

𝜕𝑡2
 

(5) 

Where the shear force 𝑆(𝑥, 𝑡) and the bending moment 𝑀(𝑥, 𝑡) are both defined along 

the deformed beam coordinate system. 𝛾(𝑥, 𝑡) is the rotation of the beam cross-section. 

The cross section 𝐴 (accounted in equation (3)), geometric moment of inertia 𝐽, and 

material density 𝜌 are assumed to be known. The method also takes into account the 

inertia of the measurement equipment. The work follows two approaches: a modal 

approach (e.g. the one proposed by [3], [10], [11]) and an innovative direct frequency 

domain approach. In the latter, the transvers displacement of the centreline 𝑣 ̂(𝑥) is 

evaluated as the bar response due to harmonic loading at a single frequency 𝜔, e.g. the 

operational deflection shape of the beam at that frequency [21]. Without loss of 

generality, 𝑣 ̂(𝑥) can also be represent the Fourier transform of the bar response 𝑣(𝑥, 𝑡) 

due to broadband excitation. A great advantage of this approach is the fact that it does 

not require an intermediate modal parameter estimation step. Both approaches are 

numerically tested also performing an error analysis in order to take into account any 

uncertainties on the parameters: the geometric and material properties, the sensor 

properties as well as the distance between them. it is noticed that the worst case 

scenario accounts for only 0.1% of uncertainty for the geometric and material 

properties. The results achieved by means of the modal approach showed that not all 

modes accounted for estimating the axial load provide reasonable identifications. In 

case of a particular mode, whose modal displacement in correspondence with a sensor 

location becomes small compared the others, the corresponding axial force estimate 

become sensitive to small errors on the input parameters. There is no direct criterion 

which indicates for which of the modes an accurate estimate of the axial force is 

obtained. This can be seen as a general drawback of the modal characteristics 

approach. On the contrary, the work showed that the frequency domain approach 

generally yields slightly better results. However, this approach showed to become more 

sensitive to uncertainties on the input parameters as soon as the number of sensors is 

decreased. The experimental validation of the frequency domain approach was 

performed employing 14 accelerometers yielding accurate results. Tests with 5 

accelerometers show to severely underestimate the axial load, especially for relatively 

low force values.     

Although there are different methods in literature about the assessment of axial tensile 

force in tie-rods, each of them has some limits. One of the most important is that most 
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methods require very accurate estimates of the mechanical properties of the beam (e.g. 

Young’s modulus, density) under investigation but this is seldom possible, especially 

when ancient structures are considered. 

The aim of the present work is to design, develop and validate an innovative technique 

based on dynamic measurements and able to overcome most of the problems and 

limitations of the previous approaches. Particularly, the method is expected to be 

simple to apply (both experimentally and numerically), give accurate assessment of 

tensile force and be able to properly work with different kinds of tie-rods (e.g. with both 

uniform and non-uniform beam cross-sections). Furthermore, the method should not 

need any accurate estimation of material data. Actually, it should work properly even 

with rough nominal data. In addition, the new technique is expected to work even with 

operational modal analysis in order to apply an effective continuous monitoring of tie-

rods. 

This work proposes an experimental-numerical technique developed to identify the 

tensile force acting in tie-rods. This method requires to identify experimentally the first 

eigenfrequencies of the structure and the associated modal shape components in few 

beam points as well. These data, coupled to the development of a Finite Element (FE) 

model of the beam,  allow to give a first approximate assessment of the axial load and 

the boundary conditions. Then, these estimates constitute the inputs to the FE model, 

which undergoes an updating procedure. The final output of such an algorithm is a 

refined axial load estimation. 

One of the advantages of the technique proposed is to be usable with any kind of rod 

layout (e.g. non-uniform cross-section, presence of screwed coupling joints which are 

typical in tie-rods to apply load). Furthermore, the experimental set-up is easy and fast 

to implement, making the testing procedure suitable to apply to many tie-rods in a 

short time. Besides, the method proved to be usable with both experimental and 

operational modal analysis techniques. The method was tested both numerically and 

experimentally and the test set-up chosen was representative of a real installation.  



 

 

 

 

 

CHAPTER   2
 

 

 

Modal behaviour of tie-rods 

 

 

2.1 Introduction 
 

The chapter aims to show how modal parameters of tie-rods are affected by axial force 

and other variables, so that possible strategies to estimate the tensile force can be 

drawn up. Among all parameters that affects the tie-rod dynamic behaviour, there are 

some which are measurable and therefore considered as known (e.g. geometry) and 

others that are unknown (e.g. tensile load, material properties). In this case, tensile 

load is the object of the analysis. Conversely, the other variables are considered as 

disturbances, whose effect on the rod dynamics has to be investigated to achieve the 

best possible accuracy in the axial force estimation. An initial guess on some of such 

variables is possible with an acceptable accuracy, while not for others. Therefore, the 

first point to discuss is to define which mechanical and geometrical parameters must 

be accounted for to estimate the axial load. 

2.2 Transverse vibration of beams 
 

A rigorous mathematical model widely used for describing the transverse vibration of 

beams is based on the TBT (or thick beam theory) [18] developed by Timoshenko in the 

1920s. This model is more accurate in predicting the beam’s response than the Euler-
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Bernoulli beam theory (EBBT) [19]. Indeed, it has been shown in the literature that the 

predictions of the thick beam model are in excellent agreement with the results 

obtained from the exact elasticity equations and experimental results [22]. Historically, 

the first important beam model was the one based on the EBBT or classical beam 

theory as a result of the works of the Bernoulli's (Jacob and Daniel) and Euler. This 

model, established in 1744, includes the strain energy due to the bending and the 

kinetic energy due to the lateral displacement of the beam. In 1877, Lord Rayleigh 

improved it by including the effect of rotary inertia in the equations describing the 

flexural and longitudinal vibrations of beams by showing the importance of this 

correction especially at high frequency [23]. In 1921 and 1922, Timoshenko proposed 

another improvement by adding the effect of shear deformation [24] [25]. He showed, 

through the example of a simply-supported beam, that the correction due to shear is 

four times more important than that due to rotary inertia and that the Euler-Bernoulli 

and Rayleigh beam equations are special cases of his new result. The former and the 

thick beam models are the most widely used. The latter accounts for both the effect of 

rotary inertia and shear deformation, which are neglected when applied to EBBT. The 

transverse vibration of the beam depends on its geometrical and material properties as 

well as the external applied boundary conditions. The geometrical properties refer 

mainly to its length 𝐿, size and shape of its cross-section such as its area 𝐴, moment of 

inertia 𝐽 with respect to the central axis of bending, and Timoshenko’s shear coefficient 

𝑘𝑦 which is a modifying factor to account for the distribution of shearing stress such 

that effective shear area is equal to 𝑘𝑦𝐴. The material properties refer to its density in 

mass per unit volume ρ, Young’s modulus or modulus of elasticity E and shear modulus 

or modulus of rigidity G. The kinematics of deformation of an element of deflected link 

with width 𝑑𝑥 at the position 𝑥 are show in Fig. 2-1. Due to effect of shear, the original 

rectangular element changes its shape to somewhat like a parallelogram with its sides 

slightly curved. 

The transversal force and moment equilibrium for the section of an axial loaded beam 

are given by  

 𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
+ 𝑁

𝜕2𝜈(𝑧, 𝑡)

𝜕𝑥2
= 𝜌𝐴

𝜕2𝜈(𝑧, 𝑡)

𝜕𝑡2
 (6) 

 

𝑆(𝑥, 𝑡) +
𝜕𝑀(𝑥, 𝑡)

𝜕𝑥
= 𝜌𝐽

𝜕2𝛾(𝑥, 𝑡)

𝜕𝑡2
 

(7) 
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Adopting Timoshenko beam theory, the shear force 𝑆(𝑥, 𝑡) and the bending moment 

𝑀(𝑥, 𝑡) con be expressed as function of 𝑣(𝑥, 𝑡) and 𝛾(𝑥, 𝑡). The former is the transverse 

displacement of the centreline, and the latter is the rotation of the beam cross-section, 

as shown in Fig. 2-1. 

 
𝑆(𝑥, 𝑡) = 𝑘𝑦𝐺𝐴 (

𝜕𝑣(𝑥, 𝑡)

𝜕𝑥
− 𝛾(𝑥, 𝑡)) (8) 

 

𝑀(𝑥, 𝑡) = 𝐸𝐽
𝜕𝛾(𝑥, 𝑡)

𝜕𝑥
 

(9) 

By eliminating 𝛾(𝑥, 𝑡) from equations (6)-(9), a partial differential equation is achieved, 

containing the transverse displacement 𝑣(𝑥, 𝑡) as a single dependent variable: 

 

Fig. 2-1: kinematics of deformation of a bending element 

 

 
𝐸𝐽

𝜕4𝑣

𝜕𝑥4
+

𝐸𝐽𝑁

𝑘𝑦𝐺𝐴

𝜕4𝑣

𝜕𝑥4
− 𝑁

𝜕2𝜈

𝜕𝑥2
−

𝐸𝐽𝜌

𝑘𝑦𝐺

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
− 𝜌𝐽

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
+ 

(10) 

 
−

𝑁𝜌𝐽

𝑘𝑦𝐺𝐴

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
+ 𝜌𝐴

𝜕2𝜈

𝜕𝑡2
+

𝜌2𝐽

𝑘𝑦𝐺

𝜕4𝜈

𝜕𝑡4
= 0 
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Eq. (10) is the equation of motion under free vibration and can be transformed into an 

ordinary differential equation by performing a separation of variables, assuming the 

transverse displacement 𝑣(𝑥, 𝑡) to be harmonic at circular frequency 𝜔: 

 𝑣(𝑥, 𝑡) = 𝑣(𝑥)sin (𝜔𝑡) (11) 

The following ordinary differential equation is achieved by introducing eq. (11) in (10): 

 
𝑎

𝑑4𝑣(𝑥)

𝑑𝑥4
+ 𝑏

𝑑2𝑣(𝑥)

𝑑𝑥2
+ 𝑐𝑣(𝑥) = 0 (12) 

Where the parameters 𝑎,𝑏 e 𝑐 are defined as: 

 
𝑎 = 𝐸𝐽 (1 +

𝑁

𝑘𝑦𝐺𝐴
)  

 
𝑏 = −𝑁 +

𝐸𝐽𝜌𝜔2

𝑘𝑦𝐺
+ 𝜌𝐽𝜔2 +

𝑁𝜌𝐽𝜔2

𝑘𝑦𝐺𝐴
 

 

 
𝑐 = −𝜌𝐴𝜔2 +

𝜌2𝐽𝜔4

𝑘𝑦𝐺
 

(13) 

The solution of eq. (12) for a fixed value of N is given by: 

 
𝑣(𝑥) = ∑ 𝐶𝑘exp (𝛽𝑘𝑥)

4

𝑘=1

 (14) 

where 

 

𝛽1 = √−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
,   𝛽2 = −√−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
 

 

 

𝛽3 = √−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
,   𝛽2 = −√−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
 

(15) 

The parameters 𝛽𝑖 (𝑖 = 1, … , 4) depend on the bar characteristics: the Young’s modulus 

𝐸, the density 𝜌, the shear deformation coefficient 𝑘𝑦, the modulus of rigidity 𝐺, the 

cross section 𝐴 and the geometric moment of inertia 𝐽 as well.  While, the coefficients 

𝐶𝑖 depend on the boundary conditions, i.e. the constraints.  

If both the rotary inertia and shear deformation are neglected, then the governing 

equation of motion reduces to tat based on the classical Euler-Bernoulli theory, given 

by: 
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𝐸𝐽

𝜕4𝑣(𝑥, 𝑡)

𝜕𝑥4
− 𝑁

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌𝐴

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2
= 0 (16) 

In literature, works relied on the more effective results provided by Timoshenko beam 

theory [8] [12] assume to know 𝑘𝑦 as well as 𝐺. Generally, the state of the art has been 

paid about uncertainties on the geometrical characteristics of the tie-rod, on 𝐸 and 𝜌, 

on the constraints behaviour and the effective vibration length of the beam as well, 

neglecting uncertainties on 𝑘𝑦 and 𝐺. 

 

2.3 Design of possible methods to estimate axial force 

in tie-rods  
 

Results achieved by means of TBT analytical solution, as well as based on EBT, rely on 

the hypothesis of constant cross-section along the beam under investigation. It means 

to meet restrictions in employing a method which follows that approach, e.g. in any 

case where screwed coupling joint is present. The approach presented by Garziera et 

al. [8] suggests away in order to overcome that limit.  

The work here described aims to provide a new method capable of providing reliable 

results, which takes into account the uncertainties on the aforementioned parameters 

and employable on various types of tie-rods, i.e. not only in a constant cross-section 

beam case. The new method must provide results as good as the benchmarks in the 

state of the art, if possible also better than that. The study started by investigating the 

modal behaviour of a tie-rod modelled as shown in Fig. 2-2: 

 
Fig. 2-2: Scheme of the tie-rod 

Therefore, if the following hypotheses are considered: 

• the structure is symmetric; 

• constraints are schematized as two rotational springs (e.g. [9], [6]) with a spring 

constant named 𝑘𝑡; 
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• the beam is homogeneous; 

then the physical variables influencing beam mode shapes are 𝑁, 𝑘𝑡, 𝐸, 𝐴, 𝑙 and 𝜌. The 

same takes place for eigenfrequencies. As for actual tie-rods, 𝑁 is of course unknown 

and the aim of this work is just to estimate it. Usually, the value of 𝑘𝑡 is unknown as 

well. Concerning 𝐴, this variable can be measured and thus it is assumed to be known 

in this work. As for 𝐸, 𝜌 and 𝑙, they are assumed to be roughly known, meaning that 

nominal values can be estimated, but their accuracy is poor. In fact: 

• the material of the beam can of course be deduced but detailed values of 𝐸 and 

𝜌 can be hardly estimated (especially for ancient tie-rods), unless the material is 

tested. Therefore, only nominal data can be assigned to 𝐸 and 𝜌; 

• 𝑙 can be sometimes difficult to estimate since the ends of the tie-rod could be 

hidden by other structural elements. Furthermore, when the constraint is soft, 

the actual beam length taking part in the mode shapes can result longer than 

its visible portion, as shown in Fig. 2-3 . Therefore, 𝑙 can be estimated by 

measuring the visible part of the tie-rod but such a datum could be not 

accurate. 

By taking into account that the actual free span of the tie-rod may be longer than the 

length measured wall-to-wall allows to overcame the rather restrictive assumption of 

infinite transversal stiffness at 𝑥(0) and 𝑥(𝑙), which is rejected by several works (e.g. 

[4], [10], [12]). As shown in Fig. 2-3, a model providing for an actual length longer than 

the measured one do not neglect a transversal displacement in correspondence with 

the positions assumed as beam ends (i.e. the ends of 𝑙𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑). In Chapter 3, the 

effects of biases on parameters such as 𝑙 will be investigated, by performing numerical 

simulations of the tie-rod dynamic behaviour also supposing a length longer than the 

measured one. 

 
Fig. 2-3: uncertainty on actual vibration length of the beam 
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Most works in literature require very accurate estimates of E and ρ to assess N (e.g. [11] 

, [12]). On the contrary, this work assumes that only rough data are available for these 

two variables, as explained so far. 

Before carrying on, it is worth explaining that the stiffness of constraints will be 

expressed in normalised form from here on, as usually done in literature: 

 
𝑘 =

𝑘𝑡

𝐸𝐽/𝑙
 (17) 

The next subsection presents the main body of the new method to assess the axial 

load. 

2.3.1 Axial load assessment 

The aim of this section is to explain the core of the proposed method. To do this, the 

effect of N, 𝑘𝑡, l, E and ρ on tie-rod dynamics is investigated. Particularly, their effect 

on the tie-rod eigenfrequencies is considered. To show such effects, a FE model of a 

tie-rod was developed. This model employed the more accurate Timoshenko 

formulation. Such a modelling is not time consuming, so that a lighter formulation with 

Euler-Bernoulli elements is not necessary [8]. 

Table 2-1 reports the nominal data used to simulate the tie-rod. Then the five variables 

were changed singularly step by step and the corresponding values of the first six 

eigenfrequencies were computed through such a model. The following list shows the 

ranges used for these variables: 

• 𝑁 ranges between a null load and the yield load 𝑁𝑌𝐿 (since the yield stress is 300 

MPa in this example, then 𝑁𝑌𝐿 can be computed by multiplying it for the area of 

the cross-section; see Table 2-1); 

• 𝑘𝑡 ranges between 0 (i.e simply supported beam) and 300, which is very high and 

thus very close to a perfect clamped-clamped condition; 

• 𝐸 ranges between -5% and +5% of the nominal value (Table 2-1). This is a 

reasonable variation of the Young’s modulus for common steels and common 

aluminium alloys used in constructions; 
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• 𝜌 ranges between -2% and +2% of the nominal value (Table 2-1). This is a 

reasonable variation of the density value for common steels and common 

aluminium alloys used in constructions; 

• 𝑙 ranges between the nominal length (Table 2-1) and 𝑙+5% because 𝑙 is expected 

to be more likely underestimated than overestimated, as aforementioned; 

Fig. 2-4 shows the effect of these five variables on the first six eigenfrequencies. All the 

five variables influence the eigenfrequency values, especially 𝑁 and 𝑘. The influence of 

the other variables is low for the first eigenfrequencies (say until the fourth 

eigenfrequency) and becomes higher and higher as soon as the order of the 

eigenfrequency increases. This suggests that the first eigenfrequencies could be used 

to estimate 𝑁 as soon as an estimation of 𝑘𝑡 is available. The influence of 𝐸, 𝜌 and 𝑙 

can be neglected as a first approximation. Nevertheless, Chapter 3 will onsider again 

their effect.  

N K E  l A 

0.5NYL 150 206000 MPa 7860 kg/m3 4000 mm 15 x 25 mm2 

Table 2-1: Nominal data for the beam simulated with the FE model. The material is common steel and N
YL

 

is the axial load equivalent to the yield stress 

Before carrying on, Fig. 2-5 is provided to stress the concept that both 𝑁 and 

𝑘 significantly affect the values of eigenfrequecies. This figure shows the numerical 

solution of the FE model achieved in terms eigenfrequencies (e.g. the first one) 

according to changes in non-dimensional axial load 𝑛 and stiffness 𝑘. The former 

parameter is obtained as the ratio between the axial load acting on the model and the 

nominal yield load (YL) of the material composing it.  

The 2D projection of diagram in Fig. 2-5 is shown in Fig. 2-6, in order to clearly explain 

the trend of the first eigenfrenquency according to the constraints stiffness and for 

different values of axial load. Both the variables are able to affect this resonance 

frequency but the effect of 𝑘 is greater when its value is lower than about 30. This 

means that when the constraint condition becomes closer and closer to a simply 

supported condition, the effect of 𝑘 increases. On the other hand, when the constraint 

is that of a nearly clamped-clamped beam (i.e. 𝑘 higher than 30 [6]), its influence 

decreases. Similar trends are shown by the other five resonances. 
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Fig. 2-4: Influence of N, k, l, E and ρ on the first six tie-rod eigenfrequencies 

 

 

Fig. 2-5: f1 as a function of non-dimensional axial load and stiffness 
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Fig. 2-6: Trend of the first eigenfrequency for the tie-rod descried in Table 1  

The results of Fig. 2-6 suggest that the following method could be employed to 

estimate 𝑁: 

i. identify the first tie-rod eigenfrequencies by means of experimental tests; 

ii. identify 𝑘 by means of experimental tests and modal analysis (the estimated 

value will be named 𝑘𝑒𝑠𝑡); 

iii. build a FE model of the tie-rod where 𝐸 and 𝜌 are fixed to a nominal value and 𝑙 

is fixed equal to the visible portion of the actual beam. The value of 𝑘 comes 

from point ii of this list (i.e. 𝑘𝑒𝑠𝑡). 𝐴 is assumed to be measured. No data about 

damping must be provided to the FE model and the reason will be clarified in 

Section 2.4.2. 

iv. use the FE model to build the relationship between the value of the 

eigenfrequencies and 𝑁. These curves allow to estimate an axial load 𝑁𝑒𝑥𝑝 for 

each of the identified eigenfrequencies. Theoretically all the values 𝑁𝑒𝑥𝑝 should 

be equal but uncertainties, biases and model inaccuracy will prevent such a 

result and the 𝑁𝑒𝑥𝑝 values will be different each other. 

v. find the estimate of 𝑁 (i.e. 𝑁𝑒𝑠𝑡), which is the value coming from the average of 

the various values 𝑁𝑒𝑥𝑝 achieved before: 

 
𝑁𝑒𝑠𝑡 =

∑ 𝑁𝑒𝑥𝑝,𝑖
𝑛𝑓

𝑖=2

𝑛𝑓
 (18) 
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 Where 𝑛𝑓 is the order of the highest considered eigenfrequency, while 𝑁𝑒𝑥𝑝,𝑖 is 

the estimate of N achieved using the i
th

 eigenfrequency identified 

experimentally (see point iv of this list). 

Here 𝑛𝑓 is fixed to 4. In fact the first eigenfrequency values are lowly affected by 

eventual biases on the values of 𝐸, 𝜌 and 𝑙 (Fig. 2-4). Although the abovementioned 

method does not take into account biases on these three variables and uses nominal 

data, it is very likely that the actual values are different. Thus, the eigenfrequencies 

over the fourth are not considered in equation (18) to minimise issues related to biases 

on 𝐸, 𝜌 and 𝑙 (the effect of such biases will be reconsidered in Chapter 3). Actually, 

another reason for choosing 𝑛𝑓 as low as possible exists. The method proposed here is 

expected to work even with environmental excitation and operational modal analysis 

and this pulls towards using the first eigenfrequencies since environmental excitation 

usually shows decreasing power as soon as the frequency value increases.  Therefore, it 

is not recommendable to use high order eigenfrequencies. 

Furthermore, the index 𝑖 in equation (18) starts from 2, instead from 1. The reason is 

that the value of the first resonance frequency can be highly influenced by the static 

deflection of the beam. Such a deflection can be considerable when low axial loads are 

provided to the tie-rod or when the beam is very slender. It is thus recommended in 

literature [20] to discard the first eigenfrequency when identifying 𝑁. 

The problem to solve in order to apply the procedure abovementioned is that a reliable 

technique to estimate 𝑘 is required (see point ii of the previous list). This is faced within 

the next section. 

2.4 Estimation of 𝒌 
 

While the assessment of 𝑁 relies on the resonance frequencies identified 

experimentally, the estimation of 𝑘 has been approached by investigating the effects of 

the constraints stiffness on the mode shapes.  

Fig. 2-7 shows the fourth mode shape (chosen as an example) for the same tie-rod used 

in the previous section (Table 2-1) with different values of 𝑘 and 𝑁. The influence of 𝑘 

is clearly higher than that of 𝑁 and this suggests to use the mode shapes to estimate 𝑘 

without knowing 𝑁. This would allow to carry out the point ii of the numbered list of 

Section 2.3.1.  
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The information linked to these modal parameters is difficult to manage since each 

mode shape is a vector of numbers and thus a lot of data should be managed. So, a way 

to identify the global change of mode shapes due to the constraints behavior by 

measuring the modal amplitude on a restricted number of points was investigated. In 

order to do that, two different approaches has been taken into account.  

 

Fig. 2-7:  Mode shape with generically scaled values of eigenvector components: for a fixed value of N 

and different value of k (a), for a fixed value of k and different value of N (b). x is the 

coordinate along tie-rod length, thus x is between 0 and l. 

 

2.4.1 Identification of 𝒌 by means of CoMAC  

In order to find a synthetic approach capable to show the effect of 𝑁 and 𝑘 on 

eigenvectors, two possible indexes have been identified: the Modal Assurance Criterion 

(MAC) and the Coordinate Modal Assurance Criterion (CoMAC) [21]. MAC expression 

is: 

 
𝑀𝐴𝐶(𝑖, 𝑗) =

|{ϕ𝑋}𝑖
𝑇{ϕ𝐴}𝑗|

2

({ϕ𝑋}𝑖
𝑇{ϕ𝑋}𝑖)({ϕ𝐴}𝑗

𝑇{ϕ𝐴}𝑗)
 (19) 

Therefore, for the 𝑖𝑡ℎ
 mode of the modelled tie-rod (i.e. the experimentally-measured 

mode shape) and the 𝑗𝑡ℎ
 mode of a reference structure (i.e. the theoretically-predicted 

or analytical one), the MAC is calculated by employing the eigenvectors associated to 

those modes, which are ϕ𝑋 and ϕ𝐴. The letter 𝑇 is the transpose operator. The MAC 

value is 1 when the modes coincide and 0 when there is no correlation between them. 

Instead,  CoMAC-value for degree of freedom 𝑖 is calculated as follows: 

 

𝐶𝑜𝑀𝐴𝐶(𝑖) =
(∑ |{ϕ𝑋}

𝑖
(𝑔){ϕ𝐴}

𝑖
(𝑔)

|𝐿
𝑔=0 )

2

∑ ({ϕ𝑋}
𝑖
(𝑔)

)2𝐿
𝑔=1 ∑ ({ϕ𝐴}

𝑖
(𝑔)

)2𝑀
𝑔=1

 (20) 
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Here, 𝑔 represents an individual correlated mode pair, of which a total of 𝐿 are 

available.  {𝜙𝐴}𝑖
𝑔

 is the analytic 𝑔-mode shape valuated for the degree of freedom 𝑖 and 

{𝜙𝑋}𝑖
𝑔

 is the experimentally-measured one. CoMAC is 1 whether the modes of the two 

structures are perfectly correlated at the 𝑖𝑡ℎ
 point and 0 if no correlation exists. 

The mentioned reference structure can be the same tie-rod modelled either in a perfect 

simply supported condition (Fig. 2-8) or in a perfect clamped-clamped condition (Fig. 

2-9). In both cases the axial load is null. Such reference structures can be modelled 

without making hypotheses about axial load and constraints so that they can be 

modelled easily.  

The MAC trend (with both the mentioned reference structures) for the first six modes 

has been investigated as a function of 𝑘 and 𝑛 = 𝑁/𝑌𝐿 (where 𝑌𝐿 is the yield load of 

the beam) . The same has been carried out for the CoMAC index for all the points of the 

modelled tie-rod. While the MAC indexes show a behaviour dependent on both 𝑘 and 

𝑁, the CoMAC has a trend which is a function mostly of 𝑘 in some specific points of the 

structure. 

 

Fig. 2-8: a simply supported  

(or pinned-pinned) beam 

 

Fig. 2-9: a fully restrained  

(or clamped-clamped) beam 

Assuming a fixed value of 𝑘, the CoMAC solutions trend on the normalized rod’s span 

are shown in Errore. L'origine riferimento non è stata trovata. and Fig. 2-11, 

respectively, with reference to the pinned-pinned beam model and the clamped-

clamped beam model. Trends are evaluated for several values of the axial tensile force 

𝑁 normalized by the yield load 𝑌𝐿 of the model taken into account. Vice versa, 

assuming a fixed value of 𝑁, the solutions of the same system are shown in Fig. 2-12 

and Fig. 2-13, for several value of 𝑘. Minimum values of the CoMAC are always close to 

particular points, which are at about 20% and 80 % of the beam length (i.e. the CoMAC 

curves for different 𝑘 values are well separated at about 20% and 80 % of the beam 

length). These minima do not shift for different loads. Then, Fig. 2-14 presents the trend 

of the CoMAC value in these two points as a function of 𝑘 and 𝑛 (i.e. the ratio 

𝑁 𝑁𝑌𝐿⁄ ) for simply supported-reference structure. 
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Fig. 2-10: CoMAC index with k fixed, related to 

pinned-pinned beam 

 

Fig. 2-11: CoMAC index with k fixed, related to 

clamped-clamped beam 

 
Fig. 2-12: CoMAC index with N fixed, 

related to pinned-pinned beam 

 
Fig. 2-13: CoMAC index with N fixed, related to 

clamped-clamped beam 

 

Fig. 2-14: CoMAC minima trend for pinned-

pinned beam 

 

Fig. 2-15: CoMAC minima trend for clamped-clamped 

beam 
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It is noticed that the CoMAC value depends almost on the 𝑘 value only. A similar result 

concerns the clamped-clamped reference, as shown in Fig. 2-15. In the following the 

points where the CoMAC exhibits the minima will be named 𝑥𝑚𝑖𝑛, while the value of 

the CoMAC in 𝑥𝑚𝑖𝑛will be named 𝑀𝐼𝑁𝑐.Consequently, the assessment of 𝑘 can be 

achieved by means of the following procedure: 

i. found the two 𝑥𝑚𝑖𝑛 positions by means of the tie-rod FEM (this requires to 

compute the CoMAC for all the beam points between the structure with 

generic values of 𝑘 and 𝑛 and one of the reference structures; in fact, 𝑘 and 𝑛 

do not influence 𝑥𝑚𝑖𝑛).  

ii. compute of the curve describing 𝑀𝐼𝑁𝑐 as a function of 𝑘 by means of the same 

tie-rod FEM (a generic 𝑛 value is used again since it is lowly influencing).  

iii. estimate experimentally the eigenfrequencies and the components of the 

associated mode shapes in 𝑥𝑚𝑖𝑛.  

iv. as soon as these experimental data are acquired and the 𝑀𝐼𝑁𝑐 − 𝑘 curve is 

computed through FEM, the CoMAC value between the actual structure and 

the modelled reference structure can be calculated and this value is then cross-

correlated with the computed curve, allowing to estimate the value of 𝑘.  

Once 𝑘 is known, its value can be introduced in the model and the relation between an 

eigenfrequency (e.g. f1) and 𝑛 is computed.  

From the theoretical point of view, the evaluation of 𝑘 peformed by cross-correlating 

the experimental data with both reference structures (i.e. the simply supported beam as 

well as the clamped-clamped one) should provide the same value of stiffness. Actually, 

because of uncertainties in the modal identification as well as a non-perfect matching 

between experimental and numerical models, the method provides two different values 

of 𝑘 which are the extremes of an interval including all the possible stiffness of the 

system’s constraints. This range of possible values of stiffness represents the initial 

guess adopted for performing a modal updating procedure. 

This approach relies on the identification of the properly scaled components of the 

mode shapes. This involves the requirement to measure the input forcing, generally 

provided by means of an impact hammer. The experimental set-up required for the 

methods is really simple: it is enough to measure the response in two points, i.e. in the 
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point of excitation and in one 𝑥𝑚𝑖𝑛. However, the goal of finding a way to assess the 𝑘 

value also employing the environmental forcing led to investigate an alternative 

suitable approach. 

 

2.4.2 Identification of 𝒌 by means of the ratio of mode shape 

components 

As Fig. 2-7 shows, the constraints behaviour practically can affect the mode shapes on 

the whole span of the tie-rod. Fig. 2-16 enlarges a portion in a length portion of the 

fourth mode shape calculated for the tie-rod described in Table 2-1, evaluated for 

different values of k. This example is calculated for a generic value of N, but results 

would be rather equivalent for different value of the axial load, because it poorly affects 

the mode shaps. 

 

Fig. 2-16: Portions of mode shape with generically scaled values of eigenvector components, for a fixed 

value of N and different value of k. 

The basic idea is to understand whether there are points of the beam where the 

eigenvector components depend on k and not, or at least lowly, on N. Nevertheless, a 

deepened approach indicates that the use of the ratio between eigenvector 

components allows to even employ non-scaled eigenvectors. In fact, if ϕq,y1 and ϕq,y2 are 

the scaled eigenvector components of the q
th

 mode at  points y1 and y2 and ψq,y1 and 

ψq,y2 are the non-scaled eigenvector components of the qth mode at  points y1 and y2, 

the following relationship is valid: 
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𝑅 =

𝜙𝑞,𝑦1

𝜙𝑞,𝑦2
=

𝜓𝑞,𝑦1

𝜓𝑞,𝑦2
 (21) 

 

If ϕq,y1, ϕq,y2, ψq,y1 and ψq,y2 do not depend on N (or are lowly dependent on), also R is not 

dependent on N. The possibility to use non-scaled eigenvector components allows to 

even employ operational modal analysis identifications to compute the eigenvectors. 

Since equation (18) employs three eigenfrequencies, the corresponding mode shapes 

are used so that R is defined on three modes, instead on just one to increase statistical 

reliability (this also increases method sensitivity in estimating k): 

 
𝑅 = ∑ (

𝜙𝑞,𝑦1

𝜙𝑞,𝑦2
)

24

𝑞=2

= ∑ (
𝜓𝑞,𝑦1

𝜓𝑞,𝑦2
  )

24

𝑞=2

 (22) 

Relying on the previous facts, the y1 and y2 points were looked for by means of the FE 

model. The R value has been investigated for every couple of positions where the ratio 

is evaluable (i.e. where the term in the denominator is not close to zero). For example, 

Fig. 2-17 shows the trend of R calculated with y1 at the 20% of the tie-rod span and y2 

at the 10%, for different values of k and N. 

 
Fig. 2-17: R evaluated al y1=20% and y1=10%,  

according to different value of k and N 

 

Two criteria were used to choose the best points: 

 R must depend on 𝑁 as less as possible; 

 R must depend on 𝑘 as much as possible so that its sensitivity is maximised. 
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The coefficients err and m were defined to quantify the dependency of R on N and k 

respectively. Fig. 2-18 explains how they were computed. Obviously, the y1 and y2 

points were chosen so that err is low and m is high. To facilitate such a task and have a 

single parameter to consider, a further index was defined (i.e. ac=err/m) and this was 

minimised. All the beam points where at least one of the three modes considered 

showed an eigenvector component less than 0.1 (where each mode was scaled so that 

its maximum is 1) were neglected when looking for y1 and y2 points because their 

amplitudes are too low and could be affected significantly by measurement noise and 

identification biases. 

 

Fig. 2-18: Graphical definition of err and m. The point at 10% and 20% of the beam length were used to 

build this plot 

Finally the following points were chosen: 

 y1=9.5% of the beam length; 

 y2=3.5% of the beam length; 

Therefore, 𝑘 can be estimated by the following procedure: 

a) measure the beam dynamics by means of two accelerometers placed in 𝑦1 

and 𝑦2 and then estimate 𝜓𝑞,𝑦1 and 𝜓𝑞,𝑦2. Thus, R can be calculated; 

b) the FE model is used to build the curve linking 𝑘 to 𝑅. Such a curve is 

computed fixing 𝐸, 𝜌 and 𝑙 to nominal values, as done in 2.3.1. 𝑁 is fixed to 
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𝑁𝑦

2
, which is the central value because there are not any clues to choose a 

different value; 

c) finally, the value of 𝑘𝑒𝑠𝑡 can be assessed using the abovementioned curve 

and the value of R estimated experimentally. 

The procedures explained in Section 2.3.1 and 2.4 and here to compute 𝑁 and 𝑘 

respectively do not take into account the uncertainty linked to the estimation of 𝐸, 𝜌 

and 𝑙. Furthermore, 𝑁 is fixed to 𝑁𝑌𝐿 2⁄  when estimating 𝑘 because this is the central 

value and no other information are available. This constitutes a further bias on the 

estimated value of 𝑘. The next section discusses all these issues. 

Previously in this section, the use of the second, the third and the fourth mode shapes 

were justified by the fact that the corresponding eigenfrequencies were used in section 

2.3.1. Nevertheless, there are two important facts which led to the use of these mode 

shapes. The first is that operational modal analysis is expected to be usable and thus 

the highest mode shape was fixed to the fourth for the same reasons explained in 

Section 2.3.1. Then, FE analyses showed that the first mode shape is the most 

influenced by 𝑁 and the higher is the mode shape, the lower is the influence of 𝑁. This 

pulled towards neglecting the first eigenmode. The final result is that the modes 

between the second and the fourth were used. 

A final remark regards the fact that damping parameters are not introduced in the FE 

model. The whole procedure works on eigenfrequencies and eigenvectors. The latters 

are not affected by the damping value [21], while the formers are lowly affected for 

usual damping values of metallic tie-rods [21] so that damping is neglected here. 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER   3
 

 

 

 

The effect of bias and uncertainty 

 

 

3.1 Introduction 
 

This chapter is intended to treat the problem of uncertainties associated to the actual 

free beam length as well as the Young’s modulus and density of the material used for 

making it. Usually, in actual cases the values of 𝐸, 𝜌 and 𝑙 cannot be known accurately 

and only nominal data are available. In the previous chapter this issue has been 

temporary neglected in order to investigate a way to estimate 𝑘 (Section 2.4) and then 

outline the method described in section 2.3.1. 

Observing the results shown by Fig. 2-4, the tie-rod eigenfrequencies look strongly 

affected by the 𝑁 as well as 𝑘, fairly affected by 𝑙 and conversely mildly affected by 𝐸 

and 𝜌. Actually, the simultaneous display of the effects of each parameters makes it 

hard to appreciate how much 𝐸 and 𝜌 affect the eigenfrequencies values, because of 

the wide ranges of variation deemed reasonable for 𝑁 and k, compared to the ±5% for 

the Young’s modulus and ±2% for the density. Fig. 3-1 draws the attention to the 

change in frequencies related to 𝐸 and 𝜌, related to the tie-rod model defined in Table 

2-1 – Section 2.3.1. The uncertainty range accounted for the Young’s modulus as well 
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as the density are reasonable variations for common steels and common aluminium 

alloys used in constructions. Nevertheless, the more the natural frequencies are high, 

the more the variations on the mentioned parameters affect the eigenfrequency values. 

Any shift in frequencies due to bias on the other parameters leads to uncertainties in 

assessing the axial load by means of the method described in section 2.3.1, but bias on 

𝐸 and 𝑙 affect the 𝑘 value by definition (equation (17)) as well. Moreover, the accuracy 

of both approaches described to assess the value of 𝑘 (section 2.4 and 2.4.2) are 

affected by bias on 𝐸, 𝜌 and 𝑙, due to change in the mode shape. This yields bias on the 

estimation of 𝑘 and thus on that of 𝑁 (Section 2.3). 

 

Fig. 3-1: Influence of E and  on the first six tie-rod eigenfrequencies (tie-rod model in Table 2-1) 

The effect of bias on 𝐸, 𝜌 and 𝑙 was investigate by mean of numerical simulations, 

which are described in the next section.  

3.2 The numerical simulations   
 

Many simulations with FE models were carried out to understand the bias produced on 

the estimation of 𝑘 by the uncertainties on  𝐸, 𝜌 and 𝑙. Different beams - i.e. different 

lengths, different materials (steel and aluminium alloy), different cross-sections - were 

simulated to this purpose.  

The FE simulations were carried out by developing two models of the beam: one 

simulated an actual rod (named Model A in the following), while the other was the 

model on which the approach proposed here relies on (named Model B in the 
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following). The two models were characterised by different values of 𝐸, 𝜌 and 𝑙 to 

simulate biases on their estimations. Model B always had nominal values for Young’s 

modulus, density and length, i.e. 𝐸𝑛𝑢𝑚, 𝜌𝑛𝑢𝑚, and 𝑙𝑚𝑒𝑎𝑠 (Table 3-1). While, model A 

had different values so that biases were simulated, which is something likely to happen 

in actual applications (Table 3-1). 

Model A 

k N [N] E [MPa] ρ [kg/m3] l [mm] 

- 

0.2Nsn 

0.5Nsn 

0.9Nsn 
Enom–5%E  Enom+5% nom–2%   nom +2% lmeas  l  lmeas+5% 

Model B 

10÷100 0.5Nsn Enom nom lmeas. 
Table 3-1: Data for Model A and Model B 

The values of 𝐸 and 𝜌 of Model B were chosen so that they represented average values 

for the considered material (i.e. the nominal values of steel or aluminium) in 

constructions, while the biases used for Model A were chosen to consider the 

corresponding extreme values of these variables likely to happen in real construction 

applications (see the first list in Section 2.3.1). The bias on 𝑙 is assumed only like a 

positive increment of the measured length (i.e 𝑙𝑚𝑒𝑎𝑠), since this parameter may be at 

most underrated in the measurement. These simulations allowed to find out the value 

of 𝑘𝑒𝑠𝑡 (Section 2.4) for different actual values of 𝑘 (in Model B), by means of the 

CoMAC index and the ratio 𝑅 as well. 

3.3 Worst case model 
 

In order to provide a reliable analysis of the problem, the worst case scenario in terms 

of sensibility to the bias on 𝐸, 𝜌 and 𝑙 was looked for. At the moment, both methods 

described in section 2.4 for evaluating the 𝑘 value are still taken into account. So the 

analysis aims to investigate the functions 𝑅9.5,3.5 (i.e. the ratio of eq. (21) calculated 

with 𝑦1 equal to 9.5% of the beam length and 𝑦2 equal to 3.5%) and the value of 

𝐶𝑜𝑀𝐴𝐶 assessed against the fully restrained reference model (i.e. the clamped-

clamped beam) and the simply supported one as well. These functions will be named 

𝑅, 𝐶𝑜𝑀𝐴𝐶𝐹𝑢𝑅𝑒 and 𝐶𝑜𝑀𝐴𝐶𝑆𝑖𝑆𝑢 .  

First of all, the effect of the material properties on 𝑘 estimation are investigated by 

comparing two FE models which are equal in terms of geometry but made in different 



42 
 

 
 
 
 
 

3-  The effect of bias and uncertainty 

materials, i.e. steel and aluminium alloy. The tie-beam models are 4000 mm long, with 

a cross-section of 30 x 50 mm. The properties of the material taken into account are 

shown in Table 3-2, where 𝜎𝑦 is the yield stress and 𝜈 is the Poisson's ratio of the  

material. 

 Material 𝑬 (𝑴𝑷𝒂) 𝝆 (𝒌𝒈 𝒎𝟑⁄ ) 𝝈𝒚 [𝑴𝒑𝒂] 𝝂 

𝑺𝒕𝒆𝒆𝒍 𝒎𝒐𝒅𝒆𝒍 𝐹𝑒430 200000 7860 300 0.3 

𝑨𝒍 𝒂𝒍𝒍𝒐𝒚 𝒎𝒐𝒅𝒆𝒍 𝐴𝑙6082 68670 2690 260 0.3 

Table 3-2: Material nominal properties for the models comparison 

Both the methods drawn in order to estimate the value of 𝑘 (i.e. the one based on 

𝐶𝑜𝑀𝐴𝐶 index (Section 2.4.1) as well as the one based on 𝑅 (Section 2.4.2)) rely on an 

assumption about the axial load value in the reference model. The 𝐶𝑜𝑀𝐴𝐶 based 

method takes into account two unloaded reference models (i.e. the fully-restrained 

beam as well as the simply-supported one). While, the 𝑅 based procedure relies on the 

initial guess that the axial load is equal to 𝑁𝑦 2⁄ , because this is the central value and 

no other information are available. Irrespective of the approached employed, the gap 

between the actual value of 𝑁 on the real tie-rod and the axial load assumed on the 

reference model affects the assessment of 𝑘. The values of 𝑅, 𝐶𝑜𝑀𝐴𝐶𝐹𝑢𝑅𝑒 and 

𝐶𝑜𝑀𝐴𝐶𝑆𝑖𝑆𝑢 were calculated for both the models in Table 3-2 for different actual value of 

𝑁, and diagrams in Fig. 3-2 show the results.  
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Fig. 3-2: Results in terms of R value for steel made model a) and aluminium made one b); 

             Results in terms of CoMAC
SiSu

 value for steel made model c) and aluminium made one d);  

             Results in terms of CoMAC
FuRe

 value for steel made model e) and aluminium made one f). 

The bias achieved for each function according to the change in the 𝑁 value looks more 

consistent for the aluminium made model. In order to provide a reliable validation 

analysis of the method, the worst case scenario has been taken into account. The 

estimation of 𝑘 shows more sensitivity to the axial load if the Young’s modulus of the 

material is low, so the aluminium made model represents a critical case. 

The geometric properties of the beam model are the other parameters whose effect on 

the 𝑘 estimation is investigated. In order to do that, two different aluminium alloy 

made tie-rod models are compared. The characteristics of the models are shown on 
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Table 3-3, where 𝑗𝑧 is the area moment of inertia and 𝜆 is slenderness ratio, which is 

defined as 𝜆 = 𝑙 (𝑎 ∙ 𝑏)⁄  (𝑎 and 𝑏 are the cross section dimensions and 𝑙 the length of 

the beam). 

𝑻𝒊𝒆 − 𝑹𝒐𝒅 𝑫𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒔 [𝒎𝒎] 𝑨 (𝒎𝒎𝟐) 𝒋𝒛 (𝒎𝒎𝟒) 𝝀 (𝟏 𝒎𝒎⁄ ) 

𝐴𝑙. 𝑚𝑜𝑑𝑒𝑙 I 30 × 50 1500 312500 2.67 

𝐴𝑙. 𝑚𝑜𝑑𝑒𝑙 II 15 × 25 375 19531 10.67 

Table 3-3: Geometric properties for the models comparison 

In order to evaluate how much the slenderness ratio of tie-rod may affect the 

assessment of 𝑘, some FE simulations were carried out to compare the results achieved 

by means of two models of the beam: one which simulates the biases on the values of 

𝑁 (Model A), while the other is characterized by nominal values of 𝐸, 𝜌 and 𝑙 and a 

value of 𝑁 equal to 𝑁𝑌𝐿 2⁄  (Model B). In this case, biases on 𝐸, 𝜌 and 𝑙 are temporarily 

neglected, because of the larger range of possible variation assumed for 𝑁. So, also 

Model A assumed nominal values of 𝐸, 𝜌 and 𝑙. On Model A, the value of 𝑘 is fixed 

case by case, in order to define a value of 𝑘𝑎𝑐𝑡𝑢𝑎𝑙. On Model B, the 𝑘 value was 

evaluated, by means of the 𝐶𝑜𝑀𝐴𝐶 based method as well as the 𝑅 based one, 

achieving a value of 𝑘𝑒𝑠𝑡 for each method employed. Then, the percentage error on 𝑘 

value was evaluated between the 𝑘𝑎𝑐𝑡𝑢𝑎𝑙 and the corresponding estimated values (i.e. 

𝑘𝑒𝑠𝑡): 

 
 𝑘𝐸𝑟 [%] =

100 ∙ (𝑘𝑒𝑠𝑡 − 𝑘𝑎𝑐𝑡𝑢𝑎𝑙)

𝑘𝑎𝑐𝑡𝑢𝑎𝑙
 (23) 

Table 3-4 shows results achieved by numerical simulations for a case characterized by 

a value of 𝑘𝑎𝑐𝑡𝑢𝑎𝑙  on Model A equal to 35. This value of 𝑘 matches a critical  level of 

stiffness, because it is an intermediate value between the one close to simply 

supported case and the one close to fully restrained condition. The results show error 

values similar for both models of tie-rod. Numerical simulation performed with different 

values of 𝑘 on Model A achieved similar results by comparing model I with model II,  

i.e. the slenderness ratio of the beam basically doesn’t affect the assessment of 𝑘. 

These results also show that the 𝑘 assessment method based on 𝑅 provides better 

results than those achieved by means of the 𝐶𝑜𝑀𝐴𝐶 index based procedure. The 

advantage of the former method will be discussed in the next section, where the 

assessment of 𝑘 will be investigate by taking into account also biases on 𝐸, 𝜌 and 𝑙. 
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N real 
(model B) 

N  
(model A) 

 

 kEr % 
(CoMACSiSu) 

kEr% 
(CoMACFuRe) 

kEr% 
(R) 

0.2 

0.2 
model I 0.00 0.00 0.00 

model II 0.00 0.00 0.00 

0.5 
model I 14.17 14.24 5.91 

model II 14.19 14.74 5.95 

0.9 
model I 38.26 40.55 14.02 

model II 38.26 40.50 14.03 

0.5 

0.2 
model I -9.06 -8.98 -4.89 

model II -9.06 -8.96 -4.85 

0.5 
model I 0.00 0.00 0.00 

model II 0.00 0.00 0.00 

0.9 
model I 14.02 14.76 6.49 

model II 14.02 14.77 6.52 

0.9 

0.2 
model I -15.30 -15.32 -9.29 

model II -15.30 -15.32 -9.29 

0.5 
model I -9.10 -9.25 -5.28 

model II -9.10 -9.24 -5.28 

0.9 
model I 0.00 0.00 0.00 

model II 0.00 0.00 0.00 
Table 3-4: Error in k assessment for two different geometries of tie-rod (Model A value of  𝑘 = 35) 

In terms of geometric properties, the choice fell on a tie-rod model with a lower 

slenderness ratio. This choice was oriented by the expectation to arrange a test rig with 

equivalent geometry. A slender tie-rod allows to reach high values of 𝑁 𝑁𝑌𝐿⁄  (e.g. equal 

to 0.9) without providing very high absolute values of axial load. A description of this 

test rig will be dealt in Chapter 5. Due to this analysis, an aluminium alloy made tie-rod 

characterized by the properties show in Table 3-5 has been chosen for the next 

numerical simulations. 

E ρ l A 𝝈𝒚 

68670 MPa 2690 kg/m3 4000 mm 15 x 25 mm2 260 MPa 
Table 3-5: Nominal data of the aluminium alloy beam 

Therefore, the results shown hereinafter are those achieved with a very critical tie-rod 

(Table 3-5), i.e. the aluminium made one.  

In order to investigate the assessment of 𝑘 value, the FE simulations were carried out 

on two models of the critical tie-rod: one simulated a tie-rod characterized by the 

nominal value of 𝐸, 𝜌, 𝑙 and an axial load equal to  𝑁𝑌𝐿 2⁄  (Model B in Table 3-6), and 
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the other affected by biases on 𝐸, 𝜌, 𝑙 and different level of 𝑘 as well as of 𝑁 value 

(Model A in Table 3-6, simulating an actual beam). 

Model A 

k N [N] E [MPa] ρ [kg/m3] l [mm] 

- 

0.2NYL 

0.5NYL 

0.9NYL 

68670–5%  E 
E  68670+5% 

2690–2%   

   2690+2% 

4000  l 

l  4000 +5% 

Model B 

10÷100 0.5NYL 68670 2690 4000 

Table 3-6: Data for Model A and Model B aluminium made tie-rod 

 

3.4 The assessment of 𝒌𝒆𝒔𝒕 range 
 

The aforementioned numerical simulations allow to estimate a range of values for 𝑘, 

which is useful for the updating procedure described in the next section. By performing 

the method described in Section 2.4.1 (i.e. the 𝐶𝑜𝑀𝐴𝐶 based method) as well as the 

method described in Section 2.4.2 (i.e. 𝑅 based method) respectively, two couples of 

boundary values can be identified (i.e. the critical values of 𝑘 on the Model A, 

corresponding to those more affected by biases on the 𝑁, 𝐸, 𝜌 and 𝑙,). These maximum 

and minimum bounds are named the 𝑘𝑚𝑎𝑥 and 𝑘𝑚𝑖𝑛 respectively. By evaluating the 

couples of bounds for each value of 𝑘 calculated for model B, the functions 𝑘𝑚𝑎𝑥(𝑘)  

and 𝑘𝑚𝑖𝑛(𝑘) are achieved. These trends can be evaluated by means of 𝐶𝑜𝑀𝐴𝐶 index 

method or by that based on 𝑅 as well. With respect to results in Fig. 3-3, 𝐶𝑜𝑀𝐴𝐶 index 

method was applied with reference to the simply-supported beam, but similar results 

are achieved by means of the clamped-clamped reference as well. Results provided by 

both methods are compared in Fig. 3-3, which shows the capability of that based on 𝑅 

to provide an interval between the extreme values of 𝑘 less affected by bias on the 

other parameters.  

First of all, results shown by Fig. 3-3 point out the advantages to employ the method 

based on 𝑅 to estimate a range of 𝑘 values. Many numerical simulations were 

performed confirming this aspect. Henceforward, that method will be deemed more 

appropriate for the axial load identification than that based on 𝐶𝑜𝑀𝐴𝐶 index. 
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Fig. 3-3: Maxima and minima values of the estimated k values with the bias described in Table 3-6, 

evaluated with CoMAC and R as well. 

Furthermore, the higher the actual value of 𝑘 is, the higher the maximum bias on 𝑘𝑒𝑠𝑡 

is. Nevertheless, this is not a big issue. In fact, the estimation of 𝑘 is required to 

estimate 𝑁. Since the latter variable is estimated by means of the identified 

eigenfrequencies (Section 2.3.1), it is worth finding out how much the value of 𝑘 affects 

the eigenfrequencies. Recalling Fig. 2-6, it is evident that the higher 𝑘 is, the lower the 

influence on the eigenfrequencies is. Such a behaviour is common to every tie-rod and 

to every eigenfrequency. Thus, the high biases obtained with high values of 𝑘 do not 

represent a big issue. 

Now it is worth explaining how the biases shown in Fig. 3-3 can be used to the purpose 

of identifying 𝑁, by referring to the method based on 𝑅. Let us suppose to have a real 

application where to identify the axial load. Two FE models of the tie-rod must be 

designed, again Model A and Model B. The values of 𝐸, 𝜌 and 𝑙 in Model B are 

assumed equal to the nominal values associated to the real tie-rod, and 𝑁 is fixed equal 

to 𝑁𝑌𝐿 2⁄ . The parameters of Model A are fixed with the same logics used in Table 3-6 

(the used ranges can be eventually made narrower if extra-information are available). 

By accounting for biases on 𝑁, 𝐸, 𝜌 and 𝑙, FE simulations allow to build a figure like 

Fig. 3-3.  Then, 𝑘𝑒𝑠𝑡 is computed by means of experimental tests on the real beam. 

Finally, this estimated value is inserted in the mentioned figure and a range of 

variation for 𝑘 is achieved (Fig. 3-4). This plot indicates the possible values of 𝑘, taking 
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into account the biases on 𝑁,  𝐸, 𝜌 and 𝑙. The range of possible values of 𝑘 will be 

named 𝑟𝑘 in the following and its bounds will be 𝑟𝑘1 and 𝑟𝑘2 (Fig. 3-4). As for variable 𝑁 

in Model A (Table 3-6), the bounds could be widened (e.g. to 0.01 𝑁𝑌𝐿 and 0.99 𝑁𝑌𝐿) if a 

higher reliability of 𝑟𝑘1 and 𝑟𝑘2 is required for some reasons. 

 

Fig. 3-4:  Maxima and minima values of the estimated 𝑘 values with the bias described in Table 3-6 and 

the corresponding range 𝑟𝑘with bounds 𝑟𝑘1 and 𝑟𝑘2 

The procedures described in Section 2.4.2 and 2.3.1 consider a single value of 𝑘 to 

estimate 𝑁. The next section explains how the whole method can be improved taking 

into account the range 𝑟𝑘. 

 

3.5 Enhanced estimation procedure 
 

The previous section explained how a range 𝑟𝑘 of possible values for 𝑘 can be 

calculated. Furthermore, Section 2.3.1 already discussed how to bound 𝐸, 𝜌 and 𝑙. This 

means that four (i.e. 𝑘, 𝐸, 𝜌 and 𝑙) of the five problem variables can be bound. The 

benefits provided by bounding 𝑘 through 𝑟𝑘1 and 𝑟𝑘2 are evident looking at Fig. 3-5: 

this plot is equal to that in Fig. 2-4 (for the beam of Table 2-1) and it shows that the 

addition of bounds on 𝑘 decreases very much its influence on the eigenfrequency 

values and thus on the estimation of 𝑁.  
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Some papers referenced in Chapter 1 (e.g. [8], [9]) suggested axial load identification 

method based on model updating procedures. A similar approach can be used to refine 

the estimates of 𝑘 and 𝑁 coming from the procedures given in Section 2.3.1 and 

Section 2.4.2. 

 

Fig. 3-5: Influence of  𝑁, 𝑘, 𝐸, 𝜌 and 𝑙 on the first six eigenfrequencies for the tie-rod of Table 2-1 and with 

bounds 𝑟𝑘1 and 𝑟𝑘2 

One of the advantages of the method here proposed is to provide a bounded range of 𝑘 

values. The model updating procedure here employed requires to minimise a function 

𝑧, which depends on the numerical and experimental eigenfrequencies: 

 
𝑧 = ∑(𝑓𝑛𝑢𝑚,𝑖 − 𝑓𝑒𝑥𝑝,𝑖)

2
4

𝑖=2

    (24) 

Where 𝑓𝑛𝑢𝑚,𝑖 is the i
th

 numerical eigenfrequency calculated through the FE model and 

𝑓𝑒𝑥𝑝,𝑖 is the i
th

 eigenfrequency identified experimentally. The function 𝑧 is minimised by 

changing the values of 𝑁, 𝑘, 𝐸, 𝜌 and 𝑙. As explained above (Section 2.3.1), three 

eigenfrequencies taken into account (i.e. from the 2
nd

 to the 4
th

 ), whereas the updating 

procedure works on 5 variables. This is explained by paying attention to Fig. 3-5, which 

shows that the eigenfrequency values basically are affected by 𝑁 and 𝑙, slightly 

affected by 𝐸 and 𝜌 (mostly from the 1
st

 frequency to the 4
th

 one), while the effect of 𝑘 is 

reduced by bounding it through 𝑟𝑘1 and 𝑟𝑘2. This means that there are just two 
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variables affecting the value of 𝑧 and the minimization on three eigenfrequencies is 

enough accurate. Nevertheless, the number of eigenfrequencies used can be increased, 

Just three eigenfrequencies will be employed from now on in order to test the updating 

procedure in the worst scenario. 

 The first trial values and the bounds are given in Table 3-7 and they comes from the 

facts explained before. Particularly, the starting values for 𝑁 and 𝑘 are achieved by 

means of the algorithms described in Section 2.3.1 and Section 2.4.2 respectively. 

Furthermore, the bounds of 𝑘 are 𝑟𝑘1 and 𝑟𝑘2 (Section 3.4). The algorithm used here for 

the updating is the interior point.  

S
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𝑘 𝑘𝑒𝑠𝑡 

B
o

u
n

d
s 

𝑘 𝑟𝑘1 ÷𝑟𝑘2 

𝑁 [𝑁] 𝑁𝑌𝐿 2⁄ , where 𝑁𝑌𝐿 comes from the 

usual nominal value of the yield stress 

for the considered material (e.g. 

300 MPa for steel) 

𝑁 [𝑁] 0 ÷ 𝑁 

𝐸 [𝑀𝑝𝑎] Usual nominal value (e.g. 200000 for 

steel and 68670 for aluminium alloys) 

𝐸 [𝑀𝑝𝑎] Starting 

value 

± 5% 

𝜌 [
𝐾𝑔

𝑚3] 
Usual nominal value (e.g. 7860 for steel 

and 2690 for aluminium alloys) 
𝜌 [

𝐾𝑔

𝑚3] 
Starting 

value 

± 2% 

𝑙 [𝑚𝑚] Length of the visible 

portion of the beam 

𝑙 [𝑚𝑚] Starting 

value 

+ 5% 

Table 3-7: Starting values and bounds for the updating procedure 

This refined method has been tested numerically and then experimentally. The 

numerical verification is discussed in the next chapter, while the experimental activity 

is shown in chapter 5. 

 

 

 

 

 



 
 

 

 

 

 

 

CHAPTER   4
 

 

The Numerical validation of the method 

 

 

4.1 Introduction 
 

The previous chapter explained how to manage the uncertainties affecting the 

parameters involved in the method outlined in section 2.3.1. A set of reasonable 

bounds are defined for 𝐸, 𝜌 and 𝑙. Then, the biases on these parameters are used to 

define a method to assess the bounds of 𝑘 as well, by assuming an axial load value 

equal to 𝑁𝑌𝐿 2⁄  . The set of values (or ranges) of 𝑁, 𝑘, 𝐸, 𝜌 and 𝑙 represents the first 

guess for the optimization algorithm which aims to minimize the function  𝑧 defined by 

equation (24). Based upon these analysis, the procedure defined on page 29 can be 

tested in order to validate its effectiveness.  

Firstly, a cost-effective way to perform a wide-scale validation is to rely on numerical 

simulations which take into account a large number of potential situations. This 

approach allows to simulate some case stadies of tie-rod, subjected to different value of 

axial load and taking into account biases on 𝑘, 𝐸, 𝜌 and 𝑙 as well. A Montecarlo 

simulation represents an ideal way in order to study the effects of statistic distributions 

of some parameters which characterize the model of tie-rod investigated [26]. This 

approach requires the analysis of a very high number of case studies. Due to the time 

consumption required by perform each FE simulation as well as to compute the results, 



52 

 

 
 
 
 
 

4- The Numerical validation of the method 

the validation described in the next section was provided by running 200 simulation for 

each combination of 𝑁 and 𝑘 applied to each case study. The updating procedure 

performed has shown a convergence of the parameters under investigation towards 

reasonable ranges, ensuring a reliable evaluation of the proposed method.  

 

4.2  Case studies 
 

Two case study tie-rods were chosen to test the method numerically. Their nominal 

features are provided in Table 4-1. 

 E [MPa] ρ [kg/m
3

] l [mm] A [mm
2

] 

Tie-rod 1 68670 2690 4000 15 x 25 

Tie-rod 2 200000 7860 10000 30 x 50 

Table 4-1: Nominal data of the tie-rods used for simulations 

The first of them (i.e. that in aluminium alloy) was tested on 9 cases, while the other 

(i.e. that made up of steel) in 4 cases (Table 4-2). Therefore 13 different simulations 

were performed. Each simulation consisted of 200 runs and these runs followed this 

procedure: 

i. Model A and Model B of the tie-rod were built (refer to Chapter 3 for the 

description of Model A and Model B). The values of 𝐸, 𝜌 and 𝑙 were fixed 

according to Table 4-1 for Model B (i.e. these values are average values for 

common steel and aluminium used in constructions). As for Model A, 𝑁 and 

𝑘 were fixed according to Table 4-2 and on each run the values of 𝐸, 𝜌 and 𝑙 

were fixed by means of extractions from rectangular distributions, whose 

bounds are defined in Table 4-3; 

ii. the procedures explained in Section 2.3.1, Section 2.4.2 and Section 3.4 were 

carried out to have first trial values of 𝑁 and 𝑘 and to estimate 𝑟𝑘1 and 𝑟𝑘2; 

iii. the model updating procedure (Section 3.5 and Equation (24)) was performed 

on Model B, reaching a final value of the five variables; 

iv. the estimated variables were compared to the values fixed for Model A (i.e. the 

true values). 
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 𝑵 𝒌 

Tie-rod 1 0.2 NYL, 0.5 NYL, 0.8 NYL 25, 35, 70 

Tie-rod 2 0.2 NYL,  0.8 NYL 25, 70 
Table 4-2: Case-studies for the simulations 

 E [MPa] ρ [kg/m
3

] l [mm] 

Tie-rod 1 
Nominal value 
(Table 4-1) ±5% 

Nominal value 
(Table 4-1) ±2% 

𝑙 (Table 4-1) 
÷ 𝑙 + 5% 

Tie-rod 2 
Nominal value 
(Table 4-1) ±5% 

Nominal value 
(Table 4-1) ±2% 

𝑙 (Table 4-1) 
÷ 𝑙 + 5% 

Table 4-3: Bounds for statistical extractions 

As aforementioned, the values of 𝐸, 𝜌 and 𝑙 of Model A are extracted from a 

rectangular statistic distribution spread in the boundary of Table 4-3. Fig. 4-1 shows an 

example about the distribution of 𝐸 assumed for the aluminium tie-rod model.  

 

Fig. 4-1: destribution of Young's mosulus for Tie-Rod 1 in Table 4-3 

 

4.3 Numerical validation results  
 

First of all, for each case study, the simulation described in the point ii of the numbered 

list in Section 4.2 provides 200 results in terms of first trial values of 𝑁. Secondly, point 

iii optimizes the values of 𝑁, 𝐸, 𝜌 and 𝑙 for each run. The true values fixed for each case 

study allow to evaluate the reliability of the updating method. The results of 

comparison are evaluated in terms of errors 𝐸𝑟 between the true values of 𝑁 (i.e. 𝑁𝑟𝑒𝑓) 

and the corresponding estimated values (i.e. 𝑁𝑒𝑠𝑡): 

 
𝐸𝑟 [%] =

100(𝑁𝑒𝑠𝑡 − 𝑁𝑟𝑒𝑓)

𝑁𝑟𝑒𝑓
 (25) 



54 

 

 
 
 
 
 

4- The Numerical validation of the method 

The distributions of results in terms of 𝐸𝑟 on the axial load were evaluated. 𝐸𝑟 can be 

calculated before performing the updating procedure (i.e. 𝑁𝑒𝑠𝑡 is the axial load 

achieved by employing the method in Section 2.3.1) or after the procedure (i.e. 𝑁𝑒𝑠𝑡 is 

the optimized axial load value). For example, for a case study characterized by 

𝑁 𝑁𝑌𝐿 = 0.8⁄  and 𝑘 = 25, the 𝐸𝑟 values are show in Fig. 4-2, before and after the 

updating procedure respectively. The distribution was also evaluated in terms of 

average value of 𝐸𝑟 (e.g. 𝐸𝑟%
̅̅ ̅̅ ̅ ) as well as by standard deviation 𝜎𝐸, which measures the 

spread of the data. The results achieved after the updating procedure show a 

distribution close to a normal distribution function. In that condition, the average value 

represents the proper expected value of the statistic distribution and the spread of the 

data can be properly defined by twice the standard deviation (i.e. 2𝜎𝐸) [27]. 

 

Fig. 4-2: distribution of  𝑁 𝑁𝑌𝐿⁄  achieved by Montecarlo simularions, before and after updating procedure 

Fig. 4-3 shows the resulting distributions about all case studies investigate for 

aluminium tie-rod model (i.e. 9 cases), after the updating. The results of 200 Montecarlo 

simulations relative to most of the cases investigated show a very narrow distribution 

of 𝐸𝑟, close to normal one. In terms of accuracy, the statistical analysis of a normal 

distributed ensemble can be expressed by the average value of 𝐸𝑟 and the interval 

defined by plus and minus twice of the standard deviation (i.e. 2𝜎𝐸) [27]. It may be 

assumed that by increasing the number of simulation for each Montecarlo analysis the 

distribution of results achieved by the updating axial load identification become closer 

and closer to a normal one. 
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Irrespective of the possibility to define a statistical distribution of the results, the 

spread of 𝐸𝑟 values for each set of simulation can be defined by the range between the 

minimum and the maximum 𝐸𝑟 achieved the updating procedure. This approach 

assures a reliable expression of the result accuracy. Therefore, results in terms of 

average value of 𝐸𝑟%
̅̅ ̅̅ ̅, ±2𝜎𝐸 interval and the boundary values 𝐸𝑟𝑚𝑎𝑥 and 𝐸𝑟𝑚𝑖𝑛 are 

shown in Fig. 4-4 before and after the model updating task. This figure shows that the 

method tends to underestimate the axial load and this due to the effect of variable 𝑙. In 

fact, 𝑙 can be underestimated but not overestimated (Table 4-1) by Model B. 

Nevertheless, the updating allows to decrease very much the bias on the estimation of 

𝑁. The most critical situation is that characterised by low loads, as usual in most of the 

referenced works. Anyway, the maximum bias is a bit more than 10% in the worst case. 

Such a case is that characterised by the maximum bias on 𝑙, 𝐸 and 𝜌. 

 

Fig. 4-3: Distributions of the errors in N estimations after the updating procedure  

(aluminium tie-rod) 
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Fig. 4-4: Errors in N estimations before and after the updating procedure (aluminium tie-rod) 

An example about what happens for the value of 𝑘, 𝑙, 𝐸 and 𝜌 after the updating 

procedure is shown in Fig. 4-5. It is reminded that a rectangular statistical distributions 

is assigned them, bounded by values in Table 3-7, before updating. 

 

Fig. 4-5: 𝐸, 𝜌 and  𝑙 distribution after updating procedure (𝑁 = 0.2𝑁𝑌𝐿, 𝑘 = 70) 
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It is not worth to define a proper statistical distribution about this parameters, but it is 

essential that the values obtained are in a reasonable range. Even if 𝑘 and 𝑙 offer a 

distribution of errors very close to a normal one, for these parameters as well as for 𝐸 

and 𝜌 the accuracy of results in term of error are provided by the value of 𝐸𝑟%
̅̅ ̅̅ ̅ and the 

boundary values 𝐸𝑟𝑚𝑎𝑥 and 𝐸𝑟𝑚𝑖𝑛. 



Fig. 4-6: Results for all the variables for the simulation with k=25 and N=0.2N
YL

 (aluminium tie-rod) 



 

Fig. 4-7: Results for all the variables for the simulation with k=70 and N=0.8N
YL

 (aluminium tie-rod) 
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Fig. 4-6 and Fig. 4-7 show the estimated values for the other problem variables (i.e. 𝑘, 𝑙, 

𝐸 and 𝜌) for two simulations, chosen as examples. The mean estimated value of the 

other variables often tends to the true value and thus the method proposed 

demonstrates to be reliable. A slight tendency to underestimate 𝐸 is evident and it is 

mainly due to the underestimation of 𝑙. 

 

4.4 Conclusion 
 

A method for indirect axial load assessment in a tie-rod was outlined in Section 2.3.1. It 

initially relies on a set of starting values of 𝑁, 𝑘, 𝑙, 𝐸 and 𝜌 evaluated for the tie-rod 

under investigation. Secondly, dynamic measurements assess three eigenfrequencies 

(from the 2
nd

 to the 4
th

) and the relative mode shape components are identified in two 

chosen positions. Thirdly, A FE model of the tie-rod is designed in order to perform 

numerical simulations by assuming two different sets of parameters (Model A and B). 

Then, mode shape component are employed to assess a range of values for 𝑘 by means 

of the numerical simulations, also taking into account biases on 𝑁, 𝑙, 𝐸 and 𝜌. 

Therefore, a first value of 𝑁 is calculated by mean of the eigenfrequencies. Finally a 

model updating procedure in performed in order to refine the estimates of 𝑁. This 

procedure has been numerically tested by means of Montecarlo simulations, performed 

on different case studies. These cases are related to an aluminium made tie-rod model 

and a steel made one as well. 

Table 4-4 presents a summary of the numerical validation results. Montecarlo 

simulations are performed on the steel made tie-rod model as well. Also in this case, 

the method shows to be effective and reliable (Table 4-5). 

N/NYL k 𝑬̅𝒓 [%] 𝝈 [%] 𝑬𝒓
𝒎𝒊𝒏 [%] 𝑬𝒓

𝒎𝒂𝒙 [%] 

0.2 25 -7.21 1.30 -10.30 -2.90 
35 -6.63 1.39 -9.68 -2.87 
70 -6.14 1.41 -8.86 -1.64 

0.5 25 -3.07 0.84 -9.70 -0.72 
35 -3.20 0.69 -6.02 -0.85 
70 -3.07 0.81 -4.52 -0.37 

0.8 25 -2.18 0.69 -3.42 0.32 
35 -2.04 0.71 -3.15 0.62 
70 -2.03 0.74 -3.64 0.85 

Table 4-4: Results for the estimates of N after the updating procedure (aluminium tie-rod) 
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N/NYL k 𝑬̅𝒓 [%] 𝝈 [%] 𝑬𝒓
𝒎𝒊𝒏 [%] 𝑬𝒓

𝒎𝒂𝒙 [%] 

0.2 25 -7.73 1.05 -10.58 -2.85 

70 -7.65 0.78 -9.65 -3.22 

0.8 25 -1.79 0.73 -3.65 0.37 

70 -1.72 0.78 -3.33 0.43 
Table 4-5: Results for the estimates of N after the updating procedure (steel tie-rod) 

The method present here takes into account biases on the parameters of the tie-rod 

which affect its dynamic behaviour (i.e. 𝑘, 𝑙, 𝐸 and 𝜌) larger than those treated by most 

of the referenced works. In spite of this, the results provided by the numerical 

validation show to be as reliable as the best performing methods. Furthermore, the 

results of the numerical simulations are more reliable than those reported for the best 

referenced methods in given cases. 

The next Chapter validates the method experimentally. 

 



 
 

 

 

 

 

CHAPTER   5
 

 

The Experimental validation of the method 

 

 

5.1 Introduction 
 

This section faces the experimental validation of the proposed technique. A tie-rod 

made of aluminium was realised in laboratory with the measured values described in 

the first raw of Table 5-1. The features of such a beam were chosen to test the method 

under critical condition (i.e. aluminium was chosen to have a low Young’s modulus and 

the tie-rod geometry to have a slender case-study beam; see section 3.3). The FE model 

of the beam was realised by fixing the nominal data in the second raw of Table 5-1. 

Therefore, biases are introduced intentionally on 𝑙 and 𝐸. The actual value of ρ was not 

measured because its influence is really low (e.g. Fig. 3-5). The Young’s modulus was 

experimentally assessed in situ by means of a load cell (which provides the axial load) 

and a strain gauge bridge fixed on the beam (which provides the strain).   

 𝑬 [𝑴𝑷𝒂] 𝝆 [𝒌𝒈/𝒎𝟑] 𝒍 [𝒎𝒎] 𝑨 [𝒎𝒎𝟐] 

Real Tie-rod 66552 2690 3996 15 x 25 

FE model 68670 2690 4000 15 x 25 
Table 5-1: characteristics of the tie-rod for experimental validation (real beam a FE model) 

A difference between simulations (Chapter 4) and experimental tests is that in the 

latter case an overestimation of 𝑙 (i.e. nominal value higher than the actual value) is 

considered, while in the former case only underestimations were considered. Such a 
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choice comes from the will to fully test the method when a bias on the measurement of 

the visible portion of the beam takes place. 

5.2 Test rig 
 

In order to design a flexible test rig, which allows to simulate different condition of 

axial load as well as different behaviour of the constraints, some requirements were 

taken into account: 

i. the axial load must be easily variable and continuously measured with 

accuracy; 

ii. the constraint layout must ensure a change in the torsional stiffness and design 

aiming to simulate a wide range of variation. Ideally the bounds should extend 

from a conditions close to a clamped-clamped case to opposite, close to a 

simply supported case; 

iii. the layout must ensure also high level of axial load, at least equal to 0.7𝑁𝑌𝐿. 

In order to enable any longitudinal translation of the beam, a way to fix the ends ot the 

beam must be find. In case of circular cross-section beam this requirement is ensured 

by means of a screw-bolt at the ends. This solution is impossible in case of rectangular 

cross-section. Few dowels are required in the portion of the beam clamped by the 

constraints, in order to enable any longitudinal translation (i.e. ensure that the beam 

can bear an axial load). In correspondence with the holes in the beam for lodging the 

dowels, the cross-section is resized, therefore the critical condition of attaining a yield 

stress in that section is real, if the axial load applied in close to 𝑁𝑌𝐿. In order to avoid 

any problem, the beam was design with a larger cross-section area in correspondence 

of the clamp, as show in Fig. 5-1. 

 

Fig. 5-1: change in cross-section area in the beam ends for the dowels lodging 
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The clamps were designed in a modular layout, to allow a change in the torsional 

constrain provided to the tie-rod. This task was carried out also by interposing some 

rubber layers between the clamp element and the beam, in order simulate also a lower 

level of stiffness provided by the constraints. One of the clamps is able to have a 

longitudinal shift when its bolds are not tightened, in order to ensure a change in the 

strain applied on the beam (Fig. 5-3). In fact, this clamp is connected also to another 

beam which is tense by means of a screwed coupling joint. On this side, a load cell is 

placed serially to the screwed coupling joint. This device ensures a very accurate 

measurement of the axial load. Fig. 5-2 shows the whole set up for experimental tests.  

 

Fig. 5-2: tie-rod layout for experimental validation. In the foreground (in the lower right) the load cell and 

the screwed coupling joint are visible. 

When the bolts on the clamp are tightened, the measurement provide by the load cell 

loses reliability. To overcame this problem, a strain gauge bridge was placed in the tie-

rod span (Fig. 5-4). The Strain gauge configuration was a full-bridge sensitive to axial 

strain.  

The full-bridge layout ensure higher sensitivity to the strain and at the same time 

compensates for any temperature drift. The strain gauge bridge was calibrated by 

means of the load cell and the measurements of both devices are compared every time 

the axial load has been change, before tightening the clamp placed between the tie-rod 

and the beam connected to the load cell (i.e. when  the two sections are subject at the 

same axial load). 
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Vibration measurements are made by three piezoelectric accelerometers PCB 333B30 

(see Fig. 5-5), which metrological specifications are shown in Table 5-2. The 

specifications of such a device ensure a good trade-off between few requirements: low 

weight to avoid any loading effect on the beam; full-scale enough for measuring the  

hammer impact response but sensitivity high enough as well as a signal/noise ratio as 

good as possible to provide accurate measurements also during tests with 

environmental forcing. 

 

Fig. 5-3: the clamp connected to the screwed coupling 

joint 

 

Fig. 5-4: the strain gauge 

 

Sensitivity 
(±10 %) 

Measurement 
Range 

Frequency 
Range (±5 %) 

Weight 
Spectral noise 

(100Hz) 

10.2 mV/(m/s²) ±490 m/s² pk 0.5 to 3000 Hz 4.0 g 33 (m/s2)/Hz 

Table 5-2: accelerometer product specifications  

 

 

Fig. 5-5: accelerometers place at 3.5% and 9.5 % of the beam length  
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In addition to the bias introduced between the nominal length assigned to the FE 

model and the actual span on the test rig, the bias on the actual length participating to 

the mode shape of the tie-rod is affected also by other factors: the possibility to partially 

change the tightening of the clamps and the introduction of rubber layers between the 

constraints elements and the beam. 

The basements where the constraint are fixed were design in order to avoid any static 

subsidence when the beam is tensioned as well as aiming to avoid dynamic effects on 

the mode shapes of the tie-rod.  An FE model of the basement helped to investigate 

such an issue. Dynamic measurements are carried out for testing the dynamic 

behaviour of the basement. The numerical simulation and the experimental tests 

showed the effectiveness of the basement design in avoiding any issues. 

The next section presents the results about the experimental tests carried out to 

provide an experimental validation of the method already numerically testes in Chapter 

4. A lot of cases are tested, in terms of real axial load applied and constraint conditions 

(i.e. changing the tightening of the clamp as well as by interposing some rubber layers 

between them). In addition to the biases and uncertainties abovementioned about the 

actual beam span, the position where the accelerometers are placed are changed in 

order to simulate further biases on the length.  

 

5.3 Experimental results 
 

The results of the experimental are show for two different condition of constraints 

stiffness: adding or removing sheets of rubber between the rod and the plates closing it 

at its ends. 

Fig. 5-6 shows the results achieved for tests measuring the input force (i.e. provided 

with an impact hammer) and performing experimental modal analysis, while Fig. 5-6 

presents the results obtained with environmental excitation and operational modal 

analysis. The response of the beam was measured at 𝑦1 and 𝑦2 (see Section 2.4.2), 

calculated on the nominal length of 4000 mm. The maximum discrepancy (after 

updating) on load estimation was a little higher than 6%, in strict accordance with the 

simulations of Section 4.3. The results in terms of 𝑁, 𝑘, 𝑙, 𝐸 and 𝜌 are shown in Table 5-

3 (without rubber sheets) Table 5-4 (with rubber sheet) 
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Fig. 5-6: experimental test results measuring the input force 

 

Fig. 5-7: experimental test results with environmental excitation 

Parameter Tests without rubber sheets 
Nref [N] 3594 3949 7408 7746 11912 11673 

Nest before upd.[N] 4029 4300 7650 8157 12115 12150 

Er before upd. [%] 12,1 8,9 3,3 5,3 1,7 4,1 

Nest after upd. [N] 3778 4139 7246 7602 11235 11395 

Er after upd. [%] 5,1 4,8 -2,2 -1,9 -5,7 -2,4 

kest before upd. 265 212 193 146 170 123 

kest after upd. 352 219 215 184 202 137 

l nominal [mm] 4000 4000 4000 4000 4000 4000 

l after upd. [mm] 3970 3995 3974 3963 3960 3970 

E nominal [MPa] 68670 68670 68670 68670 68670 68670 

E after upd. [MPa] 66979 68553 68046 65379 67540 66549 

ρ nominal [kg/m3] 2,69x10-9 2,69x10-9 2,69x10-9 2,69x10-9 2,69x10-9 2,69x10-9 

ρ after upd. [kg/m3] 2,69x10-9 2,68x10-9 2,69x10-9 2,64x10-9 2,65x10-9 2,64x10-9 

Table 5-3: Results of experimental tests measuring the input force to the beam (without rubber) 
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Parameter Tests with rubber sheets 

Nref [N] 3844 4095 8021 7905 12113 11733 

Nest before upd.[N] 4711 4759 8882 8375 12841 12310 

Er before upd. [%] 22,5 16,2 10,7 5,9 6,0 4,9 

Nest after upd. [N] 4095 4308 8061 7754 11859 11520 

Er after upd. [%] 6,5 5,2 0,5 -1,9 -2,1 -1,8 

kest before upd. 41 45 35 44 34 41 

kest after upd. 48 49 36 48 34 46 

l nominal [mm] 4000 4000 4000 4000 4000 4000 

l after upd. [mm] 3961 3960 3962 3962 3960 3974 

E nominal [MPa] 68670 68670 68670 68670 68670 68670 

E after upd. [MPa] 65989 65625 67276 65805 67366 67289 

ρ nominal [kg/m3] 2,69x10-9 2,69x10-9 2,69x10-9 2,69x10-9 2,69x10-9 2,69x10-9 

ρ after upd. [kg/m3] 2,64x10-9 2,64x10-9 2,64x10-9 2,64x10-9 2,64x10-9 2,65x10-9 

Table 5-4: Results of experimental tests measuring the input force to the beam (with rubber) 

Table 5-5 and Table 5-6 presents the results obtained with environmental excitation 

and operational modal analysis, respectively without and with the rubber sheets. 

Parameter Tests without rubber sheets 

Nref [N] 4328 4315 12017 11960 

Nest before upd.[N] 4716 4693 9438 9363 

Er before upd. [%] 9,0 8,8 -21,5 -21,7 

Nest after upd. [N] 4474 4411 11980 11838 

Er after upd. [%] 3,4 2,2 -0,3 -1,0 

kest before upd. 133 129 130 123 

kest after upd. 150 150 129 128 

l nominal [mm] 4000 4000 4000 4000 

l after upd. [mm] 3977 3981 3960 3965 

E nominal [MPa] 68670 68670 68670 68670 

E after upd. [MPa] 68068 68105 72103 72099 

ρ nominal [kg/m3] 2,69x10-9 2,69x10-9 2,69x10-9 2,69x10-9 

ρ after upd. [kg/m3] 2,70x10-9 2,70x10-9 2,64x10-9 2,65x10-9 

Table 5-5: Results of experimental tests without measuring the input force to the beam (without rubber) 
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Parameter Tests with rubber sheets 

Nref [N] 3785 3855 11477 11452 

Nest before upd.[N] 4255 4194 12213 12729 

Er before upd. [%] 12,4 8,8 6,4 11,2 

Nest after upd. [N] 4013 4029 11274 11299 

Er after upd. [%] 6,0 4,5 -1,8 -1,3 

kest before upd. 64 65 30 27 

kest after upd. 65 68 27 28 

l nominal [mm] 4000 4000 4000 4000 

l after upd. [mm] 3964 3966 3960 3965 

E nominal [MPa] 68670 68670 68670 68670 

E after upd. [MPa] 65357 65530 68254 68235 

ρ nominal [kg/m3] 2,69x10-9 2,69x10-9 2,69x10-9 2,69x10-9 

ρ after upd. [kg/m3] 2,68x10-9 2,68x10-9 2,64x10-9 2,64x10-9 

Table 5-6: Results of experimental tests without measuring the input force to the beam (with rubber) 

The maximum discrepancy (after updating) on load estimation was a little higher than 

6%, in strict accordance with the simulations of Chapter 4.. The estimated 𝑘 values are 

close among the same kind of tests with rubber sheets. The slight differences in its 

estimated values are also due to the varying torque applied to bolts closing the tie-rod 

at its ends (in fact, the mounting procedure was repeated for every test in order to fully 

check the method every time). As for tests without rubber sheets, the estimated values 

of 𝑘 are not so close. Nevertheless, one should consider that a k equal to 100 or 300 

makes a very slight difference under a physical point of view. In fact, both values 

indicate a situation very close to a perfect clamped-clamped condition, which shows 

that the eigenfrequency values tend not to change for a value of 𝑘 higher than 100. As 

for the estimation of 𝑁 before the updating, it tends to be positive since the length of 

the beam in the FE model is higher than the actual measured value. 

Then, another kind of tests was carried out with experimental modal analysis. This 

time the position of the two accelerometers was again wrong on purpose but the bias 

was much higher than before. The length l was underestimated of 160 mm (i.e. l=3996-

160 mm=3836 mm) and y1 and y2 were calculated as the 9.5% and 3.5% (see Section 

2.4.2) of the fixed wrong length.  

shows the results and again the method proved to work properly. 
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Parameter Tests without rubber sheets 

Nref [N] 3610 3949 7501 7746 

Nest before upd.[N] 2255 2497 5629 6127 

Er before upd. [%] -37,5 -36,8 -25,0 -20,9 

Nest after upd. [N] 3822 4133 7212 7724 

Er after upd. [%] 5,9 4,7 -3,9 -0,3 

kest before upd. 257 215 199 148 

kest after upd. 309 278 270 157 

l nominal [mm] 3840 3840 3840 3840 

l after upd. [mm] 3981 4013 3979 3980 

E nominal [MPa] 68670 68670 68670 68670 

E after upd. [MPa] 67386 69385 67209 68086 

ρ nominal [kg/m3] 2,69x10-9 2,69x10-9 2,69x10-9 2,69x10-9 

ρ after upd. [kg/m3] 2,67x10-9 2,67x10-9 2,67x10-9 2,67x10-9 
Table 5-7: Results of experimental tests with high bias on 𝑙 (without rubber sheets) 

 

Parameter Tests with rubber sheets 

Nref [N] 3844 4095 8021 7905 

Nest before upd.[N] 2995 3028 6944 6432 

Er before upd. [%] -22,1 -26,0 -13,4 -18,6 

Nest after upd. [N] 4235 4420 8191 7856 

Er after upd. [%] 10,2 8,0 2,1 -0,6 

kest before upd. 42 46 35 45 

kest after upd. 42 46 35 45 

l nominal [mm] 3840 3840 3840 3840 

l after upd. [mm] 3972 3973 3969 3977 

E nominal [MPa] 68670 68670 68670 68670 

E after upd. [MPa] 68335 67619 68636 68495 

ρ nominal [kg/m3] 2,69x10-9 2,69x10-9 2,69x10-9 2,69x10-9 

ρ after upd. [kg/m3] 2,67x10-9 2,67x10-9 2,67x10-9 2,67x10-9 
Table 5-8: Results of experimental tests with high bias on l (with rubber sheets) 

 

Comparing the i
th

 column of Table 16 and 17 with the ith column of Table 5-7 and 

Table 5-8, it is possible to have a more reliable check on the results achieved in terms 

of 𝑘. In fact, the torque of bolts was strictly the same for those tests and the estimated 

k values are very close each other. Furthermore, the value of 𝑙 is always changed 
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correctly (i.e. increasing or decreasing from the nominal value, depending on the case)  

by the updating procedure. 

The differences between the value of 𝑁 estimated by the method and that measured by 

the Wheatstone bridge are of the same order of those achieved with other methods in 

literature (e.g. [12]). 



 
 

 

 

 

 

CHAPTER   6
 

 

Assessment of the beam length 

 

 

6.1 Introduction 
 

The previous sections showed that it is possible to converge to a proper axial load 

estimation as soon as the range chosen for the 𝑙 parameter in the updating procedure is 

within the 5 % of the actual length. This is of course a reasonable and acceptable 

threshold in many practical situations. Nonetheless, cases exist where the ends of the 

beam can be hidden and it is difficult to have an estimation of 𝑙. 

This section aims to explain how to get a first estimation of the beam length. The 

target is to recognise when the discrepancy between the tie-rod actual length and the 

length of the visible portion is higher than 5 %.  

The method presented here takes advantage of the considerations on the CoMAC 

method presented in Section 2.4. The value of this index showed to be sensitive to the 

features of the tie-rod. This sensitivity is now employed to find an estimate of the 

length of the beam. The next subsection explains the developed method. 

 

6.2  Method to assess the beam length 
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6 - Assessment of the beam length 

Suppose to have a beam with a visible portion 𝑙𝑣 lower than the actual value of 𝑙 (Fig. 

6-1). A reference FE model can be implemented. Such a model is characterised by 

nominal values of 𝐸, 𝜈, 𝑁 (i.e. a null load is fixed) and 𝑘 (i.e. the model has k=∞, which 

turns into having a clamped-clamped beam) and 𝑙 (i.e. 𝑙𝑣, which is the visible length). 

The FE model is presented in Fig. 6-1. A cross-correlation between the actual beam 

and the FE model implemented by means of the CoMAC index is able to give an 

assessment of the actual value of l. This is demonstrated by carrying out simulations 

using a further FE model which simulates the actual beam. 

Relying on Fig. 6-1, the CoMAC index between the points of the actual beam and a 

single point of the FE model (Fig. 6-1) is able to indicate the value of 𝑙. The point 

chosen to use within the clamped-clamped FE model is at 20 % of lv. This choice 

depends on the fact that the point at 20 % already showed peculiar features (Section 

2.4). Nonetheless, different points could be used as well. 

 

Fig. 6-1: Actual beam and its clamped-clamped FE model 

If a curve relating the points of the actual beam (in the visible portion: see the 

coordinate 𝑥 in Fig. 6-1) to the corresponding CoMAC values is plotted, it results to 

have a single maximum (Fig. 6-2). This maximum shifts in dependence of the value of 𝑙 

(Fig. 6-2). Therefore, the following procedure can be employed in a real application: 

1. build a clamped-clamped FE model (see above for its features). This model is 

named Model C; 

2. build another FE model, which simulates the actual beam with nominal data for E 

and ν. 𝑁 is fixed to 𝑁𝑌𝐿 2⁄  and 𝑘 to a middle value (e.g. 30). 𝑙 is changed step by 

step, from 𝑙𝑣 on. This model is named Model D; 
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6 - Assessment of the beam length 

3. the CoMAC between the points of Model D (in the visible portion) and the point at 

20 % of 𝑙𝑣 of Model C is calculated. The maximum of the resulting curve and its 

corresponding point in model D are computed for each value of l in model D; 

4. a plot relating the position of the maximum in Model D and the actual value of 𝑙 is 

achieved; 

5. a modal identification on the real beam is carried out and the modal constants 

(scaled to the unit modal mass) are computed; 

6. the modal constants are used to calculated the CoMAC with respect to the point at 

20 % of 𝑙𝑣 of Model C and the position giving the maximum of the CoMAC is 

found; 

7. the knowledge of this position is cross-correlated with the curve achieved with 

models C and D (point 4 of this numbered list) and an estimated of 𝑙 is found (i.e. 

lest). 

 

Fig. 6-2: Curves linking the position of the points on the actual beam to the corresponding CoMAC value 

There is an issue not considered in the mentioned list. The Model D used to build the 

reference curve is characterised by nominal values but the actual beam could have 

different values for 𝐸, 𝜈, 𝑁 and 𝑘. Changes of these four variables can cause shifts of 

the maximum of the reference curve. The sensitivity of the position of the maximum of 

the CoMAC with respect to these variables is much less than that on 𝑙 but it cannot be 

neglected. Thus, the uncertainty on these four variables must be taken into account. 

This is possible by repeating points 1 to 4 of the above procedure with extreme values 
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6 - Assessment of the beam length 

for 𝐸, 𝜈, 𝑁 and 𝑘 in Model D. This allows to find an interval of possible values of l 

around lest. 

Numerical simulations showed that the use of the modes from 1 to 6 to calculate the 

CoMAC allows to reach interval around lest of about 5 % of 𝑙 (i.e. ±2.5 % or an interval 

with an equal width but non-symmetric, depending on the considered test case) in the 

worst case (slender beams made up of aluminium alloys). This width was reached by 

using not all the points of Model D to calculate the CoMAC but considering a 

resolution of 2 cm. The width of this interval can be lowered using lower resolutions 

(e.g. 5 mm) or using higher modes (e.g. modes from 6 to 8). Table 6-1 the results 

achieved with the test set-up shown in Section 5.2 (the actual length of the beam was 

3996 mm). 

The results are satisfactory and indicates that it possible to recognise if 𝑙 is higher than 

1.05 × 𝑙𝑣 and, in that case, to have an assessment of 𝑙. 

 
Without rubber sheets With rubber sheets 

Test case 1 N/Nsn=0.3  N/Nsn=0.52  N/Nsn=0.26  N/Nsn=0.56  

lv [mm] 3796.0 3796.0 3796.0 3796.0 

lest [mm] 3974.5 3974.5 3984.1 4049.2 

Error % -0.539 -0.539 -0.298 1.332 

     

 

Without rubber sheets With rubber sheets 

Test case 2 N/Nsn=0.3  N/Nsn=0.52  N/Nsn=0.26  N/Nsn=0.56  

lv [mm] 3596.0 3596.0 3596.0 3596.0 

lest [mm] 4007.2 4019.8 4022.1 4022.1 

Error % 0.281 0.596 0.653 0.653 

Table 6-1: Results of the experimental tests where the actual length of the beam was 3996 mm 

 

 



 
 

 

 

 

 

 

 

 

 

 

Conclusion 

 

This thesis has dealt with the design, development and testing of an innovative 

technique to assess axial tensile load in tie-rods. These elements have a crucial role in 

structures since they assure their stability. Therefore, the monitoring of their status is of 

primary importance and different works were proposed in literature in the last years to 

assess the axial load they are subject to. Indeed, no methods exist allowing a direct 

measurement of the axial load, unless strain gages are bonded to the tie-rods before 

they undergo the operating conditions. Nonetheless, this is usually not possible, 

especially in ancient constructions.  Then, indirect methods to estimate the axial load 

become the only possible solution. 

Among the proposed methods, the dynamic techniques show some significant 

features, especially related to the ease of implementation, cost effectiveness and speed 

of tests. A number of works were presented in this decade and all of them study the 

modal features of the beam under analysis to get an estimation of the axial tensile load. 

Although these techniques have very nice properties, all of them show some 

drawbacks: some of them require to have constant section of the beam along its length, 

other pose very strict conditions about the knowledge of the material properties, other 

did not undergo an experimental validation. 

Therefore, there is still room for improvements and this work tries to fill some of the 

aforementioned gaps. The method designed and developed here is a dynamic approach 

and thus takes into consideration the modal behavior of the beam to analyse. 

CHAPTER 7 
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7- Conclusion 

The goal of the work was to develop a method able to provide an accurate assessment 

of the axial load which results easy to apply both numerically and experimentally, 

without the need of knowing with a very low uncertainty the features of the tie-rod 

material. Furthermore, the method was expected to properly work with any kind of tie-

rods, without requiring to have a constant section. This means that for example beams 

with screwed coupling joints could be considered as well. Finally, the method was 

expected to work even with environmental forcing (i.e. without measuring the input to 

the beam) in order to allow a continuous monitoring and thus cost-effective 

maintenance strategies. 

The work started by studying analytical models in literature describing the dynamics of 

axially loaded beams. This task allowed to find which variables are able to affect the 

modal parameters of such structures. Then, finite element simulations were carried out 

to find which of them have significant influence of the dynamics of the tie-rods and get 

quantitative information. 

The comprehension of the basic effects of geometrical and mechanical variables on the 

modal behavior of a beam was the starting point to design the new method to assess 

the axial load. The eigenfrequencies of the beam were found to be suitable to estimate 

the axial load but the analyses also showed that an estimation of the stiffness of the 

constraints was necessary prior to any other task. Hence, methods to assess the 

stiffness of the constraints were investigated and two approaches were proposed, both 

relying on the mode shapes of the beam.  

The whole developed technique requires to cross-correlate the experimentally 

identified modal parameters with finite element models and such a task is able to lead 

to a first estimation of the axial load. Nevertheless, the numerical analyses also showed 

that the uncertainty affecting the other variables of the problem (e.g. the actual length 

of the beam and its Young’s modulus) must be taken into account in order to have a 

reliable assessment of the axial load. The final estimation of the axial load is thus 

reached by a model updating procedure, which reasonably changes the features of the 

numerical finite element model according to the collected experimental data and leads 

to final estimation of the axial force. 

Montecarlo simulations were thus performed in order to check the reliability of the 

designed method and to understand the level of confidence of the achieved results. The 

results showed that this new method is able to guarantee an accuracy close (or even 
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7- Conclusion 

better in some cases) to that associated to the best methods in literature with less 

constraints (e.g. the necessity to know the Young’s modulus of the material with a very 

high accuracy). 

Finally an experimental validation of the method was carried out and the results 

confirmed those coming from the Montecarlo simulations. 

The last part of the work develops an extension of the identification procedure, which 

allows to find a first estimate of the actual length of the beam. Indeed, this is an 

important information for the success of the model updating procedure when the actual 

length of the tie-rod is very different from the first trial value (i.e. the measurement of 

the visible portion of the beam). 

Therefore, the designed method reaches all the goals fixed at the beginning of the work 

and it is noticed that the developed procedure does not require to measure the input to 

the structure. Furthermore, the number of sensors required to measure the response of 

the beam is limited to two. This makes the current method much cheaper with respect 

to most of the referenced techniques, even enabling to carry out continuous monitoring 

of the tie-rods. 

 

 

 

  



 
 

 

References 
 

[1]  E. Giuriani, A. Marini, C. Porteri e M. Preti, "Seismic Vulnerability for 

Churches in Association with Transverse Arch Rocking", 

International Journal of Architectural Heritage, n. 3, pp. 212-234, 

2009.  

[2]  S. Briccoli Bati e U. Tonietti, "Experimental methods for estimating in situ 

tensile force in tie-rods", Journal of Engineering Mechanics, n. 127, 

pp. 1275-1283, 2001.  

[3]  N. Tullini e F. Laudiero, "Dynamic identification of beam axial loads using 

one flexural mode shape", Journal of Sound and Vivration, n. 318, 

pp. 131-147, 2008.  

[4]  N. Tullini, "Bending tests to estimate the axial force in slender beams 

with unknown boundary conditions", Mechanics Research 

Communications, n. 53, pp. 15-23, 2013.  

[5]  T. Livingston, J. G. Béliveau e D. R. Huston, "Estimation of axial load in 

prismatic members using flexural vibrations", Journual of Sound 

and Vivrations, n. 179, pp. 899-908, 1995.  

[6]  S. Lagomarsino e C. Calderini, "The dynamical identification of the tensile 

force in ancient tie-rods", Engineering Structures, n. 27, pp. 846-

856, 2005.  

[7]  M. Amabili, S. Carra, L. Collini, R. Garziera e A. Panno, "Estimation of 

tensile force in tie-rods using a fequency-based identification 

method", Journal of Sound and Vibration, n. 329, pp. 2057-2067, 

2010.  

[8]  R. Garziera, M. Amabili e L. Collini, "A hybrid method for nondestructive 

evaluation of the axial load in structural tie-rods", Nondestructive 

Testing and Evaluation, vol. 26, n. 2, pp. 197-208, 2011.  

[9]  C. Gentilini, A. Marzani e M. Mazzotti, "Nondestructive characterization 

of tie-rods by means od dynamic testing, added masses and genetic 

algorithms", Journal of Sound and Vibration, n. 332, pp. 76-101, 

2013.  

 



 
 

 
 
 
 
 

 

[10]  S. Li, E. Reynders, K. Maes e G. De Roeck, "Vibration-based estimation of 

axial force for a beam member with uncertain boundary conditions", 

Journal of Sound and Vibration, n. 332, pp. 795-806, 2013.  

[11]  G. Rebecchi, N. Tullini e F. Laudiero, "Estimate of the axial force in 

slender beams with unknown boundary conditions using one 

flexural mode shape", Journal of Sound and Vibration, n. 332, pp. 

4122-4135, 2013.  

[12]  K. Maes, J. Peeters, E. Reynders, G. Lombaert e G. De Roeck, 

"Identification of axial forces in beam members by local vibration 

measurements", Journal of Sound and Vibration, n. 332, pp. 5417-

5432, 2013.  

[13]  C. Blasi e S. Sorace, "Determining the Axial Force in Metallic Rods", 

Structural Engineering International, vol. 4, n. 4, pp. 241-246, 1994.  

[14]  S. Sorace, "Parameter models for estimating in-situ tensile force in tie-

rods" Journal of Engineering Mechanics, n. 122, pp. 818-825, 1996.  

[15]  P. D. Greening e N. A. Lieven, "Identification and updating of loading in 

frameworks using dynamic measurements", Journal of Sound and 

Vibration, vol. 1, n. 260, pp. 101-115, 2003.  

[16]  A. S. Bahra e P. D. Greening, "Identifying axial load patterns using space 

frame FEMs and measured vibration data ", Mechanical Systems 

and Signal Processing, n. 4, pp. 1282-1297, 2009.  

[17]  A. S. Bahra e P. D. Greening, "Identifying multiple axial load patterns 

using measured vibration data ", Journal of Sound and Vibration, 

vol. 15, n. 330, pp. 3591-3605, 2011.  

[18]  S. P. Timoshenko e J. M. Gere, "Theory of Elastic Stability", New York: 

McGraw-Hill, 1961.  

[19]  L. Meirovitch, "Fundamentals of Vibrations", McGraw-Hill, 1996.  

[20]  H. T. M. Luong, L. F. Ramos e F. Aguilar, "Identification of the tensile 

force in tie-rods of historical constructions", in XXIX International 

Conference on Modal Analysis pp 71-81, Jacksonville, Florida, 2011.  

[21]  D. J. Ewins, "Modal testing: theory and practice", Research Studies Press, 

2000.  



 
 

 
 
 
 
 

 

[22]  P. Trail-Nash e A. R. Collar, "The effects of shear flexibility and rotary 

inertia on the bending vibrations of beams", Quarterly Journal of 

Mechanics and Applied Mathematics, vol. 6, n. 2, pp. 186-222, 

1953.  

[23]  J. W. S. Rayleigh, "The Theory of Sound", New York: Dover Publications 

Inc., 2003.  

[24]  S. P. Timoshenko, "On the correction for shear of the differential equation 

for transverse vibrations of prismatic bars", Philosophical Magazine 

Series 6, vol. 41, n. 245, pp. 744-746, 1921.  

[25]  S. P. Timoshenko, "On the transverse vibrations of bars of uniform cross 

section", Philosophical Magazine Series 6, vol. 43, n. 253, pp. 125-

131, 1922.  

[26]  Evaluation of measurement data - Supplement 1 to the “Guide to the 

expression of uncertainty in measurement” - Propagation of 

distributions using a Monte Carlo method - JCGM - Joint 

Committee for Guides in Metrology, 2008. 

[27]  Evaluation of measurement data - Guide to the expression of uncertainty 

in measurement - JCGM - Joint Committee for Guides in Metrology, 

2008. 

[28]  N. Tullini, G. Rebecchi e F. Laudiero, "Bending tests to estimate the axial 

force in tie-rods", Mechanics Research Communications, n. 44, pp. 

57-64, 2012.  

 

 


