
POLITECNICO DI MILANO
Dipartimento di Elettronica, Informazione e Bioingegneria

DOTTORATO DI RICERCA IN INGEGNERIA DELL’INFORMAZIONE

THERMAL AND ENERGY MANAGEMENT

TECHNIQUES FOR MULTI-CORE AND MANY-CORE

SYSTEMS

Doctoral Dissertation of:
Federico Terraneo

Advisor:
Prof. William Fornaciari

Tutor:
Prof. Francesco Amigoni

The Chair of the Doctoral Program:
Prof. Carlo Fiorini

2014 – XXVII





Abstract

THE current trend to increase the performance of computing systems
is to shift from instruction level parallelism to task level parallelism,
with multi core architectures being mainstream, and many-core sys-

tems already used for specialized tasks and expected in the near future to
become widely deployed. This, coupled with the continuous technology
scaling has exacerbated a reliability issue caused by the power consump-
tion of heavy loaded functional units which cause severe temperature gra-
dients in the silicon die, the so called "hot spots", as well as thermal cycles
caused by highly varying processor workloads. These problems will all
lead to the issue of dark silicon, where the limited ability to dissipate heat
reduces the portion of a chip that can be turned on as technology scaling
progresses, significantly reducing the achievable performance despite the
progress achieved thanks to Moore’s Law scaling continues.

It is thus expected that in the near future, with the introduction of new
techniques such as 3D stacking to further increase system performance,
these issues will become increasingly significant, and will require much
more elaborate thermal control techniques than the ones currently employed.

The aim of this thesis is twofold. First, novel thermal and power control
strategies have been developed to face the needs of future multicore archi-
tectures, based on the application of control theory. Second, a state of the
art simulation framework has been developed that is able to perform the
assessment of dynamic thermal management and power-performance poli-
cies comprising a cycle accurate simulator and accurate sensor and actuator
models, being thus able to test policies in a realistic setting.
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Experimental results using the proposed simulation framework and stan-
dard benchmark suites such as MiBench [42] have been used to evaluate the
proposed policies, and assessing the resulted performance improvements
beyond the state of the art.
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Sommario

LA strada attualmente perseguita per incrementare la potenza di calco-
lo dei sistemi di computazione consiste nel passare dall’incremento
del parallelismo a livello di istruzione all’introduzione di più flus-

si di esecuzione paralleli, con architetture multiprocessore già affermate
e diffuse, mentre architetture con un numero elevato di processori, det-
te many-core già utilizzate come acceleratori per applicazioni specifiche,
quali il calcolo scientifico. Ci si aspetta che queste architetture diventeran-
no sempre più affermate anche per applicazioni generali nel breve futuro.
Questo fatto, unito alla progressiva riduzione delle dimensioni dei transistor
sta causando problemi di affidabilità in quanto la densità di potenza delle
architetture attuali, unita alla disuniforme distribuzione del consumo tra i
vari processori e le loro unità funzionali genera dei punti caldi e cicli ter-
mici causati da dei carichi di CPU variabili. Queste ed altre considerazioni
portano al cosiddetto problema del dark silicon, dove la ridotta capacità
di dissipare il calore generato forza a ridurre il numero di transistor che
possono essere tenuti operativi alla massima frequenza ad una frazione che
si riduce con il progredire dell scaling tecnologico. Questo porta ad una
riduzione dell’incremento di prestazioni nel passaggio da una generazio-
ne alla successiva, nonstante il suddetto scaling secondo la legge di Moore
continui.

Inoltre, ci si aspetta che l’introduzione di tecnologie innovative per in-
crementare la capacità di calcolo quali il 3D stacking, che consiste nel co-
struire un circuito integrato con più strati di silicio dotati di componenti
attivi, causino un ulteriore incremento della densità di potenza, richiedendo
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quindi tecniche molto più elaborate di quelle utilizzate attualente in produ-
zione per controllare la dissiapzione di potenza all’interno dei futuri sistemi
multiprocessore.

Lo scopo della presente tesi di dottorato è duplice. Innanzitutto, sono
state sviluppate delle innovative tecniche per controllare la temperatura dei
futuri sistemi multiprocessore, nonchè la potenza dissipata, basandosi sulla
teoria del controllo. Inoltre, un flusso di simulazione è stato sviluppato,
in grado di verificare le prestazioni delle suddette politiche di controllo.
Il simulatore può simulare una architettura multiprocessore a livello del
singolo ciclo macchina ed è dotato di accurati modelli per quanto riguarda
sensori e attuatori, essendo quindi in grado di simulare le politiche in un
ambiente realistico, tenendo conto delle non idealità degli attuatori e dei
sensori, nonchè dei costi di attuazione.

Risultati sperimentali ottenuti grazie al flusso di simulazione e bench-

mark standard sono stati utilizzati per validare le politiche presentate, va-
lidando gli incrementi di prestazioni ottenuti rispetto allo stato dell’arte.
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CHAPTER1

Introduction

TODAY the semiconductor industry is facing increasing problems to
continue delivering performance improvements at a pace that is now
expected by its user base, as well as the general public. This is not

yet caused by problems in achieving feature size reductions, but by the side
effects and nonidealities caused by said scaling.

Although the diminishing returns of further optimizing uniprocessor ar-
chitectures has been successfully overcome through the move to multi-core
designs – at least for parallelizable workloads –, the failure of Dennard scal-
ing [28] in deep nanometer architectures results in an ever worsening power
density increase, eventually leading to the dark silicon problem [37, 84],
where power and thermal constraints limit the number of transistors that
can be switched at the maximum clock speed to an ever decreasing fraction.
This problem, if not solved, could be a major roadblock in the evolutionary
path from multi-core to many-core architectures.

For this reason, high-performance multi-core designs are increasingly
power limited. Thus, microarchitectural improvements and run-time poli-
cies that can increase the power efficiency of an MPSoC are particularly
sought after.
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Chapter 1. Introduction

However, power efficiency alone is not enough to mitigate the dark sili-
con issue, as one of the major problems caused the power density increase
is the need to effectively dissipate the generated heat away from the silicon
die to prevent immediate failures as well as reliability issues caused by high
operating temperatures.

In such a scenario, thermal management is a fundamental design chal-
lenge that needs to be explicitly taken into account, as there can be cases
where power-performance and thermal optimizations are in conflict. For
example, a power optimization strategy that concentrates computation in a
small area of the chip in order to use power gating could well generate an
hot spot [53].

Thus, to effectively turn the increasing transistor count made possible by
Moore scaling into a performance increase both thermal and power man-
agement techniques are required.

Another important consideration is the high variability in the load ex-
perienced by multiprocessor system on chips (MPSoCs), caused by the po-
tentially very different activities performed by the various cores.

In this perspective, effective dynamic thermal management solutions
that can push the cores to their maximum performance subject to the con-
straint imposed by the need to remain within safe operating temperatures is
a key aspect to achieve the best utilization of the computational capabilities
of current, and especially future MPSoCs.

The work presented in this doctoral thesis is a contribution to this large
and not yet fully explored research topic.

1.1 Contributions

The main contributions of this thesis can be divided in two main areas:
the development of an extensible simulation flow able to produce an accu-
rate view of the transient thermal behavior of current and future MPSoCs,
including 3D die stacked ones, and the development of dynamic thermal-
management and power-performance policies that can counteract the neg-
ative effects of the increasing power densities. In detail, the contributions
can be summarized as follows:

• The development of accurate models for multiple DVFS actuators in
a cycle-accurate instruction-set simulator (GEM5 [16]), including ac-
counting for the resynchronization overhead between different clock
domains. This allows to simulate the DVFS actuator used by dynamic
thermal management policies without losing the cycle-accuracy of the
simulation, and taking into account their overhead and nonidealities.
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1.2. Dissertation organization

• The development of a novel flexible thermal simulator based on object-
oriented and component-based modeling, in the Modelica language.
Such a thermal simulator is more open to extensibility than the cur-
rent state of the art, such as HotSpot [46], as it allows to easily make
changes in the chip structure and thermal dissipation path from the
chip to the heatsink, like for example simulating a 3D stacked MP-
SoC.

• The design of an innovative thermal control policy for 3D MPSoCs
using event-based control theory. Such a policy is centered on a hard-
ware/software partitioning of the controller implementation, and can
provide the fast reaction time needed to counteract abrupt temperature
increases found in 3D die stacked chips and the low overhead of a pol-
icy implemented entirely in hardware coupled with the flexibility of a
policy implemented in software.

• The design of an effective power-performance policy for reducing the
power consumption of NoC routers by using DFS to reduce their clock
frequency when the network traffic is low. This policy is based on a
controller tuned starting from a model of the frequency to contention
relation of a NoC router, and provides a formal proof for what con-
cerns the stability of the closed loop system.

1.2 Dissertation organization

This PhD thesis is organized as follows

• Chapter 2 provides a background on simulation frameworks for MP-
SoCs, as well as thermal management and power-performance prob-
lems, with a focus on the future challenges.

• Chapter 3 introduces the cycle-accurate simulation flow developed as
part of this PhD thesis to evaluate the thermal behavior of modern
MPSoCs, and test dynamic thermal management as well as power-
performance policies.

• Chapter 4 presents the developed component-based thermal simulator
that is proposed as a solution to model the thermal dynamics of current
and future generation MPSoCs.

• Chapter 5 details the proposed thermal management policy. This pol-
icy, based on event-based control theory allows to handle the increased
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Chapter 1. Introduction

power density of future 3D MPSoCs coupled with the high workload
variability of a many-core platform.

• Chapter 6 outlines the proposed power-performance policy to opti-
mize the power consumption of NoC routers using DFS to reduce their
frequency when the network load is low.

• Chapter 7 concludes the thesis, and outlines future research directions.
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CHAPTER2

The thermal and power management

problem in MPSoCs

Digital? Every idiot can count to one.

Bob Widlar

THIS chapter presents an overview of the problems related to the de-
sign of MPSoCs, with a focus on thermal management and control,
power-performance optimizations and on the development of simu-

lation environments to assess the performance of novel solutions prior to
implementing them in silicon. This motivates the research in these large
and still not fully explored fields that have the potential to further improve
the performance and power efficiency of computing architectures, finding
solutions to the various roadblocks that are being found as technology scal-
ing progresses.

2.1 Thermal management

High performance computing systems have historically always been limited
by thermal considerations [48], and on the thermal management problem

5



Chapter 2. The thermal and power management problem in MPSoCs

in computing systems a large research corpus has been developed, as for
example testified by [48, 53, 91, 101].

However, the semiconductor industry is currently facing increasing prob-
lems related to the power density increase at every technology node, caus-
ing the well known dark silicon problem [37, 84]. As such, solutions that
help maximizing the performance of an MPSoC subject to temperature and
power constraints, as well as explore the power-performance and thermal-
performance tradeoffs are particularly sought after. One recent example is
the sprint computing [75] approach, which consists in relying on the slow
thermal dynamics to transiently exceed a chip thermal design power (TDP)
without reaching unsafe temperatures. This has already found adoption in
commercial applications, in the form of the Turbo boost 2.0 [77] which is a
hardware controller in the recent Intel processors capable of operating the
cores above their TDP if the temperature state of the chip allows it.

There are two main reasons why the temperature of an MPSoC, or in
general an integrated circuit has to be kept under control. The first and
most obvious reason is to prevent immediate failures such as thermal run-
away conditions [91]. This already sets an upper limit to the temperature
that an integrated circuit can safely reach. However, many phenomena
affecting the reliability of an integrated circuit, such as hot carrier injec-
tion (HCI) [43], electromigration [32], negative bias temperature instability
(NBTI) [59], as well as thermal fatigue on the solder joints [90] depend on
temperature. It is thus often desirable, or even necessary, to further lower
the chip temperature at a value computed from reliability considerations.

A first solution to the current trend of increasing power densities in MP-
SoCs could be the development of better heat dissipation methods to keep
the chip temperature at safe levels despite the increasing power and power
density. This is essentially what has been done in the past, considering that
early single chip microprocessors, such as the Intel 8086 operated without
special heat dissipation considerations. Later on, heatsinks to improve ther-
mal dissipation through natural convection became necessary, and finally
forced air cooling through fans became mandatory. Further improvements
to withstand greater heat fluxes have been proposed in the literature, such as
liquid cooling, both of the chip package or directly at the chip level through
microchannels on the silicon die [101], the use of active devices such as
thermoelectric coolers (TECs) over the entire chip surface [79] or micro
TECs directly placed atop of an hot spot [8], or the use of phase chang-
ing materials (PCM) [93]. Although this is a promising research direction,
these solutions are currently not used for mainstream applications due to
issues in implementing them in a cost effective way. Moreover, active so-
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lutions such as the one based on TECs require a non negligible amount of
power to operate, thereby reducing energy efficiency.

However, TDP is a very conservative constraint, as an MPSoC power
consumption is not constant at the maximum value. Even considering a
situation where all the cores in the MPSoC are fully loaded, the power
consumption depends on the CPI [10] and thus depends on factors such
as the executed code and cache misses. Moreover, the cores are often put
in a low power state by the operating system during idle periods or when
waiting for I/O operations or user input.

The highly variable power consumption of MPSoCs motivates the intro-
duction of dynamic thermal management (DTM) policies. DTM policies
work by sensing the chip temperature at run-time, and rely on the avail-
ability of actuators such as increasing fan speeds to improve the heat dis-
sipation, or reducing core frequencies to reduce the power consumption
if required. Their strength lies in their capability to maximize the perfor-
mance of a given architecture limited by a heat dissipation budget, across
varying loads.

One of the first DTM policy proposed is the stop and go [21], which
halts the processor clock if the operating temperature is higher than a given
threshold, and restores normal operation only after it has cooled down. Al-
though this policy yields a considerable performance penalty compared to
other techniques [29], it is often used as a secondary policy that acts only
in critical conditions.

An improved policy [80] uses a control loop to modulate the instruction
fetching of a processor, reducing on purpose the fetch rate if temperature
is too high. Contrary to the stop and go policy that uses a binary actuator,
this policy can adapt the performance impact to the required control action
to keep the temperature under control.

Dynamic voltage and frequency scaling (DVFS) [78], although first in-
troduced to explore the power-performance tradeoff is an effective actuator
also for DTM due to its quadratic effect on power consumption, and is be-
ing employed as the knob for many DTM policies.

One of the first works making use of DVFS in a DTM policy in multicore
processors is [29], which proposes a proportional-integral (PI) controller
sensing the core temperature and actuating on its frequency. The scheme
is distributed, meaning that each core in the MPSoC has its own controller,
and requires per-core DVFS. While the proposed solution achieves remark-
able performance, the overhead of the proposed controller is not taken into
account in the quoted work. This scheme is the most similar in nature to
the DTM policy presented in Chapter 5 of this thesis, however the scheme
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here presented makes use of event-based control theory thereby presenting
a significantly lower overhead, to the point of allowing a software imple-
mentation of the policy thereby allowing for greater flexibility.

The heat and run approach [73] proposes a DTM policy based on task
migration for MPSoCs. The policy works by moving applications that per-
form “heavy” computation away from “hot” cores. The policy yields a
performance improvement compared to stop and go, but suffers from two
major drawbacks. First, task migration cannot be performed at a sub-
millisecond timescale without incurring in an excessive overhead due to
cache lines invalidation. In addition, this solution exacerbates both tempo-
ral and spatial thermal gradients, which degrade the overall system reliabil-
ity [33].

In [50], the authors propose a solution based on convex optimization,
that assumes the power to be constant and optimizes the workload under
steady state temperature constraints. The authors however admit that the
solution needs to be complemented with a DTM technique, to account for
varying power consumption and ambient temperature.

A Linear Quadratic Regulator (LQR) is presented in [99] to address ther-
mal balancing of a multicore chip based on a model of the system, workload
requirements – to be obtained from the OS scheduler – and temperature
measurements. The proposed policy is meant to be operated every 100ms,
thus being aimed at controlling only the slow thermal dynamics, and its
centralized nature, together with the need to interact with the OS scheduler,
make it difficult to operate at finer timescales, a matter that will be further
discussed in Chapter 5.

Other proposals focus on predictive approaches; a notable example is [98],
where a Model Predictive Control (MPC) solution is presented to address
thermal management in multi-cores with the objective of smoothing the
control actions. The proposed scheme is centralized, and thus its scalabil-
ity is limited as the number of cores increases. Furthermore, it relies on the
strong assumption of knowing the future chip workload. Analogously, [10]
describes a decentralized MPC solution to the thermal management prob-
lem, thus solving scalability issues of centralized solutions. The proposal
still requires for an accurate workload information. The control rule in the
quoted work is particularly lightweight for an approach based on MPC, but
it has to be applied at a fixed rate, and is therefore limited by the tradeoff
between limiting the number of events and achieving good thermal control.

Thermal management in MPSoCs is thus a well-studied research topic,
where many solutions have already been proposed. Having presented an
overview of the literature related to the thermal management problem in
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MPSoCs, it is worth having a look at the future challenges posed by the
expected directions in which the semiconductor industry will move.

One of this breakthrough changes is surely the move to 3D die-stacked
architectures [19] which consists in building integrated circuits with mul-
tiple layers of active components, connected through high-speed methods
such as through-silicon vias. This construction method yields the possibil-
ity to have more dense interconnections, reducing wire delays and power
consumption, but will result in even greater power densities. As such, the
increase in the amplitude of the temperature transients induced by fast ther-
mal dynamics, although already present in 2D chips, will impose more and
more stringent constraints in the reaction time required by thermal poli-
cies, to limit the temperature of hot spots to safe levels. As Chapter 5 of
this thesis will explain, DTM policies will need to be operated at the mil-
lisecond, or even sub-millisecond timescale to effectively control the die
temperature, thereby imposing severe limitations to the policy design and
implementation.

2.2 Power-performance tradeoffs

The exploration and optimization of the power-performance tradeoff in
MPSoC design is a vast research topic that spans from core microarchi-
tectural design, interconnection design, whether bus-based or NoC-based,
memory hierarchy and cache optimizations, as well as the design of run-
time policies. It would thus not be possible to give a full overview of all
the power-performance techniques that have been proposed in computing
systems. Instead, this section will focus on the power-performance tradeoff
in NoC design, with an emphasis on run-time policies making use of dy-
namic frequency scaling (DFS) to take advantage of the varying NoC load
to improve power efficiency.

While NoCs are considered the future solution for the interconnection
problems in the transition from multi-core to many-cores, the resource con-
strained nature of an on-chip network imposes the need to optimize designs
mainly in two directions: performance increase and power reduction.

Many proposals rely on microarchitectural modifications to improve
performance and reduce power. In this perspective, the use of virtual chan-
nels and dynamic traffic distribution [41] allows to reduce contention, im-
prove throughput and provide fault-tolerance. These solutions are definitely
useful, but techniques that dynamically adapt the NoC frequency to the ac-
tual load allow to further improve power efficiency.

[65] proposes a buffer-less routing approach that leads to lower power
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consumption without significantly sacrificing the NoC performance. How-
ever, such buffer-less schemes delivers reasonable performance only when
the injection rate into the network is low. Being a design-time optimiza-
tion, this solution is very good for power optimizations, but is limited to
solutions where performance is less significant than power. In this perspec-
tive, DFS based methodologies adapt to the load in the network allowing
for more flexibility for the power-performance optimization.

[64] discussed a fine-grained frequency tuning scheme for NoC routers
to optimally manage the power-performance trade-off. In particular the
methodology exploits signaling between routers to collect critical informa-
tion to steer frequency. Moreover, the work allows for a run-time VC re-
configuration to aggressively save power. However, the proposed solution
does not model the relations between routers’ frequencies and real perfor-
mance and power measures. To this extent the proposed solution cannot be
easily improved, since it represents a fixed heuristic.

The work in [15] leverages the traffic unbalancing within a specific NoC
topology to exploit the classical technique of DVFS to minimize the power
consumption coupled with ad-hoc routing algorithms. A power minimiza-
tion linear programming model has been proposed to find a routing that
minimizes the power consumption while satisfying the traffic demands and
meeting the link capacity constraint. The solution relies on a mathematical
formulation that must be solved at design time considering a static even in
average behavior for the system as a whole.

Different proposals focus on the queuing theoretical framework to model
on-chip networks. [67] presented analytical model that focuses on QoS as-
surance. However, it assumes that the NoC has an underlying synchronous
behavior with constant service time routers, thus it is not suitable for op-
timization using DFS actuators. Moreover, it assumes infinite buffers, and
taking into account the finite nature of NoC buffers would greatly compli-
cate the model. An analytical queuing theoretical approach to model NoCs
accounting for finite buffers has been presented in [68]. The solution ex-
ploits the classic queuing theory, while the router serving time model has
been derived from real data. However, the methodology relies on exponen-
tial distribution for flit arriving times that cannot in general be guaranteed
in NoCs [67], and does not account for run-time frequency variations.

The work in [27] proposes an heuristic approach focused on DVFS actu-
ators to mitigate power consumption on the real Intel SCC multi-core. Even
if this solution has been tested on a real multi-core, it does not provide an
accurate model of the relation between frequency and performance thus it
does not allow to exploit the solution for further improvements.
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[69] proposes a design methodology for partitioning an NoC architec-
ture into multiple voltage and frequency islands (VFIs) and assigning sup-
ply and threshold voltage levels to each VFI. The employed resynchroniza-
tion scheme is based on FIFO buffers.

The work in [12] presented a complete DVFS scheme for IP unit inte-
gration to be employed for NoC-based design. However, this work does not
easily allow to model different policies or different topologies as in a cycle
accurate simulation framework, since it has a prototyping focus.

2.3 Simulation frameworks

Simulators are powerful research tools for thermal management and power-
performance policies. Their advantage is their inherent ability to provide
a greater detail of introspection compared to a real hardware architecture.
When designing innovative policies it is often required to sense quantities,
either microarchitectural, such as the NoC load, or physical, such as the
chip temperature or the power consumption of a functional unit. These
sensors can be required either by the policy itself to close a control loop, or
need to be logged in order to assess the policy effectiveness. In addition,
actuators are also required to steer the system behavior. Hardware archi-
tectures often lack the required sensors and actuators needed for the assess-
ment of innovative policies, and this motivates the research in simulation
frameworks. In addition, the introduction for such hardware sensors and ac-
tuators requires accurate pre-silicon analysis, thus simulation frameworks
can be a design aid also to explore the design space for such actuators.

Wattch [22] constitutes the first cycle-accurate single-core power-performance
simulator. However, the advent of multi-core architectures required simu-
lation toolchains that allow to accurately mimic the behavior of multi-core
systems.

The SESC simulator [76] provides cycle-accurate simulation of bus-
based multi-core processors, based on the MIPS architecture. However,
it does not support Network-on-Chip architectures and does not support for
DFS.

The Polaris framework [82] allows for power and area design space ex-
ploration for Network-on-Chip architectures without considering a detailed
power estimation for both processors and memory hierarchy. Moreover,
it does not implement an heterogeneous NoC model to allow for dynamic
frequency changes during simulation.

The simulator presented in [57] is meant to simulate large-scale archi-
tectures, and exploits parallel simulation on physical hardware with partic-
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ular emphasis on the on-chip network. While the framework enables the
possibility for power-performance trade-off analysis, it lacks a complete
asynchronous on-chip network model, thus it is not possible to explore dif-
ferent GALS configuration for the interconnect as well as the simulation
considering dynamic frequency scaling based on high level policies.

The work in [24] presents Sniper, a framework that can simulate multi-
cores underpinned by an on-chip network interconnect, supporting per-
core DVFS. However frequency scaling support is not present for the NoC
model.

The HANDS [26, 103] framework sits on GEM5 and allows to simulate
multi-core architectures collecting power-performance thermal and relia-
bility estimates at the same time. Even if this is quite accurate it lacks a
complete asynchronous NoC model, thus it is not possible to test different
DFS schemes to trade-off power vs. performance. Moreover, the thermal
simulation capability is limited to a steady state analysis.

The virtual platform presented in [11] is instead a simulator targeted at
the development of thermal policies. However, it does not support NoC-
based architectures. Moreover, even if they support the DVFS, the frame-
work lacks for an accurate evaluation of the PLL model as well as the im-
plementation of the DVFS for the on-chip network.

2.4 Summary

This chapter presented a summary of the challenges related to the thermal
and power-performance optimizations in MPSoCs. For space limitations, it
was decided to limit the scope of this overview to the literature that was felt
more relevant to the topics presented in this dissertation. When considered
appropriate, an additional background of the literature complementing this
overview is inserted in the chapters related to the individual methodologies
developed.
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CHAPTER3

A cycle-accurate MPSoC simulator for

thermal and power-performance

explorations

One is equal to two for sufficiently
large values of one.

Unknown, on the IEEE floating point
representation

MULTI-CORE processors emerged as a commonplace solution to de-
liver increasing processing power to demanding applications rang-
ing from the embedded to the supercomputing market and are

currently the mainstream solution for general-purpose computation. In ad-
dition, many-core platforms are already employed for specialized tasks in
the form of GPGPU or dedicated accelerators, where simpler cores lack-
ing hardware support for modern operating systems such as an MMU are
acceptable, although thanks to Moore scaling it is expected that general-
purpose many-core platforms will be available in the near future. In this
scenario, Network-on-Chip (NoC) are widely recognized as the most promis-
ing solution to solve the interconnection problem as the number of cores
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increases, being more flexible and scalable than the traditional bus archi-
tecture. However, NoCs, although very promising for future MPSoCs are
not yet mainstream unlike multi-cores. Owing to the limited core count
of current general-purpose processors, bus-based architectures are still pre-
ferred.

Performing the strategic decision making required to design a success-
ful MPSoC platform in general, and in detail the development of thermal
and power-performance policies, requires a rapid prototyping platform to
test their performance. This chapter thus introduces the developed simu-
lation framework [86], which is focused on allowing rapid prototyping of
run-time thermal and power-performance policies for multi- and many-core
architectures underpinned by a NoC interconnection. After a motivation
section to underline the importance of simulators as enablers for research
in the design of effective policies, this chapter gives an overview of the
entire simulation flow presenting the components upon which it is built,
and then details the improvements that have been made to the GEM5 [16]
cycle-accurate simulator to add the sensors and actuators models required
for policy design. The modeling and simulation of a chip thermal dynamics
is instead treated in chapter 4.

3.1 Motivation

The need to develop effective thermal and power-performance policies re-
lies on the availability of sensors for physical quantities, such as tempera-
ture, or microarchitectural ones, such as the number of flits stored in the in-
put buffer of a NoC router. In addition, actuators also need to be introduced
providing the knobs on which to act to close the loop and operate the policy.
This highlights three different issues. First, if the selection of the kind of
sensors as well as actuators and their placement in the considered platform
is decoupled from the policy design, this results in suboptimal solutions. In
particular, the possibility to accurately place sensors and actuators in a way
that is tightly coupled with the designed policy provides the best perfor-
mance. Second, the possibility to propose novel sensors and actuators, that
are more effective to face the considered issues, whether thermal or power,
requires for a great flexibility of the multi-core hardware. Last, thermal
policy evaluations impose to account both actuators and sensors overheads,
that can severely affect the benefit of the methodology.

Often, the required sensor and actuators are not yet present in current
mainstream architectures, which limits the range of policies that can be
tested due to the partial observability and reachability of the system. More-
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over, for what concerns NoC-related policies, the fact that most current
multi-core designs are still bus-based makes it outright impossible to use
them for policy assessment.

However, designing a real hardware architecture in order to test a new
policy would be prohibitive due to the time and cost required to build a pro-
totype MPSoC. With this possibility out of question for apparent reasons,
two solutions exist to assess run-time policies in MPSoCs: FPGA-based
prototyping or cycle-accurate simulation.

FPGA-based prototyping incurs several limitations, as sensors for phys-
ical quantities like temperature may be difficult to design in an FPGA and
require external hardware [5,6], and for what concerns actuators, partition-
ing the computational logic (as opposed to the I/O ring) into multiple in-
dependent voltage islands is not supported in current FPGAs, which would
make implementing fine granularity DVFS impossible. In addition the lim-
ited amount of hardware resources in current FPGAs may make it hard to
implement an entire many-core architecture.

To this extent, considering the complexity of the actual MPSoCs, the
need to quickly and flexibly modify the hardware platform eventually with
novel sensors and actuators, as well the requirement for a complete observ-
ability and controllability of the systems motivates the research in simula-
tion frameworks. In particular, architectural simulators are widely accepted
to support strategic decision making on the allocation and management of
the hardware monitors and knobs and to test policies to orchestrate thermal-
performance and power-performance tradeoffs.

3.2 Design goals

As anticipated, assessing a thermal or power-performance policy in a realis-
tic settings requires models for sensors and actuators. However, real-world
sensors and actuators have limitations and nonidealities. To give an exam-
ple of those nonidealities consider a PLL that is commonly used to dynami-
cally change the frequency of a CPU core or NoC router. PLLs are made by
a Voltage Controlled Oscillator (VCO) disciplined using a feedback loop to
a lower frequency but more stable reference signal, such as a crystal os-
cillator. However, the frequency produced by a PLL cannot be changed
instantaneously, rather, when the frequency set point is changed the output
frequency evolves depending on the oscillator and feedback loop dynamics.
However, state of the art simulators neglect this and simulate a frequency
change as an instantaneous one. This simplification neglects the overhead
of a frequency change, a matter that may be significant while testing a pol-
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icy that makes frequent changes to the frequency of a component.
Summarizing, the simulator proposed in this chapter has the following

main characteristics

• Account for Multiple Simultaneous Metrics - Policy design requires
accurate estimates from the underlying microarchitecture to be ex-
tracted simultaneously. The proposed flow provides power, thermal
and performance estimates at different granularity levels for both cores
and the NoC, thus allowing to develop accurate thermal-performance
and power-performance policies. The simulation environment tackles
all the restrictions on the observability of the metrics, while it is possi-
ble to set constraints on the metric extraction to mimic real hardware
limitations. For example, the simulator extracts a temperature value
per each functional unit of the CPU, while it is possible to assume a
single thermal sensor per core located in a specific functional unit to
model the actual, limited number of hardware sensors integrated in the
real platform.

• Accurate Model for the Actuators - The actuators represent the knobs
to steer the system to the desired operating point. However, the possi-
bility to employ custom knobs and the availability of accurate models
including their overheads represent two critical features. In this per-
spective, the flow exposes a complete analytical model for DVFS for
both cores and NoC routers. The net results is a framework where the
simulation of the microarchitecture and the actuators run in a seamless
fashion.

• Dynamics of the System Components - This simulation flow is de-
signed from the start with the aim of assessing policies that operate at
run-time, and thus is not limited to steady-state analysis. It can sim-
ulate the system transient behavior, producing traces of the desired
metrics, such as power and temperature as a function of simulation
time. This allows the policies to operate from sensor data to control
the system behavior closing the loop between the policies and simula-
tor, in order to verify their ability to limit overshoots and, in general,
undesired transient behaviors.

This is not the first simulation flow proposed for MPSoCs. Different
simulation solutions have been proposed to address power-performance and
thermal-performance optimizations for single-core and multi-cores. Nev-
ertheless, few of them focused on a comprehensive approach to jointly es-
timate multiple design dimensions. Moreover, the possibility to accurately
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Table 3.1: State-of-the-art multi-core simulators: features, advantages and drawbacks

with focus on fine granularity DVFS.

Proposed flow SST [44] VirPlat [11] HANDS [103] Sniper [24] Ocin tsim [74]

Tradeoff
Power ✓ ✓ ✓ ✓ ✓ ✓

Thermal ✓ ✓* ✓ ✓*

DVFS CPU
Func ✓ ✓ ✓ ✓

PLL ✓

Vreg ✓

DVFS NoC
Func ✓ ✓ ✓

PLL ✓

Vreg ✓

GALS
Func ✓ ✓ ✓ ✓

Resync ✓

* = Limited to steady state thermal simulations.

simulate the model of the actuators coupled with the platform microarchi-
tecture as well as the possibility to track the transient behaviors represent
two distinguishing features of the proposed simulation flow. The proposed
simulation flow is here compared with other state of the art solutions fo-
cused on thermal and power-performance tradeoffs to show its benefits and
limitations. Each row in Table 3.1 represents a feature to support power-
performance and thermal-performance optimizations. The table also shows
the level of support for each feature, detailing if models of the actuators
have been implemented, or the simulator is limited to a functional simulator
without considering the overhead introduced by the actuator nonidealities.
For example, the row DVFS CPU considers whether the simulator provides
only the possibility of changing the core frequency, or supports a detailed
model of the PLL and voltage regulator.

Table 3.1 highlights a great effort in the development of
power-performance simulators since all the considered frameworks account
for power estimates. Moreover, support for DVFS – at least in its functional
declination – is stronger for CPU cores than for NoC routers. Last, the state
of the art generally lacks accurate simulation frameworks which allows to
model both actuators and microarchitectures in a detailed way with support
for transient analysis, i.e. Table 3.1 reports that most of the specific features
for each main feature are most of the time not supported by the simulators.

3.3 Simulation flow design

From a high-level perspective, the proposed simulation flow is shown in
Figure 3.1. The flow can be divided in five different components, the
instruction-set simulator, power models, thermal models, policy module

17



Chapter 3. A cycle-accurate MPSoC simulator for thermal and
power-performance explorations

Figure 3.1: Overview of the simulation flow.

and simulation manager.
The first component is the GEM5 [16] instruction set simulator, that

simulates code execution on the CPU cores as well as the memory accesses
through the memory hierarchy, including NoC accesses. It produces statis-
tics on the utilization of the functional units of the cores, as well as the NoC
and caches. The simulator is periodically stopped and detailed statistics are
dumped and fed to the power models to compute the power consumption.

The GEM5 simulator was extended with support for DVFS for cores and
NoC routers, frequency islands and resynchronizers for signals that cross
clock domains, as well as sensors to provide introspection capabilities. In
addition, the garnet [2] NoC embedded in GEM5 was enhanced to sup-
port 3D MPSoCs. To speed up the simulation, GEM5 is used in syscall

emulation mode, running the applications without simulating the operating
system, although a model of the delays incurred due to disk access laten-
cies has been introduced, as this has a non-negligible impact on the power
consumption trace and thus the thermal behavior of an MPSoC.

The detailed statistics produced by the instruction set simulator are fed
to the power models to compute the power consumption in each of the
functional units of the simulated cores, as well as the NoC routers.

McPAT [56] is used to obtain the power consumption of each functional
unit of the cores as well as for the caches. The McPAT operation can be
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divided in two phases. First a model of the target architecture is built based
on a given set of parameters, and then the power consumption is computed
based on a given set of statistics on the usage of the individual functional
units. In order to adapt McPAT for an on-line simulation framework capa-
ble of computing power as a function of time as the simulation progresses,
the two phases have been separated. The model building for the target ar-
chitecture is performed only once at the beginning of the simulation, using
the maximum target frequency for consistency. The power computation is
instead performed periodically with the statistics and clock frequency of
each core coming from GEM5. The power dissipation of the NoC routers
is instead computed using the Orion [51] model embedded in GEM5.

The next component of the simulation flow is the thermal simulator,
whose purpose is to produce transient thermal traces of the chip starting
from a floorplan of each layer in the chip and power consumption data. The
simulation flow supports multiple thermal simulators, the default one is is
the thermal simulator described in chapter 4 that focuses on a component-
oriented modeling approach, being thus flexible to extensions and modifi-
cations to the thermal dissipation path, as well as supporting 3D MPSoCs.
It is also possible to use the HotSpot thermal simulator [46], configured in
transient simulation mode.

The floorplan for the multi-core chip is produced using HotFloorgen [46]
starting from area information obtained from McPAT, Cacti [66] and Orion,
extended with a tool to combine the core and router floorplan in a flexible
way to produce tiled muticore architectures floorplans.

The fourth component is the policy module which can be further divided
in three sub-components: the sensors, policy and actuators, which are de-
scribed in more detail in the next section. For convenience, this module is
not a separate process, rather, the policies are implemented as C++ classes
in the GEM5 simulator, thereby having full access to the simulation state,
a matter that eases the introduction of sensors for microarchitectural met-
rics, such as the buffer filling in the routers of the NoC. Power and thermal
sensors are also available, as the simulation manager communicates these
values to GEM5. In addition, to simplify policy design, it is also possible to
write policies using the GNU Octave mathematical-oriented programming
language, as the Octave interpreter has been embedded in GEM5.

The last component is the simulation manager, which is a custom pro-
gram developed in C++ to orchestrate the various simulation tools by con-
necting them in a closed loop pipeline as well as to adapt the format pro-
duced by a tool into the one expected by the next one. All the tools have
been modified to connect to the manager through TCP sockets, in order
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Figure 3.2: Operation of the simulation manager in interconnecting the individual tools

that compose the simulation flow.

to efficiently exchange information. The simulation manager periodically
stops the instruction set simulator, at a configurable rate, to update the
power and thermal information, as well as to run the policies. It is also
possible to execute the various tools in parallel on different cores, to speed
up the simulation. Additionally, the simulation manager produces as out-
put traces of the voltage, frequency, power and temperature as a function of
time for the cores, NoC routers and caches.

Figure 3.2 shows the internal architecture of the simulation manager,
giving a high-level overview of its operation. The manager is composed
of three main C++ classes that handle the interaction with the individual
tools through a TCP socket, the first one is the Gem5 class which han-
dles the connection to the GEM5 simulator. The simulator takes as input
the temperature and power data to run the policies, and produces statistics
for the cores of the MPSoC, while the Orion power model embedded in
GEM5 directly produces the power consumption data for the NoC routers.
The data is then passed to the McPAT class, which directs the core stats
to the McPAT power model, obtaining as a result the power consumption
of cores and caches, while the router power is instead simply forwarded.
The next component is the mapper which aggregates the power informa-
tion produced by Orion and McPAT. This mapping is made necessary due
to slight differences in the functional unit names between the power models
and the thermal simulator. For example, the McPAT power model produces
two separate power consumption values for the integer addition/subtrac-
tion and multiplication parts of the integer ALU, while in the floorplan
of the thermal model there is only one ALU component. The aggregated
power consumption data is fed to the PowerModel class that manages data
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transfer to the power model, which can be either the Modelica component-
based model or HotSpot, and obtains from it the temperature values that are
passed back together with the core power to GEM5, closing the simulation
loop.

3.4 Implementing DVFS in a cycle-accurate simulator

This section describes the modifications that have been introduced to the
GEM5 software architecture to support simulating multiple components
such as cores and NoC routers operating at different clock frequencies with
no phase relation between them, as well as allowing to modify the fre-
quency of components at run-time.

As GEM5 is an event-driven simulator, individual components are sim-
ulated by scheduling events at the active edge of their clocks. In addition,
the representation of time in the simulator is discrete with a 1 picosecond
resolution, thus the events corresponding to the active edges of all clocks in
the system are aligned to the 1ps timescale. Considering that the frequen-
cies of cores used in the simulations have a maximum of 2GHz, or 500ps,
the resolution of the timescale allows to simulate frequency changes with
a worst-case resolution of 4MHz, which is sufficient even considering the
need to model the frequency changes that happen during a PLL lock.

To support dynamic frequency scaling the first modification performed
is adding support for changing the period at which events are scheduled on
a component –i.e, cores and NoC routers– basis. Components in GEM5
are synchronous logic blocks that can be as small as a circuit made of a
limited amount of gates, or as large as a CPU core. All components have an
associated ClockedObject class that is used to schedule events aligned
to the component’s active clock edge. Said events are used to simulate the
operations that happen inside the component during one clock cycle. It
should be noted that since GEM5 is an an event driven simulator, as part of
the processing of one event, additional events may be scheduled at future
clock cycles. On the other hand, if a component has no operation to perform
at a given clock cycle, no event will be scheduled for it, thus improving the
simulation performance. The ClockedObject class was extended with
the possibility to dynamically change the period of the clocked component
throughout the simulation.

Although this modification ensures that all events that are scheduled af-
ter the frequency change are placed at their correct point in time, this does
not solve the problem of already scheduled events. Components can in fact
schedule events also multiple clock cycles in the future, and the transla-
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tion between the clock cycle and the event time point happens upfront in
GEM5, before inserting the event in the global event queue. The event
queue does not even have any knowledge of the clocked object associated
with the event, nor the clock cycle. It merely scheduled events in the global
time (in picoseconds). Thus, if a frequency change is made to a component
that has at least one event already scheduled in the future, that event will be
serviced at the wrong time, introducing a semantic misbehavior.

To solve this issue a framework was implemented to identify all the
events already scheduled for a given component in order to move them
forward or backwards to the correct time after the frequency change. To
do so, the event management system of the simulator has been extended to
support the possibility to move already scheduled events between different
simulation times.

Changing the frequency of a component thus entails moving already
scheduled events to the time they will need to be serviced considering the
frequency change and updating the ClockedObject frequency so that
subsequently generated events are scheduled at the appropriate time.

The last problem that was experienced is caused by moving events.
Moving already scheduled events introduces the problem of the order of
execution of events scheduled at the same time, as this could introduce ad-
ditional semantic misbehavior. To solve this, GEM5 supports prioritization
of events to enable ordering the execution of events scheduled at the same
time. This feature was used by forcing all events belonging to the pipeline
of a component to be executed in backward order, as described in [23],
thereby guaranteeing that the simulator would not use as input data for a
pipeline stage the data computed in the same clock cycle by the previous
stage, which is not physically possible.

In addition, support for frequency islands was implemented, by group-
ing a set of components together, in order to allow the simulator to be
used to explore frequency scaling strategies at different granularity levels.
Figure 3.3 shows five different frequency islands for which all the events
owned by the logic in a specific island must be moved together in case of a
frequency change.

Although these modifications allow to safely change the clock frequency
of an isolated component without introducing semantic misbehavior, two
open problems remain.

The first one is how to manage signals that cross a clock domain, as
this, if not handled correctly, would lead to metastability issues in a real
hardware implementation, or semantic misbehavior in a simulator. This is
the subject of Section 3.5.
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Figure 3.3: Logic view of the simulated multicore detailing frequency islands and clock

resynchronizers.

The second one is how to model the overheads and limitations of the
frequency scaling module. In this respect, the simulation framework sup-
ports two different DFS implementations: one that employs a single PLL
for the whole chip and derives the clock for each frequency island through
frequency dividers, and another using a dedicated PLL for each island.

In the first case, a frequency change is simulated as an abrupt change
from the previous to the new frequency. Frequency change requests not
aligned to a clock edge boundary are properly delayed till the next clock
edge to avoid the insertion of clock glitches, as real world clock switch im-
plementations do. This frequency scaling option is restricted to an integer
sub-multiple of the base frequency.

Conversely, a clocking scheme employing a PLL for each frequency
island allows to choose a wider range of clock frequencies without being
restricted to an integer sub-multiple of the maximum frequency. In this
case, frequency changes are implemented by modeling the PLL dynamics
and changing the PLL set point. This is the subject of Section 3.6.

3.5 Accounting for the resynchronization overhead in a GALS

architecture

Frequency islands are introduced in the simulator to allow grouping indi-
vidual components in a common voltage and frequency domain. The gran-
ularity of the islands is configurable, ranging from each core and router
having its own frequency to a single island encompassing the entire chip.
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Figure 3.4: Superimposed image showing various transients of the output of a flip-flop

whose timings are violated, showing metastability issues. Photo taken from www.fpga-

faq.com.

Thus, the proposed simulator is able to model a GALS MPSoC. The
GALS design methodology consists in building frequency islands with com-
ponents, such as cores and NoC routers, that are synchronous inside, but
run asynchronously relative to each other. This has the advantage of not re-
quiring a power hungry clock distribution network to distribute a skew-free
clock across an entire MPSoC, as well as opening up the possibility to per-
form dynamic frequency scaling at a frequency island granularity [12, 69].

Thus, the possibility to have different frequency islands is vital to test
policies applicable to MPSoCs, but introduces the problem of handling sig-
nals that cross the boundaries of a clock domain.

In a digital system, a signal that crosses two logic blocks running at dif-
ferent frequencies or at the same frequency but different phases may incur
in timing violations. In detail, the logic block receiving the signal will at
some point in the circuit attempt to latch it using a flip-flop. However, due
to the lack of phase relation between the clock in which the signal is gen-
erated and the clock of the flip-flop latching it, setup or hold timing may
be violated. When this happens, a phenomenon known as metastability
occurs, where the output of the flip-flop whose timings are violated may
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exhibit an anomalous behavior, such as a temporary oscillation that even-
tually resolves to a random logic level, the output temporally being stuck
at an analog level that is neither a logic 0 nor 1, or a transition to a logic
level shortly followed – without a clock pulse – by another transition to the
opposite one.

The most common solution to the problem is to resynchronize the signal
using multiple flip-flops. For example, connecting two flip-flops in a chain
without any combinatorial logic between them – that would introduce a
propagation delay – leaves the output of the first filp-flop an entire clock
cycle to resolve the metastable state before the signal is sampled again by
the next flip-flop.

Coming back to the simulation of an MPSoC, instead of its actual hard-
ware implementation, it was observed that completely neglecting the resyn-
chronization between frequency islands would introduce semantic misbe-
havior in the simulation. To preserve the correct operation of the simulated
MPSoC events related to signals that cross clock domains had to be delayed
till the next active clock edge in the target clock domain.

However, even if the simulation would work under these conditions, the
lack of a true resynchronizer model in the simulator taking account of its
overhead means that the clock domain crossing is not simulated in a cycle-
accurate way.

To maintain the cycle accuracy of the simulation, a resynchronizer model
is implemented that can be inserted in the link between two NoC routers [62],
or between a router and a network interface, which is a component that in-
terfaces cores L2 cache controllers and memory controller to the NoC. In
order to simulate an asynchronous multi-core an adequate number of resyn-
chronizer components must be inserted on each frequency domain border.
The resynchronization logic is a two way handshaking protocol that adds a
minimal amount of logic and only two wires, i.e. request and acknowledge,
to a network link.

The model of the resynchronizer is depicted in Figure 3.5. The left part
of the figure reports the output port interface on the upstream router, while
the right side provides the input port interface of the downstream router.
When a new flit is ready to be sent out, the upstream router triggers the
new_flit signal for 1 clock cycle. This result in the req signal being toggled
one cycle later. Moreover, the back path in the upstream router switches
the busy signal high. After the propagation delay across the network link
the req signal enters to a two flip-flop chain in the downstream router, that
is used to avoid metastability issues. The third flip-flip in the chain is used
in couple with the req_stable signal as an edge detector, since our resyn-
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Figure 3.5: The implemented resynchronization scheme to avoid metastability when cross-

ing clock domains.

chronizer works on edges to increase throughput [3]. The edge detector
triggers the data_valid line, signaling that there is a valid flit on the link.
The req_stable signal is also sent back as an acknowledge to the upstream
router to signal the data transfer completion. Also the upstream router man-
ages the ack signal using a two flip-flip chain to avoid metastability issues.
The busy signal is used to prevent the transmission of new flits until the
reception of the acknowledge signal. The implementation connects it to
the switch allocator stage to enable or disable the allocation on the specific
output port.

It is worth noticing that, even if it is fully functional and guaranteeing
cycle accuracy, the proposed resynchronization scheme is thought of as a
customization point for the simulator, and is extensible to allow implement-
ing different resynchronization schemes to test their performance, such as
asynchronous FIFOs [61].

3.6 Modeling the PLL dynamics

PLLs are commonly used to set the frequency of an MPSoC. Since PLLs
are software-configurable, they are one of the options that allow imple-
menting dynamic frequency scaling and, when coupled with programmable
voltage regulators, also DVFS. Their main advantage is allowing a large
range of output frequencies, usually integer multiples of the reference fre-
quency, even though more advanced implementations such as fractional-N
PLLs [34] can relax also this constraint. For this reason, they are more
flexible than frequency dividers that can only produce frequencies that are
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an integer sub-multiple of the input frequency, and more suitable for fine
frequency control in the dark silicon age.

A PLL is made of a controllable oscillator, and a feedback loop that takes
as input the phase difference between the reference clock and the produced
one, suitably divided in order to have the same frequency of the reference
clock. The feedback loop is used to control the frequency produced by
the oscillator. Both the phase detector, loop filter and oscillator can be
either analog or digital. For example, a ring oscillator is a common way to
implement an analog voltage controlled oscillator (VCO), whose frequency
can be set by varying the voltage used to power the oscillator. Another
option is a LC-tuned oscillator whose frequency can be set by means of
varactors, although due to the cost in terms of area of integrating inductors
on-chip, this design is limited to applications requiring low phase noise,
such as RF transceivers. A digitally controlled oscillator can instead be
implemented with the same LC-tuned design by using a switched capacitor
bank instead of varactors.

However, regardless of how it is implemented, the PLL is a dynamic
system and thus a change in the frequency set point does not result in an
immediate change of the output frequency. Thus, to accurately simulate a
PLL in an instruction-set simulator its dynamics need to be simulated as
well. This allows to correctly take into account the overhead introduced by
a frequency change.

The goal is thus to integrate into the simulation framework a flexible
model for the PLL dynamics, easily configurable to match the settling time
of a given PLL. The ease of configuration design constraint, as well as the
need for a computationally lightweight model call for the selection of a low
order transfer function with as few parameters as possible. Considering
however that most PLL exhibit an overshoot behavior during a frequency
change [1, 71], a first order (one pole) transfer function is not sufficient, as
it would not allow to simulate the overshoot behavior. It was thus decided
to use a generic two pole transfer function, equation (3.1), as the underlying
model to simulate he PLL dynamics.

G(s) =
1

1 + 2 ξ
ω
s+ s2

ω2

(3.1)

This transfer function has only two parameters, ξ and ω. The first one
is limited in the [0..1] range, and determines the overshoot of a frequency
change transient, while the second affects the settling time. More in detail,
the settling time can be computed as 4/(ωξ), while the overshoot (in per-
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Figure 3.6: Impact of the ω and ξ parameters of equation (3.1) on the simulated PLL step

response.

centage of the input step amplitude) is 100e−ξπ/
√

1−ξ2 . Figure 3.6 shows the
simulated PLL response to a step change in the set point from 0.5 to 1GHz
with varying parameters to better evidence their impact on the simulated
dynamics. The left plot keeps ξ constant and sweeps ω from 1e6 to 4e6.
As a result, the settling time decreases from around 6.7µs to 1.7µs, while
the overshoot does not change. The right plot instead keeps ω constant, and
sweeps sweeps ξ from 0.3 to 1, resulting in a reduction of the overshoot
from 37% of the transient amplitude to zero. Notice how an increase in
overshoot also causes a settling time increase, due to the introduced oscil-
latory behavior.

A step change in the frequency set point is then implemented by instruct-
ing the simulator to perform multiple individual frequency changes to the
frequency island controlled by the PLL to track the two-pole step response,
until the response has settled. This in turn results in multiple individual fre-
quency changes to the components that belong to the frequency island. The
process of performing an individual frequency change to one component
happens as described in Section 3.4.

Two PLL models have been introduced in GEM5 as part of this thesis,
that differ in how the differential equation describing the PLL closed loop
response is integrated. The first one has the advantage of allowing a very
flexible tradeoff between the precision of the frequency change tracking and
simulation overhead. However, it has the disadvantage of allowing a new
frequency change only after the frequency output has settled. The second
one correctly simulates changes in the PLL set point also while the output
frequency is still changing. This model is more suitable for aggressive
policies that perform frequent frequency changes.
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Figure 3.7: Simulation of a frequency change from 1 to 2GHz with two PLL simulation

granularities.

3.6.1 First PLL model

The first PLL model is based on the fact that there exists a closed-form
solution (3.2) for the step response of a two pole transfer function. This
equation gives the frequency as a function of time for a step change from fo,
the old frequency, to fn, the new desired one. Thus it is possible to sample
this function at every clock edge to compute the next clock frequency, that
will also determine the point in in time of the next clock edge.

f(t) = fo + (fn − fo)(1 +
1

√

1− ξ2
e
−ξωt

sin(ωt
√

1− ξ2 + acos(ξ))) (3.2)

This results in continuously changing the clock period on a cycle-by-
cycle basis until the step response reaches its steady state, allowing an ac-
curate simulation of the frequency change during this transition phase.

As this process entails a large number of individual frequency changes, it
introduces an overhead in the simulation. To allow the user to trade off sim-
ulation accuracy for speed, a configuration option k has been introduced,
to sample the step response (and therefore cause a frequency change) not
every clock period, but every k clock periods, thereby reducing the number
of frequency changes.

Figure 3.7 shows the simulation of the PLL model when changing its
frequency set point from 1 to 2GHz, where individual frequency changes
are marked with a dot. The left plot shows the results with k = 1. The
frequency transition smoothly follows the two pole step response, but to
achieve this result 184 individual frequency changes to the clocked fre-
quency island are required. The right plot shows the results with k = 16.
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Figure 3.8: Comparison between the two PLL models when frequency changes are faster

than the PLL settling time.

In this case the frequency change is approximated with only 12 frequency
changes.

3.6.2 Second PLL model

As anticipated, the issue of the first PLL model is that it cannot correctly
track the PLL output if changes to the frequency set point occur faster than
the PLL settling time. This is because the first model does not actually inte-
grate the PLL differential equations, but rather uses a closed-form solution
that is only valid for a step response. Figure 3.8 shows in red the frequency
output under fast set point changes of the first PLL model, and in green the
same response of the second PLL model here presented. As can be seen,
the step response formula results in discontinuities in the output frequency,
and does not take into account that frequency may continue to increase or
decrease before changing direction due to the dynamic nature of the system.

To correctly produce the output frequency value under arbitrary inputs,
the only solution is to integrate the PLL differential equation on-line within
the simulator. This is performed by turning the transfer function into a state
space model, which in this case is a system of two differential equations,
that is then integrated using the backward Euler method.

The translation from a transfer function to a state space model allows
multiple solutions. A convenient state space model for (3.2) is (3.3). The
two forms represent the same dynamic system if c1a12b2 = −a12a21 = ω2
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and −a22 = 2ξω, and the conversion from the parameters of the transfer
function model to the state space one can be performed using the tf2ss()
library function in the Scilab or Octave mathematically oriented program-
ming languages.
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The backward Euler method integrates the differential equation ẏ =
f(y) approximating the value at the next time step as y(t + 1) = y(t) +
hf(y(t+1)), where h is the integration step. Applying the definition to (3.3)
results in (3.4).
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(3.4)
The system of equation can then be solved to obtain the equations of the

integration algorithm. Omitting for brevity intermediate computations, the
resulting algorithm is (3.5).















x2(t+ 1) = x2(t)+ha21x1(t)+hb2u(t+1)
1−h2a21a12−ha22

x1(t+ 1) = x1(t) + ha12x2(t+ 1)

y(t+ 1) = c1x1(t+ 1)

(3.5)

The last step to complete the algorithm is how to initialize the state vari-
able in order to have the PLL model output the default frequency when the
simulator is started. This can be done by solving (3.5) assuming an æquilib-
rium condition. Again, omitting trivial computations, the state initialization
in order to have an initial output frequency of y(0) is (3.6)

{

x1(0) = y(0)/c1

x2(0) =
ha21x1(0)+hb2u(0)
−h2a21a12−ha22

(3.6)
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Figure 3.9: Simulation of the PLL dynamics using the backward Euler integration method.

Blue crosses represent the point when the integration algorithm is applied

The implementation of this integration method in GEM5 uses a variable
integration step, selected as a multiple of the current PLL period, result-
ing in continuously changing the clock period on a cycle-by-cycle basis,
allowing an accurate simulation of the frequency changes. This allows to
achieve the same tradeoff between simulation performance and accuracy as
in the first PLL model, although in this case the integration step cannot be
arbitrarily increased, or numerical instability of the integration algorithm
would occur.

Figure 3.9 shows the second PLL model. As can be seen, the simulated
frequency output smoothly follows the two pole step response even for fast
set point changes. The variable integration step occurring every 8 clock
edges, and can be seen from the fact that the blue crosses are less frequent
when the frequency is low.

3.7 Frequency change simulation overhead

As already explained, simulating a frequency change in a detailed way is a
complex process. The PLL model generates a certain number of individual
frequency change events in the cycle accurate simulator to track the PLL
dynamics, and each frequency change event requires to find and move in
time all the events scheduled by the components of the frequency island
controlled by the PLL. This introduces an overhead in the time required to
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Table 3.2: Timing overhead (in microseconds) for performing a frequency change depend-

ing on frequency island sizes and change model.

Island size 16 8 4 2 1

Frequency divider (single change) 749 395 201 89 43
PLL model (k = 16) 5969 3666 1918 997 470
PLL model (k = 1) 71529 42916 24626 12186 5249

perform the cycle-accurate simulation, slowing down the simulator. This
section is dedicated to assessing said overhead, to make sure it is negligible
compared to the typical simulation time of a cycle-accurate simulator for
MPSoCs.

In particular several experiments were conducted considering different
frequency island sizes with 1, 2, 4, 8, 16 NoC routers. Results are reported
in Table 3.2, that reports the overhead of a single frequency change (fre-
quency divider model), and that of the PLL model with two different sim-
ulation accuracies. It is interesting to note that the absolute time required
to perform one single frequency change is below one millisecond, thus is
negligible. The PLL model, as expected, requires more time as it implies
multiple individual frequency changes. Also, the time required to move
events decreases with the size of the frequency island. This was expected,
since the number of events is bound to the number of components in the
frequency island. Moreover, the reported data highlights the quasi-linearity
of the time required to move the events of a frequency island in response of
a frequency change.

3.8 Voltage scaling

Although the modifications shown so far are sufficient to model a DFS
actuator, to extend the proposed model for DVFS it is required to model
also the voltage scaling and interlocking part.

Voltage scaling is simulated accounting for the switched voltage regu-
lator dynamics, which are approximated using the same two pole transfer
function of the PLL model, with different parameters to account for the dif-
ferent settling time and overshoot of the voltage regulator. Also, the same
integration methods used in the PLL model are used to track the voltage as
a function of time produced by the switching regulator.

However, it is also necessary to consider the overhead introduced by
the interlocking between the PLL and voltage regulator. In fact, during
a DVFS transition to a higher performance state it should be avoided to
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Figure 3.10: DVFS transitions considering the PLL and voltage regulator dynamics and

interlocking. Voltage and frequency set point (black), set point after interlock (green),

and PLL/voltage regulator outputs (red).

increase the frequency before the operating voltage, as this may lead to
timing violations as the frequency island is operated at a too low voltage
for the imposed frequency.

A typical solution to this problem is to introduce an interlocking mech-
anism that ramps up the voltage first, and only when it has reached a safe
level the frequency can start increasing. The interlock should also do the
opposite the opposite during a frequency decrease.

Figure 3.10 gives an overview of DVFS module implemented in GEM5
evidencing how multiple frequency transitions are simulated using the pro-
posed detailed model. As can be seen, when the frequency set point is
increased, the actual frequency change is delayed to let the voltage reach a
safe level. On the contrary, a frequency set point decrease causes an imme-
diate decrease of the frequency output by the PLL, but the voltage decrease
is delayed.

The implementation of the interlocking mechanism is designed as a cus-
tomization point for the simulator, and although the presented interlocking
policy is fully functional, it is possible to extend the simulator to imple-
ment different policies, such as coupled DVFS transitioning schemes [4] to
assess their relative performance compared to the baseline model.
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Table 3.3: Experimental setup: processor and router micro-architectures and technology

parameters.

Processor core 2 GHz, out-of-order Alpha core
Int-ALU 4 integer ALU functional units

Int-Mult/Div 4 integer multiply/divide functional units
FP-Mult/Div 4 floating-point multiply/divide functional units

L1 cache 64kB 2-way set assoc. split I/D, 2 cycles latency
L2 cache 512KB per bank, 8-way associative

Coherence Prot. MESI token (for real traffic) [2]
Router 3-stage wormhole switched with 64b link width, 4vcs per vnet

Frequency variable from 500 MHz to 2GHz
Topology 4x4 2D-mesh, based on Tilera iMesh network [95]

This accurate DVFS scheme allows to assess run-time policies taking
into account the non-ideal behavior of the actuator that could dwarf their
benefits, and are thus a key component of the proposed simulation flow.

3.9 Results

This section is dedicated to showing the flexibility and scalability of the
proposed simulation framework to estimate and evaluate different microar-
chitectural solutions. The results shown in this chapter are focused on the
implemented DFS scheme when applied to the NoC, while results regard-
ing the DVFS module for cores, which shares many design concepts such
as the resynchronizer and PLL model, is discussed in the next section where
the thermal model is introduced.

Four different results are discussed. First, Section 3.9.1 presents a sim-
ple yet effective test to assess the correctness of the frequency scaling im-
plementation. Section 3.9.2 shows how the proposed flow can be used to
obtain both energy and performance metrics while changing the frequency
of NoC routers at run-time, throughout the simulation. Section 3.9.3 shows
an example of design space exploration of NoC routers frequencies, while
Section 3.9.4 demonstrates the capability to support run-time optimization
policies.

All the presented results are obtained using the microarchitectural con-
figuration reported in Table 6.2. In particular the simulated architecture
is a 16-core Alpha 21364 architecture, as it allows to assess the proposed
simulation framework on a reasonable multi-core employing a NoC-based
interconnect.

3.9.1 Implementation correctness

The proposed framework implements an asynchronous NoC model inside
a cycle accurate simulator, also allowing to implement DFS. However, the
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implementation impacts the core of the simulator, thus a proof of the cor-
rectness of this work should be provided, since the final semantics cannot
be guaranteed a priori.

While the best solution to assess the validity of our asynchronous NoC
should be a comparison between our model and an implemented HDL ver-
sion of the simulated multi-core, there are multiple issues that prevent this.
First, it is quite difficult to synthesize a complete multi-core implementation
inside an FPGA consisting of NoC, cores and caches with cache controllers
due to the limits of current FPGAs. In this perspective many solutions
have been proposed providing synthesizable NoCs, but usually relying on
synthetic traffic generators to provide traffic load [72]. Moreover, it was
found that a simulation using synthetic traffic only is not enough to prove
the validity of the solution, since a missed packet can often go unnoticed
while performing simulations with synthetic traffic, while when cores and
cache coherence protocols get involved even one lost packet can completely
change the outcome of the simulation.

To this extent this section provides a weaker yet effective proof of the
DFS implementation correctness focusing on the formal expected behavior
of the simulation. First of all a black-box test was performed by simulat-
ing the full architecture. The code chosen to run on the cores is a subset
of 9 tests from the MiBench [42] suite. The tests were performed with a
simple policy that changes the frequency of the NoC every 100ns, with the
sole aim of stressing the added DFS and resynchronization functionality.
No discrepancies were found between the expected and obtained output.
This shows that the modifications to the GEM5 simulator did not introduce
errors that affect code execution.

Second, the timing accuracy of the introduced components were checked.
To this extent multiple simulations starting from the same multi-core and
using the same benchmark set were considered, but changing the frequency
of the NoC for each simulation. These tests were performed using a syn-
thetic traffic generator, to be able to control the rate of packets in the NoC.
As the focus of this second test is assessing the resynchronization scheme,
a resynchronizer module has been added between each router pair and be-
tween each router-L2 and router-L1 pair.

Figure 3.11 reports the number of routed flits as a function of the router
frequency, in two different network load scenarii. The router frequen-
cies range from 500 MHz to 2GHz with a step of 20 MHz, i.e. there are
2GHz−500MHz

20MHz
different simulations with fixed frequency. The left part of

Figure 3.11 reports the simulations using 0.50 flit/port/cycle while the right
part of the same figure reports the same simulations using an injection rate
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Figure 3.11: Number of routed flits as a function of router frequency, with two network

load scenarii.

of 0.07 flit/port/cycle. The first case shows how, with a sufficiently high
network load, the increase in frequency produce a linear increase in the
processed flits. This means that the resynchronizers, as expected, do not
affect the linearity of the frequency/processed flits relation. Moreover, the
second case shows saturation at 1.5GHz. This is not a microarchitectural
saturation, but rather shows that the NoC does not benefit from high fre-
quencies when the injection rate is low.

The third test addresses the timing correctness of the DFS implementa-
tion. The architecture is the same 16-core MPSoC and also the traffic load
is as in the second test, but the change in frequency between simulations
was emulated using a PWM-like scheme alternating between only the two
boundary frequencies: 500MHz and 2GHz. For each simulation a fixed
number of frequency changes is performed between the two frequencies
considering all the routers as a single frequency island. Each simulation is
different from the others by the duty-cycle, i.e. the percentage of the sim-
ulation time spent in each one of the two frequencies. Throughout each of
these simulations there were two frequency changes (one high-to-low and
the other low-to-high) per 800ns, for a total of 40000 frequency changes
per simulation.

In particular, Figure 3.12 reports the received packets as a function of
the duty-cycle ranging from 2.5%, where most of the time of the NoC is
spent at 500MHz, up to 97.5%. The left and right graphs of Figure 3.12 are
two set of simulations that differ in the flit injection ratio exactly as in the
previous test. As can be seen, the same relation between average frequency
and routed flits can be found. Comparing this figure with Figure 3.11, it
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Figure 3.12: Number of routed flits as a function of duty cycle, with two network load

scenarii.

can be noticed that the range of changes is lower, but this is to be expected
as the duty-cycle did not reach 0% nor 100%.

3.9.2 Metrics extraction

This section shows the capability of the proposed framework to report at a
fine granularity both performance and power metrics of the simulated archi-
tecture. Figure 3.13 reports both performance and power metrics for router
R7 (see the 16-core simulation architecture details as reported in Table 3.3,
as well as Figure 3.3 for the R7 placement in the NoC), considering the fft

benchmark of the MiBench suite replicated on each one of the 16-cores.
Power and performance samples are collected every 100ns, while the sim-
ulated DFS actuator is configured to alternate the frequency of one NoC
router between 100MHz and 1GHz with a period of 10µs, and a duty cycle
of 25%. The clock divider model was used in this test instead of the PLL
one, so the frequency changes are instantaneous.

The contention information is obtained as the number of flits in the
buffers of the selected router. The power information includes both the
dynamic and clocking power, while the static power has been omitted as
its value is constant throughout the simulation. Figure 3.13 show how the
frequency of the router impacts the contention and consequently its perfor-
mance. For example, when the router frequency is low also the dynamic
power is low while the contention show an increasing trend. On the other
hand, when the router frequency is high also the dynamic power is high,
while the contention remains low. However, even if both contention and
power are strictly bound to the frequency, the contention information also
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Figure 3.13: Frequency, power and contention of router 7 in the simulated 16 core archi-

tecture while executing the fft benchmark.

strongly depends on the network load which in turn depends on the cache
misses dynamics of the executed code. For example, around sample 6950
the contention tends to slow down even if the router frequency is low. The
power consumption, instead, due to the clocking power contribution, de-
pends on the network load to a much lesser extent.

3.9.3 Design space exploration

Since the proposed framework allows for an accurate estimate for both
power and performance metrics considering frequency scaling modules,
it enables the possibility to explore different power-performance trade-off
acting on frequency. In this perspective this section discusses how the pro-
posed framework helps to select the most suitable set of frequencies to
be assigned, even on a per router basis, in order to optimize the power-
performance figure of merit. It is worth noticing that these experiments do
not directly exploit the DFS module, while the possibility to set a different
frequency for each router in the NoC stresses the asynchronous NoC design
as well as the possibility to assign different static frequencies to different
components expanding the GEM5 simulator capabilities. Figure 3.14 re-
ports collected data for 9 different MiBench, run up to completion. The
reported data are for router R7, which was placed in a frequency island on
its own. All the other routers as well as the cores run at the same frequency
of 1GHz. A test was performed per each considered MiBench, where for
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Figure 3.14: Power, contention and Power-Contention-Product as a function of router

frequency, for selected MiBench benchmarks.

each simulation R7 is set at a fixed frequency. In total, five simulations per
benchmarks were performed with different frequencies covering the range
between 100MHz and 1GHz. The results reported in Figure 3.14 show the
router average contention (red lines), the dynamic power (blue lines) and
the power times contention or Power Contention Product (PCP) as an ag-
gregate power-performance metric as bar graphs. Both contention an power
times contention data are reported as normalized data on the right y axis,
while power is reported in Watt on the left y axis. The contention decreases
with the frequency as expected, thus all the red lines have a decreasing
slope. On the other side increasing the frequency increases the power con-
sumption, and this aspect is confirmed for each simulated benchmark.

The power times contention metric represents a comprehensive figure of
metric for the power-performance optimization. Two main considerations
can be discussed starting from the reported data. First, when the frequency
is low, i.e. 100 MHz, a small increase, i.e. 250MHz does not significantly
face the contention in the router. This aspects means that the power con-
sumption increases while the level of the contention remains almost the
same. To this extent the PCP metric tend to increase its value as confirmed
for all the simulated benchmarks. For example crc32 reports a normalized
PCP equal to 0.29 @100MHz while the PCP is 0.64 @250MHz. However,
if the frequency increases there is a point when the PCP gets a decreasing
slope providing also lower values. This means that the power consump-
tion increase due to higher frequency is compensated by the capability of
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Figure 3.15: Frequency, power and contention traces sampled while running the de-

scribed DFS policy.

the router to serve all the incoming flits quickly, thus maintaining the con-
tention at a significantly lower level. In this perspective, increasing the
frequency above a certain level will provide higher PCP values, since there
are no more flits to be served, thus the increase in frequency introduces an
increase in power consumption only, without any benefit on the contention
metric.

3.9.4 Run-time optimization policies

While choosing a single frequency for the NoC, based on design space
exploration, can be an effective solution while running applications with
known memory access requirements, for general-purpose computing plat-
forms a run-time change of the frequency of different islands of NoC routers
can further optimize the power-performance trade-off. One of the possible
uses of the proposed simulation framework is to evaluate the quality of dif-
ferent DFS policies operating on NoC routers.

In this perspective, this section discusses a simple policy used only as
an example to highlight the flexibility of the simulation framework, while a
more thorough discussion on power-performance policies for NoC routers
is delayed to Chapter 6.

A very simple policy is here presented that can switch between three fre-
quencies, a high one, a medium and a low one, being respectively 800MHz,
500MHz and 250MHz. The switch is managed using threshold values on
the local router contention, that is the number of flits stored in the input
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ports of the considered router. In particular, the policy compares the sam-
pled contention with two thresholds deciding which frequency to assign.
As the focus of this simulation is to assess the possibility to implement run-
time policies rather than to assess a specific policy, the frequency divider
model was used instead of the PLL one, thus again showing instantaneous
frequency changes. At the beginning of the simulation the frequency is set
at 500MHz. Then, the contention values are sampled every 100ns. How-
ever, the policy can change the router frequency on a multiple of the sam-
pling period, to limit the number of frequency changes. Figure 3.15 reports
a timing diagram showing frequencies, dynamic power and contention lev-
els for R5 on a 16-cores running the FFT MiBench benchmark. The high
and low thresholds are set at 20 and 10 flits respectively, as highlighted by
the red lines in the contention graph. The frequency change limit is set at
10 times the sampling period, i.e. once a frequency change has been made,
it has to be kept constant for at least 1us.

The results highlight how the simulation framework is capable of simu-
lating microarchitectural details such as the NoC router operation and ex-
pose the metrics required to implement run-time policies and assess their
performance.

3.10 Conclusions

This chapter proposes a novel simulation framework with a focus on assess-
ing thermal and power-performance policies for MPSoCs. The proposed
solution allows for different exploitations during architecture and policy
design space exploration. The proposed simulator allows to set different
frequency islands, down to the granularity of a single core or router, and
change the frequency of each island dynamically during the simulation to
test different power-performance policies. This is made easy thanks to the
provided actuation system, thus exposing a simple yet scalable framework
to write and test different policies. Moreover, the asynchronous design
model represents an improvement with respect to the state of the art cycle
accurate simulators, allowing to evaluate the power reduction due to bet-
ter clock tree organization, as well as to test different resynchronization
schemes. Third, the provided PLL model allows to evaluate the transient
behavior during every frequency change on a per island basis, with the
possibility to trade-off accuracy for simulation speed. Last, the proposed
results strengthen the semantic of the modified NoC allowing GEM5 to
support both synchronous as well asynchronous NoC for both synthetic as
well as real traffic scenarii.
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It should be stressed that the simulator described in this chapter is an en-
abler for the assessment of the work described in the subsequent ones. This
is because the developed thermal control and power-performance method-
ologies have been implemented as policies in the presented simulator. This
made possible to verify the performance of the proposed policies in a real-
istic setting, also considering the sensor and actuator nonidealities, and to
compare their performance with respect to other state-of-the-art policies.

43





CHAPTER4

Modeling and simulation of an MPSoC

thermal dynamics

All models are wrong, some are useful.

George E. P. Box

THE thermal management problem in MPSoCs is becoming more sig-
nificant [53] as chip feature size scaling progresses. This is caused
by the worsening power density due to non ideal Dennard scal-

ing [28], where the increasing number of transistor per chip is no longer
compensated by a corresponding reduction in the per-transistor power dis-
sipation. As such, this increase in power density is causing the so called
dark silicon problem [37, 84], where power and thermal constraints limit
the portion of a chip that can be turned on at full speed. It is therefore un-
deniable that modeling the thermal dynamics of a chip is more important
than ever, to be able to design effective cooling methods and run-time poli-
cies to maximize performance subject to thermal constraints, despite the
variable workloads and operating conditions that modern MPSoCs face.

This chapter presents a novel, extensible thermal model for MPSoCs.
This model is based on compact RC networks, as this was proven to pro-
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Figure 4.1: Simple RC circuit used to demonstrate the difference between ODE and DAE.

vide good performance and sufficient adherence with respect to more elab-
orate simulation methods, such as the finite element method (FEM) and
measurements taken on actual chips [46].

The proposed thermal simulator is built upon the recent advances in
modeling languages, being thus designed from the ground up using an
object-oriented and component-based approach. This results in significant
advantages both in terms of flexibility, where any component of the thermal
dissipation stack can be substituted with another with a compatible inter-
face, and in terms of testability, where each component can be tested in
isolation prior to being integrated in the final thermal model.

4.1 Object-oriented modeling

This section briefly describes the core concept of object-oriented modeling,
and how it differs from ordinary causal modeling, using an electrical exam-
ple for simplicity. Consider this simple example of an RC circuit, as shown
in Figure 4.1.

A straightforward way to model its behavior is through an ODE or ordi-
nary differential equation. However, this requires to decide a priori which
are the input and outputs of the system, leading to a lack of reusability
of the model. For example, if the input is the voltage (i.e. the circuit is
connected to a voltage generator), then a model that allows to compute the
current flowing through the circuit is Equation (4.1).

{

ẋ = V−x
RC

I = V−x
R

(4.1)

However, the same model is no longer adequate if the same circuit is
used in a context where the input is the current, while the output is the
voltage. In such a case, a different model is required, as shown in Equa-
tion (4.2).

{

ẋ = I
C

V = x+RI
(4.2)
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The main limitation of these models is that they are causal, i.e, they are
written assuming that some of the boundary variables that connect a model
component to the external world are either inputs or outputs.

This forces to have multiple models of the same physical system with
different combinations of inputs and outputs, and it is easy to understand
how this could become unmanageable.

In contrast, consider Equation (4.3). It is still a model for the same
circuit of Figure 4.1, but it is no longer an ODE equation, it is a differential
algebraic equation (DAE).

{

Cẋ− I = 0

x+RI − V = 0
(4.3)

As can be seen, the model is composed of an implicit differential equa-
tion, and an implicit equation. The model is thus not oriented, a-causal

or declarative. Contrary to oriented models, that are described in a form
that is close to their solution algorithm, DAE-based models are implicit,
and thus require symbolic manipulation to be rewritten in a form that can
be solved. If however, this step is performed automatically by a solver,
one can write a single model that can be used regardless of the boundary
equations, becoming thus a reusable component.

An object-oriented modeling environment is characterized by allowing
to write a-causal models based on DAE equations, allowing therefore to
model the physical phenomenon of interest without the need to decide at
modeling time which are the inputs and outputs.

Connecting multiple components in an object-oriented modeling envi-
ronment requires to write additional equations that bind the variables of the
components being connected. For example, consider the electrical circuit
of Figure 4.2, built using two components, an ideal voltage source of 1 Volt,
and the RC circuit previously modeled.



































Cẋ− I = 0

x+RI − V = 0

V0 = 1

V0 = V

I0 + I = 0

(4.4)

The full DAE model of the circuit is shown in Equation (4.4). The first
two equations come from the RC model, the third one is that of the voltage
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Figure 4.2: Simple RC circuit with generator used to demonstrate the difference between

ODE and DAE.

source, while the last two are connection equations that arise as the two
components are connected. In detail, for an electrical connection they are
the Kirchhoff’s voltage and current law.

This shows the component-based approach that is made possible by
object-oriented modeling. It allows to describe individual components in-
dependently, without specifying a priori the inputs and outputs, and con-
nect them to build an entire system. To solve this model, however, a sym-
bolic manipulation pass is needed before the system can be numerically in-
tegrated. Thus, even though the object-oriented approach simplifies model
development, it requires specialized environments to solve the so obtained
models in an automated way.

4.1.1 Why the Modelica Language

The thermal simulator proposed in this paper is written in Modelica [38,60],
that is an object-oriented modeling language. It differs from an ordinary
programming language as its main purpose is the simulation of dynamic
systems. The language has built-in support for writing differential alge-
braic equations just like an ordinary programming language has support for
assignment of an expression to a variable, and the runtime takes care of
integrating them. The required numerical solver is embedded in the run-
time, and has proven effective and accurate over decades of application;
the interested reader can find the underlying theory e.g. in [25].

In addition, it supports component-oriented modeling where each indi-
vidual component, such as a layer of the 3D chip, or the heat sink is mod-
eled separately with its own equations, and can interact with other com-
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ponents through special types called connectors, which when instantiated
introduce the necessary connection equations to bind the variables of the
connected components. Components can be parametric, thereby having
the same equations but different parameters, like the different heat capac-
ity and thermal resistivity that differentiates a layer of silicon from one of
copper. Other than enhancing code structuring and reuse, components ease
validation as they can be individually tested prior to instantiating them in a
complex system.

A complete system such as a 3D chip including the heat dissipation
stack can thus be modeled by first designing and then connecting individual
components, while the Modelica compiler uses symbolic equation manip-
ulation techniques to combine the individual differential equations into a
single system of equations that can then be integrated by the Modelica run-
time. It is worth noticing that, although Modelica is a textual language,
models can be composed graphically. For example, components can be
connected graphically through a simple user interface. Also, individual
components that are just a combination of lower level components can be
designed graphically. This further enhances the ease of use of the Modelica
language.

The choice of the Modelica language thus stems from its flexibility,
coming from a higher level language that understands linear and nonlinear
differential equations natively, relieving the programmer from the burden of
integrating them, as well as from the object-oriented and component-based
nature that eases modifications to the chip structure (2D vs 3D), and the heat
dissipation stack. This allows to make the proposed thermal model easily
extensible, for example to explore different thermal dissipation stacks in-
troducing advanced solutions such as TECs and heat pipes although these
extensions are deferred to future works.

Free software implementations of the Modelica compiler and runtime
are available. The OpenModelica environment [39] has been here selected
due to its maturity and stability.

4.2 Modelica Thermal Model

The proposed thermal simulator [85] is composed of a collection of elemen-
tary equation-based components and connectors (in the Modelica jargon, a
model library) together with a native library written in C++ that interfaces
the thermal simulator with the rest of the simulation flow as described in
Chapter 3. At the lowest level of said library stand the volume and the
conductor models. The former represents a finite, parallelepiped volume
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Figure 4.3: Synthetic geometric representation of the 3D chip thermal model (not in scale,

and some volumes were removed to better show the thermal network).

of material with known physical properties. It is characterized by one dif-
ferential equation for its energy balance, and has six connectors (one per
face) to exchange heat with neighboring elements. The latter has two con-
nectors, and takes care of modeling thermal exchanges due to temperature
differences, like conduction and convection. Quite intuitively, assembling
such components gives rise to a capacity/conductance (or equivalently, re-
sistance) network, that comes to be the RC equivalent of the modeled ther-
mal one.

The two models above are then used to build the layer component, which
is a planar structure composed of an uniform grid of volumes with uniform
physical properties. The layer component is used to model all the layers
of the 3D chip, as well as the thermal interface material, by simply match-
ing the parameters with the physical properties of the layer material. The
heat spreader and heat sink components are instead modeled using a non-
uniform grid that is finer at the center in order to match with the chip layers,
surrounded by four and eight trapezoid volumes respectively for the heat
spreader and heat sink to take into account the increased side length with
respect to the silicon die. This technique is also adopted in HotSpot [46].

The full stack of components used to model a 3D chip is depicted in Fig-
ure 4.3 although obviously with a smaller number of volumes than the real
design, to enhance the readability of the figure. Starting from the bottom,
we can find the heat sink, which exchanges heat convectively with air. Then
there is the heat spreader, which is made of a good heat conductor such as
copper, to spread the heat produced by the small chip die area laterally, in
order to more uniformly heat the heat sink. Then we have the first layer in
the stack, which is the thermal interface material. It is used to provide good
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Figure 4.4: The 3D chip Modelica diagram, showing the individual components.

and uniform thermal contact between the silicon bulk and heat spreader,
avoiding surface nonuniformities introducing voids under certain parts of
the chip, a matter that would lead to severe hot spots. The next layer is
the first silicon layer of the 3D chip, then there is a layer used to model
the thermal conductivity of the through-silicon vias, and finally the second
silicon layer.

Figure 4.4 conversely shows the graphical Modelica view of the 3D chip.
As can be seen, the model is composed of four layers: the first silicon layer,
the via layer that interconnects it with the second silicon layer, and finally
the thermal interface material layer. Then there are the heat spreader and
heat sink, which exchanges heat with the ambient. Last, a power genera-
tion block injects the power into the two active silicon layers. This block
is implemented in a native language (C++), and receives the power values
through a TCP socket from the simulation manager described in Chapter 3.
It also performs the power and temperature mapping using the chip floor-
plan information. This is because the power data produced by the simu-
lation flow is at a per functional unit basis, whereas the thermal model is
based on an uniform grid. It becomes thus necessary to map the power
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Table 4.1: Microarchitectural parameters.

Processor core 2GHz, out-of-order Alpha core
Functional Units 4 Int-ALU, 2 Int-Mult/Div, 2 FP-Mult/Div

L1 cache 64kB 2-way set assoc. split I/D, 2 cycles latency
L2 cache 512KB per bank, 8-way associative

Coherence Prot. MESI
Router 3-stage wormhole switched with 64b link width, 4vcs per vnet

Frequency variable from 100 MHz to 2GHz
Topology 2D-mesh 4 tiles 2x2 (3 CPU per tile)

Technology 32nm at 1.1V

from the functional units to the grid, as well as do the opposite with the
temperature. For the power to temperature mapping, it is done as the sum
of the power of the functional units that intersect the grid cell, multiplied
by their intersection area and divided by the functional unit area. The map-
ping of the temperature is instead done through a weighted average of the
temperatures of the grid cells that intersect the functional unit, proportional
to their area.

To be able to simulate the model it is necessary to fill in the various
parameters of the components, such as specific heat, thermal conductances
and thickness of the various layers. For the 3D chip, these values are taken
from [19].

It is worth noticing that to simulate a 2D chip instead of a 3D one it is
sufficient to remove the additional components that are present only in a
3D chip, namely the through-silicon via layer and the second silicon layer,
as well as to change the layer parameters such as the bulk thickness. This
shows the flexibility of the component-based modeling approach.

4.3 Experimental results and validation

This section shows the operation of the proposed thermal simulator when
embedded in the full simulation flow of Chapter 3. Note that the goal of the
section is to show the flexibility of the entire simulation flow, and its ability
to easily design and validate thermal policies exploiting DVFS as actuator.
All the considered scenarii are evaluated using a tiled multi-core architec-
ture simulating real applications from the MiBench suite [42]. Each tile has
a three stages virtual channeled wormhole router that connects it to the rest
of the multi-core as well as an L2 bank. The L2 is shared between all the
tiles of the multi-core but it is physically split, i.e. one bank per tile. Last,
we considered three processors per tile. In particular, we focus on an Al-
pha out-of-order processor model. Table 6.2 reports the main architectural
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parameters.

4.3.1 Validation with HotSpot

As the interconnection between the components that build the thermal model
is trivial (see Figure 4.4), the validation of the thermal simulator ultimately
amounts to that of the differential equations in its individual components.
Thus, for the purpose of validation, the components were combined to ob-
tain a 2D chip model equivalent to the HotSpot model. The Modelica and
the HotSpot models were then run with an identical power trace and chip
floorplan. HotSpot was configured in transient mode, with the grid model
and a grid size identical to the Modelica one. Figure 4.5 shows the differ-
ence between the state variables (i.e., the temperatures of all the volumes)
values in the proposed Modelica simulator and HotSpot. As can be seen,
the temperature difference is limited to 0.02◦C due to numerical errors, and
decreases as the simulation progresses. HotSpot was validated [48] against
a FEM simulator, resulting in a 6% steady state error, and a thermal test
chip showing a 5% steady state error, and a 7% error for what concerns
simulating the transient behavior. Thus, the discrepancies between the pro-
posed model and HotSpot are within the simulation errors of HotSpot, so
the library components are validated, and can be used safely for new chip
geometries.

Figure 4.5: Temperature difference for a 2D chip simulated with both HotSpot and the

proposed Modelica simulator.
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4.3.2 Thermal transient analysis

The analysis of the dynamic behavior of the system from the thermal view-
point represents a critical aspect to be considered during the design of run-
time thermal policies. Several previous methodologies focused on cycle-
accurate simulation coupled with steady-state temperature evaluation [44,
103] for policy design and tuning, while the thermal dynamic of the system
can greatly influence the final obtained results as detailed below. Figure 4.6
shows a transient thermal analysis for a 12-core architecture evaluating the
impact of a frequency step down has on the chip thermal profile. The fre-
quency change, from 2GHz to 1GHz around at 0.3s of the simulation, de-
termines a temperature step down in the order of 18◦C. Moreover, two dif-
ferent snapshots of the thermal transient state chip are reported at 0.1s and
0.5s of the simulation.

The thermal transient analysis allows for an accurate estimation of the
chip thermal profile, which is impossible using averaged temperature meth-
ods or steady state approximations. For example, Figure 4.6 reports a peak
temperature around 80◦C, while after the frequency step down the temper-
ature for the cores is lower than 64◦C. It is worth to note that a steady state
analysis can not capture the sharp temperature decrease at the frequency
step down.

4.3.3 Thermal-performance policy assessment

This section shows how the proposed simulation flow, thanks to its thermal
simulator, can be used for the implementation and assessment of thermal
control policies. The aim of this section is not to propose a novel ther-
mal control policy, as this is the purpose of Chapter 5, but rather to show
the ability of the simulation flow to support thermal policies thanks to a
DVFS capable cycle-accurate simulator providing the necessary actuator
and a thermal model allowing to have the chip temperature as a function
of simulation time and thus model temperature sensors. For this test the
thermal policy implemented is the one proposed in [30], which proposed a
PI-based control scheme exploiting a DVFS module for the actuation.

Figure 4.7 reports the thermal evolution of the cores when the PI control
scheme is employed on a per core basis. In particular, three temperature set
points, i.e. 78◦C, 70◦C and 75◦C, have been selected to test the implemen-
tation and the efficacy of the proposed control scheme. Again, it is worth to
note that we are not dealing with the effectiveness of the proposed thermal
policy, while we are interested in the integration of it inside the proposed
simulation flow focusing on two aspects. First, we explored a 100us sam-
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Figure 4.6: Thermal transient behavior of a 12-core multi-core considering a frequency

step-down from 2GHz to 1GHz at 0.3s of simulation. Two thermal snapshots are re-

ported to highlight the flexibility of the proposed flow to compute transient temperature

analysis.
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Figure 4.7: Evolution of the temperature on the cores using the control-based scheme

proposed in [30] for each core.

pling/actuation rate for the policy, while the original work proposed it at
28us. In particular, such exploration allows to evaluate that the policy can
efficiently track the temperature set point even if a longer interval between
two actuations is used, thus relaxing implementability constraints. On the
other hand, the original work does not accurately model the DVFS module,
i.e. they accounted for a 28us timing overhead for each frequency/voltage
transition, while we can ensure an accurate behavior of the DVFS module
from both power and timing viewpoints. Moreover, the transient analysis
exploited by the presented simulation flow allows to track the undershoot in
the temperature response. This evaluation enables the possibility to better
tune the regulator. For example considering core 2 in Figure 4.7, at 0.15s
the temperature set point changes from 78◦C to 70◦C, with a frequency
variation from 1.95GHz to 1.30GHz due to the PI controller. However, the
controller continues to modify the frequency depending on the evolution of
the temperature in the chip.
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4.4 Conclusions

This chapter presented a novel thermal simulator, whose accuracy has been
demonstrated to be the same of HotSpot, built with an object-oriented,
component-based formalism. This allows for a component-level validation,
and permits to construct models of new architectures straightforwardly.
This thermal simulator is integrated in a cycle accurate simulation flow,
being thus able to simulate in a detailed way current and future generation
MPSoCs. The inherent flexibility of the component-based approach allows
to simulate 2D as well as 3D die-stacked chips. It thus results in a step
forward in terms of usability end extensibility with respect to the state of
the art.

57





CHAPTER5

Addressing the thermal control needs of

future MPSoCs

Power is nothing without control.

THE increasing need for computational power is driving the semicon-
ductor industry towards aggressive technology scaling, resulting in a
continuous increase in the number of transistors per chip. However,

even though technology scaling reduces gate delays, wiring and intercon-
nect delays do not scale equally well [18]. In this scenario, 3D-stacking is
emerging as a viable solution for some of the major limitations of 2D chips.
3D-stacking partitions the design in multiple blocks, each implemented in
a separate silicon layer. Said layers are interconnected by means of on-chip
vias. This increases compactness, thus reducing power and latency [94].
As a result, 3D die stacking is a promising solution to increase MPSoC
performance, thanks to the new design possibility offered by the increased
circuit density achievable.

3D stacking allows splitting the design of CPU cores between multiple
layers, to reduce global wiring delays within the core [19]. An effective
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use of this techniques allows architectural changes of great impact such as
the reduction in the number of pipeline stages without sacrificing clock fre-
quency. Another use is the design of a 3D MPSoC with multiple layers of
cores stacked atop of each other. In this case, the performance improve-
ment comes from the reduction of inter-core interconnection delays. As
an example, 3D NoC designs [13, 97] show improved performance due to
the reduced network diameter and thus reduced average number of hops
per packet. Stacking multiple cores can be combined with other improve-
ments, such as increasing cache sizes [35] to further boost performance. At
the other end of the spectrum, it is possible to make use of 3D stacking by
dedicating an entire layer to memory or caches [89], leaving all the cores
on the other layer.

On a different but related front, 3D stacking dramatically exacerbates
thermal issues with respect to planar designs. This is because, although
the reduction in global wire length and the associated need for repeaters re-
duces the overall power consumption, power is being dissipated in a smaller
area compared to a planar design, thus increasing power density. More-
over, all but the last silicon layer are no longer in direct contact with the
heat spreader and the thermal dissipation stack, so it is more difficult to
effectively dissipate the heat produced in the additional layers. This wors-
ens the formation of localized, sub-millimeter hot spots, which can degrade
long-term reliability and, in extreme cases, cause immediate failures.

In such a perspective, innovative and possibly cost effective thermal
management techniques are required, with a synergistic action of the hard-
ware and the software layers [9] to fully exploit the benefits of 3D stacking.
Thus, thermal management is nowadays a first-class concern for current
and future 3D multi-cores. For example, several proposals aim to optimal
task placement to reduce thermal gradients [87], while other techniques rely
on reactive [31] as well as on predictive strategies [10, 100] to manage the
thermal chip profile.

However, the chip thermal behavior strongly depends on the activity of
the cores, which in turn is affected by the executed code, the interaction
with other tasks and even user inputs. In this respect, on-chip power man-
agement and increasing performance demands increase the non-uniformity
of power dissipation across the chip. This results in so abrupt and large
power changes to produce significant – and potentially dangerous – tem-
perature variations on a millisecond timescale in 3D chips, as the following
experiments will confirm. It is nonetheless worth noticing that the prob-
lem of fast thermal dynamics is not limited to 3D chips, as even 2D chips
exhibit quite fast dynamics on a tens of millisecond timescale or less [73],
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thus the need for effective thermal control policies arises also in this case.
Another important fact is that any thermal control scheme would need to
operate faster than the thermal dynamics of the controlled system to be ef-
fective, five to ten times faster being reasonable values. Thus it follows that
any controller for 2D chips has to be able of reacting in a few milliseconds
at most, while for 3D chips the requirement is even stricter, with reaction
times in the order of hundreds of microseconds. This fact requires careful
consideration for both 2D and 3D chips, first of all because reliable predic-
tions of the core activities at such a time scale are hardly possible, which
rules out predictive approaches and calls for reactive policies.

In addition, the mere fact that the controller reaction times needs to be
in the order of a few milliseconds or less, raises overhead concerns for the
thermal control policy. To see why operating thermal control policies at a
timescale of a few milliseconds can be a concern for 2D chips, consider
that the current trend is to avoid as much as possible periodic interruption
of tasks, as the impact of interrupts on deep pipelines is significant [49]. An
example of this trend is the effort that the Linux kernel development com-
munity is undergoing to move towards a fully tickless kernel, thus getting
rid of a periodic 10ms interrupt used for timekeeping within the kernel [45].
Such effort would be spoiled by a thermal control scheme requiring a peri-
odic execution of a software control policy at a timescale of a few millisec-
onds. As a result, thermal control policies are often moved from a software
implementation to a hardware one, a recent example being the scheme used
by Intel for turbo boost 2.0 [77]. For a 3D chip the problem is even worse,
a traditional control scheme operating at a fixed rate can practically only be
implemented entirely in hardware to avoid imposing an excessive overhead
on the cores it has to control.

However, implementing thermal control in hardware severely affects the
flexibility of the policy, hampering the tweaks that may be required to adapt
it to the different products the MPSoC is to be integrated into, such as a
desktop or laptop computer.

To preserve flexibility, it would thus be beneficial to devise an adaptive

thermal management policy, combining fast reaction to critical tempera-
ture changes with low overhead, achieved by reducing the intervention rate
when temperature is either low or relatively constant. If the controller is no
longer forced to be periodically activated at the maximum required rate, its
implementation can be moved back to the software layer. In the scenario

just envisaged, thus, the hardware layer has only to provide event genera-
tion functionality, which do not depend on the specific system, while the
policy can be implemented in software, allowing purpose-specific tuning
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Chapter 5. Addressing the thermal control needs of future MPSoCs

Figure 5.1: Simplified model of a chip thermal dissipation stack to evidence the two ther-

mal dynamics. This model is used only to give an intuitive explanation of the existence

of two separate thermal dynamics, the model identification has instead been performed

on the full model of Section 4, detailed in Figure 4.3

even after its deployment.
This chapter proposes a novel reactive, decentralized thermal manage-

ment methodology [55, 85] exploiting the theory of event-based control [7,
92]. The self-adaptation of the time between two control events, that is
based on the actual thermal profile and the goal of the regulation, represents
a key aspects of the proposed methodology. As will be shown in the fol-
lowing, the proposed control scheme provides a temperature control quality
comparable to other fixed rate control-based strategies, that however must
be implemented in hardware due to overhead constraints.

The proposal has been validated through detailed simulations on a 3D-
stacked multi-core which represents the most critical scenario from the
thermal viewpoint, where accurate control of the fast thermal dynamics
becomes of vital importance for the operation and long-term reliability of
the MPSoC.

However, the proposed scheme can also be used for 2D-chips when there
is the need to control its fast thermal dynamics, since it is not tailored to a
specific die-stacking topology.

5.1 The thermal dynamics in an MPSoC

As anticipated, the existence of fast thermal dynamics in an MPSoC is a
key motivation for the adoption of event-based control to achieve an effec-
tive thermal control with a low overhead while retaining the flexibility of
a software implementation. This section is intended to further support this
claim showing how in commercial MPSoCs the thermal dynamics are al-
ready fast enough that an event based controller would be beneficial, while
in future 3D MPSoCs it would become an enabler for the implementation
of thermal policies in software.

The thermal dynamics of an MPSoC show at least two separate time

62



5.1. The thermal dynamics in an MPSoC

Figure 5.2: Temperature transient of one of the cores in a Core i7 3630QM processor

caused by a step power increase. Left: full transient, right: zoom showing the fast

thermal dynamics and single pole approximation.

scales: a slow one, in the order of seconds to a few minutes, and a fast one,
in the sub millisecond to tens of milliseconds range [47, 73]. Figure 5.1
shows an oversimplified RC model of a chip thermal dissipation stack with
the only aim of giving an intuitive explanation for the existence of two sep-
arate thermal dynamics. Starting from the left, we find the generator mod-
eling the power dissipation within the chip. The silicon layer has a thermal
capacity Csilicon which is small due to its limited mass. Moreover, the chip
is connected to the thermal dissipation stack through a non-negligible ther-
mal resistance Rsilicon. This resistance is in most part that of the silicon
bulk, as the heat produced by the active layers has to traverse the bulk to
reach the heat spreader, and silicon is not as good a thermal conductor as
copper, which is the material usually employed for the heat spreader. Then
there is the heat sink thermal capacity Csink which is orders of magnitude
larger than that of the chip, and finally the heat sink exchanges heat to the
ambient through convection.

Due to the coupled effect of the small thermal capacity of the silicon
and of the non-negligible thermal resistance connecting it to the heat sink,
the chip temperature, can “swing” very rapidly – as the load dictates – with
respect to the temperature of the heat sink, thus producing the aforemen-
tioned fast thermal dynamics. The slow thermal dynamics, quite intuitively,
is conversely that of the heat sink.

To further evidence the presence of the two thermal dynamics, as well
as measure their thermal time constants, an experiment on real hardware
and a thermal simulation are here reported.
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5.1.1 Thermal dynamics in a commercial 2D multicore processor

This experiment consists in logging the temperature of a multicore proces-
sor during a load step, such as the one seen as a machine transitions from
the idle state to a 100% CPU utilization. The experiment has been per-
formed on an Intel Core i7 3630QM quad core processor running Linux.
This processor has a per-core temperature sensor with a 1◦C resolution,
which allows to monitor the temperature of each core with sufficient detail.
A modified version of the coretemp Linux kernel module was used, cou-
pled to an userspace C++ program to log the temperature of the cores every
millisecond. The need for a modified kernel module arises from the default
one having a software capping on the polling rate for the temperature sen-
sor of 10ms, too coarse to accurately see the fast thermal dynamics. The
stress tool was used to load the cores at the same time at t = 3s starting
from the temperature trace.

Figure 5.2 shows the resulting transient for core 0. As can be seen in
the left plot that reports the full transient, temperature rises from 54◦C to
70◦C nearly instantly. At this timescale the fast thermal dynamics are so
fast that look like a step increase in temperature. After that, temperature
continues to rise till 80◦C as the heatsink heats up. The left part of the
figure conversely shows a zoom on the first instants of the thermal transient
evidencing the fast thermal dynamics in greater detail. The black line is the
sampled temperature, while the red line is a single pole approximation with
a 30ms time constant and 16◦C gain. This means that the transition of one
core from deep sleep to active will cause a short-term temperature increase
of 16◦C. Recall that a controller would need to be operated at least five to
ten times faster to prove effective in reacting to thermal transients, thus a
fixed-rate controller would need to be operated at a 3 to 6ms period, which
is both faster the typical period of state of the art thermal control policies
(10ms, see [98, 100]) and the default Linux kernel tick [45]. Notice how
this processor has the turbo boost 2.0 feature, thus thermal management is
done in hardware. This shows how even current MPSoCs would benefit
from event-based thermal control, as it would allow to bring back software-
based thermal control and thus the flexibility it entails.

5.1.2 Thermal dynamics in a simulated 3D MPSoC

While such considerations hold for a 2D chip such as the Intel multicore, a
3D chip provide higher power densities, causing the fast thermal dynamics
to be of considerably higher amplitude compared to a 2D MPSoC.

To assess the thermal dynamics of a 3D MPSoC, a 24 core chip with 12
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5.1. The thermal dynamics in an MPSoC

Figure 5.3: Temperature of the hot spot of one core executing the sha1 MiBench on a

24-core 3D-chip.

cores per layer has been simulated using the simulation flow proposed in
Chapter 3. The architectural details of the MPSoC are postponed to Sec-
tion 5.4, as this MPSoC is the same that was used to validate the proposed
event-based thermal controller.

Figure 5.3 shows the thermal profile of the hotspot of a core in the 24-
core 3D MPSoC running the sha1 MiBench [42]. High temperature vari-
ations over time can be observed, strictly correlated with the application
activity. In particular, temperature decreases occur when the CPU is in
a low power state waiting for a DMA transfer from the disk, while high
temperature peaks correspond of intense CPU activity due to data process-
ing. Furthermore, Figure 5.3 highlights the two separate time constants that
compose the thermal dynamics. In particular, the fast one causes abrupt
temperature variations each time the CPU enters/exits a low power state.
For example, between 0.112ms and 0.125ms the temperature changes from
73◦C to 91◦C, which means a gradient of 9◦C/ms. The slow one conversely
appears as a slow increasing drift, totaling approximately 6◦C over one sec-
ond — thus, a rate 1500 times lower than that of the fast dynamics. Using
model identification techniques allowed to obtain a single pole approxima-
tion of the fast thermal dynamics, having a 2.5ms time constant. Again,
note that to control a thermal process with a 2.5ms timescale the controller
would need to be operated at less than 500µs. For what concerns the gain,
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due to the thermal coupling between two vertically placed cores, tempera-
ture rises by 25◦C within 10ms if only one core is at 100% load, and nearly
50◦C if both transition from idle to full load at the same time.

It should be noted that the dynamic power consumption of a core de-
pends on the executed code, and in particular on the CPI [10], thus if the
executed code has a high CPI the temperature increase will be lower. The
static power consumption is instead dependent on the core operating volt-
age, and on its temperature as well. It is worth mentioning that the iden-
tified single pole model for the 3D chip is the one that will later be used
for control synthesis and is described in the Laplace domain (s being the
corresponding complex variable) as

Θ(s) =
25

1 + 0.0025s
(U(s) +D(s)) (5.1)

where U(s) is the Laplace transform of the control action (the DVFS com-
mand), D(s) that of the load-originated disturbance, and Θ(s) that of the
temperature. This model will later be used as the basis for control synthesis.

5.1.3 The need to control the fast thermal dynamics

As can be seen, the thermal time constant in a 3D chip can be lower than the
one in a 2D chip. To explain why, it must be considered that the added sili-
con layer has to be thinned to allow for the addition of through silicon vias
to the manufacturing process. Thus, it adds a limited amount of thermal
capacitance to the design. Moreover, the bulk thickness of the last silicon
layer has to be selected based on a tradeoff between thermal dynamics and
steady state temperature. This is because increasing the bulk thickness in-
creases the thermal capacitance of the chip, thus slowing down the thermal
dynamics. However, it also increases the thermal resistance towards the
heatsink, thus resulting in a higher steady state temperature, an important
matter when this resistance has to be traversed by multiple layers of active
components, not just one as in a 2D chip design. It is because of this trade-
off that it is not surprising that a 3D chip can have faster thermal dynamics
than a 2D one.

This experiment highlights an important fact that thermal policies aimed
at future generation MPSoC need to take into account: that more than half
of the steady state temperature increase during a CPU load step happens
in the first instants following the power increase. Thus, the fast thermal
dynamics may cause a highly loaded processor to exceed safe operating
temperatures in just a few milliseconds. Hence thermal policies that act on
a timescale of tens of milliseconds or more, such as [40], can only control
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the slow thermal dynamics, and are not suitable for 3D MPSoCs, where
controlling the fast thermal dynamics is vital for the reliability of the device.

As the presented experiments have shown, thermal policies aimed at fu-
ture generations of MPSoCs will need to sense temperatures and act on
the control knob (the core frequencies and voltages) at a sub-millisecond
timescale for 3D chips, and a a timescale of a few milliseconds in 2D
ones. Thus, if a traditional fixed-rate policy is to be executed in software,
even as a kernel ISR, the necessary intervention rate results in an unac-
ceptable overhead, especially considering the effect of interrupts on deep
pipelines [49]. Summarizing, the need for an extremely prompt control
action in the face of highly unpredictable, abruptly varying loads capable
of producing thermal stresses like that of Figure 5.3, provides a practical
motivation for the proposed approach.

5.2 The proposed control scheme

As anticipated, the time constant of the thermal dynamics dictates the ap-
propriate sensing and actuation rate at which the thermal controller needs to
be run. This rate needs to be at least five to ten times smaller than said time
constant [96], resulting in a values from 200µs to 500µs for the 3D chip
that will be used for the validation phase. It is important to stress that while
this constraint is due to the physical process, it remains the same regardless

of the control scheme being used. Having this in mind, briefly discussing
two representative scenarii straightforwardly evidences the limitations of
fixed rate control solutions.

The first scenario considers a control scheme running at a fixed time
step of 10ms, such as [98, 100], thus violating the constraint above. Af-
ter the controller has computed the DVFS command at a certain time t0,
this is kept constant until t1 = t0 + 10ms. If the power consumption sud-
denly increases say at t0 + 1µs, since the controller structurally cannot
react before t1, at that time temperature may have increased up to about
50◦C (an occurrence of this is shown in Figure 5.10 later on, around 0.6s).
The second scenario considers a control design that conversely matches the
sample step requirement. In this case, trading temperature quality control
versus overhead, becomes critical. In any case, given the 500µs sample rate
requirement, at least 2000 interrupts per second have to be accepted, which
can be a problem per se.

Also, with any fixed sample rate – abiding by the constraint or not – the
obtained controller has a limited flexibility with respect to the application
behavior. For example, consider an application with a highly variable ac-
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tivity in certain moments, and a more uniform one in others. With a step
close to 200µs, when the application has a uniform activity, the controller
will uselessly compute the same actuation value at each step, while with a
a more relaxed rate, reaction to some abrupt activity changes may not be
timely enough. Incidentally, apart from the difficulty of obtaining reliable
activity forecasts at the necessary time scale, predictive schemes also exac-
erbate the flexibility limitation above owing to their computational burden.

Summing up, delivering good control quality at the required time scale,
and in the presence of abrupt and unpredictable activity variations, requires
reactive policies with self-adaptation of the time between two subsequent
control actions; exploiting the event based control theory, as done in the
following, is thus a natural solution.

5.2.1 Event-based control

The main idea behind event based control is to design a controller that is
not meant to be operated periodically, rather only when an “event” happens.
This allows to spend the overhead of running the control algorithm only

when needed, instead of having a fixed and periodic activation time. By
applying the event based theory, one therefore obtains an adaptive scheme
that dynamically changes the controller parameters to compensate for a non
constant calling interval. Moreover, the same theory allows to rigorously
guarantee important properties [54] such as closed loop stability, as well as
to keep the performance close to that of a fixed rate one.

Coming to the application of the theory to our case, events are generated
according to the so called send on delta policy, based on two conditions:

• timeout event: an event is generated when a timeout occurs;

• fast temperature change: an event is generated when a temperature
change between the actual temperature collected by the sensor and
the one at the last control action, is greater than a specified threshold
value.

The simplicity of the event generation mechanism naturally suggests
a hardware-software partition where the event generation policy is imple-
mented in hardware, as a state machine that generates interrupts based on
the temperature sensor readings, while the control policy itself is imple-
mented at the OS level as an interrupt routine, or at the EFI/BIOS level
through an SMI interrupt [81]. Such a partition allows to introduce the pro-
posed scheme with minimal hardware modifications during the design of
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the 3D MPSoC, leaving the flexibility to implement and fine-tune the con-
trol algorithm typical of a software-based run time thermal management
policy.

5.2.2 The choice of a distributed approach

Given that a core in a generic 3D MPSoC can have other cores on its side,
as well as additional cores above or below it, these can act as disturbance
sources heating up the core due to thermal conduction. It is thus a natural
question whether a distributed, decentralized (thus with limited information
from the neighbor cores) or centralized approach is best for controlling the
fast thermal dynamics of an MPSoC.

It should be stressed that from the need for a fast response time needed
to react to abrupt thermal transients, it follows that the most lightweight
solution that gives adequate results is surely the one to be preferred.

For this reason, an investigation was performed to see whether a fully
decentralized solution would be sufficient, as it results in no communication
overhead between controllers running on different cores at all, backing up
towards more complex solutions only if the decentralized approach was
proven not sufficient.

For this reason, thermal simulations with a two core MPSoC were per-
formed considering two topologies: one with cores side by side in the same
layer, and one with a core above the other, thus in two different layers. This
test was aimed at computing the thermal coupling between cores at the
steady state. To do so, one core was kept fully loaded while the other was
kept idle. Measuring the temperature in the idle core was used as the mean
to compute the thermal coupling between the cores. For what concerns the
first topology, it was shown that the thermal coupling was negligible, due to
the small facing areas making thermal conduction negligible. The thermal
coupling between two vertically placed cores was however significant.

To see if a decentralized controller could be sufficient to face the thermal
coupling in the latter case, a second experiment was performed, that has
the main difference of having both cores under closed loop thermal control.
In this experiment, both cores are fully loaded, but their temperature are
controlled using two independent PI controllers, thus using a decentralized
approach. To induce a disturbance in one of the cores, the temperature set
point is modified first in the first core, and then in the second. The result is
shown in Figure 5.4. As can be seen, when the temperature in one core due
to a set point variation, the closed loop PI controller is capable of keeping
the temperature of the other core nearly constant, thus counteracting the
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Figure 5.4: Temperature of two vertically placed cores under PI control, with alternately

varying set point, to assess the possibility to adopt a decentralized approach.

thermal coupling without the need for information exchange between the
two controllers.

This is because, despite the high steady state thermal coupling, power
is generated in the active sections of silicon layers, that are very thin with
respect to the overall chip, and interleaved by much thicker zones of bulk
silicon. Thus the capacitance of the intermediate bulk makes the dynamics
of the two sections practically decoupled in the band of interest.

It was thus chosen to design the event-based controller following a de-
centralized approach, as it was proven with these preliminary experiments
to be a promising solution that minimizes the communication overhead
between controllers. As the validation of the proposed controller in Sec-
tion 5.4 will show, the proposed decentralized event-based controller is ca-
pable of effectively controlling the temperature of a 24 core 3D MPSoC,
thus confirming the results obtained through the preliminary experiments
here described.

5.2.3 Control synthesis

As the previous section has explained, it was chosen to adopt a control
scheme that is entirely distributed, with a per-core feedback loop that do
not need to exchange any information with the adjacent ones. This was
shown to provide reasonable performance even considering the high ther-
mal coupling between two cores that are one above the other in the MPSoC
floorplan, so it was selected as it minimizes the communication overhead.

The control synthesis is here performed along the guidelines proposed
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in [54], starting from the thermal model of equation (5.1) whose pole is the
one of the fast thermal dynamic, as this is the dynamic that the controller
is aimed at regulating. The exact discretization rule is then applied to the
process model, in order to obtain a discrete-time representation of it. The
resulting discretized process is

P (z) = Γ
1− e−Ts/τ

z − e−Ts/τ
(5.2)

where z−1 is the unity delay operator of the Z transform, τ and Γ are re-
spectively the pole of the system and the gain, 2.5ms and 25◦C in the simu-
lated 3D MPSoC, while Ts is the sampling time. Note that this is obviously
not a constant in an event-based controller, so the discretized model of the
process is parametric on the inter-event time. The controller is designed by
cancellation, including an integral action to have the response to a distur-
bance step asymptotically reach zero and a gain, µ to tune the controller
response, to

R(z) =
z − e−Ts/τ

Γ(1− e−Ts/τ )
· µ

z − 1
(5.3)

As can be seen, the controller explicitly contains Ts, so this is not a trans-
fer function stricto sensu but it becomes one only when a Ts is specified,
that is, at every event, when the time from the last event is known. This re-
sults in a switched control scheme, as the transfer function that is applied at
every event depends on the inter-event time. Note, however, that the pole of
the controller does not change with Ts, and remains instead fixed at z = 1,
thus the controller guarantees integral action regardless of the inter-event
period. The same controller reads in state space form as















xR(k) = xR(k − 1) +
µ

Γ
eT (k − 1)

uR(k) = xR(k) +
µ

Γ (1− e−Ts/τ )
eT (k)

(5.4)

The loop transfer function is then

L(z) = P (z) ·R(z) =
µ

z − 1
(5.5)

that no longer depends on the sampling time. The closed loop transfer
function can be computed as L(z)/(1 +L(z)) and has a pole in z = 1− µ.
From this, it is possible to obtain the acceptable range of values of the µ
parameter in order to preserve the system stability, which is 0 < µ < 2. The
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most appropriate value of µ was selected to be 0.5 based on a simulations
campaign.

To prove the asymptotic stability of the proposed control scheme it can
be considered that the following hypotheses in [54] do apply

• Hypothesis 1 The system to control, which is (5.1), is a SISO (single
input, single output) LTI (linear and time invariant) system.

• Hypothesis 2 These surely exists a continuous time controller that sta-
bilizes (5.1), as it is a simple single pole transfer function.

• Hypothesis 3 The controller (5.4) is an event based controller.

• Hypothesis 4 Events are triggered by the sensor only, as will be shown
in Section 5.3.1.

• Hypothesis 5 The inter-event time is quantized, again see Section 5.3.1.

• Hypothesis 6 The transfer function of the process (5.1) does not con-
tain a time delay.

• Hypothesis 7 The timeout in the event generation scheme described in
Section 5.3.1 provides the necessary upper bound for the inter-event
time.

• Hypothesis 8 The DVFS actuator keeps the frequency constant be-
tween controller interventions, thus acting as a zero order holder.

• Hypothesis 9 The delay introduced by the controller algorithm com-
putation is negligible, being in the order of nanoseconds, see Sec-
tion 5.3.2, while the minimum inter-event period is in the order of
hundred on microseconds.

It is thus possible to apply Theorem 3.1 of the quoted paper, and consid-
ering that the system dynamic matrix has as eigenvalues the pole of the
controller, plus the pole of the process, it can be shown that it is Schur
and with real and distinct eigenvalues for each possible inter-event time
from the minimum to the longest possible timeout. Hence, this proves the
asymptotic stability of the closed loop system under arbitrary switching.

To complete the controller design it is now necessary to select an event
triggering rule, which is the logic that decides when events have to be gen-
erated.
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5.3 Implementation and Hardware/software partition

This section discusses the hardware/software partitioning of the proposed
control, focusing on two different aspects: reducing the computational over-
head and increasing flexibility. Starting from the considerations of Sec-
tions 5.2.1 and 5.2.3, the obtained formal model of the control loop is sta-
ble regardless the event generation policy, which can thus be selected arbi-
trarily. Moreover, the possibility to generate sensing/actuation events only
when required, the reduced complexity of the regulator, highlight the pos-
sibility to split its implementation between hardware and software. Specif-
ically, the event generator module is implemented in hardware to interact
with the thermal sensors, while the controller synthesized in Section 5.2.3
is implemented in software.

5.3.1 Event generation scheme

The proposed event generator scheme is designed in hardware as follows:
the temperature sensor is sampled at a fixed interval qs, that for the simu-
lated 3D chip can be from 200µs to 500µs, as detailed in Section 5.2. In
addition, a temperature threshold delta and a timeout are selected. Every
qs, a new temperature value is read, and if it differs from the last value
when the controller was run (not the last measured temperature value) by
more than delta, the controller is run again, otherwise nothing else is done.
If instead the timeout expires the controller is forcefully run even if the
temperature has not changed by more than the threshold.

The timeout value is also dynamically adapted, to satisfy the oppos-
ing constraints of control quality and low overhead. The decision to in-
crease or decrease the timeout depends on the reason why the controller
code was called. Every time the controller is called due to a timeout event,
the timeout is increased, up to a maximum value that in the proposed im-
plementation is 0.5s. If instead the controller was called due to a threshold
event, the timeout is immediately reduced down to qs, thereby forcing the
controller to be run again when the next temperature sample is available.
A schematic representation of the logic necessary to implement the event
generation scheme is shown in Figure 5.5.

The event generation policy can be implemented in hardware, as a sim-
ple state machine connected to a data path to compare the absolute value
of the current temperature reading with the one when the controller was
last run, hence deciding if an interrupt has to be generated. In addition, the
timeout can be easily implemented using a hardware counter incremented
at a frequency equal to 1/qs. This logic has been implemented and simu-
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Figure 5.5: Schematic view of the hardware event generator.

lated in RTL Verilog, and then synthesized using Cadence Encounter using
the NAND Gate Liberty standard cell library. Synthesis results are col-
lected considering an operating voltage of 1.1 V and a clock frequency of
667 MHz, highlighting a per-core area and power overheads of 159(µm)2,
471µW respectively, thus imposing a minimal impact for virtually any ar-
chitecture.

5.3.2 Control algorithm

The control algorithm that needs to be executed when an event is generated
is outlined in Listing 5.1.

The controller is implemented in the run() member function, that
takes as input the core temperature y, the time since the last event Ts, and
a flag that allows to differentiate the cases when the controller is run due to
a threshold or timeout event. It returns the frequency value to be applied
to the core, normalized in the [0..1] range, and the next timeout that needs
to be programmed in the event generation state machine. The controller is
basically a C++ realization of (5.4) with antiwindup added, as well as the
logic to select the next timeout value based on the event type.

The code was benchmarked using RDTSCP [14] instructions before and
after calling the run() member function, and it takes on average 39 clock
cycles on a Core i7 3630QM processor, including the function call over-
head. Considering that the processor runs at 2.4GHz, the time required to
run the controller is 16ns. This places the proposed solution among the
fastest thermal controllers, having the added benefit of being event-driven
and thus able to increase the event generation period when the temperature
is not changing. For comparison, [10] claims that a C implementation of
their proposed control algorithm requires 7µs.

Figure 5.6 shows the operation of the event generation scheme coupled
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Listing 5.1: C++ implementation of the event based controller.

c l a s s E v e n t B a s e C o n t r o l l e r
{
p u b l i c :

p a i r < f l o a t , f l o a t >
run ( f l o a t y , f l o a t Ts , bool t i m e o u t )
{

f l o a t e=SP−y ;
f l o a t xn=xo+k1∗e ;
f l o a t u=xn+k1 / ( 1 . 0 f−e xp f (−400.0 f ∗Ts ) ) ∗e ;
i f ( u >1 .0 f )
{

u =1 .0 f ;
i f ( xn<xo ) xo=xn ;

} e l s e i f ( u <0 .0 f ) {
u =0 .0 f ;
i f ( xn>xo ) xo=xn ;

} e l s e xo=xn ;
i f ( t i m e o u t )
{

/ / T h i s i s a t i m e o u t e v e n t

i n d e x =min ( i n d e x +1 , maxIdx ) ;
} e l s e {

/ / An change e v e n t o c c u r r e d

i n d e x =0;
}
re turn make_pa i r ( u , t i m e o u t T a b l e [ i n d e x ] ) ;

}

p r i v a t e :
f l o a t xo =1 .0 f ; / / C o n t r o l l e r s t a t e v a r i a b l e

char i n d e x =0; / / I n d e x i n t o t i m e o u t t a b l e

c o n s t f l o a t SP =85.0 f ;
c o n s t f l o a t k1 =0 .5 f / 2 5 . 0 f ;
c o n s t f l o a t t i m e o u t T a b l e [ 9 ] =
{

0 . 0 0 0 2 , 0 . 0 0 0 5 , 0 . 0 0 1 , 0 . 0 0 2 , 0 . 0 0 5 , 0 . 0 1 ,
0 . 0 2 , 0 . 0 5 , 0 . 1 , 0 . 2 , 0 . 5

} ;
c o n s t i n t maxIdx= s i z e o f ( t i m e o u t T a b l e ) / s i z e o f ( f l o a t ) −1;

} ;
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Chapter 5. Addressing the thermal control needs of future MPSoCs

Figure 5.6: Operation of the event-based controller.

with the event-based controller. As long as the temperature remains within
the range which is determined by the value it had when the controller was
last run plus/minus the threshold delta, identified in the figure as the green
region, the controller is not run until the timeout. Around time 0.726s the
temperature exceeds the threshold, and the controller is run (the occurrence
is shown as a black dot). The controller computes a DVFS action that pre-
vents further temperature increases, and the timeout is reduced to the mini-
mum value. Subsequent controller activations occur due to timeout events,
up to around 0.73s where the temperature exceeds the threshold again. The
last part of the figure, starting from t=0.7325s allows to appreciate the pro-
gressive increase of the timeout value if the temperature remains within the
threshold.

Finally, the control algorithm can be easily implemented using fixed
point arithmetic, and the exp operator can be substituted with a lookup
table. This allows a straightforward implementation in environments where
floating point operations are not allowed, such as within the Linux kernel.

5.4 Experimental results and validation

In this section we present a set of simulation results to assess the effec-
tiveness of the proposed event-based control scheme. The simulation flow
presented in Section 3 and 4 was used to simulate a 24-core tiled 3D-chip,
where the main architectural parameters are reported in Table 5.1. The
3D-chip is composed of two silicon layers with cores on both of them, Fig-
ure 5.7 showing the first layer. Cores are split equally between the two
layers, and grouped in tiles of three. Each tile has a NoC router to pro-
vide interconnection with the rest of the chip. The routers are organized
in a 3D-mesh NoC with four routers per layer. The chip has a shared L2
cache composed of 8 physically distributed banks, one connected to each
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5.4. Experimental results and validation

Table 5.1: Experimental setup: parameters of the 3D MPSoC.

Processor core 2 GHz, out-of-order Alpha core
Int-ALU 4 integer ALU functional units

Int-Mult/Div 4 integer multiply/divide functional units
FP-Mult/Div 4 floating-point multiply/divide functional units

L1 cache 64kB 2-way set assoc. split I/D, 2 cycles latency
L2 cache 512KB per bank, 8-way associative

Coherence Prot. MESI Directory-based 3 Virtual Networks (VNETs)
Router 4-stage virtual channeled wormhole

64b link width, 4 VCs per VNET
Frequency variable from 500 MHz to 2GHz

Topology 3D-mesh, 2 layers 2x2 tiles per each layer.
Tile 3 cores, 1 router and 1 L2 cache bank.

Technology 32nm at 1.1V

tile. For what concerns the physical parameters for the 3D die stacking, that
are necessary for the thermal simulation, they are taken from [19], a paper
published by Intel containing thermal resistances and capacitances of a real
3D stacked processor. Finally, for what concerns sensor placement, a set of
benchmarks taken from MiBench were run on the simulated MPSoC, in or-
der to identify the hot spot of each core, which was found to be the register
renaming functional unit. A simulated thermal sensor was then placed in
that functional unit, and this is the per-core temperature that is passed to the
control algorithm, as well as the one shown in the following plots. In the
case where a processor has multiple hot spots it would be possible to use
multiple simulated temperature sensors, and feed the maximum tempera-
ture between the sensors to the controller, although on the simulated core
there was no necessity to adopt such an approach.

The simulated architecture was employed to run six benchmarks from
the MiBench suite, chosen so as to subject the architecture to varying loads,
both CPU bound and I/O bound. Given the short duration of some of the
MiBench applications, tests were performed by executing them in an in-
finite loop, thereby restarting the same MiBench benchmark once it has
completed, up to a simulated time span of 1s. Five thermal management
policies were tested, namely:

• the stop-and-go policy, based on simple on-off control that halts the
core whenever the temperature exceeds a threshold, which is used as
a baseline,

• two fixed-rate PI-based policies, with a sampling time of 200µs and
10ms, respectively,

• two event-based PI ones, with an event triggering threshold delta of
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Figure 5.7: The first layer of the simulated 3D chip showing the four tiles, each composed

of three cores, a NoC router and a shared L2 cache.
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5.4. Experimental results and validation

Figure 5.8: The four tested policies applied to bitcount. Core 0 temperature during the

full simulated time (left). Zoom of the first 0.1s of simulation (right).

1◦C and of 3◦C, and a minimum inter-event latency qs of 200µs and
500µs, respectively.

and in all four cases the temperature set point was 85◦C.
It is important to point out that each policy was applied to all six bench-

marks without any modification or application-specific tuning, to explicitly
test its self adaptation capability, i.e. the ability to withstand heterogeneous
operating conditions with a fixed set of parameters.

5.4.1 Thermal control quality

The first set of results is aimed at comparing the ability of the four con-
trollers to keep the temperature set point.

Figure 5.8 shows the temperature trace of one of the cores (Core 0) with
the four policies applied to bitcount, the right plot zooming on the area
surrounded by the dashed rectangle in the left plot. The bitcount bench-
mark has been chosen because it is the one that results in the highest power
density and is therefore the most difficult to control. The fixed rate 200µs
policy apparently provides the best control, although at the cost of 5000
event/s, while the 10ms one definitely fails at keeping the core tempera-
ture within a safe limit, exceeding 100◦C despite the control set point be-
ing 85◦C. Both the event based policies deliver acceptable control, with a
slight superiority of the (1◦C, 200µs) one. Most important, said policies
result on average in 320 events per second in the (3◦C, 500µs) case, and
1153 events/s in the (1◦C, 200µs) one. Therefore the event based policies
result in a comparable control quality to the fast fixed rate controller with
significantly less controller interventions and thus a lower overhead.

The next results shows the maximum observed temperature for each
benchmark and the average completion time of each benchmark when run
with a given thermal policy, as a way to consider both the thermal con-
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Chapter 5. Addressing the thermal control needs of future MPSoCs

trol quality and a performance metric in order to assess the performance
degradation introduced by the policy-induced DVFS action.

bitcount

crc

fft

sha1

basicmath

stringsearch

Figure 5.9: Comparison of the proposed event-based controller with fixed rate policies

and stop and go.

Figure 5.9 reports a summary comparing the maximum observed tem-
perature as well as the simulation times of the executed MiBench bench-
marks considering the five implemented thermal policies. The figure shows
the results of each benchmark with a different color, while different sym-
bols of the same color are used to identify results for the same benchmark
but different policies.

As can be seen, the results of the various benchmarks are placed on the
plot on nearly horizontal lines, showing how the policies affect the execu-
tion speed of the various benchmarks in a comparable way. The only ex-
ception is the stop and go policy, which results in longer completion times,
thus a greater performance penalty, as will be shown in further details in
Section 5.4.3. Coming to the ability of the policies to control tempera-
ture, the fixed rate PI controller operated at 10ms invariantly results in the
maximum observed temperature. For example, bitcount highlights a peak
temperature of 105◦C using such a thermal control policy. Thus, a too large
actuation period results in a useless controller, that is not able to counteract
the fast temperature variations. Conversely, the fixed rate 200µs PI con-
troller provides the lowest temperature in nearly all benchmarks. To this
extent, the impact on the computational overhead due to the policy as well
as its flexibility represent two key features to select the most valuable ther-
mal management solution. Considering the two fixed rate solutions, they
achieve intermediate results in terms of temperature control, with the 200µs
solution resulting in a better thermal control and, as will be shown in Sec-
tion 5.4.3, with an acceptable overhead compared to the fast fixed rate PI.
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5.4.2 Detailed thermal transients analysis

Thermal control quality aspects have been investigated in the previous sec-
tions where each application runs up to completion in an infinite loop and
the disk access latency represents the longer time the CPU is idle. Con-
versely, in a more realistic scenario applications enter and exit the system
continuously, thus imposing great load variations to the CPUs. This section
discusses such scenarii comparing our methodology with the state of the art
in two different use cases. First, the repeated execution of an application
interleaved by a variable idle time is discussed. Second, the execution of a
CPU-bound application is presented.

Figure 5.10: Fixed rate control at 10ms, red, versus (3◦C, 500µs) event-based control,

black, with the bitcount benchmark interspersed with sleeps. Temperature traces are

taken from core 0 (a core placed on the corner of the MPSoC).

Figure 5.9 presents results considering the repeated execution of the bit-

count application with variable length idle periods between each execution
and the subsequent one. In particular, the fixed-rate 10ms and the event-
based 3◦C 500µs policies are compared. The top part in Figure 5.9 shows
the temperature profile, while events are highlighted as vertical lines at the
bottom. Observe how the event-based autonomously avoids undue inter-
ventions when the temperature is low or just “constant enough” – observe
the plot around 0.75s – but at the same time reacts promptly when the load
so requires, totaling an average of 152 event/s. On the other hand, the fixed
rate controller continuously actuate at its fixed rate even during the periods
where the temperature is low, e.g. between 0.2s and 0.6s, while is incapable
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of controlling temperature during moments of intense activity (recall that
the set point is 85◦C).

Figure 5.11: Fixed rate control at 10ms,red, versus (3◦C, 500µs) event-based control,

black, with stringsearch – core 0 temperature and events.

The second scenario compares the same policies against a CPU-bound
application, stringsearch, that forces a constant CPU load. Figure 5.11
compares the performance of the fixed rate control at 10ms with the (3◦C,
500µs) event-based controller. The figure shows how, although the core is
fully loaded and thus the temperature is stuck at the threshold value, the
event-based controller can operate quickly at the beginning to stop further
temperature increases, and then progressively reduce the intervention rate.
As a result, small fluctuations of the controlled temperature – within the
chosen threshold – are paid back by an overhead reduction from 100 to 13
events per second.

5.4.3 Overhead analysis

The last part of this section is dedicated to a more detailed overhead anal-
ysis, to emphasize the need for a lightweight policy. When the system to
control is a multicore processor, there are two ways a thermal control pol-
icy could impact its performance. First, since each core is alternatively
used to perform useful work or thermal control, a heavyweight policy, such
as one whose control algorithm takes a long time and/or needs to be oper-
ated frequently can “steal” CPU time to the applications. Second, a policy
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Fixed 200µs 5000 5000 5000 5000 5000 5000
Event 200µs/1◦C 71 1153 387 218 958 28
Event 500µs/3◦C 14 320 212 17 472 13
Fixed 10ms 100 100 100 100 100 100
Stop and go 5000 5000 5000 5000 5000 5000

Table 5.2: Number of control actions performed in 1 second time span by the simulated

policies.

that is too conservative in setting the core frequencies could slow down the
applications unnecessarily.

The detailed simulation platform employed allows to measure each of
these overheads independently. This is because the thermal control policy is
executed in the simulator and not in the simulated cores, thus any variation
in the benchmark completion times is to be attributed to the policy acting
on DVFS, and to the overhead introduced by the policy activation can be
measured separately.

Since all the compared policies require only a few tens of clock cycles
to be executed, to measure their relative overhead it suffices to measure
their activation rate. It should be stressed that if the comparison were per-
formed with more complex policies, such as MPC-based ones [98], this
would apparently no longer be the case. Table 5.2 reports the activation rate
of each of the tested policies when applied on the individual benchmarks.
Fixed-rate policies obviously have a constant rate, while with event-based
control, the rate depends on the benchmark. The bitcount and crc32 bench-
marks have the highest variability in the CPU workload, and thus power
consumption and temperature swing. As a result, more events are gener-
ated, but still four to 20 times less than the fixed rate control at 200µs. On
the contrary, for workloads that result in a relatively constant temperature,
the event rate is reduced drastically, even to values lower than the fixed
rate control at 10ms. These results show how event-based control can be
an enabler for implementing a thermal control policy in software with an
acceptable overhead.

Table 5.3 conversely refers to the overhead introduced by the DVFS ac-
tuation, reporting the average execution time of one iteration of each bench-
mark. The bold face evidences the policy achieving the lowest time, which
is reported in ms, while for better readability, the other (larger) times are
shown as percentage increments with respect to the best one. The event-
based control policy operating at 500µs achieves the lowest overhead in
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Fixed 200µs +3% +3% +10% +6% +4% +2%
Event 200µs/1◦C +2% +1% +1% +2% +4% +2%
Event 500µs/3◦C 8.453 40.683 +1% 88.872 +3% 0.220

Fixed 10ms +1% +1% 198.840 +4% 32.203 +1%
Stop and go +24% +34% +8% +23% +6% +24%

Table 5.3: Execution time of one iteration of each benchmark. The execution time is shown

in milliseconds for the policy achieving the lowest time, and in percentage with respect

to the best time for the other policies.

most cases, while the other event based control – that results in a lower CPU
temperature – has a maximum additional overhead of 2%. In two bench-
marks the fixed-rate control policy at 10ms achieves the lowest overhead,
but with a definitely poor control of the chip temperature. For example, in
the sha1 benchmark, that policy results in a peak temperature of 95.9◦C,
despite the set point being 85◦C. The stop-and-go policy, finally, causes in
an overhead exceeding 20% in most cases. This is not surprising, as this
policy employs on-off control instead of the modulating DVFS actuator.

5.5 Conclusions

An innovative thermal control strategy based on event based control theory
was proposed, suitable also for novel architectures exploiting 3D stacking.

From the control viewpoint, the main contribution was to structure the
problem so that any uncertainty be relegated to the generation of exogenous
disturbances for a dynamic system with constant parameters, that can be
determined from design data; this allowed to conclude that reactive policies
are preferable with respect to proactive ones, particularly as for robustness
and controller simplicity. Notably, the problem is stated so as to naturally
comprehend both 2D and 3D chip layouts.

On a similar front, a problem-tailored controller structure and synthe-
sis was proposed, that yields a better tradeoff between temperature control
and overhead with respect to standard forms like PIs, and to heuristics-
based tuning approaches. Furthermore, as another major contribution, an
event-based controller realization was introduced; this reduces the control
computation effort compared to the other fixed rate control solutions with
no loss of accuracy in controlling the chip temperature.

Moving to the technological side of the matter, the devised control solu-
tion is particularly suitable to be implemented in real multi-core architec-
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tures, thanks to its flexibility and negligible overhead. In fact, the imple-
mentation of the controller takes a few tens of clock cycles and the pace
at which it is invoked is really limited because of the adaptive nature of
the event-based controller. The proposed event-based controller, allows to
achieve a level of performance comparable to a fully hardware solution
while retaining the flexibility of a software implementation. A proper hard-
ware/software split of monitoring/policy can be sought, providing the op-
erating system with a flexible interface to ease adaptation to different chip
architectures.

Simulation results were reported, based on the presented simulation
flow, to support the control strategy proposal, and testify its suitability
for heterogeneous operating conditions without the need for application-
specific tuning. The selected set of benchmarks exercised the ability of
the policy to withstand diverse workload requirements, such as both CPU
bound and I/O bound scenarii.
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CHAPTER6

Power-performance optimization for NoC

routers

Theory is when you know everything
but nothing works. Practice is when
everything works but no one knows
why. In our lab, theory and practice are
combined: nothing works and no one
knows why.

Unknown

THE many-core revolution allows to increase computational power pro-
viding highly parallel architectures to run multiple applications. At
the same time the bus-based interconnects show their lacks in sup-

porting parallel application generated traffic. In this perspective on-chip
networks are regarded as one of the promising solutions to face the com-
munication issues in such architectures. However, the communication de-
mands continue to grow as more cores are integrated on a chip, and the
NoC power consumption can no longer be neglected [20]. Moreover, the
power budget is expected to become a significant concern in the dark sili-
con age, thus the challenge becomes to design high-bandwidth, low latency,
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and power-efficient NoCs [70].
One promising paradigm for NoC design is the Global Asynchronous

Local Synchronous (GALS) one [69]. Its usefulness stems from the fact
that, as the number of transistors per chip keeps increasing, so does the
power consumption required to distribute a skew-free clock throughout the
chip. The GALS design paradigm partitions the chip in a number of fre-
quency islands that are synchronous on the inside, and asynchronous at the
boundaries. This design methodology can be adapted to NoC quite easily,
by designing tiles composed of cores, caches and NoC routers, and using
asynchronous network links to provide interconnection among tiles [62].

As the design of GALS NoCs requires to introduce resynchronizer cir-
cuits or asynchronous First-In First-Out queues (FIFOs) at the tile bound-
aries to prevent metastability [61], this opens up the possibility to change
the frequency of tiles independently. In this perspective, Dynamic Voltage
and Frequency Scaling (DVFS) and Dynamic Frequency Scaling (DFS)
schemes for NoC routers represent viable solutions to further optimize
the power-performance trade-off, by dynamically adapting the power con-
sumption to the application needs. However, most of the proposed litera-
ture on this topic relies on heuristics to dynamically change frequencies,
thus without guaranteeing any properties with respect to the whole sys-
tem. Moreover, the proposed methodologies consider ideal actuators with-
out considering their transient behavior or their overhead at all.

This chapter proposes a power-performance control-based scheme for
NoC routers, that is able to adapt to the actual network load, ensuring closed
loop stability. This result is based on a mathematical model of the fre-
quency to contention relation for a NoC router that can be used to develop
power-performance policies making use of dynamic frequency scaling ac-
tuators to automatically set the router frequencies depending on the actual
load.

6.1 Optimizing the power-performance tradeoff in NoCs with

DFS

In a typical NoC-based MPSoC, the cores have private L1 caches, and ac-
cess the NoC upon cache misses, as well as to operate cache coherence
protocols (i.e. to invalidate cache lines). This means that the NoC traffic
highly depends on the memory access patterns of the code executed on the
cores.

For this reason, the NoC traffic exhibits large variations over time, and
can also be significantly low for extended periods of time, when the cache
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Figure 6.1: Dynamic power and buffer contention for router five in a 16-core NoC multi-

core, for two possible frequency values used to clock the NoC routers. The cores run

at 1GHz in both cases.

miss rate is low. This motivates the application of DFS and DVFS schemes
to NoC routers to reduce the operating frequency and thus their power con-
sumption during periods of light NoC traffic.

To show the effect of changing the frequency of a NoC router on its per-
formance and power consumption, Figure 6.1 shows the contention level as
well the dynamic power for router five considering an 16-core 2D-mesh
where the NoC runs at 100MHz (blue lines) and 1GHz (red lines), re-
spectively, while cores run at 1GHz in both scenarii, executing the qsort

benchmark from the MiBench suite [42]. It is obvious that operating the
NoC at the higher frequency results in a lower contention level than us-
ing the low frequency, while the impact is also on the execution time and
on power. The high frequency NoC provides better performance than the
low frequency one, i.e. the time required to complete the benchmark are
7.4ms and 12.5ms respectively. However, a router in the high frequency
NoC requires five times more dynamic power than the low frequency one.
Thus, there is a need for effective methodologies to trade-off power and
performance. Moreover, this figure also shows that the contention is not
constant and conversely highly depends on the traffic generated by the exe-
cuted code. This motivates the need for a run-time methodology to optimize
power consumption without excessively affecting performance.

In this perspective, frequency scaling represents one of the most used
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actuators to achieve such a goal [64]. Although when considering its bene-
fits in terms of power consumption reduction, DVFS may appear a superior
choice compared to DFS, in the context of NoC routers power-performance
policies, DFS has some notable advantages.

First, the time overhead required to increase the frequency is invariably
higher in a DVFS scheme compared to a DFS one. This is an important
metric for a NoC power-performance scheme, because the cache access
patterns may vary abruptly, and a fast increase in the NoC requests may sig-
nificantly hurt performance if the NoC frequency is not promptly adjusted
to face the traffic increase. The reason for the inherent slower response
in DVFS is twofold. Standard DVFS schemes use an interlocking mech-
anism to avoid operating the controlled voltage and frequency island at a
too high frequency and too low voltage, a matter that would cause critical
path violations. Thus, when moving to a higher performance state the volt-
age is increased first, and only after it has settled, frequency starts increas-
ing. This serialization introduces a significant timing overhead. Although
this overhead can be improved through coupled DVFS control [4], volt-
age regulators are often off-chip devices, and due to the necessary output
capacitor used for filtering the produced voltage, they tend to have signifi-
cantly slower dynamics. Thus even if the frequency increase is performed
in parallel with the voltage one, the PLL would have to wait for the voltage
regulator dynamics, still slowing down a DVFS increase.

Second, the fact that voltage regulators are off-chip devices introduces a
cost and board space overhead in implementing DVFS for NoC routers, es-
pecially considering that to achieve the maximum benefit in dynamic NoC
frequency selection, policies that operate at a fine granularity are prefer-
able, down to a per NoC router control, which would result in a significant
number of voltage regulators. On the other hand, PLLs are easily integrated
on-chip, and in the dark silicon age where one of the driving design choices
is to utilize silicon area to achieve power efficiency [84] it is not inconceiv-
able to adopt a per NoC router PLL clocking scheme. This is especially
true considering that PLL can be implemented with a low area occupation.
Consider for example [88], where a 2.5GHz PLL was proposed occupying
an area of only 0.016mm2, despite being implemented in a 90nm process.
On the other hand the area of a NoC router in the simulated multicore for
the evaluation of the policy, see Section 6.4 is 0.37mm2, much larger than
the PLL although the router is implemented at 32nm. If the PLL too were
scaled at 32nm, the area difference would be even higher. A final reason
against using a per NoC router voltage regulator is that although on-chip
voltage regulators have been proposed in the literature [52], off-chip induc-
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tors still need to be provided for their operation, and their adoption in the
industry is still weak.

For this reason, it was decided to concentrate on a DFS scheme as the
actuator of choice for the proposed NoC power-performance policy.

6.1.1 Novel Contributions

This chapter presents a framework for power-performance optimization in
NoC-based architectures [104], allowing for switching between different
policies ensuring closed loop stability at the same time. The work synthet-
ically provides three different contributions:

• Run-time control-based power-performance NoC framework. Such
framework has two levels. At the lower level a flexible policy to im-
prove the NoC power efficiency is presented which sets the router
frequencies based on their contention. Such a policy outperforms
threshold-based ones allowing the NoC to operate in different power-
performance points. For each of this points stability of the closed loop
system is guaranteed. This lower level layer is an inner control loop,
and is meant to be implemented in silicon, operating without direct OS
intervention. Moreover, the low level enables to switch at run-time be-
tween these operating points still ensuring the stability property. This
feature can be used by the OS to obtain a more power-oriented or
performance-oriented behavior, thus opening the possibility of adopt-
ing higher-level policies. At the higher level it is possible to design
a policy to optimize the power-performance trade-off based on user
requirements. This policy is meant to be implemented within an oper-
ating system, changing a parameter of the lower level controller at run
time, with a more coarse time granularity (seconds or more).

• Accurate analytical formulation for both the NoC traffic and control

policies This section proposes a new analytical model for the impact
of the router frequency on its contention, i.e. the filling level of router
buffers that is used as a proxy for performance [64]. This model has
been experimentally proven to be application independent. The sta-
bility analysis as well as the run-time policy evaluations have been
supported by a complete mathematical formulation for both the con-
troller and the process to be controlled (i.e. the NoC router), as well
as the actuator (i.e. the PLL). Then a complete validation has been
performed using a cycle accurate simulator while running MiBench
benchmarks.
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6.2 A NoC router model for power-performance policy design

To design a power-performance policy for NoC routers using DFS, it is
first necessary to understand the impact of a the router frequency to its
performance. Once such a model is available, control theory can be applied
in order to design a proper controller.

6.2.1 Dynamics of a NoC router

This section presents a model relating the performance of a NoC router
to its operating frequency, in the form of a linear, time-invariant dynamic
system, estimated from simulations performed on real (i.e., non synthetic)
traffic flow. In this perspective, the relation between frequency and con-
tention for an on-chip network router is discussed, providing the inputs, the
outputs and the internal law which governs the process. The next section
exploits this model to design a family of controllers.

The proposed model describes how a frequency change impacts the con-
tention level and is mainly intended to be used for designing fine-grained
power-performance optimization schemes that work at the granularity of a
single router, or a frequency island composed of multiple routers, by using
DFS to change the frequency at run-time. The model was devised starting
from a set of physical considerations, complemented by the identification
of a single parameter. As a result, it is of the gray-box type [58], with its
structure and some of its parameters dictated by the underlying process na-
ture, and the remaining parameters identified based on experimental data.

The first step consists in defining the inputs and outputs of the model that
are then bound to the metrics for power and performance for a router. Last,
the internal structure of the router model is detailed, i.e. the state equa-
tions. In order to enhance the readability four quantities are here defined as
follows:

• power metric and actuator - The router frequency is the chosen the
proxy for power. Also, the router frequency is the control input that
can be modified at run-time to optimize power.

• performance metric - Given a router j, the per router contention metric
(Ci,j,t) is defined as the buffer utilization for router i due to flits that
want to go to router j at time t. It is worth noticing that the local

contention of a router i can be defined as Ci,i,t that are the flits stored
in the buffers of router i. This last definition can be used as a measure
for local performance, as reported in [64].
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Figure 6.2: Control volume for Router 6, in the case when each router in the NoC has

its own frequency island. The control volume contains all one hop neighbors of the

considered router. It includes L1 and L2 links to count injected flits from cores and

cache memory.

• control volume (Ni) - it represents the virtual envelope for a router i
that contains all its direct neighbors as reported in Figure 6.2. The
boundary of the control volume is crossed by all the router links con-
nected to the neighbors of router i, as well as the links connecting
router i to its CPU and L2 cache.

• incoming flits InF litsNi,t - it is the number of flits that have been
inserted in a control volume within a specific time interval.

• outgoing flits OutF litsNi,t - this is the number of flits that have been
processed by router i during a specific time interval.

Starting from the above definitions there are two main observations that
can be discussed. First, one could try to use the local contention Ci,i,t as the
performance metric for router i, since a low contention means low latency
due to low conflicts on shared router resources. However, the utilization of
the local contention metric is not enough to model the frequency-contention
relation on a specific router. Consider for example a two routers scenario

as depicted in Figure 6.3. The downstream router (rd) has an initial state,
where frequency is zero and all the input buffers empty, while the upstream
router (ru) has a frequency greater than zero and flits stored at its input
ports. As at router rd the local contention Crd,rd,t is zero, each reasonable
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Figure 6.3: Local contention limitations considering up- and downstream router pair,

where the upstream one has flits for the downstream one that can be never sent.

optimization policy would not increase the frequency to minimize power
consumption. However, ru has both Cru,ru,t and Cru,rd,t different from zero,
since it has flits that want to go to rd. In such a case flits can never be
received by rd, resulting in a stall situation.

In light of this issue, the contention for a router i is computed counting
also the number of flits directed towards that router that are stored in the
routers (and CPUs, memory controllers, etc.) one hop before, or, in other
terms, the flits contained in the control volume and directed to i.

It must be noted that although having certain NoC routers at a frequency
of zero is an extreme case, this model has the advantage of supporting also
policies that may make use of this feature. Moreover, this choice for the
definition of contention also has the advantage of an anticipated response
to a sudden increase in the number of flits directed to a specific router to
improve the performance of the control schemes. To this extent the global
contention for a router i at time t can be defined as:

CG
i,t =

∑

j∈Ni

Cj,i,t (6.1)

where
∑

j∈Ni
Cj,i,t represents the sum of the contentions on neighbors of

the considered router i due to flits that want to go to router i.
The second consideration is related to the flow balance assumption. For

each period the difference between incoming flits and outgoing flits rep-
resents the net inserted flits into the control volume. Having a measure
of both incoming and outgoing flits becomes important in light of the fast
dynamics of the NoC. For example, consider a control volume as the one
depicted in Figure 6.2, and a burst of flits that reach the control volume
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while no other flits arrive to the control volume after the burst. If the sam-
pling period is short enough the incoming flits can be roughly considered
as the flits in the control volume at the sampling time. Otherwise, if the
sampling period is significantly lower than the router clock cycle, which is
the typical situation encountered when running DFS policies, some of the
incoming flits can be served by the router and leave the control volume in
between two sampling time points. To this extent actual portion of the flits
that impacts the contention can be measured as the net incoming flits, or, in
other words, the difference between incoming flits and outgoing flits:

Net_InFNi,t = InF litsNi,t −OutF litsNi,t (6.2)

6.2.2 Model identification

Once a suitable contention metric has been found and the balance flow
equation has been discussed, the goal is then to derive a dynamic model
of the frequency to contention relation. A possible way is to start from
physical considerations on the operation of a NoC router, and extend the
balance of flits in the control volume by considering the contribution from
flits present in the previous sampling period. By following such considera-
tions, the following model was obtained:

CG
i,t = CG

i,t−1 +Net_InFNi,t − α ∗ ft−1 (6.3)

First of all, the complete model includes saturations not shown here to
ease its understanding. Those saturations simply account for the fact that
the contention value can never become negative, nor increase above the
sum of all buffer sizes in the control volume.

The model contains an integrator, which is easily explained consid-
ering that if no flits enter the control volume, and the frequency of the
router is zero, the contention remains constant. Also, physical considera-
tions suggest that flits entering the control volume and directed towards the
considered router cause an increase in its contention, which explains the
Net_InFNi,t term. In the proposed model the injected flits are considered
as a disturbance, since they cannot be controlled, while the router frequency
is the control input.

The frequency impact on contention depends on several implementation
details, i.e. the internal router structure and the arbiter policies, however it
is reasonable to assume that a frequency increase decreases the contention.
Moreover, the impact the frequency has on the contention is function of the
actual traffic pattern. Defining the input or/and output serialization as a set
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Figure 6.4: Dynamic frequency-contention model. The frequency is a controllable input,

while the injected flits is a non controllable input.

of flits from a common input port or multiple flits that want to go to the
same output port, respectively, the contention due to serialization increases
with higher traffic, where collisions are more frequent. In this perspective,
an unknown parameter, α, was added in Equation (6.3), to describe the
frequency-contention model.

This last step needed to complete the model is therefore the identifica-
tion of the α parameter based on experimental data. For this purpose, it can
be noticed that the proposed dynamic model belongs to the family of de-
terministic autoregressive models with exogenous input model (ARX) [17,
58]. This allows the use of standard identification techniques to find the α
parameter. The resulting ARX model is the one depicted in Figure 6.4.

6.2.3 Model validation

To assess the capability of the model to correctly represent the modeled
phenomenon, a test is here reported comparing the estimated contention of
a NoC router with the measured contention obtained through a contention
sensor implemented in the proposed simulation flow. The presented result
is focused on router R5 in an MPSoC with 16 cores and 16 NoC routers,
while running the stringsearch MiBench benchmark. To this extent the
router frequency was set at 1GHz using 10MHz as sampling rate for the
contention, that is one hundred times lower than the router frequency. Fig-
ure 6.5 compares real contention samples (red line) with predicted data us-
ing the proposed model (black line). As can be seen, the model can predict
the router contention based on its frequency and the Net_InFNi,t measure,
even at very low sampling frequencies compared to the router clock.

It is worth noticing that the main use of this model is not to predict the
router contention, and that the presented test is only used to assess its va-
lidity. The main use of this model is to design run-time power-performance
policies. In this respect, its main contribution is to provide a model assign-
ing a transfer function to a NoC router, allowing to design a closed loop
controller while guaranteeing the stability of the system. When the con-
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Figure 6.5: Comparison of the proposed model with measured contention.

troller is implemented, the router model is substituted by the actual NoC
router, and the adherence of the model with the actual router behavior al-
low the controller to operated as expected during the design phase.

The controller has thus to sense the actual router contention, and actuate
by changing it frequency. Therefore, the policy that will be presented in the
next chapter requires a hardware implementation of a contention sensor for
the NoC router, and the need to measure contention at runtime – that as de-
fined previously depends on the control volume – requires communication
between routers to exchange the buffer status, resulting in a decentralized
control scheme. However, the control loop operates at a significantly lower
frequency than the NoC itself, i.e. 10MHz that is 10 to 100 times slower
considering frequencies for the NoC between 100MHz and 1GHz. Thus,
the requirements for communications are relaxed.

6.3 NoC power-performance controller design

Starting from the model of the real process developed in Section 6.2, this
part discusses the design of a control scheme aiming at router contention
reduction, while being conservative in increasing its frequency, since it di-
rectly impacts on its dynamic power consumption.

The proposed control scheme is the one shown in Figure 6.6. The main
idea behind this scheme is to measure contention at run time, and close a
control loop around it to control the router frequency. To minimize the con-
trol scheme’s complexity, which simplifies its hardware implementation, a
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Figure 6.6: Block diagram of the proposed NoC frequency control scheme.

proportional control scheme was selected which, as the results will show,
provides good performances.

Starting from the left side of the figure, the controller’s set point is cho-
sen as the constant zero, as ideally the desire is to have no contention. The
set point is then subtracted by the (filtered) measured contention, obtaining
an error value that is greater than zero if contention is higher than the set
point. Note that the signs at the summation node are reversed with respect
to a standard proportional control scheme due to the process having a nega-
tive gain, i.e. an increase in frequency causes a decrease in contention. The
error value is then multiplied by k, the proportional gain. This parameter
specifies how aggressively the controller will increase the router frequency
in response to an increase in contention. The resulting value is however
a frequency value that is zero with no contention. As it may be undesir-
able to completely halt the clock of a router, and PLLs often have a limited
lock range and thus the frequency cannot be arbitrarily decreased, the com-
puted frequency value is summed to a baseline frequency value, fmin to
take these limitations into account. The last computation is a saturation at
a value fmax, used to set a limit on the maximum frequency that the con-
troller will select. The so computed frequency value is then applied to the
PLL to actually change the router’s frequency. It should be noted that the
PLL response to a change in its frequency set point is not immediate, and
its dynamics are significantly slower than the ones of the process to be con-
trolled. Therefore, it is not possible to neglect the PLL dynamics during the
design of the controller.

As the PLL is the slowest component in the control loop, it also deter-
mines the rate at which the controller is to be clocked. The PLL model
has been described in Section 3.6, but for the purpose of the control loop
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design it is important to note that the chosen PLL for the NoC router has
a settling time to a step change in frequency of around 2us. To be able to
correctly model its dynamics, the control scheme needs to operate 5 to 20
times faster, with faster sampling rates leading to better discretization of its
dynamics and thus more accurate control. Since the range of frequencies at
which the control loop has to operate forbids a software implementation, it
was chosen to operate the loop with a discretization period 20 times faster
than the PLL dynamics, leading to a 10MHz controller operation frequency.
This value is used to quantize the continuous time PLL model, which is then
used to compute the loop transfer function.

The last component to be discussed is the contention filter. Its purpose is
to smooth the contention measure, which from the performed experiments
was found to contain undesired high frequency components, caused by the
fast traffic variations experienced by the NoC routers. The filter cutoff fre-
quency can be tuned using the p parameter. Experimental results have led
to the selection of a value of 0.99.

Once a model for all the components composing the control loop are
available, it is possible to compute the loop transfer function, and determine
the range of k values that guarantee the closed loop stability. A way to
obtain this range is through root locus analysis [58].

Table 6.1 reports α and the maximum k values for different benchmarks
extracted from a 2D-mesh 16-core for router 5 using 2 VCs per virtual net-
work. These values complete the control loop model presented in Figure
6.6. It is worth noticing the maximum k values are reported on the root
locus stability analysis while the minimum allowed k value is zero for each
benchmark, which is equivalent to opening the control loop and always
selecting the lowest frequency. Starting from the data it is clear how the
product of the two numbers, i.e. α and kmax provide always the same re-
sults, without considering rounding. As each benchmark has a different
identified model, i.e. different α, to to keep it stable in the control loop a
different kmax is allowed. The selection of the k value when implement-
ing the control loop can however be performed statically, without having to
profile individual applications, by being conservative in the k selection.

Although each application results in a slightly different α, a common α
value was identified, reported in the ALL line of Table 6.1. This value was
obtained by performing the identification procedure using the concatena-
tion of all the benchmarks, thereby taking into account a significant variety
of NoC usage patterns. Subsequently, the control law was tuned using that
value, i.e. not tailoring α for each specific application, without resulting in
unstable behaviors. The independence of α from the applications was ex-
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Table 6.1: α and maximum k values for different benchmarks, considering a 2D-mesh

16-core architectures with 2 virtual channels (VCs) per virtual network (VNET). The

number refers to router 5.

name α kmax α ∗ kmax

basicmath 0.847 0.229 0.194
bitcount 1.261 0.152 0.192

crc 1.709 0.113 0.193
dijkstra 0.462 0.415 0.192

fft 2.130 0.091 0.193
patricia 2.575 0.075 0.193

qsort 2.497 0.075 0.192
strsearch 1.433 0.135 0.193

ALL 1.880 0.102 0.192

perimentally proved since the controller provides comparable performance
between all the applications, as detailed in Section 3.9.

6.3.1 Higher level control

While the controller presented so far can improve the power efficiency of
a NoC by reducing the router frequency during periods of light load, in
applications that are tightly power and energy limited, such as mobile de-
vices, it may be desirable to dynamically steer the system to a more per-
formance oriented or low power state based on application or user require-
ments. Many operating systems, for example, incorporate a feature that
switches a laptop computer in a higher performance mode when the power
cord is attached. To perform such a feature, the operating system needs
access to low level actuators that allow to tune the system performance.
Moreover, it is quite common to allow for user interaction to set the desired
level of power-performance trade-off thus changing the system behavior
at run-time. In this perspective threshold-based policies are not flexible
enough to provide this feature as although the thresholds can be reset to
different values, such modification requires for a deep understanding of the
low level microarchitecture, thus a wrong tuning of the thresholds can steer
to a saturated behavior leaving the frequency fixed at its higher or lower
value.

This can easily be done with the presented control scheme by exposing
the α parameter of the individual controllers as a memory mapped periph-
eral register, thus allowing the software to dynamically change the con-
troller behavior. This allows the implementation of higher level policies to
better fit the required power-performance level.
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Table 6.2: Experimental setup: processor and router micro-architectures and technology

parameters.

Processor core 1GHz, out-of-order Alpha core
Int-ALU 4 integer ALU functional units

Int-Mult/Div 4 integer multiply/divide functional units
FP-Mult/Div 4 floating-point multiply/divide functional units

L1 cache 64kB 2-way set assoc. split I/D, 2 cycles latency
L2 cache 2MB per bank, 8-way associative

Coherence Prot. MESI
Router 3-stage wormhole virtual channelled

switched with 64bit link width 4fl/VC
2/4 virtual channels (VCs) for each virtual network
3 virtual networks (Garnet network [2])

Topology 2D-mesh, based on Tilera iMesh network [95]
for link width and NoC frequency (@1GHz)

Technology 45nm at 1.0V
PLL model ω=4 · 106, ξ=0.6, See equation (3.1)

worst case power consumption 2mW.

6.4 Experimental results and validation

This section details the results for the proposed NoC power-performance
methodology in four different steps. First, the experimental setup is de-
scribed in Section 6.4.1, while Section 6.4.2 compares the proposed policy
against threshold based and fixed frequency ones, to bound the evaluation.
It is worth noting that this comparison uses the router contention as a per-
formance proxy, as detailed in Section 6.4.2 to assess the validity of the
proposed model that relies on this metric. Section 6.4.3 discusses the con-
trol policies applied to the whole system, when simulated time and dynamic
power are used as performance and power metrics, respectively. Last, the
effect of switching the α parameter at runtime is shown in Section 6.4.4.

6.4.1 Experimental Setup

The proposed NoC power-performance policy is here tested on a represen-
tative 16-core 2D-mesh tiled architecture, where detailed parameters are
reported in Table 6.2. Each tile is composed of an Alpha 21264 core run-
ning at 1GHz, with private L1 cache and a shared L2 cache composed of
16 physically distributed banks, one connected to each router, as shown in
Figure 6.10. The architecture was used to test different scenarii consider-
ing several applications taken from the MiBench suite using the simulation
toolchain detailed in Section 3 equipped with the PLL and the DFS actuator
models. For each simulation, detailed traces were collected with the dy-
namic power consumption of each router, as well as latency and contention
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Table 6.3: Evaluated policies organized by classes.

Class NameID Details

Static
Upper Fixed router freq @ 1GHz
Lower Fixed router freq @ 100MHz

Threshold

Th1
3 switching freq 250-500-800 MHz

threshold values buffer fill level 10-20 flits

Th2
3 switching freq 100-500-1000 MHz

threshold values buffer fill level 10-20 flits

we

Control

k=0.01 the scheme presented in
k=0.04 Section 6.3, where the NameID
k=0.075 field in the table provides
k=0.15 the actual k value

providing average measures to allow comparisons between different poli-
cies. The frequency value produced by the DFS policy was used as the set
point for a PLL, modeled as detailed in Section 3.6, with ω = 4 · 106 and
ξ = 0.6. The PLL frequency range was set between 100MHz and 1GHz,
providing a realistic and reasonably flexible environment, i.e. the Tilera
iMesh Noc is clocked up to 1GHz [95].

6.4.2 The baseline control policies

To assess the proposed control-based methodology, it was compared against
two different classes of policies, static policies and threshold policies. Ta-
ble 6.3 reports the details related to the employed policies. The Upper and
Lower policies set the router frequency to 1GHz and 100MHz, respectively.
These represent the baseline for all the other evaluations, since are the ones
that result in the most performance oriented and power saving behavior
compatibly with the chosen architecture. The next two are threshold-based
policies, named Th1 and Th2, that allow to switch between three different
states, i.e. three different frequencies, using two different threshold lev-
els. Such policies are used as representative threshold-based policies and
were selected after a set of experiments against different set of parametrized
threshold policies. Last, the proposed control-based solution is used, with
four different k values to show the controller ability to obtain a more per-
formance oriented or power saving behavior seamlessly, by changing the
controller parameter.

The experiments here presented show how the control policies behave
better and are more flexible than the threshold based or baseline static poli-
cies.

In this first experiment, the NoC power-performance policies were ap-
plied to one router only in the 16-core architecture detailed in Section 6.4.1,
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Figure 6.7: Router 5 average power-contention trade-off considering different policies.

Experiments run on a 16-core NoC multi-core, and the frequency of router 5 only is

changed depending on the policy between 100MHz and 1GHz. Note that in a 4x4 2D-

mesh as the one considered for these results, Router 5 is positioned at the second row

and second column of the NoC topology.

leaving the frequency of the other routers fixed at 1GHz, to better show the
effect of the policies. Figure 6.7 shows the results using different bench-
marks from MiBench. The selected router is router five, which is in the
middle of the mesh, thus has to face higher traffic due to the employed XY
routing strategy [63]. The figure reports the six evaluated policies for each
benchmark at the bottom x axis, while the benchmark names are shown on
the top x axis. The left y axis reports the dynamic power for the consid-
ered router, while the right y axis shows the contention and power times
contention values. It is worth noticing that contention and the power con-
tention product are normalized to one on a per-benchmark basis to better
shape the figure. The figure reports three different measures, i.e. the dy-
namic power (blue line), the contention (red line) and the power contention
product (light blue bars).

The first important remark is that the dynamic power consumption of
a NoC router can exceed values in the order of 50mW, while the power
overhead of a PLL can be as low as a few milliwatt, one example being [36]
demonstrating a 1.35mW PLL capable of operating at 1.5GHz. This proves
that the proposed dynamic policy is indeed feasible even considering the
PLL consumption overhead.

The policies chosen for the comparison are three control policies, i.e.
k = 0.01, k = 0.04 and k = 0.15, against the Upper and the Lower static
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Chapter 6. Power-performance optimization for NoC routers

policies as well as the two threshold based policies Th1 and Th2.
The reported results allow for three different considerations. First, the

two static policies actually are the upper and lower bound for the analy-
sis, since the Lower has the higher contention level for each benchmark,
while the collected dynamic power is always the lowest. The same can be
observed for the Upper policy that provides the lowest contention with the
highest dynamic power consumption.

The second observation is devoted to the control-based policies that
can explore the power-performance space. In particular, for each bench-
mark the contention red line reported for the control-based policies always
decreases increasing k, since a stronger actuation is applied, i.e. higher
frequencies, in face of a contention increase. On the other side also the
blue lines for the control-based policies always increases with the k, even
though in some cases the increase is so small that is not noticeable in the
graph, since a more strong reaction to the contention increase means higher
dynamic power consumption. This aspect is evident on the string-search

bench in Figure 6.7, which has 72% of the contention of the static lower
frequency policy using k = 0.01, than decreases to 43% with k = 0.04
and reaches 21% using a k = 0.15. The average power consumption is
respectively 15, 22 and 31 mW.

The last point aims to the comparison between the proposed control-
based methodology and the other policies. In particular, it can be noticed
that the policy with k = 0.15 achieves the lowest power-contention product
in all but the fft benchmark, and even in this benchmark it is only slightly
worse than the upper policy which is the best one in this case. This shows
how it is possible to choose a single value of k that provides optimal or
near-optimal results regardless of the application being executed. This is
an important fact, as it shows that there is no need to tune the k parameter
on a per-application basis, but rather k can be tuned only to steer the system
to a more performance oriented or power saving behavior.

6.4.3 Applying the proposed scheme to the whole system

This section shows the policy behavior when applied to the whole system.
In this case all the routers are equipped with a DFS module running one of
the presented policies. The results are shown in Figure 6.8, which contrary
to the previous experiment uses the benchmark completion time as the per-
formance metric, while the policies are obviously still based on contention.
This has been done to assess the contention metric as a good performance
metric, showing how a policy aimed at reducing contention can impact the
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Figure 6.8: Evaluation of dynamic power, total execution time and their product when all

the routers are running the policy.

simulation time. The left side y axis reports the dynamic power consump-
tion (W), while the right side y reports both the benchmark execution time
and the product between power and time, both normalized to one.

Four control policies were evaluate, with k = 0.01, k = 0.04, k = 0.075
and k = 0.15, against the Upper and the Lower static policies as well as the
two threshold based policies Th1 and Th2. Figure 6.8 shows the results. The
control policies can a provide better trades-off than the static and threshold-
based ones. This is testified by the k = 0.01 policy achieving the lowest
power time product in all but three cases. Even considering those cases,
it is still close to the best value, again proving the existence of a single
application independent k value that is close to optimal regardless of the
application being executed.

6.4.4 The run-time control framework

While Section 6.4.2 shows how the control-based policies can outperform
the threshold-based methodologies, it is often a desirable feature to be able
to dynamically select a more performance oriented or power saving policy
based on application or user requirements. As outlined in Section 6.3.1,
since the proposed controller has a single parameter that allows to steer
the system to a more performance or power saving behavior, it opens the
possibility of being extended with higher level policies, implemented at the
operating system level.

This section demonstrates how the possibility to dynamically switch the
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Chapter 6. Power-performance optimization for NoC routers

Figure 6.9: Evaluation of dynamic power and total execution time on all routers running

qsort, when the policy is changed from k=0.04 to k=.075 after 3ms of simulation.

controller parameter can increase the flexibility of the system against dif-
ferent user requirements. This however makes the proposed controller a
switched control system, and the stability property can be preserved if all
the controllers in the switch set are stable and a minimum time between
two switches is guaranteed, i.e. a dwell time. In this perspective all of
the controllers we employ guarantee for an asymptotically stable closed-
loop system, thus there exist a minimum finite time interval between two
switches that ensures the stability of the switched system [102].

Figure 6.9 shows the capabilities of switching the k parameter. It refers
to the qsort benchmark with all the router running the control based policy.
The figure shows the imposed frequency, the dynamic power and contention
level on router five only as the other routers have a similar behavior. In
particular the blue line reports the data when all routers are running the
k=0.04 policy, while the red line shows the same data while all the routers
are running a switched policy that uses k=0.04 from the beginning of the
simulation until 3ms, then switches to k=0.075.

The figure allows to evaluate three aspects. First, a change in the pol-
icy at 3ms does not produce an unstable behavior. Second, the k=0.075

provides a stronger reaction to contention increase, since from 3ms to the
end of simulation the frequency for k=0.075 is higher than the frequency
imposed using the k=0.04. Moreover, the switched policy allows the bench-
mark to finish the computation sooner, although with a higher power con-
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6.5. Conclusions

sumption. To this extent we assess the possibility to change the control
policy with a simple command from the higher levels to move the system
towards a more conservative or more performance oriented behavior. How-
ever, the complete development of an optimal switching policy is out the
scope of this thesis.

6.5 Conclusions

This chapter presented a complete methodology to trade-off power and per-
formance in NoC architecture exploiting dynamic frequency scaling (DFS).
The choice to limit the usage of DFS instead of the DVFS is motivated by
many reasons mainly focused on the impossibility to easily integrate many
DVFS actuators, i.e. one per NoC router on the same chip. Moreover, the
voltage regulator could impose an excessive delay to the reaction of the sys-
tem due to the NoC load variations, that are usually fast and wide. However,
our methodology can be easily adapted to be used with DVFS actuators.

In particular, the work is organized in three steps. First, a model of
the frequency-contention for a single router is developed as a dynamic sys-
tem. Then, a set of controllers have been implemented guaranteeing closed
loop stability and dynamic frequency adaption depending on the NoC load.
Last, the possibility to dynamically switch the controller parameter has
been evaluated, as a mean to adapt the system behavior to system or user
requirements. The results compared different control policies against static
and threshold policies [64] providing better results both in term of power
saving and simulated time.
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Figure 6.10: The layout of the simulated MPSoC showing the 16 tiles, each composed of

a core, a NoC router and a shared L2 cache.
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CHAPTER7

Conclusions and future work

THIS dissertation addressed the thermal and energy management prob-
lem in MPSoCs. For what concerns the thermal management prob-
lem, it was decided to focus on modeling the chip thermal dynamics

with the aim of developing a simulation framework capable of simulating
future generation 3D die-stacked architectures. In addition, a novel and
low overhead thermal control policy based on event-based control theory
has been proposed that can effectively control the temperature of a 3D chip
considering the thermal dynamics of said architectures.

For what concerns power and energy optimization, a policy has been
proposed, taking advantage of the inherent need for resynchronizers in
GALS NoC designs to employ DFS on a per-router basis, thus being able
to reduce the frequency of individual NoC routers during periods of low
traffic. This policy is backed up by a model of a NoC router frequency to
contention relation.

Last, a flexible simulation flow has been developed capable of simulat-
ing in a cycle-accurate way NoC-based MPSoCs, including 3D die-stacked
ones, supporting GALS NoC architectures, and providing microarchitec-
tural sensors, as well as sensors for physical quantities such as power and
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Chapter 7. Conclusions and future work

Table 7.1: Summary of the research topics covered in this thesis, evidencing the achieved

results.

Topic State of the art Contribution Validation
MPSoC Simulation Simulation frameworks for

power-performance tradeoff
analysis are common [24,74],
while some add steady steady
state thermal support [44,
103]. Transient thermal mod-
eling coupled with a cycle
accurate simulator is seldom
provided, although it is fun-
damental for assessing DTM
policies [11]

A cycle-accurate simulator
with support for transient
thermal analysis, GALS NoC
architecture and per-core as
well as per-NoC router DVFS
coupled with detailed sensors
and actuators including PLL
and resynchronization mod-
els

Cycle accurate simulations
using MiBench benchmarks
against baseline GEM5 simu-
lator

Thermal modeling HotSpot [46] is the most
commonly used 2D chip ther-
mal simulator, while 3D-
ICE [83] supports 3D die-
stacked architectures with a
focus on liquid cooling. Both
are based on compact thermal
models, and embed the sys-
tem equation and the solver
in an unified codebase, writ-
ten in C

Developed a component-
based thermal simulator in
an object-oriented modeling
language (Modelica). This
simulator allows to flexibly
combine the models of indi-
vidual components to build
a chip (either 2D or 3D) and
the thermal dissipation stack

Comparison with HotSpot

Thermal control PI-based policies [29] for re-
active control, and MPC-
based policies [10, 98] for
predictive approaches. In
both cases policies are oper-
ated at a fixed rate regard-
less of the thermal state of the
chip

Application of event-based
control theory to the ther-
mal management problem.
The resulting policy operat-
ing rate is adaptive thereby
coupling a fast reaction time
with a low overhead. Such
a policy can counteract the
fast thermal dynamics found
in 3D chips while retaining
the flexibility of a policy im-
plemented in software

Compared to fixed rate PI
policies using MiBench
benchmarks

NoC power-performance Threshold-based policies em-
ploying DFS [64] to adapt the
router frequency to the NoC
load

Developed an analytical
model of the frequency to
contention relation for a
NoC router, and developed a
policy based on proportional
control

Compared to threshold-based
policies using MiBench
benchmarks
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temperature, as well as detailed DFS and DVFS actuator models and being
thus able to simulate thermal and power-performance policies in a realistic
setting.

Table 7.1 summarizes the novel contributions of this dissertation, with a
short description of the state of the art, the developed improvements, also
mentioning the validation methods.

Possible future directions that could start from the work done and extend
it include.

• Extending the simulation framework with more clock resynchronizer
schemes, such as FIFO-based solutions, and a comparative study of
the resynchronization overhead of the implemented synchronization
schemes.

• Extending the proposed thermal simulator with additional interchange-
able components such as thermoelectric coolers and heat pipes, in or-
der to model and explore different thermal dissipation solutions for
MPSoCs. Also, it would be interesting to model the case in which the
MPSoC is being housed, as well as simulating the PCB on which it
is mounted together with other components that generate heat, such
as memories and voltage regulator, moving thus from a MPSoC-only
thermal simulation to a full system thermal simulation.

• The implementation of the proposed policies in commercial and re-
search prototype architectures, in order to assess their benefit outside
of a simulation environment.
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