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Abstract

WITH computing systems becoming ubiquitous, numerous data sets
of extremely large size are becoming available for analysis. Of-
ten the data collected have complex, graph based structures, which

makes them difficult to process with traditional tools. Moreover, the irregu-
larities in the datasets, and in the analysis algorithms, hamper the scaling of
performance in large distributed high-performance computing (HPC) sys-
tems, optimized for locality exploitation and regular data structures.

The aim of the PhD research has been proposing an approach to system
design that enable efficient execution of applications with irregular mem-
ory patterns on a distribute, many-core architecture, based on off-the-shelf
cores. A secondary goal for the architecture design has been simplifying
the programming using a simple Shared Memory model.

The four key elements of the proposed architecture are: (1) a global
address space that allows the use of simple programming models, (2) pre-
vention of dynamic formation of hotspots, (3) latency tolerance through
lightweight multitheading and finally (4) fine-grained synchronization.

The feasibility and effectiveness of the approach has been evaluated with
a prototype on FPGA, that uses off-the-shelf cores and communication sub-
system, with the addition of a set of custom-designed components. These
components offer the fore-mentioned four capabilities with a minimal im-
pact on the chip architecture. In spite of the small size of the prototype, the
performance scaling of typical irregular kernels proved the effectiveness
of the approach. In addition, the FPGA prototype allowed to evaluate the
technical issues related to the implementation of the proposed architecture,
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suggesting the technical details required for supporting other commodity
processors.

The performance data obtained from the prototype have also be used to
formulate an analytical model, which identify the system bottlenecks and
can be used for dimensioning a large scale distributed system.

The research has moved on with the creation of a lightweight system
simulator, in order to evaluate additional features using high level perfor-
mance models instead of a full HDL implementation. The simulator ne-
glects modelling the details of cache and memory hierarchy, which are ir-
relevant for applications which lack data locality, thus improving the simu-
lation speed. On the other hand, it models the extended memory behaviour
the fine-grained locking routines introduced by the custom hardware com-
ponents. The simulator allowed to evaluate the impact of additional archi-
tectural features, such as the support for atomic operations on the global ad-
dress space. The use of remote atomic operations, in place of lock routines,
allowed to significantly reduce the synchronization overhead and exposed
larger amounts of parallelism enhancing the effectiveness of the many-core
system.
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CHAPTER1
Introduction

The study of large dynamic systems with complex interactions, such as hu-
man interactions and biological systems, produces the creation of very large
collections of unstructured data. The example most visible to everyone is
that of social networks. In ten years social networks gathered an enormous
number of users, from the 271 million active users of Twitter [3, 47] to
the 1.31 billions Facebook users [27]. The analysis of the users activities
and interactions is hard, because it requires to elaborate very large and dy-
namically evolving connectivity graph-based structures. But the usefulness
of analyzing large semi-structured data is not limited to social networks. It
also allows to better comprehend many complex systems, such as biological
systems [23, 43], economic systems [61], or the spreading of diseases [19].

The algorithms designed to analyze semi-structured data generally need
to traverse very large pointer-based data structures, such as graphs or unbal-
anced trees, which can be composed of many millions of nodes and edges.
Because of the large amount of information, often it is not feasible to store
the whole data structures in the main memory of a single computer. Hence
distributed machines are required to run the algorithms without the over-
head of continuous disk accesses. However, the low regularity of the data
structures makes it very difficult to partition the data effectively across the
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Chapter 1. Introduction

nodes. In addition, the dynamic nature of the data structures limits the ef-
fectiveness in time of any attempt of optimizing the data layout. Also, the
accesses to these structures present poor spatial and temporal locality with
respect to computational intensive algorithms. This causes frequent fine-
grained requests to both the memory hierarchy and the network, resulting
in a very irregular mix of long and short latencies[37].

Traditional High Performance Computers (HPCs) mainly target compu-
tationally intensive applications, which process highly regular data struc-
tures, such as matrices. These applications usually feature high arithmetic
intensity and data locality, which benefits from powerful processor pipelines
and complex cache hierarchies. In addition, the regularity of the data struc-
tures facilitates the partitioning of the algorithms into loosely dependent
tasks, and the optimization of data movements across multiple memories.
Therefore, modern HPC systems are designed as large clusters composed of
nodes with powerful multi-core processors, connected by communication
networks optimized for maximum bandwidth. However, the deep cache hi-
erarchies used for computational intensive applications are not beneficial
to algorithms with irregular memory patterns, which frequently access the
main memory[4]. Furthermore, because of the high and irregular connec-
tivity existing in many real world graphs, the performance of large scale
knowledge discovery applications are dominated by the communication
time when run on distributed systems [66].

From the situation described above, two issues arise relative to irregu-
lar applications. The first one is that to improve the execution of parallel
algorithms with poor locality in the data access, any attempt to reduce the
memory access latency using complex cache hierarchies, either local or
distributed, is poorly effective. A different approach has been attempted
in the design of the Cray XMT supercomputer [28]. Instead of reducing
the latency of each access, this supercomputer can hide that latency ex-
ecuting other threads, thanks to a high number (128) of hardware thread
contexts concurrently active in a custom pipeline. This design choice has
been successful in achieving the intended goal. However, the cost paid for
such a high number of hardware threads is a low clock frequency. Paired
with a complete lack of cache hierarchy, this penalty causes poor perfor-
mance when executing computation intensive applications. This limits the
effectiveness of the XMT to a reduced set of application domains.

The second issue is related to the manual optimization of the algorithms.
In distributed systems it is imperative to minimize the cost of communica-
tion between nodes. Hence, the algorithms have to be designed focusing
on data placement and accesses, instead of the control flow, identifying

2
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1.1. Proposed approach

all possible sources of data locality and optimizing the distribution of the
structures on the system nodes. Also, it may be necessary to reorder or even
modify the algorithm steps in order to minimize inter-node communication
and to aggregate multiple messages to minimize the network overhead. The
consequence is that an algorithm optimized for a distributed system can be
very different, and much more complex, than the basic version designed
for a simpler sequential machine with uniform memory. This is problem-
atic for HPC teams, in which system and algorithm experts usually work
jointly with domain experts, and often face novel problems, requiring an
incremental approach to the software design.

Finally, paradigms for novel processor designs are shifting towards many-
core architectures. The hundreds of low-power cores included in those pro-
cessors are ideal for building HPC systems which run massively parallel
applications. However, for performance reasons the processor architec-
tures favor distributed programming models focused on locality exploita-
tion, which, as already explained, is not beneficial to irregular, graph-based,
algorithms.

Accordingly, the aim of this thesis is to understand how to evolve novel
multi-core and many-core architectures to address the characteristics of par-
allel applications with irregular memory access patterns.

1.1 Proposed approach

The main goal of this thesis work is to design an abstract computer ar-
chitecture capable of efficiently running algorithms with irregular memory
access patterns, such as graph-based algorithms, implemented using a sim-
ple programming model based on the well known Shared-Memory Single
Instruction Multiple Data (SIMD) machine.

The key elements of the architecture are:

• it provides a global address space, shared and distributed among the
nodes of the system and transparent to the application;

• it reduces the dynamic formation of hot spots in the network and mem-
ory subsystems, by using a fine-grained translation function from the
shared address space to the physical memory addresses;

• it provides automatic context switch on remote memory requests, ef-
fectively hiding the network latency;

• it provides fin-grained synchronization primitives for run-time conflict
avoidance;
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Chapter 1. Introduction

• to increase application performance, it implements most of the fea-
tures inside custom hardware blocks, which do not modify the internal
design of the processor cores, and have minimal requirements; hence
it allows efficient execution of both application with regular or irregu-
lar access patterns;

In addition, the thesis presents a concrete architecture prototype, imple-
mented using multiple Field Programmable Gate Array (FPGA) devices.
Accordingly to the declared goal, each node of the system includes a tra-
ditional multi-core processor, composed of off-the-shelf components. The
architecture is extended with custom hardware components, connected to
the bus interfaces, proving that the full set of features can be implemented
without modifying the core internal structure. The main limits of the pro-
totype are the reduced operating frequency and available RAM memory.
However, the processor frequency and network bandwidth are scaled by a
similar factor with respect to analogous commercial components, allowing
to measure realistic performance metrics.

Finally, the proposed work included the development of performance
evaluation and estimation tools, consisting in an analytical model and a
high-speed light-weight x86 system simulator. The simulated system in-
cludes all the custom components which are part of the proposed architec-
ture, providing an accurate simulation of the application system behavior
and performance. On the other hand, the simulator neglects architectural
components that we assume disabled in the use case, such as the cache
hierarchy, to speed up the simulation with respect to other parallel simula-
tors. Thanks to using the Intel PIN[41] binary instrumentation framework,
the simulator can run native x86 and x86-64 multi-threaded applications,
implemented with a POSIX-like interface.

The thesis is organized as follows. Chapter 2 provides the relevant back-
ground on parallel applications with irregular memory patterns and their
role in the High Performance Computing context. Following, chapter 3 de-
scribes the existing languages, libraries and architectures designed to im-
prove the performance and productivity of HPC applications, with a focus
on irregular applications. Chapter 4 introduces the abstract computer archi-
tecture and describes the custom components which are part of it, focusing
on the generic or portable aspects. The specific low-level details regarding
the implementation of the architecture on FPGA are provided in chapter 5,
together with an analysis of possible issues or changes required to integrate
the proposed components on architectures based on existing commercial
processors. Chapter 5 also describe the simulation platform, focusing on
the models used for simulating the timing and performance. The experi-
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ments carried on for evaluating the architecture performance are described
and analyzed in chapter 6, which in addition defines an analytical model
which allows for a quick and wide design space exploration.

1.2 Dissemination of Results

The content of this thesis work has been published in various international
conferences and journals. In details:

International Conferences

• M. Ceriani, S. Secchi, A. Tumeo, and O. Villa, Prototyping Hardware
Support for Irregular Applications in Proceedings of the 2013 Work-
shop on Rapid Simulation and Performance Evaluation: Methods and
Tools (RAPIDO ’13), January 2013.

• M. Ceriani, S. Secchi, A. Tumeo, and O. Villa, Exploring Manycore
Multinode Systems for Irregular Applications with FPGA Prototyping
in Proceedings of the 21st Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), April 2013.

• S. Secchi, M. Ceriani, A. Tumeo, O. Villa, G. Palermo and L. Raffo,
Exploring Hardware Support for Scaling Irregular Applications on
Multi-node Multi-core Architectures in 24th International Conference
on Application-Specific Systems, Architectures and Processors (ASAP),
June 2013.

Journals

• M. Ceriani, S. Secchi, O. Villa, A. Tumeo, G. Palermo, Exploring
Efficient Hardware Support for Applications with Irregular Memory
Patterns on Multinode Manycore Architectures in IEEE Transactions
on Parallel and Distributed Systems.
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CHAPTER2
Background

Since the dawn of computer history, one of the directions taken to in-
crease the speed of computation has been the exploitation of the intrin-
sic parallelism existing in algorithms, in all its forms, such as Instruction
Level Parallelism (ILP), Data Level Parallelism (DLP) or Task Level Par-
allelism (TLP). Nowadays, massive parallel execution is the main factor
which drives the progress in computer performance, from small embed-
ded systems to large scale High Performance Computing (HPC) systems,
passing from personal computers. In the early 2000s multi-core proces-
sors started superseding single-core processors in all market sections, sign-
ing the end of the frequency scaling era. In the same years, the advent of
general-purpose computing on GPUs allowed even small laboratories and
companies to use hundreds of cores to run massively parallel algorithms.
These changes had an impact also on HPC computing designs. Single pro-
cessors and symmetric multi-processor (SMP) systems have given way to
massive parallel processing (MPP) systems or clusters with a number of
cores in the order of 104 to 106. The top supercomputer in June 2014,
Tianhe-2, includes 3,120,000 cores to achieve a peak performance of 33.86
Pflop/s [58].

Traditionally, the approach used to parallelize an algorithm was to iden-

7
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Figure 2.1: Top 500 supercomputers by architecture. Source: top500 project[57]

tify statically the dependencies among operations, which can be represented
by a dependency graph. At low level, ILP can be exploited by identifying
dependencies within small sequences of instructions, and executing them
on different execution units. This activity can be performed automatically
by a compiler or the processor itself, and is beneficial to processors with
complex, super-scalar pipeline or vector processing units. A particular
case, used by vector units, is the concurrent execution of independent it-
erations of the algorithm loops, which can be analyzed manually or even
automatically by a parallelizing compiler. Loop parallelization is also the
most common approach used to identify concurrent tasks to be performed
by different threads in a multi-core system. An advantage of this method
is that the amount of data shared between different tasks can be minimized
with an appropriate partition of the data set, hence reducing the need for
run-time synchronization. Also, data can be efficiently distributed between
the tasks to maximize locality of accesses.

However, static loop analysis and dependency analysis work only in
“regular” algorithms that use multidimensional dense arrays, e.g. FFTs, fi-
nite difference methods, algebraic computations and image filtering. Many
“irregular” algorithms show a more general form of data parallelism, which
require more complex run-time strategies and show different performance
characteristics.

8
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2.1. Data Parallel Algorithms

2.1 Data Parallel Algorithms

In computer science there are different definitions of regular and irregular
algorithms or implementations. They are distinguished by what features of
the algorithm are considered, but usually the concept of regularity is linked
with the concept of performance optimization. The cause is that regularity,
of any kind, has often been used as a source for code optimization, and
its exploitation has been the goal of many architectural features, such as
cache hierarchies or vector processors. Therefore, the common element
in all definitions for irregular algorithms is the necessity to find new and
different tools to solve the problem of their efficient execution.

In this research work, we use the following empirical definition:

Definition 2.1.1. We consider as Irregular algorithms those algorithms that
process large pointer-based data structures, such as sparse graphs of un-
balanced trees, or show similarly irregular memory access patterns.

Examples of problems solvable with irregular algorithms are: knowl-
edge discovery from social networks and other human activities, e.g. eco-
nomic transactions, optimization problems based on SAT solvers, or physic
simulation of non homogeneous objects based on non uniform meshes or
trees, e.g. N-body simulation.

The algorithms used to solve all these problems share a general form
of data parallelism which is significantly different from the parallelism ex-
isting in matrix-based or vector-based applications. A detailed study of
irregular data parallel algorithms is presented by Pingali et al. [51] in «The
Tao of Parallelism in Algorithms». To classify the algorithms they use a
data-centric formulation, called operator formulation, on the abstract data
structure. Three key definitions are provided: active elements, neighbor-
hood and ordering.

The active elements are the elements of the data structure on which com-
putation might be performed in each point during the program execution.
The processing of an element is performed by applying an operator to it.
The neighborhood of an element is the set of other elements that are read or
written while applying the operator to it. In the general case, the neighbors
of an elements according to this definition do not coincide with the neigh-
bors defined in graph theories. Figure 2.2 depicts 3 example structures,
with active elements and neighborhoods highlighted. Finally, the ordering
of the set of active elements is a distinctive characteristic of each algorithm.
In some case, the algorithm is unordered, and the implementation can peek
any element from the active set. In order cases, for example in event-driven

9
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Chapter 2. Background

simulation, the algorithm imposes a partial or complete ordering to the ac-
tive sets. Clearly, the ordering of an algorithm caused by potential depen-
dencies between the elements reduces the available parallelism.

e1

e2

e3

e4

e5

Figure 2.2: Example of topologies, active elements and neighbors.

Notably, a few algorithms rely on random selection of the unordered
active elements. This happens, for example, when the execution of some
of the elements does not contribute towards the overall progress of the al-
gorithm. In this situation random selection ensures that eventually useful
elements will be selected.

2.1.1 Algorithms Analysis

Figure 2.3 shows three analysis dimensions which can be used to classify
data parallel algorithms. The topology dimension describes the structure of
the data. The active nodes dimension describes the dependencies between
active nodes and how the they are activated during the execution. Finally,
the operator dimension describes the local effects of the operator applied
to an active node.

Algorithms

Topology

Operator

Active
Nodes

Structured

Semi-structured

Unstructured

Morph

Local computation

Reader

Location

Ordering
Unordered

Ordered

Topology-driven

Data-driven
∧ ∧

Figure 2.3: TAO structural analysis. Source: Pingali et al. [51]
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2.1. Data Parallel Algorithms

The following paragraphs will briefly describe this analysis schema, and
use it to highlight the main characteristics of irregular applications, which
makes them different from regular ones.

Topology

The topology of the data is the first and most important characteristic of a
parallel algorithm. The shape of highly regular structures can be described
with a small number of parameters, for example the width and height of
a rectangular matrix. This allows to define concise arithmetic expression
for homogeneously partitioning the structure among a set of parallel tasks.
Semi-structured topologies, e.g. balanced trees, have invariant properties
that can help the partitioning. Conversely, the topology of general graphs
is a property of the single instances, hence dependencies between elements
have to be computed at run-time.

In addition, in regular topologies every element apart from the borders
has the same number of neighbors as the others. Thus, in most cases the
operator execution times tend to be homogeneous over the whole structure.
Oh the other end, in general graphs and trees the size of the neighborhood
varies from element to element, unbalancing the workload.

Finally, multidimensional arrays can be linearized, or blocked, to opti-
mize the use of the cache hierarchy. Conversely, the complex connectivity
of unstructured topologies reduces the locality of data accesses and gener-
ates unpredictable access patterns.

Active nodes

As already discussed, one of the characteristic of an algorithm is the exis-
tence of ordering constraints on the set of active elements. Another charac-
teristic is the location of newly activated elements, that can be topology- or
data-driven. In the former case, the activation depends only on the topology,
for example performing a full visit of the structure. In the latter, the activity
on one element may activate other elements, producing unpredictable and
irregular workloads. Applications such as event-driven simulation are part
of this group. A difficulty in parallelizing algorithms with data-driven ac-
tivation is that the execution is not distributed evenly on the data structure,
causing workload distribution and locality exploitation work against each
other.

11
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Operator

The way the operator modifies the data structure has a fundamental im-
pact in the possibility to identify or prevent conflicts between concurrent
activities. The simplest class is composed of operators that access the data
structure only with read operations, and store the results in a different struc-
ture. Are part of this class all the algorithms that use a tree index to speedup
the accesses to a second irregular structure, or to cluster it. A second class
includes the algorithms that perform local computation in the active nodes,
but do not modify the topology. Finally, morphing operators may modify
the topology by adding or removing elements in the neighborhood of the
active one.

The second and third classes of algorithm requires run-time mechanisms
to grant exclusive access to the elements, and prevent incoherent states to be
seen by concurrent tasks. The basic mechanism is the use of lock based crit-
ical sections that prevent concurrent access to the elements. A more sophis-
ticated approach allows to define transactions that can be executed specu-
latively, and rolled back in case of conflict. Both approaches inevitably
introduce an overhead in the execution, hence powerful but lightweight
mechanisms for conflict avoidance are even more important for irregular
applications than for regular ones.

Another characteristic of both classes of algorithms is that the problems
solved by them may have multiple valid solutions, and each order in which
the active elements are evaluated produces a different solution. This is an
kind of intrinsic parallelism which requires to drop compatibility with se-
rial execution to achieve optimal performance. For this reason, it is difficult
to exploit it using a parallelizing tool, without explicit hints from the devel-
oper. It also increases the effort required to implement an application, be-
cause the non-determinism of the outputs prevents using some of the basic
testing and validation strategies.

2.1.2 Execution Models and Run-time Support

The previous review of the characteristics of data parallel algorithms in-
troduced some element required for their run-time execution, specially for
irregular algorithms. This section is clarify them and presents the possible
execution models.

In the most general case, the execution of a data parallel algorithm re-
quires two collaborating activities: the identification of possible conflicts
due to overlapping of the elements neighborhoods, and the scheduling of
the operations according to the required ordering and the conflicts. Without

12
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2.1. Data Parallel Algorithms

regularities in the structure of the data each of these two activities has to be
performed at run-time, using the mechanisms provided by the system.

For the conflict identification and prevention we can identify various
approaches:

Critical sections. The algorithm designer identify parts of the code that
must not be executed concurrently, and marks them using functions
provided by the language or libraries used. The critical sections are se-
rialized at run-time each time two or more processors access the same
piece of data. The serialization guarantee correctness of the algorithm,
but introduce an overhead in the execution every time one thread of
execution has to wait before entering a critical section. This over-
head can be in the form of stalls of the processor, or additional context
switches if the processor executes multiple threads. A special case of
critical sections is represented by atomic instructions, which guaran-
tee that an operation is completely executed and completed without
conflicts from other processors or devices.

Transactions. Critical sections are generally implemented by locking a re-
source until completion. A different approach is to execute specula-
tively the sections inside a transaction that is completed only in ab-
sence of contention, and is re-executed otherwise. This approach is
mostly beneficial whenever it is not known if a section will generate
a conflict before it is executed. In this scenario, a lock-based critical
section would cautiously stall parallel tasks even when it unnecessary.

To support this approach it is necessary to isolate all the data updates
in a local copies and committing them in a single update. The mecha-
nism can be implemented both in hardware or software. For more than
a decade hardware support has been a hot research topic, and recently
Intel has released the line of microprocessors based on the Haswell
architecture, which expands the x86 instruction set with transactional
synchronization extensions [34]. However, even when efficient hard-
ware implementations exist, a software fallback path is required to
handle the case when transaction completion is impossible. This in-
troduces overhead in the execution and complexity in the algorithm
design. In addition, managing memory transactions in the scenario of
distributed HPC systems is challenging, and even more in the context
of irregular applications with lack of data locality.

Dependency graphs. When possible, the construction of a dependency
graph allows to compute independent sets of element, which can be
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elaborated in parallel without requiring conflict detection. Regular
data structures like rectangular matrices allow to identify all possible
conflicts when designing the parallel algorithm. Hence, the parts of
the data structures can be distributed on the system processors so that
possibly conflicting elements are elaborated serially by the same pro-
cessor, while different processors elaborates independent sets. Some
topology-driven algorithm may permit the use of an inspector before
the actual execution, to analyze the data structure and identify the
neighborhoods of each element and compute a dependency graph. The
inspector approach is useful when the data structure is immutable, and
the inspection time is negligible with respect to the total execution. In
all the other cases run-time coordination is required.

Regarding the scheduling of the operations, the main issues are two. The
first one exists only on ordered algorithms, and is the decision on when to
execute an operator. The cautious solution is to elaborate an element only
after all the elements with higher priority, even when no conflict is detected.
The reason for the wait is that each application of the algorithm operator
may activate an element with priority higher than those already existing in
the active set and conflicting with them. If a transaction mechanism is used,
this cautious constraint can be relaxed, allowing the concurrent execution
of independent activities as soon as possible but delaying the commit.

The second, and more general, issue is the distribution of the elements
to the system processors or computation threads. Work distribution has the
goal of optimizing the use of system resources, to reduce execution time.
On one hand, this involves assigning a similar amount of work to each pro-
cessor, to even load and improve the processors utilization, on the other
hand it can exploit data locality to reduce the cost of the data accesses. The
simplest approach is to divide statically the data structure in a number of
equally sized parts equal to the number of processing elements. This ap-
proach is suitable for regular data structures, or topology-driven algorithms
that allow the identification of conflicts at run-time using an inspection step.
In the general case, instead, a run-time scheduling mechanism is required,
which assigns elements to the processors according to the dynamic work-
load distribution. Irregular algorithms for graph analysis usually make use
of a work list that stores the nodes to be processed. Therefore, the schedul-
ing consists in arbitrating the parallel accesses to this list. The design of
the distribution mechanism is a delicate element in the parallelization of
the algorithms. Multiple solutions exist in literature such as centralized
queues, distributed queues, and work stealing. However, none of the solu-
tion is universally optimal, and the effectiveness depends on how costly is
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the overhead due to synchronized accesses on a given system architecture.

2.2 Algorithms on Graphs

Algorithms based on graphs, or sub-graphs such as trees, are the most irreg-
ular kind of algorithm. Typically, they express at the highest level both kind
of irregularity and unpredictability, both in the memory access patterns and
distribution of the workload across the data structure. Graph algorithms
are also the natural expression of many complex problems, from the align-
ment of genomes [32], to cybersecurity [65] and biology research [23].
Because of the importance of data intensive applications, a big effort has
recently been spent in defining benchmarks to guide the evolution of hard-
ware architectures and software systems to support them. The basic kernel
most used in the benchmark is an ordered graph traversal, the Breadth First
Search (BFS) [31]. The performance of this kernel are very important be-
cause not only it is very representative of data intensive irregular applica-
tions, but it is also a corner stone in the implementation of more complex
algorithms. Examples of algorithms based on BFS are the construction of
minimal spanning trees, the computation of centrality measures to identify
the importance of elements in the networks, the identification of connected
components or heuristic search algorithms such as A*.

2.2.1 Breadth First Search

The breadth first search algorithm is a complete visit of a graph graph G =
(V,E), where V is the set of vertices and E is the set of all pairs (u, v) with
u, v ∈ V corresponding to the edges. The search starts from a given vertex
vs ∈ V , and constructs a spanning tree of the graph containing all the nodes
that can be reached from vs, and the edges which connects them to the root
through a path with minimum distance. The result of the algorithm can be
a map which stores the predecessor of each node, or the annotation of the
predecessors inside the nodes themselves.

Algorithm 1 outlines a typical sequential implementation of the BFS.
The algorithm explores the graph by expanding the set of visited nodes one
level at a time. The nodes that have been reached but not expanded are
stored in a work list, Q in the listing. This set is referred to as frontier. A
second list, named QN stores the nodes reachable from the vertices in Q
but not already visited. At the beginning (lines 1-4) the algorithm initializes
Qwith the starting vertex vs, and sets all the other vertices as not visited and
their predecessor as undefined. The algorithm proceeds in steps, expanding
the frontier one level at a time, with the loop at line 6. The body of the
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Algorithm 1 Sequential BFS algorithm

Require:
1: function BFS(V,E, vs)
2: Q = {vs}
3: for all v ∈ V do
4: V ist(v) = false
5: Pred(v) = undefined
6: while Q 6= ∅ do // Expand one level at the time
7: QN = ∅
8: for all u ∈ Q do
9: for all v|(u, v) ∈ E do

10: if V is(v) = false then
11: QN = QN ∪ {v}
12: V is(v) = true
13: Pred(v) = u

14: Q = QN
return Pred

15: end function

loop prepares QN to store the next frontier, emptying it at line 7. Then, it
scans the frontier and explores the vertices that can be reached from it(lines
8-9). All vertices that have not been visited yet are added toQN , are sets as
visited, and their predecessor is assigned (lines 11-13). At the end of each
level, the listQ is updated with the content ofQN , preparing the next level.
The algorithm concludes when all the reachable nodes have been visited,
and therefore the work list becomes empty.

The algorithm has a few notable characteristics. First of all, we should
consider the complexity. Each vertex reachable from the starting one is
added to the work list exactly once when first visited. Also, all the edges
outgoing a vertex are visited once at line 9. If the graph is undirected and
entirely connected, all the graph nodes and vertices are explored. Hence,
the block at lines 11-13 is executed |V | times, and the test at line 10 is
executed |E| times. In social networks and other interesting graphs the
number of edges can be two orders of magnitude higher than the number of
nodes [47]. Under this graph properties, the accesses to V is(v) at line 10
become the crucial element to be considered in the optimization optimiza-
tion. Secondly, the patterns in the memory accesses executed at line 10 to
test if a node has been visited reflect the irregularity existing in the graph
structure. As just stated, these accesses are executed tens or hundreds of
times more than the queue operations, hence the lack of locality and pre-
dictability harms the overall algorithm performance. Finally, the structure
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of the algorithm, composed by multiple nested loops, is a perfect exam-
ple of irregular data parallel algorithm. Each iteration can potentially be
executed in parallel with the others, but conflict identification is required
at run-time. The next sections will summarize the existing techniques for
parallelizing the algorithm.

2.2.2 Parallel BFS

The algorithm listed in Algorithm Algorithm 2 is a parallel version of Al-
gorithm Algorithm 1, obtained with a straightforward loop parallelization.
The initialization can be performed in parallel, distributing the vertices
evenly among the processors. In the main body of the algorithm, the loop
at line 8, which visits the vertices in the current work list, is converted in a
parallel loop that distributes the different iterations on the various proces-
sors and/or threads. On the other hand, the adjacency list of the vertices is
iterated sequentially by a single processor, at line 9. The parallelization re-
quires the introduction of 2 critical sections. The first one is constituted by
the entire inner loop body, at lines 10-15, and prevents concurrent visits of
a single node. The second critical section, at line 12, is required to insert a
newly visited vertices in the work list. Finally, the parallel execution is syn-
chronized at the end of each level, to guarantee that the graph is explored
in strict order of distance from the source vertex.

One of the critical aspects of Algorithm 2 is the implementation of the
largest critical section. The listing uses lock(v) to represent a lock at the
granularity of a single vertex. The fine granularity is required to maxi-
mize the parallelism, but a more coarse granularity is possible, for example
grouping multiple vertices. A possible implementation of the lock is to al-
locate a mutex variable for each graph vertex. This simple option has a
very huge impact on total memory required, adding an overhead directly
proportional to the graph size. A different implementation could store the
addresses of the locked vertices in a table and use a single mutex to protect
the table, effectively trading execution time for memory space. However,
both approaches incur in high overhead when the lock is not taken. A few
common optimizations used to reduce the impact of synchronization are
added in Algorithm 3, which is proposed in [4] for a single socket archi-
tecture. First of all, it uses a bitmap to mark the visited vertices, reducing
the memory size. Then, at lines 12-13 a simple check is performed on the
bitmap to test if a vertex has already been visited. Since each vertex can
have many input edges, most of the times the test will be positive and the
critical section can be skipped altogether. If a vertex has not been visited
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Algorithm 2 Parallel BFS algorithm: straightforward approach

Require:
1: function BFS(V,E, vs)
2: for all v ∈ V do // in parallel
3: V ist(v) = false
4: for all v ∈ V do // in parallel
5: Pred(v) = undefined
6: Q = vs
7: while Q 6= ∅ do
8: QN = ∅
9: for all u ∈ Q do // in parallel

10: for all v|(u, v) ∈ E do
11: lock(v) // enter critical section
12: if V is(v) = false then
13: QN = QN ∪ {v} // atomically
14: V is(v) = true
15: Pred(v) = u

16: unlock(v) // exit critical section
barrier

17: Q = QN
return Pred

18: end function

previously, and only in that case, the algorithm uses a potentially more ex-
pensive atomic operation read_and_set to atomically read the bit and set it
to one. The atomic operation is required because multiple processors can
execute lines 12-13 concurrently. The union of these techniques greatly
reduces the probability of run-time contention and increases the scalability.

A second critical element is the parallel access to the work lists. The list
QN produced at each iteration is often divided into multiple private lists,
one per processor or processing thread. The private lists are joined at the
end each iteration of the outer loop, corresponding to a whole level in the
search. The partition has two positive effects: first of all the queuing can be
performed without synchronization, secondly the a form of data locality is
introduced in the algorithm because each processing element access only a
part of the list. The current work list, Q can either be partitioned statically
before each algorithm step, or dynamically distributed using small critical
sections for the updates. Each option has its own advantages. The dynamic
approach naturally provides a balanced workload distribution, while the
static division can be used to expose data locality. This pattern of distribu-
tion of the global work lists into private ones is always used in distributed
systems, where accessing remote memory is much more expensive than
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Algorithm 3 Parallel BFS algorithm

Require:
1: function BFS(V,E, vs)
2: Q = vs
3: for all v ∈ V do // in parallel
4: Bitmap[v] = 0

5: for all v ∈ V do // in parallel
6: Pred(v) = undefined
7: while Q 6= ∅ do
8: for all processor p do
9: Qnext,p = ∅

10: for all u ∈ Q do // in parallel on each processor p
11: for all v|(u, v) ∈ E do
12: a = Bitmap[v]
13: if a = 0 then
14: prev = read_and_set(Bitmap[v], 1)
15: if prev = 0 then
16: Pred(v) = u
17: QN = QN ∪ {v}

barrier
18: Swap(Q,QN)

return Pred
19: end function

local one.
A particular approach is described in [56]. The authors exploit two char-

acteristics of the BFS algorithm. First of all, the algorithm accepts a limited
degree of non-determinism: it does not matter which is the path taken to
reach a vertex, it is enough that the path has the shortest length. In other
words, each vertex may have multiple predecessors, and each of them is an
acceptable piece of the final solution. In addition, the algorithm expands the
frontier in sequential phases, and all the vertices in the frontier of a phase
has the same distance from the source vertex. Therefore, the order used to
iterate on the work list is not relevant for the overall correctness. In addi-
tion, a vertex can be inserted in the work list multiple times within the same
phase, without compromising the algorithm correctness. The neighborhood
of replicated vertices are visited more than once, but all the visits after the
first one have no effect. The authors use this property to design a set of
algorithm implementations that use special queue implementations and op-
timistic parallelization and avoid synchronizing the queues operations. The
effectiveness of the approach depends on the structure of the graph and is
limited to shared memory systems. However, the idea of allowing a small
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number of useless visits to reduce the synchronization overhead is worth
mentioning.

2.2.3 Distributed BFS

The parallel BFS algorithms described in the previous section achieve good
performance on single processor systems, with uniform memory access
times. However, the majority of high performance systems are massive
parallel processing systems, or clusters, with hundreds or thousands of pro-
cessors and distributed memories. In addition, each node of the system can
host multiple processors on multiple sockets. In this case, accesses to data
cached in different sockets of the same node have different latencies. Be-
cause of these reasons, the most studied versions of parallel BFS are based
on the distributed memory model. In this model, the graph is partitioned
across the whole system, and each node process only the part of the graph
that is allocated on its memory. The nodes exchange messages with each
other using explicit routines, which are also used as synchronization points.
This approach has the advantage of exploiting data locality and focusing on
data placement rather than control flow. The drawback is that all distributed
BFS implementations are significantly more complex than the serial imple-
mentation listed in Algorithm 1.

Agarwal et al. present a scalable BFS for multi-core processors, which
target a dual socket Nehalem EP processor[4]. In addition to the techniques
presented in Algorithm 3, the authors explicitly partition the data across the
two sockets and introduce first in first out (FIFO) channels for the com-
munication between sockets. Algorithm 4 gives a high level view of the
implementation. The global work lists Q and QN are replaced with a set
of lists, one per socket (node). The initialization phase performs the same
operations as before, but adapted to the new number of lists. In addition,
the all FIFO channels are initialized empty. The main algorithm loop is
split in two steps. The first step iterates over the local work lists Q[this]
and visits the neighborhood of the vertices as in the sequential version. For
each neighbor vertex the algorithm determines the socket (node) on which
the vertex is mapped. The local vertices are handled as in Algorithm 3,
using only local memory accesses. On the other hand, if the destination of
an edge (u, v) is mapped to a different socket, the edge is enqueued in the
corresponding channel (line 18). After this first phase, all processors syn-
chronize with each other using a barrier, to ensure that every vertex from
the work lists has been either visited or enqueued in a channel. Then, the
visit is repeated with each processor fetching the edges from its channel.
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The use of channels ensures each of the work lists, bitmaps and predeces-
sor maps are accessed by a single processor. This allows to exploit data
locality and optimize the use of the caches. The communication between
sockets happens through the channels, and is split into two steps: a local
enqueue operation at line 18 and a dequeue operation at line 20. During the
dequeue, all cache lines that are still valid are invalidated and migrated to
the destination socket.

Algorithm 4 Distributed BFS algorithm: high level

Require:
1: function BFS(V,E, vs)
2: for all v ∈ V do // in parallel
3: Bitmap[v] = 0
4: Pred[v] = undefined
5: for all n ∈ Nodes do // in parallel
6: Q[n] = ∅
7: QN [n] = ∅
8: Channel[n] = ∅
9: if systemNode(vs) = this then

10: Q[this]← {vs}
11: while Q[this] 6= ∅ do
12: for all u ∈ Q[this] do // in parallel
13: for all v|(u, v) ∈ E do
14: n = systemNode(v)
15: if n = this then
16: // Local execution
17: else
18: Channel[n]← (u, v)

barrier
19: while Channel[this] 6= ∅ do
20: (u, v)← Channel[this]
21: // Local execution

barrier
22: Swap(Q[this], QN [this])
23: QN [this] = ∅

return Pred
24: end function

Even if this algorithm is designed for a shared memory system, its struc-
ture is the same used for distributed memory systems. For this reason, the
listing in Algorithm 4 uses the term node instead of socket. In distributed
systems the communication does not happen through cache line migration
but through messages sent over a network between the two computation
steps. By introducing a single communication step, the distributed version
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Figure 2.4: Partitioning approaches for the adjacency matrix in the BFS distributed
algorithms.

permits also to aggregate multiple edges directed to the same destination in
a single long message, improving the network efficiency. One drawback is
that in this high level view of the algorithm communication and computa-
tion are temporally decoupled, causing a drop in the overall efficiency. For
this reason, actual implementations have to carefully select and optimize
the low level routines used for communication, in order to allow overlap-
ping of computation and communication.

An large impact on the performance of distributed BFS implementations
is given by the schema adopted for distributing the vertices on the system.
Two approaches exist in literature, 1D and 2D decomposition. Figure 2.4
represents two adjacency matrices for a small graphs with eight vertices.
In the picture, each square represents a possible edge, while the row and
column labels are respectively the identifiers of the source and destination
vertices. The matrices are colored according to the two partitioning ap-
proaches, 1D on the left and 2D on the right. In 1D decomposition the ver-
tices are partitioned among the nodes of the systems, in groups with similar
size. The whole lists of adjacent vertices are stored on the same node as the
source vertex. In 2D decomposition, instead, the adjacency matrix is split
in blocks hence each neighbors list is split among multiple nodes. The first
approach is more straightforward, has a cleaner implementation with less
overheads. On of the advantages of 2D decomposition are that long lists of
neighbors are automatically partitioned and explored in parallel, improving
load balancing. A second advantage is that the all-to-all communication
step can be replaced with two steps involving the rows respectively and the
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columns of the matrix. This decomposition allows for more optimizations
of the network layer. Both approaches have appeared in scientific publi-
cations. The 1D approach is used, among other publication, in Agarwal
et al. [4], in Villa et al. [59] and in Checconi and Petrini [18]. Instead, 2D
decomposition is appears in Checconi et al. [17] and in Yoo et al. [66].

2.3 Conclusions

Applications with irregular workloads and memory patterns have an in-
creasing importance in the High Performance Computing world. Their
characteristics prevent them to exploit the features of modern HPC pro-
cessors, designed to speed up the execution of regular algorithms with high
arithmetic and computational intensity. The typical, and most crucial exam-
ple of irregular algorithms are those that use generic, sparse graphs as data
structures. The most frequent operation executed are ordered visits, hence
a significant number of research projects has been focused on the optimiza-
tion of search algorithms such as the breadth first search. The result of that
research is a considerable increase of the performance and scalability of
BFS implementations on distributed systems.

However, each of the optimized BFS implementations add a huge level
of complexity on the simple sequential algorithm, and require a complete
shift in the design approach, from the control flow to the data placement and
move. For these reason, when designing new irregular algorithms for HPC
and evaluating their effectiveness, it is very difficult to decide between the
significance of the data set, the test execution time, and the effort required
to reduce it. The HPC and scientific community could benefit from a sys-
tem architecture that allows to execute irregular applications on distributed
systems, with reasonably good performance and at the same time a simple
programming model based on the common shared memory paradigm.
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CHAPTER3
State of the Art

Since decades the High Performance Computing has developed and used
parallel and distributed systems to overcome the performance limitations
of sequential processors. During this period various programming models
and languages have been established as de facto standards for their effec-
tiveness and performance, while others have been proposed more recently
to increase productivity, reduce code complexity or solve portability issues.
This chapters contains the most significant examples of the state of the art
in parallel and distributed systems, parallel languages and support libraries.

3.1 Distributed systems

Distributed systems are computing systems composed of multiple software
components distributed over the nodes of a computer network. The con-
cept of distributed computation is general enough to include programs like
online games or peer-to-peer applications, each developed using differ-
ent technologies. In the context of HPC, distributed systems are used to
scale parallel applications over thousands of processing cores and mem-
ories, generally using a Single Program Multiple Data (SPMD) control
model. The simplest approach is to use the numerous processors to exe-

25



i
i

“thesis” — 2015/1/17 — 14:48 — page 26 — #32 i
i

i
i

i
i

Chapter 3. State of the Art

cute multiple instances of the same application on different data sets. Since
the data sets are independent, very little communication is required be-
tween application instances, thus this approach can scale indefinitely with
the number of processing nodes and is highly tolerant to network latency.
This approach takes the name of grid computing[30], and allows to ag-
gregate loosely coupled computers, which can be heterogeneous and even
geographically distributed.

A more interesting case is the execution of tightly coupled application
processes in a super-computing center to solve a single extremely large
problem instance. In this scenario the design of algorithms requires a dif-
ferent approach with respect to shared memory systems, because the non-
uniform and explicit nature of the inter process communication makes its
role much more significant. The natural control model for distributed sys-
tems is Message Passing (MP). In the MP model an application is com-
posed of multiple processes that communicate by explicitly interchanging
messages among each other. With respect to conventional programming
models, in the design of message passing algorithms the data placement
and partitioning is a first-class element, on par with the control flow defi-
nition. A second difference is that remote sub-activities are not invoked by
name, as the routines used in shared memory programs. Rather, the receiv-
ing process is responsible for executing the proper code after receiving the
messages. The explicit decoupling of communication and computation al-
lows for message passing applications to scale well with the number of pro-
cessors used, which is the main advantage. Also, the message abstraction
guarantee portability over a wide range of network architectures. Various
realizations of the message passing model exist, such as the Aggregate Re-
mote Memory Copy Interface (ARMCI)[49]. However, one standard have
dominated all the others over time, the Message Passing Interface (MPI)
and is become the de facto standard for HPC parallel applications.

3.1.1 Message Passing Interface

Message Passing Interface (MPI) is an interface specification for realizing
libraries that support message passing operations[29]. It specifies names
and calling conventions of communication subroutines for their use in C
and Fortran applications, hence it allows to reuse existing languages, com-
pilers and development environments. The result is a practical, portable
and efficient interface for distributed computing. The initial target of MPI,
in the 1980s and 1990s, were distributed memory architectures with one
processor and one memory on each node. Thus, MPI favors the single
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program multiple data (SPMD) program structure, and to a lesser extent
Master/Worker. Later, the implementations have been extended to also
exploit shared memory multi-processor architectures and hybrid systems,
while maintaining the initial distributed memory model.

In MPI each process has a separate memory address space. The data
structures have to be manually partitioned by the programmer, and the
computation tasks mapped over the application processes. Data transfers
are performed by copying a part of a process address space into the mem-
ory of another process. The most common API calls are for two-sided
communication, in which data transfers are cooperative: they require a
first process to execute a send operation and a second process to execute
a receive operation. Examples are the MPI_send(), MPI_recv() and
MPI_Sendrecv() calls. Aggregate and collective operations are also avail-
able to facilitate communication within groups of processes, such as the
MPI_Bcast(), MPI_Reduce(), and MPI_Alltoall(). Because of the
collaborative nature of the communication primitives, the algorithms must
be break down into parallel steps with explicit synchronization points. How-
ever, one-sided communication primitives have been introduced starting
from version 2 of the MPI standard, allowing remote memory access and
decoupling data transfer from synchronization.

Since version 2, MPI also explicitly accepts a hybrid programming model,
in which multiple threads are executed inside each process to exploit the
multiple cores of SMP processors. The standard defines 4 levels of thread
safety that the programmers have to select which pose increasing restric-
tions on the way the API can be called by the threads. The levels allow to
reduce the need for the run-time checks and the corresponding overhead in
applications that use a single thread for inter-node communication, while
ensuring correctness if needed. There are no further details on how multi-
threading should be used, nor APIs for intra-process synchronization, how-
ever this allows to freely mix MPI with shared memory parallel paradigms
such as standard POSIX Threads or OpenMP.

3.1.2 Active Messages

Active Messages (AM) are an extension to the message passing model that
allow messages to perform computation on their own upon reception, asyn-
chronously with the activities executed by the destination process [21]. The
purpose is to reduce the overhead of message passing interfaces, with em-
phasis on reducing the latency of communication and removing the need
for buffering. To achieve this goal, active messages are designed to exploit
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the capabilities of the network hardware and provide low-level access to
the software programmer. The basic idea is to introduce in the header of
the messages the address of a user-level handler that will extract informa-
tion from the message and integrate the data in the ongoing computation of
the destination process. The handler must execute quickly and to comple-
tion, thus the heavy weight computation has to be performed by the main
threads. The same requirements for quick and complete execution match
very closely those of the interrupt handlers executed by most network ar-
chitectures on message arrivals. Hence, active messages can use the mech-
anisms already existing, given adequate support from the operative system
and the runtime libraries.

Active Messages are not buffered, except when required by for network
transport, thus they avoid the overhead related to copying the data. In ad-
dition, by allowing the hardware interface to run user-level handlers it is
possible to reduce the overhead up to an order of magnitude. Also, the
asynchronicity greatly reduces the latency of the operations and allows to
reduce the need for synchronization steps with respect to message passing
model.

Active Messages is not a complete parallel programming paradigm, but
a mechanism useful to implement these mechanisms efficiently. All par-
ticipating processes must share the addresses of the message handlers, or
corresponding table indexes, hence the mechanism is mainly suited to the
SPMD programming model. Multiple implementations of AM exist, for
various network protocols and communication libraries, such as UDP and
MPI. The success is evidenced by the introduction of one-way communi-
cation primitives in MPI version 2.

3.1.3 Hybrid programming

Distributed memory and shared memory programming paradigms have dif-
ferent strengths and weaknesses, and they typically map on parallelism at
different levels of granularity. Therefore the two models are often com-
bined in the design and implementation of parallel applications, creating
a hybrid programming model. The basic idea is to use message passing
across the distributed nodes of the system, usually with MPI, and a shared
memory model within each thread. The approach allows to increase per-
formance with respect to the basic MPI implementation by exploiting a
finer granularity of parallelism at the node level. Some applications clearly
expose multiple levels of parallelism, hence greatly benefit from this ap-
proach. Introducing shared memory parallelism into an existing MPI ap-
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plication has also various drawbacks, such as the overhead introduced by
thread creation and synchronization, the interaction between two runtime
libraries, and limitations in controlling work distribution and synchroniza-
tion. The main weakness of the hybrid model is the increased complexity
due to the combination and interaction of two different programming mod-
els, however in many cases it provides clear performance improvements [6,
10, 42].

3.2 Partitioned Global Address Space

Message passing, the de facto standard for HPC distributed systems, is
generally considered harder to develop than shared memory programming
models. However, distributed memory architectures achieve better scal-
ability than shared memory ones, and the abstraction introduced by the
communication interface allows for better portability. For these reasons,
Distributed Shared Memory (DSM) models have been proposed since the
early 1980s to combine both approaches by providing the illusion of a
shared memory space on distributed hardware architectures [50]. Various
implementations have been proposed which can be grouped in three main
categories: hardware implementations that extend conventional cache tech-
niques, operating systems that provide data sharing through virtual memory
management, and compilers that automatically convert shared accesses in
synchronization primitives.

Usually DSM systems provided a relaxed memory coherence model,
because the latency of remote memory accesses are high and non uniform
making strong coherence costly in terms of performance. To force coher-
ence on individual accesses, the systems offer mechanisms that must to be
explicitly specified by the programmer or high level software routines. An
application can behave incorrectly when executed on systems with a weaker
coherency model than the one used for the original implementation, hence
the relaxed coherency of DSM models significantly reduces the portability
of the applications. The problem is further enhanced by the complete lack
of locality of access and awareness of data placement. Thus, DSM models
do not completely realize the goal of simplifying the execution model, nor
promote fast and portable algorithm implementations.

The Partitioned Global Address Space model is a more recent approach,
which extends the DSM model by implementing a locality-aware paradigm
[20]. In the PGAS model multiple SPMD processes share a part of their
address space, like in the DSM one, however the global space is partitioned
and a portion is local to each processor. In addition, PGAS implemen-
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tation usually make distinction between local and remote memory refer-
ences, permitting the allocation of local structures and explicit buffering.
Hence, PGAS programs can exploit data locality, by having each process
perform computation on the data located on its portion of the shared address
space and using the local (non shared) space for temporary computation.
Data structures can be allocated either locally or globally, and typically the
distribution of global data structures is under control of the programmer.
Programmers can access remote data using simple assignments or pointer
dereference operations, the compiler and runtime support are then respon-
sible for converting remote operations into lower level messages. Runtime
libraries and language have been developed to support the PGAS memory
model, most of the under the DARPA’s High Productivity Computing Sys-
tems (HPCS) project[22] and are described in the following sections.

3.2.1 GASNet

GASNet [9] is a language-independent specification for a low-level net-
working layer. It provides communication primitives specifically designed
for implementing parallel global address space in SPMD languages and li-
braries. The specification is partitioned in two layers to maximize porta-
bility. The lower layer (core) is implemented on top of the features of
each network architecture. It provides an interface strongly inspired by Ac-
tive Messaging (see subsection 3.1.2) and allows each process to register a
memory segment for shared access. The upper layer (extended) provides
APIs for remote memory access and various collective operations. It pro-
vides barrier-based synchronization, but no mutual exclusion. GASNet is
mainly intended as a compilation target for PGAS languages or as a tool for
developing runtime libraries, not for direct use. In addition to the specifica-
tion, reference implementations are available for several widely used net-
works and communication interfaces, such as InfiniBand, UDP and MPI.

3.2.2 X10

X10 [54] is a parallel language developed since 2004 by IBM, as part of
a project funded by the DARPA’s HPCS program[22]. The language is
object-oriented and derived from the Java language, however an extension
of C is also available, called Habanero C. The main goal of the language
was to permit a tenfold improvement in productivity when programming
large scale, high-performance super-computing systems. The program-
ming model adopted is called the Asynchronous, Partitioned Global Ad-
dress Space (APGAS) model. It extends the standard serial programming
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model with two core concepts: places and asynchrony. The memory is par-
titioned in places, each with one or more lightweight thread of execution.
The concept of places can be naturally mapped to the nodes in a cluster, or
to the single tiles in a tiled many-core system. Each thread can access its
own memory, switch place, or spawn asynchronous threads. Data locality
is exploited explicitly by using the places, while communication between
places is performed when an activity is moved to a different place along
with its context. Mutual exclusion is offered in the form of conditional
critical regions, and synchronization is realized by grouping asynchronous
activities with an implicit barrier.

3.2.3 Chapel

Chapel [16] is a portable and open source parallel programming language,
designed and developed under the DARPA’s HPCS program[22]. Chapel
targets general parallel programming, without focus on a specific type of
parallelism or granularity. It supports a multi-threaded execution model in
which each process is composed of multiple concurrent tasks. Each task
can create other tasks, permitting nested parallelism. The memory model
used is the PGAS model, and data structures can be described at different
levels of abstraction, using either a global or local view. The global view
allows to compute on distributed data structures, using global indices, while
the local view allows to exploit data locality and even use message passing.
Synchronization is available in the form of a sync keyword that causes the
task to wait for all the sub-tasks created within its dynamic scope. Chapel
provide a lightweight mechanism for mutual exclusion through synchro-
nization variables, inspired by the Cray MTA and XMT features (see sec-
tion 3.3). Synchronization variables are like normal variables, but also have
a full/empty state which is used by blocking read and write operations.

3.2.4 Global Arrays

The Global Arrays (GA) [48] toolkit is a portable API for providing shared
memory programming interface on distributed-memory computers. It was
created in the U.S. Pacific Northwest National Laboratory (PNNL) and has
been in public domain since 1994. Global Arrays provides a logical shared
view of physically distributed dense arrays and multi-dimensional arrays,
with asynchronous one-sided access to shared data. It exposes the non uni-
form memory access of distributed systems to the programmer, but gives
high flexibility in partitioning the data and provides APIs to obtain locality
information dynamically. The execution model is the multiple instructions
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multiple data (MIMD) model, compatible with Message Passing Interface
(MPI). The programmer is free to mix both the shared-memory and the
message-passing paradigms in the same program and take advantage of the
underlying message passing libraries. The various processes can be syn-
chronized using mutexes, fences and barriers.

3.3 Cray XMT

The high latency of Distributed Shared Memory (DSM) systems is several
order of magnitudes higher than the latency of arithmetic instructions. This
causes the processors of DSM systems to frequently stall waiting for data.
The traditional solution to reduce the processor stalls is to use a hierarchi-
cal memory structure, with multiple levels of cache. However only the first
level is actually capable of keeping up with the processor speed, while in
large DSM systems almost all the memory references hits remote memo-
ries. The consequence is that conventional algorithms designed for systems
with comparable memory and processor speeds are not applicable.

Cray multithreaded architectures MTA-1, MTA-2 and XMT proved that
multithreading is an efficient mechanism for hiding memory latencies, rather
than reducing them[28, 36]. When a thread is stalled waiting for a memory
result a different one can be executed, keeping the processor busy. On the
Cray XMT threads are lightweight objects mapped onto hardware streams.
Each processor has 128 streams, each composed of 32 general purpose reg-
isters, a target register and a status word. In addition, 64 KBytes of in-
struction cache are available. On each clock cycle the processor selects one
stream from those eligible for execution, in a fair manner. The processor
stalls only when no stream has instructions ready. On the other hand, each
thread can have a single instruction active inside the pipeline. The pipeline
includes three functional units: the A unit performs arithmetic operations
as well as bit operations and fused multiply-add, the C unit can execute ei-
ther a control or an add operation, finally the M operation can issue a read
or write operation. The clock speed is 500 MHz, producing a peak perfor-
mance of 1.5G floating point and 500M memory operations per second.

The memory system of the Cray XMT is composed of commodity DDR
components, logically arranged in a global, shared address space. The
memory unit (M) in the processor can distribute and/or scramble virtual
addresses when mapping them to physical ones. Certain memory regions
are mapped to local addresses unscrambled, such as the code section, while
most of the address space is both distributed and scrambled. The distri-
bution and scrambling guarantee that memory references of patterns larger
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than a single cache line are evenly spread across all network interfaces,
memory controllers and banks.

The memory system also provide a fine grained synchronization mech-
anism, thanks to an extended memory semantic. To each memory word are
associated several additional bits: a full/empty bit, a pointer forwarding bit
and two trap bits. Pointer forwarding marks memory words which contains
memory pointers, allowing to automatically generate new memory refer-
ences to follow a pointer chain. Trap bits are used by the runtime for syn-
chronization or workload distribution. The full/empty bits instead is used
by blocking memory requests that are written in the form operationXY ,
where X is the state required to proceed with the operation and Y is the
state after the operation. For example, the readfe operation waits for a
memory word to be full and atomically sets the bit empty. The extended
memory semantic allows for extremely lightweight and fine grained thread
synchronization.

The MTA-1 and MTA-2 were developed using expensive custom ASICs,
making them difficult to sell. On the other hand, the XMT is built on the
Cray XT3, a distributed memory systems which supports the MPI program-
ming model, by replacing the AMD Opteron processors with the Thread-
storm processors, greatly reducing the cost. However, the Threadstorm de-
sign is highly focused on irregular DSM applications, and cannot exploit the
locality existing in more conventional algorithms. Also, the architectural
mechanisms introduced in the processor to support massive multithreading
pose a limit on the processor frequency and decreases the throughput of
single threads. The reduced performance of applications implemented with
the message passing model reduce the effectiveness of the XMT as a gen-
eral purpose HPC system, and relegates it to graph processing applications.

3.4 Conclusions

The objective High Performance Computing systems is to execute com-
plex applications on extremely large data sets at the highest possible perfor-
mance. This require the use of multi-core and distributed systems, and con-
sequently of parallel programming models, which are generally designed
for regular and partitionable workloads. Multiple programming models and
languages have been proposed to address graph-based applications with
irregular memory patterns, mainly centered around the concept of a dis-
tributed memory space. Software approaches introduce an abstraction layer
over the underlying architecture which allows for greater portability, but
introduce overheads over bare execution. On the other hand, the cost of
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hardware architectures, such the Cray XMT, and above all their limited
flexibility greatly harms their commercial viability. For this reason there is
a need for more cost-effective hardware architectures capable of executing
both regular and irregular algorithms.
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CHAPTER4
Abstract Architecture

This chapters introduces the architecture template that has been designed in
this research project to address the problems of efficient execution of irreg-
ular applications. We start by providing a high level overview of the system.
Then, we delve into the details of the required features, and how the system
provides them. The details given in this chapter are as much independent
as possible from the specific features of existing commercial processors
and devices. This allows the abstract architecture to have multiple concrete
implementations, adapting to the specific components selected. Platform
specific details are described in Chapter 5.

An overview of the proposed HPC system architecture is shown in Fig-
ure 4.1. The left part shows a cluster level view, while a detail of each node
architecture is shown on the top right. Finally a zoom on each core is pro-
vided in the bottom right corner. At the higher level, the system consists
in a cluster composed of many nodes, which are interconnected through a
high performance network. The network topology and protocol used for
the communication are not relevant for the architecture operation. The
network detailed characteristics only affects the system performance and
the parameters required to optimize the system configuration. Every node
of the cluster includes a many-core system composed of many processing
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Figure 4.1: Hierarchical overview of the architecture: whole system, single node and
single tile detail

tiles, a memory controller, peripheral devices and a network interface. All
the tiles, labeled T Figure 4.1, are connected to each other and to the shared
devices by a network, or equivalent communication subsystem. Each tile,
in turn, includes a core, a local memory and a custom memory interface
adapter. The private memory exists for performance reasons, and its pur-
pose is storing in proximity of the core those portions of the application
address space that shows locality of accesses, such as the code segment and
the call stack. Hence, the abstract concept of local memory can be mapped
either to a concrete private scratchpad, or to a private first level cache. The
requirement of local memory components is not a real constraint, because
they are already present in all existing multi-core and many-core architec-
tures, in one of the two variants mentioned.

We have enhanced the base multi-core system with three on-chip custom
components, highlighted in Fig. 4.1 with a bold border: the Global Mem-
ory Access Scheduler (GMAS), the Global Network Interface (GNI) and
the Global Synchronization manager (GSync). These components jointly
provides a set of features that enable efficient execution of irregular appli-
cations:

• a transparent global address space;

• reduction of dynamic hot-spots formation in the network and memo-
ries;

• hiding of network latency through multithreading;

• global, lightweight and fine-grained synchronization primitives.
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The GMAS is a small component placed between the data port of each
core and the on-chip network, in order to intercept all the data accesses
and modify the to extend the memory address space and the semantic. The
GMAS also connects to the interrupt port of the core, in order to trigger
the execution of specific software routines. The GNI, instead, is a spe-
cial network interface, shared among all the tiles in a node. It provides
access to the remote sections of the global address space though memory
mapping. Lastly, the GSync provides support for the synchronization prim-
itives. It includes the structures required for fine-grained synchronization
at the granularity of a single memory word.

All the blocks are designed with the constraint of requiring minimal
changes to pre-existent components, such as processors, networks and mem-
ories. Thanks to this low impact on the system architecture, the components
can be disabled at run-time when executing traditional HPC application
with high computational intensity and data locality. This creates an ar-
chitectural template capable of achieving good performance with irregular
applications without degrading the performance of regular ones.

4.1 Global address space

The first feature offered by the proposed architecture is the hardware sup-
port for a global address space, shared across all nodes and application in-
stances. A single, global address space allows to use simple programming
paradigms based on shared memory, and simplifies the prototyping of new
irregular applications.

To create the global address space, a part of the memory available in
each node is reserved to be part of the global range. All these regions are
then composed in a global address range, logically contiguous but phys-
ically distributed on the whole system. The hardware implementation of
the global memory consists in exposing the whole global address space to
each of the cores thanks to the GMAS, and in automatically forwarding re-
mote memory requests to the corresponding nodes. Three different address
spaces existing in the system are shown in Fig. 4.2. On the left, there is the
address space visible to each core. This includes the eventual private mem-
ory space in the local memory, the memory mapped peripherals, the node-
local memory range, and the system wide global memory range. The ad-
dress space represented in the middle is composed of the physical addresses
seen one the on-chip network. The difference with respect to the first space
is that the virtual global memory space is replaced with the physical mem-
ory ranges of the components on which it is mapped onto, that is the DRAM
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Figure 4.2: Address Space Layout, as seen by the cores (a) and the on-chip network (b)

modules and the GNI interface. A small part of the global address space is
mapped into a reserved portion of the DRAM memory present in the node.
The remaining addresses are remapped onto the memory mapped interface
of the GNI. The mapping of the addresses is performed by the GMAS in-
serted between the data port of the cores and the on-chip communication
network, by replacing the addresses in each data transaction. This allows
to directly access to the portion of the global address space that is allocated
locally in the node, with the smallest overhead possible. A second mapping
function is included inside the GNI, which injects the remote memory por-
tions in the on-chip address space and translates the memory addresses of
the requests into network addresses.

The GNI acts as a transparent bridge between the node-local network
and the system network, converting the transactions from one protocol to
the other. Its simplified, high level, architecture is shown in Fig.4.4. The
actions performed by the GNI are the decoding/encoding of memory trans-
actions, their encapsulation inside network packets and the translation of
addresses and network identifiers. The GNI handles outgoing and ingo-
ing transactions concurrently, using two separate paths. Both categories of
transaction are handled with a First Come First Served (FCFS) policy. Long
latency requests are received by the GNI as memory mapped load/store
transactions on its internal memory mapped interface. It extracts from the
memory address both the identifier of the destination node and the physical
memory address, used at the destination. Then, it creates a network packet
that includes the requested operation and its arguments as payload. The
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GNI also generates a globally unique transaction identifier, formed joining
the address of its node to the internal transaction identifier used by the com-
munication subsystem (also called transaction descriptor, or tag by different
protocols). Hence, each packet includes the whole information required to
route back the response and match it with the originating core. The GMAS
connected to a core has complete information on the threads running on it,
and can match each response with the corresponding thread. When a packet
reach its destination, the GNI decodes incoming the request and converts it
into a memory access towards the local DRAM, then sends the responses
back to the originating core along path an analogous that followed by the
request.

TX channel RX channel

..
.

..
.

Slave interface Master interface

1. request 
from core

ID table

6. access 
to DRAM

out decoder

out encoder

in encoder

in decoder

2. forward 
request

3,8. net transmit

5. handle 
incoming 
request

11. back to 
core

4,9. net receive

7. create 
response

10. handle 
response

Figure 4.3: High level structure of the GNI

In the proposed architecture all the global load and store transactions
are non-posted, i.e. both type of transaction require a response from the
receiver. The consequence of requiring a response for store transactions
is that they require a full round-trip over the network, as it happens for
the load transactions, increasing the completion time. The reason for this
decision is to guarantee sequential consistency in the memory model be-
tween the requests generated by each single application thread, in order to
facilitate programming the system. The sequential consistency is specially
critical between memory and synchronization operations, to ensure that at
the end of the critical sections the correct memory state is visible by other
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processors. Relaxing this coherency model in a distributed system could
improve performance but would introduce complex and un-deterministic
behaviors, nullifying one of the purposes of the proposed architecture that
is reducing the development effort.

As previously said, the GMAS is placed between the cores and the on-
chip network, hence it can remap a part of the global address space onto
the local physical memory, allowing a direct access to it without passing
through the GNI. In addition, the GMAS has the possibility of rewriting all
the addresses of global memory operations, modify the control information
associated to them and even modify the request types. This feature has been
used to design the synchronization primitives presented later in this chapter.
Also, it can be used to overcome the limitations of the pre-existing on-chip
interconnection when designing an actual implementation of the abstract
architecture.

4.1.1 Reducing hot-spot formation

One of the problems in the optimization of parallel and distributed systems
is the run-time formation of hotspots, due to a temporary or permanent
concentration of the requests or activities on few nodes of the system. This
kind of concentration corresponds to a double drop in performance. First of
all, the concentration is caused by uneven distribution of the data or unbal-
anced distribution of the workload, which means that part of the system is
underused. Secondly, the hotsposts become the bottleneck and damper the
scalability of the application. If a significant fraction of global memory ac-
cesses are directed to a single node, then the system performance is bound
to the bandwidth of its network interface. The desired optimal behavior,
instead, is to evenly distribute the accesses on all the nodes.

One way to achieve even distribution of the memory requests is to use
the complex, non-linear mappings of memory addresses to nodes. The
mapping must be designed to minimize the clashes caused by concurrent
visits on the shared data structures. This approach has been used for op-
timizing parallel access to memory banks, e.g. in [63], and to distribute
the accesses to the nodes of the Cray MTA and XMT supercomputers [7].
We followed the same approach, and added a hashing function inside the
GMAS, which scrambles global memory addresses before mapping them
on the system nodes. The function is configurable, and preserves very few
last-significant bits, in order to distribute the addresses on the nodes with a
very fine granularity, e.g. 64 bytes as the Cray XMT [28].

The hashing of memory addresses has the effect of breaking any struc-
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Figure 4.4: Hashing and translation of global addresses.

ture and variables which is larger than the hashing granularity, and distribut-
ing the accesses on the system. This is useful when during serial accesses
to data structures such as the adjacency lists commonly used in graphs and
trees. During those sequential scans, the probability of distributing sub-
sequent requests on multiple nodes is increased by the scrambled address
space, and as a result the the network traffic is more balanced. In addition,
the hashing function allows to spread the data structures evenly on all the
nodes in the system, independently on their size and without requiring an
explicit configuration of the application [60].

4.2 Latency tolerance

In addition to providing the global address space, the GMAS includes var-
ious features to hide the long latency of network transactions through mul-
tithreading. The goal is to automatically exploit task-level parallelism to
improve both the processor and network bandwidth utilization, by execut-
ing multiple threads while waiting for a response from the network. To
achieve this, the GMAS performs the following actions when it identifies
a remote request. First of all, it takes charge of waiting for the answer, in-
ternally keeping track of the pending status of the current thread. Then, it
notifies the event to the core to start a context switch and, finally, it selects
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Figure 4.5: GMAS internal structure

the next thread to execute. These actions involve a set of hardware compo-
nents inside the GMAS and of software routines for the context switch.

Figure 4.5 shows the internal structure of the GMAS. The largest block
is the Load/Store Buffer (LSB), which stores information required to han-
dle the remote requests. Each slot in the LSB corresponds to one of the
threads that can run on the processor. The slots include a status bit and a
field to store the result of remote requests when they are received. While
a request for remote transaction is stored inside the LSB the GMAS also
sends an interrupt to the core. In turn, the software interrupt service rou-
tine (ISR) associated to the GMAS asks the scheduler to perform a context
switch. From that moment the core execution is decoupled from the net-
work transaction, and the latency of the remote operations is hidden. The
specific details on how the core pipeline handles an external interrupt and
jump to the ISR vary from core to core. However, this mechanism allows to
immediately identify long latency operations independently from the core
characteristics, and without changing its internal implementation.

One reason for introducing the buffer inside the GMAS is to support
the use of simple and low-power cores with in-order pipeline. The LSB
provides the memory space to manage multiple pending memory requests
even if the core does not include internal buffers because it is designed
to execute a memory access at the time. Also, even in cores that support
concurrent memory accesses, the buffer can be smaller than required to
cover the very long latencies existing in distributed systems.
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In many architectures the memory instructions that reach the memory
access stage, or an equivalent stage, are not allowed to complete, preventing
the call to the interrupt handler. This would prevent the core from activat-
ing the scheduler and performing the context switch to execute a different
thread. We want our architecture design to support also cores with this lim-
itation. Hence, in addition to the interrupt the GMAS also sends to the core
a fake memory response. When restoring a thread context and exiting from
the interrupt service routine, the program counter is set to the address of
the last instruction executed, while normally execution resumes from the
next address. This change allows the core to re-issue the memory request
that triggered the switch. When the GMAS identify this new execution, the
result is fetched from the LSB and returned to the core.

Another key component of the GMAS shown in Figure 4.5 is the hard-
ware scheduler. The scheduler selects the next thread for execution after
identifying a remote request, and exposes its ID to the software through one
of the memory mapped registers. The GMAS always triggers the scheduler
together with the interrupt signal sent to the core. Thus the scheduler la-
tency is masked by the time required to save the current thread context. In
addition, the hardware scheduler inside the GMAS does not require to ac-
cess the main memory, because the statuses of the threads running on its
core is stored in the LSB.

4.3 Global synchronization

Regular data structures, such as dense matrices, allow to identify most of
the data dependencies at design or compile time. Conversely, algorithms
based on arbitrary graphs and trees require run-time conflict avoidance, be-
cause the interference depends on the data instance. Therefore, the syn-
chronization primitives offered by a system have a huge impact on both the
applications complexity and performance. The natural granularity for man-
aging concurrent accesses to graph structures is the single node. Thus, com-
mon APIs based on mutex variables, such as the POSIX Threads[33], incur
in excessive overhead, both in term of memory size and time. But allocat-
ing a mutex for each node causes a huge increment in the size of the data
structure. It is possible to reduce the number of mutexes while supporting
the same granularity using software mechanisms, for example storing the
addresses concurrently accessed in a shared look-up table. But software ap-
proaches increase the time for acquiring mutex ownership. Consequently,
there is a need for hardware support for fine-grained synchronization, which
permits precise control of the threads with low overheads.
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Core

GMAS lock reg.
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in a single access barrier counters

Figure 4.6: Lock-based synchronization offered by GMAS and GSync components.

One of the custom hardware components added to the system is the
GSync, which includes the structures required to provide support for fine-
grained synchronization. In order to adapt the abstract architecture to any
existing instruction set architecture (ISA) and any on-chip communica-
tion subsystem, we decided to implement the synchronization interface us-
ing a set of memory mapped registers inside the GMAS. The application
programming interface (API) exposed to the software applications defines
three operations, lock(address), try_lock(address) and unlock(address),
which respectively take ownership of a memory location, attempts to take
ownership or releases it. The software can execute any of these operations
by writing in a dedicated register. For a minimal implementation of the
GMAS, with small area requirements, the lock operation can be provided
by the software run-time, using the hardware try_lock. The use of memory
mapped registers makes the interface independent from the ISA, and allows
using cores that do not provide instructions for mutual exclusion. The deci-
sion of placing the interface inside the GMAS, instead, allows to use global
addresses in the synchronization operations, and to reuse the infrastructure
for the remote operations introduced to provide the global address space.
On the other hand, the GSync physical interface uses physical addresses,
and its interface has to be adapted in the implementation.

Inside the GSync is located a fast, associative table that keeps track of
the addresses locked by the application. The hardware implementation has
two main benefits over software tables. First of all, using a hardware as-
sociative memory allows to greatly reduce the time required to check if an
address is included in the locks table. In addition, since the lock table and
the corresponding logic is enclosed in the GSync component, synchroniza-
tion requests can be implemented using a single request across the on-chip
interconnection and the system network. By requiring a single round trip,
the GSync reduces the bandwidth used for synchronization purposes, and
solves the problem of concurrent accesses by the multiple cores inside a

44



i
i

“thesis” — 2015/1/17 — 14:48 — page 45 — #51 i
i

i
i

i
i

4.4. Programming and Execution Model

system node.
In addition to exclusive access to the shared data structures, parallel ap-

plications require also a mechanism for ordering the steps of the algorithms.
One of the solution is the use of barriers, which force the threads/processes
to stop until all other threads have reached the same barrier. The use of bar-
riers in parallel algorithms is specially natural in data-parallel applications,
when the parallelism is obtained by executing concurrently different itera-
tions of a loop. An example is given in Algorithm 2 and 3. Dynamic barrier
constructs can be implemented in software using the operations for mutual
exclusion provided by the system. However performing multiple memory
accesses across the network introduce a large latency, which increases with
the diameter of the system network, reducing the effectiveness. For this
reason the GSync component can be extended to add the barrier counters
and the hardware logic to provide scalable barrier synchronization. Studies
on efficient implementation of barrier synchronization on distributed sys-
tems has been studied extensively in the past, e.g. [44]. Hence this research
work does not go in details about the low-level details required to maximize
scalability and reduce overhead.

4.4 Programming and Execution Model

This section describes the programming model and execution flow of the
designed architecture. Thanks to the custom hardware modules specifi-
cally designed for this architecture, the programming model can replicate
the shared-memory semantic on top of a distributed memory system, with
POSIX-like multithreading and lock-based synchronization. The applica-
tions are designed following the Single-Program-Multiple-Data (SPMD)
paradigm, where every core of the system runs the same application with
different inputs. At system startup an unique identifier is assigned to each
core of the system, which is stored inside the GMAS fore quick retrieval.
In addition, each node is assigned a sequential identifier in addition to its
network address. These identifiers are exposed to the software run-time
and to the application, to distinguish the different instances and distribute
the workload across the system. When launching an application, a prede-
fined master core initializes the global data structures used by the system
run-time, while the remaining application instances are blocked waiting on
a barrier.

As discussed in Section 4.2, software multithreading is used to toler-
ate the latency of remote memory accesses. Every time a remote memory
reference is issued, the thread is automatically preempted and a different
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thread is scheduled on the core. Alternatively, the threads can explicitly
yield the core on which are run, if the algorithm includes a low-priority
segment. Since irregular applications access the global memory very fre-
quently, context switches caused by remote accesses are highly frequent.
Therefore, the execution model does not include the concept of preemption
based on periodic time slices, as it happens instead in traditional multi-
threaded systems. It is still possible to add interval based preemption if
needed by a specific implementation, by scheduling a periodic interrupt,
but generally the mechanism is not required.

Communication among threads should take place only through the global
address space, whether they run on different cores or on the same one. The
portion of the memory in each node which is not used for the global address
space can be used by the run-time or for optimizing the applications, e.g.
storing local work-lists. Conflicts between threads on the data structure is
prevented using the explicit lock, try_lock and unlock primitives, described
in Section 4.3. The barrier routine is available to synchronize the algorithm
execution across all the cores in the system or inside a single node. Since
the synchronization happens in the global address space, it can generate re-
mote requests and automatically trigger context switches. Moreover, every
time a thread cannot acquire a lock it explicitly yields the core, in order to
prevent deadlocks.

4.5 Conclusions

The abstract architecture described in this chapter provides the set of fea-
tures ideal for the efficient execution of irregular applications, implemented
with a simple programming model. The three custom components proposed
can be introduced in existing architectures with minimal modifications, re-
ducing the cost of the system and permitting the execution of traditional
workloads with regular data structures. The remainder of this manuscript
goes into the details required for implementing the architecture using ex-
isting commercial processors and presents the tools developed to assess the
effectiveness of the approach.
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Architecture Implementation

The abstract system architecture designed during the research project was
described in chapter 4. The abstract architecture includes the high level
design of the components, and the generic structures and logic required to
provide the features required for efficient execution of irregular applica-
tions. Part of the design is necessarily generic, because one of its goal is
to be applicable to a wide range of existing distributed systems, composed
of different processors and devices. The details in the actual implementa-
tion of the new custom components depends on the characteristics of the
commodity components, so they have to be detailed in a later design step.

This chapter describes the details of a concrete prototype implemen-
tation on FPGA, then discusses possible implementation issues that can
be encountered when using commercial multi-core processors and possible
solutions. Finally, it presents a lightweight simulator that has been devel-
oped to assess the performance of hypothetical implementations without
incurring in the cost of a full implementation.
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5.1 FPGA Prototype

To evaluate a concrete design of the architecture we implemented a pro-
totyping platform using multiple Field Programmable Gate Array (FPGA)
devices. The decision of implementing a prototypes is due to the fact that
FPGA systems can integrate a very large number of cores and I/O inter-
faces, hence they allow to emulate multi-core and many-core systems with
lower execution times than achievable using simulators, and at the same
time emulate all the low level details [62].

Figure 5.1: System prototype, implemented with 4 Xilnx ML605 boards.

The FPGA design has been implemented using 4 Xilinx ML605 boards,
each mounting a LX240T Virtex-6 FPGA and representing a node of the
distributed system. Since the ML605 board has a limited number of gen-
eral purpose connectors, each board mounts an FMC XM104 daughter
board[25], which provides 8 SMA connectors and 2 Serial ATA (SATA)
connectors. The four boards communicate through a fully connected net-
work, composed of six links. The eight SMA connectors in each daughter
board are used to implement two full duplex links, with differential signal-
ing. The third link in each board is realized using a SATA cable connected
to the daughter board. Both SMA and SATA connectors are connected to
identical RocketIO GTX transceivers inside the FPGA, which share a single
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clock source. Hence, the only difference between the links is the physical
medium. Communication between the boards is done using the Aurora pro-
tocol, a lightweight link-layer protocol developed by Xilinx for high-speed
serial links [64].

The architecture of each node is composed of off the shelf building
blocks provided by Xilinx, with the addition of custom implementations
of the components presented in 4. The standard components used in the
prototype are the ones distributed along with the Xilinx ISE Embedded De-
sign Suite, version 13.4. The many-core node architecture is composed of
multiple instances of the Xilinx MicroBlaze core[45]. The MicroBlaze is a
32-bit reduced instruction set computer (RISC) embedded processor, with
in-order, single issue pipeline. Its architecture is simple but highly config-
urable. For the prototype we used a very compact configuration, in order
to increase the number of cores in the FPGA, and consequently the number
of concurrent hardware threads. Since the target benchmark are not com-
putation intensive, we omitted both the floating point unit and the hard-
ware divider. In addition, neither the optional memory management unit
(MMU) nor the data cache are useful for irregular benchmarks, so are not
included in the cores. The instruction caches, instead, have been included
to eliminate the accesses to the main memory during the execution of the
benchmark kernels. Finally, each core is connected to a private Block RAM
(BRAM) memory, which is used by the applications as scratchpad, During
the configuration of the FPGA, the BRAM is initialized with a minimal
firmware, used for the system boot. With this configuration we were able
to instantiate 32 cores on each node, using 30.9% of the available look-up
tables (LUT)s.

Core 0 Core 1 Core 2 Core 3 Core 4 Core 6 Core 6 Core 7

Memory GNI GSync

Figure 5.2: Schema of the on chip communication subsystem, implemented using a two
level hierarchy of AMBA AXI buses.

The on-chip interconnect sub-system provided by Xilinx is the Advanced
Microcontroller Bus Architecture (AMBA) AXI4 bus, a common intercon-
nect solution for the design of systems-on-chip and embedded systems. The
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Xilinx implementation of the bus supports up to 16 masters, along with split
transactions, pipelined requests and burst messages [2, 40]. The platform
also includes a DDR3 RAM controller which provide access to the node
memory, a 512 MB SODIMM module. Finally, each node includes an
UART controller and a hardware debug module (MDM) that can connect
to up to 8 processors. Internally, the cores communicate with the mem-
ory controller, and the other devices through a two level hierarchy of AXI4
buses, as shown in Figure 5.2. The reason for adopting a bus hierarchy is
that the Xilinx implementation of AXI supports only 16 masters on a single
instance, not enough for a many-core architecture. Each top level bus is
shared among 4 cores and has 8 master ports, corresponding to the instruc-
tion cache and data ports, and a single slave. Hence it is a degenerate 8-to-1
bus with simplified decoding logic. The bottom level connects all the top
level buses to the shared devices: the DRAM memory, the Global Network
Interface (GNI) and the GSync. The GNI acts both as master and slave on
this lower level bus. The slave port is used by the cores to send remote
requests, while the master port is used by the GNI to access the memory
and GSync to execute the requests.

The clock frequency of the cores and other components in the FPGA
is 100 MHz, and the GTX transceiver provides a bandwidth of 625 Mbit/s.
Since our prototype is based on FPGA, its performance is limited by the low
operating frequency for the processing cores, custom logic and the on- and
off-chip interconnects. However, we downscaled the network bandwidth to
match the reduced clock frequency of the FPGA, maintaining the relative
performance of the various components coherent with those of commercial
systems. Therefore, the downscaling of processor operating frequency and
channel bandwidth does not invalidate the information obtained from the
prototype on performance scaling.

The following sections describe implementation specific details of the
custom components, and characteristics specific of the Xilinx building blocks
which impact the architecture design.

5.1.1 GNI

As described in section 4.1, every packet sent across the network includes
the address of the source node and an locally unique identifier that distin-
guish the thread which generated the request. In the prototype platform we
use the AXI transaction IDs as local identifiers. During the synthesis of
the architecture, the bus masters are enumerated and each receives a fixed
numeric identifier, unique at node level. The architecture includes 33 bus
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masters, divided into 32 cores and one GNI, hence at least 6 bits are re-
quired to represent the master IDs. In addition, the AXI protocol allows
each master to extend its identifier with additional bits. The reason for
the additional fields is to optionally permit out-of-order completion of the
memory requests. This characteristic is useful for our architecture, because
in a distributed system the latencies can vary widely. The out-of-order sup-
port allows to process the responses to remote accesses in the order they
are received by the GMAS, and resume the respective threads. Therefore,
the transaction ID generated by each GMAS is composed by its own fixed
identifier, extended with the number of the current thread. This extended
transaction ID, coupled with the source node address, can uniquely identify
network transactions and are used to route the responses back.

Because of the way they are constructed, the total size of the address and
identifier fields has to be large enough to number all the threads executed
on the entire system. However, the AXI is a parallel bus, and the trans-
action IDs are implemented as additional physical links which contribute
to the total system area. For this reason, the GNI has to store the network
routing data inside an internal table. The table stores network information
together with a local transaction identifier, used for accessing the AXI bus
and uses the data to create the response packets. The size of the table is
dimensioned to handle the peak request rate, according to the rate of the
network interface, and.

Not all architecture implementations necessarily need a table in the GNI
to match global and local identifiers. For example, a system which uses a
custom on-chip network could directly include the global identifier inside
the local packets. This other option would reduce the amount of memory
required inside the GNI, but at the cost of increasing the overhead in the on-
chip network. However, the approach used in the prototype implementation
is generally preferable, because decouple the on-chip and system networks.

The most restrictive limit in the prototype GNI implementation is caused
by the use of the AMBA AXI bus. The Xilinx implementation of the bus
allows each slave component to define the maximum number of read and
write operations that can process concurrently. When the limit is reached
subsequent requests are blocked by the bus arbiter until the slave replies to
the pending ones, moving the availability check from the slave to the bus
itself. Unfortunately, the maximum limit configurable is 32 for each of the
read and write channels. Since the GNI is forwarding local transactions
across the network, only 32 remote operations of the same type can be
performed concurrently, limiting the maximum bandwidth achievable. The
effects of this limit are shown in the results of the experiments presented in
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chapter 6.

5.1.2 GSync

The main component of the GSync prototype implementation is a lock table
exposed on the on-chip address space. The table stores one bit for each
entry of the table, which assumes the value 1 if the corresponding memory
address is locked or 0 when the lock is not take. When the GSync receives
a request for a lock it sets to 1 the corresponding entry and returns the
previous value, implementing a try_lock semantic. If the returned value is
0 it means that the lock is successfully taken, otherwise it means that the
lock was taken by a different thread. When instead the it receives an unlock
request it sets the lock bit to 0.

Since the GSync is a device shared at node level, each access from the
cores, or the corresponding GMAS, has to be atomic with respect to other
bus masters. The version 4 of the AXI bus has removed the support for
locked transactions previously existing, instead it supports paired exclu-
sive read and write operations with the semantic of load-link and store-
conditional. This kind of exclusive access is well suited to implement read-
modify-write atomic operations such as test-and-set often used by the pro-
cessors to atomically modify the memory. However, the requests to the
GSync require to execute the accesses in the inverted order, in fact the core
has to send (store) the address to the device and then read (load) the re-
sult of the operation. Therefore, the exclusive access mechanism provided
by the AMBA AXI4 is not suitable for implementing atomic access to the
GSync.

Instead of requiring atomic access support from the bus we mapped the
two operations to simple memory accesses, which are by definition atomic
when executed with the granularity of a memory word. The GMAS com-
ponent transforms try_lock requests into read accesses to the GSync, which
allow the GMAS to receive the previous status of the lock as read data. In-
stead, unlock requests are transformed into write accesses, because the do
not require a response from the component. The GSync interprets the ac-
cesses to the memory mapped lock table as synchronization operations and
performs the logic explained above. Remote requests are sent across the
network as normal read or write transactions, using the memory address of
the remote GSync components instead of the DRAM modules. Therefore,
all try_lock and unlock requests are implemented using single transaction
operations.

This implementation has two drawbacks. The first one is that only two
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operations are possible, therefore the lock synchronization primitive is im-
plemented as a software spin-lock using the hardware try_lock. After each
failed attempt, the software routine has to explicitly yield the core to allow
other threads to continue their execution, hence preventing deadlocks. But
this means that each failed lock imply a whole context switch, in addition
to the latency of the GSync access. The second drawback is that the address
which is the argument of the synchronization operations has to be sent as
part of a load request, which has no data payload. To achieve this, we ex-
posed the lock table directly in the GSync address range, and introduced
a direct mapping of memory addresses to table entries. The address map-
ping is performed by the GMAS, by inserting a part of the locked address
in the address of the GSync request. Since the address range of the GSync
is smaller than the address space of the local memory, multiple addresses
share the same entry causing potential collisions. The false collisions do
not invalidate the fundamental semantic of the single synchronization oper-
ations, rather they introduce unnecessary spins of the spin lock decreasing
performance. However, deadlock are possible in presence of nested locks,
when the arguments of the two locks collide on the same table entry. This
limitation could be a hard constraint for an actual implementation of the
architecture, however during the experimental evaluation we found that it
was possible to implement our benchmark algorithms without dangerous
nested locks. On the other hand, a more complete implementation would
require to extend the AXI4 protocol specification or misuse its features,
but the effort required is too high for a low-priority and platform specific
activity.

5.1.3 Run Time

The prototype platform does not run a traditional operative system, but a
thin run-time layer that provides basic functionality. The run-time layer has
been specifically designed and implemented for the prototype platform, so
its design depends on the features provide by the hardware components of
the prototype.

One of the activities required for the correct functioning of the system is
the assignment of unique identifiers to the cores and network addresses to
the nodes, in order to identify the various components and coordinate the
application execution. The core identifiers are statically determined dur-
ing the synthesis of the FPGA design, and stored inside the corresponding
GMAS components. Each core can read its own identifier from a mem-
ory mapped register inside the GMAS. In addition, each GMAS include a
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register in which the run-time layer copies the network address of the node
during the system boot, in order to provide quick access to it. The combina-
tion of network address and core IDs is used to compute a globally unique
core identifier, used by the applications to distribute the workload. In or-
der to simplify the implementation, also the network addresses are assigned
statically. Since all the FPGAs are configured using the exact same config-
uration bit-stream, to assign different network addresses we used different
configurations of the user DIP switch included on the ML605 boards. At
start up the GNI reads the value of the DIP switch and copies it in a mem-
ory mapped register, which is available to the cores. The same register is
used by the GNI router to route the network packets towards the correct
outgoing link.

During the boot of the system, the GNI automatically initializes the net-
work links, without requiring software intervention. In the meantime, each
of the cores executes a routine stored inside its local BRAM memory, which
clears the core status registers and the scheduler inside the GMAS, prepares
the memory space for the thread stacks in the BRAM, and finally copies the
node address in the corresponding GMAS register. After the network ini-
tialization is completed, a predefined core initializes the system data struc-
tures required by the run-time and allocated in the global address space.
The remaining cores are forced to wait on a special barrier variable, which
is allocated at a fixed address inside the global address space. The specific
addresses of the initial barrier are not mapped onto one of the nodes mem-
ories, like all the other global addresses, but on memory mapped registers
included in the GSync of the first node. These special registers are auto-
matically initialized during the FPGA configuration, thus during the boot
the barrier is already available for use by the various cores.

Because of the single program multiple data (SIMD) nature of the pro-
totype platform, each core starts with one active thread and all of them
executes the same application. Core identifiers and barrier based synchro-
nization are used by the application to perform the serial sections, such as
allocating and initializing the data structures. On the other hand, during
the parallel sections the threads on each core participate in the execution.
Also, each thread can spawn additional threads, which are allocated on the
same core. The scheduling of active threads is performed by the hardware
scheduler existing inside the GMAS components. In addition to the auto-
matic preemption on remote requests the threads can yield the processor by
writing the command in a GMAS register. The write operation makes the
GMAS raise the interrupt signal, in the same way as if a remote request
had been issued. The scheduling policy we decided to adopt is the round
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robin. In detail, the scheduler is implemented using a sequential scan over
the pending bits in the load store buffer of the GMAS, one cycle at a time
until a ready thread is found or all the buffer slots have been considered.
The maximum duration of the scheduling procedure depends on the num-
ber of LSB slots, which is 16 in the prototype. This simple implementation
reduces to the minimum the complexity of the logic and the corresponding
area. Still, it requires less time than needed to copy the 32 registers on the
thread stack to save the context, hence the scheduler latency is completely
hidden by the context save routine.

5.1.4 Area metrics

Table 5.1: FPGA resources occupation and maximum frequency of the custom
components.

# of slice registers # of slice LUTs fmax[MHz]
GMAS 1063 (0.4%) 1566 (1.0%) 230.3
GNI 450 (0.1%) 1915 (1.3%) 253.3
GSync 4711 (1.6%) 8054 (5.3%) 241.1
MicroBlaze 1510 (0.5%) 1457 (1.0%) 155.7
AXI4 (sum) 29694 (9.9%) 28868 (19.0%) 153.4

Table 5.1 shows the FPGA resource occupation and maximum operating
frequencies of the three custom modules presented in chapter 4, and the two
main building blocks from the Xilinx library, the MicroBlaze core, and the
AXI4 bus. The data are obtained from a full synthesis of the prototype, with
the percentage numbers relative to the Virtex-6 LX240T FPGA. Among the
custom components, the GMAS occupation is the most critical, because the
system hosts a GMAS module connected to each processing core, while
each node has only one GNI and GSync modules. For the GSync, almost all
the resources are used to implement the lock table, configured to have 4096
entries. Finally, the interconnection is also quite significant, consuming
one fifth of the available LUTs. In terms of operating frequency, none of
the custom components is critical.

5.2 Applicability to Commercial Processors

The prototype architecture we implemented is based on the building blocks
provided by Xilinx, which are not designed for high performance systems.
Namely they are the MicroBlaze core, which is a 32-bit scalar processor,
and the AMBA AXI bus, which is used mainly in the design of embedded
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systems. However, one of the claim of this thesis is that the approach used
to design the abstract architecture can be applied to existing commercial
processors and systems. For this reason, this section will describe in detail
how the multithreading support can be implemented in architectures based
on widely used processor families, such as Intel and ARM. The automatic
preemption of the threads on remote accesses is one of the main features
of the proposed architecture, but at the same time it is the only operation
that strictly interacts with the processor internal structure. Hence, the ap-
plicability of the architecture design to the cited families of processors is of
paramount importance, and shows the generality of the approach.

In the description of the multithreading support, in section 4.2, we stated
that the GMAS component is connected to the interrupt port of the corre-
sponding core. In fact, processors usually provide two similar mechanisms
for interrupting the execution of a program or task: interrupts and excep-
tions. Exceptions are caused by the execution of an instruction or by one
of its effects, such as unaligned memory accesses or memory faults. Inter-
rupts, instead, are caused by external and asynchronous events, generally
related to one of the system devices. The requirement for supporting auto-
matic context switches on remote memory accesses is simply the existence
of a mechanism for interrupting the application, whether it is in the form of
interrupts or exceptions.

The choice between interrupts and exceptions depends on how a specific
core handles the two classes of interruptions, and the possibility to apply a
little modification to the internal architecture of the core. The MicroBlaze
used in the prototype supports external interrupts, triggered by an external
interrupt signal, and optionally supports exceptions caused by the applica-
tion execution. The exceptions can be caused by the decoding logic (e.g.
wrong operation code), the execution unit or by the optional memory man-
agement unit (MMU). But all the components responsible for exceptions
are hidden inside the black box of the core, which is provided in binary
form. Thus it is not possible to generate exceptions different from the ex-
isting ones, and interrupts are the only viable implementation option. The
drawback of using interrupts is that the interrupt handler is called after the
current instruction completes and updates the internal state of the core. As
a result, the routine has to explicitly move back the instruction pointer, in
order to re-execute the memory instruction after resuming the thread. In
addition, the destination register of the memory instruction is replaced by
a fake value, sent by the GMAS. Hence, when the instruction is executed
again after the thread is resumed, the GMAS may not recognize this new
memory access as the re-execution of the remote one, in case the register
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used to compute the address has been overwritten by the fake value1. On
the other hand, exceptions caused by the MMU, such as a memory fault, do
not modify the register file, and automatically restore the program counter
to the address of the instruction that caused the exception. Hence, memory
exceptions would be the right mechanism to be used for providing auto-
matic preemption on remote memory accesses. In order to use it, the only
requirement would be the possibility to trigger memory exceptions from
the external core interface.

In current commercial processors we find the same differences between
external interrupts and exceptions described above for the MicroBlaze. In
particular, the Intel software developer’s manual[35] describes 3 kinds of
exceptions: faults, traps and aborts. Faults are exceptions that can be cor-
rected and allow the program execution to resume with no loss of continu-
ity. The processor restores the core state to the state before the beginning of
the faulting instruction, and the address passed to the exception handler is
that of the faulting instruction instead of the next. Traps are similar to faults,
but report the address of the instruction following the faulting one. Finally,
aborts are caused by severe errors such as hardware errors, and do not allow
for program continuation. With respect to interrupt, the only guarantee is
that they are taken on an instruction boundary, but are not associated to a
specific instruction. As for the MicroBlaze, the optimal implementation of
the GMAS for an Intel processor would require to trigger a fault instead
of an interrupt. Hence, logically the GMAS should be positioned between
the internal memory unit and the first level cache. Actually, because of the
similarities in the functionality provided, the GMAS could be implemented
as an extension to the existing MMUs.

The operation of ARM processors with respect of application interrup-
tions is the same as the Intel processors. According to the ARM architecture
reference manual[1], in general faults are synchronous to the associated ex-
ecuting instructions, apart from few imprecise exceptions caused by sys-
tem errors that are reported asynchronously to the instruction. Interrupts,
instead, are always treated as events asynchronous to the application flow.
Data memory access errors are provided among the causes for exception.
Naturally, the same considerations done for Intel apply to ARM cores.

1This problem has been avoided in the prototype evaluation, by inspecting the benchmarks code to ensure
that problematic instructions were not present.
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5.3 Platform Simulation

Architecture prototyping has a lot of advantages over simulation, among
which the higher fidelity of the results, the faster execution of the bench-
marks, and last but not least the attention to details that can be overlooked in
an abstract model. However, the process of designing, implementing and
specially validating hardware components is more time consuming than
writing software. In addition, many of the low level details of the proto-
type implementation may not bring useful insight on the overall flexibility
and scalability of the architecture. Architecture simulation can solve both
problems, by allowing the use of more productive software languages and
development environments and by permitting to emulate and simplify un-
interesting or low-impact details. In addition, platform simulators allow to
emulate slow system activities such as accesses to the file system, greatly
reducing the time with respect to full simulation. Still, simulation provides
more accurate information than analytic models, because it can consider
the actual dynamic behavior, including workload distribution and the con-
flicts on shared resources. A platform simulator has been added to the set
of architecture realizations, for two reasons. The first is to provide an ini-
tial assessment of an extension to the synchronization mechanism, without
dealing with all the low-level implementation details. The second reason
is the ability to easily introduce multiple performance counters in the sim-
ulator and obtain detailed information regarding the system performance,
even for the components that can not be modified in the prototype, like the
cores.

The particular characteristics of the proposed distributed architecture
pose a few requirements on the model used for simulation, and at the same
time allow ignore some of the most detailed components modeled in com-
mon simulators. First of all, the target applications do not use data caches in
the main application bodies. Eventual data caches can be used to speed up
the run-time initialization, but the global address space bypasses the cache
hierarchy. Hence, a big portion of the traditional performance models used
in simulators for parallel architectures is superfluous, and should be dis-
abled or removed in order to obtain correct simulation results. A second
characteristic is that the very long latencies caused by global memory ac-
cesses are orders of magnitude higher than the latencies measured inside
the cores pipelines. Therefore, the simulation of the control units or branch
predictors has low priority, because the increased accuracy of the simulator
is hardly worth the increase in the simulation times. Finally, the simula-
tor should support not only shared memory multi-core and many-core ar-

58



i
i

“thesis” — 2015/1/17 — 14:48 — page 59 — #65 i
i

i
i

i
i

5.3. Platform Simulation

chitectures, but also permit the definition of a tiered architecture in which
different multi-core processors are connected using an off-chip network.

Many simulators for multi-core architectures have been proposed and
released for public use. However, most of them are focused on accurate
modeling of the existing traditional shared memory multi-core architec-
tures, to provide precise timing, power or temperature metrics. Usually this
kind of simulator is used to evaluate scheduling policies, voltage scaling or
small scale architectural variations. To name a few, McPAT [39] provides
an integrated timing and power model for accurate design space exploration
of manycore processors. It includes detailed models for all fundamental
components at circuit and technology level, but the level is too detailed for
our needs, specially the cache hierarchy and does not support distributed
systems. Graphite [46] is a parallel and distributed cycle accurate simula-
tor, which aims to simulate manycore processors with thousands of cores
using multiple machines. Sniper [11], based on Graphite, is focused pro-
viding fast and scalable execution by using high level abstract models and
interval-based simulation. Hornet [52] is a parallel cycle-accurate simula-
tor designed for studying networks-on-chip, which can run synthetic traffic
or emulate a MIPS-based multicore. McSimA+ [5] is a cycle-level detailed
timing simulator aimed at studying heterogeneous and asymmetric archi-
tectures, which offers full control on thread placement and management.
Citing Ahn et al., all of these simulators have their own merits and serve
their different purposes well. However, none of them was ready to be used
in our research out of the box. The main problems were the necessity to
remove the data cache simulation and to integrate the behavior of the cus-
tom hardware components. After considering the effort required to adapt
an existing simulator we decided to develop a new, lightweight simulator
tailored on the specific needs of our research. The following is a summary
of the main characteristics:

• models the performance of a multi-core and distributed architecture,
with globally shared memory, and automatic preemption on remote
transactions.

• simulation is performed at application-level: only the application is
executed in the simulator environment without requiring a whole op-
erative system simulation. Any system activity required for managing
I/O events or to spawn new threads is emulated and executed by the
hosting operative system. The thread scheduling policy is the only ex-
ception, since multithreading support is one of the focal point of this
study.
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• decoupled functional and performance simulation: while a model of
the distributed architectural is used to simulate the performance of the
application execution, the functional simulation of core pipelines and
and shared memory is replaced with direct execution on the host. Syn-
chronization operations are a special case, because in their execution
timing and functionality are intertwined.

• targets fast simulation over accuracy of secondary components, for
early design evaluation and exploration.

• supports x86 application binaries.

Among the above cited simulators, Sniper was the one which matched
the requirements more closely, for its high-level but accurate approach, and
because it is not excessively focused on a specific technology or architec-
tural aspect. Therefore its general structure and techniques have been used
as a reference for our implementation. The high level structure and the in-
terfaces of the simulation framework is shown in Figure 5.3. The two main
blocks in the picture are the application and the simulator, which roughly
correspond to the two aspects of the simulation process: functional behav-
ior and timing. To simplify the development, the exact functional behavior
is obtained by directly executed on the host machine a version of the appli-
cation instrumented using the Pin tool [41]. This solution avoids the need
for parsing binary executables and decoding complex instruction sets, like
the x86 one. Also, native execution provides faster execution because it
eliminates the need to interpret each single instruction. Also it permits not
to replicate all the machine state information inside the simulator, such as
the content of registers and memory. The drawback is that it prevents the
cross-simulation of different instruction sets, but this limitation is not rele-
vant for our research since x86 processors are widely used in HPC systems.

By instrumenting the application it is possible to send events to the
performance model, obtain timing information and even modify both the
timing and functional behavior of the application. Pin is an instrumenta-
tion system created and released by Intel, which uses dynamic just-in-time
compilation to instrument x86 executables as they are running, inserting
analysis routines provided by instrumentation tools called pintools. The re-
sulting code is optimized using several techniques to reduce the instrumen-
tation overhead, like inlining, register allocation and instruction scheduling.
Using Pin it is possible to insert calls to the main simulator interface before
each instruction of the application, obtaining a complete and detailed trace
at instruction granularity. In addition it is also possible to replace entire
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routines with different ones, to change or enrich their behavior. This func-
tionality is used to emulate calls to the operative system, specially those re-
garding memory allocation and multithreading. It also permits to the appli-
cation to query the size of the simulated architecture and obtain the virtual
identifiers of threads, cores and nodes. In order to use the particular APIs
offered by the architecture a thin library must be included in the application.
When the application is run and instrumented by Pin, all the procedures of
the library are replaced with calls to the simulator interface, which emulates
their execution as explained in the abstract architecture description (chap-
ter 4). If instead the application is executed without instrumentation, the
library emulates the multithreading and synchronization APIs using inter-
nally the POSIX threads and mutexes, allowing quick test of the algorithms
without the overhead of the performance simulation.

Application Simulator

spawn/kill thread

add/rem. global mem.

simulate instruction

emulate procedure

get system info

Pin
tool

scheduler

performance
model

system config.

custom hw
functional models

native 
execution

run-time 
library

Figure 5.3: High-level interface of the platform simulator.

The main messages exchanged by the functional and performance parts
are depicted in Figure 5.3. Allocation of data in the virtual global address
space is performed using the function g_malloc, which behaves identically
to the standard malloc. The only difference is that the values returned by
the g_malloc are intercepted, and used to identify future accesses to the
global structures. This approach allows to use the virtual memory space
of the host system, without requiring an explicit customization of the ap-
plication address space at compile time. In addition it allows the use of
the standard malloc routine to emulate allocation of data in the local mem-
ory. Global memory ranges are removed when the corresponding memory
is deallocated by the application.

Thread management is performed using the POSIX Thread interface.

61



i
i

“thesis” — 2015/1/17 — 14:48 — page 62 — #68 i
i

i
i

i
i

Chapter 5. Architecture Implementation

The thread creation and destruction events are intercepted, as well as the
pthread_join procedure, to control the placement of the threads on the
simulated cores and schedule their execution. In addition, the execution of
the most common pthread API functions is ignored by the timing model,
which replace them with fixed, configurable values. This allows to emulate
lightweight tasks which creation and destruction is faster than the pthread,
and also makes the timing model independent from the configuration of the
host machine.

5.3.1 Performance Model

The execution of an application on a system with distributed memory in-
volves latencies that range from a single clock cycle for simple arithmetic
operations to thousands of cycles for remote memory accesses. This dis-
parity makes a perfect accuracy of the short operations performed by the
cores not necessary. For this reason the performance model is not cycle ac-
curate, but uses various approximations to increase simulation speed. First
of all, the simulation of control instructions and arithmetic instructions per-
formed on registers are assumed to take a single clock cycle. To this cost it
is added the latency of accesses to the resources shared by multiple cores:
the memory, the GNI and the GSync components. Hence an instruction that
increments the value in a local memory includes the cost of two memory
accesses plus one cycle for the arithmetic unit. To each shared component
is associated a fixed duration that is used to represent the latency required
for an access in absence of contention. The durations are configurable at
runtime to allow the exploration of the design space.

One of the main components of the timing model is the scheduler model.
This component is responsible of assigning spawned threads to the cores,
using a round robin policy. In addition, it blocks the threads when they are
spawned by the host and allow only one thread per core to continue execu-
tion. When the GMAS identify a remote memory operation the scheduler
blocks the current thread, selects the next one and resumes its execution,
hence forcing a scheduling policy on top of the host scheduler. The same
effect is obtained when the application explicitly calls the yield procedure.
At the same time, the scheduler module emulates the latency required for
saving and restoring the thread contexts, forwarding the core time and up-
dating the utilization statistics. As required by the abstract architecture,
when a remote transaction is concluded the scheduler module is notified
and puts the corresponding thread in the ready list. To match closely the
prototype implementation, the scheduler uses a round robin policy over the
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threads, according to the simulated time.
Some of the components integrate a contention model to emulate the

increased time due to dynamic competition between the cores. The compo-
nents are: the memory controller which provides access to the node DDR
memory, and the GNI network interface. These are assumed the two com-
ponents which are more likely to experiment high utilization in the system,
a part from the cores. The dynamic latency of accesses to the memory con-
troller is computed by measuring then dynamic contention and feeding the
value to a queue model, which returns the expected wait time. The con-
tention is measured counting the number of accesses performed inside a
moving window, which slides forward in time as new accesses are mod-
eled. The model adopted is taken from the queuing theory. More precisely
the M/G/1 queue, written in Kendall’s notation, which models a system
with Markovian request arrivals, service time with General distribution and
a single server. This queue model has the advantage of being solvable in
closed form using the Pollaczek - Khinchin formula, and allows to use ac-
tual measured statistics for the service time instead of assuming an a-priori
probability distribution. The model assumes that the requests behave like
a Markovian process, with Poisson distribution of the arrivals, and does
not guarantee correctness under different distributions. However one of the
properties of the the Markovian process is that the interval between succes-
sive requests is independent from the previous ones. This property is very
plausible for a multi-core processor in which different cores issue mem-
ory request indifferently from each other. In addition, queue models with
Markovian arrivals are the only ones with simple closed-form solutions, us-
able for a quick estimation of the delays. The Pollaczek - Khinchin is given
below, whereW is the average waiting time, ρ is the utilization, λ is the rate
of arrivals and x is a random variable which describes the time required to
service them.

W =
λ · E(x2)
2(1− ρ)

The contention on the GNI interface is actually simulated and not es-
timated. The main limit identified in the prototype implementation is not
due to the rate at which it can serve the remote requests, but by a limit
on the number of concurrent transactions, which is 32 per read and write
operations each. At the best of our knowledge there are no closed form
solutions for queue models with multiple servers, and in particular simple
enough to replace the simulation. For this reason each GNI interface keeps
a list composed of one time interval for each allowed transaction. Each
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slot contains the start and finish times of one transaction performed. Each
transaction is assumed to take a time equal to one network round trip time
(RTT), after that time the slot in the list can be reused for a different one.
When the GNI receives the request for a network transaction it identify the
first available slot and stores the request time inside it. If the first slot avail-
able is subsequent to the arrival time, then the request is forwarded to the
network adding a corresponding delay, and the slot is overwritten with the
data of the new transaction. Transmission times are written in a timestamp
inside network packets, which are used to model their progress across the
network.

One of the issues in parallel simulation is how to maintain synchronized
a global time between the simulated components. Event based simulators
use queues to sort all the events and simulate them in order. In order to
speed up simulation time, we added a timestamp inside each simulated core
and allow them to proceed concurrently as long as the simulated operations
have local effects. Since the host scheduler is free to schedule the threads,
the core timestamps inevitably start to de-synchronize. Even phenomenons
of starvation are possible, in which a simulated core receives a small portion
of the host cpu time. For this reason, after a configurable period has elapsed
all the cores are blocked on a synchronization barrier, which poses an upper
bound to the de-synchronization of the cores local times. The configuration
allow to select a trade-off between accuracy and simulation speed.

Global, system wide events such as global memory access are simulated
out of order. For example, two threads mapped to two different cores can
be executed sequentially by the host and perform global memory requests,
and the simulated clock of the core simulated last can be previous to the
clock of the other core. This reordering is accepted for various reasons.
First of all, the timing simulation is decoupled from the functional one.
In addition the exact ordering of global operations is not guarantee by the
architecture model outside of synchronized sections, hence a correct im-
plementation of the algorithms should not be invalidated by out of order
timings of the memory accesses. Secondly, a reordering in the operations
does not modify the total contention on the resources, hence introduce only
small perturbations on the overall performance. In order to minimize the
number of out-of-order global operations, the network operation is simu-
lated using a dedicated thread which forwards the packets one at a time
in order of timestamps. The same thread also simulates the activities per-
formed by the GNI on reception, such as accessing the memory and cre-
ating response packets, and keeps these activities ordered with respect to
the other network packets. However, since the cores execution is not syn-
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chronized, global requests can be injected in the network subsystem out of
order, after subsequent ones have already been processed by the simulator.
By combining the best-effort delivery of network packets and the check-
point synchronization between cores it is possible to arbitrary increase the
simulation accuracy at cost of reduced simulation speed.

5.3.2 Architecture Extension

Thanks to the simulation interface it was possible to extend the architectural
design and explore an alternative solution to the problem of race conditions
during the modification of the shared data structures. The proposed solu-
tion based on variable locking is both complete and flexible. Every time a
shared structure is modified it is possible to lock an address which represent
it and obtain a critical section with mutual exclusion, independently from
the number and kind of modifications performed. However, the extension
of the lock protocol to a distribute address space increments the latency of
the operations, and in turn increases the duration of critical sections, poten-
tially causing a high number of conflicts. Figure 5.4 provides a schematic
representation of a critical section involving one or more remote addresses.
Each of the two synchronization operations require a whole round trip time
(RTT). In addition, the critical section can include multiple memory ac-
cesses, each requiring a remote access. For example, to increment a vari-
able two memory operations are required, which summed to the synchro-
nization ones require four RTTs. This duration can correspond to thousands
of clock cycles, and the problem is exacerbated by the fact that the average
RTT grows with the network size. During this time other processors or
threads can attempt to modify the same part of the data structure, and be
forced to wait for the release of the lock. Hence it is interesting to evaluate
alternative approaches, eventually limited to special but frequent use cases,
in order to reduce the probability of contention.

Two approaches are adopted by modern multicore architectures, both
involving an extension of the ISA. The first one is the definition of a set
of atomic operations, which use low level hardware locking to provide ex-
clusive access to a memory location during the execution of a single op-
eration. The second one is the use of a paired set of memory operations,
usually called load-link/store-conditional, which allow to optimistically ex-
ecute an instruction without locks, and write the result into memory only
if the destination address has not been modified in the meantime. To cite
some example, the x86 ISA provides a LOCK prefix that can be applied to
a small set of instructions to turn them into atomic ones. The ARM, instead,
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Figure 5.4: Duration of a critical section involving remote memory addresses.

has abandoned the used of bus locking in favor of the pair of conditional
instructions LDREX and STREX[1].

In the algorithms used for experimental evaluation the most frequent
critical sections correspond to setting a single flag or increase a counter.
Hence a small number of atomic operations could solve most of the need
for mutual exclusion. In addition, the optimistic approach is less attrac-
tive because each failed attempt correspond to a significant amount of time
wasted, due to the long latencies involved. For this reason the support for
atomic operations has been integrated in the simulated architecture, as an
optional feature. In particular, a single atomic operation has been provided
which increments a single memory word, and is accessible by the appli-
cation by calling a function offered by the run-time library. Functionally,
the atomic increment is simulated by taking a global simulation lock before
performing the increment, to prevent concurrent execution of atomic oper-
ations. The timing model, instead, simulates a single transaction across the
network, with both the memory address and the increment value stored in
the request packet. On reception of an atomic request the GNI models two
accesses to the memory with once cycle in the middle for the increment,
using the same latencies used to model the core functioning. This timing
model assumes that the on-chip architecture already supports atomic oper-
ations performed by the processor, and permits the GNI to use the same
mechanism. However, a similar approach can be applied also to ARM
based architectures, by sending an atomic request over the network and
using the GNI to perform the increment optimistically at the destination.
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5.4 Conclusions

This chapter has two purposes. The first one is to address the possible is-
sues encountered in concrete implementations of the abstract architecture,
due to the specific characteristics of the processor used. A full featured
prototype has been implemented on FPGA which demonstrates the fea-
sibility and scalability of the approach. The prototype uses off-the-shelf
components provided by Xilinx for both the processor and on-chip inter-
connection without modifications. The custom components do not limit
the processor clock frequency, and add an area overhead comparable with
the area of the MicroBlaze core in its smallest configuration. Furthermore,
the chapter compares the two mechanisms existing for preempting threads,
i.e. interrupts and faults, and analyzes the pros and cons of their use with
commercial processors based on the two popular instruction sets x86 and
ARM.

In addition, this chapter introduce a lightweight simulator which models
the abstract architecture. Both the prototype and the simulated platform are
used in the experiments described in the next chapter 6.
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CHAPTER6
Performance Evaluation

The experiments performed to evaluate the effectiveness of the proposed
architecture are described in this chapter, and the results analyzed. Exper-
imental evaluation has been performed using both the FPGA prototyping
platform and the simulator, using a set of benchmarks commonly used to
represent applications with irregular access patterns. One of the aims of
the experiments is assessing the scalability of both the distributed global
address space and the synchronization operations. In addition, the exper-
iments analyze in detail the performance of the various components, and
how they impact on the overall performance of the benchmarks. The ex-
periments are preceded by the definition of an analytic model, which helps
in identifying the correlation between the various performance metrics, and
better understand the experimental results.

6.1 Performance model

To evaluate the effectiveness of the abstract architecture presented in this
research project, we present a mathematical model that correlates the main
architectural features with system level performance metrics. The use of the
model provides interesting insights on the importance and impact of each
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Table 6.1: Definitions of terms used in the model

Hw parameters
N Number of nodes in the cluster
C Number cores on a node
f Clock frequency [Hz]
Dnet Latency of a network request (average) [seconds]
Dm Latency of a memory request (average) [cycles]
S Size of network request (average) [bytes]

Sw parameters
Kr Ratio between remote requests and global requests
Kl Ratio of global requests managed locally
T Number of threads per core
Isw Number of processor cycles between global requests
Dcsw Context switch delay [cycles]

feature, and allows to estimate the utilization of the components to identify
potential bottlenecks. The model uses asymptotic analysis to quickly pro-
vide bounds to the performance and evaluate different scenarios, neglecting
low level details. Also, asymptotic analysis is accurate enough in situations
with saturated resources, which is a desirable situation for HPC systems.

The execution time of data-irregular applications is essentially dictated
by the frequent occurrence of long latency remote memory requests. There-
fore, the model is focused on the memory and network subsystems, and
on the number of accesses to the global address space. Internal details of
the cores, such as branch prediction or instruction caches, are not explic-
itly modeled because their effects are minor. The model explanation starts
with computing the latency of remote operations and the single-threaded
throughput. We then proceed with modeling multi-core utilization and
other system level performance metrics. All the definitions used in the
model are listed in Table 6.1.

The reference system is a networked cluster composed ofN nodes, each
hosting a multi-core processor with C cores that run at frequency f . Part
of the memory of each node is shared with the others, as part of a global
address space. Every memory access to the global address space may be di-
rected towards the local memory controller or forwarded to a remote note.
We call the latencies (delays) of these accesses respectively Dm for mem-
ory, and Dnet for network transactions. The values are considered as the
average delays measured on the system, to simplify the model formulation.
However, maximum values can be used to compute a pessimistic scenario.
We introduce two parameters to represent the factions of remote and local
accesses: Kr is the ratio of remote requests over all global memory ac-
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cesses, and Kl = 1−Kr is the ratio of local ones. In the ideal situation of
an evenly balanced system, the ratios depends on the number of nodes in
the systems, and assume the values Kr = N−1

N
and Kl =

1
N

. The param-
eter Kr tends to 1 with increasing numbers of nodes, following a common
hyperbolic law. As a reference, Table 6.2 shows the values of the two pa-
rameters for a range of system sizes. In large systems with 1024 nodes
the percentage of local accesses is negligible, less than 0.1%, and even in
medium sized systems they constitute a small minority of the total memory
accesses.

Table 6.2: Remote memory percentage wrt. system size

Size Kr Kl

2 0,5000 0,5000
4 0,7500 0,2500
8 0,8750 0,1250
16 0,9375 0,0625
64 0,9844 0,0156
128 0,9922 0,0078
512 0,9980 0,0020
1024 0,9990 0,0010

The software side of the system is considered as composed of two main
components: the run-time (system) support layer and the parallel applica-
tion. With regard to the run-time system, the measure of interest is the de-
mand on the CPU required to perform a context switch,Dcsw, because it im-
poses a hard limit on the effectiveness of multithreading in hiding memory
latencies. The application behavior, instead, is summarized by the number
of threads scheduled on each core and the average number of clock cycles
between consecutive global memory requests, respectively T and Isw.

The overall system performance is dependent on the rate of global mem-
ory requests generated and injected on the network. The two asymptotic
values for the memory rate generated by a single core correspond to the
cases of low processor utilization and processor saturation. Two hypothet-
ical schedules corresponding to those scenarios are depicted in Figure 6.1.
When a thread (T1) issues a remote request, it remains blocked for a whole
round trip over the net (Dnet). In the meantime, the core switches to a dif-
ferent thread, which uses the CPU until it also issues a remote request, after
Isw cycles. In the first example the processor utilization is low because
there are only two threads, hence the core stalls until the first response fi-
nally arrives. After receiving the response, the core restores the context of
T1, requiring 1

2
Dcsw clock cycles. We assume that context switch can be
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approximately divided in two equal portions, corresponding to the context
save and restore phases. Additional overhead is either negligible or evenly
divisible. Only half of the context switch time is computed because the
context save is performed while waiting for the response. When a local
memory access is performed, the core simply stalls for a time Dm, without
switching the context. Accordingly to these observations, the set of threads
{T1, T2} is executed every Isw + Kr(Dnet +

Dcsw

2
) + KlDm cycles. The

parameter Isw is defined as the number of cycles between global accesses,
hence each thread performs a single global access in the period just com-
puted. Therefore, the number of accesses performed by a core is equal to
the number of threads T . Hence, the asymptotic formula for computing the
global access rate of a single core, in low utilization regiment, results in
Equation 6.1.

T1 T2 T1 T2

D
net

req resp

T1

T2

Thread 1

Thread 2

Context Switch

Idle time

T1 T2

D
net

req resp

T3 T1 T2

T1

T2

Context Switch

Idle time

T3 Thread 3

Partial 
hiding

Complete 
hiding

Figure 6.1: Latency hiding through multithreading

Rategloblow =
T

Isw +Kr(Dnet +
Dcsw

2
) +KlDm

(6.1)

In the scenario of a saturated processor, instead, by definition the core
never stalls waiting for remote responses. Each time a core issues a global
memory access, there is a probability Kl of it being stalled for a local
memory access, and a probability Kr of executing a context switch in re-
sponse to a remote request. However, it is never forced to wait for net-
work transactions. Hence, in average each of the threads requires a total of
Isw+KrDcsw+KlDm clock cycles per each global memory request issued.
Under fair scheduling, each thread gets an equal share of the core, hence
each thread executes a global memory request every N(Isw + KrDcsw +
KlDm) cycles. This is also the total demand on the core for executing
N = N(Kr+Kl) global accesses. The resulting global access rate is given
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by Equation 6.2, and is the maximum rate achievable by a single core. The
value is dimensionless and expressed in references per clock cycles.

Rateglobsat =
1

Isw +Kr ·Dcsw +KlDm

(6.2)

The intersection of Equation 6.1 and Equation 6.2 gives the number of
threads required to completely hide the network latencies, maximize the
network throughput and saturate the processor use. The parametric for-
mula, is given in Equation 6.3, which is obtained by equating the response
time of a single global request to its demand on the core, so that the core
utilization is 100%.

Tth =
Isw +Kr(Dnet +

Dcsw

2
) +KlDm

Isw +Kr ·Dcsw +KlDm

(6.3)

In the equations proposed above, the network latency is a fixed value,
not depending on the congestion of the network. This is acceptable for
under-loaded networks, but is no more true when approaching the satura-
tion point. Anyway, a second formula could be introduced to relate the
delay of the traffic injected on the network with the latency. We do not
provide an example because such formula depend on the details of specific
network adopted. The resulting system composed of two equations can be
solved to estimate the global access rate as in the case of fixed latency.
Depending on the network, the equations can be solved symbolically, or re-
quire the use of iterative numeric solvers. However, as it can be seen from
Equations 6.2 and 6.3, the maximum rate of global requests is independent
from the network delay Dnet, which only increases the number of threads
required to achieve it. On the other hand, if network saturation has a sig-
nificant impact on the effective delay, it means that the network itself is the
bottleneck of the system and that remote latencies cannot be completely
hidden with multithreading unless the network is improved.

Several system performance metrics depend on the single-core global
memory access rate. First of all, the network bandwidth required by each
node of the system on its interface. We assume that contention on the on-
chip resources is negligible with respect to contention on the network in-
terface, something possible by using high performance on-chip networks.
Therefore, the throughput of a node is directly proportional to the number
of cores C, up to network saturation. A fraction Kr of the global requests
by each core is turned into a network message, each requiring in average
S bytes. Even in this case we use the average value in the formulas. The
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reason is that remote memory requests produce similarly small packet pay-
loads, hence each packet can be approximated with the average one with-
out the need to distinguish between request types. Equation 6.4 gives the
asymptotic network bandwidth per-node, which is valid up to saturation
of the network interface. The equation also can be reversed to compute
the maximum rate as function of the system size, network bandwidth and
message size.

Bandnode = C · f · S ·Kr ·

{
Rategloblow , T < Tth

Rateglobsat , T ≥ Tth
(6.4)

Similarly, it is possible to model the memory bandwidth utilization. The
total memory bandwidth of the system is given by the number of nodes N
multiplied by the bandwidth of a single controller. In the best-case sce-
nario, the requests are evenly distributed among all the nodes. In this case,
the demand on each memory controller is exactly equal to the request rate
generated by the cores in a single node.

MemoryRatebalanced = C · f ·

{
Rategloblow , T < Tth

Rateglobsat , T ≥ Tth
(6.5)

Conversely, on an unbalanced system, a single memory controller can
receive more requests than the others, potentially becoming the bottleneck.
Anyway, in a large distributed system the majority of global accesses is-
sued by the processors basses through the network, as previously shown
in Table 6.2. For the same reason, the majority of the accesses to a mem-
ory controller arrives from the network interface instead of the local cores.
Therefore, it is simple to determine whether the memory controllers are ca-
pable of sustaining the maximum traffic that can pass over the network, or
whether memory is the possible bottleneck of the system.

A final interesting metric linked to the global access rate is the utilization
of the cores. For each global memory access, the demand by the applica-
tion on a core is given by the sum of the three components: the average
computation time between global requests, the context switch caused by
remote requests, and the stalls due to accesses to the local portion of the
global address space. The components can also be labeled as user demand,
system demand and idle time. The sum of the components is the same that
at the denominator of Equation 6.2, which provides the maximum global
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rate in case of processor saturation.

Ucpu = Ucpu,user + Ucpu,sys + Ucpu,stall (6.6a)
= Rateglob · (Isw +KrDcsw +KlDm) (6.6b)

6.2 Prototype Evaluation

This section presents the experimental evaluation of the architecture pro-
totype described in section 5.1. We start the evaluation by measuring the
latencies of the main system operations, including the use of the custom
hardware components. Then, experimental data obtained from the proto-
type is used to validate the analytic model. Using both the experimental
data and information provided by the model, we evaluate the prototype per-
formance when running memory intensive and synchronization intensive
benchmarks. The model is used to estimate metrics that were not directly
measured on the prototype, such as the processor utilization.

6.2.1 System characterization

. The first step in evaluating the prototype performance is to measure the
cost of its individual components. Table 6.3 reports the latencies of ac-
cesses to the main system components, as well as the duration of context
switches. The data reported were obtained by measuring the duration of a
tight software loop that performed 1 million accesses to the components,
then removing the software overhead from the total. We measured all the
latencies with a single core active, thus without contention on the on-chip
bus hierarchy. Traversing the GMAS requires a single cycle for local mem-
ory accesses. On the other hand, remote accesses are forwarded to the GNI
with a delay of 3 cycles. The processor receives a fake response within
1 cycle, so this overhead is not visible inside the processor. The 3 cycles
delay is instead part of to the network round trip time, whole total is orders
of magnitude higher. Be these considerations the overhead introduced by
GMAS is very minor with respect to the other system times.

In addition to the experimental measurements performed on the proto-
type, we also measured the latency of a single access to the GNI interface
using the ISE Simulator (ISIM) provided by Xilinx. Figure 6.2 display part
of the control signals involved in the transaction. From top to bottom they
are: the instruction opcode, the MicroBlaze data port, both the slave (S)
and master (M) ports of the GMAS, used to forward the requests, the mas-
ter port of the first AXI bus, placed between the two hierarchy levels, and
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Table 6.3: Latencies of the main operations.

Action Latency [clock ticks]
crossing GMAS 1 - 3
access to GNI 20
access to GSync 18
local memory access 28
remote memory access 505
context switch latency 213

finally the slave port (S) of the GNI, on which remote requests are received.
For each port encountered by the transaction two signals are shown, respec-
tively the address request (AR) and read response (R). As evident from the
picture, the GMAS transparently forward the request to the bus and back to
the core, while the bus hierarchy is responsible in large part for the trans-
action duration. The delay incurred at each stage is due to the presence
of buffers at each port of the bus hierarchy, necessary to sustain 100MHz
clock frequency. Indeed, FPGAs are somehow limited when implement-
ing highly interconnected designs such as a many-core with a shared bus,
which require a large number of long and fast connections. In spite of the
relative long latency of local requests, the latency of remote transactions
is 20 times higher, enough to validate the effectiveness of the architecture.
Also, even in commercial systems accesses to the main memory are one or
two order of magnitude slower than arithmetic instructions [38].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

clk

TRACE_INSTR lwi swi

MicroBlaze_AR

MicroBlaze_R

GMAS_S_AR

GMAS_S_R

GMAS_M_AR

GMAS_M_R

AXI1_M_AR

AXI1_M_R

GNI_S_AR

GNI_S_R

Figure 6.2: Latency of an access to the GNI interface.

The data obtained from profiling the prototype, used inside equations
presented in section 6.1, provide the upper bound for the global of memory
accesses generated by the system. The absolute maximum rate is obtained
when every execute instruction is a memory access, without computation
nor control, that is Isw = 0 in Equation 6.2. In addition, applying the same
assumption to Equation 6.3 gives the number of threads required to hide
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network latency and saturate the cores utilization. Using the prototype la-
tencies we obtain that the maximum rate per core is 600 thousand accesses
per second, and 3 threads are enough to hide the latency. Therefore, the
whole system composed of 4 nodes with 32 cores per node has a theoreti-
cal absolute maximum rate of 76.8 million references/second.

6.2.2 Pointer chasing

Some of the prototype metrics are hard to measure directly because re-
lated to black box components which do not provide the relevant counters,
for example the utilization of the cores. Fortunately, these metrics can be
computed from other measurable ones, using the relations presented in sec-
tion 6.1. In order to validate the accuracy of the analytic model, its predic-
tion has been compared with the performance measured on the prototype.
The experiment has been performed using a pointer chasing benchmark, a
basic irregular kernel that follows random chains of pointers stressing the
global memory support. The kernel of the benchmark is presented in Algo-
rithm 5.

Algorithm 5 Pointer chasing kernel

1: function VISITLIST(list)
2: if list.size = 0 then
3: Return
4: ptr = list.head
5: while ptr 6= end do
6: ptr = ptr.next

7: end function
8: function MAIN(N )
9: list← createList()

10: shuffleList(list)
11: threads← []
12: for i← 1, N do
13: threads[i]← threadSpawn(vistiList, list)

14: for i← 1, N do
15: threadJoin(threads[i])

16: end function

The benchmark initially creates an array in the global address space,
composed of 220 elements, each containing a pointer. The pointers are
linked to each other forming a single pointer chain that touches all the ar-
ray elements in random order. The array is randomized using an algorithm
inspired by the riffle technique commonly used to shuffle cards. At the be-
ginning each pointer of the array is set to point to the next element, with the
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last element pointing to the NULL value. The a number of shuffle steps is
performed, equal to the logarithm of the array size. In each steps two empty
lists are created, labeled left and right. Then list produced by the previous
step is iterated over, and the elements are appended to one of the two lists,
and the decision is taken randomly with equal probability. After iterating
over the whole list, the right list is appended to the left one. Hence, each
shuffle step maintains the property of connecting all the array items in the
list, without introducing cycles or skipping elements. After a single step
the array contains many short forward jumps, and a single backward jump,
as shown in Figure 6.3. But each successive step introduce more backward
jumps and increases the randomness. The result is similar to the execu-
tion of the riffle shuffle, because at each step the elements belonging to the
second half of the list maintains their relative positions, but are randomly
intermixed to the elements of the first half.

l l r l r r l l r l

left right

Figure 6.3: The pointers array after one pass of the shuffling algorithm.

The core of the kernel spawns a configurable number of threads that it-
erates over the whole list. This iteration results in a highly irregular access
pattern to the memory, characterized by continuous jumps with random
direction and distance. The implementation of the kernel performs a small
number of accesses to the stack and control operations between consecutive
global requests, corresponding to Isw = 67 clock cycles. This benchmark
requires no synchronization, apart from the final barrier used to ensure the
termination on all the cores. In addition, thanks to the scrambled memory
space and the single access to each array element, the memory accesses are
perfectly distributed on the memories. Also, since every thread performs
exactly the same sequence of operations the processor utilization is homo-
geneous. Therefore, pointer chasing execution is the closest possible to the
perfectly balanced situation hypothesized in the analytic model.

Figure 6.4 shows the rate of remote requests generated by each single
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node. The benchmark has been executed varying the number of cores used
and the number of threads spawned on each core. The darker dots in the
chart correspond to the prototype performance, while the lines and lighter
dots are the estimation obtained with the model. As is visible, the two
sets overlap in most of the configurations, proving that the model is highly
accurate. The maximum difference between the modeled and experimental
performance is 6.1%, with an average of 2.3%. Thanks to this accuracy it
is possible to use the model to get reasonable insights on the unmeasured
internal operation of prototype.
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Figure 6.4: Injection rate per node vs. number of threads per core, for different number
of cores per node

The pointer chasing benchmark is not only useful to validate the model.
It also allows to evaluate the maximum performance scaling provided by
the prototype, since it does not include mutual exclusion or synchroniza-
tion points. The performance scaling exposed by the benchmark is a weak
form, because each thread visits the entire linked list hence the problem
size increases with the number of executors.

As shown in Figure 6.4, the throughput increases linearly from one to
two threads, then reaches the maximum at three threads per core as pre-
dicted by the model. Adding further threads after the saturating the cores
does not increase the performance, but does not even decrease it. This be-
havior is due to the thread stacks placed inside the private scratchpad mem-
ory attached to each core, instead of using a shared cache hierarchy. The
threads mapped to a processor only contend on the internal pipeline, not
on the memory, hence spawning more threads than needed has no negative
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effect. On the other hand, to keep all the thread stacks in the scratchpad
memories it is necessary to put a hard constraint on the number of threads.
For the prototype evaluation this constraint is not a limiting factor, because
the low diameter of the network allows to hide the latency and maximize
core utilization by using just 3 threads. The speed up measured is linear
also with respect to the number of cores. In fact, the 16 cores configura-
tion has a speedup of 3.96 over the 4 core one, only 1% less then the linear
scaling. This confirms the assumption that the on-chip bus is not among the
bottlenecks in the prototype.

Using the analytic model it is possible to obtain an insight on the utiliza-
tion of the individual components of the system. By analyzing the pointer
chasing benchmark we identify the bottlenecks encountered when running
a perfectly parallel and memory bounded algorithm, which lack synchro-
nization and has very little computation. Figure 6.5 shows the utilization
of four components: the core, the GNI internal interface, the network links
and the DRAM memory module. The actual limit on the GNI interface
is not given by its maximum sustainable throughput but by the limit of 32
pending operations enforced by the Xilinx implementation of the AXI4 bus
specification. Since the network round trip time is 505 clock cycles, in av-
erage one remote access is routed every 15 cycles, while the bus interface
accepts a much higher rate.

The processor utilization, shown as the first bin in Figure 6.5, is divided
in three parts: the time used by the application, the time required by the sys-
tem to switch contexts, and the stalls due to accesses to the local memory.
This allows to quantify the overhead of the runtime layer. The configura-
tions represented use from 1 to 3 threads and 8 or 16 cores. The remaining
configurations have been omitted because less interesting. In fact, four or
five threads have the same behavior as three, and the behavior of the four
cores configuration is simply scaled with respect to the eight cores. With
8 cores per node the performance is limited by the saturation of the cores,
when three threads are spawned, while memory utilization caps at only
16%. In the same configuration the average number of network transac-
tions is 16.3, approximately half the maximum permitted by the bus. In
the 16 cores configuration, instead, the number of pending operations in
the GNI already approaches the limit with just 2 threads. The third thread
allows to saturate both the cores and the GNI interface, resulting in the best
overall system utilization. With regard to cores utilization, the majority of
the time is spent on system code. In fact, when the core is saturated only
28.7% of the time is spent on the benchmark execution, while 68% goes in
context switches. Anyway, even if the overhead of multithreading is high,
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Figure 6.5: Utilization of system components by the pointer chasing, on different
configurations of threads and cores. CPU utilization is split into application time,

context switch and stalls.

it allows to exploit part of the time required for remote requests, increasing
the user utilization from 12.6% to 28.7%.

6.2.3 Breadth First Search.

As introduced in section 2.2, the Breadth First Search (BFS) is a typical
irregular algorithm used to evaluate HPC systems [31]. This computa-
tion kernel is widely used, because many problems in graph theory can
be solved by an ordered visit of a graph or by algorithms based on it. Ex-
amples are finding the shortest path between two vertices, testing a graph
for bipartiteness, or computing centrality measures that indicate the impor-
tance of a node in a network. We ported to the prototype APIs a version of
the BFS algorithm originally designed for the Cray XMT [8], adapting it
to the different synchronization and threading interfaces. The pseudo-code
implementation is shown in Algorithm 6.

In the experimental evaluation the graph explored has 100.000 nodes.
The graph generation algorithm selects the number of neighbors of each
node randomly, using a uniform distribution between 1 and 80. The desti-
nation of each edge is also selected randomly with uniform distribution. All
the repetitions use the same graph, which contains 3.998.706 edges and has
diameter 6. Because of the uniform distribution of the outward edges, the
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Figure 6.6: In- and Out-degree distributions of the graph used in the BFS experiments.

distribution of the indegree follows a bell-shaped distribution, with mode
40. The two distributions are shown in Figure 6.6.

The breadth first search is not only a memory intensive algorithm, but
also synchronization intensive. In fact, it has two critical sections in a small
loop body. The first one prevents different threads to concurrently test and
set the visited flag of the same vertex. The second is required to insert the
newly visited vertices in the shared work-list. Therefore, this benchmark
significantly stresses the components providing synchronization support.

First of all, we try to estimate the throughput using a model similar to the
one described in section 6.1. We modified the model to computes the rate
in terms of edge visits, instead of memory requests generated. In the new
model the parameter Isw identifies the average number of instructions exe-
cuted per edge, and the number of memory requests and context switches
are scaled accordingly. This model takes into account only part of the syn-
chronization effects: it includes the lock and unlock operations in the total
number of operations performed on the global address space. However, it
ignores the run-time contention existing on the locks. Figure 6.7.a shows
the model prediction, which has a behavior very similar to pointer chasing,
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Figure 6.7: Performance of the BFS benchmark from a synchronization-less model, on
the prototype, and synchronization aware model

characterized by core saturation at 3 threads per core, and a peak of 7M
edges visited per second with 24 cores.

Fig. 6.7.b, instead, shows the performance obtained running the bench-
mark on the prototype. First of all, the execution speed on the prototype is
reduced by almost an order of magnitude with respect to the model, in par-
ticular on configurations with more parallelism. The system with 8 cores
and 1 thread per core is the most similar to the model, with a performance
only 1.4 times slower than estimated. On the other hand, the configuration
with 5 threads on each of 32 cores is 15 times slower. Secondly, adding
threads to an already saturated system has a huge negative effect on the
prototype performance, while the modeled performance remains constant.
These two differences are due to the overhead caused by the contention on
the critical sections.

The details of the overhead caused by the synchronization are shown in
Figure 6.7.c, which presents the average number of spins required for ob-
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taining a lock, measured in the prototype. Even in the small configurations,
each lock needs to spin between 3 and 7 times before taking ownership,
and the number increases with the number of threads used. The main cause
is the insertions to the shared work-list that stores the nodes to be visited
by the algorithm in the next phase. Each insertion in the list is a critical
section that takes approximately 2000 clock cycles (20µs) because of mul-
tiple remote requests for both data and synchronization. The probability
of contention during this long interval is significant, because many threads
are trying to enter it with high frequency, specially in the central phases
of the execution when most of the nodes are visited. Also, this overhead
grows with the number of threads because of two trends. When the sys-
tem is underused, it behaves accordingly to a modified Amdahl’s law [24]
that accounts for serialized critical sections. Because of the serialization,
the waiting time grows linearly with the number of threads, limiting the
speedup. In the prototype, this is demonstrated by the increasing number
of spins on the locks from 1 to 3 threads. The saturation of the cores adds
a second effect. When all the core time is used, the ratio available to each
thread shrinks with the addition of others. Consequently, the time required
to complete a critical section increases. This second effect is evident in
Fig. 6.7.b and Fig. 6.7.c, when more than 3 threads per core are used.

We extended the model to take into account the number of lock attempts
due to contention, obtaining a better approximation shown in Fig. 6.7.d. In
this version, the number of global transactions per edge is increased with
the number of cores and threads used. Hence, the model does not distin-
guish single critical sections, but captures the resulting average overhead.
Even so, the accuracy is greatly improved, and captures the same trends
observed on the prototype. This hints that the main limiting factor in the
proposed architecture is the overhead due to the polled implementation of
the lock primitive and the corresponding context switches caused by the
synchronization conflicts. This is also demonstrated by the utilization of
the components, shown in Table 6.4.

When running the BFS, the core utilization is much higher than the other
components with respect to the pointer chasing benchmark. However, only
4% of the processor time is due to the application execution. The remaining
time is consumed by the context switches that are forced by every try_lock,
even when the request fails. In column SyncBW we show the percentage
of network utilization due to synchronization requests. In the best case,
it equals the bandwidth used by memory accesses, but increases with the
number of threads. This suggests that the most effective improvement to
the architecture would be a hardware implementation of the spin lock.
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Table 6.4: BFS system utilization.

utilization [%]
Cores, CPU Network Memory
Threads Total App. Link GNI SyncBW DDR

8, 1 43.5 2.6 1.0 2.4 51.1 7.2
8, 2 93.2 3.9 1.5 3.5 62.0 13.6
8, 3 100.0 4.2 1.7 3.9 61.8 14.6
8, 4 100.0 3.6 1.4 3.3 66.3 13.9
16, 1 46.1 2.0 1.6 3.7 60.3 13.7
16, 2 99.3 2.6 2.0 4.8 73.7 25.6
16, 3 100.0 2.7 2.1 5.0 73.1 26.0
16, 4 100.0 2.2 1.8 4.1 77.0 24.9

6.2.4 SSCA#2.

Another benchmark representative of graph theory computational kernels
is SSCA#2 [53]. It generates scale-free graphs, using a generator algorithm
based on R-MAT [15]. Scale-free graphs, or networks, are characterized by
a degree distribution that follows a power law, that is the fraction of nodes
with k connections is P (k) ∼ k−γ . This distribution is interesting because
is found in many networks such as the world wide web links, biological
networks and social networks.

The SSCA#2 benchmark is composed of 4 kernels. The first one is the
graph construction. It creates a sparse graph starting from a list of tuples,
each representing an edge of the graph with start vertex, end vertex and
edge weight. The reference implementation stores the graph data using 4
arrays: the first one is the list of vertices, which stores an integer label
for each of them. The second array represents the edges, and stores the
destination vertex for each one. The edges are listed grouped and sorted
by the source vertex label. The third array stores the position in the edge
list of the first neighbor of each vertex, and finally the last array contains
the weights of the edges. The 2nd kernel visits all the edges of the graph
to identify the set composed by the edges with maximum weight. The
3rd kernel extracts one sub-graph for each edge identified by the second
kernel. The sub-graphs include the two extremes of the edge, and all the
vertices that are reachable by the edge end vertex within a fixed number of
steps. One possible implementation is the execution of one Breadth First
Search per each sub-graph. Finally, the 4th kernel is the identification of the
vertices with highest betweenness centrality score [26]. The betweenness
centrality (BC) of a node represents the number of shortest paths from all
vertices to all vertices that pass through that node. That is, the betweenness
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centrality of a node v is

BC(v) =
∑
s 6=v 6=t

σst(v)

σst

where σst is the total number of shortest paths from vertex s to vertex t
and σst(v) is the number of those paths that pass through v. The execution
times of the four kernels, reported in Table 6.5, is highly unbalanced. The
4th one, betweenness centrality, accounts for more than 99% of the total
execution time. Because of this extreme unbalance, only this kernel has
been analyzed in the experimental evaluation.

Table 6.5: Execution times of the SSCA#2 kernels.

Kernel duration normalized
Graph construction 92.825.349 0,00361
Classify large sets 16.816.951 0,00065
Graph extraction 51.437.789 0,00200
Betweenness centrality 25.530.790.602 0,99373

The BC can be computed by performing multiple breadth first visits of
the graph, one starting from each node of the graph, and assigns a central-
ity weight to the nodes according to the number of shortest paths it belongs
to. For our experiments, we ported to the prototype APIs the reference im-
plementation, which is written in the C language with OpenMP pragmas
for parallelization. The benchmark permits to approximate the result by
executing a limited number of BFS visits from randomly chosen nodes, in
order to reduce the execution time, specially on very large graphs. In the
experiments we configured this number to 256 BFS. When translating the
code from OpenMP, we used a fixed round robin schedule for parallelizing
the loops, except for the main loop at line 9 of Algorithm 2. For this loop
we used a dynamic scheduling of loop iterations to threads, similar to the
OpenMP guided schedule. To implement the dynamic scheduling we use
both global index and local indexes. The threads increment the global in-
dex in large blocks using critical sections, than iterate over the block using
local indexes. The block size decreases exponentially as the global index
approaches the end of the queue. This allows to reduce the overhead at the
beginning of the loop, when the blocks are larger, and allows fine grained
parallelism at the end to improve load balance.

Figure 6.8 shows kernel throughput on the left and the utilization of the
cores on the right. The core utilization is averaged over the entire exe-
cution. The performance scale very well in the unsaturated systems (1-2
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Figure 6.8: Betweenness centrality performance

threads), and shows the same degradation observed in the BFS when the
cores are fully used. The saturation occurs at 88% average CPU utiliza-
tion, instead of 100%. There are two reasons: first of all the algorithm has
a small serial section that is executed during each of the 256 BFS visits.
More important, the algorithm uses multiple barrier synchronization points
for each visit, hence with a higher frequency with respect to the previous
BFS benchmark. Each barrier causes some of the cores to stall waiting for
the remaining ones, hence to reach 100% of core utilization the workload
must be perfectly balanced in each of the parallel sections, a task almost
impossible to achieve without introducing overheads. Even if the multiple
barriers prevents full utilization of the processor, the dynamic scheduling of
the main loop distributes the workload evenly across the entire set of cores,
as shown by the min-max bars in the plot. Even if multiple short stalls oc-
cur, none of the processors gets significantly underused. On the memory
side, the number of remote memory requests generated by the various cores
presents a relative standard deviation lower than 7%.
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Algorithm 6 BFS benchmark pseudo-code

1: function BFS_PARALLEL(V,Edges, vs)
2: for all v ∈ V do
3: V ist(v)← 0

4: Q← vs
5: threads← []
6: for ti← 1, N do
7: threads[ti]← threadSpawn(BFS_body, ti)
8: for ti← 1, N do
9: threadJoin(threads[ti])

10: end function
11: function BFS_BODY(ti)
12: while Q 6= ∅ do
13: QN = ∅
14: for i← ti to N every num_threads do
15: vertex← Q[i]
16: for all e ∈ Edges(vertex) do
17: w ← edgeDestination(e)
18: lock(w)
19: if V isit(w) = 0 then
20: V isit(w)← 1
21: unlock(w)
22: lock(QN )
23: pos← Q.size+ 1
24: Q.size← pos
25: unlock(QN )
26: Q[pos]← v
27: else
28: unlock(w)

barrier
29: if ti = 0 then
30: swap(Q,QN)
31: level← level + 1

barrier
32: end function
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6.3 Design exploration

Using the proposed model it is possible to perform an exploration of a wider
range of system parameters to assess their effect. In Figure 6.9 is repre-
sented the inverse dependency between the rate of global memory accesses
and average network delay, when varying two system parameters. In both
cases a single thread executes loop that access the global memory every
25 instructions. The latency of the accesses to the local memory instead is
80 clock cycles. The delays are reported in clock cycles, with a clock fre-
quency of 100MHz, apart from the network delays which are expresses in
micro seconds. On the left plot (a) the number of nodes in the network as-
sumes different values, from 2 up to 32, which correspond to a percentages
of remote requests decreasing from 50% to 97%. With more than 8 nodes
the probability of performing local accesses to the global address space is
significantly low and the performance remain essentially unchanged. In
addition, even in systems with a small number of nodes the performance
varies only if the latency of a network transaction is under 2µs. This indi-
cates that even in middle sized HPC systems all the global memory accesses
can be assumed as remote, and further reducing the local accesses does not
impact negatively the performance.

(a) Memory Rate vs. number of nodes (b) Memory Rate vs. context switch delay

Figure 6.9: Inverse dependency between global memory rate and average network
latency

The right plot (b) shows how the global memory rate changes with the
time required for switching the threads contexts, while performing only re-
mote requests (K = 1). The horizontal portions of the asymptotic lines
represent the region in which the processor is saturated by the execution of
the application and the context switch routines, and the performance is in-
dependent on the network latency. Instead, the hyperbolic lines correspond
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to network bound cases, in which the processor has idle times that can be
covered by using more threads. The plot shows that the scheduler overhead
has to be very low for making the multithreaded approach feasible, moti-
vating the need for the automatic preemption and the concurrent hardware
scheduling performed by the GMAS.

Figure 6.10.a shows the correlation between the user core utilization
and the network latency, on different values of the context switch time. The
plot excludes the scheduling time and shows only the utilization due to the
execution of the application code. The plot motivate two interesting con-
siderations The first is that a good processor utilization requires a very fast
scheduler routine. The second is that given a quick scheduler, the number
of threads required to saturate the processor is very high, in the order of
hundreds of threads. This number coincides with the 128 hardware con-
texts used by the Cray XMT supercomputer, which pays a cost in terms of
clock frequency and single thread performance in order to provide this fea-
ture. This observation motivates the idea of maintaining the thread contexts
in memory and using software routines for the switch. The concept is con-
firmed by Figure 6.10.b, which represents the memory rate in function of
the network delay, when running various number of threads with a reason-
ably fast scheduler. The plot shows that only in very low latency networks
a small number of threads is enough to cover the latency and maximize the
throughput.

(a) Core utilization vs. number of threads,
with different scheduler overheads

(b) Memory Rate vs. network delay, with
various numbers of threads

Figure 6.10: Effects on performance of the number of threads executed

By filling the model with the timings measured on the prototype, it is
also possible to estimate the effectiveness of the multithreading support in
that specific implementation. The benchmarks execution on the prototype
showed that most of the cores time is spent inside the scheduler routines,
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which limits the number of threads that can be used and the user-level core
utilization. Consequently, we evaluated how the performance would change
with two extremely different multithreading approaches.

First of all, we considered how much the performance would degrade
when using a software version of the same scheduler included in the GMAS.
The scheduling policy has been implemented in software using the Xil-
inx MicroBlaze instruction set, to obtain the necessary timing information.
However, its execution on the prototype is not possible, because the GNI
network interface has been designed for interacting with the GMAS com-
ponents, neglecting the features required for interacting with an operative
system. The software scheduler stores the ready/waiting flags of the threads
in the local scratchpad using a single word, with the most significant bit
corresponding to the thread with identifier zero. The MicroBlaze ABI in-
cludes an instruction (clz) that counts the number of leading zeros in a
32-bit word. This instruction can be used to retrieve the identifier of the
first available thread, using a fixed priority. For example, if the first byte
has value 00101101 it means that the first thread executable is the 3rd one,
which has identifier 2, equal to the number of leading zeroes. We added a
second bit-mask, used to cancel out the flags of the most recently sched-
uled threads. This mask allows to rotate the highest priority position in a
round-robin fashion. The whole scheduling sequence reads the pending sta-
tus word from the local scratchpad, searches for a valid thread, updates the
status, and eventually rotates the mask. This code requires between 45 and
50 clock cycles for completion, depending on the thread statuses. Adding
this latency to the time required to save and load the contexts of the threads,
the total increases to approximately 260 cycles.

However, the role of the GMAS is not limited to the selection of the next
thread to execute. It also also receives the responses from the network, and
manages the status flags of the threads without intervention from the core.
A pure software support for multithreading requires that the scheduler in-
terrogates the network interface to identify the completed requests and to
map them to the respective threads. Therefore, we considered an hypotheti-
cal software scheduler (SW sched) that requires 100 clock cycles to interact
with the GNI and select the next thread.

Fig. 6.11 shows the estimated performance, and compares it to the pro-
totype performance when running pointer chasing on 16 cores. The max-
imum request rate of the cores drops by 24%, from 27.4 to 20.7 Mref/s.
At this rate, the number of concurrent network transactions is less than the
maximum, hence the network utilization and system efficiency is reduced
with respect to the prototype. The plot in Fig. 6.11 also shows the esti-
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Figure 6.11: Global request rate generated by the system with different context switch
implementations: hw scheduler, sw routine, simultaneous multithreading

mated performance of a system that executes the context switch in zero cy-
cles. This system would require to modify the cores to add multiple register
files, as in the Cray XMT. In this scenario, pointer chasing would reach 80.6
Mref/s, three times more than the rate obtained with the prototype. How-
ever, to achieve this high rate it is necessary to maintain 6 complete thread
contexts in hardware registers, while the proposed architecture only stores
the statuses of the threads. Also, 6 threads are only enough to cover the
latency of a small, completely connected network, and the number must be
increased with the network diameter. Hence, the considerable slow down
of our prototype with respect to hardware multithreading comes with large
savings in term of hardware complexity and cost, and more flexibility in
increasing the number of threads, making it a valid trade-off.

6.4 Synchronization Performance

The support for mutual exclusion based on variables locking is flexible and,
if used correctly, it permits to protect any data structure even during com-
plex modifications. However, because the memory space is partitioned and
distributed most of the lock requests are remote. Figure 5.4 presented in
subsection 5.3.2 shows that a remote critical section involves at least 4
round trip times (RTT), from the point of view of the issuing core, and
3 RTT from the point of view of the destination GSync. Using the timings
of the FPGA prototype, a typical critical section requires 3RTTs = 1515
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clock cycles. These numbers correspond to a pattern of memory accesses
read-modify-write, which involves reading a value and storing the result of
an operation. As the length of critical sections increase, also the probability
of contention increases. In particular, threads residing on the same node of
a locked variable have to try many times before finally acquiring it, causing
a context switch each time. In presence of highly contended parts of the
data structures the GSync can easily become a bottleneck.

For this reason we confronted the performance of the BFS kernel im-
plemented using locks with a version of the BFS which uses atomic in-
crements. The comparison was possible thanks to the simulation platform,
which allowed to emulate the atomic operations in a reduced amount of
time. Before confronting the performance it is useful to measure the distri-
bution of the lock attempts on the 4 nodes which compose the system. The
lock distribution is shown in Figure 6.12, using the rate of lock attempts per
second, averaged over four execution of the kernel. Each quadrant of the
Figure represent one of the nodes, and the corresponding GSync. To facili-
tate the analysis, one line is added to the bars corresponding to the average
rate over all the configurations and nodes.
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Figure 6.12: Distribution of lock attempts on the system nodes.

By comparing the bars and the average line, it is evident that in the
configurations with higher parallelism exploited one of the nodes receives
many more requests than the others. This node in question is the one that
stores the head (and size) of the work-list used by the algorithm to keep
track of the discovered vertices, that requires mutual exclusive access every
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time a vertex is visited for the first time. This motivates the proposals of
introducing atomic operations to handle possibly frequent but small critical
sections. Notice that the problem can be alleviated also by working at the
algorithm level, introducing local queues and distribution steps. However,
atomic increments can be used also in other similar hot-spots, and also are
a much easier tool for optimizing applications than a invasive algorithm
modifications.

A second version of the BFS has been implemented, using atomic in-
crements both to insert new vertices in the shared work-list and to mark the
vertices as visited. By using atomic increments all the exclusive insertions
in the work-list are reduced to an atomic read-modify-write performed by
a GNI on the memory that resides on the same node, much shorter than
the lock-based version. This greatly reduces the contention and allows to
better balance the memory and network pressure over the system. Since
this version uses no locks, there is not an equivalent of Figure 6.12. On
the contrary, the comparison is possible by confronting the distribution of
memory and network transactions. Figure 6.13 and Figure 6.14 show the
utilization of the GNI network interface. As in the case of the experiments
performed on the prototype, the utilization is not related to the actual net-
work bandwidth but to the maximum number of concurrent transactions,
which is a similar but scaled metric.
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Figure 6.13: Utilization of the GNI interface, by the lock-based BFS.

The most evident difference is that when using the atomic increment the
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Figure 6.14: Utilization of the GNI interface, by the BFS with atomic increment.

outgoing traffic is equal for each node, while when using the locks the net-
work traffic outgoing from the nodes 0,1 and 2 is much higher than that of
node 3. The cause for the network unbalance is that much of the network
traffic is due to lock requests that for node 3 are executed locally. A second
difference, is that in the four- and eight-cores configurations, where con-
tention is less frequent, the use of atomic operations improves the network
utilization on all the nodes. Similar considerations are possible when con-
sidering the rate of global memory requests generated by each node, shown
in Figure 6.15 and Figure 6.16. It is clear that the reduced contention on
the critical sections allows the algorithm to execute faster and improves the
rate of memory requests by more than three times.

Finally, it is interesting to analyze the impact on the scheduler of the
polling implementation of the locks with respect to the poll-less atomic in-
crement instruction. Figure 6.17 reports the number of scheduling events
occurring in the system when executing the lock-based BFS. The events are
divided in blocks of the threads because of remote transactions, and yields
executed after failing a lock acquisition. The numbers are summed over all
the nodes and cores of the system. As the parallelism exploited increases,
also the scheduler overhead increase. Specially the real, hardware concur-
rency provided by multiple cores has a negative effect on the number of
yield requested by the threads.

The situation is radically different when using atomic increments instead
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Figure 6.15: Rate of global memory accesses performed by each node, running the
lock-based BFS.

of the locks, as shown in Figure 6.18. First of all, there is no need for the
threads to yield the processor, because the atomic operations executed re-
motely can not fail hence can not cause deadlocks, unlike the polled lock
routine. In addition the total number of thread block events caused by re-
mote transactions is stable, independently from the number of cores and
threads used. This is because each of the code sections requiring mutual
exclusion, which are were small, is reduced to a single transaction that does
not require multiple attempts. Therefore, the number of memory accesses
and atomic operations is essentially given by the size and topology of the
graph, hence is constant independently from the amount of parallelism ex-
ploited.
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Figure 6.16: Rate of global memory accesses performed by each node, running BFS with
atomic increments.
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Figure 6.17: Rate of global memory accesses performed by each node, running the
lock-based BFS.
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Figure 6.18: Distribution of lock attempts on the system nodes.
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6.5 Conclusions

This chapter has described the experiments performed to evaluate the pro-
posed abstract architecture and the prototype implementation. The proto-
type shows that the multithreading support is effective in hiding the latency
of remote memory accesses increasing the rate of memory requests and in
turn the application throughput. The performance of memory bounded ker-
nels, such as the pointer chasing, scale very well with the number of cores
and threads used. The performance of the prototype configurations with
many cores is constrained by the limit on the number of concurrent trans-
actions due to the commodity on-chip bus, not by the architecture design.

When the algorithms include sections with high contention the system
has an optimal configuration beyond which increasing the parallelism has
negative effects. The main issue is the polling implementation of the lock
primitive performed from the source node, which requires multiple round
trip time. Using the simulator we showed that the bottlenecks can be greatly
reduced by moving the logic of the critical section to the destination node,
using atomic operations. This benefit is possible without introducing com-
plex optimizations in the algorithm implementation.

By using an analytic model, we showed that the architecture approach
can scale well to larger systems, provided that lightweight tasks with fast
context switches are used, and enough tasks are instantiated to hide the
network bandwidth.
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CHAPTER7
Wrap-up and Conclusions

The reason and main goal of the research presented have been stated in the
introduction and further motivated in the background and state of the art.
Traditional High Performance Computing architectures have been designed
to optimize computational intensive algorithms based on regular data sets,
while algorithms on irregular data have had less interest. Because of the
emerging interest on knowledge discovery from graph-based data struc-
tures, support for efficient execution of these applications is now required
from future HPC architectures, as well as execution models that facilitate
the development. In addition, the supporting architecture should be flexi-
ble enough to execute efficiently both regular and irregular algorithms, and
reduce the costs in order to be marketable.

An abstract architecture has been proposed [12], that integrates three
custom components inside a regular distributed and many-core system ar-
chitecture. The design requires very limited modifications on the main sys-
tem components. The architecture provides a partially distributed address
space, which allows to share the main data structures without explicit parti-
tioning. The scrambling of the address space allows to mitigate the dynamic
onset of hot-spots, by breaking and distributing the data across the whole
system. The distributed memory approach is made possible by executing
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Chapter 7. Wrap-up and Conclusions

multiple threads on each core, and automatically preempting the threads on
remote accesses to cover the network latency. By scheduling the threads in
hardware, the switch delay is further reduced. In addition, the architecture
support a generic mechanism for fine-grained mutual exclusion by provid-
ing lock primitives which work directly on memory addresses instead of
requiring the allocation of mutex variables.

To prove the feasibility of the architecture, an actual implementation has
been described which consists in an FPGA prototype [13, 14, 55]. In addi-
tion, commercial families of processors have been considered, and details
have been provided regarding their use in the proposed architecture. The
prototype demonstrates that the additional hardware components have an
area overhead comparable to the size of a compact micro-controller, opti-
mized for space.

In the last chapter the prototype is supported by an analytic model and
a simulator in demonstrating the performance and scalability of the archi-
tecture. The prototype shows that the multithreading support is effective in
hiding the latency of remote memory accesses, making distributed shared
memories viable despite the long latencies. The utilization of the prototype
cores attributable to the application is low, because of the relatively high
time required to perform software context switches. However multithread-
ing significantly improves the performance with respect to single threaded
applications. This improvement is expected to grow on larger HPC systems
with greater network diameters.

The lock-based synchronization procedures are effective for low-contention
fine-grained critical sections, however become a bottleneck when hot-spots
exists in the algorithm. The reason is the source-based polling performed by
the threads in case of failed lock acquisition. The simulated system proves
that by inserting atomic operations that perform atomic read-modify-write
operations at destinations can eliminate the bottleneck in the most common
use cases.

Finally, the analytic model shows that the architecture has the potential
to scale to much larger distributed systems, provided that enough parallel
tasks are available and that the software overhead due to the task switch
is low. This promotes the need for further research on lightweight tasks
for permitting the exploitation of the parallelism massively multi-threaded
architecture.
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