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Abstract

In recent years, autonomous mobile robotics is increasingly becoming an
effective way to carry out tasks that are difficult, dangerous, or simply
boring for humans. Relevant examples include planetary exploration and
search and rescue. While developing a system of autonomous robots, a
designer should take care of fundamental issues that relate to locomotion,
sensing, localization, and navigation. One of the most important and chal-
lenging aspects that could significantly impact on the system performance
is the autonomous decision making to carry out the assigned task. This
comprises the set of techniques that allow autonomous mobile robots to
decide the next location to reach and to possibly coordinate among them-
selves, according to their current knowledge of the world they operate in.
Consider for example the exploration problem, where mobile robots are
employed for incrementally discovering and mapping the features of ini-
tially unknown environments, which could serve for more general missions,
such as map building and search and rescue. The robots have to select the
next locations where to perform sensing actions within the currently ex-
plored portion of the environment and who goes where. Clearly, the de-
cisions made could have a significant impact on the performance of the
exploration and, if made effectively, could really boost the robots’ auton-
omy. However, despite the importance of the development of techniques to
make mobile robots more autonomous, general techniques are not mature
yet.

In this dissertation, we focus on some key activities for the multirobot
exploration problem, namely the selection of interesting locations (explo-
ration strategy) and their assignment to robots (coordination method). We
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aim at contributing to the achievement of three main research goals: to
bridge the gap between theory and practice for exploration strategies; to
improve exploration strategies and coordination methods employed for ex-
ploring an initially unknown environment by one or more robots; and to
improve the experimental assessment of multirobot exploration systems.

The first goal is motivated by the fact that the exploration problem has
been addressed in literature with two rather different approaches. On the
one hand, this problem is theoretically studied, by providing worst-case
bounds and competitive ratios for proposed methods, although, sometimes,
assumptions are far from being realistic. On the other hand, methods are
defined and tested in practical contexts of real robots. Against this back-
ground, we define the problem of calculating the optimal (offline) explo-
ration paths in grid environments for a robot under realistic assumptions of
limited and time-discrete visibility. Simulation results show the viability of
our proposed approach for realistic environments. Further, we theoretically
analyze some exploration strategies that evaluate candidate destination lo-
cations by combining their distance and their expected information gain
and operate on graph-based environments. Specifically, we provide bounds
on the number of edge traversals required to explore a generic graph by a
single robot. Results show that, in the worst case, considering also infor-
mation gain does not provide any advantage over considering only distance,
while it does in the average case on graphs modeling realistic indoor envi-
ronments.

Second, we define exploration strategies and coordination methods that
base their decisions not only on metric information that derives from sensor
readings, but also on semantic information which associates some high-
level concepts to areas of the environment. This enables robots to privilege
exploration of areas that are relevant (e.g., corridors), as our results obtained
with a realistic simulator show.

Third, recognizing that the evaluation of autonomous multirobot sys-
tems has not reached a maturity level comparable to that of other disci-
plines, we provide some tools for improving the evaluation of exploration
strategies and we contribute to experimentally evaluate what factors impact
the performance of exploration. Specifically, we discuss how to compute
the competitive ratio of practically-used exploration strategies given a spe-
cific setting. Also, we quantitatively assess in simulation to obtain a signifi-
cant number of repeated experiments the impact of different perception/de-
cision timings on the performance of exploring multirobot systems and the
relative influence of exploration strategies and coordination methods.

We finally show some possible uses of some of the contributions pro-
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vided in this dissertation for exploring abstract state spaces in the domain
of pursuit-evasion.

The long-term goal is to pave the way towards the theoretical and prac-
tical development and the experimental assessment of effective exploration
strategies and coordination methods to increase mobile robots autonomy.
In an even broader perspective, the future objective is to develop a frame-
work for a more general exploration problem where robots can “explore”
other features of the environment, including its physical quantities.
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Sommario

Negli ultimi anni, la robotica mobile autonoma ha acquisito sempre più im-
portanza in attività difficili, pericolose o semplicemente noiose da eseguire
da parte degli essere umani, come ad esempio l’esplorazione di pianeti e
il soccorso di vittime in ambienti disastrati. Durante la progettazione di
un sistema di robot mobili autonomi, il progettista deve risolvere diverse
problematiche importanti che includono la locomozione, la percezione, la
localizzazione e la navigazione. Uno degli aspetti rilevanti che potrebbe
avere impatti significativi sulla performance del sistema riguarda la parte
decisionale che permette di compiere l’attività assegnata in modo autono-
mo. Questo comprende l’insieme di tecniche che permettono ai robot mo-
bili autonomi di decidere la prossima locazione candidata da raggiungere
(attraverso una strategia di navigazione), e, possibilmente, di coordinarsi
tra di loro (attraverso un metodo di coordinamento). Tipicamente, que-
ste decisioni vengono prese considerando la conoscenza del mondo esterno
che il sistema robotico ha acquisito fino a quel momento. Si prenda in con-
siderazione ad esempio il problema dell’esplorazione, in cui robot mobili
autonomi vengono impiegati per scoprire e mappare in modo incrementale
un ambiente inizialmente sconosciuto. Questa attività è alla base di molte
applicazioni, come ad esempio il search and rescue. A partire dall’area di
ambiente attualmente conosciuta, i robot devono decidere le prossime po-
sizioni da cui effettuare una percezione e l’allocazione di esse ai vari robot.
Nonostante l’importanza dello sviluppo di tecniche che permettono ai ro-
bot mobili di essere più autonomi, quest’ultime non sono ancora del tutto
mature.

Questa tesi si focalizza su alcuni aspetti chiave del problema dell’esplo-
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razione multirobot: la scelta di locazioni interessanti da raggiungere (at-
traverso una strategia di esplorazione) e il loro assegnamento ai robot (at-
traverso un metodo di coordinamento). Il lavoro presentato in questa tesi
vuole contribuire a tre obiettivi di ricerca: costruire un ponte tra teoria e pra-
tica per le strategie di esplorazione; migliorare le strategie di esplorazione
e i metodi di coordinamento usati nei sistemi di esplorazione multirobot; e
portare la loro valutazione sperimentale a una maturità comparabile a quella
di altre discipline.

Innanzitutto, studiando i lavori presenti in letteratura, si può notare che
il problema dell’esplorazione è trattato con due approcci diversi. Da un la-
to, questo problema è studiato in modo teorico: solitamente, i metodi sono
proposti con delle garanzie teoriche, come bound e competitive ratio nel
caso peggiore. Spesso però in questi tipi di lavori, le assunzioni fatte sul
modello non sono realistiche. Dall’altro lato esistono lavori che definisco-
no e testano in modo empirico le tecniche per risolvere questo problema in
alcuni contesti pratici, utilizzando robot reali (o realisticamente simulati).
Rispetto a questi approcci radicalmente diversi, in questa tesi viene definito
il problema di calcolare un percorso offline di esplorazione ottimo per un
robot in ambienti rappresentati a griglia, con delle assunzioni più realisti-
che, ossia visibilità limitata e discreta. I risultati sperimentali mostrano la
fattibilità di questo approccio per ambienti realistici. Un secondo contributo
in questa direzione è dato dall’analisi teorica di alcune strategie di esplora-
zione che sono state usate in alcuni contesti reali. In particolare, vengono
considerate strategie di esplorazione che valutano il prossimo punto da rag-
giungere con distanza e guadagno in termini di informazione. Il modello
dell’ambiente considerato è basato su grafi. Attraverso quest’analisi, ven-
gono forniti dei bound sulla distanza percorsa, misurata come numero di
attraversamenti di archi, per esplorare un grafo generico. I risultati mostra-
no che, nel caso peggiore, considerando una strategia di esplorazione che
considera anche il guadagno di informazione non si ha nessun vantaggio ri-
spetto all’uso di una strategia di esplorazione che considera solo la distanza
percorsa, mentre nel caso medio quest’informazione aiuta a migliorare le
performance del sistema.

In secondo luogo, in questa tesi, vengono definite delle strategie di esplo-
razione e metodi di coordinamento che basano le decisioni non solo su in-
formazioni metriche che potrebbero essere ricavate dalle letture dei sensori
montati sui robot, ma anche su informazioni semantiche che associano con-
cetti di alto livello ad aree dell’ambiente. Questo risulta utile quando, ad
esempio, un comportamento desiderabile da parte dei robot è quello di pri-
vilegiare aree da esplorare considerate rilevanti (ad esempio i corridoi). I
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risultati sperimentali confermano la bontà del sistema proposto.
Inoltre, riconoscendo che, nonostante in varie discipline dell’ingegne-

ria ci siano solitamente standard condivisi per valutare le performance di
un sistema, in robotica, non è ancora stata definita una metodologia stan-
dard di valutazione per confrontare sistemi diversi. In questo senso, un
altro contributo di questa tesi sta nel fornire uno strumento per migliorare
la valutazione delle strategie di esplorazione, per cui viene mostrato come
si può calcolare il competitive ratio dato un ambiente specifico. Inoltre,
vengono analizzati sperimentalmente alcuni dei fattori che hanno impatto
sulla performance dell’esplorazione. Specificatamente, vengono valutati,
in simulazione per ottenere un numero significativo di esperimenti ripetuti,
l’influenza relativa delle strategie di esplorazione e dei metodi di coordi-
namento e l’impatto di cambiare le frequenze di percezione/decisione sulla
performance di un sistema robotico per l’esplorazione.

Infine, viene mostrato un possibile uso di alcuni contributi dati in questa
tesi per esplorare uno spazio più astratto degli stati in un contesto di guardia
e ladro.

L’obiettivo di lungo termine è costruire una base verso uno sviluppo
e una valutazione sperimentale teorica e pratica delle strategie di esplora-
zione e dei metodi di coordinamento per migliorare l’autonomia dei robot
mobili. In una prospettiva più ampia, l’obiettivo futuro è sviluppare un fra-
mework per problemi di esplorazione più generali, in cui i robot “esplora-
no” altre caratteristiche dell’ambiente, come alcune sue grandezze fisiche.
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1
Introduction

Autonomous mobile robotics has seen a widespread development in re-
cent years, due to its possible applications in everyday life, where the
tasks would be boring for humans, such as house cleaning and surveil-
lance. There are some other contexts where robots are required to operate
without any human supervision, especially in environments that human be-
ings cannot access because of their asperity and the impossibility of human
telecontrol, like in some search and rescue settings (see for example Fig-
ure 1.1).

There are several challenges that a designer faces during the develop-
ment of autonomous robots, from low level issues – e.g., sensors, actuators
– to high level issues – e.g., control [116]. One of the most important as-
pects that affects autonomous mobile robots performance is the decision
making for autonomously carrying out the assigned tasks. We refer to the
latter as the set of techniques that allow autonomous mobile robots to decide
the next location to reach (usually called navigation strategies) by possibly
coordinating among themselves (typically with a coordination method), ac-
cording to their current knowledge about the world they operate in.

To introduce the idea of navigation strategies, it is useful to start from
considering the (huge) literature about path planning, which shows that
most of stable methods have been developed in mid-1990s. In these ap-
proaches, users specify the goal and the robots can decide by themselves
how to go there, even if the space between start and target poses is un-
known (e.g., using algorithms like D* [76, Chapter 12], Learning Real-
Time A∗ [112, Chapter 4], and PHA∗ [45]).

However, in several cases the goal might not be known a priori or the
user cannot interact in real-time with the robots, and so these methods can-
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Chapter 1. Introduction

Figure 1.1: A robot searching for victims at RoboCup 2014 Rescue competition.

not be plainly used. Consider for example a scenario in which a robot is
given the high-level task of finding the keys of the user’s car in a house.
In such a case, the robot should be able to decide by itself where to look
for the keys, as otherwise it would not ease the task to the humans. Thus,
in general, what is needed is the development of navigation strategies that
allow mobile robots to autonomously decide about their next target loca-
tions, besides how to go to a specific target [9]. Furthermore, the use of
multiple robots can make the execution of the task more efficient, if they
smartly coordinate among themselves. Consider for example a scenario
where robots are autonomous lawnmowers: with more robots the lawn can
be cut in less time if the robots evenly spread over the area. Both aspects of
decision making, namely navigation strategies and coordination methods,
would allow to augment robots’ autonomy and efficiency.

An important task, where autonomous mobile robots could be fruitfully
employed, is the exploration problem. The exploration problem has been
studied in connection to autonomous mobile robots able to explore un-
known environments and build a map of them. The map usually includes
information about the spatial features of the environment discovered so far,
for example the positions of the obstacles. There are several applications
that benefit from this task, e.g., planetary exploration [100] and search and
rescue [123].

This dissertation focuses on the exploration problem, and specifically is
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1.1. The exploration problem

about the study, the design, and the evaluation of techniques for exploring
initially unknown environments by one or more mobile robots, in order to
discover and map their features.

1.1 The exploration problem

To better focus the problem we address and to frame the contributions of
this dissertation, we provide a very general abstract model of the behav-
ior of fully autonomous mobile robots while executing exploration tasks.
Schematically, the main steps that robots usually perform are the follow-
ing:

(a) perceive the surrounding environment,

(b) integrate perceived data in a map representing the portion of the envi-
ronment known so far,

(c) decide where to go next (exploration strategy) and who goes where
(coordination method),

(d) go to the destination locations chosen,

(e) return to Step (a).

Although over-simplified, the above model evidences some interesting is-
sues of the exploration problem. Step (d) involves low-level planning (e.g.,
path planning and localization), while Step (a) relates to the acquisition of
data coming from sensors mounted on robots, like laser range scanners,
cameras, or sonar sensors. Step (c) regards the decisions that the robots
can take autonomously. As already said, we will refer to it as the set of
techniques that allow autonomous mobile robots to answer the question
‘where to go next?’ (exploration strategy) and ‘who goes where?’ (co-
ordination method), given the knowledge robots possess so far thanks to
Step (b). Typically, robots consider candidate destination locations on the
boundary between the known and unknown portion of the environment, as
those are the locations where the discovery of new portions of the environ-
ment is increased. These locations are usually called frontiers. Note that
a coordination method is not necessary when just one robot is employed.
The above cycle of steps terminates according to a termination criterion,
usually related to time or to the amount of discovered area (we show some
examples in Section 1.3). The focus of the whole dissertation is on Step (c)
and the other steps are taken as given from methods from the state of the
art.
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Chapter 1. Introduction

In general, as already said, exploration strategies and coordination meth-
ods significantly impact on the task execution’s performance. Therefore,
the problem is to define good exploration strategies and coordination meth-
ods, i.e., techniques that allow robots to perform their task maximizing
(or minimizing) some performance metric or optimality criterion. How-
ever, there are two major challenges that make the development of good
techniques difficult. Consider, as an example, the situation represented in
Figure 1.2, where the mission is to build the map of the environment. First,

?
?

p1

p2

p3

r1
r2bs

Figure 1.2: A partially explored environment by robots r1 (red dot) and r2 (scarlet dot).
Black line segments are the part of the environment known by the robots, while the
grey ones are still unknown to the robots. The dotted black line segment represents
the door where the robots entered in the environment. Dotted red lines are the frontiers
between known and unknown portions of the environment. The robots r1 and r2 have to
decide which location they should reach for performing the next perception among p1,
p2, and p3 (green, blue, and orange dots, respectively), possibly coordinating among
themselves through a base station bs.

univocally defining an optimality criterion that measures the global good-
ness of an exploration system could be not trivial, as it is strongly dependent
on the mission assigned to the robots. For example, in the mapping mission
represented in the figure, an optimality criterion could be the resulting qual-
ity of the map, while in a search and rescue mission could be the amount of
area covered in a given time interval. Moreover, within the same mission,
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1.1. The exploration problem

it is possible to consider different optimality criteria. In the example in the
figure, besides the quality of the map, the time or traveled distance to map
the whole environment can be considered as optimality criteria. However,
optimality criteria could be conflicting, even in cases when only some of
them are explicitly considered. Imagine that it has been decided that for the
scenario represented in the figure the optimality criterion to be optimized
is the exploration time. Nevertheless, the robots need a map of the environ-
ment without too much noise, as, otherwise, they cannot efficiently plan on
it. This implies that an acceptable quality of the map is implicitly required.
When there are conflicting optimality criteria (typically those that measure
benefits and costs), a trade-off between them should be addressed. The defi-
nition of a global optimality criteria influences the design of the exploration
system and is usually achieved by defining local criteria that should be op-
timized at each step of exploration. According to the mainstream approach
of exploration strategies, the robots could pick a set of candidate locations,
usually obtained by sampling the frontiers between known and unknown
space (in the example reported in the figure, sampled candidate destination
locations are p1, p2, and p3) and evaluate them with a utility function u().
The utility function u() attempts to capture the global optimality criteria,
by combining different local evaluation criteria. For example, evaluation
criteria used in u() could include the traveling cost for moving from the
current position of the robot to the candidate location and the information
gain that is expected to be obtained at the candidate location in the attempt
of optimizing the global exploration time, but also the overlap between the
new perception at the candidate location and the already known portion of
the environment, to have a map with better quality. Hence, the trade-off
between benefits and costs should be addressed in the definition of u().
For the same very reason, namely the conflicting performance metrics, it is
hard to univocally define coordination methods. For example, if the time
to map the environment is considered as global metric, then it is expected
that robots spread over the environment (e.g., r1 and r2 select p1 and p3,
respectively). In other cases, where the objective is to improve the quality
of the map, the coordination method should prefer to send more than one
robot to the same candidate location.

The second challenge (which is strongly connected to the previous one)
derives from the fact that typically in exploration no a priori knowledge is
available. This leads to methods that exploit the current partial knowledge
of the environment to decide where to go and who goes where, and thus
leading to a local optimization of the process, as next-best-view approaches
briefly described above do. In particular, the selection of next destination
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locations is performed at each step of the exploration process, by selecting
the candidate location where u() is maximized (or minimized). However,
the solution found by such local optimization clearly could be not globally
optimal. For example, consider again the scenario depicted in Figure 1.2
with a single exploring robot r1. To optimally explore the environment
by minimizing the traveled distance, p3 should be selected first, leading
the robot to explore the whole loop corridor on the bottom of the figure,
then the corridor on the top, and finally the corridor on the right (assuming
that the range of the sensors has a value that allows to cover the width
of the corridor). Note that this reasoning has been possible because of
the a priori knowledge of the full environment. However, considering the
online scenario of the figure, for example, a utility function that uses the
expected information gain as evaluation criterion, measured as the length
of the line segment that represents the frontier, would lead to the selection
of p2 first, leading to a sub-optimal solution. This challenge is evident
also for the coordination methods in case of multiple robots. An optimal
coordination method would pick p1 and p3 first and assign them to r1 and
r2. Instead, an online coordination method that optimizes the sum of the
utilities u() computed by an exploration strategy that considers again the
expected information gain measured as described above would choose p2

and p3, again leading to a sub-optimal solution.
The above discussion highlights some of the critical issues and of the

difficulties of the exploration problem that is addressed in this dissertation.

1.2 Motivation and objectives

In spite of the importance of the exploration problem, general techniques
that allow mobile robots to be fully autonomous in performing the explo-
ration task are not mature yet.

Exploration strategies are usually defined following two rather different
approaches. On the one hand, exploration strategies are defined in the-
oretical settings. The environments could be represented geometrically,
as usually done by computational geometry community. In this kind of
works, some assumptions on the capability of the robots are made, like
line-of-sight visibility [43] or continuous perception [38]. Another type
of representation is based on graphs, as typically assumed by the theo-
retical computer science community to disregard environments’ geometry
for focusing on their topological and combinatorial aspects. In both ap-
proaches, proposed methods are assessed using theoretical tools like worst-
case bounds [127] and competitive ratio [104] in some classes of environ-
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ments. On the other hand, exploration strategies are defined in practical
contexts of real (or realistically simulated) robots, as for example in the
work of Julia et al. [67]. In such a situation, the performance of an ex-
ploration strategy cannot be guaranteed to be optimal, and, although many
solutions have been proved effective in practice, it is difficult to compare
different exploration strategies with the aim, for example, of selecting the
best one for a given situation in which they have never been tested. This
situation demands a more theoretical-oriented analysis of the current prac-
tical exploration strategies or, equivalently, for a more realistic account of
theoretically-defined exploration strategies.

Further, most of the exploration strategies and coordination methods
proposed in literature (e.g., [16, 56, 120]) base their decisions only on the
current metric map, which represents the spatial features of the environ-
ment, like the position of obstacles. In the last years, several methods have
been proposed to build semantic maps of environments (e.g., [89]), which
label some spatial elements with high-level human concepts. For exam-
ple, areas of a metric map can be labeled as ‘corridor’ or ‘room’. Despite
the great effort in constructing semantic maps, the study of their use for
exploration is still rather limited and can represent a way to enhance the
process.

Finally, a lively debate on good experimental methodologies is currently
ongoing in the autonomous robotics community, as the field has not reached
yet a maturity level comparable to that of other disciplines [5]. One of the
problems is the difficulty in reproducing experiments, as parameters are
usually not fully reported in the descriptions of experiments, and thus it is
not clear what factors impact the performance of exploring robotic systems.

In the general context of the multirobot exploration problem, the objec-
tive of this dissertation is thus threefold:

1. to bridge the gap between theory and practice for exploration strate-
gies, by considering more realistic assumptions and providing meth-
ods to compute the optimal coverage path and bounds for some explo-
ration strategies;

2. to improve exploration strategies and coordination methods, by con-
sidering also semantic information when making decisions;

3. to improve the experimental assessment of multirobot exploration sys-
tems, by providing a tool for computing the competitive ratio of explo-
ration strategies in a given environment and by assessing the impact
of some controllable parameters of the autonomous robotic system.

7
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1.3 A framework for exploration

In general, the exploration problem, solved by one or more robots, is com-
posed of different dimensions that could be controlled (to some degree) by
the robot designer. Here we discuss some of those relevant to exploration,
being aware that the list is far from being definitive and complete, in or-
der to set the framework in which the contributions of this dissertation are
inserted (some of these dimensions have been presented in [9]).

About robot’s capability, we have that each robot has a sensor model,
namely a model that represents the hardware constraints of a sensor (used
for Step (a) of the behavior model of the robots presented in Section 1.1).
For example, a camera is usually modeled as if it has an infinite line-of-
sight visibility. Furthermore, robotic designers can decide its perception
model that refers to Step (b), i.e., the integration of acquired data about the
surroundings in the current map. That is, the current map can be refreshed
when sensors data are received (continuously or at a given frequency) or
when an event happens (discrete or event-based). There are two other di-
mensions that relate to Step (c). One is what we call motion model, which
determines what reachable points are considered as candidate destination
locations. We call continuous (discrete) motion model, when all (a subset
of) the points of the current known portion of the environment are consid-
ered as possible destination locations. Moreover, let us define the decision
model that accounts for how frequently decisions are revised: if continu-
ously (or at a given frequency), the robot can possibly revise the decision
along the path to a previously selected location, while, if discrete, a trig-
gered event determines the computation of another candidate destination
location (e.g., when a selected location is reached). Also, the decision on
the next candidate location can be taken with a lookahead or not, namely
a robot plans several steps ahead or just one step at a time. Note that these
models are not entirely controllable by the robot designer, as some of them
depend on the hardware of the robot (e.g., the sensors used, the computation
power available on-board).

The number of robots is another dimension that is controllable by the
robot designer: the robotic system can be composed of a single robot or
multiple robots, which can be of the same type (homogeneous) or differ-
ent types (heterogeneous). When multiple robots are employed, another
dimension regards the constraint on the communication between robots,
which is modeled by a communication model (e.g., line-of-sight, distance-
based, obstacle-based). Note that, in general, the presence of multiple
agents introduces another dimension represented by the adversarial nature
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of the setting, which is related to the possible presence of adversaries. Nev-
ertheless, in the exploration problem, robots are usually designed in such a
way that they cooperate to make a globally optimal decision.

The current environmental map, which the robots can reason on, can
have different representations, namely it could be represented by the robots
in a continuous (e.g., polygonal representations) or a discrete (e.g., grids or
topological maps) way. Also, the robots could have some a priori knowl-
edge on the environment to be explored. If the environment (or, more pre-
cisely, all the information needed for selecting the next candidate destina-
tion location) is fully known in advance, robots have a global knowledge.
Conversely, if only partial or no environment’s information is initially avail-
able, robots have a partial knowledge and should increase their knowledge
on the environment to make more informed decisions.

The availability of global knowledge results in the possibility of com-
puting the exploration strategy offline and, possibly, searching for an opti-
mal solution, as the locations to reach are known in advance and all pos-
sible paths can be computed before robots actually employ the strategy.
On the other hand, a partial knowledge is typically associated with the use
of an online exploration strategy that makes decisions according to avail-
able information and that results in sub-optimal performance. To make this
point clearer, consider the two common tasks of coverage and exploration.
In coverage [31], the environment is known in advance and robots should
cover (possibly, under some constraints) all the free area with the footprint
of their sensors. In exploration, the environment is unknown at the begin-
ning and robots have to “discover” it. The first case is characterized by a
global knowledge and the optimal strategy, e.g., the shortest route, can be
computed offline. The second case is an example of partial knowledge sit-
uation for which decisions have to be made online, due to the difficulty to
reliably predict the states that robots will face. The optimal strategy cannot
be found in general and sub-optimal greedy algorithms (e.g., next-best-view
approaches) must be employed. Note that in both cases the optimal strategy
can be the one that minimizes the traveled distance.

Another characterization of the knowledge is given by the kind of knowl-
edge used by robots to select next destination locations. This can be of
different natures. A specific kind of knowledge induces how decisions are
made. In exploration, criteria used in the utility function that evaluates
candidate destination locations usually derive from the robot’s knowledge
about the spatial features that has been collected in the metric map built so
far. However, in principle, there are other types of knowledge that can be
used, like high-level information coming from human users. An example
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considered in this work includes a semantic map, which labels some spatial
elements with high-level human concepts.

As said before, the optimality criterion is a crucial dimension for the
design of exploration strategies and coordination methods, which are even-
tually evaluated according to the selected optimality criterion. It is strongly
dependent on the mission that exploring robots should perform. For exam-
ple, it is based on the termination criterion adopted to consider the mission
accomplished. In a search and rescue setting, a typical termination crite-
rion is the elapse of a time interval T that represents the time available to
the robots to explore a given environment. The optimality criterion in such
a case is usually the amount of explored area. In a mapping application, a
common termination criterion is the percentage g of the area to explore and
the optimality criterion is the time required to accomplish the mission. As
already said, sometimes also costs are included as optimality criteria, such
as the traveled distance or the number of perceptions (or steps) to perform.

Note that sometimes the termination criterion includes the fact that,
when the task is terminated, the robots are asked to go back to the start-
ing point (tour or closed path), or not (path). The latter is often considered,
for example, in mapping or search and rescue scenarios where “coming
back” might not be subject to optimization, e.g., it can be performed in a
second stage after the more important exploration task is completed.

All these dimensions influence the design of the exploration strategies
and coordination methods and the kind of evaluation to assess the perfor-
mance of exploring robotic systems.

1.4 Original contributions

The original contributions of this dissertation can be divided following the
three goals presented in Section 1.2. Specifically, on the theoretical side:

• We contribute to define the problem of calculating the optimal of-
fline exploration paths under realistic assumptions (some of the re-
sults are presented in [104]) – i.e., considering the problem in grid
environments for a robot with time-discrete and limited perception.
The problem turns out to be a constrained variant of the classical cov-
erage problem. We analyze the relation between our discretization
and the continuous counterpart and formulate the discrete problem as
a search problem. Thus, we develop and test the first algorithm to
find the (approximated) optimal exploration path under such realistic
assumptions.

10



1.4. Original contributions

• Considering environments modeled as graphs, we theoretically ana-
lyze some exploration strategies that are typically used by robots in
practical settings and that consider distance and information gain as
criteria in their utility functions (some of the results are presented
in [110]). Specifically, bounds are provided for the worst-case number
of edge traversals for exploring generic graphs and for the average-
case number of edge traversals for exploring a specific class of graphs
representing indoor environments.

On the practical side, the main original contribution is given by our def-
inition of exploration strategies and coordination methods that embed in-
formation coming from semantic maps. We experimentally show that our
approach provides a significant improvement in the exploration of relevant
areas of indoor environments, when a priori information about such rel-
evant areas is available (preliminary results have been presented in [33]).
For example, if robots know that an area of an environment is labeled as
‘corridor’, then that area could be privileged by sending there more robots,
as rooms are typically attached to corridors.

Further, we contribute in evaluating exploration strategies in a given en-
vironment and in identifying some of the factors that impact the perfor-
mance of exploration (some results are presented in [7, 8, 104]):

• We show that the computation of the offline exploration path can be
used for calculating the competitive ratio of exploration strategies in a
given environment.

• We experimentally evaluate (in simulation) the impact of tuning per-
ception/decision timings on the performance of multirobot exploration
systems.

• We assess in simulation the relative influence of exploration strate-
gies and coordination methods on the performance of the exploration
process.

Finally, we show how some of the results obtained can be used for other
purposes. Specifically, we show that some of the artificial intelligence tech-
niques used in this dissertation can be used for exploring different state
spaces in the context of pursuit-evasion games, in which a pursuer attempts
to capture an adversarial evader that tries, in turn, to actively escape, when
they both have a line-of-sight sensor model.

Note that, despite the importance of experimenting with real robots, to
obtain a large amount of results that are easily reproducible, we usually
performed experiments with realistic simulators.
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1.5 Document structure

This document is structured as follows. In Chapter 2, we introduce the
current state of the art about the exploration problem, focusing on both
theoretical and practical works available in literature, and on the current
experimental methodologies. Then we divide the document in four parts
describing our contributions related to the three goals we defined for explo-
ration and to some uses of some of the contributions outside the exploration
problem.

Part I encloses the contributions for bridging the gap between theory and
practice for exploration strategies. In Chapter 3, we formulate the discrete
version of the offline exploration problem, showing its relation with the
continuous counterpart. Also, we formulate it as a search problem, propose
an algorithm for solving the problem, and report our experimental results.
In Chapter 4, we formulate the exploration problem on a graph and theoret-
ically analyze some exploration strategies that are typically used in realistic
settings.

Part II encloses the contribution on improving practical multirobot ex-
ploration systems. Chapter 5 shows the formulation of the exploration prob-
lem in a search and rescue setting and Chapter 6 presents the proposed
multirobot exploration system and its validation through extensive exper-
imental simulated activities that display the effectiveness of the proposed
approach.

Part III encloses the contributions on improving the experimental as-
sessment of multirobot exploration systems. Chapter 7 shows how some
of the contributions presented in Part I can contribute to better evaluate ex-
ploration strategies in some given settings. Referring to the model shown
in Chapter 5, Chapter 8 presents experimental results on the study of the
impact of perception/decision timings and Chapter 9 shows experimental
results that indicate the influence of exploration strategies vs. coordination
methods in some settings.

Part IV encloses a possible use of some of the contributions presented in
this dissertation. Chapter 10 presents how some of the artificial intelligence
techniques used for exploration can be used to explore a different, more
abstract, state space in the context of pursuit-evasion games.

Chapter 11 concludes this dissertation and suggests further directions of
research.
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2
Related work

As anticipated in Chapter 1, the exploration task is the process in which
one or more robots deployed in an initially unknown environment have to
discover and map its features. This task is carried on in missions like map
building [124], search and rescue [123], and coverage [31]. For example,
in map building the features to be discovered can be the obstacles and the
free space, while in search and rescue they can be the locations of victims
or sources of danger (e.g., fires).

In this chapter, we report the current state of the art in the exploration
problem. Specifically, in Section 2.1, we present a representative sample of
works that theoretically analyzed the exploration problem, while, in Sec-
tion 2.2, we survey those ones that proposed more practical approaches and
tested them in real (or realistically simulated) settings. Finally, Section 2.3
shows some aspects of the current experimental methodologies for assess-
ing the performance of robotic exploration systems.

2.1 Theoretical contributions

On the theoretical side, works can be classified according to the abstraction
level at which environments are represented. In the following, we present
works from the computational geometry community and those from the the-
oretical computer science community. The first one considers geometrically-
represented environments (e.g., rectilinear polygonal environments) and the
exploration task can be formulated as the coverage of the entire area of a
polygon through a sensor or a tool with a given footprint. The latter, in-
stead, usually takes into account more abstract graph-based representations
of environments that disregard their geometry to focus on their topological
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and combinatorial aspects. The exploration task can be formulated as that
of visiting all the edges or all the vertices of the graph.

2.1.1 Computational geometry approach

In computational geometry there are several problems that could be related
to the exploration problem we consider in this dissertation. For each one,
we show a representative sample of proposed approaches by works in the
computational geometry community (some surveys are presented by Ghosh
and Klein [54], Isler [64], Mitchell [87]). We also comment on how differ-
ent problems typically solved in computational geometry can relate to the
exploration problem. Note that, following the dimensions outlined in Sec-
tion 1.3, all the works in computational geometry consider a continuous
representation of the environment. Also, the type of knowledge that is used
by the robot is metric-based.

One of the problems that has been studied for long time is the watch-
man problem. The watchman, which could correspond to a mobile robot,
has to find a shortest tour (i.e., cycle) within an a priori known polygonal
domain P , such that every point of P is seen by some point of the cycle.
The sensor is assumed to be modeled by a line-of-sight visibility, namely
all the points that belong to the (possibly infinitely long if no obstacle is hit)
lines of sight starting from the robot sensor are covered. The robot motion
and perception models are continuous. The optimality criterion considered
is the distance the robot has to travel to accomplish the task that should
be minimized (measured either as Manhattan distance L1 or Euclidean dis-
tance L2). Chin and Ntafos [30] present an approach that first partitions the
rectilinear polygon representing the environment (without obstacles) into
rectilinear monotone polygons (in the paper they consider monotonicity,
without loss of generality, with respect to y-axis, i.e., every orthogonal line
to y-axis intersects the polygon at most twice). Then, it finds connections
between adjacent partitions by constructing a tree and following an Euler
tour of the tree that minimizes the traveled distance. The algorithm finds
the shortest watchman tour (measured in L2) in O(n log n), where n is the
number of edges of the polygonal environment. The work of Carlsson et al.
[26] exploits the concept of essential cuts to find a watchman tour (whose
length is measured in L2) in polygons without holes (i.e., without obsta-
cles). Specifically, an essential cut is an extension cut which is not domi-
nated by any other extension cut. An extension cut c is a segment that starts
from a reflex vertex (a vertex with its internal angle strictly greater than π)
along the direction of the corresponding edge and ends at the boundary of
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the polygon, and that entirely lies in the interior of the polygon. An ex-
tension cut c is not dominated by any other extension cut c′ if all points
of the polygon on the left of c are also to the left of c′. The authors show
that a closed curve is a watchman route if and only if the curve has at least
one point to the left of (or on) each essential cut. The proposed algorithm
computes the shortest watchman route in O(n6) in polygons without holes.

Note that works employing continuous perception and using traveled
distance as optimality criterion are basically solving the exploration prob-
lem, because the knowledge of the environment is continuously updated
and so the robot always stays within the current known portion of the envi-
ronment. The comparison with an exploration strategy, however, could be
not fair as the algorithms solving the watchman tour problem can exploit
the a priori knowledge over the environment.

The online version of the watchman route problem (where no map is
given at the beginning of the task) is first studied by Deng et al. [38]. The
proposed approach exploits the concept of essential extensions. These are
line segments l computed extending all sides S of a polygon P (represent-
ing the environment) until l first hit the boundary of the polygon (line seg-
ments l do not include sides segments S). The authors demonstrate that the
robot has to touch all essential extensions for completely covering a recti-
linear polygon without holes with a (possibly closed) path. Given a robot
initial position, the algorithm greedily finds a point p for each essential ex-
tension in such a way that the length of the line segment between the robot
current position and p that touches one essential extension is minimized.
The algorithm can find an optimal solution measured in L1 in O(nm2) for
rectilinear polygons without holes with n sides and m essential extensions.

All above works make assumptions that are rather far from practical
robotic implementations, because they do not take into account constraints
imposed by the hardware equipment. For example, they consider infinite
visibility, while real laser range scanners or cameras (let alone other me-
chanical covering tools) do not have infinite operative range. Also, (close
to) continuous perception is typically non-affordable on real robots because
of the limited amount of on-board computing capability which does not al-
low to continuously process data coming from sensors.

Some works have tried to extend some of the results of the offline watch-
man route problem (where visibility range is infinite) to the case in which
sensor range is limited. This problem has been firstly tackled by Ntafos
[95]. The authors call d-watchman problem the one whose goal is to find
the shortest tour for a watchman with a visibility range d, such that every
point of the boundary of the polygon without holes is visible along the tour.
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The more closely related problem to the exploration is called d-sweeper,
where also the points in the area of the polygon should be visible along
the tour. The proposed approach to solve the latter problem superimposes
a grid to the polygon (removing portions of the grid that lie beyond the
boundaries of the polygon) and then finds an approximate TSP (Traveling
Salesman Problem) solution on the resulting graph connecting the adjacent
cells of the grid. (The TSP solution is the shortest tour that visits all cells
exactly once.) The proposed algorithm obtains solutions within 33% of the
cost of the optimal solution (measured in L1) in polygons without holes if
the sensor range is enough small with respect to the size of the polygon.
The d-sweeper problem is sometimes called lawn mowing problem, as for
example in the work of Arkin et al. [10]. The proposed algorithm uses a
grid of squared cells and constructs a tour of length at most 2.5 times the
length of the optimal tour in a time O(n log n), where n is the number of
edges of the polygonal environment, which is assumed to be rectilinear and
without holes. (A variant of the lawn mowing problem is the milling prob-
lem, in which there is an additional constraint on the area covered by the
sensor that should strictly lie within the boundaries of the polygon.) Simi-
larly, the work of Gabriely and Rimon [50] considers the coverage problem
(which is basically the lawn mowing problem) and approximates the en-
vironment with a grid of squared cells (whose size is equal to the size of
the tool covering the area), constructs a spanning tree, and generates a cov-
ering tour, which is basically a Hamiltonian cycle visiting all cells of the
grid. (An Hamiltonian cycle is a tour that visits each vertex exactly once.)
The proposed algorithm finds a covering tour in O(N), where N is the
number of cells that approximate the environment. This method consid-
ers distance in L1 as optimality criterion, but actually the algorithm avoids
repetitive coverage attempting to minimize the traveled distance. Simula-
tion results show that the algorithm is effective when the tool size is signif-
icantly smaller than the work-area characteristics. Fazli et al. [42] address
the problem of repeated coverage of a known polygon by a robot with lim-
ited sensor range. Broadly speaking, the approach is the following: (a)
the environment is segmented by a trapezoidation method [138], (b) guards
(which correspond to scan points) are placed in the derived subpolygons in
order to entirely cover them, and (c) a TSP is solved in order to connect all
the guards. The proposed approach finds optimal solutions in terms of total
path length for the robot. Authors experimentally show the effectiveness
of the algorithm in cases where the tool size is significantly smaller than
the work-area size. In the work of Mannadiar and Rekleitis [82], boustro-
phedon cellular decomposition is used to create a partition of a polygon
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(possibly with holes), from which a graph is extracted. From that graph,
the solution to the Chinese postman problem is calculated. (This solution
finds the shortest closed route such that each edge is visited at least once.)
Each partition is then covered using simple motions, like back-and-forth
movement. This approach has been tested in simulation in some arbitrary
environments and also with a fixed wing UAV [135], showing its effec-
tiveness. Fekete et al. [44] deal with the myopic watchman problem with
discrete vision problem which is basically the same as the coverage prob-
lem. The proposed approach uses a linear function that combines traveled
distance (in L1) and number of steps (i.e., scan points). The proposed al-
gorithm basically works by building boundary tours to cover the area close
to the boundary and using strips to cover the interior. Then, some addi-
tional paths are added in order to merge the boundary tour and the strips.
Finally, scan points are placed at fixed distance in such a way that all the
area is covered. The algorithm constructs a tour, whose approximation is at
most π( r

a
+ r+1

2
), where r is the sensor range and a is the minimum edge

length of the polygon. Note that the number of steps optimality criterion,
where a step could be a turn or the integration of sensor data in the map,
represents a measure that is relevant for real robot applications because of
the limited availability of computational power and the time requirements
of these applications. The work by Arkin et al. [11] uses a different ap-
proach by giving approximation algorithms for optimal covering tours and
mainly focuses on minimizing the number of steps (or the linear combina-
tion of traveled distance and number of steps), where a step is a turn of the
robot in rectilinear polygons with holes. The algorithms are based on cover-
ing the region with strips connected into cycles and provide constant-factor
approximations (e.g., 3.75-approximation for minimum-turn axis-parallel
tours for a unit square cutter covering an integral orthogonal polygon with
running time of O(N2.376 + n3), where where N is the number of cells
representing the environment and n is the number of edges of the polygon).

Almost all the works presented above consider tours (closed paths) which,
as said, in many practical applications, are not necessary. Moreover, some
of the above approaches use L1 as optimality criterion for the traveled dis-
tance, which is not fully realistic, as robots can usually rotate arbitrarily.
Relatively few works consider L2 or include also a criterion that consider
the number of steps needed to cover an environment. Furthermore, most
of the above works dealing with the watchman route problem (or with its
variants) consider simple environments, namely polygons without holes,
which are not representative of realistic environments, like city blocks and
cluttered offices. Note that all the works we are aware of that deal with
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the watchman route problem with limited visibility assume to have a priori
knowledge on the environment.

In computational geometry, several works deal with another long-studied
problem: the art gallery problem, that is to place guards, minimizing their
number, in an environment to completely guard its area. The work of Kröller
et al. [73] solves the art gallery problem using an approach based on linear
programming. Specifically, the authors formulate the art gallery problem as
a relaxed linear program (primal problem), where guards are taken from a
finite set, and convert the primal problem in the dual linear problem. More-
over, they formulate the separation problem for both the primal and the
dual linear programs. The proposed algorithm runs iteratively, by solving
the primal and dual linear programs, whose solutions are checked with the
primal and dual separations, until the feasible solutions of the primal and
the dual problems converge or the primal and dual separations fail. Ex-
perimental results in some environments show the viability of the approach
even if, in some settings, solutions do not converge. Another work [19] uses
an edge covering algorithm on the polygon representing the environment.
If the solution found does not cover the whole interior of the polygon, the
algorithm modifies the solution, by checking other solutions returned by the
edge covering algorithm or by placing more sensors in the centroids of un-
covered regions to obtain full coverage. Experimental results show that the
cost of the solution found is close to the lower bound on the cost of the solu-
tion obtainable in a specific polygon. In the work of González-Baños [57],
a randomized strategy is used to initially place guards and then a greedy al-
gorithm minimizes their number by removing some of them in such a way
that the total coverage of the area is preserved. The number of guards is
not guaranteed to be minimum, but the authors show that with high prob-
ability the difference from the optimal minimum number of guards c is
O(log(n + h) · log(c log(n + h))), where n is the number of edges of the
polygonal environment and h the number of holes in the environment.

It seems that the works dealing with the art gallery problem could be re-
lated to the exploration problem. The reason is that minimizing number of
guards could be equivalent to minimizing the number of perceptions (steps)
that a robot has to perform. However, the solution found is not directly ap-
plicable to the exploration problem where a robot has a limited visibility.
The reason derives from the fact that no constraint is imposed on the sensor
range, which is infinite, although the perception can be considered time-
discrete. Also, typically guards are placed in such a way that a guard in a
point q could be not visible from any other guards in points q′, thus not pre-
serving the inherent constraint in the exploration problem, namely traveling
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within the current known portion of the environment. Indeed, actually, no
path is involved in this problem. Note also that, as the watchman route
problem, the environment is assumed to be known. Hence, they give an
underestimate of the number of steps required to entirely explore an envi-
ronment when considering the limited sensor range.

Summarizing, we classify the works described above, according to the
following dimensions and report them in Table 2.1:

• Solution: the solution can be a closed tour (T), a path (P), or non-
feasible in our exploration setting (x) (note that the latter refers to
works dealing with art gallery problem where no path is present, but
could be similar to the problem in which we have to minimize the
number of steps).

• Perception: the timing of perception can be continuous (C) when per-
ceptions are performed continuously while the robot moves along a
trajectory, or discrete (D) when perceptions are performed only at se-
lected scan points.

• Sensor range: the range of the covering tool or sensor can be infinite
(I) when all the points belonging to the (possibly infinitely long if no
obstacle is hit) lines of sight starting from the robot sensor are covered,
or finite (F) when the points belonging to the lines of sight starting
from the robot sensor are covered up to a fixed maximum range.

• Optimality criterion: the criterion that is optimized can be traveled
distance in L1 or L2, or number of steps (e.g., scan points or turns).

• Type of environment: for example, polygons that are rectilinear and
with/without holes (obstacles).

Some variants of the above problems have been also investigated. The
watchmen route problem where more than one watchman is employed has
received relatively little attention so far. Carlsson et al. [25] deal with the
m-watchmen route problem, where m watchmen should see every point
of a polygonal domain. Rekleitis et al. [109] present a boustrophedon ap-
proach to compute a path for multiple robots that have to completely cover
a polygonal environment. The approach by Fazli et al. [42] presented above
also works in the case of multiple robots, by applying a clustering algorithm
on the dual graph of the decomposition, so that each cluster is assigned to
a mobile robot. Also, variants which consider some additional constraints
have been studied. For example, the work of Shnaps and Rimon [115]
studies the tethered coverage, where a robot, fixed to a point with a tether
of length l, has to cover the entire environment.
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Paper Solution Perception Sensor range Optimality criterion Environment
[30] T C I L2 rectilinear, without

holes
[26] T C I L2 without holes
[38] P C I L1 rectilinear, without

holes
[95] T C F L1 without holes
[10] T C F L2 rectilinear, without

holes
[50] T C F L2 with holes
[42] T D F L2 with holes
[82] P C F L2 with holes
[44] T D F L1 +# steps with holes

[11] T C F
#steps
L2 +# steps
(“steps” corresponds to “turns”)

rectilinear, with holes

[73] x D I # steps with holes
[19] x D I # steps with holes
[57] x D F # steps with holes

Table 2.1: Classification of representative papers from computational geometry on prob-
lems that can be related to exploration and coverage according to several dimensions.

2.1.2 Theoretical computer science approach

In the theoretical computer science community, the exploration task is usu-
ally formulated as follows: a robot has to explore an initially unknown
graph G = (V,E), where the vertices V correspond to the locations where
it can move and the edges E represent the direct connections between these
locations. During the exploration process, the robot uniquely learns of each
vertex (and of the corresponding incident edge) adjacent to a vertex that it
visits. This scenario is called fixed graph scenario.

There are typically two variants of the exploration task studied with
a graph-based representation of the environment. One is that of visiting
all the edges. Deng and Papadimitriou [37] show that in Eulerian graphs
(namely those that contain cycles which use a graph edge only once, also
called Eulerian cycle) the minimum competitive ratio for any exploring al-
gorithm is 2. Furthermore, they show that, for non-Eulerian graphs, this
ratio is unbounded when the deficiency of the graph (i.e., the number of
edges to be added to make the graph Eulerian) is unbounded. The au-
thors propose an algorithm that explores a graph with deficiency d using
2O(d log d) edge traversals. Panaite and Pelc [97] investigate the impact of the
amount of a priori knowledge of the graph on the exploration performance.
It is theoretically shown that the best exploration algorithm is 2-competitive
(considering the number of edge traversals to explore the graph) when no
a priori knowledge is available about the graph. The work by Fraigniaud
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et al. [48] considers a slightly different problem, in which the goal is that
of visiting all edges, but the robot is not required to stop. Instead of con-
sidering the exploration time complexity, for example the number of edge
traversals required to explore the whole graph, the authors theoretically
look at the minimum memory size of the robot required to explore a graph.
They prove that the worst-case space complexity is Θ(D log d) to explore
all graphs of diameter D and maximum degree d. (The diameter of a graph
is the length of the “longest shortest path” between any two graph vertices;
the maximum degree refers to the maximum number of incident edges to a
graph vertex.)

The second variant of the graph-based exploration task is that of visit-
ing all the vertices of a graph. Usually, the optimal solution is calculated
as a minimal-length tour that visits all the vertices of an undirected graph
and returns to the starting one. One of the first algorithms devised for such
online Traveling Salesman Problem is called Nearest Neighbor, which al-
ways chooses to move to the closest unvisited vertex. Rosenkrantz et al.
[111] prove that such algorithm is at most log(|V |)-competitive (where |V |
is the number of vertices in the graph), meaning that the ratio between the
length of the solution it produces and that of the optimal solution is at most
log(|V |). Kalyanasundaram and Pruhs [68] present a variant of the Depth-
First Search algorithm, called ShortCut, which finds an exploration tour
visiting all the vertices of an edge-weighted connected graph. The searcher
operates under the fixed graph scenario and moves (traveling on known
edges) to unvisited boundary vertices adjacent to at least a visited vertex.
ShortCut is proved to be (at most) 16-competitive on planar graphs. The
case of exploration of cycles under the fixed graph scenario is analyzed by
two works. The work of [88] shows an algorithm that builds a tour to ex-
plore the vertices of a graph and proves that its competitive ratio is 1 +

√
3

on simple cycles. In addition, they show that for unweighted graphs a stan-
dard Depth-First Search is 2-competitive. Asahiro et al. [12] prove that
the weighted Nearest Neighbor algorithm, which chooses the next vertex
to visit according to a weighted distance cost, achieves a competitive ra-
tio of 1.5 on cycles. Moreover, authors show that no exploration strategy
can have a competitive ratio less than 1.25 on cycles. The work of Megow
et al. [86] considers the fixed graph scenario and shows that a reformula-
tion of the ShortCut algorithm, called Blocking algorithm, has a constant
competitive ratio for a class of graphs wider than planar graphs. More pre-
cisely, Blocking has a competitive ratio of 16(1 + 2g) for graphs of genus
at most g (a graph has genus at most g if it can be drawn without crossing
itself on a sphere with g handles; a planar graph has genus 0). Moreover,
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authors show that Blocking does not have a constant competitive ratio for
general graphs. All the above results consider exploration tours that re-
quire the searcher to return to the starting vertex. This constraint is not
usually imposed in practical robotic exploration, where the goal is to find
an exploration path. As recognized by Kalyanasundaram and Pruhs [68],
the combinatorics of the two problems are significantly different. In this
respect, the most relevant previous work is that of Koenig et al. [72]. Au-
thors consider the problem of a robot that has to visit all the vertices of
a graph. A lower bound Ω( log |V |

log log |V | |V |) on the number of edge traversals
is provided for a mapping method called Greedy Mapping, in which the
robot is able to perceive only the current vertex and selects the closest un-
visited vertex. Tovey and Koenig [127] find an upper bound for Greedy
Mapping (called Closest Unvisited in that paper) and other three variants.
Specifically, one of the variants (Closest Unscanned) is similar to Closest
Unvisited: the robot can perceive the current vertex and may be able to
scan an arbitrary number of vertices from a distance, without visiting them.
The robot chooses the closest unscanned vertex. Closest Unscanned with
Replanning is a variant of Closest Unscanned, in which the robot is al-
lowed to replan while traveling to a selected closest unscanned vertex. The
last variant, called Closest Informative, considers the closest scanned ver-
tex which has some unscanned vertices as neighbors. Authors prove that,
such mapping methods that consider the distance as main criterion, namely
that select the closest unvisited, unscanned, or informative vertex, have an
upper bound of O(|V | ln |V |) edge traversals.

Basically all the works presented in this section consider the fixed graph
scenario, so we have that the timing of the perception is discrete (recall
that perception refers to the integration of the data coming from sensors in
the current map). Also, the sensor range can be considered ε, where ε is a
small value close to 0, as just the incident edges of the current vertex can be
perceived. Note that just the work of Tovey and Koenig [127] considers a
variant in which a more powerful sensor is available. Nevertheless, the pro-
vided results are those found exploiting only the knowledge of the current
vertex and ignoring other vertices possibly perceived.

Summarizing, we classify the works described above, according to the
following dimensions and report them in Table 2.2:

• Goal: visit all edges (E) or all vertices (V).

• Solution: the solution can be a closed tour (T) or a path (P).

• Optimality criterion: the criterion that is optimized can be the num-
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Paper Goal Solution Optimality criterion Graph
[37] E P # edge traversals directed, strongly con-

nected
[97] E P # edge traversals undirected, connected
[48] E T memory size anonymous, undirected
[111] V T traveled distance complete, weighted,

undirected
[68] V T traveled distance weighted, planar
[88] V T traveled distance trees and cycles
[12] V T traveled distance weighted undirected

graph
[86] V T traveled distance undirected, connected,

weighted
[72] V P # edge traversals undirected, connected,

unweighted
[127] V P # edge traversals undirected, connected,

unweighted

Table 2.2: Classification of representative papers from theoretical computer science on
exploration according to several dimensions.

ber of the number of visited vertices (steps) and the number of edge
traversals (distance, unweighted or weighted).

• Type of graph: for example, general graphs or planar graphs.

Some other variants of the graph exploration problem include the non-
ability of the robot to uniquely recognize already visited nodes [108], the
constrained exploration of a graph, where a robot is tethered or must return
from time to time to a fixed point [1, 13, 39], the exploration of directed
graphs [46], and the use of multiple explorers [35, 61].

2.2 Practical contributions

The mainstream approach to robotic exploration [137] used in practical set-
tings identifies some candidate locations on the frontiers between known
(already explored) and unknown portions of the environment, evaluates
them, and assigns them to robots, iteratively. In addressing the works
available in literature (typically from autonomous mobile robotics com-
munity), we tear apart the aspects of evaluating the candidate locations
(exploration strategy) and of allocating robots to candidate locations (co-
ordination method). In the following, we present a representative sample
of the several exploration strategies and coordination methods presented
in literature, showing also some of those using semantic information for
speeding up autonomous exploration of initially unknown environments.
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2.2.1 Exploration strategies

In the literature, exploration strategies usually use a utility function that
combines different criteria, which characterize each candidate location, to
assess the goodness of different candidate locations. Most of the criteria
employed by exploration strategies use only metric information, namely
information that can be derived from metric maps that robots build. For
example, the robotic exploration system of Gonzáles-Baños and Latombe
[56] combines, in an exponential function, the distance d(p, r) between a
robot r and a candidate location p and the expected amount of information
A(p) that r can acquire at p (measured as the maximum amount of unknown
area visible from p):

A(p) exp (−λd(p, r)), (2.1)
where λ weights the new information obtainable from a position and the
cost of traveling to reach the position. The authors show the experimental
effectiveness in indoor environments.

A system using the same two criteria, but combining them in a linear
function, is that of Burgard et al. [22]:

Ut′ − β · V i′

t′ , (2.2)

where Ut′ and V i′

t′ are similar to the expected information gain and trav-
eled distance, respectively, used by the work presented above, and β is the
relative weight of benefit versus cost of candidate location t′ for robot i′.
Experiments performed in unstructured, office, and corridor environments
demonstrate the effectiveness of the proposed method.

The exploration strategy proposed by Visser and Slamet [131] used by a
robot that should communicate with a fixed base station uses the following
utility function:

A(p)P (p)

d(p)
(2.3)

that considers also the estimated probability P (p) of a successful communi-
cation between the robot (once at p) and a fixed base station. The inclusion
of such criterion is motivated by the fact that the authors observed that,
in a number of experiments, a reliable communication between robots is
fundamental in order to efficiently explore the environment.

Amigoni and Caglioti [3] present an information-based approach that
has been derived using the concept of relative entropy. The evaluation func-
tion used to compare the candidate destination locations is:

1

N + A

∑
i∈A∪N

ln
σunc,i

σ
+N ln

σ

P
+
∑
i∈A

ln
σ

σp,i
+N ln

2πc

σ
, (2.4)
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where N = |N | is the expected number of new points sensed from p,
A = |A| is the expected number of already sensed points that are sensed
again from p, σunc,i is the standard deviation of the contribution to the mea-
surement error due to the robot pose uncertainty, σ is the standard devia-
tion of the sensor accuracy, P is the expected perimeter of the area to be
mapped, σp,i is the prior standard deviation of the already sensed point i,
and c is the distance between the current position of the robot and p. In
Equation (2.4), the smallest values of function identify the best candidate
location.

Tovar et al. [126] use a utility function that evaluates a sequence of m
candidate locations (poses) with the following multiplicative function:

m∑
i=1

(exp (lvi − svi)
qi∏
j=1

(
exp (−|θj|)√

sj + 1
)×(

1

ni

ni∑
k=1

pk+Nei)fmini(dl)), (2.5)

where qi is the total number of robot stops to reach location i, lvi is the
length of the closest frontier edge at i, sj is the distance from the robot to the
next possible location j, svi is the distance from the next possible location
i to the closest frontier edge, θj is the orientation change to reach the next
configuration j, pk identifies the probability of viewing landmark k at i,
ni and Nei are the number of landmarks and of corners inside a visibility
region at i, and fmini is a function that penalizes i when it is too close to an
obstacle, according to distance dl. The authors test the proposed approach
in simulation and on real robots, although no quantitative comparison with
other methods is provided.

Marjovi et al. [84] propose a method for multi-robot exploration and fire
searching. The utility is computed according to the ratio between utility and
cost, where

utility =
m∑

i=1|i 6=R

dist[(Xfk , Yfk), (Xri , Yri)], (2.6)

which computes utility according to the distance dist between the frontier
fk = (Xfk , Yfk), currently evaluated by robot R, and the position of other
robots ri = (Xri , Yri), and

cost = dist(A∗k=0,n[(XR, YR), (Xfk , Yfk)]), (2.7)

which calculates the distance using A∗ method between the frontier fk and
the robot R. The idea of such exploration strategy is to let the robots dis-
perse and explore the environment in a more efficient way. The experi-
mental results with real robots in some environments show the efficiency
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and the reliability of the proposed method, which is also compared with an
optimal method.

Rekleitis [106] proposes an exploration strategy whose objective is to
minimize the uncertainty of the map. Experiments performed in random
graphs show the viability of the proposed method. The same authors, in
[139], builds on the latter to study the use of a topological map privileging
the accuracy on the produced map.

A more general and flexible method based on Multi-Criteria Decision
Making (MCDM) that provides a solid approach, grounded in decision-
theoretical field, for selecting the next candidate location in exploration
is proposed by Basilico and Amigoni [16]. Consider a set of candidate
locations P , a set of robots R, and a set of criteria N . Call uj(p, r) the
utility value for candidate location p ∈ P and robot r ∈ R according to
criterion j ∈ N . The larger uj(p, r), the better the pair p and r according
to j. To apply MCDM, utilities need to be normalized to a common scale
I = [0, 1]. The authors use a linear relative normalization for each uj . With
a slight abuse of notation, u(j), with (j) ∈ N , is the j-th criterion according
to an increasing ordering with respect to utilities: for candidate location
p and robot r, u(1)(p, r) ≤ . . . ≤ u(n)(p, r) ≤ 1, where n = |N | (it is
assumed that u(0)(p, r) = 0). The MCDM strategy integrates the criteria in
N with the following function:

u(p, r) =
n∑
j=1

(u(j)(p, r)− u(j−1)(p, r))µ(A(j)), (2.8)

where µ : 2N → [0, 1] (2N is the power set of set N ) are weights, and the
set A(j) is defined as A(j) = {i ∈ N |u(j)(p, r) ≤ ui(p, r) ≤ u(n)(p, r)}.
Specifically, µ({∅}) = 0, µ(N) = 1, and, if N ′ ⊂ N ′′ ⊂ N , then
µ(N ′) ≤ µ(N ′′). That is, µ is a normalized fuzzy measure on the set of
criteria N that will be used to associate a weight to each group of crite-
ria. The weights specified by the definition of µ describe the relationships
between criteria. Criteria belonging to a group G ⊆ N are said to be
redundant if µ(G) <

∑
i∈G µ(i), synergic if µ(G) >

∑
i∈G µ(i), and inde-

pendent otherwise. Clearly, weight µ for each subset of criteria should be
defined reasonably. Principled methods for selecting weights are discussed
by Basilico and Amigoni [16]. Intuitively, Equation (2.8) provides a sort
of “distorted” weighted average that accounts for synergies and redundan-
cies between criteria. Using Equation (2.8) is a more principled way than
other utility functions (e.g., [131]) to compute utilities, because it allows to
consider criteria’s importance and their mutual dependency relations. This
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approach is shown to experimentally outperform other exploration strate-
gies like that of Visser and Slamet [131].

Only few exploration strategies use information coming from semantic
maps of environments (built, for example, by semantic mapping systems
of Wolf and Sukhatme [133] and Mozos et al. [89]). An early attempt in
this direction is that of Kuipers and Byun [74], in which candidate locations
with a large distinctiveness (e.g., located at the intersections of corridors)
are privileged. Specifically, the authors, instead of explicitly considering
semantic information, use a geometric measure, which derives from finding
points that are equally-distant to close obstacles, and apply a hill-climbing
control strategy to find the robot’s exploration path, so that distinctiveness is
maximized. They show the goodness of the exploration path found through
a qualitative analysis of the solution obtained during simulations.

The work by Stachniss et al. [121] exploits the knowledge on the struc-
ture of an indoor environment (represented as a hidden Markov model) to
drive robots to select, first, candidate locations that are in corridors. For
each robot r and each candidate location p, the difference between the ini-
tial utility of p (which is equal for all frontiers and is initialized at 1, not
considering any features of p) and the distance between the current position
of r and p is calculated. The initial utility of candidate locations that are in
corridors is multiplied by γ (set to 5 in the experimental activity). Then the
method greedily allocates the candidate locations to the robots by selecting
the pair r and p that maximizes the above difference. Experimental results
(performed in simulation) show that the approach is effective in decreasing
the time required to explore some environments with respect to an approach
that does not update the initial utility of corridors.

Another work that uses semantic information to improve exploration is
presented by Calisi et al. [24]. In this case, contextual information related to
the mission (e.g., the relative importance of a goal with respect to another
goal), to the environment (e.g., the presence of rooms and corridors and
the difficulty for traversing a given area and for detecting victims in that
area), and to the agents (e.g., the presence of loop closures for improving
localization of robots) is represented by a PROLOG rule-based system and
exploited to enhance the performance of a robotic system operating in a
search and rescue scenario. The experiments (performed in simulation)
use a single robot and show that the proposed approach can significantly
increase the area mapped by the robot within 15 minutes.

Another system that exploits the structure of the environment for de-
termining the best candidate locations and assigning them to the robots is
presented by Wurm et al. [134]. The known portion of the map of the envi-
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Paper Evaluation criteria Metric
[56] M # motions and perceptions
[22] M exploration time

[131] M total explored area
[3] M traveled distance, # steps

[126] M traveled distance, # perceptions
[84] M # repeated nodes, exploration time

[106] M traveled distance, map uncertainty
[16] M total explored area
[74] S map correctness

[121] S exploration time
[24] S total explored area

[134] S exploration time

Table 2.3: Classification of representative papers about exploration strategies according
to some dimensions.

ronment is segmented and a single robot is assigned to (one of the frontiers
of) each segment. The utility function used to assign a robot r to a frontier
p belonging to a portion of the map considers the distance from the cur-
rent position of r to p. Experimental results (both in simulation and with
real robots) show that the approach can significantly reduce the overall ex-
ploration time for realistic environments with respect to a closest-frontier
approach that assigns to each robot the closest candidate location.

Note that all these approaches that consider also semantic information
use a utility function that considers basically just the cost to reach a can-
didate location. The experimental comparison performed by Amigoni [2]
showed that, in some common settings, exploration strategies that balance
utility and cost tend to have better performance than those that use only
cost. Nevertheless, all these works that embed semantic information in the
exploration strategy show that the total area explored in a given time inter-
val can be improved by using semantic information.

Note that all the works presented in this section assume that the solution
is a path.

Summarizing, we classify the works described above, according to the
following dimensions and report them in Table 2.3:

• Evaluation criteria: the criteria used in the exploration strategies can
be metric-based (M) or also semantic-based (S).

• Metric: the metric considered to assess the goodness of the proposed
exploration strategy, for example, traveled distance to explore the whole
area of the environment or explored area in a given time interval.
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2.2.2 Coordination methods

Coordination between multiple exploring robots, namely assigning robots
to candidate locations, is achieved in different ways in the literature.

A series of works (e.g., [21, 22, 121] and, partially, [47]) propose an
interesting approach in which the coordination method is embedded within
the exploration strategy. In particular, the utility value of a candidate loca-
tion is reduced according to the number of robots that can view it, in order
to discourage the assignment of more robots to the same candidate location.
Experimental results show that this coordinated behavior has better perfor-
mance than uncoordinated behavior (in which different robots can select
the same location to reach) and slightly worse performance than a method
that finds the optimal allocation over all possible permutations of candidate
locations to robots, where the optimality criterion depends on the difference
between utility and cost of visiting the candidate locations.

Several other works (e.g., [118, 140]) are based on market mechanisms.
Specifically, coordination of mobile robots is performed by a central ex-
ecutive that, beyond collecting local maps and combining them into a sin-
gle global map, manages an auction-like mechanism by asking bids to the
robots and assigning tasks (i.e., locations to reach) according to the re-
ceived bids. Bids contain information about expected utility for pairs robot-
location; utilities are calculated by the exploration strategy adopted. Exper-
imental results show that auction-based coordination methods (as expected)
outperform the uncoordinated methods.

All of the presented approaches for coordination attempt to spread the
robots around the environment. The (often) implicit assumption is that the
exploration problem is considered to involve, according to the classification
of Gerkey and Mataric [52], single-task robots (ST) and single-robot tasks
(SR), where the task is to reach a candidate location. ST means that each
robot executes one task at a time and SR means that each task requires one
robot. Thus, all the above works act basically as ST-SR.

An extension to the ST paradigm usually considered is provided by Faigl
et al. [41], who propose a method for allocating not only one candidate des-
tination location, but all the current frontiers to the robots (MT, multi-task
robots), leading to the multiple traveling salesman problem formulation.

An extension to the SR paradigm is given by the the approach of Haw-
ley and Butler [60], which proposes an auction-based coordination method
not only for task assignment, but also for coalition formation, leading par-
tially to a multi-robot task (MR), when there are more robots than candidate
locations.
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Table 2.4 classifies some of the most significant papers on coordinated
robotic exploration according to the classification of Gerkey and Mataric
[52].

Robots
SR MR

Tasks ST [21, 22, 60, 118, 121, 140] [60]
MT [41]

Table 2.4: Classification of representative papers about coordination methods according
to the classification of Gerkey and Mataric [52].

Recently, embedding the constraint on the limited communication range
between robots started to receive more attention (e.g., [36]). Also, the study
of the heterogeneity of the robots in terms of capabilities has received more
attention (e.g., [107]).

2.3 Evaluation

A lively debate on good experimental methodologies is currently ongoing
in the autonomous robotics community, which has recognized that the lack
of sound procedures, globally accepted benchmarks, and well-established
metrics for autonomous robotic systems slows down research and make the
transfer of existing research results to market products rather difficult [5, 6].

One of the problems lies on answering (at least partially) to the ques-
tion ‘which approach performs better in a given setting?’. Coming down to
exploration, as shown in Section 2.1, on the one hand, exploration strate-
gies are defined in theoretical settings (e.g., exploration of graphs) and are
assessed using theoretical tools like worst-case bounds and competitive ra-
tio, which is the ratio between the cost of the solution found by an online
algorithm and that of the optimal solution found by an offline algorithm.
This allows to have a comparison of the proposed methods by comparing
either their competitive ratio or their upper and lower bounds that are usu-
ally provided in the worst case. However, these bounds (and as we will
show in Chapter 7), could be very loose in some settings and not so infor-
mative about whether a method is better than another. On the other hand,
the exploration strategies are defined and assessed in practical settings (see
Section 2.2). The experimental evaluation and comparison is mainly per-
formed by testing some state-of-the-art methods and the proposed one in
some settings. As there is no reference performance, results are compared
in a relative way, against to each other, and not in an absolute way (e.g.,
[2, 67]). See for example Figure 2.1. Thus, an important issue, which has
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Figure 2.1: An example of relative comparison among exploration strategies [2].

been largely overlooked so far, is the availability of a reference (optimal)
performance for conducting the experimental evaluation.

Another question is about which metric should be used for evaluation.
This is related to the difficulty of establishing a single optimality criterion
that we evidenced when discussing the corresponding dimension of our
framework. The number of sensing actions performed by the robots and
the total amount of distance traveled to completely explore an environment
are two common metrics, but there currently is no agreement on this [15].

Another relevant question is about which data should be used for eval-
uation. In real environments, evaluation can be clearly performed only ex
post, once the environment has been completely mapped. Data sets ac-
quired by real robots (like those on Rawseeds [28] and Radish [63]) are
usually not so dense to cover every perception in every pose of the envi-
ronment and cannot be used to evaluate exploration strategies and, more
generally, systems that decide the next actions online. Simulation is some-
times the only viable solution [4].

Furthermore, the details reported about the experimental settings pre-
sented in works available in literature are sometimes not sufficient to repli-
cate experiments and thus it is not clear what parameters could affect the
exploration performance [6]. In the following, we show two aspects that
have not been considered and investigated so far in the experimental eval-
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uation of the exploring systems but that could have an impact on their per-
formance, namely the impact of perception and decision timing, and the
relative impact of exploration strategies vs. coordination methods on the
exploration performance.

Explicit information about when perceptions (Step (b) presented in Sec-
tion 1.1) and decisions (Step (c) presented in Section 1.1) are performed are
rarely reported in papers. According to the available data, we can broadly
classify the published works according to the following classes.

Event-based vs. frequency-based perception. In case of event-based
perceptions, only the data acquired at the destination location is integrated
into the current map of the environment. This means that a robot “blindly”
navigates from its initial location to the destination location moving along a
path inside the known free space, without updating the map. In frequency-
based perception, data is continuously acquired and integrated into the map,
at some fixed frequency, as the robot navigates toward the destination loca-
tion. This frequency can depend either on the sensor acquisition frequency
or, more often, on the update frequency of the map building method em-
ployed (e.g., the map is updated after a certain distance, after a certain ro-
tation angle, or after a certain amount of time). Note that these timings are
related only to map updates for exploration purposes (Step (b) presented
in Section 1.1). Indeed, depending on the methods used for map building
and localization, the data acquired during navigation can be used for lo-
calization and path following, but we do not consider the timing of these
acquisitions if they do not enrich the map built by exploration.

Event-based vs. frequency-based decision. In the first case, a decision
about the next destination location is made only when the previous desti-
nation location has been reached (or after that location has been declared
unreachable, for example after a timeout expired). In the second case, de-
cisions about the next destination location are continuously made, at some
fixed frequency (for example, in [92] a new decision is basically made ev-
ery 4 s), while the robot is moving toward the current destination location
(implementing a sort of opportunistic behavior).

Table 2.5 classifies some of the most significant papers on robotic ex-
ploration according to the above dimensions. The aim of the table is not to
exhaustively classify all works in the area, but only to provide an overview
based on a significant sample of published papers.

Most works consider event-based perception and decision. This is not
surprising because of ease of implementation of such configuration. Al-
though they use different exploration strategies and different map repre-
sentations, these works basically consider reaching the current destination
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perception
event-based frequency-based

decision event-based [3, 23, 49, 56, 75, 81, 117, 126, 136] [22, 62, 131]
frequency-based - [40, 92, 118]

Table 2.5: Perception and decision modalities employed by some papers.

location as the event that triggers the acquisition of new data from sensors
and their incremental integration into the current map as well as the deci-
sion making about the next destination location. Relatively less works use
frequency-based perception and decision. Unsurprisingly, no work consid-
ers event-based perception and frequency-based decision. This is expected
since it makes little sense to decide repeatedly about the next destination
location on the basis of the same information about the environment.

Some recent works have partially addressed the study of the effects of
perception and decision timing on exploration performance. For instance,
Holz et al. [62] explicitly recognize one of the main problems of event-
based decision under frequency-based perception: since the map is contin-
uously updated according to data coming from long range sensors, the robot
might have fully explored a region (e.g., a dead-end corridor) before actu-
ally reaching the selected destination location. In the work of Holz et al.
[62], a heuristic is proposed to avoid to reach such destination locations if
there is nothing the robot could discover there. This amounts to discard the
old decision about the destination location. A similar problem is recognized
by Keidar and Kaminka [69] and some (fast) frontier detection algorithms
are proposed as a support for making decisions about destination locations
at a high frequency, up to 10 Hz (as it can be deduced from experiments).

Nevertheless, beyond these partial attempts, and to the best of our knowl-
edge, a systematic analysis of the impact of perception and decision timing
on the performance of exploration is still missing.

Another aspect that could influence the exploration process but not fully
investigated so far include the relative impact of exploration strategies and
coordination methods on the exploration process. Indeed, as shown in Sec-
tion 2.2, coordinated multirobot exploration has been mainly studied for
map building [71, 78] and for search and rescue [84] focusing in a rather
separated way on evaluation of either coordination methods or exploration
strategies.
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Part I
Bridge the gap between theory and practice

The first part of this dissertation presents the contributions towards the goal
of bridging the gap between theory and practice.

On the one hand, as discussed in Section 2.1, most of the works in the
computational geometry area consider assumptions that do not apply di-
rectly to real scenarios for the problem of exploration. Against this back-
ground, in Chapter 3, we tackle the problem of computing the optimal ex-
ploration path for a robot with time-discrete and limited visibility. The
optimality criteria considered are those typically used for evaluating the
performance of an exploration system and are the number of steps and the
traveled distance. By considering some more realistic robotic assumptions,
we make a step toward filling the gap between theoretical results and prac-
tical applications of robot exploration.

On the other hand, as discussed in Section 2.2, most of the proposed
techniques are experimentally tested in some specific scenarios. In order to
better understand the performance of exploration strategies and to more
solidly explain some experimental findings reported in the literature, in
Chapter 4, we theoretically analyze some exploration strategies that have
been used in literature. Specifically, we analyze those that evaluate can-
didate locations with distance and/or information gain. Also, we consider
some realistic assumptions over the robot’s capability, by assuming that a
robot has a sensor with a finite range r, and over the termination criterion,
that prescribes the perception of a fraction g of the environment. The anal-
ysis is performed using a graph-based representation of the environment.
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3
Offline exploration problem

In this chapter, we consider a single robot with limited-visibility range scan-
ner sensors operating in a two-dimensional world. For this robot, exploring
an environment means to follow an exploration path and operate a sequence
of perceptions at a finite number of distinct locations along this path (time-
discrete perception) such that all the free area of the environment is per-
ceived. Given this context, we address the optimal exploration problem,
whose solution is an exploration path that minimizes some objective func-
tions (or optimality criteria). In this chapter, optimality will be associated
to two common objective functions: the number of perceptions to be per-
formed along the exploration path and the total traveled distance, namely
the length of the exploration path.

We deal with the exploration problem from a particular offline perspec-
tive. More precisely, starting from the assumption that a given environment
is initially known, we try to answer the question of what is the optimal
exploration path that any online exploration strategy could achieve in that
specific environment. In other words, we search for an optimal solution
which could be compared with those found by online exploration strategies
working in initially unknown environments. The problem we solve can be
also formulated as follows. Consider an initially unknown environment, run
any online exploration strategy that discovers the environment along some
exploration path. Then, a posteriori, we answer the question: what would
have been the optimal exploration path for discovering the environment?

Our problem differs from closely related problems, like art gallery [129]
and watchman route [30] formulations (see Section 2.1.1). In the case of
art gallery, proposed methods find the minimum set of guards to completely
cover a given environment. In works related to watchman tour, instead, the
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Chapter 3. Offline exploration problem

similar objective of finding a shortest continuous exploration tour (a closed
path starting and ending at the same point) for arbitrary two-dimensional
polygonal environments is addressed. Using art gallery terminology, our
problem formulation constrains each guard (a location on the path from
where a perception of the environment is made) to be visible from at least
another guard that has been already placed. In principle, this constraint,
which we will refer to as reachability constraint, makes the optimal explo-
ration path (considering the two optimality criteria mentioned above) in-
crementally “travelable” by an exploring robot with no a priori knowledge
about the environment. For such a robot, indeed, every new perception
should be performed in the space within which it can move safely, i.e., in
the space the robot has already perceived as free up to that time.

More specifically, the reachability constraint we consider imposes that a
scan point q (i.e., a location where robot perceives the environment) should
be visible from at least another previously placed scan point q′, namely q
should be in at least a disk, whose center is q′ and radius (sensor range)
r. Notice that, while this constraint is implicit in online exploration, it
is, in general, not enforced when the environment is already known in
advance (in problems like the art gallery, it would imply an unnecessary
over-constraining of the problem, where not even a path is considered).
Figure 3.1 shows an example in which, assuming no arbitrary initial robot
starting point, the art gallery problem would require 2 scan points (in blue),
whereas the optimal exploration problem we consider in this chapter would
require 3 scan points (blue and red points). Note that similar considerations
hold also for variants of the watchman tour that consider also the number of
scans or turns in the objective function. In particular, the solution for such
variants requires the robot to stop and perceive the surroundings at the scan
points in blue, while the optimal exploration path is required to stop also
at the red-colored scan point. Also, typically the watchman tour prescribes
that, once the whole area is covered, the robot should go back to the start-
ing point. Instead, in the exploration problem, as said, usually a path (not
necessarily closed) is considered as solution. The reachability constraint
is motivated by the fact that we are looking for an optimal solution of the
exploration problem that is online feasible. Note that the optimal explo-
ration problem corresponds to the coverage problem with the reachability
constraint.

In the following, we characterize the optimal exploration problem for
a single robot, by formulating it with reachability constraint in the contin-
uous space and in the discrete space, where it can be more conveniently
tackled for resolution. We analyze the theoretical implications of operating
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3.1. Optimal exploration problem

Figure 3.1: Solution to the art gallery problem (blue points) vs. solution to the optimal
exploration problem (blue and red points). Note that solution to the watchman prob-
lem does not require the robot to stop at the red point, while the optimal exploration
problem does.

in the discrete space with respect to two aspects. First, we study the rela-
tionship between the continuous space formulation and the discrete space
formulation in which the environment is represented with a regular grid
of given resolution. Second, we focus on the inherent sub-optimality that
solving a discretized version of the problem would introduce. We consider
number of perceptions and traveled distance as optimality criteria and we
provide bounds on the discrete optimal solution’s quality with respect to
the continuous one. Then, we define the discrete space problem as a clas-
sical AI search problem, which is solved with A∗. A set of parameters and
speedup techniques are proposed in order to balance the algorithm’s ex-
pected computation time and the solution’s quality. Experimental activities
we performed in simulation show that our algorithm behaves satisfactorily
well for realistic environments. We compare our results with those of a
state-of-the-art coverage method [42] that can be readily adapted to solve
our optimal exploration problem.

3.1 Optimal exploration problem

We assume to have a single holonomic autonomous mobile robot moving in
an arbitrary continuous two-dimensional bounded environment P ⊂ R2.
The interior points of P can belong to obstacles of arbitrary shape, whose
set is denoted by Po, or can belong to the free space where the robot can
move, denoted by Pf = P \ Po. The robot is considered as a point
(this assumption is without loss of generality if obstacles are “grown” to
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Chapter 3. Offline exploration problem

account for the real size of the robot, as usual in path planning [76]). Going
over the dimensions presented in Section 1.3, the robot is equipped with a
360◦ range sensor with a finite range r able to perceive free space and outer
boundary of obstacles (e.g., two laser range scanners with 180° FOV each
mounted at the same height and back-to-back). Specifically, we assume that
the sensor model prescribes that a point q within r from the robot and such
that the inner of the line segment between q and the robot does not contain
any point of Po is said to be visible from the current robot position. With
such a sensor, we can ignore the orientation of the robot and consider only
its position in the plane. From any position, the robot can perceive the
surrounding environment and update a map that keeps track of the portion
of P discovered so far. We assume that perception model is time-discrete,
as in several works in literature (see Section 2.3). That is, given a path
covered by the robot, perceptions are performed only at a finite subset of
scan points on that path. Given two subsequent scan points, no additional
information about the environment is integrated into the map when moving
from one to the next (although information coming from sensors could be
used for collision avoidance). This implies that also the decision model is
time-discrete. The robot operates according to the behavior model defined
in Section 1.1. Since we are interested in studying optimal exploration,
we assume that the movements (Step (d)) and the perceptions (Step (a))
of the robot are error-free. As a consequence, the robot perfectly knows
its position. We also assume that the environment is static and known in
advance, so we can formulate an offline problem.

We now provide a general formulation of the optimal offline exploration
problem we tackle in this chapter.

Problem C (Optimal offline exploration in the continuous space). Given
an environment P , a robot with sensor range r, and an initial robot po-
sition q0 ∈ Pf , find a sequence of positions (scan points in Pf ) Q =
〈q0, q1, . . . , qn〉 such that:

• every free point q ∈ Pf is perceived by the robot from at least a
position qi ∈ Q;

• the reachability constraint is met: position qi+1 should lie in the free
space discovered with the perceptions performed at positions 〈q0, . . . , qi〉;

• Q is optimal, i.e., it minimizes a given cost function.

We denote as MP
i = MPo

i ∪MPf

i the partial map of P built by the
robot from positions 〈q0, . . . , qi〉. The problem is specified with two cost
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3.1. Optimal exploration problem

functions (describing two different optimality criteria). More precisely, we
denote as Problem C-# the above problem when the minimization of the
number of steps (number of scan points where the perception actions of
Step (a) above are performed) is adopted, that is

minn. (3.1)

Similarly, we will refer to Problem C-D when the minimization of the
traveled distance is considered, namely

min
∑

i=0,1,...,n−1

D(qi, qi+1), (3.2)

where D(qi, qi+1) is the length of the shortest path lying inMPf

i connecting
qi to qi+1. In general, the optimal solution Q∗ is different if we use the
number of steps or the traveled distance. We call n∗C and D∗C the costs of the
optimal solutions, obtained with number of steps and distance, respectively.

The ProblemC-# for arbitrary two-dimensional polygonal environments
is NP-hard, as it can be easily traced back to the art gallery problem [96,
114]. Also the Problem C-D is NP-hard as finding a coverage tour (a
closed path starting and ending at the same point, namely qo = qn) for
arbitrary two-dimensional polygonal environments has been shown to be
NP-hard [10]. Therefore, finding an exploration path with the further con-
straint on reachability is also NP-hard, being a path more general than a
tour.

In order to look for an approximation of the optimal solution for both
problems, we translate ProblemC from the continuous to the discrete space.
The continuous environment P is tiled by a finite regular grid of cells Ge

such that each point q ∈ P belongs to a cell of the grid. Cells are iden-
tical squares with edge of length e and can be either free or occupied by
obstacles. If there exists a point q ∈ Po that belongs to a cell c ∈ Ge,
then c ∈ Ge

o; if all points belonging to a cell c are q ∈ Pf , then c ∈ Ge
f

(see Figure 3.2). Each cell partially lying over the environment external
boundary is considered an obstacle cell. Hence, the grid Ge representing
the environment is partitioned in sets of cellsGe

f andGe
o containing the free

and the occupied cells, respectively. The free space Ge
f and the obstacles

Ge
o can have any form. In the following, with a slight notation overload, we

use the same symbol c to indicate both the cell c ∈ Ge and the coordinates
of the position of its center (cx, cy) in a global coordinate system.

The robot (again, considered as a point) starts from the center of a cell
c0 ∈ Ge

f and its basic movements are from the center of its current cell
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Chapter 3. Offline exploration problem

Figure 3.2: Cells indicated with red cross are considered obstacles, even if only partially
containing an obstacle (in gray).

to the center of another adjacent free cell. We assume that the grid is 8-
connected with an additional constraint preventing the robot from moving
between obstacle cells that share a vertex. The range sensor (again, lim-
ited to r) perceives the state (free or occupied) of any cell ci whose center
can be connected to the position of the robot with a straight line segment
whose length is strictly less than r and crossing only free cells (and without
passing between obstacle cells that share a vertex). We can thus formulate
optimal offline exploration in the discrete space.

Problem D (Optimal offline exploration in the discrete space). Given a grid
Ge representing an environment P , a robot with sensor range r, and an ini-
tial robot position c0 ∈ Ge

f , find a sequence of positions C = 〈c0, c1, . . . , cn〉
such that:

• every free cell c ∈ Ge
f is perceived by the robot from at least a position

ci ∈ C;

• the reachability constraint is met: position ci+1 should lie in the free
space discovered with the perceptions performed at positions 〈c0, . . . , ci〉;

• C is optimal, i.e., it minimizes a given cost function.

We denote MGe

i = M
Ge

o
i ∪M

Ge
f

i the partial map of Ge built by the robot
from cells 〈c0, . . . , ci〉. Similarly to the continuous case, we call Problem
D-# and Problem D-D the two versions of the problem using the number
of steps and the traveled distance, respectively. Also, we denote with n∗D
and D∗D the costs of the optimal solutions, namely the minimum number
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3.1. Optimal exploration problem

of steps and the shortest traveled distance, respectively. In this case, the
quality of the solution clearly depends on the cell size e.

Note that the knowledge representations in Problems C and D are con-
tinuous and grid-based, respectively. Also, the termination criterion is to
map the whole free space. Given the a priori knowledge of the environ-
ment, we can apply an offline algorithm to compute the solution. The so-
lution then is a path, namely the robot does not have to return back to the
starting point, differently from most of the works presented in Section 2.1.1.

We now show that Problems D-# and D-D are NP-complete for grid
graphs (another way to represent our grid environments). In a grid graph
each node corresponds to a point of the plane with integer coordinates and
edges connect nodes at unitary (Euclidean) distance [66].

Proposition 3.1. The Problem D-# is NP-complete.

Proof. We consider the decision version of Problem D-#, namely given a
positive integer k decide if there exists an exploration path that perceives all
the free cells with no more than k perceptions. The problem is in NP since
we can always verify in linear time the validity of a given solution. We can
show that the problem is NP-hard by reducing from the decision version of
the Minimum Connected Dominating Set problem (MCDS-k). MCDS can
be described as follows [58]. Given a graph G = (V,E) (where V are the
vertices where robots can stay and E are edges that connect the vertices)
find the subgraph G′ = (V ′, E ′) ⊆ G such that:

• G′ is connected;

• for every v ∈ V either v ∈ V ′ or there exists an edge e = (v, q) ∈ E
such that q ∈ V ′;

• |V ′| is minimum.

The decision version of this problem MCDS-k is, given an integer k, to
decide whether there exists a connected dominating set with |V ′| ≤ k or
not. Such problem is NP-complete for general grid graphs as shown in [34].

A simple reduction can be obtained as follows. Given any grid graph G
we efficiently build an instance of ProblemD-# according to the following
steps:

1. consider a robot with range r;

2. consider e = r and derive the grid corresponding to G, that is place a
free cell at the coordinates of each vertex (properly scaled by a factor
e);

43



Chapter 3. Offline exploration problem

3. add obstacle cells to every empty spot of the grid (we obtain a grid
where no diagonal movements are possible).

Given such a construction, it follows immediately that MCDS-k admits a
solution if and only if Problem D-# admits an exploration path with k
steps. Given such exploration path, indeed, we can obtain in linear time
a dominating set for G by selecting the nodes of G that correspond to
perception-cells, i.e., those cells where a perception is prescribed in the
exploration path. Our reachability constraint guarantees that the set is con-
nected. Since every cell of the grid is visible from at least a perception cell
of the exploration path, and since e = r, every node of G is either in the
dominated set or adjacent to a node in the dominated set. (Notice that in
our constructed instances no diagonal perceptions are possible.)

Proposition 3.2. The Problem D-D is NP-complete.

Proof. Let us consider the decision version of Problem D-D , namely given
a distance d decide if there exists an exploration path which perceives the
whole environment traveling no more than d units. This problem can be
easily shown to be in NP since we can always verify in linear time that
a given exploration path travels less than or exactly d units and senses all
the free cells of the environment. To show its NP-hardness, we consider
the Hamilton Circuit problem for grid graphs (HC-G) that is shown to be
NP-complete in [66].

The idea behind the reduction (presented below) is to constructing an
instance of Problem D-D in such a way that each cell ci that corresponds
to a node vi ∈ V has to be visited. This is obtained by adding some dummy
cells that could be perceived only from that cell ci.

Given any grid graph G = (V,E), that is any instance of HC-G, we can
define a reduction to D-D as follows:

1. consider a robot with range r ∈ Z>0;

2. for each vi ∈ V , consider a cross-shaped grid gi where e = r; gi’s
center cell is indicated as ci and since it is logically and univocally
associated to node vi we call it node cell; the center cell is surrounded
by 4-adjacent linear segments of r free cells that we call dummy cells;
every other cell to form a square of edge 2r + 1 is an obstacle cell;
(Fig. 3.3 reports the cross-shaped grid gi for node vi ∈ V where e =
r = 1.)

3. compose a grid with the cross-shaped grids such that (v1, v2) ∈ E if
and only if c1 and c2 are at the shortest possible distance of 2r + 1

44



3.1. Optimal exploration problem

d2

d1

d4

d3

ci

Figure 3.3: Cross-shaped grid element for a node vi ∈ V ; ci is the node cell associated
to vi, while d1, . . . , d4 are dummy cells.

in the grid (recall that the distance between two cells is the Euclidean
distance between their centers); in other words, the obtained grid is
isomorphic to the graph (notice that, since the grid graph is planar,
such construction can be done efficiently by considering the planar
coordinates of each node in the graph);

4. if there exists vx ∈ V such that degree(vx) = 1, then add a linear
segment of 3 dummy cells adjacent to a dummy cell of gx that is not
adjacent to any other gi (do this for just one vx) (Fig. 3.4 reports the
resulting grid applying step 4 to a graph G);

5. if there not exists in G a node vx with degree 1, since G is finite, then
vx should have two neighboring nodes with degree less or equal to 3;
choose any of such neighbors v1 and v2 and add a dummy cell adjacent
to a dummy cell of g1 that is not adjacent to any other gi, do the same
for g2 (Fig. 3.5 reports the resulting grid applying step 5 to a graph
G);

6. fill every empty spot of the grid with an obstacle cell, call OG the
obtained grid.

Now we can show that G admits an Hamilton Circuit if and only if OG

admits an exploration path that perceives the whole environment covering
no more that (2r + 1)(n− 1) + 2 travel units.

Let us consider the above construction and temporarily ignore steps 4
and 5. In the OG built in this way, an exploration path of length (2r +
1)(n − 1) visits each node cell exactly once. This follows from these two
considerations: (a) the minimum distance between two node cells is 2r + 1
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Figure 3.4: Example of application of step 4 to a grid graph containing a node vx ∈ V
such that degree(vx) = 1.
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C

Figure 3.5: Example of application of step 5 to a grid graph that does not contain a node
vx ∈ V such that degree(vx) = 1.
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(by construction) (b) any exploration path that senses all the free cells with
maximum traveled distance of (2r+1)(n−1) has to visit all the node cells.
To prove (b) let us first consider nodes cells ci such that degree(vi) ≤ 3.
In the corresponding gi of any such ci there is, by construction, at least
one dummy cell which can be perceived only when the robot occupies ci,
therefore, to perceive all the free cells of the environment, each node cell
with maximum degree 3 has to be visited. The same holds for cells with
degree 4 despite showing it is more tricky. If degree(vi) = 4 then, in
principle, the robot can reach any dummy cell d of gi which is at distance r
from ci and, consequently, perceive ci without visiting it. Differently from
the previous case, doing so would not preclude the perception of any free
cell in the environment. We provide the intuition of why this is not possible
if, at the same time, the robot has to perceive the whole environment within
a traveled distance of (r + 2)(n − 1). When stopping at dummy cell d the
robot has traveled a distance of r + 1 from the last occupied node cell cj .
This means that it gets a perception of ci by “saving” r units of distance.
When back at cj , the total traveled distance in this portion of the exploration
path would be 2(r+ 1). So, to “handle” cell ci the robot would travel more
distance than the 2r + 1 units that a total budget of (2r + 1)(n− 1) would
impose. (Notice that, if between cj and ci only r free cells were present,
then these considerations would not hold. However, by construction this
cannot occur.) The same reasoning can be made for a robot reaching ci
and then coming back, in this case the total local cost would be 2(2r + 1).
Therefore, given a budget of (2r + 1)(n− 1), if an exploration path exists,
it will go from cj to ci and then proceed towards another node cell cz 6= cj .
(Notice that, when ci is left at the end of the exploration path, then it must
be visited to perceive the dummy cells surrounding it.) From the previous
considerations it also follows that (c) any path with traveled distance less
than (2r + 1)(n− 1) cannot be an exploration path, i.e., it cannot perceive
all the free cells of the environment.

Let us now reintroduce steps 4 and 5 in our construction. Such steps are
mutually exclusive, so let us first consider step 4. Trivially, the presence of
a degree 1 node prevents the existence of any Hamilton circuit in G. In this
case, OG never admits an exploration path of length (2r + 1)(n − 1) + 2
since a robot would have to travel (2r + 1)(n − 1) units to cover the node
cells and at least 3 additional units to sense the dummy cells inserted in step
4. Differently, step 5 adds two dummy cells that would require to spend 2
additional travel units, forcing any admissible exploration path to start and
stop at them. Since the two additional cells are associated to neighboring
nodes, from an exploration path of length (2r + 1)(n − 1) + 2 we can
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easily build an Hamilton circuit for G by dropping the first and last visits
in the path and joining them in the path. In the example of Figure 3.5, an
exploration path with length (2r + 1)(n − 1) + 2 is A′ → A → B →
C → D → B → B′, and the corresponding built Hamilton circuit is
A → B → C → D → B → A. (Notice that, our reduction requires to
separately handle the degenerate case of a graph with two nodes of degree 1.
Being such case trivial, we do not report it for the sake of presentation.)

3.2 Bounds on solutions quality

We now focus on the optimal solutions for Problems C and D, both when
considering the number of steps and the traveled distance as optimality cri-
terion, and present some bounds and formal relations that bind solutions in
the continuous and in the discrete.

First of all, we provide an analytical expression of the maximum area
that can be perceived with a single perception in the continuous and in the
discrete. This will be used in the following to compute lower bounds of the
solutions. Given sensor range r and cell edge length e, we call pD(r, e) the
maximum cardinality set of perceivable cells in a grid Ge, or equivalently
pD(r′) = pD(r, e), where r′ = r

e
. Formally, pD(r′) = S∗ such that |S∗| =

maxc∈Ge|Sc|, where Sc = {c′ ∈ Ge | d(c, c′) < r′} represents the set of
cells visible from ci and d(·) is the Euclidean distance. Similarly, for the
continuous case, pC(r) = U∗q such that A(U∗q ) = maxq∈Pf

A(Uq) where
Uq = {q′ ∈Pf | d(q, q′) < r} and where A(·) is the total continuous area
covered by the argument, whether a grid or a polygon in R2. The maximum
number of perceived cells is given in the following proposition.

Proposition 3.3. Given an environment P , a tiling grid Ge, and a robot
with sensor range r:

pD(r′) = 1 + 4
(⌈
r′ − 1

⌉)
+ 4

dr′−1e∑
i=1

(⌈(√
r′2 − i2

)
− 1
⌉)
.

Proof. The expression derives from a simple geometrical construction. The
first term refers to the cell in which the robot is; the second one refers to
the cells that are along the x-axis and y-axis of a coordinate system whose
origin is the center of the cell in which the robot is; the last one refers to all
the cells in each quarter. Note that in order to rule out cells whose center is
distant from the robot position by exactly r′, we subtract one and we take
the upper integral value.
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Figure 3.6: Area to remove (cyan) from the perception circle (continuous line) given a
robot with range r.

Note that if r = 1 and e = 1, then pD(r′) = 1. This derives from the
assumptions made on the sensor model: a cell is perceived when its center
is at distance less than r′ from the position of the robot.

Consequently an upper bound on the maximum area that can be per-
ceived in the discrete case is A(pD(r′)) = e2pD(r′). No simple analytic re-
lation holds between A(pD(r′)) and A(pC(r)) being it strongly dependent
on r and e. In particular, no inequality can be derived since, depending on r
and e, the first quantity could be greater than the second one or vice versa.

The above expressions do not consider the reachability constraint that,
except for the first one, will affect any perception. To consider it, we define
the new perceivable area, that is the area acquired with a perception from
an already mapped location and that does not belong to the already mapped
free area.

Proposition 3.4. Given an environment P , the maximum new area per-
ceived by a robot with sensor range r is

A(pnew
C (r)) = πr2 − 2(

π

3
r2 − r2 sin(

π

3
) cos(

π

3
)) ' 2

3
πr2.

Proof. The robot can make perceptions only from points located in the
known free area, due to the reachability constraint. So, given r, an area
of at least 2r2(π

3
− sin(π

3
) cos(π

3
)) is already perceived (see Figure 3.6) and

must be subtracted from the maximum perceivable area πr2.
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Proposition 3.5. Given an environment P , a tiling grid Ge, and a robot
with sensor range r, the maximum number of new cells perceived is

pnew
D (r′) = pD(r′)− 2

(
2

dr′−1e∑
i=d dr

′−1e
2
e+rem(dr′e,2)

(⌈(√
r′2 − i2

)
− 1
⌉)

+

(
rem(dr′e, 2)

⌈(√
r′2 − (dr′ − 1e/2e)2

)
− 1
⌉))
− ddr

′ − 1e
2
e

where rem(·) is the remainder of division operation.

Proof. The proof develops similarly to Proposition 3.4. The three final
terms of the sum represent the number of already perceived cells (whose
center falls in the area in cyan shown in Figure 3.6 and calculated using the
same geometrical scheme used in Proposition 3.3):

dr′−1e∑
i=d dr

′−1e
2
e+rem(dr′e,2)

(d(
√
r′2 − i2)− 1e)

accounts for the cells whose center falls in the quarter of area in cyan,
rem(dr′e, 2)d(

√
r′2 − (dr′ − 1e/2e)2)− 1e corresponds to the cells whose

centers possibly lie on half of the vertical line in the cyan area, and d dr
′−1e
2
e

refers to the cells whose centers are on the horizontal segment depicted
inside the cyan area. These three terms are subtracted to pD(r′).

Note that the robot travels at least r and dr′ − 1ee units from its current
location to perceive the maximum new area in the continuous and in the
discrete cases, respectively. As intuition suggests, cells with smaller e bet-
ter approximate the continuous area.

Proposition 3.6. Given an environment P , a tiling grid Ge, and a robot
with sensor range r, lime→0A(pD(r′)) = A(pC(r)).

Proof. The proof trivially derives from the fact that as e goes to 0 the area
e2 of the cell approaches to 0, then the difference between the area covered
by cells whose centers are in the circle and the area of the circle becomes
smaller and smaller, thus leading the perceived area in the discrete to the
same perceived area in the continuous.

3.2.1 Bounds on number of steps

Let us first consider Problems C-# and D-#. We denote as p̄new
C (r, q0)

and p̄new
D (r′, c0) the new perceived area in a given point q0 ∈ Pf and in

50



3.2. Bounds on solutions quality

a given cell c0 ∈ Ge
f , respectively. From Propositions 3.4 and 3.5 we can

derive lower bounds nC and nD for the optimal solution n∗C and n∗D over
the number of steps of the optimal exploration path for Problems C-# and
D-#, respectively. Formally, we provide the following statement.

Proposition 3.7. Given an environment P , a tiling grid Ge, a robot with
sensor range r and with initial position q0 ∈Pf and c0 ∈ Ge

f , to which q0

belongs, we have the following lower bounds nC = 1+
⌈
A(Pf )−A(p̄new

C (r,q0))

A(pnew
C (r))

⌉
≤

n∗C and nD = 1 +
⌈
A(Ge

f )−A(p̄new
D (r′,c0))

A(pnew
D (r′))

⌉
≤ n∗D.

Proof. For the continuous case the robot initially sensesA(p̄new
C (r, q0)) from

q0 and then it has to sense A(Pf ) − A(p̄new
C (r, q0)) with a maximum per-

ceivable new area of A(pnew
C (r)), as shown in Proposition 3.4. The discrete

case develops similarly around Proposition 3.5.

There is no clear evident relation between n∗C and n∗D as well as be-
tween n∗D in tiling grids Ge and Ge′ with e′ ≥ e. Nevertheless, the cost
of the solution in the discrete could decrease with e because, as shown in
the following proposition, the amount of continuous free area that can be
represented with different discretizations of the environment P is less than
or equal to the actual amount of continuous free area. We will assume that
different grids share the same boundary.

Proposition 3.8. Given an environment P , two tiling grids Ge and Ge′ ,
if e′

e
= 2k (k ∈ Z≥0), then A(Ge′

f ) ≤ A(Ge
f ) ≤ A(Pf ) and A(Ge′

o ) ≥
A(Ge

o) ≥ A(Po).

Proof. Given a point q ∈ Po, using a grid Ge, q will belong to a cell
c ∈ Ge

o. When using a grid Ge′ , q will belong to a cell c′ ∈ Ge′
o . Given that

e′ ≥ e, it is A(c′) ≥ A(c). Note that as the different grids share the same
boundary and as they have the relation e′

e
= 2k, by construction it cannot

happen that a cell c′ ∈ Ge′ is not considered obstacle, while the cells c ∈ Ge

that are contained in c′ are considered so. Thus, A(Ge′
o ) ≥ A(Ge

o). The fact
that A(Ge′

f ) ≤ A(Ge
f ) follows trivially. The relationship A(Ge

o) ≥ A(Po)
easily derives considering that a point q ∈ P does not have any area or
length, so, if q ∈ Po belongs to a cell c ∈ Ge

o the area of the cell c is not
smaller than the one of q. The relation A(Ge

f ) ≤ A(Pf ) follows trivially.
(Recall that, according to our discretization construction, each cell partially
lying over the environment external boundary is by definition an obstacle
cell.)
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Note however that, as expected, because of Proposition 3.6, when e→ 0
we have that A(Pf ) = A(Ge

f ) and so n∗D = n∗C .

3.2.2 Bounds on traveled distance

In this section we present bounds and relations between solutions for Prob-
lems C-D and D-D . Let us start with a simple lower bound DC and DD

for the traveled distance of an optimal solution D∗C and D∗D.

Proposition 3.9. Given an environment P , a tiling grid Ge, and a robot
with sensor range r, DC = (nC−1)r ≤ D∗C and DD = (nD−1)dr′−1ee ≤
D∗D.

Proof. To completely cover the environment, the robot should at least per-
form nC steps in the continuous case and nD in the discrete case, as shown
in Proposition 3.7. Because of the reachability constraint (Section 3.1), the
robot should travel a distance at least r and dr′ − 1ee from its current loca-
tion in order to perform a maximum perception A(pnew

C (r)) and A(pnew
D (r′))

at the next step, respectively. Clearly, the initial perception performed in q0

(c0) does not require any movement by the robot.

Note that, also in this case, in general, there is not a clear relation be-
tween D∗D and D∗C , as it strongly depends on r, e, and P . Similarly to
the case relative to the number of steps, no clear pattern can be identified
between D∗D in environments Ge and Ge′ with e′ ≥ e. When e → 0, then
the difference between the perceived area in the continuous case and in the
discrete case goes to 0, as shown in Section 3.2.1, and D∗D goes to D∗C .

Now, consider an exploration path C = 〈c0, c1, . . . , cn〉 in the discrete
case and the corresponding exploration path Q = 〈q0, q1, . . . , qn〉 in the
continuous case (not necessarily optimal). According to Nash [91], which
provides an approximation upper bound on the path on a grid with respect
to a continuous path between two arbitrary points, we have the following
upper bound on length DD of the path C with respect to the length DC of
the path Q.

Proposition 3.10. Given an exploration path C = 〈c0, c1, . . . , cn〉 in Ge

and an exploration path Q = 〈q0, q1, . . . , qn〉 in P , if qi = ci for all i, then
DD ≤ 1.08DC .

Proof. Let us take every pair of consecutive points qi−1 and qi and the cor-
responding cells ci−1 and ci. Let us consider the length of the sub-path
connecting these consecutive points DC(qi−1, qi) and DD(ci−1, ci). Con-
sidering the results obtained by Nash [91], we have that DD(ci−1, ci) ≤
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1.08DC(qi−1, qi) and then
∑|C|−1

i=1 DD(ci−1, ci) ≤ 1.08
∑|Q|−1

i=1 DC(qi−1, qi).

Proposition 3.10 holds for all exploration paths in a two-dimensional
grid environment, and so is true also for the optimal exploration path.

If the continuous environment P is tiled with Ge where e is very small,
we have the following proposition for the length of an exploration path De

D

in the tiling grid Ge.

Proposition 3.11. Given an exploration path C = 〈c0, c1, . . . , cn〉 in Ge

and an exploration path Q = 〈q0, q1, . . . , qn〉 in P , if qi = ci for all i ∈
[0, . . . , n], lime→0 De

D = DC .

Proof. As e goes to 0, P is tiled in a increasingly fine-grained way such
that DD(ci−1, ci) = DC(qi−1, qi) ≤ 1.08DC(qi−1, qi) for every pair of con-
secutive cells ci−1 and ci and the corresponding points qi−1 and qi. Then,
summing all sub-paths lengths proves the proposition.

We now look at how the length of an exploration path C = 〈c0, c1, . . . , cn〉
changes using different cell sizes. Again, we will assume that different
grids share the same boundary even if some of the results presented can be
extended to the more general case. Let us first introduce some consider-
ations about the center of the cells belonging to grids with different edge
lengths.

Proposition 3.12. Given an environment P , two tiling grids Ge and Ge′ ,
where e′ ≥ e, a number (b e′

e
c)2 of cells c ∈ Ge will have their centers in

the same cell c′ ∈ Ge′ . We say that these cells c belong to cell c′.

Proof. GridsGe andGe′ are composed of square cells whose edge sizes are
e and e′, respectively. So, centers are distanced of e and e′ in Ge and Ge′ .
Hence, a number (b e′

e
c)2 of cells c ∈ Ge have their centers contained in a

cell c′ ∈ Ge′ .

Given grids Ge and Ge′ , the following proposition allows to map po-
sitions of the robot in center of cells c ∈ Ge to center of cells c′ ∈ Ge′ ,
considering that cells c ∈ Ge, as said in Proposition 3.12, belong to cell c′.

Proposition 3.13. Given an environment P , two tiling grids Ge and Ge′ ,
where e′ ≥ e, starting from left to right and from top to bottom, the center of
a cell c ∈ Ge with coordinates (cx, cy) which belongs to a cell c′ ∈ Ge′ can
be moved to the center of c′ by a translation, with respect to a global coor-
dinate system, v(c) = [vx, vy]

ᵀ =
[
e′/e−1

2
− rem( cx

e′
), e′/e−1

2
− rem( cy

e′
)
]ᵀ

,
where rem(·) is the remainder of division operation.
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Proof. The proof derives from the way the environment P is tiled with
grid Ge and grid Ge′ . The term e′/e−1

2
accounts for the shift of the center of

a cell c′ ∈ Ge′ with respect to the upper left cell c ∈ Ge that belongs to c′.
The term rem( cx

e′
) (rem( cy

e′
)) correctly shifts cells c ∈ Ge that belong to cell

c′ ∈ Ge′ , according to Proposition 3.12.

A sufficient condition to have a cell of Ge′ with the same center of any
cell of Ge is that e′ = 3ke (with k = 0, 1, 2, . . .). Note that, if we remove
the assumption that the grids Ge and Ge′ share the upper left corner, the
number of cells c ∈ Ge belonging to a cell c′ ∈ Ge′ is again (b e′

e
c)2, but the

translation v(c) calculated in Proposition 3.13 changes.
The way to map positions of the robot in center of cells c ∈ Ge to center

of cells c′ ∈ Ge′ is exploited in the following proposition which shows the
relation between path lengths in different grids, sharing common reference
system.

Proposition 3.14. Given two exploration paths C = 〈c0, c1, . . . , cn〉 in Ge

and C ′ = 〈c′0, c′1, . . . , c′n〉 in Ge′ , if ci belongs to c′i for all i ∈ [0, . . . , n], the

following lower/upper bounds for the ratio De′
D

De
D

between the length of C and

C ′ in Ge and Ge′ , where e′

e
= 2k, with k ∈ Z≥0, hold:

1

(1 + (1− 1/2k)
√

2)
≤ De′

D

De
D

≤ 2k.

Proof. Let us first derive the lower bound for De′
D

De
D

. Remember that, be-
cause of the robot motion model we defined on a grid, the robot has to
go along the shortest path on the grid, namely traversing the centers of
cells (8-connected), and thus possibly not going directly straight from ci
to ci+1. Minimum distance between two cells with centers c1 = (x1, y1)
and c2 = (x2, y2) in a grid map with edge length e (c1 in line of sight
of c2, and vice versa) is calculated as: De

D(c1, c2) = e(v + o
√

2), where
v = ||x1 − x2| − |y1 − y2|| is the number of straight movements and
o = |x1−x2|+|y1−y2|−v

2
is the number of oblique movements (o is always

an integer, because the idea of the formula is to perform first all the nec-
essary straight movements, so that the robot reaches a cell where it has to
perform only oblique movements). Note that it is always possible to nor-
malize the x and y of the cells as the grid is regular. Intuitively, the lower
bound derives from the fact that the robot, when moving in Ge′ , could re-
quire a shorter traveled distance due to the shift of the cell centers and some
oblique movements could be not necessary anymore. Basically the proof
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(a) Lower bound

(b) Upper bound

Figure 3.7: Bounds of the ratio between traveled distances in grid maps with different
edges (black lines delimit cells with edge e, grey lines delimit cells with edge e′, red
line and blue line refer to a portion of the path with edge e and e′, respectively).

develops from considering the path in Ge between the most distant cells c1

and c2 of Ge that belong to two adjacent cells c′1 and c′2 in Ge′ . The path
in Ge′ that connects the two adjacent cells is shorter than the path in Ge

(see Figure 3.7a). Without loss of generality, consider cells c1 = (x, y) and
c2 = (x + 2e′/e − 1, y + e′/e − 1) in Ge that belong to two adjacent cells
in Ge′ , with coordinates (with respect to a fixed coordinate system) c′1 =

(x+ e′/e−1
2

, y+ e′/e−1
2

) and c′2 = (x+2e′/e−1− e′/e−1
2

, y+e′/e−1− e′/e−1
2

),
obtained applying the transformation of Proposition 3.13. Taking adjacent
cells on the oblique accounts for

√
2 for both De′

D and De
D, and so by cal-

culating the ratio,
√

2 simplifies. Note that the considered distances De
D

and De′
D are normalized to the distance unit e. To reason with the dis-

tance unit 1, it is necessary to multiply both distances by e. After some
passages, we obtain the number of straight movements in Ge, which is
v = ||2e′/e− 1| − |e′/e− 1||.

Since e′/e ≥ 1, we have v = e′/e. Similarly, the number of oblique
movements in Ge is o = |2e′/e−1|+|e′/e−1|−e′/e

2
. Since e′/e ≥ 1, we have

o = e′/e− 1.
In the grid map Ge′ , the number of straight movements is v = e′/e, and

the number of oblique movements is o = 0.

So the lower bound is De′
D

De
D
≥ e′/e

(e′/e+(e′/e−1)
√

2)
, as this reduction can cumulate

along the paths whose costs are De′
D and De

D. With some simplifications,
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Problem
C D

Optimality
criterion

#
nC = 1+

⌈
A(Pf )−A(p̄new

C (r,q0))
A(pnew

C (r))

⌉
≤ n∗C nD = 1+

⌈
A(Ge

f )−A(p̄new
D (r′,c0))

A(pnew
D (r′))

⌉
≤ n∗D

D
DC = (nC − 1)r ≤ D∗C DD = (nD − 1)dr′ − 1ee ≤ D∗D

Table 3.1: Lower bounds for the optimal exploration solution considering the number of
steps # (see Proposition 3.7) and the traveled distance D (see Proposition 3.9) for the
Problems C and D, where A(Pf ) (A(Ge

f )) computes the area of the free space in the
continuous (discrete, where the edge length is e), p̄new

C (r, q0) (p̄new
D (r′, c0)) is the new

area perceived in the point q0 (c0) given the range r (r′ = r
e ),A(pnew

C (r)) (A(pnew
D (r′)))

is the maximum new perceivable area in the continuous (discrete) by the robot.

we obtain:

De′
D

De
D

≥ 1

(1 + (1− e/e′)
√

2)
=

1

(1 + (1− 2k)
√

2)
.

The upper bound comes from the fact that the robot can travel longer
distance in Ge′ than in Ge, because cell centers are shifted in the grid map
with edge e′, as shown in Proposition 3.13. The idea of the proof is to
consider the shortest path between two nearby cells in Ge that belong to
two adjacent cells in Ge′ (see Figure 3.7b). Hence, consider, without loss
of generality, two adjacent cells c1 = (x, y) and c2 = (x + 1, y + 1) in
Ge (the result holds also for horizontal or vertical adjacent cells). Suppose
that c1 belongs to c′1 and c2 belongs to c′2, where c′1, c

′
2 ∈ Ge′ are adjacent,

and specifically, their centers are c′1 = (x − ( e
′/e−1

2
), y − ( e

′/e−1
2

)) and
c′2 = (x + 1 + ( e

′/e−1
2

), y + 1 + ( e
′/e−1

2
)). The distance between c1 and c2

is De
D(c1, c2) =

√
2. The distance between c′1 and c′2 is De′

D
e′

e
√

2
. Therefore,

the (worst-case) upper bound is De′
D

De
D
≤ e′/e = 2k, because the same ratio

holds for every subpath in C and C ′.

Note that there could be a degenerate case in which the path C in Ge can
be fully contained in a single cell c′ of Ge′ , when the whole free space Ge′

f

can be covered from the center of c′. In such a case, the traveled distance
in Ge′ is obviously 0, and the lower bound of previous proposition does not
hold. Note also that, when the edge length e tends to 0, the lower bound of

the ratio De′
D

De
D

becomes 1
1+
√

2
.

The above results (summarized in Tables 3.1 and 3.2) provide interesting
theoretical insights on our problem, especially analyzing how the use of
discrete representations can affect the quality of the solutions. Starting from
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Relation Bounds

DC-DD
DD ≤ 1.08DC

De
D-De′

D
1

(1+(1−1/2k)
√

2)
≤ De′

D

De
D
≤ 2k

Table 3.2: Relations between length of the paths in the continuous DC and in the discrete
DD (see Proposition 3.10), and in the discrete De

D and De′

D , where the edge lengths
have the relation e′

e = 2k, with k ∈ Z≥0 (see Proposition 3.14).

these basic results, in the next section we try to enrich them by discussing a
practical approach to tackle resolution of the optimal exploration problem.

3.3 Solving the optimal exploration problem

In the following, we show how we tackle Problem D, by presenting its
formulation as a search problem and the solving approach together with
some speedup techniques.

3.3.1 Formulation as a search problem

To practically solve Problem D, we formulate a corresponding search prob-
lem, following a classical approach in Artificial Intelligence [112, Chapter
3]. The solution of the search problem is a (approximate) solution of Prob-
lem D. A state s is a pair (c,MGe

) composed of the current position c of
the robot in Ge

f and of the map MGe ⊆ Ge built so far during exploration.
Our search problem for solving Problem D is formulated as follows.

Initial state. The initial state s0 = (c0,M
Ge

0 ) is given by the initial
position of the robot c0 in Ge

f and by the initial map MGe

0 , which contains
the cells of Ge perceived from c0.

Actions. From a state s = (c,MGe
), applicable actions for the robot

are to move to a free cell c′ ∈ MGe
f reachable from c and perceive the en-

vironment surrounding c′. A free cell c′ is reachable from c when there is
a safe path (within free cells of MGe

f and not colliding with any obstacle)
between c and c′, according to our reachability constraint. The path is cal-
culated using a wavefront propagation algorithm on MGe [76, Chapter 8],
considering cost e for vertical and horizontal movements and cost e

√
2 for

diagonal movements (recall that we consider 8-connected grids). In princi-
ple, from a state s = (c,MGe

), there are as many actions as many reach-
able free cells c′ in the current map MGe . However, to limit the number of
these actions (and the branching factor of the search tree used to calculate
a solution), we consider only reachable frontier free cells c′ that are on the
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boundary between known and unknown parts of the map MGe , as usually
done in practical scenarios of robotics (Section 2.2). This does not prevent
our approach to find the optimal solution when considering Problem D-#
because the new area perceived from any non-frontier cell is not larger than
the area perceived from at least a frontier cell. However, this way of se-
lecting actions can produce sub-optimal solutions for Problem D-D . In our
case, the robot reaches always the boundary between the known and un-
known part of the environment, but there could be some cases in which the
robot performs better if it stops before reaching the boundary, for example,
when the robot is in a dead-end corridor, or when two frontiers are visi-
ble from another third location and going to one of them requires a second
scan. So, there could be an extra traveled distance at each step, which is
δDi

= δ̂Di
−δ∗Di

(δDi
∈ [0, r]), where δ̂Di

is the traveled distance determined
by our approach considering destination location ci on the frontier and δ∗Di

is the minimum distance that should have actually traveled to perceive the
same portion of the environment.

Transition function. The new state resulting from performing applica-
ble action “move to c′” in state s = (c,MGe

) is s′ = (c′,M ′Ge
), where

M ′Ge is the map MGe updated with the new perception in c′.
Goal test. A state s = (c,MGe

) is a goal state when MGe is a complete
map of the free space of the environment Ge, namely when all the free cells
of Ge

f are present in MGe .
Step cost. The step cost for going from a state s = (c,MGe

) to a suc-
cessor state s′ = (c′,M ′Ge

) reflects the optimality criteria we consider and
can be either c# = 1, when the optimality criterion is the number of steps,
or cD = D(c, c′), when the optimality criterion is the traveled distance.

A solution to the above search problem is a finite sequence of states
S = 〈s0, s1, . . . , sn〉 such that s0 is the initial state and sn is a state that
satisfies the goal test. An optimal solution is a solution with minimum cost.
From a solution S, a corresponding solution C to ProblemD can be derived
immediately.

It is worth noting that searching for an optimal exploration path is dif-
ferent from searching for an optimal path between two given points in an
unknown environment (e.g., using algorithms like D* [76, Chapter 12],
Learning Real-Time A∗ [112, Chapter 4], and PHA∗ [45]). First, in our
problem, we don’t know a priori the position of the robot at the end of ex-
ploration. Hence, we cannot operate in a state space in which each state is a
position (cell) of the robot in the environment, but we need a more complex
representation of states that accounts also for the portion of the environ-
ment discovered so far. Second, our approach is offline and the robot is not
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required to physically move between states (positions).

3.3.2 Solution of the search problem

In principle, we can employ any search algorithm, but from some prelimi-
nary experiments, we assessed that A∗ performs slightly better than branch
and bound and other search algorithms. Despite the choice of an algorithm
can be further investigated, it lies outside the scope of this dissertation and
so, for the experimental activities presented here, we decided to use A∗. In
order to apply it, we need to define a heuristic function that, given a state s,
returns the estimated cost of a solution from s.

For both optimality criteria, given a tiled environment Ge, a robot with
sensor range r, and an initial robot position c0, the heuristics h#(s) and
hD(s) are calculated by exploiting a precomputed solution S ′ of a relaxed
version of the problem obtained by setting e′ > e and r′ > r (for example,
in environments of Figure 3.9, we empirically found as values that preserve
the heuristics admissibility in the settings we considered e′ = 2e and r′ =
1.1r). Given S ′, the heuristic value for a state s, which is met in searching
for a solution S to the original problem is obtained as follows. At s (which
could possibly belong to the solution S), the robot has mapped a percentage

p =
|{c | c ∈MGe

f}|
|Ge

f |
of the free space of the environment. The heuristic

value h#(s) or hD(s) of s is calculated as the cost incurred to reach s′ ∈ S ′
starting from s0 ∈ S ′, where s′ is the first state encountered in S ′ such
that the mapped percentage p′ in s′ is greater than or equal to the mapped
percentage p in s. In other terms, this means that the cost of each state of
the solution S ′ in the relaxed problem is a lower bound to a related state
according to the percentage p in the original problem.

Now let us illustrate how the relaxed problem is solved to obtain S ′. For
the number of steps, the heuristic function of the relaxed problem h̄#(s′),
with s′ = (c′,MGe′

), is calculated as the number of unknown free cells
divided by the maximum number of cells perceivable from a single percep-
tion:

h̄#(s′) =
|{c′|c′ ∈ Ge′

f , c
′ 6∈MGe′

f }|
pnew
D (r′)

, (3.3)

where pnew
D (r′) is the maximum number of new perceivable cells when sen-

sor range is r′ and grid has cell size e′ (see Proposition 3.5). The heuristic
function is admissible as it is the lower bound for the exploration problem
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considering the number of steps as optimality criterion, as shown in Propo-
sition 3.7. As a consequence, solving with A∗ and h̄#(s′) guarantees to find
an optimal solution for the relaxed problem [112, Chapter 3]. Now, h#(s)
is greater than h̄#(s′), because h̄#(s′) does not entirely take into account
the structure of the environment, while h#(s) is a solution to the relaxed
problem in a specific environment. Moreover, h#(s) is admissible, being
solution of a relaxed problem. Thus, A∗, using h#(s), expands a number of
nodes less than or equal to that of using h̄#(s′) in order to find the optimal
solution.

For the traveled distance, the heuristic function of the relaxed problem
h̄D(s′), with s′ = (c′,MGe′

), is simply calculated as the heuristic for the
number of steps h̄#(s′) multiplied by sensor range r′ and the cell edge
length e′:

h̄D(s′) =
|{c′|c′ ∈ Ge′

f , c
′ 6∈MGe′

f }|
pnew
D (r′)

r′e′. (3.4)

The idea is that, in order to completely map the free space of environment
Ge, the robot has to acquire a number of perceptions, and each scan is at
least performed at the boundary of perceived area at each step. The above
heuristic function is admissible because it is the lower bound for the explo-
ration problem considering the traveled distance as optimality criterion, as
shown in Proposition 3.9. Similar to the case of number of steps, hD(s)
is greater than h̄D(s), as h̄D(s′) does not totally consider the structure of
the environment, while hD(s) does. Therefore, also when considering dis-
tance as optimality criterion, less nodes are expanded with hD(s) than with
h̄D(s′).

Given the heuristic functions, we provide a sketch about how the basic
A∗ operates. Starting from the initial state, the goal test is applied. If it
is true, then the search ends. Otherwise, the algorithm picks the first state
from a list of states, to which the transition function has been not applied
yet and ordered in an ascending fashion according to their cost summed to
the heuristic function, and checks again whether the selected state is a goal.
This process goes on until the goal state is encountered. The optimality and
the completeness on such state space is guaranteed by the properties of A∗.

3.3.3 Speeding up solution computation

The worst-case computational complexity of our algorithm is exponential
in the number of steps needed to completely map an environment (i.e., in
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n). To tackle this limitation in practice, we list a number of speedup tech-
niques that are expected to reduce the computational effort, at the expense
of possibly worsening the quality of the solutions.

Footprint sensor. The laser range scanner can be substituted by a (less
realistic) footprint sensor that perceives the state (free or occupied) of any
cell whose center lies within the circle centered in the robot and with radius
r, without considering the presence of obstacles. Using the footprint sensor
preserves the completeness of the algorithm but could underestimate the
cost of the solution obtainable with the more realistic laser range scanners.

Weaker goal test. We can consider a weaker goal test for which a
state s = (c,MGe

) (s′ = (c′,MGe′
)) in the original search problem (in

the relaxed problem) is a goal state when MGe (MGe′ ) contains a fraction
g (0 ≤ g ≤ 1) of the cells in Ge

f (Ge′

f ). This relaxation can better match the
requirements of some relevant applications. Think, for example, to a search
and rescue scenario where an incomplete map of the environment providing
a general idea of its structure can suffice instead of a fully detailed map. The
heuristic functions for the relaxed problem are still admissible and become:

h̄′#(s′) =
|{c′|c′ ∈ Ge′

f , c
′ 6∈MGe′

f }| · g
pnew
D (r′)

, (3.5)

h̄′D(s′) =
|{c′|c′ ∈ Ge′

f , c
′ 6∈MGe′

f }| · g
pnew
D (r′)

r′e′. (3.6)

Clustering frontier cells. Adjacent frontier cells in the current map
MGe are grouped in clusters C, according to the 8-adjacency of the grid.
The clusters are limited in size. If a cluster C with b frontier cells contains
more than 2/3 of |p′D(r, e)| = |{c ∈ pD(r, e) | |adjacency(c)| ≤ 5}|, where
|adjacency(c)| is the cardinality of the set of free known cells 8-adjacent to
c, then C is split in clusters C′ of fixed equal size, starting from left to right,
up to down, so that |C′| < |p′D(r, e)|/2. (The value |p′D(r, e)| represents
the cardinality of the set of cells on the boundary of the footprint area; we
empirically tried different values±10% for this threshold obtaining similar
results.) Limiting the size of the clusters allows to avoid misrepresenting
a cluster when a representative cell is elected among those belonging to
it. Such cell is simply defined as the one closest to the cluster’s centroid.
More precisely, for a cluster C with b ≥ 1 frontier cells c1, c2, . . . , cb the
representative cell cC is selected as

cC = arg min
ci∈C

D (ci, centroid(C)) , (3.7)
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where centroid(C) is a function that computes the centroid point of the clus-
ter C, namely, the centroid’s x and y are obtained by an average over the
x and y of the b cells cj belonging to C. Then, only cells cC representa-
tive of different disjoint clusters of frontier cells in MGe are considered for
generating actions in a state s = (c,MGe

), drastically reducing the number
of these actions and the branching factor of the search tree. This speedup
technique preserves the completeness of the algorithm, because, given a
cluster, at least one cell is kept, but the solution could be sub-optimal, as
the exploration path is searched on a subset of reachable cells.

Eliminating small clusters. We can discard small clusters that contain
less than k frontier cells. The rationale is that their contribution to the
exploration of the environment is small. If small clusters are eliminated,
then the search algorithm could be prevented from finding any solution
when some free cells of Ge are visible only reaching a small cluster.

Duplicate states list. When selecting a state to expand, it is possible
to discard duplicates that have been already expanded. Specifically, a state
s′ = (c′,M ′Ge

) can be safely discarded if there exists a state s = (c,MGe
)

already expanded such that c′ = c, M ′Ge ⊆ MGe , and g(s′) ≥ g(s), where
g(s) is the cost to reach the state s from the initial state s0. The complete-
ness is guaranteed because duplicate states will eventually lead to the same
states already expanded. Moreover, optimality is guaranteed as the algo-
rithm does not consider duplicate states whose cost is greater than the cost
of at least one already expanded equal state.

Summarizing, starting from the solution that can be found for Problem
C to the search problem with some speedup techniques defined here, we
have the approximation scheme illustrated in Figure 3.8.

solution of problem C

solution of problem D

solution found in Section 3.3.1

solution found in Section 3.3.2

a
p

p
ro

x
im

a
ti

o
n

discretize environmente with Ge

move to frontiers

speedup techniques

Figure 3.8: Approximation scheme of the solutions to the problems defined in this chapter.
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3.4 Simulation results

In order to assess the validity of our approach in finding (approximations of)
optimal exploration paths, extensive simulated experiments have been con-
ducted in three different environments. They are called indoor, openspace,
and obstacles, and are shown in Figure 3.9. The line segment reported in
the figure measures 30 units. If we consider a unit equivalent to 0.1 m
(which is reasonable, given the cell size and the sensor range values dis-
cussed below), we can say that the size of the environments is realistically
large. Also, these environments have been used to compare some online
exploration strategies in [2]. The environments are discretized in square
grids, using three different resolutions. We consider three cell sizes, cor-
responding to edge length e of 1, 2, and 4 units. We consider three values
for the sensor range r, namely 20, 25, and 30 units, and three values for the
weaker goal test g, namely 0.85, 0.90, and 0.95. For an environment, we
call setting a combination of e, r, and g. For each setting and for each of
the 10 random initial positions (shown as points in Figure 3.9), we run our
approach1 using c# or cD as cost function. We set a timeout of 10 hours for
each run.

In all experiments in the three environments we adopt the footprint sen-
sor, the clustering of frontier cells, and the duplicate states list. Table 3.3 re-
ports the complete experimental results for the indoor environment, where
the elimination of small clusters is not used as speedup technique. The val-
ues reported in each entry are the average and the standard deviation (in
parentheses) over the runs that terminated (maximum of 10, corresponding
to the initial positions) for the corresponding setting. We also report the
number of runs that have not terminated within the timeout.

From Table 3.3, it emerges that both the number of steps and the trav-
eled distance decrease when the sensor range r increases. Unsurprisingly,
a robot with a wider sensor can explore the environment more efficiently.
Another expected behavior is that the number of steps and the traveled dis-
tance increase when the robot is required to explore an increasingly larger
fraction g of the environment. Solutions’ cost decreases with the cell size e.
Indeed, when increasing the cell size, less cells corresponding to free space
are generally available to cover, as Proposition 3.8 shows in a particular
case.

The computation time for finding solutions varies greatly with the set-
ting (algorithms run on a UNIX machine with a 2.70 GHz i7-3820QM CPU

1We implemented it in C++, publicly available at https://sourceforge.net/projects/
optimalexplorationpath/.
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(a) indoor (b) openspace

(c) obstacles

Figure 3.9: The three environments (points represent different initial positions for the
robot).

and 16 GB RAM). For example, finding the optimal exploration path re-
quires an average time of 0.58 seconds for e = 4, r = 30, and g = 0.85,
while 4 out of 10 runs do not terminate within 10 hours and the remain-
ing 6 runs terminate in 1831.20 seconds on average for e = 1, r = 20,
and g = 0.95. In general, computation time increases when e decreases, r
decreases, and g increases. Figure 3.10a shows that the computation time
required for finding the optimal exploration path highly depends on the
initial position in the environment (results are similar for other settings).
In particular, positions that are basically on the top corridor of the indoor
environment (e.g., positions 6, 8, or 10) require more time to find the opti-
mal exploration path, as the search has to follow two main branches, cor-
responding to going first right and then left, or vice versa. Differently,
searching from position 1 basically amounts to perform a “focused” depth-
first search, which is very fast.

Note that Figure 3.10a reports also the time for g = 1.00. For the same
setting of Figure 3.10a, Figure 3.10b shows that the number of steps of the
optimal solution grows almost linearly with g, up to g = 1.00. Moreover,
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# OF STEPS DISTANCE
e r = 20 r = 25 r = 30 r = 20 r = 25 r = 30

g = 85%
1 22.3 (0.7)∗(1) 16.3 (0.8) 12.9 (0.6) 470.6 (26.6) 420.2 (32.1) 387.2 (28.7)
2 21.8 (0.9) 15.3 (0.9) 12.5 (0.7) 416.5 (27.1) 386.3 (21.0) 368.8 (18.2)
4 20.2 (1.1) 13.2 (0.9) 11.3 (0.8) 342.1 (15.7) 338.7 (29.7) 321.2 (19.3)

g = 90%
1 23.7 (0.8)∗(3) 17.4 (0.8) 13.9 (0.6) 500.3 (26.9)∗(2) 458.1 (31.7) 433.9 (27.8)
2 23.1 (0.6) 16.4 (0.8) 13.3 (0.7) 449.0 (26.4)∗(1) 422.7 (26.5) 407.0 (28.7)
4 21.2 (1.1) 14.1 (0.9) 11.8 (0.6) 366.4 (14.7) 367.9 (29.3) 348.2 (25.1)

g = 95%
1 25.3 (0.5)∗(4) 18.6 (0.7) 14.8 (0.4) 538.1 (13.0)∗(4) 504.6 (35.3) 473.3 (42.4)
2 24.5 (0.8) 17.4 (0.7) 14.4 (0.7) 473.7 (15.7)∗(3) 461.7 (29.5) 448.7 (38.2)
4 22.4 (1.3) 15.0 (0.7) 12.8 (0.6) 391.6 (21.1) 402.9 (27.6) 387.3 (27.1)

Table 3.3: Results (average and standard deviation) for the indoor environment (∗(#): #
of timeouts).
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Figure 3.10: Results of experiments for different initial positions and g (indoor, cost func-
tion is c#, e = 1, r = 25).

the number of steps required to explore the indoor environment is about the
same independently of initial positions (as evidenced by the small standard
deviations of Table 3.3). Analogous considerations hold for the traveled
distance.

In all the above experiments, we have used the footprint sensor. As ex-
pected, using the more realistic laser range scanner sensor (for which we
precomputed the set of perceived cells p̄new

D (r, c) from every cell c in Ge
f )

increases the computation time (see Figure 3.11a for an example). Indeed,
according to an ANOVA analysis with a p-value < 0.05, the difference is
statistically significant with p-value=1.13 · 10−10. However, rather surpris-
ingly, the quality obtained with the footprint sensor is very similar to that
obtained with the more realistic sensor (Figure 3.11b, where the difference
of traveled distances is not statistically significant, with p-value= 0.1883).
These results provide an a posteriori justification of the use of the footprint

65



Chapter 3. Offline exploration problem

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

Initial Positions

ti
m

e
 (

s
e

c
o

n
d

s
)

 

 

footprint sensor

laser sensor

(a) Computation time

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

Initial Positions

tr
a

v
e

le
d

 d
is

ta
n

c
e

 

 

footprint sensor

laser sensor

(b) Traveled distance

Figure 3.11: Results of experiments for different initial positions and sensor models (in-
door, cost function is cD , e = 1, r = 25, g = 0.85).

sensor in generating data in Table 3.3.
The experiments of Table 3.3 have been run with frontier cells cluster-

ing. Without this, the cost of computing a solution explodes: our algorithm
does not find any solution within the timeout, even for simple settings. For
example, for e = 4, r = 30, and g = 0.85, the algorithm with cluster-
ing finds the solution in an average of 0.58 seconds, generating about 141
nodes, while without clustering it meets the timeout for every initial posi-
tion, after having generated about 500,000 nodes.

Using as heuristics h#(s) and hD(s) (i.e., the solutions pre-calculated
from relaxed problems) consistently reduces the computation time com-
pared to using h̄#(s) and h̄D(s) (e.g., in the indoor environment, consider-
ing the setting cD , e = 1, g = 0.95, and r = 25, the computation time with
the former heuristic is five times smaller with respect to the latter heuristic),
and allows to obtain a solution for all the initial positions. Indeed, as ex-
pected from the discussion of previous section, the heuristics obtained from
a relaxed problem are better estimates of the cost of the solution than the
other two simpler heuristics, even if the difference about computing time
when using heuristics h#(s) and hD(s) with respect to h̄#(s) and h̄D(s) is
not statistically significant (p-value= 0.0785), in the example above men-
tioned. Note that the costs of the solutions obtained using the two heuristics
are the same, experimentally showing that the heuristics obtained by the so-
lutions calculated from relaxed problems are in fact admissible.

Tables 3.4 and 3.5 report experimental results for openspace and obsta-
cles environments, respectively. Also in these experiments we have con-
sidered the footprint sensor and the clustering of frontier cells. Moreover,
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# OF STEPS DISTANCE
e r = 20 r = 25 r = 30 r = 20 r = 25 r = 30

g = 85% 1 65.6 (0.7)∗(1)+(1) 43.3 (0.5) 29.9 (0.9) 1425.7 (32.0) 1210.4 (100.9) 965.6 (63.3)
2 63.8 (0.8)+(1) 40.1 (3.1) 29.5 (0.7) 1287.8 (28.3) 1070.2 (34.9) 913.9 (18.9)
4 60.5 (1.4) 33.5 (4.6) 25.8 (2.5) 1073.0 (23.4) 919.7 (71.5) 792.6 (33.8)

g = 90% 1 69.6 (0.8)∗(1)+(2) 45.9 (0.7) 31.8 (0.6) 1532.4 (51.7)∗(1) 1280.6 (78.8) 1040.4 (34.4)
2 68.2 (0.9)+(2) 42.5 (2.9) 31.3 (1.1) 1386.5 (40.3) 1145.5 (36.6) 988.1 (46.3)
4 64.2 (1.1) 35.5 (4.8) 27.5 (3.0) 1141.9 (29.6) 993.0 (81.1) 840.7 (30.9)

g = 95% 1 74.1 (1.1)∗(1)+(2) 48.8 (1.0) 33.8 (0.6) 1686.9 (92.8)∗(1) 1416.8 (186.9) 1116.9 (24.3)
2 71.5 (0.6)∗(1)+(2) 46.3 (4.2) 33.2 (1.0) 1471.7 (57.6) 1221.8 (51.7) 1061.2 (48.7)
4 68.6 (1.0)∗(1)+(2) 39.0 (5.8) 29.2 (3.3) 1216.8 (26.9) 1093.1 (90.4) 887.3 (35.2)

Table 3.4: Results (average and standard deviation) for the openspace environment (∗(#):
# of runs terminated due to the timeout, +(#): # of runs terminated because of empty
frontier).

# OF STEPS DISTANCE
e r = 20 r = 25 r = 30 r = 20 r = 25 r = 30

g = 85% 1 24.0 (0.7)∗(5) 15.7 (0.5) 11.2 (0.4) 501.8 (14.1) 404.4 (14.9) 340.8 (10.7)
2 23.4 (0.5) 14.5 (0.5) 11.0 (0.5) 453.7 (10.3) 372.6 (14.0) 317.6 (16.5)
4 21.9 (0.6) 11.9 (0.6) 9.2 (0.4) 391.2 (10.8) 308.5 (22.5) 270.2 (14.1)

g = 90% 1 26.0 (0.7)∗(5) 16.8 (0.4)∗(1) 12.1 (0.6) 554.1 (24.0) 438.6 (13.6) 363.3 (15.2)
2 25.3 (0.7) 15.6 (0.5) 11.9 (0.6) 494.1 (11.0) 402.6 (16.3) 346.1 (20.9)
4 23.6 (0.7) 12.9 (0.6) 9.8 (0.6) 417.3 (14.8) 337.3 (26.2) 290.1 (14.6)

g = 95% 1 27.7 (0.5)∗(5)+(1) 18.0 (0.5)∗(2) 13.1 (0.7) 607.3 (41.3)∗(3) 479.1 (13.2) 399.6 (14.9)
2 27.0 (0.0)∗(2) 16.6 (0.5) 12.7 (0.5) 538.1 (11.1) 436.1 (16.8) 377.6 (19.6)
4 24.9 (0.6) 13.6 (0.5) 10.5 (0.5) 448.5 (13.3) 362.3 (21.8) 320.8 (12.5)

Table 3.5: Results (average and standard deviation) for the obstacles environment (∗(#):
# of runs terminated due to the timeout, +(#): # of runs terminated because of empty
frontier).

we have eliminated clusters smaller than k = 36 cells and k = 12 cells of
size e = 1 for the openspace and the obstacles environments, respectively
(k is scaled accordingly using e = 2 and e = 4). Preliminary experiments
showed that eliminating small clusters provides a consistent reduction of
computation time, without affecting too much the solution quality. These
values have been empirically set considering that clusters are larger in the
openspace environment. Eliminating small clusters, some runs terminate
without a solution because of empty frontier, namely because there are no
available destination positions. These runs are reported in the tables to-
gether with runs that terminate due to the timeout. As expected, runs ter-
minating because of empty frontier are more frequent in the openspace en-
vironment, where we used a larger k, and for larger values of g, for which
a larger amount of area has to be discovered. All the previous consider-
ations relative to the indoor environment, including those about speedup
techniques, hold also for the openspace and obstacles environments.

Now, let us show the comparison of our method against a state-of-the-art
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technique that can be easily applied to our settings, up to some adaptations.
We consider the work presented by Fazli et al. [42], which, as already dis-
cussed in Section 2.1.1, deals with the similar problem of (offline) optimal
repeated coverage. That approach is based on these steps: (a) the environ-
ment is segmented using trapezoidation, (b) guards (scan points) are placed
in the derived subpolygons, and (c) a TSP is solved. Since we consider
grid-based maps, we add the constraint that the robot can only move at
centers of cells and that perception requires centers of cells to be within
sensor range r. The initial pose of the robot is considered as a guard from
which the robot starts its path. In order to consider a percentage of area
to map g < 100%, after having found guards to be placed in the environ-
ment to fully cover it, the algorithm iteratively discards the largest number
of placed guards furthest from the initial robot position keeping the cov-
ered area greater than g. In order to consider a path instead of a tour, once
the TSP solution connecting all the remaining guards is computed, we itera-
tively remove an arc from it, compute the new cost, and finally calculate the
mean of all these modified TSP solutions; formally, D =

∑
i∈V ci−

∑
i∈V ci
|V | ,

where D is the length of the path, V is the set of arcs in the TSP tour, and
ci is the cost of an arc i. We iterate the algorithm only once, since we do
not need repeated coverage.

Results of this modified algorithm in the indoor, openspace, and obsta-
cles environment are shown in Tables 3.6, 3.7, and 3.8, respectively. As it

# OF STEPS DISTANCE
e r = 20 r = 25 r = 30 r = 20 r = 25 r = 30

g = 85% 1 113.6 (5.3) 87.8 (5.5) 59.1 (1.5) 1226.8 (15.6) 1099.4 (24.4) 1012.5 (31.1)
g = 90% 1 120.1 (2.7) 92.7 (2.9) 65.4 (0.9) 1296.9 (16.7) 1162.9 (13.9) 1123.8 (10.8)
g = 95% 1 127.4 (0.7) 99.8 (0.9) 67.5 (1.5) 1397.7 (21.1) 1265.3 (14.5) 1180.1 (28.3)

Table 3.6: Results (average and standard deviation) for the indoor environment using an
adapted version of Fazli et al. [42].

# OF STEPS DISTANCE
e r = 20 r = 25 r = 30 r = 20 r = 25 r = 30

g = 85% 1 181.5 (4.3) 113.4 (2.8) 90.0 (2.6) 3118.5 (79.9) 2505.0 (76.4) 2192.8 (83.5)
g = 90% 1 193.7 (3.7) 121.5 (2.5) 96.8 (2.7) 3323.9 (57.7) 2678.3 (58.9) 2353.1 (67.8)
g = 95% 1 207.6 (3.6) 130.7 (2.5) 105.4 (2.7) 3559.1 (64.6) 2880.8 (60.9) 2564.2 (68.1)

Table 3.7: Results (average and standard deviation) for the openspace environment using
an adapted version of Fazli et al. [42].

can be observed, the modification of the approach proposed by Fazli et al.
[42] obtains much higher costs than our approach. This could be explained
by the fact that, being the environment segmentation operated by Fazli et al.
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# OF STEPS DISTANCE
e r = 20 r = 25 r = 30 r = 20 r = 25 r = 30

g = 85% 1 218.1 (19.8) 166.3 (17.9) 138.4 (16.6) 1493.1 (80.1) 1278.8 (95.8) 1157.3 (116.8)
g = 90% 1 237.5 (16.8) 182.4 (19.3) 153.4 (17.1) 1617.3 (77.0) 1393.6 (96.4) 1263.3 (101.8)
g = 95% 1 264.0 (12.7) 205.9 (16.6) 172.3 (13.9) 1783.4 (57.3) 1554.9 (99.6) 1424.9 (92.6)

Table 3.8: Results (average and standard deviation) for the obstacles environment using
an adapted version of Fazli et al. [42].

[42] not optimal, even if optimal TSP tours are computed over it, the final
solutions are significantly worse than those obtained by our algorithm.

Our proposed method can compute the optimal offline exploration path
for problem D (which can be “travelable” by an online exploring robot
thanks to the reachability constraint) in environments for a single robot
with limited and time-discrete visibility, as shown by extensive experimen-
tal activities performed in simulation in environments of realistic size. The
approach allows a trade-off between solution quality and computation time
by tuning e and g and with some speedup techniques. This contribution is
a step towards the study and the resolution of problems typically studied
by computational geometry community, but with some more realistic as-
sumptions. We show in Chapter 7 how the proposed approach can be used
to improve the analysis and the evaluation of exploration strategies. Fur-
ther, we show in Chapter 10 how the search-based approach used here can
inspire a method to search in an abstract state space.
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4
Online exploration

As already said in Chapter 2, the assessment of practical exploration strate-
gies performed in the field of robotics is mainly empirical or based on ide-
alized assumptions. Very few works have considered more realistic settings
for providing bounds on the quality of solutions produced by exploration
strategies, prominently [72] and [127], described in Section 2.1.2. In their
approach, a single robot should visit (or perceive) all the vertices of an
undirected graph, whose edges have unitary cost.

In this chapter, we present a contribution that significantly complement
the analysis of Tovey and Koenig [127] by considering other exploration
strategies, which combine information gain with distance; a termination
criterion that prescribes the perception of a fraction g ∈ (0, 1] of the ver-
tices; and by embedding a sensor range r in the worst-case bounds. Our
main contributions include upper and lower bounds on the worst-case num-
ber of edge traversals to explore a finite undirected connected graph, which
complement those reported in [127] and [72] to our setting. Moreover, we
present an average-case analysis on the performance of some exploration
strategies in a class of graphs that model indoor environments, which, to
the best of our knowledge, has never appeared in the literature. The long-
term goal of our analysis is to better understand the performance of explo-
ration strategies and to explain some experimental findings reported in the
literature.

4.1 Problem formulation

The environment is represented by a graph G = (V,E), where the ver-
tices V correspond to the locations where an autonomous mobile robot can
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move and the edges E represent the direct connections between these lo-
cations. The graph is assumed to be undirected, connected, and finite. For
sake of simplicity, we assume that edges have unitary costs (as in the work
of Tovey and Koenig [127]). So, with respect to the dimensions presented
in Section 1.3, we have that the knowledge representation is discrete.

The robot operates according to the general behavior model presented in
Section 1.1. In particular, the robot starts exploring in a vertex v0 ∈ V at a
time step 0 having no a priori knowledge about the graphG. Thus, we have
an online scenario, differently from Chapter 3. The robot is equipped with
a sensor with a finite range r ∈ R>0 that perceives all vertices within the
range r. More formally, a robot at vi at time step i, perceives the vertices
Pi = {v′ ∈ V | d(vi, v

′) ≤ r} and updates its knowledge about already
perceived (known) vertices as Vi = Vi−1∪Pi, where Vi−1 is the set of known
vertices at the previous step i − 1 and d(vi, v

′) is a function that computes
the geodesic distance between the two vertices vi and v′ in G. The latter
corresponds to Step (a) and Step (b) (see Section 1.1). Note that when
i = 0, then Vi−1 = V−1 = ∅, namely the graph is initially unknown. The
perception model allows the robot to acquire knowledge about the incident
edges of vertices v′ ∈ Pi and to recognize whether there is an edge between
two known vertices v′, v′′ ∈ Vi. At each time step i, the set of partially
perceived vertices on the frontier, namely the candidate vertices, is Fi =
{v′ ∈ V | v′ /∈ Vi ∧ (∃(v′′, v′) ∈ E | v′′ ∈ Vi)}, (similarly to the model
of [127]). Note that if r = ε (where ε is a small constant that tends to
0 and allows perceiving just the vertex where the robot finds itself and the
incident edges), then vertices are perceived only when physically visited by
the robot, as in the fixed graph scenario typically studied in the literature.
Although the perception of all vertices at distance up to r from the robot
current vertex could be unrealistic in some scenarios (due to the presence
of obstacles), this footprint model leads to interesting theoretical results
that are in accordance with many results obtained by experimenting with
real exploring robots. We assume that the perception model of the robot is
discrete: the robot perceives the surrounding environment and updates Vi
to Vi+1 only when it is in the next position vi+1 and not continuously while
moving (time-discrete perception is often assumed by online exploration
algorithms [8], as also shown in Section 2.3). This implies that the decision
model is event-based, namely a new decision is performed when the next
candidate vertex is reached.

At each time step i, the robot chooses to move to one of the candidate
vertices Fi, according to an exploration strategy S (Step (c)). Although it
would be possible to define a motion model for which the robot can move
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to any vertices v ∈ Vi ∪ Fi, we impose to move on frontier vertices, as
usually done with real exploring robots. Since we are interested in the
theoretical analysis of the online exploration strategies, we assume that the
perceptions (Step (a)) and the movements (Step (d)) of the robot are error-
free (i.e., deterministic). As a consequence, the robot perfectly knows its
position in the environment.

The exploration process continues until a percentage g ∈ (0, 1] of the
vertices ofG are perceived by the robot, namely until |Vi||V | ≥ g. Note that the
exploration terminates at some finite time step k because the robot chooses
vertices that provide some new information about the graph (i.e., candidate
vertices Fi have unexplored adjacent vertices and so |Vi+1| > |Vi|) and the
considered graphs are finite. So, in the end, the robot follows a sequence
of vertices C = 〈vo, v1, · · · , vk〉, called exploration path, where vi+1 ∈ Fi,
with 0 ≤ i < k (v0 is the starting vertex). Note that, in general, the robot
could revisit some already visited vertices. The goodness of the exploration
path is measured as number of edge traversals, the optimality criterion.

We consider exploration strategies that evaluate a candidate vertex v ∈
Fi from the current position vi adopting the following criteria:

• di(vi, v) is the geodesic distance between vi and v in G′i = (Vi ∪
{v}, E ′i), which is the graph Gi induced by Vi on G, augmented with
v and with the edges (in E) between v and vertices in Vi,

• g(v, Vi) is the expected information gain at v, and is equal to the num-
ber of vertices the robot perceives in v minus those already known.
More formally, at step i, given a frontier vertex v, g(v, Vi) = |P (v) \
Vi|. Being v /∈ Vi, the function g() could be estimated from datasets of
environments, but here we assume it as granted. In the particular case
of r = ε (ε → 0) we define g(v, Vi) as the number of edges incident
to v that are connected to vertices not in the current map Vi at step i.

We consider three exploration strategies:

• Sd, which selects locations by simply minimizing the distance d() (as
for example in the analysis of Tovey and Koenig [127]),

• Sg, which chooses candidate locations maximizing the information
gain g() (as, e.g., in the work of Amigoni [2]),

• Sdg, based on Sd but breaking ties favoring vertices with larger in-
formation gain g() (thus providing a more informed version of Sd

compared to Greedy Mapping presented by Tovey and Koenig [127]).
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Chapter 4. Online exploration

In all the three cases, further ties are broken randomly with uniform proba-
bility.

The problem we address in this chapter is the following. Given a sensor
range r ∈ R>0, a percentage g ∈ (0, 1] of the environment to map, and
an exploration strategy S ∈ {Sd,Sg,Sdg}, can we determine some per-
formance bounds on the exploration path C in terms of number of edges
traversed by the robot in any undirected, connected, and finite graph G?

4.2 Worst-case analysis

Here we provide a comparison of the three exploration strategies by pre-
senting some bounds on their worst-case performance, measured as trav-
eled distance (number of edge traversals).

Let us first introduce the number of vertices to explore in a finite undi-
rected connected graph G = (V,E), according to a goal percentage g ∈
(0, 1], which trivially is n = d|V | · ge. If g = 1, then n = |V |, that is,
the robot has to explore all the vertices of the graph, as usually assumed in
graph exploration literature.

To study the upper bounds on the traveled distance of the exploration
strategies, let us first derive an upper bound on the number of frontiers
selected as destination locations while exploring a graph according to the
goal percentage g and the sensor range r, independently of the exploration
strategy. Recall that the number of selected frontiers is not the number of
frontiers that could be available to the robot at a time step i, but it is k, the
cardinality of the exploration path C minus 1.

Proposition 4.1. Given a goal percentage g ∈ (0, 1] and a robot sensor
range r ∈ R≥1, the maximum number of selected frontiers in the explo-
ration sequence C is k̄ = 2 (d|V |·ge−1)

brc+1
−1, on any finite undirected connected

graph G = (V,E), where the weight of each edge is 1.

Proof. Recall that the robot has to explore n = d|V | · ge vertices. Given
|V |, g, and r, we build the worst-case graph, which is a star like that of
Figure 4.1, as follows. The robot can discover vertices at distance less than
or equal to r from vi (in particular v0), and so frontier vertices are at least
at distance brc + 1 from a vertex vi. We try to maximize the number of
selected frontiers k, by placing them at the extremes of lines of vertices of
length b brc+1

2
c attaching to the line between v0 and v1 in the middle. It is

easy to check that, the case of odd brc is worse than the even case. Hence
we calculate k, given n = d|V | · ge and r, as follows: n = 1 + brc+1

2
k and,
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Figure 4.1: Star graph with g = 1, |V | = 25, and r = 5.

after some math k = 2 (n−1)
brc+1

, and, as v0 is not counted in the number of

selected frontiers, k̄ = 2 (n−1)
brc+1

− 1 = 2 (d|V |·ge−1)
brc+1

− 1.

Intuitively, Proposition 4.1 derives from the idea that the robot selects
a frontier vertex v and, once there, perceives only v. Since each frontier
vertex should be at least at distance r + 1 from other frontier vertices, the
star graph of Figure 4.1 is a worst-case graph. Note that it is easy to see
that the upper bound in Proposition 4.1 is tight, as we are considering the
worst-case graph and the possible perceptions of the robot for the number
of selected frontiers of the exploration path. Note also that if g = 1 and
r = ε (ε → 0), then we have the trivial bound on the number of selected
frontiers k̄ = |V | − 1.

Now, let us show bounds on the number of edge traversals during ex-
ploration. The following result allows us to restrict our analysis to smaller
range r, as, if r is greater than a value that depends on the size of the graph,
the worst-case upper bound on the number of edge traversals is linear for
any exploration strategy.

Proposition 4.2. Given a goal percentage g ∈ (0, 1] and r ≥ b d|V |·ge−1
2
c,

for any exploration strategy S , the upper bound on the number of edge
traversals is UB = 3

2
d|V | ·ge−2, on any finite undirected connected graph

G = (V,E), where the weight of each edge is equal to 1.

Proof. Let us start considering r = b |V |−1
2
c (for sake of simplicity, in the

proof, we consider g = 1; to include g, |V | needs to be substituted with
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Figure 4.2: For |V | = 12 and r = |V |
2 − 1 = 5 there are at most two frontier vertices v1

and v2.

d|V | · ge). To prove the proposition, we incrementally build the worst-case
graph, considering separately the case of even and odd values of |V |.

If the value of |V | is even, r = |V |
2
− 1. Thus, starting from an arbitrary

v0, the maximum number of frontier selections is 2 for any |V | ≥ 6 because
of Proposition 4.1 (as shown in Figure 4.2). Basically, we have two steps in
the exploration path: from v0 to a vertex v1 and from v1 to a vertex v2. The
distance between v0 and v1 is always of length r + 1. Thus, the first part
of our worst-case graph is composed by V0, which contains at least a line
of |V |

2
vertices, plus v1. If the remaining |V |

2
− 1 vertices are attached to v0

or v1, there are no more frontier vertices, because they are within the range
r of a perception performed from v0 or v1. If they are attached to a vertex
on the line between v0 and v1, forming a new line of vertices, there could
be a new frontier vertex v2, which is not within the range r of a perception
performed at v0 and v1. Let us show where the line of vertices containing
v2 should be attached to have the worst case. The worst case happens when
that line containing v2 is attached at distance 1 from v0, on the line that
links v0 and v1. It is easy to check that this shape maximizes the distance
d(v1, v2), since d(v0, v1) is necessarily fixed to r + 1. Hence,

UBeven = d(v0, v1) + d(v1, v2) = (r + 1) + 2r =
3

2
|V | − 2. (4.1)
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4.2. Worst-case analysis

If |V | is odd, there are still at most 2 frontier selections. Following the
same reasoning, the number of vertices between v0 and v1 is r = |V |−1

2
.

Thus, the number of vertices we can use to compose our worst-case graph
is |V | − (r + 2) = |V | − |V |−1

2
− 2 = |V |−3

2
. If they are attached to

v0 or v1, again, there are no more frontier vertices. There are no more
frontier vertices even if they are attached at distance 1 from v0 or v1. In
case the value of |V | is odd, the worst case happens when the new line,
which contains v2, is attached at distance 2 from v0, on the line that links
v0 and v1. Hence,

UBodd = d(v0, v1)+d(v1, v2) = (r+1)+2(r−1) =
3

2
(|V |−1)−1. (4.2)

Note that we have the following relationship between the case of |V | even
and odd UBodd ≤ UBeven = UB. Also note that, considering a greater
r, the upper bound found trivially holds, as, each increment of r implies
an increment of d(v0, v1) but an equal decrement of d(v1, v2). After a cer-
tain radius, the number of frontiers lowers to 1 and the trivial upper bound
bound becomes |V | − 1. If the sensor range r is greater than |V | − 1 the
number of frontier selections is 0 as the number of edge traversals.

Now, let us show how the upper bound on the number of edge traversals
changes according to g ∈ (0, 1] and r (with r ∈ R≥1 and r < d d|V |·ge

2
e − 1,

for Proposition 4.2), differently from UBTK = |V | + 2|V | ln(|V |), the
worst-case bound on the performance of Sd which has been provided by [127]
and that is independent of g and r.

Proposition 4.3. Given a goal percentage g ∈ (0, 1] and a robot sensor
range r ∈ R≥1, a worst-case upper bound on traveled distance for Sd is

UBSd
= 2d|V | · ge

(
ln

2d|V | · ge+ brc(brc − 2)− 7

(brc+ 1)2
− d|V | · ge+ brc(brc − 2)− 5

(d|V | · ge − 2)(brc+ 1)
+ 2

)
edge traversals, on any finite undirected connected graph G = (V,E),

where the weight of each edge is equal to 1.

Proof. The proof follows that of [127]. Lemma 6.2 of [127] states the fol-
lowing.

Define St = {vi ∈ V |ri ≥ t} for an orderly marking sequence
{vi, ri,M i} on a given connected graph G = (V,E). Then, it
holds that |St| ≤ 2|V |/t.

An orderly marking sequence is basically an exploration path, which in-
cludes the vertices the robot visits during the exploration. The symbols used
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in the above Lemma have the following correspondence with the symbols
used in this chapter: vi = vi, M i = Vi, and ri = d(vi−1, vi)−1, namely the
radius of a circle centered on vi−1, which is given by the distance between
the current frontier vi and the preceding frontier vi−1 minus 1 (because of
the movement towards the frontier) in the exploration path. Note that, as ri

represents the radius within which, from vi−1, all the vertices are in Vi−1,
intuitively, St represents all the vertices vi that are at a distance of at least
t + 1 from the next vertex vi+1. By construction, each pair of frontier ver-
tices in the exploration path are at least at distance r + 1.

Considering the worst case on the traveled distance, the exploration path
has a number of selected frontiers equal to k̄, according to Proposition 4.1.
Recall that the total number of vertices to perceive is n = d|V | · ge. Let
us define h as the number of different t-classes St, where St is defined as
above. h is a positive integer with value at most k̄.

To enumerate all the t-classes used in our exploration path, let us define
a function f() which orders them, starting from f(1) = the smallest t-
distance (which must be greater than or equal to r); until f(h) = the biggest
t-distance in the exploration path (which must be less than or equal to n−2,
because the maximum travelable distance between two different vertices is
n− 1). Let us also define f(h+ 1) = n− 1, f(0) = 0, |Sn−1| = 0.

We can find the traveled distance (number of edge traversals) with the
following formula (which exploits k̄ and the radius ri that should be summed
to 1 to have the actual traveled distance):

k̄∑
i=1

1 + ri = k̄ +
k̄∑
i=1

ri =

(disregarding the order of the selected frontiers in the path)

= k̄ +
h∑
t=0

f(t) · (|Sf(t)| − |Sf(t+1)|) =

(by applying some math and given the fact that |Sn−1| = 0)

= k̄ +
h−1∑
t=0

(f(t+ 1)− f(t)) · |Sf(t+1)| ≤
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(Lemma 6.2 of [127])

≤ k̄ + 2n
h−1∑
t=0

f(t+ 1)− f(t)

f(t+ 1)
. (4.3)

We have to find the set of values of f() that maximize the above sum.
Because of the Proposition 4.1, in most cases the h counterimages of f()
do not cover all the codomain {brc, ..., n − 2}. It is easy to see that the
worst case happens when all the missing counterimage values are between
r + h − 1 and n − 2. Thus, when f(1) = brc; f(2) = brc + 1; ...;
f(h−1) = brc+h−2; and f(h) = n−2. Hence Equation (4.3) becomes:

= k̄ + 2n

(
h−2∑
t=0

(
f(t+ 1)− f(t)

f(t+ 1)
) +

f(h)− f(h− 1)

f(h)
)

)
≤

using the considerations on the values of f() and doing some math

≤ k̄ + 2n

h+brc−1∑
t=brc+1

1

t
+ 2− f(h− 1)

f(h)

 ≈
limit approximation for the sum and explicitly reporting the first and last
value of f()

≈ k̄ + 2n

(
ln(

h+ brc − 2

brc+ 1
)− h+ brc − 2

n− 2
+ 2

)
.

Now we have to find the value of h that maximizes the formula. By
analyzing the first and second derivative with respect to h ∈ {1, · · · , k̄},
we can find that the maximum value is for h = k̄. Therefore, after some
math, we have that the value is bounded by

2d|V |·ge
(
ln

2d|V | · ge+ brc(brc − 2)− 7

(brc+ 1)2
− d|V | · ge+ brc(brc − 2)− 5

(d|V | · ge − 2)(brc+ 1)
+ 2

)
− 2

brc+ 1
−1

that is slightly lower than

2d|V | · ge
(
ln

2d|V | · ge+ brc(brc − 2)− 7

(brc+ 1)2
− d|V | · ge+ brc(brc − 2)− 5

(d|V | · ge − 2)(brc+ 1)
+ 2

)
.
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Note that, if we consider the bound independent of g and r that in our
setting corresponds to g = 1 and r = ε (ε → 0), we have a bound slightly
different of that in [127]. However, by including in the limit approximation
the first term r

r
and the last term f(h)−f(h−1)

f(h)
we considered apart from the

sum
∑h−2

t=0 (f(t+1)−f(t)
f(t+1)

), we exactly obtain the same bound of [127], as it

would be k̄+ 2d|V | · ge
∑h−1

t=0 (f(t+1)−f(t)
f(t+1)

) ≤ k̄+ 2d|V | · ge(
∑h+brc

t=brc+1
1
t
) ≈

k̄+ 2d|V | · ge ln(h+ brc/(brc+ 1)) ≤ k̄+ 2n ln(k̄+ brc/(brc+ 1)). With
g = 1 and r = ε (ε → 0), k̄ = |V | − 1 and an upper bound on the traveled
distance is |V |+ 2|V | ln |V |.

Now, let us show a lower bound for Sd.

Proposition 4.4. Given a goal percentage g ∈ (0, 1] and a robot sensor
range r ∈ R≥1, the worst-case lower bound of Sd on the traveled distance

LBSd
= Ω

(
logd|V | · ge − 2 log(brc+ 1)

log logd|V | · ge
d|V | · ge

)
edge traversals.

Proof. The proof is structured in two parts. First we show how the worst-
case graph is constructed, depending on the sensor range r. This construc-
tion is based on the worst-case graph in [72]. Then, we show that, on that
graph, the robot (re)traverses a certain part of the graph several times.

The worst-case graph consists of three main components (see, e.g., Fig-
ure 4.3). The first one, that we call stem is a line graph, whose number
of vertices is mm, where m ≥ 3 is a parameter that allows to obtain the
robot behavior described below. Let us call the vertices on the stem v0, v1,
v2, ..., vmm , where v0 is the vertex where the robot starts the exploration.
The second main component is a loop of level i, where w + 1 ≤ i ≤ m,
and w = dlogm(brc+ 1)e, which is a parameter that depends on the sensor
range r and defines the way the loops are attached to the stem, with which
loops share just one vertex. The number of loops of level i is mm−i. Loops
of different levels i have different length. Specifically, the number of ver-
tices of loops of level i = w + 1 is 3mw. When i > w + 1, the number of
vertices in each loop of level i is

d(i− w
2

+ 1) ·mwe+
i−1∑

j=w+1

mj. (4.4)

The loops are attached to the vertices on the stem in the following way. We
start to attach loops of level i in an incremental way to vertices on the stems,

80



4.2. Worst-case analysis

v
0

stem

loop of 
level 2

line of 
level 2

line of 
level 1

v
27

Figure 4.3: Worst-case graph for Sd with m = 3 and r = 2.

distanced by mi: first all loops of level i are attached to the stem starting
from vmm , next all loops of level i+1 are attached to the stem starting from
v0, then loops of level i+ 2 starting from vmm , and so on, until i = m. The
third main component of the worst-case graph we are building is a number
of lines attached either to the stem or the loops. The number of vertices of
those lines is r + 1. Let us call the lines attached to the stem lines of level
i = w. They are attached to the stem similarly to loops, that is, starting
from v0 and distanced by mw. Then, all the loops of level i have a line
attached to a vertex of the loop. When i = w + 1, the line is attached at
distance d3

2
mwe from the vertex on the stem. When i > w + 1, the lines

are attached to a vertex in the loop in such a way that there are two paths of
the same length from the vertex that the loop shares with the stem and the
vertex that the loop shares with the line.

Therefore, combining all the elements of the worst-case graph, we ob-
tain (after some math and simplifications) the number of vertices:

n ≈ mm + 1 + r
mm −mw

mw(m− 1)
+
mm+1 −mw+2 + wmw+1 − wmw

(m− 1)2
+

+ 2
mm(m− w)

m− 1
− 2

mm −mw

(m− 1)2
+ 3mm−1 + (mm−w + 1)(r + 1)

(4.5)

which asymptotically is θ(mm) (with n = d|V | · ge).
The robot, which starts at v0 and employs Sd as the exploration strategy,

explores the graph described above as follows. First, the robot explores all
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the vertices of the stem and of the loops of all levels, ending up at vmm .
Let us show the reason why in this first traversal of the stem the robot
does not explore the lines attached to the stem or to the loops. Considering
that the robot starts exploring a loop of level i = w + 1 from its vertex
shared with the stem, the distance between the frontier on the line attached
to that loop and the robot position, when it explored the loop, is at least
3mw + b3

2
mwc + b brc

2
c + 1 − (2brc + 1). That distance is computed by

considering the path that the robot should travel by backtracking to the
loop and could be easily derived by knowing that the robot started from the
vertex of the loop shared with the stem, the sensor range r of the robot, and
the length of the loop. Instead, the distance between the last frontier vertex
of the loop and the closest frontier vertex on the stem is at most 3brc + 2.
(Note that the other path between the last frontier vertex of the loop and
the frontier vertex on the line of the same loop is greater than 3brc + 2 by
construction.) To prove that the robot chooses the frontier vertex on the
stem the following inequality should hold

3r + 2 < 3mw + b3
2
mwc+ br

2
c+ 1− (2r + 1). (4.6)

After some math, we have 9
2
brc+ 4 < 9

2
mw. As mw−1− 1 < r ≤ mw − 1,

that inequality becomes 9
2
mw − 1

2
< 9

2
mw, which is always true. For any

loop of level i > w + 1, the inequality is still always true. Moreover, the
distance from the last frontier vertex selected by the robot on the loop of
level i to the nearest frontier vertex on the line of level w is always greater
than or equal to the distance to the nearest frontier vertex on the stem. Thus,
the frontier vertices on the lines are never chosen in the worst case at the
first traversal.

Then, the robot traverses the stem back from vmm to v0 exploring the
lines at level w. Next, from v0 to vmm the robot explores the lines at level
w + 1. This way of traveling over the vertices of the stem goes on until the
lines of the last level m are explored. This behavior is caused by the fact
that the distance from the current selected frontier vertex on a line of loop
of level i− 1 to the nearest frontier vertex on another line of a loop of level
i−1 is less than or equal to the distance to the nearest frontier vertex on the
lines loop of level i. The minimum difference between the two distances
happens when two loops of level i− 1 and i are attached to the same vertex
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of the stem. By construction, those distances are mi and

d(i− w
2

+ 1) ·mwe+
i−1∑

j=w+1

mj + d+ 1, (4.7)

where d is the number of perceived vertices of the lines and can have values
b brc

2
c ≤ d ≤ brc, respectively. Thus, considering the maximum distance

from the vertex on the stem shared by the loops at level i − 1 and i to
the frontier vertex on the line of the loop of level i − 1 (d1 = brc) and
considering the minimum distance to the line of loop of level i (d2 = b brc

2
c)

we have the following:

mi + d(i− w
2

+ 1) ·mwe+
i−1∑

j=w+1

mj + d1 + 1 ≤

≤ d(i+ 1− w
2

+ 1) ·mwe+
i∑

j=w+1

mj + d2 + 1 (4.8)

(simplifying the equal terms)

d1 − d2 ≤ d
i+ 3− w

2
·mwe − d i+ 2− w

2
·mwe (4.9)

(substituting d1 and d2 with their bounds)

dbrc
2
e ≤ di+ 3− w

2
·mwe − d i+ 2− w

2
·mwe (4.10)

(remind that r ≤ mw − 1)

dm
w − 1

2
e ≤ di+ 3− w

2
·mwe − d i+ 2− w

2
·mwe. (4.11)

Notice that, if mw is even, the difference on the right-hand side is mw

2
, thus

the inequality is always true. Ifmw is odd and i+3−w is odd, the difference
is equal to mw+1

2
, while, if i+ 3−w is even, becomes mw−1

2
. In either case

the inequality is always true. In the particular case of i = w, we arrive at
the same result, as mw−1

2
≤ d3

2
· mwe − mw, which is always true. This

proves that, after the first stem traversal, when re-traversing the stem, the
robot explores all the lines of the loops at the same level i.
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Given all the reasonings above, the number of edge traversals is:

LBSd
≥ (m− w)mm +

m∑
i=w+1

mm−i

(
brc+ 2(i− w)mw + 4

i−1∑
j=w

mj

)
+

+ 3mm−1 + (mm−w + 1)(brc+ 1)

= (m− w)mm + brc m
m −mw

mw(m− 1)
+ 2

mm+1 −mw+2 + wmw+1 − wmw

(m− 1)2
+

+ 4
mm(m− w)

m− 1
− 4

mm −mw

(m− 1)2
+ 3mm−1 + (mm−w + 1)(brc+ 1).

Note that LBSd
is Ω((m−w)mm). Hence, as n is θ(mm), w ≤ logm(brc+

1) + 1, and, because m ≥ logmm

log logmm as shown in [72], we have that LBSd
is

Ω

((
log n

log log n
− logm(brc+ 1)

)
n

)
.

Changing the log base we have the following result

logm(brc+ 1) =
log(brc+ 1)

logm

≤ 2 log(brc+ 1)

log log n
.

Since it holds that

logm2 ≥ log(m logm)

2 logm ≥ log logmm

logm ≥ 1

2
log logmm.

Putting all together we have as final result the lower bound

LBSd
= Ω

(
logd|V | · ge − 2 log(brc+ 1)

log logd|V | · ge
d|V | · ge

)
.

The idea behind Proposition 4.4, similarly to [72], is that, in the worst-
case, the robot travels back and forth the graph several times, resulting in a
superlinear bound on the number of edge traversals.

Analyzing the worst case of the exploration strategy Sg that considers
just the information gain, instead, we have the following upper bound:
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Proposition 4.5. Given a goal percentage g ∈ (0, 1] and a robot sensor
range r ∈ R≥1, the worst-case upper bound on the traveled distance for
Sg is

UBSg =

(
d|V | · ge − d|V | · ge − 1

brc+ 1

)(
2
d|V | · ge − 1

brc+ 1
− 1

)
edge traversals, on any finite undirected connected graph G = (V,E),
where the weight of each edge is equal to 1.

Proof. The proof trivially derives from considering the following scenario:
the robot at each time step i could have to traverse all the vertices perceived
up to i (which possibly could be the worst case for any strategy). More
formally, we have that:

k̄−1∑
i=0

|Vi|+ 1 ≤

(to maximize the number of traversed vertices at each time step i, as we
assume that the robot can perceive just one vertex at a time, we have an
additional term that takes into account all the initial perceived vertices
|P0| = |V0| = d|V | · ge − k̄)

≤
k̄∑
i=1

(d|V | · ge − k̄ + i) =

= (d|V | · ge − k̄)k̄ +
k̄∑
i=1

i =

= (d|V | · ge − k̄)k̄ +
k̄(k̄ − 1)

2
=

=

(
d|V | · ge − d|V | · ge − 1

brc+ 1

)(
2
d|V | · ge − 1

brc+ 1
− 1

)
.

Assuming g = 1 and r = ε (ε → 0), the worst-case upper bound for
Sg is |V |(|V |−1)

2
, as we need to consider k̄ = |V | − 1, which coincides with

the well-known upper bound for any exploration strategy in a fixed graph
scenario O(|V |2).

Looking at the lower bound for Sg, we have the following proposition.
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Proposition 4.6. Given a goal percentage g ∈ (0, 1] and a robot sensor
range r ∈ R≥1, the worst-case lower bound on the traveled distance for
Sg is

LBSg =
brc+ 1

2

(
d|V | · ge − brc
brc+ 1

)(
d|V | · ge − brc
brc+ 1

− 1

)
edge traversals, on any finite undirected connected graph G = (V,E),
where the weight of each edge is equal to 1.

Proof. Let us consider a line graph. The robot starts from the middle of
the line. In case of even number of vertices we can choose arbitrary one
of the two vertices in the middle. The proof develops from the idea that
the robot can go back and forth to frontier vertices traveling over all of the
already perceived vertices. Trivially the number of chosen frontiers along
the exploration path is k ≥ d|V |·ge−brc

brc+1
− 1. At each time step the robot can

perceive r + 1 vertices, thus the lower bound is

k∑
i=1

(i(brc+ 1)) = (r + 1)
k(k + 1)

2
≥

≥ brc+ 1

2

(
d|V | · ge − brc
brc+ 1

)(
d|V | · ge − brc
brc+ 1

− 1

)
.

Assuming again g = 1 and r = ε (ε → 0), we have the worst-case lower
bound for Sg is |V |(|V |−1)

2
, which also in this case coincides with the well-

known lower bound for any exploration in a fixed graph scenario O(|V |2).
Looking at Sdg, the worst-case bounds are trivially the same as Sd, as

the following proposition shows.

Proposition 4.7. The worst-case upper bound on the traveled distance for
Sdg is UBSdg

= UBSd
and the lower bound is LBSdg

= LBSd
on any finite

undirected connected graph G = (V,E), where the weight of each edge is
equal to 1.

Proof. To prove the upper bound we can notice that at each step i, the
frontier set of Sdg is a subset of the frontier set of Sd. Thus, the set of all
the possible exploration paths, on a given G, for Sdg, is a subset of all the
possible exploration paths, on that G, for Sd. Thus the upper bound for Sd

holds.
Looking at the worst-case lower bound graph for Sd we can notice that,

the behavior of Sdg necessarily diverges from that of Sd, when brc =
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mw−1 for a given w (1 ≤ w ≤ m). This happens at the first stem traversal,
because the robot cannot choose to enter in a loop before to explore the
entire stem. In those cases it is trivial to add O(mm) single vertices on
the loops, at distance brc + 1 from the stem, to make feasible the behavior
described for Sd.

Theoretical results obtained in this section give some interesting insights
for better understanding the performance of exploration strategies and for
further explaining some experimental findings reported in the literature. Ta-
ble 4.1 summarizes the worst-case bounds provided in this section.

Worst-case upper bound Worst-case lower bound

UBSd
= 2d|V | · ge

(
ln 2d|V |·ge+brc(brc−2)−7

(brc+1)2 − d|V |·ge+brc(brc−2)−5
(d|V |·ge−2)(brc+1) + 2

)
LBSd

= Ω
(

logd|V |·ge−log(brc+1)2

log logd|V |·ge d|V | · ge
)

UBSg =
(
d|V | · ge − d|V |·ge−1

brc+1

)(
2 d|V |·ge−1
brc+1 − 1

)
LBSg = brc+1

2

(
d|V |·ge−brc
brc+1

)(
d|V |·ge−brc
brc+1 − 1

)
UBSdg

= UBSd
LBSdg

= LBSd

Table 4.1: Worst-case bounds on the number of edge traversals for the three exploration
strategies Sd, Sg , and Sdg , on any finite undirected connected graph G = (V,E),
given a goal percentage g ∈ (0, 1] and a robot sensor range r ∈ R≥1, where the weight
of each edge of G is equal to 1.

As we can see, Sg is the exploration strategy with the highest worst-
case upper bounds, while Sd and Sdg have the same worst-case upper
bounds, namely, there is no gain in the worst case using, besides distance,
the information gain as evaluation criterion. This is in line, for example,
with some results obtained in specific environments in real (or realistically
simulated) settings, namely including information gain in the exploration
strategies does not shorten the paths for completely exploring the environ-
ments [67, 120].

Another consideration that can be made by the worst-case analysis of
the three exploration strategies is that the impact of increasing perception
range r on the length of exploration is significant for small values of r, be-
coming less significant for large values of r. This holds for all exploration
strategies. Note that, despite the fact that the derived bounds have the same
asymptotic complexity of those that do not embed g and r in the computa-
tion of the bounds, the bounds we found have lower actual values, because
we explicitly considered the percentage g and the sensor range r. This anal-
ysis is of interest especially when dealing with robots, as their movements
are physical and not just computational. For example, Figure 4.4 shows the
trend of the worst-case bounds for Sd (Sdg) compared to the ones found
in [127] (UBTK) and [72] (LBKTS), and to the worst-case bounds of Sg,
considering |V | = 1000, g = 1, and r ∈ {0, · · · , dd|V | · ge/2e − 1}.
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Figure 4.4: The trend of worst-case bounds of Sd with respect to UBTK and LBKTS (left)
and Sg (right, which, for clarity, is a zoomed portion of the complete plot), considering
|V | = 1000, g = 1, and r ∈ {0, · · · , dd|V | · ge/2e − 1}.

Note that the plot of the curves related to the lower bounds shows just their
trends and not their actual values, as they depend on the worst-case graphs
built as shown in the various proofs. In Figure 4.4 (left), we can see that
UBTK is higher than UBSd

(except for the case of r < 2 as we discussed
in this section). This can be explained by the fact that UBTK does not
fully consider the more powerful sensor that allows the perception of more
vertices. A similar explanation holds for LBSd

and LBKTS . In Figure 4.4
(right) we can see that UBSg is higher than UBSd

. Also, we can observe
that for low values of r, a small increase of r leads to a large decrease of
UBSd

and UBSg . On the other hand, we have an almost constant (and sim-
ilar) trend after a certain value of r. From a theoretical point of view, this
can be explained by looking at the function UBSd

, and noting that, when
ln(2d|V |·pe+(brc+1)(brc−1)

(brc+1)2
) = 2d|V |·pe+(brc+1)(brc−1)

(brc+1)(d|V |·pe−2)
, UBSd

is linear. Looking at
the r̄ that makes the above relation true, we can observe that, when n = 50,
r̄ ≈ 12; n = 500, r̄ ≈ 67; n = 5000, r̄ ≈ 342; and n = 50000, r̄ ≈ 1652.
The increase of r̄ is less than linear with respect to n. More generally, our
analysis shows that with increasing r, the exploration process is shortened,
which is an intuitively evident result consistent with several experimental
findings (e.g., [2]).

Another insight is that, in the worst case, considering a goal percentage
g of vertices to perceive has the same effect of scaling (by g) the number of
vertices of the graph representing the environment. Given the worst-case
bounds found for the three exploration strategies, an exploration strategy
that considers distance as criterion scales with g better than one that just
considers information gain.

88



4.3. Average-case analysis

4.3 Average-case analysis

As Sg exploration strategy has higher worst-case bounds compared to Sd

and Sdg (which have the same worst-case bounds as shown in the previous
section), we now compare Sd and Sdg in the average case to determine
whether their performance is different, in the case of r = ε.

Let us first introduce some notation. At a time step i, while the robot
is at vi, there is a subset Fimin

= arg minv∈Fi
d(vi, v) ⊆ Fi of vertices

in the frontier set that have the same distance from vi. So, depending on
how a vertex is chosen from Fimin

, the robot could have better or worse
performance. We call

Γ(vi, Vi, G) =
1

|Fimin
|
·
∑

v∈Fimin

(d(vi, v) + Γ(v, Vi ∪ Pi+1, G)). (4.12)

When g < 1 and |Vi||V | ≥ g at a time step i, namely when the exploration
process stops, the function Γ() is set to 0. It is fairly natural to define
the average complexity on G given the starting vertex v0 as AC(v0, G) =
Γ(v0, P0, G). Note that having no a priori knowledge on the graph to be
explored, to perform such computation, we would need to average over all
of the possible graph structures.

Thus, to focus our analysis, we consider some graphs that model real-
istic indoor environments. Let us define vertex-labeled (finite undirected
connected) graphs G = (V,E) for which:

• some vertices C ⊆ V are labeled as ‘corridor’,

• the other vertices R ⊆ V are labeled as ‘room’ (C ∩ R = ∅ and
C ∪R = V ),

• some connected sub-graphs Ri are defined onG, where all vertices are
labeled as ‘room’ (in the following, with slight abuse of notation, we
refer to Ri to indicate the set of vertices of such sub-graph;

⋃
Ri =

R),

• E = {v ∈ R | ∃w ∈ C : (v, w) ∈ E} are the room-type vertices that
act as doorways between rooms and corridors, they are further labeled
as ‘entrance’,

• ¬∃v ∈ R, w ∈ C : v /∈ E ∧ (v, w) ∈ E (within a room only the
entrance vertices can be attached to the corridors).
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Figure 4.5: Example of graph with labels (C ‘corridor’; E ‘entrance’; R ‘room’).

Basically, these labeled graphs are semantic maps of indoor environments
that can be built autonomously by mobile robots [89]. A realistic portion
of an indoor environment and the corresponding labeled graph are shown
in Figure 4.5.

Let us also define a cluster of rooms as a set of Ri, whose entrance
vertices are attached to the same corridor vertex. For example, in Fig-
ure 4.5, R1 and R2 compose a cluster. More formally, given a vertex
v ∈ C such that δ(v) > 2 (δ(v) is the degree of v), a cluster of rooms
is a set Kv = {Ri | w ∈ Ri ∩ E , (v, w) ∈ E} (we call K =

⋃
v∈C Kv).

Moreover, let us call placement function q : 2|C | → N such that, given a
subset P of C , |K| =

∑
p∈P q(p). Basically q() is a function that, given a

subset of vertices of C , returns the number of clusters attached to vertices
in that subset. Considering such a graph, we could estimate the number of
edge traversals given partial information on the corridors structure and the
number of rooms for each corridor, and thus averaging just on the possible
positions of the rooms to obtain E[AC(v0, G)].

We now define a class of graphs G on the set of graphs labeled as above.
We say that G = (V,E) belongs to G if satisfies the following properties:

Property 1 the subgraph on G induced by vertices in C is a tree, where
each leaf is attached to a vertex v with δ(v) = 2,
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Property 2 ∀Ri : ∃!v ∈ Ri ∧ v ∈ E ,

Property 3 given Ri and called v the entrance vertex v ∈ Ri ∩ E , vertices
v′ ∈ Ri \ E are at distance 1 from v,

Property 4 ∀v ∈ E : δ(v) > 2,

Property 5 ∀v ∈ C : ∃e ∈ E : (v, e) ∈ E ⇒ ∀w ∈ C : (v, w) ∈
E ⇒ δ(w) ≤ 2, (i.e., given a corridor vertex v attached to an
entrance vertex e, all the neighbor corridor vertices w should
not have more than 1 other vertex, beyond v, attached to them).

The following result shows the estimate on the difference between the
average performance of Sd and Sdg on a graph G = (V,E) that belongs
to G . Given an arbitrary starting vertex v0 ∈ V (the root) and the set of
leafs J = {v ∈ C | δ(v) = 1}, we call C j the vertices in C that are on the
shortest path from v0 to the leaf j ∈ J (the path is unique due to Property
1).

Proposition 4.8. Consider a graph G = (V,E) that belongs to G , a start-
ing vertex v0 ∈ C with ∀v ∈ N(v0), δ(v) = 2 (where N(v0) is a function
that returns the set of neighbor vertices of v0), a goal percentage g = 1,
and a sensor range r = ε (ε → 0). An estimate for the difference between
the average performance of Sd and Sdg is∑

j∈J

Bj · (|C j| − 2)
q(C j)

q(C j) + 1
− 2
|J | − q(J)

|J |
,

where Bj is the probability of C j to be explored at the very end of the
exploration process and q() is a placement function.

Proof. Looking at Sdg, because of Property 4 and Property 5, while the
robot explores a corridor, it explores every room it encounters before con-
tinuing on the corridor. A room, when chosen, is completely explored, due
to Property 2 and Property 3 and to the fact that the starting vertex v0 ∈ C .
Further, Property 2 guarantees that after exploring a room Ri, the robot
does not directly head to another room Rl (i 6= l) without first going back
to a vertex in C . This is clearly visible in Figure 4.5: no matter which start-
ing vertex is taken, Sdg, while exploring the corridor, will explore first the
encountered rooms (i.e., choosing a vertex in the corridor has probability 0
when there are rooms attached to the current vertex). Also, due to Property
3, the mean tour cost T (Ri) for visiting a room Ri is the same for Sdg and
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Sd. Thus, the average complexity of Sdg is

E[ACdg(v0, G)] ≈
∑
Ri

T (Ri) +
∑
j∈J

Bj(|C j|+ 2
∑
l∈J,l 6=j

|C l|)− 2
q(J)

|J |
.

(4.13)
Bj is the product of the inverse of the corridor branching factors encoun-
tered while visiting vertices in C j .

Instead, for Sd, while the robot explores a corridor, it could choose not
to explore some encountered rooms. Hence, it could happen that, once the
robot has reached a leaf, it should go back to explore rooms left behind
(recall that corridor vertices form a tree because of Property 1). This can be
seen in Figure 4.5, as Sd, when the robot’s current vertex is in the corridor
and there are neighbor vertices labeled as ‘room’, has a probability strictly
greater than 0 to choose a vertex in the corridor, possibly leaving a room
as the last area to explore. The complexity to visit the rooms is the same
as Sdg because of Property 3. The only difference between Sd and Sdg is
during the exploration of the last corridor vertices that are in C j . With Sd

the robot could have to go back to some unexplored rooms left along the
last C j and so, differently from Sdg, could end the exploration in a room.

Defining Rj
last as the unexplored room left along C j which has the clos-

est entrance vertex to the starting point v0, let us call ∆j the mean distance
between Rj

last and the leaf j, and Λj the difference between a tour and a
path to explore a room Ri on C j , on average, weighing each difference
with the probability that room Ri is Rj

last. In summary, for Sd we have that
the average complexity is

E[ACd(v0, G)] ≈
∑
Ri

T (Ri) +
∑
j∈J

Bj(|C j|+ ∆j − Λj + 2
∑
l∈J,l 6=j

|C l|).

(4.14)
There should be also the term −2 multiplied by the probability for Sd to
end in a room, but it is neglected because is close to 0. The latter probabil-
ity corresponds to the probability to explore all the cluster in C times the
probability that a cluster is attached to a leaf j.

Note that Λj (the average difference between a tour and a path to ex-
plore a room attached to a corridor vertex in C j) is always equal to 2
because of Property 3. Having no a priori knowledge about the size of
the clusters, we approximate the probability to completely explore a given
cluster Kv of rooms (before going ahead along the corridor) as a constant
value pK , which can be seen as the mean of the probabilities to com-
pletely explore each cluster Kv. Under this hypothesis, the probability
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of not exploring a number m of clusters Kv along corridor vertices C j

is a binomial S ∼ B(q(C j), 1 − pK). We want to estimate ∆j through
an aleatory variable D. We first find E[D|S]. This conditional expecta-
tion can be approximated imagining the line as a continuous line and the
relative position of the clusters as independent. The traveled distance to ex-
plore S = m clusters left, is an aleatory variable Z = max(X1, X2, ..., Xm)
where Xv ∼ U(0, |C j| − 2) (minus two because of the starting vertex con-
straint: q(N(v0)∪v0) = 0) is the position of the clusterKv along C j . Thus,
the cumulative distribution function of Z is:

FZ(t) = P (Z ≤ t) =

(because of the definition of Z)

= P (X1 ≤ t ∧X2 ≤ t ∧ ... ∧Xm ≤ t) =

(since we assumed the uniform distributions as indipendent)

= P (X1 ≤ t) · P (X2 ≤ t) · ... · P (Xm ≤ t) =

(substituting the cumulative distribution function for a uniform distribution)

=

(
t

|C j| − 2

)m
.

Now we can compute the probability density function:

fZ(t) =
dFZ(t)

dt
= m · tm−1

(|C j| − 2)m

and applying the definition of the expected value for a continuous aleatory
variable we have

E[D | S = m] = E[Z] =

=

∫ |C j |

0

m · tm−1

(|C j| − 2)m
· t · dt =

=
m

(|C j| − 2)m

∫ |C j |

0

tm · dt =

=
m

m+ 1
(|C j| − 2).

In the hypothesis that pK < 1, an estimate for the mean gain is:

E [Γd(G, v0)− Γdg(G, v0)] = E [Γd(G, v0)]− E[Γdg(G, v0)] ≈
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(substituting the expected values)

≈
∑
j∈J

Bj
(
∆j − Λj

)
+ 2

q(J)

|J |
=

(splitting the sum)

=
∑
j∈J

Bj∆j −
∑
j∈J

Bj · 2 + 2
q(J)

|J |
≈

(because ∆j ≈ E[D])

≈
∑
j∈J

BjE [D]− 2 + 2
q(J)

|J |
. (4.15)

Thus, remembering that ∆j ≈ E[D] = E [E [D | S = m]] whereE [D | S = m]
is the quantity found above and that S ∼ B(q(C j), 1 − pK), we have that
Equation (4.15) becomes

≈
∑
j∈J

Bj

q(C j)∑
m=0

(
q(C j)

m

)(
p
q(C j)−m
K (1− pK)m · m

m+ 1
(|C j| − 2)

)+

− 2
|J | − q(J)

|J |
=

(simplifying this known sum)

=
∑
j∈J

Bj

[
q(C j)(1− pK)− pK(1− pq(C

j)
K )

(q(C j) + 1)(1− pK)
(|C j| − 2)

]
− 2
|J | − q(J)

|J |
≈

(approximating pK(1− pq(C
j)

K ) ≈ 0)

≈
∑
j∈J

Bj · (|C j| − 2)
q(C j)

q(C j) + 1
− 2
|J | − q(J)

|J |
.

This proposition provides insights on how graphs belonging to G are ex-
plored by a robot that employs either Sd or Sdg and quantify the difference
of their performance in terms of number of edge traversals. In particular,

94



4.3. Average-case analysis

looking at the average case, the result obtained shows that considering ex-
pected information gain in exploration strategies provides an advantage in
a class of graphs that could model an indoor environment. This can be
intuitively explained by the fact that the robot visits all rooms encountered
without the need to go back to visit some rooms left behind while traversing
the corridor.

This result is also supported by simulated experiments that have been
conducted in randomly generated environments (the simulator has been
implemented in Python). The experimental setting is as follows. The
input parameters to generate an environment are the number of vertices
labeled as ‘corridor’ |C | and the number of clusters |K| of rooms to be
placed along the corridors. We derive the number of clusters by using a
placement function g which depends only on the corridors length. More
formally, let us define I = N(v0) ∪ {v0}, W = C \ I . For each set
A ⊆ W , q(A) = |A| · |K|/|W | (q(I) = 0) and dK = |K|/|W |, which rep-
resents the density of clusters in the corridors. For the experiments we
considered the following values for |C | = {50, 100, 150, 200, 250} and
dK = {0.2, 0.3, 0.4}. To generate random environments, first trees com-
posed of corridor vertices have been generated with a mean number of
leaves equal to 5. Each cluster has a random number of rooms between
1 and 4 generated with a uniform probability. Then the clusters have been
attached to the tree randomly (preserving the properties). Since the shape
of each single room does not influence the gain of Sdg over Sd (as shown
above), we decided to choose a full connected subgraph of three vertices
each. Finally, the starting position has been chosen from those satisfying
the constraint. See Figure 4.6 for an example of such random generated
graph. For each of such generated environments and starting vertex, the ex-
ploration strategies Sd and Sdg are run 50 times and the difference in their
performance is computed, together with the error of the estimate given in
Proposition 4.8.

Our results (over 600 randomly generated graphs; see Table 4.2) sug-
gest that Sd always performs worse than Sdg, given this class of the envi-
ronments. For example, considering |V | = 150 and a number of clusters
|K| ∼ dK |V |, for dk = 0.4 the difference between the mean traveled dis-
tances of Sd and Sdg is 63.3 (2.1 standard deviation) edge traversals. On
average the gain seems to be almost independent of the number of rooms in
each cluster. It appears to depend just on the the shape of the tree composed
of corridor vertices. This makes the estimate fairly good, since there is no
assumption about the clusters size. The error between the estimate on the
gain of Proposition 4.8 and the real one seems to be limited. We notice that
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Figure 4.6: An example of random G graph with room (light grey) and corridor (dark
grey) vertices and |C | = 50, dK = 0.3.

dK = 0.2 dK = 0.3 dK = 0.4
|C | Gain Error Gain Error Gain Error
50 13.8 (3.1) -2.1 (3.8) 15.4 (1.9) -1.0 (2.2) 16.9 (1.2) 0.1 (1.2)
100 14.7 (1.7) 0.2 (2.2) 15.9 (3.0) -1.5 (3.3) 21.8 (1.3) 0.4 (1.3)
150 17.0 (2.9) -3.0 (4.2) 28.8 (3.3) 0.4 (3.3) 63.3 (2.1) 0.5 (2.1)
200 66.1 (3.6) -0.3 (3.7) 57.1 (3.6) 0.6 (3.6) 66.5 (3.8) 0.4 (3.8)
250 70.1 (4.1) -0.1 (4.1) 76.7 (7.0) -2.6 (7.4) 104.5 (5.5) -2.4 (6.0)

Table 4.2: Difference of traveled distance between Sd and Sdg (average and standard
deviation) on randomly generated graphs belonging to G and the error between the
estimate given in Proposition 4.8 and the actual difference (average and standard de-
viation with respect to 0).

96



4.3. Average-case analysis

the goodness of the estimate depends on the ratio between the cardinality
of the set of leaves |J | and that of corridor vertices |C |. For example, in
one of the experiments the error was −2.1 (3.8), over a gain of 13.8 (3.1),
for |C | = 50, |J | = 5, and dK = 0.2. This could be explained by the
fact that if |J |/|C | is high (in the example it is 0.1), the gain of Sdg over
Sd is smaller and, because of the approximations in the computation of the
estimate (shown in the proof), the percent error is higher. Intuitively, cor-
ridors are generally shorter when the ratio |J |/|C | is higher and so a robot
employing Sd has to re-traverse less vertices to visit unexplored rooms. In-
stead, considering |C | = 200 (with |J | = 6 and dK = 0.2), |J |/|C | = 0.03
and the percent error is smaller (namely, −0.3 (3.7) over a mean gain of
66.1 (3.6)). Further, we can notice that there is a slight overestimate, prob-
ably due to the approximations we made in the proof which, anyway, seems
not to grow with the gain nor with the number of corridor vertices.

Thus, differently from the worst case, the obtained theoretical results in
the average case (corroborated by experiments) show that taking into ac-
count also information gain in selecting the next destination location pro-
vides advantages over considering only distance on graphs modeling realis-
tic indoor environments. This could be intuitively explained by the fact that
using only distance does not fully take into account the structure of the envi-
ronment, while the one with also information gain does. In the worst case,
this benefit does not emerge as we have to consider worst-case environ-
ments, which are usually not realistic. Hence, the analysis on the average
complexity provides some insights on the reason why in some indoor en-
vironments, exploration strategies that consider expected information gain
besides distance as evaluation criteria perform well, as shown, for exam-
ple, in experimental results performed, e.g., by Amigoni [2], Basilico and
Amigoni [16].

Analyzing some exploration strategies in environments modeled as graphs
allows to study the combinatorics of the exploration problem. By deriv-
ing the bounds in the worst and average cases, we contribute to shift from
results obtained experimentally with real (and realistically simulated) ex-
ploring robots to a more theoretically-grounded justification of the latter,
helping to answer the question: “which exploration strategy performs bet-
ter in a given scenario?”.
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Part II
Improve online exploration strategies

The second part of this dissertation shows a possible way to improve mul-
tirobot exploration systems. Our approach starts from considering the fact
that, as presented in Section 2.2, most exploration strategies and coordi-
nation methods base their decisions on the current metric map built so far.
Also, the common approach for coordinating robots is to send just one robot
to a candidate location, following the single-robot-per-task paradigm, in or-
der to spread robots over the environment. Given the increasing availability
of reliable semantic mapping systems and the limited number of studies on
their use for exploration, in this part, we propose a coordinated multirobot
exploration system that operates in search and rescue settings and that ex-
ploits semantic labels to improve the performance of the system in terms of
explored area in a given time interval. In the following, we present the for-
mulation of the problem with the model of the robotic system employed and
the details and the experiments on the proposed semantic-based multirobot
exploration system.
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5
Model and assumptions

In this (short) chapter we present the basic model and assumptions that are
used for Chapters 6, 8, and 9, instantiating some of the relevant dimensions
presented in Section 1.3. Note that the behavior of the robots is basically
the one presented in Section 1.1. Also note that some of the parameters are
specified within each chapter.

The robotic system used is composed of one or more homogeneous
robots. Each robot is a differential wheeled robot, like a Pioneer P3AT (see
Figure 5.1), equipped with some sensors, like a laser range scanner with a
Field Of View (FOV) and angular resolution, and a sonar ring, that allow the
robot to navigate and map the environment. Note that, if FOV is 360°, two
laser range scanners are mounted at the same height and back-to-back for
covering a 360° around the robot. Each robot starts from an initial position
in an initially unknown environment and builds a two-dimensional occu-
pancy grid map of the explored environment. Each cell is either known,
if the robot perceived the corresponding area, or unknown. Known cells
can be free or occupied (by obstacles). So, the knowledge representation is
discrete-based. The current map built so far is stored in the robot memory.

When more than one robot is employed, the global map of the environ-
ment is maintained by a base station, whose position is fixed in the envi-
ronment, and to which robots send their maps every 2.5 s. We assume that
communication is error-free and unlimited in range and bandwidth (effects
of more realistic communication models on exploration are discussed for
example by Tuna et al. [128]). Our exploration system is largely indepen-
dent of the mapping system employed to incrementally build the grid map.
In our experiments, we use a simple scan matching method, inspired to that
of Lu and Milios [79], in which a new acquired scan is aligned with the

101



Chapter 5. Model and assumptions

Figure 5.1: Four P3ATs and a NAO that acts as base station in USARSim.

current map (using odometry as initial guess) and the occupancy grid is up-
dated correspondingly. Since we are not interested in analyzing the quality
of the resulting map, we assume that the mapping module is error-free.

Given a map represented as above, to calculate candidate destination lo-
cations, we consider reachable free cells that are on the boundary between
known and unknown cells. Then, a set of 8-adjacent boundary cells are
grouped in a cluster, called frontier. The centroid of each cluster is con-
sidered as a candidate destination location to reach. The selection of such
locations defines the motion model of the robotic system. Each candidate
destination location is represented as a cell position in the grid. Note that
when the angle covered by the FOV of the laser range scanner around the
robot is less than 360°, also the orientation that the robot should take once
in the location is represented: the orientation is toward the unknown area
along the perpendicular to the line tangent to the corresponding frontier
and passing through the candidate destination location cell. Path planner
uses A* on the grid map. Sonars are used for obstacle detection during
navigation.

The criteria we consider for defining the exploration strategies include
the following:

• A(p) is the estimated amount of free area beyond the frontier of p
computed according to the length (in cells) of the frontier. The larger
its value, the more information is expected to be acquired from p.

• dL2(p, r) is the Euclidean distance between p and current position of r.
Using Euclidean distance instead of actual distance calculated by path
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planner drastically reduces the computational effort in calculating this
criterion without affecting too much the estimated utility u(p, r), as
some preliminary experiments we performed have shown.

• dPP (p, r) is the distance between p and current position of r; given p
and r, this criterion is calculated using the path planner that returns
the length of the path.

• b(p, r) is an estimate of the energy spent by r for reaching p; the larger
its value, the smaller the amount of residual energy in the battery (0 =
full, 1 = empty); this criterion is calculated considering a very simple
model in which the power consumption is related to the time required
for reaching p, computed according to the path that r should follow
and according to linear and angular velocities of the robots.

• o(p, r) is the cost related to the heading change that the robot should
perform, computed according to the difference between the orienta-
tion required at p and the current orientation of r.

• P (p) is the probability that a robot, once reached p, will be able to
transmit information (e.g., the perceived data or the locations of vic-
tims) to the base station (whose position in the environment is known),
this criterion depends on the distance between p and the base station.

All these criteria can be calculated from the robots’ status and from the
metric grid map. We assume that the exploration solution is not a tour, but a
path, namely it is not required that robots (although they could revisit some
already explored portion of the environments) return to the starting point
when the termination criterion is met. As said, this kind of solution is often
considered, for example, in mapping or search and rescue scenarios where
returning to the starting point can be performed in a second stage after the
more important exploration task is completed. Experimental results shown
in the next chapters are evaluated by optimality criteria depending on the
task, as we discuss next.
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6
A semantically-informed multirobot system

Some robotic exploration systems that exploit semantic information have
been presented in literature (see Section 2.2), finding out that use of seman-
tic information can reduce the time required to cover a given amount of
area and can increase the total amount of area mapped by robots in a given
time interval. In this chapter, we extend these results by showing that se-
mantic knowledge can also be used to significantly improve the exploration
of relevant areas of indoor environments. We assume that a priori and re-
liable information about the areas of the environment that are considered
relevant is available, for example, provided by humans. This assumption is
of interest in realistic scenarios. In a search and rescue setting, the a priori
information could be the possible location of victims or the preferred areas
to search first, given by human rescuers. For example, if a disaster happens
in a building during office hours, victims are most likely located in the of-
fices, and, thus, robots should focus on searching small-size rooms. If it
happens during lunch time, robots should head to large-size rooms, like a
canteen. In the following of this chapter, we consider the following a priori
information about victims location: either victims are in small rooms or
victims are in big rooms.

Our system is composed of multiple robots that operate according to
the behavior model we showed before in Section 1.1 and with capabilities
presented in Chapter 5. Note that we are assuming that, as typically done
in autonomous mobile robotics, the perception and decision models are
event-based. We originally address the following problem: to what extent
is it possible and convenient to exploit semantic information to efficiently
explore areas (of an initially unknown environment) that are considered rel-
evant? The main original contribution of the proposed approach is thus a
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Chapter 6. A semantically-informed multirobot system

system that exploits semantic information to improve exploration. In par-
ticular, in the following, we propose a method for evaluating candidate lo-
cations, which is a variant of that presented by Basilico and Amigoni [16],
and a method for allocating robots to candidate locations. In this chapter,
we aim at showing that, when a priori knowledge on victims’ locations is
available (i.e., preferred areas to visit are specified), the use of semantic
information could improve the performance of exploration of relevant ar-
eas of the environment, besides the total one, differently from the works
presented in Section 2.2 (like [121] or [24]) that use semantic information
to improve the total explored area of the environment. Also, we attempt
to overcome the ST-SR assumption by allocating more robots to the same
candidate locations according to a multi-robot tasks (MR) paradigm. (Re-
call that the ST-SR assumption means that a single task (ST), namely a
single candidate destination location, is assigned to each robot, and a single
robot (SR) is assigned to each task.) Specifically, we aim at showing that
semantic information enables the possibility to determine the ideal number
of robots to send to a specific area so that exploration can proceed faster
and more effectively.

Note that, since in this chapter we are assuming that some a priori in-
formation is available about relevant areas, the works in literature includ-
ing semantic information are not directly comparable with our approach,
in terms of the relevant areas explored. However, in our experimental sim-
ulated activities, we will compare the proposed exploration strategy with
that proposed by Basilico and Amigoni [16], which has been experimen-
tally proven to perform well in search and rescue scenarios, but does not
consider any semantic information.

6.1 MCDM-based exploration strategy

Exploration strategies use several criteria to evaluate the goodness of a can-
didate location p for a robot r with the evaluation function u(p, r). In par-
ticular, we consider the criteria A, dL2 , b that can be computed on the ba-
sis of the metric map (see Chapter 5). Additionally, we assume that the
robotic system presented in the previous chapter has a semantic map that
labels each free cell of the grid map with its room type (i.e., ‘corridor’,
‘small room’, ‘medium room’, ‘big room’) and with the number of door-
ways present in the room in which the cell is located. This semantic map
can be built exploiting any available method (e.g., [89]). Thus, the kind
of knowledge, besides being metric-based, is also semantic-based and the
following additional evaluation criteria are considered:
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6.1. MCDM-based exploration strategy

• S(p) is the relevance of p (from 0, not relevant, to 1, relevant), calcu-
lated according to the semantic label of p and the a priori knowledge
on victims’ locations. For example, if it is known that victims are
most likely in big rooms, and p is in a big room, S(p) = 1, while if p
is in a small room, and under the same hypothesis about the location
of victims, S(p) = 0. If p is in a corridor, regardless the hypothesis
on victims’ locations, S(p) = 0.15, as corridors are usually important
to reach relevant rooms. The values for S(p) have been manually set
to obtain good performance after experiments with different combina-
tions of values. Different value combinations (e.g., range [0.10, 0.50]
for S(p) with p in corridors), that maintain relevance of corridors and
of rooms according to the hypothesis on victims’ location, have been
experimentally demonstrated to have similar performance.

• ND(p) is the number of doors in the room where p is located. This
criterion evaluates the connectivity of a room with other rooms. The
idea is that a highly-connected room should be visited to ease finding
relevant rooms.

We assume that semantic labeling used to calculate the criteria S(p) and
ND(p) is perfect. This assumption will be relaxed later to experimentally
verify the robustness of the approach.

We define exploration strategies using the Multi-Criteria Decision Mak-
ing (MCDM) approach introduced by Basilico and Amigoni [16] (see Sec-
tion 2.2), to combine criteria. We selected the MCDM approach because
it is theoretically grounded and allows to easily integrate several criteria
in a utility function. Below we show the criteria adopted and the weights
defined.

For our semantically-informed exploration strategy (S-MCDM), we use
the criteria N = {A, dL2 , b, S,ND} defined above and the weights reported
in Table 6.1 (left). The weights of the subsets of criteria not reported in
the table are calculated by summing the weights of the individual crite-
ria. Note that in selecting these weights, we have chosen values reasonably
(e.g., criteria dL2 and A have the same importance, so their weights are
equal). Moreover, criteria dL2 and b are redundant, since both prefer can-
didate locations close to the robot and a candidate location satisfies both
criteria well or both not well, and so µ({dL2 , b}) < µ({dL2}) + µ({b}).
Intuitively, both measure the cost to reach a candidate location: the more
distant a candidate location is, the more battery is used to reach it. Crite-
ria A and dL2 are instead synergic (one prefers candidate locations on long
frontiers while the other one prefers candidate locations close to the robot
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S-
M

C
D

M
criteria µ() criteria µ() criteria µ()
A 0.09 dL2 , b 0.09 A, b 0.15
dL2

0.09 dL2
, S 0.8 dL2

, b, S 0.8
b 0.02 b, S 0.6 A,S 0.65
S 0.5 A, dL2

, b 0.3 A, dL2
, b, S 0.8

ND 0.3 A, dL2
, S 0.8

A, dL2 0.3 A, b, S 0.65

D
-M

C
D

M

criteria µ()
A 0.4
dL2 0.4
b 0.2

A, dL2
0.95

A, b 0.7
dL2

, b 0.4

Table 6.1: Weights of MCDM-based exploration strategies.

and a candidate location can satisfy one criterion well and the other one
not well) and so µ({A, dL2}) > µ({A}) + µ({dL2}). Values of weights
have been set to obtain good performance, according to criteria importance
and relations [16]. Slightly varying the selected weights values (±10%),
we experimentally obtained similar performance. Principled methods for
selecting weights are discussed by Basilico and Amigoni [16].

For comparing the performance of S-MCDM, we chose a state-of-the-art
exploration strategy. Specifically, we defined another MCDM-based explo-
ration strategy (D-MCDM), whose criteria set isN = {A, dL2 , b}, similarly
to the work of Basilico and Amigoni [16], and with weights reported in Ta-
ble 6.1 (right). As discussed in Section 2.2, existing exploration strategies
that exploit semantic information focus on improving the total explored
area and not the relevant one. Furthermore, the work of Calisi et al. [24] is
not easily configurable in our setting, as PROLOG rules should be set. Nev-
ertheless, the D-MCDM exploration strategy has been shown by Basilico
and Amigoni [16] to be very effective in exploring environments (in par-
ticular, it outperformed the exploration strategies proposed by Visser and
Slamet [131] and Amigoni and Caglioti [3]).

6.2 ST-MR coordination method

The coordination method we use is market-based [140]. The base station
regularly sets up auctions in which candidate locations (generated on cur-
rent frontiers as discussed before) are auctioned to the robots, which bid on
them. This process allocates candidate locations p to robots r attempting
to maximize the sum of utilities u(p, r). In our system, the coordination
method can allocate multiple robots (MR) to the same candidate locations.
For example, allocating two robots to the same candidate location in a big
room could speed up the exploration of the room, overcoming potential
negative effects due to the initially overlapping views of the two robots.
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6.2. ST-MR coordination method

We employ a fuzzy-based function i(p) that computes the ideal num-
ber of robots (1, 2, or 3, in our experiments) that should be assigned to
a candidate location p, according to the semantic label given to p and to
some other features. In particular, if p is located in a room (‘small room’,
‘medium room’, or ‘big room’), the features considered are the room area,
the free area percentage of the total area in the room (visibility), the num-
ber of doors, and the already perceived area of the room. Note that an
estimate of the already perceived area of a room can be computed by hav-
ing a knowledge base that associates the semantic labels of rooms to the
corresponding average area (see, e.g., [80]). Figure 6.1 shows the mem-
bership functions for the input features and for the output we have used for
experiments of the next section. When slightly varying the selected fuzzy
values (±10%), we experimentally obtained similar performance. Given p,
if the room in which p is located is large, the number of its doors is large, its
visibility is large, and the amount of already perceived area is small, then
more robots are allocated to p. Other examples of the rules for determining
the ideal number of robots i(p) to be allocated to p (in a room) are reported
in Algorithm 6.1.

1 if RoomSize is SMALL and #Doors is HIGH and Visibility is LOW and
AlreadyPercArea is MEDIUM then #Robots is MEDIUM;

2 if RoomSize is BIG and #Doors is LOW and Visibility is LOW and
AlreadyPercArea is HIGH then #Robots is LOW;

3 if RoomSize is BIG and #Doors is MEDIUM and Visibility is MEDIUM and
AlreadyPercArea is LOW then #Robots is HIGH;

Algorithm 6.1: Sample of rules for calculating the ideal number of robots that can
be allocated to p (in a room).

Similarly, if p is located in a corridor (label ‘corridor’), the features con-
sidered are the length of the corridor, the number of doors, the number of
intersecting corridors, and the already perceived area of the corridor. The
membership functions and the rules are similar to those for the room case,
as shown in Figure 6.2 and in Algorithm 6.2.

Each robot r evaluates all candidate locations p, as auctioned by the
base station every 5 s or when requested by a robot that has reached its
assigned location, according to the exploration strategy and submits bids
u(p, r) accordingly. We propose two coordination methods executed by the
base station to allocate candidate locations to robots. The first coordina-
tion method (MRv1) works as reported in Algorithm 6.3. Basically, MRv1
greedily allocates the best pair (p∗, r∗), avoiding to allocate p∗ to more than
i(p∗) robots.
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(a) (b)

(c) (d)

(e)

Figure 6.1: Membership functions for the input features (a-d) and for the output (e), when
p is in a room.

The second coordination method, called MRv2, is similar to MRv1, but,
after each allocation of a robot to a p∗ (step 4), it discounts the utility of
p∗ for other robots, according to the number of robots already allocated to
p∗ (similarly to the work of Stachniss et al. [121]). Figure 6.3 shows the
discount factor that decreases linearly until the number of allocated robots
is less than or equal to i(p∗), and then decays exponentially. The rationale
is that assigning to p∗ less robots than i(p∗) could be a necessity (e.g., there
are not enough robots) and that assigning to p∗ more robots than i(p∗) is
not useful to speed up exploration.

The two proposed ST-MR coordination methods are experimentally com-
pared to a standard coordination method (ST-SR) [140], which allocates
just one robot to a candidate location in a greedy fashion. Namely, it runs
MRv1 with i(p) = 1 for every p.
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(a) (b)

(c) (d)

(e)

Figure 6.2: Membership functions for the input features (a-d) and for the output (e), when
p is in a corridor.

6.3 Simulation results

In order to perform replicable tests under controlled conditions, we use a
robot simulator. We selected USARSim [27], because it is a realistic and
reliable 3D robot simulator. Note that, despite the fact that we are just
focusing on the decisions about the next locations to reach (represented
in 2D), the use of a 3D simulator, which simulates laws of physics that
influence the behavior of robot sensors and actuators, allows to get results
that could be closer to the ones that could be obtained with real robots. We
developed the multirobot system controller software that operates with that
simulator1.

1The code and the experimental data are publicly available at http://sourceforge.net/projects/
polimirobocup.
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1 if CorridorSize is SMALL and #Doors is HIGH and #IntersectingCorridors is
MEDIUM and AlreadyPercArea is MEDIUM then #Robots is LOW;

2 if CorridorSize is SMALL and #Doors is MEDIUM and #IntersectingCorridors is
LOW and AlreadyPercArea is LOW then #Robots is MEDIUM;

3 if CorridorSize is MEDIUM and #Doors is MEDIUM and #IntersectingCorridors
is MEDIUM and AlreadyPercArea is LOW then #Robots is HIGH;

4 if CorridorSize is BIG and #Doors is HIGH and #IntersectingCorridors is
MEDIUM and AlreadyPercArea is LOW then #Robots is VERY_HIGH;

Algorithm 6.2: Sample of rules for calculating the ideal number of robots that can
be allocated to p (in a corridor).

1 collect bids u(p, r), which are calculated using (Equation (2.8));
2 while ∃ robot r not allocated and candidate location p do
3 find the pair (p∗, r∗): (p∗, r∗) = arg maxp,r u(p, r);
4 allocate p∗ to r∗;
5 if i(p∗) is equal to the number of robots already assigned to p∗ then
6 eliminate p∗;

end
7 eliminate robot r∗;

end
Algorithm 6.3: MRv1.

We report simulated experiments conducted in two indoor environments,
called office and mall (Figure 6.4), where robots start from fixed starting
locations without any initial knowledge about the structure of the environ-
ment. The cells of the test environments are labeled as ‘corridor’, ‘small
room’, ‘medium room’, or ‘big room’ according to the size of the rooms
they belong to. Label distributions are reported in Tables 6.2 and 6.3.
The first test environment is part of the “vasche_library_floor1”, taken by
Radish repository [63], and is characterized mainly by the presence of small
and medium rooms (as we can see from Table 6.2, the number of small and
medium rooms is almost the 86% of the total number of rooms in the en-
vironment). The second one is a floor of a (real) mall, and is characterized
by the presence of very big rooms. Table 6.3 shows that the number of big
rooms is almost the 12% of the total number of rooms in the environment,
but they occupy 41% of the total area of the environment. Some obsta-
cles (shown as short line segments in Figure 8.1) have been added to the
rooms to simulate furniture and to make the exploration task more realistic.
We consider structured indoor environments because many semantic maps
have been built for indoor environments and search and rescue scenarios are
often indoor (like those of the Virtual Robot Competition of the RoboCup

112



6.3. Simulation results

Figure 6.3: Discount factor vs. the number of robots already allocated to p, if i(p) = 3.

Type Number of cells % of the environment area Number of rooms
Corridors 2493 30% -

Small rooms 756 9% 21
Medium rooms 2835 34% 42

Big rooms 2304 27% 10

Table 6.2: Number of cells, percentage of the area of the environment, and number of
rooms of each semantic label (room type) for the office environment.

Rescue Simulation League).
We consider teams of 4, 6, and 8 robots and two a priori hypotheses

(assumed to be correct) on victims’ location, namely victims in big rooms
and in small rooms. We define a setting as an environment (office or mall),
a number of robots (4, 6, or 8), an exploration strategy (D-MCDM or S-
MCDM), a coordination method (SR, MRv1, or MRv2), and an hypothesis
on the victims’ location (big or small rooms). For each setting, we execute
10 runs of 20 minutes each.

Type Number of cells % of the environment area Number of rooms
Corridors 1449 18% -

Small rooms 1332 16% 37
Medium rooms 2088 25% 31

Big rooms 3393 41% 9

Table 6.3: Number of cells, percentage of the area of the environment, and number of
rooms of each semantic label (room type) for the mall environment.
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(a) Office

(b) Mall

Figure 6.4: Test environments. Green stars represent initial positions for the robots in the
settings with 4 robots, red crosses refer to the addition of two robots (6 robots), and
blue points to the addition of further two robots (8 robots).

In a search and rescue setting, the goal is to explore an initially un-
known environment for finding the largest number of human victims within
a short time. Assuming a priori knowledge about the relevant area in which
victims are supposed to be, and assuming that victims are uniformly dis-
tributed in the relevant areas, the problem of maximizing the number of
victims found in a given time interval is equivalent to the problem of maxi-
mizing the amount of relevant area covered by robots’ sensors in the same
interval. Thus, we assess our system performance by measuring the amount
of relevant area (area of small or of big rooms, according to the victims’ lo-
cation hypothesis) explored, every 1 minute of exploration. We typically
report data at the end of runs (after 20 minutes), but, for some settings, we
report graphs of data over 20 minutes. This measure is particularly relevant
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in the context of search and rescue, as time is limited, and thus, we want
to explore as quickly as possible the relevant parts of an environment. We
report also some results about the total explored area so that it is possible to
compare our proposed method with other approaches that do not consider
relevant area.

We start with some preliminary experiments we performed with state-
of-the-art exploration strategies. Specifically, we compared D-MCDM with
other two exploration strategies, namely, a random one (Random), which
performs a random selection according to a uniform distribution over the
current frontiers, and one that only considers the distance as criterion (Dis-
tance), as in the work of Wurm et al. [134]. In all cases, the coordination
method is SR. Simulation results confirm that, similarly to Basilico and
Amigoni [16], D-MCDM performs better than the other two exploration
strategies. For example, Figure 6.5 shows that, in the case of office envi-
ronment, 6 robots, SR coordination method, D-MCDM outperforms Ran-
dom and performs relatively better than Distance, in terms of total explored
area (measured in m2). This provides a justification on the choice of us-
ing D-MCDM as baseline exploration strategy for comparing our proposed
exploration strategy.

0 10 20
0

2000

4000

6000

time step

 

 
D−MCDM SR
Random SR
Distance SR

Figure 6.5: Total explored area (m2) over 20 minutes, in office environment, by 6 robots,
with Random, Distance, and D-MCDM exploration strategies and SR coordination
method.

Table 6.4 reports experimental results for the office environment. The
values reported in each entry are the average and the standard deviation (in
parentheses) over the 10 runs of the corresponding setting.

Considering the various settings, with all the three coordination meth-
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Office Exploration
Coord. D-MCDM (B) S-MCDM (B) D-MCDM (S) S-MCDM (S)

#Robots = 4
SR 747.3(112.5) 1473.9(202.7) 80.4(22.4) 276.2(83.9)

MRv1 953.8(111.4) 1729.9(81.9) 103.1(22.7) 224.6(73.1)
MRv2 921.6(130.3) 1773.8(65.4) 112.9(24.4) 272.1(52.1)

#Robots = 6
SR 1024.6(220.7) 1603.2(59.1) 127.6(38.5) 235.7(43.1)

MRv1 1123.6(143.6) 1851.3(7.8) 148.6(21.2) 400.5(100.4)
MRv2 1164.9(94.2) 1856.7(36.3) 162.5(22.2) 429.0(83.8)

#Robots = 8
SR 1222.6(133.0) 1653.5(129.2) 170.3(43.0) 312.0(28.1)

MRv1 1379.8(122.8) 1877.6(62.6) 186.2(31.7) 496.3(101.8)
MRv2 1284.9(144.5) 1854.3(80.3) 185.6(42.7) 454.3(125.2)

Table 6.4: Results (average and standard deviation) of explored relevant area (m2) for the
office environment, after 20 minutes of exploration. B indicates victims most likely are
in big rooms, S in small rooms.

Office Exploration
Coord. D-MCDM (B) S-MCDM (B) D-MCDM (S) S-MCDM (S)

#Robots = 4
SR 2372.7(240.1) 3424.4(316.1) 2372.7(240.1) 3956.6(556.5)

MRv1 2753.4(199.9) 3305.3(268.9) 2753.4(199.9) 3667.1(597.4)
MRv2 2855.0(285.2) 3616.0(219.4) 2885.0(285.2) 3683.0(441.0)

#Robots = 6
SR 3060.3(408.1) 3958.0(187.9) 3060.3(408.1) 3895.1(528.1)

MRv1 3361.4(339.3) 4333.1(187.0) 3361.4(339.3) 5094.0(194.8)
MRv2 3536.0(158.2) 4408.0(282.2) 3536.0(158.2) 5200.4(278.9)

#Robots = 8
SR 3612.8(324.0) 4350.6(313.5) 3612.8(324.0) 4677.6(526.5)

MRv1 3996.5(267.9) 4856.2(524.0) 3966.5(267.9) 5424.5(264.6)
MRv2 3853.8(358.2) 4786.8(486.7) 3853.8(358.2) 5251.2(528.2)

Table 6.5: Results (average and standard deviation) of total explored area (m2) for the
office environment, after 20 minutes of exploration. B indicates victims most likely are
in big rooms, S in small rooms.

Mall Exploration
Coord. D-MCDM (B) S-MCDM (B) D-MCDM (S) S-MCDM (S)

#Robots = 4
SR 265.4(212.9) 1868.0(160.1) 567.0(66.6) 737.3(61.9)

MRv1 517.3(164.6) 1785.2(232.5) 615.9(24.2) 836.4(94.4)
MRv2 380.3(67.7) 1780.7(233.8) 633.4(37.7) 809.3(104.2)

#Robots = 6
SR 634.4(209.3) 1978.6(200.0) 638.1(74.4) 888.0(72.6)

MRv1 574.2(73.8) 2151.7(228.8) 702.3(52.5) 1018.3(93.3)
MRv2 545.2(129.4) 2105.3(241.4) 701.7(18.8) 983.9(76.7)

#Robots = 8
SR 768.6(190.1) 2050.0(189.3) 708.8(56.4) 953.3(97.4)

MRv1 606.5(207.5) 2304.5(161.6) 755.9(44.0) 1149.5(95.9)
MRv2 540.7(139.5) 2336.9(214.5) 751.8(56.8) 1046.5(80.4)

Table 6.6: Results (average and standard deviation) of explored relevant area (m2) for the
mall environment, after 20 minutes of exploration. B indicates victims most likely are
in big rooms, S in small rooms.
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Mall Exploration
Coord. D-MCDM (B) S-MCDM (B) D-MCDM (S) S-MCDM (S)

#Robots = 4
SR 2480.5(463.5) 5229.9(114.4) 2480.5(463.5) 2605.9(251.1)

MRv1 2668.0(156.7) 4501.1(541.3) 2668.0(156.7) 2802.9(427.3)
MRv2 2542.8(54.3) 4765.6(546.2) 2542.8(54.3) 2797.7(530.4)

#Robots = 6
SR 3164.2(478.1) 5222.3(508.8) 3164.2(478.1) 3355.1(451.2)

MRv1 2990.1(262.1) 5449.9(349.4) 2990.1(262.1) 3706.4(436.7)
MRv2 2941.1(198.6) 5214.6(581.0) 2941.1(198.6) 3536.6(363.2)

#Robots = 8
SR 3756.9(425.0) 5625.6(243.2) 3756.9(425.0) 3956.6(465.4)

MRv1 3446.9(406.9) 5846.5(235.7) 3446.9(406.9) 4255.4(406.0)
MRv2 3326.0(324.7) 5765.0(269.8) 3326.0(324.7) 3903.4(379.6)

Table 6.7: Results (average and standard deviation) of total explored area (m2) for the
mall environment, after 20 minutes of exploration. B indicates victims most likely are
in big rooms, S in small rooms.

ods, S-MCDM behaves better than D-MCDM, and differences are statis-
tically significant, according to an ANOVA analysis with a threshold for
significance p-value < 0.05 [101]. For example, the difference between
the relevant area mapped at 20 minutes with S-MCDM and D-MCDM, in
the case of victims in big rooms, with SR and 6 robots, is statistically sig-
nificant (p-value= 2.42 · 10−7). Figure 6.6 illustrates the evolution of the
explored relevant area over 20 minutes in the setting just discussed. We
can observe that at the beginning the trend is almost the same for both ex-
ploration strategies. This could be explained by the fact that the 6 robots
start from positions that are close to some big rooms and so also D-MCDM
chooses candidate locations in big rooms. After 10 minutes, S-MCDM
outperforms D-MCDM, indicating that, when there are more candidate lo-
cations in different rooms that could be selected by the robots, the benefits
of using a semantic-based exploration are more evident.
Note that similar trends are also valid for the hypothesis of victims in
small rooms and, also in this case, the difference between the relevant area
mapped at 20 minutes with the two exploration strategies is statistically
significant (e.g., with SR and 6 robots, p-value= 1.34 · 10−5).

For both exploration strategies, MRv1 and MRv2 appear to perform rel-
atively better than SR, and differences are statistically significant (for in-
stance, for MRv2 vs. SR, p-value= 9.24 · 10−10, with S-MCDM, consider-
ing the hypothesis of victims in big rooms and 6 robots). Figure 6.7 shows
the explored relevant area considering the latter setting over 20 minutes.
We can observe that MRv1 and MRv2 have similar trends and that there
are some points in which their two curves intersect with the curve of SR.
This can be explained by the fact that there are some initial drawbacks in
sending more robots to the same candidate location, due to sensing over-
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Figure 6.6: Explored relevant area (m2) over 20 minutes, in office environment, by 6
robots, with SR coordination method, in the case of victims in big rooms.

laps. However, in the long term, there seems to be a benefit; indeed, after
10 minutes, curves of MRv1 and MRv2 are well above the one of SR.
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Figure 6.7: Explored relevant area (m2) over 20 minutes, in office environment, by 4
robots, with S-MCDM, in the case of victims in big rooms.

Only considering 4 robots, in the case of victims in small rooms, SR
seems to have better results than MRv1 and MRv2, even if not statistically
significant (e.g., in this setting, with S-MCDM, for SR vs. MRv2, p-value=
0.80). This similar performance of SR and MRv1/MRv2 can be explained
noting that, when the number of robots is small, the exploration becomes
unbalanced if more robots are assigned to the same candidate location.

Another consideration from Table 6.4 is that, as expected, increasing

118



6.3. Simulation results

the number of robots, the amount of explored relevant area increases (apart
from one degenerate case with SR and S-MCDM considering victims in
small rooms and increasing robots from 4 to 6), even if the increase is not
statistically significant. Note that the standard deviation of the results in
Table 6.4 is high in the case of victims in small rooms. This could be due to
the fact that, since robots should focus on small rooms, the space in which
robots can move is small and, so, errors in the movement of the robots
have greater influence in these experiments. Indeed, we observed in the
experiments that, for example, robots spend some time to enter in a small
room.

Table 6.5 shows the total amount of explored area (as opposite to the
amount of relevant area considered so far) for the office environment. The
total amount of explored area increases from D-MCDM to S-MCDM in the
case of victims in big rooms. For example, with 6 robots and SR, the total
amount of explored area changes from 3115.6 (367.0) m2 to 3958.0 (187.9)
m2, with a statistically significant difference (p-value= 5.91 · 10−6). Fig-
ure 6.8 shows the trend over 20 minutes of such setting. This performance
increase could be due to the fact that robots are pushed to big rooms, where
it is possible to easily explore large portions of the environment.
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Figure 6.8: Explored total area (m2) over 20 minutes, in office environment, by 6 robots,
with SR coordination method, in the case of victims in big rooms.

In the case of victims in small rooms the total amount of explored area
is more or less the same for D-MCDM and S-MCDM. The total amount of
explored area is similar for all coordination methods. Note that the traveled
distance by the robots does not change much over all the experiments (see,
for example, Figure 6.9). This fact shows that the difference in the amount
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of (relevant or total) explored area does not depend on the fact that the
robots may be stuck, but almost exclusively on the exploration strategy and
the coordination methods adopted.
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Figure 6.9: Sum of the traveled distances (m) over 20 minutes, in office environment, by 8
robots, considering S-MCDM, in the case of victims in big rooms.

The difference in the performance of the exploration strategies can be
further analyzed by looking at how they evaluate candidate locations in
different rooms. As explained in Section 6.1, this evaluation changes ac-
cording to the semantic labels of the cells and the hypothesis on the victims
locations for S-MCDM (criterion S), while D-MCDM evaluates candidate
locations in different rooms more uniformly. Figure 6.10 illustrates this be-
havior in the case of 6 robots, SR coordination method, and victims most
likely located in big rooms. This different evaluation of the candidate lo-
cations determines the number of assigned candidate locations in different
rooms for D-MCDM and S-MCDM. Including semantic information in the
exploration strategy effectively allows the robots to focus on candidate lo-
cations in the relevant areas, neglecting those in the irrelevant ones. Fig-
ure 6.11a shows that, in the case of 6 robots, SR coordination method, and
victims most likely located in big rooms, the number of candidate locations
in big rooms assigned to the robots using S-MCDM is greater than the same
number in the case of D-MCDM. Figure 6.11b illustrates that, in the same
last setting, almost no candidate locations in small rooms are assigned to
the robots in the case of S-MCDM.

Tables 6.6 and 6.7 show experimental results for the mall environment
and report the explored relevant area and explored total area, respectively.
All the above observations hold also in this setting. The only difference is
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Figure 6.10: Evaluation of the candidate locations (on a relative scale, average over all
the candidate locations evaluated by the robots over 20 minutes) that are located in
small, medium, big rooms and corridors, in office environment, with 6 robots, consid-
ering SR and the hypothesis of victims in big rooms.

relative to the case of D-MCDM and victims in big rooms, for which the
results obtained by MRv1 and MRv2 worsen with respect to SR, and only
with 8 robots the difference between SR and MRv2 is statistically signifi-
cant (p-value= 0.01). This could imply that the joint use of a coordination
method that uses semantic information and an exploration strategy that does
not can be inefficient.

We also experimentally verified that our results are still valid varying
starting locations and the number of the robots (10 or 12). For example,
Figure 6.12 shows that increasing the number of robots, the explored rel-
evant area increases, as expected. As shown in the figure, the trends for
the different combinations of exploration strategy/coordination method are
rather similar.

We now relax the assumption of perfect semantic information, as our
system strongly relies on it. Specifically, we consider two imperfect se-
mantic mapping modules, which make errors in assigning labels to rooms
(and to cells within rooms):

1. randomly according to an error rate (0.1 or 0.2 of the number of clas-
sifications), as in the work of Stachniss et al. [121];

2. depending on the percentage of the area actually discovered. If a can-
didate location p is located in a room, whose fraction of already ex-
plored area is less than a pre-defined threshold (0.2 or 0.4), the seman-
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Figure 6.11: The number of assigned candidate locations in big rooms (a) and in small
rooms (b) over 20 minutes, in office environment, to 6 robots, considering SR and the
hypothesis of victims in big rooms.
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Figure 6.12: The explored relevant area (m2) over 10 minutes, in office environment, by
10 (a) and 12 (b) robots, with the hypothesis of victims in big rooms.

tic mapping module classifies p randomly (with uniform probability)
over the semantic labels available. Otherwise, the semantic mapping
module correctly classifies p.

Both of them, when errors are made, environment regions are classified
randomly according to a uniform distribution over the possible label set.
We tested the system with imperfect semantic information in the office en-
vironment, with 6 robots, coordination method SR, and victims located
in big rooms. Figure 6.13 shows the amount of relevant area explored
over 20 minutes, with the imperfect semantic mapping module (a). The
explored relevant area diminishes compared to the case of a perfect se-
mantic mapping module. However, the combination of our proposed ex-
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ploration strategy and coordination method allows to have a better perfor-
mance compared to the state-of-the-art combination of exploration strategy
and coordination method (at the end of 20 minutes, this difference between
S-MCDM + MRv1 and D-MCDM + SR is statistically significant with p-
value= 1.02 · 10−4). Comparing trends of the results obtained by using
MRv1, we can observe that the performance degrades, when the error rate
increases. This can be explained by the fact that our proposed coordination
method assigns more robots to a candidate location in a big room or a corri-
dor, but, with an imperfect oracle, the risk is to assign more robots to areas
that could be explored by only one robot.

Figure 6.14a shows the amount of relevant area explored over 20 min-
utes, with the more realistic semantic mapping module (imperfect semantic
mapping module (b)) that assigns a random label to a room if it is explored
less than a threshold. The performance does not degrade very much with
respect to the performance obtained by our system with perfect semantic
information, and S-MCDM still performs better than D-MCDM. For ex-
ample, at 20 minutes, with S-MCDM and realistic semantic mapping with
threshold 0.4, the explored relevant area is 1321.8 (310.2) m2, while with
D-MCDM and perfect semantic information, the explored relevant area is
1024.6 (220.7) m2 (p-value= 0.02). The same trend is observed consid-
ering coordination methods (see Figure 6.14b). The setting of S-MCDM
and MRv1 with threshold 0.4 is still better than D-MCDM and SR with
perfect semantic information (1629.9 (120.8) m2 vs. 1024.6 (220.7) m2,
p-value= 5.0 · 10−7).
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Figure 6.13: Explored relevant area (m2) over 20 minutes, in office environment, by 6
robots with random semantic mapping.

Finally, we tested the performance of our system by setting as termina-
tion criterion a given percentage of relevant area to be mapped (instead of
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Figure 6.14: Explored relevant area (m2) over 20 minutes, in office environment, by 6
robots with realistic semantic mapping.

the 20 minutes timeout considered before), as in the work of Wurm et al.
[134]. In this case, the system performance could be evaluated accord-
ing to the time spent for accomplishing the mission. This experiment was
carried out on a portion of the mall environment, with 8 robots with the
goal of mapping 90% of the relevant area (victims located in big rooms).
Figure 6.15 shows that S-MCDM (and MRv1) terminates earlier (around
20 minutes) than the state-of-the-art combination of D-MCDM and SR
(around 29 minutes).
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Figure 6.15: Explored relevant area (m2) over 20 minutes, in mall environment, by 8
robots with a different termination criterion.

In summary, results show that our semantically-informed exploration
strategy largely outperforms a state-of-the-art exploration strategy in dis-
covering areas of interest in the office and the mall environments. This
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can be explained by the fact that the exploration strategies that do not con-
sider semantic information evaluate candidate locations only according to
their metric features, independently of their interest for the possible pres-
ence of victims. Another relevant result is that both MRv1 and MRv2 have
better performance compared to SR. This behavior is more evident with
the hypothesis of victims in big rooms, because MRv1 and MRv2 directly
accelerate the exploration of big rooms, as more robots are sent to such
rooms. The result is valid in the hypothesis of victims in small rooms
as well but, in this case, the reason is that MRv1 and MRv2 send more
robots in corridors, to which several rooms are connected and can be eas-
ily accessed. However, no statistically significant trend can be observed
when comparing MRv1 and MRv2. In addition, our experimental results
suggest that the coordination method has comparatively less impact on the
performance than the exploration strategy. This is in line with the results
obtained by our analysis in [7], for different search and rescue settings and
reported later in Chapter 9. Note also that our semantically-informed ap-
proach generally performs better than traditional approaches independently
of the percentage of relevant area over total area. However, with few rel-
evant areas (e.g., big rooms in office, Figure 6.4a), the advantage in using
semantic information in coordination is more evident. With many relevant
areas that are easily accessible from the starting positions of the robots
(e.g., small rooms in mall, Figure 6.4b), using semantically-informed co-
ordination is less effective (robots can be simply spread using traditional
approaches with good chances of visiting relevant areas). Finally, our sys-
tem proved to be enough robust to errors in semantic labeling of the areas
of the test environments. The proposed semantically-based multirobot ex-
ploration system contributes to one of the objectives of this dissertation,
namely to improve exploration by exploiting also semantic information.
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Part III
Evaluation

Recognizing the lack of a mature experimental methodology for autono-
mous mobile robots (see Section 2.3), the third part of this dissertation
contributes to answering the question ‘which approach performs better in
a given setting?’. Also, it contributes to understand through experimental
analyses how some of the factors that are, to some degree, controllable by
the robotics designers impact the performance of exploration.

Specifically, we show how the approach provided in Chapter 3 that cal-
culates the optimal offline exploration path can be used as a tool to calculate
the (approximated) competitive ratio so that exploration strategies can be
compared against an optimal behavior. Further, we experimentally analyze
what impact the perception/decision timing has on exploration. We also
quantitatively assess the relative influence of exploration strategies and co-
ordination methods on the performance of multirobot exploration systems
for search and rescue.

For performing experimental analyses, despite the importance of testing
methods on real robots, we used two different simulators to obtain repeated
results with a good significance level. The reason is that we searched for
existing simulators and controllers, for which the timings of perception and
decision can be easily changed and some coordination methods are already
available. As a consequence, we selected the Stage simulator [130] for
evaluating the impact of perception/decision timing and USARSim [27] for
evaluating the relative influence of exploration strategies and coordination
methods on the exploration performance. Also note that we selected exist-
ing controllers so that we can focus only on exploration strategies and on
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coordination methods (when more than one robot is employed), exploiting
existing and tested methods for navigation, localization, and mapping.

The evaluation results discussed here could serve to aid robotic design-
ers to better tune some of the parameters of the systems in order to enhance
their performance.
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7
Evaluation of upper bounds and competitive ratio

In this (short) chapter, using the simulation results presented in Section 3.4
and relative to optimal offline exploration paths, we first show that some of
the (theoretical) upper bounds relative to exploration algorithms proposed
in literature are usually very far from the optimal exploration paths results
obtainable in specific environments. The reason lies in the definition of
upper bounds: those bounds are calculated considering different types of
environments, including (unrealistic) worst-case environments, like star-
shape environments. Hence, looking only at upper bounds does not allow
to answer the question which exploration algorithm performs better in a
specific setting. Second, we compare our results with online exploration
algorithms analyzed by Amigoni [2], showing how our approach can be
used to compute their competitive ratio for specific environments.

As we noted in Chapter 2, different works in literature deal with the
optimal exploration problem from an online perspective, assuming that the
environment is initially unknown. The contributions provided by this class
of algorithms can be roughly divided in two types. Theoretical results typi-
cally involve the definition of guaranteed bounds on the performance that a
particular algorithm can achieve on some classes of environments. Experi-
mental contributions, on the other hand, are typically focused on assessing
the performance of exploration algorithms on the field, evaluating them on
some specific test environments. We now show how our approach can pro-
vide interesting insights for both these types of results, helping to answer
questions on how tight a bound is in practice or how effectively an algo-
rithm can compete against an optimal exploring robot.
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7.1 Upper bounds

Let us consider the bounds presented by Ghosh et al. [55] which apply to
the number of steps. Authors introduce an online algorithm that, given
an initial position of the robot in a polygon P , finds an exploration path
that starts by following the boundary of P and then continues over the
boundary between the explored and unexplored areas, until all the poly-
gon is covered. In such work, finite sensor range and time-discrete per-
ception are considered in an arbitrary environment. Authors found that
the upper bound of their proposed algorithm is (using authors’ notation)
UB# =

8×A(Ef )

3×R2 +
Perimeter(Ef )

R
+ r + h + 1, where A(Ef ) is the environ-

ment free space area, Perimeter(Ef ) is the environment perimeter, R is the
sensor range, r is the number of reflex vertices, h is the number of holes.

For the traveled distance, a work that provides an upper bound to the
proposed algorithm is that of Gabriely and Rimon [51], which also con-
siders finite sensor range and time-discrete perception, in an arbitrary en-
vironment. Specifically, authors extend the offline algorithm we briefly
presented in Section 2.1 to the online case, in which the environment is ini-
tially unknown, by incrementally building the spanning tree according to
the current knowledge of the environment. The upper bound is (using au-
thors’ notation) UBD = (n+m)D, where n =

A(Ef )

D2 is the total number of
D-size cells (the continuous work-area is approximated by a discrete grid
of D-size cells), m =

Perimeter(Ef )

D
≤ n is the number of cells sharing a point

with the grid boundary, and D is the size of the tool. Table 7.1 shows that,

Perimeter (units) Area (units2) h r
# OF STEPS

[55]
DISTANCE

[51] # OF STEPS DISTANCE

Indoor 1226 22295 0 8 218.9 1783.4 25.3 538.1
Openspace 1398 70944 1 5 549.9 3171.6 74.1 1686.9
Obstacles 1992 18280 14 72 308.5 2449.0 27.7 607.3

Table 7.1: Environments settings for calculating upper bounds for the number of
steps [55] and for traveled distance [51], with sensor range R = 20 (D = 20) units
(last two columns show the costs of the solutions found by our algorithm considering
r = 20, e = 1, g = 0.95).

in case of both optimality criteria, the bounds provided by Ghosh et al. [55]
and Gabriely and Rimon [51] are (very) loose for the realistic environments
of Figure 3.9. The reason is that those bounds are calculated considering
different types of environments, including (unrealistic) worst-case environ-
ments like, for example, weird star-shaped ones. Thus, having worst-case
bounds does not seem to provide useful insights for establishing which al-
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gorithm performs better in a specific environment.

7.2 Competitive ratio

The work presented by Amigoni [2] performs experimental evaluations and
comparisons of some online exploration strategies. The model assumed by
the author is basically the same as the one presented in Chapter 5. Specif-
ically, Amigoni [2] assumes to have an holonomic mobile robot that can
move in a two-dimensional environment and that is equipped with two laser
range scanners, so that the covered area is 360° and a configurable range
r. It is assumed that the perception and decision models are time-discrete.
Differently from our approach, which considers a grid map, the environ-
ment is represented with a line-segment-based map, which stores two lists
of line segments: obstacle list that stores segments representing obstacles
and free edge list that stores segments representing the boundaries between
known and unknown portions of the environment. The candidate destina-
tion locations are generated randomly on the line segments belonging to
the free edge list. The author evaluates four exploration strategies. Two
of them are proposed in the literature and are called GB-L [56] and A-C-
G [3] (see Equation (2.1) and Equation (2.4) in Section 2.2). Another one is
called Greedy exploration strategy, which evaluates a candidate destination
location p only on the basis of its utility u(p) = A(p), namely the expected
information gain once reached p. The last evaluated exploration strategy
acts as “bottom line” and is called Random, as it selects next destination
locations randomly. These exploration strategies are tested in the same en-
vironments depicted in Figure 3.9. The considered metrics by the author
are the number of steps and the traveled distance. Recall that a step (or
scan) in the author’s work (and here) refers to map updates for exploration
purposes and not to reading from sensors data at a given frequency. This
measure provides an idea about the computational effort required to build
the map of the whole environment (assuming that the localization process
takes less computational time).

With the results presented in Section 3.4, we are able to calculate an ap-
proximated competitive ratio for these strategies in the three environments
shown in Figure 3.9, using the approximation of the optimal exploration
path returned by our approach. Below, we show the computed competitive
ratio considering r = 20 and g = 0.95 in the three environments of Fig-
ure 3.9. Note that similar considerations hold also for the other values of r
and g used in Section 3.4.

Figures 7.1a and 7.1b show the results for the indoor environment with

131



Chapter 7. Evaluation of upper bounds and competitive ratio

(a) Number of steps (b) Traveled distance

Figure 7.1: Evaluations of some online exploration strategies in indoor environment, r =
20, g = 0.95.

(a) Number of steps (b) Traveled distance

Figure 7.2: Evaluations of some online exploration strategies in openspace environment,
r = 20, g = 0.95.

r = 20 and g = 0.95. It can be noted that, considering number of scans
as optimality criterion, the online exploration strategies have more or less
the same competitive ratio. This could be explained by the fact that the
candidate locations are considered on the boundary between known and
unknown part of the environment. So, at each step, the robot can always
perceive some unexplored area of the environment. Also, GB-L, A-C-G,
and Greedy strategies do not account for the number of steps as criterion to
evaluate candidate locations. Significant difference can be observed con-
sidering traveled distance as optimality criterion. Indeed, the more sophis-
ticated exploration strategies (GB-L and A-C-G) are almost 3-competitive,
while the simpler ones (random and greedy) are almost 7-competitive.

Similar considerations hold in the other two environments, as shown in
Figure 7.2 and Figure 7.3.
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(a) Number of steps (b) Traveled distance

Figure 7.3: Evaluations of some online exploration strategies in obstacles environment,
r = 20, g = 0.95.

This kind of findings are some of the insights that our approach pre-
sented in Chapter 3 enables, and thus contributing to the improvement of
the experimental assessment of proposed methods for exploration. Clearly
for real environments that are initially unknown, our approach allows to cal-
culate competitive ratios only a posteriori, that is, after the environments
have been actually mapped.

133





8
Impact of perception and decision timing

As said in Section 1.1, two fundamental aspects of exploration are the inte-
gration of perceived data into the current map of the environment (Step (b))
and the decision about where to move next in a partially known environ-
ment (Step (c)). These two activities are performed by robots either in an
event-based (e.g., when a destination location is reached) or in a frequency-
based (i.e., periodically) fashion, as we presented in Section 1.3. Usually,
as shown in Section 2.3 and Table 2.5, papers consider only a single combi-
nation of perception and decision modalities. This makes difficult to assess
the impact of the perception and decision timing on the performance of an
exploring robotic system. On the other hand, these parameters should be
set by designers when developing exploring robot systems.

In the following, we provide a quantitative analysis of the impact of
timing of perception and decision on the performance of a single exploring
mobile robot. We mainly focus on works employing a single robot, but our
considerations hold also for multi-robot exploration (e.g., [22, 126, 131]).
We consider these parameters as particularly important for autonomous ex-
ploration because they are mostly related to the robot control software,
while other parameters, like robot speed, sensor speed, and sensor range
are, although controllable to some degree, more related to the hardware
equipment. The motivation of our work is to provide designers with in-
sights on perception and decision frequencies to develop better exploring
robotic systems.
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8.1 Simulation setting

Following the model outlined in Chapter 5, for this analysis, the robotic
platform used in the simulations is a Segway-RMP robot equipped with a
SICK LMS200 laser range scanner, with a maximum range of 8 m, 180°
FOV, and angular resolution at 1°. The grid map has a resolution of 0.2 m.
Exploration is performed as a sequence of movements to destination lo-
cations, selected according to criteria N = {A, dPP , o} and the following
exploration strategies.

The first exploration strategy we consider is based on a weighted aver-
age of the individual criteria (as for example in the work of Burgard et al.
[22]):

u(p, r) = wAA(p)− wdPP
dPP (p, r)− woo(p, r) (8.1)

where wj indicates the weight associated to criterion j.
The second exploration strategy is called MCDM strategy and combines

the criteria of the set N = {A, dPP , o} (see Chapter 5) using the Multi-
Criteria Decision Making (MCDM) approach, presented in Section 2.2.

We use the weights reported in the following tables for weighted average
(left) and MCDM (right) exploration strategies, which have been set, after
some preliminary experiments, in order to obtain good performance (we
also experimentally verified that slightly different values provide similar
performance).

criteria w()

A 1.0
dPP 0.005
o 0.0

criteria µ()
A 0.5
dPP 0.3
o 0.1

criteria µ()
A, dPP 0.9
A, o 0.7
dPP , o 0.4

Table 8.1: Weights of weighted average (left) and MCDM (right) exploration strategies.

We consider these two exploration strategies because weighted average
is less computationally expensive than MCDM. In this way, we can eval-
uate if the computational cost of making decisions has an impact on the
exploration performance, given perception and decision timing.

Decisions about destination locations can be made either in an event-
based or in a frequency-based fashion, in this last case with a frequency fd
that can be set by the designer. During navigation, the robot perceives the
surrounding environment either in an event-based or in a frequency-based
fashion, also in this last case with a configurable frequency fp. Recall that
we refer to perception as relevant for Step (b), namely the integration of the
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sensor data in the map. We use six values for perception/decision frequen-
cies fp and fd, namely 0.2, 0.4, 0.6, 1.0, 2.0 and 4.0 Hz (smaller values
make exploration too slow and larger values require too computational ef-
fort or are not feasible because of the sensor scanning frequency). We also
use the combination of event-based perception and event-based decision.

The termination criterion is to map 90% of the free area of the environ-
ments. This criterion is of interest, for example, in rescue applications, for
which knowing the general structure of an environment is more important
than exploring completely the few last posts [118].

In order to perform repeated tests under controlled conditions, we de-
veloped a ROS [105] package1 for experimentally evaluating exploration
strategies with different perception and decision timings using the Stage
simulator [130]. The performed experiments consider simulated robots
with realistically noisy odometry that affects both locomotion and sens-
ing capabilities. Our package mainly depends on the following other ROS
packages (some of which have been adapted or extended):

• explore. It implements frontier-based exploration (we added MCDM
exploration strategy to the default implemented strategy, based on
weighted average). Next best frontier is selected at frequency fd or
when the current frontier is reached.

• move_base. It implements the action of movement to a destination
location by following the trajectory returned by the planner.

• gmapping. It provides laser-based SLAM (Simultaneous Localization
and Mapping) using a grid map. Map of the environment is updated
when a perception is acquired (at frequency fp or when the current
frontier is reached).

• costmap_2d. It implements a two-dimensional costmap which takes
in sensor data from the world, builds an occupancy grid from the data,
and assigns costs to cells.

• stageros. It implements two-dimensional robot simulation using Stage.

8.2 Simulation results

For our experimental evaluation, we consider three indoor environments:
maze, fort, and open (Figure 8.1, the unit in the figure is 3 m), which

1Our developed package is publicly available at http://sourceforge.net/projects/
explorationeval.
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are all publicly available as part of the ROS bosch_common package, of
the fort ap_hill_07b, and of the acapulco_convention_centre data sets at
Radish [63], respectively. The three environments present several chal-
lenges for exploration, including dead-end corridors and intersections where
the best decision about where to go next is not obvious if the environment
is only partially known. Moreover, two environments are rather structured
while the last one presents an empty large area.

Figure 8.1: Maze (left), fort (center), and open (right) environments.

We refer to a combination of exploration strategy and perception/deci-
sion modalities as setting. For each environment, and for 10 randomly se-
lected initial robot poses (shown by arrows in Figure 8.1), we performed 5
runs per setting. For the runs correctly terminated, we measured the average
(over initial locations and runs, namely over 50 values) traveled distance (in
m) and the time required (in s) to meet the termination criterion.

Figures 8.2, 8.3, and 8.4 show results2 for the maze, fort, and open en-
vironment, respectively. For each environment, the two graphs at the top
are relative to weighted average exploration strategy, while the two graphs
at the bottom are relative to MCDM. Moreover, for each environment and
exploration strategy, the left-hand graph shows the average traveled dis-
tance with respect to the perception and decision frequencies, while the
right-hand graph shows the average time to complete the exploration with
respect to perception and decision frequencies. For ease of reading we dis-
cretize the values of traveled distance and exploration time in five bins (the
darker the better). Some interesting trends emerge from the above results
and are discussed below.

Distance vs. perception frequency. Given a decision frequency, there
is an optimal interval of perception frequencies with respect to traveled
distance. Increasing the number of perceptions in a given time interval
reduces the traveled distance because the robot sees the environments at
a higher pace. For example, in the maze environment, with MCDM and
fd = 1.0 Hz, average distance changes from 151.0 m to 113.8 m when fp

2Raw data are available at http://sourceforge.net/projects/explorationeval.
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Figure 8.2: Results for the maze environment, using weighted average (two graphs at the
top) and MCDM (two graphs at the bottom).

changes from 0.2 Hz to 1.0 Hz. This difference is statistically significant (p-
value=2.37 · 10−11) according to an ANOVA analysis with a threshold for
significance p-value < 0.05 [101]. In all the environments, the reduction
of traveled distance tends to reach a plateau when the perception frequency
grows, suggesting that there is some “optimal” traveled distance for an en-
vironment [104]. For example, in the open environment, with MCDM and
fd = 1.0 Hz, average distance changes from 299.8 m to 293.3 m when fp
changes from 2.0 Hz to 4.0 Hz, a difference that is not statistically signifi-
cant (p-value=0.77).

Distance vs. decision frequency. Given a perception frequency, the
traveled distance generally decreases when the decision frequency increases.
For example, in the maze environment, with MCDM and fp = 1.0 Hz, av-
erage distance changes from 123.3 m to 113.8 m when fd changes from
0.2 Hz to 1.0 Hz (p-value=0.044). In a way, this is an expected behavior,
because the more frequently decisions are revised, the better their outcome.
Moreover, at a deeper level of analysis, this result also shows that the robot
have not any “schizophrenic” behavior, namely it does not change destina-

139



Chapter 8. Impact of perception and decision timing

Figure 8.3: Results for the fort environment, using weighted average (two graphs at the
top) and MCDM (two graphs at the bottom).

tion location every time a new decision is taken, at least in the maze and
fort environments. Indeed, if that was the case, the distance would have
shown an increase with growing decision frequency. In other words, the
two exploration strategies we tested have the nice property of estimating
enough accurately the goodness of a destination location in the maze and
fort environments and this estimate is usually not changed if more data
about the environment is collected. In the open environment and consider-
ing MCDM (Figure 8.4, the graph at the bottom left), the graph shows that
there is a region in which increasing decision frequency can worsen the
traveled distance, even if this is not statistically significant. For example,
with fp = 2.0 Hz, average distance changes from 263.9 m to 297.6 m when
fd changes from 2.0 Hz to 4.0 Hz (p-value=0.93).

Time vs. perception frequency. When the perception frequency in-
creases, the robot collects data about the environment at a higher rate and
the exploration time decreases. For example, in the maze environment,
with weighted average and fd = 1.0 Hz, average time changes from 306.8 s
to 233.9 s when fp changes from 0.2 Hz to 1.0 Hz (p-value=1.34 · 10−34).
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Figure 8.4: Results for the open environment, using weighted average (two graphs at the
top) and MCDM (two graphs at the bottom).

However, in some settings, when the perception frequency becomes too
high, the robot spends a significant amount of time in updating the map
and the exploration time slightly increases even if not significantly. For ex-
ample, in the open environment, with weighted average and fd = 2.0 Hz,
average time changes from 804.2 s to 966.2 s when fp changes from 1.0 Hz
to 4.0 Hz (p-value=0.002).

Time vs. decision frequency. A similar behavior can be observed when
looking at the impact of the decision frequency on the exploration time.
With a very high decision frequency, the robot spends time in decision
making (i.e., in evaluating the candidate destination locations) and the ex-
ploration time tends to increase with MCDM. This is more evident in the
fort environment, which is more complicated than the maze environment,
in which the exploration path is almost fixed. For example, in fort en-
vironment, with weighted average and fp = 2.0 Hz, when fd changes
from 1.0 Hz to 4.0 Hz average time changes from 326.6 s to 385.4 s (p-
value=8.06 · 10−4), whereas, in maze environment, it changes from 225.8 s
to 234.8 s (p-value=0.034). With weighted average, instead, the increase
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of the decision frequency does not seem to affect too much the exploration
time. This could be explained by the fact that MCDM exploration strategy
requires more computational effort than weighted average exploration strat-
egy. In the open environment, exploration time has different trends accord-
ing to different perception frequencies for both exploration strategies. With
weighted average, it seems that increasing the decision frequency does not
affect too much the exploration time. Instead, with MCDM, for low per-
ception frequencies, high decision frequencies can worsen the exploration
time, while for high perception frequencies, settings with high decision
frequencies obtain results similar to those with low decision frequencies.
These results in the open environment suggest that decision making in un-
structured environments needs an updated map to reliably choose a candi-
date location.

Distance and time vs. perception and decision frequencies. Look-
ing at the impact of combined frequencies on traveled distance and time,
it emerges that, in general, there is an interval of frequencies that guaran-
tee the best performance. However, there are some differences related to
exploration strategies and environments, as discussed below.

Weighted average and MCDM exploration strategies vs. environ-
ments. With weighted average, the traveled distance and the exploration
time tend to reach a wide plateau, at almost the optimal “height”, when
the perception and decision frequencies increase. With MCDM, both the
optimal traveled distance and the exploration time are obtained for a nar-
rower interval of frequency values, in the fort and open environment. For
example, in open environment, an optimal combination of decision and per-
ception frequencies seems to be fp = 0.4 Hz and fd = 0.6 Hz, with average
distance of 244.3 m and average time of 763.0 s. For small changes in the
values of the frequencies, results worsen, especially regarding exploration
time. This can be explained by the higher computational effort required
by MCDM, degrading the performance when decision frequency increases
too much. In the open environment, the optimal traveled distance and the
exploration time are in a narrower interval of frequency values compared
to the case of maze and fort environments, even for the weighted average.
This could be explained by considering that, in structured environments, the
movements of the robot are “forced” by the presence of walls, lessening the
impact of chosen frequencies values, while, in unstructured environments,
the robot can possibly go in any direction and so carefully tuning frequen-
cies of perception and decision is more critical.

Finally, we present some results about event-based perception and deci-
sion. Figure 8.5 shows results relative to the maze environment for event-
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based perception and decision, for frequency-based perception (fp = 5.0 Hz)
and event-based decision, and for frequency-based perception and decision
(fp = 1.0 Hz and fd = 1.0 Hz). The left-hand graph shows the average
traveled distance, while the right-hand graph shows the average exploration
time for each of the above combinations.

Figure 8.5: Results for the maze environment.

Results confirm, as expected, that better performance is obtained with
frequency-based perception and decision. For example, for MCDM, chang-
ing from event-based to frequency-based perception and decision, average
distance changes from 309.4 m to 113.8 m (p-value=4.65 · 10−44) and aver-
age time changes from 703.0 s to 256.6 s (p-value=5.51 · 10−48). Note that
MCDM performs worse than weighted average. This could be explained
since the maze environment is rather simple and does not require any com-
plex exploration strategy.

The experimental analysis presented above confirms the intuitive idea
that the best performance is obtained with fast-paced perceptions and de-
cisions, but also suggest some trade-offs for the values of perception and
decision frequencies in some settings. This quantitative analysis provides
some insights to robotic designers on how the frequencies of decisions and
perceptions should be set, especially when robots have low-power capabil-
ity on-board. Also, this experimental analysis remarks the good practice on
the fact that parameters should be reported in the descriptions of the exper-
iments, so that they can be easily reproducible by other researchers and the
related results can be thoroughly analyzed, as some parameters could really
affect the performance of the system.
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methods

Prior work evaluates exploration strategies and coordination methods mostly
in a separated way, making it difficult to assess their relative effects on ex-
ploration, as shown in Section 2.3. In this chapter, we contribute to fill
this gap. First, we evaluate, relatively to some coordination methods, the
exploration strategies proposed by Visser and Slamet [131] and Basilico
and Amigoni [16], as representative samples of ad hoc and theoretically-
grounded exploration strategies, respectively. Also, we evaluate, relatively
to some exploration strategies, some variants of the coordination method
employed by Visser and Slamet [131], which produces the same allocation
of the market-based coordination method of Simmons et al. [118]. Our re-
sults complement those of Zlot et al. [140], by considering more complex
ways for generating the locations allocated to robots. We selected a search
and rescue application for our experimental assessment, because there is an
international competition, namely the RoboCup Rescue Simulation League
Virtual Robot Competition1, which provides a simulated common ground
(e.g., metrics and software tools) for assessing the performance of explor-
ing multirobot systems, enabling comparison and reproduction of results.
We contribute to answer the following question: With limited computing
or time resources, should developers spend more efforts on developing an
effective exploration strategy or coordination method?

1http://www.robocuprescue.org/virtualsim.html
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9.1 Simulation setting

In this section, instantiating some of the dimensions presented in Section 1.3,
we describe the search and rescue setting in which we investigated the rel-
ative impact of exploration strategies and coordination methods on perfor-
mance of exploring multirobot systems. In our setting, the goal is to explore
an initially unknown indoor environment for finding the largest number of
human victims within a given time. Assuming no a priori knowledge about
the possible locations of the victims, the problem of maximizing the num-
ber of victims found in a given time interval is equivalent to the problem
of maximizing the amount of area covered by robots’ sensors in the same
interval (the optimality criterion we evaluate). The termination criterion is
determined by the time interval of 15 minutes. We first describe the adopted
simulation environment and robot controller. Then, we describe the explo-
ration strategies and the coordination methods we consider.

In order to perform repeated tests under controlled conditions, we use
a robot simulator. We selected USARSim [27] because it is a high fidelity
3D robot simulator and it is employed in the Virtual Robot Competition.

From an analysis based on availability of code and performance ob-
tained in the Virtual Robot Competition, we selected the controller devel-
oped by the Amsterdam and Oxford Universities (Amsterdam Oxford Joint
Rescue Forces, AOJRF2) for the 2009 competition [132]. The main reason
for using an existing controller is that we can focus only on the exploration
strategies and on the coordination methods, exploiting existing and tested
methods for navigation, localization, and mapping. The controller man-
ages a team of robots. The model of the robot is basically the same as
presented in Chapter 5 with some extensions: three occupancy grids are
used to represent the knowledge about the environment. The first one is
obtained with a small-range (3 m) scanner and constitutes the safe area,
i.e., the area where the robots can safely move. The second one is obtained
from maximum-range scans (20 m) and constitutes the free area, i.e., the
area which is believed to be free but not yet safe. Moreover, a represen-
tation of the clear area is maintained as a subset of the safe area that has
been checked for the presence of victims (this task is accomplished with
simulated sensors for victim detection). The set of candidate locations is
computed on the boundaries between safe and free regions.

The set of criteria considered is N = {A,P, d, b} (see Chapter 5). Note
that the criterion d, as shown below, can be computed using dL2 or dPP . We
define two exploration strategies. The first one is a slight variation of the

2http://www.jointrescueforces.eu/
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strategy proposed by Visser and Slamet [131] and is called AOJRF strategy.
It integrates the above criteria in an ad hoc utility function:

u(p, r) =
A(p)P (p)

d(p, r)b(p,r)
. (9.1)

The second exploration strategy is again MCDM strategy and combines
the criteria of the set N = {A,P, d, b} using the Multi-Criteria Decision
Making (MCDM) approach. The same consideration about the evalua-
tion criterion d for the AOJRF strategy holds also for MCDM. We use the
weights reported in the following table, which have been manually set in
order to obtain good performance (according to the guidelines of Basilico
and Amigoni [16]).

criteria µ()
A 0.4
d 0.3
P 0.05
b 0.25

criteria µ()
A, d 0.75
A,P 0.55
A, b 0.55
d, P 0.4
d, b 0.32
P, b 0.28

criteria µ()
A, d, P 0.9
A, d, b 0.8
A,P, b 0.85
d, P, b 0.4

Table 9.1: Weights used for the MCDM strategy.

The two exploration strategies have been selected because they are rep-
resentative of the two main classes of strategies that have been proposed
for exploration of unknown environments (see Section 2.2). In particular,
the AOJRF strategy represents ad hoc strategies, while the MDCM strategy
represents more theoretically-grounded strategies.

While exploration strategies evaluate the goodness of a candidate lo-
cation p for a robot r, coordination methods are used to assign candidate
locations to robots. We define three coordination methods for allocating
candidate locations to robots. They start from a set of candidate locations
(generated as discussed in Chapter 5 on the boundary between the safe and
the clear area) and a set of robots, and their goal is to assign a location to
each robot.

The first coordination method, shown in Algorithm 9.1, is executed by
each robot independently, knowing (from the base station) the current map
and the positions of the other robots, and is derived directly from the work
of Visser and Slamet [131].
This first coordination method is called AOJRF original coordination. The
reason behind the utility update of Step 4 of Algorithm 9.1 is that com-
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1 compute the global utility u(p, r) of allocating each candidate p to each robot r
(using Equation (9.1) or Equation (2.8)) where d(p, r) is calculated using the
Euclidean distance dL2

(namely using an underestimate of the real distance);
2 while ∃ robot r not allocated and candidate location p do
3 find the pair (p∗, r∗) such that the previously computed utility is maximum,

(p∗, r∗) = arg maxp,r u(p, r);
4 re-compute the distance between p∗ and r∗ using dPP with the path planner

(namely considering the real distance) and update the utility of (p∗, r∗) using
such exact value instead of the Euclidean distance;

5 if (p∗, r∗) is still the best allocation then
6 allocate location p∗ to robot r∗;
7 eliminate robot r∗ and candidate p∗;

end
end

Algorithm 9.1: AOJRF original coordination method.

puting dPP requires a considerable amount of time. Calculating it for all
the candidate locations and all robots would be not affordable in the res-
cue competition, since a maximum exploration time is enforced. Although
in pathological cases all pairs (p, r) could be re-evaluated using the above
algorithm, in practice this is done only for few of them. Note that, being
dL2 an underestimate of the real distance to be traveled and being Equa-
tion (9.1) and Equation (2.8) monotonically decreasing with d, the method
is guaranteed to select the best pair (p∗, r∗) according to u() calculated with
dPP .

The AOJRF original coordination method produces the same results of
the market-based mechanism proposed by Simmons et al. [118] and applied
considering Equation (9.1) or Equation (2.8) to calculate utilities for bids.
Both methods first select the pair (p∗, r∗) with the largest utility u(), then,
among the pairs left after elimination of those involving p∗ and r∗, they
select the pair (p∗∗, r∗∗) with the largest utility, until a candidate destination
location is allocated to each robot.

The second coordination method, called AOJRF simplified coordination,
is similar to the previous one, but does not re-compute the distance in the
Step 4 of Algorithm 9.1. It selects the best pair (p∗, r∗) only on the basis of
the Euclidean distance.

In the third coordination method, called no coordination, each robot
selfishly selects its best candidate location, without considering the pres-
ence of other robots. This means that Steps 1-6 of the AOJRF original
coordination method are performed only for one robot r∗ (the robot that is
running the method) and that Step 7 is skipped. Note, however, that Step 4
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is executed and distance re-computed.
The three coordination methods are in decreasing order of “optimality”

in allocating locations to the robots, with the AOJRF original coordination
method producing the best allocation and the no coordination method the
worst. The last two methods can end up with sub-optimal allocations in
which a robot is assigned a location that is supposed to be close but is ac-
tually far (AOJRF simplified coordination method) or in which two robots
are assigned the same location (no coordination method).

To have a baseline in comparing the results, we consider a random coor-
dination method that randomly assigns robots to candidate locations, with-
out evaluating them. We expect this random method to perform worse than
other combinations of exploration strategies and coordination methods.

9.2 Simulation results

We consider teams of two and three robots (plus the base station) deployed
in the “DM-compWorldDay4b_250” and “DM-VMAC1” environments1,
called office and open environments, respectively (see Figure 9.1). Both
the environments are indoor with the office environment (about 800 m2)
presenting an intricate cluttered structure and the open environment (about
1300 m2) presenting more open spaces. We define a setting as an envi-
ronment, a number of robots, an exploration strategy, and a coordination
method. For each setting, we execute 5 runs (with randomly selected start-
ing locations for the mobile robots such that they are separated by about
20 meters) of 15 minutes each. We assess performance by measuring the
amount of free, safe, and clear area every 30 seconds of the exploration.
We report only data on safe area at the end of runs, as free area is less sig-
nificant and clear area is similar to the safe area. Of course, the larger the
mapped safe area within 15 minutes, the better the performance. Under the
assumption that victims are uniformly spread in the environment, this met-
ric is basically equivalent to the metric that counts the number of victims
found. Experiments have been run in real-time as in the competition, to
realistically account for time spent in movements and in computation.

Table 9.2a shows results for the office environment. As said, every point
is the average between 5 runs. Looking at Figure 9.2, it can be noted that
in the first part of the exploration, and for all the coordination methods, the
curves associated to the two exploration strategies are very similar. They
start to differentiate after about 5 minutes from the start. This is because
at the beginning of the exploration the selection of candidate locations is

1Maps can be found at https://sourceforge.net/projects/usarsim/files/Maps/3.31/.
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(a) Office (b) Open

Figure 9.1: The office environment (a) and the open environment (b).

rather straightforward (the environment is largely unknown and all choices
are almost equally good in increasing the mapped safe area), while it be-
comes more challenging as exploration continues, evidencing differences
between the exploration strategies. With all the first three coordination
methods, the MCDM strategy seems to behave better than the AOJRF strat-
egy, although differences are not statistically significant, according to an
ANOVA analysis with a threshold for significance p-value < 0.05 [101].
The difference between the safe area mapped at the end of the 15 minutes
is more evident with the AOJRF original coordination method. Conversely,
the difference between the two exploration strategies is less evident with
the AOJRF simplified coordination method. These results can be explained
by saying that MCDM better exploits the more precise information used
with the AOJRF original coordination method (a precise distance value ob-
tained with path planning procedures instead of an approximate Euclidean
distance value). Multirobot exploration introduces some benefits, as shown
by the settings with three robots that consistently outperform those with
two robots, although the difference is not statistically significant in most
of the cases (e.g., MCDM strategy, AOJRF original coordination, 2 and 3
robots, p-value= 0.17). Finally, the random method has, as expected, the
worst performance (we tested it only with two robots). Note also that, in
Figure 9.2d, there is a single curve because, being candidate locations ran-
domly assigned to robots, no exploration strategy is used to evaluate these
locations.

As can be noted in Figure 9.3, the performance of the first three coordi-
nation methods are very similar at the beginning of the exploration and dif-
fer as the exploration proceeds. For both the exploration strategies, we can
clearly identify three behaviors. The performance of the AOJRF original
coordination method and that of the method without coordination are very
similar and better than that of the AOJRF simplified coordination method.
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(a) AOJRF original coordination method
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(b) AOJRF simplified coordination method

0 2 4 6 8 10 12 14 16
time (minutes)

0

50

100

150

200

250

300

350

400

sa
fe

 a
re

a 
(m

2
)

AOJRF strategy
MCDM strategy

(c) no coordination
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Figure 9.2: Performance of exploration strategies with respect to coordination methods in
the office environment.

2 robots 3 robots
AOJRF strategy MCDM strategy AOJRF strategy MCDM strategy

AOJRF original coordination 299.77(53.60) 341.95(12.54) 341.58(98.62) 387.41(66.67)
AOJRF simplified coordination 257.53(54.65) 262.43(15.62) 320.40(63.71) 325.14(42.21)

no coordination 306.36(65.91) 330.27(46.38) 332.58(42.03) 374.28(40.31)
random 211.68(18.86)

(a) office environment
2 robots 3 robots

AOJRF strategy MCDM strategy AOJRF strategy MCDM strategy
AOJRF original coordination 430.18(78.86) 498.45(51.12) 483.46(130.14) 511.83(118.35)

AOJRF simplified coordination 586.77(72.16) 678.27(48.77) 673.48.77(85.61) 690.16(36.69)
no coordination 356.92(65.97) 425.05(99.01) 458.55(80.30) 498.08(81.03)

random 472.71(115.48)

(b) open environment

Table 9.2: Average safe area (and standard deviation) mapped after 15 minutes (units are
m2).
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Chapter 9. Impact of exploration strategies vs. coordination methods

The difference between the safe area mapped at 15 minutes with the AOJRF
original coordination and with the AOJRF simplified coordination methods
is statistically significant for the MCDM strategy (p-value= 2.05 · 10−5

for two robots and p-value= 0.04321 for three robots), but not for the
AOJRF strategy (p-value= 0.25 for two robots and p-value= 0.6972 for
three robots). Similarly, the difference between the no coordination and the
AOJRF simplified coordination methods is statistically significant for the
MCDM strategy (p-value= 0.0147 for two robots and p-value= 0.0485 for
three robots), but not for the AOJRF strategy (p-value= 0.23797 for two
robots and p-value= 0.7304 for three robots).
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Figure 9.3: Performance of coordination methods with respect to exploration strategies.

Table 9.2b shows the results for the open environment. Also in this
case, the MCDM strategy seems to behave better than the AOJRF strategy
with all the first three coordination methods, although differences are not
statistically significant. The difference between the safe area mapped at the
end of the 15 minutes is more evident with the no coordination method,
suggesting that a theoretically-grounded exploration strategy like MCDM
can be more effective in limiting the problems of uncoordinated robots in
the open environment.

In the open environment, the AOJRF simplified coordination method
outperforms the other methods. The difference between the safe area mapped
at 15 minutes with the AOJRF simplified coordination and with the AO-
JRF original coordination methods is statistically significant both for the
MCDM strategy (p-value= 5.00 · 10−4 for two robots and p-value= 0.0123
for three robots) and for the AOJRF strategy (p-value= 0.0113 for two
robots and p-value= 0.02594 for three robots). Similarly, the difference be-
tween the AOJRF simplified coordination and the no coordination methods
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9.2. Simulation results

is statistically significant both for the MCDM strategy (p-value= 9.00·10−4

for two robots and p-value= 1.31·10−3 for three robots) and for the AOJRF
strategy (p-value= 8.00 · 10−4 for two robots and p-value= 3.5 · 10−3 for
three robots).

The results for the office environment are rather surprising: coordinately
allocating tasks to robots and allocating tasks without any coordination lead
to the same performance. Although the initial separation of robots could
help to decompose the problem, this observation can be explained by say-
ing that what is predominantly important in exploring the highly structured
office environment is the quality of the information used to evaluate the
candidate locations (like the distance returned by path planning procedures
instead of the Euclidean distance). This result does not contradict previous
results that concluded that coordinated robots perform better than uncoor-
dinated robots (see Section 2.2). It seems rather to complement previous
works, which considered much simpler exploration strategies than those
used in this chapter. The use of exploration strategies, like MCDM and
AOJRF strategies, that efficiently exploit good quality information to select
observation locations effectively balances computational effort and accu-
racy of information. Indeed, although obtaining more accurate information
(i.e., planning a path between the current location of the robot and the can-
didate location) requires more time and could represent a problem with the
15 minutes deadline, the resulting selection of a good observation location
has a global benefit in highly structured environments.

The results for the open environment suggest that coordination becomes
more important when the environment is less structured. This can be ex-
plained by noting that, in the office environment, robots can choose from
many candidate locations and the intricate structure of the environment
“pushes” robots to spread, while, in the open environment, the number of
candidate locations is smaller and robots need to be coordinated to effec-
tively spread across the environment and map it. Accordingly, in the open
environment, the worst performance is obtained with the no coordination
method, which is outperformed also by the random method, suggesting that
assigning candidate locations randomly to robots is more effective than let-
ting robots independently choosing their best candidate locations. In the
open environment, the quality of information seems not so important (AO-
JRF simplified coordination method using Euclidean distance outperforms
AOJRF original coordination method using distance returned by path plan-
ning procedures), mainly because obtaining accurate information requires
some efforts, thus leaving less time to exploration, which can be performed
very quickly in uncluttered open environments.
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Chapter 9. Impact of exploration strategies vs. coordination methods

In conclusion, we can say that the best performance is obtained for
the setting with the MCDM strategy and the AOJRF original coordination
method (or with the no coordination method), namely with the setting that
uses the most precise information (AOJRF original coordination or no coor-
dination) and combines it in the most effective way (MCDM strategy). The
quality of information used to make decisions appears to have a stronger
influence on the performance of exploration than the coordination of the
robots. This experimental analysis could provide some insights on what
robotic designers should focus on when designing a robotic exploration sys-
tem. Also, it could highlight the fact that, as good experimental practice,
the analysis of a component (e.g., exploration strategy) should be isolated
to other components (e.g., coordination method), so that it becomes clearer
what factors really impact on the exploration process.
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Part IV
Use of some of the contributions

In this part, we show how the search-based approach introduced in Chap-
ter 3 to find the optimal exploration strategy in an environment can be em-
ployed in other contexts to explore abstract state spaces.

Specifically, we select the domain of pursuit-evasion, where a pursuer
tries to capture an evader, which, in turn, tries to actively escape. The
models used in this context are of interest in robotics applications, because
they can represent situations like those in patrolling and search and rescue.
In the following, we show an approach to find a solution to a version of
the pursuit-evasion problem and, in particular, to find the optimal pursuing
strategy by exploring the belief space.
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10
Exploration of an abstract state space

Pursuit-evasion games are of fundamental importance to model several ro-
botics applications such as surveillance and search and rescue [32]. Typi-
cally, these games involve two players: a pursuer and an evader. The pur-
suer (or sometimes a team of pursuers) tries to capture the evader. Due to
its practical importance, there has been significant interest in studying and
solving such games in complex environments and with realistic assump-
tions regarding players’ sensing capabilities.

The literature on pursuit-evasion can be divided into two main categories
with respect to the environment: discrete space where the environment
is topologically represented as a graph (e.g., [99]), and continuous space,
where the game happens in a geometric space (e.g., [113]). Furthermore,
various assumptions have been made about the capabilities of the players:
evader arbitrarily faster than pursuer (e.g., [59]) vs. same bounded velocity
for both players (e.g., [125]); full visibility for both players (e.g., [18]) vs.
limited and full visibility for pursuer and evader, respectively (e.g., [53]).
Moreover, different variants of the goal of the game have been considered.
For example, a typical goal is to physically capture the evader, namely the
position of the evader should coincide or be within a certain distance from
the position of the pursuer (e.g., [18]). Other works, like that of [59], con-
sider a game in which the goal is just to find the evader. Another game
considered is the one whose goal is to maintain visibility of the evader over
time (e.g., [90]).

In this chapter, we focus on a version of the pursuit-evasion game played
in simply-connected polygons (i.e., without obstacles), in which the two
players have a priori knowledge about the environment, the same speed,
and line-of-sight visibility: the two players can see each other only if the
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line segment connecting them lies inside the polygon. The goal of the pur-
suer is to capture the evader that tries to actively escape. These assumptions
are realistic when considering for example a practical scenario in which a
pursuer and an evader move inside an environment of limited size relying
just on their vision. In such a case, the players have a belief on the other
player’s position when they are not visible to each other. Thus, it is neces-
sary to explore the belief space so that the pursuer can find a strategy that
guarantees capture no matter what the evader does.

In literature, the term visibility-based pursuit-evasion game is used for
the game in which one or more pursuers with a visibility sensor try to detect
an evader which is arbitrarily faster and whose position is unknown [77].
In contrast, the lion-and-man game is played by a pursuer and an evader
that have the same speed and global visibility [113]. Our problem can be
considered as lion-and-man game with visibility constraints. See [32] for
an overview of recent results on these two games. Here we show a brief
overview of some works dealing with the lion-and-man game with visibility
constraints. Stiffler and O’Kane [122] present an algorithm that computes a
shortest path to find the evader in a simply-connected polygon. Experimen-
tal results show the effectiveness of such approach. The work of Isler et al.
[65] presents a randomized strategy to solve the problem of detecting an
evader by a single pursuer with line-of-sight visibility and the problem of
capturing it by two pursuers in simply-connected polygons. The expected
time to capture the evader is O(nT 2

1 +T2 · (n2 lnn)), where n is the number
of vertices and T1 and T2 are the time it takes for the two pursuers to travel
the diameter of the polygon, respectively. The authors also show a mod-
ification of the proposed strategy so that a single pursuer can capture the
evader, but the expected capture time may significantly increase compared
to that with two pursuers. The work of Noori and Isler [94] deals with the
lion-and-man problem, where both have equal speeds and the lion has a
line-of-sight visibility. The authors show that the lion can capture the man
in any monotone polygon with a deterministic strategy and with a capture
time of O(n7D13), where n is the number of vertices of the polygon and
D is the diameter of the polygon (i.e., the distance between the two fur-
thest points in the polygon). Klein and Suri [70] study how many pursuers
are necessary to capture an evader in an environment with obstacles in the
lion-and-man game assuming the visibility-based discrete-time model. In a
general hole-free polygon of n vertices, the authors show that in the worst-
case Θ(n1/2) pursuers are both necessary and sufficient. In an environment
with h holes, the upper bound on the number of pursuers is O(n1/2h1/4),
for h ≤ n2/3, and O(n1/3h1/2) otherwise. All the above works dealing with
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lion-and-man game with visibility constraints assume that the evader has
global visibility.

A general question that might arise from these works is whether there
are other classes of environments in which a single pursuer can capture
the evader with a deterministic strategy. In the contribution described in
this chapter, by devising a search-based approach that explores the belief
space of the players and reasons on an efficient state-space representation
informed by the geometry for a simply-connected polygon, we investigate
whether a pursuer is sufficient to capture an evader in realistic indoor en-
vironments. Specifically, we formulate an adversarial search problem to
calculate the optimal capture path (if any), measured according to the num-
ber of time steps. We solve this problem by using a search method based
on min-max and inspired to that of Chapter 3. However, the complexity of
representing the information available to the players at a given time makes
solving pursuit-evasion games with sensing limitations difficult if care is
not taken in limiting the state space. Considering a high-resolution regular
grid partition as usually done in path planning is not viable due to the high
number of states to consider (this is further justified in our simulations). In-
stead, we partition the environment by connecting mutually visible vertices
of the polygon with a line, embedding a visibility information on the de-
riving dual graph. In this way, we significantly circumvent the problem of
the high computation, as the number of cells that derive from the partition
we propose is drastically reduced. We show that, given our discretization,
the solutions are complete for a rash evader model in which the evader can
hide from the pursuer but does not move from one hiding location to an-
other when the pursuer is not visible. We also present some techniques in
order to further reduce the computational effort. Extensive simulated activ-
ities show the viability of our approach also for general evader models in
games that take place in realistic indoor environments taken from a robotics
repository.

10.1 Problem formulation

We study the following pursuit-evasion game that takes place in a simply-
connected polygon P , which is a priori known to both the pursuer and the
evader.

We consider them as points in the plane. This is without loss of gener-
ality for translating robots, if we enlarge the polygon boundary to account
for the real size of the two players, as usually done in path planning [76].

We assume that time t is discretized and players move in turns of a unit
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time step. We denote p(t) and e(t) as the pursuer’s and the evader’s location
at time step t, respectively. In each turn the players can move along a line
segment of length at most 1 to a point visible to themselves.

Both players have line-of-sight visibility, namely, from a point q ∈ P
they can see all the points that can be joined to q with a line segment that
completely lies in P . We call VR(q) the set of all points visible from a
point q ∈P , the visibility region. This implies that at a time step t the pur-
suer in position p(t) and the evader in position e(t) can see each other if and
only if p(t) ∈ VR(e(t)) (or, equivalently, if e(t) ∈ VR(p(t))). Given that
both players have a limited visibility, at a time step t, they have knowledge
about the cleared region so far CR(p(t)) (CR(e(t))) which is a subset of P
and includes the visibility region VR(p(t)) (VR(e(t))), but also regions that
have been cleared at previous time steps and not possibly recontaminated
(similarly to the events the work of Guibas et al. [59] considers). Thus,
given their current position at a time step t, we define E(t) = {e(t)|e(t) ∈
P ∧ e(t) /∈ CR(p(t))} as the current knowledge of the pursuer about the
possible positions of the evader, when it is not visible. Similarly, we have
the same kind of knowledge for the evader over the current possible posi-
tions of pursuer P (t) = {p(t)|p(t) ∈ P ∧ p(t) /∈ CR(e(t))}. Clearly, if
the two players are visible to each other, we have singletons E(t) = {e(t)}
and P (t) = {p(t)}. Note that initially at t = 0, E(0) and P (0) correspond
to P \ VR(p(0)) and P \ VR(e(0)), respectively.

The pursuer wins the game when, at a finite time t∗ (that it tries to min-
imize), the pursuer’s location is the same as the evader (that tries to maxi-
mize t∗), namely, p(t∗) = e(t∗). Otherwise, the evader wins the game if it
can escape forever.

We call general evader one allowed to move at every turn: if the two
players are not visible to each other, the evader can stay put an amount of
time (which could be given by the distance between the last known position
of the pursuer and the point where the evader disappeared), and then moves
to an arbitrary vertex of P not in the current visibility region. In addition
to general evader strategies, we will study a rash evader model. In this
model, the evader can run and hide in an arbitrary hiding location which
is not visible by the pursuer. However, the evader does not move from
one hiding location to another unless the pursuer becomes visible. We will
show that assuming the rash evader model allows us to efficiently solve the
game in a complete fashion.

In general, the rash model is not unreasonable. Suppose the scenario in
which the evader goes around a corner and the pursuer loses sight of the
evader. Would it make sense for the evader to hide behind some vertex v
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v v'

p w

Figure 10.1: Case where for the evader (red point), in the worst case, there is no gain in
being general.

for a while and then move to another vertex w before the pursuer shows up?
Intuitively, since the pursuer is not visible throughout this time, the evader
could go to w in the first place. The rash model captures this intuition as it
allows the evader to choose an arbitrary vertex to hide behind but does not
allow further movement until the pursuer becomes visible.

At this point, we do not know whether rash strategies are as powerful
as general strategies. In the above scenario, could it be that there are two
branches toward vertices v and v′ and after hiding behind v for some time t,
the evader infers that the pursuer moved toward v′ and decides to attempt an
escape toward w? The answer is not clear because the pursuer can prevent
such inferences by waiting t steps before it commits to v or v′.

In most practical environments, the rash model seems to be as powerful
as the general model. For example in cases similar to the one shown in
Figure 10.1, we have the situation described above, in which the pursuer is
following the evader along a corridor and then the evader hides in one of
the two pockets in the hall. By hiding there, as the evader does not have
knowledge about the current position of the pursuer, if the evader tries to
get again to the corridor, it risks to be seen and possibly captured by the
pursuer.

In the simulation results (shown in the next two sections), we can see that
in realistic indoor environments, it does not seem that the general evader is
significantly more powerful than the rash one.

10.2 Solving the game

In this section, we present the pursuit-evasion game formulated as an ad-
versarial search problem and an efficient state-space representation using a
visibility-based decomposition of the environment. We show that the solu-
tions are complete for a rash evader model.
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10.2.1 Formulation as a search problem

For a given state-space representation, the pursuit-evasion game presented
in the previous section can be solved as a search problem. See, e.g., [112,
Chapter 5] for further information on this classical approach.

In our case, the state s(t) is a triple ((p(t), E(t)), (e(t), P (t)), cp) com-
posed of the current positions p(t) and e(t) of pursuer and evader, of their
current knowledge about the opponent E(t) and P (t), and of the current
player cp ∈ {p, e} that is playing at turn t.

For now, let us assume that the representation of the state space is power-
ful enough so that any subset of P can be represented. Our search problem
for solving the pursuit-evasion problem is formulated as follows.

Initial state. The initial state s(0) = ((p(0), E(0)), (e(0), P (0)), p) is
given by the initial positions of the two players and their initial knowledge
about the possible positions of the opponent.

Player. We assume that the pursuer starts the game, and so consequently
for a state at an even round the pursuer plays, whereas at an odd round the
evader plays.

Actions. From a state s(t) = ((p(t), E(t)), (e(t), P (t)), cp), applicable
actions for a player cp at time step t are to move to any reachable point
q′ ∈ P given its maximum speed and to perceive the environment from
the new point q′. A point q′ is reachable from p(t) or e(t) if there is a safe
path (namely, inside the polygon and not colliding with the boundary of the
environment). Player cp = {p, e} \ {cp} that does not play in s(t) has no
action, but can perceive.

Transition function. The new state of the game resulting from perform-
ing an applicable action during the player cp turn “cp moves to q′” is a new
state s(t + 1), where the position of the player cp is updated to q′ and also
their knowledge is updated. Note that the number of new states resulting
from the transition function depends on the state-space representation. If
it is too fine (e.g., by using a fine-grained grid over the environment) we
get too many states, while if it is too coarse, then the new state can become
inaccurate.

Terminal-test. A terminal test checks whether (a) p(t) = e(t) in a state
s(t) = ((p(t), {e(t)}), (e(t), {p(t)}), cp) or (b) there has been a loop in the
path from the initial state to the current state or (c) t > T , where T is the
maximum time of the game.

Utility. The utility (or payoff) function u(s(t)), which evaluates the ter-
minal states s(t), if the pursuer wins, returns g(s(t)) (where g(s(t)) com-
putes the number of time steps n to reach s(t)) and, if the evader wins (in
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the case of (b) or (c)), returns + inf.
A solution to the above search problem is a finite sequence of states

S = 〈s(0), s(1), . . . , s(n)〉 such that s(0) is the initial state and s(n) is a
state that satisfies the terminal test. An optimal solution is a solution S∗

that is optimal in terms of the number of time steps n∗ (that the pursuer
tries to minimize, while the evader tries to maximize), that is no player has
any gain by changing an action in the solution.

10.2.2 Solution of the search problem

Given the search problem defined above, the solution efficiency is related
to the representation of the state space. We present an efficient way of
representing the environment by providing a decomposition that partitions
the polygon P in a set of disjoint cells C (

⋃
c∈C c = P) and returns a

subset of points D = {d | d belongs to a c ∈ C}, which is needed for the
solution and show the completeness for the rash evader model under such
representation.

Given the subsetD of points derived from a decomposition representing
an environment P , we have the following state representation sD(t), which
is a triple ((p(t), E(t)), (e(t), P (t)), cp), where p(t), e(t) ∈ D. Also the
actions change: from a current point q ∈ D that belongs to a cell c ∈ C,
we have that next points q′ ∈ D are in neighbor cells c′.

In robotics, it is common to tile P with a finite regular grid of cells
Ge such that each point q ∈ P belongs to a cell of the grid, as we did in
Chapter 3. Cells are identical squares with edge e and can be either free
or occupied by the boundaries of the environment. The positions encoded
in a state is given by the center of a cell and the next possible actions are
the movement to the center of the neighbor cells. However, depending on
e, the number of cells can be really high and such decomposition does not
encode any visibility information.

Now, we present a decomposition informed by the geometry of the envi-
ronment, which allows to largely reduce the number of possible cells (and
so the number of possible actions and states). Specifically, we consider the
cells that derive from drawing a line (that we call inducing line) between
each pair of visible vertices of the polygon and that lies inside the envi-
ronment (see Figure 10.2). Each of these lines by intersecting with other
lines and the boundary of the polygon induces some cells. We refer to the
resulting partition as visibility-based decomposition. By construction, this
decomposition generates convex cells. All the points inside a cell are infor-
matively equivalent:
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Figure 10.2: Polygonal decomposition of an environment.

Proposition 10.1. Let x and y be two points of a cell obtained by the
visibility-based decomposition. Let z be a third point. x and z are mu-
tually visible if and only if y and z are mutually visible.

In our representation, when the players are not visible, rather than dis-
cretizing the entire space, we will keep track of only the entry and the exit
points to and from a cell by discretizing the cell boundaries. More formally,
to keep track of the entry and exit points we define as cells C the edges of
the visibility-based cells. On each of such cell, we have a set of points D
that belong to each cell c ∈ C. The points D are obtained by discretizing
the edge corresponding to a cell c. The neighbor cells that determine the
next possible actions for the players are those in which the shortest path be-
tween the current point that belongs to a cell c to a next point that belongs
to a cell c′ does not intersect with any other cell c′′ ∈ C. Thus, the positions
encoded in the state are the points along the edges of a visibility-based cell.
We refer to the resulting state representation as the visibility-based repre-
sentation. Note that at a time step t it is not necessary to reason on all of the
cells, but just on those whose inducing lines are not entirely contained in
the visibility region of a player. The lines that lie in one’s visibility region
do not change the information set of the player.

Instead, when the players are visible to each other, the current knowl-
edge of a player about the opponent is the opponent’s actual position. As
the game evolves in a turn-based fashion, when reasoning on the successor
states, we need to take into account the reachable points from their current
position in a time step. In particular, those points are found online at each
time step on the shortest path between a player and the points on the edges
of the cells. We call turn representation the information the players can
have and the resulting points which the search algorithm can reason on.

We can prove that this decomposition allows to preserve the complete-
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ness of a search algorithm that reasons on such state space.

Theorem 1. A strategy to capture the rash evader exists if and only if
a complete search algorithm can find a solution in the state-space of the
visibility-based and turn representation up to a given discretization.

Proof. Only if: This direction is trivial because if the search algorithm finds
a solution, then a capture strategy exists.

If: Now, suppose that there exists a strategy to capture the evader. We
must show that a strategy still exists when we restrict the representation
of the information available to the players to the visibility-based and turn
decomposition. Then the theorem follows from the completeness of min-
max search.

Notice that when the players see each other their information state is the
opponent’s location. In this case, the two representations are identical and
the solution is complete up to a given resolution level which is encoded by
the turn representation.

When the players are not visible, under the rash model, the pursuer’s
information can be represented as possible vertices the evader can be hid-
ing behind. The evader, when in hiding, does not move. What affects his
strategy is where the pursuer enters its line of sight. By Proposition 10.1,
this event corresponds to crossing a cell boundary in the visibility-based de-
composition. Therefore, the representation captures it up to discretization
of the entrance point.

Hence, in all case, the information available is captured by the visibility-
based and turn decomposition.

We use a min-max approach with branch-and-bound as search algo-
rithm, for which we provide a sketch about how it operates. Starting from
the initial state, the terminal test is applied. If it is true, then the game ends.
Otherwise, the successor states are recursively found in a depth-first way
according to the current state and player turn until a leaf node is encoun-
tered. When it is encountered, the utility function shown in the previous
section is applied to compute the values for the players and is propagated to
the non-leaf nodes. Other branches are then evaluated and possibly pruned
if their current value is worse than the one already found (either for the
pursuer or the evader). The worst-case computational complexity of our
min-max-based approach is exponential in the number of time steps needed
to reach a terminal state. However, as the results of the next section show,
our approach can solve pursuit-evasion games for realistic indoor environ-
ments in reasonable time. In order to further improve the efficiency of our
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approach, we introduce also some speedup techniques that are expected to
reduce the computational effort, preserving the quality of the solutions.

Dominated actions. When the players are mutually visible, we consider
a subset of possible actions available to the evader: we discard the actions
that would lead to points q where the pursuer is or that it can reach in one
time step (in case no action is available, the evader stays put in its location).
We have that the existence of the solution is preserved, as if the evader
moves to a point that is guarded by the pursuer, then at the next time step it
would be captured.

Duplicate states. When selecting a state to expand, duplicates that have
been already expanded can be discarded: considering the next player move,
a state s(τ) = ((p(τ), E(τ)), (e(τ), P (τ)), cp) can be safely discarded if
∃s(τ ′) = ((p(τ ′), E(τ ′)), (e(τ ′), P (τ ′)), cp) already expanded (τ ′ < τ )
such that p(τ) = p(τ ′), e(τ) = e(τ ′), and, in the case of the pursuer,
E(τ ′) ⊆ E(τ) and g(s(τ ′)) > g(s(τ)), while in the case of the evader
P (τ ′) ⊆ P (τ) and g(s(τ ′)) < g(s(τ)) (recall that g(s(τ)) is the cost to
reach the state s(τ) from the initial state s(0)). The algorithm is still com-
plete and optimal as duplicate states will eventually lead to the same states
already expanded, and just those states with a cost greater for the pursuer
(less for the evader) than the cost of at least one already expanded duplicate
is not considered.

10.3 Simulation results for rash evader

In order to assess the validity of our approach in solving pursuit-evasion
games with visibility, extensive simulated experiments have been conducted
in indoor environments available in Radish repository [63]. As in the repos-
itory environments are mainly represented with grid maps, we manually
converted them in simple polygons. We report here two representative en-
vironments: one (albert-b-laser) with a unique short corridor with rooms
attached to it (Figure 10.3a) and the other one (utk-claxton) with long cor-
ridors (Figure 10.3b) (boundaries of environments are considered as obsta-
cles). The line segment reported in the figure measures 3 m, so the size of
the environments is approximately 30 m× 24 m and 140 m× 80 m, respec-
tively (note that the size of the environments has been guessed by consid-
ering 10 cm the size of the grid cell, as this information is not reported in
the data sets: this seems to be reasonable in terms of the average size of a
room).

Table 10.1 shows the number of cells that derive from imposing a high-
resolution grid on these environments and from partitioning them with the
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Figure 10.3: Selected indoor environments where points indicate the initial positions of
the players.

Environment Number of grid cells Number of visibility-based cells
Indoor with rooms 71628 4604

Indoor with long corridors 117625 2964

Table 10.1: Number of grid cells (where the size of the cell edge is 10 cm) and of cells
deriving from the visibility-based decomposition.

visibility-based decomposition. It can be noted that the number of cells
is greatly abated in both cases, but especially for the second environment,
because of the presence of less rooms.

We call setting a combination of initial positions (chosen randomly so
that they could cover the whole environment; see Figure 10.3) and environ-
ment. For each setting we ran our approach on a computer equipped with
a 3.50 GHz i7-4710HQ processor and 8 GB RAM to find the optimal pur-
suit strategy that guarantees capture of the evader. We have developed our
own implementation of the simulator and the search algorithm in C++ (the
state space is generated online), as no generic graph library, like BGL [17],
is easily adaptable to our case. We used CGAL library [29] for handling
simple polygons and arrangements deriving from the partition of the envi-
ronment.

We set a timeout of 5 hours for each run. For all of the runs that found
a solution, we report the average and standard deviation of the traveled
distance (in 1 time step they are assumed to travel of 1 m).

Table 10.2 reports experimental results for the two environments and
rash evader. In all experiments we considered the speedup techniques we
presented in the previous section. The values reported in each entry are
the average and the standard deviation (in parentheses) over the 15 × 14
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Chapter 10. Exploration of an abstract state space

Number of time steps Computation time (s)
Indoor with rooms 65.8 (20.9) 196.5 (419.0)

Indoor with long corridors 309.1 (21.7) 774.1 (1059.6)

Table 10.2: Results (average and standard deviation over the results for each setting) for
the indoor environments under the rash evader model.

Pursuer
Evader

Figure 10.4: Simulation instance.

combinations of initial positions for the corresponding environment (with-
out considering the same initial position for both players). It emerges that
in both environments the proposed method was able to find a solution. The
relatively high standard deviation could be explained by the fact that the
number of time steps to capture the evader is highly dependent on the ini-
tial positions of the two players. For example, in the first environment, from
positions 12 (pursuer) and 14 (evader), both players can see each other from
the start of the game and the evader is basically trapped in that room, while
from positions 14 (pursuer) and 9 (evader) the pursuer has to clear some of
the contaminated area before reaching the area where the evader is located.
This is reflected also on the computational time for finding solutions, which
varies greatly with the setting: the more time steps required, the higher the
computational time. Under the rash evader model it seems that there is a
roughly linear relation between them.

Figure 10.4 shows an instance of the solution found with the starting
position of the two players. As can be noted, the pursuer tries to clear each
contaminated region at a time considering the worst case position of the
evader, in such a way that the evader can be trapped and cannot recontami-
nate the cleared region. Finally, when the evader is found, it is trapped in a
corner, as the pursuer is able to guard the line that prevents the evader from
escaping that area.
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We also ran some experiments considering a grid decomposition and
removing the speedup techniques, however, most of the simulated runs did
not terminate within the timeout and so the results are not reported.

In the second indoor environment, the number of time steps to capture
the evader increases because of the presence of very long corridors. Fur-
thermore, given the fact that a corridor could be thought of as a line, if the
pursuer is in the middle, it has first to go to one side, and, if the evader is
not in that area, it has to go to the other side.

So, in realistic indoor environments, it seems that is always possible to
find a deterministic solution against the rash evader model in a reasonable
computation time. A possible explanation could be that, as the environment
is highly structured, usually contaminated regions are disjoint, and passages
between rooms and corridors are narrow, allowing the pursuer to protect the
area cleared so far.

10.4 Simulation results for general evader

We also ran some experiments considering the general evader model and
the results are reported in Table 10.3. In the simulation settings considered,
the pursuer is able to capture the evader. This could be explained by the
fact that the evader has limited visibility and the lack of knowledge about
the pursuer strategy does not allow to purposefully escape. Furthermore,
given the low number of pockets where the evader can hide in such indoor
environments, it seems not to be able to hide itself to the pursuer. The
general evader model could require more time steps for the capture than
the rash model. However, there is not a significant difference according
to an ANOVA analysis with a p-value < 0.05 [101]. For example, in the
first environment, we have p-value=0.1. The fact that the difference is not
evident could be due the fact that once the pursuer reaches the corridor, it
can always keep the corridor clear. Note that the corridor is the only way
to get to other rooms. The computation time, however, greatly increases
with the general evader model and the difference is statistically significant
(p-value=1.4 · 10−10). The more time steps required, the higher the compu-
tational time, but it seems that the relation here is sublinear.

Our conjecture is that even for a general evader model the search algo-
rithm under the visibility-based decomposition can find a solution.

In this chapter, we have presented a method for finding the optimal pur-
suit path in a simply-connected polygon when the pursuer and the evader
have line-of-sight visibility. There is no closed-form solution known for
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Chapter 10. Exploration of an abstract state space

Number of time steps Computation time (s)
Indoor with rooms 81.3 (31.3) 3430.3 (621.4)

Indoor with long corridor 338.4 (18.3) 4528.4 (1134.0)

Table 10.3: Results (average and standard deviation over the results for each setting) for
the indoor environments under general evader model.

this game. Our results provide a computational search-based method for
solving it, by using an efficient representation of the state of the game us-
ing a visibility-based decomposition of the environment. The extensive
simulated activities showed the viability of the proposed approach. More
in general, it seems that search-based approaches, like the one in Chapter 3,
can explore abstract state spaces.
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11
Conclusions

Exploration strategies and coordination methods are fundamental compo-
nents for autonomous mobile robots whose task is to discover features of
initially unknown environments. They can really lead to a breakthrough in
autonomous mobile robotics, as they foster robots autonomy in the deci-
sions on where to go and on who goes where to accomplish a given mis-
sion, like search and rescue. There are several gaps in the current research
on coordinated multirobot exploration. An important one is the fact that
either the theoretical approaches are far from real applicability, while the
practical ones are rather specific and cannot be plainly used in contexts dif-
ferent from those where experiments and tests were carried out. Also, the
experimental methodology for multirobot exploration systems is still not
fully mature. This slows down research and makes the transfer of existing
research results to market products rather difficult.

The contributions presented in this dissertation advance the filling of
these gaps in the exploration problem. They are summarized according to
the three general goals stated in the introduction.

From a more theoretical point of view, we first considered the problem
of calculating the optimal offline exploration (constrained coverage) path,
followed by a robot with time-discrete and limited perception in grid en-
vironments. A search-based approach is proposed and simulation results
show the viability of our approach for realistic environments. The main ad-
vantage of this approach is that it is general enough to be computed on any
environment given as input. This contribution enables the comparison of
online exploration strategies with the optimal behavior in a given environ-
ment. Second, using a graph-based model of the environment, we provided
worst-case and average-case analysis on the number of edge traversals re-
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quired by exploration strategies that include distance and expected infor-
mation gain as criteria to evaluate candidate destination locations. The ob-
tained theoretical results show that, in the worst case, taking into account
also information gain in selecting the next destination location does not
provide any advantage over considering only distance, while it does in the
average case on graphs modeling realistic indoor environments. This con-
tribution is a step towards making some of the exploration strategies used
in practice and obtained results more theoretically-grounded.

On the practical side, we built a multirobot exploration system which
employs exploration strategies and coordination methods that use informa-
tion coming from semantic maps. Simulation results show the significant
benefits of using semantic information on the exploration of both total ex-
plored area and, prominently, relevant areas, when a priori information
about these relevant areas is available, e.g., from human users.

About good experimental methodologies, besides providing a tool to
compute an optimal reference, against which exploration strategies can be
compared in specific settings, we showed that one of the aspects that have
been overlooked so far is the full reproducibility and robustness of the ex-
periments, given by the fact that, for example, parameters are usually not
fully reported in the description of the experiments. Thinking that this
should become best practice, we presented detailed experimental results
on some factors (i.e., perception/decision timings and exploration strate-
gies vs. coordination methods) that can impact on the performance of ex-
ploration. These quantitative analyses provide insights on settings some
important parameters for an exploration system and further remark the im-
portance of reporting and studying the values of these parameters in the
description of the experiments.

Moreover, we showed the applicability of our search-based approach
to explore belief state spaces in pursuit-evasion games, and the simulation
results confirmed the viability of our approach in that context too.

Several issues of the exploration problem are worth further investiga-
tion both from theoretical and practical points of view. From a theoretical
point of view, more steps should be made to study exploration problems
where assumptions are more realistic. For example, it could be interesting
to study:

• Exploration strategies that use a function that aggregates different cri-
teria to understand how to normalize the two metrics.

• Constrained exploration, in which a robot should, for example, stay
within a certain distance from the base station [39]. This can model

172



a practical scenario where a robot has a limited communication range
with a base station or is plugged to a power socket in order to extend
its autonomy in terms of battery.

• Multirobot exploration, in which multiple robots are employed to ef-
ficiently accomplish exploration task [20].

Both cases can be analyzed using artificial intelligence techniques to find
the optimal strategies on graph- or geometrically-represented environments
and to derive bounds on the performance of exploration strategies typically
used in real settings.

On the possible extensions of the semantically-informed exploration
system, future work could address several research directions. First, for
improving our proposed multirobot exploration system, one important as-
pect is to find an automated and theoretically-grounded way to compute
some of the parameters used in our system, particularly focusing on:

• The membership functions that model the features of rooms and cor-
ridors used by the proposed coordination method can be set according
to the specific building type (e.g., being a school), on the basis of the
results we had in [80], or according to the robots’ capabilities (e.g.,
sensor range).

• The number of robots to send to the same candidate location in order
to speed up the exploration should be determined by a theoretically-
grounded method, drawing some insights given by the work of Nieto-
Granda et al. [93].

This would make the design of the system more reliable, robust, and gen-
eral. Furthermore, the exploration system could be extended in a more
broader perspective, by studying how to integrate and analyzing the im-
pact of some other a priori information that could be available in realistic
scenarios, including:

• Information about relevant areas derived or changed at runtime, imag-
ining a scenario where robots interact with humans during the explo-
ration process.

• Distributions of probability over the possible locations of the victims,
to guide the exploration process, starting from results of Aydemir et al.
[14].

Moreover, as we extended the coordination method to the multi-robot (MR)
paradigm, another direction of interest is the investigation of multi-task
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(MT) coordination methods (i.e., each robot plans how to reach a sequence
of candidate locations) or path/trajectory optimization, starting from results
of Tovar et al. [126] and Prestes and Engel [103].

The experimental results obtained using realistically-simulated robotic
systems, although highly informative, are far from being exhaustive or
definitive and validation with real robots is an issue of paramount impor-
tance. There are several other parameters that can be changed to evaluate
autonomous robotic systems for exploration. For example, quality of the
resulting map and the amount of area mapped over time could be included
in the adopted metrics. Other settings should be considered in further ex-
periments, which include other environments (e.g., outdoor areas) and ad-
ditional map building methods.

In general, future work in all the directions (i.e., theoretical and practi-
cal) could address the further assessment of proposed methods considering
real robots, where real-world noise is included, for example in communica-
tion and sensing, and it could be interesting to investigate the use of Markov
Decision Processes to model exploration in order to account for uncertainty,
like in [85].

Looking at exploration, thus, the general future research direction is to
define a framework for the theoretical and practical development and eval-
uation of exploration strategies and coordination methods for increasing
autonomy of mobile robots.

In a broader perspective, we can generalize exploration to a problem
in which robots can “explore” other features of the environment. An in-
teresting domain is that of environmental monitoring, where some tech-
niques similar to that of exploration strategies could be applied, as done,
for example, in [98]. Other examples include continuous monitoring of
temporal-spatial phenomena in partially known environments, like ocean
monitoring [119], olfactory exploration [83], and tactile exploration of ob-
ject properties [102]. In this direction, the objective is to design an even
more general framework in order to define navigation strategies and coor-
dination methods that are general and largely application-independent, so
that the development of a robotic system is eased and can be ideally carried
out by instantiating the general framework in a specific setting.

174



Bibliography

[1] S. Albers, K. Kursawe, and S. Schuierer. Exploring unknown envi-
ronments with obstacles. Algorithmica, 32:123–143, 2002.

[2] F. Amigoni. Experimental evaluation of some exploration strategies
for mobile robots. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2818–2823, 2008.

[3] F. Amigoni and V. Caglioti. An information-based exploration strat-
egy for environment mapping with mobile robots. Robotics and Au-
tonomous Systems, 5(58):684–699, 2010.

[4] F. Amigoni and V. Schiaffonati. Good experimental methodolo-
gies and simulation in autonomous mobile robotics. In L. Magnani,
W. Carnielli, and C. Pizzi, editors, Model-Based Reasoning in Sci-
ence and Technology, volume 314 of Studies in Computational Intel-
ligence, pages 315–332. Springer, 2010.

[5] F. Amigoni and V. Schiaffonati. Autonomous mobile robots as tech-
nical artifacts: A discussion of experimental issues. In L. Magnani,
editor, Model-Based Reasoning in Science and Technology, volume 8
of Studies in Applied Philosophy, Epistemology and Rational Ethics,
pages 527–542. Springer, 2014.

[6] F. Amigoni, M. Reggiani, and V. Schiaffonati. An insightful com-
parison between experiments in mobile robotics and in science. Au-
tonomous Robots, 27(4):313–325, 2009.

175



Bibliography

[7] F. Amigoni, N. Basilico, and A. Quattrini Li. How much worth is co-
ordination of mobile robots for exploration in search and rescue? In
Proceedings of the International RoboCup Symposium, pages 106–
117, 2012.

[8] F. Amigoni, A. Quattrini Li, and D. Holz. Evaluating the impact
of perception and decision timing on autonomous robotic explo-
ration. In Proceedings of the European Conference on Mobile Robots
(ECMR), pages 68–73, 2013.

[9] F. Amigoni, N. Basilico, and A. Quattrini Li. Moving from ‘how to
go there?’ to ‘where to go?’: Towards increased autonomy of mobile
robots. In A. Rodic, D. Pisla, and H. Bleuler, editors, New Trends in
Medical and Service Robots, pages 345–356. Springer, 2014.

[10] E. Arkin, S. Fekete, and J. Mitchell. Approximation algorithms for
lawn mowing and milling. Computational Geometry: Theory and
Applications, 17(1-2):25–50, 2000.

[11] E. Arkin, M. Bender, E. Demaine, S. Fekete, J. Mitchell, and
S. Sethia. Optimal covering tours with turn costs. SIAM Journal
on Computing, 35(3):531–566, 2005.

[12] Y. Asahiro, E. Miyano, S. Miyazaki, and T. Yoshimuta. Weighted
nearest neighbor algorithms for the graph exploration problem on
cycles. Information Processing Letters, 110:93–98, 2010.

[13] B. Awerbuch, M. Betke, R. Rivest, and M. Singh. Piecemeal graph
exploration by a mobile robot. Information and Computation, 152
(2):155–172, 1999.

[14] A. Aydemir, A. Pronobis, M. Göbelbecker, and P. Jensfelt. Active
visual object search in unknown environments using uncertain se-
mantics. IEEE Transactions on Robotics, 29(4):986–1002, 2013.

[15] N. Basilico and F. Amigoni. On evaluating performance of explo-
ration strategies for an autonomous mobile robot. In IROS Workshop
on Performance Evaluation and Benchmarking for Intelligent Robots
and Systems, 2008.

[16] N. Basilico and F. Amigoni. Exploration strategies based on multi-
criteria decision making for searching environments in rescue oper-
ations. Autonomous Robots, 31(4):401–417, 2011.

176



Bibliography

[17] BGL. The Boost Graph Library, 2014. URL http://www.
boost.org/.

[18] D. Bhadauria, K. Klein, V. Isler, and S. Suri. Capturing an evader
in polygonal environments with obstacles: The full visibility case.
The International Journal of Robotics Research, 31(10):1176–1189,
2012.

[19] A. Bottino and A. Laurentini. A nearly optimal algorithm for cov-
ering the interior of an art gallery. Pattern Recognition, 44(5):1048–
1056, 2011.

[20] P. Brass, F. Cabrera-Mora, A. Gasparri, and J. Xiao. Multirobot tree
and graph exploration. IEEE Transactions on Robotics, 27(4):707–
717, 2011.

[21] W. Burgard, D. Fox, M. Moors, R. Simmons, and S. Thrun. Col-
laborative multi-robot exploration. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages
476–481, 2000.

[22] W. Burgard, M. Moors, and F. Schneider. Coordinated multi-robot
exploration. IEEE Transactions on Robotics, 21(3):376–378, 2005.

[23] D. Calisi, A. Farinelli, L. Iocchi, and D. Nardi. Multi-objective ex-
ploration and search for autonomous rescue robots. Journal of Field
Robotics, 24(8-9):763–777, 2007.

[24] D. Calisi, L. Iocchi, D. Nardi, G. Randelli, and V. Ziparo. Improving
search and rescue using contextual information. Advanced Robotics,
23:1199–1216, 2009.

[25] S. Carlsson, B. Nilsson, and S. Ntafos. Optimum guard covers and
m-watchmen routes for restricted polygons. In F. Dehne, J.-R. Sack,
and N. Santoro, editors, Algorithms and Data Structures, volume
519 of Lecture Notes in Computer Science, pages 367–378. Springer,
1991.

[26] S. Carlsson, H. Jonsson, and B. Nilsson. Finding the shortest watch-
man route in a simple polygon. Discrete & Computational Geometry,
22:377–402, 1999.

[27] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper. US-
ARSim: A robot simulator for research and education. In Proceed-
ings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 1400–1405, 2007.

177

http://www.boost.org/
http://www.boost.org/


Bibliography

[28] S. Ceriani, G. Fontana, A. Giusti, D. Marzorati, M. Matteucci,
D. Migliore, D. Rizzi, D. Sorrenti, and P. Taddei. Rawseeds ground
truth collection systems for indoor self-localization and mapping.
Autonomous Robots, 27(4):353–371, 2009.

[29] CGAL. Computational Geometry Algorithms Library, 2014. URL
http://www.cgal.org/.

[30] W.-P. Chin and S. Ntafos. Optimum watchman routes. Information
Processing Letters, 28(1):39–44, 1988.

[31] H. Choset. Coverage for robotics: A survey of recent results. Annals
of Mathematics and Artificial Intelligence, 31(1-4):113–126, 2001.

[32] T. Chung, G. Hollinger, and V. Isler. Search and pursuit-evasion in
mobile robotics – A survey. Autonomous Robots, 31(4):299–316,
2011.

[33] R. Cipolleschi, M. Giusto, A. Quattrini Li, and F. Amigoni.
Semantically-informed coordinated multirobot exploration of rele-
vant areas in search and rescue settings. In Proceedings of the Euro-
pean Conference on Mobile Robots (ECMR), pages 216–221, 2013.

[34] B. Clark, C. Colbourn, and D. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1–3):165–177, 1990.

[35] S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro. Map con-
struction of unknown graphs by multiple agents. Theoretical Com-
puter Science, 385(1–3):34–48, 2007.

[36] J. de Hoog, S. Cameron, and A. Visser. Autonomous multi-robot
exploration in communication-limited environment. In Proceedings
of the Conference Towards Autonomous Robotics Systems (TAROS),
pages 68–75, 2010.

[37] X. Deng and C. Papadimitriou. Exploring an unknown graph. Jour-
nal of Graph Theory, 32(3):265–297, 1999.

[38] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an un-
known environment I: The rectilinear case. Journal of the ACM, 45
(2):215–245, 1998.

[39] C. Duncan, S. Kobourov, and A. Kumar. Optimal constrained graph
exploration. ACM Transactions on Algorithms, 2(3):380–402, 2006.

178

http://www.cgal.org/


Bibliography

[40] T. Edlinger and E. von Puttkamer. Exploration of an indoor-
environment by an autonomous mobile robot. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 1278–1284, 1994.

[41] J. Faigl, M. Kulich, and L. Preucil. Goal assignment using distance
cost in multi-robot exploration. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS),
pages 3741–3746, 2012.

[42] P. Fazli, A. Davoodi, and A. Mackworth. Multi-robot repeated area
coverage. Autonomous Robots, 34(4):251–276, 2013.

[43] S. Fekete and C. Schmidt. Polygon exploration with time-discrete
vision. Computational Geometry, 43(2):148–168, 2010.

[44] S. Fekete, J. Mitchell, and C. Schmidt. Minimum covering with
travel cost. In Proceedings of the International Symposium on Algo-
rithms and Computation (ISAAC), pages 393–402, 2009.

[45] A. Felner, R. Stern, A. Ben-Yair, S. Kraus, and N. Netanyahu. PHA*:
Finding the shortest path with A* in an unknown physical environ-
ment. Journal of Artificial Intelligence Research, 21:631–670, 2004.

[46] K. Forster and R. Wattenhofer. Directed graph exploration. In R. Bal-
doni, P. Flocchini, and R. Binoy, editors, Principles of Distributed
Systems, volume 7702 of Lecture Notes in Computer Science, pages
151–165. Springer, 2012.

[47] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart.
Distributed multirobot exploration and mapping. Proceedings of the
IEEE, 94(7):1325–1339, 2006.

[48] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph
exploration by a finite automaton. Theoretical Computer Science,
345(2–3):331–344, 2005.

[49] L. Freda and G. Oriolo. Frontier-based probabilistic strategies for
sensor-based exploration. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 3881–3887,
2005.

[50] Y. Gabriely and E. Rimon. Spanning-tree based coverage of contin-
uous areas by a mobile robot. Annals of Mathematics and Artificial
Intelligence, 31:77–98, 2001.

179



Bibliography

[51] Y. Gabriely and E. Rimon. Competitive on-line coverage of grid
environments by a mobile robot. Computational Geometry: Theory
and Applications, 24(3):197–224, 2003.

[52] B. Gerkey and M. Mataric. A formal analysis and taxonomy of task
allocation in multi-robot systems. The International Journal of Ro-
botics Research, 23:939–954, 2004.

[53] B. Gerkey, S. Thrun, and G. Gordon. Visibility-based pursuit-evasion
with limited field of view. The International Journal of Robotics
Research, 25(4):299–315, 2006.

[54] S. Ghosh and R. Klein. Online algorithms for searching and explo-
ration in the plane. Computer Science Review, 4(4):189–201, 2010.

[55] S. Ghosh, J. Burdick, A. Bhattacharya, and S. Sarkar. Online algo-
rithms with discrete visibility – exploring unknown polygonal envi-
ronments. IEEE Robotics and Automation Magazine, 15(2):67–76,
2008.

[56] H. Gonzáles-Baños and J.-C. Latombe. Navigation strategies for ex-
ploring indoor environments. The International Journal of Robotics
Research, 21(10-11):829–848, 2002.

[57] H. González-Baños. A randomized art-gallery algorithm for sensor
placement. In Proceedings of the Annual Symposium on Computa-
tional Geometry, pages 232–240, 2001.

[58] S. Guha and S. Khuller. Approximation algorithms for connected
dominating sets. Algorithmica, 20(4):374–387, 1998.

[59] L. Guibas, J.-C. Latombe, S. LaValle, D. Lin, and R. Motwani. A
visibility-based pursuit-evasion problem. International Journal of
Computational Geometry & Applications, 9(4-5):471–494, 1999.

[60] J. Hawley and Z. Butler. Hierarchical distributed task allocation for
multi-robot exploration. In A. Martinoli, F. Mondada, N. Correll,
G. Mermoud, M. Egerstedt, A. Hsieh, L. Parker, and K. Støy, editors,
Distributed Autonomous Robotic Systems, volume 83 of Springer
Tracts in Advanced Robotics, pages 445–458. Springer, 2013.

[61] Y. Higashikawa, N. Katoh, S. Langerman, and S. Tanigawa. On-
line graph exploration algorithms for cycles and trees by multiple
searchers. Journal of Combinatorial Optimization, 28(2):480–495,
2014.

180



Bibliography

[62] D. Holz, N. Basilico, F. Amigoni, and S. Behnke. A compara-
tive evaluation of exploration strategies and heuristics to improve
them. In Proceedings of the European Conference on Mobile Robots
(ECMR), pages 25–30, 2011.

[63] A. Howard and N. Roy. The robotics data set repository (Radish).
http://radish.sourceforge.net/, 2003.

[64] V. Isler. Theoretical robot exploration. Technical report, Computer
and Information Science, University of Pennsylvania, 2001.

[65] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion in
a polygonal environment. IEEE Transactions on Robotics, 21(5):
875–884, 2005.

[66] A. Itai, C. Papadimitriou, and J. Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

[67] M. Julia, A. Gil, and Ó. Reinoso. A comparison of path planning
strategies for autonomous exploration and mapping of unknown en-
vironments. Autonomous Robots, 33(4):427–444, 2012.

[68] B. Kalyanasundaram and K. Pruhs. Constructing competitive tours
from local information. Theoretical Computer Science, 130:125–
138, 1994.

[69] M. Keidar and G. Kaminka. Robot exploration with fast frontier de-
tection: theory and experiments. In Proceedings of the International
Joint Conference on Autonomous Agents and Multi Agent Systems
(AAMAS), pages 113–120, 2012.

[70] K. Klein and S. Suri. Capture bounds for visibility-based pursuit
evasion. In Proc. SOCG, pages 329–338, 2013.

[71] J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai. A prac-
tical, decision-theoretic approach to multi-robot mapping and explo-
ration. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3232–3238, 2003.

[72] S. Koenig, C. Tovey, and Y. Smirnov. Performance bounds for plan-
ning in unknown terrain. Artificial Intelligence, 147(1-2):253–279,
2003.

[73] A. Kröller, T. Baumgartner, S. Fekete, and C. Schmidt. Exact solu-
tions and bounds for general art gallery problems. ACM Journal of
Experimental Algorithmics, 17(1):1–23, 2012.

181

http://radish.sourceforge.net/


Bibliography

[74] B. Kuipers and Y.-T. Byun. A robot exploration and mapping strat-
egy based on a semantic hierarchy of spatial representations. Robo-
tics and Autonomous Systems, 8:47–63, 1981.

[75] N. Kwak, G.-W. Kim, S.-H. Ji, and B.-H. Lee. A mobile robot explo-
ration strategy with low cost sonar and tungsten-halogen structured
light. Journal of Intelligent Robot Systems, 51:89–111, 2008.

[76] S. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[77] S. LaValle, D. Lin, L. Guibas, J.-C. Latombe, and R. Motwani. Find-
ing an unpredictable target in a workspace with obstacles. In Pro-
ceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), volume 1, pages 737–742, 1997.

[78] M. Lopez-Sanchez, F. Esteva, R. Lopez de Mantaras, C. Sierra, and
J. Amat. Map generation by cooperative low-cost robots in structured
unknown environments. Autonomous Robots, 5:53–61, 1998.

[79] F. Lu and E. Milios. Robot pose estimation in unknown environments
by matching 2d range scans. Journal of Intelligent and Robotic Sys-
tems, 18(3):249–275, 1997.

[80] M. Luperto, A. Quattrini Li, and F. Amigoni. A system for build-
ing semantic maps of indoor environments exploiting the concept
of building typology. In Proceedings of the International RoboCup
Symposium, pages 504–515, 2013.

[81] A. Makarenko, S. Williams, F. Bourgault, and H. Durrant-Whyte.
An experiment in integrated exploration. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 534–539, 2002.

[82] R. Mannadiar and I. Rekleitis. Optimal coverage of a known arbi-
trary environment. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 5525–5530, 2010.

[83] A. Marjovi and L. Marques. Multi-robot topological exploration us-
ing olfactory cues. In A. Martinoli, F. Mondada, N. Correll, G. Mer-
moud, M. Egerstedt, A. Hsieh, L. Parker, and K. Støy, editors, Dis-
tributed Autonomous Robotic Systems, volume 83 of Springer Tracts
in Advanced Robotics, pages 47–60. Springer, 2013.

182



Bibliography

[84] A. Marjovi, J. Nunes, L. Marques, and A. de Almeida. Multi-robot
exploration and fire searching. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS),
pages 1929–1934, 2009.

[85] L. Matignon, L. Jeanpierre, and A. Mouaddib. Coordinated multi-
robot exploration under communication constraints using decentral-
ized markov decision processes. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 2017–2023, 2012.

[86] N. Megow, K. Mehlhorn, and P. Schweitzer. Online graph explo-
ration: New results on old and new algorithms. Theoretical Com-
puter Science, 463:62–72, 2012.

[87] J. Mitchell. Geometric shortest paths network optimization. In J.-R.
Sack and J. Urrutia, editors, Handbook on Computational Geometry,
pages 633–702. Elsevier Science, 2000.

[88] S. Miyazaki, N. Morimoto, and Y. Okabe. The online graph explo-
ration problem on restricted graphs. IEICE Transactions on Infor-
mation Systems, E92-D(9):1620–1627, 2009.

[89] O. Mozos, C. Stachniss, and W. Burgard. Supervised learning of
places from range data using AdaBoost. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages
1742–1747, 2005.

[90] R. Murrieta-Cid, R. Monroy, S. Hutchinson, and J.-P. Laumond. A
complexity result for the pursuit-evasion game of maintaining visi-
bility of a moving evader. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2657–2664,
2008.

[91] A. Nash. Any-angle Path Planning. PhD thesis, University of South-
ern California, 2012.

[92] P. Newman, M. Bosse, and J. Leonard. Autonomous feature-based
exploration. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 1234–1240, 2003.

[93] C. Nieto-Granda, J. Rogers, and H. Christensen. Coordination strate-
gies for multi-robot exploration and mapping. The International
Journal of Robotics Research, 33(4):519–533, 2014.

183



Bibliography

[94] N. Noori and V. Isler. Lion and man with visibility in monotone
polygons. The International Journal of Robotics Research, 33(1):
155–181, 2014.

[95] S. Ntafos. Watchman routes under limited visibility. Computational
Geometry: Theory and Applications, 1(3):149–170, 1992.

[96] J. O’Rourke. Art gallery theorems and algorithms. Oxford Univer-
sity Press, 1987.

[97] P. Panaite and A. Pelc. Impact of topographic information on graph
exploration efficiency. Networks, 36(2):96–103, 2000.

[98] L. Parker, R. Coogle, and A. Howard. Estimation-informed,
resource-aware robot navigation for environmental monitoring ap-
plications. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 1041–1046, 2013.

[99] T. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. Lick,
editors, Theory and Applications of Graphs, volume 642 of Lecture
Notes in Mathematics, pages 426–441. Springer, 1978.

[100] M. Peniak, D. Marocco, and A. Cangelosi. Autonomous robot ex-
ploration of unknown terrain: a preliminary model of Mars Rover
robot. In 10th ESA Workshop on Advanced Space Technologies for
Robotics and Automation (ASTRA2008), 2008.

[101] W. Pestman. Mathematical Statistics: an Introduction. de Gruyter,
1998.

[102] Z. Pezzementi, E. Plaku, C. Reyda, and G. Hager. Tactile-object
recognition from appearance information. IEEE Transactions on Ro-
botics, 27(3):473–487, 2011.

[103] E. Prestes and P. Engel. Exploration driven by local potential distor-
tions. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1122–1127, 2011.

[104] A. Quattrini Li, F. Amigoni, and N. Basilico. Searching for opti-
mal off-line exploration paths in grid environments for a robot with
limited visibility. In Proceedings of the National Conference on Ar-
tificial Intelligence (AAAI), pages 2060–2066, 2012.

[105] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng. ROS: an open-source robot oper-
ating system. In ICRA Workshop on Open Source Software, 2009.

184



Bibliography

[106] I. Rekleitis. Single robot exploration: Simultaneous localization and
uncertainty reduction on maps (SLURM). In Proceedings of the Con-
ference on Computer and Robot Vision (CRV), pages 214–220, 2012.

[107] I. Rekleitis. Multi-robot simultaneous localization and uncertainty
reduction on maps (MR-SLURM). In Proceedings of the IEEE In-
ternational Conference on Robotics and Biomimetics ROBIO, pages
1216–1221, 2013.
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