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Notation

In the following, the letter B indicates a dummy variable.
The two columns “GEO” and “TMD” of the following list separate
geometrical and physic-thermodynamic variables. The position
of the marker • indicates which category each variable belongs
to.

Latin letters

GEO TMD

â • van der Waals equation pressure coefficient

A,B,C • vertices of the mesh element

b̂ • van der Waals equation covolume

c • obstacle chord

cv • constant-volume specific heat

cP • pressure coefficient

cT • temperature coefficient

drB • Finite-Differences discretization of ∂B/∂r

dτB • Finite-Differences discretization of ∂B/∂τ

e • specific energy per unit mass
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Et • total specific energy per unit volume

h • slope

I idendity matrix

J,K,L • set of mesh nodes

kJ • even/odd symmetry coefficient̂̀ • reference length

m • mesh element

m • momentum

Mm • molecular mass

Ms • shock wave Mach number

nc • number of components of a gas mixture

nobs • obstacle number

P • pressure

q (dummy)

r • radius

rLE • obstacle leading-edge radius

Rs • shock wave radius

Re • radius of the first node behind the shock

Ro • radius of the obstacle osculating circle

R̂ • mass-averaged gas constant

R̂ • gas constant

s • shock speed

S • post-shock point
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t • obstacle thickness

T • temperature

u • flow velocity

v • specific volume

w • speed of sound(
xo,yo

)
• center of the obstacle osculating circle

(x,y) • Triple Point coordinates

x • node position

y • molar fraction

Z • compressibility

Greek letters

GEO TMD

α • self-similarity exponent

βP • initial pressure ratio

γ • specific heats ratio of polytropic ideal gas

δM-NQ, m • node M-segment NQ “distance with sign”

δγ • R̂/ĉv

∆ q • difference of q I

ε • threshold

ε (dummy)

ζ • vector phase angle

I∆ applies to both the node spacing, the time step, the vertical Triple
Point offset and the cautionary threshold of the radius
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η • efficiency

θw • wedge angle

κ (dummy)

λ • cylindrical shock azimuth in polar coordinates

Λ • coefficients of a straight line explicit equation

ν (dummy)

ξ • elementary domain vertex angle π/nobs

Ξ • coefficients of a conic curve implicit equation

$ (dummy)

ρ • density

% (dummy)

σ • specific entropy per unit mass

ςMN,m • inclusion coefficient of a node in the element m

τ • time

υ (dummy)

Υ • coefficients of the Triple Point trajectory

φ • obstacle azimuth in polar coordinates

Φ • temperature-dependent cv term

χ • wedge angle of the Triple Point trajectory

ψ • generic azimuthal coordinate

ω (dummy)

Abbreviations
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RR Regular Reflection

IR Irregular Reflection

MR Mach Reflection

DiMR Direct Mach Reflection

StMR Stationary Mach Reflection

InMR Inverse Mach Reflection

SMR Single Mach Reflection

PTMR Pseudo-Transitional Mach Reflection

TMR Transitional Mach Reflection

DMR Double Mach Reflection

vNR von Neumann Reflection

is incident shock

mq Mach stem originated at the q-th reflection

TP Triple Point

RS reflecting surface

RSW reflected shock wave

1D one-dimensional

2D two-dimensional

FFR Far Field Region

OR Obstacle Region

FR Focus Region

Indices
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h components of the mixture

j probe along a radius

k time step

l Focus Region node

m Obstacle Region element

M,N,Q generic nodes

p probes

z vibrational temperature

Subscripts

a alert

b behind the shock

cr gas critical point

d numerical diaphragm

e external

f in front of the shock

i internal

LE leading edge

o obstacle

P pressure

s secondary

tr transition

T temperature
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TE trailing edge

v volume

vib vibrational

w wedge

0 in r = 0

Superscripts

abs in an absolute reference system

cr separating leading edge RR and MR

FD Finite Differences

LE leading edge

P perceived

PL power law

ref reference

rel in a relative reference system

RH Rankine-Hugoniot

t total

0 at τ = 0

Accents

B̂ B in dimensional units (dimensionless if unmarked)

B̃ B radius or time belonging to the power law curve
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B
_

B estimated from a fitting

B∗ B evaluated in thermodynamic reference conditions

N′ symmetrical point of N

NQ segment between N and Q

M
4
NQ triangle with vertices M, N and Q
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Abstract

Cylindrical and spherical converging shock waves can be used to at-
tain high energy concentration at the focus point, thus making them
interesting for applications where high temperature and pressure are
required, e.g. in Inertial Confinement Fusion (ICF). Unfortunately,
converging shock waves suffer from corrugation instabilities which
hamper the front regularity and reduce the shock intensity with re-
spect to the axisymmetrical case.

The stabilization of the converging shock wave may be obtained by
means of the so-called “shock reshaping”, i.e. by changing the shock
shape into a more stable one. Both numerical simulation and experimen-
tal measurements in the open literature point to the use of suitable
shock-solid body interactions to reshape the converging waves into
stable prismatic (for the cylindrical shocks case) or a polyhedral
(for spherical implosions) ones.

The topic of this work is the numerical study of cylindrical im-
plosions in air, interacting with lenticular obstacles. The ref-
erence configuration was proposed in M. Kjellander, N. Tillmark,
N. Apazidis, “Thermal Radiation From A Converging Shock Implosion”,
Phys. of Fluids (2010), where wing-shaped obstacles are introduced
to reduce the shock-obstacle losses. Lenticular obstacles, indeed,
appear a good compromise between cylindrical and double-wedge obsta-
cles, characterized by strong separation and losses.

Diverse obstacle geometries (number, position and thickness) and
operating conditions (shock intensity and gas conditions) are consid-
ered in this work. Obstacles are symmetrical lenticular airfoils with
a thickness-to-chord ratio t/c varying between 0.07 and 1 on thirteen
levels. The considered number of obstacles nobs is 0, 1, 4, 6, 8, 16
and 24. The obstacle leading edge radius rLE is 7, 14 and 17.5.

Simulations are performed using the FlowMesh code, a solver for
Euler equations over unstructured grids. The integration with a novel
multi-domain approach provides faster and very accurate solutions.

Numerical results compare fairly well to theoretical models for
the shock propagation and to available experimental results.

The Mach reflections occurring at the obstacle leading and trail-
ing edges and over symmetry surfaces result in the polygonalization
of the shock wave, which continues propagating inwards as a stable,
polygonal shock. The leading edge reflections are duly studied and
classified here for the first time in the case of cylindrical shock
waves interacting with cylindrical obstacles. Diverse reflection
patterns are observed and the influential parameters are identified.
Local reflection types qualitatively agree with the classical crite-
ria for pseudo-steady reflections around planar obstacles.

An analytic model for the description of the evolution of Reg-
ular Reflections is proposed. The dynamical transition of Regular
Reflections into Mach Reflections during the shock propagation along
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the obstacle is identifies and its dependence on geometric and fluid-
dynamical factors is exposed. Diverse aspects of the Triple Point
trajectory in Mach Reflections are studied, resulting in some empir-
ical correlations.

Different shock patterns are observed after the leading edge re-
flection. Depending on the configuration and, therefore, on the re-
sulting patterns, polygonal shock waves are observed with a time-
dependent number of edges, switching among diverse nobs, 2nobs, 3nobs
and 4nobs configurations.

The largest temperature peak at the origin is obtained using a
16-obstacle array with the smallest thickness to length ratio, and
located at rLE = 14.

A general decreasing of the focusing effectiveness is highlighted
by the study of the effects of the adopted thermodynamic model, if the
van der Waals model is considered.

The applicability of the assumption of self-similarity of the
shock temporal propagation is tested in conditions for which theo-
retical models are not available, by means of a fitting on numerical
data. A novel method is used to detect the shock position in time in
presence of very complex flow fields. Moreover, the effects of the
thermodynamic model on the self-similarity exponent are evaluated.

The unsteady shock wave convergence is observed in the pressure-
specific volume plane. One-dimensional results show an excellent
accordance with Hugoniot adiabat. On the contrary, a departure of
numerical data concerning two-dimensional shock waves from analytic
curves is observed, due to fast but intense transient phenomena in
correspondence of the shock reflections.

Key words: Numerical simulations; Converging shock waves; Lenticular
obstacles; Ideal gas; Non-ideal gas; Shock reshaping.
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Sommario

È noto che le onde d’urto convergenti cilindriche e sferiche possono
essere impiegate per la forte concentrazione di energia nel punto di
focalizzazione. Questa proprietà le rende interessanti per appli-
cazioni in cui alte temperature e pressioni sono richieste, ad esem-
pio per la Fusione a Confinamento Inerziale (“Inertial Confinement
Fusion”, ICF). Tuttavia, le onde d’urto convergenti sono affette da
instabilità di corrugazione del fronte che ne riducono l’intensità
rispetto al caso assialsimmetrico.

Come mostrato in letteratura, la stabilizzazione delle onde d’ur-
to si può ottenere tramite il cosiddetto “reshaping”, cioè modifi-
candone la forma in una configurazione più stabile. Simulazioni nu-
meriche e risultati sperimentali mostrano che, con un’adeguata in-
terazione fra urti e ostacoli, si possono ottenere urti convergenti
stabili di forma prismatica (per gli urti inizialmente cilindrici) o
poliedrica (per urti sferici).

Oggetto di questo lavoro è lo studio tramite simulazioni numeriche
di onde d’urto cilindriche convergenti in aria che interagiscono con
ostacoli lenticolari. La configurazione di riferimento è quella de-
scritta in M. Kjellander, N. Tillmark, N. Apazidis, “Thermal Radi-
ation From A Converging Shock Implosion”, Phys. of Fluids (2010),
in cui urti cilindrici vengono resi poligonali dall’interazione con
ostacoli aerodinamici al fine di ridurre le perdite dovute all’in-
terazione urto/ostacolo. Gli ostacoli lenticolari appaiono infatti
come un compromesso fra le caratteristiche degli ostacoli cilindrici
e romboidali, che sono caratterizzati da separazione della corrente
e perdite.

In questo lavoro si considerano diverse geometrie degli ostacoli
(numero, posizione e spessore) e condizioni operative (intensità del-
l’urto e condizioni del gas). Gli ostacoli sono profili simmetrici ad
arco di circonferenza con rapporto spessore/corda t/c che varia da 0.07
a 1 su 13 livelli. Il numero di ostacoli nobs è 0, 1, 4, 6, 8, 16 a 24.
Il raggio del bordo di attacco rLE è pari a 7, 14 e 17.5.

Per le simulazioni numeriche si utilizza il codice FlowMesh per
la soluzione delle equazioni di Eulero su griglie non strutturate.
L’accuratezza e la velocità delle simulazioni sono incrementate dal-
l’utilizzo di un nuovo metodo per il calcolo multi-domain.

Il confronto fra i risultati numerici con modelli teorici e
risultati sperimentali mostra un buon accordo.

Le riflessioni di Mach ai bordi d’attacco e d’uscita degli osta-
coli e lungo le superfici di simmetria causano la poligonalizzazione
dell’onda d’urto, che continua a propagarsi verso l’interno. Le rif-
lessioni al bordo d’attacco sono qui studiate e classificate secondo
il tipo di riflessione e i parametri influenti. Il confronto fra i
valori locali e i criteri di riflessione nel caso pseudo-stazionario
mostra un accordo qualitativo.
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Un modello analitico viene proposto per la descrizione del-
l’evoluzione delle riflessioni regolari. La transizione dinami-
ca delle riflessioni regolari in riflessioni di Mach durante la
propagazione di ogni urto viene descritta e correlata ai fattori ge-
ometrici e fluidodinamici. La traiettoria del punto triplo delle
riflessioni di Mach viene studiata sotto vari aspetti e alcune
correlazioni vengono proposte e discusse.

A valle della riflessione al bordo d’attacco degli ostacoli, ven-
gono osservate diverse strutture fluidodinamiche. A seconda dei
parametri imposti e, di conseguenza, delle strutture rilevate, si os-
servano urti poligonali con un numero di lati pari a nobs, 2nobs, 3nobs
o 4nobs e variabile nel tempo.

Il massimo valore di temperatura al punto di focalizzazione si
ottiene con una schiera di 16 ostacoli con t/c = 0.07 e rLE = 14.

Lo studio degli effetti del modello termodinamico mostra un gen-
erale scadimento dell’efficacia della focalizzazione dovuta a un’e-
quazione termica di van der Waals.

Una regressione sui dati permette di valutare l’applicabilità
dell’ipotesi di autosimilarità della propagazione dell’urto nel tem-
po, anche dove questa non viene garantita da modelli analitici. La po-
sizione dell’urto viene ricavata istante per istante tramite un nuovo
metodo adatto a considerare soluzioni molto complesse. Vengono val-
utati inoltre gli effetti del modello termodinamico e del numero di
ostacoli sull’esponente di autosimilarità.

La propagazione instazionaria dell’urto viene osservata nel pi-
ano pressione-volume specifico. I risultati relativi a urti monodi-
mensionali ricalcano perfettamente l’adiabatica di Hugoniot. Al con-
trario, dei brevi ma molto intensi transitori in corrispondenza delle
riflessioni degli urti causano lo scostamento dei dati numerici dalle
curve analitiche nel caso bidimensionale.

Parole chiave: Simulazioni numeriche; Onde d’urto convergenti; Os-
tacoli lenticolari; Gas ideale; Gas non-ideale; Poligonalizzazione
dell’urto.
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Introduction

Motivation

Converging shock waves

During the last decades, the problem of the focusing of
converging shock waves has been generating an increasing in-
terest in the scientific community, thanks to the possibility
of attaining very high pressure, temperature and, in general,
energy concentration at the focus point. The applications
range from large-scale energy conversion to medical treat-
ments, including a number of theoretical physics studies.

In Inertial Confinement Fusion (ICF) [1, 2, 3], light
chemical elements (often Deuterium, 2H and Tritium, 3H) are
contained in a spherical shell of solid fuel. Qualitatively
speaking, when the fuel is ignited, a strong spherical shock
wave propagates inwards and concentrates the fuel atoms within
a very small radius. This method is known as “direct drive
mode” [4], and consists in one of the two main ignition pro-
cedures. Provided that the kinetic energy (and therefore
temperature) of the hydrogen isotopes nuclei is large enough
to prevail against the reciprocal electrostatic repulsion,
their nuclei fuse together. The fusion of Deuterium (whose
nucleus consists of one proton and one neutron) and Tritium
(made up one proton and two neutrons) results in the formation
of an atom of Helium 4He (with two protons and two neutrons
in the nucleus) and in the emission of a neutron. Albeit the
sub-atomic particles balance is respected, the mass results
to be not conserved. Therefore, by virtue of the well known
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mass-energy equivalence, an average amount of energy of about
18MeV is released for each nuclear reaction. Due to the
necessity to balance the electrostatic force, the focusing
effectiveness of the imploding shock wave, quantified by
the attained temperature at the focusing, is of paramount
importance for the achievement of the nuclear fusion.

ICF represents a candidate for the ignition of nuclear-
fusion based power plants. At this day, however, the applica-
tion of ICF to the production of electric energy on large scale
is still being studied. Unfortunately, ICF applies also in the
military framework. In fact, one of the leading motivations
which has boosted the study of strong imploding shocks is
the research of a solution for the ignition of the so-called
“H-bomb”. The main principle of the nuclear-fusion bomb is to
exploits the atomic energy without using fissile fuel, e.g.
Uranium. A complete overview on ICF and its applications can
be found in [4].

Another common application of converging shock
waves involving, of course, a much lower amount of energy is
lithotripsy, a medical treatment for the removal of kidney
stones [5]. In this procedure, an acoustic pulse is used to
focus a shock wave towards the calculus in order to break it in
smaller pieces which can be processed by the organism.

In sonoluminescence experiments, a light emission is ob-
served at the collapse of a cavitation bubble when the liquid
is excited by an acoustic wave [6, 7]. Even if a theory fully
explaining the phenomenon has not been proposed yet, one of
the most complete models envisages the detachment of a strong
perfectly-spherical implosion from the internal walls when
the bubble radius reaches a critical value. This shock waves
causes the formation of plasma at the center of the bubble, and
the collision among free electrons result in the emission of a
light spot. A review on the topic is in [8].

Converging shock waves are generated also during the
explosion of a supernova: the violent outburst of material
from the star is compensated by the onset of a pseudo-spherical
converging shock wave, which travels from the surface of the
star towards the center.
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Shock wave instabilities

The role of converging shock waves in the applications ob-
served above is to focus a very high amount of energy. Unfor-
tunately, converging shocks are proved to suffer from surface
instability, as highlighted in several studies [9, 10]. Shock
instabilities can be triggered by diverse factors, and possi-
bly gradually deteriorate the regularity of the shock front.

Analytical results for the prediction of the onset of in-
stabilities were derived from linear models which account for
the influence of real gas effects on the shock Hugoniot adia-
bat. In the so-called “D’yakov-Kontorvich corrugation insta-
bility” [11, 12], the perturbed shock front presents corru-
gations of increasing importance which eventually lead to the
shock front splitting. The latter phenomenon is explained in
detail in [13, 14].

In ICF applications, instabilities triggered by the den-
sity gradient were observed [15, 16, 17]. An instability of
this kind is the “Rayleigh-Taylor instability”, which is as-
sociated to layered fluids at rest accelerated by an uniform
field, whose direction is opposite to the density gradient one
[18, 19]. If the interface between the two fluids is perturbed,
some so-called “fingers” of the heavier fluid propagate to-
wards the lighter fluid normal to the separating surface, as
illustrated in fig. I.1. Along the fingers lateral surfaces,
a non-zero relative tangential velocity exists. The latter is
indicated as the leading cause of the “Kelvin-Helmholtz in-
stability”, which causes the disappearance of the sharp in-
terface between the two fluids and the onset of a mixing layer
[20, 21]. For this reason, the occurrence of a Rayleigh-Taylor
instability is associated to a further deterioration of the
shock front surface (fig. I.2). Literature indicates that the
Rayleigh-Taylor instability depends on the intensity of the
accelerating field. For an impulsive acceleration, i.e. a
shock wave, of the lighter fluid, the Rayleigh-Taylor insta-
bility degenerates into the so-called “Richtmyer-Meshkov in-
stability”, which is another type of surface instability. An
example of Richtmyer-Meshkov instability is depicted in fig.
I.3 [22, 23].
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(a) (b)

Figure I.1: Example of Rayleigh-Taylor instability in two layered
fluids, i.e. cold colored water above warm water.

The effect of these corrugation instabilities is that of
decreasing the shock intensity during its propagation and,
therefore, its effectiveness in energy focusing with respect
to the stable case, which assumes the shock to remain one-
dimensional axisymmetrical [24].

Solution to the instability problem: the shock reshaping

Several studies concerning converging shock waves have
proved that shock front instabilities are an intrinsic fea-
ture of converging shock waves. Indeed, instabilities have
been highlighted by a number of both numerical and experimental
works, which focused on different implosion types and adopted
diverse investigation methods ([25, 108, 27, 28, 29, 30, 31,
32, 33, 34]).

If on one hand the intrinsic instability of free cylindrical
and spherical implosions makes them unsuitable for technical
applications, on the other hand it also represents a possi-
ble solution. Indeed, it offers the possibility of directly
controlling the shock front shape to prevent the onset of in-
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Figure I.2: Examples of Kelvin-Helmholtz instability: (a) turbulent
boundary between two latitudinal bands in Saturn’s atmosphere (Image
source: NASA/JPL/Space Science Institute, 2004) and (b) associated
to Rayleigh-Taylor instability (Modified colors, image source: S.
Li, H. Li, “Parallel AMR Code for Compressible MHD or HD Equations”,
Los Alamos Nat. Lab.).

stabilities. This result can be achieved by turning the shock
wave into a prismatic (for initially cylindrical shocks) or a
polyhedral (for spherical ones) shock.

This process, named “shock reshaping”, can be carried out
in diverse ways. A very promising way consists in forcing the
shock to interact with a number of obstacles placed along its
propagation path. The multiple reflections of the shock even-
tually modify its shape into a more stable one. For symmetri-
cally arranged and suitably shaped obstacles, the final shock
shape is prismatic, which corresponds to a more stable config-
uration [35, 36]. On the other hand, the obstacle arrangement
is to be optimized to reduce losses due to shock-obstacle in-
teraction [37, 38].
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Figure I.3: Experimentally-generated Richtmyer-Meshkov instability
observed by means of a high-resolution density-field image (Image
source: K. Prestridge, G. Orlicz, S. Balasubramanian, B.J. Bal-
akumar, “Experiments of the Richtmyer-Meshkov instability”, Phil.
Trans. Roy. Soc. A (2013)).

Shock reshaping: state-of-the-art and objectives

Overview

The reshaping of converging shock waves, for preventing
the onset of surface instabilities, involves two main physi-
cal mechanisms, each of which represents a very interesting
challenge.

The first one is the general focusing of converging shock
waves. Unlike the case of planar shock waves, indeed, the com-
putation of the solution in presence of a converging shock wave
is more difficult, due to e.g. the non-uniform flow field.
Theoretical, experimental and numerical works have provided a
general knowledge on the problem. However, diverse research
efforts are still being carried on to answer open questions on
the focusing of cylindrical and spherical shock waves: does an
exactly cylindrical implosion exist? How can it be generated?
How does it propagate? Is it stable? Does it present some in-
ternal symmetry? What happens when it collapses into a single
point? How can this phenomenon be investigated? How can it be
exploited?

The second mechanism consists in the reshaping of a shock
wave. On one hand it may seem natural to induce the reshaping
of the shock through the interaction with some generic means,
e.g. a solid wall, another shock wave, a field the shock wave is
sensitive to, internal symmetry constraints, etc. On the other

6



hand, the proper choice of the procedure is non-trivial. In-
deed, both the results and the investigation techniques depend
on it, and therefore a number of questions arises: are all the
interactions effective with any kind of shock wave? Which is
the best technique to reshape a given type of shock wave? Which
investigation methods are the most suitable to study the se-
lected interaction? What factors influence the final result?
Does the process generate relevant losses? Can the reshaping
be modeled as a smooth process from a configuration to the next
one, or must sudden transitions be accounted for? Does the se-
lected technique assure the repeatability of the process? Is
the reshaping stable with respect to small variations or do bi-
furcations occur? If the reshaping is achieved by means of a
series of reflections, how to select and arrange the reflec-
tors?

As mentioned above, these two physical mechanisms are cou-
pled together in the investigation of the reshaping of a cylin-
drical converging shock wave and, therefore, also their mutual
interaction must be accounted for.

In the following, the discussion on the state of the art
is subdivided in accordance with the above classification of
the two physical mechanisms which characterize the reshaping
of a converging shock wave, i.e. the implosion in a gaseous
medium and the reflection-induced reshaping of a shock wave.
Eventually, the historical overview of the coupling between
these two problems in the reshaping of a converging shock wave
is presented.

The implosion problem

Converging shock waves have been studied for several years
by means of theoretical, experimental and numerical ap-
proaches. Several assumptions can be performed on the struc-
ture of the implosion problem, such as the cylindrical or
spherical symmetry of the converging shock waves, which al-
lowed to obtain analytical solution of the governing equa-
tions.

The first relevant result was derived independently by Gud-
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erley [39] in 1942 and by Butler [40] in 1954 for cylindrical
and spherical shock waves, and consisted in the correlation be-
tween the shock radius Rs and time τ. This relation, hereafter
referred to as “Guderley’s law”, provides a self-similar power
law in the form

Rs
r̃

=
(
1 -

τ

τ̃

)α
where r̃ and τ̃ represent the initial shock radius and the total
focusing time respectively, and α is the self similarity expo-
nent. This law applies to imploding cylindrical or spherical
shock waves in the proximity of the focus axis or point, respec-
tively. The latter assumption, i.e. the applicability of the
law to shock waves with a very small radius of curvature, is not
in contradiction with its self-similarity nature. Indeed, it
indicates that the power law applies only where the phenomenon
is truly self-similar, that is where any phenomenon concerning
the initial transient of the shock formation is completed. The
self-similar solution is to be considered, indeed, a “limiting
solution” of the general unsteady and non-self-similar propa-
gation of the shock wave. Therefore, in the proximity of the
focus point, the length scale associated to Rs differs enough
from the radius of the shock in regions where transient phenom-
ena are relevant, e.g. where the shock is generated.

Guderley’s theory has been widely used in a number of ap-
plications and its validity and accuracy discussed during the
years. As exposed in [41, 42], which report the derivation of
the law based on dimensional analysis, the value of α depends
only on the geometry of the shock wave (planar, cylindrical or
spherical) and on the thermodynamics of the gas. In the mid-
fifties, the works of Chester [43], Chisnell [44] and Whitham
[45, 46] lead to the development of the so-called CCW method,
which allowed to determine the value of α in the polytropic
ideal gas case.

Some criticisms to Guderley’s law are also reported, mainly
concerning some discrepancies between predicted and measured
values of the shock radius [47]. Furthermore, some more so-
phisticated models were proposed to increase the accuracy of
the predictions on Rs [48], but confirming the general appli-
cability of Guderley’s law.

Another field of interest in the study of converging shock
waves concerns the adopted method for the shock generation. In
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literature [49], one can find the description of diverse tech-
niques for the focusing of shock waves. In most cases, these
works concern cylindrical or spherical shocks, which were gen-
erated by e.g. the instantaneous energy release [50] or the
association with exploding waves [51, 52, 53]. In the numer-
ical framework, the onset of a converging shock wave has been
simulated also by means of the so-called “cylindrical piston”
[54] method or by imposing a pressure and density circumferen-
tial discontinuity [55]. An alternative procedure consists in
focusing a planar shock wave into a concave reflector [56].

A peculiar method is described in [57] and consisted in the
reshaping of a planar shock wave propagating into a decreasing-
size duct, whose section is modeled on the logarithmic spiral:
in this case, therefore, the generated shock wave is not a whole
cylindrical surface, but only a circular-arc. A discussion on
this technique can be found in [58, 59, 60].

The propagation of converging shock waves and the domains of
applicability of Guderley’s law have been duly investigated by
means of numerical simulations adopting diverse schemes, e.g.
Finite Differences [61, 62], the CCW method [63], or Finite
Volumes [64].

GOAL OF THIS WORK IN THE INVESTIGATION OF THE IMPLO-
SION PROBLEM One of the goals of the present work is to trace
the shock position versus time for diverse shock intensities
and thermodynamic conditions. The initial transient corre-
sponding to the onset of the shock wave will be also observed.

To gain a further insight in the evolution of the post-shock
flow field during the convergence, the thermodynamic condi-
tions immediately downstream the shock wave will be evaluated
at each time step. A comparison between the post-shock condi-
tions and theoretical predictions will be used to assess the
increase during time of the shock intensity.

The reshaping of shock waves

In this work, the method adopted for the reshaping of cylin-
drical imploding shocks will consist in the interaction with an
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array of obstacles. Therefore, prior to the direct investiga-
tion of the reshaping, the reflection mechanism of a shock over
an obstacle is recalled. Eventually, the effects of the appli-
cation of these reflection to the reshaping are described in
the following.

The reflection of shock waves

1. Reflection patterns The most promising and studied method
to attain the reshaping of implosions consists in the
forced reflection of the shock wave over one or more ar-
rays of obstacles. Depending on the combination between
fluid-dynamic properties (the shock Mach number, the gas
behavior) and the geometry of the obstacles, a diverse set
of reflection occurs and determine the final shape and sta-
bility of the shock, as illustrated in fig. I.4.

Figure I.4: Numerical Schlieren images of the impingement of the
cylindrical converging shock wave at the leading edge of a cylindrical
obstacle, highlighting the formation of the classical reflection pat-
terns. The shock wave is converging towards the focus point located
bottom-left outside of the figure boundaries. (Images source: V.
Eliasson, “On focusing of shock waves”, Ph.D. dissertation (2007).)

Albeit the study of the unsteady interaction between shock
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waves and walls is to this day less complete than for the
study of steady reflections, it is known that the interac-
tion results in a number of reflections. Shock reflections
exhibit diverse configurations, sketched in fig. I.5, de-
pending on both geometrical and fluid-dynamical parame-
ters.
In the so-called “pseudo-steady” interactions, the ob-
served pattern depends only on the incident shock Mach num-
ber Ms and on the obstacle wedge angle θLEw , both assumed
constant, and can consist in a “Regular Reflection ” (RR)
or an “Irregular Reflection” (IR) [65]. The main differ-
ence between the two classes of reflections consists in the
number of involved waves: a Regular Reflection includes
only the incident shock and the reflected wave, whereas a
further shock wave and a slip line the latter necessary to
the consistency of the system make up an Irregular Reflec-
tion. For a long time, the second group was assumed to con-
sists of “Mach Reflections” (MR) only, a structure includ-
ing an incident shock, a reflected wave and a Mach stem, all
intersecting at the so-called “Triple Point” (TP). Accord-
ing to Courant and Friedrichs [66], when the latter moves
away from the reflecting surface, the reflection is Direct
(DiMR). A Direct Mach Reflection can be a “Single” (SMR),
(“Pseudo”)“Transitional” ((P)TMR) [67] or “Double” (DMR)
[68, 69] Mach Reflection. The distinction among the di-
verse types of Mach reflection is performed on the basis
of the complexity of the structure resulting from the re-
flection, as described in the complete overview by Ben-Dor
[70], along with transition criteria.
In fact, Irregular Reflections are not coincident with
Mach Reflections, because an Irregular, SMR-like reflec-
tion pattern was observed in the diffraction of weak shock
waves by extremely thin wedges. In these conditions, the
diffraction of a Mach Reflection is excluded by theoret-
ical models. This apparent contradiction, named the “von
Neumann paradox”, was solved with the introduction of an
additional kind of non-Mach-type Irregular Reflection,
namely the “von Neumann Reflection ” [71, 72].
Based on theoretical considerations and on experimen-

tal and numerical evidences [73], the reflections listed
above are the only possible detectable configurations in
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the reflection of shock waves at the leading edge of planar
wedges. Fig. I.5 is extracted from [70] and represents the
classification of pseudo-steady reflections.

Analytical criteria derived for pseudo-steady shocks,
e.g. length scale criterion [74], mechanical equilibrium
criterion [75], sonic criterion [76] (actually, an im-
provement of the detachment criterium, as proved by [77]),
[78], allow to determine the occurring reflection type de-
pending on the combination between the incident shock Mach
number and the leading edge wedge angle.

The generalization of pseudo-steady results obtained for
planar shock waves interacting with planar geometries to
the case of curved wave front interacting with curved
wall is not trivial. Indeed, the non-constant propagation
speed of converging shock waves [39, 54] and the positive
convexity of both the shock and the obstacle make the re-
flection of implosions genuinely unsteady.
In the complete work of Takayama “et al.” [79] on the
diffraction of planar shock waves by cylindrical obsta-
cles, the transition from Regular to Mach Reflections was
observed [80]. In the same works, the influence of both
the obstacles curvature radius and the leading edge wedge
angle θLEw on the transition delay was assessed. The ob-
servation of unsteady reflection allowed to observe the
differences with respect to the pseudo-steady case. The
direct comparison was performed thanks to the works on the
shock polar curves [81], where it was demonstrated that,
in a first degree of approximation, some unsteady shock
diffractions can be treated as a sequence of pseudo-steady
reflection.

To the authors’ knowledge, no complete studies of the in-
teraction of curved shock waves with curved obstacles is
available.

2. Triple Point propagation For pseudo-steady shock reflec-
tions, closed analytical expressions of the Triple Point
trajectory are available. The extension of the generated
structure grows in time but it remains self-similar, and
therefore it can be treated as a steady phenomenon by means
of a Galilean transformation [70]. This allows to predict
the trajectory of the single (in case of Single or Tran-
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Figure I.5: Classification of pseudo-steady reflections (Images
source: G. Ben-Dor, “Shock Wave Reflection Phenomena”, ed. Springer
(1991 and 2007 editions).)
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sitional Mach Reflections) or multiple (for Double Mach
Reflections) Triple Point. The prediction of the Triple
Point trajectory is performed by means of pseudo-steady
methods [82], and, due to the self-similarity assumption,
it results in a linear correlation between the spatial co-
ordinates.
When the wedge geometry is modified into a generic,

curved obstacle, the conditions at the point of interac-
tion change at any given time, the phenomenon becomes gen-
uinely unsteady, and it has been mostly investigated by
means of experiments or numerical simulations. One of the
first works of the tracing of the Triple Point in unsteady
reflections is attributed to Heilig [83], who studied the
diffraction of planar shock waves over cylindrical obsta-
cles and traced the Triple Point path for diverse obstacle
radii.
The aforementioned works on unsteady reflections consider
the trajectory of Triple Point of Mach Reflections gener-
ated by the transition of a Regular reflection. There-
fore, the trajectories do not “macroscopically” originate
from the obstacle leading edge. However, several theoret-
ical and experimental works demonstrated that even for the
so-called “genuine” Mach reflections i.e. the Mach Re-
flections macroscopically generated at the leading edge as
opposed to those resulting from Regular Reflections the
distance between the leading edge and the point of gener-
ation of the Triple Point is non-zero [84]. The existence
of this transition layer, quantified in the order of some
free mean paths, is attributed to viscous effects. For
this reason, a “microscopic” effect exists, which causes
a delay in the formation of the Triple Point also in the re-
flections which are macroscopically of genuine Mach-type.
Other works assessed effects of the viscosity on the Triple
Point propagation, as e.g. [85].

As already indicated [66] (see fig. I.5), three types of
Mach Reflection are distinguished: “Direct” (DiMR, if the
Triple Point moves away from the reflecting surface or re-
flecting wall), “Stationary” (StMR, if TP trajectory is
parallel to the reflecting surface) and “Inverse” (InMR,
if TP approaches the reflecting surface). The aforemen-
tioned study by Takayama “et al.” on planar shocks imping-
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ing over curved walls successively confirmed experimen-
tally the existence of Direct, Stationary and Inverse Mach
Reflections [79], highlighting the factors responsible of
the transition and of the modulation of the Triple Point
trajectory. In particular, the existence of Stationary
and Inverse Mach Reflections was correlated to the con-
cavity of the diffracting obstacle.
The Inverse Mach Reflection is a structure in which the
Triple Point moves towards the reflecting surface and,
therefore, it is necessarily a transient pattern. When
the Triple Point reaches the reflecting surface, the In-
verse Mach Reflection terminates and a new structure is
generated. The latter is a complex shock-system, termed
“Transitioned Regular Reflection” (TRR, see [86]) which
is reported in fig. I.5.

In all the mentioned cases, the Triple Point is uniquely
defined as the point where the incident shock, the re-
flected wave and the Mach stem merge. Some works on the
diffraction of weak shock waves [87] suggest the possi-
bility of defining a so-called “equivalent Triple Point”
also in structures where it does not exists. In von Neu-
mann Reflections, for example, the slope of the shock front
varies continuously, i.e., the incident shock and the Mach
stem are connected by means of a kink. Moreover, the re-
gion of the reflected wave in correspondence of the shock
front is substituted by a compression band. For these two
reasons, it is impossible to define a true Triple Point.
On the contrary, the equivalent Triple Point is the point
at the intersection between the leading band of the com-
pression and the incident shock.

GOAL OF THIS WORK IN THE INVESTIGATION OF THE SHOCK
REFLECTION PROBLEM The reflections occurring at the lead-
ing edge of circular-arc obstacles will be observed in this
work. The goal is to subdivide the leading edge patterns and
assess the resulting map with the criteria adopted for pseudo-
steady reflections. The comparison with pseudo-steady results
allows to define the differences introduced by the curvatures
of both the obstacle and the shock wave.

The first expected difference with respect to the pseudo-
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steady case concerns the definition of the domains where the
diverse reflection patterns (Regular or Mach-types) occur. Un-
like what happens in the pseudo-steady case, the parameters
characterizing the Regular Reflection vary during time, and
therefore their evolution will be presented. It is known that
most unsteady Regular Reflections eventually become of Mach-
type. Therefore, due to the aforementioned Regular Reflec-
tions evolution, this works aims at observing for the first
time and duly discuss the transition of Regular into Mach Re-
flections of cylindrical converging shock waves over circular-
arc obstacles.

Concerning Mach Reflections, an observation on the trajec-
tory of the Triple Point will be performed.

Reshaping of cylindrical implosions

The first studies on the reshaping of converging shock waves
dealt with the geometry-induces “self-reshaping” of polygo-
nal [88] shock wave. The work adopted a simple version of the
three-shock theory the model used to describe the geometry and
the flow field of a Mach Reflection to demonstrate that a con-
verging shock wave whose front is a regular polygon undergoes
a continuous reshaping, due to the reciprocal Mach reflections
of the edges over the symmetry diagonals. The process remains
self similar, since it was demonstrated that the propagation
of the polygonal shock edges can be conveniently described by
the same power law as of a cylindrical axisymmetrical implod-
ing shock wave. An extension to this work was provided several
years later [89] with the three-dimensional reshaping of poly-
hedral shock waves. In the works of Schwendeman, the reshaping
was induced by the internal symmetry of the shock waves, and it
does not need to be triggered by external agents. This feature
of regular-polygonal shock waves was verified also by experi-
mental works [90, 91].

On the contrary, the reshaping of initially cylindrical
shock waves requires the introduction of disturbances in the
flow field, with the purpose of causing a series of reflections
resulting in a final polygonal shock shape. This possibility
has been widely explored in a number of numerical and experi-
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mental works.
The reshaping by means of polygonal reflectors is described

in [92]. This method, in accordance with the reported results,
does not appear to be a good candidate.

Currently, the most promising solution appears to be the
adoption of arrays of obstacles, which cause a number of Mach
Reflections, resulting eventually in a polygonal shock wave
[93, 94]. Indeed, diverse theoretical, numerical and experi-
mental investigations [97, 36] demonstrated that if an array
of obstacles is located along the shock path, the interaction
between the shock wave and the obstacles can possibly result
in the reshaping of the shock geometry into a more stable con-
figuration. In particular, the resulting reshaped shock is
represented by a polygon whose edges number either corresponds
to the obstacles number or dynamically oscillates between once
and twice this number, as depicted in fig. I.6.

Figure I.6: (a) Numerical Schlieren image and (b)-(c) pressure con-
tours (close up in correspondence of the focus point) of the flow gen-
erated by the diffraction of a cylindrical implosion by 4 cylindrical
obstacles. Time increases from left to right, showing the definition
of a square shock wave and its transition into an octagonal and eventu-
ally into a rotated square due to the trailing edge Mach Reflections.
The shock wave is converging in diatomic gas with initial Mach number
of 2.4. The diffraction is generated by 4 cylindrical obstacles with
a diameter of 15mm located at 46.25mm from the focus point. (Modi-
fied colors, images source: V. Eliasson, W.D. Henshaw, D. Appelö, “On
cylindrically converging shock waves shaped by obstacles”, Physica D
(2008).)

The drawback of the shock reshaping technique is that non
negligible losses occur, that reduce the shock strength. This
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implies that a relevant task in the design of the array config-
uration is the identification of a suitable compromise between
front stability and shock effectiveness [94, 37]. This iden-
tification represents a complex problem, as it depends non-
linearly on a number of factors, e.g. a-priori-set parame-
ters, fluid-dynamic structures generated during the reflec-
tions [95] or reciprocal interactions among the shock waves
[96].

More recently, Apazidis “et al.” [97] individuated a sim-
ple but efficient technique for the reshaping of cylindrical
imploding shocks. It consists in adopting lenticular obsta-
cles, i.e. symmetric aerodynamic profiles with sharp leading
and trailing edge. Results in [97] show that on one hand the de-
scribed configuration produces a polygonal shock (as reported
in fig. I.7) and, at the same time, it reduces the interaction
losses, generating only a very small recirculation region at
the obstacle trailing edges.

GOAL OF THIS WORK IN THE INVESTIGATION OF THE RE-
SHAPING PROBLEM Moving from the observation concerning
the higher efficiency of lenticular obstacles with respect to
cylindrical ones, this work will explore the interaction be-
tween cylindrical converging shock waves and circular-arc ob-
stacles, in the perspective of assessing the effects of the
obstacle geometrical parameters on the shock reflections and,
eventually, on the effectiveness of the energy focusing.

Furthermore, the assessment on the effects of the thermo-
dynamic model on the shape and intensity of the reshaped shock
is another goal of this thesis.
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(a) time-to-focusing = 11µs (b) time-to-focusing = 3.9µs

Figure I.7: Experimental Schlieren images of the reshaping of a cylin-
drical shock wave by 8 lenticular flow dividers. Time increases from
left to right, showing the definition of an octagonal shock wave and
its following rotation due to the trailing edge Mach Reflections. The
shock wave is converging in low-pressure air with initial Mach num-
ber of 2.7. The diffraction is generated by 8 lenticular obstacles
with a chord of 50mm, leading edge radius of 70mm and thickness-to-
chord ratio of 0.14. (Inveted colors, images source: M. Kjellander,
N. Tillmark, N. Apazidis, “Thermal radiation from a converging shock
implosion”, Phys. of Fluids (2010).)

Thesis structure

This works moves from the configuration described in [97],
and it will investigate different geometrical and operational
configuration to assess their influence on the shock reshap-
ing. The thesis is structured as follows:

1. The first chapter, “Numerical simulation of converging
shock waves: flow features and methodology”, will de-
scribe the adopted methodology. As it will be better de-
tailed within the chapter, the symmetry of the obstacle
layout allows to reduce the computational domain, and to
compute the flow only in a sub-domain, that is a circu-
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lar sector delimited by symmetry boundaries. The physics
of the cylindrical implosions reshaping will be briefly
recalled. Based on experimental results [91], viscous ef-
fects will be assumed to be confined only in the bound-
ary layer [98], resulting in the possibility of describ-
ing the flow field by means of Euler equations. The choice
of exploring the effects of multiple thermodynamic mod-
els [100] will allow on one hand to compare numerical
results with available references, which mostly concern
polytropic ideal gas, and on the other hand to assess real
gas effects [101]. Eventually, the setting of the initial
conditions will be described.

2. The second chapter, “Multi-domain simulation of the shock
reshaping process”, concerns the description of two nu-
merical tools developed to provide a more efficient com-
putation of the flow field and of relevant quantities.

The first tool is a new multi-domain approach [99] which
allows to exploit the geometric features of the shock waves
in the diverse regions of the computational domain. The
peculiarity of this method is that it allows to reconstruct
the solution also outside the boundaries of the computa-
tional sub-domains. Part of the method is inspired by gen-
eral studies on converging shock waves, which highlight
some features of the phenomenon which are exploited in the
multi-domain approach [102, 103].

The second tool is a technique which allows to trace
the shock position also in presence of very complex flow
fields. The knowledge of the shock position will be used
also to trigger the switch among the domains in the multi-
domain approach. For this reason it is formulated to ana-
lyze a solution provided by the two Finite Volume solvers
for Euler equations [104, 105, 106, 107], i.e., a one-
dimensional axisymmetrical and a two-dimensional Carte-
sian solution.

3. The first group of numerical results will be described in
chapter “Cylindrical shock reflection over circular-arc
obstacles”. To gain a further insight in the diffrac-
tion of cylindrical implosions over circular-arc obsta-
cles, the patterns generated at the reflection of the con-
verging shock wave over the obstacle leading edge will be
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analyzed.
Diverse reflection types will be identified and clas-

sified, depending on the combination between the obsta-
cle geometry and flow conditions generating each reflec-
tion, and results will be assessed with the predictions of
pseudo-similar models.

Diverse observations will be performed on each family
of reflections, i.e. Regular and Mach Reflections. A sim-
ple analytical model will be derived for the first ones,
and the Regular-Mach transition observed and correlated
to the diverse factors. The Triple Point trajectory will
be traced for genuine Mach reflections, and an empirical
law will be derived by means of a fitting on numerical data.

4. The shock reshaping and convergence process in polytropic
ideal gas will be analyzed in chapter “Shock reshaping and
focusing in dilute gas”. The optimal configuration will
be assessed, i.e. the one producing the largest values of
pressure and temperature at the focus point. The complex
shock-induced flow field will be described, and observed
phenomena will be qualitatively correlated to the diverse
factors.

5. The last chapter will focus on non-ideal gas effects on
cylindrical and polygonal imploding shocks [108, 109, 110,
111, 112], comparing gas in dilute and dense conditions.
A systematic investigation on the shock convergence, re-
shaping and focusing will be performed in accordance with
each adopted thermodynamic model. The results will con-
cern:

• pressure and temperature values attained at the focus
point.

• the determination of the self-similarity exponent α
for the diverse thermodynamic models by means of a
fitting on numerical data. For one-dimensional shock
waves, the hypotheses for the application of Guder-
ley’s law are completely satisfied, and therefore the
numerically determined value of α is a genuine self-
similarity exponent, as discussed by [113] and [114].
For generic two-dimensional shock waves, on the con-
trary, the possibility of describing the shock wave
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average radius versus time by means of a power-law is
not proved on a theoretical background. However, it
was observed [97] that the functional form of Gud-
erley’s law applies satisfactorily also to the de-
scription of the propagation of two-dimensional shock
waves. For this reason, the “pseudo-self-similarity
exponent” will be derived also for two-dimensional
shock waves, and it will be correlated to geometrical
and thermodynamic parameters.

• the evolution of the post-shock thermodynamic condi-
tions during the shock convergence. For both one-
dimensional and two-dimensional shock waves, the tra-
jectory of the post-shock state will be traced in the
pressure-specific volume plane and assessed with the
analytic Hugoniot adiabat. Since the Hugoniot adiabat
applies across one-dimensional normal shock waves,
this comparison will allow to assess the relevance of
the regions of the flow field where two-dimensional
effects are the most relevant.
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Chapter 1

Numerical simulation of converging shock waves: flow features

and methodology

With you, everything is gas
THE LION KING

The approach to the numerical study of converging shock
waves is described here. As it will be detailed in the next
chapters, due to the strong sensitivity of results to all the
investigated factors, a definitional step is necessary at the
beginning. The main features of the shock reshaping are there-
fore briefly described here: the so-called “reference con-
dition” is introduced, as well as the most relevant steps of
the shock reflection, reshaping and convergence. The fluid-
dynamical structures are defined, either by recalling conven-
tional names or by means of “ad-hoc” designations. The second
section is dedicated to the description of the numerical mod-
eling of the physical phenomena: the governing equations, the
thermodynamic model and the initial conditions setting are ex-
plained in this framework.

1.1 Converging shock-obstacle interaction

The physics of the shock reshaping is briefly recalled in
this section. In the beginning, the so-called “reference con-
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Chapter 1

figuration”, i.e. the one adopted in [97], is described, and
the definitions of the diverse variables are provided. The list
of steps necessary to define the shock reshaping is the object
of sec. 1.1.2.

1.1.1 Reference configuration

The main features of the shock-obstacle interaction are
presented in this section for the “reference configuration”
described in Ref. [97]. The test rig adopted to perform the
experiments in [97] is illustrated in fig. 1.1.

(a) (b)

Figure 1.1: Experimental test rig adopted in Ref. [97]. (a) Schematic
drawing of the shock tube: (A) driver section, (B) inlet pipe, (C)
transformation section, (D) annular tube, (E) test section. S1 and S2
, shock sensors; W1 and W2, glass windows framing the test section.
(b) Photograph of the test section with the profiles installed in the
chamber. (Images and captions source: M. Kjellander, N. Tillmark,
N. Apazidis, “Thermal radiation from a converging shock implosion”,
Phys. of Fluids (2010)).

The geometry of the reshaping chamber is depicted in figure
1.2, where the three-dimensional cylindrical shock front is
represented in a two-dimensional plane that is normal to the
shock axis. In figure 1.2, the dashed line indicates the shock
position before its impingement at the obstacle leading edges.
As it moves towards the origin, the shock interacts with the
array of obstacles with lenticular shape which are arranged
around the origin in a symmetric fashion.

Thanks to the symmetric arrangement of the obstacles, the
shock dynamics can be conveniently described in a reduced do-
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Numerical simulations: features and methodology

Figure 1.2: Physical domain of propagation and reshaping of the con-
verging shock wave for the reference configuration. The gray region
is the computational domain.

main (the gray area in figure 1.2) which is delimited by two
symmetry boundaries: for convenience, the one which crosses
the obstacle is termed “lower symmetry line”, whereas the op-
posite is named “upper symmetry line”. The angle ξ, defined as
the “vertex angle” and delimited by the two symmetry lines and
with a vertex in the focus point, spans an angular sector of
π/nobs where nobs is the number of obstacles. In sec. 2.1, where
computational domains characterized by vertex angles differ-
ent from π/nobs are also used, the domain with ξ = π/nobs is re-
ferred to as the “elementary domain”; in the following chap-
ter, if not specified otherwise, the vertex angle corresponds
to the elementary one ξ = π/nobs.

A non-trivial consideration concerns the actual symmetry
of the polygonal shock. Previous theoretical and experimental
works [97] demonstrate that the polygonal shock is a stable
configuration against surface corrugations, but less with re-
spect to small deviations from symmetry in the obstacle layout.
However, it was observed in the same works that even in case of
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non-perfectly symmetrical final configuration, the deviation
of the reshaped shock shape from the symmetrical one remains
small. In this work, on the contrary, the use of a symmetric
computational domain implicitly forces the reshaped shock to
remain perfectly symmetric, and therefore results concern the
symmetrical case only, where no deviation from symmetry takes
place.

Geometrical variables are made non dimensional with re-
spect to the reference length ̂̀= 0.01m and, unless differently
specified, all the quantities (both geometrical and fluid-
dynamical) are to be hereafter intended as non-dimensional.
Dimensional quantities, on the contrary, are marked with the
symbol ̂.

The flow Reynolds number Re is evaluated using the obsta-
cle chord as characteristic length and the dynamic viscosity
of air at standard temperature. The obtained Reynolds num-
ber, for all the simulations, ranges from 106 to 107. In ac-
cordance with the boundary layer theory [98], such a range for
Reynolds number allows to neglect the influence of the vis-
cosity but directly in the boundary layer. The latter, due to
the mostly aerodynamic shape of obstacles, remains confined
to a small region near the wall. This allows to simulate a non
viscous flow, with the consequent possibility to disengage the
results from the space scale and to use dimensionless vari-
ables. The applicability of this assumption is confirmed also
by the adoption of an Eulerian code by reference authors [97].

In accordance with [97], the obstacle chord is c = 5. The
reference distance of the leading edge from the focus point
is rrefLE = 7. The dimensionless obstacle maximum thickness-to-
chord ratio is t/cref = 0.14. The Mach number Ms of the impinging
shock is equal to 2.7 when the shock wave is about to first
interact with the obstacle, namely, at r = rrefLE + 1. Note that
the shock Mach number Ms and hence the shock strength increase
as the shock front converges towards the origin.
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1.1.2 Shock-reshaping steps

According to Ref. [97], in the reference configuration the
reshaping process is characterized by three main interactions
with the obstacle, which are illustrated in figure 1.3.

The first reflection, termed “primary reflection”, takes
place at the obstacle leading edge (first step, figure 1.3(a)).
As it is well known for planar shocks [70] and as it will be
confirmed in chap. 3 also for cylindrical shocks , for small
values of t/c a Mach Reflection occurs at the leading edge, gen-
erating a Triple Point where the unperturbed portion of the
incident shock, a reflected wave (termed “wave A”) and a Mach
stem merge. The aforementioned Triple Point, generated at the
leading edge, will be in the following termed “leading edge
Triple Point ” or “first Triple Point”. For increasing val-
ues of t/c, the leading edge reflection is of Regular type (see
[93]); however it is verified that, while the shock is crossing
the obstacle, the Regular reflection always terminates into a
Mach reflection. Therefore, regardless of the reflection type
occurring exactly in correspondence of the obstacle leading
edge, the cylindrical shock reshaping is always obtained by
means of a number of Mach reflections. Note that the three-
shock theory, which predicts the diverse reflection patterns,
strictly applies to pseudo-steady shocks, but it is qualita-
tively in good agreement with results obtained in the inves-
tigation of some types of unsteady reflections [79]. The re-
flections explored in the present work represent an extension
of the ones included in [79], accounting for also curved shock
fronts. An accurate description of the leading edge reflection
types and of the transition from Regular to Mach-type will be
provided in chap. 3.

Due to the phenomenon unsteadiness, the three-wave system
evolves in time: while the incident shock continues propagat-
ing inwards, the Triple Point moves far from the obstacle, and
eventually approaches the symmetry line between two obstacles
(second step, figure 1.3(b)).

Afterwards, the Mach stem generated by the leading edge
reflection impinges against the symmetry line, and undergoes
a “secondary reflection” of Mach type, which generates an ad-
ditional three-shock structure including a new Mach stem and
a reflected wave (“wave B”, third step, figure 1.3(c)). Af-
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wave Afirst Mach stem

first
triple point

unperturbed shock region

original shock

(a)

wave A
first Mach stem

first
triple point

(b)

wave A

first Mach stem

wave B

second Mach stem
(polygonal shock side)

second
triple point

(c)

downstream Mach reflections (further reshaping)

polygonal shock side

(d)

Figure 1.3: Relevant features of the basic reflections causing the
shock reshaping in the reference condition.
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ter the secondary Triple Point reaches either the obstacle or
the bottom symmetry line (figure 1.3(d)), the converging shock
consists of a nobs-edges polygonal wave. Each side of the wave
originates from the secondary Mach stem.

The reshaping process may now be considered concluded, but
the combination of geometrical and fluid-dynamic factors may
possibly results in further Mach reflections over the symmetry
lines downstream the obstacles or on the obstacle itself.

Both Mach stems exhibit a small outward curvature, simi-
larly to what observed in Direct Mach Reflections (DiMR), but
this concavity is negligible in the considered conditions and
therefore the reshaped shock is assumed to be a polygonal one.

The four described steps, observed experimentally by [97],
are present in all the explored configurations, but it must be
kept into account that, in general, the combinations of geomet-
rical factors, operating conditions and thermodynamic model
cause as many patterns as configurations are.

1.2 Numerical model

In the following, model adopted to describe the imploding
shock waves and their reshaping is briefly outlined. It con-
cerns the governing equations, the thermodynamic models and
the set of initial conditions, respectively.

1.2.1 Governing equations

Under the inviscid flow assumption, the flow field is com-
puted by means of classical Euler equations,

∂ρ

∂τ
+∇ •m = 0,

∂m

∂τ
+∇ •

(
m⊗ m

ρ
+ PI

)
= 0,

∂
(
Et
)

∂τ
+∇ •

(
m

ρ

(
Et + P

))
= 0,

(1.1)
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where τ, ρ, m, P and Et indicate the dimensionless time, den-
sity, momentum, pressure and total specific energy per unit
volume, respectively. It is to be remembered that the do-
main reduction described in sec. 1.1 allows to set the problem
in a two-dimensional framework. For the definition of non-
dimensional quantities, please refer to sec. 1.2.2.

1.2.2 Description of the adopted thermodynamic models

The closure of the system of governing equations requires
the description of the thermodynamic behavior of the operating
fluid, and therefore an equation of state for the pressure and
a model for the constant volume specific heat cv [100].

It is recalled that all thermodynamic properties of a
single-phase mono-component fluid made up of a “large” mole
number at thermodynamic equilibrium can be obtained from the
so-called “fundamental equation”,

ê = ê
(
σ̂, v̂

)
, (1.2)

where ê, σ̂ and v̂ represent respectively the specific internal
energy, entropy and volume per mass unit. Only ê and v̂ can be
directly expressed as functions of the conservative variables(
ρ,m,Et

)
,

ê =
Et

ρ
-
1

2

(
|m|

ρ

)2
, (1.3a)

v̂ =
1

ρ
. (1.3b)

In postulatory thermodynamics [115, 116], the temperature T̂
and the pressure P̂ are defined as

T̂ =

(
∂ê

∂σ̂

)
v̂
, (1.4a)

P̂ = -

(
∂ê

∂v̂

)
σ̂

(1.4b)
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and therefore the fundamental relation, eq. (1.2), can be
rewritten as

P̂ = P̂
(
T̂, v̂

)
, (1.5)

which is called “thermal equation” or “pressure equation of
state”. Eq. (1.5) implies that the thermodynamic state of the
system can be described by means of so-called “intensive vari-
ables”, i.e. quantities which do not depend on the mass or on
the volume of the system. On the contrary, it does not give
informations on the functional form of the relation between
the pressure and temperature and specific volume. This func-
tional form depends on the selected thermodynamic model, and
therefore the choice of the functional expression of eq. (1.5)
represents the first condition which defines the thermodynamic
model.

The sole eq. (1.5) is not sufficient to close the system
of governing equations, as it introduces a new variable with
respect to the system (1.1), i.e. the temperature. Therefore,
a further equation is added to the system, which can be obtained
from eq. (1.2). By expressing entropy as σ̂ = σ̂

(
T̂, v̂

)
, the energy

can be rewritten as ê = ê
(
v̂, σ̂(T̂, v̂)

)
, and its derivative with

respect to the first variable is expressed as(
∂ê
(
v̂, σ̂(T̂, v̂)

)
∂v̂

)
T̂

=

(
∂ê

∂v̂

)
σ̂

+

(
∂ê

∂σ̂

)
v̂
·
(
∂σ̂

∂v̂

)
T̂
. (1.6)

The integration of this expression with respect to the specific
volume leads to

ê
(
T̂, v̂

)
= ê∗ + Φ

(
T̂
)
+

∫ v̂

v̂∗

[(
∂ê

∂v̂

)
σ̂

+

(
∂ê

∂σ̂

)
v̂
·
(
∂σ̂

∂v̂

)
T̂

]
dv̂, (1.7)

where the variables marked with ∗ are constant terms. There-
fore, the terms ê∗ and Φ

(
T̂
)
play the role of “integration con-

stants” since the integration is performed only with respect
to v̂.

Recalling eq. (1.4) and thanks to Maxwell’s relation stem-
ming from Helmholtz free energy(

∂σ̂

∂v̂

)
T̂
=

(
∂P̂

∂T̂

)
v̂
, (1.8)
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the specific internal energy becomes

ê
(
T̂, v̂

)
= ê∗ + Φ(T̂) +

∫ v̂

v̂∗

[
-P̂ + T̂

(
∂P̂

∂T̂

)
v̂

]
dv̂. (1.9)

The constant-volume specific heat, defined as

ĉv =

(
∂ê

∂T̂

)
v̂
, (1.10)

therefore, becomes

ĉv =
dΦ
(
T̂
)

dT̂
+

∫ v̂

v̂∗

[
-

(
∂P̂

∂T̂

)
v̂
+

(
∂2P̂

∂T̂
2

)
v̂
+

(
∂P̂

∂T̂

)
v̂

]
dv̂

=
dΦ
(
T̂
)

dT̂
+

∫ v̂

v̂∗

(
∂2P̂

∂T̂
2

)
v̂
dv̂

(1.11)

As resulting from eq. (1.11), the expression of cv includes two
terms: the first one is a function of the temperature, whereas
the second depends on the relation between P, T and v, that is
the thermal equation. This implies that the cv functional ex-
pression, which represents the second condition defining the
thermodynamic model, cannot be a completely arbitrary func-
tion, as it must be consistent with the adopted pressure equa-
tion of state.

In the following, for both the pressure equation of state
and the constant volume specific heat, two possible indepen-
dent descriptions are adopted; therefore, four thermodynamic
models are explored. The reference one is the so-called “poly-
tropic ideal gas model”, which allows to compare numerical
results with theoretical predictions and a number of experi-
mental results available in literature. Other thermodynamic
models are devised from the polytropic ideal gas one, to pro-
vide better descriptions of the flow field when the shock ap-
proaches the focus point, and the temperature and specific vol-
ume considerably increase [42] and jeopardize the validity of
the polytropic ideal gas assumption. The other three descrip-
tions of the thermodynamic behavior of the gas consist in the
alternative combinations of the pressure equation of state and
cv model, respectively.
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1.2.2.1 Pressure equation of state

This work analyzes air modeled as a simple mixture of di-
atomic gases, i.e. Nitrogen, yN2 = 79% and Oxygen, yO2 = 21%,
with yh the molar fraction of the h - th component. Argon, wa-
ter steam, carbon dioxide and impurities which in atmospheric
air make up to 1% of the overall composition are neglected, so
that the thermodynamics can be treated by means of simple mod-
els. In the following, the two adopted equations of state for
the pressure are discussed.

1. To describe the thermodynamic properties of air, the so-
called “ideal gas” model is first adopted in the simula-
tions. In accordance with the ideal gas model, the equa-
tion of state for the (dimensional) pressure is

P̂ = ρ̂ · R̂T̂, (1.12)

being T̂ the dimensional temperature and R̂ the mass-
averaged gas constant:

R̂ =
R̂
M̂m

, (1.13)

where R̂ is the gas constant. M̂m indicates the molecular
mass of the mixture, and it is evaluated from the average
of the molecular masses of the nc single components,

M̂m =
nc∑
h=1

(
M̂mh · yh

)
. (1.14)

Eq. (1.12) derives from Boyle’s, Charles’ and Gay-
Lussac’s laws [100]. For diatomic gases and their mix-
tures, the validity of these laws is experimentally veri-
fied provided that

M̂m

ρ̂
> 5

m3

kmol
. (1.15)

The condition (1.15) is here respected by the initial
state, since the minimum M̂m/ρ̂ in the flow field prior the
reshaping is about 41 in the most critical case, which jus-
tifies the adoption of the ideal gas model.
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2. Real gas effects arise due to non-linearities of the equa-
tion of state: the van der Waals model is adopted for the
evaluation of the pressure [117]:

P̂ =
R̂T̂

v̂ - b̂
-

â

v̂2
, (1.16)

with â and b̂ the gas-dependent coefficients which account
for long-radius attractive forces and short-radius repul-
sive forces, respectively:

â =
27

64

R̂
2
T̂
2
cr

P̂cr
, (1.17a)

b̂ =
1

8

R̂T̂cr
P̂cr

. (1.17b)

The van der Waals model has been selected because it con-
sists in the simplest deviation from the ideal gas model,
while at the same time it allows to account for real gas ef-
fects with only a small computational overload. Moreover,
in a van der Waals equation of state, the temperature de-
pendence from the pressure is linear, as in the ideal gas
model. Therefore, in accordance with eq. (1.11), the van
der Waals equation can be consistent with the same ĉv mod-
els chosen for the ideal gas. Therefore, it is possible
to observe the effect of different models for ĉv, both for
ideal and for a van der Waals gas, and to disengage them
from the pressure equation of state.

The main drawback of van der Waals model, as of other two-
parameter equations of state, is in the evaluation of crit-
ical variables: the compressibility at the critical point
is Zcr = 0.375, and therefore the critical specific volume
is fixed and can be calculated as:

v̂cr =
ZcrR̂T̂cr
P̂cr

. (1.18)

The comparison between results of eq. (1.18) and very ac-
curate measurements [118] on oxygen and nitrogen, reported
in table 1.1, show some difference in the values of v̂cr and
therefore of Zcr. However, being in the framework of a phe-
nomenological analysis, it was decided to maintain the van
der Waals model to investigate real gas effects.

34



Numerical simulations: features and methodology

N2 O2

theor. exp. theor. exp.

v̂cr =
ZcrRT̂cr
P̂cr

×10-3
[
m3

kg

]
3.807 3.215 2.864 2.342

Zcr =
P̂crv̂cr
RT̂cr

0.375 0.288 0.375 0.291

Table 1.1: Comparison between theoretical and experimental values of
v̂cr and its derived thermodynamic parameters. Marked entries indicate
the imposed or measured quantities, whereas plain text indicated a
posteriori calculated quantities.

1.2.2.2 Constant-volume specific heat

With reference to eq. (1.11), depending on the pressure
equation of state, diverse cv models can be derived.

The term
(
∂2P̂/∂T̂2

)
v̂ is evaluated for the two diverse equations

of states, (
∂2P̂

∂T̂
2

)
v̂
=

(
∂2
(
R̂T̂/v̂

)
∂T̂

2

)
v̂

= 0 (1.19a)

(for ideal gas)(
∂2P̂

∂T̂
2

)
v̂
=

(
∂2
(
R̂T̂/v̂-b̂ - â/v̂2

)
∂T̂

2

)
v̂

= 0 (1.19b)

(for van der Waals gas)

Therefore, for both ideal and van der Waals gas, the inte-
grand function in eq. (1.11) is null. Therefore, the constant-
volume specific heat is made up of only the temperature-
dependent term,

ĉv =
dΦ
(
T̂
)

dT̂
(1.20)

This implies that the consistency of the thermodynamic model
is provided by a cv depending at most on the temperature.
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For the actual selection of the ĉv model, the range of tem-
peratures resulting from the simulations must be considered.
The lowest temperature attained during all the implosion pro-
cess corresponds to that of the gas at rest upstream the shock
[41]. In the present work, the upstream state temperature is
arbitrarily set to the standard ambient temperature 298.15K.
This temperature is much higher than 30K, which corresponds to
the minimum temperature for which the molecules rotational de-
grees of freedom can be considered fully excited. Therefore,
the considered thermodynamic models must consider the contri-
bution of the rotational degrees of freedom.

1. A so-called “polytropic”, i.e. constant specific heat,
model is first used to model the constant-volume specific
heat of air up to the focusing of the shock wave. The
constant specific heat is evaluated on the basis of the
equipartition principle applied to diatomic gases:

ĉv =
5

2
R̂, (1.21)

and it is made dimensionless with R̂.

The adoption of a polytropic ideal gas model allows to
perform local comparisons between numerical results and
theoretical models, mainly dealing with ideal equations
of state for gas upstream the shock in dilute conditions.
Moreover, the reference experiment [97] is performed in
conditions of upstream dilute air, too.

A further advantage is that, combined with the ideal gas
equation of state for the pressure, the polytropic ideal
gas, that is the so-called “perfect gas model”. In the
latter, also the constant-pressure specific volume is a
constant. Therefore, the ratio between the constant pres-
sure and volume specific heat is a constant term, named γ.

2. To better account for high temperature effects, both in
ideal and van der Waals gases, the constant-volume spe-
cific heat is estimated in accordance with the harmonic
oscillator model, which accounts for vibrational energy
as an additional temperature-dependent term to be added
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to internal energy:

ê(T̂) = ê∗ + ĉvT̂ + R̂
nc∑
h=1

(
xh · êh

)

= ê∗ + ĉvT̂ + R̂
nc∑
h=1

(
xh ·

nzh∑
z=1

T̂zh
eT̂zh/T̂ - 1

)
,

(1.22)

where êh is the vibrational contribution to the internal
energy of the h - th component, weighted on its mass frac-
tion xh, and T̂zh is the z - th vibrational temperature of
the of the h - th component, too. Since both oxygen and
nitrogen are diatomic gases, the relative motion between
the two atoms of each molecule has one degree of freedom
only. Therefore, only one vibrational mode for each com-
ponent is activated, resulting in a number of vibrational
temperatures nz,O2 = nz,N2 = 1. In the following, therefore,
vibrational temperature of nitrogen and oxygen will be in-
dicated as Tvib,N2 and Tvib,O2, respectively.
This model describes the departure, in correspondence of
each T̂ ≈ 0.25·T̂zh, of the harmonic ê(T̂) from the correspond-
ing value of energy calculated by means of a polytropic
model. This implies that, even though the flow field max-
imum temperature does not exceed the minimum vibrational
temperature, a certain contribution to the internal energy
is anyway provided by the molecules vibrational degrees of
freedom, and should be taken into account.

Other effects which occur for increasing temperature are
neglected. With reference to [70], indeed, dissociational ef-
fects in nitrogen have no relevance on the shock reflections
for Ms < 7 (much larger than the reference case, which has, at
the leading edge, MLEs = 2.7) and therefore, a fortiori, also
other effects occurring at higher temperature electronic ex-
citation and ionization can be ignored.

It must be noted that the polytropic ideal gas is a suitable
model for predicting the shock propagation and reshaping, but
it suffers from severe limitations in the simulation of the
last part of the process, when the focusing takes place, be-
cause it cannot keep into account the ionization process and
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the chemical reactions. Nevertheless, the maximum temperature
values attained at the origin are correlated with the aver-
age intensity of the shock evaluated in a region near the focus
point but still in the field of validity of the thermo-chemical
equilibrium assumption. The good agreement between the two
sets of data suggests that, even if the simple thermodynamical
model cannot capture the actual values of pressure and tem-
perature at the focus point, it gives an indication on which
configurations are more suitable to produce the most effective
shock focusing.

In the following, each thermodynamic model will be identi-
fied by a code in figures and tables. The first letter indicates
the model adopted for the constant volume specific heat, i.e.
“P” for polytropic and “H” for harmonic cv. The second group
of letter, separated from the first by a “-”, represents the
equation of state: “IG” is for ideal gas and “VdW” for van dwe
Waals gas. Therefore, e.g. the polytropic ideal gas is P-IG,
and the harmonic van der Waals gas is H-VdW.

1.2.2.3 Non-dimensionalization of variables

Geometrical variables, as indicated in section 1.1.1, are
made dimensionless with respect to the reference length ̂̀. The
treatment of fluid-dynamic variables requires other reference
quantities to be set.

The pressure is made dimensionless with respect to the
critical pressure and the temperature with respect to T̂cr, be-
ing T̂cr = 132.65K and P̂cr = 3.872 × 106 Pa the critical temper-
ature an pressure of air. Other fluid-dynamic variables are
consequently made non-dimensional as reported in tab. 1.2,
where ŵ and û indicate respectively the speed of sound and the
flow velocity.

It must be noted that results presented do not corre-
spond to the output of numerical simulations. Indeed, in
the adopted softwares, the temperature is made dimensionless
with ZcrT̂cr, where Zcr 6= 1 for non ideal equations of state.
Therefore, to compare numerical results obtained by means of
different thermodynamic models, all the variables whose non-
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ρ T e h w u τ

ρ̂ · R̂T̂cr
P̂cr

T̂

T̂cr

ê

R̂T̂cr

ĥ

R̂T̂cr

ŵ√
R̂T̂cr

û√
R̂T̂cr

τ̂ ·
√
R̂T̂cr̂̀

Table 1.2: Definition of dimensionless quantities by means of criti-
cal quantities P̂cr and T̂cr and of the reference length ̂̀.
dimensionalization involves the critical temperature must be
properly rescaled. For results obtained under the ideal gas
assumption, of course, the dimensionless quantities defined
in tab. 1.2 are coincident with the ones used in the numerical
simulations; similarly, the same dimensional pressure corre-
sponds to the same dimensionless one for all the considered
thermodynamic models.

1.2.3 Initial conditions setting

In the reference experimental configuration, the cylindri-
cal shock wave in fig. 1.2 results from the reshaping into a
cylindrical shape of a planar shock wave, which is generated
within a straight-axis shock tube. The reshaping occurs by
forcing the shock through a duct at the closed end of the shock
tube, as depicted in fig. 1.1. Further details can be found in
ref. [97].

In the numerical experiments, the cylindrical converging
shock is generated by the imposition of an axisymmetrical pres-
sure step upstream the obstacle, separating an internal (i)
from an external region (e); the initial gas speed is every-
where zero in the domain, i.e. u0i = u0e = 0. The initial state
problem, therefore, can be considered a “cylindrical shock
tube”.

The internal state is the same as in [97], and it is main-
tained constant for all the simulations. In accordance with
reference values, it is identified by pressure P0i and density
ρ0i:

P0i =
104 Pa

P̂cr
T0i =

298.15K

T̂cr
ρ0i =

P0i
T0i

. (1.23)
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The initial external pressure P0e depends on the parameter
βP = P0e/P0i and the corresponding density ρ0e is computed from
Hugoniot adiabat for a polytropic ideal gas as

ρ0e = ρ
0
i ·

(
γ+1
γ-1

)
βP + 1(

γ+1
γ-1

)
+ βP

, (1.24)

where it is recalled that γ is the specific heat ratio for di-
atomic perfect gases, and for air is assumed to be γ = 1.4.

The evaluation of ρ0e in eq. (1.23) is performed in accor-
dance to the ideal gas model; however, it has been decided to
initialize all the simulations, regardless of the thermody-
namic model, with the same numerical values of pressure and
density in the internal and in the external states. Necessar-
ily, the external state belongs to the Hugoniot adiabat only in
the polytropic ideal gas case. This initialization procedure,
which forces the same initial values, allows to explore the ef-
fects of the thermodynamics on a problem with exactly the same
initial conditions.

Note that due to the curvature of the shock wave, the post-
shock state changes in a continuous way as the shock moves to-
wards the origin. The above initial conditions, therefore,
result in the formation of a three-wave system including the
converging shock wave, a converging contact discontinuity and
a diverging rarefaction wave. Indeed, unlike pseudo-steady
shock waves, which divide the domain into two regions where
the solution is uniform both in space and in time, cylindrical
shocks satisfy Rankine-Hugoniot (RH) jump conditions only lo-
cally across the shock. Therefore, the initialization of the
solution of a flow field induced by a planar shock is a simple
task, and it can be directly performed thanks to the algebraic,
uncoupled Rankine-Hugoniot conditions. On the contrary, to
know the solution behind the shock at any time step in the case
of a cylindrical implosion, it is mandatory to simulate the
onset of the shock wave. This is achieved by simulating the
breaking of the numerical “diaphragm” of the cylindrical shock
tube. At the diaphragm breaking, a three-waves system is gen-
erated, consisting in the shock, in a contact discontinuity and
a rarefaction wave.

The rarefaction wave moves outwards and the contact dis-
continuity is slower than the shock; therefore to obtain an
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isolated convergent shock wave it suffices to locate the ini-
tial pressure step sufficiently far from the obstacles.

It was observed that, for the explored gas and Mach number
range, the minimum distance between the pressure step and the
center corresponds to at least five times the chord of the ob-
stacles, but may extend up to twenty times, resulting in a dra-
matic increase of computational times. The adopted solution
consists in the adoption of a multi-domain approach, which is
very suitable to reduce the overall computational time of the
simulation. Details on the method and a discussion of the re-
sults will be provided in chapter 2.
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Chapter 2

Multi-domain simulation of the shock reshaping process

Without any underlying symmetry properties, the
job of proving interesting results becomes ex-
tremely unpleasant. The enjoyment of one’s tools
is an essential ingredient of successful work.

DONALD KNUTH, THE ART OF COMPUTER PROGRAMMING

In this chapter, a novel multi-domain procedure for the sim-
ulation of the reshaping process is detailed. The method is
used to overcome the trade-off between the reduction of the
large calculation times and the quality of the results: in-
deed, to accurately capture the diverse spatial scales of the
problem, the computational domain is divided into three sub-
domains, (see sec. 2.1). In the first region, i.e. the “Far
Field Region”, the cylindrical shock propagation prior the in-
teractions with the obstacles is simulated under the axisym-
metric one-dimensional approximation. A two-dimensional sim-
ulation is carried out to compute the flow during the shock-
obstacle interaction, as well as the polygonal shock conver-
gence, in the “Obstacle Region”; the initial conditions for
the simulations in the Obstacle Region are obtained by inter-
polating the solution from the Far Field Region. Eventually,
the numerical simulations of the shock focusing are preformed
on a domain describing the small region surrounding the focus
point, namely the “Focus Region”. The solution on the Focus
Region is initialized with the solution computed on the Ob-
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stacle Region. The two interpolations between the Far Field
and the Obstacle Region and between the Obstacle and the Focus
Region are performed on small overlapping regions between the
pairs of sub-domains.

The termination of the simulation on one sub-domain and the
following interpolation of the solution onto the following one
requires the knowledge of the shock position Rs in time. For
this purpose, a novel method for the detection of the shock po-
sition is developed: it consists of an extension of Payne’s
method to more irregular shock waves, i.e. unsteady, two-
dimensional and generating complex non-uniform flow distribu-
tions. The method, presented in sec. 2.2 is widely used in this
work, both for the triggering of the multi-domain technique and
for the investigation of the physics of the converging shock
reshaping.

The sub-domain switch is triggered by the shock radius re-
sulting from the shock-position-detection algorithm. More-
over, the latter is formulated to detect the shock by analyz-
ing the flow field computed by the numerical solver adopted
in each sub-domain. For this reason, these two tools should
be described in a coupled way. However, to highlight the spe-
cific features of each method, in the following they will be
discussed separately.

2.1 Multi-domain method

In the design of the numerical model for simulations, in
general, one has to deal with diverse requirements: the accu-
racy of the solution, the detail level of the model and, possi-
bly, the reduction of the computational burden, etc. Unfortu-
nately, these requirements often counter each other. Indeed,
an accurate description of the solution usually implies large
computational times; similarly, the approximation of the real
phenomenon with a model introduces some inaccuracies. The de-
velopment of a strategy which allows to speed-up the calcula-
tions without compromising the quality of the solution is the
goal of this chapter.
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In the framework of the simulation of implosions reshap-
ing, this trade-off appears to be very important. Fortunately,
thanks to the geometrical consideration discussed in chap. 1,
it is not necessary to compute the whole flow field. Indeed,
the problem of the reshaping of cylindrical converging shock
waves is characterized by a high level of symmetry, both be-
fore and during the reshaping. Therefore, it is possible to
compute the flow only in the elementary domain (the gray area
in fig. 1.2), defined in sec. 1.1 as the circular sector de-
limited by two symmetry lines, and whose angle in the origin
is ξ = π/nobs. The reduction of the computational domain to the
elementary domain offers a relevant improvement in the cal-
culation speed, while the obtained solution is sufficient to
describe the global flow field generated by the shock conver-
gence and reshaping thanks to the symmetry of the problem.

In addition to the exploitation of the periodicity along
the azimuthal coordinate, a multi-domain approach is adopted
to reduce the computational cost of the simulations and circum-
vent the limitations introduced by the chosen numerical model.
These limitations arise from the inclusion of fictitious, ad-
ditional physical phenomena and from numerical artifacts.

The first ones are phenomena correctly described by the nu-
merical simulations, but whose onset is due only to the model.
For example, the simulation the shock generation by means of
a circular pressure step upstream the obstacles (described in
sec. 1.2.3) can be recast to a particular case of “cylindrical
Riemann problem” of gasdynamics [119], which is known to cause
the onset of two further waves. The latter, for the adopted
set of initial conditions, are a contact discontinuity and a
rarefaction wave. These two collateral waves behind the cylin-
drical shock are consistent with the physical model, but they
cannot be observed in experimental investigations, where the
(three-dimensional) shock generation is achieved by means of
different techniques (as detailed in sec. “The implosion prob-
lem” of the Introduction).

The second type of side-effects, i.e. spurious numerical
effects, on the contrary, is unphysical and include, for exam-
ple, numerical oscillations in the proximity of shock waves.

Dealing with physical side-effects is a quite simple task
if the approach is not a black box one, that is if the knowl-
edge of the physics of the explored mechanisms allows to pre-
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dict at least a qualitative behavior. In the example above,
the onset of the collateral waves is expected, and therefore
the numerical solution concerning the convergence of the shock
wave which is the only wave under scrutiny is relevant only in
the internal region with respect to the radius of the contact
discontinuity [103]. On the contrary, numerical side-effects
result in a loss of accuracy of the solution, and depend not
only on the physical model, but also on the adopted numeri-
cal method. Therefore, to overcome numerical side-effects,
the combination between the physical model and the numerical
method must be changed.

The shock propagates into still gas with a larger velocity
than the speed of sound. Therefore, the presence of downstream
obstacles cannot be influential on the shock conditions before
the interaction. For this reason, it is possible to define
three different regions separated both in space and in time
during the reshaping. The domain is therefore divided into
three sub-domains, i.e. the regions respectively upstream, in
proximity and far downstream the obstacle, as exposed in fig.
2.1.

 far field region

 obstacle region

 focus region

Figure 2.1: Sketch of the partition into three parts of the computa-
tional domain: from right to left, the “Far Field Region”, the “Ob-
stacle Region” and the “Focus Region”.
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2.1.1 Multi-domain formulation on the three sub-domains

Far upstream the obstacle, the cylindrical shock is orig-
inated and propagates inwards. The one-dimensional axisym-
metrical simulation of the shock propagation in this zone,
namely the “Far Field Region” (FFR), is described in section
2.1.1.1. The two-dimensional shock-obstacle interaction and
the resulting reshaping are detailed in section 2.1.1.2, which
describes the reflections taking place in the “Obstacle Re-
gion” (OR). Finally, the polygonal shock focusing is simulated
on a two-dimensional computational domain which includes the
origin, that is the “Focus Region” (FR): the latter simulation
and the interpolation technique which allows the initializa-
tion of this calculation are illustrated in section 2.1.1.3.

2.1.1.1 Far Field Region

If the shock is assumed to be initially stable, an axisym-
metric model can be used up to the obstacle leading edges.
The shock propagation before the reshaping can be determined
by means of one-dimensional axisymmetrical calculation. The
initial conditions consist in the aforementioned cylindrical
shock-tube problem, i.e. a flow field in quiet where a pressure
and density step is imposed.

Such an initial condition results in the formation of the
converging shock as well as a contact discontinuity moving to-
wards the focus point and an outwards propagating rarefaction
wave. Besides the flow variation across these waves, unlike
the planar shock propagation, the radial distribution of the
flow quantities is not uniform and time-dependent. For this
reason, albeit some analytical solutions are available [54],
to account for the effects of non-polytropic, non-ideal ther-
modynamic models and of the initial transients, the flow field
is computed by means of numerical simulations. Although the
region upstream the obstacle is not involved in the reshaping
process, the initial pressure step must be set far enough from
the leading edges to let the necessary time for the shock front
to be reshaped and reach the origin before the contact discon-
tinuity interacts with the obstacles.
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Preliminary simulations were performed to assess the min-
imum distance rd between the numerical diaphragm and the cen-
ter: it was observed that, in the explored range of pressure
and density, for rLE = rrefLE the minimum distance corresponds to
five times the chord of the obstacles; however, when rLE is in-
creased, rd must increase too. In particular, for the highest
explored value of rLE (see chap. 4 for details), the value in-
creases up to fifteen to twenty times depending on βP. This
means that the size of the computational domain should be much
larger than the simple region where the reshaping and the fo-
cusing take place, and that a very large computational time
would be required for the full two-dimensional simulation of
the formation and propagation of the waves upstream the obsta-
cles which are of no interest for the problem under scrutiny.

This problem is overcome by means of a two-steps method. In
the first step, the formation and propagation in the far field
of the three-wave system generated by the pressure and density
step is simulated by means of a dedicated Finite Volumes solver
for the Euler equations in a cylindrical coordinates system,
described in [105, 120]. Fig. 2.2 depicts the solution of the
shock wave generated by a discontinuity with a pressure ratio
βP = 16 at a radius rd = 25. The solution is computed over a
uniform mesh of 2300 nodes, corresponding to a nodes-spacing
∆x = 0.01. With reference to the figure, this method computes
a one-dimensional axisymmetric solution with a very good com-
promise between the accuracy and the reduction of the computa-
tional time with respect to the corresponding two-dimensional
solution (the time saving consists indeed of about 95% with re-
spect to the full two-dimensional simulation).

During the second step, the solution itself is analyzed:
when the shock approaches the obstacle leading edge, the one-
dimensional simulation terminates and the solution is used to
initialize the two-dimensional simulations in the Obstacle Re-
gion. However, a portion of the one-dimensional solution is
removed, that is the region of the shock tail including the con-
tact discontinuity and the rarefaction wave. This allows to set
the diaphragm in correspondence of rd = 5c even for rLE > rrefLE :
when the shock approaches the obstacle leading edge radius, the
contact discontinuity and the rarefaction wave are far enough
from the shock wave to fall out of the Obstacle Region domain
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boundaries.

r
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0.005
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diaphragm
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Figure 2.2: Pressure and density one-dimensional radial distribution
at a dimensionless time of 2.5× 10-2 after the breakup of a numerical
diaphragm located in rd = 25 with βP = 16, corresponding to the refer-
ence value. From left to right, the shock wave, the contact disconti-
nuity and the rarefaction are visible. The simulation is performed on
a uniform grid, ∆x = 0.01.

The termination of the one-dimensional simulation and the
following switch to the corresponding two-dimensional one is
triggered by the shock passage by a pre-determined radius. In-
deed, when the shock is approaching the obstacle leading edge,
i.e. in r1D end = rrefLE + ∆r, the calculation is stopped and the
interpolation of the solution over the Obstacle Region domain
is performed. ∆r is an arbitrary quantity, usually ∆r = 1,
set to prevent the cut-off of a part of the solution in corre-
spondence of the shock. As it is well known, artificial vis-
cosity in shock-capturing numerical methods [104, 121, 122],
results in a spreading of the shock wave over multiple nodes,
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although it consists in a first-type discontinuity in the Eu-
ler equations framework. Therefore, its numerical represen-
tation is a continuous ramp of finite amplitude, and the flow
field presents slight perturbations also in front of the av-
erage shock position Rs. These perturbations are part of the
numerical solution, and therefore the one-dimensional simu-
lation must be terminated before Rs = rrefLE as a precautionary
measure.

The actual detection of the shock position is performed by
means of a novel method, based on Payne’s. A detailed descrip-
tion of the method will be provided in sec. 2.2.

2.1.1.2 Obstacle Region

The reshaping process is investigated by means of a fully
two-dimensional simulation performed on the sub-domain de-
picted in fig. 1.2, namely the elementary domain defined in
sec. 1.1.1. The multi-domain approach allows to exclude from
the computational domain the tail of the distribution of den-
sity, momentum and total energy far upstream the obstacles,
that include phenomena of no relevance such as the contact dis-
continuity and the rarefaction wave and, consequently, to re-
duce the number of nodes and the required computational time.
This is accomplished by initializing the two-dimensional cal-
culations with the linear interpolation on the Obstacle Re-
gion mesh of the solution of the previous one-dimensional ax-
isymmetrical simulation. Boundary conditions of the external
boundary are of non-reflecting type.

In order to capture the complete time-dependent reshaping
process, it is necessary to include in the Obstacle Region not
only the portion strictly surrounding the obstacle, but also
a significant zone downstream. The Obstacle Region, therefore
is defined as

[
rmin,rmax

]
×
[
0, ξ

]
, being rmin the internal bound-

ary radius and rmax > rrefLE + ∆r, to include a small overlapping
area with the Far Field Region, necessary to the interpolation.

Figure 2.3 illustrates the correspondence of the density
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Figure 2.3: Results of the simulations of the propagation of a shock
generated by an initial discontinuity located at rd = 25, with a pres-
sure ratio βP = 16. The simulation is performed on a uniform grid,
∆x = 0.01, and the solution is for a dimensionless time of 0.05 after
the numerical diaphragm breakup. (a) Density profiles in the area of
overlapping between the one-dimensional simulation (black) and a ra-
dial section of the initialized two-dimensional simulation (gray) at
the beginning of the simulation of the Obstacle Region. (b) Numeri-
cal Schlieren on the initial condition imposed on the two-dimensional
domains (bottom: nobs = 8, top: additional part for nobs = 6), showing
the possibility of using the same one-dimensional solution for the
initialization of diverse two-dimensional simulations.

profiles between the one-dimensional solution and a radial
section of the two-dimensional case in the overlapping zone.
The interpolation between the Far Field Region and the Obsta-
cle Region is a simple task, due to the fact that the source
one-dimensional and ordered grid is uniform: the relative po-
sition of old and new nodes is immediately calculated by com-
paring their radial coordinates only.

The advantage offered by this interpolation is two-fold:
on one hand the simulation of each single problem is faster
with respect to a fully two dimensional simulation; on the
other hand, each one-dimensional simulation can be used for the
initialization of several two-dimensional simulations, which
share the same initial conditions and differ from each other
only because of the obstacles geometrical parameters.
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Fully two-dimensional numerical simulations are carried
out using the FlowMesh code, developed at the Department
of Aerospace Science and Technology of Politecnico di Mi-
lano [106, 107]. The solver is a standard Finite-Volume
unstructured-grid solver; the unsteady Euler equations for
compressible inviscid flows are solved by using a high-
resolution flux (centered and Roe scheme, van Leer limiter,
see [104]) and by using the Backward Euler implicit time in-
tegration scheme. The latter is only first-order accurate and
was preferred over the e.g. second- and third- order Backward
Differentiation Formulas for robustness.

The construction of the mesh for the discretization of
the Obstacle Region is performed by the program UMesh2D [123],
based on Delaunay triangulation of a set of points recursively
inserted by means of the Voronoi segment technique [124]. In
the mesh produced, all the elements are triangles with at most
one edge on a boundary of the domain.

The switch from the simulation on the Obstacle Region to the
Focus Region is triggered by the shock position. The detection
of the two-dimensional shock location is performed by means of
a novel method, which will be duly described in sec. 2.2.

2.1.1.3 Focus Region

Due to the adopted mesh generator for the discretization of
the Obstacle Region [123], the triangular mesh elements have
either zero or one edges on a computational domain boundary.
For this reason, if rmin = 0 that is if the Obstacle Region in-
cludes the focus point there must be at least two elements with
a vertex in the origin. As discussed in section 1.1, the angle
ξ of the elementary domain is ξ = π/nobs, resulting in triangular
elements at the origin associated to a minimum angle of about
ξ/2 = π/2nobs. As such, in cases with several obstacles, the ele-
ments in the origin present an excessively large aspect ratio,
which can jeopardize the accuracy of the calculation. This has
been verified in preliminary numerical simulations especially
from twenty four obstacles up. The simulation of the focusing
is therefore performed on a dedicated domain, namely the “Focus
Region”, which includes the a close-up of the zone where all the
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edges of the polygonal shock collapse and a small overlapping
region with the Obstacle Region.

The angular size of the computational domain related to this
third simulation is not of π/nobs, as in the Obstacle Region,
but an integer multiple of it, in order to avoid overstretched
elements at the origin. If on one hand this results in a com-
putational domain larger than theoretically necessary the re-
production of the elementary sub-domain decreases the positive
effect of the symmetry on the other hand numerical errors due
to the overstretched elements can lead to a significant re-
duction of the accuracy or even prevent to obtain meaningful
results.

Figure 2.4 illustrates the comparison between the vertex
element angles without and with a multi-domain approach in a
twenty-four-obstacle case. It is observable that even though
the vertex cutoff does not affect the grid on a macroscopic
scale (see, e.g, fig. 2.4(c)), the difference becomes relevant
close to the origin (pictures 2.4(b) and 2.4(d)).

The simulation over this domain is initialized by means of a
linear interpolation of the solution coming from the Obstacle
Region. The angle in the origin of the Focus Region domain is an
integer multiple of π/nobs, usually π/2. Figure 2.5 illustrating
the local improvement in the quality of the mesh in correspon-
dence of the origin in the multi-domain case and results in the
following refer to a domain of the Focus Region spanning 2π for
higher clarity.

The solution in the Focus Region is initialized by means of a
linear interpolation from the Obstacle Region. This requires
the detection of the correspondence between the new grid and
the old mesh which, unlike the 1D-2D case, cannot be direct,
because of the use of unstructured grids for two dimensional
simulations. It is therefore necessary, for each Focus Region
node, to determine its parental element in the Obstacle Region
mesh.

This problem, namely the “grid tagging”, belongs to the
computational geometry branch of topology. For the specific
nomenclature, please refer to [125]. The algorithm to deter-
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Figure 2.4: Obstacle Region sub-domains, (a) including the focus
point and (c) with cut-off before the focus point. Close up in corre-
spondence of the vertex (b) of the stretched elements and (d) of the
higher quality mesh. For all, nobs = 24 (the grid spacing of figs. (a)
and (c) is larger than the one actually adopted for visual clarity).
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Figure 2.5: Focus Region mesh (2π case) and close-up in correspondence
of the focus point.

mine the correspondence detection is taken from former works
on grid adaptation [126], based on a-posteriori Collision De-
tection techniques [127]. Indeed, for unstructured meshes of
non-monotone elements [125], the solution is non-trivial, and
therefore the algorithm recalls the non-hierarchical image-
based two-dimensional virtual ray casting method.

For symplectic mesh elements, the whole algorithm for the
correspondence detection and for the solution initialization
is described in the following:

1. For each node J of the new grid, it is determined which
part of the Focus Region computational domain it belongs
to. With reference to fig. 2.6, the intersection between
the Obstacle Region and the Focus Region outlines three ar-
eas: zone I represents the area the shock has not reached
yet at the end of the Obstacle Region simulation, zone II
is the overlapping between the two regions where, there-
fore, the solution is known and zone III identifies the
part of the domain where the solution is not known, but can
be evaluated by virtue of the symmetry of the problem.
Four quantities are now defined: rmin is the radius of the
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inner boundary of the Obstacle Region, whereas rmax is the
radius of the outer boundary of the Focus Region. The ele-
mentary domain spans from ψmin, usually 0, to ψmax = ψmin+ξ.
The case of rJ > rmax, corresponding to the gray area in
fig. 2.6, is not discussed, because the goal of this third
part of the simulation is to investigate only the focus-
ing of the shock, and does not need to take into account
the flow in the Far Field Region. The attribution of J

zone I zone II

zone III

Figure 2.6: Sketch of the subdivision of the Focus Region domain into
three areas, requiring different treatments (relative proportions
among the three zones exaggerated for clarity purposes).

to the correct zone is accomplished by comparing the po-
lar coordinates of point J

(
rJ,ψJ

)
with the boundary ones[

rmin,rmax
]
and

[
ψmin,ψmax

]
of the Obstacle Region domain.

(a) If rJ ≤ rmin, J belongs to zone I and it is possible to
skip the interpolation stage and directly attribute to
J the solution corresponding to the initial internal
state, being J still unaffected by the shock passage.
No other operation is required for the initialization
of the solution on J:

ρJ = ρ
0
i,

mJ = 0,

EtJ = E
t,0
J .

(2.1)
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(b) Otherwise, if J belongs to zone II, the fictitious co-
ordinates

(
x′J,y

′
J

)
which will be used later for the cou-

pling of J with its parental element are assumed to
correspond to its actual coordinates

(
xJ,yJ

)
.

(c) Eventually, for J located in zone III, that is if rJ ∈[
rmin,rmax

]
but ψJ /∈

[
ψmin,ψmax

]
, considerations on the

symmetry apply: the integer parameter kJ is calculated
as

kJ =

⌈
ψJ

ξ

⌉
(2.2)

and therefore the fictitious polar coordinates(
r′J,ψ

′
J

)
, as reported in fig. 2.7, are attributed as

follows:

i. For kJ % 2 = 1, the symmetry to be applied is
rotational i.e. a reflection applied for an even
number of times and therefore(

r′J,ψ
′
J

)
=
(
rJ,ψJ - (kJ - 1) ·ψmax

)
. (2.3)

ii. For kJ % 2 = 0, the symmetry is a simple reflection,
and therefore(

r′J,ψ
′
J

)
=
(
rJ,kJ ·ψmax -ψJ

)
. (2.4)

After this transformation, fictitious Cartesian coor-
dinates can be computed:(

x′J,y
′
J

)
=
(
r′J · cos

(
ψ′J
)
, r′J · sin

(
ψ′J
))
. (2.5)

The point whose coordinates correspond to
(
x′J,y

′
J

)
will

be denoted as J′ in the following.

2. For each element m of the Obstacle Region mesh, the three
parameters δA-BC, m, δB-CA, m and δC-AB, m are evaluated:

δA-BC, m =
ΛBC,1 · xA - yA + ΛBC,0√

Λ2
BC,1 + 1

, (2.6a)

δB-CA, m =
ΛCA,1 · xB - yB + ΛCA,0√

Λ2
CA,1 + 1

, (2.6b)

δC-AB, m =
ΛAB,1 · xC - yC + ΛAB,0√

Λ2
AB,1 + 1

, (2.6c)
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Figure 2.7: (a) Rotational and (b) reflectional symmetries depending
on kJ (and kL) which allow to compute the fictitious coordinates of
the Focus Region nodes. The gray areas represent the overlapping re-
gion with the Obstacle Region, whereas while areas belong to the Focus
Region only.

where ΛMN,1 and ΛMN,1 represent respectively the angular
coefficient and the ordinate-intercept of the straight
line passing by each couple of vertexes M,N of the ele-
ment m, and

(
xQ,yQ

)
are the coordinates of point Q /∈ MN,

that is the element third vertex, as reported in fig. 2.8.

Consequently, δQ-MN, m is a “distance with sign” between the
vertex Q and the opposite edge MN of the triangular mesh.

3. For each node J, the same definition of the parameters
δJ′-MN, m is applied to evaluate the “distance with sign” be-
tween J′ and each edge MN belonging to the element m of the
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Figure 2.8: Definition of the three parameters δA-BC, m, δB-CA, m and
δC-AB, m of element m of the Obstacle Region mesh.

Obstacle Region mesh:

δJ′-BC, m =
ΛBC,1 · x′J - y′J + ΛBC,0√

Λ2
BC,1 + 1

, (2.7a)

δJ′-CA, m =
ΛCA,1 · x′J - y′J + ΛCA,0√

Λ2
CA,1 + 1

, (2.7b)

δJ′-AB, m =
ΛAB,1 · x′J - y′J + ΛAB,0√

Λ2
AB,1 + 1

. (2.7c)

With reference to fig. 2.9, depending on the relative po-
sition between J and m, the signs of δJ′-MN, m may assume
diverse values:

4. For each J, the three products are calculated:

ςBC,m = δA-BC, m · δJ′-BC, m, (2.8a)

ςCA,m = δB-CA, m · δJ′-CA, m, (2.8b)

ςAB,m = δC-AB, m · δJ′-AB, m. (2.8c)

In accordance with the theorem of Jordan’s curve applied
to the definition of a triangle, it is immediate that, if
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Figure 2.9: Definition of the three parameters δJ′-BC, m, δJ′-CA, m,
δJ′-AB, m of element m of the Obstacle Region mesh: the case reported
in (a) is related to the match between the element and the node; vice
versa, (b) and (c) illustrate the case of no correspondence.

there exists at least one ςMN,m < 0, so J′ does not belong
to m. Otherwise, the node J′ is internal to the element m
of the Obstacle Region grid, and therefore it inherits its
solution and passes it to J. The criterion is(

min
(
ςMN,m

)
≥ 0

)
⇐⇒

(
J′ ∈ m

)
. (2.9)

Particular care is to be taken for boundary nodes in spe-
cial cases, i.e. if the domain boundaries are curved, as
illustrated in fig. 2.10. In these cases, the inclusion
criterion expressed in (2.9) is relaxed to prevent the lack
of detection of the correct parental element. The general
criterion becomes(

min
(
ςMN,m

)
≥ ε

)
⇐⇒

(
J′ ∈ m

)
, (2.10)

where ε < 0 is a tolerance. The initial value of ε, i.e.
εstart, is very close to zero, and iteratively amplified un-
til either a correspondence is found or it reaches a limit
value εlimit. This latter case results in a error message.
This occurrence has never manifested in any of the consid-
ered test cases, where the adopted meshes were fine enough
to bound the error introduced by the spatial discretiza-
tion within the maximum tolerance.

5. The reconstruction of the solution on the Focus Region do-
main is accomplished by means of a linear interpolation on
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New boundary node

Domain boundary

New mesh boundary

Old mesh boundary

Figure 2.10: Example of missing of a boundary node (◦) over the bound-
ary discretization (dimensions exaggerated for clarity).

the coordinated of J′ from the vertices of the correspond-
ing element m. Density and total specific energy, being
scalar quantities, are directly interpolated. On the con-
trary, the momentum requires a specific treatment.
Indeed, if the node J belongs to zone III, its coordinate
ψJ is transformed as described at the point (1c); more-
over, it is mandatory to keep into account that the same
transformation applies also to the vector phase angle ζm,
while the modulus |m| remains unaffected by the rotation.
To reconstruct the correct tangential component, it is
necessary first to interpolate the Cartesian expression
of the vector, and then compute the polar components: this
provides the direction that the vector would assume if J
actually belonged to zone II, like J′. Eventually, it is
necessary to recast the real vector phase depending on the
value of kJ:

ρJ = ρJ′

EtJ = E
t
J′

|mJ| = |mJ′| =
√(

mx,J′
)2

+
(
my,J′

)2
ζm,J = (-1)

kJ+1ζm,J′ +

[
kJ -

1 - (-1)kJ

2

]
ψmax

(2.11)

with ζm,J′ = arctan
(
my,J′/mx,J′

)
.
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A sketch of the union of the three computational sub-domains
is reported in fig. 2.11

Focus region

Obstacle region

Farfield region

Figure 2.11: Sketch of the union of the three sub-domains adopted in
the multi-domain approach: from right to left, the one-dimensional
axisymmetrical Far Field Region, the two-dimensional elementary Ob-
stacle Region and the two-dimensional Focus Region. Relative propor-
tions are exaggerated for clarity.

Figure 2.12 illustrates a flowchart which summarizes the
symmetry-exploiting interpolation.
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2.1.2 Verification of the multi-domain procedure

Numerical results obtained with the multi-domain procedure
are presented in this section, to assess the effectiveness of
the approach. This is achieved by comparing the multi-domain
solution with simulations performed on full domains and, when
available, analytical solutions. Moreover, the computational
times of the simulations and associated to the domain inter-
faces are reported.

All the reported results are related to the reference con-
dition, i.e shocks generated by the imposition of a density
and pressure step with βP = 16 located at rd = 25, and obstacles
with t/c = 0.14 and rLE = 7. Diverse values of nobs are observed,
i.e. 4, 8, 16 and 24. On the one hand, the number of obsta-
cles nobs is the factor determining the necessity to split the
two-dimensional region into the Obstacle and the Focus Region.
On the other hand, if the grid spacing is constant, nobs is di-
rectly influential onto the number of grid nodes, and therefore
to the computational burden of the interpolations.

The adopted thermodynamic model for the present calcula-
tions is the polytropic ideal gas one. The computational time
used by the domain interface procedure does not depend on the
thermodynamic model, in contrast to what happens for the sim-
ulations. Preliminary simulations indicate that simulations
performed with the polytropic ideal gas model are in general
faster than computations regarding the same geometry and ini-
tial conditions but with non-ideal or non-polytropic models.
Therefore, the relative cost of the tagging and of the interpo-
lation, with respect to the whole simulation, is higher in case
of polytropic ideal gas. The polytropic ideal gas model, for
this reason, is the most severe one to test the multi-domain
procedure.

The reported calculations were performed on a single core
of a six-core Xeon 2.66GHz CPU, with 2GB RAM.
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2.1.2.1 One-dimensional/two-dimensional interface

A first comparison concerns the computational times re-
quired by the simulations of the shock formation and reshap-
ing, with and without the multi-domain approach, in the cases
of eight and sixteen obstacles. Results are reported in tab.
2.1. In all four cases , the two-dimensional domains are dis-
cretized by means of triangular grids with a non-dimensional
edge size ∆x = 0.01. The computational times are scaled us-
ing the time required for the simulation of the Obstacle Re-
gion only (marked cell in Table 2.1) for nobs = 8. The time
required by the interpolation from the one-dimensional to the
two-dimensional domain is not explicitly reported because it
is about 4 orders of magnitude smaller, and therefore negligi-
ble, regardless of ∆x.

Ref. time = 674min 8 obstacles 16 obstacles

1D + 2D

1D 0.13

2D 1 0.58

total 1.13 0.71

2d only 28.69 15.89

Table 2.1: Computational time relative to the simulation of the shock
wave in the Far Field and in the Obstacle Region (βP = 16, rLE = 7,
t/c = 0.14).

Fig. 2.13 illustrates the correspondence between the solu-
tions obtained by means of a multi-domain approach and a two-
dimensional calculation only. They depict the flow field in
the Obstacle Region when the obstacle is about to reach the in-
ternal boundary. Reflections are generated by an array of 16
obstacles, which provide a more severe benchmark due to the
stronger disturbance introduced with respect to nobs = 8.

The differences, both in the pressure profile along the
upper symmetry boundary and in the density contours, are neg-
ligible, as shown also in fig. 2.3, which illustrates the ini-
tialization of the two-dimensional calculation.
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Figure 2.13: Correspondence between a full two-dimensional (◦, top)
and a multi-domain simulation (full line, bottom) at the end of the
computation in the Obstacle Region: (a) pressure profiles on the up-
per symmetry boundary and (b) density contours in the domain. Results
are reported at a dimensionless time-to-focusing of about 0.2 and con-
cern the reshaping of a cylindrical shock wave with Mach number at the
impingement of Ms = 2.7 due to the interaction with an array of 16 ob-
stacle of reference geometry. The simulations are performed on meshes
with a grid spacing of ∆x = 0.01, consisting of about 50000 nodes for
the two-dimensional domain representing the Obstacle Region in the
multi-domain simulation.

2.1.2.2 Two-dimensional/two-dimensional interface

Figure 2.14 shows the simulation of the reshaping of a shock
by means of four obstacles: in this case the high angle of the
domain in correspondence of the focus point (π/2) allows to ob-
tain regular elements everywhere. Therefore, the results of
simulations performed on this domain can be used to explore
the goodness-of-fit between the two cases, respectively with
and without interpolation.

Table 2.2 provides a comparison among the overall compu-
tational times required for the simulation of the reshaping
and focusing depending on the size of the elements; in all the
cases reported below the final grid consists of a quarter cir-
cle, with unitary radius. The times related to the interface
(reference grids, ∆x = 0.01) are 36s and 31s (respectively for
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(a)
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0
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Figure 2.14: Density profiles for nobs = 4: (a) coupling between the
result of the simulation of the Obstacle and the Focus Region (π/2
case) and (b) close-up of the two domains overlapping zone (contours
represent the interpolated solutions, isopycnic lines the old one).
Results are reported at a dimensionless time-to-focusing of about 0.1
and concern the reshaping of a cylindrical shock wave with Mach number
at the impingement of Ms = 2.7 due to the interaction with an array of
4 obstacle of reference geometry. The simulations are performed on
meshes with a grid spacing of ∆x = 0.01, consisting of about 200000
nodes for the Obstacle Region domain.

eight and sixteen obstacles), whereas for the simulation of the
reshaping 24 minutes and 28 minutes.

It can be observed that the additional time introduced by
the interpolation is always negligible with respect to the com-
putational time required by the simulation of the shock reshap-
ing.

The vertex angle of the Focus Region is larger than ξ =
π/nobs, and therefore the computational time corresponding to
the simulation of the Obstacle Region is larger that the cor-
responding time of a simulation carried out on an elementary
domain. However, the global time for the two-dimensional
simulations reshaping and focusing must be compared with the
time required by the the calculation in the alternative possi-
ble configuration, that is the simulation of the reshaping and
focusing on a single non-elementary domain, which is always
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larger.

8 obstacles 16 obstacles

∆x OR interpolation FR OR interpolation FR

0.007 6.96 2.32× 10-3 0.07 4.02 1.01× 10-3 0.08

0.01 1 8.90× 10-4 0.04 0.7 7.67× 10-4 0.04

0.05 0.09 1.02× 10-4 0.02 0.08 9.72× 10-5 0.02

0.1 0.08 8.51× 10-5 0.01 0.06 7.16× 10-5 0.01

Table 2.2: Computational times relative to the simulation of the re-
shaping (Obstacle Region domain, OR) and the focusing (Focus Region
domain, FR), and to the intermediate interpolation of the solution
(βP = 16, rLE = 7, t/c = 0.14).

The result of the interpolation from a sixteen-obstacle-
case to a 2π final computational domain is shown in figure 2.15;
the Obstacle Region is the slice on the right side with black
edges. The external radius of the Focus Region domain is exag-
gerated to highlight the goodness-of-fit between the original
and interpolated solutions. The analogous result is reported
in fig. 2.16, concerning an eight obstacles case.

Figs. 2.15 and 2.16 report density (a) and velocity modu-
lus (b): this allows a double check on the accuracy of the grid
tagging and of the solution interpolation. Indeed, the den-
sity is a quantity directly interpolated, whereas the velocity
is evaluated a posteriori as |u| = |m|/ρ, and therefore includes
interpolation errors on both ρ and |m|. Moreover, stream traces
reported in fig. 2.15(b) indicate a good application of the
correction on the phase of vectorial quantities described at
point 5 of sec. 2.1.1.3.
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Figure 2.15: (a) Density field and (b) velocity modulus in the over-
lapping zone between the Obstacle Region and the Focus Region domains,
for nobs = 16 and reference Ms and obstacle geometry. Results are re-
ported at a dimensionless time-to-focusing of about 0.1. The sim-
ulations are performed on meshes with a grid spacing of ∆x = 0.01,
consisting of about 50000 nodes for the Obstacle Region domain.
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Figure 2.16: (a) Density field and (b) velocity modulus in the over-
lapping zone between Obstacle Region and the Focus Region domains,
for reference conditions. Time-to-focusing of about 0.1, ∆x = 0.01,
(about 100000 nodes for the Obstacle Region domain).
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It is worth noticing that a side advantage offered by the
simulation of the reshaping of converging shocks by means of
this procedure is the possibility of observing the influence of
small deviations from the symmetry. It is in fact possible to
observe that, when symmetry conditions are not imposed any more
along physical symmetry lines, i.e. with non-elementary do-
mains, the simulations continue to produce symmetrical polyg-
onal shocks.

2.2 Detection of the shock passage and position

Within this work, to trace the shock location in time is a
recurring necessity. This means either to know the shock po-
sition at a given time or to detect the occurrence of the shock
passage by a given point.

For this reason, a method has been developed and it is de-
scribed in the following. The procedure is applied within this
work for a number of purposes, e.g. the multi-domain method
described in 2.1, the verification of the numerically computed
shock position against theoretical and experimental results
(chap. 4) and the observation of the effects of the thermody-
namic model on the propagation of the cylindrical and polygonal
shocks performed in chap. 5.

The evaluation of the shock position is performed by means
of a novel method, based on Payne’s. The original procedure de-
veloped by Payne [61] for one-dimensional shock waves assumes
the shock position Rs to be in correspondence of the average
pressure across the jump:

P(Rs) =
Pb + Pf

2
(2.12)

where subscripts f and b mean respectively in front and behind
the shock. According to [54] and others, for one-dimensional
isolated implosions with monotone trend of pressure behind the
shock, Pb and Pf are to be taken respectively as the maximum and
the minimum pressure values in the close proximity of the shock
front. For shock waves converging in a uniform medium, Pf can
be simply evaluated as Pf = P(r = 0). For reshaped implosions,
to account for the strong non-uniformity of the shock-induced
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flow field, some modifications to Payne method are introduced
for the first time in this work. The main features the procedure
has to deal with are:

• The two-dimensional shock shape: with reference to fig.
2.17, which depicts the numerical simulation of the re-
flection in reference conditions and nobs = 4, the evalu-
ated shock radius may vary a lot along the azimuthal coor-
dinate. In the example figure, the difference between the
minimum and maximum radii (evaluated respectively along
the obstacle and the upper symmetry boundary) is of about
6%.

Figure 2.17: Numerical Schlieren of a reflection in reference con-
ditions (with nobs = 4) highlighting the high variance of the shock
radial position with respect to the azimuthal coordinate.

• The complex shock-induced flow field, which makes the
choice of the post-shock state non-unique, both for pres-
sure and for other quantities. The post-shock distribu-
tion, indeed, presents several jumps previous shock re-
flections, contact discontinuities generated in corre-
spondence of the triple points, etc so that the maximum
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pressure value is not necessarily in correspondence of the
shock wave. The solution to this problem is not a sim-
ple task: indeed, for pressure distribution similar to
the one represented in fig. 2.13(a), Pb corresponds to
the minimum-radius local maximum of pressure, which can
be easily detected by windowing the pressure distribution.
On the contrary, for diverse configuration Pf may continue
to grow in a continuous way even behind the shock. This
is depicted in fig. 2.18, which illustrates the pressure
and the density in correspondence of the upper symmetry
boundary (βP = 27, nobs = 16, t/c = 0.21, rLE = 17.5): even if
the shock is located at x ≈ 4.5, the first local pressure
maximum is in x ≈ 5.

X
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Figure 2.18: Non monotone pressure and density trend behind the shock:
the location of the maximum of P is not in correspondence of the shock.

• The necessity of two criteria, one for the detection of the
shock passage by a given point (which is necessary in the
multi-domain procedure, as described in sec. 2.1) and one
to trace the shock position at a given time (as in Payne’s
method) for the comparison between numerical, theoretical
and experimental results.
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Each of these tasks is solved with a novel technique described
in secs. 2.2.1 and 2.2.2.

2.2.1 Shock position at a given time

At each azimuth, i.e. along each radius, and at each time
step τk, an array of np equally distributed probes measures the
pressure value Pj,k with j the probes index and evaluates the
following quantities:

drPj,k =
Pj,k - Pj-1,k
rj - rj-1

j = 2,np (2.13a)

d2rPj,k =
Pj+1,k - 2Pj,k + Pj-1,k(

rj - rj-i
)2 j = 2,np - 1 (2.13b)

which represent the first and second order Finite Differences
of pressure along the radius (identified by subscript r). The
index k identifies he time level.

With reference to fig. 2.19, at any time step and for a
given azimuth, a variety of pressure profiles can be encoun-
tered across the shock. The common features among these pres-
sure distributions are that the shock is compressive and that
the ramp approximating the shock has increasing slope near the
shock base. Figure 2.20 represents a numerical pressure spa-
tial distribution, highlighting the inflection point near the
midpoint of the shock-approximating ramp. The figure depicts
the pressure along the upper symmetry line of a reshaped shock
in reference conditions, governed by the polytropic van der
Waals gas model.

For a fixed azimuth, therefore, Rs(τk) is obtained as the
minimum radius of the probe j where all the following condi-
tions are satisfied:

drPj,k > 0 (compression shock), (2.14a)

d2rPj,k ≤ 0 (inflection point or peak), (2.14b)

Pj,k - Pi > ε
′ (numerical oscillations). (2.14c)
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Figure 2.19: Sketch of the possible pressure profile along the ra-
dius for given azimuth and time. Solid black lines represent the
common part of the pressure distribution, dashed lines the various
detectable trends.

It must be noted that first-order derivatives are approx-
imated by means of Backward Finite Differences, whereas Cen-
tered Finite Differences are used to discretize second-order
derivatives (2.13). This choice is motivated by two possi-
ble pressure distributions along the ramp which approximates
the numerical shock: it can either present an inflection point
(upper gray dashed line in fig. 2.19) or it can have always
increasing slope until a peak value (lower gray dashed line).
In the first case, the inflection point is assumed to repre-
sent the shock position because in most cases it is near the
ramp midpoint; in the second case, the shock is assumed to be
located in correspondence of the peak. Both these configura-
tions are well described by the conditions (2.14a) and (2.14b).

The third condition is included to identify numerical os-
cillations, which would cause the detection of false positives
in correspondence of tiny high frequency pressure oscillations
in the unperturbed region of the domain. Therefore, a further
condition is required on the value of Pj,k, i.e. (2.14c), which
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Figure 2.20: Pressure ratio P/Pi versus radius measured by probes along
the lower symmetry boundary at time-to-focusing of 0.04 with respect
to the total time-to-focusing from the leading edge reflection (ref-
erence conditions).

must differentiate from Pi by a threshold ε′ > 0 which depends
on the shock intensity.

The procedure described aboves allows to detect the po-
sition of a shock wave along a radius, i.e. either a one-
dimensional shock wave or a two-dimensional shock along a
fixed azimuthal coordinate. The radius of the front of a two-
dimensional shock wave, on the contrary, depends on the az-
imuthal coordinate, and therefore the method must be exended
to the two-dimensional case. According to [97], the extension
to two-dimensional shock is straightforward: the shock posi-
tion at a given time step is obtained by averaging among the
diverse shock positions detected at different azimuth.

The main advantage of the above procedure is the strong sta-
bility, because it is based on the solution in front of the
shock, and therefore does not require the knowledge neither of
Pb, nor of the radius where P = Pb, which suffer from higher
uncertainty. It might be necessary, however, to trace Re, de-
fined as the radius of the first node immediately behind the
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shock.
Note that, in general, Re 6= Rs, since the shock front has a

finite thickness due to the numerical viscosity. As for Rs, due
to the presence of a non-uniform, non-monotone shock tail, the
detection of Re requires a special treatment. With reference
to fig. 2.19, four possible configurations of shock tail are
detectable. In the first one, represented by the lower gray
line: the concavity of the pressure profile along the shock is
positive until r = Rs. In this case the conditions immediately
behind the shock are in correspondence of the peak, and there-
fore Re ≡ Rs. On the contrary, if the shock profile exhibits an
inflection point (upper gray line in fig. 2.19) the pressure
distribution in the shock tail immediately behind the shock can
be either monotonically decreasing, or it presents a plateau or
eventually continue growing (black dashed lines). In all the
above situations, however, a common feature is observed. In-
deed, the curvature of the pressure profile assumes the largest
value in r = Re with respect to the surrounding nodes. The shock
curvature is here well approximated by its concavity, which al-
lows to rewrite the above requirement into a problem of local
maximum of the absolute value of the second derivative in the
neighborhood of Rs.

Therefore, Re is located in correspondence of the probe
where it is verified that:

Re ≥ Rs, (2.15a)

d2rPj,k < 0 (negative concavity), (2.15b)

d2rPj,k < min
(
d2rPj+1,k, d2rPj-1,k

)
(2.15c)

(largest function curvature).

In the detection of Re, no oscillations treatment is required.

The knowledge of Rs allows to perform comparisons between
the numerical shock position (as in section 2.1.2.2) and to
restrict the range where Re is searched, with the consequent
improvement of the accuracy of the result. Re, on the contrary,
is used to determine the shock Mach number (see chap. 4) and the
shock propagation along the thermodynamic P - v plane in chap.
5.
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2.2.2 Shock passage by a given point

As stated before, the domain switch in the multi-domain ap-
proach is triggered by the passage of the shock by a given
“alert radius” ra. In this case, therefore, it is necessary
to monitor the state of this point at diverse time steps, and
to set a criterion to determine the occurred shock passage.

Two solutions can be adopted. The first one corresponds to
the so-called “a posteriori” method, in accordance with the
nomenclature adopted in the studies on the Collision Detection
[127]. It consists in determining the shock position at each
time step by means of the method previously described, and to
define the time of occurred passage τs such that

Rs(τs) = ra. (2.16)

Due to the temporal discretization of the solution, however,
in most cases the alert radius is expected to fall between the
shock positions detected in two consecutive time steps, i.e.
ra ∈

[
Rs(τk+1),Rs(τk)

]
. At best, τs can be defined as a weighted

average between the last time step prior to the shock passage
and the first time step after the occurrence of the passage:

τs = τk ·
ra - Rs

(
τk
)

Rs
(
τk+1

)
- Rs

(
τk
) + τk+1 · Rs

(
τk+1

)
- ra

Rs
(
τk+1

)
- Rs

(
τk
). (2.17)

In the multi-domain framework, the solution used to initialize
the simulation on the following domain is, for caution, the
one evaluated at τk, hereafter named τ′k. The error can be mini-
mized by placing a huge number of probes in the domain, and by
adopting a very fine time step, but both these solutions cause
a relevant growth of computational times.

Moreover, it can be noted that Rs is not the best candidate,
because it is located near the midpoint of the ramp approximat-
ing the shock. As described in sec. 2.1.1.1, the artificial
viscosity causes the spread of the shock over multiple nodes.
Even for fine grids, the ramp which approximates the shock wave
can have a non-negligible amplitude, and therefore a certain
amount of time (significantly more than one time step) elapses
between the beginning of the shock passage and the instant de-
tected by eq. (2.17). If the shock detection is used to trigger
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the computational domain switch in the multi-domain approach,
the simulation must be stopped at most at the beginning of the
shock passage, and therefore Rs cannot be adopted to identify
the transit of the shock.

The second and most eligible method is based on the moni-
toring of the temporal evolution of the solution in ra: even in
this case, the pressure shows very different trends depending
on the geometry and the operating conditions, but some common
features can be still identified. These are the compressive
nature of the shock and the presence of an inflection point, as
illustrated in fig. 2.21.
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Figure 2.21: Pressure ratio P/Pi versus time measured by a probe lo-
cated in (0.8, 0.0) (reference conditions).

Similarly to the detection of Rs, the following quantities
are defined, which approximate the first and second partial
derivatives of the solution with respect to time (identified
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by the subscript τ):

dτPj,k =
Pj,k+1 - Pj,k-1
τk+1 - τk-1

, (2.18a)

d2τPj,k =
Pj,k+1 - 2Pj,k + Pj,k-1(

τk+1 - τk-1
)2 . (2.18b)

The shock passage time τ′s is the minimum time where the follow-
ing conditions are satisfied:

dτPj,k > 0, (2.19a)

d2τPj,k ≤ 0, (2.19b)

Pj,k - Pi > ε
′′, (2.19c)

with the sole distinction that also the first order finite dif-
ference is centered.

By comparing figs. 2.20 and 2.21, the choice of adopt-
ing τ′s as representative of the time of passage of the
shock corresponding to the inflection in the pressure tempo-
ral profile appears to be more precautionary than the choice
of the time for which Rs ≡ ra.

A further cautionary measure is adopted when the detection
of τs applies to trigger the domain switch in the multi-domain
framework: the solution adopted to initialize the following
simulation is the one evaluated at

τs = τ
′
s -
∣∣τ′s - τ′k∣∣, (2.20)

which individuates the beginning of the pressure ramp in time.

The above procedure describes the detection of a shock pas-
sage in the one-dimensional framework.

The extension to the two-dimensional case, due to the prac-
tical application of this method, cannot be performed simi-
larly to the analogous two-dimensional extension of the pro-
cedure for the radius evaluation at a given time, i.e. by com-
puting the arithmetic mean among the τs evaluated at differ-
ent azimuthal coordinates. As depicted in fig. 2.17, indeed,
the spatial variance of the shock radii is very large. While
testing the proposed method, it was observed that the temporal
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difference between the average and the minimum computed τs, was
large enough to span a whole ramp of pressure in time.

In the analysis of two-dimensional simulations, therefore,
the procedure provides to place an array of probes in r = ra at
diverse azimuthal coordinates and to monitor the solution on
each of them. The simulation must be stopped as soon as the
first of them detects the passage of the shock in accordance
with eq. (2.20), i.e. at τ = min

ψ

(
τs
(
ψ
))
.

2.2.3 Verification of the multi-domain approach
combined with the shock detection method

To check the validity of the multi-domain approach together
with the novel method for the detection of the shock passage,
the twenty-four obstacle case is analyzed. Unlike the eight-
and sixteen-obstacle cases described in sec. 2.1.2.2, when
nobs = 24, the poor quality of the elements in the origin pre-
vents to obtain sufficiently accurate solutions. Therefore,
the solution obtained by means of the multi-domain approach
cannot be directly compared to the one obtained to a single, el-
ementary domain. For this reason, the reference case used for
the comparisons is the simulation performed on a domain which
includes two obstacles, in order to reduce the aspect ratio of
the elements at the origin (named “doubled domain”, see figure
2.22). It must be noted that the straight discontinuity per-
pendicular to the bisecting line at r ≈ 9 (fig. 2.22(a)) is
the Mach stem of the mutual Mach reflection of waves A gener-
ated by the two obstacles. This is evident in fig. 2.22(b),
which reports the pressure gradient magnitude: if the density
jump were actually the contact discontinuity originated at the
numerical diaphragm breakup, the related pressure jump should
be almost null, being the one-dimensional axisymmetrical slip
line isobaric.

The shock position, evaluated by means of the novel method
described in sec. 2.2, is plotted as a function of time in fig.
2.23. The shock position obtained by the multi-domain simula-
tion is compared to those provided respectively by experimen-
tal data from the reference case, a calculation performed on
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(a)

(b)

Figure 2.22: (a) Numerical Schlieren and (b) pressure gradient mag-
nitude of the twenty-four obstacle case on a doubled domain. Results
are reported at a dimensionless time-to-focusing of about 0.2 and con-
cern the reshaping of a cylindrical shock wave with Mach number at the
impingement of Ms = 2.7 due to the interaction with an array of 24 ob-
stacle of reference geometry. The simulations are performed on meshes
with a grid spacing of ∆x = 0.01, consisting of about 60000 nodes.

an elementary domain without the multi-domain approach and a
self-similar solution in the form described in the Introduc-
tion, at sec. “The implosion problem” [39]. In accordance with
[88, 97], indeed, the convergence of polygonal shocks with a
certain degree of symmetry is ruled by a power law, whose ex-
ponent α weakly depends on the thermodynamic model and on the
shock shape. Due to the large number of obstacles, α is ex-
pected to be very close to the Guderley’s cylindrical shock’s
(0.834), which is indeed adopted for the assessment.

Figure 2.23 depicts a comparison among the analytical so-
lution (full line) and the results of the simulations: it can
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be observed that the multi-domain approach and the simula-
tion performed on the doubled domain provide very close so-
lutions (the small deviation from Guderley’s solution can be
attributed to the non perfect circularity of the shock front).
On the contrary, closer to the focusing, the simulation on the
poor quality grid deviates significantly from reference val-
ues.

Results in fig. 2.23 allow to observe that both the
multi-domain approach and the method for the shock posi-
tion detection provide good results. Indeed, the solu-
tion computed on the doubled domain (indicated by the sym-
bol ∗), initialized by means of the interpolation from the
one-dimensional simulation, shows good accordance with Gud-
erley’s law. This indicates the accuracy of both the one-
dimensional/two-dimensional domain interface and the shock
position detection. The two-dimensional/two-dimensional do-
main interface can be assessed by observing the solution com-
puted by means of the multi-domain approach (symbol ◦ in fig-
ure), which presents a satisfactory overlapping with the ref-
erence case, i.e. the solution computed on the doubled domain.

For the same case, the pressure ratios at the focus point
P0/Pi are plotted as functions of time in figure 2.24. The ac-
cordance among the results of the simulations performed on the
doubled domain and those obtained by means of the multi-domain
approach is very good, whereas the sharp domain underestimates
the peak value of the pressure, and poorly captures its trend
along time. It must be observed that the value of ξ of the Focus
Region does not affect the quality of the solution, provided it
is sufficiently large (π/2 and π/12 in figure).
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Figure 2.23: Shock position as function of normalized time: com-
parison between Guderley self-similar solution (full line) and the
results of the calculations performed on the doubled domain (∗),
with the multi-domain approach (◦) and on the elementary domain (•)
(βP = 16, t/c = 0.14, rLE = 7, nobs = 24).
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Figure 2.24: (a) P0/Pi at the focus point versus time calculated with
diverse methods: doubled domain (full black line), multi-domain ap-
proach with vertex angle of π/2 (◦), multi-domain with vertex angle
of π/12 (∗) and elementary domain (full gray line). (b) Magnification
in correspondence of the pressure peak (βP = 16, t/c = 0.14, rLE = 7,
nobs = 24).
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Cylindrical shock reflection over circular-arc obstacles

[. . . ] a practice has crept into the highest
ranks of the polygons of having their children,
when barely a month old, reshaped in the state
clinic. The frame is broken in many pieces, which
increases the many-sideness. This operation is
exceptionally dangerous only a small percentage
of the children survives it. But parental vanity
drives the aristocrats to subject nearly all the
children to it.

DIONYS BURGER, SPHERELAND

This chapter is dedicated to the phenomenological descrip-
tion of the reflection of curved shocks waves over curved
walls.

Before approaching the investigation of the reshaping and
focusing of implosions, which will be treated in detail in
chaps. 4 and 5, a study on the reflection phenomenology is
performed. Focusing on the physics of the reflection, indeed,
is useful to determine parameters having an explicit influ-
ence on the polygonalization and, eventually, to isolate the
range of each parameter for which the reshaping can be actu-
ally achieved.

In the first section of the chapter, the setup of numerical
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experiments is described, in terms of Design of Experiments and
assessment of the spatial and temporal discretization.

In the following, the leading edge reflections are pre-
sented and classified in accordance with the classical nomen-
clature [70]. In fact, even if the reflection of cylindrical
converging shock waves over convex obstacles is a genuinely un-
steady phenomenon, numerical results presented in this chapter
evidence the onset of all the reflection types predicted by the
theory of pseudo-steady reflections at the obstacle leading
edge, although for different combinations of wedge angles and
incident shock Mach number. The differences with respect to
pseudo-steady results [70] dealing with both straight shock
waves and planar reflecting surfaces and previous investiga-
tions on unsteady reflections [79] are due to the combined ef-
fects of the shock curvature and related unsteadiness and of
the varying wedge angle and radius of curvature. These fac-
tors responsible for the unsteadiness of the reflection are
partially accounted for in the third section, where a simple
model for the description of the dynamics of unsteady regular
reflections is proposed. Numerical results are in good accor-
dance with the proposed model.

It is moreover observed that the unsteadiness of the re-
flection results in different leading edge reflection patterns
and on the delay of the Regular-Irregular Reflection transi-
tion with respect to pseudo-steady results; these results will
be presented in the fourth section. The comparison between
numerical results and literature highlights that on one hand
all the reflection patterns and bifurcations which are known
to occur in pseudo-steady reflections are observed also for
unsteady reflections due to curved geometries. On the other
hand, the effect of the leading edge wedge angle and of the
obstacle curvature on the delay of the Regular-Irregular Re-
flection transition depart significantly from pseudo-steady
results.

Eventually, for Mach reflections, the tracing of the Triple
Point trajectory is performed. Results are correlated with
both geometrical and fluid-dynamical factors, such as the ob-
stacle maximum thickness-to-chord ratio, the leading edge dis-
tance from the focus point of the implosion and the shock Mach
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number at the impingement. Diverse polynomial interpolations
are performed on the Triple Point coordinates, and a pseudo-
linear trend is observed between the obstacle thickness and
the polynomial coefficients. A non monotone trend is observed
for the trajectory, which suggests the possibility of the on-
set of Inverse Mach reflection also over convex obstacles. The
features of the Triple Point trajectory are discussed in the
last section.

3.1 Description of the numerical experiments

3.1.1 Design of Experiments

To investigate the physics of the leading edge reflection of
the cylindrical converging shock wave over lenticular obsta-
cles, the considered parameters are the obstacle thickness-to-
chord ratio t/c, the obstacle leading edge radius rLE and the
Mach number of the shock when it approaches the leading edge
MLEs .

The number of obstacles nobs is not taken into account in
this section. Only the interaction between a cylindrical im-
plosion and one curved wall, which is equivalent to the case
of nobs = 1 is considered here, because of the local character
of the phenomenon and of the scale invariance of Euler equa-
tions. Indeed, the results can be extended to the leading edge
reflection for any nobs value, because when the cylindrical im-
plosion interacts with an array of obstacles, the leading edge
reflection pattern is simply replicated 2nobs times along the
azimuthal coordinate. The reason is that, when observing the
polygonal reshaping of a shock, the presence of other obsta-
cles in the array cannot be influential on each single leading
edge reflection until the leading edge-generated Triple Point
reaches the upper symmetry boundary. Therefore, the leading
edge reflection type cannot be influenced by the number of ob-
stacles. The influence of nobs on the reflection pattern is
limited to determining when the leading edge-generated Triple
Point is reflected over the upper symmetry line.
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In accordance with the description of the parameters pro-
vided in sec. 1.1.1, the obstacle chord is fixed, i.e. c = 5.
For this reason, since the obstacle profile is defined as a
circular-arc, the obstacle geometry is fully defined by the
parameter t/c only.

As it is well known, pseudo-steady reflections are influ-
enced only by the wedge angle θw and by the incident shock
Mach number, which are both assumed to remain constant. In the
reflection of planar shock waves over circular-arc obstacles
[79], the sole leading edge wedge angle θLEw was proved to be
insufficient to define the type of leading edge reflection and
its evolution during time. In the same reference, also the ob-
stacle radius of curvature Ro was found to be influential on the
evolution of the shock wave reflection. In the present work,
θLEw and Ro both depend only on the value of t/c as follows:

θLEw =
1

2

[
π - arctan

(
1
t/c

- t/c

)]
, (3.1a)

Ro =
c

4

(
t/c +

1
t/c

)
. (3.1b)

Numerical simulations were performed in two steps: during
the first step, a coarse factorial design of experiments helped
to determine the regions where more relevant results could be
observed. Based on this preliminary analysis, further levels
have been added to the factors, to gain a further insight in
the Regular-Irregular Reflection transition boundaries. Data
reported here and results in secs. 3.2 and following concern
the final, refined, factorial design, summarized in tab. 3.1
and for this reason the factors levels can be non-uniformly
distributed.

The value of t/c is varied on thirteen levels, corresponding
the latter to the cylindrical case:

t/c = 0.07 · (1,2,3,4,5,6,6.5,7,8,9,11,13),1. (3.2)

The shock intensity is proportional to the value of Ms eval-
uated at a brief distance upstream the obstacle leading edge.
Ms is linearly varied on ten levels, from 2.2 to 6.7. Each of
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Thickness-to-chord ratio t/c 0.07, 0.14, 0.21, 0.28,
0.35, 0.42, 0.445, 0.49,
0.56, 0.63, 0.77, 0.91, 1

Leading edge coordinate rLE 7, 14, 17.5

Initial pressure ratio βP 11, 16, 27, 36, 48, 60, 75,
90, 110, 130

Table 3.1: Test matrix for the numerical experiments. Considered
parameters are the thickness-to-chord ratio t/c, the radial coordinate
of the obstacle leading edge rLE and the initial pressure ratio βP. In
all tests, the operating fluid is air in standard conditions, with
γ = 1.4.

these levels of Ms correspond to a value of βP. The initial
pressure ratio values are not uniformly distributed, since
they are selected to generate shock waves having equally dis-
tributed leading edge shock Mach number MLEs at rrefLE . The obsta-
cle is located in three positions, corresponding to rLE = 7, 14
and 17.5. The effect of the position on the reflection is two-
fold: by varying rLE, on the one hand the effect of the shock
curvature on the reflection can be accounted for, and on the
other hand the effects of Ms and βP are disengaged.

The thermodynamics is described by a polytropic ideal gas
model: for van der Waals or non-polytropic gases, experimen-
tal and theoretical data are not available, and therefore nu-
merical results cannot be compared with literature ones. Some
studies concerning high temperature effects on the reflection
pattern are available, but they are not of practical use here,
since not only they concern pseudo-steady reflections, but
also do not separate the effects of molecular internal vibra-
tions from other high temperature phenomena.

The numerical experiments are distributed on a full facto-
rial design, for an overall number of 390 treatments, as re-
ported in tab. 3.1.
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3.1.2 Numerical simulations settings

The computational domain and its spatial discretization are
described in this section.

3.1.2.1 Computational domain

R
s

R
o

(0,0)

(x
0
,y

0
)

M
s

c/2

t/2

r
LE

θ
w

LE

Figure 3.1: Sketch of the computational domain , spanning over an
angle ξ = π/2, and of geometrical features. A half-obstacle is repre-
sented, with leading-edge radius rLE and leading-edge wedge angle θLEw ,
depending the thickness-to-chord ratio t/c. The obstacle profile is a
circular-arc, with center in

(
x0,y0

)
and radius Ro. The shock is de-

picted before the reflection, at a radius Rs > rLE, converging towards
the focus point (0,0) with a Mach number Ms.

A sketch of the computational domain is illustrated in fig.
3.1. The vertex angle spans π/2 because, as already stated, nobs
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is not considered, and therefore the elementary domain cannot
be defined. However, two considerations can be performed: on
one hand, the obstacle has a finite radius of influence in the
domain. For this reason, the region of the domain not reached
by the Triple Point can be neglected, which allows to cut-off
the second and third quadrants. Moreover, the horizontal axis
is still a symmetry line, resulting in a final computational
domain spanning the first quadrant, with ξ = π/2.

Due to the constant value of ξ = π/2, which guarantees high-
quality mesh elements in correspondence of the domain vertex,
the last step of the multi-domain approach is skipped. There-
fore, the reflection and the focusing are computed on a unique
computational domain which includes the focus point, and only
the coupling between the one-dimensional and the two dimen-
sional domains in performed.

3.1.2.2 Determination of the grid spacing

Simulations are performed on fixed grids of triangular el-
ements with maximum edge length ∆x = 0.01, with local a-priori
refinements in correspondence of regions where larger gradi-
ents of the solution are expected, e.g. in correspondence of
the obstacle leading edge and along the obstacle boundary. Se-
lecting the best discretization in space and time is of fun-
damental importance, because it must satisfy the trade off be-
tween the necessity of reducing the computational times and ob-
taining a sufficiently accurate solution, since in some cases
a very weak difference between diverse reflection patterns is
observed. To determine the adopted value of ∆x, a number of
simulation with decreasing grid spacing has been performed,
until flow field qualitative features could be captured with
sufficient accuracy, and it did not exhibit a dependence on
∆x. Figure 3.2 compares the solutions obtained with a uniform
grid with ∆x = 0.01 (3.2(a)) and a mesh with local refinements,
up to ∆x = 0.001 (3.2(b)). In both cases the reflection appears
to be a Transitional Mach Reflection, but thanks to the grid
refinement it is possible to observe the pattern more in de-
tail. Tests with finer grid show that further mesh refinements
do not provide significant improvements in the accuracy of the
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Figure 3.2: Numerical Schlieren in correspondence of a circular ob-
stacle leading edge: (a) uniform grid (b) and local refinement, with
the corresponding meshes in figs. (c) for uniform ∆x = 0.01 and (d)
for refined ∆x up to 0.001 (βP = 130, t/c = 1, rLE = 14).

flow field description.
A similar procedure is adopted to determine the time step

∆τ, based on successive refinements of the temporal resolution
until convergence. For the analysis of leading edge patterns,
the adopted time step is ∆τ = 10-3.

It must be noted that the aforementioned values of ∆x and
∆τ are valid only for the numerical simulations illustrated in
this chapter. During the preliminary analyses phase of this
work, it has been verified that the simulation of shock waves
reshaping is more demanding in terms of spatial and temporal
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resolution, and therefore a different discretization must be
adopted for the numerical simulations presented in chaps. 4
and 5.

All the simulation results reported in this chapter are
obtained by means of calculations performed on meshes with
maximum grid spacing ∆x = 0.01 and local refinements up to
∆x = 0.001.

3.2 Leading edge reflections

3.2.1 Overview on the detected reflection patterns

According to well known theoretical and experimental re-
sults, the reflection of a planar shock wave over either pla-
nar or curved obstacles can result in a multiple number of pat-
terns [70]. The main subdivision concerns the number of waves
belonging to the structure that arises within the reflection.

Figure 3.3: Numerical Schlieren image highlighting a Regular Reflec-
tion of a cylindrical implosion with MLEs = 6.7 over a cylindrical ob-
stacle (rLE = 7, time after the numerical diaphragm breaking τ = 0.25).
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When only the original, i.e. the “incident”, and a “re-
flected” shock are detected, the reflection is Regular; these
two waves merge into a point belonging to the reflecting sur-
face called Reflection Point. Usually, a Regular Reflection
occurs for very large values of θLEw , as illustrated in fig. 3.3,
which depicts the reflection over a cylindrical obstacle with
θLEw = π/2 (the other parameters which define this treatment are
MLEs = 6.7 and rLE = 7).

On the contrary, when a further shock, namely a “Mach stem”,
and a slip line are generated at the reflection, the reflection
is named Mach Reflection, and the Reflection Point becomes a
Triple Point (indicated as TP). This reflection type is the
most interesting for the purposes of this work, both because it
allows to achieve the reshaping the polygonal edges are just
made up of the Mach stems and because it can result in a number
of interesting patterns.

Fig. 3.4 reports numerical results of four simulations of
the reshaping of cylindrical shocks with MLEs = 6.7 in rLE = 7
over variable t/c obstacles. For all the four depicted config-
urations, the reflection is Mach-type, but the patterns behind
the Triple Point differ from each other. It is known, indeed,
that Mach Reflections allow diverse sub-categories, depending
on the complexity of the resulting structure.

In the framework of pseudo-steady reflections, it is well
known that three main Mach Reflection types can be identified
[70]. As duly described in [70], a qualitative trend is ob-
served between θLEw , MLEs and the complexity of the shock struc-
ture. Indeed, for low values of θLEw and MLEs , the reflected shock
consists in a single continuous shock which can be either at-
tached or not to the obstacle leading edge and the resulting
structure is therefore named “Single Mach Reflection” (SMR),
which is the simplest configuration for Mach Reflections. The
reference configuration described in chap. 1 and the one re-
ported in fig. 3.4(a) are two examples of Single Mach Reflec-
tion observed in the reflection of a cylindrical shock wave
over a circular-arc obstacle.

For slightly larger values of θLEw or MLEs a structure with
increasing complexity is generated: the reflected shock, in-
deed, presents a kink, where the two branches of the reflected
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shock merge, a straight one between the Triple Point and the
kink and the classical curved one between the kink and the ob-
stacle leading edge. This type of reflection is named “Transi-
tional Mach Reflection” (TMR). In the region between the Mach
stem and the reflected shock, a compression band is observed
along the kink. An example of Transitional Mach Reflection
of a cylindrical implosion occurring at the leading edge of a
circular-arc obstacle is illustrated in fig. 3.4(c).

Eventually, for even larger values of θLEw or MLEs , the most
complex shock structure is observed: the compression band co-
alesces into a shock wave, and the kink collapses into a sin-
gle point. The latter, therefore, is termed “secondary Triple
Point”, whereas the former is identified as “second reflected
wave” (not to be confused with the secondary reflection de-
scribed in chapter 1, which occurs on the upper symmetry bound-
ary). A so-called “Double Mach Reflection” (DMR) generated
by the unsteady reflection of a converging shock wave over a
circular-arc obstacle is shown in fig. 3.4(d). From pseudo-
steady reflection theories, when θLEw is further increased from
the values characterizing a Double Mach Reflection, regardless
of MLEs , obtaining a Mach Reflection becomes impossible, and the
leading edge reflection is Regular.

In addition to these three main Mach Reflection types, a
further reflection pattern is known to occur in pseudo-steady
reflections, that is the “Pseudo-Transitional Mach reflec-
tion”. For intermediate combinations of MLEs and θLEw between
the Single Mach Reflection and the Transitional Mach Reflec-
tion ones, a structure whose reflected wave is characterized
by both a null concavity in correspondence of the Triple Point
(typical of Transitional Mach Reflections) and a constant-sign
concavity (a feature of Single Mach Reflections) can be ob-
served. Since it shares characteristics of both these reflec-
tion types, it is termed Pseudo-Transitional Mach Reflection.
A Pseudo-Transitional Mach Reflection generated by a cylindri-
cal shock/lenticular obstacle reflection is depicted in fig.
3.4(b).

The observation of diverse Mach Reflection types origi-
nated at the leading-edge reflection of cylindrical converging
shock waves over circular-arc obstacles has been recorded for
the first time in this thesis work.
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(a) t/c = 0.07 (b) t/c = 0.14

(c) t/c = 0.28 (d) t/c = 0.42

Figure 3.4: Numerical Schlieren images highlighting diverse patterns
of Mach Reflections of cylindrical implosions over circular-arc ob-
stacles: (a) Single, (b) Pseudo-Transitional, (c) Transitional, and
(d) Double Mach Reflection are obtained with MLEs = 6.7 at rLE = 7,
for different t/c values (time after the numerical diaphragm break-
ing τ = 0.25).
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It is worth noticing that all the reflections reported in
figs. 3.3 and 3.4 concern incident shock waves with MLEs = 6.7 in
rLE = 7, corresponding to βP = 130, and differ from each other
only because of t/c. This is in accordance with pseudo-steady
results: in general, for a given MLEs , the lower is t/c, the less
complex is the resulting shock structure.

Regular and Mach Reflections cover all the known reflec-
tion types of shock waves with MLEs ≥ 2. However, it is known
from the theory of pseudo-steady shocks that for small per-
turbations (which means both weak shocks and thin wedges), a
non-regular shock structure results from the shock reflection
which is although incompatible with analytical relations de-
scribing a Mach Reflection [71]. More accurate analyses [72]
revealed that this waves system, known as “von Neumann Reflec-
tion” (vNR), consists in a structure similar to a Mach Reflec-
tion, but with a gradual bending of the incident shock and of
the Mach stem rather than a single point of intersection, that
is indeed the Triple Point. For this reason, all the four-wave
reflection patterns, i.e. Mach Reflections and general weak
shock reflections, will be indicated as Irregular Reflections.

The numerical experiments in this work are designed to ob-
tain Ms > 2 at rLE = rrefLE . However, with reference to tab. 3.1,
the extension of the factorial design to rLE > r

ref
LE produces some

configurations with an incident shock Mach number lower than
2, generating reflections of unclear type on obstacles with
the lowest t/c. Indeed, it is not clear yet whether these re-
flections are actually Single Mach Reflections or weak reflec-
tions, e.g. von Neumann Reflections. Indeed, the detection
of the structure of a weak reflection would require an ultra-
fine grid and the detailed analysis of the complex region of
the equivalent Triple Point. For this reason, this work only
focuses on strong shocks, and simply records the occurrence of
a structure similar to a von Neumann Reflection. The differ-
ence between a Single and a possible von Neumann Reflection is
depicted in fig. 3.5, regarding the diffraction of a shock with
MLEs = 1.9, rLE = 17.5 and t/c = 0.07.

The realm of weak reflections includes diverse reflection
patterns, including von Neumann Reflections. Further works on
the realm of weak shock reflections [87, 128] suggest the exis-
tence of further reflection patterns for weak shock waves, such
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as Guderley Reflections [129] and Vasil’ev Reflection [130].
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Figure 3.5: Numerical Schlieren of (a) Single Mach Reflection and
(b) possible von Neumann Reflection at the leading edge of different
thickness obstacles (βP = 11, rLE = 17.5, resulting in a MLEs = 1.9). The
Irregular Reflection suspected to be a von Neumann Reflection is ob-
tained with t/c = 0.07, whereas the Single Mach Reflection is generated
over an obstacle with t/c = 0.21.

For the explored range of parameters, the detected patterns
correspond to the five reflection types reported in figs. 3.3
and 3.4, in accordance to analytical predictions for pseudo-
steady shocks. If the possibility of considering von Neumann
Reflections is included, the sixth investigated pattern is the
one depicted in fig. 3.5(b).

A summary of the classification of pseudo-shock reflec-
tion patterns, which are the basis for comparison for unsteady
results, is provided in the Introduction, in the form of a
flowchart. The summary is from the complete survey [70], the
reader is addressed to.

3.2.2 Regions of occurrence of diverse reflection types

The classical approach to the determination of shock re-
flection types, adopted also for steady, pseudo-steady and
some unsteady cases (see e.g. [131]), consists in classify-
ing the shock configurations on the MLEs -θLEw plane. Each combi-
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nation of leading edge shock Mach number MLEs and leading edge
wedge angle θLEw results in one of the aforementioned reflection
types, and therefore the plane is partitioned along transition
lines, in accordance with classical criteria, [74, 75, 77].

The same classification is applied here for the first time
to the diffraction of cylindrical shocks over circular-arc ob-
stacles: the diverse types of leading edge reflections are re-
ported in fig. 3.6, arranged by MLEs and θLEw . The first parameter
includes the effects of βP and rLE. It is known, indeed, that
the intensity of the shock wave depends on the initial pressure
ratio βP. Moreover, in accordance with Guderley’s theory, the
shock speed increases as the shock wave approaches the focus
point. Therefore, the Mach number at the leading edge reflec-
tion of each shock wave depends on the radius of the obsta-
cle leading edge. The value of θLEw , on the contrary, depends
directly on t/c, and therefore the influence of all the geo-
metrical factors and operating conditions is accounted for.
Data appear to be more concentrated for MLEs ∈ [2,3] because for
βP = 11,16,27 the reflection types are plotted also for rLE = 14
and rLE = 17.5.

Full lines represent the partition of the plane by the re-
flection type in accordance with the set of criteria formulated
by Ben dor et al. [70], derived from the length scale criterion
[74, 73], assumed as reference. The theory was developed under
the pseudo-steadiness assumption, and therefore it does not
strictly apply to this context, where two unsteadiness sources
are present, i.e. the obstacle profile and the shock curva-
ture. However, as suggested in several works [81, 79], to a
first approximation, the unsteady shock diffraction can be in-
terpreted also as a sequence of steady states, each described
by the above models. In reference literature, this assumption
was proved to be valid if applied to the generic description of
the “incipient” unsteadinesses. The latter refers to phenom-
ena which depart weakly from the self-similar behavior, e.g.
the leading edge reflection of planar shock over curved walls
when the shock advancement has covered a small percentage of
the obstacle chord [78, 79, 132]. On the contrary, the approx-
imation of unsteady phenomena with a sequence of steady ones
suffers from severe limitations in capturing truly unsteady
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behaviors, such as the shock dynamics, evolving transitions
and hysteresis [78, 79]. Therefore, its use is limited to the
comparison of leading edge reflection types.

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

θ
wL
E
 
 
[

o
]

M
s

LE

RR

DMR

TMR

PTMR

SMR

 

 

vNR SMR (P)TMR DMR RR

Figure 3.6: Leading edge reflection types, depending on the diverse
values of MLEs and θLEw . Solid lines indicate the partition of the θLEw -
MLEs plane in the regions of occurrence of the diverse leading-edge
reflection patterns in the pseudo-steady case. The diverse symbols
represent different reflection types of cylindrical converging shock
waves over circular-arc obstacles. Where two different symbols over-
lap, the distinction between the two types of reflection is not clear.

As already stated in the description of figs. 3.3 and
3.4, all the reflection types predicted by pseudo-steady cri-
teria for the explored range of MLEs and θLEw can be observed
also in the investigation of the interaction between curved
shocks and obstacles: Regular Reflection and Single, (Pseudo-
)Transitional, and Double Mach Reflection.

The comparison between the transition lines of pseudo-
steady reflections and numerical results in fig. 3.6 reveals a
peculiar fact: for a given θLEw , the MLEs which separates two di-
verse regions on the plane for unsteady reflections is higher
that the corresponding one relative to the pseudo-steady case.
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The systematic occurrence of this phenomenon at each transi-
tion may suggest that, in each region of the plane, the less
complex reflection type in the unsteady case is persistent even
in the range of Mach numbers where the more complex type would
be expected according to pseudo-steady theories.

The persistence of this simpler configuration, on the con-
trary, is not observed when analyzing the transitional wedge
angles. Indeed, both the qualitative trend of transition lines
and quantitative values of the transition wedge angles remain
the same as for pseudo-steady shock reflections. In the pseudo-
steady case, indeed, the transitional wedge angles as function
of MLEs show a convergence towards an asymptotic value for in-
creasing MLEs . With reference to fig. 3.6, this convergence can
be observed also in the reflection of cylindrical shocks over
circular-arc obstacles. The quantitative comparison, there-
fore, is performed on the asymptotic values, and it shows good
accordance.

In particular, the asymptotic value of θLEw separating the
onset of Regular Reflections and Mach Reflections at the lead-
ing edge is termed “critical leading wedge angle” or θcrw : for
the reflection of cylindrical converging shocks over circular-
arc obstacles it is observed that θcrw remains close but slightly
smaller than the corresponding one for pseudo-steady reflec-
tions, which ranges from 49◦ to 51◦, depending on the adopted
criterion. This means that the onset of an unsteady Mach Re-
flection at the leading edge is impossible when θLEw > 48◦. In
this case, when a Regular Reflection occurs at the leading
edge, a transition from Regular to Mach Reflection is observed
to take place during the shock propagation along the obstacle.
This phenomenon is discussed in sec. 3.4.

The classification of the leading edge reflections in Ir-
regular (to include both Mach Reflections and the possible weak
shock reflections) and Regular Reflection shows a net subdivi-
sion on the basis of the value of t/c which is correlated to θLEw
by means of eq. (3.1a).

Therefore, results of numerical simulations over obstacles
with t/c ≥ 0.445 will be used to investigate the evolution of a
Regular Reflection (in sec. 3.3) and to assess the delay in
the dynamic transition from Regular Reflection to Mach Reflec-
tion (in sec. 3.4). This transition, indicated as RR −→ MR
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in the following, was observed in the investigation of the
diffraction of straight shock waves over cylindrical obstacles
[79, 84]: these works show that the transition occurs when θw
reaches a “transitional wedge angle” θtrw , which is in general
lower than θcrw .

Eventually, the configurations which generate a Mach Re-
flection immediately at the leading edge allow the tracing of
the Triple Point trajectory in space, and to assess the di-
verse geometrical and fluid-dynamical parameters on its prop-
agation.

3.3 Regular Reflection of cylindrical shock waves over
circular-arc obstacles

In the Regular Reflection of cylindrical shocks over
circular-arc obstacles, the combination between the values of
the local shock Mach number and the angle of the reflecting
wall perceived at any given time (namely, the “perceived wedge
angle”, or θPw) changes during time with the shock propagation
along the obstacle profile, whereas in the pseudo-steady case
it is fixed. θPw is defined as the angle whose edges consist of
the obstacle tangent line and the shock radius, both originated
from the Reflection Point.

3.3.1 Derivation of the θPw - Ms correlation

An analytical correlation between Ms and θ
P
w is derived in the

following, based on Guderley’s law and geometrical considera-
tions. The first is used to express the local shock Mach number
as a function of Rs, whereas geometrical properties allow to
recast angular values to absolute and shock-obstacle relative
positions.

The plane θLEw -MLEs , therefore, can be interpreted as the
“initial configuration” of Regular Reflections, since at the
beginning of the reflection θPw ≡ θLEw and Ms ≡ MLEs . Starting from
the leading edge configuration, each Regular Reflection will
propagate on a generic θPw-Ms plane along a trajectory defined
by the law derived in the following.
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Figure 3.7: Definition of the angles adopted in the model of temporal
evolution of the combinations θPw - Ms in a Regular Reflection (the
reflected wave is not reported for clearer visibility). The thick
solid line represents the reflecting wall, that is the union of the
obstacle and the lower symmetry line. The incident shock wave is is
represented at a generic radius Rs converging with a Mach number of
variable value Ms. The angle θPw is the wedge angle perceived by the
shock wave during its convergence, which varies in time to account
for the variable slopes of the shock waves and of the obstacle at the
Reflection Point. λ is the azimuthal coordinate of the shock wave
in a polar coordinate system. The angle φ is the polar angle of the
obstacle, centered in the center of the obstacle osculating radius.

With reference to fig. 3.7, θPw can be expressed as a function
of the two angles φ and λ. These angles represent respectively
the azimuthal coordinates of the obstacle and of the shock wave
in a polar coordinate system. φ and λ are reciprocally linked
through the generic angles υ and ω. The latter two are the
angles formed with the horizontal line by the lines tangent
respectively to the shock wave and to the obstacle at the Re-
flection Point, named I. ε is a dummy angle used only for the
derivation of eq. (3.14). The two points S and O indicate the
focus point and the center of the obstacle obsculating circle,
respectively. Other latin uppercase letters in fig. 3.7 are

101



Chapter 3

dummy variables used to indicate some points used to define the
angles. The model purpose is to correlate θPw and Ms in a Regular
Reflection, and therefore it is valid for φ ∈

[
φLE, π/2

]
.

To express the angle θPw as a function of the two angles λ and
φ, some intermediate steps are required.

With reference to the nomenclature introduced in fig. 3.7,
the line IE is the tangent line to the shock wave at the Re-
flection Point.SI connects the focus point to the Reflection
Point, and therefore it is also a radius of the circumference
representing the shock wave. For this reason, the two segments
SI and IE are perpendicular. The line FI is the tangent line of
the obstacle at the reflection point I, and divides the right
angle SÎE into two parts. Therefore, θPw is the complementary
of the angle FÎE, termed ε,

SI ⊥ IE =⇒ θPw =
π

2
- ε. (3.3)

The point A is in the intersection between the line FI and the
lower symmetry line. Therefore, the points F, I and A belong
to the straight line FA. The segment IB is a horizontal line
passing by the reflection point. Therefore, the angle FÎA = π
can be expressed as the sum of three angles, i.e. ε, BÎA and
their supplementary, named υ,

FÎA = π =⇒ ε = π - υ - BÎA. (3.4)

The two lines SA and IB are parallel by definition, and they are
crossed by the line IA. The two angles BÎA and IÂS are alternate
interior angles, and therefore they have equal values. For
this reason, they will be both referred to as ω,

IB ‖ SA =⇒ BÎA = IÂS =: ω. (3.5)

The combination of eqs. (3.4) and (3.5) provides the expression
of ε as a function of υ and ω,

ε = π - υ -ω. (3.6)

It is now necessary to evaluate the angles υ and ω. The
line DI is adjacent to the line OI, which is the radius of the
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obstacle passing by the Reflection Point. For this reason the
lines DI and IA are perpendicular, and the line IB subdivides
the right angle DÎA into two,

DI ⊥ IA =⇒ ω =
π

2
- DÎB. (3.7)

Since IB and OH are horizontal lines, the two angles DÎB and
IÔH are corresponding angles of the two parallel lines IB and
OH cut by the transversal line DO. Therefore, DÎB and IÔH are
equal angles of value φ,

OH ‖ IB =⇒ DÎB = IÔH =: φ. (3.8)

Eqs. (3.7) and (3.8) provide the correlation between the dummy
angle ω and the obstacle polar angle φ,

ω =
π

2
- φ. (3.9)

The other angle used to define ε, i.e. υ, corresponds to the
angle delimited by the segments IB and EI. This angle EÎB is
crossed by the segment IC and subdivided into the two angles
EÎC and CÎB. Moreover, IC is also adjacent to SI, and therefore
perpendicular to the shock tangent line EI. For this reason,
the angle υ is obtained by the sum of the right angle EÎC and
the angle CÎB,

EI ⊥ IC =⇒ υ =
π

2
+ CÎB. (3.10)

The horizontal lines IB and SA are cut by the transver-
sal line BS, which defined the corresponding and therefore
congruent angles CÎB and IŜA. The latter is the shock polar
angle λ, and therefore also CÎB = λ,

IB ‖ SA =⇒ CÎB = IŜA =: λ. (3.11)

This result, together with the expression of υ from eq. (3.10),
correlates the dummy variable υ with the polar coordinate of
the shock evaluated at the Reflection Point λ,

υ =
π

2
+ λ. (3.12)

The correlation between the angle ε and the two polar angles
is obtained by substituting the expressions of φ and λ (pro-
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vided by eqs. (3.9) and (3.12)) in eq. (3.6),

ε = π - υ -ω

υ =
π

2
+ λ

ω =
π

2
- φ


=⇒ ε = φ - λ. (3.13)

Finally, the expression of ε as a function of φ and λ is used
to define the perceived wedge angle θPw:

θPw =
π

2
- φ + λ. (3.14)

The correlation between geometrical and kinematic parame-
ters is due to the parametrization in polar coordinates of the
shock wave (which geometry time dependent) and the obstacle
(which is fixed, instead), by means of φ and λ:

Obstacle: zo =

xo = x0 + Ro cosφ,

yo = y0 + Ro sinφ,
(3.15)

Shock: zs =

xs = Rs(τ) · cosγ,

ys = Rs(τ) · sinγ.
(3.16)

At the point I, where the shock and the obstacle intersect,
their coordinates are coincident, i.e. zs = zo,x0 + Ro cosφ = Rs cosγ,

y0 + Ro sinφ = Rs sinγ,
(3.17)

Eq. (3.17) contains the three unknowns Rs, λ and φ. In this
framework Rs is not known because the goal is not the determina-
tion of the shock position at a given time, but the definition
of a correlation describing a temporal evolution, and there-
fore Rs (τ) must be considered an unknown variable.
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The squares of the right and of the left hand sides of each
row of the system zs = zo (eq. (3.17)), that is (zs)

2 = (zo)
2 are

computed,

x20 + y
2
0 + R

2
o

(
cos2φ + sin2φ

)
︸ ︷︷ ︸

1

+ 2Ro
(
x0 cosφ + y0 sinφ

)︸ ︷︷ ︸
f(φ)

=R2s

(
cos2 λ + sin2 λ

)
︸ ︷︷ ︸

1

.

(3.18)

The Pythagorean identity I allows to drop the mutual dependence
of φ and Rs from λ. Moreover, as resulting from eq. (3.18), all
the terms containing the unknown φ are merged in the generic
expression f(φ), and disengaged from the remaining unknown Rs.
Therefore, eq. (3.18) is manipulated to separate f(φ), in the
left hand side, from Rs in the right hand side,

f(φ) =
(
x0 cosφ + y0 sinφ

)
=
R2s - x

2
0 - y

2
0 - R

2
o

2Ro
. (3.19)

f(φ) is decomposed into the product of two terms, the variables
q and q0. The latter is defined as

q0 :=
√
x20 + y

2
0, (3.20)

and therefore f(φ)/q0 is rewritten as

x0
q0

cosφ +
y0
q0

sinφ =: q. (3.21)

Since
x20
q20

+
y20
q20

= 1, (3.22)

a dummy variable ν is introduced, that satisfies the following
relations, (

x0
q0

,
y0
q0

)
= (cosν,sinν). (3.23)

Therefore, the variable q is rewritten as a function of φ (from
eq. (3.21)) and of ν (from eq. (3.23)) in the compact form

Icos2 $ + sin2 $ = 1 ∀$ ∈ R
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provided by Addition formulas II,

q = cosνcosφ + sinνsinφ

= cos
(
±
(
φ - ν

))
.

(3.24)

By reversing the dependence of the variables in eq. (3.24),
and maintaining both the positive and the negative arguments
in the cosine, one has

φ = ±arccos(q) + ν (3.25)

The sign of φ is determined as follows: the ordinate of the ob-
stacle osculating circle is negative, and therefore also sinν
and ν are. On the contrary, φ ≥ 0 for definition, because the
obstacle is described by a polar angle φ ≤ φLE. For this reason,
from eq. (3.25), one has

(±arccos(q)) = φ - ν ≥ 0 (3.26)

The codomain of the arccosine function is non-negative for def-
inition, i.e.

arccos(κ) ≥ 0 ∀κ ∈ [-1,1], (3.27)

and therefore arccos(q) ≥ 0. By recalling the definitions of q
(eq. (3.21)) and of ν (eq. (3.23)), φ is explicitly correlated
to Rs,

φ = arccos(q) + arcsin

(
y0
q0

)

= arccos

R2s - x
2
0 - y

2
0 - R

2
o

2Ro

√
x20 + y

2
0

 + arcsin

 y0√
x20 + y

2
0

. (3.28)

The expression of λ is obtained substituting eq. (3.28) into

IIcos$ cos % + sin$ sin % = cos
[
±
(
$ - %

)]
∀$, % ∈ R
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eq. (3.17):

λ = arcsin

(
y0 + Ro sinφ

Rs

)
= (3.29)

= arcsin


y0 + Ro sin

[
arccos

(
R2s-x

2
0-y

2
0-R

2
o

2Ro
√
x20+y

2
0

)
+ arcsin

(
y0√
x20+y

2
0

)]
Rs

.
With this expression, φ and λ are functions only of Rs and are
parametrized on the obstacle geometry. Combining eq. (3.14)
with eqs. (3.28) and (3.29), the expression is obtained for
θPw = θ

P
w (Rs; obstacle geometry) (3.30)

To express Rs = Rs (Ms), Guderley’s self similar law applies
to describe the position of the cylindrical shock versus time
for a given set of initial conditions,

Rs = r̃
(
1 -

τ

τ̃

)α
, (3.31)

where α is the self similarity exponent (characteristic of the
problem symmetry and of the thermodynamic model) and r̃, τ̃ are
constants of the problem satisfying the condition[

r̃ = r(τ = 0)
]
⇐⇒

[
r(τ = τ̃) = 0

]
. (3.32)

Provided Rs (τ) by means of Guderley’s model, the shock speed
s is computed as the time derivative of Rs:

s =
•
Rs = r̃α

(
1 -

τ

τ̃

)α-1
·
(
-
1

τ̃

)
= r̃

(
1 -

τ

τ̃

)α
︸ ︷︷ ︸

Rs

· -α

τ̃(1 - τ/τ̃)

= Rs ·
-α

τ̃ - τ
,

(3.33)

and its Mach number is calculated as

Ms =

∣∣∣∣ •
Rs

∣∣∣∣
wi

= Rs ·
α

wi
(
τ̃ - τ

). (3.34)
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If the initial time is set in correspondence of the shock im-
pingement, the value of r̃ is known, but τ̃ is not, and it depends
on the evolution of the shock. However, in the following it
will assumed that τ̃ is very close to the one of a cylindrical
shock III, and that therefore it can be calculated as follows:

M̃s = Ms|τ=0

r̃ = Rs|τ=0

 =⇒ M̃s ≈ r̃ · α
wiτ̃

=⇒ τ̃ ≈ αr̃

wiM̃s
. (3.35)

The mutual dependence of the variables in eq. (3.31) is re-
versed to express τ = τ(Rs),

τ(Rs) =

[
1 -

(Rs
r̃

) 1
α

]
τ̃, (3.36)

and therefore τ(Rs) (from eq. (3.36)) and τ̃ (from eq. (3.35))
are substituted into eq. (3.34),

Ms =
αRs

wiτ̃

{
1 -

[
1 -

(Rs
r̃

) 1
α

]} =

(
αr̃

1
α

wiτ̃

)
R

α-1
α
s , (3.37)

to obtain

Rs =

(
Ms
M̃s

) α
α-1

r̃. (3.38)

Eq. (3.38) is then substituted into the expressions of φ
(eq. (3.28)) and λ (eq. (3.29)), so that the final expression
of the correlation between the local values of Ms and θPw is:

IIISee sec. 3.3.2 for details
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θPw =
π

2
- arccos


(
Ms
M̃s

) 2α
α-1

r̃2 - x20 - y
2
0 - R

2
o

2Ro

√
x20 + y

2
0

 - arcsin
 y0√

x20 + y
2
0



+arcsin


y0(

Ms
M̃s

) α
α-1

r̃

+
Ro(

Ms
M̃s

) α
α-1

r̃

sin

arccos


(
Ms
M̃s

) 2α
α-1 r̃2 - x20 - y

2
0 - R

2
o

2Ro

√
x20 + y

2
0



+ arcsin

 y0√
x20 + y

2
0





.

(3.39)

3.3.2 Discussion on the model validity

The description of the implosion propagation by means of
eq. (3.31) is correct only for truly self-similar cases, such
as the cylindrical implosion, for which α = 0.834.

It is however known [79] from approximate theoretical con-
siderations and numerical simulations on cylindrical implo-
sions that

∀
(
Ms, θ

LE
w ≥ θcrw

)
∃ θtrw < θcrw

∣∣∣∣∣
[ (
θPw ≤ θtrw

)
⇐⇒ (RR −→ MR)

]
.

(3.40)
It is therefore expected that, regardless of the obstacle
thickness and of local shock concavity, when xs ≈ x0, θPw ≈ 0
and, therefore, the Regular Reflection must become a Mach Re-
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flection . This will cause the shock to depart from the cylin-
drical shape and, therefore, not to obey to eq. (3.31).

However, far from the obstacle, the shock shape still obeys
axisymmetrical conditions, and therefore the overall time-to-
focusing τ̃ and convergence rate α remain the same. The only
limitation would occur in case of more than one obstacle: in
this case the multiple Mach Reflections would influence all
the shock front shape. It was however verified [88] that if the
reshaped shock conserves a high level of symmetry (i.e. if ob-
stacles are symmetrically arranged along azimuth, so that the
reshaped shock is a symmetric polygon), the shock position with
respect to time still follows a power-law trend, even though
with different constants. Moreover, the higher is the number
of edges of the polygon, the closer the propagation will re-
main to that of the axisymmetric cylindrical shock in terms of
values of α, r̃ and τ̃. In this framework, it is assumed that
the values of the three constants do not vary with respect to
the axisymmetric problem, and that therefore other phenomena,
such as the RR −→ MR transition or the trailing edge flow sep-
aration, can be neglected.

3.3.3 Comparison of eq. (3.39) with numerical results

The accordance of the analytic law (3.39) with numerical re-
sults is reported in fig. 3.8, concerning a Regular Reflection
over one circular obstacle. The propagation along time is from
top (θLEw = π/2) to bottom (θLEw > 0 when φ = π/2). During the evolu-
tion of the Regular Reflection, θPw spans from θLEw till the value
of the perceived angle when the Regular Reflection terminates
and the transition into a Mach Reflection occurs.

The average trajectory along the θLEw -Ms plane is well cap-
tured, even though a dispersion of the sampled values id ob-
served. The error is possibly due to the technique adopted to
evaluate the numerical Ms. Indeed, it is assumed to be propor-
tional to the difference between the shock radii at different
time steps: this means that the error on Ms includes the con-
tributions of two measurements and propagates towards the fol-
lowing time step.

A persistence of Regular Reflection is observed for θLEw <
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θcrw , in accordance with the observations performed in [79].
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Figure 3.8: (a) Predicted evolution of the combinations between Ms
and θPw in Regular Reflections (dashed line) and numerical results (•,
I, �) for diverse initial conditions. Time increases from top to
bottom. (b) Percentage deviation between theoretical and numerical
values. Axes are reversed because of the more visible effect on Ms of
measurement errors.

3.4 Transition from Regular to Mach Reflection

As observed by several theoretical and experimental works
dealing with the reflection of weak planar shocks over cylin-
drical obstacles [78, 79, 83], due to the loss of self similar-
ity with respect to the pseudo-steady problem, θPw varies along
time, and therefore the reflection may change from Regular to
Mach-type during the shock propagation. Authors assessed the
effect of the initial wedge angle and of the radius of curvature
of the obstacle.

In this work, the RR −→ MR transition is observed also for
cylindrical shocks. Moreover, after the RR −→ MR transition,
also the transition among diverse Mach Reflection types, here-
after defined “internal” transition, can be observed. Figs.
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3.9 and 3.10 report two temporal evolution of these internal
transitions, after the transition from a Regular Reflection.
In particular, fig. 3.9 represents the case of a shock gen-
erated by an initial pressure ratio βP = 130, and therefore
the strong shock with MLEs = 6.5 undergoes a DMR → TMR. On
the contrary, the shock depicted in fig. 3.10 has MLEs = 2.0,
which causes its transition from Transitional Mach Reflection
to Pseudo-Transitional Mach Reflection to Single Mach Reflec-
tion. It is worth noticing that both patterns in fig. 3.9(b)
and in fig. 3.10(b) are Transitional Mach Reflections but the
kink is much more evident in the first case: it is observed
that, in general, shock structures are more defined for strong
shocks.
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Figure 3.9: Transition after the RR −→ MR transition, internal Mach
Reflection transitions: from (a) Double Mach Reflection to (b) Tran-
sitional Mach Reflection for a shock impinging on a cylindrical ob-
stacle with Ms = 6.5 (βP = 130) at twice the reference distance.
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(a) (b)

(c) (d)

Figure 3.10: Transition from (a) Regular Reflection to (b) Transi-
tional Mach Reflection to (c) Pseudo-Transitional Mach Reflection
to (d) for a shock impinging on a cylindrical obstacle with Ms = 2.0
(βP = 11) at twice the reference distance.

In the following, the RR −→ MR transition will be discussed
for obstacles which can produce a Regular Reflection at the
leading edge. With reference to numerical results reported
in fig. 3.6, a Regular Reflection occurs for obstacles with
t/c = 0.445, 0.49, 0.56, 0.63, 0.77, 0.91 and 1.0.
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Figure 3.11: RR −→ MR transition points for increasing t/c and rLE.
Each picture depicts the transitions over a diverse-t/c obstacle, rep-
resented by the solid line. Symbols represents the transition points,
and each marker is associated to a diverse rLE value: rLE = 7 (•),
rLE = 14 (×××××××××) and rLE = 17.5 (I). The 10 symbols in each group of simi-
lar markers represent the sampled values of the transition points for
diverse Ms. The effect of the shock Mach number is not made explicit
for visual clarity.
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Fig. 3.11, on pages 114-115, illustrates the RR −→ MR tran-
sition points along the obstacle boundaries. On each picture,
data indicated with the same marker represent reflections over
obstacles with an equal rLE value, regardless of the value of
the shock Mach number. Two trends are evident: on one hand,
the larger is t/c, the lower is θtrw and, on the other hand, the
larger is rLE, the higher is θtrw . The effect of rLE is in accor-
dance with reference results, because the reflection of weak
planar shocks over convex obstacles represents a limit of the
present case, that is for rLE →∞.

The detection of the transition points was achieved by means
of simple visual observation of the computed flow fields, and
did not require the development of an automatic procedure.

For each analyzed configuration, the value of the coordi-
nates of the transition point

(
xtr,ytr

)
are directly sampled.

The “absolute transition angle” θtrw is defined here as the an-
gle between the local obstacle tangent line and the chord di-
rection. θtrw , therefore, is simply evaluated as

θtrw =
π

2
- arctan

(
ytr + y0
xtr - x0

)
. (3.41)

On the contrary, the perceived transition angle θtr,Pw and the
local shock Mach number at the transition are calculated by
means of eq. (3.39).

The main error source in the measurement can be attributed
to the observation that, immediately after the RR −→ MR tran-
sition, the growth of the Mach stem is much slower than during
the following evolution of the Mach Reflection: this causes a
non negligible difficulty in detecting the exact termination
of the Regular Reflection and the rising of the Mach Reflec-
tion, resulting in a maximum measurement error of ±2.0◦ in the
determination of θtrw and, therefore, of θtr,Pw .

In fig. 3.11 the dependence of the transition points on the
shock Mach number is not explicit, since all the configura-
tions with the same geometry are represented by means of the
same marker for visual clarity. The effect of the shock Mach
number, on the contrary, is shown in fig. 3.12.

Each row of the array of pictures in fig. 3.12 is associated
to a diverse rLE value. The left column represents the transi-
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tion points in terms of absolute values, i.e. θtrw and MLEs . On
the contrary, the pictures on the right column depict the local
values of wedge angle θtr,Pw and Ms at the transition. Each line
represents the transition angle as a function of the shock Mach
number for a diverse obstacle t/c.

With reference to figs. 3.12(a) - (c) - (e) (left column
of fig. 3.12), it is observed that the absolute θtrw is affected
mainly by the obstacle thickness, and less by shock intensity,
as in the self-similar case. The shock Mach number, indeed,
does not induce neither a specific trend nor a relevant vari-
ance of the transition angles belonging to the same curve. On
the contrary, for a given combination of rLE (picture) and βP
(curve), it can be observed that, in general, the larger is t/c,
the lower θtrw is. Therefore, the so-called “Regular Reflection
persistence”, that is the existence of a Regular Reflection in
presence of wedge angles which would generate leading edge Mach
Reflections, is more relevant for larger t/c values. The effect
of rLE is to qualitatively determine the range of variability of
the transition angles for diverse t/c values: θtrw ranges about
from 10◦ to 40◦ for rLE = 7, from 27◦ to 41◦ for rLE = 14 and from
30◦ to 43◦ for rLE = 17.5.

The trend between t/c and θtrw can be expressed also as a trend
between Ro and θtrw or between θLEw and θtrw , in accordance with eq.
(3.1). In particular, θtrw is higher when Ro is larger and there-
fore when θLEw is smaller. The first result the correlation be-
tween the transition angle and the obstacle curvature is in
accordance with the observations in Refs. [79, 78] on the re-
flection of planar shock waves over convex obstacles. In these
works, indeed, an increasing trend between Ro and θtrw was ob-
served. The second result, i.e. the decreasing trend between
θLEw and θtrw , seems to be in contradiction with the results of the
same works [79] where, on the contrary, an increasing trend be-
tween θLEw and θtrw was observed. In the reference works, however,
the effects of Ro and θLEw were assessed independently. On the
contrary, in this work both Ro and θLEw are summarized by the
parameter t/c, and therefore their effects cannot be observed
separately. Therefore, it cannot be determined yet whether the
two different observed trends are due to physical reasons, i.e.
the influence of the shock wave curvature, or to an interaction
between the two factors Ro and θLEw .
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When local values of the wedge angle and shock Mach number
are observed, i.e. the perceived angle θtr,Pw and the transition
Ms, (figs. 3.12(b) - (d) - (f), the right column of fig. 3.12),
the effect of t/c is significantly weaker than in the case of the
absolute transition angle. The separation among all the lines,
indeed, becomes comparable with the separation among the data
of the same curve, and a very reduced variability of θtr,Pw is
observed for different t/c values. Moreover, the effect of rLE
becomes almost negligible, since the range of variability of
θtr,Pw remains the same about from 37◦ to 43◦ for all the diverse
investigated rLE values.

Unlike geometric factors, the shock Mach number appears to
have a weak or negligible influence on both θtrw and θtr,Pw in the
considered range of parameters. Therefore, to better assess
the effects of the most relevant factors, i.e. t/c and rLE, on
the RR −→ MR transition, the effect of the shock Mach number is
neglected. In fig. 3.13, each point of the diagram represented
the average transition angle for a given combination of t/c and
rLE, and therefore it does not account for the shock Mach num-
ber. Fig. 3.13(a) represents the absolute and fig. 3.13(a)
the perceived transition angles. For each obstacle geometry
(combination of t/c and rLE), the range of variability of the
transition angle due to the shock Mach number is represented
by a vertical bar.

As observed above, θtrw exhibits a monotonically decreasing
trend versus t/c, whose average slope is influenced by rLE.

On the contrary, θtr,Pw does not present a significant de-
pendence on t/c, being the average slopes of the curves almost
null. Moreover, all the three curves associated to the three
values of rLE become completely overlapped. This fact indi-
cates that θtr,Pw is not influenced by rLE, that is, the shock
curvature, in a first degree of approximation.
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Figure 3.12: Transition angles versus shock Mach number parametrized
on t/c and rLE: absolute values (left column, .◦◦◦.) and values perceived
at the transition (right column,×××××××××××××××××××××××××××).
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Figure 3.13: Average (a) absolute and (b) perceived transition angles
versus t/c and parametrized on rLE (.◦◦◦.). For each point, the range of
variability due to Ms is indicated by the bar .

3.5 Triple Point trajectories

In steady reflections, the coordinates of a Triple Point
are, of course, constant. Similarly, in pseudo-steady reflec-
tions the self-similar coordinates of the Triple Point remain
constant. On the contrary, in the reflection of genuinely un-
steady shocks, the Triple Point moves in a genuinely unsteady
fashion, and therefore its coordinates vary with time. Former
works on the reflection of planar shocks over cylindrical ob-
stacles determined the trajectory of the Triple Point of a Mach
Reflection arisen after the termination of a Regular Reflec-
tion occurred at the leading edge. [45] and [78] theoretically
analyzed the Triple Point path by means of the characteristics
method, while [83] performed an experimental campaign which
confirmed their results.

In this work, only “genuine” Mach Reflections are consid-
ered, that is reflections which are of Mach-type immediately
from the leading edge reflection, as opposed to Mach Reflec-
tions generated by the RR −→ MR transition. To attain the shock
reshaping, indeed, Mach Reflections are required. Reflections
of regular type at the leading edge are observed [79], also
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in this work, to often turn into Mach Reflections during the
shock convergence. However, this empirical evidence is not
supported by a physical model, and therefore some conditions
may exist which do not cause the RR −→ MR transition. For this
reason, only genuine Mach Reflections are observed.

The investigated Triple Point paths, therefore, are as-
sumed to always start from the obstacle leading edge. However,
the assumption on the onset of a Mach Reflection exactly in cor-
respondence of the leading edge is known to be an approximation
of the local physics of the reflections. Both theoretical (see,
e.g., [133]) and experimental works ([134] and [84]) performed
on pseudo-steady reflections, indeed, highlighted a distance
of the order of some free mean paths from the wedge leading
edge to the actual point of detachment of the Triple Point from
the reflecting surface. Therefore, on a “macroscopic” scale,
genuine Mach Reflections exist and are investigated in this
section, whereas on a “microscopic” scale, Mach Reflections do
not arise in correspondence of the leading edge.

In the reference papers [133, 134, 84], the delay in the
onset of Mach Reflections was attributed to viscous effects,
which become relevant in small-scale experimental investiga-
tions. In the present work, therefore, this delay can be ne-
glected. Reynolds number, indeed, is between 106 and 107 and
Knudsen number Kn is always lower that 10-5 in all the compu-
tational domain. The latter is defined as the ratio between
the molecules free mean path and the characteristic lengths,
and therefore it indicates the order of magnitude of resolved
scales IV.

Also other viscous effects can be neglected: in a recent
work [85] on the reflection of planar shocks over convex ob-
stacles, no measurable effect of viscosity was recorded for
streams characterized by Reynolds number of 106 and larger.

IVFor a polytropic ideal gas, the definition of Reynolds, Mach and Knudsen
numbers allows to evaluate the latter from the first two, without computing
the exact value of the free mean path:

Kn =
Mf

Re

√(
δγ + 1

)
π

2
,

where Mf is the flow Mach number.
(
δγ + 1

)
is the ratio of the specific heats at

constant pressure and volume for a polytropic ideal gas. In this work, air is
modeled as a binary mixture of diatomic gases, i.e. N2 and O2, and therefore(
δγ + 1

)
= 1.4.
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The separation of genuine Mach Reflections is performed by
means of the map of leading edge reflections reported in fig.
3.6. The obstacle t/c values, therefore, are respectively of
0.07, 0.14, 0.21, 0.28, 0.35 and 0.42. βP ranges from 11 to 130
on ten levels, generating as many shock Mach numbers for each
one of the three rLE, thus 7, 14 and 17.5.

In the following, the coordinates of the Triple Point will
be indicated as (x,y), and refer to a right-hand oriented ref-
erence system with the origin in the focus point and an abscissa
axis aligned with the obstacle chord. In analogy to the detec-
tion of the RR −→ MR transition, the tracing of the Triple Point
trajectories is performed by means of a simple visual analysis
of the flow field at diverse time steps; no algorithm for the
automatic measurement of the Triple Point coordinates was de-
veloped.

The adopted procedure introduces a relevant variance in
data, due on the first hand to the human factor on the measure-
ment and, on the other hand, to the lack of a unique criterion
which defined the exact position of a Triple Point computed by
means of numerical simulation (see for analogy the problem of
the detection of the shock position, sec. 2.2.1). Three repli-
cations of the measurements were performed. Data reported in
the following represent the average values of the three repli-
cations samples. It is observed that the uncertainty on both x
and y is ±0.02.

3.5.1 Preliminary observations on the Triple Point
trajectories

In this section, the trajectories of the Triple Points gen-
erated by the diffraction of the shock waves over obstacles
with diverse geometries are shown. Preliminary observations on
the trajectories and on the influential factors on the shapes
will be reported in sec. 3.5.1.1.

Moreover, some considerations will be performed on the off-
set of the Triple Point from the reflecting surface in sec.
3.5.1.2.
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3.5.1.1 Triple Point coordinates

Fig. 3.14 reports all the trajectories of the Triple Point
sampled at constant time intervals for the obstacles with
t/c = 0.28. Different curve colors indicate different rLE val-
ues, whereas each symbol represent a specific βP. It is well
evident that all the trajectories show an arched trend and are
grouped on the basis of rLE, regardless of βP. This event oc-
curs just as clearly also for the other five t/c levels.

The independence on βP of the trajectory shape is unex-
pected, since theoretical models and experimental results on
pseudo-steady reflections (e.g. [82]) predicted a dependence
of χ the angle between the Triple Point path and the reflecting
wall on θw, Pi, Ti and Ms.
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Figure 3.14: Triple Point trajectories for Mach Reflections over ob-
stacles with the same t/c = 0.28. Each group of curves represents the
trajectories due to the diffractions over obstacles located at the
same rLE, whereas the single lines indicate trajectories of Triple
Points belonging to shock waves generated by diverse βP.

In addition to the disengagement of the trajectory shape
from the shock Mach number, another common feature is observed
among the thirty paths plotted in fig. 3.14. Especially in
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the beginning, indeed, all the three groups of trajectories
appear to be homogeneous dilations of the same curve. A ho-
mothetic transformation centered in the focus point (0,0) and
with ratio corresponding to rLE is applied to numerical data.
The resulting transformed Triple Point positions are reported
in fig. 3.15.

All the trajectories normalized on rLE overlap in proxim-
ity of the leading edge, regardless of rLE and Ms, but exhibit
an incipient divergence in correspondence of the peak value.
This behavior of the curves near the peaks is caused by two
factors: the first one is the unavoidable error measurement,
and the second one is a probable weak but physical influence of
rLE on the path shape. The error measurement is slightly in-
creasing with rLE (see fig. 3.14) due to the peculiar shapes of
the shock system: the local slopes of the incident shock and
the Mach stem in correspondence of the triple point, indeed,
become very similar for large values of rLE. The detection of
the Triple Point exact position, therefore, suffers from the
difficulty to distinguish the two shock waves, increasing the
variance of the results.

The observations on the weak influence of Ms and rLE are con-
firmed by the analysis of the trajectories of the Triple Point
for all the values of t/c. It must be noted that in the follow-
ing, for clearer visibility, figures reporting clustered data
will be plotted only for the three cases of βP = 11, 16 and 27
and for the extreme values of rLE = 7 and 17.5, albeit calcula-
tions and quantitative considerations are performed including
results all the treatments.

Figs. 3.16 reports the non-normalized Triple Point posi-
tion: as observed for the case with t/c = 0.28, the effect of Ms
is null or negligible and, moreover, all the groups of curves
in each picture exhibit a similar trend.

The same homothetic transformation as before (with center
in (0,0) and ratio rLE) is applied to numerical data. Results
for rLE = 7 and 17.5 and for βP = 11, 16 and 27 are reported
in fig. 3.17. From the comparison among the pictures in fig.
3.17 each associated to a diverse t/c value , it is apparent
that the curve shapes depend most on t/c, whereas the influence

124



Cylindrical shock reflection over obstacles

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x/r
LE

y
/
r
L
E

Figure 3.15: Triple Point trajectories normalized with rLE for Mach
Reflections over obstacles with the same t/c but different rLE values
and for shocks generated by diverse βP.

of rLE is almost completely negligible.
On the contrary, effects of rLE appear on the long-term be-

havior of the trajectories, and only for certain t/c values.
Indeed, no relevant difference is observed among the normal-
ized data on each picture for t/c = 0.07, 0.14 and 0.21, whereas
a separation between the two groups of curves with different rLE
appears in the other three cases. Moreover, in a first degree
of approximation, this separation increases with t/c.

Data present a larger dispersion for t/c = 0.07 with respect
to other values of obstacle thickness. This must be attributed
to the difficulty in detecting the exact location of the Triple
Point in Irregular Reflections whose pattern is very close to
von Neumann Reflections, as observed in sec. 3.2. To overcome
this difficulty, the adopted procedure is to trace the trajec-
tory of the so-called “equivalent Triple Point”. Literature
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(b) t/c = 0.14

5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

 

 
β
p
 = 11

β
p
 = 16

β
p
 = 27

(c) t/c = 0.21
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(d) t/c = 0.28
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(e) t/c = 0.35
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Figure 3.16: Trajectories of the Triple Point generated at the leading
edge for obstacle aspect ratios ranging from (a) 0.07 to (f) 0.42 for
diverse initial pressure ratios and obstacle leading edge radii (gray
markers for rLE = 7, black markers for rLE = 17.5).
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(b) t/c = 0.14
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(c) t/c = 0.21
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(d) t/c = 0.28
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(e) t/c = 0.35
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Figure 3.17: Normalized trajectories of the Triple Point on rLE gen-
erated at the leading edge for obstacle aspect ratios ranging from
(a) 0.07 to (f) 0.42 for diverse initial pressure ratios and obsta-
cle leading edge radii (gray markers for rLE = 7, black markers for
rLE = 17.5).
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suggests to set the equivalent Triple Point of a von Neumann
Reflection in correspondence of the intersection between the
incident shock and the end of the compression band which sub-
stitutes the reflected wave. The advantage of this procedure
is that it identifies both the equivalent Triple Point of a von
Neumann Reflection and the true Triple Point of a Single Mach
Reflection.

However, due to the non-uniqueness in the detection of the
leading compression band, this procedure introduces a degree
of inaccuracy in the detection of the Triple Point, and there-
fore the data dispersion appears larger than in other cases.

This is evident in fig. 3.18, which compares the trajec-
tories of Triple Points generated by the reflection over ob-
stacles with t/c = 0.07, rLE = 17.5 and t/c = 0.21, rLE = 7. rLE
is varied between the two groups of curves to have a weak shock
for t/c = 0.07 and, therefore, a possible weak reflection and
a strong shock for t/c = 0.21 causing a Single Mach Reflection.

Figure 3.18: Comparison between trajectories of Triple Point gener-
ated by obstacles with diverse t/c and rLE highlighting the diverse
data dispersion. rLE is varied between the two groups of curves in or-
der to further stress the difference in shock intensity and make the
data dispersion more evident.
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3.5.1.2 Triple Point offset from the reflecting surface

The vertical offset ∆y of the Triple Point position with
respect to the reflecting surface is computed. It is recalled
that with “reflecting surface” both the obstacle and the trail-
ing edge symmetry line are indicated. Therefore, the ordinate
of whole reflecting surface is evaluated as yRS = max

(
0,yo

)
,

where yo is the ordinate of the obstacle surface, introduced in
sec. 3.3. In this section, non-normalized data on rLE will be
used, because the obstacle chord is fixed (c = 5) and its nor-
malization would alter the extent of the range where yRS ≡ yo.

A phenomenological survey is performed in the beginning.

0 2 4 6
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Figure 3.19: Offset of the Triple Point trajectory (∗) from the re-
flecting surface (black line) for t/c = 0.21 and rLE = 7, showing a
quasi-linear trend (image not in scale).

Fig. 3.19 shows the Triple Point offset ∆y = y - yRS for the
case with t/c = 0.21 and rLE = 7. It clearly exhibits that, af-
ter the obstacle trailing edge, the offset of the Triple Point
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trajectory abruptly abandons the monotone trend and the Triple
Point moves towards the reflecting surface. This considera-
tion is easily explained because yRS ≡ 0 for x ≤ xTE.

Results of numerical simulations carried out within this
work show a peculiar fact. Theoretical [66] and experimental
[86, 79] works on the unsteady reflection of straight shock
waves over concave obstacles, indeed, demonstrate the exis-
tence of the so-called “Inverse Mach Reflection” (InMR). An
Inverse Mach Reflection presents three features:

1a The distance between the Triple Point and the reflecting
surface decreases during the shock propagation;

2a The slipstream originated at the Triple Point moves away
from the reflecting surface;

3a Inverse Mach Reflections are intrinsically unstable, and
terminate into a “Transitioned Regular Reflection” (TRR)
[75], a complex shock system described in ref. [86].

Most shock wave reflections, in the parameter ranges consid-
ered in literature, are of Direct Mach Reflection type like
the ones depicted in figs. 3.3 and 3.4, with a Triple Point
moving away from the reflecting surface. Therefore the occur-
rence of Inverse Mach Reflections is a rare phenomenon, usually
limited to the reflection over concave obstacles [79].

In the reference literature [79], concerning the diffrac-
tion of planar shock waves by means of curved obstacles, either
all the three conditions 1a-2a-3a are observed in an Inverse
Mach Reflection or none of them is verified i.e. in Direct
Mach Reflections. Numerical results presented in this work, on
the contrary, demonstrate a higher level of complexity in the
distinction between Direct and Inverse Mach Reflections in the
diffraction of curved shock waves. Indeed, only some features
correspond to the conditions 1a-2a-3a for the identification
of an Inverse Mach Reflection:

1b The offset ∆y is non-monotone in space, in accordance with
the criterion 1a. This fact implies that, after a tran-
sient, the distance between the Triple Point and the re-
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flecting surface decreases in space (and time). This is
peculiar, because Inverse Mach Reflection was previously
observed and analytically derived only for concave obsta-
cles. In the present work, on the contrary, a Triple Point
converging towards convex obstacles is observed.
However, it is also true that the reversal of the off-
set slope if present occurs only in correspondence of the
trailing edge. This implies that, to detect the offset
slope reversal, it is mandatory to include in the reflect-
ing surface both the obstacle and the trailing edge symme-
try line. This global reflecting surface, even though it
is made up of two convex profiles, is, however, concave.

2b The direction of the slipstream is in partial accordance
with the Inverse Mach Reflection one, because for t/c = 0.07
and t/c = 0.14 the slipstream moves away from the obstacle.

3b The transition from Mach Reflection to Transitioned Regu-
lar Reflection can never be observed in the reflection of
cylindrical converging shock waves over circular-arc ob-
stacles. Indeed, two impediments can occur, as depicted
in fig. 3.20. The first one causes the shock focusing and
therefore the termination of the existence of the implod-
ing wave to occur when the Triple Point is still moving
towards the lower symmetry line. The second one is associ-
ated to trailing edge shock reflections. The Triple Point,
indeed, belongs to the leading-edge generated Mach stem.
Therefore, when x = xTE, also the leading-edge generated
Mach stem is diffracted over the trailing edge disconti-
nuity into a further Mach stem and a reflected wave. The
Triple Point under scrutiny i.e. the leading-edge gener-
ated one can be observed only before its interaction with
these additional waves. Since this interaction necessar-
ily occurs before the Triple Point reaches the trailing
edge symmetry line, the Transitioned Regular Reflection
cannot take place.

In conclusion, the behavior of the trajectory the Triple Point
during the convergence of a cylindrical shock wave appears to
be a more complex phenomenon than in the case of a planar shock.
Therefore, it cannot be determined whether Inverse Mach Re-
flections can occur also over circular-arc convex obstacle,
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Figure 3.20: Numerical Schlieren of the reflection of a shock with
MLEs = 2.2 over an obstacle characterized by t/c = 0.21 and rLE = 7. The
onset of disturbing shock waves at the trailing edge and the simulta-
neous focusing of the converging shock before the termination of the
InMR are visible.

because the classical criteria, i.e. the ones adopted to clas-
sify the diffraction of planar shock waves, do no apply.

3.5.2 Propagation of the Triple Point over the complete
computational domain

In this section, the propagation of the Triple Point over
the whole computational domain is observed. In analogy to sec.
3.5.1, both the trajectories and the offset from the reflecting
surface of the Triple Point are analyzed.
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3.5.2.1 Triple Point coordinates

The goal of this section is to determine an empirical law
which correlates the Triple Point x and y coordinates. In the
beginning, polynomial fitting are investigated.

As observed in sec. 3.5.1, in the considered range of ini-
tial conditions, the incident shock Mach number appears to have
no relevance in determining the Triple Point trajectory, and
therefore it will not considered among the influential param-
eters. On the contrary, a twofold dependence on the obstacle
leading edge radius is observed: in a first degree of approx-
imation, only the macroscopic effect of rLE is accounted for,
that is its role in the normalization of the Triple Point tra-
jectory. The secondary effect, that is the separation of the
groups of curves in correspondence of their peak, is weaker,
and therefore it will be neglected in the following.

Therefore, the goal is to provide a correlation between
coordinates normalized on rLE and parametrized on t/c,

y/rLE = f(x/rLE; t/c). (3.42)

Two data fitting are performed: the first will be called
“simple interpolation”, and consists of a linear regression on
all the polynomial coefficients of diverse degree, and will be
represented in figures by full lines. The second fitting will
be indicated as “constrained interpolation”, that is the lin-
ear regression on the polynomial coefficients except one, that
is evaluated in accordance to the aforementioned assumption
(detailed at the beginning of sec. 3.5) that the Triple Point
originates at the obstacle leading edge.

To easily deal with the results of the interpola-
tions, the coordinates are transformed, so that the obsta-
cles leading edge that is the origin of the Triple Point
trajectory becomes coincident with the origin of the Carte-
sian axes: x −→ 1 - x/rLE,

y −→ y/rLE.
(3.43)

The correlation is therefore in the form

y/rLE = f(1 - x/rLE; t/c) (3.44)
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for both the simple and the constrained interpolation. The
constraint becomes

f(1 - x/rLE; t/c)
∣∣∣∣ x=xLE∀ t/c

= f(0; t/c) = yLE/xLE = 0, (3.45)

resulting in forcing the constant term of the fitting to be
null, regardless of the interpolating polynomial degree.

With reference to fig. 3.21, polynomial interpolations of
second, third and fourth orders are performed on transformed
data. The trajectories are analyzed from the onset of the
Triple Point to the focusing, that is 1 - x/rLE ∈ [0,1]. The
trajectory exhibits a relevant skewness, which implies that
the second order polynomial fitting is not suitable to the de-
scription of the Triple Point path.

The fourth degree polynomial appears to capture the Triple
Point propagation better than the second and third degree.
However, the fourth order degree polynomial can provide at
most an “empirical” description of the Triple Point trajec-
tory. Indeed, high order polynomials present several oscil-
lations which are not explained by a model. Therefore, high-
order polynomials do not represent the “physics” of the Triple
Point propagation.

It must be observed that the description of the trajec-
tory cannot be, in general, performed on the whole domain
1 - x/rLE ∈ [0,1]. Indeed, each time the Triple Point reaches a
reflecting surface, its trajectory presents a wedge which can-
not be described by a regular function. Moreover, depending
on the combination of parameters, when the Mach stem is re-
flected over the obstacle trailing edge discontinuity, a fur-
ther Triple Point may arise and possibly disturb the propaga-
tion of the observed leading edge Triple Point.

3.5.2.2 Triple Point offset from the reflecting surface

With reference to fig. 3.19, a feature resulting from the
observation of the Triple Point offset is a quasi-linear trend
between ∆y and x while the shock is propagating along the ob-
stacle. Fig. 3.19 represents the case with the best adhesion
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Figure 3.21: Diverse degrees of polynomial used to interpolate the
whole TP trajectory (t/c = 0.21, rLE = 7 case)

to the linear trend, while, on the contrary, fig. 3.22 depicts
some cases where the linearity of the correlation is worse.

A linear regression is performed on the data to obtain a law
in the form

∆y_ = h
_

(x - xLE), (3.46)

where h
_

< 0 is the estimated slope of the trajectory offset
with respect to (x - xLE). After the obstacle trailing edge,
since yRS ≡ 0, the offset is coincident with the position of the
Triple Point, and therefore the variables dependence cannot be
linear. For this reason, the regression is performed only on
data with x ∈ [xLE - c; xLE].

To quantify the importance of measurement errors on the de-
viation of numerical results from the linear trend, a goodness-
of-fit test is performed on the result of the linear regression
reported in eq. (3.46). For all the observed cases, the coeffi-
cient PPC is evaluated. This coefficient, namely the Pearson
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Figure 3.22: Offset of the Triple Point trajectory from the reflecting
surface for diverse t/c and rLE values.

product-moment correlation coefficient, indicates the pres-
ence of a linear correlation between two groups of data and it
is defined as

PPC =
Cov(x,∆y)√

Var(x)Var(∆y)
, (3.47)

where Cov and Var indicate the covariance and the variance of
the sets of samples [135]. The closer to 1 (the highest ad-
missible value) |PPC| is, the stronger is the correlation; in
particular, |PPC| > 0.7 suggests the presence of a strong cor-
relation. For all the eighteen sets of data, PPC < -0.98, which
indicates, indeed, a strong linear correlation.

A second way to test the supposed linearity of ∆y versus x
consists in using the predicted value of the offset to trace
the Triple Point trajectory. Indeed, from the definition of
offset, one has:

y = ∆y + yRS

= h(x - xLE) + y0 +
√
R2o -

(
x - x0

)2
,

(3.48)

where yRS ≡ yo because the linear trend of ∆y is observed only
before the Triple Point reaches the trailing edge.

After a few algebraic passages, the above equation can be
rewritten in the form of a generic conic curve

Ξ1y
2 + Ξ2xy + Ξ3x

2 + Ξ4y + Ξ5x + Ξ6 = 0, (3.49)
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where the coefficients are defined as:

Ξ1 = 1; Ξ2 = -2h; Ξ3 = h
2 + 1;

Ξ4 = 2
(
hxLE - y0

)
; Ξ5 = -2

(
hΞ4 + x0

)
; Ξ6 = Ξ24 - R

2
o + x

2
0.

(3.50)

The type of resulting conic can be determined by discussing the
sign of

(
Ξ1Ξ3 - Ξ2

)
: the trajectory is hyperbolic for h < -1/

√
3,

parabolic for h = -1/
√
3 and elliptic for h ∈

(
-1/
√
3,0

)
. Unfor-

tunately, numerical results from the linear regression show
that h

_

= h
_

(t/c,rLE), resulting in values of h
_

larger or smaller
than -1/

√
3, depending on the obstacle geometry. This result

is not compatible with the observation of pseudo-homothetic
data with respect to rLE performed in sec. 3.5.1, because the
homothetic behavior implies that the analytic expression of
y/rLE (x/rLE) cannot depend on rLE.

In conclusion, the results of this analysis suggest that,
despite the qualitative and quantitative indications provided
by fig. 3.19 and by the PPC coefficient respectively, the trend
∆y with respect to x cannot be linear.

3.5.3 Regression on partial Triple Point trajectories

The analysis of both the trajectories and of the offset of
the Triple Point over the whole domain performed in sec. 3.5.2
indicate that the Triple Point path cannot be described by
means of polynomial or conic functions; similarly, the Triple
Point offset from the reflecting surface does not follow a lin-
ear trend.

Therefore the domain of observation of the Triple Point
trajectory is restricted to the initial part of the Triple
Point propagation, where effects of rLE are negligible (see
fig. 3.15) and, therefore, a simple correlation can be found
between the Triple Point coordinates.

A second degree polynomial law is used to describe the tra-
jectory, using data sampled during the shock propagation over
a restricted domain, that is the obstacle first half-chord.
Coefficients are obtained by a least-squares interpolation on
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normalized data. The obtained fitting is in the form

y/rLE = Υ2 (1 - x/rLE)2 + Υ1 (1 - x/rLE) + Υ0, (3.51)

where the three coefficients
(
Υ2,Υ1,Υ0

)
depend on t/c.

Also for the regression over the restricted domain, simple
and constrained interpolations are performed. For the con-
strained interpolation, coefficient Υ0 ≡ 0 by virtue of the
constraint expressed in eq. (3.45). On the contrary, for the
simple interpolation, coefficient Υ0 results from the regres-
sion. However, from the analysis of numerical results of the
regression, it is verified that Υ0 remains very close to zero,
i.e. Υ0/min(|Υ2|,|Υ1|) = O(10-3) and furthermore it does not ex-
hibit any dependence on t/c. This result is in agreement with
the assumption that the Triple Point trajectory begins in cor-
respondence of the obstacle leading edge, that justifies the
constrained interpolation.

Figure 3.23 reports the two coefficients Υ1 and Υ2 as
functions of the parameter t/c. For both the computational
methods the simple and the constrained interpolations, indi-
cated respectively by a gray full line and the symbol ◦ the
coefficient exhibit a pseudo-linear trend with respect to t/c.

For this reason, a linear fitting is performed on Υ2 (t/c)
and Υ1 (t/c). The interpolation is performed on the two coeffi-
cients obtained from the constrained data fitting, which al-
lows to neglect the analysis of Υ0, which is defined null. The
linear fitting is depicted in fig. 3.23 by means of a black
dashed line. Each of the two coefficients is therefore ex-
pressed as a linear function of t/c:Υ1 = Λ1,1 · t/c + Λ1,0,

Υ2 = Λ2,1 · t/c + Λ2,0,
(3.52)

where Λ are the coefficients of the linear regression reported
in fig. 3.23. The first subscript of each Λ indicates the
associated Υ and the second represents the corresponding order
of the term in the linear correlation.

Therefore, in accordance to the assumption underlying the
constrained interpolation, the Triple Point trajectory during
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Figure 3.23: Coefficients Υ1 (left) and Υ2 (right) of the correlation
y/rLE = Υ2 (1 - x/rLE)

2 +Υ1 (1 - x/rLE) +Υ0.

the first part of the propagation follows a law in the form

y/rLE =
(
Λ2,1 · t/c + Λ2,0

)
· (1 - x/rLE)2

+
(
Λ1,1 · t/c + Λ1,0

)
· (1 - x/rLE),

(3.53)

which describes a sheaf of vertical-axis parabolas passing by
the two base points (0;0) and -Λ1,1/Λ2,1

(
1;Λ1,0 - (Λ2,0Λ1,1)/Λ2,1

)
,

as reported in fig. 3.24.

The suitability of the parabolic function to the descrip-
tion of the Triple Point trajectory in its initial part is ver-
ified by comparing numerical data to analytically predicted
trajectories. In fig. 3.25, the two levels of regression are
exposed: the first level, i.e. the second order polynomial
fitting on samples is indicated by gray lines (for the simple
interpolation) and by the symbol ◦ (for the constrained inter-
polation). The second level of regression, that is the linear
interpolation over parabolic coefficients, as indicated by eq.
(3.53), is depicted by means of a black dashed line. For the
second level of regression, only results for the constrained
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Figure 3.24: Extrapolated Triple Point trajectories after the regres-
sion performed on the parabolic coefficients.

interpolation are reported for higher clarity. The results
for the simple interpolation, however, present an excellent
overlapping with the constrained interpolation ones.
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Final remarks

It is worth noticing that results reported in this chapter
have been derived under strong assumptions, and therefore they
represent an empirical description of cylindrical shocks re-
flections over circular-arc obstacles without performing an
insight on the physics of the shock diffraction. In the de-
tail of the RR −→ MR transition, indeed, the dependence of
the transition angle on the shock Mach number is assumed to
be a second-order effect, and therefore it was not further de-
tailed. Moreover, the slight dependence of the Triple Point
trajectory shape on the leading edge radius rLE, observed for
obstacles with t/c ∈ [0.28,0.42], was neglected and following
computations were performed over normalized data.

On the contrary, the advantage of this approach is that it
covers the whole range of admissible obstacle thickness: with
reference to fig. 3.6, for MLEs ≈ 2 and higher, the dependence
of the RR −→ MR transition wedge angle on the incident shock
Mach number is negligible, let alone null. Therefore, the ef-
fects of all the possible t/c values which generate a leading
edge Regular Reflection are explored in sections 3.3 and 3.4.

Similarly, the correlation between the Triple Point po-
sition and the obstacle thickness (sec. 3.5) covers all the
admissible values of t/c which produce a Mach Reflection at the
leading edge.

This implies that the correlations derived in secs. 3.3,
3.4 and 3.5 can be adopted, even if they are known in ad-
vance to be able to provide only a phenomenological descrip-
tion. The reason is that their predictive ability is expected
to be fairly good albeit their simpleness, because the domain
on which they can be applied is coincident with the one used to
define them.

The only parameter whose effect is neglected, due to its
weak effect, is the (local or incident) shock Mach number. How-
ever, for shocks stronger than the explored ones, high temper-
ature effects become non-negligible, and therefore the poly-
tropic ideal gas model cannot apply. On the contrary, if weaker
shocks are considered, it is necessary to keep into account
that the physics of weak shock reflections [128] is much more
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complex than the one used to describe Regular and Mach Reflec-
tions. Therefore, different computational methods and assump-
tions would be required to describe the reflection of weak or
very strong shocks.

In conclusion, the domain of shock Mach numbers where the
proposed correlations are valid cannot be further extended.
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Shock reshaping and focusing in dilute gas

[. . . ] systems are never in equilibrium. They are
inherently unstable. They may seem stable, but
they’re not. Everything is moving and changing.
In a sense, everything is on the edge of collapse.

MICHAEL CRICHTON, JURASSIC PARK

This chapter describes the interaction between a cylin-
drical converging shock wave and an array of symmetrically-
arranged aerodynamic obstacles. The outcome of this interac-
tion is the shock reshaping, i.e. the transformation of the
front shape into a pseudo-polygonal, more stable one. The
shock stability is of fundamental importance considering the
possible applications of converging shock waves, e.g. Iner-
tial Confinement Fusion and Sonoluminescence, which require
extremely high temperature and pressure at the focus point.

The goal is to find the configurations which provide the op-
timal level of energy concentration. Alternative experimental
configurations are therefore devised from the reference one
described in sec. 1.1 (nobs = 8, t/c = 0.14, rLE = 7, MLEs = 2.7,
cf. [97]) by varying both the obstacle layout and the operat-
ing conditions. Other parametric studies have been performed
on the interaction between shock waves and reflecting walls,
as in [59] and in the more recent [136, 59], but never in the
perspective of an empirical optimization of the energy focus-

145



Chapter 4

ing by means of a cylindrical converging shock wave. Numerical
simulations are performed, whose results are exposed in this
chapter, to explore a wider range of geometrical configura-
tions and operational parameters, with the purpose of finding
alternative, more efficient, solutions. As in the reference
case, the polytropic ideal gas model is adopted.

Numerical simulations are also used to explore in detail
the reflection patterns generated by the multiple reflections
of shock waves over material and symmetry boundaries. The ef-
fect of the diverse factors is assessed both on the final shock
effectiveness and on the flow structures generated during the
convergence.

4.1 Numerical simulations setting

The setting of the numerical simulations is described in
this section. In sec. 4.1.1 the design of experiments is de-
scribed: the investigated parameters, the considered values
of each parameter and the preliminary analysis which allowed to
restrict the factorial design with respect to the one adopted
in chap. 3. In sec. 4.1.2, the adopted spatial and tempo-
ral discretization are described and justified by numerical
results. Eventually, the position of the shock wave computed
by means of numerical simulations is compared with reference
values of Rs to verify numerical results.

4.1.1 Design of experiments

Numerical simulations are performed over a factorial design
including all the factors investigated in chap. 3 (incident
shock Mach number MLEs , obstacle thickness-to-chord ratio t/c
and leading edge radius rLE) and the number of obstacles nobs.
Recalling that the final goal is to obtain high values of pres-
sure and temperature, a preliminary investigation is performed
to restrict the factorial design to the most relevant region,
and reduce the computational cost.
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Thickness-to-chord ratios are set respectively equal to
t/c = t/cref, ±50%, that is t/c = 0.14, 0.21 and t/c = 0.07, cor-
responding to the three lowest t/c values investigated in chap.
3. The choice is motivated by the symmetry with respect to ref-
erence conditions, and the boundary of this range are selected
to respond to two a priori requirements. The first one stems
from an observation derived from a preliminary analysis, that
the reshaped shock effectiveness decreases for increasing t/c
(upper t/c limit). The second one is the need of obtaining Mach
Reflections at the leading edge which are used to ignite the
reshaping process which is guaranteed only by obstacles with a
t/c ratio between 0.07 and 0.42, in accordance with the results
presented in chap. 3.

The reference Mach number of the shock MLEs , evaluated at
a brief distance from the obstacle leading edge at reference
distance, is 2.7. This value is varied on three levels (refer-
ence MLEs , ±20% corresponding respectively to 2.7, 3.2 and 2.2).
Therefore only initial pressure ratios βP of 11, 16 and 27 are
considered. It is true, indeed, that stronger shocks can pro-
duce higher energy concentration at the focus point, result-
ing in higher pressure and temperature values, but considering
shock waves generated by βP up to 130, as in chap. 3, would
present two limitations. The first one is that the shock Mach
number, and therefore its intensity, have a less-than-linear
growth with βP, as reported in fig. 4.1. The second limita-
tion is that the stronger is the shock, the higher are density
and temperature in the flow field, resulting in a loss of ac-
curacy of the results if computations are performed under the
polytropic ideal gas assumption.

The various numbers of obstacles nobs are selected after a
preliminary analysis over a wide range. Results for t/c = 0.21
and rLE = 7 are reported in fig. 4.2, which confirms the good-
ness of the choice performed in reference works [97] to use
an array of 8 obstacles. Arrays of six, eight and sixteen ob-
stacles are therefore investigated. It must be noticed that
a similar trend was found in [94] while investigating the re-
shaping induced by cylindrical obstacles, as depicted in fig.
4.3

Obstacles are arranged at once, twice and 2.5 times the
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Figure 4.1: Shock Mach numbers obtained at a small distance upstream
the obstacle leading edge (rLE = 7) versus the initial pressure ra-
tio that generates the shock. The decreasing efficiency of the shock
generation can be observed.

reference value rrefLE , corresponding respectively to 7, 14 and
17.4. For this case, the range is maintained equivalent to the
one explored in chap. 3, because the preliminary analysis show
that also pressure and temperature attained at the focusing
present a slight dependence on rLE. Cases with a leading edge
radius lower than rrefLE are not considered, because this would
result in reciprocal geometric interferences between adjacent
obstacles, for the considered nobs.

The considered parameter ranges are listed in table 4.1,
generating a full factorial design including 81 treatments
[135]. Local extensions of the full factorial design are con-
sidered: the case with no obstacles is also investigated for
reference, the 24-obstacle case is partially explored to gain
a better insight of the physics of the flow in the channel be-
tween two obstacles, and the flow induced by the interaction
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Figure 4.2: (a) Pressure and (b) temperature at the origin as func-
tions of the number of obstacles, parametrized on the leading edge
Mach number, for obstacles with t/c = 0.21 and rLE = 7. Please compare
the trend of pressure and temperature at the focus point versus nobs
with results obtained with cylindrical obstacles in fig. 4.3

Figure 4.3: Maximum pressure and temperature near the focal point as
s function of the number of cylinders (initial Ms = 2.4, r̂LE = 46.25mm,
ĉ = 15mm). (Image and caption source: V. Eliasson, W.D. Henshaw,
D. Appelö, “On cylindrically converging shock waves shaped by obsta-
cles”, Physica D (2008).)
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Number of obstacles nobs 6 8 16

Thickness-to-chord ratio t/c 0.07 0.14 0.21

Leading edge coordinate rLE 7 14 17.5

Initial pressure ratio βP 11 16 27

Table 4.1: Test matrix for the numerical experiments. Considered
parameters are the number of obstacles nobs, the thickness-to-chord
ratio t/c, the radial coordinate of the obstacle leading edge rLE and
the initial pressure ratio βP. In all tests, the operating fluid is
air in standard conditions, with γ = 1.4. The value that the parameter
assumes in the reference configuration in ref. [97] is evidenced.

between the shock and cylindrical obstacles is described.

4.1.2 Assessment on grid spacing and time step

Numerical simulations are carried out with the application
of the multi-domain approach described in chap. 2. In the ob-
stacle region, the simulations are performed on a fixed grid
with a number of grid nodes ranging from 50000 to 400000, de-
pending on the computational domain size, with an a priori re-
finement in correspondence of the regions of interest, which
include the obstacles leading and trailing edges, the shock
reflection region and the focusing region.

The grid and time-step dependence is verified for a range of
grid element sizes and time step levels, as reported in figures
4.4 and 4.5, respectively. The above simulations were carried
out considering nobs = 16, reference rLE and t/c, and an initial
pressure ratio βP = 60, a condition that is more demanding in
terms of space and time resolution than all cases considered in
the present study.

In figure 4.4, the non dimensional pressure profile over the
bottom symmetry line and the obstacle surface is reported at
four relevant time level, corresponding to the impinging shock
being located at 25% (figure 4.4(a)), 50% (figure 4.4(b)),
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Figure 4.4: Pressure obtained with different meshes on the obstacle
during the propagation of a shock with Mach number of 4.7 at rrefLE . The
time step is ∆τ = 6× 10-4 in all simulations. The shock advancement at
each figure corresponds to 25% of the obstacle chord.
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Figure 4.5: Pressure obtained with different time steps on the ob-
stacle during the propagation of a shock with Mach number of 4.7 at
rrefLE , over a grid made of 56000 nodes (∆x = 0.01). The shock advance-
ment at each figure corresponds to 25% of the obstacle chord.
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Figure 4.6: Temperature value at the focus point versus time for dif-
ferent space (a) and time (b) discretizations.

75% (figure 4.4(c)) and 100% (figure 4.4(d)) of the obstacle
chord. Five different grids are considered, with reference
grid length ∆x scaling from 0.1 to 0.007, with ∆x being the
maximum element linear size. All simulations in figure 4.4
were carried out with a time step ∆τ = 6 × 10-4, that is the one
adopted for all the simulations.

The pressure profiles in figure 4.4 are found to be almost
independent from the grid spacing for the three most refined
grids, namely, ∆x = 0.03, 0.01 and 0.007.

In figure 4.5, the pressure profile over the bottom symme-
try line and the obstacle surface is reported the the same four
time levels as in figure 4.4 for six different values of the
time-step ∆τ, ranging from 6× 10-3 to 2× 10-4. All simulations
in figure 4.5 were carried out over a grid made of 56000 nodes
(∆x = 0.01). The pressure profiles obtained with the three
smallest time steps, ∆τ = 2×10-3, 4×10-3 and 6×10-3 exhibit a
satisfactory overlap.

Finally, figure 4.6 illustrates the focus point
temperature-internal temperature ratio over time for differ-
ent time and space discretizations. In particular, results in
figure 4.6(a) are computed for different grids resolution us-
ing the same time step of ∆τ = 6×10-4; results in figure 4.6(b)
are computed for different time steps over a grid with 56000
nodes (∆x = 0.01). Not surprisingly, the accurate determina-
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tion of the temperature profile at the focus point is the most
demanding quantity in terms of grid and time-step resolution.
Therefore, it is used here to select the grid and the time-step
to be used in the following.

The selected grid spacing and time step are the aforemen-
tioned ∆x = 0.01 and ∆τ = 6×10-4 respectively. It must be noted
that the same grid spacing (with the proper local refinements)
adopted for the simulation of the leading edge reflection pat-
terns in chap. 3 (sec. 3.1.2.2) represents a valid spatial
discretization also when the focusing must be observed. On the
contrary, the time step requires a further refinement, as the
∆τ = 10-3 selected in chap. 3 does not allow to correctly cap-
ture the temperature profile at the focus point.

4.1.3 Comparison to self-similar solutions and
experimental results

To test the reliability of numerical results, a comparison
with the self-similar solution proposed by Guderley is pro-
vided [39]:

Rs = r̃
(
1 -

τ

τ̃

)α
, (4.1)

where quantities r̃, τ̃ and α have been introduced in sec.
3.3. The value of the self similarity exponent α can be ob-
tained by means of different methods, as discussed in refs.
[39, 63, 48, 47]. Details on the applicability of the law are
discussed in sec. 3.3. One of the assumptions which allow
to perfectly apply the self-similar model is that the shock
is “near” its focus point. In the following, in accordance
with the approach adopted in the main reference paper [97],
the shock average position is evaluated after the shock wave
has passed the trailing edge, that is for r ≤ 2.

Figure 4.7 reports the shock dimensional radii in time, and
compares numerical results to experimental one available in
ref. [97] (nobs = 8, rLE = 7, t/c = 0.14, MLEs = 2.7) evaluated at
the same dimensional times. Furthermore, analytical power-law
curves are depicted, for both cylindrical and octagonal-like
shocks.
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In figure 4.8, the average radii of polygonal shocks are
plotted versus time for diverse values of nobs with respect to
the reference condition. The shocks are generated by the re-
flection of cylindrical shocks with MLEs = 2.7 over arrays of
6, 8, and 16 obstacles with rLE = 7 and t/c = 0.14. Results
for cylindrical shocks are reported for comparison. As demon-
strated in ref. [88], polygonal shocks exhibit a self-similar
behavior and therefore a power law can be used to represent the
data, provided that the so-called Schwendeman’s conditions are
satisfied, namely, that the shock front has a regular polygonal
shape. As discussed in sec. 1.1, only in the reference case the
reshaping is regular enough to satisfy Schwendeman’s condi-
tions. However, due to the high radial symmetry of the problem,
it is still possible to to apply a power-law fit to the other
configurations as well. Self-similarity exponents obtained
with the fitting are 0.836 for the cylindrical shock (which is
in good accordance with the theoretical value of 0.834), 0.879
for nobs = 6, 0.873 for nobs = 8 (which is in agreement to the
reference value of 0.875 reported in ref. [97]) and 0.858 for
nobs = 16.
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Figure 4.8: Shock position versus time for cylindrical (•) and re-
shaped shocks obtained with arrays of 6 (I), 8 (�), and 16 (+++++++++) obsta-
cles. Power law fittings is shown in solid lines.

Shock Mach numbers are compared with available experimental
data [97] and are reported in figure 4.9. The average shock
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Mach number is computed as the ratio of the front speed s and
the speed of sound in the unperturbed region. The shock speed s
is obtained by means of three methods. In the first approach,
the shock speed is computed as the analytical derivative of
the power law (PL). In the second one, s is obtained by means of
centered finite differences (FD) of the shock position in time
as follows

MPLs (τk) =
1

wi

dRPLs
dτ

∣∣∣∣
τk

, (4.2)

MFDs (τk) =
1

wi

Rs(τk+1) - Rs(τk-1)

τk+1 - τk-1
. (4.3)

The last method moves from the mass conservation law across the
shock front. In a reference frame moving at the flow velocity
in the unperturbed state, from the Rankine-Hugoniot conditions
one has

MRHs (τk) =
1

wi

∣∣m (Re(τk))∣∣
ρ
(
Re(τk)

)
- ρi

, (4.4)

where it is recalled that w and m indicate the flow speed of
sound and momentum and subscripts i, e denote the internal and
the external conditions of the imploding shock. Since the fluid
is at rest ahead of the shock front, the above relation is valid
here in the laboratory reference as well.

Results are reported in figure 4.9(a), where the three cri-
teria are compared to the power-law fit. Notably, MFDs shows a
reasonable agreement with the reference. Note that to reduce
the dispersion in the numerical evaluation of the derivatives,
only data set with a significant separation in time were con-
sidered. A comparable dispersion is observed for the so-called
Rankine-Hugoniot method ((4.4)), which probably suffers from
the high spatial variability of the quantities behind the re-
flected shock, in particular near the focusing.

A quantitative comparison is performed for the reference
case (nobs = 8, t/c = 0.14, rLE = 7, MLEs = 2.7). In this case, it
is possible to use the theory in ref. [88] to compute the ratio
between the Mach number Ms,n of the polygon edges generated at
the n - th reflection and Ms,n-1. Similarly to ref. [97], the
average shock Mach number between two consecutive reflection
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Figure 4.9: (a) Shock Mach number at diverse radial positions calcu-
lated with diverse estimation methods for the shock speed. Analytical
derivative of Guderley’s law (×××××××××××××××××××××××××××), centered finite differences (◦),
Rankine-Hugoniot relations (+). Reference value from ref. [97] is in
bold full line ( ). (b) Mach numbers versus radius from fitting for
diverse nobs for the reference MLEs and geometry.

Ms,1/Ms,cyl Ms,2/Ms,1 Ms,3/Ms,2

Theory (ref. [88]) - 1.201 1.201

Experim. (ref. [97]) - 1.20±0.02 1.19±0.03

Simul. (Present) 1.190 1.200 1.207

Table 4.2: Ratios of the Mach numbers of shock edges generated between
consecutive reflections. Theoretical predictions are from ref. [88],
experimental data from ref. [97] and present numerical simulations.
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is estimated by means of a stepwise linear regression on the
shock radius. Theoretical,[88], experimental [97] and numeri-
cal results are reported in table 4.2 for three reflections. A
very good agreement is found for the reference configuration.
Note that in the first reflection, the incident shock front is
cylindrical and therefore the theory could not be fully appli-
cable.

4.2 Maximum pressure and temperature at the focus point

Results of numerical simulations are reported in current
and next section. The most relevant quantities in shock fo-
cusing are the maximum values of the pressure and temperature
factors attained at the focus point. The compression factor
and the temperature factor are defined as

cP = PM0(k)/Pi, (4.5a)

cT = TM0(k)/Ti, (4.5b)

where PM0(k) and TM0(k) are respectively the minimum-time pres-
sure and temperature values in the origin such that

PM0(k) ≥ max
(
P0(k + 1),P0(k - 1)

)
, (4.6a)

TM0(k) ≥ max
(
T0(k + 1),T0(k - 1)

)
. (4.6b)

The condition on the minimum time is introduced because of the
complex flow structure behind the reshaped shock, where sev-
eral reflected waves are present: as reported also in fig. 4.6,
after the shock focusing a number of reflected waves reaches
the origin and may possibly cause a further increase in pres-
sure and temperature. However, only the P and T peak values due
to the main shock are relevant for applications.

Figure 4.10 reports cP (a) and cT (b) at the origin as func-
tions of the shock Mach number Ms at rrefLE , as well as the obsta-
cles aspect ratio. The curves are parametrized by the number
of obstacles. The shock Mach number at the impingement is con-
siderably more influential than the number of obstacles, for
reference obstacle shape and position. Moreover, the pressure
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peak attained present in general a non monotone trend with re-
spect to the number of obstacles.
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Figure 4.10: Maximum pressure (a) and temperature (b) attained at the
origin after a reshaping obtained by means of obstacles with reference
aspect ratio.

Figures 4.11 and 4.12 illustrate the same quantities, but
for higher and lower t/c values, respectively. For both types
of obstacles the monotone increasing trend is preserved with
respect to the shock Mach number.

Figs. 4.10 to 4.12 show that the separation of the curves
related to temperature is negligible. This corresponds to the
non-monotone trend of cP and cT with respect to nobs observed in
fig. 4.2.

The effects of the obstacle position and aspect ratio are
reported in figure 4.13: even for diverse combinations of MLEs
and number of obstacles, the highest temperature values are
obtained for obstacle with thickness-to-chord ratio of 0.07,
with no relevant exceptions. The temperature dependence on the
leading edge radius is generally non-monotone.

According to the present simulations, the configuration
producing the highest temperature at the focus point is the
combination of sixteen obstacles with t/c = 0.07 located at
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Figure 4.11: Maximum pressure (a) and temperature (b) attained at
the origin after a reshaping obtained by means of obstacles with
thickness-to-chord ratio of 0.21, corresponding to 150% of the ref-
erence value.
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Figure 4.12: Maximum pressure (a) and temperature (b) attained at
the origin after a reshaping obtained by means of obstacles with
thickness-to-chord ratio of 0.07, corresponding to 50% of the ref-
erence value.
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Figure 4.13: Maximum temperature value attained at the focus point
for reference shaped obstacles versus leading edge radius for diverse
MLEs and nobs, parametrized by the obstacle thickness-to-chord ratio:
0.07 (full line), 0.14 (dotted line), 0.21 (dashed line).

twice the reference distance and overrun by a shock generated
by an initial pressure ratio βP = 27. For this case, the temper-
ature peak interval, defined as the time interval along which
the temperature remains within the 90% of the maximum value, is
approximately ∆τ/τ̃ = 0.013. It is remarkable that this new con-
figuration delivers a focus efficiency that is only slightly
better (2 - 3%) than the reference one at the same Mach number,
thus confirming the goodness of the obstacle arrangement pro-
posed in ref. [97].

4.3 Non-leading edge reflection patterns

Shock reflection patterns are described in this section.
Sec. 4.3.1, describes the pseudo-polygonal shocks resulting
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from the reshaping, highlighting the possible formation of
shocks with more edges than the theoretical expected value of
nobs and 2nobs. The features of the reflections occurring down-
stream the leading edge are the topic of the following three
sections. In particular, the reflection of wave A over the up-
per symmetry boundary is discussed in sec. 4.3.2, the effect of
the obstacle concavity and leading edge position on the inter-
action of the multiple-waves systems is presented in sec. 4.3.3
and the overall number of reflections of the shock before its
focusing is reported in sec. 4.3.4. Eventually, section 4.3.5
discusses the results of numerical simulations applied to the
case of cylindrical obstacles.

4.3.1 General shock reshaping process

Past the leading edge reflection, that is the first step in
accordance to the nomenclature in section 1.1, diverse pat-
terns can be identified depending on the obstacle arrangement
and geometry.

Indeed, the shock reshaping process described in section
1.1, where four distinct steps take place and the final shock
consists of a regular polygonal front, is not the most recur-
rent in the considered range of design parameters, since it
occurs only for peculiar combinations of the shock speed and
the geometry. More frequent is the occurrence of further in-
termediate reflections, which cause a distortion of the re-
shaped polygon and hence modify the effectiveness of the shock
wave. As an example, figure 4.14 illustrates the numerical
Schlieren of the solution on an elementary domain and the re-
constructed polygonal shock on the basis of symmetry consider-
ations. Dashed lines and circles represent the polygon edges
and vertexes, respectively. The sequence of pictures in figure
4.14, therefore, depict a sudden switch from a 3nobs polygonal
shock (a) to nobs one (b) at the conclusion of the step 3. The
following reflection occurring downstream the obstacle causes
the onset of a shock in correspondence of the trailing edge,
as well as a Mach stem which increases the number of edges from
nobs (b) to 2nobs (c). The evolution of the latter reflection
results in a “reshaping cascade”, which produces a continuous
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transformation of the shock from a nobs-edges to a 2nobs-edges
to a nobs-edges again, even though rotated (d), and so on. The
reshaping cascade was predicted by Schwendeman et al. [88],
who demonstrated the onset of a continuous nobs - 2nobs tran-
sition until the focusing. The present numerical simulations
show that the phenomenon can become much more complex. As ex-
perimentally confirmed also in ref. [91] for cylindrical ob-
stacles, this is related to the type of reflection (regular or
Mach-type) occurring in correspondence of symmetry surfaces.
It is worth noticing that the aforementioned Direct Mach Re-
flection causes the Mach stems to present a slight curvature.
In fig. 4.14(b) it is apparent that the edges of the 8-sides
polygon representing the shock are curved. Therefore the nu-
merical secondary Mach stem and the approximating polygon side
differ significantly. However, the absence of additional re-
flections of the secondary Mach stem over the symmetry surface
preserve the shock topology and no additional vertexes are in-
troduced.

Reflections occurring downstream the obstacle satisfying
conditions in ref. [88] are not the only cause for the depar-
ture from the regular polygonal shock shape. For instance, if
the trailing edge is not along the trajectory of the secondary
triple point, that is the first Mach stem reaches the obstacles
trailing edge before the conclusion of the shock reshaping, the
non orthogonality between the first Mach stem and the symmetry
line causes a further reflection: in this case, if the latter
reflection is of Mach type, the number of edges, in addition to
the aforementioned nobs and 2nobs, becomes 3nobs and 4nobs (fig-
ure 4.15).

As detailed in the following paragraphs, other non-simple
interactions of the waves generated by the reflections causes
a variety of final configurations and intermediate patterns.

4.3.2 Secondary reflection

The secondary reflection, taking place on the symmetry
lines not intersecting the obstacles during the second reshap-
ing step, is indeed a complex process. As a matter of facts,
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(a)
τ

τ̃
= 0.728 (b)

τ

τ̃
= 0.840

(c)
τ

τ̃
= 0.922 (d)

τ

τ̃
= 0.957

Figure 4.14: Numerical Schlieren of the shock reshaping process in
reference conditions, showing the reshaping cascade. The 2π polygonal
shape is reconstructed from the numerical simulations carried out in
the elementary π/8 subdomain. (a) During step 3, the number of edges
is three times the number of obstacles. (b) The number of edges equals
the number of obstacles, vertices are along symmetry lines crossing
the trailing edges. (c) The number of edges is twice the number of
obstacles. (d) The number of edges equals the number of obstacles,
vertices are aligned with other symmetry lines. The indicated time
advancement is computed from the shock impingement over the obstacle
leading edge till the focusing.

165



Chapter 4

(a)
τ

τ̃
= 0.665 (b)

τ

τ̃
= 0.743

Figure 4.15: Numerical Schlieren after the interaction with 6 obsta-
cles of t/c = 0.21 at twice the reference distance (rLE = 14) and initial
pressure ratio of 27. The shock becomes (a) an optadecagon (3nobs) and
(b) an icosikaitetragon (4nobs). The deviation of the reflected wave
from the classical SMR shape is due to the interaction with contact
discontinuities generated during previous reflections, and it is not
due to an actual TMR. The indicated time advancement is computed from
the shock impingement over the obstacle leading edge till the focus-
ing.
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unlike the leading edge reflection, it involves the reflection
of two waves. The first one, the Mach stem generated by the
leading edge reflection, undergoes a Mach Reflection. This is
in accordance with the three-shock theory, which can now fully
applies, since the reflecting surface is straight and the in-
cident shock is a pseudo-straight wave moving at approximately
constant speed. The second shock which is reflected on the
symmetry surface is wave A, which undergoes either a Regular
Reflection or a Mach Reflection (figure 4.16).

With reference to table 4.3, Mach Reflections are concen-
trated in correspondence of larger obstacle numbers and thick-
ness. For a given set of parameters, in fact, the secondary
perceived wedge angle θPw,s i.e. the angle of the diffracting
wall perceived by wave A at its reflection over the upper sym-
metry surface is lower for a larger number of obstacles, as
sketched in figure 4.16. Moreover, the higher is the obsta-
cle thickness, the stronger is the curvature of wave A, which
contributes to reducing the value of the secondary θPw,s too.
Therefore, the most relevant parameters influencing the sec-
ondary reflection type are nobs and t/c.

However, the type of secondary reflection seems not to sig-
nificantly affect the following reflection patterns.
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(a) (b)

Figure 4.16: Numerical Schlieren of the secondary reflection caused
by thick obstacles at reference distance (βP = 16): (a) Regular (8
obstacles) and (b) Mach type (16 obstacles) caused by diverse values
of the angle of the diffracting corner perceived by wave A during the
secondary reflection, thus the secondary perceived wedge angle θPw,s.
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4.3.3 Trailing edge reflections dynamics

The obstacle arrangement strongly influences the dynamics
of the reflections after the shock reaches the obstacle trail-
ing edge. In particular, the obstacle thickness and position
are observed to influence the curvature of wave A (cf. section
1.1) and the triple point trajectory, and therefore to condi-
tion also the following reflections.

Figures 4.17 and 4.19 depict the reshaping of a cylindrical
shock generated by an initial pressure step βP = 11 for two con-
figurations, namely (nobs = 8, t/c = 0.21, rLE = 14) and (nobs = 6,
t/c = 0.21, rLE = 7), respectively. The diverse obstacle ar-
rangements cause the onset of different shock patterns. The
non-linear interaction between the shock wave and the reflect-
ing walls results in an increasing complexity of the flow field
during the shock convergence. In sec. 1.1, the reference con-
figurations was shown to produce a relatively simple pattern:
the reshaped polygonal shock has a number of edges switching
from nobs to 2nobs and back during the shock propagation, see
figure 4.14. In fig. 4.17, a more complex case is represented.
The leading edge Mach reflection of the cylindrical shock re-
sults in the three-shock structure consisting of the incident
shock is, in the reflected wave A (defined in sec.1.1) and in
the leading edge Mach stem mLE (fig. 4.17(a)). This configu-
ration is well known from previous theoretical, numerical and
experimental studies on shock reflection, see e.g. ref. [70].
When the shock reaches the trailing edge, mLE is diffracted into
the trailing edge Mach stem mTE and wave C, which intersect
at the trailing edge triple point TPTE (fig. 4.17(b)). Af-
terwards, the secondary reflection of the first, leading-edge
triple point over the upper symmetry line occurs (cf. figure
1.3), resulting in the onset of wave B and of the secondary
Mach stem msec (fig. 4.17(c)). Eventually (fig. 4.17(d)), a
head-on collision between waves B and C occurs; the resulting
shocks then interacts with the upper and lower symmetry lines.
Because of the comparable intensity and size of waves B and C,
a symmetric reflection system is observed. The sequence of the
reflections of waves B and C over the upper and lower symme-
try lines is denoted by waves BI, BII, etc. and CI, CII, etc.
respectively, as illustrated in fig. 4.18.
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(a)
τ

τ̃
= 0.28 (b)

τ

τ̃
= 0.49

(c)
τ

τ̃
= 0.65 (d)

τ

τ̃
= 0.73

Figure 4.17: Numerical Schlieren images representing the reshaping
of a shock generated by an initial pressure ratio βP = 11 over an ar-
ray of 8 obstacles with rLE = 14 and t/c = 0.21. (a) Mach reflection
of the incident shock is and formation of the leading edge Mach stem
mLE and of wave A. (b) Mach reflection of mLE at the trailing edge and
formation of the trailing edge Mach stem mTE and of wave C, merging at
the triple point TPTE (c) Secondary reflection over the upper symme-
try line, resulting in the onset of wave B and of the secondary Mach
stem msec (d) Head-on collision of waves B and C, resulting in a weak
distortion of the two waves and in the formation of the collision Mach
stem mcoll (The indicated time advancement is computed from the shock
impingement over the obstacle leading edge till the focusing).

In fig. 4.19, a small variation in the obstacle arrangement
is seen to cause a significantly different final pattern, thus
pointing to highly non-linear nature of the problem. Indeed,
in fig 4.19(a), the leading edge reflection is a Single Mach
Reflection as in the previous case (cf. fig. 4.17(a)). In the
present configuration, wave A reaches the upper symmetry line
while the shock is still crossing the obstacle (fig. 4.19(b),
to be confronted with fig. 4.17(b)), and wave B is generated.
Wave C is generated at the trailing edge reflection of mLE (fig.
4.19(c)) as in the previous case. Its interaction with waves
B, again a head-on collision, takes place when wave C is still
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Figure 4.18: Evolution of the reflections of waves B and C, which
remain independent waves almost until the shock focusing (nobs = 8,
t/c = 0.21, rLE = 14, βP = 11,

τ

τ̃
= 0.87).

a small-amplitude shock. As a result, wave B is only slightly
affected by the interaction with wave C and eventually reflects
into wave BI over the lower symmetry boundary. The reflected
wave BI propagates towards the upper symmetry line and coalesce
with wave C (fig. 4.19(d)). From this moment, one complex wave
termed “multiple wave”, consisting of the overlapping of waves
BI and C, is observed (fig. 4.20).

The diverse interactions between the reflected waves down-
stream the trailing edge result in polygonal shocks with vari-
able edges numbers and intensity and, in general, in a more
complex flow field with respect to the reference configura-
tion in ref. [97]. Indeed, the presence of several single
waves rather than one multiple wave causes further reflec-
tions. Fig. 4.21(a) details the flow field near the trailing
edge for the first case described in this section (nobs = 6,
t/c = 0.21, rLE = 7, βP = 11) at an intermediate time between
those depicted in figs. 4.17(d) and 4.18: it is apparent that
wave C reaches the symmetry surface before the triple point,
and undergoes two regular reflections. On the contrary, the
above is not observed in 4.21(b) (nobs = 6, t/c = 0.21, rLE = 14,
βP = 11, intermediate time between 4.19(d) and 4.20), where the
triple point reaches the reflecting surface first. Therefore,
the above interaction sequence is chosen as the criterion to
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distinguish the two reflection patterns.

Numerical simulations reveals that a larger obstacle dis-
tance and thickness cause the reflected wave to approach the
symmetry surface before the triple point, as illustrated in
table 4.4, thus resulting in the reflection pattern described
in fig. 4.21(a). Obstacles with larger thickness, indeed, gen-
erate reflected shocks (wave A) with larger curvature, which
extend more significantly towards the upper symmetry line. As
a consequence, for thick obstacles the reflected shock waves
reaches the symmetry line before the triple point, as in fig-
ure 4.21(a).

The effect of the parameter rLE on the shape of the trail-
ing edge reflection is indirect. Indeed, wave C always in-
teracts with wave B before reflecting at the upper symmetry
line. Hence, the stronger wave B is, the more significant is
the deformation of the trailing-edge reflected wave result-
ing from their interaction (as it is evident in fig. 4.21(b)).
Therefore, the trailing-edge triple point TPTE is more likely
to reach the reflecting surface before wave C. The effect of
rLE on the intensity of wave B is twofold. On one hand, for a
given βP, a larger rLE implies a lower shock Mach number Ms of
the incident shock, resulting in a weaker leading edge reflec-
tion. Therefore, wave B is less intense as well. Moreover,
the larger is rLE (for a given nobs), the longer is the distance
between the obstacle leading edge and the upper reflecting sur-
face. Therefore a stronger attenuation of wave A is observed as
it diffracts from the leading edge. Note that the distance be-
tween the leading edge and the upper reflecting surface depends
also on the number of obstacles. However, a clear dependence
of the reflection patterns on nobs was not observed.
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(a)
τ

τ̃
= 0.36 (b)

τ

τ̃
= 0.79

(c)
τ

τ̃
= 0.85 (d)

τ

τ̃
= 0.91

Figure 4.19: Numerical Schlieren images representing the reshaping
of a shock generated by an initial pressure ratio βP = 11 over an array
of 6 obstacles with rLE = 7 and t/c = 0.21. (a) Mach reflection of
the incident shock is and formation of the leading edge Mach stem mLE
and of wave A. (b) Secondary reflection over the upper symmetry line,
resulting in the onset of wave B and of the secondary Mach stem msec
(c) Mach reflection of mLE at the trailing edge and formation of the
trailing edge Mach stem mTE and of wave C, merging at the triple point
TPTE (d) Coalescence of waves C and BI (the reflection of wave B over
the lower symmetry surface) resulting in a strong distortion of the
two waves (The indicated time advancement is computed from the shock
impingement over the obstacle leading edge till the focusing).
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Figure 4.20: Evolution of the reflections of waves B and C, which
merge together before the shock focusing (nobs = 6, t/c = 0.21, rLE = 7,

βP = 11,
τ

τ̃
= 0.99).

(a)
τ

τ̃
= 0.83 (b)

τ

τ̃
= 0.98

Figure 4.21: Reflection at the trailing edge approaching the symme-
try line after the interaction with thick obstacles (βP = 11): (a)
reflected wave preceding the triple point (nobs = 6, rLE = 14) and (b)
vice-versa (nobs = 8, rLE = 14).
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4.3.4 Total number of shock reflections

Table 4.5 reports the overall number of reflections affect-
ing the shock before its focusing.

With the only exception of the 24-obstacle configuration,
the number of total reflections before focusing increases with
the number of obstacles. It is remarkable that the number of
reflections appears to be almost independent on the initial
pressure ratio βP and on the obstacle thickness-to-chord ra-
tio. For 24 obstacles at twice the reference distance, the
number of reflections is lower than in the corresponding 16-
obstacle cases. This is possibly due to the strong blockage
effect which produces a nozzle-like flow in between each pair
of obstacles. The supersonic flow in the divergent portion of
the channel results in the onset of a new shock wave, termed
“nozzle shock”, as reported in figure 4.22. The new shock wave
converges towards the focus and coalesces with the polygonal
reshaped shock. After the coalescence, the shock undergoes a
very limited number of reflections.

main shock nozzle shock

X

Y

0.5 1 1.5 2 2.5 3 3.5

0

0.5

(a)

X

Y

0.5 1 1.5 2 2.5 3 3.5

0

0.5

coalesced main and

nozzle shocks

wave C

(b)

Figure 4.22: Numerical Schlieren representing (a) the onset of a shock
due to the nozzle effect behind the converging shock wave and (b) its
coalescence with the converging shock reflections. The shock is de-
picted over a computational domain including two obstacles to high-
light the nozzle effect (βP = 27, rLE = 7, nobs = 24, t/c = 0.21).
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4.3.5 Circular obstacles patterns

It is shown by preliminary investigations that circular ob-
stacles cause relevant losses in the interaction with shock
waves [37]. On the contrary, circular geometries allow to
observe peculiar patterns. The flow across the obstacle un-
dergoes very strong deflections, and therefore different flow
patterns are observed with respect to the ones induced by aero-
dynamic obstacles. Due to geometrical interference, the case
of nobs = 16 is substituted with nobs = 4.

It must be noted that numerical results presented in this
section cannot be intended as an accurate description of the
phenomena occurring during the reshaping of a cylindrical im-
plosion by means of circular obstacles. Indeed, as it is well
known, behind a bluff body such as cylindrical obstacles flow
separation occurs and therefore the flow cannot be described
in detail by means of numerical simulations performed with a
solver for Euler equations. However, reference experimental
works show that, or length scales of interest for applica-
tions, the recirculation region remains small with respect to
the reference geometrical scale, and that it does not jeopar-
dize the shock wave reshaping. Fig. 4.23 reports an experi-
mental Schlieren image of a cylindrical imploding shock wave
diffracted by four cylindrical obstacles: it can be observed
that the shape of the polygonal shock wave is not affected by
the wake downstream the obstacles.

Figure 4.24 illustrates a sequence of the reshaping of a
shock generated by a βP of 16. In 4.24(a) wave B, already de-
scribed in section 1.1, is visible in the top of the figure.
Meanwhile, the Mach stem generated at the leading edge has
overpassed the obstacle and undergoes a reflection Regular,
in the present case in correspondence of the lower symmetry
line, generating the aforementioned wave C. The size of wave C
increases along time, and therefore it intersects the obstacle
with a variable slope (fig. 4.24(b)). This causes wave C to
undergoes a Mach Reflection in correspondence of the obstacle
trailing edge (fig. 4.24(c)).

In the shock-circular obstacle reflection framework, three
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Figure 4.23: Schlieren photograph of converging shock wave reshaped
by an array of four cylinders, with diameters of 15mm and located
at 61.5mm from the focus point. (Inverted colors, image source: V.
Eliasson, M. Kjellander, N. Apazidis, “Regular versus Mach reflection
for converging polygonal shocks”, Shock Waves (2007).)

main waves can be detected, and their interactions described:
they are wave B, wave C introduced in sec. 4.3.3 and the ex-
pansion across he obstacle induced by the shock passage. Their
paired interactions are described in the following; however,
it must be noticed that the interaction are observed only in a
subset of all the explored configurations.

The first interaction, involving wave B and the
expansion fig. 4.24(c) results in the local reversal of
the concavity on the first wave figs. 4.24(d) to (f) and
therefore in a modification of the reflection of wave B onto
the obstacle. In fact, in fig. 4.24(f) it takes place in
correspondence of the obstacle trailing edge, whereas it would
occur elsewhere along the obstacle or far downstream if wave
B were without inflection points.

The second interaction, between wave C and the expansion
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(a) (b)

(c) (d)

(e) (f)

Figure 4.24: Flow field generated by the interaction between eight
circular obstacles and a shock generated by a βP of 16, equally dis-
tanced in time. The mutual interaction among wave C, wave B and the
expansion wave is visible from (b) to (f).
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wave, is caused by their opposite relative motion: while
the Mach stem generated by the reflection of wave C onto
the obstacle trailing edge moves upwards, it encounters the
expansion fig. 4.24(b) and following. At their interface,
their respectively induced flows encounter with opposite ve-
locities, generating a recirculating region at the obsta-
cle trailing edge. The size and the vorticity intensity of
this turbulent region cannot be correctly resolved without a
Navier-Stokes solver, but in this framework it is only possi-
ble to observe its existence.

The third interaction is close to the one described in sec.
4.3.3 and it is caused by a possible reflection of wave B over
the lower symmetry line (fig. 4.24(d)), which generates wave
BI. The complexity of the flow field and the variable slope of
wave B do not allow to perform theoretical predictions on the
type of reflection, but all the explored configurations report
a coalescence (fig. 4.24(e)) of vave C and wave BI, resulting
either in a Regular Reflection or in a Mach Reflection. For the
case illustrated in 4.24(f), the peculiar structure generated
after the shocks coalescence consists of four straight waves at
the triple point: (moving counterclockwise from the top) the
secondary reflection Mach stem msec, the Mach stem attributed
to the reflection of wave B over the lower symmetry line, the
contact discontinuity and the wave enveloping waves C and BI

(thus the multiple wave introduced in sec. 4.3.3). This wave
presents two (or more, in general) kinks for the case in fig.
4.24, at x ≈ 4.5 and x ≈ 5. This structure is very similar to the
so-called “Transitional-Double Mach Reflection”, a shock sys-
tem whose existence was originally suggested by [70] but later
proved to be impossible in accordance with the shock diffrac-
tion theory [73]. However, this detection of this wave does
not contradict theoretical results, because the multiple wave
shape is due to the several and non-simple waves interactions,
and is not generated by a single reflection.

Figure 4.25 details the passage of wave B across the tur-
bulent region and how its reflection affects the shape of the
multiple wave after the coalescence with wave C. Moreover, a
deformation of density contours is visible at x ≈ 7.5 under
the multiple wave, which is the heritage of the reflection of
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Figure 4.25: Mach number contours and isopycnics highlighting the
interactions between the reflected waves downstream the obstacle
(βP = 11, nobs = 6, rLE = 17.5).

previous contact discontinuities.

Figure 4.25 illustrates also the mutual interaction among
all the three observed waves, thus waves B, C and the expansion.
In correspondence of the turbulent region, a triangular struc-
ture (following, the “Delta-structure”) is delimited by wave
B and the two shock waves originated by the reflection of wave
C over the obstacle trailing edge namely the “reflected wave
C” rC and the “wave C-originated Mach stem” mC both distorted
by the interaction with the expansion. It is observed that
the presence of the Delta-structure, observed also in figures
4.24(e)-(f) is not mandatory. Indeed, wave B can be reflected
also over the obstacle profile, as well as over the lower sym-
metry line. In the first case, if the reflection of wave B over
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(a) (b)

Figure 4.26: Absence of the Delta-structure: (a) premature (nobs = 8)
(b) and missing (nobs = 4) wave B reflection over the obstacle. (βP =
11, rLE = 14).

the obstacle is premature (fig. 4.26(a)) or, on the contrary,
if it does not occur (fig. 4.26(b)), the Delta-structure is
missing.

Eventually, figure 4.27(a) represents the advancement of
the reshaped shock front. The stepwise acceleration of the
shock front after each reflection can be inferred by the dif-
ferent average distance between two adjacent fronts. This im-
plies that the Mach stem of the reflection generated by cir-
cular obstacles present a relevant curvature, which cannot be
neglected as in the three-shock theory.

Moreover, a peculiar transition is observed. Indeed, when
the leading edge-generated Mach stem mLE reaches the obstacle
trailing edge, it undergoes a reflection, as described in sec.
4.3.3, resulting in the onset of wave C and, possibly of the
trailing edge Mach stem mTE. The latter is present only if the
reflection is of Mach-type. In this framework, in correspon-
dence of the lower symmetry line, the reflection of the leading
edge-generated Mach stem starts as a Regular Reflection , then
turns into a Mach Reflection (whose Mach stem mTE is visible
between r = 4.5 and r = 2), and eventually terminates into a
Regular Reflection after the interaction between waves B and
C. Figure 4.27(b) represents the flow field associated to an
intermediate state, represented by a bold line in figure (a),
highlighting the effect of reflected contact discontinuities
on the deformation of both waves B and C.
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(a) (b)

Figure 4.27: Shock generated by βP = 11 after the interaction with
4 circular obstacles arranged at twice the reference distance: (a)
Advancement of the shock front (the non-dimensional time step between
two adjacent fronts is τ/τ̃ = 0.016); (b) flow field corresponding to an
intermediate state (the bold one in the twin picture).
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Non-ideal fluid effects

The atom we are speaking about [. . . ] enters
[. . . ], colliding with innumerable, but here
useless, molecules of Nitrogen and Oxygen.

PRIMO LEVI, IL SISTEMA PERIODICO, “CARBONIO”

Due to the high values of temperature and density attained
by the gas during the reshaping, the polytropic ideal gas model
presents some limitations, as introduces in sec. 1.2.2. There-
fore, alternative thermodynamic models are explored in the
present chapter. This results in different expressions of the
two equations describing the thermodynamics of the problem,
i.e. the pressure equation of state and the specific heat equa-
tion.

The thermal equation, i.e. the equation of state for pres-
sure, is varied from the ideal gas one (eq. (1.12)), in favor
of the van der Waals gas model (eq. (1.16)). For the treatment
of the specific heat, a diverse model is devised from the poly-
tropic one adopted in chaps. 3 and 4: a temperature-dependent
term is added to the constant one in the expression of cv, in
accordance to the harmonic oscillator model [116].

Numerical simulations allow us to observe the effects of di-
verse thermodynamic models on the shock propagation, reshap-
ing and focusing. Indeed, for all the thermodynamic models,
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the pressure and temperature coefficients are provided, along
with the efficiency of the shock. To describe the kinematics
of the shock convergence, self-similarity exponents are cal-
culated for diverse obstacle arrangements, equations of state
and cv expressions. The evolution of physical quantities dur-
ing the implosion is assessed by means of the representation on
the P-v plane of the locus of fluid states immediately behind
the shock during time.

5.1 Description of the numerical experiments

The setting of the numerical experiments is described here.
In sec. 5.1.1, the adopted factors and the levels of each one
are described. The choice of the initial conditions is briefly
recalled in sec. 5.1.2, in accordance with sec. 1.2.3. Even-
tually, an assessment on the adopted grid spacing and time step
is detailed in sec. 5.1.3.

5.1.1 Design of experiments

With reference to tab. 5.1, numerical simulations are per-
formed varying the factors described in sections 3.1.1 and
4.1.1, thus the initial pressure ratio βP, the number of ob-
stacles nobs, their distance from the focus point rLE and their
thickness-to-chord ratio t/c.

In addition, four different models are provided for the de-
scription of the fluid thermodynamics. The other considered
model for the thermal equation in alternative to the poly-
tropic ideal gas one is the van der Waals equation of state
[117], defined in sec. 1.2.2,

P̂ +
a

v̂2
=

RT̂

v̂ - b
. (5.1)

High temperature effects are accounted for by adopting the
harmonic oscillator law for cv in addition to the polytropic
one,which includes also the contribution of vibrational mo-
tions of the molecules to internal energy. In the current
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model of air as a binary mixture of diatomic gases, there is
one vibrational temperatures for each chemical element, re-
spectively T̂vib,O2 = 2273K and T̂vib,N2 = 3393K.

The combinations between the two equations of state and
the two cv models result in four possible descriptions of the
thermodynamic behavior of the shock-induced flow field. In ac-
cordance to the the notation adopted in sec. 1.2.2, the ther-
modynamic model is indicated by a letter code: the first letter
is a “P” or a “H” for polytropic and harmonic oscillator models
for cv, respectively. The second group of letter, separated
from the first by a “-” symbol, is either “IG” or “VdW” depend-
ing on the selected equation of state, i.e. ideal gas or van
der Waals.

Eventually, a further factor is introduced: in addition to
the “dilute” gas conditions, explored in chapters 3 and 4, the
so-called “dense” gas conditions are investigated too.

For all the thermodynamic models, the levels of βP of 11,
16, 27 and 36 are explored. For the polytropic ideal gas, they
correspond respectively to Ms = 2.2, 2.7 (the reference value),
3.2 and 3.7 at rLE = 7. Moreover, in the case of simulations
involving polytropic and harmonic ideal gas, additional levels
of βP are included, i.e. 48, 60, 75, 90, 110 and 130, which
extend the MLEs upper limit to 6.7. Problems of computational
stability are observed in simulations involving shock waves
propagating in van der Waals gases and generated by βP ≥ 48.
This setup generates a globally factorial design consisting of
two fully crossed designs (one for ideal gas, including 1440
treatments, and one for van der Waals gas, for 560 treatments),
resulting in an overall number of 2000 investigated cases. The
investigated fractional factorial design is summarized in tab.
5.1:

5.1.2 Initial conditions setting

To assess real gas effects, results are compared with the
ones obtained with the polytropic ideal gas model. Therefore,
the same initial conditions are adopted. The internal pres-
sure, for gas in dilute conditions, is P̂

0
i = 104 Pa in accor-
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Number of obstacles
(nobs)

4 levels 0, 6, 8, 16

Thickness-to-chord
ratio (t/c)

3 levels 0.07, 0.14, 0.21

Leading edge coordi-
nate (rLE)

3 levels 7, 14, 17.4

Initial pressure ratio
(βP)

4 or 10
levels

11, 16, 27, 36
(48, 60, 75, 90, 110, 130)

Thermodynamic model 4 levels P-IG, P-VdW, H-IG, H-VdW

Gas conditions 2 levels dilute, dense

Table 5.1: Test matrix for the numerical experiments. Considered pa-
rameters are the number of obstacles nobs, the thickness-to-chord ra-
tio t/c, the radial coordinate of the obstacle leading edge rLE, the
initial pressure ratio βP, the thermodynamic model and the gas condi-
tions. In all tests, the operating fluid is air.

dance with [97] whereas, for gas in dense conditions, it is
P̂
0
i = 106 Pa. The imposed internal density values, respectively
in the dilute and dense gas cases, are ρ̂0i = 0.1168 kg/m3 and

ρ̂0i = 11.684 kg/m3. The external pressure is obtained as P̂
0
e = P̂

0
i·βP,

and being the fluid initial velocity everywhere null the cor-
responding density is computed from the shock adiabat for poly-
tropic ideal gas.

Initial pressure and temperature are evaluated by in accor-
dance with the polytropic ideal gas model. Therefore, the same
initial values are imposed to all the simulations with the same
βP and gas conditions, regardless of the thermodynamic model.

Different temperature values are originated by this set of
initial conditions. Indeed, for ideal gas, the external tem-
perature is T̂

0
i = P̂

0
i/R̂ρ̂0i, which corresponds, in the case of βP = 36,

to 2077.43K for both the dilute and the dense gas. On the con-
trary, the temperature evaluated in accordance with the van
der Waals gas model depends on the gas conditions: for dilute
gas and βP = 36, one has T̂

0
i = 2076.22K whereas, for dense gas,

T̂
0
i = 1954.01K. It can be observed that the difference between
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the ideal and the van der Waals models is negligible in dilute
conditions (∆T̂

0
i = 1.2K), whereas it is more relevant in dense

conditions (∆T̂
0
i = 122K). Fig. 5.1 depicts the diverse initial

internal and external states on the P-v plane, depending on βP
and on the gas conditions.
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Figure 5.1: Initial conditions adopted for the numerical simulations
represented in the P-v plane. The thick solid line represents the
saturation curve, and the thin solid line is the critical isothermal
curve, computed in accordance with the van der Waals gas model. The
internal state is represented by a circle, whereas the external ones
are indicated by squares. Each color of the squares is associated to a
diverse βP. Empty markers (fig. (a)) are adopted for dilute gas, full
ones (fig. (b)) for dense gas.

5.1.3 Assessment on grid spacing and time step

Similarly to the case of polytropic ideal gas, simulations
are performed on a triangular fixed grid with a maximum ele-
ment length ∆x = 0.01. Local grid refinements are performed a
priori in correspondence of the obstacle surface, leading edge
and trailing edge. The overall number of nodes is between 50000
and 400000, depending on rLE, nobs and t/c, which determine the
area of the computational domain.

Fig. 5.2 reports the pressure profiles over the obsta-
cles for polytropic van der Waals gas in dilute conditions,
obtained with diverse grid spacing (∆x = 0.1, 0.06, 0.03, 0.01
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and 0.007, respectively). On each picture the shock propaga-
tion increases of of the 25% of the obstacle chord. Calcula-
tions are performed over an array of 16 obstacles in reference
geometrical conditions, that is rLE = 7, t/c = 0.14 and with
βP = 27.

The selected time step is ∆τ = 6× 10-4, which is the same as
the one adopted for the simulation of the reshaping and focus-
ing in polytropic ideal gas. Results of an analysis carried out
to test the dependence of the solution on the time step are re-
ported in fig. 5.3. The pressure profiles are obtained for the
same geometrical and operating conditions adopted to assess
the effect of the grid spacing (fig. 5.2), on a mesh of 56000
nodes with a maximum node spacing ∆x = 0.01. The investigated
time step value are ∆τ = 2 × 10-4, 3 × 10-4, 6 × 10-4, 7.5 × 10-4,
3× 10-3 and 6× 10-3.

The ratio between the focus point temperature and the inter-
nal temperature is illustrated in fig. 5.4 for diverse space
(fig. 5.4(a)) and time (fig. 5.4(b)) resolutions. The re-
ported temperature profile is attained after the focusing of
the polygonal shock caused by the set of conditions and pa-
rameters described above. The temperature curves in fig. 5.4
confirm that a maximum node spacing ∆x = 0.01 with local re-
finements and a time step ∆τ = 6× 10-4 provide the correct dis-
cretization.

All the results and figures in the following concern simu-
lations performed with a grid spacing ∆x = 0.01 and time step
∆τ = 6× 10-4.
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Figure 5.2: Pressure obtained with different meshes on the obstacle
during the propagation of a shock with initial pressure step βP = 27
and reshaped by 16 obstacles with reference t/c and rLE. The solution
is computed by means of a polytropic van der Waals model. The time
step is ∆τ = 6× 10-4 in all the simulations. The shock advancement at
each figure corresponds to 25% of the obstacle chord.

193



Chapter 5

X

P

2 3 4 5 6 7
0

0.04

0.08

0.12

∆t = 2e4

∆t = 3e4

∆t = 6e4

∆t = 7.5e4

∆t = 3e3

(a) shock position=25% obstacle chord

X

P

2 3 4 5 6 7
0

0.04

0.08

0.12

∆t = 2e4

∆t = 3e4

∆t = 6e4

∆t = 7.5e4

∆t = 3e3

(b) shock position=50% obstacle chord

X

P

2 3 4 5 6 7
0

0.04

0.08

0.12

∆t = 2e4

∆t = 3e4

∆t = 6e4

∆t = 7.5e4

∆t = 3e3

(c) shock position=75% obstacle chord

X

P

2 3 4 5 6 7
0

0.04

0.08

0.12

∆t = 2e4

∆t = 3e4

∆t = 6e4

∆t = 7.5e4

∆t = 3e3

(d) shock position=obstacle trailing
edge

Figure 5.3: Pressure obtained with different time steps on the ob-
stacle during the propagation of a shock with initial pressure step
βP = 27 and reshaped by 16 obstacles with reference t/c and rLE. The so-
lution is computed by means of a polytropic van der Waals model, over
a grid made of 56000 nodes (∆x = 0.01). The shock advancement at each
figure corresponds to 25% of the obstacle chord.
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Figure 5.4: Temperature value at the focus point versus time for dif-
ferent space (a) and time (b) discretizations. The temperature peak is
caused by the focusing of a shock wave generated by an initial pressure
step βP = 27 and reshaped by an array of 16 obstacles with reference
geometry. The simulations concern dilute gas governed by a polytropic
van der Waals model.

5.2 Non-ideal fluid effects during shock convergence

Figs. 5.5(a) and 5.5(b) report the specific internal energy
e versus the temperature T of a cylindrical shock generated by
an initial pressure ratio βP = 16, respectively in dilute and
dense conditions. The specific internal energy is plotted ver-
sus temperature for all the nodes of the computational domain
for the considered equations of state and cv laws. High tem-
perature effects are evident in terms of separation between the
polytropic (represented by full lines in fig. 5.5) and the har-
monic curves (indicated by symbols in the same figure), regard-
less of the pressure equation of state. The harmonic curves de-
part from polytropic ones in correspondence of T ≈ 0.25 · Tvib,O2
(first vertical dashed line in figure) and increases theis mu-
tual distance at about T ≈ 0.25 · Tvib,N2 (second vertical dotted
line). It must be noted that non-ideal effects are negligi-
ble in dilute conditions depicted fig. 5.5(a) (the ideal gas
and the van der Waals gas curves are overlapped, for each of
the two cv models), whereas they become more relevant in dense
conditions (fig. 5.5(b)). In the second case, indeed, the max-
imum attained temperature (end, therefore, internal specific
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energy) are lower when van der Waals model applies with respect
to the ideal gas case.
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(a) dilute conditions
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Figure 5.5: Specific internal energy versus temperature of an axisym-
metrical shock generated by a βP = 16 for four diverse combinations
of thermodynamic models, illustrating the curves separation in cor-
respondence of vibrational temperatures: 5.5(a) dilute and 5.5(b)
dense gas conditions (∆x = 0.01, corresponding to 2300 nodes, and
∆τ = 6× 10-4).

Figure 5.6 depicts the radial distribution of density, com-
pressibility factor, temperature and specific internal energy
for an axisymmetrical shock generated by βP = 16 in dilute con-
ditions at τ = 0.01625 after the initial time.

The effect of the equation of state is negligible in the
explored, dilute-gas conditions. The compressibility factor,
defined as Z = P/ρT, is a measure of the relevance of non-ideal
gas effects: with reference to fig. 5.6(b), it is evident that
Z evaluated for the van der Waals gas remains very close to 1 in
the whole domain (the maximum difference between Z evaluated
for the ideal gas and Z computed for van der Waals gas is of
0.04%). A magnification in fig. 5.6(c) illustrates a slight
difference of temperature depending on the adopted equation of
state, i.e. the ideal gas (represented by and ∧∧∧) or van der
Waals gas (indicated with and OOO).

On the contrary, high temperature effects begin to arise
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in the region downstream the shock. Indeed, the effect of the
shock passage is to increase the flow temperature: therefore,
it is observed that, for the explored conditions that is for
shocks generated by initial pressure ratios βP ≥ 11 the tem-
perature behind the shock is higher than 0.25·Tvib,O2 by the time
the shock reaches the obstacle leading edge. This is visible
in fig. 5.6(c), where the horizontal dashed line indicates the
temperature value of 0.25 · Tvib,O2, for which the temperature-
dependent term of the specific heat becomes relevant in the gas
governed by the harmonic oscillator model. The dotted horizon-
tal line indicates the other threshold, that is 0.25 · Tvib,N2.
It is observed that, contrary to the oxygen one, the nitrogen
vibrational degree of freedom contributes to the specific heat
only for stronger shocks, that is for βP ≥ 27.

The same quantities are reported in fig. 5.7 for gas in
dense conditions. The difference of the compressibility factor
computed with ideal and van der Waals models becomes slightly
larger than 4% whereas, in dilute gas conditions, the differ-
ences are within 0.04%. Non-ideal gas effects can be clearly
observed also in the density profile: behind the shock, in-
deed, the thermodynamic model affects the solution. The effect
of the pressure equation of state on T and e is also present,
even if it is weaker than on density.

Fig. 5.8 reports the two-dimensional spatial distributions
of density, compressibility factor, temperature and specific
internal energy (βP = 27, dilute conditions) after the inter-
action with obstacle in a reference geometrical arrangement.
The picture suggest that, for dilute gas, real gas effects re-
main very weak even after the leading edge reflection (see e.g.
fig. 5.8(b)).

As reported in fig. 5.8, the speeds of the shock waves com-
puted with diverse thermodynamic models do not differ signifi-
cantly at the beginning of the reshaping, in dilute conditions.

On the contrary, when the polygonal shock wave is in proxim-
ity of the focus point, the difference becomes more important.
Fig. 5.9 reports result of the reshaping of a cylindrical shock
wave generated by βP = 16 by means of reference obstacles. The
only difference among the four pictures consists in the adopted
thermodynamic model, as the polygonal shock wave is depicted
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at τ = 1.3605 after the diaphragm breaking. It can be observed
that the shock waves simulated with the polytropic cv model
(top row) are slower than the ones with a harmonic cv model
(bottom row), regardless of the form of the thermal equation.
Moreover, when the van der Waals gas model applies (right col-
umn), the resulting shock speed is lower than in case of ideal
gas (left column) for both polytropic and harmonic gas.

The effect of the parameters, including the thermodynamic
model, on the increasing departure of the shock pattern from
the reference one is two-fold. The first effect is “direct”:
since all the parameters affect the physics of the reflections,
the adoption of each thermodynamic model results in a diverse
shock pattern. The difference introduced by the direct ef-
fect is mainly quantitative, as it can be observed, e.g. in
fig. 5.6, where the shapes of the radial distributions do not
vary with the thermodynamic model. The second effect is “indi-
rect”: in the reshaping of cylindrical converging shock waves,
a series of reflections occurs, which bring the original, un-
perturbed cylindrical shock wave to become a pseudo-polygonal
shock before the focusing. At each reflection, the conditions
of the incident shock are the result of the previous reflec-
tion. The complex shock-induced flow field, therefore, is the
result of a recursive, non-linear process. The latter two fea-
tures, i.e. recursiveness and non-linearity, are typical of
chaotic systems as pointed out e.g. in [137]. This suggest
that also qualitative differences (e.g. the type of shock-
approximating polygon, the periodicity of the reshaping, ...)
may be detected when observing a shock wave which is the result
of a recursive, non-linear process, such as the reshaping.

Fig. 5.10 reports a direct comparison among the four afore-
mentioned cases, both at the same physical time after the shock
generation (fig. 5.10(a)) and at different times, each corre-
sponding to the shock focusing (fig. 5.10(b)). These pictures
show that the main difference introduced by the thermodynamic
model, in the explored range of parameters, concerns mainly
the shock speed, and therefore intensity. On the contrary, the
flow field downstream the polygonal shock wave is not signif-
icantly influenced by the thermodynamic model, as reported in
fig. 5.10(b).
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Figure 5.6: Radial distributions of (a) density, (b) compressibility
factor, (c) temperature and (d) specific internal energy in an ax-
isymmetrical shock-induced flow field in dilute conditions generated
by a βP = 16 and obtained with four different thermodynamic models
(∆x = 0.01, corresponding to 2300 nodes, and ∆τ = 6× 10-4).
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Figure 5.7: Radial distributions of (a) density, (b) compressibility
factor, (c) temperature and (d) specific internal energy in an ax-
isymmetrical shock-induced flow field in dilute conditions generated
by a βP = 16 and obtained with four different thermodynamic models
(∆x = 0.01, corresponding to 2300 nodes, and ∆τ = 6× 10-4).
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(a) (b)

(c) (d)

Figure 5.8: Spatial distributions of (a) density, (b) compressibility
factor, (c) temperature and (d) specific internal energy in a reshaped
shock-induced flow field in dilute conditions generated by a βP = 27
and obtained with four different thermodynamic models (reference ge-
ometry, time from the impinging to the focusing τ/τ̃ = 0.472, ∆x = 0.01,
corresponding to about 100000 nodes, and ∆τ = 6× 10-4).
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(a) P-IG (b) P-VdW

(c) H-IG (d) H-VdW

Figure 5.9: Comparison among the diverse shock shapes in correspon-
dence of the focus point for diverse thermodynamic models: (a) P-
IG, (b) P-VdW, (c) H-IG and (d) H-VdW. The polygonal shock waves are
reported at a time τ = 1.3605 from the initial diaphragm breaking.
The shock waves simulated with the polytropic cv model (top line) are
slower than the ones with a harmonic cv model (bottom line). Moreover,
when the van der Waals gas model applies (right column), the result-
ing shock speed is slower that in case of ideal gas (left column). The
shocks are generated by an initial βP = 16 and they are reshaped by an
array of 8 obstacles in reference geometry. Numerical simulations are
performed over a grid with ∆x = 0.01, corresponding to about 100000
nodes, and ∆τ = 6× 10-4).
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(a) τ = 1.3605

(b) τ = τ̃

Figure 5.10: Comparison among the shock waves near the focus point in
the same configuration (reference conditions) simulated with differ-
ent thermodynamic models: (a) at time τ = 1.3605 after the diaphragm
breaking and (a) at different times, i.e. when each shock wave reaches
the focus point. Numerical simulations are performed over a grid with
∆x = 0.01, corresponding to about 100000 nodes, and ∆τ = 6× 10-4).
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5.3 Pressure and temperature at the focus point

The values of pressure and temperature attained at the ori-
gin after the shock focusing are reported in this section. An
assessment between the pressure and temperature factors cP and
cT defined in sec. 4.2 obtained with diverse thermodynamic
models is reported in sec. 5.3.1. The most relevant differ-
ences between the results obtained in dense and dilute gas con-
ditions are discussed in sec. 5.3.2.

5.3.1 Dilute gas conditions

Fig. 5.11 compares the pressure factors versus number of
obstacles obtained with diverse thermodynamic models. As ex-
pected, cP in general increases with the shock strength (sum-
marized by the initial pressure ratio βP) and with the number
of obstacles, in accordance with the preliminary analysis per-
formed on polytropic ideal gas (cf. fig. 4.2).

The thermodynamic model appears to have a large influence,
in terms of both quantity and quality.

It can be observed that results obtained with the ideal
gas model (gray line in fig. 5.11) presents higher pressure
values than the corresponding ones obtained with the van der
Waals model (black line in fig. 5.11), for a given specific
heat model. This is qualitatively in accordance with results
in fig. 5.5: non-ideal gas effects cause the maximum internal
energy values to decrease with respect to the ideal gas case.
It must be noted that in fig. 5.5, this effect is observable
only in dense gas, whereas the results under scrutiny concern
the dilute gas case. However, the shock intensity increase
during the shock convergence: the pressure, temperature and
density at the focusing (depicted in fig. 5.11), therefore,
are so high to be comparable to the initial conditions of the
shock convergence in dense conditions (reported in fig. 5.5).
For this reason, non-ideal effects become observable at the
focusing of a shock wave generated in dilute conditions.

Similarly, considering pairs of configurations responding
to the same equation of state, cP appears to be higher when the
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Figure 5.11: Pressure factor versus obstacles number with diverse
thermodynamic models for air in dilute conditions and increasing βP
(rLE = 17.5, t/c = 0.21). The interaction effect, i.e. the switch
between the curves convernong the P-IG and the H-VdW models triggered
by the shock intensity, occurs at βP = 27, but it can be observed from
the lower to the upper βP value. Numerical simulations are performed
with ∆x = 0.01, corresponding to about 400000 nodes, and ∆τ = 6× 10-4.
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harmonic term is considered in the cv model (dashed line versus
full line in fig. 5.11). These two effects, as well as those
occurring in all the configurations regardless of the values
of other factors, will be referred to as “simple”, because they
depend on one factor only.

In opposition to simple effects, “interaction” effects can
be observed, too. Indeed, the relative importance of the equa-
tion of state and the cv model changes when the shock inten-
sity is considered. Indeed, for the case of βP = 11 reported
in fig. 5.11(a), the effect of the equation of state is more
relevant that the one of the cv model. In this operating con-
dition, regardless of nobs, the values of cP in ascending order
are provided by the following thermodynamic models:

P-VdW H-VdW P-IG H-IG

On the contrary, for βP = 36 a larger separation is observed
between pairs of curves sharing the same equation of state.
In this case, cP in ascending order is provided by the diverse
thermodynamic models as follows:

P-VdW P-IG H-VdW H-IG

This implies that, even though the two simple effects are pre-
served, an interaction occurs between the equation of state and
the cv model, triggered by βP. Result of this interaction is a
switch (termed “inversion”, in the following) between the P-IG
and H-VdW curves of cP, occurring at βP = 27 for all the obstacle
configurations.

The examination of the effects of the factors on the temper-
ature, represented by the coefficient cT in fig. 5.12, confirms
the observation performed in sec. 4.2 for the polytropic ideal
gas. Indeed, the temperature attained at the focus point in-
creases more than proportionally with MLEs , but presents much
weaker dependence on single geometric factors and on their mu-
tual interactions. Fig. 5.12 reports cT versus MLEs for diverse
thermodynamic models in a test matrix where rows indicate lev-
els of rLE and columns of nobs (the obstacle thickness-to-chord
ratio is fixed to t/c = 0.21). For higher visual clarity, only
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Figure 5.12: Temperature factor versus shock Mach number at the lead-
ing edge with diverse thermodynamic models for air in dilute condi-
tions and diverse combinations of rLE and nobs (t/c = 0.21). Numerical
simulations are performed with ∆x = 0.01 and ∆τ = 6× 10-4.
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results belonging to the diagonals of the test matrix are re-
ported.

It is observed that the computed cT is higher when poly-
tropic models for cv are adopted, with both ideal and van der
Waals equations of state. Similarly, both in the polytropic
and in the harmonic case, simulations performed with the ideal
gas equation of state provide higher values of cT. Between
these two simple effects, the most relevant is the one due to
the constant-volume specific heat model for all the geometric
configurations and operating conditions.

Unlike what observed for the pressure coefficient, no mu-
tual interaction between the equation of state and the cv
model or among geometric factors is observed.

5.3.2 Dense gas conditions

Numerical experiments are performed also in dense gas con-
ditions. It is recalled that the numerical values of the ini-
tial pressure and density do not depend on the thermodynamic
model. Moreover, for the simulations performed with a given βP
value, the ratio between the external and the internal values
of pressure and density is the same as in the corresponding di-
lute gas case with the same βP value. Therefore, the initial
temperature evaluated for the ideal gas case is the same as in
dilute gas conditions. On the contrary, a very slight varia-
tion in the temperature initial values is observed for van der
Waals gas. Therefore, real gas effects are expected to be more
relevant than in dilute gas conditions, whereas high tempera-
ture effects are considered comparable.

The case of shock waves interacting with eight obstacles at
reference distance is detailed in the following. Considera-
tions derived for nobs = 8 and rLE = 7 may be extended to all the
other configurations.

Fig. 5.13 compares the shock effectiveness on the compres-
sion of the gas at the focus point obtained in dilute and dense
gas conditions, both for t/c = 0.21. In the first row of pictures
(figs. 5.13(a) and 5.13(b)), the pressure factor is plotted
versus the incident shock Mach number; in the second (figs.
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5.3(a) and 5.13(d)), it is represented in function of the ini-
tial pressure ratio. Eventually, in figs. 5.13(e) and 5.13(f),
the trend of the pressure ratio normalized with the initial
pressure ratio assumed as an indicator of the shock compres-
sion efficiency is reported versus βP.

In accordance with theory, the comparison indicates that
cP for the ideal gas model does not present relevant differ-
ences between the dilute and the dense conditions, in particu-
lar for the polytropic case, which remains the same. The sim-
ple effects of the thermodynamics highlighted for the dilute
gas can be observed also for the dense gas: the pressure fac-
tor is higher when computed with a harmonic model for cv or
with an ideal gas equation of state. The most relevant dif-
ference concerns the effectiveness and efficiency of the im-
plosion when computed by means of a van der Waals equation of
state: for dense gas conditions, indeed, the pressure factor
presents only a weak dependence on the shock intensity, and
therefore the compression efficiency decreases with increas-
ing βP. Eventually it is observed that the interaction between
the equation of state and the cv model which in dilute condi-
tions causes the crossing between the curves of harmonic ideal
gas and polytropic van der Waals gas at βP = 27 does not occur
in the observed range of βP in dense conditions.

Similarly, the curves depicting the trend of cT show a weak
or null variation for ideal gas between dilute and dense con-
ditions. For van der Waals equation of state, on the contrary,
relevant differences appear. Indeed, for MLEs ≤ 3.7, van der
Waals curves present higher values of cT, both for the poly-
tropic and for the harmonic case. Moreover, an interaction
between the initial pressure ratio and the specific heat model
is observed, resulting in the systematic inversion of the two
van der Waals curves at MLEs ≈ 3.2 for all the t/c values.

The two trends of cP and cT confirm the qualitative consid-
erations performed for the dilute gas case. Of course, the
difference between results obtained with different pressure
equations of state is much more relevant, due to the higher
importance of non-ideal effects in dense conditions.
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Figure 5.13: Pressure factor for diverse thermodynamic models in (a)-
(a)-(e) dilute and (b)-(d)-(f) dense gas conditions (rLE = 7, nobs = 8,
t/c = 0.21).
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(e) t/c = 0.21
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Figure 5.14: Temperature factor versus MLEs for diverse thermodynamic
models and t/c values in (a)-(c)-(e) dilute and (b)-(d)-(f) dense gas
conditions (rLE = 7, nobs = 8). Numerical simulations are performed
with ∆x = 0.01, corresponding to about 100000 nodes, and ∆τ = 6× 10-4.
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5.4 Pseudo-self similarity exponents

In this section, a linear regression on the shock position
is performed in order to estimate the self-similarity exponent
α in the power-law function that correlates the shock position
with time. This function, introduced in sec. 3.3 (eq. (3.31))
and detailed in sec. 4.1.3 (eq. (4.1)) is in the well known
form

Rs = r̃
(
1 -

τ

τ̃

)α
. (5.2)

According to theoretical works [39, 88], the power law strictly
applies to genuinely self-similar phenomena, that is cylindri-
cal shocks and shock fronts undergoing the reshaping cascade
whose initial shape is a regular polygon. However, a fair ac-
cordance to a power-law function is observed also for polygonal
shocks, as detailed in sec. 4.1.3, provided a certain level of
symmetry.

The analytical derivation of the power-law for genuinely
self-similar phenomena, as reported by [41, 49], shows that the
functional form of the equation does not depend on the thermo-
dynamic model; on the contrary, the numerical value of α re-
quires the knowledge of both the shock front shape and of the
thermodynamic model.

For shocks converging in polytropic ideal gas, and gen-
erated by a piston in cylindrical symmetry, the characteris-
tics method allowed to obtain an analytical expression for of
α. Details on the hypotheses underlying the method, proce-
dure, and results can be found in [41, 42, 54, 39, 63, 48, 47].
The shock waves analyzed in this work do not satisfy some of
the criteria: their propagation is genuinely unsteady, most
of the reshaped shock have symmetrical but irregular polygonal
shape, the shock onset is due to different initial conditions
(the numerical diaphragm instead of the cylindrical piston),
the length scales of Rs and of the diaphragm position are com-
parable. It is recalled that the problem of the initial con-
ditions is due to the physical transient which leads from the
compression band caused by the piston to the onset of the real
shock wave: during this transient, the phenomenon is not self-
similar. Therefore, analytical works based on the cylindrical
piston model assume that the self-similar solution is a “limit-
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ing solution”. This implies that the length scale of the shock
radius where the power law applies must vary significantly from
the scale associated to the piston position or, in general, to
the initial conditions radius.

Moreover, the treatment of the thermodynamic model appears
to be a very hard issue. The “CCW” method (from Chester [43],
Chisnell [44] and Whitham [45, 46]) provides an analytic ex-
pression for α for cylindrical shock waves. The method is based
on the polytropic ideal gas model, and therefore the expression
can be manipulated thanks to its linearity. Unfortunately, the
procedure cannot be in general extended to a case whose ther-
modynamics is described by means of an alternative, more com-
plex model.

In conclusion, a simple least-square interpolation is per-
formed on numerical data (in dilute gas conditions), to provide
transformed as follows:

ln
(Rs
r̃

)
= α · ln

(
1 -

τ

τ̃

)
. (5.3)

5.4.1 One-dimensional shock exponents

For one-dimensional axisymmetrical shock waves, genuine
self-similarity applies. Therefore, the power-law function
represents the exact correlation between the shock radius and
time. Indeed, the maximum relative error between the sampled
Rsamps and the predicted radius among all the observed configu-
rations remains negligible,

max
config


∣∣∣Rsamps (τ) - RPLs (τ)

∣∣∣
RPLs (τ)

 = O
(
10-3

)
. (5.4)

The solution was not analyzed in the initial transient, i.e.
a few time steps after the diaphragm breaking. The reason is
two-fold. On the one hand, the numerical procedure which al-
lows to detect the shock position described in sec. 2.2.1 be-
comes inaccurate if the spatial separation between the shock
wave and the collateral waves is too small. During the first
time steps of the numerical simulation, of course, the three
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waves are confined within a small number of nodes. Therefore,
the pressure along the shock profile does not follow any of the
distributions reported in fig. 2.19, but a more complex one.

On the other hand, as described at the beginning of sec.
5.4, self-similarity applies to shock waves in correspondence
of the focus point. In this work, this condition is violated,
because the shock wave is observed on a larger spatial range.
Therefore, a preliminary analysis was performed on the shock
wave propagating in polytropic ideal gas to determine the range
of applicability of eq. (3.31). The fitting was indeed per-
formed on data sampled over intervals ranging from the focus
point to a variable maximum radius, and the self-similarity
exponents were computed and compared to the theoretical value,
0.834. The preliminary analysis allowed to determine the max-
imum Rs for which the convergence of the cylindrical shock wave
still exhibits a self similar behavior, that is about 24.

The values of α resulting from the linear regressions are
reported in tab. 5.2

1D P-IG P-VdW H-IG H-VdW

α 0.836 0.849 0.850 0.853

Table 5.2: Self-similarity exponents of one-dimensional shock waves
for diverse thermodynamic models.

As discussed in sec. 4.1.3, the value of α in the polytropic
ideal gas case is in good accordance with the results of theo-
retical models and experimental results. For the other ther-
modynamic models, α is slightly larger, but still comparable
with the polytropic ideal gas one.

Fig. 5.15 depicts the shock position for the four differ-
ent thermodynamic models: numerical data are represented by
symbols (each symbol is associated to a different shock in-
tensity), while the fitting curve is depicted as a full line.
Time is normalized on the overall convergence time from the
diaphragm breaking to the shock focusing, and in abscissa its
complementary to one is reported to highlight the term reported
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in eq. (5.3). The similar values of the self-similarity expo-
nents reported in tab. 5.2 imply that the propagation of the
one-dimensional shock is not significantly influenced by the
thermodynamic model; indeed, the four curves of fig. 5.15 ap-
pear to be very similar to each other.

The fitting is performed without separating data concern-
ing shock waves with different βP. Indeed, it is known [42]
that the value of the shock Mach number is not influential ei-
ther on the functional form of the power-law function or on the
self-similarity exponent, but only, at most, in the combina-
tion between the parameters r̃ and τ̃.

5.4.2 Two-dimensional shock exponents

As detailed in sec. 2.2 during the description of the method
adopted to detect the shock position, in a two-dimensional
framework Rs actually indicates the shock average radius, as
the shock front consists in a polygonal wave. The average shock
radius in time can still be conveniently described by means of a
power-law function. The new self-similarity exponent depends
on the shock symmetry, and the parameters r̃ and τ̃ must be modi-
fied to fit the polygonal shock propagation.

When the cylindrical shock is reflected over the obstacle
leading edge, the Mach stem size gradually grows from zero to
the maximum size, and then it is reflected over the upper symme-
try surface. Therefore, between the leading edge and the sec-
ondary reflections, the shock front consists in both cylindri-
cal and polygonal shock waves, and therefore the function Rs(τ)
assumes intermediate values between the power laws adopted to
describe the one- and two-dimensional propagations.

Fig. 5.16 illustrates Rs(τ) for the reference case (dilute
gas conditions, polytropic ideal gas model, βP = 16, nobs = 8,
rLE = 7, t/c = 0.14): the two curves representing the one- and
the two-dimensional shock waves propagation are reciprocally
tangent at r ≈ 7 which is the region where the transition oc-
curs. This indicates the smoothness of the transition from the
one- to the two-dimensional curves.
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Figure 5.15: One-dimensional shock waves propagation for diverse
thermodynamic models: (a) P-IG (10 βP levels), (b) P-VdW (4 βP lev-
els), (c) H-IG (9 βP levels) and (d) H-VdW (4 βP levels). Numerical
data are represented by symbols, the fitting curves by a full line.
Numerical simulations are performed with ∆x = 0.01, corresponding to
about 2300 nodes, and ∆τ = 6× 10-4.
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Figure 5.16: Transition from the one-dimensional (∗ symbol for nu-
merical data, full line for the fitting curve) to two-dimensional (◦
symbol for numerical data, dashed line for the fitting curve) shock
propagations: (a) full interval and (b) close-up in correspondence
of the transition and focusing (dilute gas conditions, P-IG model,
βP = 16, nobs = 8, rLE = 7, t/c = 0.14). Numerical simulations are per-
formed with ∆x = 0.01 and ∆τ = 6× 10-4.

A linear regression is performed on the average Rs of polyg-
onal shocks. Figs. 5.17 to 5.20 show the shock advancement for
diverse thermodynamic models and obstacle numbers. After the
time normalization, the curves regarding diverse βP, repre-
sented by different symbols, become coincident, as expected on
the basis of theoretical considerations. Data are shown only
for βP ≤ 27 for visual clarity.

Note that plots in figs. 5.17 to 5.20 concern only obstacle
configurations with t/c = 0.14 and rLE = 7. However, as discussed
in the following, these two factors are not influential on α.
Indeed, among all the explored configuration, only the refer-
ence one has been observed to produce a reshaping cascade in
accordance with Schwendeman description [88], that is a con-
tinuous self-similar reshaping from a nobs- to a 2nobs- polyg-
onal shape and vice versa. For this reason, the pseudo-self
similarity exponent α for polygonal shock must rely with the
general non self-similarity of the reshaping cascade. There-
fore, each power-law function of Rs(τ) is assumed to describe
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Figure 5.17: Polygonal shock average radius in polytropic ideal gas
for diverse obstacle numbers: (a) nobs = 6, (b) nobs = 8 and (c) nobs =
16. The shock intensity is reported for three levels, βP = 11 (∗),
βP = 16 (◦) and βP = 27 (�) (dilute gas conditions, rLE = 7, t/c = 0.14).
Numerical simulations are performed with ∆x = 0.01 and ∆τ = 6× 10-4.
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Figure 5.18: Polygonal shock average radius in polytropic van der
Waals gas for diverse obstacle numbers: (a) nobs = 6, (b) nobs = 8 and
(c) nobs = 16. The shock intensity is reported for three levels, βP =
11 (∗), βP = 16 (◦) and βP = 27 (�) (dilute gas conditions, rLE = 7,
t/c = 0.14). Numerical simulations are performed with ∆x = 0.01 and
∆τ = 6× 10-4.
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Figure 5.19: Polygonal shock average radius in harmonic ideal gas for
diverse obstacle numbers: (a) nobs = 6, (b) nobs = 8 and (c) nobs = 16.
The shock intensity is reported for three levels, βP = 11 (∗), βP =
16 (◦) and βP = 27 (�) (dilute gas conditions, rLE = 7, t/c = 0.14).
Numerical simulations are performed with ∆x = 0.01 and ∆τ = 6× 10-4.
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Figure 5.20: Polygonal shock average radius in harmonic van der Waals
gas for diverse obstacle numbers: (a) nobs = 6, (b) nobs = 8 and (c)
nobs = 16. The shock intensity is reported for three levels, βP = 11
(∗), βP = 16 (◦) and βP = 27 (�) (dilute gas conditions, rLE = 7, t/c =
0.14). Numerical simulations are performed with ∆x = 0.01 and ∆τ =
6× 10-4.
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the convergence of a polygonal shock with “periodic symmetry”,
instead of the classical polygonal regularity.

As described in sec. 4.3, the polygonal shock varies un-
steadily the number of edges during the convergence; it ranges
from nobs to the maximum number of edges, which can be 2nobs,
3nobs or 4nobs depending on the combination of geometrical fac-
tors and operating conditions. For each configuration, the set
of the number of edges belonging to the polygonal shock during
time can be defined. This set is always coprime, being nobs the
greatest common divisor of the element of this set, i.e. 2nobs,
3nobs and 4nobs. Therefore, the periodic symmetry of each polyg-
onal shock depends on nobs only, and the effects of t/c and rLE
can be neglected.

This assumption is verified by comparing the values of α
obtained for a number of geometrical conditions. Considering
the case of nobs = 8, results for diverse obstacle distance and
thickness are reported. Tab. 5.3 lists the values of α, and
fig. 5.21 depicts the curves for the diverse obstacle distance
((a)-(b)) and thickness ((c)-(d)).

t/c 0.14 0.14 0.14 0.07 0.21

rLE 7 14 17.5 7 7

α 0.87296 0.87304 0.87265 0.87369 0.87300

Table 5.3: α values for diverse geometrical configurations for P-IG
and nobs = 8: no relevant difference can be observed.

The values of α of polygonal shock waves are summarized in
tab. 5.4. Fig. 5.4(a) plots the self-similarity exponents
versus the obstacles number (fig. 5.22(a)) and the periodic-
ity of the polygonal shock (fig. 5.22(b)), and assesses them
with the cylindrical shock α. The periodicity of the polygonal
shock is defined as ξ/π, that is equivalent to 1/nobs.

The close-up in correspondence of the polytropic ideal gas
curves in correspondence of nobs = 8 shows the values of α for
diverse geometrical conditions, i.e. those reported in tab.
5.3. It can be observed that the difference between the self-
similarity exponents of each single condition and the global
one is negligible with respect to the distinction due to nobs
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Figure 5.21: Polygonal shock average radius in polytropic ideal gas
for nobs = 8 and diverse obstacle geometries: (a) t/c = 0.14, rLE = 14,
(b) t/c = 0.14, rLE = 17.5, (c) t/c = 0.07, rLE = 7 and (d) t/c = 0.21,
rLE = 7. The shock intensity is reported for three levels, βP = 11 (∗),
βP = 16 (◦) and βP = 27 (�).
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or to the thermodynamic model.

α, 2D P-IG P-VdW H-IG H-VdW

nobs = 6 0.878 0.888 0.895 0.900

nobs = 8 0.873 0.876 0.878 0.883

nobs = 16 0.858 0.860 0.861 0.873

Table 5.4: Self-similarity exponents of two-dimensional shock waves
for diverse thermodynamic models and obstacle numbers.
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Figure 5.22: α versus (a) the number of obstacles and (b) the pe-
riodicity of the symmetrical polygonal shock for diverse thermody-
namic conditions. The close-up in correspondence of the P-IG curves
at nobs = 8 shows the values of α for diverse geometrical conditions.

5.5 Shock propagation in the P-v plane

It is well known that the conditions behind a shock wave de-
pend on the state of the flow ahead of the shock, in accordance
to the Rankine-Hugoniot conditions and hence the thermodynamic
model. For a planar shock, the flow behind the shock is uniform
and it does not depend on time. Therefore, on the thermody-
namic plane P-v it is represented by a single point. This point
belongs to the shock adiabat, which is unique for each set of
thermodynamic conditions in front of the shock, defined the
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“pivots” of the adiabat. The position of the point represent-
ing the post-shock state along the adiabat depends on the shock
intensity.

On the contrary, due to its unsteady nature, the Mach num-
ber of a cylindrical shock varies along time in accordance with
eq. (3.38) derived from Guderley’s formula. For this reason,
also the pressure and specific volume immediately behind the
shock are time-dependent. Therefore the point on the plane P-
v characterizing the condition of the flow immediately behind
th shock moves along the shock adiabat which is pivoted in the
point

(
vi,Pi

)
.

Rankine-Hugoniot conditions are valid across normal shock
waves. However, it is also known that any shock wave can be
locally recast to a normal one to determine Rankine-Hugoniot
conditions [138], as they derive from the local enforcement of
the conservation laws expressed in integral form. Therefore,
the unsteady and geometrical source terms which are non-null
in the conservation laws in cylindrical symmetry become neg-
ligible when the control volume adopted for the derivation of
algebraic jump relations goes to zero.

For polytropic ideal and van der Waals gas, cv remains con-
stant, and therefore it is possible to define the constant
quantity

δγ =
R̂

ĉv
. (5.5)

For a polytropic ideal gas, δγ = γ - 1, where γ is the ratio
of specific heats at constant pressure and constant volume. On
the contrary, for a van der Waals gas, Mayer relation [100] does
not apply, and therefore δγ + 1 does not indicate the specific
heats ratio.

For cylindrical shock waves in polytropic gas, classical
relations between pressure and specific volume, i.e. the shock
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adiabat, apply

Pb
(
vb;Pi,vi

)
= Pi ·

(
δγ+2
δγ

)
- vb
vi(

δγ+2
δγ

)
vb
vi

- 1
(5.6a)

(polytropic ideal gas),

Pb
(
vb;Pi,vi

)
=

1
δγ

(
Pi +

a
v2i

) (
vi - b

)
- Pi

2

(
vb - vi

)
+ a
vbδγ

(
b
vb

- 1
)

(
1
2 +

1
δγ

)
vb -

(
vi
2 + b

δγ

)
(5.6b)

(polytropic van der Waals gas).

The relations above are defined also for non-polytropic
gas, but the evaluation of post-shock conditions requires a
numerical procedure. The derivation of the shock adiabat also
for gas which are not governed by a polytropic ideal gas model
is described in [139].

The tracing of the locus of point describing the post shock
conditions in time in the P-v plane is performed by evaluat-
ing Pb as P(Re) and vb as v(Re) at each time step. Re is the
radius of the node immediately behind the shock wave defined
is sec. 2.2.1, and therefore it is measured by means of the
procedure described in chap. 2. The time history is filtered
to reduce high frequency oscillations introduced by local er-
rors in the shock position detection. The measurement error is
particularly relevant at the beginning of the one-dimensional
simulation, when all the three waves generated by the solution
of Riemann problem are confined within few nodes.

5.5.1 One-dimensional cylindrical shock

Fig. 5.23 represents the cylindrical shock trajectory in
the P-v plane in dilute conditions, with time monotonically in-
creasing in the direction of higher pressure and density. Dif-
ferent line styles represent different thermodynamic models:
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each curve is obtained as the envelope of all the curves associ-
ated to different βP and computed with the same thermodynamic
model. Fig. 5.23(a) provides a close up of the region where
curves representing shock waves generated by βP ≤ 36 are de-
picted, to compare results associated to ideal gas and van der
Waals gas models. Fig. 5.23(b) illustrates the same curves in
bi-logarithmic scale to better understand the relative posi-
tion between the shock trajectories and the saturation curve.
The latter is traced in accordance to the procedure described
in [116] by imposing thermal and chemical equilibrium.

The same results are reported in fig. 5.24 for dense gas
conditions.

For both dilute and dense gas conditions, relevant differ-
ences in the specific volume can be observed if high temper-
ature effects are considered for both thermal equations of
state. In particular, the specific volume computed by means
of a polytropic model is always larger that the correspond-
ing one for harmonic cv. On the contrary, modest separations
are observed between the curves computed with different equa-
tions of state but the same cv model, in particular in dilute
conditions. In a first degree of approximation, the ranges of
pressure attained by the shock during the propagation depend
slightly on the thermodynamic model, and more significantly on
βP.

The gas conditions (dilute or dense) causes the inversion
between van der Waals and ideal gas curves for each cv model,
that is the switch between pairs of data lines defined in sec.
5.3.1. Indeed, for each pressure level, in dilute conditions
one has specific volume arranged in ascending order for

H-VdW H-IG P-VdW P-IG,

whereas for dense conditions the order is

H-IG H-VdW P-IG P-VdW.

Numerical data for polytropic gas are confronted to ana-
lytic shock adiabats (eqs. (5.6)) to check the validity of
results in fig. 5.25. Fig. 5.25(a) reports data in dilute
gas conditions, and confirms the observation that no relevant
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Figure 5.23: Post-shock conditions for cylindrical shocks originated
by different βP in dilute gas conditions, computed with diverse ther-
modynamic models.
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Figure 5.24: Post-shock conditions for cylindrical shocks originated
by different βP in dense gas conditions, computed with diverse ther-
modynamic models.
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Figure 5.25: Comparison of numerical data with analytic adiabat for P-
IG (full line) and P-VdW (◦): (a) dilute and (b) dense gas conditions.

difference can be observed between ideal and van der Waals gas
in the one-dimensional shock wave. On the contrary, for dense
gas data reported in 5.25(b), the difference between the re-
sults obtained with the two equations of state is confirmed by
a divergence of the analytic shock adiabats.

5.5.2 Two-dimensional polygonal shock

Similarly to the one-dimensional case, the trajectories of
polygonal shocks in the P-v plane are observed. The reference
analytic adiabat is the same as in the one-dimensional case for
each thermodynamic model, being pivoted in

(
vi,Pi

)
.

Provided that the conditions immediately behind the polyg-
onal shock must always belong to the adiabat [138], the numeri-
cal values of Pb and vb at any time step not only depends on the
thermodynamic model and βP, but also on the region where data
are sampled. It must be recalled that Rankine-Hugoniot condi-
tions are valid across normal shock waves. With reference to
fig. 5.26, the flow field induced by multiple reflections of
converging shock waves is more complex than in the simple case
of uniform flow in presence of steady, normal or oblique, shock
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waves.

Figure 5.26: Direction of propagation of the diverse shock waves in
correspondence of the secondary reflection (dilute conditions, poly-
tropic ideal gas model, nobs = 6, t/c = 0.14, rLE = 7, βP = 27). Numerical
simulations are performed over a grid of about 120000 nodes, corre-
sponding to a maximum ∆x = 0.01, and with a time step ∆τ = 6× 10-4.

The flow field generated by this complex shock system is
characterized by three relevant features:

1. According to [138], a Galilean transformation can be ap-
plied to the the speed of the flow ahead and behind the
shock wave. With reference to fig. 5.27, the relative ve-
locity of the local flow is computed.

2. Since the flow velocity in front of the shock is zero, the
speed of the show immediately behind the shock wave is co-
incident with the speed normal component with respect to
the shock. Therefore, Rankine-Hugoniot conditions apply
along each streamline.

3. Along the upper symmetry line, where slip conditions ap-
ply, the local flow is aligned with the boundary during
all the shock convergence. In correspondence of the upper
symmetry line, therefore, the direction of the streamline
is known. Therefore, if the probes are located along the
upper symmetry line, the sampled data concern always the
same streamline at each time step.
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Figure 5.27: Close up of the flow field behind the polygonal shock
wave in correspondence of the upper symmetry line. The velocities
are expressed in the reference systems (a) of the laboratory and (b)
moving with the shock wave respectively. In each picture, the bodies
attached to the reference system are indicated by parallel lines. The
absolute velocity of the shock wave s is indicated by the thick arrow
in (a), whereas it is zero in the relative reference system. The flow
speed u is represented in the absolute and in the relative reference
systems along the streamlines. Numerical simulations are performed
over a grid of about 120000 nodes, corresponding to a maximum ∆x =
0.01, and with a time step ∆τ = 6×10-4 (dilute conditions, polytropic
ideal gas model, nobs = 6, t/c = 0.14, rLE = 7, βP = 27).

Moreover, to a first degree of approximation, it can be as-
sumed that when a shock wave is diffracted by a reflecting sur-
face, the generated Mach stem is perpendicular to the reflect-
ing surface. For this reason, the state of the flow immedi-
ately after the shock wave computed along the upper symmetry
line corresponds exactly to the flow induced by a normal shock
wave.

Fig. 5.28 illustrates the trajectories in the P-v plane of
polygonal shock waves in dilute gas conditions, after the in-
teraction with an array of obstacles in reference geometrical
conditions, i.e. nobs = 8, rLE = 7 and t/c = 0.14. Pictures rep-
resenting data computed using the same thermodynamic model are
arranged by rows, and each curve represents a shock originated
by a different βP.

The corresponding results computed for gas in dense condi-
tions are illustrated in fig. 5.29.
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Figure 5.28: Propagation in the P-v plane of the conditions behind
the polygonal shock probed along the upper symmetry line for diverse
thermodynamic models (reference geometry, dilute conditions).
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Figure 5.29: Propagation in the P-v plane of the conditions behind
the polygonal shock probed along the upper symmetry line for diverse
thermodynamic models (reference geometry, dense conditions).

For both dilute and dense gas results, the analytic Hugo-
niot adiabat is reported for comparison in figs. 5.28(a)-(c)
and 5.29(a)-(c), representing the polytropic cases. A rel-
evant deviation between analytical predictions and numerical
values is observed, in terms of both numerical values and curve
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topology.
Indeed, theoretical considerations imply that the specific

volume behind a shock is bounded from below by the vertical
asymptote of the adiabat, that is

ve,min =
viδγ
δγ + 2

≈ 1.421
m3

kg
(dilute) (5.7a)

≈ 1.421× 10-2
m3

kg
(dense)

(polytropic ideal gas),

ve,min =
viδγ + 2b

δγ + 2
≈ 1.423

m3

kg
(dilute) (5.7b)

≈ 1.521× 10-2
m3

kg
(dense)

(polytropic van der Waals gas).

Curves in figs. 5.28 and 5.29, on the contrary, violate this
constraint, being the numerically evaluated minimum volumes
approximately the half of theoretical values.

Moreover, the topology of the trajectories significantly
differs from the theoretical monotone trend. Indeed, one or
more “eyelets” are present where the curves self-intersect.

However, numerical results indicate that each deviation of
numerical data from the analytic adiabat is a relevant but
transient phenomenon occurring in correspondence of the shock
reflections over the upper symmetry surfaces. The departure
of numerical data from the analytic Hugoniot adiabat can be
explained as follows.

With reference to fig. 5.30, which reports the discrete
values in time of the points in the curve, it can be observed
that outliers represent a fast transient phenomenon, which is
described by a small number of data points. Indeed, most of the
points are concentrated along the analytic curve (represented
by the gray full line), and the two departures occur exactly
in correspondence of the first and the second reflections over
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the upper symmetry line.
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Figure 5.30: Comparison between the analytic adiabat ( ) and dis-
crete values of the post-shock state ( •) for (a) dilute and (b) dense
gas conditions. The separation occurs only in correspondence of the
(first and second) reflections and remains very limited in time (H-
VdW, nobs = 8, t/c = 0.14, rLE = 7, βP = 11)

A possible explanation to this behavior of the post-shock
state is that a shock wave reflection is actually a singular-
ity, and therefore the solution of the local flow field exactly
at the time of the reflection cannot be correctly represented.
The reason can be explained with the aid of fig. 5.31. As de-
scribed in sec. 4.3.2, the first reflection over the upper sym-
metry line is actually the secondary reflection defined in sec.
1.1.2. The secondary reflection is a complex process which in-
volves the reflection of two shock waves (wave A and the Mach
stem originated at the leading edge reflection mLE). In the re-
gion of the domain delimited by wave B, the secondary Mach stem
msec and the upper symmetry line, hereafter termed “secondary
bubble”, the flow does not only depend on

(
vi,Pi

)
.

Indeed, before the occurrence of the secondary reflection
(see fig. 5.31(a)), the pressure and specific volume immedi-
ately behind the one-dimensional cylindrical shock belong to
the Hugoniot adiabat pivoted in

(
vi,Pi

)
, and their values are

exactly Pb and vb. Also the flow in the shock tail in vicinity
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of the cylindrical shock front can be approximated with Pb and
vb.

“Significantly” after the reflection over the upper sym-
metry line (fig. 5.31(c))), two regions can be identified in
the secondary bubble: behind msec, that is in point SI, the
thermodynamic state belongs to the Hugoniot adiabat pivoted
in

(
vi,Pi

)
. On the contrary, point SII, which is located at

the intersection between wave B and the upper symmetry line,
is reached through a new path. The type of the latter depends
on the type of secondary reflection. With reference to fig.
4.16(b), if the secondary reflection is of Mach-type, the point
SII is reached through a new adiabat starting from a point in
the shock tail. On the contrary, for Regular secondary reflec-
tions, (see fig. 4.16(a)), to get the state of the flow in
SII, one must first compute the flow conditions in the region
between wave A and wave B (by means of an adiabat pivoted in
the shock tail) and then use the latter values of pressure and
density to compute the state in SII, passing through wave B.
The latter case is the one depicted in fig. 5.31(c). There-
fore, in both cases, some time after the secondary reflection,
the state in SII is computed by means of one or more adiabats
pivoted in

(
vtail,Ptail

)
≈
(
vb,Pb

)
. The shock analytic Hugoniot

adiabats are represented in fig. 5.31(d): both the point SI and
the state immediately behind the cylindrical shock, approxi-
mated with the flow in the shock tail, belong to the adiabat
pivoted in

(
vi,Pi

)
. On the contrary, the point SII lies on the

adiabat originated in
(
vtail,Ptail

)
(fig. 5.31(d), of course,

represents the case of a Mach-type secondary reflection, since
there is only one adiabat which leads from the state in the
shock tail to SII).

The numerical computation of the flow before and after the
secondary reflection provides numerical results in accordance
with theoretical predictions, i.e. belonging to the analytic
Hugoniot adiabat. The departure of numerical results from the
analytic curve is introduced exactly in correspondence of the
reflection, which is depicted in fig. 5.31(b). At this time,
all the secondary bubble is concentrated within a little physi-
cal space. In numerical simulations, therefore, the secondary
bubble is distributed over only a few elements, and therefore
the resolution is not enough to compute and represent the con-
tact discontinuity inside the bubble. To a first degree of

236



Non-ideal fluid effects

approximation, this results in a computed continuous distri-
bution of pressure and specific volume in the bubble area, in-
stead of a discontinuous one, due to the presence of the contact
discontinuity. Therefore, due to the small distance between SI

and SII, the pressure and specific volume computed in corre-
spondence of these two points do not differ significantly from
each other. Indeed, according to numerical results one has(
vSI,PSI

)
≈
(
vSII,PSII

)
, which contradicts the theoretical con-

straint that
(
vSI,PSI

)
6=
(
vSII,PSII

)
. For this reason, within a

“small” number of time steps after the secondary reflection,
before the numerical simulations can resolve the contact dis-
continuity, the flow in the point SI cannot be correctly rep-
resented.

This observation is confirmed by the comparison between nu-
merical results of pressure and specific volume in the tran-
sients after the reflections and the corresponding analytic
Hugoniot adiabats pivoted in the shock tail, e.g.

(
vtail,Ptail

)
for the secondary reflection. Fig. 5.32 reports this compar-
ison for the case of a shock generated by βP = 11 in dense con-
ditions, after the interaction with eight obstacles at rLE = 7
with t/c = 0.14. Fig. 5.32(a) is computed with a polytropic
ideal gas model, fig. 5.32(b) with a polytropic van der Waals
model. Analytic adiabats not pivoted in

(
vi,Pi

)
(represented

by gray empty circles) show a satisfactory overlapping with
numerical results, in accordance with the supposition that the
points SI and SII are confused during the post-secondary re-
flection transient.

As it is well known (see [140] and references therein), the
pivot is a second-order contact point between the isentrope and
the shock adiabat. For the polytropic ideal gas case reported
in fig. 5.32(a), the isentropic curves are traced (gray full
lines). As expected, also the isentropic curves provide a sat-
isfactory approximation of the post-shock state during the two
transients.

It must be specified that the observed departure of numeri-
cal data from the analytic curve is not due to boundary effects.
Indeed, by probing the post-shock pressure and specific volume
along a radius internal to the domain, the same discrepancy is
observed each time a Triple Point crosses the probes line.
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(a) τ << τsec (b) τ ≈ τsec

(c) τ >> τsec
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Figure 5.31: Flow behind the shock on the upper symmetry boundary:
(a) before, (b) during and (c) after the secondary reflection, show-
ing that the points SI and SII become separated only some time steps
after the occurrence of the secondary reflection. (d) Position of the
highlighted points in the P-v plane. The case of a Mach-type secondary
reflection is represented in the plane for visual clarity, since it
requires to represent only one Hugoniot adiabat from the state in the
shock tail to the point SII (P-VdW in dilute conditions, t/c = 0.07,
rLE = 7, nobs = 8, βP = 27).
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Figure 5.32: Comparison between numerical results (full black line),
theoretical Hugoniot adiabat ( • ) and analytic adiabats (◦) pivoted
in the state behind the shock immediately before the reflections over
the upper symmetry surface (◦◦◦◦◦◦◦◦◦) for (a) P-IG and (b) P-VdW. Isentropic
curves ( ) are reported for the ideal gas case (dense conditions,
βP = 11, nobs = 8, t/c = 0.14, rLE = 7).

Eventually, it is known that the flow field induced by the
passage of the cylindrical converging shock wave is neither
uniform not constant. However, pressure and specific volume
were approximated with the generic values in the shock “tail”,(
vtail,Ptail

)
. The error introduced by this approximation does

not jeopardize the model adopted to explain the departure of
numerical results from the analytic adiabat in correspondence
of the secondary reflection.

Indeed, this model can be verified by observing the prop-
agation in the P-v plane of the post-shock state if both the
shock wave and the wedge are planar. In this configuration,
depicted in fig. 5.33, a straight shock wave traveling at con-
stant Ms = 6 is diffracted by a planar obstacle with wedge an-
gle θw = 11.3

◦ The secondary reflection is traced along the up-
per boundary (fig. 5.34), where symmetry conditions are im-
posed. The analysis of this configuration is helpful because
the pressure and specific volume in the flow in the planar shock
tail are uniform in space and time. Therefore, the solution in
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uniform regions is a-priori known, and the approximation of(
vb,Pb

)
with

(
vtail,Ptail

)
becomes an exact equivalence.

(a)

(b) (c)

Figure 5.33: Configuration adopted for the verification of the in-
fluence of the approximation of (vb,Pb) with (vtail,Ptail): a planar
shock wave propagating in polytropic ideal gas in dilute conditions
at constant Ms = 6 is diffracted by a planar obstacle with wedge an-
gle θw = 11.3◦ and the secondary reflection is traced along the upper
boundary, where symmetry conditions are imposed. (a) Complete domain,
initial condition and close-ups in correspondence of (b) the leading
edge reflection and (c) the secondary reflection. Numerical simula-
tions are performed over a grid of about 140000 nodes, corresponding
to a maximum ∆x = 0.01, and with a time step ∆τ = 6× 10-4.
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Figure 5.34: Propagation in the P-v plane of the post-shock state in-
duced by the reflection of a straight shock wave over a planar obsta-
cle. Also in this case, where the equivalence (vb,Pb) = (vtail,Ptail)
is exact, the shape of the trajectory of the point SI in the P-v
presents the same features as in the case of the cylindrical converg-
ing shock wave reshaped by circular-arc obstacles. Numerical simula-
tions are performed over a grid of about 140000 nodes, corresponding
to a maximum ∆x = 0.01, and with a time step ∆τ = 6 × 10-4 (Polytropic
ideal gas in dilute conditions, Ms = 6, θw = 11.3

◦).
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Conclusions

The reshaping of cylindrical converging shock waves by
means of circular-arc obstacles was investigated by means of
numerical simulations.

The reshaping is caused by a series of Mach Reflections of
the shock wave over an array of circular-arc obstacles arranged
in a symmetric fashion. Diverse geometric configurations (the
obstacle number, thickness-to-chord ratio and leading edge ra-
dius), operating conditions (the pressure ratio used to gener-
ate the shock wave and the gas conditions) and thermodynamic
models (ideal gas and van der Waals gas thermal equations and
polytropic and harmonic constant-volume specific heat) were
devised from the configuration assumed as reference, i.e. that
described in the paper by M. Kjellander, N. Tillmark and N.
Apazidis, “Thermal radiation from a converging shock implo-
sion”, Phys. of Fluids (2010). The reference configuration
consists of an array of eight lenticular, symmetrically ar-
ranged obstacles. The leading edge radius of the obstacles
is 70mm, corresponding to a dimensionless radius rLE = 7. The
obstacle profiles consists of two equal circular arcs, symmet-
ric with respect to the obstacle chord ĉ = 50mm. The obstacle
thickness-to-chord value is 0.14. In the reference configu-
ration, the cylindrical implosion is generated in a ad-hoc de-
signed shock tube filled with air; the low-pressure side of the
shock tube is at nominal pressure P̂

0
i = 104 Pa. The Mach number

of the shock wave at the inlet of the cylindrical chamber is
Ms = 2.7.

The procedure and the developed numerical tools were de-
scribed in chap. 2.

Numerical simulations were performed using Finite-Volume
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solvers for Euler equations. The obtained results were demon-
strated to be independent from the spatial scale. To reduce the
computational cost of the simulations, a multi-domain approach
was developed. The global domain where the shock converges is
split into three regions, the Far Field Region, the Obstacle
Region and the Focus Region, dedicated respectively to the sim-
ulation of the cylindrical shock generation, of the reshaping
and of the focusing. A technique which exploits the symmetry of
the reshaping process was developed for reducing the azimuthal
extensions of the three regions (from a 360◦-spanning domain
to a 360◦/2nobs-spanning one, that is the elementary domain), and
for reconstructing a-posteriori the solution outside of the
boundaries (fig. C.1).

(a) (b)

Figure C.1: (a) Numerical Schlieren of the overlapping zone between
the computational domains related to the Obstacle Region (sharp do-
main on the right, isopycnics) and the Focus Region, where the solu-
tion is reconstructed by means of the novel procedure (circular do-
main, contours). (b) Close-up in correspondence of the focus point
(reference conditions).

A novel method to trace the shock position during the time
was also developed. It applies to solutions computed by means
of numerical schemes which describe the pressure across the
shock wave as a continuous ramp, e.g. artificial viscosity

244



methods, and it accounts for the very complex shock-induced
flow field in terms of both radial and azimuthal trends of quan-
tities. Moreover, the same criterion applies both to the eval-
uation of the shock position at a given time and to the deter-
mination of the time associated to the shock passage by a given
radius.

The solution computed using these two new tools presents
the same accuracy provided by full two-dimensional simula-
tions, but a reduction of the computational time of more than
one order of magnitude is attained. Even if the current node-
element tagging algorithm is fast and robust, it can be further
accelerated by restricting the set of element where the corre-
spondence is tested, for example by adding a so-called “Sweep
& Prune”, e.g. with two-dimensional axis-oriented bounding
boxes [127].

Numerical results concern mainly two phenomena: the first
one is the local interaction between the cylindrical converg-
ing shock wave and the circular-arc obstacles. The second phe-
nomenon consists in the complete reshaping and focusing of the
shock wave.

In detail, the shock-obstacle interaction was analyzed in
chap. 3 by means of the observation of reflections over the
leading edge of an isolated obstacle. Diverse reflection types
were observed and classified in accordance to the criteria
adopted for pseudo-steady reflections, highlighting the on-
set of similar patterns but for different configurations (fig.
C.2).

For the Regular Reflection, an analytic model was proposed
for the description of its unsteady evolution, which agrees
fairly well with the numerical results. The conditions for the
Regular Reflection transition into Mach Reflection during the
propagation of the shock along the obstacle were determined.
The influence of the obstacle geometry was observed on the so-
called “absolute” wedge angle, whereas it appears to be absent
on the “perceived” wedge angle; for both the angles, the shock
Mach number presents a null or negligible effect.

The trajectory of the Triple Point was traced for genuine
Mach Reflections. The independence on the shock intensity and
a pseudo-homothetic behavior of the trajectories with respect
to the leading edge radius were observed.The study of the com-
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Figure C.2: Leading edge reflection types, depending on the diverse
values of MLEs and θLEw . A more detailed description of the image is
provided in sec. 3.

plete propagation domain demonstrated that the trajectory can-
not follow a parabolic trend; therefore, a 2nd order fitting
on data sampled only along the first half-chord was derived
which shows a good accordance with data. Considerations on the
offset of the trajectories from the reflecting surface sug-
gest that the definition of Inverse Mach Reflection in presence
of cylindrical converging shock waves and convex obstacles is
more complex than for planar shocks.

The reshaping of the shock was investigated in chap. 4. The
correctness of the simulation results was assessed against the
Guderley self similar solution and experimental results from
[97]. A grid and time step independence study was carried out.

The number of obstacles was included among the investigated
factors in the study of the complete shock reshaping. Contrary
to the behavior of leading edge patterns, which do not exhibit
any dependence on the shock Mach number, the values of pres-
sure and temperature attained at the focus point depend mostly
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on Ms. The number of obstacles was found to be rather influen-
tial, especially on the pressure peak. The leading edge radius
of the obstacles produces a weaker effect than other factors
and, in addition, does not exhibit any particular trend. The
obstacle thickness-to-chord ratio causes a monotone effect on
the amount of focused energy: in all the explored configura-
tion, larger thickness value cause more relevant losses, and
therefore, lower values of pressure and temperature. The con-
figuration producing the highest temperature peak at the focus
point consists of 16 obstacles with t/c = 0.07 and rLE = 14, as-
sociated to a shock produced by an initial pressure ratio of
27. Note that numerical results do not account for the effect
of the viscosity, which in fact introduces further losses. The
relevance of viscous effect increases where the local length
scales are small, e.g. near the focus point or in the channel
between two obstacles when nobs is large. This implies that,
especially when the shock wave is about to focus, the consid-
eration of the viscosity could sensibly modify the values of
the computed cP and cT.

Effects of interaction among thermodynamic factors trig-
gered by the shock intensity were observed in chap. 5 on the
temperature and on the pressure values in dense gas condi-
tions. Non-ideal fluid effects, which are more relevant in the
close proximity of the liquid-vapor saturation curve, cause a
decreasing of the shock effectiveness and efficiency, as re-
ported in fig. C.3.

Pseudo-self-similarity exponents were computed for di-
verse thermodynamic models i.e. ideal and van der Waals gas
models, each combined with a polytropic and a harmonic cv
model and number of obstacles. A trend was observed between
the value of the vertex angle of the elementary domain and α,
whereas other geometric factors, i.e. the obstacle thick-
ness and position do not significantly influence the self-
similarity exponent.

The tracing of the locus of the post-shock conditions in the
pressure-specific volume plane shows an excellent accordance
between numerical values and analytic values of the Hugoniot
adiabat. On the contrary, significant but temporary depar-
tures of numerical data from the analytic curve were observed
in correspondence of each shock reflection, which locally gen-
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Figure C.3: Pressure and temperature factors, respectively, for di-
verse thermodynamic models in (a) dilute and (b) dense gas conditions
(reference geometry).

erated a flow field where the conditions for the application of
Rankine-Hugoniot relations do not apply.

For only the case of polytropic ideal gas, a deeper analysis
of the post-leading edge reflections was performed, including
secondary reflections over the upper symmetry boundary, post-
trailing edge patterns, the nozzle effect, and the relation
between the number of edges of the polygonal shock wave and
nobs. A qualitative description of the flow field induced by
the diffraction over cylindrical obstacles was provided.

Future developments and recommendations

The improvement of the numerical results presented in this
work can be performed in three directions.

The first one concerns the numerical investigation of the
physics of the reshaping of cylindrical converging shock
waves. The influence of the thermodynamic mode was assessed
in the present work in terms of shock effectiveness/efficiency
and of average influence of the shock convergence. On the
contrary, the thermodynamics effect were not studied on the
leading edge reflection. Therefore, an analysis of the
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shock-induced flow field and of the leading edge reflection
patterns e.g. RR −→ MR transition boundaries and Triple Point
trajectory is recommended. The influence of θLEw and Ro on the
RR −→ MR transition angle remains an open issue.

Moreover, the effectiveness of the converging shock wave,
some observed patterns and the transition boundaries between
the diverse reflection types should be studied accounting for
two important factors which have been neglected in the present
work. The first one consists of transport phenomena, such
as viscosity, diffusion and thermal conduction. The second
factor concerns other high temperature effects, including the
models of the dissociations, electronic excitation and ioniza-
tion in correspondence of the focus point.

The second possible improvement consists in the development
of numerical tools for a faster and more accurate analysis of
the leading edge patterns. The setup of an automatic procedure
to locate the point of intersection between the incident and
the reflected shock wave (the Reflection or the Triple Point)
could help achieving two goals. Indeed, such a procedure would
allow on the one hand to trace the Triple Point Trajectory and
on the other hand to detect the RR −→ MR transition. Indeed,
the RR −→ MR occurs at the detachment of the Reflection Point
from the obstacle surface.

Finally, an experimental verification of the numerical re-
sults is required. According to the authors of [97], the ref-
erence test rig provides a high repeatability of the tests.
Therefore, the adoption of an experimental setup for both the
generation and the reshaping of converging shock waves like the
reference one is suggested.

The experimental activity is envisaged to confirm the re-
sults reported in chap. 3 concerning the leading edge reference
patterns. Moreover, a further investigation on the RR −→ MR
transition where the parameters θLEw and Ro are varied indepen-
dently from each other could help solving the open issue de-
scribed in chap. 3. This problem concerned the different com-
puted trends of θtrw with respect to the two factors, which ap-
pear to be partially in contradiction with the results obtained
for the diffraction of planar shock waves. For the setup of the
experiments, a procedure similar to the one described in [79]
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is suggested, which allows to consider the parameters as inde-
pendent.

The effects of the viscosity on the shock reshaping can
be determined by exploring configurations with a variable ob-
stacles number, resulting in a different width of the channel
between the obstacles.

Non-ideal gas effects can be determined by performing a
fitting on experimental data and by comparing the resulting
values of the self-similarity exponent α with each of the ones
obtained by numerical simulations with different thermody-
namic models. Since all the curves in fig. C.4 do not intersect
in the observed range of nobs, departure of the values of α from
the experimental one should provide an indication of the rel-
evance of non-ideal fluid effects. The comparison of the ex-
perimental value α to the diverse numerical values provides a
more robust indication than other parameters do. Indeed, it is
known that further real gas effects are observed in correspon-
dence of the focusing, in addition to the investigated ones.
Because of these high temperature effects, the experimental
values of cP and cT are expected to show some discrepancies from
numerical ones.
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