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Abstract

Warehouse-scale computing, which is supported by datacenters, emerged
in the last decade as a fundamental enabling technology for perva-
sive phenomena such as the Web 2.0, big data, and cloud computing.
Despite being assembled from commodity components (servers, inter-
connects, . . . ), these datacenters opened the way to a new paradigm
for mainstream computing; as researchers work on understanding this
new paradigm, two important themes emerge in a new way compared
to traditional systems. A major concern for datacenter operators is
their efficiency and cost-effectiveness, which are crucial to support-
ing the growth in the services and value coming from big data and
cloud computing. Additionally, public cloud computing presents fur-
ther challenges for both datacenter operators and users. A major issue
for users that want to bring their workloads to the cloud to take advan-
tage of utility computing is that performance on virtualized resources
is hard to understand and often unpredictable. For this reason, using
public clouds for applications that need to provide a required quality of
service (QoS) level is not straightforward and often leads to increased
inefficiency due to conservative resource allocations.

There is a tension between these two issues (efficiency and QoS), as
techniques to improve efficiency (e.g., virtualization, power manage-
ment, colocation, . . . ) impact performance, often unpredictably. This
dissertation attacks both sides of this tension and proposes novel tech-
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niques and tools to help solve it, towards future efficient QoS-driven
warehouse-scale computing.

First, we analyze a well-known model for the total cost of ownership
(TCO) of a datacenter and find that, as things stand today, opportu-
nities to further reduce TCO, and allow datacenters to scale further,
mostly lie in improvements in the efficiency of IT equipment, partic-
ularly the efficiency of servers. On this basis, there are three main
opportunities to improve efficiency: increasing server utilization, re-
ducing static power consumption, reduce dynamic power consumption.
The challenge is being able to target these opportunities without hurt-
ing QoS. We show that traditional mechanisms and policies to pursue
these goals are not well-suited for datacenters: colocating applications
causes inefficiency and performance degradation due to contention on
shared resources; deep sleep states impose high transition latencies and
flush shared state, impairing performance; traditional controllers for
dynamic voltage and frequency scaling (DVFS) reduce active power,
but can heavily impact performance, because they are oblivious to the
peculiarities of datacenter applications.

Then, we analyze metrics to quantify the performance of datacenter
applications and define their QoS. Throughput is a general metric to
quantify rate of progress or load, but it is not enough to capture the
performance of latency-critical applications, such as user-facing ser-
vices, which need to provide performance guarantees on the end-to-end
latency of each request. Latency-critical applications are particularly
interesting, because they define an operating context that is peculiar
to datacenters; we analyze the behavior of five latency-critical appli-
cations, studying how latency is affected by different operating condi-
tions. One important consequence of defining QoS with application-
level metrics is that traditional systems that optimize for aggregated,
low-level metrics cannot provide this type of QoS guarantees.

The main contribution of this dissertation is proposing novel ap-
proaches to the problem of achieving QoS enforcement in an efficient
way in two complementary scenarios. We analyze these two scenarios
and propose two methodologies and practical systems (AutoPro and
Rubik) that solve this problem:
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• AutoPro tackles on the problem of providing predictable perfor-
mance with automated resource allocation in public infrastructure-
as-a-service (IaaS) cloud computing. AutoPro provides a practi-
cal solution based on a control-theoretical background for systems
running compute-bound, throughput oriented applications. With
AutoPro, we focus on current hardware and propose a solution
that is directly deployable on modern datacenters with no hard-
ware changes.

• Rubik analyzes datacenters running latency-critical applications,
along with other batch work and tackles the problem of reducing
the TCO while maintaining QoS guarantees on the tail latency,
thus improving efficiency. Rubik provides a solution based on a
runtime system and few key hardware changes, mainly to pro-
vide partitioning of the memory hierarchy; this solution could be
implemented with negligible overhead on next-generation servers.

Both AutoPro and Rubik demonstrate the importance of three
principles that we suggest as guidelines for the development of next-
generation computer architecture and operating systems for datacen-
ters:

• Availability through the hardware/software stack of application-
level information is key for effective control.

• Control systems used to tune system-level knobs need to be founded
on solid theoretical bases (e.g., AutoPro uses control theory, Ru-
bik uses statistics and control theory); ad-hoc empirical controllers
do not generalize well and often fail due to unpredictable patho-
logical cases.

• In order to support the dynamic execution context of datacen-
ters, as opposed to the static runtime of traditional clusters, con-
trol systems need to operate at a high frequency; coarse-grained
adaptation cannot adapt to quick changes and imposes overly con-
servative guardbands, leaving much on the table.

Completely solving the problems of providing QoS and operating
datacenters efficiently remains an open research problem, and differ-
ent techniques and approaches are needed depending on the specific
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context (application types, public versus public clouds, criticality of
the QoS requirements, . . . ). This dissertation analyzes these problems
and provides two practical solutions for two somewhat complementary
scenarios.

XIV



i
i

“thesis” — 2015/1/15 — 10:54 — page XV — #15 i
i

i
i

i
i

XV



i
i

“thesis” — 2015/1/15 — 10:54 — page XVI — #16 i
i

i
i

i
i



i
i

“thesis” — 2015/1/15 — 10:54 — page XVII — #17 i
i

i
i

i
i

Sommario

Il warehouse-scale computing (letteralmente, computazione a scala di
magazzino) è emerso, nell’ultimo decennio, come una fondamentale
tecnologia di supporto per fenomeni pervasivi come Web 2.0, big da-
ta e cloud computing. I datacenter, che forniscono l’architettura fisica
per il warehouse-scale computing, sono stati realizzati con componenti
(server, interconnessioni, . . . ) presi in prestito dal mercato di largo
consumo e già disponibili da tempo. Nonostante ciò, questi datacenter
hanno aperto la strada ad un nuovo paradigma di computazione che
i ricercatori stanno cercando di analizzare. In particolare, due temi
emergono in maniera nuova rispetto a sistemi di computazione tradi-
zionali. Un tema fondamentale per chi gestisce un datacenter è la sua
efficienza, che si rivela fondamentale per supportare la crescita nei ser-
vizi offerti e nel valore ricavato, ad esempio tramite offerte come il cloud
computing e dallo sfruttamento dell’enorme mole di dati a disposizione
(big data). Inoltre, considerando i servizi di cloud computing pubblico,
si presentano ulteriori sfide sia per chi gestisce l’infrastruttura che per
gli utenti. In questo contesto, una preoccupazione fondamentale per gli
utenti che vorrebbero spostare le proprie applicazioni su un servizio di
cloud computing, sfruttando così i vantaggi in termini di elasticità dei
costi, è che le prestazioni delle applicazioni su risorse virtualizzate sono
più complesse da analizzare e spesso impredicibili. Per questa ragione,
utilizzre un servizio di cloud computing per applicazioni che necessi-
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tano di un certo livello di qualità del servizio—o, in inglese, quality of
service (QoS)—è complesso e spesso rende il servizio meno efficiente a
causa di allocazione troppo conservativa delle risorse.

C’è una tensione tra queste due problematiche (efficienza e QoS),
poiché le tecniche che possono migliorare l’efficienza (ad esempio, vir-
tualizzazione, gestione energetica, colocamento, . . . ) hanno un impatto
sulle prestazioni, spesso in modo impredicibile. Questa dissertazione
attacca entrambi i lati di questa tensione e propone nuove tecniche e
strumenti per tentare di risolverla.

Come prima cosa, analizziamo un noto modello per il costo complessivo—
in inglese, total cost of ownership (TCO)—di un datacenter e mostria-
mo che, per lo stato delle cose odierno, le opportunità di migliorare l’ef-
ficienza dei datacenter si trovano soprattutto nel migliorare l’efficienza
dei singoli componenti l’infrastruttura, in particolare quella dei singoli
server. Sulla base di questa osservazione, identifichiamo tre principali
opportunità per migliorare l’efficienza: aumentare l’utilizzo dei server,
ridurre il consumo di potenza statico, ridurre il consumo di potenza
dinamico. La sfida è riuscire a sfruttare queste opportunità senza peg-
giorare la qualità del servizio offerto. Mostriamo che meccanismi e
politiche tradizionali non sono adatti per raggiungere questi obiettivi
nei datacenter: colocare applicazioni cause inefficienze e degrado delle
prestazioni a causa di contesa su risorse condivise; gli stati di risparmio
energetico profondi richiedono lunghe latenze di transizione e ripristi-
no dello stato, degradando le prestazioni; i controllori tradizionali per
il controllo di frequenza e voltaggio—in inglese, dynamic voltage and
frequency scaling (DVFS)—sono in grado di ridurre la potenza attiva,
ma possono causare un forte degrado prestazionali, poiché non tengono
conto delle caratteristiche peculiari delle applicazioni.

In seguito, analizziamo delle metriche per quantificare le prestazioni
delle applicazioni eseguite nei datacenter e per definirne la qualità del
servizio (QoS). Il throughput è una metrica generica per quantificare
la velocità di una applicazione o il carico, ma non è sufficiente per de-
scrivere appieno le prestazioni di applicazioni sensibili alla latenza—in
inglese, latency-critical. Queste applicazioni richiedono garanzie pre-
stazionali sulla latenza complessiva di ogni richiesta; un esempio è un
servizio di ricerca in un grande database (o su internet). Le applicazio-
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ni latency-critical sono particolarmente interessanti, poiché definiscono
un contesto operativo tipico dei datacenter; qui analizziamo il compor-
tamento di cinque diverse applicazioni di questo tipo, studiando come
diverse condizioni operative influenzino la latenza di servizio delle ri-
chieste. Una importante conseguenza che si ha nel definire la QoS con
metriche di livello applicativo (ad esempio, throughput o latenza) è
che tecniche note che ottimizzano sulla base di metriche aggregate e di
basso livello non sono adeguate per garantire le prestazioni desiderate.

Il contributo principale di questa dissertazione è la proposta di nuo-
vi approcci al problema di fornire la QoS desiderata in modo efficiente,
guardando a due scenari complementari. Analizziamo questi due sce-
nari e proponiamo due metodologie e due sistemi reali (AutoPro e
Rubik) che risolvono questo problema:

• AutoPro si occupa del problema di garantire performance predici-
bili attraverso l’allocazione automatica delle risorse in un servizio
di cloud computing pubblico di tipo infrastructure-as-a-service
(IaaS). AutoPro rappresenta una soluzione pratica basata su teo-
ria del controllo per sistemi che eseguono applicazioni compute-
bound e throughput-oriented. Con AutoPro, ci focalizziamo su
sistemi attuali e proponiamo una soluzione che è direttamen-
te realizzabile su datacenter moderni, senza alcun cambiamento
hardware.

• Con Rubik analizziamo datacenter che eseguono applicazioni latency-
critical insieme ad altre applicazioni batch, ovvero senza forti re-
quisiti prestazionali. Ci occupiamo del problema di migliorare l’ef-
ficienza del servizio riducendo i costi senza disattendere i requisiti
di QoS stipulati sulle applicazioni latency-critical. Rubik è una
soluzione basata su un sistema software e alcune specifiche mo-
difiche hardware che, principalmente, permettono il supporto al
partizionamento della gerarchia di memoria; questa soluzione può
essere implementata con costi trascurabili su server di prossima
generazione.

Sia AutoPro che Rubik dimostrano l’importanza di tre principi che
suggeriamo come linee guida per lo sviluppo delle architetture e dei
sistemi operativi per le prossime generazioni di datacenter:
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• La disponibilità, ad ogni livello del sistema, di informazioni di
livello applicativo è fondamentale per un controllo efficiente.

• I sistemi di controllo utilizzati per regolare parametri di sistema
devono avere una solida base teorica (ad esempio, AutoPro usa la
teoria del controllo e Rubik usa analisi statistica e teoria del con-
trollo). Controllori ad-hoc basati su euristiche non generalizzano
bene e spesso falliscono a causa di casi particolari patologici che
sono difficili da individuare in sistemi di questa complessità.

• Per supportare l’ambiente di esecuzione molto dinamico dei data-
center, rispetto all’ambiente statico tipico dei cluster, i sistemi di
controllo devono operare ad alta frequenza. Adattare i parametri
ad grana grossa non permette di adeguarsi a cambiamenti rapidi
e impone di essere molto conservativi nelle allocazioni, riducendo
notevolmente l’efficienza.

Risolvere completamente i problemi di garantire qualità del servizio
e di operare i datacenter in modo efficiente rimane un problema di
ricerca aperto e diverse tecniche ed approcci sono necessari in specifici
contesti (a seconda del tipo di applicazioni, criticità dei servizi, . . . ).
Questa dissertazione analizza questi problemi e propone due soluzioni
pratiche per due scenari complementari.
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CHAPTER1
Introduction and Background

During the past few years, mainstream computing has been shifting
from personal computers (PCs) to mobile devices and cluster of com-
puters. These two trends seemingly go towards opposite ends of the
computing devices spectrum, which spans from small and constrained
embedded systems to large-scale installations with massive compute
and storage resources, but they are really deeply connected. The link
that connects them is the Internet that, by becoming faster and more
available across the population, allows to outsource computation from
mobile devices through web services that run remotely on clusters of
computers [7]. These remote resources are known in different “fla-
vors”, according to their specificities: datacenters, server farms, or
warehouse-scale computers [7]; in this dissertation, we will use data-
center as a generic term for the whole category.

More specifically, the rising importance of datacenters is due to
three factors [91]:

1



i
i

“thesis” — 2015/1/15 — 10:54 — page 2 — #34 i
i

i
i

i
i

Chapter 1. Introduction and Background

• Datacenters can make size- and power-constrained mobile com-
puting devices such as smartphones or tablets much more inter-
esting and appealing, by increasing their compute and storage
capacity through web-services such as web search and social net-
working.

• The storage of huge amounts of data coming from clients (the
so-called big data) in datacenters enables to extract, through ac-
curate analysis, valuable information (e.g., customer preferences
and attitudes).

• Massive datacenters are a key enabling factor to offering utility
computing through public cloud computing services such as Ama-
zon Web Services (AWS), Apple iCloud, Google AppEngine, and
Microsoft Azure.

In a sense, the growth of datacenters is both driven by and a key
enabler for the Web 2.0, big data, and cloud computing.

A major concern for datacenter operators is their efficiency and cost-
effectiveness, which are crucial to supporting the growth in the services
and value coming from big data and cloud computing. Improving
datacenter efficiency is a major challenge that researchers have been
increasingly addressing in recent years and remains an open research
problem.

Additionally, public cloud computing presents further challenges for
both datacenter operators and users. A major issue for users that
want to bring their workloads to the cloud to take advantage of util-
ity computing is that performance on virtualized resources is hard to
understand and often unpredictable [102]. For this reason, using pub-
lic clouds for applications that need to provide a required quality of
service (QoS) level is not straightforward and often leads to increased
inefficiency due to conservative resource allocations [40].

There is a tension between these two issues (efficiency and QoS), as
techniques to improve efficiency (e.g., virtualization, power manage-
ment, colocation, . . . ) impact performance, often unpredictably. This
dissertation attacks both sides of this tension and proposes novel tech-
niques and tools to help solve it, towards future efficient QoS-driven
warehouse-scale computing.
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1.1. Improving Datacenter E�iciency, One Server at a Time

The remaining of this introduction presents background material
useful to contextualize and motivate the main contributions (summa-
rized in Section 1.5):

• Section 1.1 briefly looks at opportunities to improve datacenter
efficiency based on a cost analysis;

• Section 1.2 analyzes, through some experiments on datacenter
servers, possible techniques to improve server efficiency;

• Section 1.3 analyzes application-level QoS metrics for datacenter
applications;

• Section 1.4 introduces the problem of efficiently attaining QoS.

Additional background material specific to subsequent chapters is pre-
sented therein.

1.1 Improving Datacenter E�iciency, One Server at a Time

Operating datacenters efficiently is an important concern for both eco-
nomic and sustainability reasons: datacenters already draw tens of
megawatts of power [9], reportedly about 1.5 to 2% of all global elec-
tricity in 2011, growing at a rate of 12% a year [43]. Further scaling up
datacenter capabilities to support the explosion of virtual information
would lead to unbearable costs and power requirements at the current
efficiency levels.

From an economic standpoint, a concise metric commonly used
to quantify datacenter-related expenses is the total cost of ownership
(TCO). Since providing a detailed introduction to how to compute and
evaluate TCO is out of the scope of this thesis, here we just propose
a brief overview; Leverich [77] provides a more detailed discussion. In
brief, TCO captures all the expenses related to owning and operat-
ing a datacenter; it is computed as the sum of capital expenses and
operating expenses. Breaking down the TCO into its components is
a good way to identify the major contributors to costs, that need be
acted upon to improve efficiency.

Hamilton [47] proposed a simple and illustrative model to estimate
TCO for a datacenter and break it down into components. This model

3
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Chapter 1. Introduction and Background

Figure 1.1: Analysis of monthly costs to own and operate a datacenter, according
to Hamilton [47].

is based on the assumption the servers have a 3-year lifetime and
the power usage effectiveness (PUE) of the datacenter (i.e., the ratio
between total power draw—including cooling, power delivery losses,
etc.—and power drawn by actual IT equipment) is 1.45. While these
assumptions might be conservative (e.g., state-of-the-art datacenters
have PUE under 1.2), the model is still representative. Figure 1.1 (bor-
rowed from Hamilton [47]) shows a breakdown, based on this model,
of the TCO in five components due to servers, networking equipment,
power distribution and cooling, power supply, and other infrastructure.
Expenses due to servers alone make up for almost 60% of the TCO in
Hamilton’s model. Moreover, the decade-long optimization process
that brought the PUE of recent state-of-the-art datacenters very close
to 1 (as low as 1.06 for Facebook’s Prineville datacenter [98]) exploited
most of the opportunities to improve efficiency at the facility level. For
this reason, opportunities to further reduce TCO, and allow datacen-
ters to scale further, mostly lie in improvements in the efficiency of IT
equipment, particularly the efficiency of servers [77].

Improving datacenter servers efficiency is challenging and it requires
considering the whole hardware/software stack. A key consideration
to make when trying to reduce the fraction of TCO due to servers is
that cost reductions must not hurt performance beyond the required
QoS. Ideally, efficiency should come from costs reductions that do not
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1.2. Techniques to Improve E�iciency

hurt performance at all; however, most techniques to reduce costs (e.g.,
power management, colocation) inevitably introduce some overhead on
performance. Moreover, classic techniques such as sleep states or dy-
namic voltage and frequency scaling (DVFS) are not well tuned to the
characteristics of datacenter workloads. For these reasons, efficiency
and QoS considerations need to go side by side; the main contribu-
tions of this thesis, described in Chapters 2 and 3, tackle both QoS
and efficiency.

1.2 Techniques to Improve E�iciency

We see three main opportunities to improve the efficiency of datacenter
servers [77]:

• increase server utilization by consolidating workloads or growing
workloads on existing hardware.

• reducing static power consumption (i.e., power drawn regardless
of load) in each server; and

• reduce per-server dynamic power consumption (i.e., power drawn
to do useful work);

The rest of this section analyzes these three opportunities. Section 1.2.1
deals with workload consolidation; Section 1.2.2 describes sleep states,
which are the most common way to reduce static power when servers
are idle; Section 1.2.3 deals with dynamic voltage and frequency scaling
(DVFS), which is the most common mechanism available on modern
servers to reduce active power and improve energy efficiency.

1.2.1 Workload Consolidation

Consolidating (or colocating) workloads has the potential of reducing
the number of servers needed to run a given service, with obvious ef-
ficiency gains. However, the multicore processors that equip current
servers were not designed to efficiently handle multiprogrammed work-
loads and colocation can adversely affect performance due to scheduling
artifacts or contention on shared resources, most notably, the last level
cache (LLC) [66, 92].
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Chapter 1. Introduction and Background

Researchers tackled these issues with systems that provide QoS
when using shared memory resources. On the one hand, software-only
systems [27, 28, 92, 137] detect interference empirically, and throt-
tle or migrate batch applications that cause too much degradation.
These schemes work with current multicores, but they react to inter-
ference instead of preventing it. On the other hand, relatively simple
changes in the hardware allows to to explicitly partition shared mem-
ory resources (e.g., cache capacity and memory bandwidth) [13, 20,
45, 60, 69, 71, 88, 101, 105, 109, 115]; clearly, these mechanisms need
policies to dynamically size partitions, to avoid the pitfall of low uti-
lization due to over-provisioning of partition sizes to maintain perfor-
mance [22, 33, 46, 57, 79, 100, 109, 123, 141]. These schemes explicitly
manage shared resource partitioning to allow colocation and guarantee
some kind of QoS to the colocate workloads.

Indeed, colocation is a valuable idea to improve the efficiency of
datacenters; we exploit colocation in both of the main contributions
of this thesis. With Rubik (Chapter 3), we take advantage of research
in shared resource partitioning and we assume that the shared por-
tion of the memory system (most notably, the LLC) is partitioned in
hardware, to avoid interference between colocated applications. This
assumption is particularly important in this case, since Rubik deals
with latency-critical applications (see Section 1.3), the performance of
which is particularly sensitive to contention and interference. While
this assumption is reasonable looking at future hardware, servers cur-
rently deployed in datacenters do not implement hardware partitioning
schemes. For this reason, AutoPro (Chapter 2), that looks at imple-
menting a Performance-as-a-Service (PeaaS) model on current servers,
does not assume hardware partitioning Instead, AutoPro can take ad-
vantage of software-only techniques to classify compatible workloads
and it is robust to interference that may still occur.

1.2.2 Sleep States

Starting from the observation that datacenters are reported to often
operate at low load [9, 91], a straightforward idea to improve energy
efficiency of systems operating at low load is minimizing idle system
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Figure 1.2: Power draw and wakeup latencies of different C-states on a Haswell
processor

power. Research in this direction developed mechanisms and policies
to enable various components to operate in low power states when idle.

Modern CPUs, for example, support c-states, which save power dur-
ing idle periods by clock- or power- gating parts of the chip. Deeper
c-states (i.e., those that put to sleep larger portions of the chip) save
more instantaneous power, but require longer transition times and may
impact performance due to loss of microarchitectural state (e.g., LLC
state). For instance, Figure 1.2 shows the latency and average CPU
power measured on a quad-core Intel processor based on the Haswell
microarchitecture. The power data were gathered by reading the ap-
propriate model specific register (MSR) reporting the energy consumed
by the core portion of the processor (i.e., by the four cores, excluding
the LLC) through the RAPL interface. After reading the counter, all
the four cores were left idle for 10 seconds and the energy counter
was probed again; the figure reports the difference between the two
measurements. This methodology allows the processor to exploit both
core- and package-level c-states; therefore, power savings are an upper
bound to what is achievable. The wakeup latency data reported are
taken from what the processor exposes to the OS; Linux exposes this
information through the sysfs. The figure is consistent with the c-
states terminology used in Linux for Intel processors (the -HSW suffix
stands for Haswell):
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Chapter 1. Introduction and Background

• POLL represent a busy idle loop: when the CPU goes idle (i.e.,
upon executing the MWAIT instruction), sleep mode is effectively
disabled and the cores “keep spinning”; power draw is not reduced
compared to when cores are active (often called C0-state) and
there is no wakeup latency.

• C1-HSW is the shallowest sleep state; it stops the CPU main
internal clock via software, but the bus interface and APIC keep
running at full speed.

• C6-HSW, besides stopping the CPU clock, also flushes inner-level
caches (i.e., L1 and L2) to a dedicated SRAM, saves the cores
architectural state to a dedicated SRAM, and reduces the CPU
internal voltage to 0V .

• C7-HSW additionally flushes and powers down the LLC (i.e., the
shared L3 cache).

There is also a C3 c-state in-between C1 and C6, which has laten-
cy/power characteristics quite similar to those of C6.

As Figure 1.2 shows, deeper c-states save more power but impose a
higher wakeup latency to return to normal operation (i.e., C0). For this
reason, while deeper c-states will bring higher power savings, switch-
ing to them is increasingly more expensive in terms of wakeup latency.
Moreover, the deepest c-state (i.e., C7), flushes the shared LLC, impos-
ing additional misses to DRAM for the cached data that were flushed.
For this reason, deep sleep states are beneficial only with relatively
long idle periods which, in datacenters, might occur or not depending
on the type of running applications (see Section 1.3 for more details
on datacenter application types). Particularly interesting is the case
of latency-critical applications which, despite often operating at low
average utilization [25, 66], have very brief (but frequent) idle periods,
making deep sleep states ineffective.

Sleep States and Latency-Critical Applications

The overheads deriving from wakeup latency and loss of state make
deep c-states ineffective for servers running latency-critical tasks. As
an example, Figure 1.3 shows the tail-latency degradation and the

8
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Figure 1.3: 95th percentile tail latency degradation and efficiency (requests per
second over average power draw) gain over no sleep states when using shallow (C6-
HSW) or deep (C7-HSW) C-states on a Haswell processor for five latency-critical
applications.

energy efficiency gain when using c-states of different depth for five
latency-critical applications running at circa 20 % utilization on the
same server equipped with a quad-core Intel processor we used for
Figure 1.2. These applications were first used by Kasture and Sanchez
[66] as a varied benchmark set for latency-critical applications and
are the same we use to evaluate Rubik (they are briefly described in
Chapter 3, Table 3.3). As for Figure 1.2, we run only one application on
one core, while the other three are left idle, in order to trigger package-
level c-states and evaluate a “best-case” scenario in terms of power
savings. We compute energy efficiency as throughput (i.e., requests
per second) over average power to serve a fixed number of requests.

In the figure, the shallow and deep sleep states are, respectively,
the C6-HSW and C7s-HSW c-states, described above; the main dif-
ference is that the deeper c-state flushes and powers down the LLC,
further reducing idle power but also imposing higher wakeup latency
and additional cache misses. In fact, the shallow sleep state dramat-
ically reduces idle power, ensuring significant efficiency gains (up to
80% against disabling c-states) at the price of small tail-latency degra-
dation. Instead, the deep sleep state causes major latency degradation
and does not further improve energy efficiency. This counter-intuitive
result is due to the large “inertia” associated with the LLC [66]: when-
ever the CPU wakes up from sleep, applications need to re-build their
working set in the LLC, causing significant performance and energy
overheads that counterbalance the power savings during the brief idle
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Figure 1.4: Efficiency (requests per second over average power draw) gain over no
sleep states when using a shallow (C6-HSW) C-state on a Haswell processor for
five different latency-critical applications at three utilization levels.

periods. Instead, private caches (L1/L2) have a relatively small inertia
and using shallower sleep state results in negligible overheads.

These results rule out deep sleep states to improve efficiency when
running latency-critical applications, event at low utilization and indi-
cate that shallow sleep states can be beneficial in that case. However,
as research allows to increase datacenter utilization while maintain-
ing QoS (e.g., through safe workload colocation, as described in Sec-
tion 1.2.1), idle periods will decrease further, reducing the opportunity
of sleep states to improve efficiency. As an example, Figure 1.4 show
the efficiency gain of our five latency-critical application as utilization
increases to 40 % and 60 % (the 20 % case is the same shown in Fig-
ure 1.2); as expected, the gains decrease circa linearly. These results
indicate that sleep states, while useful in some cases, are not the most
relevant tool to improve the efficiency of datacenter servers. Increasing
utilization and managing active power are more important objectives.
For this reason, both AutoPro and Rubik aim at keeping utilization
high, and Rubik exploits DVFS to manage active power so as to max-
imize efficiency.

Sleep States for Other Components

Other system components such as DRAM, disks, NICs and fans are
far less energy proportional than the CPU [6, 9] and system-level sleep
states are an active area of research. For example, Powernap [95]
proposes using components such as self-refreshing DRAMs and solid-
state disks (SSD) to support full system low power modes with short
transition times; Dreamweaver [94] builds on Powernap, adding a co-
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1.2. Techniques to Improve E�iciency

processor that determines when the system should enter deep sleep
states. These techniques require idle periods to be relatively long in
order to be effective; this requirements makes them incompatible with
latency-critical applications, which typically have very brief but fre-
quent idle periods [85]. Another example is Knightshift [134], which
proposes a tightly coupled, low power compute node that powers down
the CPU and takes over its functionality during periods of low utiliza-
tion. Knightshift has the same incompatibility with latency-critical
tasks as Powernap and Dreamweaver, since moving to and from the
low power state incur relatively large transition time due to the trans-
fer of large amounts of state.

1.2.3 Dynamic voltage and frequency scaling

Dynamic voltage and frequency scaling (DVFS) is the most widespread
knob to trade off performance and power draw in modern processors.
Scaling down frequency f and voltage V through DVFS leads to power
P decreasing as P ∝ CV 2f , with (at most) linear decrease in perfor-
mance. As voltage is scaled linearly with frequency in CMOS tech-
nology, this property leads to cubic power reductions at the price of
(sub) linear performance loss when scaling down frequency.

The actual performance loss mostly depends on how the running
application uses memory, since the drop in frequency only influences
performance of the fraction of time spent on in-core computation and
not the fraction of time due to memory accesses. For instance, if
the application is totally compute-bound (i.e., there are no stalls on
memory accesses in the processor pipeline), then performance decreases
linearly with the drop in frequency. Instead, if the application is mostly
memory-bound, performance will not be affected much, since the actual
fraction of time spent in the core (i.e., when the pipeline is not stalled
on memory accesses) is a small part of the total runtime.

While voltage still scales linearly with frequency in modern proces-
sors1, the actual voltage scaling range has been reducing due to the
breakdown of Dennard scaling [31] in recent CMOS generations. For
instance, on a 2007 Intel Pentium M the minimum voltage was ≈ 35%

lower than the nominal voltage, while this reduction is≈ 20% on Sandy
1e.g., V ≈ 1.169 · 10−4f + 0.634 on an Intel Haswell processor.
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Chapter 1. Introduction and Background

Bridge and still < 30% on Haswell. This limited voltage range reduces
the impact of scaling down DVFS on power draw on recent processors:
we empirically found that P ∝ f 2 on an Intel Haswell processor.

The diminished direct impact of DVFS on power draw, however,
does not kill this knob as a useful tool for energy efficiency. The
key observation is that, since memory accesses are still much slower
than the core frequency, whenever a workload is memory bound scal-
ing down DVFS has negligible impact (i.e., strongly sublinear) impact
on performance [61]. Therefore, the most energy-efficient DVFS set-
ting (also called a p-state) depends on the running application [34].
For instance, Figure 1.5 reports the CPU energy per instruction of
three applications from the SPEC CPU 2006 benchmark suite run-
ning on a quad-core Intel processor at each p-state, from 800MHz to
Turbo mode. The three applications have different characteristics, with
bzip2 being the most compute-bound2 and libquantum being the most
memory-bound. According to these characteristics, the most energy-
efficient frequency changes for each application. Moreover, the most
efficient p-state changes at runtime, as an application goes through
more or less memory-bound phases [61].

For these reasons, Rubik (Chapter 3) continuously profiles, through
performance counters, the running applications, building CPI stacks [34]
in order to identify memory-bound phases and find the most efficient
p-state.

1.3 Datacenter Applications and QoS

Measuring and evaluating the quality of service (QoS) of the running
applications is particularly important in datacenters, since revenue for
the service provider largely depends on the offered QoS. For instance,
if the latency of queries to a web search engine is often too high, users
will move to a different search engine. As another example, often QoS
terms are specified as service-level agreements (SLAs), or service-level
objectives (SLOs) in the contract for public cloud computing services.

An important difference with respect to other large-scale computing
installations, such as high-performance computing (HPC) clusters, is

2We run on in-memory inputs.
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Figure 1.5: Energy efficiency at different frequencies for three applications on a
quad-core Intel processor based on the Haswell architecture.
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Chapter 1. Introduction and Background

that, in datacenters, performance needs be evaluated from a user per-
spective, with high-level metrics that capture the perceived performance.
Low-level metrics based on hardware performance counters, such as in-
structions per cycle (IPC), are not well-suited for this task. Moreover,
performance and needs to satisfy some objective, not necessarily being
maximized. There exist two major general high-level metrics to assess
the performance of applications deployed to a datacenter: throughput
and latency.

1.3.1 Performance as Throughput

Throughput is an aggregate metric that can assess the overall perfor-
mance of the application. For instance, the performance of a video-
encoding task is well-represented by the rate at which it encodes frames
(i.e., frames per second).

Throughput applies to most applications and it can be computed at
different levels. For instance, the throughput of a mapreduce job could
be monitored as the number of (map or reduce) tasks completed per
second, or as the amount of data processed per second; at the same
time, each task could be monitored looking at the rate of completion
of each basic operation. The job-level measurement (i.e., tasks per
second) gives an overall indication of progress, while the task-level
measurement could be used to check the progress of the single tasks
and identify stragglers [2].

Throughput is also important for request-based applications such as
on-line transaction processing (OLTP). In this case, the rate at which
requests are served (i.e., requests per second) gives an indication of
overall performance and can be compared to the load (i.e., the rate of
request submission) to asses the health of the service.

AutoPro (Chapter 2) uses throughput as the reference performance
metric to automatically allocate a contended resource (i.e., CPU band-
width) so as to meet user-specified performance SLOs in a public cloud
computing scenario.

1.3.2 Latency-critical Applications

While throughput is a general metric, user-facing, request-based appli-
cations often need to provide performance guarantees on the end-to-end
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1.3. Datacenter Applications and QoS

latency of each request (or, more commonly, statistical guarantees on
the distribution of latencies), which throughput does not capture.

In order to serve each request, user-facing services (e.g., web search)
access very large data sets distributed in a tree-like structure: front-
end nodes accept requests and dispatch them to leaf nodes. Each leaf
node analyzes a portion of the data and returns a partial result to
the front-end node, which aggregates the partial results to serve the
request. Therefore, the user-perceived latency of each request depends
on the response time of the slowest leaf node, which determines the
end-to-end quality of service (QoS). Previous research [120] showed
that a server-side delay of the order of 100ms can reduce the QoS
to the point of significantly impairing revenues; for this reason, leaf
nodes need to respect strict bounds on tail-latencies [25] (95th or 99th

percentile latency). Depending on the specific structure of each service,
the bound on tail-latency at the leaf nodes can be very tight, as low
as 100s of microseconds in some cases [85].

The request latency can be factored into four terms:

• the service time, i.e., the time it takes to compute the response
to the request once since when it starts being processed;

• the queuing time, i.e., the time the request spends in the queue,
waiting to be processed;

• network stack overhead, i.e., the time the request spends being
dispatched in the server network stack;

• network delays, i.e., the time the request spends being transfered
from the client to the server plus the time the response spends in
transit back to the client.

Using the same approach proposed by Kasture and Sanchez [66], we
focus on the first two terms (service time and queuing time); network
stack overheads were tackled in recent research through user-level net-
working [65], while dealing with network delays is out of the scope of
this work.
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Figure 1.6: Cumulative distribution functions (CDFs) of request service time (no
queueing delay) for five latency-critical applications. Dashed lines indicate the 95th
percentile service times (courtesy of Kasture and Sanchez [66]).

Service Time Distributions

Figure 1.6 shows the cumulative distribution function (CDF) of the
service time of five latency-critical applications (they are briefly de-
scribed in Chapter 3, Table 3.3), when simulated with the zsim [116]
multicore simulator, modeling a processor with six out-of-order cores
validated against a real Intel Westmere system running at a fixed fre-
quency of 2GHz [66]. The applications are simulated, rather than run
on real hardware, to take advantage of a partitioned LLC, which is
not available on current commodity processors. The five applications
present a varied set of service time distributions: masstree and moses
have near-constant service times, with a very short tail, while xapian,
shore-mt, and specjbb present multi-modal or long-tailed distribu-
tions. This variability in service time, which is intrinsic in the different
compute requirements of the single requests poses a first challenge to
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1.3. Datacenter Applications and QoS

maintaining a desired QoS level (i.e., a desired tail latency) for these
applications.

Impact of Queuing Time on Latency

While the distribution of service times largely determines the end-to-
end latency at low load, when load (i.e., the arrival rate of requests)
increases, queuing time becomes critical in determining the latency
distribution.

To illustrate this effect, Figure 1.7 presents an analysis of the initial
part of the traces of the simulated five latency-critical applications at
high load. For most applications, queuing time determines most of the
latency. Long queues can have two causes:

• the arrival of “trains” of requests; or

• the arrival of one or more requests with particularly long service
times (i.e., those in the tail of the distributions in Figure 1.6).

The first effect is particularly evident for masstree, while the second
can be identified in specjbb and xapian.

Impact of Load on Latency

Intuitively, as load increases more requests will have to be queued up
waiting for a previous request to be served, causing increased queuing
times and, therefore, increased latency. Again, we analyze this effect
on the five latency-critical applications; Figure 1.8 reports the mean
and 95th percentile latencies for the five latency-critical applications
with increasing load. Since service times do not change, the increase
both mean and tail latency is due to increased queuing times. Three
observations can be made on Figure 1.8 [66]:

1. tail latency is far from the mean;

2. increased load imposes a critical overhead on tail latency;

3. tail latency degrades superlinearly.

These observations lead to the conclusion that latency-critical applica-
tions subject to tail-latency QoS requirements inherently need to run at
low utilization to meet their QoS, since increasing load has a dramatic
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request in the queue is served, the queue size is decreased by one and a bar on the
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(solid red) latencies for the five latency-critical applications (courtesy of Kasture
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Chapter 1. Introduction and Background

impact on latency due to queuing delay. Previous research [66] showed
that carefully colocating batch work with latency-critical applications,
by taking care of the issues with scheduling and memory hierarchy
partitioning, can increase utilization, improving the efficiency of data-
centers running latency-critical applications. With Rubik (Chapter 3)
we show that application-aware DVFS can be used to increase the uti-
lization of latency-critical workload itself, by speeding up cores when
needed (e.g., when a large queue builds up) to “flatten” the load-latency
curves of Figure 1.8.

1.4 E�iciently Attaining Quality of Service

The QoS and efficiency of services and applications running in a data-
center ultimately depends on management and allocation of resources
(e.g., cores, memory bandwidth, . . . ) and “knobs” (e.g., DVFS) that af-
fect performance and power draw. Manually managing these resources
and knobs to tune performance in an efficient way is already hard on
a single server; the scale of datacenters makes it a daunting task. This
problem opens a great opportunity for control systems able to auto-
matically manage the datacenter, creating a goal-oriented, automated
framework to efficiently meet QoS constraints.

Both the main contributions of this dissertation regard building sys-
tems of this sort. While these systems use different control techniques
and target different scenarios, they share one important property, that
is key to achieving efficiency: availability of application-level infor-
mation throughout the computing stack. In order to efficiently man-
age resource and knobs to meet QoS objectives on application-level
metrics (as described in Section 1.3), control systems for datacenters
direly need to be aware of application-level information such as current
throughput, request latency, or service time. Traditional systems that
optimize for aggregated, low-level metrics (one outstanding example
is the turbo mode controller available in recent processors [84]) can-
not achieve this goal. We believe that this property (availability of
application-level information throughout the computing stack) should
guide the development of computer architecture and operating sys-
tems for datacenters.
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1.5 Contributions and Guiding Principles

To sustainably support the shift of mainstream computing from per-
sonal computers to mobile devices and datacenters, several challenges
need be addressed throughout the computing stack, from hardware to
applications, through architecture and operating system. Addressing
all of these challenges goes beyond the scope of one dissertation; this
dissertation focuses on rethinking and improving key aspects at the sys-
tem level (i.e., the computer architecture and the operating system)
for datacenters. We identify and tackle two important goals that can
be approached by working at the system level: efficiency of datacenter
operation and quality of service (QoS) enforcement. Jointly achieving
QoS enforcement and efficiency is a difficult problem, as naïve solu-
tions tend to trade-off one for the other; for instance, one could easily
guarantee QoS by over-committing resources in an inefficient way.

The main contribution of this dissertation is proposing novel ap-
proaches to the problem of achieving QoS enforcement in an efficient
way in two complementary scenarios. The following two chapters ana-
lyze these two scenarios and propose two methodologies and practical
systems that solve this problem:

• AutoPro [12] (Chapter 2) tackles on the problem of providing
predictable performance with automated resource allocation in
public infrastructure-as-a-service (IaaS) cloud computing. Auto-
Pro provides a practical solution based on a control-theoretical
background for systems running compute-bound, throughput ori-
ented applications. Chapter 2 focuses on current hardware and
proposes a solution that is directly deployable on modern data-
centers with no hardware changes.

• Rubik [67] (Chapter 3) analyzes datacenters running latency-critical
applications, along with other batch work and tackles the prob-
lem of reducing the TCO while maintaining QoS guarantees on
the tail latency, thus improving efficiency. Rubik provides a solu-
tion based on a runtime system and few key hardware changes,
mainly to provide partitioning of the memory hierarchy; this so-
lution could be implemented with negligible overhead on next-
generation servers.
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Chapter 1. Introduction and Background

Both AutoPro and Rubik demonstrate the importance of three prin-
ciples that this dissertation suggests as guidelines for the development
of next-generation computer architecture and operating systems for
datacenters:

• Availability through the hardware/software stack of application-
level information is key for effective control (see Section 1.4).

• Control systems used to tune system-level knobs need to be founded
on solid theoretical bases (e.g., AutoPro uses control theory, Ru-
bik uses statistics and control theory); ad-hoc empirical controllers
do not generalize well and often fail due to unpredictable patho-
logical cases.

• In order to support the dynamic execution context of datacen-
ters, as opposed to the static runtime of traditional clusters, con-
trol systems need to operate at a high frequency; coarse-grained
adaptation cannot adapt to quick changes and imposes overly con-
servative guardbands, leaving much on the table.
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CHAPTER2
AutoPro1

Ideally, the pay-as-you-go model of Infrastructure as a Service (IaaS)
clouds should enable users to rent just enough resources (e.g., CPU
or memory bandwidth) to fulfill their service level objectives (SLOs).
Achieving this goal is hard on current IaaS offers, which require users to
explicitly specify the amount of resources to reserve; this requirement
is non-trivial for users, because estimating the amount of resources
needed to attain application-level SLOs is often complex, especially
when resources are virtualized and the service provider colocates vir-
tual machines (VMs) on host nodes. For this reason, users who deploy
VMs subject to SLOs are usually prone to over-provisioning resources,
thus resulting in inflated business costs.

This chapter tackles this issue with AutoPro: a runtime system
that enhances IaaS clouds with automated and fine-grained resource
provisioning based on performance SLOs. Our main contribution with
AutoPro is filling the gap between application-level performance SLOs

1This chapter was adapted from the research paper “Automated Fine-Grained CPU Provision-
ing for Virtual Machines” [12].
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and allocation of a contended resource, without requiring explicit reser-
vations from users. In this chapter, we focus on CPU bandwidth allo-
cation to throughput-driven, compute-intensive multithreaded applica-
tions colocated on a multicore processor; we show that a theoretically
sound, yet simple, control strategy can enable automated fine-grained
allocation of this contended resource, without the need of offline profil-
ing. Additionally, AutoPro helps service providers optimize infrastruc-
ture utilization by provisioning idle resources to best-effort workloads,
so as to maximize node-level utilization.

Our extensive experimental evaluation confirms that AutoPro is
able to automatically determine and enforce allocations to meet per-
formance SLOs, while maximizing node-level utilization by supporting
batch workloads on a best-effort basis.

2.1 Introduction

Infrastructure as a Service (IaaS) clouds promise to enable business
flexibility with a pay-as-you-go model for computation. Within this
model, the interest of users is minimizing business costs for executing
a given workload with the desired performance, while the interest of
vendors is optimizing infrastructure utilization, so as to minimize the
total cost of ownership (TCO), without breaking service level objec-
tives (SLOs). Current virtualization infrastructures lack tools to easily
fulfill these interests: users need to manually determine, for each vir-
tual machine (VM), the amount of resources to rent; providers have to
be conservative when consolidating workloads on multicore-powered
host nodes to reduce TCO, since colocation can lead to unexpected
performance degradation [36, 42, 92].

For these reasons, a system able to automatically size and enforce
allocations of a contended resource based on user-defined, application-
level performance requirements would be a valuable tool to help more
easily meet users’ and provider’s interests. Designing such a system
is an interesting and challenging problem. The main contribution of
this chapter is presenting the design and evaluating the benefits of
AutoPro: a runtime system we developed to serve as such tool.

Recent research [42, 66, 92] on workload consolidation provides tech-
niques to estimate and mitigate performance degradation for consoli-
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dated workloads, enabling safe sharing of host nodes. Other contribu-
tions [103, 108, 125] describe systems that automate resource alloca-
tion based on SLOs, but work at a coarse scale and granularity (see
Section 2.5). In contrast, with AutoPro, we explore the possibility of
enhancing IaaS clouds with automated, fast, and fine-grained resource
allocation to meet users’ SLOs, while allowing providers to safely share
host nodes among VMs to maximize node-level utilization and reduce
TCO. Section 2.2 motivates, through a case study, the advantages that
AutoPro can bring to IaaS infrastructures.

AutoPro leverages feedback control to automate resource allocation,
filling the gap between application-level performance SLOs and allo-
cation of a contended resource, thus dispensing users from the need to
explicitly file resource reservations. Moreover, AutoPro automatically
allocates unclaimed resources to batch workloads on a best-effort ba-
sis, enabling providers to maximize node-level utilization. Section 2.3
discusses our design of AutoPro and its sub-systems, presenting the
methodology that allows AutoPro to achieve these goals.

The main strength of AutoPro is its ability to take fast decisions
and perform precise resource allocations without requiring to profile
VMs in advance. This strength comes from the use of a theoretically
sound, yet simple, control strategy. AutoPro uses controllers based on
a resource-performance model that binds VM performance, measured
in a metric meaningful to the user, and resource allocation. While the
appropriate performance metric (e.g., throughput, latency, turnaround
time) depends on the characteristics of the application wrapped in each
VM, users do not need to worry about modeling: system developers
can determine models that apply to a whole class of applications. Sec-
tion 2.4.2 validates a resource-performance model for VMs that expose
runtime throughput measurements (e.g., requests/s for a web server)
and Section 2.4.3 evaluates AutoPro on managing such VMs. We are
extending AutoPro to support other performance metrics.

In general, VM performance depends on the supply of different re-
sources (e.g., compute, I/O bandwidth); however, in most cases, a
single resource is the bottleneck at any given time. Contention on
a single bottleneck resource will arise in many non-trivial colocation
cases, since finding colocation mixes where the performance of different
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Chapter 2. AutoPro

VMs is bound to complementary resources is often not possible. For
these reasons, automating allocation of a contended resource to meet
performance SLOs is an interesting problem; AutoPro copes with it
through a resource-performance model that considers the bottleneck
resource. To concretely evaluate our approach, this chapter focuses
on throughput-driven, compute-intensive multithreaded applications
wrapped inside VMs colocated on a multicore processor, often found
in datacenter host nodes. In this scenario, the compute bandwidth is
the bottleneck resource we consider; extending AutoPro to deal with
shifting bottleneck resources and different performance metrics is an
orthogonal issue we are investigating (see Section 2.6).

We evaluate AutoPro running representative multithreaded appli-
cations that stress contention on compute bandwidth. Our extensive
experimental evaluation (see Section 2.4) shows that AutoPro meets
its goals of attaining SLOs with a lower error than the best static
allocation and maximizing node-level utilization.

2.2 Case Study and Overview

In order to provide some context and motivation and to show what
advantages AutoPro can bring to IaaS infrastructures, we present a
case study where two users, u1 and u2 deploy a VM to a public IaaS
cloud. Each VM wraps a compute-intensive multithreaded application
subject to the service-level objective (SLO) of maintaining a required
performance level, set on an application-specific throughput measure-
ment. In this scenario, users want to achieve the respective SLO with
the minimum amount of resources, to minimize business cost, while the
cloud provider wants to optimize the datacenter utilization to minimize
the total cost of ownership [78].

As a concrete example of this scenario, we colocate two VMs, re-
spectively executing the swaptions and x264 multithreaded applica-
tions from the PARSEC 2.1 benchmark suite [14], on a host node with
a hexa-core processor (see Section 2.4.1 for details on its configura-
tion). We set SLOs on application-specific performance metrics (i.e.,
swaptions/s and frames/s, respectively) such that both VMs can at-
tain their SLOs within the host node capacity. We analyze a set of
provisioning scenarios that the service provider might choose; to do
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Figure 2.1: Host node CPU utilization, mean average percentage error (MAPE) on
the performance of VMs by User1 and User2, and performance of the batch VM
in different scenarios (A-F). VMs run in isolation (A, B) or colocated (C-F); we
evaluate static allocation of whole cores or CPU bandwidth (bw) (A-E) based on
user requests of 2 and 3 vCPUs (A-D) or on an oracle (E) and dynamic allocation
with AutoPro (F). The thin bars in scenarios C-E show the per-VM CPU utilization
breakdown, using the same shading as error / performance.

so, we leverage the integration of the KVM hypervisor [72] with the
Linux kernel’s resource containers (control groups, or cgroups) [4, 97]
to allocate the CPU.2 The service provider can choose space partition-
ing or time multiplexing to map the multithreaded applications that
run in users’ VMs onto the multicore processor of our host node. To
evaluate both strategies, we configure all VMs with six virtual CPUs
(vCPUs) and allocate the equivalent of n physical CPUs to a VM by
either packing its vCPUs onto n cores or by using all cores and capping
its CPU bandwidth to n/6. Figure 2.1 reports the performance and
node-level CPU utilization of the two VMs in six different provisioning
scenarios, marked (A) through (F).3

Scenarios (A) through (D) model current public IaaS clouds, which
require users to explicitly rent an integer number of vCPUs. For these
scenarios, we pick demands of 2 and 3 vCPUs for u1 and u2, respec-
tively. These allocations are, for each VM, the integer number of vC-
PUs that more closely meets the SLO, i.e., that minimizes the mean
average percentage error (MAPE), our accuracy metric. Intuitively,
MAPE gives a measure of how far each VM is, on average, from meet-
ing its performance SLO across its execution; Equation (2.6), in Sec-
tion 2.4.2, reports a formal definition.

2Using cgroups for resource partitioning makes all our discussion directly applicable to tradi-
tional multiprocessing, where applications are not wrapped in VMs, as cgroups support regular
Linux tasks.

3The results in Figure 2.1 are the 95th percentile over 30 runs for each scenario.
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Scenario (E) evaluates the best (i.e., with lowest MAPE) static
(i.e., fixed throughout VM execution) allocation, that we determined
through offline profiling.

Finally, we deploy AutoPro on our host node to manage our case
study; Scenario (F) reports these results, showing the advantages over
current IaaS management policies.

2.2.1 Analysis of the Case Study

Figure 2.1 (A) and (B) analyze the baseline scenario in which the
provider serves u1 and u2 on dedicated CPUs, backing the 2 and 3 vC-
PUs of u1 and u2 respectively with 2 and 3 cores (partitioning), or 33 %

and 50 % CPU bandwidth (multiplexing). Using dedicated CPUs (i.e.,
single-socket host nodes or a multi-socket host node) avoids issues due
to contention on shared resources (e.g., the last-level cache), but leads
to under-utilization of the host nodes/sockets (CPU utilization is be-
tween 33 % and 45 %). Low node-level utilization is generally inefficient
for the service provider, as it negatively impacts the TCO due to poor
energy proportionality of current host nodes [95]. Moreover, the pro-
visioning configuration of this scenario is also inefficient for users, who
are far from precisely meeting their SLOs (MAPEs range from 32 % to
43 %). The performance traces show that both VMs actually outper-
form the respective SLOs, meaning that users are using, and paying
for, more resources than they would really need; this situation is com-
mon, as IaaS users tend to over-provision resources [40]. Notice that
the vCPUs-to-CPU mapping strategy variably influences CPU utiliza-
tion and performance for the two VMs. For u2’s VM, which runs x264,
the MAPE increases when using 6 cores at ≈ 50 % CPU bandwidth,
than when packed on 3 reserved cores. This higher error is actually due
to the VM running faster when using more cores (note that node-level
utilization also increases). Instead, u1’s VM, which runs swaptions,
runs slightly faster when partitioning cores. Section 2.3.3 elaborates
further on partitioning versus multiplexing.

To increase node-level utilization, the provider can colocate the two
VMs onto one host node/socket; Figure 2.1 (C) covers this scenario.
Co-locating VMs improves node-level utilization (reaching ≈ 65 %),
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as now the two VMs share hardware resources;4 therefore, VMs’ colo-
cation benefits the provider. However, colocation can unpredictably
impair the performance of users’ VMs due to contention over shared
resources (e.g., last-level cache (LLC), memory bandwidth). While
this effect is negligible in this specific scenario (MAPEs are very close
to the isolation scenarios and we verify that both VMs still outperform
their SLO), because these VMs make for a good colocation pair, more
noticeable performance interference arises in other cases, as we will dis-
cuss. In general, building good colocation mixes to limit performance
interference is a challenging problem that is orthogonal to the scope of
this chapter [42, 92].

To further increase node-level utilization, the provider can employ
the leftover CPU bandwidth to run additional batch applications (e.g.,
maintenance jobs) on a best-effort basis; Figure 2.1 (D) covers this
scenario. To simulate a batch workload, we run the psearchy bench-
mark [16], set to index the Linux kernel 3.9 source tree, in an additional
VM.5 We provision this batch VM with the compute capacity left un-
used by the two SLO-bound VMs: either 1 core or 17 % of the CPU
bandwidth. Co-locating the batch VM bumps node-level utilization up
to ≈ 90 % and turns out to reduce the MAPE for u2’s VM. This appar-
ently positive effect is actually due a reduction of the performance of
u2’s VM, due to the sensitivity of x264 to contention over the LLC [23]
caused by cache-intensive co-runners, like psearchy. Therefore, this ef-
fect is not beneficial to u2, whose VM is still far from matching the
SLO and also gets reduced performance while having to pay for the
same amount of resources as in the previous scenario.

In all the scenarios we explored so far, users are far from precisely
meeting SLOs and they face increased costs due to over-provisioning,
since they rent more resources than meeting their SLO would require.
We will explore and combine two ways of improvement: (1) automated
and (2) finer-grained resource estimates and allocations. If the IaaS
cloud could automatically determine the exact resource needs based on
the SLOs and allocate resources on a fine-grained scale, the provider

4CPU utilization in scenario (C) is less than the sum of the CPU utilizations in scenarios (A)
and (B) because, according to data from performance counters, in this case VMs colocation partly
hides memory access latencies.

5Similarly, the SPECvirt_sc2013 benchmark [130] periodically runs file compression tasks in
an otherwise idle VM to simulate batch workloads.
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could take the burden of estimating resource needs from users. To
evaluate the benefits of this scenario, we derive (through offline profil-
ing) that the best static allocations (i.e., the ones that yield the lowest
MAPEs on the performance SLO of both user-submitted VMs) are 1.5

vCPUs for u1 and 2.4 vCPUs for u2. Since we need to allocate frac-
tions of a core, CPU partitioning is too coarse-grained for this case;
therefore, we allocate vCPUs by capping the CPU bandwidth. Fig-
ure 2.1 (E) shows that, in this case u1’s VM (i.e., swaptions) almost
perfectly matches its SLO (with 0.3 % error), while the lowest MAPE
for u2’s VM (i.e., x264 ) is 27 %. The higher error for x264 is due
to this application showing varying execution phases (as Figures 2.3
and 2.11 further illustrate); due this characteristic, no static alloca-
tion will be able to closely track the SLO. This scenario is the best
we explored so far, as both users are closer to meeting their SLOs,
while renting fewer resources, and node-level utilization is kept high;
moreover, the CPU bandwidth freed by using just enough resources to
minimize the MAPEs goes to increase by ≈ 60 % the performance of
the batch workload, benefiting the provider.

With AutoPro, we show that it is even possible to improve over
scenario (E) by leveraging a resource-performance model, runtime per-
formance measurements, and dynamic fine-grained resource allocation.
Figure 2.1 (F) reports the results we obtain when deploying AutoPro
to manage our case study: both VMs closely match the respective
SLO (MAPEs are 3.2 % and 7.4 %, respectively) and both node-level
utilization and performance of the batch VM are maximized. AutoPro
reduces the error for x264 with respect to the scenario (E) thanks to a
fast dynamic allocation that, in contrast to static allocation, can react
to varying execution phases; moreover, AutoPro keeps the error for
swaptions low. Section 2.4.3 picks one of the runs of this scenario and
provides further insights. Section 2.3 explains how we designed and
implemented AutoPro to achieve such results.

Notice that, while the performance interference between u2’s and
the batch VM impairs the colocation efficiency, AutoPro is robust
to contention on unmanaged shared resources (as we discuss in Sec-
tion 2.4.3). By exploiting performance feedback, AutoPro can realize a
soft-partitioning of unmanaged resources by adjusting the allocation of
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Figure 2.2: AutoPro uses per-VM (Vi) controllers to estimate the resource needs
to meet SLOs defined by users (Ui). A resource broker aggregates demands and
determine allocations, fair-sharing leftover capacity among batch best-effort (BE)
VMs.

the bottleneck resource [37, 127]. Nonetheless, limiting the contention
on unmanaged resources is still valuable, since this way of attacking
degradation is inefficient and can complicate the billing schema (see
Section 2.6).

2.3 Automated Fine-grained Provisioning

The idea at the base of AutoPro is extending IaaS clouds with fine-
grained automated resource allocation, in order to provide users with
a simple interface for specifying SLOs on understandable performance
metrics. Figure 2.2 depicts the architecture of AutoPro. A resource
container enforces allocations to each VM; a dedicated controller es-
timates, based on performance reports, the amount of resources each
SLO-bound VM needs to meet its SLO; a broker collects resource de-
mands and determines allocations, giving leftover resources to an ad-
ditional resource container that fairly provisions batch VMs on a best-
effort basis. The controllers that estimate the resource need for each
VM leverage an adaptive resource-performance model that captures
the relationship between performance measurements and allocation of
the contended resource; Section 2.3.2 elaborates on the defined Auto-
Pro’s control schema.

AutoPro deals with resource allocation and not with admission con-
trol or workload placement, which are related but orthogonal issues.
We rely on the presence of an admission control system that chooses
VM placement across the datacenter [19, 121] and we assume that
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the hypervisor supports live migration [62] in case a node becomes
overloaded. While both VM placement and migration present open
questions for research, AutoPro focuses on a different challenging and
interesting problem: automating allocation of a contended resource
within a single node, based on application-level performance SLOs.

The innovative contribution of this chapter is showing how it is
possible to extend IaaS clouds towards a Performance-as-a-Service
model [11] that benefits both users, with SLO-based automated provi-
sioning, and providers, with support for system-level management of
idle resources. Thanks to fast and precise allocation decisions, AutoPro
can adapt to time-varying workloads, automating the allocation of a
contended resource to meet SLOs and maximize node-level utilization.

2.3.1 Performance Metrics and Measurements

AutoPro requires each SLO-bound VM to make periodic performance
reports available to its controller, in order to leverage its resource-
performance models, as proposed in previous works [10, 52, 108, 125,
127, 128, 140]. Any performance metric meaningful to the user can be
used for these reports and to express SLOs; for instance, a web server
can use throughput (e.g., requests/s for a web server) or latency (i.e.,
response time).

While this chapter focuses on throughput as the reference perfor-
mance metric, AutoPro can be extended to support other performance
metrics, provided that the appropriate resource-performance models
are made available. Notice that application developers do not have to
worry about resource-performance models: they simply need to pro-
vide performance measurements according to one or more supported
performance metrics.

Application-specific high-level performance metric requires support
from applications themselves. For this reason, we developed the through-
put library (libthroughput) to instrument applications so as to provide
feedback and ease users’ task of specifying SLOs. Similarly to previous
proposals [52, 127], libthroughput exports a simple API for applications
and controllers.
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Listing 1 Code snippet of a controller employing libthroughput.
1 throughput_t *monitor = throughput_init("Antani");
2 wait_application_start();
3 while (...) {
4 sleep(...);
5 slo = throughput_get_slo(monitor);
6 g = throughput_get_global(monitor);
7 r = control(g, slo);
8 }
9 throughput_destroy(monitor);

Listing 1 exemplifies the structure of a controller. With throughput_init(),
the controller initializes a monitoring structure identified by a key (e.g.,
Antani) and backed by shared memory. After the application starts,
the controller periodically queries the application’s SLO and global
throughput. At the end, throughput_destroy() cleans up the shared
memory.

Listing 2 Code snippet of an application instrumented with libthroughput.
1 throughput_t *monitor = throughput_attach("Antani");
2 throughput_set_slo(monitor, slo);
3 while (...) {
4 ... // complete one unit of work
5 throughput_signal(monitor);
6 }
7 throughput_detach(monitor);

Listing 2 exemplifies the structure of an application. Applications
attaches a monitoring structure identified by a key and already ini-
tialized by the controller through throughput_attach(), specify their
SLOs by means of throughput_set_slo(), and signal progresses by
calling throughput_signal() upon completion of a unit of work. When
applications exhaust units of work they call throughput_detach() and
exit.

To make sure we evaluate the design and implementation of AutoPro
on a varied set of multithreaded workloads, we use several applications
from the PARSEC 2.1 benchmark suite [14] (see Section 2.4). While
these benchmarks were not designed to capture all the characteristics of
typical cloud workloads, colocating PARSEC applications does create
contention on compute bandwidth, thus stressing the problem that
this chapter addresses. Since PARSEC applications do not natively
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Figure 2.3: Throughput of 6-threaded swaptions [swaptions/s] and x264 [frames/s],
colocated on our hexa-core host node with static CPU bandwidth allocations.

report performance at runtime, we instrument a subset of the suite6

to report throughput through libthroughput. The hypervisor accesses
VM performance measurements as in previous work [108, 125]. In real
deployments, performance reports may be obtained from application
logs or monitoring infrastructures.

The controllers we use to determine resource allocations (see Sec-
tion 2.3.2) work on throughput measurements computed as a moving
average on a sliding window. To give an example on how this metric
can characterize the performance of PARSEC applications, Figure 2.3
shows the traces of two VMs with radically different behavior: with
a constant resource allocation, swaptions has a stable performance
throughout its execution, while x264 shows input-dependent7 oscilla-
tions [10, 118, 128]. Measuring throughput over an adequate sliding
window allows the controllers to promptly catch transitions between
execution phases and adjust resource allocations as needed (see Sec-
tion 2.4.3).

2.3.2 Estimating Resource Needs

AutoPro periodically evaluates throughput measurements against the
SLO and updates resource allocations to keep the performance of each
VM in-line with its SLO. We devise a control schema that splits this
process onto two levels:

6We pick applications that allow a simple and meaningful definition of throughput measure-
ments.

7Here we encode the PARSEC native input twice.

34



i
i

“thesis” — 2015/1/15 — 10:54 — page 35 — #67 i
i

i
i

i
i

2.3. Automated Fine-grained Provisioning

performance report (current throughput) feedback

actual allocation feedback

Resource Broker

other VM controllers'
requests

resource
request

Res. Cont.

VM. . .

Res. Cont.

VM
allocations

SLO
+

–

SISO VM Controller

Model Updater updated
model
parameters

PI Controllererror

Figure 2.4: Overall architecture of AutoPro’s control schema.

1. estimating resource demands independently for each SLO-bound
VM;

2. aggregating demands and determining allocations.

Figure 2.4 illustrates this schema, focusing on one VM. At each con-
trol step, (1) a dedicated VM Controller files a resource request, de-
termined through an adaptive proportional-integral (PI) controller [3];
and (2) a resource broker (RB) aggregates these requests, determines
the actual allocations based on system-level policies, and enforces them
through the resource containers.

VM Controllers

VM Controllers (see the left-hand part of Figure 2.4) take care of
continuously estimating the CPU bandwidth each VM needs to match
its SLO.

The core of the VM Controller is a resource-performance model that
binds the VM performance over a given time window (i.e., its through-
put over that time window) to resource allocation. Equation (2.1)
formalizes this resource-performance model, where tw(k) and tw(k+ 1)

are the average throughput measured at control steps k and (k + 1)

on a window of w seconds, and r(k) is the CPU bandwidth the VM is
provisioned with during the time quantum (k, k + 1).

tw(k + 1) = a · tw(k) + b · r(k) (2.1)

The terms a and b are parameters that characterize the workload and
the scalability of the VM; for the model to be accurate, these two
parameters must adapt to the characteristics of each VM. We use a
Recursive Least Squares (RLS) filter (see the Model Updater in Fig-
ure 2.4) to continuously update the a and b parameters based on ob-
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served throughput and allocated resources. Through this adaptive ap-
proach [3], we avoid the need of profiling VMs in advance and support
VMs with varying load. Section 2.4.2 evaluates the accuracy of this
model and of the online estimation.

In order to estimate resource requests based on the model in Equa-
tion (2.1), we leverage formal control theory to synthesize a PI con-
troller: we derive an expression of the resource request r(k) at step k
as a function of the resource assignment r(k − 1) granted during the
quantum (k − 1, k), the performance error e(k) = t̄ − tw(k), and the
parameters a and b. First, in Equation (2.2), we determine the transfer
function P(z) by applying the Z-transform to Equation (2.1).

z · Tw(z) = a · Tw(z) + b · R(z)

P(z) =
Tw(z)

R(z)
=

b

z − a
(2.2)

Tw(z) and R(z) are the Z-transforms of the throughput measurement
tw(k) and VM-owned resources r(k), respectively.

We leverage formal control theory to synthesize the PI controller
by constraining the transfer function of the feedback loop [49]; Equa-
tion (2.3) shows this operation

L(z) =
C(z)P(z)

1 + C(z)P(z)
,

1− p
z − p

, p ∈ (0, 1) (2.3)

L(z) and C(z) indicate the transfer functions of the feedback loop and
the PI controller, respectively. We set L(z) to a first-order transfer
function with one pole in p. The constraint p ∈ (−1, 1) ensures that the
closed loop is asymptotically stable; furthermore, p ∈ (0, 1) guarantees
convergence without overshooting and oscillations [49]. Within this
interval, the parameter allows to set a trade-off between fast response
and safety: smaller values of p will result in faster responses. We find
that the actual value of p in the (0, 1) range does not have considerable
impact on the behavior of our controllers; we ascribe this fact to the
nonlinearities that our linear resource-performance model discards. We
empirically find p = 0.1 to be a good choice and use this value in all
our experiments.

To actually find an expression for r(k), we start by deriving, in
Equation (2.4), an expression of C(z) by combining Equations (2.2)
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and (2.3); we impose the transfer function of the PI controller to be
the ratio between VM-owned resources R(z) and performance error
E(z).

C(z) =
(1− p) · (z − a)

b · (z − 1)
,
R(z)

E(z)
(2.4)

Elaborating further and applying the Z-antitransform and a time shift
we finally get, in Equation (2.5) the desired expression for r(k).

r(k) = r(k − 1) +
1− p
b
· e(k)− a · 1− p

b
· e(k − 1) (2.5)

The PI controller in each VM Controller uses Equation (2.5) to esti-
mate the resource request that should let the VM match its SLO in
the next control period.

We implemented the VM Controller in C++, using the Armadillo
library [117]. The simplicity of our model allows a fast implementation,
which enables AutoPro to run with an aggressive control period to react
to quick workload changes: our implementation takes less than 10 µs
to update the parameter models and compute the next allocations in
all our experiments on our reference machine (see Section 2.4.1 for
details on its configuration). This very small overhead allows us to use
faster control periods (see Section 2.4.1) than previous works [108, 125],
achieving finer-grained control (as we discuss in Section 2.5).

Controllers Stability

The stability theorem of formal control theory for linear, time-invariant
systems states that a system represented by a transfer function G(z)

is stable if and only if the poles (i.e., the roots of the dominator poly-
nomial) of G(z) are within the unit circle in the complex coordinate
plane [49]. Our choice of p = 0.1 provides such guarantee, since z = p is
the only pole of the feedback loop transfer function, as Equation (2.3)
shows.

The pole-elision method we use to synthesize our controllers adds
the requirement that the elided poles (in our case, the only pole a, as
Equation (2.2) shows) must not be unstable. To abide to this condition,
we verify that our model updater always returns parameters estimates
such that |a| ∈ (0, 1).
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Whenever VMs expose a steady behavior (i.e., within a phase), the
RLS filter we use as our model updater will make the parameters a and
b converge to their “real” values and, thanks to the stability properties
we just discussed, the VM controllers will drive performance towards
SLOs. When the workload of a VM varies over time, switching its
resource-performance behavior (i.e., going through different phases),
the model updater will take some control steps to converge to the new
parameter values, causing transient oscillations of the allocation on
phase boundaries.

Resource Brokerage and Allocation

At each control step, the resource broker (RB) collects all the resource
requests from the VM Controllers and determines the actual alloca-
tions. This aggregation step enforces global constraints, such as CPU
capacity, and applies global policies, e.g., how to use unclaimed re-
sources.

We consider two constraints on allocations: a global maximum
(max ) and a per-VM minimum (min). The max bound enforces CPU
maximum capacity, while the min bound avoids allocating too-small
CPU fractions, which can cause imprecise enforcement at the resource
container level.

A resource request sum exceeding the max bound indicates that
the CPU capacity is not enough to let all SLO-bound VMs deliver the
respective required throughput. If this case occurs, the RB can make
one of two decisions:

1. migrate one or more VMs to a less-loaded node;

2. fairly distribute the available capacity to VMs proportionally to
their original requests.

While migrating VMs might be necessary to respond to chronic re-
source shortage, this operation has non-negligible cost and should be
avoided when resource scarcity is due to short heavier phases or control
glitches because, in these cases, proportionally distributing the avail-
able capacity would at most cause a transient drop in performance. In
this chapter, we only evaluate cases where resource scarcity happens
only temporarily and do not consider VM migration, which represents
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an extreme way out to make up for poor VM placements by the ad-
mission control system.

When the sum of resource requests is below the max bound, the
RB chooses how to use the unclaimed resources. Since this chapter
considers the objective of maximizing node-level utilization, AutoPro
employs unclaimed resources to execute additional batch VMs on a
best-effort basis.

In general, the RB could implement other policies to pursue different
objectives; for instance, idling unused resources and trigger low-power
states to reduce power draw, or redistributing unclaimed resources to
SLO-bound VMs, based on a priority schema, to support different QoS
levels [103].

2.3.3 Containers and Resource Provisioning

To enforce allocations, AutoPro relies on the ability of the hypervisor
to partition resources and allocate them to VMs through a resource
container mechanism [4]. We base our implementation on the Ker-
nel Virtual Machine (kvm) hypervisor [72], which uses Linux control
groups (cgroups) [97] for resource partitioning. The vCPUs of a VM
appear as processes to the hypervisor, which groups them into the same
cgroup, which allows to set caps on resource usage. We exploit cgroup
hierarchies to create an additional cgroup that contains all the batch
VMs, which fairly share the resources unclaimed by SLO-bound VMs.

Linux cgroups offer a few subsystems to allocate different types of re-
sources (e.g., cores, CPU bandwidth, block I/O bandwidth). Since this
chapter focuses on managing VMs that run compute-intensive multi-
threaded tasks, we use the cpuset and cpu [132] subsystems to allocate
fractions of the CPU. These two subsystems control CPU partitioning
and multiplexing: the cpuset subsystem allows to pin threads (in our
case, vCPUs) in a cgroup to a subset of the available cores, while the
cpu subsystem allows to set a cap on the CPU bandwidth each cgroup
can use [132].8

AutoPro can support both CPU partitioning and multiplexing; we
evaluated both mechanisms on managing VMs executing multithreaded
applications from the PARSEC 2.1 benchmark suite colocated on our

8The Xen hypervisor [5] offers similar facilities [135].
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hexa-core host node (configuration details are in Section 2.4). We ver-
ify that these applications scale well to six threads [118] and configure
VMs with six vCPUs. To allocate the host CPU, we either pack vCPUs
on a subset of the host cores or cap the host CPU bandwidth [132].

Applications with poorer scalability or host nodes with a higher
core count might lead to scalability issues, which were tackled in re-
cent research [118]. While these issues would impair the efficiency of
our system, this problem is orthogonal to the scope of this chapter;
Section 2.6 sketches a solution based on partitioning the multicore in
smaller time-multiplexed islands.

We found that AutoPro obtains similar results, in terms of accu-
racy in enforcing SLOs, utilization, and batch VM performance, with
both allocation mechanisms (i.e., dynamic partitioning or multiplex-
ing). While the overall results are similar, CPU multiplexing allows
more stable allocations, thanks to its finer granularity (partitioning
forces minimum allocation granularity to 1 core) and we base our eval-
uation (Section 2.4) on this mechanism.

2.4 Evaluation

We evaluate AutoPro in two steps: Section 2.4.2 validates our resource-
performance model against both single- and dual-VM workloads; Sec-
tion 2.4.3 evaluates AutoPro on managing workloads made of two SLO-
bound VMs and a batch VM.

2.4.1 Platform, System, and Applications

Our host node is a Dell Precision T3500 workstation with an Intel
Xeon W3690 hexa-core processor, clocked at 3.46GHz and equipped
with 12MB of shared LLC, and 12GB of main memory, distributed
on 3 channels and clocked at 1066MHz. We disable the Enhanced
Intel SpeedStep and Turbo Boost Technologies to bind the processor
frequency to its nominal value. Due to the lack of cache partitioning
mechanisms, we cannot directly address (i.e., eliminate) conflicts on
the shared LLC; in our evaluation, we show that AutoPro is robust
to performance interference due to this limitation. We disable the
Intel Hyper-Threading Technology (i.e., simultaneous multithreading),
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which could give performance benefits for some workloads, but would
introduce contention on core-private caches, thus possibly exacerbating
the performance interference problem, which we already show AutoPro
can cope with.

We use Debian GNU/Linux 7.0 with kernel version 3.9 and config-
ure the cpu subsystem of cgroups to enforce CPU bandwidth caps on a
period of 50ms. We configure AutoPro to sample VM throughput on
a sliding window of 750ms and update the resource-performance mod-
els every 50ms, and allocate resources every 750ms. We empirically
determine these parameters to yield precise resource allocation and
responsiveness on our benchmarks: shorter periods lead to imprecise
resource allocations with the cpu subsystem of cgroups, while longer
periods lead to unresponsiveness to execution phases.

To evaluate AutoPro on a varied set of multithreaded applications,
we use blackscholes, bodytrack, canneal, dedup, ferret, swaptions, and
x264, from the PARSEC 2.1 benchmark suite [14], as our workloads
for SLO-bound VMs. We configure each VM with 6 vCPUs and each
application to run with 6 threads except for dedup and ferret, which
use 6 threads per pipeline-stage. We synchronize the execution of the
regions of interest through the hooks provided by the benchmark suite.
We use the native inputs for all applications except for swaptions,
which evaluates 96 swap options, and x264, which encodes its native
input video twice.

We use the indexing part of the psearchy (i.e., pedsort) bench-
mark [16] to simulate a batch workload not bound to a SLO. We use
psearchy to index the Linux kernel 3.9 source tree using 6 threads,
each using at most 1GB for its hash table. Just as for the PARSEC
applications (see Section 2.3.1), we instrumented psearchy to report
throughput defined, in this case, as the number of jobs per hour per
thread.

2.4.2 Resource-Performance Model Evaluation

We validate the accuracy of our resource-performance model, defined in
Equation (2.1), which binds resource allocations r(k) (i.e., a percentage
of the CPU bandwidth) to VM throughput tw(k) (i.e., moving averages
on a sliding window w of 750ms). Each VM runs one of the PARSEC
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applications we selected and we evaluate both solo runs (single-VM)
and workloads with two colocated VMs (dual-VM).

At each control step k (i.e., every 750ms), we randomly vary the
resource allocation r(k) of each VM and we log the current throughput
tw(k) and the corresponding resource allocation r(k− 1); for the dual-
VM workloads, we randomly partition the host CPU capacity among
the two VMs. We execute each workload 30 times to achieve statistical
relevance.

We use the mean absolute percentage error (MAPE) metric, com-
puted as in Equation (2.6) to evaluate the model accuracy.

MAPE =
1

K

K∑
k=0

∣∣∣∣∣ t̂w(k)− tw(k)

tw(k)

∣∣∣∣∣ (2.6)

K is the number of control steps, tw(k) is the actual throughput sam-
pled at step k, and t̂w(k) is the throughput estimate according to our
model, defined in Equation (2.1).

AutoPro uses a Model Updater (see Section 2.3.2) to compute the
model parameters a and b online. Besides evaluating the accuracy of
our model through the MAPE metric, we also validate this filter by
comparing it against the optimal offline parameters estimated with the
least squares algorithm.

Prediction Error on Single-VM Workloads

To evaluate our model in absence of contention on shared resources,
we first consider solo runs of VMs executing each of the PARSEC ap-
plications. Figure 2.5 reports the MAPE metric for our model when
using both online and offline parameter estimates. These results show a
low prediction error (within 5 %) for five out of seven applications and
indicate that updating the model parameters online with the Model
Updater improves accuracy for all the workloads compared to offline
estimates of the optimal static parameters. Our results compare fa-
vorably with previous work leveraging a similar resource-performance
model [123] (see Section 2.5).

The prediction error on the solo runs using online estimation is
close to 1 % for four out of seven workloads; we found that the higher
error on bodytrack (≈ 8 %), ferret (≈ 5 %), and x264 (≈ 6 %) is due
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Figure 2.5: MAPEs on solo runs, using offline (with the least squares algorithm)
or online (with the Model Updater) estimation. Whiskers depict the minimum and
maximum errors; boxes depict 25th, 50th, and 75th percentiles.

to specific characteristics of these applications; the remainder of this
section reports our observations.

The only meaningful throughput metric for bodytrack (i.e., frames/s),
leads to low measurements: 4 frames/s on average with peaks of 8 frames/s
with the highest resource allocation. These low measurements imply
that bodytrack only completes 3 to 6 frames in the 750ms sliding win-
dow we measure throughput on; this dynamic leads to sizable variations
(up to 33 % on average) due to sampling even when the actual through-
put varies only slightly. This jitter impairs the accuracy of our model.
While using a longer sliding window and allocation period improves
accuracy on bodytrack, it would reduce responsiveness on applications
with varying phases. We found that 750ms is a good trade-off to
support all our benchmarks; application-specific optimizations could
further improve accuracy.

x264 shares the low-throughput issue with bodytrack, albeit with
lesser impact (measurements can be as low as 6 frames/s). Moreover,
it shows input-dependent execution phases (see Figure 2.3), which in-
troduce variations even with a stable resource allocation. For this
reason, the Model Updater needs to adapt to the changing workload,
by updating the model parameters, and its prediction error increases
during the transition to a different execution phase. We could tune the
forgetting factor of the Model Updater to address this issue; however, a
more aggressive forgetting factor would make the Model Updater more
subject to occasional noise.

ferret exploits pipeline parallelism and it runs with 24 threads: 6
threads for each of the 4 pipeline stages. This is the result of a ques-
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Figure 2.6: Each plot shows the cumulative distribution function (CDF) of the
MAPE for the VM in the label, considering all workloads where it is present (i.e.,
7 × 30). We report results using both offline (least squares) and online (Model
Updater) estimation.

tionable design: the application is simple from a developer standpoint,
however, it can also be highly inefficient due to load imbalance and
I/O bottlenecks [104]. Re-designing the applications following Navarro
et al. [104] suggestions would greatly improve the predictability of the
application and reduce the prediction error of our resource-performance
model.

Prediction Error on Multi-VM Workloads

Since AutoPro aims at supporting workload consolidation to maxi-
mize node-level utilization, we evaluate the accuracy of our model on
dual-VM workloads. Figure 2.6 reports that the prediction error re-
mains low, indicating that our model is robust against performance
degradation due to contention on unmanaged resources. These results
follow very similar trends to the single-VM workloads (compare to
Figure 2.5): the maximum error is below 1 % for three applications
(blackscholes, canneal, swaptions) and overall below 12 %, when the
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Model Updater is in place. The same considerations of Section 2.4.2
hold, to a greater extent as a result of the contention on unmanaged
resources, for the higher error observed with bodytrack, ferret, and x264.

dedup and x264 are the two applications whose values of MAPE
increase the most when shifting from isolation to consolidation; we
ascribe this behavior to the highest sensitivity to the contention on
unmanaged resources [23].

The low values of the MAPE metric for both single- and multi-
VM workloads indicate that our resource-performance model accu-
rately predicts the behavior of the compute-intensive multithreaded
applications we employed in these experiments. In addition, the Model
Updater improves the model accuracy over offline estimates, besides
dispensing from the need of profiling applications. The Model Updater
also makes the model more resilient to the negative effects resulting
from the contention on unmanaged resources (e.g., see x264 in Fig-
ure 2.6).

2.4.3 Runtime System Evaluation

To evaluate AutoPro, we use a strategy similar to the validation of
the resource-performance model. First, Section 2.4.3 shows that Auto-
Pro can automatically allocate the right amount of CPU bandwidth to
SLO-bound VMs running solo on our host node (see Section 2.4.1 for
configuration details). Second, Section 2.4.3 shows that AutoPro can
both automate CPU provisioning and maximize node-level utilization
when managing two SLO-bound VMs colocated with a batch VM on
our host node. In addition, Section 2.4.3 analyzes the dynamic be-
havior of AutoPro in one of the experiments of the motivational case
study. The results of these experiments shows that:

1. AutoPro is a practical tool for automating the allocation of a
contended resource (specifically, CPU bandwidth) in a datacenter
host node based on performance requirements;

2. AutoPro allows the maximization of node-level utilization and
it is robust to the performance degradation resulting from the
contention on unmanaged resources.
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Figure 2.7: MAPEs on SLO enforcement for single-VMs runs. SLOs range from
30% to 90% of each application’s peak performance. Whiskers indicate the mini-
mum and maximum errors; boxes indicate 25th, 50th, and 75th percentiles.

Each SLO-bound VM executes one of the PARSEC applications we
selected, while the batch VM executes psearchy (see Section 2.4.1).
We set SLOs as a fraction of the average throughput each application
achieves in a solo run on our host without any caps on resource usage
(from now on, we refer to this value as the application’s reference
throughput).

To evaluate the ability of AutoPro to enforce SLOs, we use the
same metric we used in our model evaluation, i.e., the mean average
percentage error (MAPE). Referring to Equation (2.6), in this case
t̂w(k) is the actual throughput measurement and tw(k) is the desired
throughput, i.e., the SLO.

To evaluate the ability of AutoPro to maximize node-level utiliza-
tion, we consider how close the average host node CPU utilization
during each experiment is to 100 %.

Managing Single-VM Workloads

We evaluate the effectiveness of AutoPro in allocating just enough
resources to single-VM workloads bound to an SLO ranging from 30 %

to 90 % of each PARSEC application’s reference throughput, with steps
of 20 %; Figure 2.7 shows these results. Most of the errors are (often
considerably) below 5 %; we analyze the cases of higher error.

The results for x264, dedup, and ferret present a sensibly higher
variance; in these cases, the same application-specific considerations
reported in Sections 2.4.2 and 2.4.2 hold.
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Figure 2.8: Excerpt from a run of x264 bound to a SLO of 90% its average solo
throughput. Allocating 100% CPU bandwidth is still not enough to match the SLO
during heavier phases.

Different considerations hold for the higher errors of canneal and
x264 when setting the SLO to 90 % of the respective reference through-
put. These applications present considerable throughput variations,
even with a fixed resource allocation, due to changes in their workload.
canneal implements simulated annealing and, due to the structure of
this algorithm, it performs more frequent exchange operations at the
beginning of its execution (i.e., at “high temperature”), thus showing a
constantly decreasing throughput, which is measured in exchanges/s.
x264 presents input-dependent execution phases triggered by the differ-
ent structure of the frames in the incoming video stream [10, 118, 128].
For this reason, these two applications present heavier execution phases
for which they cannot sustain 90 % of their reference throughput across
the whole execution, even with all the available resources; Figure 2.8
exemplifies this issue for x264. The red-shaded areas highlight heavier
execution phases during which the VM does not achieve the SLO even
though AutoPro consistently allocates 100 % CPU bandwidth. This
analysis shows that, in these cases, AutoPro still works properly; sim-
ply, the SLO is not attainable during some execution phases on our
host server. In this situation, the provider might simply terminate the
VM and report execution failure due to wrong settings or migrate the
VM to a more powerful node. While this chapter does not directly deal
with VM migration, we are working on a smart VM migration system
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able to tell chronic from transient resource shortage and, in the latter
case, decide to migrate the VM.

Managing Multi-VM Workloads

To evaluate AutoPro in a more comprehensive scenario, we use it to
allocate resources to two SLO-bound VMs, running PARSEC applica-
tions, while maximizing node-level utilization by provisioning unused
CPU bandwidth to a batch VM, running psearchy, on a best-effort
basis. We run every possible colocation of the seven PARSEC ap-
plications, repeating each experiment 30 times and, for each VM, we
analyze all the runs that comprise it, using the mean average percent-
age error (MAPE) metric to evaluate the ability of AutoPro to enforce
SLOs and evaluating the average host node CPU utilization. For each
experiment, we set the SLO of one VM to x = {30, 40, 50}% its refer-
ence throughput and the SLO of the colocated VM to (80 − x)% its
reference throughput. Given these SLOs, there is no guarantee that
the host node capacity will be enough to provision both VMs with the
right amount of CPU bandwidth. Hence, some of the workloads may
never have values of MAPEs equal to 0, even if the prediction error for
those specific workloads is 0.

Figure 2.9 reports, on these experiments, the distributions of the
MAPE for each application executed in a SLO-bound VM. These re-
sults show that AutoPro meets the three SLO levels with a small error
margin (always within 5 % and lower in many cases) for four of the
seven PARSEC applications (namely, blackscholes, bodytrack, dedup,
and swaptions); in this respect, AutoPro is competitive with SLO-
violation results reported in prior work [125] (see Section 2.5 for addi-
tional considerations).

We ascribe the higher (but still below 10 % at the 90th percentile
in all cases) error reported for ferret, canneal, and x264 to the same
issues we discussed earlier in this section. In addition, for what re-
gards canneal and x264, the effect illustrated in Figure 2.8 has sizable
effects at SLO levels lower than 90 %. The reason is that now there
are two colocated SLO-bound VMs that contend on the available host
node CPU capacity, leading to higher possibility that heavier execu-
tion phases lead to resource scarcity. The same possible solution to
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Figure 2.9: Each plot shows the CDF of the MAPE for the VM in the label, con-
sidering all workloads where it is present (i.e., 7 × 30). In each experiment, one
VM has a SLO of x = {30, 40, 50}% its reference throughput, as indicated in the
legend, while the colocated VM has a SLO of (80 − x)% its reference throughput.
All workloads comprise a batch VM treated in a best-effort fashion.

this issue discussed for the single-VM case (see Section 2.4.3) apply
here.

Figure 2.10 reports the CDF of both global and per-VM host node
CPU utilization for all the experiments with three colocated VMs (i.e.,
two SLO-bound and one batch). The plots show that the utilization
of the host node CPU is always close to 100 % in all cases for all SLO
levels. This result confirms that AutoPro can effectively maximize
node-level utilization by allocating unused resources to batch work-
loads on a best-effort basis. The per-VM utilization CDFs show that
AutoPro enacts consistent allocations across the different experiments.
The variations in these values are due to adjustments AutoPro makes
to respect SLOs despite the workload-dependent negative effects of
contention on unmanaged resources.
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Figure 2.10: Each plot shows the CDF of the global and per-VM host node CPU
utilization registered in the experiments reported in Figure 2.9.

Dynamic Behavior

We conclude our evaluation by analyzing more in detail scenarios (E)
and (F) of our case study (see Section 2.2.1 and Figure 2.1). Fig-
ure 2.11 picks the 95th percentile execution of the multi-VM work-
load composed by swaptions, x264, and psearchy and shows how VM
performance and CPU bandwidth allocations vary throughout the ex-
periment. AutoPro achieves near optimal allocation for the VM run-
ning swaptions, which has stable performance, and tracks much better
(with respect to the best static allocation) the SLO for the VM run-
ning x264 by provisioning (at high frequency) the CPU bandwidth
allocation. Notice that allocating 100 % of the CPU bandwidth does
not imply a host node CPU utilization of 100 % due to practical issues
(e.g., trapping, context switching, synchronization).

2.5 Related Work

The problem of building virtualization infrastructures able to support
auto-scaling of applications and maximize node-level utilization is the
natural evolution following the rise of public IaaS and Platform as a
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Figure 2.11: Performance (throughput) and resource (CPU bandwidth) allocation
traces for two SLO-bound VMs (VM1 and VM2), running swaptions and x264,
respectively, colocated with a batch VM (VMb), running psearchy. The values of
MAPE on the SLOs for the two VMs are, respectively, ε1 = 0.3% and ε2 = 27.4%

with static allocation and ε1 = 3.2% and ε2 = 7.4% with AutoPro.

Service (PaaS) clouds. This chapter addresses this problem by starting
with a clean slate, “reversing” the classic resource allocation paradigm:
with AutoPro, users specify an application-specific performance metric
to state a SLO (e.g., requests/s for web server) and leave the task
of determining resource needs to the virtualization infrastructure. In
this section we survey, to the best of our knowledge, related works;
where possible, we provide qualitative comparisons with AutoPro and
highlight both strengths and limitations of our work.

Padala et al. [108] proposed AutoControl, an auto-scaling solution
combining a model estimator and a set of application and node con-
trollers. Similarly to AutoPro’s Model Updater (see Section 2.3.2), Au-
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toControl ’s model estimator captures the relationship between applica-
tion performance and resource allocations (i.e., the resource-performance
model). AutoControl employs a set of multi-input multi-output (MIMO)
application controllers demanding node controllers to allocate CPU
and I/O bandwidth, whereasAutoPro exploits single-input single-output
(SISO) control targeting the bottleneck resource.

Shen et al. [125] proposed CloudScale, an auto-scaling solution to
allocate CPU bandwidth and memory, migrate VMs, and save energy
through dynamic voltage and frequency scaling (DVFS). CloudScale
leverages a system called PRESS [41] to handle resource demand pre-
diction and prediction error. PRESS and AutoPro’s Model Updater
carry on similar duties, as they both predict resource demands. Cloud-
Scale couples PRESS with ad-hoc heuristics to decide resource allo-
cations; instead, AutoPro uses VM Controllers derived according to
control theory from a resource-performance model, coordinated by the
resource broker.

We acknowledge that our control strategy is currently limited in the
number of resources it handles (the same holds for CloudScale, which
handles resources disjointly). However, we believe that AutoPro can
be extended to handle multiple resources by adding an additional layer
to identify the bottleneck resource based on utilization, without incur-
ring in the overhead of solving a minimization problem of exponential
complexity (as it happens with AutoControl).

We argue that our evaluation is more compelling than the one pro-
posed by Padala et al. [108] and Shen et al. [125] for the following
reasons. First, we always report the error distributions of statisti-
cally relevant experimental results, allowing a clear analysis of these
data. AutoControl and CloudScale only report single runs or average
results, leaving much to be guessed. Second, we validate our resource-
performance model with random resource allocations both in isolation
and consolidation, while AutoControl only uses model-driven resource
allocations in isolation and the heuristics used in CloudScale do not al-
low a similar validation. Finally, we collect experimental results with
a much higher number of multi-VM workloads and SLOs and show
that AutoPro achieves the additional goal of maximizing resource uti-
lization. Furthermore, our control strategy works at a much higher
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frequency (i.e., control period < 1 s instead of > 10 s), giving Auto-
Pro the ability of catching short-term trends that go unobserved with
AutoControl and CloudScale. Short-term trends may become more
and more important in the future, as predicted by other recent re-
search [107].

Nguyen et al. [106] proposed AGILE, a control system that aims at
improving the elasticity of distributed services by automatically scal-
ing the number of VMs in response to load variations, so as to respect
SLOs. AGILE uses a wavelets-based model to predict medium-term
resource demand based on resource pressure (i.e., the ratio of the total
resource demand to the total resource allocation) and past SLO vio-
lations. While AGILE shares with AutoPro the approach of using a
model to predict resource demand, AGILE’s model would not be ap-
plicable in AutoPro’s context, where there is no definition of resource
pressure, since our workloads use up all their share of the contended
resource. Moreover, AGILE adapts by spawning additional VMs, while
AutoPro adjusts resource allocations of single VMs.

Nathuji et al. [103] proposed Q-Clouds, a cloud infrastructure em-
bodying a novel billing solution for public IaaS clouds and a runtime
system that aims at mitigating the negative effects of contention on
shared hardware resources; the design of Q-Clouds resembles that of
AutoControl. To exploit unused resources, Q-Clouds allows the users
to state additional SLOs (dubbed Q-States) and it proportionally re-
distributes leftover capacity. Instead, AutoPro supports the execution
of batch VMs on a best-effort basis and it is robust against the perfor-
mance degradation these colocated VMs may introduce. AutoPro’s re-
source broker could support an equivalent of Q-states by redistributing
(part of) the leftover capacity to SLO-bound VMs based on additional
SLO levels.

Kocoloski et al. [73] proposed a dual stack virtualization infrastruc-
ture to support the consolidation of general-purpose applications and
high-performance computing (HPC) applications. They use two hyper-
visors: KVM for general-purpose applications and Palacios for HPC
applications. Their approach to achieve isolation is trivial, consisting
in partitioning a dual-socket host node between the two hypervisors:
KVM manages a non-uniform memory access (NUMA) domain (i.e.,
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a multicore with its cache hierarchy, prefetchers, memory controller,
and memory banks), while Palacios manages another NUMA domain.
Instead, AutoPro is much finer-grained, as it considers multi-VM work-
loads sharing a single multicore (i.e., NUMA domain).

ControlWare [140], METE [123], and PTRADE [52] served as inspi-
ration for sub-systems of AutoPro. These systems tackle environments
that differ from virtualization infrastructures, making a full-system
comparison with AutoPro unfeasible; instead, we outline quantita-
tive comparisons between sub-systems. The error distributions for our
resource-performance model (see Figure 2.5) display maximum values
of MAPE in line with the average MAPEs of METE. The error dis-
tributions for AutoPro (see Figure 2.7) across a variety of applications
with SLO 50 % of the reference throughput are in line with the average
error of PTRADE on the same applications; in addition, we evaluate
a wider range of SLOs.

2.6 Discussion and Future Work

This section expands the discussion to highlight the strengths and lim-
itations of AutoPro and point at directions for future work.

2.6.1 Multiple Resources and Shifting Bottlenecks

While the current implementation of AutoPro provisions CPU band-
width and cores and manages compute-intensive multithreaded appli-
cations, the architecture we described is general enough to support
applications with bottleneck resources other than the CPU; the lone
requirement is to use an appropriate resource-performance model.

Our current implementation of AutoPro is not designed to man-
age deployments where different resources alternate as the bottleneck
(e.g., a multi-tier web application split into a front-end web/applica-
tion server and a back-end database management system can alternate
compute- and I/O-bound execution phases [108]). In this case, Auto-
Pro could leverage different resource-performance models, VM Con-
trollers and Resource Brokers for the different resources. To support
this scheme, we plan to borrow ideas from Dominant Resource Fair-
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ness [39], and extend the current implementation of the Resource Bro-
ker.

Some resources are tightly coupled on current multicores (e.g., CPU
bandwidth and shared LLC usage) and do not lend themselves well
to separate allocation. AutoPro already deals with this situation by
soft-partitioning the unmanaged resources through adjustments of the
bottleneck resource allocation [37, 127]. Though not very efficient, this
is a feasible solution to deal with those resources that cannot be easily
partitioned on commodity architectures (e.g., shared caches, memory
bandwidth).

The obvious (and, in general, more efficient) alternative to soft
partitioning is to actually partition and explicitly allocate other re-
sources. While we already discussed possible ways to extend AutoPro
towards managing multiple resources, we need practical partitioning
mechanisms as the enabling technology. For instance, while commod-
ity systems do not expose direct methods to partition the LLC, we are
working on shared LLC partitioning by means of page coloring [82].
A preliminary evaluation of Rainbow [122], our colored page allocator
extension for KVM, looks promising and could improve the efficiency
of AutoPro by eliminating contention on the LLC. Other researchers
have recently demonstrated that, with some limitations, it is possible
to partition and allocate memory bandwidth [139]. We are planning
to build on this research to extend AutoPro.

2.6.2 Different Performance Metrics

In this chapter, we present and evaluate a resource-performance model
for throughput-driven applications; this model is applicable to any ap-
plication that allows expressing a performance service-level objective
(SLO) as a throughput measurement; the seven application we use
in our evaluation show a varied sample of such applications. While
throughput is an important metric, it does not fully capture the per-
formance concerns of some applications; particularly, request-serving
applications may be bound to a SLO on tail latency [25].

While the overall infrastructure of AutoPro is applicable to different
performance metrics, supporting SLOs that are not expressed as a
throughput target requires a different resource-performance model and,
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possibly, a different structure for the VM controllers. In particular,
since non-linearity is stronger in the resource allocation to tail latency
relationship than in the resource allocation to throughput relationship,
our linear model would probably not be accurate if used to deal with
latency-driven applications. Moreover, the monitoring system needs to
be adapted to report the latency at a given percentile instead of the
average throughput over a time window. We are currently investigating
these issues, which we believe are an important direction for future
work.

An additional challenge that needs to be addressed to extend Au-
toPro to deal with latency-driven application lies at the resource-
provisioning level. In our evaluation, we use a 750ms control period
and do not go faster due to the increasing allocation inaccuracy of the
cpu subsystem of cgroups with decreasing control periods. While this
control period is already much finer grained than previous works (see
Section 2.5) and it is fast enough to respond to execution phases of
our throughput-driven applications, it would probably be too slow to
provide the desired quality of service to applications bound to SLOs of
tens of milliseconds (or less) on tail latency [78].

2.6.3 Scalability to Manycores and Large-Scale Installations

Most of the PARSEC applications show near-optimal scalability up
to the core count of our reference host node [118]. Our plan to deal
with the scalability issues that applications might have with higher core
counts (i.e., on large symmetric multiprocessing systems or manycores)
is to provision CPU bandwidth and cores at the same time. AutoPro
could partition the available cores into islands (i.e., groups of cores),
cluster applications with similar scalability (i.e., speedup over number
of cores), assign each cluster to an island of the appropriate size, and
allocate CPU bandwidth within each island.

We believe that the architecture of AutoPro can be extended to
manage large-scale installations and distributed applications, such as
those leveraging the MapReduce computation model [26]. Our efficient
user-space implementation of the Application Heartbeats API [51, 127]
already supports distributed applications: tasks belonging to the same
distributed applications share a multicast address and keep application-

56



i
i

“thesis” — 2015/1/15 — 10:54 — page 57 — #89 i
i

i
i

i
i

2.7. Concluding Remarks

specific throughput measurements up to date through asynchronous
messages.

2.6.4 Billing Scheme

A possible concern about AutoPro is its robustness to malicious users
that make their VMs report falsely low performance with the goal of
fooling the resource-performance model and get additional resources.
While this concern is legitimate, AutoPro is immune to such attack if
the billing scheme used by the provider is based on resource consump-
tion [1]. Using such a billing scheme with AutoPro arises two issues,
both of which are practically solvable:

1. it is hard for users to make a good cost estimate, as they do not
explicitly rent resources;

2. responding to performance degradation through soft-partitioning
(see Section 2.6.1) increases resource usage, possibly leading to
unfair billing.

To solve the first issue, the provider could ask users to state an up-
per bound to the resources they are willing to pay for and define an
agreement on how to manage violations of this bound. To deal with
the second issue, the provider could employ techniques to limit perfor-
mance degradation [42, 92] and, when this is not enough, to estimate
the extent of the performance degradation [17, 32] and scale the bill
accordingly.

2.7 Concluding Remarks

Our experimental campaign (Section 2.4) shows with statistically rel-
evant data that AutoPro achieves its two major goals:

1. extending IaaS clouds with automated fine-grained resource al-
location, asking users to just state the performance level they
require for their VMs;

2. enabling the cloud provider to safely share hardware resources
among the VMs, allowing to optimize datacenter utilization (thus
reducing the total cost of ownership) by maximizing node-level
utilization.
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While the current implementation of AutoPro leaves few open issues
that we are still investigating, the discussion of Section 2.6 outlines
concrete solutions to fill these gaps.

We believe that AutoPro, by allowing to safely share hardware re-
sources and by operating at very fine scale (i.e., with sub-second control
period and fine allocation granularity) is well suited for supporting bet-
ter management of modern dynamic deployments; we hope that this
proof of concept will help to improve the efficiency of our datacenters.
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CHAPTER3
Rubik1

Latency-critical workloads (e.g., web search), common in datacenters,
require stable tail (e.g., 95th percentile) latencies of a few milliseconds.
Due to the difficulties in managing such strict performance constraints
with traditional techniques, these workloads cause low datacenter uti-
lization, wasting billions of dollars in energy and equipment. Recently,
researchers worked on achieving high utilization by using memory hier-
archy partitioning to safely colocate batch applications (e.g., MapRe-
duce) with latency-critical applications. While this approach success-
fully increases utilization, it uses conservative power management to
maintain tail latency and cannot use prior datacenter power manage-
ment schemes, which improve energy efficiency at low utilization.

This chapter proposes Rubik, a power management scheme for sys-
tems with partitioned caches and memories. Rubik relies on a novel,
analytical DVFS scheme that adjusts frequencies at sub-millisecond

1The work presented in this chapter was done in collaboration with Harshad Kasture, Daniel
Sanchez, and Nathan Beckmann, while the author was visiting Prof. Daniel Sanchez’s group
at MIT CSAIL. This chapter was adapted from a paper that, at the time of writing, is under
submission to ISCA 2015 [67].
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granularity. This technique improves the efficiency of latency-critical
workloads without degrading their tail latency and allows more aggres-
sive colocation of latency-critical and batch workloads than memory
partitioning alone. Rubik policies build on this scheme to maximize
either server-level or full datacenter efficiency. Rubik reduces both
datacenter power and number of servers by 40% vs. a datacenter that
segregates latency-critical and batch work.

3.1 Introduction

User-facing, latency-critical applications are common in current data-
centers and pose new challenges for system designers, mainly due to one
peculiar characteristic: tail latency, not average latency, determines
the performance of these applications; for example, web search leaf
nodes must provide 99th percentile latencies of a few milliseconds [25].
Since latency (particularly, tail latency) rapidly increases with load (as
the data presented in Figure 1.8, Section 1.3 exemplify), the servers
running latency-critical workloads are kept lightly loaded to maintain
tail latency. Low load causes poor datacenter utilization, typically
5–30% [6, 28, 95], wasting billions of dollars in equipment and, since
systems are not energy proportional, terawatt-hours of energy annu-
ally [6].

Ideally, datacenter efficiency would be improved by running batch
applications (e.g., MapReduce) during idle periods, taking advantage
of the fact that batch applications only desire high throughput, and
can yield to latency-critical applications as needed to maintain tail
latency. Unfortunately, colocating batch and latency-critical applica-
tions is not possible in current multicore servers, due to uncontrolled
sharing of memory system resources, such as cache capacity and mem-
ory bandwidth. Uncontrolled sharing exposes the applications to the
inertia [66] of shared resources, i.e., the transient performance degra-
dation resulting from interference on a shared resource. For example,
since the last-level cache (LLC) can take tens of milliseconds to fill,
if a batch application steals LLC capacity from a latency-critical ap-
plication during an idle period, it can result in QoS violations for a
latency-critical application as its data is brought back into the cache.
Consequently, recent work has proposed hardware techniques to parti-
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tion and share these resources in a controlled way to safely mix batch
and latency-critical applications [66, 79, 109, 123].

While such schemes improve datacenter utilization, they ignore an-
other critical shared resource: power. Prior work has proposed power
management schemes to improve average performance or energy effi-
ciency in highly utilized systems [38, 53, 110, 112], but these schemes
introduce variability that significantly hurts tail latency [64, 85]. Within
the datacenter, other prior work [84, 85, 94, 95, 134] improves the en-
ergy proportionality of current, low-utilization systems. However, with
hardware support for colocation, provisioning fewer highly utilized sys-
tems is more efficient. Unfortunately, designing datacenter systems for
low utilization is inherently inefficient: fixed costs dominate idle power
(e.g., power supply, fans, DRAM refresh and LLC leakage), and deep
sleep modes that rely on power-gating most components, such as deep
C-states [48], have high transition latencies and often flush the LLC,
which causes unacceptably high tail latencies [66] (see Section 1.2.2).
Additionally, even if we could design energy-proportional systems [95],
low utilization uses hardware inefficiently. Moreover, prior datacenter
power management schemes adapt slowly and conservatively to main-
tain tail latency [85]. Adapting at low frequency fine-grained manage-
ment, which is especially useful on forthcoming systems with on-chip
regulators [18, 70] that allow dynamic voltage and frequency scaling
(DVFS) at sub-µs latencies.

Prior work has been limited by the low performance of DVFS on
current commodity systems, which can take milliseconds to change
frequency. Such delays preclude using fine-grain power management
to guarantee QoS. Instead, forthcoming systems support much faster
frequency changes, taking as little as 1µs to change core frequency
(Section 3.2). Since cores constitute a major component of total system
power, this capability allows for fine-grain adaptation of core frequency
to meet QoS requirements while improving efficiency.

We propose Rubik, a power management scheme for datacenters
featuring future multicores with partitionable memory systems and
fine-grained DVFS. Rubik runs mixes of latency-critical and batch ap-
plications within a single server at high utilization, high energy effi-
ciency, and maintains strict tail latency guarantees. Rubik relies on a
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novel, analytical DVFS control scheme that uses request-level statis-
tics to scale voltage and frequency at a sub-millisecond scale, orders of
magnitude faster than the state-of-the-art [85], without violating tail
latency. Besides improving efficiency, this technique allows more ag-
gressive sharing of hardware resources among applications than prior
colocation schemes [27, 66, 92, 137]. We use this technique to de-
sign three power management schemes that progressively build on each
other:

• RubikLC (Section 3.4) reduces power without degrading tail la-
tency on mixes of latency-critical applications.

• RubikSC (Section 3.5) extends RubikLC to allow mixes of batch
and latency-critical applications, optimizing batch throughput-
per-watt without degrading tail latency.

• RubikDC (Section 3.6) extends RubikSC to the datacenter, op-
timizing total datacenter power while meeting global tail latency
and batch throughput requirements.

Rubik uses an empirically validated power model (Section 3.7) to
make full-system efficiency tradeoffs. Rubik requires minimal hardware
support and imposes negligible software management overheads. We
evaluate Rubik using microarchitectural simulation of latency-critical
and batch workloads, and show that it vastly improves energy efficiency
(Section 3.9):

• RubikLC reduces active core power by up to 40%, and approaches
the efficiency of a dynamic oracle scheme that minimizes power
while maintaining tail latency;

• RubikSC improves batch throughput-per-watt by 30%; and

• RubikDC uses 40% less power and fewer servers than a datacenter
that does not colocate latency-critical and batch work.

3.2 Background and Related Work

Large-scale online services (e.g., web search) have strict performance
requirements that, with traditional management techniques, limit uti-
lization and energy efficiency. Data is spread among many nodes, and
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hundreds to thousands of nodes collaborate in serving each request, so
the few slowest responses determine overall latency. Thus, single-node
latencies must be small, tightly distributed, and uniform across the
datacenter. Responsive online services must achieve end-to-end laten-
cies of about 100ms to provide an acceptable quality of service to the
users [25, 120]. This end-to-end requirement translates into individ-
ual nodes having to provide tail latencies (e.g., 95th or 99th percentile
latency) in the millisecond range [25]. Moreover, since tail latency in-
creases quickly with load, nodes run at low utilization [66, 85] to avoid
large queuing delays and handle traffic spikes gracefully.

These strict requirements preclude conventional colocation and dy-
namic power management techniques, as both cause large performance
variability and hurt tail latency. We now discuss prior work that at-
tacks these problems.

3.2.1 Improving Utilization Through Colocation

Recent work has proposed software and hardware techniques to provide
quality of service (QoS) on shared memory resources. These techniques
enable safe colocation, but need stable frequencies to maintain tail la-
tency, and are incompatible with current dynamic power management
schemes.

On the one hand, software-only resource managers perform QoS-
aware scheduling in datacenters [27, 28, 92, 137]. They detect interfer-
ence empirically, and throttle or migrate batch applications that cause
too much degradation. These schemes work with current multicores,
but they react to interference instead of preventing it. Lacking hard-
ware partitioning, they cannot provide strict guarantees on tail latency
and colocate conservatively, leaving memory resources underutilized.

On the other hand, prior work has proposed hardware to explicitly
partition shared memory resources (e.g., cache capacity and memory
bandwidth) [13, 20, 45, 60, 69, 71, 88, 101, 105, 109, 115], and policies
to dynamically size partitions that guarantee performance [22, 33, 46,
57, 79, 100, 109, 123, 141]. These schemes only guarantee long-term
average performance (e.g., IPC or QPS over a few seconds), instead
of short-term performance (e.g., bounding the degradation of a 1ms
request), and cannot guarantee tail latency.
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Inertia

Most dynamic partitioning schemes cannot guarantee tail latency be-
cause they reconfigure infrequently and assume instant transitions be-
tween steady states, ignoring transient behavior [66]. For example,
cache partitioning policies [109, 123] periodically reallocate space among
cores. When an application is assigned extra space, it takes tens of
milliseconds to fill it and reap the benefits of a larger allocation. This
performance inertia cannot be ignored in latency-critical applications.
Intuitively, inertia depends on the amount of state: multi-megabyte
last-level caches induce large inertia, while memory bandwidth has lit-
tle state and thus little inertia.

A simple way to avoid the harmful effects of inertia is to statically
size partitions. Alternatively, Ubik [66] observes that cache inertia
is highly predictable, and leverages this to predict transients and dy-
namically partition the cache to eliminate their effect on tail latency.
This approach increases cache utilization over static partitioning and
improves batch performance without degrading tail latency.

3.2.2 Improving Efficiency Through Power Management

Dynamic power management techniques reduce idle power through
clock- and power-gating, and lower active power through voltage and
frequency scaling (DVFS). Prior work has comprehensively studied
how to manage core sleep states and DVFS to improve efficiency in mul-
ticores running multithreaded [21, 53, 56] and multiprogrammed [80,
119] batch applications, and in interactive systems [38, 86, 136, 138].
However, recent work has shown that these techniques are inadequate
for latency-critical applications [64, 84, 85, 96], because they ignore
millisecond-level inertia, thus hurting tail latency. Recent work pro-
posed techniques that respect tail latency [83–85] on datacenter servers
at low utilization and without colocation. While these techniques are
useful when low utilization is unavoidable, Rubik uses colocation to
achieve high utilization, leading to greater advantages in terms of effi-
ciency.

Considering the inertia of different power-saving techniques reveals
which ones are compatible with latency-critical applications. Shallow
sleep states clock- or power-gate portions of the core and have short
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wakeup latencies, but yield limited power savings (see Figure 1.2, Sec-
tion 1.3). By contrast, deep sleep states power-gate large portions
of the chip, but have long wakeup latencies and flush significant mi-
croarchitectural state (e.g., the last-level cache, which takes tens of
milliseconds to warm up [48, 66]). Early work in datacenter power
management focused on using coordinated deep sleep modes with re-
duced transition times in all system components [94, 95, 134]. However,
Meisner et al. [96] show that latency-critical applications cannot use
even these sophisticated techniques, because they run frequent, short
requests and cannot tolerate batching. Kanev et al. [64] show that, in
conventional multicores, sleep states barely help Google’s applications,
and can severely degrade tail latency. Instead, both papers advocate
using techniques that reduce active power.

DVFS is the most attractive approach to reduce active power: re-
ducing frequencies allows lower voltages, yielding superlinear power
savings. However, off-chip regulators can take tens to hundreds of
microseconds to adjust voltage [70, 96]. Fortunately, recent on-chip
switching regulators [18, 70] have sub-µs delays (e.g., 100–500 ns on
Haswell [18]), allowing for extremely fast per-core DVFS. DVFS tech-
niques often focus on core DVFS, though recent work has studied
DVFS [29, 30] and low-power active modes [24, 87, 133] for main mem-
ory. At high utilization, cores consume most of the power, so we focus
on core DVFS and leave extending Rubik to other resources to future
work.

Prior DVFS policies run at the firmware or operating system (OS)
level. Firmware-level policies (e.g., Intel’s Turbo Boost [48, 84]) rely
on algorithms that measure and predict future activity. This approach
is inadequate for latency-critical applications, because it is oblivious of
performance requirements. For example, Kanev et al. [64] report Turbo
Boost to cause extreme tail latency variability. While current OS-level
policies (e.g., cpufreq governors in Linux) rely on similar algorithms,
they can more easily be made aware of performance bounds. Therefore,
we focus on OS-level, software-managed DVFS.
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3.2.3 Using DVFS with Latency-Critical Applications

In designing Rubik, we found a key challenge was predicting how fre-
quency changes affect tail latency. This prediction is hard because tail
latency depends on the complex interplay of arrival, queuing, and ser-
vice time distributions. Prior work has avoided this problem in two
ways.

First, schemes that optimize for responsiveness in embedded sys-
tems, such as PACE [86, 136] and Grace [138], try to satisfy each re-
quest by a given deadline, and do not consider queuing time. Ignoring
queuing works well in interactive systems that run one task at a time,
but is not applicable to the datacenter, where queuing is significant
and unavoidable.

Second, PEGASUS [85] takes a feedback-based approach. PEGA-
SUS periodically measures tail latency, adjusts frequency, and iter-
ates to keep the tail within a given target. Relying exclusively on
feedback is simple, but it is unresponsive to traffic bursts, since reli-
ably measuring tail latency takes time. Thus, purely feedback-based
approaches can adapt to the long-term characteristics of the request
stream, but cannot respond to short-term variability. Instead, Rubik
employs a combination of short-term, analytical adaptation and long-
term, feedback-based adaptation. These complementary techniques let
Rubik handle request bursts without degrading tail latency.

Finally, prior latency-critical DVFS schemes target current, low-
utilization datacenters, where systems are not power-constrained, and
play within the limited power management interfaces of current hard-
ware, which limits their reconfiguration frequency. By contrast, power
is a limited resource in highly utilized systems, so Rubik manages it as
a scarce resource and at fine granularity.

3.3 Rubik Overview

In current datacenters, latency-critical applications are segregated from
batch applications to avoid interference. Although latency-critical
nodes run at low utilization [25], they use relatively high frequencies
to meet their latency targets, wasting additional power. In contrast,
as Figure 3.1a illustrates, Rubik colocates latency-critical and batch
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Figure 3.1: Rubik uses fine-grained DVFS to colocate batch and latency-critical
applications without degrading tail latency. (a) By increasing server utilization
and reducing power, Rubik improves datacenter efficiency and reduces provisioned
servers. (b) Rubik requires modest hardware extensions over commodity systems.
(c) Rubik adjusts core frequency on each request arrival and completion to enforce
the tail latency bound.

applications, increasing node utilization, and uses fine-grain DVFS to
lower core frequency whenever possible, reducing power without de-
grading latency. Rubik improves the efficiency of each node within the
datacenter and requires fewer machines to perform the same amount
of work.

As shown in Figure 3.1b, Rubik partitions shared memory system
resources (LLC capacity [66] and memory bandwidth [101]) among
latency-critical and batch applications. In contrast to prior colocation
schemes, which dedicate cores to latency-critical applications [66, 92],
in Rubik batch and latency-critical threads share cores. Latency-
critical threads always have priority over batch threads. To support
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sharing cores, Rubik partitions the LLC by application (rather than
by core [46, 57, 66, 79, 100, 109, 123]) to protect the working set of
latency-critical applications. Rubik supports as many latency-critical
applications as can fit in the LLC; we use one per core in our evalu-
ation. Rubik uses Vantage [115] cache partitioning to maintain high
associativity and support a large number of partitions cheaply.

Since Rubik time-multiplexes latency-critical and batch applica-
tions, core microarchitectural state is also a shared resource. Fortu-
nately, this state is small enough that DVFS can compensate for its
inertia. For example, private caches (L1s and L2) can be refilled from
a “warm” LLC in microseconds, instead of the milliseconds needed to
refill the LLC from main memory. Other state (branch predictors,
registers, TLBs) has similarly low inertia. Thus given a warm LLC
partition, judicious DVFS can maintain tail latency.

Rubik adjusts core frequency when requests arrive or complete (Fig-
ure 3.1c) to maintain tail latency efficiently (RubikLC, Section 3.4).
When all requests in the queue have been served, Rubik yields the
core back to batch applications, setting the frequency that optimizes
throughput-per-watt for the node (RubikSC, Section 3.5) or datacenter
(RubikDC, Section 3.6).

3.4 RubikLC: Fast DVFS for Latency-Critical Applications

Rubik Latency-Critical (RubikLC) manages core frequencies at fine
granularity to minimize power on latency-critical applications. Ru-
bikLC does not address colocation with batch applications or power
caps—we will extend Rubik to tackle this issue in Section 3.5.

RubikLC must adjust frequency without violating the tail latency
bound. As discussed in Section 3.2.3, the main difficulty in achiev-
ing this lies in computing the appropriate frequency in the presence
of queued requests. PEGASUS [85] uses a feedback-based approach
to sidestep this issue. Because reliably measuring tail latency takes
time, this is slow, and PEGASUS only adjusts frequencies every 5 sec-
onds. In contrast, RubikLC adjusts frequencies at the sub-millisecond
level when requests arrive or complete, exploiting short-term workload
variability to set the right frequency. This capability is made possible
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Figure 3.2: RubikLC example with three requests and no memory-bound cycles:
cycles/seconds timelines, frequency constraints to meet the tail latency (L), and
probability distributions of service cycles (S), cycles to serve the running request
(S0) and the queued requests (S1 and S2), used to compute constraints.

by exploiting statistical information about the queued and previously
served requests.

RubikLC combines two forms of control: fast, fine-grained analyti-
cal modeling; and slower, coarse-grain feedback control for fine-tuning.
RubikLC’s analytical model uses the current system state (service time
distribution and arrival times of current requests) to find the lowest
frequency that meets tail latency. By operating in this way, RubikLC
adapts to the arrival process implicitly, by immediately reacting to
state changes. While, in theory, modeling the arrival process of the
requests would allow a more precise model, it would also make the
problem intractable in an analytical form. Since Rubik needs to run
online, the model makes conservative approximations, so it achieves
a tail latency 2–15% lower than the bound. A feedback controller
then observes these differences and tunes the model to converge to the
bound. Thanks to this approach, Rubik approaches the performance
of a dynamic oracle with perfect future knowledge (Section 3.9.1). We
first focus on the analytical aspects of RubikLC, and then show an
efficient implementation.

3.4.1 Fast Analytical Frequency Control

Figure 3.2 shows a concrete example of RubikLC’s operation. In the
example represented in the figure, the application has received three
requests, R0, R1, and R2, which arrived at time t0, t1, and t2. The
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application is currently processing R0, and has spent ω cycles doing
so; R1 and R2 are queued. For this example, assume that requests
are not memory-bound, so performance scales linearly with frequency.
Figure 3.2 shows that RubikLC spans two parallel timelines, measured
in time (i.e., seconds) and core cycles. The tail latency bound is given
in time, but requests complete after some number of core cycles. Core
frequency (f) connects the two. Our goal is to set f to meet the tail
with minimal power.

RubikLC achieves this goal by finding the lowest f that satisfies the
tail latency bound L for the current requests. This bound is specified
as a percentile; in this example, 95% of requests must be served by
L = 2ms. RubikLC exploits the probabilistic nature of the problem as
follows. First, RubikLC treats the completion cycle for each request
Ri as a random variable, Si, with probability distribution P[Si = c].
Figure 3.2 shows these distributions for R0, R1, and R2 (we discuss how
to compute them later). Second, RubikLC finds the tail completion
cycle of each request, ci (the 95th percentile of each P[Si = c]), shown
in red in Figure 3.2. The timelines in Figure 3.2 shows how frequency
scaling maps each ci in cycles to ci/f in time. Request Ri has already
spent ti time in the system, and the 95th percentile will be served by
time ci/f . Satisfying the tail bound for request Ri requires ti + ci/f ≤
L, so to satisfy all current requests:

f ≥ max
i=0...N

ci
L− ti

(3.1)

In this example, request R1 has the most stringent constraint—the
longest time between t1 and c1/f—and sets the frequency. RubikLC
computes f from Equation (3.1) each time a request arrives or com-
pletes, quickly adapting to changing conditions.

Notice that the last request in the queue often does not set the
frequency, for two main reasons. First, later requests arrived more
recently (e.g., tN ≈ 0), so they have more headroom than earlier re-
quests (e.g., t0 ≈ L). Second, the completion time of queued requests
often becomes more tightly distributed the longer the queue length,
which shortens the tail of their distributions (e.g., compare P[S1 = c]

and P[S2 = c] in Figure 3.2).
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Computing the distributions

Rubik computes the completion cycle distributions by assuming the
work for each request is drawn independently from a single distribution,
P[S = c]. S gives how many cycles it takes to process one request, not
including queueing time. Independence is a reasonable assumption
for datacenter nodes, because each node serves requests from many
users, and caches serve repeated requests before they reach leaf nodes,
reducing temporal correlations [8].

The completion time distribution of the current request, P[S0 = c],
is computed from S using conditional probability. From above, R0
has been processing for ω cycles and has not yet completed. Thus its
completion time is distributed as:

P[S0 = c] = P[S = c+ ω|S > ω] =
P[S = c+ ω]

P[S > ω]

This scales and shifts P[S = c] at ω, as shown in Figure 3.2.
From S0 and S, we can derive the completion time distributions

of all queued requests. In order to service the ith request, we must
first service the i − 1 requests preceding it. Hence, S1 = S0 + S, and
S2 = S1 + S = S0 + S + S, and in general Si = S0 +

∑i
j=1 S. Using

independence, each Si is distributed according to the convolution (∗)
of S and Si−1 [44]. Thus if PX(x) = P[X = x]:

PSi
= PSi−1

∗ PS = PS0 ∗
i times︷ ︸︸ ︷

PS ∗ . . . ∗ PS

Core DVFS and memory

Core frequency does not affect the time spent due to stalls on LLC
and main memory accesses, limiting the impact of core DVFS. Prior
work has shown that using additional performance counters, one can
produce CPI stacks that separate compute and memory-bound cycles,
even for complex cores that overlap multiple memory accesses [35].
Prior work has also applied CPI stacks to perform memory-aware
DVFS with throughput applications [34, 68, 99, 113]. RubikLC ex-
tends this to avoid tail latency violations: it profiles the probability
distributions of per-request compute cycles, P[C = c], and memory-
bound times, P[M = t].
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Work per request (in cycles) is the sum of these two random vari-
ables at the current frequency: S = C + Mf . Computing the low-
est acceptable frequency exactly would require considering the joint
distribution of C and M . RubikLC, instead, makes the conservative
approximation that the tail of S is no better than the combination of
the tails of C and M (triangle inequality). So for each request, Ru-
bikLC computes the tails of each distribution Ci and Mi, following the
procedure for Si as discussed above. This procedure yields tail com-
pute cycles ci and tail memory times mi until completion of request
Ri. The mi values are a fixed cost that DVFS cannot compensate for,
so Equation (3.1) becomes:

f ≥ max
i=0...N

ci
L− (ti +mi)

(3.2)

3.4.2 RubikLC Implementation

In this section, we give details about the salient aspects of the imple-
mentation of RubikLC, which enable us to exploit the statistical model
described in Section 3.4.1.

Target tail tables

Computing the ci and mi percentiles from scratch on each frequency
adjustment would be very expensive, but fortunately they can be pre-
computed. Periodically, the runtime updates the service cycle and
time distributions, performs the convolutions, and fills in the ci and
mi values in a target tail tables. Each row has the ci and mi values for
selected quantiles of the service time distribution (we use octiles in our
implementation). On each request arrival and completion, RubikLC
picks the appropriate row and computes the minimum f . Thanks
to this approach, computing each constraint requires few instructions
(Equation (3.2)), so updates take negligible time and Rubik can take
advantage of this statistical analysis to take decisions online.

Large queues

While, in theory, the number of queued requests is unbounded, in
practice we rarely observe more than 4–10 queued requests in the ap-
plications we evaluate. Still large queues could build up with lax tail
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bounds; to support these rare cases with our method based on convolu-
tion (as explained in the previous paragraph), we would need to keep
long target tail tables, up to large queue size. Fortunately, by Lya-
punov’s Central Limit Theorem [15], at large i, P[Si = c] converges
to a Gaussian distribution with mean E[S0] + i · E[S] and variance of
var[S]. By precomputing the tail value for the zero-centered Gaussian
with variance of var[S], each ci and mi for large i can be computed by
adding the mean. We use this formulation for i ≥ 16, avoiding long
tables.

Overhead

Every 100ms in our implementation, RubikLC updates the core and
memory-bound service distributions and uses them to compute the
target tail tables. We use 128-bucket distributions, and use FFTs to
accelerate convolutions: we transform the source distributions and per-
form successive convolutions in the frequency domain (where they are
point-wise multiplications). Each update of the target tail tables takes
0.2ms, resulting in a 0.2% overhead.

Feedback-based fine-tuning

RubikLC as described so far will satisfy the desired tail latency pro-
vided the available frequencies allow it to. However, since its esti-
mates are conservative, it may waste power by lowering tail latency
unnecessarily. To improve accuracy and efficiency, we use a simple
proportional-integral feedback controller [131] that observes the differ-
ence between the measured and predicted tail latencies over a rolling
1-second window, and adjusts RubikLC’s internal tail latency target.
This controller performs minor adjustments, as the analytical model is
typically only a few percentage points away.

3.5 RubikSC: DVFS for E�icient Colocation

Rubik Single-Computer (RubikSC) extends RubikLC to colocate batch
and latency-critical applications. As discussed in Section 3.3 (see Fig-
ure 3.1), batch applications share cores with latency-critical appli-
cations and run when latency-critical applications have no work to
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do. RubikSC chooses core frequencies to maximize the system’s batch
throughput-per-watt (TPW), while staying within chip thermal design
power (TDP) and maintaining tail latencies.

Effect of core sharing on optimal frequencies

In RubikLC, cores sit idle when latency-critical applications run out
of work, so using the lowest acceptable frequency minimizes power.
However, when cores are shared with batch applications, running the
latency-critical applications faster than needed can be beneficial, be-
cause spending power to accelerate the latency-critical application frees
time for the batch application. In this way, RubikSC can improve
batch TPW by, for example, executing the same batch work at a lower
frequency.

RubikSC’s challenge is to navigate these tradeoffs and find the op-
timal operating frequencies. The two main tradeoffs are how memory-
bound applications are, and how often the latency-critical application
needs to run. Figure 3.3 illustrates the first tradeoff by showing con-
tour plots of batch throughput-per-watt (normalized within each sys-
tem) vs. latency-critical (x-axis) and batch (y-axis) frequencies in two
scenarios. Compute-bound applications (Figure 3.3a) respond well to
DVFS, so the optimal operating point lies at relatively high frequen-
cies. In contrast, the throughput of memory-bound applications (Fig-
ure 3.3b) is not affected by DVFS as much, so the optimal operating
point shifts to lower frequencies. In this example, the latency-critical
application is memory-bound, so the optimal latency-critical frequency
is lower, while the optimal batch frequency is almost the same as in
Figure 3.3a.

Higher latency-critical core utilization shifts the optimal operating
point to higher frequencies. To see why, suppose 90% of cycles are
spent servicing requests. In this case, a small boost in latency-critical
frequency that reduces this to 80% doubles batch throughput. Since so
little time is available for batch work, it is also sensible to run at high
batch frequencies to amortize latency-critical power. Thus, batch and
latency-critical frequencies increase with latency-critical load. How-
ever, higher frequencies are not a perfect solution—in absolute terms,
TPW is lower under high load than low load.
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Figure 3.3: Batch throughput-per-watt (normalized) as a function of batch and
latency-critical frequencies. The most efficient frequencies change with system con-
figuration. If tail latency bounds force high latency-critical frequencies, the most
efficient batch frequency lies on the dashed line.
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Using the optimal frequency pair is not always possible, since Ru-
bikLC may require a higher latency-critical frequency to meet the tail
latency bound. In that case, dashed lines in Figure 3.3 show the most
efficient batch frequency when the tail bound forces a higher latency-
critical frequency. Take, for instance, Figure 3.3b, where fl ≈ 1.3GHz
and fb ≈ 1.6GHz maximize batch TPW. If the latency-critical appli-
cation must run at fl ≥ 2.4GHz, the dashed line at 2.4GHz tells us
that fb ≈ 1.7GHz maximizes TPW under that constraint.

Analytical formulation

Suppose one batch and one latency-critical application share a core,
running at frequencies fl and fb. The latency-critical application is
active for a fraction u of the time, and the batch application is active
for the remainder, 1 − u. While active, the batch application gets
throughput T . If the batch and latency-critical applications have active
power Pl and Pl, then batch TPW is:

TPW =
(1− u) · T

u · Pl + (1− u) · Pb

(3.3)

Frequency scaling affects u, T , and powers Pl and Pb. If a fraction
m of cycles stall on memory at nominal frequency f0, DVFS reduces
execution time at frequency f by a factor τ(f) = m + f0

f
· (1 − m).

Latency-critical utilization u is simply the nominal utilization u0 scaled
by τ(fl). u0 is easily computed from the mean arrival rate of requests
and profiled service times. Batch throughput T is nominal throughput
scaled by speedup, 1/τ(fb). Powers Pl and Pb are cubic polynomials on
frequency that can be obtained by using each application’s performance
counters in Rubik’s power model (Section 3.8).

Both the Utilization u and the throughput T scale sublinearly with
frequency, as they depend on the ratio of core-bound and memory-
bound cycles, while Pl and Pb both scale superlinearly with frequency,
due to voltage and frequency scaling. Thus, Equation (3.3) is concave,
and optimization is trivial using hill climbing.

Implementation

RubikSC requires small modifications over RubikLC. RubikSC profiles
the core- and memory-bound cycles for each application, as well as the

76



i
i

“thesis” — 2015/1/15 — 10:54 — page 77 — #109 i
i

i
i

i
i

3.6. RubikDC: DVFS for the Datacenter

performance counters needed to drive the power model. Periodically
(every 100ms), RubikSC uses hill climbing to find the frequency pairs
that maximize TPW, and uses them throughout the next interval.
Batch applications run at this frequency, while latency-critical appli-
cations run at the maximum of the TPW-optimum frequency fl and
the frequency that maintains tail latency.

Enforcing power limits

Latency-critical applications sometimes need to briefly exceed the nom-
inal frequency to meet tail latency bounds. This may exceed the chip’s
thermal design power (TDP) when all cores are active. If needed, Ru-
bikSC throttles cores to stay within the TDP as follows:

• first, it throttles batch applications, starting with memory-bound
ones (as they lose less throughput);

• second, if necessary, it deschedules active batch applications;

• finally, as a last resort, throttles all active latency-critical appli-
cations equally to gracefully degrade tail latencies.

This last resort is exceedingly rare in our experiments (Section 3.9.2).

3.6 RubikDC: DVFS for the Datacenter

Rubik Datacenter (RubikDC) extends RubikSC to optimize datacenter
efficiency. RubikSC maximizes the throughput-per-watt of each indi-
vidual server, but it may not yield optimal datacenter efficiency. The
discrepancy arises because RubikSC does not account for datacenter-
level throughput needs: RubikSC is optimal for the datacenter only
when the datacenter’s throughput requirements happen to match the
aggregate throughput achieved by RubikSC.

In some cases, RubikSC is too aggressive. Consider a datacenter
similar to Figure 3.1a. Suppose most applications are latency-critical,
and there is little batch work to be done. In this scenario, servers have
ample spare cycles to provide the desired batch throughput. RubikSC
maximizes TPW assuming that there is always a supply of batch work
to keep the servers busy. This assumption, however, does not hold
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in this case and optimizing without a throughput target yields a fre-
quency higher than necessary: batch work uses only a fraction of cycles
and leaves the machine idle for the remainder. Instead, a lower batch
frequency would save power while achieving the same throughput.

In other cases, RubikSC is too conservative. Suppose that batch
work is plentiful, and only a few applications are latency-critical. In
this scenario, Rubik can colocate just a fraction of the batch work on
latency-critical machines, while the rest must run on dedicated batch
machines. Because systems are not energy proportional, it is overall
more efficient to exceed RubikSC’s optimal operating point, colocate
more batch work per machine than RubikSC does, and thereby re-
duce the number of dedicated batch machines. RubikDC sacrifices
the TPW of individual colocated machines, but optimizes datacenter
TPW. Colocated machines do not run at their optimal TPW point,
but the full datacenter does.

In general, RubikDC improves datacenter efficiency by considering
global batch throughput needs and:

• lowering frequencies when latency-critical work dominates, and

• raising frequencies when batch work dominates.

Figure 3.4a illustrates how RubikDC chooses frequencies to match the
desired batch throughput. Colors show TPW, borrowed from Fig-
ure 3.3a. Dotted lines are iso-throughput curves : all frequency pairs
along a single dotted curve provide the same throughput (normalized
to a dedicated batch machine). For a given throughput target, Ru-
bikDC chooses the frequencies along the appropriate iso-throughput
curve that maximize TPW. The dashed line traces out RubikDC’s de-
cisions at different throughput targets. As in RubikSC, latency-critical
frequency may be constrained to maintain tail latency.

RubikDC will continue to scale frequencies along the dashed line
until it is more efficient to provision dedicated batch machines. Fig-
ure 3.4b illustrates this, showing themarginal power required to supply
additional batch throughput. To the left of the knee (0.8), RubikDC
scales frequencies; to the right, RubikDC provisions dedicated batch
machines. Figure 3.4 gives a microeconomic [89] formulation of Ru-
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Figure 3.4: RubikDC sets frequencies to meet a given batch throughput at minimal
power. (a) The dashed line traces efficient frequencies at different throughputs. (b)
RubikDC scales frequency until dedicated batch machines are more efficient.

bikDC. Colocation is efficient because static power is a sunk cost on
latency-critical machines.

Figure 3.4a is a consumer optimization problem: TPW is the utility
function, dotted lines are the budget constraints, and the dashed line
is the income-consumption curve. Figure 3.4b is the supply curve of
batch throughput. Our discussion assumes perfectly inelastic demand
for batch throughput, but Figure 3.4b suggests how to extend this to
settings where demand varies with cost.

3.6.1 RubikDC Case Studies

To further exemplify how RubikDC’s global formulation improves over
RubikSC, which only looks at optimizing TPW on each single server
in isolation, we discuss two case studies.

As a first example, consider a segregated datacenter with 100 ma-
chines split between 75 latency-critical and 25 batch. This gives Ru-
bikDC a throughput target of 25/75 = 1/3 per colocated machine (nor-
malized to a dedicated batch machine). In Figure 3.4b, 1⁄3 occurs before
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the knee, meaning that all batch work is provided by the spare cycles
of latency-critical machines. Since 1⁄3 lies below RubikSC’s operating
point, RubikDC will scale down batch frequency to lower power. By
eliminating batch machines, RubikDC reduces the number of required
servers by 25%.

As a second example, consider a segregated datacenter evenly split
between 50 latency-critical and 50 batch. This case requires a nor-
malized throughput target of 50/50 = 1 per colocated machine. In
Figure 3.4b, 1 lies beyond the knee, so RubikDC will do the following:

1. First, RubikDC will scale up frequencies above RubikSC’s operat-
ing point until the marginal power of frequency scaling equals that
of dedicated batch machines. This occurs at colocated throughput
of 0.8 in Figure 3.4b.

2. Second, RubikDC will provision dedicated batch machines to sup-
ply the remaining batch throughput.

In this case, the colocated machines supply normalized batch through-
put of 50 machines× 0.8 = 40 batch machines, requiring only 10 ded-
icated machines and reducing the number of required servers by 40%.

3.7 Power Modeling

Rubik needs a model to predict the power draw of an entire server at
different frequencies and utilizations, in order to determine the most
efficient operating point.

A power model can describe a system at different levels of abstrac-
tion. On the one hand, frameworks such as McPAT [81] focus on
modeling at the circuit and technology levels, to yield a detailed power
breakdown of the on-chip components. Such approach is useful for
architects to evaluate new solutions, but it is extremely fine-grained
and incurs significant overhead, which makes it inadequate to estimate
full-system power online. On the other hand, models at an higher-level
of abstraction [111] can estimate the power draw of whole components
(e.g., CPU, DRAM), or of the entire system, without requiring detailed
circuit-level information. We use this second approach to model full-
system power with good accuracy and low overhead and we validate
this model against representative datacenter hardware.
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Previous research proposed a variety of high-level power models, fo-
cusing on different aspects. Wei et al. [54] use an event-driven model
based on performance counters to estimate the core power in a Power7
processor. Shen et al. [124] focus on per-task power budgeting based
on a simple linear model of dynamic power. Koukos et al. [75] pro-
pose a processor power model that leverages an estimate of effective
switching capacitance based on retired instructions [129]; they vali-
date this model against an Intel Sandy Bridge processor. CoScale [30]
uses a power model based on performance counters in the processor
and DRAM, but does not provide a validation against real hardware.
Our model shares the basic approach with these previous proposals
but, instead of only focusing on the processor [54, 75] or on dynamic
power [124], it estimates full-system power. We build our model based
on modern servers featuring multicore processors of the Intel Core fam-
ily, which are widely used in datacenters, and we validate its power
predictions for two such servers of different generations.

3.7.1 Full system power

We identify three main components to estimate the full-system power
Psys (Equation (3.4)): processor power, DRAM power, and the power
drawn by the other system components.

Psys = Pproc + PDRAM + Pother (3.4)

Since we focus on steady-state operation of the leaf nodes in a datacen-
ter, our benchmarks only stress the processor and the main memory;
for this reason, we focus on accurately modeling the first two terms of
Equation (3.4) and we model Pother as a constant. While this choice
slightly reduces the overall accuracy of our model, when validated on
real data, it does not impair its accuracy in estimating energy sav-
ings, which we achieve through DVFS of the processor. Future work
might specialize Pother into additional terms to consider applications
that stress dynamic power from other components (e.g., the disk for an
I/O intensive application) or techniques that focus on different mech-
anisms.

To develop our models for processor and DRAM power, we take a
mixed analytical / empirical approach. We use known relationships
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that bind power to switching frequency for the CMOS technology as
a baseline model, which we refine based on architectural considera-
tions and accounting for utilization. We only use information easily
available, through performance counters and model-specific registers
(MSRs), on the commodity servers we target; this choice allows us to
validate the model against real hardware and makes it directly deploy-
able.

3.7.2 Processor power

To accurately model the processor power Pproc, we need to consider
the different power domains the processor is divided into. For each
domain, the two main power components are due to leakage power,
which is proportional to the voltage V , and dynamic switching power,
which is proportional to V 2 ·f , where f is the frequency of the domain.
Equation (3.5) formalizes this general model for a processor with N

power domains; the parameters ii and ci are estimates of the average
leakage current and switching capacitance.

Pproc =
∑N

l=1 (Pleak l + Pdyn l) =
∑N

l=1 (il · Vl + cl · V 2
l · fl) (3.5)

We adapt this model to the multicore architecture we consider, which
is general enough to model both the Intel chips we use to validate
our model and the multicore we use in our simulations to evaluate
Rubik. Our reference architecture has M homogeneous cores, each in
a separate power domain (i.e., our model supports per-core DVFS [54])
and the uncore (i.e., on a first-order approximation, the LLC) on a
separate power domain. Equation (3.6) formalizes this model: each
core contributes its own leakage and dynamic power (terms in the
summation), as does the uncore (terms with subscript u).

Pproc =
∑M

l=1 (i · Vl + c · V 2
l · fl) + iu · Vu + cu · V 2

u · fu (3.6)

This model has two inputs sets: (1) voltages and frequencies are vari-
ables measured online; (2) i and c (which are the same for all the
homogeneous cores), and iu and cu are parameters that we train to
capture the characteristics of the processor.

Since modern processors increasingly use different types of transis-
tors for different subsystems and aggressively clock- and power-gate
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3.7. Power Modeling

unused parts, we split c into the sum of four components (see Equa-
tion (3.7)): a constant term c0, representing transistors that switch in-
dependently of utilization, and three terms, respectively depending on
the retired instructions per cycle, memory hits to on-core caches (i.e.,
L1 or L2), and off core memory accesses (i.e., LLC hits and misses).

c = c0 + IPC · c1 + LOADL1/L2 · c2 + ACCLLC · c3 (3.7)

Adding more terms (e.g., one depending on floating point operations)
does not significantly increase the accuracy of the model for our target
platforms and applications.

Similarly, Equation (3.8) accounts for the utilization of the uncore
by breaking cu (see Equation (3.6)) into two terms, respectively pro-
portional to the number of LLC hits and misses per cycle.

cu = cu1 · HITLLC + cu2 ·MISSLLC (3.8)

The combination of Equation (3.6) with Equations 3.7 and 3.8 formal-
izes our processor power model. All the variables (e.g., IPC, HITLLC)
are measured on a per-cycle basis (e.g., IPC is instructions per cycle,
HITLLC is LLC hits per cycle), at the frequency of the power domain
they refer to.

3.7.3 DRAM Power

While we can use performance counters for deriving several statistics to
refine the processor power model, current hardware does not expose as
much information about DRAM. The only meaningful measurement
correlated with the DRAM power draw PDRAM is the frequency of
DRAM accesses, which corresponds to the frequency of LLC misses.
Equation (3.9) is our DRAM power model, based on a constant term
that models the power draw due to DRAM refresh and on a term
proportional to DRAM accesses per second.

PDRAM = Prefresh + ACCDRAM · d (3.9)

While future hardware implementing additional performance counters
for main memory [30] will enable improvements of this model, we can
only rely on information available to a runtime system on current hard-
ware. Moreover, since we focus on DVFS of the processor, and not of
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DRAM, it is critical for Rubik to have a very accurate processor power
model, while we can tolerate some inaccuracy on the other components.

3.7.4 Implementation and Model Training

Rubik use our power model to predict power draw at different con-
figurations in order to solve their optimization problem. Additionally,
we included our power model in zsim, the simulator we use for our
evaluation. The validation in Section 3.7.5 shows that this model is
representative of current servers that may be found in datacenters and
thus it indicates that the results of our simulations are realistic, within
a small error margin. Notice, however, that neither our optimization
techniques nor zsim rely on this particular power model: building a
more accurate model is an orthogonal improvement that would di-
rectly further benefit both the efficacy of Rubik and the accuracy of
the simulator.

The equations of our power model are based on measurements (i.e.,
the uppercase terms in the right side of Equations 3.7, 3.8, and 3.9) and
parameters to be estimated (i.e., Pother, i, c0, . . . c3, iu, cu1, cu2, Prefresh, and d).
These parameters need to be estimated once for each machine config-
uration based on training data and can then be used in the model to
yield predictions. We use the non-linear least square algorithm to esti-
mate the model parameters based on training data gathered from two
different servers (one with Haswell and one with Sandy Bridge Intel
processors). These processors report, through MSRs, the frequency
and voltage of the cores, which are all in the same power domain, but
not of the uncore; we assume that the frequency and voltage of the
uncore (i.e., fu and Vu) are fixed to the nominal processor frequency.
Section 3.7.5 provides a validation of our model on these two servers.

3.7.5 Power Model Validation

We train our power model to predict power draw of two modern servers
equipped with Intel processors: (1) a Supermicro SuperServer 1027R-
WRF, with an Intel Xeon E5 2640 clocked at 2.50GHz, and 64GB
of DDR3 buffered DRAM, and (2) a Supermicro SuperServer 5018D-
MTF, with an Intel Xeon E3 1240 clocked at 2.50GHz, and 64GB
of DDR3 unbuffered DRAM. We refer to these two servers with the
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name of their processor microarchitecture: (1) Sandy Bridge and (2)
Haswell, respectively.

We collect power measurements for the core, uncore, and DRAM
components through the RAPL interface exposed by these processors
and the other measurements our power model demands through per-
formance counters. In addition, we use a WattsUp Pro power meter to
measure full-system power draw. Each trace contains 20000 measure-
ments sampled every 25ms2. The workload comprises random mixes
of SPEC CPU2006 applications and we vary the core frequency to a
new random value (including Turbo mode) every 4 seconds. Notice
that the Sandy Bridge server has a dual-socket motherboard; in this
case, we only run applications on the first socket; we leave the sec-
ond socket idle at a fixed frequency, with c-states disabled, and we
add its power consumption, as reported by the RAPL interface, as an
additional measured term in the model expression for the full-system
power (see Equation (3.4)). We use one trace from each server to learn
the model parameters and we evaluate the accuracy of the model on a
different trace.

We use our power model for two purposes: 1. providing online infor-
mation to Rubik, 2. evaluating aggregate power savings. To evaluate
the first use, we compute the fine-grained absolute prediction error
on the system power and the three components of Equation (3.4) on
each 25ms sample of the test sets; Figure 3.5 reports the cumulative
distribution function (CDF) of the error, relative to the system power
measured with the WattsUp meter. The average error on full system
power for the two servers is 1.7%, or 3.05W, for the Sandy Bridge
server and 5.1%, or 2.8W, for the Haswell server. While, in both
cases, most of the error is due to Pother, this error is still reasonably
small, 1.7% and 4.5% for the two servers, respectively. These results
mostly derive from noise in the data, due to the lower resolution of the
WattsUp meter, which forced us to interpolate the data in order to use
it with the other measurements.

To evaluate the second use of the power model, we compute the
prediction error over each whole test set (i.e., over several seconds of

2The WattsUp sampling period is limited to 1 s; we interpolate and align the data to match
the other measurements.
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Figure 3.5: Cumulative distributions of the error, relative to full system power, on
fine-grained prediction (25ms samples) of CPU, DRAM, other components, and
full system power draw.

PCPU PDRAM Pother Psys

Sandy Bridge 0.04% 0.30% 0.01% 0.03%
Haswell 0.35% 0.03% 0.01% 0.14%

Table 3.1: Long-term absolute error of our power model.

runtime); Table 3.1 reports these results, showing that our model is
extremely accurate on long-term prediction.

3.8 Rubik Evaluation Methodology

In order to evaluate Rubik, we simulate next-generation servers with
a partitioned memory hierarchy and we use a set of five representative
latency-critical applications, borrowed from Kasture and Sanchez [66].

Simulated system

We use and extend zsim [116] to perform microarchitectural simulation
of a 6-core system with parameters shown in Table 3.2. This config-
uration is representative of modern high-performance servers [76, 126],
with the additional assumption that the memory system is statically
partitioned, with 1MB of LLC space per application and 8.6GB/s
(1 channel) per core. The system supports per-core DVFS and sleep
states modeled after Haswell [18, 48].

Latency-critical workloads

We use five diverse latency-critical applications, borrowed from [66]:
xapian, a web search engine configured as a leaf node [25, 59]; masstree,
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Cores
6 x86-64 cores, detailed Westmere-like
OOO [116]

L1 caches
32KB, 4-way set-associative, split D/I, 1-cycle
latency

L2 caches
256KB private per-core, 16-way
set-associative, inclusive, 7-cycle latency

L3 cache
6 banks, 12MBs total, 4-way 52-candidate
zcache [114], 20 cycles, inclusive, Vantage [115]
partitioning

Coherence
protocol

MESI protocol, 64-byte lines, in-cache
directory, no silent drops, TSO

Memory
48GB, 6 DDR3-1066-CL7 channels,
partitioned [101], 8.6GB/s per core

Power

2.4GHz nominal frequency; Haswell-like
FIVR [18] per-core DVFS: 0.8–3.4GHz
frequency range, in 200MHz steps; core sleep
with L1s & L2 flushed to LLC (Haswell
C3 [55]); 65W chip TDP

Table 3.2: Configuration of the simulated 6-core CMP.

a high-performance key-value store [90]; moses, a statistical machine
translation system configured to perform real-time translation (e.g.,
as in Google Translate) [74]; shore, an online transaction processing
database running TPC-C [63]; and specjbb, a Java real-time mid-
dleware benchmark. Table 3.3 shows their input sets and simulated
requests. Section 1.3.2 further characterize the diverse workload
of the five applications.

To measure the tail latency of our five latency-critical applications
under simulation, we integrate server and client under the same pro-
cess. The client then produces a realistic stream of requests with ex-
ponentially distributed interarrival times at a configurable rate (i.e., a
Markov input process, which is common in datacenter workloads [93,
96]). Client overheads are negligible (∼150 ns/request). This faithfully
captures all compute overheads.
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Workload Configuration
Requests

xapian English Wikipedia, zipfian query popularity 6000
masstree mycsb-a (50% GETs, 50% PUTs), 1.1GB table 9000
moses opensubtitles.org corpora, phrase-based mode 900
shore TPC-C, 10 warehouses 7500

specjbb 1 warehouse 37500

Table 3.3: Configuration and number of requests for latency-critical applications.

Batch workloads

We use mixes of SPEC CPU2006 workloads as batch applications, ex-
ecuted in a similar manner to prior work [58, 66, 109]. Each batch
application is fast-forwarded 5B instructions, executes for 400M in-
structions, and is restarted until the latency-critical applications in
the mix finish executing their target number of requests.

Metrics

We define tail latency as 95th percentile latency, which is typical [85];
other percentiles are possible. When running batch and latency-critical
mixes, we report the datacenter power and number of machines needed
to satisfy different combinations of latency-critical and batch work
(Section 3.9.2).

To ensure stable results, we perform enough runs per experiment to
achieve 95% confidence intervals below 1%.

3.9 Evaluation

We first characterize RubikLC without colocation, focusing on its im-
pact on latency-critical applications. Then, we characterize RubikSC
and RubikDC at the datacenter level. Finally, we present focused sen-
sitivity experiments and analysis of Rubik.

3.9.1 RubikLC Evaluation

We first characterize RubikLC using trace-driven experiments. We
capture per-request arrival times, core cycles, memory-bound times,
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and performance counters in zsim, and replay the trace under differ-
ent schemes. This setup allows us to compare RubikLC against two
oracular schemes. First, the static oracle chooses the lowest static
frequency that satisfies tail latency for the whole trace, up to the max-
imum frequency. This static oracle is an upper bound on the efficiency
of feedback-based controllers such as PEGASUS [85]; real controllers
need to be more conservative to maintain tail latency (e.g., using guard-
bands [85]). Second, the dynamic oracle finds the frequency schedule
that minimizes power while staying within the tail latency.

This oracle first computes, for each request, the lowest frequency
that makes all requests satisfy the latency bound; when the bound is
not achievable with the available frequencies, it chooses the highest
frequency. Then, it progressively lowers the frequencies until 5% of
the requests are above the tail bound (if it is achievable) or further
optimizations would increase the 95th percentile latency. During this
operation, the oracle chooses when to reduce frequencies by prioritizing
those reductions that affect tail latency the least and save most power.
The dynamic oracle gives a lower bound on power (the only way to
consume less power is to further degrade tail latency).

Figure 3.6 shows the tail latency and average core energy per request
as a function of load in five different cases: with fixed frequency, when
using the static or the dynamic oracle, when using RubikLC without
the fine-grained feedback loop controller and when using the full version
of RubikLC as described in Section 3.4. A load of 100% corresponds
to the maximum request rate at nominal frequency (2.4GHz). Each
plot characterizes an application, and each line shows a single scheme.
The fixed-frequency results run at nominal frequency, while the oracles
and RubikLC can use all available frequencies (0.8–3.4GHz). We show
RubikLC without and with the feedback controller. We use the tail
latency of the fixed-frequency scheme at 50% load as the target for all
other schemes.

Focusing on Figure 3.6a, the fixed-frequency results show that tail
latency is highly sensitive to load. By contrast, both oracles lower
frequencies to match the tail bound, producing a flat tail latency curve
until at least 50% load in all applications. The region where load is high
enough that no scheme can meet the tail bound is shaded red in each
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(a) Load-latency diagrams, showing 95th percentile tail latencies.
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(b) Load-energy diagrams, showing core energy per request (includes dynamic and static for
pipeline, L1s, and L2, when core is active).

Figure 3.6: Tail latencies and core energy per request for each latency-critical appli-
cations studied under a fixed frequency, static and dynamic oracles, and RubikLC
without and with the feedback loop. The tail latency at fixed-frequency under 50%
load is the tail latency bound for all other schemes. In the shaded areas, load is
high enough that no scheme can meet the tail bound.90
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graph. RubikLC without feedback closely tracks the desired behavior:
with loads below 50%, it achieves a near-flat tail, but its conservative
approximations produce a lower tail than needed in shore, specjbb,
and xapian; at high loads (shaded region), tail latency is slightly above
the minimum achievable tail, as set by the oracles. RubikLC’s feedback
controller fixes these deviations, matching the latency curves of the
oracles. This shows that the analytical controller is accurate, and only
needs minor corrections.

Figure 3.6b shows the core energy per request of each scheme. To
simplify the discussion, we report active core energy only (pipeline,
L1s, and L2); adaptive schemes also reduce idle energy when run-
ning without batch applications. At a fixed frequency, active energy
per request does not change with load. Below 50% load, adaptive
schemes reduce frequencies often and lower energy; above 50% load,
these schemes often use higher frequencies and more energy to keep the
tail latency as close to the target as possible. Comparing the static and
dynamic oracles reveals the benefit of short-term adaptation: across
the range, the dynamic oracle saves significantly more energy than the
static oracle, as much as 2× (moses). At 50% load, the dynamic or-
acle often saves 20–45% of energy. RubikLC outperforms the static
oracle and reaps most of the benefits of the dynamic oracle, especially
in applications with tightly clustered service times (masstree, moses).
With more variable service times (shore, specjbb), RubikLC saves
less power than the dynamic oracle because it lacks future knowledge
and must guard against long requests. Note that RubikLC without
feedback often consumes less energy than with feedback when the tail
bound cannot be met (shaded region); this is expected, and happens
because the feedback controller increases frequencies to try to match
the tail bound.

RubikLC on masstree

Figure 3.7 characterizes RubikLC in more detail by comparing it against
Fixed-frequency on one application, masstree. In particular, Fig-
ure 3.7 shows that RubikLC saves power without degrading tail la-
tency and achieves more stable tail latencies, even under sudden load
changes. Figure 3.7a compares the response latency cumulative dis-
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Figure 3.7: RubikLC on masstree: (a) RubikLC serves requests later without de-
grading tail latency, (b) uses low frequencies often to save power, and (c) handles
sudden load changes well.

sh
or

e

m
as

str
ee

sp
ec

jbb

xa
pia

n

m
os

es

(a) Low load

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

P
ow

er
 S

av
in

gs

sh
or

e

m
as

str
ee

sp
ec

jbb

xa
pia

n

m
os

es

(b) High load

Core Dynamic Full System

Figure 3.8: Core and total power savings of RubikLC when running one latency-
critical application per core.
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tribution functions (CDFs) for RubikLC and Fixed-frequency at 50%
load. RubikLC shifts the low part of the CDF to the right (delaying re-
sponses), but above the tail bound, it matches Fixed-frequency’s CDF.
Figure 3.7b shows RubikLC’s frequency histogram at 50% load: most
time is spent at low frequencies, saving significant power. Finally, Fig-
ure 3.7c shows the effect of sudden load changes over a 3-second span.
The top graph shows load over time, which grows in steps, spanning
25%, 50%, and 75% loads. The middle graph shows the 95th per-
centile latency over a rolling 200ms window for RubikLC and Fixed-
frequency. At 25% and 50% loads, where the tail bound can be met
(Figure 3.6a), RubikLC has a flat tail over time and perfectly matches
the tail bound. Its tail is more stable than Fixed-frequency, which has
variations over time. At 75%, where the tail bound cannot be met (see
Figure 3.6a), RubikLC provides a more stable tail latency. The bot-
tom graph shows the frequencies RubikLC uses over time to achieve
this behavior. On both steps, RubikLC’s analytical controller starts
using higher frequencies immediately. As a result, RubikLC maintains
a flat tail in the 25–50% step. Additionally, on the 50–75% step, the
feedback controller sees the tail bound is not being met, and forces
RubikLC to always run at maximum frequency. This effect takes place
over 200ms (2.0–2.2 s interval).

Latency-critical mixes

Figure 3.8 shows RubikLC’s core and full-system power savings over
Fixed-frequency when running six copies of the same latency-critical
application, one per core. Each application is run at both low load
(20%, left) and high load (60%, right). The tail bound of each ap-
plication and load is the tail latency that Fixed-frequency achieves.
These detailed simulation results match the trace-driven characteriza-
tion: RubikLC reduces core power by 3–40% (avg 21%). RubikLC
also respects the tail bound in all cases (not shown), staying within
95%–100% of the tail bound. However, full-system power savings are
moderate, 1–16%, due to low utilization. Thus, RubikLC improves
latency-critical mix efficiency, but substantially reducing full-system
power also requires colocation.
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Figure 3.9: Experimental setup used to compare schemes.

3.9.2 RubikSC and RubikDC Evaluation

Experimental setup

To evaluate different latency-critical/batch colocation schemes on an
equal footing, we first consider a baseline datacenter that segregates
batch and latency-critical applications. As shown in Figure 3.9, this
datacenter has 1000 machines that run the 5 latency-critical applica-
tions, with 200 machines dedicated to each application. Each latency-
critical machine runs 6 copies of the application at nominal frequency,
each at either low (20%) or high (60%) load, as in Section 3.9.1. The
datacenter we model also has 1000 machines running batch work. We
produce 20 mixes of six randomly chosen SPEC CPU2006 applications,
and dedicate 50 machines to each mix. Each batch application runs at
its optimal throughput per watt Because all servers use a partitioned
memory system, the optimal frequency for each application does not
depend on the applications it is colocated with (applications in dedi-
cated batch servers do not run above nominal frequency to stay within
TDP).

We then evaluate each colocation scheme as shown in Figure 3.9.
First, each latency-critical machine now also runs the mix from the
corresponding batch machine of the segregated datacenter, becoming
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a colocated machine. Mixes are interleaved so that each latency-critical
application is co-scheduled with all batch mixes equally. Second, be-
cause each application in the batch mixes gets less throughput when
colocated, we provision a variable number of batch-only servers and
run additional copies of each batch application to match the through-
put of the segregated datacenter for each batch application. Schemes
that achieve higher batch throughputs on the colocated machines will
need fewer batch machines, but may consume more power on colocated
machines to do so.

This experiment is carefully designed to have three desirable prop-
erties:

1. it is fixed-work [50] (all schemes run matching batch and latency-
critical work);

2. it allows comparing end-to-end metrics (tail latencies, datacenter
power, and machines used);

3. by interleaving mixes, it exposes each latency-critical application
to all batch applications.

We do not claim this is the best approach to manage datacenters with
latency-critical/batch mixes; it is just a controlled and fair way to
compare schemes.

Schemes

We evaluate five colocation schemes: fixed-frequency, RubikSC, Ru-
bikDC, and two hardware-controlled schemes that perform coordinated
per-core DVFS, HW-T and HW-TPW. HW-T sets frequencies to max-
imize aggregate system throughput (IPC) while staying below TDP;
HW-TPW maximizes aggregate throughput per watt. These schemes
adapt every 100 µs, and represent hardware-controlled DVFS schemes
typical of modern chips (e.g., Turbo Boost [84, 112]) that are unaware
of latency-critical app requirements. All schemes run with a parti-
tioned memory system.

Tail latencies

Figure 3.10 shows the distribution of tail latencies achieved by differ-
ent schemes. Each line represents a single scheme, and the x-axis
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Figure 3.10: Distributions of tail latency (lower is better) relative to the baseline
datacenter, for the 5 latency-critical × 20 batch mixes simulated, split into low and
high latency-critical loads.

represents the 5 × 20 = 100 latency-critical/batch mixes in the 1000
colocated machines. For each scheme, mixes are sorted from high-
est to lowest tail latency, relative to the tail bound (lower is better),
independently for each line.

In the low-load datacenter (Figure 3.10a), Fixed-frequency, Ru-
bikSC, and RubikDC meet the tail bounds in all mixes. RubikSC
and RubikDC sometimes lower tail latency significantly, as they run
latency-critical applications beyond their required frequency to im-
prove efficiency. By contrast, HW-T and HW-TPW grossly violate tail
latencies, by as much as 2×. This result shows that hardware-managed
DVFS schemes introduce interference among applications and are not
suitable for colocation.

In the high-load datacenter (Figure 3.10b) tail latency is more sen-
sitive: HW-T and HW-TPW degrade tails by up to 8.2× and 3.2×,
respectively. Even Fixed-frequency degrades tail latency for 40% of
the mixes (by up to 42%) because sharing cores degrades performance.
RubikSC and RubikDC maintain tail latency across all mixes, mak-
ing up for core sharing by automatically using higher frequencies when
needed.

96



i
i

“thesis” — 2015/1/15 — 10:54 — page 97 — #129 i
i

i
i

i
i

3.9. Evaluation

Bas
el
in

e

Fi
xe

d 
Fr

eq
.

Rub
ik
SC

Rub
ik
DC

0.0

0.2

0.4

0.6

0.8

1.0

D
a
ta

ce
n
te

r 
P
o
w

e
r

.28 .31 .40

(a) Low load

Bas
el
in

e

Fi
xe

d 
Fr

eq
.

Rub
ik
SC

Rub
ik
DC

0.0

0.2

0.4

0.6

0.8

1.0

.17 .15
.19

(b) High load

Rub
ik
SC

Rub
ik
DC

0.0

0.2

0.4

0.6

0.8

1.0

.17
.26

(c) xapian

Rub
ik
SC

Rub
ik
DC

0.0

0.2

0.4

0.6

0.8

1.0

Col
oc

.

.15 .20 Sa
vi
ng

s
Bat

ch

(d) specjbb

Other Mem+LLC Core Idle Core Active Batch

Figure 3.11: Power breakdown by component of different schemes for colocated and
batch machines, normalized to the baseline datacenter: (a) and (b) vary load; (c)
and (d) are case studies at high load.

Because HW-T and HW-TPW violate tail bounds in all cases, we do
not consider them further (they are also less efficient than RubikDC).

Power breakdown

Figure 3.11a shows the breakdown of full datacenter power for each
scheme in the low-load case. Power is normalized to the baseline
datacenter’s; note the y-axis goes up to 1.0. Each set of two opposing
vertical bars shows the power breakdown of a single scheme: the bot-
tom bar, starting from 0, shows total power for latency-critical (base-
line) or colocated servers; the top bar, starting from 1, shows total
power for dedicated batch servers. Both bars are normalized to the to-
tal baseline datacenter power, so the vertical gap between them shows
the power savings of the scheme. Each bar is further broken down by
component: core (active and idle power), memory system (including
uncore and main memory), and other components (chipset, HDD, fans,
etc.). Memory system and other power barely change with utilization.
Power used for batch work is hatched: dedicated batch server power
(top bar), and core power to run batch work in colocated machines
(bottom bar).

Figure 3.11a shows that, in the baseline, latency-critical servers con-
sume 47% of the power despite only being used at 20% load, and batch
servers consume 53%. All other schemes use much lower batch power,
because they colocate most batch work and use fewer batch servers.
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Fixed-frequency runs colocated servers at relatively high frequencies,
which is inefficient. RubikSC shows that optimizing for batch through-
put per watt saves power on colocated servers compared to Fixed-
frequency, at the expense of a moderate increase in batch servers and
batch server power. Finally, RubikDC achieves both the lowest colo-
cated and batch server powers in Figure 3.11a. Overall, RubikDC saves
40% of power; RubikSC saves 31%; and Fixed-frequency saves 28%.

Figure 3.11b shows the power for the high-load case. Savings are
smaller due to the higher latency-critical utilization. RubikDC per-
forms best, saving 19% of power; RubikSC saves 15%; and Fixed-
frequency saves 17% but violates tail latencies (Figure 3.10b).

Figure 3.11c and Figure 3.11d show that RubikDC improves effi-
ciency by being aware of global throughput requirements and applica-
tion characteristics. Figure 3.11c shows the breakdown of RubikSC and
RubikDC for a datacenter that only runs one latency-critical applica-
tion, xapian, the most core-bound one, at high load; and a single batch
mix (xalanc, tonto, h264, lbm, wrf, gamess). Figure 3.11d shows the
same breakdown when only running specjbb, the most memory-bound
latency-critical application, instead. With xapian, RubikDC colocates
batch work more aggressively than RubikDC. With specjbb, RubikDC
runs the colocated machines at lower frequencies, as specjbb sees no
savings from high frequencies, and uses more batch machines. In com-
parison, RubikSC optimizes locally and is unaware of this tradeoff. In
Figure 3.11a and Figure 3.11b, RubikDC exploits this tradeoff on a
per-server basis to reduce total power.

Power limits

In the high-load case, Rubik throttles execution rarely to stay within
the 65W chip TDP, as described in Section 3.5. Considered together,
RubikDC and RubikSC throttle batch applications 2.2% of the time,
idle batch applications 0.05% of the time, and resort to throttling
latency-critical applications less than 0.01% of the time. All throt-
tling events are more rare in the low-load case. Overall, this shows
that power caps do not necessarily hurt tail latency.
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Figure 3.12: Datacenter power and number of servers with RubikSC and RubikDC
relative to the segregated baseline vs. the ratio of latency-critical to batch servers in
the baseline.

Lax deadlines and low utilization

To evaluate a scenario representative of online services running below
peak load (e.g., due to diurnal variations [85]), we execute all latency-
critical workloads at low load but use the tail latency bounds from the
high-load case. RubikDC uses the extra slack to improve efficiency,
saving 44% of datacenter power over the baseline.

3.9.3 Sensitivity to Amount of Batch Work

Figure 3.12 shows the total datacenter power (left) and servers (right)
that RubikSC and RubikDC use compared to the baseline, as the ratio
of latency-critical and batch servers of the baseline datacenter change.
In the figure, 100:0 means all servers are latency-critical, 80:20 means
80 latency-critical servers for every 20 batch servers, and so on. We
have studied 50:50 so far. Latency-critical workloads run at low load in
this experiment. RubikDC adjusts its policy depending on the amount
of batch work available to colocate, always using less power and slightly
fewer machines than RubikSC. In the best case, at 60:40, RubikDC uses
60% of the baseline’s power and servers, reducing energy and machines
by 40%.
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3.10 Conclusions

We have presented Rubik, a power management scheme for future mul-
ticores with partitioned memory systems. Rubik’s analytical DVFS
control improves latency-critical workload efficiency without degrading
tail latency, and allows more aggressive colocation of latency-critical
and batch workloads than memory partitioning alone (e.g., sharing
cores). Rubik policies can maximize system efficiency or minimize to-
tal datacenter power. Compared to conventional datacenters, Rubik
reduces both datacenter power and number of servers by 40%.
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CHAPTER4
Concluding Remarks

During the last decade, datacenters became a fundamental asset in sup-
porting phenomena such as cloud computing and social media, which
have a wide impact on our society. With warehouse-scale computing
entering the teenage decade [7], we are at a point where we start to
clearly understand the characteristics and requirements of this new
computing paradigm, so that we can systematically tackle its issues.
This dissertation, tackled two important issues in today’s datacenters:
providing (1) QoS guarantees and (2) efficiency; this final chapter con-
cludes the dissertation with a summary highlighting the conclusions
we can draw from this work.

4.1 Summary and Takeaways

Chapter 1

In Chapter 1, we provided an overview of the current landscape of
warehouse scale computing, focusing on ways to improve its efficiency
and on the quality of service (QoS) of different types of applications.
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For what concerns efficiency, this analysis suggests that:

• techniques to reduce idle power (e.g., sleep states) are not well
suited for datacenters, due to application characteristics and the
high cost of static power;

• increasing the utilization and the efficiency of the single servers
is the most valuable course of action to improve the efficiency of
today’s datacenters.

Focusing on applications, we noted that there are at least two impor-
tant performance metrics: throughput and latency. These two metrics
can be variably important for different applications.

Latency is crucial for user-facing services (such as web-search); to
these applications, which we call latency-critical, latency is a measure
of the user-perceived QoS. An important issue with the performance of
latency-critical applications is that, in order to provide QoS guarantees,
looking at average latency is not enough. Instead, we need to make sure
that at least X % of the requests (commonly, 95 %, or 99 %, according
to the criticality of the applications) are served by some deadline.

Throughput is a more general metric. Throughput can be used
as a measure of progress in applications such as video encoders (i.e.,
frames per second) or map-reduce jobs. Moreover, it also applies to
latency-critical applications (i.e., requests per second); in this case,
throughput measures the load of the application and, often, higher
load leads to increased latency due to the building up of request queues
that introduce significant queuing delay. The prominence of queuing
delay is an important difference between latency-critical applications
in the datacenter space and traditional soft real-time systems.

Another peculiarity regarding the performance of datacenter appli-
cations is that it is crucial to quantify it in some high-level user-centric
metric. Control systems in charge of guaranteeing QoS and tuning
energy/performance tradeoffs throughout the hardware-software stack
(e.g., resource allocators, or DVFS controllers) cannot rely on low-level
metrics only, but need application-level information.
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Chapter 2

Chapter 2 tackles the problem of determining the relationship between
performance and allocated resources in public cloud computing when
virtual machines (VMs) from different clients contend on a shared re-
source. This chapter focuses on throughput-based applications and
consider the case of multithreaded, compute-bound workloads where
CPU bandwidth is the contended resource.

Through a case study, we show that the common practice of having
users rent a desired amount of resources on a coarse grain (in the case
we analyze, CPU bandwidth, as a number of virtual CPUs) does not
work well when VMs are associated with a service-level objective (SLO)
that specifies a performance goal. There are two main issues:

1. In a virtualized environment, it is difficult for users to accurately
estimate the performance their VMs will provide given a certain
amount of allocated resources.

2. Some applications have varying performance with a fixed resource
allocation due to load variations.

To solve these two issues in a way that is transparent to users and
efficient for cloud providers, we propose AutoPro, a runtime system
able to automatically determine and enforce allocations to meet per-
formance SLOs, while maximizing node-level utilization by supporting
batch workloads on a best-effort basis.

AutoPro observes application-level performance reports and lever-
ages a simple resource-performance model to run a PI controller that
automatically allocates, through resource containers, CPU bandwidth
to VMs colocated on a multicore server. AutoPro allocates spare CPU
cycles to batch workloads, thus allowing to maximize node-level uti-
lization, one of the key ways to improve datacenter efficiency.

With AutoPro, we target current datacenters, where servers are
equipped with multicore processors that have a shared memory hier-
archy without hardware partitioning support. The advantage of this
choice is that AutoPro could be readily deployed to today’s servers
The downside is that, if VMs contend on the shared memory resources
(most commonly, on the last-level cache), the efficiency of the system
will be reduced (i.e., cycles will be wasted on additional cache misses).
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AutoPro cannot fix this issue, which requires cache partitioning sup-
port, but it is robust against the effects of contention: if possible, it will
still meet SLOs by means of soft-partitioning through CPU bandwidth
allocation.

Chapter 3

Chapter 3 tackles the problem of improving the efficiency of datacenters
that run latency-critical applications, while providing strict bounds on
their tail latency. In the light the observations of Chapter 1 on improv-
ing efficiency, we aim at optimizing the energy-efficiency, measured as
throughput-per-watt (TPW), of the single servers through DVFS and
at keeping utilization high, thus requiring fewer servers to provide the
same service.

To reach these goals, we tackle two main issues:

1. Latency-critical applications inherently have low utilization due
to their structure: increasing load impairs latency.

2. Traditional DVFS controllers are oblivious of application behavior
and cannot improve TPW without hurting tail latency.

To reach our goals despite these issues, we build on recent research
on multicore processors with a partitioned memory hierarchy and pro-
pose Rubik, a DVFS and colocation management system that improves
the efficiency of latency-critical workloads without degrading their tail
latency and allows to obtain high utilization.

Rubik sidesteps the chronic low-utilization of latency-critical appli-
cations by supporting colocation with batch applications. Latency-
critical applications are prioritized by the scheduler and always pre-
empt batch work whenever there are requests to serve. The parti-
tioned memory hierarchy of the baseline architecture allows to avoid
interference of batch on latency-critical applications.

Rubik exploits traditional performance counters and application-
level information and applies statistical analyses on the arriving re-
quests to dynamically determine, for each core, the most efficient fre-
quency (in terms of TPW) that still allows to provide strict bounds on
tail latency. Recent development on on-chip voltage regulators, that
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enable quick DVFS, are a key enabling technology for Rubik, which ad-
justs frequencies at request-granularity. This fast-paced control is the
only way to maintain tail latency bounds despite unpredictable load
changes and to approach closely the efficiency of an idealized oracle.
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