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Abstract

R
otorcraft aeroservoelasticity is inherently multidisciplinary, in-
cluding aerodynamics of streamlined bodies, dynamics of flexi-
ble structures and flight control systems. The related engineering

branches have variety of models with diverse characteristics in linearity
and time dependence; therefore the improved rotorcraft designs require
a generalization of the analysis, i.e. being applicable to the systems
having different complexity levels. Inspired by this motive, our work
presents the methods of generalizing aeroservoelastic stability analysis
of rotorcraft. An aeroelastic rotor tool is formulated with the scope of
evaluating periodic rotor matrices. A sufficient level of modeling capac-
ity is achieved using structural dynamics of rotating elastic blades with
rod, damper and hinge elements, steady and perturbation aerodynam-
ics and multi-blade coordinates. The aeroelastic rotor formulation is
integrated to an aeroservoelastic analysis platform which is able to ana-
lyze rotorcraft with a modular approach. The capability of quantitative
stability analysis is extended from eigen-solution of linear time invari-
ant systems to linear time periodic systems using Floquet’s method
and to nonlinear non-autonomous systems using Lyapunov Character-
istic Exponents. The rate of change of stability is also significant in
robustness analysis and design of dynamical systems. For this reason,
using the same methods of quantitative stability estimation, the para-
metric sensitivity of the stability measures is formulated analytically.
The methods are verified and illustrated on rotorcraft problems.
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Summary

C
hapter 1 begins with a statement of motivation. The aeroservoe-
lastic analysis of rotorcraft is outlined by briefly explaining the
major disciplines and interactions among them. The steps of gen-

eralizing rotorcraft aeroservoelastic stability analysis and strategy that
is followed in this work is summarized.

Chapter 2 describes the formulation of aeroelastic rotor model in-
cluding verification analysis.

Chapter 3 is devoted to the stability and analytical sensitivity anal-
ysis of linear time periodic systems using Floquet theory. Method is
illustrated on a simple first order differential equation with periodic
coefficients.

Chapter 4 explains the use of Lyapunov Characteristic Exponents in
estimating the stability and sensitivity of non-linear non-autonomous
systems. The computational aspects of discrete QR decomposition
algorithm and the problems related to the application of Lyapunov
Exponents to mechanical systems are addressed and illustrated on a
damped oscillator.

Chapter 5 provides the numerical examples and further illustra-
tions and verifications of the methods and tools on rotorcraft related
problems. Stability and parametric sensitivity analysis of linear time
invariant, linear time periodic and non-linear non-autonomous systems
are performed.

Chapter 6 concludes the thesis by pointing out important aspects
and addresses the possible extensions of the work.
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CHAPTER1
Introduction

This Chapter introduces the building blocks of our research and ad-
dresses the corresponding chapters and sections. Section 1.1 is a state-
ment of motivation. Then, in Section 1.2 aeroservoelasticity of rotor-
craft is introduced. Finally, Section 1.3 presents the scope of the thesis
and briefly describes the strategy to achieve the objectives.

1.1 Motivation

Rotorcraft, also known as helicopters or rotary-wing aircraft, are flying
vehicles that utilize rotating wings to provide lift, propulsion, and con-
trol forces, which enable the aircraft to rise vertically and hover above
the ground [1]. They have an indispensable role in aviation with their
capability to fly at zero or low air-speeds, sidewards and backwards ma-
neuvering skills and being able to take-off and land vertically. Hence,
rotorcraft can operate in remote areas, where there is no airstrip and
even no ground contact exists. For this reason, rotorcraft are ideal and
unique vehicles for search and rescue [2]. Besides, they are also fre-
quently used for other purposes such as transportation of human and
cargo, military actions, fire fighting, construction; especially under the
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Chapter 1. Introduction

conditions in which fixed-wing airplanes cannot operate.
A sufficient magnitude of relative speed between lifting surfaces and

air is needed to provide the required thrust levels at zero and low air-
speeds. This is simply done by rotating wings with respect to the
fuselage. However, since they do not operate in high speed axial flow,
rotors have to be designed big enough in order to enable all essential
tasks of a flying vehicle, i.e. rotor contributes to lifting, propelling and
controlling the rotorcraft [3]. These essential tasks are not separable
and the resulting cross couplings between the tasks lead to complexity
and dominance over all the aspects of helicopter operation from aero-
dynamics to the safety. Result is complex flight physics as compared
to fixed wing aircraft [4]. Because of the higher complexity, rotary
wing operation and maintenance costs are higher than those of con-
ventional airplanes. As a result, inflation rates in helicopter purchase
prices are much higher as compared to the rates of consumer price in-
dex and air-passenger ticket prices. (See Ref. [5] for a comprehensive
cost analysis). Besides cost, chronic problems exist such as proneness
to instability and excess levels of vibration which remain throughout
the service life. Majority of these chronic problems are mainly induced
by the dominating physics of the rotor under which aerodynamics,
structural dynamics and flight control systems interact.

In order to achieve competitive designs with reduction in character-
istic rotary-wing problems, it should be first kept in mind that rotor-
craft physics is multidisciplinary and determined by nonlinear and time
dependent equations in the broadest sense. A field is given a long but
comprehensive name aeroservoelasticity to handle the complex prob-
lem and address the interactions among the governing disciplines of
flight sciences. For rotorcraft, determination of stability is an impor-
tant task in aeroservoelasticity, in fact the most critical, since they are
inherently unstable systems [6]. Aerodynamics, structural dynamics
and control systems are involved in the stability of rotorcraft which
may additionally include significant nonlinear and time-dependent ef-
fects. Analysis models are usually simplified to achieve quick results
with practical cost. Although these simplifications are still valid and
accurate for an important set of flight conditions, critical information
about the system can be lost in many cases. Ignorance of multidisci-
plinary, nonlinear and time-dependent effects can cause significant con-
sequences about stability; hence the capability of the analyses should
be available and generalized for rotorcraft sytems having different lev-
els of complexity.
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1.2. Rotorcraft Aeroservoelasticity

This work is a result of such a motivation and focused on developing
tools and methods in order to increase the effectiveness of aeroservoe-
lastic stability analysis of rotorcraft. The nomenclature is given within
the text. Although some symbols may be used for more than one pa-
rameter or variable for independent topics, maximum care has been
taken in each subject to clearly state the symbols at each section and
what they refer to. In this work, there is no separate section for liter-
ature survey; however the bibliographic notes that are the basis of our
research and the advised references for further reading are provided in
this chapter and throughout the text.

1.2 Rotorcraft Aeroservoelasticity

"Aeroservoelasticity is a multidisciplinary technology dealing with the
interaction of the aircraft’s flexible structure, the steady and unsteady
aerodynamic forces resulting from the aircraft motion, and the flight
control systems" as designated in Ref. [7]. This definition is valid for
any structure including rotorcraft; which significantly interacts with air
through streamlined surfaces, have non-negligible elasticity and require
a human or an artificial system for stabilization, control and guidance.
In fact, the subject is an extension of aeroelasticity by including the in-
teraction with flight control systems; as modern aircrafts started using
fly by wire systems more frequently in order to improve the handling
qualities and stability, flight performance and ride quality, and also to
reduce loads and improve service life [8]. The building blocks of aeroser-
voelasticity are structural dynamics, aerodynamics and flight control
systems. These blocks are briefly explained in following sections for
their importance in rotorcraft and possible sources of aeroservoelastic
couplings are addressed.

1.2.1 Aerodynamics

Aerodynamics is the core branch of flight physics that is concerned
with the flow of the air [9]. Rotorcraft involve almost all of the com-
plex aerodynamics phenomena except supersonic flow. Fig. 1.1 gives
a complete picture of the complicated aeromechanics of a typical he-
licopter. Although, an adequate description is still missing [10], suc-
cessful attempts has been made to make vertical flight possible and to
understand significant aspects.

The main complexity arises form the rotation. When forward flight
speed is non-zero, blades traveling at one half of the rotor disk ad-
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Chapter 1. Introduction

Fig. 1. A schematic of the complicated aeromechanical environment in which a
helicopter rotor operates.

63

Figure 1.1: Complex aeromechanical phenomena induced by helicopter rotor (from
Ref. [11]).

vance the speed of the vehicle. When this is summed with the speed
due to rotation, blade tips experience more serious compressibility ef-
fects as the vehicle accelerates. Then, the major drawback is reduced
maximum forward flight speed, which is typically about 200 knots in
limit. On the other hand, the other half of the rotor disk operates in
the opposite direction of the vehicle heading. When the speed due to
rotation is subtracted from the vehicle’s speed, reverse flow conditions
occur near the blade root, which in turn causes blade sections operate
in stall and resulting in high levels of drag. Due to this differential
loading, forward flight operation cause alternating loads; a source of
excitation at frequencies multiple (n) of the rotor angular speed nΩ;
where Ω being rotor angular speed.

The rotor wakes are dominated by the strong blade tip vortices and
their geometry is quite complex due to rotation. Flying under their
own wake is not rare for rotorcraft and more severely, the interaction
of the wake with the body and other components results in noise and
vibration. Moreover, the periodicity of the wake is spoiled under un-
steady effects such as control inputs or maneuvering conditions, which
can lead to instabilities [10].

The motion and elastic deformation of the blades, which can be
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1.2. Rotorcraft Aeroservoelasticity

steady or vibratory, affect the airloads significantly [12]. Depending
on the geometry, flexibility and inertial characteristics of the control
system and blades, blade sections respond to the time dependent aero-
dynamic loads. The response, characterized by bending and twisting
of the blade sections, modifies the effective angle of attack of blade
sections, which in turn alter the loads.

1.2.2 Structural Dynamics

In aeronautics, the basic functions of an aircraft’s structures is to trans-
mit and resist applied loads, to maintain the aerodynamic shape and
to protect the interiors from environmental conditions [13]. In rotor-
craft, while the fuselage is not so different than that of a fixed wing,
the existence of rotor results in additional complexity.

First of all, the connection of the blade to the rotor hub should
allow motion in order to ease the handling by relieving the blade root
moments and transmit control inputs to the blades. The solution is
to link the blades to the hub via mechanical hinges and bearings or
elastic structures that have high flexibility. This motion is described
by the equilibrium of centrifugal and aerodynamic loads. Because of
this reason, the rotor blades behave like a mechanism to some extent,
which in turn make them intrinsically dynamical structures.

The elasticity of helicopter blades is mainly a result of their geome-
try. The span of the rotor blades should be large for the sake of hover
efficiency [14], which is a basic measure of the utility of rotorcraft [15].
Moreover, low solidity (ratio of the total area of the blades to the area
of the rotor) is also essential for reduced power required to hover at
the same thrust level; hence chord length should be kept as low as pos-
sible, as long as the stall margin of the blade cross section allows [10].
Then, large radius and small chord length lead to slender rotor blades,
meaning very flexible structures. This is especially critical in their thin
directions, which also carries most of the blade thrust; and also signifi-
cant in twisting direction which has direct impact on airloads. In fact,
the main rotor blades have such a low stiffness that they can hardly
carry their own weight without rotation. The centrifugal loads stiffen
the blade; therefore flexibility is not a problem from strength point
of view. However, for frequencies higher than the rotor angular speed,
the blade elasticity should be considered; since the aerodynamic damp-
ing reduces its effectiveness as frequency increases. Elastic couplings
between flapping, lagging and pitching motions are also common due
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Chapter 1. Introduction

to material distribution over the cross section. Especially due to the
use of composite materials in modern helicopter blades, anisotropy and
non-homogeneity are distinctive characteristics [16].

Inertial loads plays an important role in dynamics of the rotor blade
in addition to the stiffening effect of centrifugal tension. First of all,
mass and inertia of the blade resists the change of momentum as in the
case of any mechanical system. However, although the assumption of
infinitesimal strains is still valid, the deflections and rotations can be
moderate or large [17, 18]. Moreover, Coriolis forces, a specific effect
due to rotation, couples flapping and lagging motions of rotor blades.
Inertial couplings between centrifugal loads, blade position and orien-
tation induce destabilization in lead-lag motion and additionally cause
propeller moment in pitch direction. The chordwise center of grav-
ity offsets from pitch and elastic axes are also among stability related
issues. Static, dynamic and aerodynamic balance of blades are also
critical to reduce low frequency vibrations [19]. Section 2.3 together
with inertial loads given in Section 2.5.1 describe the formulation of
rotor blade structural dynamics. Interested readers may also refer to
Refs. [20] and [21] for a general survey and comparison on the beam
theories for rotor blades.

Even in the absence of excitation forces, the dynamics of the ro-
tor and fuselage may couple. One very critical condition is ground
resonance, which is defined as the dynamical coupling of the rotor in-
plane degrees of freedom with the fuselage and undercarriage system
when rotorcraft contacts with the ground. Section 5.3 presents a de-
tailed analyses with periodic and nonlinear effects. Similar resonant
condition may also occur on air for hingeless rotors (See Ref. [22] for
a detailed description of both ground and air resonance).

Rotor blades are excited by oscillatory aerodynamic forcing, which
reduce the service life of the blades and other components. Vibra-
tion amplitude amplifies if natural frequencies of the blades are close
to harmonics of rotor frequency [23]. Moreover, the vibrations are
transmitted to the fuselage through mechanical and aerodynamic load-
paths [24]. The frequency interval of the rotor induced oscillatory loads
are wide and include many low and high frequency rotor and fuselage
elastic modes (See for example Ref. [25]). Hence, it is very likely that a
resonant condition occur even for high frequency elastic modes, which
in turn dramatically degrades flight safety and comfort. Helicopter
vibrations are generally considered to limit several factors like safety,
reliability, comfort and maximum speed. Additionally, an excessive
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level of vibrations leads to an increase in maintenance stops which in
turn increase the operational costs (See Ref. [26] for a detailed cost
analysis). Another important effect is the degradation in the cabin
comfort, more severely chronic pain can be felt by the pilots in long
term [27]. More severe vibrations may cause failure and instability
during flight. As a consequence, vibrations are directly related to the
acceptance in commercial market [28].

1.2.3 Control

An aircraft can achieve and maintain its trimmed flight or maneuver
via a pilot or flight control system (FCS) or both, which mainly re-
quire forces and moments to control the attitude of the body [29]. For
rotorcraft, due to the operation at lower speeds, the airspeed over the
control surfaces are not always high enough (except high speed for-
ward flight). This is opposed to the higher operation speed and well
separated functions of lift, propulsion and control in fixed wing air-
craft; in which slight deflections are enough to control a conventional
airplane. Therefore, classical control surfaces of fixed-wing aircraft are
not very useful in rotorcraft and the main sources of control forces and
moments are rotors and their differential thrust [4]. The swash plate of
the main rotor can change the orientation of the blades collectively or
sinusoidally, which is linked to the control sticks in the cockpit. Thus,
the magnitude and direction of the thrust force can be adjusted to pro-
vide the required forces and moments. The side effect of the change of
thrust is the induced drag on the rotor hence the power output from
the engine should be controlled by means of a throttle. The directional
control is achieved generally using pedals in the cockpit which collec-
tively changes the angle of attack of the tail rotor blades, thus a torque
is generated around the vehicle center of gravity. There also exist some
other means of directional control than a tail rotor but they are out of
the scope of this work (See for example Ref. [6]).

Modern aircrafts are donated by FCSs in order to improve stability
and ease the handling of pilot, which also have gained importance and
the number of applications in rotorcraft industry [30] (Also see Ref. [31]
for historical aspects). These systems mainly control the rigid body
attitudes of the aircraft; besides, they also evolved to improve flight
safety and ride comfort by suppressing vibrations (See Refs. [32–35]
for active and passive vibration suppression analysis). In the case of
a FCS application, the sensors measure the rates of the body and
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controller processes the feedback information to maintain the required
orientation. However the signals, owing to aircraft flexibility, carry
contributions caused by such flexibility. As a result, the gains and
filters of the FCS would also operate on signals coming from the flexible
aircraft, if they were not appropriately corrected (Refs. [36] and [37]).
Thus, the controls about the frequencies of aeroelastic system is driven,
possibly leading to aeroelastic instabilities. This is more critical in
rotorcraft since the level of vibration is much higher as compared to
the fixed-wing airplanes.

In addition to FCSs, the vehicle can also interact with the pilot and
cause unintended oscillations and low stability margins. Depending
on the frequency of the interaction, the phenomena is referred to as
rigid body or aeroelastic rotorcraft-pilot coupling (RPC) [38]. Rigid
body RPC occurs at low frequencies and hence the problem is directly
related to flight dynamics. Aeroelastic interactions are more related
to involuntary pilot behavior [39, 40], which is a significant source of
degradation in handling qualities and safety [41]. The source of this
phenomenon is the interaction of vibratory loads with the biodynamics
of the pilot, which is inherently uncertain. In practice, the inceptor
motion involuntarily produced by the pilot is often associated to the
acceleration experienced by the pilot through the seat, which is a result
of the transmitted vibratory loads. (See for example Ref. [42] on the
involuntary collective motion associated to motion along the vertical
axis, and Ref. [43] on the lateral axis, and a recent study in Ref. [44]).
The motion of the involuntary pilot feeds the systems through control
chain and the resulting closed-loop system can lose stability even if
the open loop system is stable (See Refs. [45, 46] for robust stability
analysis of involuntary pilot coupling).

1.3 Generalizing Rotorcraft Aeroservoelastic Stability Analysis

The discussion above shows that there is no central discipline in the
design of rotorcraft. At elementary levels, the problems can be solved
assuming independent disciplines; however, the multidisciplinary na-
ture should be carefully preserved with possible nonlinear and time
variant effects in order to foresee significant problems such as instabil-
ities, vibrations, limit cycles oscillations and other problems related to
the aeroservoelasticity of the system. For example, Fig. 1.2 visualizes
an example of a problem in rotorcraft aeroservoelasticity. The vehi-
cle involving aeroelastic couplings presents time oscillatory loads; thus
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Figure 1.2: An aeroservoelastic rotorcraft problem: The aeroelastic vehicle gener-
ating oscillatory loads and vibration, flight control system characterized by gains
and phases and an involuntary pilot closing the loop.

induces vibrations on the pilot through elastic fuselage. The involun-
tary pilot inputs, caused by the vibrations on the pilot, activate the
flight control systems, which is characterized by gains and phases. The
resulting system is highly multidisciplinary with inherently nonlinear
sub-systems and feedback through FCS and human pilot.

Considering that rotorcraft cost much more than their fixed-wing
propeller driven counterparts as stated in Ref. [5], which is due to
higher levels of complexity, the decisions made in the design process
are then more critical and the aeroservoelasticity concept should be
more involved. In this work, we are interested in developing tools and
methods in order to increase the effectiveness and capability of aeroser-
voelastic stability analysis of rotorcraft; hence the need of simplifica-
tions and the level of uncertainty can be minimized. The capability
of aeroservoelastic stability estimation can be increased by following
two paths. The first way is to focus on the multi-disciplinary nature of
aeroservoelasticity by increasing the number of disciplines and devel-
oping detailed comprehensive models of rotorcraft and its subcompo-
nents. The second path is to increase the capability of mathematical
and numerical tools to quantify the stability, such that the systems
having different levels of complexity can be analyzed without requiring
simplifications in multi-discipliner, nonlinear and time-variant nature
of rotorcraft.

The first path is well-known in rotorcraft industry. In fact, from
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Chapter 1. Introduction

commercial to academic purposes, many comprehensive tools have
been developed for multi-disciplinary analysis of rotorcraft and many
helicopters in service verify the capacity and success of these tools.
Among them the pioneer is CAMRAD series [47–49], started in 70s
and still an active project. Then, as computers speed up, flexible
multibody dynamics codes emerged in almost every field of mechanics.
Since rotorcraft possesses components having quite different behaviors
from hinges to slender elastic blades, the philosophy of multibody dy-
namics fits well for rotorcraft simulation purposes. The two multibody
dynamics codes mainly dedicated to rotorcraft research and develop-
ment are DYMORE [50] and MBDyn [51]. A state of art idea is to
develop a numerical platform which is capable of representing elastic
and rigid boundary conditions between the components of a rotorcraft
that can come from independent sources. For this reason, a simulation
tool called MASST (Modern Aeroservoelastic State Space Tools) was
developed at Politecnico di Milano prior to this work, for the aeroser-
voelastic and aeromechanical analysis of aircraft and rotorcraft (See
Refs. [52], [53] while a brief description is also available in Section
2.1). The philosophy of MASST is being the platform of coupling the
mathematical models of the rotorcraft components originating from in-
dependent sources. Nevertheless, a valuable extension to MASST and
hence increase the capability of aeroservoelastic analysis is to develop
an in-house aeroelastic rotor code. The benefits of such a work is:
flexibility can be supplied to MASST for performing stability analysis
of rotorcraft with different levels of complexity; MASST can be better
used as a design code by allowing optimization and parametric analysis;
and freedom from commercial comprehensive tools is achieved. This
part of our research is extensively explained in Chapter 2 including the
theoretical background and some examples for verification.

The second path that we have followed is to extend the capability
of stability and sensitivity analysis without requiring simplifications
in the system nonlinearity and time dependence. Stability is defined
as the study of the nearby solutions of an equilibrium [54]. In other
words, we are interested in the behavior of the solution of an equilib-
rium under the presence of a perturbation [55]. Although the definition
is the same for any system, the methods that estimates stability differ
depending on the complexity. A straightforward method is perturb-
ing one input or disturbance channel of the system and measuring
decaying characteristic of the output by experimenting on a real sys-
tem or simulating its mathematical model. Fortunately, there exist
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spectral methods which quantify the decaying characteristic of inde-
pendent components of solution, i.e. the system’s exponential mul-
tipliers or characteristic exponents. Having determined the stability
measures that quantify stability, it is easier to interpret and compare
the results. Besides, spectral methods are also suitable for analytical
estimation of sensitivity of stability estimates. In this work, spectral
methods of estimating stability is preferred and developed for systems
having different levels of complexity. Whatever the flight conditions,
multi-disciplinary interactions and characteristics of sub-components
are; rotorcraft aeroservoelastic stability problems can be handled fol-
lowing the theory of dynamical systems. Mathematically speaking, the
general form of a dynamical system is,

ẋ = f (x, t) , x(t0) = x0 (1.1)

where, x is the state variable vector and f is the function that governs
the system; such that the knowledge of x(t0) at initial time t0 and f
provides the future state vector x(t), with t > t0 [56]. In the most gen-
eral version, f is nonlinear and also non-autonomous, i.e. time variant.
Special cases occur when the problem is linear, i.e. f(x, t) = A(t)x(t),
or even periodic, i.e. linear with A(t+ T ) = A(t) for a given constant
T , ∀t. Autonomous problems arise when f(x) does not explicitly de-
pend on time t; a special case occurs when the problem is linear, i.e.
f(x) = Ax. Although, irrespective of the complexity and the struc-
ture of the mathematical representation, the decaying characteristics of
state variables after a perturbation determine stability, the techniques
of estimating the measures of stability properties differ.

Evaluating the stability of linear time invariant (LTI) systems is
straightforward and can be simply computed using the well-known
eigenvalue decomposition. In its current state, MASST can already
extract the eigenvalues of a systems; in addition to that analytical sen-
sitivity of LTI systems is formulated and explained in Section 2.8. On
the other hand, as a next step, the stability of linear time periodic
(LTP) systems can be added in order to increase this capacity of sta-
bility and sensitivity analysis. Floquet Theory is very convenient for
this purpose, as it is a natural extension of eigenvalue analysis for LTP
systems [57]. Then, stability of LTP systems are formulated based on
the spectral analysis of LTP systems using Floquet Theory and de-
scribed in Chapter 3. Although the eigenvalue method of LTI systems
and Floquet solution of LTP systems are widely used in rotorcraft sta-
bility estimation and can represent the dynamics of many rotorcraft
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problems; they imply simplifications when the system is nonlinear and
a-periodic. Then, in order to further improve and generalize the sta-
bility analysis of rotorcraft; a method that can indicate the stability
of solutions of nonlinear non-autonomous systems is required. Further
expectations from this method should be: not to require simplifica-
tions, reference solutions and assumption of a period; and additionally
to give the same results and interpretation with eigen-solution and
Floquet method, when implied on LTI and LTP systems respectively.
For this reason, quantitative stability of linear time periodic and non-
linear non-autonomous systems are formulated using Lyapunov Char-
acteristic Exponents (LCEs) which are the indicators of the stability
properties of solutions of differential equations [58]. Discrete QR de-
composition is used to estimate these LCEs. Chapter 4 is dedicated
to explain the mathematical backgrounds, addresses some of the issues
and difficulties on a simple illustrative example.

In a dynamical system, especially in the design phase, the rate of
change of stability estimates with respect to a parameter also plays
a significant role if that parameter is expected to change or there is
uncertainty in it. Such sensitivity is useful to gain insight into the
dependence of stability indicators on system parameters, or can be
integrated into gradient-based (or gradient-aware) optimization proce-
dures [59] and continuation algorithms [60], or into uncertainty eval-
uation problems (See for example Refs. [61, 62] for rotorcraft related
optimization problems and Ref. [63] for an aeroelastic tailoring example
of a helicopter blade). A novel contribution of this work is the develop-
ment of analytical sensitivity estimations instead of finite-differences to
avoid issues related to sharp changes in sensitivity parameters and to
gain the possibility to detect such changes, in order to detect topology
changes of the solution and track them using continuation algorithms.
Detecting Hopf bifurcation is an example to such a topology change
in which the real part of the critical characteristic exponents, have
non-zero sensitivity at critical parameter [64]. Estimation of stability
properties for LTI, LTP and nonlinear non-autonomous systems are
described and formulated in the relevant sections of Chapters 2, 3 and
4 respectively.

In order to verify and illustrate the tools and methods, numerical
examples are provided in Chapter 5. The analyses include parametric
stability and sensitivity of LTP and nonlinear non-autonomous rotor-
craft systems. Finally, Chapter 6 states the concluding remarks and
addresses possible extensions to this work.
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CHAPTER2
Aeroelastic Rotor Model

2.1 Introduction

A linear time invariant (LTI) aeroelastic rotor model is the funda-
mental tool in the stability analysis of rotorcraft and provides a basis
for the generalized aeroservoelastic stability analysis. Strictly speak-
ing, the equations of motions governing the rotorcraft aeroelasticity
is nonlinear [65]. However, linearizing a system is sometimes neces-
sary and can be advantageous if properly done. First of all, there is
great literature and vast number of linear tools in structural dynam-
ics, aerodynamics and control fields, which are more robust, easy to
implement and cost efficient as compared to nonlinear formulations.
Second, sometimes nonlinear effects may not be mathematically rep-
resentable or globally significant to some extent. Third, there cannot
be enough information about the exact nonlinear behavior. Moreover,
nonlinearity can be isolated from the rest of the linear model, hence
the linear subcomponents may not require more sophisticated models.
Under these circumstances, depending on the characteristics of the
nonlinearity, the nonlinear terms are either completely ignored as usu-
ally done in stability analysis or that system is considered as a linear
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but uncertain system [66].
The methods that widens the aeroservoelastic stability analysis are

presented in next chapters. Stability and sensitivity of periodic systems
is described in Chapter 3 while stability and sensitivity of nonlinear
non-autonomous rotorcraft systems is investigated Chapter 4. The ro-
torcraft related illustrations are given in Chapter 5. This chapter is
devoted completely to the linear time periodic aeroelastic rotor model.
Integration with an aeroservoelastic tool MASST is an important ob-
jective; hence, current MASST version is briefly presented in Section
2.2 first. Section 2.3 formulates the elastic blade behavior. Boundary
conditions, hinge connection and one dimensional rod and damper el-
ements are presented in Section 2.4. The external loads are described
in Section 2.5 which includes inertial and aerodynamic forces and mo-
ments, their integration and transformation. Section 2.6 summarizes
the steady state solution of equations of motion. The transformation
between rotating and non-rotating reference frames is described in Sec-
tion 2.7. The analytical estimation of the sensitivity of LTI systems is
formulated in Section 2.8. Finally, the verification problems are pro-
vided in Section 2.9 in order to present the soundness of the approach.

2.2 MASST Aeroservoelastic Analysis Platform

Prior to this work, a simulation tool named MASST (Modern Aeroser-
voelastic State Space Tools) was developed at Politecnico di Milano for
the aeroservoelastic and aeromechanical analysis of aircraft and rotor-
craft (Refs. [52], [53]). MASST analyzes compact yet complete modu-
lar models of complex linearized aeroservoelastic systems. Models are
composed of subcomponents collected from well-known, reliable and
possibly state-of-the-art sources and blended together in a mathemati-
cal environment. The problem is formulated in state-space form. This
approach is often termed modern in the automatic control community.
The equations of motion of the system are cast as first order time dif-
ferential equations. As a consequence, generic state-space approaches
can be used to analyze aeroelastic systems. MASST has been designed
to be modular and to incorporate heterogeneous subcomponents from
different sources to model:

• deformable aircraft structural dynamics

• airframe unsteady aerodynamics

• rotor aeroelasticity
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2.2. MASST Aeroservoelastic Analysis Platform

• drive train dynamics

• servoactuators dynamics

• sensors and filters dynamics

• (Automatic) Flight Control System (FCS)

• pilot biomechanics

When these elements are combined, they provide a powerful and
flexible closed loop aeroservoelastic modeling capability. Each compo-
nent is modeled in its most natural and appropriate modeling envi-
ronment and then cast into state-space form. Substructures are con-
nected using the Craig- Bampton Component Mode Synthesis (CMS)
approach [67].

Figure 1.1: Block diagram of the different elements that can participate in a MASST model.

4

Figure 2.1: Block diagram of the different elements that can participate in a
MASST model.
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Chapter 2. Aeroelastic Rotor Model

Fig. 2.1 gives the analysis boundaries of current version of MASST.
The rotor matrices are obtained from external sources and they are
expected to be non-periodic. However, rotor is the most critical and
complicated part of a rotorcraft; very few tools are available with some
of them are completely nonlinear thus too complicated for stability
analysis while very few of them have free licenses. Then, in order
to free MASST from external rotor sources with the flexibility to ex-
tend the modeling capability from linear time invariant to nonlinear
non-autonomous system and perform parametric sensitivity analysis;
an aeroelastic rotor model is essential. This is done by formulating
the aeroelastic model of a rotating beam with hub motion, describing
the necessary transformations from aerodynamic to structural domains
and from rotating to non-rotating frames, adding flexibility in aero-
dynamic modeling and developing linear time periodic and nonlinear
non-autonomous stability and sensitivity formulations.

2.3 Formulation of Elastic Rotor Blades

The elastic behavior of helicopter rotor blades has been formulated
in literature for different levels of complexities. For example, see
Ref. [68–70] for the derivation of linear and nonlinear equations. An-
alytical solution is not possible unless the problem is reduced to its
simplest form, which is usually inaccurate for most of the problems.
Among numerical methods, Finite Element Method has been exten-
sively used (See Refs. [71–73]). A modern approach is Finite Volume
concept, which is based on the direct balance of forces and moments
on a finite volume of solid rather than using the weak formulation of
strain energy. One can find an analogy with finite volume method in
CFD, specifically the node-centered form. The finite volume formula-
tion of Ref. [74] is implemented in this work to obtain the structural
dynamics representation of linearized rotating C0 beams, which is also
proven to be shear-lock free. This method is also used in MBDyn1
Multibody Dynamics Code with its nonlinear version.

The beam is discretized using 3 node elements, each node possessing
3 translational 3 rotational degrees of freedom. For a rotating beam

1MBDyn is a general purpose Multibody Dynamics analysis software. It was developed at the
"Dipartimento di Scienze e Tecnologie Aerospaziali of the University Politecnico di Milano, Italy".
MBDyn features the integrated multidisciplinary simulation of multibody, multiphysics systems,
including nonlinear mechanics of rigid and flexible bodies subjected to kinematic constraints,
along with smart materials, electric networks, active control, hydraulic networks, and essential
fixed-wing and rotorcraft aerodynamics. See Ref [51] for more details, theory and illustrations.
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Figure 2.2: 3-node Beam element in blade reference frame : The degrees of free-
dom of the blade element is defined and external loads are applied at its 3 nodes,
whereas strains and internal loads are evaluated at 2 evaluation points

element, the equilibrium of internal forces at 2 internal points and
external forces at the 3 nodes are written and linearized. The internal
loads are related to the internal strains using a 6× 6 stiffness matrix.
Then, the linearized strain terms are written as a function of node
degrees of freedom using interpolation polynomials.

2.3.1 Beam Discretization

The 3-node beam element is given in Fig. 2.2. The longitudinal axis is
the blade axis extending radially outward, the vertical axis (z axis) is
parallel to the rotation axis of the rotor and lateral axis y lies on the
rotor plane perpendicular to radial and vertical axes. In this chapter,
this reference frame is referred to as blade reference frame. The nodes,
with arab footers (i = 1, 2, 3), are the locations on the blade reference
frame, where position (p) and curvature (κ) about three orthogonal
axes are represented and external loads are applied; in other words
they are the degrees of freedom of the mathematical model.

The reference plane, at which beam element lies and elastic prop-
erties are defined is named as material reference frame and lies on a
dimensionless coordinate ξ, given an orientation R and offset f = Rf̃
with respect to the blade reference frame; where the variables hav-
ing an over-tilde ˜(•) represent a variable defined in a relative frame
of reference, i.e the material reference frame. The strains and inter-
nal loads are computed at the evaluation points along the material
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Chapter 2. Aeroelastic Rotor Model

reference frame, which are represented by roman footers (k = I, II),
as shown in Fig. 2.2. For this beam model, the evaluation points are
located at material frame coordinates ξI = −1/

√
3 and ξII = 1/

√
3.

These points are Gauss quadrature points for polynomials up to third
order and they are proven to provide exact behavior for end applied
nodes [74]. The position and the spatial derivative of a point on the
beam reference line (ξ) as a function of the node variables are defined
using second order polynomials (Nj(ξ)),

N1(ξ) =
ξ(ξ − 1)

2
N2(ξ) = 1− ξ2 N3(ξ) =

ξ(ξ + 1)

2
(2.1)

where ξ = −1, 0, 1 are the points on local coordinate (ξ) corresponding
to 3 nodes. Then, the position p(ξ) and curvature ϕ(ξ) and their
derivatives along the line passing through the material reference frame
(ξ) can be expressed as a linear combination of the corresponding values
at the nodes, namely pi and κi:

p(ξ) = Ni(ξ)pi , p′(ξ) = N ′i(ξ)pi; i = 1, 3 (2.2a)
κ(ξ) = Ni(ξ)κi , κ

′(ξ) = N ′i(ξ)ϕi; i = 1, 3 (2.2b)

2.3.2 Equilibrium Equation and Linearization

The rotating blade is discretized based on a C0, i.e. Timoshenko, beam
formulation, meaning that displacement and rotation are two separate
fields [75]. The equation of beam can be stated as an equilibrium
between the internal forces and moment (ϑ) and the distributed forces
and moments (τ );

ϑ′ −TTϑ+ τ = 0 (2.3)

where derivative is evaluated with respect to beam reference line ξ and
TT is the arm matrix of internal forces:

T =

[
0 p′×
0 0

]
(2.4)

The internal loads (ϑ = [ϑTI ϑ
T
II ]

T ) evaluated at the evaluation
points and the external loads (F = [FT

1 FT
2 FT

3 ]T ) applied at node
points are in equilibrium according to the formulation [74];

Aϑ = F (2.5)

where A is the referred to as arms matrix obtained by integrating
Eq. 2.3, which guarantees equilibrium between the external loads at the
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nodes (marked with arab footers) and internal loads at the evaluation
points (marked with roman footers):

A =




I 0 0 0

(pI − p1)× −I 0 0

I 0 −I 0

−(pI − p2)× I (pII − p1)× −I

0 0 I 0

0 0 −(pII − p3)× I




(2.6)

If perturbation is applied to Eq. 2.5,

���A0ϑ0 + A0δϑ+ δAϑ0 +����δAδϑ =��F0 + δF (2.7)

leading to the linearized form,

A0δϑ+ δAϑ0 = δF (2.8)

where terms with 0 subscript are reference conditions. Eq. 2.8 is the
linearized equilibrium equation around a reference condition after ne-
glecting higher order terms and canceling the reference condition. The
term A0δϑ gives the perturbation of internal loads with an arms ma-
trix at reference configuration whereas δAϑ0 term is responsible for
the stiffness contribution due to pre-stress of the beam element under
reference centrifugal loads.

2.3.3 Linearization of Strain

In C0 beam formulation, the strain vector ψ is composed of linear
strain ε and angular strain κ which corresponds to the translation and
rotation of the cross section respectively. In this study, the linearized
forms for initially zero curvature beams are used.

Linear Strain

The linear strain in blade frame for a point with location p is the
difference between the final and initial states:

ε = p′ −Rp′0 (2.9)

where R is the rotation matrix from initial configuration to the final
one, p0 is the strain in reference condition and ()′ indicates spatial
derivative with respect to reference line. The zero index ()0, from now
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on, is used for reference condition unless otherwise stated. Linearizing
the strain relation gives:

δε = δp′ − δRp′0 (2.10)

On the other hand, for any matrix satisfying orthogonal rotation prop-
erty, it can be proved that:

δR = δθ ×R0 δRT = −RT
0 δθ× (2.11)

where δθ represents the vector of the perturbation angles of the node.
Then dropping δ by replacing δp and δθ with variables x and ϕ, the
linearized strain is obtained as:

δε = x′ + p′0 ×ϕ (2.12)

Angular strain

Similarly the curvature (κ) in the node frame can be stated as the
difference between final and initial curvatures,

κ = ρ−Rρ0 (2.13)

where ρ = R′RT is the actual curvature for the rotation matrix from
initial configuration to the final one, namely R. Considering that δρ0

is by definition zero, linearizing gives,

δκ = δρ− δRρ0 = δρ−ϕ× ρ0 (2.14)

since R0ρ0 = ρ0. The linearization of δρ is not trivial. First linearize
R′RT :

δρ× = δ(R′RT ) = δR′RT
0 + R′0δR

T (2.15)

δR′ needs to be explicitly written. Schwartz’s Theorem is applicable
to rotation matrix, then the sequence of perturbation and derivative
can be altered which leads to;

δR′ = (δR)′ = (ϕ×R0)′ = ϕ′ ×R′0 +ϕ×R′0 (2.16)

Considering that R0R
T
0 = I and R′0R

T
0 = ρ×0, the term δρ× can be

written as

δρ× = ϕ′ ×R0R
T
0 +ϕ×R′0R

T
0 −R′0R

T
0ϕ× (2.17)

= ϕ′ ×+ϕ× ρ0 ×−ρ0 ×ϕ×
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The terms with double cross product should be treated to achieve
further simplification, which can be done using Jacobi identity:

a× (b× c) + b× (c× a) + c× (a× b) = 0 (2.18)

Applying Jacobi identity to terms with double cross product term of
Eq. 2.17 needs right multiplication with a dummy vector w. Then,
using anti-commutative property of cross product and Jacobi identity
with a = ϕ, b = ρ, a = v:

(δρ×−ϕ′×)w = ϕ× ρ0 ×w − ρ0 ×ϕ×w

(δρ−ϕ′)×w = ϕ× ρ0 ×w + ρ0 ×w ×ϕ = −w × (ϕ× ρ0)

(δρ−ϕ′)×w = (ϕ× ρ0)×w (2.19)

Then the dummy vector w and cross product operation can be dropped:

δρ = ϕ′ +ϕ× ρ0 (2.20)

Inserting Eq. 2.20 into Eq. 2.14, terms with cross products cancel:

δκ = ϕ′ +���
�ϕ× ρ0 −����ϕ× ρ0 (2.21)

Finally the linearized form of angular strain can be stated as a first
order derivative of perturbation angle:

δκ = ϕ′ (2.22)

2.3.4 Perturbation of Internal Loads

It is more convenient to represent constitutive law in the material ref-
erence frame. Then, a transformation between blade and material
reference frames is required. The internal forces can be expressed in
blade frame as;

ϑ = Dψ = RD̃RTψ (2.23)

where R and D̃ are the rotation and constitutive law matrices having
the contributions from two evaluation points and similarly ϑ and ψ
are the internal load and strain vectors at the evaluation points,

R = diag([RI RI RII RII ]) , D̃ = diag([D̃I D̃II ]) (2.24a)
ϑ = [ϑTI ϑ

T
II ]

T , ψ = [ψT
I ψ

T
II ]

T (2.24b)

which enables to input the constitutive law in using an arbitrary set
of coordinates with prescribed rotation matrices. Using updated La-
grangian approach, i.e. preserving reference loads, the perturbation of
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internal loads ϑ is;

δϑ = δRD̃RT
0ψ0 + R0D̃RT δψ (2.25)

where terms with 0 index represents reference conditions. Remember-
ing that δR = ϕ×R0 and δRT = RT

0ϕ×, for a rotation matrix R and
corresponding linearized rotation angle ϕ, Eq. 2.25 is rearranged as,

δϑ = −ϑ0 ×ϕ+ R0DRT
0 δψ (2.26)

where ϑ0 and ψ0 are the reference internal forces and strains and ×
represents the matrix from of a vector product operation as before.
Considering that the magnitude of centrifugal loads are significantly
higher then that of other forms of external loads in a typical rotor
blade; only tension forces due to rotation (t0) at evaluation points are
considered as reference internal loads. Finally, δψ can be written as
a summation over node variables (i = 1, 3) using shape functions and
linearized strain for the perturbation variables xi and ϕi,

δψ =




δεI

δκI

δεII

δκII


 =

3∑

i=1




N ′IiI p′0I ×NIi −N ′Iif i×
0 N ′I,iI

N ′IIiI p′0I ×NIIi −N ′IIif i
0 N ′IIiI




[
xi

ϕi

]
(2.27)

with f = Rf̃ , where f̃ is the offset of the material frame from blade
reference frame.

2.3.5 Constitutive Law

The internal loads ϑ̃ are related to strains ψ̃ by a linear elastic con-
stitutive law in material reference frame ϑ̃k = D̃kψ̃k at two evaluation
points ξI,II = −1/

√
3, 1/
√

3. For example, the 6×6 material matrix D̃
for an isotropic cross section with double symmetry about its principal
axis has the following form;

D̃ =




EA 0 0 0 0 0

0 GAy 0 0 0 0

0 0 GAz 0 0 0

0 0 0 GJ 0 0

0 0 0 0 EIy 0

0 0 0 0 0 EIz




(2.28)
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where EA is the axial stiffness, GAy and GAz are the shear stiffness
about principal axes, GJ is the torsional stiffness, EJy and EJz are the
bending stiffnesses about bending principal axes. For an orthotropic
cross section, D̃ can be fully populated. In general, accurate beam
constitutive properties for non-homogeneous and anisotropic sections
can be formulated using the approach originally proposed in Ref. [76].

2.3.6 Stiffness contribution due to pre-stress

The δAϑ0 term in Eq. 2.8 represent the geometric effect of reference
loads on the response of the beam. In the case of a rotor blade, signifi-
cant tension field results from the rotation at high speed and dominates
the dynamics. The linearization of arms matrix A comes from Eq. 2.6
by perturbing the variables p. This matrix is multiplied by tension due
to centrifugal loads. Without going into detail, collecting the variables
as a right hand side vector, the stiffness contribution due to pre-stress
can be obtained as a summation over the perturbation node variables
xi and ϕi (i = 1, 3) as;

δAϑ0 =
3∑

i=1




0 0

tI0 × (NIi − δi1) −tI0 ×NIif i×
0 0( −tI0 × (NIi − δi2)

+tII0 × (NIIi − δi2)

) (
tI0 ×NIif i×
−tII0 ×NIIif i×

)

0 0

−tII0 × (NIIi − δi3) tII0 ×NIIif i×




[
xi

ϕi

]

(2.29)
where δij is the Kronecker delta operator.

2.4 Additional Elements

This section presents the elements that are frequently used in heli-
copter rotors. Within the scope of this work, displacement boundary
conditions, a rod element and hinge connection is presented while the
element library can be extended as a future work.

2.4.1 Displacement Boundary Conditions

The Boundary Conditions are required when the blade or rotor con-
nected to a ground support and translation and/or rotation is con-
straint at its some of the degrees of freedom. For this purpose, the
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classical way of representing displacement boundary conditions of Fi-
nite Elements Method is used, by removing the constrained degrees
of freedom from the matrices those govern the system. Possible types
are clamped and hinged connections; the former prevents both trans-
lational and rotational degrees of freedom whereas the latter only con-
straints translation. This is a well-known concept in finite element
analysis, thus skipped here. The details can be found in any finite
element method book (For example see Refs. [77] and [78]) .

2.4.2 Rod with Offset

Rod is a one dimensional element that can be used in modeling control
system links, springs and dampers. A rod is represented by two nodes
and can carry load on its axial direction. Following the formulation
given in Theory Manuel of MBDyn [51], the vector between nodes
with position vectors p1,p2 and having offset from nodes f1, f2 can be
defined as;

l = p2 + f2 − p1 − f1 (2.30)

with the scalar distance l =
√

lT l. The strain and strain rate are:

ε =
l

l0
− 1 , ε̇ =

l̇

l0
(2.31)

where l0 is the unstrained length of the rod. The time derivative of the
distance vector can be written as;

l̇ = ṗ2 + ω2 × f2 − ṗ1 − ω1 × f1 (2.32)

where ω is the angular velocity of the node. The axial force on rod
is a function of strain and strain rate f = f(ε, ε̇), which can also
be converted into a function of displacement and displacement rate,
f = f(l, l̇). The force vector and distance vector should have the same
direction for one dimensional rod element, then:

F =
l

l0
f (2.33)

Since no force field is assumed within the element, the forces at the two
ends of the rod are equal in magnitude with opposite directions and
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the moments are simply cross product of the forces with the offsets,



F1

M1

F2

M2


 =




−F

−f1 × F

F

f2 × F


 (2.34)

with their linearizations:



δF1

δM1

δF2

δM2


 =




−δF
−f1 × δF

δF

f2 × δF


 (2.35)

Linearizing the force vector acting on the rod gives;

δF =
f

l

(
I− llT

l2

)
δl +

l

l
δf (2.36)

where the linearized axial force is determined as,

δf =
∂f

∂ε
δε+

∂f

∂ε̇
δε̇ (2.37)

with the linearization of strain and strain rate:

δε =
δl

l0
δε̇ =

δl̇

l0
(2.38)

Then, the perturbation of the length of the rod and its rate of change
are obtained as;

δl =
1

l
lT δl (2.39a)

δl̇ =
lT

l
δl̇ +

l̇
T

l

(
I− llT

l2

)
δl (2.39b)

Using the perturbation displacement x and rotation ϕ as before, the
perturbation of distance and distance rate vectors are:

δl = x2 + f2 ×ϕ2 − x1 − f1 ×ϕ1 (2.40a)

δl̇ = ẋ2 − f2 × ω2 − ω2 × f2 ×ϕ1 − ẋ1 − f1 × ω1 − ω1 × f1 ×ϕ1

(2.40b)
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If Eqs. 2.36 to 2.40 are combined, the perturbation force on the rod
can be stated as;

δF = Klδl + Kl̇δl̇ (2.41)

where

Kl =
f

l
I +

(
1

l2l0

∂f

∂ε
− ε̇

l3
∂f

∂ε̇
− f

l3

)
lT l +

1

l2l0

∂f

∂ε̇
lT l (2.42a)

Kl̇ =
1

l2l0

∂f

∂ε̇
lT l (2.42b)

which can be used in Eq. 2.35 to represent forces and moments at the
two nodes of the rod. The classical spring damper constants are given
as:

k =
1

l0

∂f

∂ε
, c =

1

l0

∂f

∂ε̇
(2.43)

2.4.3 Revolute Hinge

Hinges are widely used at the roots of blade: they allow flap, lead-lag
motion to relieve moments at blade roots, thus rolling of the rotorcraft
in forward flight is prevented; and provide rotation of the blade around
pitch axis for inputting control commands. In order to represent free
rotation around one axis, revolute hinge is formulated. In this study
they are modeled by assigning a hinge in between two adjacent nodes
and then canceling the common degrees of freedom while retaining the
independent one. Now, supposing that a hinge is located between two
beam elements, with indices n andm, then the equation for the relative
motion can be stated as,

xm,i = xn,i i = 1, 3 (2.44a)
ϕm,i = ϕn,i i 6= nrel (2.44b)
ϕm,i = ∆ϕn,i + ϕn,i i = nrel (2.44c)

where nrel is the relative rotation degree of freedom and i is the de-
grees of freedom of the nodes of two beams at the hinge connection.
This means that, the three displacement and two rotation degrees of
freedom at the hinge are equal, thus dependent, whereas there exist
one independent rotation degree of freedom allowed by the hinge. In
a regular connection of two nodes, the degrees of freedom of one node
is equal to that of the other node, i.e. there are 6 independent degrees
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2.4. Additional Elements

of freedom out of 12 (2 × 6 from two nodes at the connecting node).
However, when hinge is present between two nodes, relative motion
should be guaranteed by preserving one additional rotation degree of
freedom, thus there exist 7 independent degrees of freedom. If the
degrees of freedom of the first node is preserved, the vector including
independent variables can be written as:

q =
[
xm,1 xm,2 xm3 ϕm,1 ϕm,2 ϕm,3 ϕn,nrel

]T (2.45)

When forming the global matrices, this relative degree of freedom can
be preserved by multiplying the degrees of freedom with a reduction
matrix. Assuming that the relative degree of freedom is around third
axis and the degrees of freedom of node m is preserved, this procedure
can be illustrated for the nodes (m) and (n) as;

qm = µred,mq =




xm,1

xm,2

xm,3

ϕm,1

ϕm,2

ϕm,3




=




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0







xm,1

xm,2

xm,3

ϕm,1

ϕm,2

ϕm,3

ϕn,3




(2.46a)

qn = µred,nq =




xn,1

xn,2

xn,1

ϕn,1

ϕn,2

ϕn,3




=




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1







xm,1

xm,2

xm,3

ϕm,1

ϕm,2

ϕm,3

ϕn,3




(2.46b)

where µred,m and µred,n are reduction matrices for the connecting nodes
and can be modified according to the allowed rotation degree of free-
dom. Then the local mass and stiffness matrices, which are developed
for each node, can be post-multiplied by these matrices to provide the
additional independent degree of freedom while removing the depen-
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Chapter 2. Aeroelastic Rotor Model

dent ones:

Kred,m = Kmµred,m Mred,m = Mmµred,m (2.47a)
Kred,n = Knµred,n Mred,n = Mnµred,n (2.47b)

and the stiffness matrices can be assembled in their locations in the
global stiffness matrix.

2.5 External Loads

Recall Eq. 2.5, the equilibrium equation between internal and external
loads:

Aϑ = F (2.48)
The external loads are taken into account under the node applied forces
and moments (F). The application of inertial loads is presented in
Section 2.5.1. The steady and perturbation aerodynamics are described
in Section 2.5.2. The hub induced effects are explained in Section
2.5.3. The integration of section forces and moment is presented in
Section 2.5.4. Finally, a formulation of aeroelastic coupling is provided
in Section 2.5.5.

2.5.1 Inertial Loads

An exact representation of inertial loads requires integration over the
beam element. However, using lumped mass and inertia gives enough
accuracy without increasing computational work and preferred for this
reason.
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Figure 2.3: Lumped mass and inertia
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Lumped Mass and Inertia in Rotating Frame

The mass and inertia distribution of the blade is discretized similar to
that of elastic beam elements. As given in Fig. 2.3, the lumped mass
m having a 3×3 inertia matrix JCM are assigned to nodes with offsets
fCM, which represents the inertial characteristics of the volume in the
vicinity of the corresponding node. Then, the inertial force acting on
a node can be represented as;

Fin = −m d2

dt2
(x + fCM) (2.49)

where the center of mass in blade reference frame is given as fCM =
Rf̃CM, with center of mass offset f̃CM given in material reference
frame. The load in rotating reference frame can be expressed after
differentiation as;

Fin = −m(ẍ + ω̇ × fCM + ω × ω × fCM) (2.50)

where the term ẍ and ω̇ = ϕ̈ are the translational and rotational ac-
celerations of the node represented in rotating reference frame. The
higher order term (ω × ω×) can be neglected since we deal with the
perturbation displacement and rotations. For constant RPM, the in-
ertial loads formula becomes:

Fin = −m(ẍ− fCM × ω̇) = −m(ẍ + fCM ×T ω̇) (2.51)

The moment at the node comes from two contributions. The first
one is the derivative of angular momentum; the other one is the force
contribution that originates from offset of center of mass, which can
be written as,

Min = −JCMω̇ − ω × JCMω + fCM × Fin (2.52)

where JCM is the inertia matrix at the center of mass. Inserting inertial
force into above equation gives:

Min = −JCMω̇−ω× JCMω−m(fCM× ẍ− fCM× fCM× ω̇) (2.53)

Following the same procedure that was applied to inertial force, ne-
glecting higher order terms and defining inertia about node Jn as
Jn = JCM +mfCM × fCM×T leads to compact moment equation:

Min = −Jnω̇ −mfCM × ẍ = −Jnω̇ +mfCM ×T ẍ (2.54)
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Chapter 2. Aeroelastic Rotor Model

Remembering that for perturbation scales, the angular velocity is the
time derivation of the rotation angle, i.e ω = ϕ̇ and collecting in matrix
form yields perturbation force and moment due to inertia:

[
Fin

Min

]
= −

[
mI mfCM×T

mfCM× Jn

] [
ẍ

ϕ̈

]
(2.55)

Effect of Rotation

The lumped mass formulation in previous chapter is given for a mass
in rotating reference frame, where ẍ should be decomposed into its
constituents. The transformation matrix from non-rotating reference
frame variable xnr to rotating reference frame variable xr can be writ-
ten as,

xnr = RΩxr (2.56)

where RΩ is the transformation matrix from rotating to non-rotating
reference frame. Differentiating once gives velocity in non rotating
frame,

ẋnr = Ω×RΩxr + RΩẋr (2.57)

where derivative of orientation vector for a rotating frame is Ṙ =
Ω × R. Differentiating once more gives acceleration in non rotating
frame:

ẍnr = (Ω̇ + Ω×Ω×)RΩxr + 2Ω×RΩẋr + RΩẍr (2.58)

The acceleration in non-rotating reference frame is required to be pro-
jected on the rotating frame, in which loads acting on beam elements
are expressed. Considering the orthogonality of the rotation matrix,
i.e. RRT = I; when Eq. 2.58 is pre-multiplied by RT

Ω, the acceleration
projected to rotating reference frame becomes:

RT
Ωẍnr = (RT

ΩΩ̇×RΩ +RT
ΩΩ×Ω×RΩ)xr +2RT

ΩΩ×RΩẋr +RT
ΩRΩẍr
(2.59)

Since RΩ is the rotation matrix caused by the angular velocity Ω about
a single axis: RΩΩ = Ω, RT

ΩΩ = Ω and RT
ΩΩ×RΩ = (RT

ΩΩ)×. Then
the acceleration projected on rotating reference frame can be simplified
as,

RT
Ωẍnr = (Ω̇×+Ω×Ω×)xr + 2Ω× ẋr + ẍr (2.60)

which gives the explicit form of ẍ term in Eq. 2.55.
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2.5. External Loads

The Ω×Ω×x term in Eq. 2.60 is the perturbation of the centrifugal
force acting on the blade sections. The perturbation due to this term
gives additional important term in rotor dynamics:

Fds = −mΩ×Ω× x (2.61)

In order to show the effect, assume that the rotor is rotating around
z axis, i.e. Ω = [0 0 Ωz]

T , and the perturbations of node in x, y and
z directions, given in the rotating reference frame, can be stated as
x = [δu δv δw]T in radial, chordwise and flapwise directions. The
perturbation in radial direction direction δu can be neglected since
external perturbation loads in that direction is negligible as compared
to the other two directions. Then the simplified form of the equation
can be written as:

Fds = [0 mΩ2
zδv 0]T (2.62)

The effect of this force, which is mainly in the lead lag direction, is
referred to as destabilization force since as opposed to Eq. 2.55, the
sign is positive therefore adds energy into the system.

The 2Ω × ẋr term in Eq. 2.60 represents a characteristic term of
rotor dynamics. The perturbation force due to this term is named
as Coriolis Forces and causes coupling between flapping and lead-lag
motions:

Fcor = −m2Ω× ẋ (2.63)

2.5.2 Aerodynamics

In this section the way of representing aerodynamics on a rotating
blade is described. Since, the content is broadly available in literature,
details are skipped; the explanations related to aerodynamic loading
is brief and interested reader can find more in any rotorcraft aerody-
namics book such as Refs. [79, 80]. Moreover, it should also be noted
that aerodynamics is formulated to provide a basis for the aerodynamic
terms for the stability analysis and is open to development.

Blade Element Momentum Theory is used in order to formulate
steady aerodynamic loads with addition of some basic inflow models.
The steady and perturbation aerodynamic matrices are obtained. The
transformation between aerodynamic and structural reference frames
are described.
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Chapter 2. Aeroelastic Rotor Model

Steady Aerodynamics

The blade tangential (UT ), perpendicular (UP ) and radial (UR) veloc-
ity components, considering the sign convention of this study, can be
written as,

UT
ΩR

= (r + µ sinψ) (2.64a)

UP
ΩR

= (λ+
rβ̇

Ω
+ µβ cosψ) = (λ+

ẋp(r)

ΩR cos β
+ µ

xp(r)

rR
cosψ) (2.64b)

UR
ΩR

= µ cosψ (2.64c)

where λ is the non-dimensional inflow, r is the non-dimensional radial
coordinate and µ is the ratio between the helicopter forward velocity
and the blade tip velocity in hover, so called the advance ratio. β is the
flapping angle which can also be replaced by xp(r)/rR cos β considering
sign convention of the blade structural dynamics formulation as given
in Fig. 2.2, where here xp being the component of blade motion that
is perpendicular to rotor plane. Since, β is close to zero under normal
rotor operation, cos β can be set to 1. For 2D aerodynamics the section
lift (dL), drag (dD) and moment (dM) per unit span are written as,

dL =
1

2
ρU2cCl(α) (2.65a)

dD =
1

2
ρU2cCd(α) (2.65b)

dM =
1

2
ρU2cCm(α) (2.65c)

with U =
√
U2
T + U2

P is the magnitude of the speed of the flow ad-
vanced by the leading edge of the section, c is the chord length and
α is the angle of attack. The angle of attack is a function of section
geometric angle, θ, and induced angle: φ,

α = θ − φ = θ − tan−1(Up/UT ) (2.66)

The angles θ and φ are defined as,

θ = θcontrol + θtwist + θelastic (2.67a)
φ = tan−1(Up/UT ) (2.67b)

where θcontrol is the control input to the blade, θtwist is the geometric
twist angle and θelastic is the elastic rotation of the blade around its
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2.5. External Loads

pitch axis due to the blade and control systems stiffness. Then the
section forces and moments in rotor plane can be expressed as:

dFz = dL cosφ− dD sinφ (2.68a)
dFy = dL sinφ+ dD cosφ (2.68b)
dM = dM (2.68c)

These loads are expressed over the span of the blade and transformed to
structural reference frame using the method proposed in Section 2.5.5.

Inflow Models

In this study, some basic inflow models are used. Here the formulas
are provided for non-dimensional inflow ratio λ.

Hover Inflow Model: For hover, inflow distribution is modeled using
Prandtl’s tip-loss function as given in Ref. [10], which can be expressed
using a correction factor F ;

F = (2/π) cos−1(e−f ) (2.69)

where f is a function of radial coordinate r and number of blades Nb;

f = Nb(1− r)/2rφ (2.70)

and φ = λ(r)/r is the induced inflow angle at station r. Then, the
quadratic equation is written as;

λ(r) =
σClα
16F

(√
1 +

32F

σClα
θr − 1

)
(2.71)

where Clα is the lift curve slope and θ is the blade pitch angle, σ =
Nbcmean/πR is the rotor solidity for mean chord length cmean. Fixed
point iteration usually converges after few steps.

Forward Flight Uniform Inflow Model: The expression for the uni-
form inflow in forward flight is;

λ = µx tanαd +
CT

2
√
µx + λ2

(2.72)

where αd is the rotor disc angle relative to the forward flight speed
and µx = V∞ cosα/ΩR is the advance ratio parallel to the rotor disc.
Again the solution is iterative,

λn+1 = µx tanαd +
CT

2
√
µx + λ2

n

(2.73)
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which can be solved using fixed point iteration or Newton-Raphson
procedure. For the latter, the equation and its derivative with respect
to the inflow λ are arranged as:

f(λ) = λ− µx tanαd −
CT

2
√
µx + λ2

(2.74a)

f ′(λ) = 1 +
CT
2

√
µx + λ2

n

−3/2
λ (2.74b)

Then unknown λ can be iterated using:

λn+1 = λn −
[
f(λ)

f ′(λ)

]

n

(2.75)

Forward Flight Linear Inflow Models: Using uniform inflow model
as obtained in previous section, the inflow over rotor disc can be ap-
proximated using linear functions. For a forward variation;

λi = λ0(1 + kx cosψ) (2.76)

where kx = 1.2 is suggested by Glauert. A variation to Glauert is
proposed by Drees which also include lateral variation;

λi = λ0(1 + kx cosψ + ky sinψ) (2.77)

where coefficients are given as;

kx =
4

3

(
1− cosX − 1.8µ2

sinX

)
, ky = −2µ (2.78)

with the wake skew angle X, defined as: X = tan−1(µx/(µz + λi)).
Forward Flight Mangler Squire Inflow Model: The inflow distribu-

tion is stated in Ref. [10] as;

λi =
2CT
µ

[
c0

2
−
∞∑

n=1

cn(r, αd) cosnψ

]
(2.79)

where ψ is the azimuthal angle, αd id the rotor disc angle and r is the
radial coordinate. Similar version is also proposed by Bramwell [22]:

λi = 4λ0

[
c0

2
−
∞∑

n=1

cn(r, αd) cosnψ

]
(2.80)
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Bramwell version is preferred with only Type III loading. In Type
III loading, the constants cn are expressed in terms of non-dimensional
radial coordinate r, disc flow angle αd and a function of it η =

√
1− r2.

For n = 0;

c0 =
15

8
η(1− η2) (2.81)

and for n is odd,

c1 = −15π

256
(5− 9η2)

[
(1− η2)

(
1− sinαd
1 + sinαd

)]1/2

c3 = −45π

256

[
(1− η2)

(
1− sinαd
1 + sinαd

)]3/2

(2.82)

where for n is odd and greater than 3, cn = 0. For even values of n:

cn =(−1)n/2−1 15

8

[
η + n

n2 − 1

9η2 + n2 − 6

n2 − 9

+
3η

n2 − 9

][(
1− η
1 + η

)(
1− sinαd
1 + sinαd

)]n/2
(2.83)

Perturbation Aerodynamics

The perturbation of aerodynamic forces are obtained by linearizing the
nonlinear force and moment expressions given in Section 2.5.2. The
motion of the blade sections are assumed to be small in magnitude
and hence aerodynamic force and moment expressions are linearized
for quasi-steady aerodynamics. As also noted in Section 2.5.2, this
part of the work is developed to provide a sufficient level of complexity
for aerodynamic stability terms and is open to improvement.

Perturbation of Lift Force: Lift force per unit span is,

L =
1

2
ρcCl(α)U2

T (2.84)

where all parameters have their conventional meaning as described in
Section 2.5.2 and UT = ΩR(r+µ sinψ). Perturbing the equation with
respect to the tangential velocity and the angle of attack gives:

∆L = ρcUTCl(α)δUT +
1

2
ρcClαU

2
T δα (2.85)
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The perturbation of the tangential velocity is simply equal to the in-
plane component of blade motion δẋ = [δu̇ δv̇ δẇ]T . Then:

∆UT = δv̇ (2.86)

The perturbation of angle of attack comes from perturbing Eq. 2.66,
obtained by assuming UP � UT :

∆α = δ(θ − UP
UT

) = δθ − δUp
UT

(2.87)

Neglecting the time dependency of inflow, the perturbation in vertical
flow speed is obtained to be equal to the flap motion:

δUP = ẇ (2.88)

The perturbation in the section angle δθ is assumed to be only depen-
dent on the elastic twist and control system flexibility. Then, pertur-
bation lift force in terms of the rate of change of coordinates is:

∆L =
1

2
ρcU2

TClα

(
2Cl
UTClα

v̇ + δθ − δẇ

UT

)
(2.89)

Perturbation of Drag Force: The drag force per unit span is:

D =
1

2
ρcCd(α)U2

T (2.90)

Perturbing the equation with respect to the tangential velocity and the
angle of attack gives;

∆D = ρcUTCd(α)δUT +
1

2
ρcCdαU

2
T δα (2.91)

and making use of Eqs. 2.86 and 2.87, we have:

∆D =
1

2
ρcU2

TCdα

(
2Cd
UTCdα

v̇ + δθ − δẇ

UT

)
(2.92)

Perturbation of Pitching Moment: Pitching moment equation per
unit span is;

M =
1

2
ρcCm(α)U2

T + dACL (2.93)
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where dAC is the distance of aerodynamic center from the reference axis
of aerodynamics formulation. Perturbing the equation with respect to
the tangential velocity and the angle of attack gives;

∆M = ρcUTCm(α)δUT +
1

2
ρcCmαU

2
T δα + dACδL (2.94)

leading to:

∆M =
1

2
ρcU2

TCmα

(
2Cm
UTCmα

v̇ + δθ − δẇ

UT

)

+ dAC
1

2
ρcU2

TClα

(
2Cl
UTClα

v̇ + δθ − δẇ

UT

)
(2.95)

Rearranging the terms gives:

∆M =
1

2
ρcU2

T

(
2(Cm + dACCl)

UT
v̇

+ (Cmα + dACClα)δθ − (Cmα + dACClα)

UT
δẇ

)
(2.96)

2.5.3 Hub motion

Hub degrees of freedom in perturbation form is required to couple the
motions originating from the rotor and the fuselage. The motion of the
hub eventually induces motion on the blade and modifies aerodynamic
and inertial matrices. The position of a point on a blade in non-
rotating, i.e. stationary, reference frame p is a function of the hub
motion pH and the orientation of the blade with respect to non-rotating
frame R times the position of that point on the blade ρ̃ in rotating
frame,

p = pH + Rρ̃ (2.97)

where the variables having an over-tilde ˜(•) are defined in rotating
frame. Perturbing the coordinate considering that δΘH is the pertur-
bation of the hub orientation, i.e. the vector including roll, pitch and
yaw, gives;

δp = δpH + δRρ̃ = δpH + δΘH ×Rρ̃ (2.98)

with δR = δΘH ×R. Now, let δp = x, δpH = xH and δΘ = ωH as
perturbation the variables and remove all δ in front of the vectors:

x = xH + δωH ×Rρ̃ (2.99)
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Since we need the motion in rotating reference frame, we need to pre-
multiply by the transpose of the rotation matrix:

x̃ = RTx = RTxH + RTωH ×Rρ̃ (2.100)

Remembering RTωH × R = (RTωH)× and using anti-commutative
property of cross product leads to:

x̃ = RTxH − ρ̃×RTωH (2.101)

Eq. 2.101 represents the perturbation of the degrees of freedom on the
rotating blade as a function of perturbation of the translational and
rotational motion of the hub. We need first and second order time
derivatives in order to completely represent the induced effect of the
hub motion on blade. Taking first order time derivative gives:

˜̇x = Ṙ
T
xH + RT ẋH − ρ̃× Ṙ

T
ωH − ρ̃×RT ω̇H (2.102)

Using the equality Ṙ
T

= −RTΩ×, Ω being the angular velocity of
the rotor (not to be confused with perturbation ωH), equation can be
better stated;

˜̇x = −RTΩ× xH + RT ẋH + ρ̃×RTΩ× ωH − ρ̃×RT ω̇H (2.103)

which represents the induced velocity of the hub motion on the blade.
Differentiating Eq 2.103 once more with a constant Ω assumption gives
the acceleration term:

˜̈x =RTΩ×RTΩ× xH − 2RTΩ× ẋH + RT ẍH

+ ρ̃×RTΩ× ωH + 2ρ̃×RTΩ× ω̇H − ρ̃×RT ω̈H (2.104)

Similarly for the rotation of the cross section as a function of hub
perturbation degrees of freedom can be obtained as:

ϕ̃ = RTωH (2.105a)
˜̇ϕ = −RTΩ× ωH + RT ω̇H (2.105b)
˜̈ϕ = RTΩ×RTΩ× ωH − 2RTΩ× ω̇H + RT ω̈H (2.105c)

Results are used to represent the contribution of hub motion on multi-
blade coordinates and on hub forces and moments.
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2.5.4 Integrated Forces and Moments

As explained, the perturbation matrices at the shaft axis is required
to couple the dynamics of the fuselage and rotor. Then, the forces and
moments over the blade should be integrated at the blade root and then
transformed into non-rotating frame. The aerodynamics (subscript
aero) and inertial loads (subscript in) at an azimuth angle ψ and the
coordinate of the blade cross section ρ̃ can be written as:

L(ψ, ρ̃) =

[
f(ψ, ρ̃)

m(ψ, ρ̃)

]
=

[
f in(ψ, ρ̃)

min(ψ, ρ̃)

]
+

[
faero(ψ, ρ̃)

maero(ψ, ρ̃)

]
(2.106)

In order to produce stability matrices, the inertial and aerodynamic
loads should be written in perturbation form. Remembering δ is re-
moved for simplicity and x and ϕ represents perturbation displacement
and rotations:

L(ψ, ρ̃) =

[
f(ψ, ρ̃)

m(ψ, ρ̃)

]
=

[
f/ẍ f/ϕ̈

m/ẍ m/ϕ̈

] [
ẍ

ϕ̈

]

+

[
f/ẋ f/ϕ̇

m/ẋ m/ϕ̇

] [
ẋ

ϕ̇

]
+

[
f/x f/ϕ

m/x m/ϕ

] [
x

ϕ

]
(2.107)

The matrices f/ and m/ are functions of time t and cross section co-
ordinate ρ̃ and they are linearized matrices with respect to the blade
degrees of freedom and its time derivatives at one node. Here only
closed form of loads is given to show the integration where the details
of their derivation can be found in Sections 2.5.1 and 2.5.2. Then,
equivalent forces and moments at the blade root, Lr, can be written
as:

Lr(ψ, r) =

[
I 0

ρ̃× I

] [
f(ψ, r)

m(ψ, r)

]

Note that, the result is a 6×6 matrix times the perturbation of degrees
of freedom and their first and second order time derivatives. This is
the force and moment contribution of that node and integrating from
tip to root gives the resultant loads at the blade root or these matrices
can be assembled to form the perturbation rotor matrices. After this
point, the loads at the blade root are transformed to the non-rotating
frame using multi-blade coordinate transformation of Section 2.7.
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2.5.5 Aeroelastic Coupling

In order to have freedom in aerodynamic modeling, a transformation is
necessary which can handle from simple 1D aerodynamic discretization
to complex 3D meshes. The method presented in Refs. [81] and [82]
provides a powerful method for such a necessity based on conservation
of work principle. The transformations between the displacements and
forces are made with a linear matrix H given as;

xa = Hxs , Fs = HTFa (2.108)

where xa and xs are the displacement of aerodynamic and structural
nodes and fa and f s are the forces on the aerodynamic and structural
nodes. Obviously, equations also hold for the time derivatives and
perturbations. The method uses moving least square in order to find
the optimal mapping such that the corresponding aerodynamic nodes
for each structural node is matched with a weighing constant.

Transformation of Forces and Moments

The force transformation matrix given in Eq. 2.108 is applicable to
the transformation of forces between 2D and/or 3D aerodynamic and
structural dynamics meshes and does not include transformation of
moment. Hence, in order the method to be able to used for 1D aero-
dynamic formulations such as Blade Element Momentum Theory, the
formula needs to be modified; so that the moment, which is a result
of integrated forces over the chord, is included in the analysis. This
can be defined by considering the relation between the force Fs,n, de-
fined at a single structural node (n), and the aerodynamic force and
moment, Fa,p and Ma,p, acting at corresponding aerodynamic nodes
(p) with a distance fnp from the structural node, such that;

Fs,n =
∑

p

cnpFa,p , Ms,n =
∑

p

cnpfnp × Fa,p + cnpMa,p (2.109)

where cnp is the element of HT matrix weighing the contribution of the
loads at aerodynamic point p at the structural node n and is already
formulated in Ref. [82]. This leads to the general transformation matrix
for loads HL between structural and aerodynamic loads;

{
Fs

Ms

}
=

[
HL

]{
Fa

Ma

}
(2.110)
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Figure 2.4: The virtual points form a sphere around the nodes in order to provide
the necessary resolution to evaluate curl and rigid body motion

Transformation of Displacement and Rotations

Although the formulation of this work has the capability to analyze
multiple load path structures, 1D sequence of beam elements is suf-
ficient to represent the structural dynamics of the blades for many
aeromechanical problems. In 1D formulations, the warping of the cross
section is described by a rotation perturbation; hence orientation of a
structural node needs to be taken into account. Then, the solution is
to adopt the H matrix already available from Ref. [82] and develop the
transformation matrices for the 1D structural model. Transformation
for node displacement Hd, including rotations, can be stated as,

{
xa

ψa

}
=

[
Hd

]{
xs

ψs

}
=

[
Hxa/xs Hxa/ψs

Hψa/xs Hψa/ψs

]{
xs

ψs

}
(2.111)

where Hxa/xs is the transformation given in Eq. 2.108 which is already
available and provides a basis for the rest. In order to use the same
method with rotation degrees of freedom of structural and aerodynamic
nodes, 6 virtual nodes are defined. These 6 nodes, as shown in Fig. 2.4
and represented by a superscript ∗, are along the positive and negative
directions of three perpendicular axis such that they form a sphere
having a center at each structural node with radius r. This allows to
evaluate the rigid rotation as a function of these 6 virtual nodes in a
discrete manner which leads to,

x∗s = N∗sψs (2.112)
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where x∗s is the displacements at the virtual nodes. Then matrix N∗s
can be defined as a cross multiplication of the distance li between
the virtual nodes and the corresponding structural node such that the
result gives the perturbation displacements due to the perturbation
rigid body rotation:

N∗Ts =
[
l1× l2× l3× l4× l5× l6×

]
(2.113)

Thanks to the validity of the method of Ref. [82] between two separate
displacement fields, the relation in Eq. 2.108 is valid. The mapping
matrix Hxa/x∗s from these virtual nodes to aerodynamic nodes can be
estimated. Then, the mapping matrix from structural node rotations
to aerodynamic node displacement is stated as:

Hxa/ψs = Hxa/x∗sN
∗
s (2.114)

The next term Hψa/xs of Eq. 2.111 defines the transformation from
structural node displacement to the rotation of aerodynamic node. The
procedure is similar to the previous transformation, but this time the
sphere nodes are formed around aerodynamic nodes and transforma-
tion matrix Hx∗a/xs is evaluated where x∗a is the perturbation displace-
ment at these virtual aerodynamic nodes. The displacement can be
transformed into rotations by curl operator;

ψa =
1

2
5×x∗a (2.115)

where derivatives arising from the curl operator for the perturbation
rotations and displacements are evaluated in a discrete manner by cal-
culating the finite differences using the sphere nodes. Then, the result
of the curl operation is the shape matrix N∗a providing the function
from the virtual node perturbation displacements x∗a to aerodynamic
node rotations. With the shape matrix, aerodynamic node rotation ψa

can be written as;
ψa = N∗ax

∗
a (2.116)

which leads to the required transformation:

Hψa/ xs = N∗aHx∗a/xs (2.117)

Last term of of Eq. 2.111 defines the transformation between struc-
tural and aerodynamic rotations. It is straightforward to obtain it by
fallowing the procedures of Hxa/ψs and Hψa/ xs since two necessary
shape matrices are already defined except for the transformation from
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the sphere nodes around structural nodes to the sphere nodes around
aerodynamic nodes namely Hx∗a/ x

∗
s
. This transformation matrix can

be computed by using the same method given in Eq. 2.108 for the
properly defined sphere nodes. The relation is:

Hψa/ ψs = N∗aHx∗a/ x
∗
s
N∗s (2.118)

The global transformation for node displacement and rotations Hd

can be stated as:
[

Hd

]
=

[
Hxa/xs Hxa/x∗sN

∗
s

N∗aHx∗a/xs N∗aHx∗a/ x∗sN
∗
s

]
(2.119)

The intermediate transformations of Eq. 2.119, i.e. all H, are per-
formed between the locations of the nodes and all can be evaluated by
using method given in Ref. [82] by implementing proper sphere nodes
around the actual nodes. The shape matrices, all N∗, are nothing but
geometric functions as defined above. Depending on the aerodynamic
model, the unnecessary transformations can be suppressed. One re-
mark should be made here is that the distance of the virtual nodes
from their corresponding real nodes, in other words radius r, is impor-
tant since the method finds the closest points between aerodynamic
and structural meshes to define the transformation. Since each virtual
sphere has its own assigned real node, inappropriate choice may cause
overlapping nodes and as a result inaccurate transformation.

Transformation of Aerodynamic Perturbation Matrices

Regardless of the aerodynamic method used, the aerodynamic pertur-
bation forces and moments can be expressed as fallows:

Fa = Fa/xaxa + Fa/ψaψa (2.120a)
Ma = Ma/xaxa + Ma/ψaψa (2.120b)

Combining with Eq. 2.110 and writing in matrix form, the load vector
at structural nodes can be written as:

{
Fs

Ms

}
=

[
HL

] [
Fa/xa Fa/ψa

Ma/xa Ma/ψa

]{
xa

ψa

}
(2.121)

The aerodynamic degrees of freedom should also be transformed in
order to solve the problem in the structural degrees of freedom. This
can be done by using Hd given in Eq. 2.119. Then, Eq. 2.121 can be
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written in the reference frame of structural loads and including the
aerodynamic perturbation matrices as well:

{
Fs

Ms

}
=

[
HL

] [
Fa/xa Fa/ψa

Ma/xa Ma/ψa

] [
Hd

]{
xs

ψs

}
(2.122)

Finally any aerodynamic perturbation is represented as a structural
perturbation as:

[
Fs/xs Fs/ψs

Ms/xs Ms/ψs

]

aero

=

[
HL

] [
Fa/xa Fa/ψa

Ma/xa Ma/ψa

] [
Hd

]
(2.123)

Although the formulas are given for displacement, the same HL and
Hd matrices are valid for the time derivatives. This method makes
it possible to formulate aerodynamic perturbation in aerodynamic do-
main which is more favorable and provides freedom. And then it can be
transformed into structural domain in which the structural dynamics is
formulated for the contribution of aerodynamic perturbation matrices.

2.6 Steady State Solution

The perturbation matrices are defined as the linearization around a
reference condition hence for most of the problems a reference steady
solution is required. The system of equations can be written as,

Mẍ + Cẋ + Kx = f(x, t) (2.124)

where M is the global mass matrix C is the damping matrix K is
the stiffness matrix and q is the degree of freedom vector. The vector
f(x, t) represents the forcing function aerodynamic or any source of
external excitation. First, integration in time is briefly explained than
harmonic balance method for periodic problems is described.

2.6.1 Integration of Equations of Motion

There is vast of literature on the integration of equations of motion
(See for example Ref. [78] for application in structural dynamics and
Ref. [3] for rotorcraft applications) hence here only important steps
are provided. Generally the algorithms use the state space form, q̇ =
Ax + f , then Eq. 2.124 is converted to the state space form;

[
ẋ

ẍ

]
=

[
O I

−M−1K −M−1C

] [
x

ẋ

]
+

[
0

M−1f(ẋ,x, t)

]
(2.125)
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and then can be integrated for the states ẋ and x using a suitable
integration method.

2.6.2 Harmonic Balance

For linear time periodic systems, the steady steady solution under
external forces can be obtained faster using Harmonic Balance (See
Ref. [83] for a general discussion). Using the azimuth angle ψ instead
of time t to emphasize the periodicity gives:

M(ψ)ẍ(ψ) + C(ψ)ẋ(ψ) + K(ψ)x(ψ) = f(ẋ,x, ψ) (2.126)

Due to periodicity, the external loads f , response x and any of the mass,
damping and stiffness matrices, say G, can be written as a Fourier
series with a fundamental frequency of rotor angular speed Ω [84];

f(ψ) = f0 +

Nh∑

n=1

fnejnΩ (2.127a)

x(ψ) = x0 +

Nh∑

n=1

xnejnΩ (2.127b)

G(ψ) = G0 +

Nh∑

n=1

GnejnΩ (2.127c)

where Nh is the number of harmonics in the analysis and j =
√
−1.

Then, all the matrices related to structural dynamics are kept on left
hand side and aerodynamic forces are located on right hand side;

[
− n2Ω2Mn + jnΩCn + Kn

]
xn = fn (2.128)

and solved for steady solution x0 and harmonic solutions xn for a suf-
ficient number of n depending on the problem. Due to the dependence
of aerodynamic forces on blade motion, iteration is needed. Moreover,
in rotor aerodynamics frequencies of excitation forces can be very close
to blade frequencies, especially to first flap mode. Therefore in order
to prevent resonance and obtain a converged solution, aerodynamic
damping is added to both sides of equation as proposed in Ref. [3]. The
aerodynamic damping matrix, which is developed in Section 2.5.2, can
be used. Since the same value is added on both sides, only divergence
of the solution is prevented without changing the steady state solution.
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2.7 MULTI-BLADE COORDINATES

The three essential reference frames in rotorcraft analysis are given
in Fig. 2.5. All of them are useful for specific purposes. First one
is named as helicopter reference frame attached to the body of the
vehicle and mainly used for flight mechanics analysis. Second one is
referred to as the shaft axis around which blades rotate and suitable
to represent rotor forces and motion hence links the body dynamics
to the blade dynamics. Both helicopter and shaft reference frames are
inertial except the shaft axis can have offset, rotation and tilt with
respect to the helicopter axis. The third one is the blade reference
frame which is attached to each blade and rotating with it. This is
a relative frame and very convenient to represent the blade loads and
motion.

In order to analyze rotorcraft all together with its rotating and
non-rotating components, the perturbation matrices in rotating refer-
ence frame should be transformed to an inertial reference frame. For
this reason, the multiblade coordinate transformation developed for 3
bladed wind turbines in Ref. [85] is generalized for a rotor having num-
ber of N equally spaced blades. For the bth blade, the azimuth angle
is written as:

ψb = ψ + (b− 1)
2π

N
(2.129)

If qb is a degree of freedom of the blade b in rotating frame, the trans-
formation to the non rotating blade is done as follows,

q0 =
1

N

N∑

b=1

qb (2.130a)

qnc =
2

N

N∑

b=1

qb cosnψb (2.130b)

qns =
2

N

N∑

b=1

qb sinnψb (2.130c)

qN/2 =
1

N

N∑

b=1

qb(−1)b (2.130d)

where q0 is the collective mode, qnc and qns are the nth cyclic modes and
qN/2 is the differential modes all of which are in non-rotating frame.
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Introduction

helicopter

shaft

blade

x

x

x

y

y

y

z

z

z

−β

ψ

Figure 2.5: Three reference frames of helicopter dynamics

Multi-Blade Coordinates
Lead-lag motion (N = 4):

ξ0

ξ1c ξ1s

ξ2

ψ

Figure 2.6: Example of multi-blade coordinates, lead-lag motion of the blades.
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Collective and cyclic modes exist for any rotor having 3 or more blades
whereas the differential mode is active only for the rotors having an
even number of blades but does not contribute to the coupled fuselage-
rotor dynamics for isotropic, i.e. equally spaced identical blades, rotors.
The total number of n is (N − 1)/2 if N is odd and (N − 2)/2 if N is
even. An example is given in Fig. 2.6 for the lead lag motion of a four
bladed rotor including collective ζ0, cyclic ζ1c and ζ1s and reactionless
ζ2 modes. In general, equations of motion of the system in rotating
reference frame for a rotor is written as:

Mẍ + Cẋ + Kx = Fu + Fdw (2.131)

M, C, K, F and Fd are mass, damping (including gyroscopic effects),
stiffness, control and disturbance matrices having contribution from
each blade at any instant of time according to the rotor degree of
freedom vector written in rotating frame,

x =
[
xTH q1

1 q1
2 .. q1

N . . . qj1 qj2 . qjN . . . qm1 qm2 .. qmN/2

]T
(2.132)

which includes the 6 × 1 column vector representing the hub fixed-
frame-referenced degrees of freedom XH and jth rotating degree of
freedom for the bth blade qjb for a number of rotating degrees of freedom
m. Similarly, the degrees of freedom vector in non-rotating frame is
written as:

xNR =
[
xTH q1

0 q1
c q1

s q1
N/2 . . . qj0 qjc q

j
s q

j
N/2 . . . qm0 qmc qms qmN/2

]T

(2.133)

Equations of motion are also needed to be transformed to the non-
rotating frame. Analytical from of transformation has limited usage
so as proposed in Ref. [85] a more generic transformation is preferred.
Starting from a single mode, it can be written that




qj1

qj2

qj3

...

qjN




= t̃




qj0

qjc

qjc
...

qjN/2




(2.134)
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where the transformation t̃ matrix for even number of blades, N , is;

t̃ =




1 cosψ1 sinψ1 . . . cos (N−2)
2

ψ1 sin (N−2)
2

ψ1 (−1)1

1 cosψ2 sinψ2 . . . cos (N−2)
2

ψ2 sin (N−2)
2

ψ2 (−1)2

...
1 cosψb sinψb . . . cos (N−2)

2
ψb sin (N−2)

2
ψ2 (−1)b

...
1 cosψN sinψN . . . cos (N−2)

2
ψN sin (N−2)

2
ψN (−1)N




(2.135)

and for an odd N ;

t̃ =




1 cosψ1 sinψ1 . . . cos (N−1)
2

ψ1 sin (N−1)
2

ψ1

1 cosψ2 sinψ2 . . . cos (N−1)
2

ψ2 sin (N−1)
2

ψ2

...
1 cosψb sinψb . . . cos (N−1)

2
ψb sin (N−1)

2
ψb

...
1 cosψN sinψN . . . cos (N−1)

2
ψN sin (N−1)

2
ψN




(2.136)

Now, the global degrees of freedom including all modes can be written
as;

XR = T1XNR (2.137)

where T1 is a block diagonal matrix;

T1 =




I6×6

t̃

t̃

. . .
t̃




(2.138)

which have blocks of t matrices with the number of degrees of freedom.
Differentiating Eq. 2.137 once and twice with respect to time gives;

ẊR = T1ẊNR + ΩT2XNR (2.139a)

ẌR = T1ẌNR + 2ΩT2ẊNR + (Ω2T2 + Ω̇T2)XNR (2.139b)
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where Ω and Ω̇ are the angular speed and acceleration of the rotor. The
two additional transformation matrices are obtained by differentiating
T1 once and twice with respect to azimuthal angle ψ,

T2 =




06×6

t̃2

t̃2

. . .
t̃2




(2.140a)

T3 =




06×6

t̃3

t̃3

. . .
t̃3




(2.140b)

where for N is even:

t̃2 =



0 − sinψ1 cosψ1 . . . − (N−2)
2

sin
(N−2)

2
ψ1

(N−2)
2

cos
(N−2)

2
ψ1 0

0 − sinψ2 cosψ2 . . . − (N−2)
2

sin
(N−2)

2
ψ2

(N−2)
2

cos
(N−2)

2
ψ2 0

...

0 − sinψb cosψb . . . − (N−2)
2

sin
(N−2)

2
ψb

(N−2)
2

cos
(N−2)

2
ψb 0

...

0 − sinψN cosψN . . . − (N−2)
2

sin
(N−2)

2
ψN

(N−2)
2

cos
(N−2)

2
ψN 0


(2.141a)

t̃3 =



0 − cosψ1 − sinψ1 . . . − (N−2)2

4
cos

(N−2)
2

ψ1 − (N−2)2

4
sin

(N−2)
2

ψ1 0

0 − cosψ2 − sinψ2 . . . − (N−2)2

4
cos

(N−2)
2

ψ2 − (N−2)2

4
sin

(N−2)
2

ψ2 0

...

0 − cosψb − sinψb . . . − (N−2)2

4
cos

(N−2)
2

ψb − (N−2)2

4
sin

(N−2)
2

ψb 0

...

0 − cosψN − sinψN . . . − (N−2)2

4
cos

(N−2)
2

ψN − (N−2)2

4
sin

(N−2)
2

ψN 0


(2.141b)
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And for number of blades N being odd:

t̃2 =



0 − sinψ1 cosψ1 . . . − (N−1)
2

sin
(N−1)

2
ψ1

(N−1)
2

cos
(N−1)

2
ψ1

0 − sinψ2 cosψ2 . . . − (N−1)
2

sin
(N−1)

2
ψ2

(N−1)
2

cos
(N−1)

2
ψ2

...

0 − sinψb cosψb . . . − (N−1)
2

sin
(N−1)

2
ψb

(N−1)
2

cos
(N−1)

2
ψb

...

0 − sinψN cosψN . . . − (N−1)
2

sin
(N−1)

2
ψN

(N−1)
2

cos
(N−1)

2
ψN


(2.142a)

t̃3 =



0 − cosψ1 − sinψ1 . . . − (N−1)2

4
cos

(N−1)
2

ψ1 − (N−1)2

4
sin

(N−1)
2

ψ1

0 − cosψ2 − sinψ2 . . . − (N−1)2

4
cos

(N−1)
2

ψ2 − (N−1)2

4
sin

(N−1)
2

ψ2

...

0 − cosψb − sinψb . . . − (N−1)2

4
cos

(N−1)
2

ψb − (N−1)2

4
sin

(N−1)
2

ψb

...

0 − cosψN − sinψN . . . − (N−1)2

4
cos

(N−1)
2

ψN − (N−1)2

4
sin

(N−1)
2

ψN


(2.142b)

Now, substituting derivatives into Eq. 2.131, the equation in non-
rotating frame can be obtained as,

MNRẌNR + CNRẊNR + KNRXNR = FNRuNR + Fd,NRw (2.143)

where matrices in non-rotating reference frame are defined as:

MNR = MT1 (2.144a)
CNR = 2ΩMT2 + CT1 (2.144b)

KNR = Ω2MT3 + Ω̇MT2 + ΩCT2 + KT1 (2.144c)

The Nc control inputs in rotating frame are connected to controls in
non-rotating frame via u = T1cuNR, then;

FNR = FT1c (2.145)

where,

T1c =




INc×Nc

t̃

t̃

. . .
t̃




(2.146)
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Finally, the disturbance vector is already defined in non-rotating frame:

Fd,NR = Fd

2.8 Sensitivity of Stability Properties for LTI Systems

One of the main motivation of the thesis is to be able to evaluate the
analytical sensitivity matrices for rotor blade design variables. This
part covers the sensitivity of the eigenvalues of a linear time invari-
ant (LTI) problem following the method of Ref. [86]. The sensitivity
formulations of stability properties for more complex systems are pre-
sented in Chapter 3 for linear time periodic systems and in Chapter 4
for a general nonlinear non-autonomous problem.

A general aeroelastic eigenvalue problem for eigenvalue (s) and
eigenvector x(s) is;

[
s2M(p) + sC(p) + [K(p)−H(s, p)]

]
x(s) = 0 (2.147)

where the matrices M, C, K and H are the global mass, damping, stiff-
ness and complex aerodynamic matrices parametrized with parameter
p. The aerodynamic matrix H can be a function of the complex eigen-
value s, then using a second order Taylor Series expansion around zero
frequency s = 0, matrix H can be approximated as:

H(s) = s2H′′(0) + sH′(0) + H(0) (2.148)

The rate of change the eigenvalues with respect to a parameter p, i.e.
the first order derivative, is what is looked for. Then, differentiating
Eq. 2.147 with respect to a scalar parameter p;

2sMxs/p + s2M/px + s2Mx/p + Cxs/p + s2M/px + sCx/p + K/px

+Kx/p − [2sH′′(0)xs/p + s2H′′/p(0)x + s2H′′(0)x/p + H′(0)xs/p

+sH′/p(0)x+ sH′(0)x/p + H/p(0)x + H(0)x/p] = 0 (2.149)

where the sensitivities of the matrices are simply the derivatives of the
matrix elements with respect to that parameter.

If the number of degrees of freedom is n, Eq. 2.149 provides n equa-
tions whereas there are n+ 1 unknowns since both of s/p (1 unknown)
and x/p (n unknowns) are needed to be evaluated. One more equa-
tion is required and it comes from the orthogonality of the normalized
eigenvector;

xTx = 1 (2.150)
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where xT is the complex conjugate transpose of x. The derivative with
respect to parameter p leads to:

xTx/p = 0 (2.151)

Now the equation is full rank and the stability derivatives of the eigen-
value and eigenvector can be evaluated. Combining Eq. 2.149 and
Eq. 2.150 in matrix form gives;

[
S0

] [
x/p

s/p

]
=

[
S/p

]
(2.152)

where the sub-matrices of left hand side matrix S0 are ;

S0(1, 1) = s2(M + H′′(0)) + s(C + H′(0)) + (K + H(0)))

S0(2, 1) = 2xT

S0(1, 2) = 2s(M + H′′(0))x + (C + H′(0))x

S0(2, 2) = 0

with the sub-matrices of right hand side matrix S/p:

S/p(1) = −[s2(M/p −H′′/p(0)) + s(C/p −H′/p(0)) + (K/p −H/p(0))]x

S/p(2) = 0

Then, the solution of Eq. 2.152 gives the first order derivatives of eigen-
value (s/p) and eigenvector (x/p) at a solution point s and x. If the in-
terested frequencies are the damped natural frequencies or quasi-static
aerodynamics is preferred, the system of equations can be reduced to;
[
s2M + sC + K 2sM + C

2xT 0

] [
x/p

s/p

]
=

[ −(s2M/p + sC/p + K/p)]

0

]

(2.153)

2.9 Examples and Verification

This section includes the examples and verification of the tool. LARo-
tor: Linearized Aeroelastic Rotor is the name given to the tool dis-
cussed in this chapter, whereas the name of other references are given
in related figures and sections. In Chapter 5, more advanced problems
related to rotorcraft aeroservoelastic stability and sensitivity can be
found.
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2.9.1 Natural Frequencies of a Rotating blade

A rotating blade, which is provided in Ref. [87], is analyzed to verify
the structural dynamics formulation of linearized blade model for the
estimation of natural frequencies. The blade is subjected to a range of
rotor angular speed values between 0 RPM and 660 RPM. First five
natural frequencies, composed of 4 bending and 1 torsional modes, are
compared with the estimates using NASTRAN and MBDyn. In the
fan-plot diagram of Fig. 2.7, it can be observed that all three numerical
tools give very close results.
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Figure 2.7: Natural Frequencies of a rotating blade: Comparison of first 5 rotating
blade modes on a fan-plot diagram for a range of rotor angular speed values from
0 RPM to 660 RPM.

2.9.2 Steady flap response

Steady flap responses are compared using the model developed for
a helicopter rotor blade operating at forward flight. The model is
prepared using the data given in Ref. [51]. Results are compared with
MBDyn Multibody Dynamics Code. Both models use Mangler Squire
Inflow Model. The steady state flap response as a function of azimuth
angle is given in Fig. 2.8 and provides good correlation.
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Figure 2.8: Steady response: Comparison of steady-state flapping angles of a
helicopter blade over the rotor disc, with Mangler-Squire inflow model

2.9.3 PUMA Rotor Blade

This section presents the verification of linearized aeroelastic blade
model for the natural frequencies and steady aerodynamics. The aeroe-
lastic blade is prepared using the formulation described in this chapter
so far and based on the data given in Ref. [88]. First, blade modes
in vacuo is compared with MBDyn [51] in a fanplot diagram given in
Fig. 2.9. The fanplot diagram shows good correlation with the results
obtained by MBDyn [89] and results taken from Ref. [88].

Second set of verification is the steady aerodynamics and again com-
pared with MBDyn multibody dynamics code and with the data taken
from Ref. [89]. Fig. 2.10 and Fig. 2.11 present the thrust coefficient
CT and power coefficient CP , which are scaled with rotor solidity σ,
as a function of collective pitch angle of the blade. Moreover, polar
curve is given in Fig. 2.12, in which horizontal and vertical axes rep-
resent the thrust and drag coefficients respectively. Results show good
agreement. See also Section 5.4 for additional helicopter aeroservoe-
lastic stability analysis using the same rotor with additional fuselage
and control system couplings.
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Figure 2.9: PUMA Rotor Blade: Rotating blade modes for PUMA Helicopter,
Comparison with MBDyn Multibody Dynamics Code.
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Figure 2.10: PUMA Rotor Blade: Thrust Coefficient vs Collective pitch, Com-
parison with MBDyn Multibody Dynamics Code.
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Figure 2.11: PUMA Rotor Blade: Power Coefficient vs Collective pitch, Com-
parison with MBDyn Multibody Dynamics Code.
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Figure 2.12: PUMA Rotor Blade: Power Coefficient vs Thrust Coefficient, Com-
parison with MBDyn Multibody Dynamics Code.
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CHAPTER3
Linear Time Periodic Systems

3.1 Introduction

Within the usual concept of flight mechanics, in a steady flight air-
craft’s linear and angular velocity are constant in a body-fixed ref-
erence frame. Horizontal flight, turns, and climbs can be considered
as steady flight conditions. On the other hand, in a periodic flight
condition, some or all of the aircraft’s linear and angular velocity com-
ponents change periodically with a prescribed period. Some types of
maneuvers or operation under significant imbalances can be considered
in this class.

However, the boundary between being steady and periodic is am-
biguous for rotorcraft. Even under the absence of any periodic ma-
neuver or imbalance in the system, rotorcraft are inherently periodic
systems due to the dominant characteristic of rotor operation with
significant time-periodic effects and thus the system repeats itself af-
ter each fundamental period T . There are many problems in which
steadiness is spoiled, even if the flight condition or maneuver can be
considered as steady. For example, a typical steady flight condition of
a fixed-wing aircraft is given in Fig. 3.1. If a rotorcraft performs the
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Figure 3.1: Representation of steady flight.
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Figure 3.2: Representation of periodic flight.
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same maneuver as visualized in Fig. 3.2, the trajectory would be wavy
and is composed of sub-trajectories those are repeating themselves af-
ter each period T . Then, the assumption of steady flight for rotorcraft
can imply important simplifications within the periodic nature of ro-
torcraft. For this reason, stability and sensitivity analyses of such
time-periodic systems require additional care and effort as compared
to those of constant coefficient systems and specific methodologies have
been developed (See Ref. [90] for an overview of the periodic systems
and analysis methods for a wide range of problems).

In Chapter 2, an aeroelastic rotor with time-periodic equations of
motion is presented together with the sensitivity of the stability param-
eters for linear time invariant (LTI) systems. Since rotorcraft cannot
be not limited to LTI systems; the methods for stability and sensitiv-
ity of stability estimates need to be extended for more general cases.
The most general case is nonlinear non-autonomous systems and its
formulation is given in Chapter 4 whereas linear time periodic systems
(LTP) is a significant subset.

This chapter covers the evaluation of periodic stability and the sen-
sitivity of stability parameters of LTP systems. The stability criterion
is based on the characteristic exponents or more generally the real part
of the eigenvalues of the monodromy matrix of the periodic system fol-
lowing the Floquet’s Theory and described in Section 3.2. Parametric
sensitivity of the stability properties is formulated in Section 3.3 for
a generic rotating dynamical system having periodic coefficients. A
demonstration is presented in Section 3.4 using a simple example that
has analytical solution. Numerical examples of more complicated prob-
lems related to rotorcraft aeroservoelastic stability and sensitivity can
be found in Chapter 5.

3.2 Stability of Periodic Structures

One of the most frequently used methods for the stability analysis of
linear time periodic (LTP) systems is Floquet’s theory, which is also
proven to be beneficial in rotorcraft problem. [91]. The theory is based
on an extension of the notion of state transition matrix to a transition
matrix for periodic orbits, referred to as ‘monodromy matrix’. Floquet
Theory is a well-know tool in rotorcraft literature; however, we find it
beneficial to include here to show the basis of sensitivity formulation.
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3.2.1 State Transition Matrix

Considering a dynamical system written in state space from; the equa-
tion of motion at any instant of time can be stated with its initial
conditions as,

ẋ = Ax , x(t0) = x0 (3.1)

where the ‘dot’ operator computes the time derivative, A is the state
space matrix of the dynamical system, x is the vector of states and x0,
the state at time t0, is the initial condition. In LTP systems, matrix
A is a periodic function of time, with period T :

A(T + t) = A(t). (3.2)

Given its periodicity, it is necessary and sufficient to determine the re-
lationship between the state of the system at two time values separated
by one period T . To formulate the concept, first the state transition
matrix Y, which is an integral function of matrix A, is defined for any
two states at times t and initial time t0,

x(t) = Y(t, t0)x(t0) (3.3)

where Y(t0, t0) = I is the identity matrix by definition. Inserting
Eq. 3.3 into Eq. 3.1,

Ẏ(t, t0)x(t0) = A(t)Y(t, t0)x(t0) (3.4)

and thus, for the arbitrariness of the initial state x(t0),

Ẏ(t, t0) = A(t)Y(t, t0) (3.5)

Integration from the initial time t0 to a generic time t yields:

Y(t, t0) = e
∫ t
t0

A(τ)dτ (3.6)

3.2.2 Monodromy Matrix and Stability

The monodromy matrix H is defined as the state transition matrix
given in Eq. 3.3, evaluated between a reference start time t = t0 and
an end time t = t0 + T , corresponding to exactly one period T after
the start time, namely:

x(t0 + T ) = Y(t0 + T, t0)x(t0) = Hx0. (3.7)
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3.2. Stability of Periodic Structures

In the following, t0 = 0 is used without loss of generality, since eigen-
values of the monodromy matrix is independent of the initial time as
long as the period is preserved [57]. Once such relationship is defined,
as stated in Ref. [84], there is no need to further analyze the system in
time, since the evolution of the system between multiples of the period
occurs according to the same monodromy matrix. Expressing the state
as the product of a vector q(t) of generalized coordinates and a matrix
of orthogonal, time-dependent vectors U(t), namely x(t) = U(t)q(t),
Eq. 3.7 can be written as:

U(T )q(T ) = HU(0)q(0). (3.8)

Since the vectors U(t) are periodic, U(T ) = U(0), thus:

q(T ) = U(0)−1HU(0)q(0). (3.9)

Considering a spectral decomposition1 of the monodromy matrix, H =
VΘV−1, and choosing U(0) = V, one obtains;

q(T ) = Θq(0) (3.10)

i.e. the evolution factor of each generalized coordinate over a period is
given by the corresponding diagonal element θi of the diagonal matrix
Θ. Interpreting it as an exponential evolution over the time T , one
obtains θi = eλiT , with:

λi =
1

T
log(θi) =

1

T
log(ρie

jαi) =
1

T
log(ρi) +

1

T
jαi (3.11)

The periodic system is stable if all the eigenvalues λi have negative
real part (i.e. when the motion that characterizes each generalized co-
ordinates contracts with time after a period) as in the case of linear
time invariant (LTI) dynamical systems [57]. The interpretation of the
imaginary part of the periodic eigenvalues may be misleading, as dis-
cussed for example in Refs. [92] and [93], since αi ± 2nπ for integer n
satisfies Eq. 3.11 as well. However, this work focuses on the stability
of the system, which only depends on the value of the real part of the
eigenvalues, i.e. the log(ρi)/T term, and thus it is single valued, no
further interpretation is required.

1Under the assumption that matrix H can be diagonalized; otherwise, a general orthogonal
decomposition, for example the Schur decomposition, can be used.
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3.2.3 Computation of Monodromy Matrix

An efficient approach to evaluate the monodromy matrix is Hsu’s
method of Ref. [94], also reported in Ref. [95], which is followed in
this work (See also [96] for other computational schemes). The calcu-
lation of the state transition matrix is presented first. Hsu’s method
computes the state transition matrix of linear non-autonomous (in-
cluding the special case of LTP) problems in a rather compact form.
The method applies to LTP problems of the form ẋ = A(t)x by con-
sidering a piecewise constant approximation of matrix A(t), namely
A(t) ≈ A(t̂) = Â, with t̂ suitably chosen as t̂ ∈ [tj, tj+1]. The choice
of t̂ may influence the results. With the proposed approximation, the
state transition matrix is readily obtained in analytical form as

Y(tj+1, tj) ≈ eÂ(tj+1−tj), (3.12)

where the matrix exponential can be evaluated using one of the meth-
ods given in Ref. [97]. It may be approximated (e.g. truncated when
computed as a matrix power series) to improve the computational ef-
ficiency of the method .

To practically compute the monodromy matrix of a LTP problem,
the period T can be divided into N smaller time intervals such that
tj+1 − tj = T/N = ∆t. The monodromy matrix can be evaluated by
multiplying the state transition matrices of each sub-interval,

H = YN . . .Yn . . .Y0 = eÂN (∆t) . . . eÂn(∆t) . . . I (3.13)

where n is the discrete time step such that t = n∆t.

3.3 Sensitivity of Characteristic Exponents

The sensitivity of the stability properties is formulated for LTP systems
in order to estimate the dependence of stability indicators on system
parameters. As explained, analytical formulation is preferred instead
of in terms of finite-differences to avoid issues related to sharp changes
in sensitivity parameters and to gain the possibility to detect such
changes, in order to detect topology changes of the solution and track
them using continuation algorithms.

3.3.1 Formulation of Analytical Sensitivity

The eigenvalue problem for a periodic system can be written as;

Hvi = viθi = vie
λiT (3.14)
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where H is the monodromy matrix, i is the index of the eigenvalue, vi
is the ith eigenvector, θi is the ith eigenvalue of the monodromy matrix,
λi is the ith evolution parameter of the dynamical system, and T is the
period. Differentiating with respect to a generic scalar parameter p
gives;

H/pvi + Hvi/p =
(
vi
(
λi/pT + λiT/p

)
+ vi/p

)
eλiT (3.15)

where, as anticipated, the derivative of period with respect to a pa-
rameter, T/p, is non-zero if and only if the parameter is related to the
angular speed (Ω) of the system, namely:

T/p = −T
Ω

Ω/p (3.16)

Rearranging Eq. 3.15 to separate the unknown terms, vi/p and λi/p,
from the prescribed ones, one obtains:

(
H− eλiT I

)
vi/p + eλiTviλi/p = −

(
H/p − eλiTλiT/pI

)
vi (3.17)

If the number of degrees of freedom is n for a given problem, the size
of the system of linear Eq. 3.17 is also n. Then, for each eigenvalue
λi and its corresponding eigenvector vi/p with size n, a total of n + 1
unknowns exist. Hence, one more equation is required in addition to
system of equations provided by Eq. 3.17. The necessary equation is
obtained by the sensitivity of the eigenvector normalization,

vHi vi = 1 (3.18)

where vHi is the conjugate transpose, i.e Hermitian conjugate, of vector
vi. Differentiating with respect to p provides the necessary equation:

vHi/pvi + vHi vi/p = 0 (which implies vHi v/p = 0) (3.19)

Now the problem is full rank (provided that the multiplicity of the
eigenvalue is 1); hence, the sensitivity of the stability parameters can
be evaluated. Combining Eq. 3.17 and Eq. 3.19 in matrix form pro-
vides the necessary and sufficient system of equations to estimate the
derivatives of the eigenvalue λi/p and of the corresponding eigenvector,
vi/p with respect to parameter p:
[ (

H− eλiT I
)

eλiTvi

vHi 0

]{
vi/p

λi/p

}
=

{ −
(
H/p − eλiTλiT/pI

)
vi

0

}

(3.20)

In this formulation right hand side is should be determined and hence
we need the sensitivity of the monodromy matrix.
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3.3.2 Sensitivity of the Monodromy Matrix

Recall the monodromy matrix equation:

H = YN . . .Yn . . .Y0 = eÂN (∆t) . . . eÂn(∆t) . . . I (3.21)

Differentiating the monodromy matrix H with respect to a generic
scalar parameter p using the chain rule gives its sensitivity, H/p,

H/p = YNYN−1 . . .Yn . . .Y2Y1/p

+ YNYN−1 . . .Yn/p . . .Y2Y1 (3.22)
+ YN/pYN−1 . . .Yn . . .Y2Y1

where the state transition matrix of each sub-interval is given in Eq. 3.12.
Then, the sensitivity of the monodromy matrix can be formulated re-
cursively as:

d

dp

(
Π1
i=nYi

)
= Yn

d

dp

(
Π1
i=n−1Yi

)
+ Yn/pΠ

1
i=n−1Yi. (3.23)

The sensitivity of the state transition matrix of a sub-step, which is
exponential as stated in Eq. 3.12, is:

Y(tj, ti)/p ≈
(
Ân/p∆t+ Ân(∆t)/p

)
Y(tj, ti) (3.24)

Here Â/p is the sensitivity of the state space matrix of the dynamical
system, evaluated at time t̂, with respect to the given parameter p.
The derivative of incremental time (∆t)/p is zero unless the parameter
p affects the size of the time step (e.g. when it is related to the rotor
angular speed, Ω = 2π/T ). In such case:

∆t/p =
d

dΩ

(
T

N

)
Ω/p =

1

N

d

dΩ

(
2π

Ω

)
Ω/p = − 2π

NΩ2
Ω/p = −∆t

Ω
Ω/p.

(3.25)

3.4 Illustration of the method

This section presents numerical applications of the proposed procedure
and verify the stability and sensitivity analysis against an analytical
solution. More complex examples related to the rotorcraft can be found
in Chapter 5. Consider the homogeneous mass-damper system with a
periodic damping term;

mẍ+ (c0 + cp cos2 t)ẋ = 0 (3.26)
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where m is the mass, c0 is the damping constant and cp is the peri-
odic damping constants. The system has a period of π radians. The
stiffness is not included to achieve an analytical result for the mon-
odromy matrix and in turn eigenvalues of the periodic system. Then,
the system can be considered as a first order system with q = ẋ;

mq̇ + (c0 + cp cos2 t)q = 0, or q̇ = −(c0 + cp cos2 t)

m
q = 0 (3.27)

The monodromy matrix (in this case a scalar) can be obtained by
integrating Eq. 3.27 for one period T , from t = 0 to t = T . Let m = 1;

qT
q0

= H = e−
∫ T
0 [c0+cp cos2 t]dt (3.28)

leads to:
qT
q0

= H = e−Tc0−
T
2
cp (3.29)

For one dimensional systems, the eigenvalue is equal to the monodromy
matrix. Then:

θ = H = e−Tc0−
T
2
cp (3.30)

The eigenvalue of the system λ can be obtained from the eigenvalue of
the monodromy matrix θ using Eq. 3.11,

λ =
1

T
log(θ) =

1

T
log(e−Tc0−

T
2
cp) = −c0 −

1

2
cp (3.31)

which is equal to the characteristic exponent in the absence of oscilla-
tory term. If the coefficient of the periodic term, cp, is considered as the
parameter; the sensitivity of the eigenvalue, λ/cp , can be analytically
obtained as:

λ/cp =
1

2
(3.32)

These analytical results are compared with the numerical solutions
(named Floquet) obtained using the steps explained in this Chapter.
In the numerical solution the only input is the state space matrix as a
function of time t and its period T , as given in Eq. 3.27; whereas the
rest is estimated by the algorithm following the formulations of this
chapter. Fig. 3.3 presents the characteristic exponent obtained by the
analytical and numerical methods and Fig. 3.4 gives the corresponding
sensitivity of the characteristic exponents. Both results show good
correlation.

67



Chapter 3. Linear Time Periodic Systems

0.0 0.2 0.4 0.6 0.8 1.0
−2.00

−1.50

−1.00

−0.50

c
p

λ

 

 
Analytical
Floquet

Figure 3.3: Comparison of the characteristic exponents obtained by analytical
solution and numerical method (Floquet)
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Figure 3.4: Comparison of the sensitivity characteristic exponents obtained by
analytical solution and numerical method (Floquet)
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CHAPTER4
Nonlinear Non-Autonomous Systems

4.1 Introduction

Stability and sensitivity of stability properties for linear time invariant
(LTI) systems is formulated in Chapter 2 and for linear time peri-
odic (LTP) systems in Chapter 3. In order to extend the analysis
capability and achieve a generalized aeroservoelastic stability analysis
of rotorcraft, the quantitative stability and sensitivity of the stabil-
ity properties of nonlinear, non-authonomous systems should not be
omitted.

When a dynamical system is linear, the system of equations can be
written in state space form as;

ẋ = Ax, x(t0) = x0 (4.1)

with its states x. If matrix A is non-singular, the trivial solution,
x = 0, is the unique equilibrium point and it can be proved that
the stability of any solution of system given in Eq. 4.1, is equivalent
to the stability of the trivial solution x = 0 and represented by the
eigenvalues of A in LTI systems [98]. The solution of the system either
converges to zero (all eigenvalues have negative real part), diverges (all
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the eigenvalues have positive real part), follows a periodic orbit (purely
imaginary eigenvalues) or behaves in combination of these (some eigen-
value are positive some are negative or eigenvalues with both real and
imaginary parts) [99]. The trajectories are entirely dependent on the
initial conditions [100], but this does not change the stability charac-
teristics. Same remarks are true for linear time periodic systems in
which state space matrix A is replaced by monodromy matrix H (see
Section 3.2).

On the other hand, the relation between the states x and its time
derivative ẋ cannot be limited to linear functions:

ẋ = f (x, t) , x(t0) = x0 (4.2)

where f is the function that governs the system and can include re-
lations which cannot assumed to be linear. Nonlinear systems are
more complicated and require deeper understanding. First of all, there
can exist more than one equilibrium solution1, and the trivial solution
may or may not be one of them [99]. Therefore stability is not a global
property. Moreover there are more complex behaviors such as limit cy-
cle oscillations (LCO) which are defined as isolated closed trajectories
of nonlinear dynamical systems. When an LCO develops, the system
oscillates in a self-sustained manner without the need of an external in-
put [100]. The difference between LCO and the periodic oscillations of
linear systems is that the amplitude of an LCO depends entirely on the
structure of the system, not to the initial conditions. Chaos is another
strange behavior, an unpredictable, unstable but bounded motion [99].
Indeed, unlike linear systems, there is no correlation between bound-
edness and stability of a solution of a non-linear system [98]. These
phenomena, which may have significant effects on the performance of
the design if they occur, can be detected if the nonlinearities of the
system are preserved [8, 101,102].

Current state of art literature on rotorcraft aeroelastic stability anal-
ysis relies on LTI and LTP systems and approaches the problem by
either using a constant coefficient approximation or by computing the
eigenvalues of the monodromy matrix according to Floquet Theory.
The former neglects periodicity and the latter is only applicable to the
perturbation of the problem about a periodic orbit. Although these
techniques may successfully represent the dynamics of many flight con-
ditions, the equations of motion governing the rotorcraft dynamics are

1Broadly speaking, equilibrium may not exist for a nonlinear system; however, such systems
are not considered within stability theory and thus out of the scope of this work
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generally described by nonlinear, non-autonomous equations [65]. For
these reasons, it is expected to gain great benefit in extending the
rotorcraft stability analysis to capture nonlinear and time-variant ef-
fects. Being more general, Lyapunov Characteristic Exponents (LCEs)
can provide a common environment in rotorcraft aeroelastic stability
among both linear and nonlinear systems, and be applicable to all
problems that can be proficiently analyzed by time marching analysis,
including experimental data.

Analytical sensitivity of stability properties, as presented in Sec-
tion 2.8 for LTI and in Section 3.3 for LTP systems, can be formulated
for nonlinear non-autonomous systems using Lyapunov’s theory. The
parametric sensitivity of LCEs can provide a methodology for robust-
ness analysis and design of dynamical systems with complexity level
varying from LTI to nonlinear, non-autonomous. An analytical formu-
lation of the sensitivity of the stability properties, instead of in terms
of finite-differences, can help avoiding issues related to sharp changes
in sensitivity parameters and to gain the possibility to detect such
changes, in order to detect topology changes of the solution and track
them using continuation algorithms.

Section 4.2 introduces Lyapunov Characteristic Exponents (LCEs)
and presents the formulation of the evaluation of aeroservoelastic ro-
torcraft stability based on QR decomposition method. Some aspects
of characteristic exponents estimation for problems with complex con-
jugate modes, which are common in aerospace systems, are discussed.
Then Section 4.3 describes the analytical estimation of the sensitiv-
ity of the stability of trajectories based on Lyapunov characteristic
exponents formulated using the discrete QR decomposition method.
Finally, Section 4.4 presents the illustration with further discussion of
LCEs on a damped oscillator problem including analytical solution.
Both LCEs and sensitivity of LCEs are estimated and multiplicity of
LCEs are discussed. More advanced analyses related to rotorcraft are
available in Chapter 5.

4.2 Stability Estimation Using Lyapunov Characteristic Expo-
nents

The stability of a dynamical system is related to the evolution of a
solution after perturbation [103]. The practical, quantitative way of
measuring stability depends on whether a system is autonomous (i.e.
not explicitly dependent on time) and linear. Stability of linear, time
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invariant (LTI) systems can simply be inferred from the eigenvalues
of the state space matrix, namely its spectrum. The problem is more
complex when the system is linear and non-autonomous, but time pe-
riodic (LTP), i.e. the state space matrix has periodic coefficients. The
stability of LTP systems is evaluated by computing the eigenvalues of
the monodromy matrix, namely the state transition matrix over one
period as described in Chapter 3. For nonlinear, autonomous problems,
the eigenvalues and eigenvectors of the linearized system computed at
the coordinates of the phase plane corresponding to a steady solution
provides the local information about the behavior of the system in the
neighborhood of that solution. Once these points are evaluated and
connected for the whole phase plane, geometric understanding of the
system is possible. However, for problems having higher dimensions,
geometric understanding is not so easy to interpret and quantitative
way of measuring is necessary.

LTI and LTP problems typically result from linearization of non-
linear, non-autonomous problems about a steady (both LTI and LTP)
or a periodic (LTP only) reference solution. LTP systems find several
applications in the analysis of problems related to rotary-wing aircraft
as a consequence of the intrinsic periodicity of rotor motion and LTI
system analysis can usually provide sufficient approximation for LTP
problems. However, broadly speaking, periodic problems only occur
under strict assumptions; for example, the motion of a helicopter is
periodic only during idealized steady, coordinated maneuvers. Besides,
they require the existence of such solution, and the capability to define
and compute it.

Obtaining a steady or periodic solution by numerical integration in
time requires that solution to be stable, so the study of the stability
of the solution is actually the study of how much stable it is, i.e. of its
stability margin. A method that does not require a special reference
solution (i.e. a stable point or a stable orbit) and simplifications but, on
the contrary, provides indications about the existence of an attractor,
being it a point, a periodic orbit or a higher-order solution (e.g. a
multidimensional torus), while computing the evolution of the system
towards it, would give valuable insight into the system properties and,
at the same time, provide a viable and practical means for its analysis.

Lyapunov Characteristic Exponents (LCEs) are indicators of the na-
ture and of the stability properties of solutions of differential equations
(see for example Refs. [58,98] and references therein). They define the
spectrum of the related Cauchy (initial value) problem. Lyapunov the-
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ory can be applied to nonlinear non-autonomous systems; hence, they
represent a natural generalization of stability indicators that are famil-
iar in current engineering practice. The stability of trajectories in state
space can be estimated while computing their evolution. Nonlinearities
are always present in any dynamical system including rotorcraft, and
should be checked for stability. Hence the use of LCEs in analyzing
rotorcraft stability is believed to provide a common stability analy-
sis platform for dynamical rotorcraft systems having different levels of
complexity.

4.2.1 Lyapunov Exponents for Non-Autonomous Problems

This section recalls the definition of non-autonomous problems and
of the so-called Lyapunov Characteristic Exponents as a measure of
its spectrum and the numerical procedure used in this study for their
estimation. In engineering practice, differential problems of the form,

ẋ = f (x, t) , x(t0) = x0 (4.3)

arise often. Special cases occur when the problem is linear, i.e. f(x, t) =
A(t)x(t), or even periodic, i.e. linear with A(t+T ) = A(t) for a given
constant T , ∀t. Autonomous problems arise when f(x) does not ex-
plicitly depend on time t; a special case occurs when the problem is
linear, i.e. f(x) = Ax. In the latter case, the spectrum of the problem
is clearly represented by the eigenvalues of matrix A. In the other
cases, its definition is less intuitive.

Given the problem ẋ = f(x, t), with the state x ∈ Rn, the time
t ∈ R, and the nonlinear non-autonomous function f ∈ Rn+1 → Rn,
and a solution x(t) for given initial conditions x(0) = x0, the Lyapunov
Characteristic Exponents λi are defined as:

λi = lim
t→∞

1

t
log
‖ix(t)‖
‖ix(t0)‖ (4.4)

where ix(t) is the solution that describes the exponential evolution of
the i-th axis of the ellipsoid that grows from an initially infinitesimal
n-sphere according to the map f/x tangent to f along the fiducial tra-
jectory x(t), i.e. the solution of the linear, non-authonomous problem
iẋ(t) = f/x(x(t), t) ix(t), with ix(t0) = ix0.

Eq. 4.4 can be written in a simpler form. We can split the log
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function of Eq. 4.4 as,

λi = lim
t→∞

1

t

(
log ‖ix(t)‖ − log ‖ix(t0)‖

)
(4.5)

which is equal to:

λi = lim
t→∞

1

t
log ‖ix(t)‖ − lim

t→∞

1

t
log ‖ix(t0)‖ (4.6)

The second limit involves a constant ‖ix(t0)‖ divided by time t as
t → ∞, which is clearly zero. Then, the definition of LCEs can be
reduced to a more compact form:

λi = lim
t→∞

1

t
log ‖ix(t)‖ (4.7)

The definition involves the limit for t → ∞; hence, in practice LCEs
can only be numerically estimated for a sufficiently large value of t. In
this study, unless explicitly stated, with the term "LCEs” we refer to
their estimation using a large enough value of t.

LCEs represent a measure of the rate of growth of perturbed solu-
tions. Consider infinitesimal, independent perturbations of the states
with respect to a solution x(t) of Eq. 4.7 (the fiducial trajectory). The
perturbed solution can be computed in terms of the state transition
matrix Y(t, t0), which is the matrix that relates two states at t0 and t,
i.e x(t) = Y(t, t0)x(t0). Considering A(x, t) = f/x gives:

Ẏ(t, t0) = A(x, t)Y(t, t0), Y(t0, t0) = I (4.8)

According to the Ostrogradskĭı-Jacobi-Liouville formula [98], the de-
terminant of Y(t, t0) (the Wronskian determinant of the independent
solutions that constitute Y(t, t0)) is,

det (Y(t, t0)) = det (Y(t0, t0)) e
∫ t
t0

tr(A(τ)) dτ (4.9)

where tr(·) is the trace operator. Thus, the Wronskian never vanishes
when A(t) is regular in [t0, t], since Y(t0, t0) ≡ I. The Wronskian
geometrically represents the evolution in time of the volume of an in-
finitesimal portion of the state space.

The evolution of an arbitrary perturbation ix(t0) = ix0 is ix(t) =
Y(t, t0) ix0. As such, the contraction or expansion rate along the di-
rection of ix is estimated by considering:

(
eχit
)2

= lim
t→∞

ix
T
ix

ix0
T
ix0

(4.10)
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Consider now the singular value decomposition (SVD) of Φ(t, t0),

UΣVT = Φ(t, t0) (4.11)

where U = U(t) and V = V(t) are orthogonal matrices. The sin-
gular values σi, namely the diagonal elements of Σ = Σ(t), which
are strictly greater than zero as a consequence of the above mentioned
Ostrogradskĭı-Jacobi-Liouville formula2, express the growth of the per-
turbed solution along orthogonal directions in the state space.

The LCEs can also be interpreted as the limit for t → ∞ of the
logarithm of the singular values, σi, divided by the time itself3 [58]. In
fact, using the SVD to express the state transition matrix, Eq. 4.10
becomes,

(
eχit
)2

= lim
t→∞

ix0
TVΣ2VT

ix0

ix0
T
ix0

(4.13)

and independently considering perturbations ix0 along the directions
represented by the columns of V, ix0 = Vi, one obtains

χi = lim
t→∞

log(σi)

t
= λi. (4.14)

So-called continuous formulas for the estimation of the LCEs can be
derived from the definition based on the SVD, as well as on the QR
decomposition (see for example [104]).

4.2.2 Numerical Estimation of LCEs

The definitions of Eqs. 4.7 and 4.14 can hardly be applied to the practi-
cal estimation of LCEs, because orthogonalization is needed to prevent
the solution for each axis of the ellipsoid from interfering with the oth-
ers. Numerical methods have been devised for this purpose. One of
the most popular algorithm is QR decomposition and both continuous
and discrete versions are available. The continuous QR method is not
competitive with the discrete version [104], however it is also covered
briefly for the sake of completeness.

2After choosing Y(t0, t0) = I, its determinant is 1; the integral of matrix A(t) is finite, and
thus its exponential is a strictly positive number.

3In Ref. [58], the actual definition is

λi = lim
t→∞

log(σ2
i )

2t
, (4.12)

where σ2
i are the eigenvalues of ΦT (t, t0)Φ(t, t0) = VΣ2VT .
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Continuous QR Method

The continuous method follows QR decomposition of Eq. 4.8. Y = QR
leads to,

Q̇(t)R(t) + Q(t)Ṙ(t) =A(t)Q(t)R(t), Q(0)R(0) = I (4.15)

where columns of Y are the branches of solutions, Q is orthonormal
matrix and R is an upper triangular matrix with positive diagonal
elements. Skipping the details of matrix manipulations together with
the properties of triangular matrices (see for example Ref. [105] for
details) leads to:

λi = lim
t→∞

1

t
log Rii(t) = lim

t→∞

1

t

∫ t

0

Hii(s)ds, Hii = (QTAQ)ii (4.16)

Discrete QR Method

Continuous formulas of LCE estimation suffer from the numerical diffi-
culty of dealing with matrices whose coefficients either rapidly converge
to zero or diverge. For this reason, different approaches have been for-
mulated. The popular discrete QR method is based on incrementally
updating the LCEs estimates with the diagonal elements of matrix R
obtained from the QR decomposition of the state transition matrix
between two consecutive time steps.

Given the state transition matrix Y(t, tj−1) from time tj−1 to an
arbitrary time t as the solution of the problem Ẏ = f/x(x(t), t)Y
with Y(tj−1, tj−1) = I, set Yj = Y(tj, tj−1). Consider then the QR
decomposition of YjQj−1, which implies QjRj = YjQj−1. Now, after
defining RΠj = Πj

k=0Rj−k, one can show that:

YjQj−1RΠj−1
= QjRjRΠj−1

= QjRΠj (4.17)

This way, YjQj−1RΠj−1
can be used to construct RΠj by only consid-

ering incremental QR decompositions over YjQj−1, i.e. with limited
contraction/expansion. The LCEs are then estimated from RΠj as,

λi = lim
j→∞

1

tj
log rii(tj) (4.18)

where j ∈ N and rii(tj) are the diagonal elements of matrix R(tj) =
RΠj . Since the product of two upper triangular matrices C = AB
is also an upper triangular matrix, the diagonal elements are cii =
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aiibii. Thus the logarithm of cii can be incrementally computed as
log(aiibii) = log(aii) + log(bii). This helps preventing overflow/under-
flow in numerical computations. Furthermore,

rii(tj) = Πj
k=0r(j−k)ii (4.19)

thus,

log (rii(tj)) =

j∑

k=0

log(rkii) (4.20)

which leads to:

λi = lim
j→∞

1

tj

j∑

k=0

log(rkii) (4.21)

4.2.3 Computation of State Transition Matrix

The state transition matrix is required in discrete QR decomposition
method; hence, numerical integration is necessary to obtain it. For a
small enough time step, Eq. 4.3 is linearized,

δẋ = A(x(t), t)δx (4.22)

where A = f/x, partial derivative of nonlinear function f with respect
to state space variables x. Generally, since f can be any nonlinear
function of the trajectory xj and time t, integration of state transition
matrix require the knowledge of the trajectory, i.e. the differential
equation needs to be integrated. Numerical integration of differential
equations is a straightforward task and skipped here. On the other
hand, computation of state transition matrix is given to clearly state
the procedure. In this study, two practical methods are considered for
computing state transition matrix. One-lag trapezoid rule integration
is used to compute state transition matrix for any type of problem
from linear to nonlinear non-autonomous. The other one is the Hsu’s
Method, which is used only for linear problems.

One-Lag Trapezoid Rule Integration

As explained in [106], under the assumption that a constant integration
time step h is used, define the state x and its derivative ẋ at time tj
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as the average of and the difference between the values of the state ±
half of the time step forward and backward;

xj =
xj+1/2 − xj−1/2

2
, (4.23)

ẋj =
xj+1/2 − xj−1/2

h

which corresponds to using a one-leg trapezoid rule-like approximation
of the state and its derivative. Discretizing Eq. 4.22 at time tj, using
the expressions of xj and ẋ from Eq. 4.25, and solved for xj+1/2, yields:

xj+1/2 =

(
I +

h

2
Aj

)−1(
I− h

2
Aj

)
xj−1/2 (4.24)

implies:

Y(t, tj) =

(
I +

h

2
Aj

)−1(
I− h

2
Aj

)
(4.25)

This equation is required to be integrated together with the Eq. 4.3
if f is nonlinear. For LTI systems, the state transition matrix is in-
dependent of the trajectory x(t), hence there is no need to integrate
Eq. 4.3. It should be noted that this method is 2nd order accurate,
unconditionally stable (A-stable) with no algorithmic dissipation.

Integration Using Hsu’s Method

When Hsu’s method [94] is used to compute the state transition matrix,
the formulation can be written in a more compact form. The method
is applied by considering a piecewise constant approximation of matrix
A(x, t), namely A(x, t) ≈ A(x̂, t̂) = Â with t̂ ∈ [tj, tj+1] and x̂ = x(t̂).
The choice of t̂ may influence the results. Then, the state transition
matrix is readily obtained as,

Y(t, tj) ≈ eÂ(t−tj) (4.26)

where the matrix exponential may be approximated (e.g. truncated
when computed as a matrix power series) to improve the computational
efficiency of the method4.

4In fact, one can show using Neumann series [107] that the trapezoidal rule given in Eq. 4.25
is a second order approximation to eA(t−tj).
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4.3 Sensitivity of Lyapunov Exponent Estimates

The analytical sensitivity problem is based on the Discrete QR method,
which exploits the QR decomposition of the state transition matrix of
a differential problem using the tangent manifold of the so-called fidu-
cial trajectory. Such sensitivity can be useful to gain insight into the
dependence of stability indicators on system parameters, or can be
integrated into gradient-based (or gradient-aware) optimization pro-
cedures, or into uncertainty evaluation problems. The motivation of
focusing on analytical sensitivity is the capability to capture abrupt
changes in the stability properties of the system. This is typically the
case when the topology of the solution changes. For example when
dealing with linear systems, for parameter values that make some of
the eigenvalues locally coincident, or when a pair of complex conjugate
eigenvalues turn into two separate real ones; or in nonlinear systems
appearance of new or disappearance of existing equilibrium points at
some characteristic value of a parameter.

The sensitivity of LCE estimates is obtained using the discrete QR
method can be practically performed in a cascaded manner:

• the sensitivity of the LCEs is expressed as a function of the sen-
sitivity of the diagonal elements of matrix R;

• the sensitivity of matrix R is computed as a function of the sensi-
tivity of submatrices Rj resulting from the piecewise integration of
the problem from time step tj−1 to tj, Yj: Ẏ = AY, Y0 = Yj−1;

• the sensitivity of each submatrix is computed from the sensitivity
of the piecewise solutions of the problem, Yj/p;

• the computation of the sensitivity matrix Yj/p is written in form
of a self-adjoint problem, to minimize the number of time integra-
tions regardless of the number of parameters for which sensitivity
is sought.

Consider a set of bounded parameters p ∈ P , and assume that the
problem ẋ = f(x, t,p) depends on parameters p. The sensitivity of
the LCEs with respect to a generic parameter p ⊂ p, using the form
of Eq. 4.18, is:

λi/p = lim
t→∞

1

t

rii/p(t)

rii(t)
(4.27)
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The capability to compute the sensitivity of matrix R, namely R/p, is
obviouslSy needed. Recalling the definition of R(tj) = RΠj as formu-
lated within the discrete QR algorithm, its sensitivity is:

R/p(tj) =

j∑

k=0

(
Πk−1
n=0Rj−n

)
Rk/p

(
Πj
n=k+1

)
Rj−n (4.28)

Since R(tj) = RjR(tj−1), the update of R/p can be incrementally
computed according to,

R/p(tj) = Rj/pR(tj−1) + RjR/p(tj−1) (4.29)

thus the accumulation of the perturbation is straightforward. Alterna-
tively, using the form of Eq. 4.21, the sensitivity of LCEs can also be
expressed as:

λi/p = lim
j→∞

1

tj

j∑

k=1

rkii/p
rkii

(4.30)

In this case, only the sensitivity of Rj is needed, which is obtained in
the next section by computing the sensitivity of the QR decomposition.

4.3.1 Sensitivity of QR Decomposition

The sensitivity of the QR decomposition can be obtained along the
lines of the state transition matrix with differentiation of QR decom-
position that is used to formulate the continuous QR method for LCE
estimation (see for example [58,108]). Consider the QR decomposition
of an arbitrary matrix5 M ∈ Rn×n,

M = QR (4.31)

with orthogonal Q, i.e. QTQ = I, and R upper triangular, with
positive diagonal elements. Next, take the derivative of M with respect
to a scalar parameter p,

M/p = Q/pR + QR/p (4.32)

and the derivative of the orthogonality condition QTQ = I,
(
QT
)
/p

Q + QTQ/p = 0 (4.33)

5Indeed, in LCE estimates the matrix M = YjQj−1, i.e. equals to the state transition matrix
Yj multiplied by an orthonormal matrix of previous step Qj−1
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i.e.
(
QTQ/p

)T
+ QTQ/p = 0 (4.34)

The latter condition states that QTQ/p must be skew-symmetric; thus,
only n(n− 1)/2 coefficients are independent (for example, those in the
strictly lower triangular portion, i.e. the lower triangular part, exclud-
ing the diagonal). Finally, premultiply M/p by QT :

R/p = QTM/p −QTQ/pR (4.35)

Since matrix R/p is upper triangular, the whole problem can be re-cast
in the form:

compute W = QTQ/p (4.36a)

such that stril
(
QTM/p −WR

)
= stril (0) (4.36b)

subjected to WT + W = 0 (4.36c)

compute R/p (4.36d)
such that triu

(
R/p

)
= triu

(
QTM/p −WR

)
(4.36e)

and stril
(
R/p

)
= stril (0) (4.36f)

where the operator triu(·) extracts the upper triangular part of the
argument and the operator stril(·) extracts the strictly lower triangu-
lar6 part of the argument. The statement 4.36f is redundant since W,
computed according to the Eqs. 4.36a–c, already yields R/p with the
strictly lower triangular part set to zero.

It is worth noticing that, since R is upper triangular, the matrix W
is computed as,

WL = stril
(
QTM/pR

−1
)

W = WL −WT
L (4.37)

where R−1 does not require any factorization, but only back-substitution.
In fact, after setting B = QTM/p, the generic coefficient of stril(W)
is:

wij =
1

rjj

(
bij −

j−1∑

k=1

wikrkj

)
j = 1, n− 1 i = j + 1, n (4.38)

6Strictly lower refers to the elements below the main diagonal
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Then:

Q/p = QW (4.39)

The discrete QR method requires the decomposition of YjQj−1;
thus, the sensitivity of M = YjQj−1 = QjRj is actually required, i.e.;

M/p = Qj/pRj + QjRj/p = Yj/pQj−1 + YjQ(j−1)/p (4.40)

where Qj−1 and Q(j−1)/p are available from the previous iteration. First
of all, Eq. 4.40 is pre-multiplied by QT

j to obtain:

QT
j Qj/pRj + Rj/p = QT

j Yj/pQj−1 + QT
j YjQ(j−1)/p (4.41)

Then the strictly lower triangular part of the equation is evaluated to
compute WL,

WL = stril
((

QT
j Yj/pQj−1 + QT

j YjQ(j−1)/p

)
R−1
j

)

= stril
((

QT
j Yj/pQj−1 + RjWj−1

)
R−1
j

)
(4.42)

the strictly lower triangular part of Wj = QT
j Qj/p = WL −WT

L. See
Eq. 4.38 for details about the computation of WL. Finally, the upper
triangular part of Eq. 4.41 is evaluated to obtain Rj/p,

Rj/p = QT
j

(
Yj/pQj−1 + YjQ(j−1)/p

)
−WjRj

= QT
j Yj/pQj−1 + RjWj−1 −WjRj (4.43)

Clearly, the sensitivity of the state transition matrix, Yj/p, evaluated
between two consecutive times, t = tj−1 to tj, is required.

4.3.2 Sensitivity of State Transition Matrix

The sensitivity of state transition matrix Y at time tj, namely Y/p(tj),
is needed to compute the sensitivity of the LCEs. In principle, this is
obtained by integrating the sensitivity of the problem Ẏ = AY. Then,

Ẏ/p = AY/p +
(
A/xx/p + A/p

)
Y

= AY/p +
dA

dp
Y (4.44)

i.e. a problem with the same matrix A of the original one, forced by
a term (dA/dp)Y that depends on the reference solution. The term
A/x is the second-order derivative of function f with respect to the
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state x. It vanishes for linear problems. The sensitivity of the state to
parameter p is obtained by perturbing the problem ẋ = f(x, t),

ẋ/p = f/xx/p + f/p (4.45)

and integrating it in time accordingly. A similar problem needs to be
solved for each parameter.

As an alternative, consider the problem Ẏ = AY premultiply it by
a set of unknowns (Lagrange multipliers) PT and integrate it over the
interval [tj−1, tj],

J =

∫ tj

tj−1

PT
(
AY − Ẏ

)
dt = 0 (4.46)

Consider now its perturbation with respect to parameter p:

d

dp
(J) = (4.47)

∫ tj

tj−1

(
PT
/p��

���
��

(
AY − Ẏ

)
+ PT

(
dA

dp
Y + AY/p − Ẏ/p

))
dt = 0

Ẏ/p is eliminated using integration by part, yielding:

d

dp
(J) =

∫ tj

tj−1

(
PT

(
dA

dp
Y + AY/p

)
+ Ṗ

T
Y/p

)
dt− PTY/p

∣∣tj
tj−1

=

∫ tj

tj−1

(
PT dA

dp
Y +

(
PTA + Ṗ

T
)

Y/p

)
dt− PTY/p

∣∣tj
tj−1

= 0

(4.48)

The adjoint problem,

Ṗ = −ATP (4.49)

is solved first from time tj backwards to an arbitrary time t ∈ [tj−1, tj],
with initial conditions arbitrarily set to P(tj) = I; then,

P(t) = Φ(t, tj)P(tj) = Φ(t, tj) (4.50)

where Φ(t, tj) is the state transition matrix of the adjoint problem.
Now, Eq. 4.48 becomes,
∫ tj

tj−1

PT dA

dp
Y dt−PT (tj)Y/p(tj) + PT (tj−1)Y/p(tj−1) = 0 (4.51)
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i.e.:

Y/p(tj) = ΦT (tj−1, tj)Y/p(tj−1) +

∫ tj

tj−1

ΦT (t, tj)
dA

dp
(x(t), t)Y(t) dt

(4.52)

In practice, one only needs to find P(t) (i.e. Φ(t, tj)) and then compute
as many finite integrals like the one of Eq. 4.52 as the parameters whose
sensitivity is sought.

Special Case: Integration Using Hsu’s Method

Hsu’s method given in Eq. 4.26 provides a more compact form of com-
puting the sensitivity of the state transition for linear systems. Then,
the state transition matrix of a piecewise constant approximation of
matrix A(x, t), namely A(x, t) ≈ A(x̂, t̂) = Â with t̂ ∈ [tj, tj+1] and
x̂ = x(t̂) is readily obtained as,

Y(tj+1, tj) ≈ eÂ(tj+1−tj) (4.53)

where the choice of t̂ may influence the results and the matrix exponen-
tial may be approximated (e.g. truncated when computed as a matrix
power series) to improve the computational efficiency. The sensitivity
of the state transition matrix is:

Y/p(tj+1, tj) ≈ Â/p(tj+1 − tj)eÂ(tj+1−tj) = Â/p(tj+1 − tj)Y(tj+1, tj)
(4.54)

4.4 Illustration of the method

This section presents a linear damped oscillator example to explore the
multiplicity and oscillations of LCE estimates in mechanical systems.
Complex rotorcraft applications can be found in Chapter 5.

Linear Damped Oscillator

Consider the mass-spring-damper problem:

mq̈ + cq̇ + kq = 0 or q̈ + 2ξωq̇ + ω2q = 0 (4.55)

The state space representation for ω > 0 can be written as:

ẋ =

{
q̇

q̈

}
=

[
0 1

−ω2 −2ξω

]{
q

q̇

}
= Ax (4.56)
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The state transition matrix from 0 to t is defined as:

Y(t, 0) = eAt (4.57)

And its QR decomposition is,

Y(t, 0) = QR =

[
cosα − sinα

sinα cosα

] [
r11 r12

0 r22

]
(4.58)

which yields,

r11 =
√
Y 2

11 + Y 2
21 , r22 =

Y11Y22 − Y21Y12

r11

(4.59)

and, of course,

r12 =
Y11Y12 + Y21Y22

r11

, α = tan−1

(
Y21

Y11

)
(4.60)

which are inessential for LCE estimation.

Subcritical Damping

For 0 < ξ < 1, the state transition matrix can be formally written as,

Y(t, 0) = VeΛtV−1 (4.61)

using the spectral decomposition of matrix A, namely A = VΛV−1,
with,

Y11 =

(
cos
(√

1− ξ2ωt
)

+
ξ√

1− ξ2
sin
(√

1− ξ2ωt
))

e−ξωt

(4.62a)

Y12 =
1√

1− ξ2ω
sin
(√

1− ξ2ωt
)

e−ξωt (4.62b)

Y21 = − ω√
1− ξ2

sin
(√

1− ξ2ωt
)

e−ξωt (4.62c)

Y22 =

(
cos
(√

1− ξ2ωt
)
− ξ√

1− ξ2
sin
(√

1− ξ2ωt
))

e−ξωt

(4.62d)

The singular values of Φ(t, 0) are,

σ1,2 = σ̂1,2e−ξωt (4.63)
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where the magnitudes are,

σ̂1 = (4.64a)
√√√√ (1 + 2ω2ξ2 + ω4)S2 + 2ω2 (1− ξ2)C2 ± S

√
1 + 2ω2ξ2 + ω4

√
(1 + ω2)2 S2 + 4ω2 (1− ξ2)C2

2ω2 (1− ξ2)

σ̂2 =
1

σ̂1

(4.64b)

with C = cos(
√

1− ξ2ωt) and S = sin(
√

1− ξ2ωt). The singular val-
ues differ from each other and are time-dependent; the corresponding
LCEs,

λ1 = lim
t→∞

log (σ1,2)

t
= lim

t→∞

log (σ̂1,2)

t
− ξω = −ξω (4.65)

since σ̂1,2 are limited (indeed, they are periodic, with period T =

2π/(
√

1− ξ2ω)).
Considering now the QR decomposition, one can observe that r22 is

actually r22 = e−2ξωt/r11; r11 can be written as r11 = r̂(t)e−ξωt, where
r̂(t) > 0 is a non-trivial but otherwise regular periodic function,

r̂(t) = (4.66)
√

1

2

1 + ω2

1− ξ2
+

ξ√
1− ξ2

sin
(

2
√

1− ξ2ωt
)

+
1

2

1− 2ξ2 − ω2

1− ξ2
cos
(

2
√

1− ξ2ωt
)
> 0

thus, r22 = e−ξωt/r̂(t). The LCEs associated with this problem are,

λ1 = lim
t→∞

log (r11)

t
= lim

t→∞

log (r̂(t))− ξωt
t

= lim
t→∞

log (r̂(t))

t
− ξω = −ξω (4.67a)

λ2 = lim
t→∞

log (r22)

t
= lim

t→∞

log (1/r̂(t))− ξωt
t

= − lim
t→∞

log (r̂(t))

t
− ξω = −ξω (4.67b)

since r̂(t), being regular, is limited; thus its logarithm is also limited,
and the limits of r̂(t)/t in Eqs. 4.67 tend to zero. It is worth noticing
that the mean value of the two LCE estimates,

λ1 + λ2

2
= lim

t→∞

log (r11) + log (r22)

2t
= −ξω (4.68)
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is exactly the real part of complex conjugate eigenvalues of matrix A
∀t, since the spurious oscillations related to r̂(t) and 1/r̂(t) cancel out.
The sensitivity of the LCEs to the two parameters, ξ and ω, of the
equation are:

λ/ξ = −ω = λ/ξ (4.69a)
λ/ω = −ξ = λ/ω (4.69b)

which are clearly non-oscillatory.

Critical Damping

Consider now the case ξ = 1, i.e. critical damping, which yields two
real, coincident eigenvalues for matrix A, hence the trajectory of the
transient solution does not involve oscillations. The state transition
matrix, considering a Jordan canonical form [109] of the system matrix,
A = UJU−1, is now:

Y(t, 0) = UeJtU−1 =

[
1 + ωt t

−ω2t 1− ωt

]
e−ωt (4.70)

The QR decomposition yields again r11 = r̂(t)e−ωt and r22 = e−ωt/r̂(t),
now with,

r̂(t) =
√

1 + 2ωt+ ω2(1 + ω2)t2 (4.71)

The LCEs are:

λ1 = lim
t→∞

log (r11)

t
= lim

t→∞

log (r̂(t))− ωt
t

= lim
t→∞

log (r̂(t))

t
− ω = −ω (4.72a)

λ2 = lim
t→∞

log (r22)

t
= lim

t→∞

log (1/r̂(t))− ωt
t

= − lim
t→∞

log (r̂(t))

t
− ω = −ω (4.72b)

Again, the mean value of the two LCEs is directly −ω.
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Supercritical Damping

Consider now supercritical damping, ξ > 1; the elements of the state
transition matrix are:

Y11 =

(
cosh

(√
ξ2 − 1ωt

)
+

ξ√
ξ2 − 1

sinh
(√

ξ2 − 1ωt
))

e−ξωt

(4.73a)

Y12 =
1√

ξ2 − 1ω
sinh

(√
ξ2 − 1ωt

)
e−ξωt (4.73b)

Y21 =
− ω√
ξ2 − 1

sinh
(√

ξ2 − 1ωt
)

e−ξωt (4.73c)

Y22 =

(
cosh

(√
ξ2 − 1ωt

)
− ξ√

ξ2 − 1
sinh

(√
ξ2 − 1ωt

))
e−ξωt

(4.73d)

which, after setting λ1,2 = (−ξ ±
√
ξ2 − 1)ω, can be rewritten as:

Y(t, 0) =




λ2eλ1t − λ1eλ2t

λ2 − λ1

− eλ1t + eλ2t

λ2 − λ1

λ1λ2eλ1t − λ1λ2eλ2t

λ2 − λ1

− λ1eλ1t + λ2eλ2t

λ2 − λ1


 (4.74)

Since λ1 > λ2, one obtains r11 = r̂(t)eλ1t and r22 = eλ2t/r̂(t), with

r̂(t) =

√
λ2

2 (1 + λ2
1)− 2λ1λ2 (1 + λ1λ2) e(λ2−λ1)t + λ2

1 (1 + λ2
2) e2(λ2−λ1)t

(λ2 − λ1)2 ,

(4.75)

which tends to a finite value for t→∞. As such,

lim
t→∞

log (r11)

t
= λ1 + lim

t→∞

log (r̂(t))

t
(4.76)

lim
t→∞

log (r22)

t
= λ2 − lim

t→∞

log (r̂(t))

t
(4.77)

and log(r̂(t))/t→ 0 for t→∞.
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Comparison with Numerical Solution

The linear damped oscillator is analyzed for stability and sensitivity of
LCEs with respect to the damping coefficient, p := c. In the numerical
analysis, the values of mass (m = 1 kg) and stiffness (k = 0.25 Nm−1)
are chosen such that c = 1 Nsm−1 is the critical damping value (ξ = 1).
The problem has the analytical solution of the damping exponents:

λ1,2 =




− c

2m
if c2 − 4mk ≤ 0

− c±
√
c2 − 4mk

2m
if c2 − 4mk > 0

(4.78)

Figs. 4.1 and 4.2 present the convergence of a critically and super-
critically damped oscillator, respectively. Both cases show contracting
behavior (i.e. negative LCEs). A subcritically damped system shows
oscillatory convergence, as illustrated in Fig. 4.3 and in Fig. 4.4 with
the final portion is zoomed. It can be observed that while critically
damped and over-damped systems converge without oscillations, the
LCE estimate of a subcritically damped system, which has two com-
plex conjugate eigenvalues, oscillates as pointed out in Ref. [110]. The
Figs. 4.3 and 4.4, as proposed above, also show that the actual damp-
ing parameter, i.e. the real part of the eigenvalues of the problem, is
the mean value of the two LCEs at any time step, regardless of the
amplitude of the oscillation. Although the same time passes between
two adjacent peaks of the LCE estimates, the curves are not periodic,
owing to the division by t as given in Eq. 4.7. Periodicity (with period
half of 2π/(ω

√
1− ξ2)) can be restored by multiplying the LCE esti-

mates by t after removing the mean value. Such behavior of the LCE
estimates may be useful when detecting values associated with complex
conjugate eigenvalues in problems with a large number of states.

The LCE estimates for the mass-spring-damper problem are shown
in Fig. 4.5 with respect to the damping coefficient c as it is changed
from 0.5 Nsm−1 (subcritical) to 1.5 Nsm−1 (supercritical). As ex-
pected, for c ≤ 1, i.e. before the critical damping condition, when
the system has two complex conjugate eigenvalues, the two LCEs are
coincident, and become more and more negative as the damping in-
creases. After that point, the two LCE estimates split, as the system’s
eigenvalues become real and distinct, but their mean value still follows
the same slope of the subcritical damping case. The numerical results
are in very good agreement with the analytical solution.
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The sensitivity of LCEs with respect to the damping coefficient,
(λ/p, p := c) are compared again with the analytical solution for the
same set of parameter values. The analytical derivative of LCEs is
straightforward using Eq.4.78,

λ1,2/p =





− 1

2m
if c2 − 4mk < 0

undefined if c2 − 4mk = 0

− 1

2m
± c

2m
√
c2 − 4mk

if c2 − 4mk > 0

(4.79)

Notice that the left and right limits of λi/p differ for c = 2
√
mk, i.e.

at critical damping; specifically, the right limit is ±∞, whereas the
left limit is −1/(2m). The estimates of LCE sensitivity are shown in
Fig. 4.6 with respect to the damping coefficient c as it is changed from
0.5 Nsm−1 (subcritical) to 1.5 Nsm−1 (supercritical). The sensitivity
results of the numerical method are matching well with that of an-
alytical solution except the point where bifurcation occurs at c = 1.
It should be noted that at this point the derivative does not exist as
explained, hence sensitivity is not defined as stated in Eq. 4.79. There-
fore when the proposed method is used, such non-differentiable points
should be detected.

Discussion of Results

It is worth noticing that regardless of the value of ξ,

lim
t→∞

log (det(R))

t
= lim

t→∞

log (Π2
i=1rii)

t
= lim

t→∞

∑2
i=1 log (rii)

t

= lim
t→∞

λ1t+ log (r̂(t)) + λ2t− log (r̂(t))

t
= λ1 + λ2 (4.80)

i.e. the sum of the LCEs is exact from the beginning and ∀t. When
|ξ| ≤ 1, the two LCEs are identical, although their estimates oscillate
while converging to the exact value.

Detecting LCE estimates whose oscillatory behavior indicates the
existence of LCEs with multiplicity η greater than 1 may not be straight-
forward. In this example and in subsequent ones of Chapter 5, we infer
the convergence of two oscillating LCE estimates to a value with mul-
tiplicity η = 2 from the behavior of their mean value. We speculate,
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without further investigation, that the use of a decomposition capable
of dealing with characteristic values with multiplicity η > 1 is needed
to make such detection more robust. A development in this sense is
considered as a future work.
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Figure 4.1: Damped oscillator: time evolution of LCE estimates for critically
damped (ξ = 1)
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Figure 4.2: Damped oscillator: time evolution of LCE estimates for supercritically
damped system (ξ = 1.5).
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Figure 4.3: Damped oscillator: time evolution of LCE estimates for subcritically
damped system (ξ = 0.5)
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Figure 4.4: Damped oscillator: time evolution of LCE estimates for subcritically
damped system (ξ = 0.5), zoomed view after convergence
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Figure 4.5: Damped oscillator: LCE estimates with respect to damping constant
c.
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Figure 4.6: Damped oscillator: Sensitivity estimation of LCEs with respect to
damping coefficient c
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CHAPTER5
Numerical Examples

5.1 Introduction

This chapter presents the numerical examples using the rotor aeroe-
lastic tool introduced in Chapter 2, the stability and sensitivity using
Floquet Method explained in Chapter 3 and using Lyapunov Char-
acteristic Exponents (LCEs) described in Chapter 4. The aim of this
chapter is to illustrate the tools and methods for their verification using
rotorcraft related problems involving periodic and nonlinear terms in
their equations of motion. The occurrence of characteristic nonlinear
phenomena in the solutions are addressed and discussed.

The first problem is related to rotor blade flapping with perturba-
tion aerodynamics and presented in Section 5.2. The non-dimensional
forward flight speed, the so-called advance ratio (µ) causes azimuth-
dependent aerodynamic operation; leading to periodicity in the equiv-
alent stiffness and damping matrices. Stability and sensitivity of sta-
bility properties are performed using Floquet Method and Lyapunov
Characteristic Exponents. The periodicity of the problem with multi-
plicity of the stability properties is addressed.

Section 5.3 is devoted to a helicopter ground resonance analysis.
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The problem is analyzed for possible changes in the configuration of
dampers such as malfunction and nonlinearity. The first case is selected
to analyze a linear time periodic problem (LTP) and compare stability
and sensitivity results obtained by Lyapunov and Floquet. In order to
do this, the damping constant of one of the blade lead-lag dampers are
selected as the parameter and varied from zero to its nominal value
while the rest are kept at their nominals. In the second case the blade
dampers are represented by a second order polynomial function with
saturation in order to capture some nonlinear phenomena. The coeffi-
cient related to the linear term of the damping force is selected as the
parameter and it is varied from zero to the nominal value of the linear
damping of the model. The results are compared with the time history
of the blade motion. In the third case first and second cases are mixed
and a nonlinear non-autonomous problem is analyzed.

The final set of problems of Section 5.4 presents a large scale he-
licopter model which includes detailed descriptions of rotor aeroelas-
tic modes, fuselage rigid body and elastic modes, control system and
sensors. First, the aeroelastic rotor model is verified against respected
tools and stability analyses are performed for an helicopter at hovering
condition. In the second case, a periodic problem is set by differen-
tiating one blade damper from others. LCEs are compared with the
characteristic exponents obtained using Floquet Theory together with
their sensitivity .

5.2 Helicopter Blade Flapping

Consider the Floquet analysis of the fundamental flap dynamics of
a helicopter rotor blade as presented in Ref. [84]. The problem is a
linear, second-order time periodic system; the periodicity arising from
the equivalent aerodynamic stiffness and damping in forward flight.
The results of the Floquet analysis, with the principal component of
the imaginary part of the eigenvalues, are provided in Fig. 5.1. Owing
to the forward flight operation of the helicopter, in which asymmetry
of the aerodynamic environment interacts with the dynamics of the
blade, the system is periodic, with a fundamental frequency equal to
the angular speed of the rotor, Ω. In hover condition (i.e. when the
ratio between the airstream velocity and the tip speed of the rotor
blades, µ, is zero), the eigenvalues (s = λ+jω) are complex conjugated.
As the advance ratio µ increases, a decrease in the imaginary part (ω)
is observed first, whereas the real part (λ) remains constant. When
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Figure 5.1: Floquet eigenanalysis of the fundamental flapping mode of a helicopter
(Figure adopted from Ref. [84]).

the non-dimensional imaginary part approaches 0.5/rev, it remains
constant; the real part of one of the eigenvalues (the one at the bottom
of the figure) increases in magnitude, while the other (the one at the
top of the figure) reduces. As explained in Ref. [92], in some cases
this behavior can have significant repercussions on the stability of the
system, reducing stability margins and in some cases even leading to
instability.

Rigid blade flapping can be modeled as a second order single degree
of freedom LTP problem (from Ref. [92]) under simplifying assump-
tions. Since the purpose of this example is to address LTP systems,
rather than using a more realistic but complex helicopter blade dy-
namics model, only periodicity is retained, and the model is oversim-
plified by linearizing the dynamics, using quasi-static aerodynamics
and neglecting reverse flow conditions. The dots represent differentia-
tion with respect to the azimuth angle t (in this context it represents
non-dimensional time). The equation of motion can be written as,

β̈ +
γ

8

(
1 +

4

3
µ sin(t)

)
β̇ +

(
ν2
β +

γ

8

(
4

3
µ cos(t) + µ2 sin(2t)

))
β = 0

(5.1)

that represents the flapping of a rigid helicopter blade, where β is
the blade flap angle, γ is the Lock number (the non-dimensional ratio
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between aerodynamic and inertial flapping loads, which in the present
context loosely represents the damping factor), µ is the advance ratio
(the ratio between the helicopter forward velocity and the blade tip
velocity in hover, which weighs the periodic part of the coefficients)
and νβ is the flapping frequency non-dimensionalized by rotor angular
speed Ω. In order to demonstrate the trend of LCE estimates with
respect to a parameter, the advance ratio µ is chosen. The problem is
rewritten in first order form,

{
β̇

β̈

}
=

[
0 1

−Kβ −Cβ

]{
β

β̇

}
(5.2)

where stiffness Kβ and damping Cβ terms are:

Kβ = ν2
β +

γ

8

(
4

3
µ cos(t) + µ2 sin(2t)

)
(5.3a)

Cβ =
γ

8

(
1 +

4

3
µ sin(t)

)
(5.3b)

Then, the state space matrix is directly A(t) = f/x, and its sensitivity
with respect to µ is:

A/µ =




0 0

−γ
8

(
4

3
cos(t) + 2µ sin(2t)

)
−γ

6
sin(t)


 (5.4)

LCEs and their sensitivity are estimated according to the proposed
approach for the values of lock number γ = 12 and flapping natural
frequency νβ = 1. Clearly, a trivial fiducial trajectory is β(t) = 0,
which is obtained for β(0) = 0 and β̇(0) = 0. Other non-trivial trajec-
tories can be obtained starting from arbitrary initial conditions; were
β(t) = 0 asymptotically stable, the solution converges to it. Since this
problem is linear and homogeneous, β(t) = 0 is the unique equilibrium
point and it is necessary and sufficient to analyze the stability of the
trivial solution β(t) = 0 (See introduction of Chapter 4). The expected
fiducial trajectory is readily obtained within a few periods when it is
asymptotically stable.

The evolution of LCE estimates associated with complex conjugate
eigenvalues for µ = 0.15 are shown in Fig. 5.2 and with zoomed plot in
Fig. 5.3. The figures show a different behavior from that of the mass-
spring-damper system. Owing to periodicity, the mean value of two
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Figure 5.2: Blade flapping: non-dimensional time evolution of LCE estimates
associated with complex conjugate eigenvalues, µ = 0.15
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Figure 5.3: Blade flapping: non-dimensional time evolution of LCE estimates
associated with complex conjugate eigenvalues, µ = 0.15; zoom after convergence
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Figure 5.4: Blade flapping: estimates of LCEs with respect to advance ratio µ
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Figure 5.5: Blade flapping: estimates of sensitivity of LCEs with respect to ad-
vance ratio µ
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LCEs associated with complex conjugate eigenvalues shows a decaying
oscillatory behavior with the period of the system, T = 2π. The decay
is caused by division by t, according to Eq. 4.7. In order to have an
accurate estimate of the LCEs, integration needs to be performed for
a large enough non-dimensional time, to let the oscillations vanish.
Remember that there was no periodicity in the mean value of the
two LCEs resulting from the LTI system consisting of a sub-critically
damped oscillator, which has two imaginary eigenvalues, as given in
Figs. 4.1 to 4.4.

The LCE and sensitivity estimates are compared in Fig. 5.5 with
the corresponding values obtained using the Floquet theory for a range
of advance ratio 0 ≤ µ ≤ 1.5. This range of advance ratios is way
beyond the maximum flight speed of conventional helicopters (about
0.4) but may be of interest for slowed rotors. Both results of Floquet
and Lyapunov methods are in good agreement. Up to µ = 0.22 the
system has two complex conjugate eigenvalues with equal real part
that does not depend on µ; consistently, sensitivity with respect to µ
is zero. Beyond that value, the periodic nature of the system leads
to distinct real part for the two modes; i.e. the stability properties
start becoming sensitive to µ. Then, the stability of one of the modes
increases, whereas that of the other one reduces, as also can be verified
with the real part of Fig 5.1.

5.3 Helicopter Ground Resonance

Helicopter Ground Resonance is a mechanical instability associated
with the in-plane degrees of freedom of the rotor (see for example [111],
or the seminal work by Coleman and Feingold [112]). The combination
of the in-plane motion of the blades causes an overall in-plane motion
of the rotor center of mass which couples with the dynamics of the
airframe and undercarriage system. For this reason, the damping of
the in-plane motion of the blades is essential in articulated and soft-
inplane rotor, and is usually provided by lead-lag dampers.

The problem has been studied using models of various complexity
levels. Hammond’s model [113] has been extensively used due to its
simplicity; as such, it is chosen as the helicopter ground resonance
model in this study. A schematic is given in Fig. 5.6, where one blade
is shown for clarity. The blades have only lead-lag degrees of freedom
and lead-lag hinge is supported by spring and damper. Helicopter
and undercarriage system is modeled using dampers and springs in
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two directions providing a minimum complexity model analyzing the
ground resonance.

generalized forces on the cyclic lead-lag equations. So, the required

feedback structure is obtained. Only the cyclic rotations are needed,

because the collective and reactionless lag motions do not couple

with the in-plane hub displacement for a linear isotropic rotor model.

As a result, the portion of the plant model of Eq. (3), which is relevant

for the analysis, namely G22 in Eq. (4), is represented by a 2 × 2
matrix, regardless of the level of detail considered in modeling the

rotorcraft. The lead-lag rotation ζ�i� of the ith blade of a b-bladed

rotor (i � 1; b) in the rotating reference frame can be computed from

the corresponding collective ζ0, first-order cyclic ζ1c, ζ1s, and higher-

order multiblade coordinates, according to

ζ�i� � ζ0 �
X

�b−1�∕2

n�1

�ζnc cos nψ i � ζns sin nψ i� (22)

when b is odd, or

ζ�i� � ζ0 �
X

b∕2−1

n�1

�ζnc cos nψ i � ζns sin nψ i� � ζb∕2�−1�
i (23)

otherwise, where ψ i � Ωt� i2π∕b and Ω is the angular velocity of

the rotor. It is well known that only the first-order cyclic coordinates

ζ1c and ζ1s are needed in linearized air/ground resonance analysis

because only these terms couple with the pitch/roll motion of the

airframe, corresponding to an in-planemotion of the rotor center. As a

consequence, the lead-lag rotation ζ�i� and angular velocity _ζ�i� in the
rotating reference frame can be expressed as

ζ�i� ≅ ζ1s sin ψ i � ξ1c cos ψ i (24)

_ζ�i� ≅ �_ζ1s −Ωζ1c� sin ψ i � �_ζ1c �Ωζ1s� cos ψ i (25)

Assuming linear viscoelastic behavior, the ith blade damper

generates a moment

f�i��ζ�i�; _ζ�i�� � �Kd � δKd�ζ
�i� � �Cd � δCd�_ζ

�i� (26)

Regardless of the type of constitutive law, all dampermoments can be

projected back onto the cyclic lead-lag equations by

f1s �
2

b

X

b

i�1

f�i� sinψ i (27)

f1c �
2

b

X

b

i�1

f�i� cos ψ i (28)

When identical dampers are assumed for all blades, the resulting
uncertainty operator is

Δ�jω� � Δ0�jω� � δΔ�jω�

Δ0�jω� �

"

Kd0 � jωCd0 ΩCd0

−ΩCd0 Kd0 � jωCd0

#

(29)

δΔ�jω� �

�

δKd � jωδCd ΩδCd

−ΩδCd δKd � jωδCd

�

(30)

After substituting the expression of Eq. (30) in Eqs. (19) and (20), or
in Eq. (21), the allowed uncertainty in the parameter space can be
inferred.

IV. Illustrative Numerical Example: Hammond’s Rotor

The very simple ground resonance example represented by the
single main rotor helicopter proposed by Hammond in the seminal
paper [12] has been chosen from the open literature to present the
potential of the synthesis approach proposed in the preceding
sections. In this case, the simple four degrees-of-freedom model can
adequately represent the phenomenon.
Using the nominal model with the parameters presented in Table 1,

the rotor is always stable up to a rotor speed equal to 150% of
the nominal angular speed considered in this study, Ω0 � 200 rpm,
as shown in Fig. 5. However, the regressive lag mode shows a critical
interaction, first with the x hub mode around 50% rpm and then with
the y hub mode at 100% rpm.
The trend of the GSMVs ρie

jθi computed using Eq. (11) is shown
in Fig. 6, where the amplitude and the phase of the margin vectors
are shown as functions of the oscillation frequency ω. The terms
ρi�ω� and θi�ω�, respectively, represent the amplitude and phase
perturbations with respect to the nominal system that take it to the
verge of stability at frequency ω.
Themargin amplitude associatedwith the second eigenvector ρ2 is

close to one for all frequencies, and also the phase angle is almost
constant. So, the associated eigenvalue is almost constant at all
frequencies. The margin amplitude associated with the first
eigenvector ρ1 is below one only for a limited range of frequencies.
Whenever ρi is above one, the system should be considered very
safe because this is the value reached asymptotically at very high
frequency when all the eigenvalues of the nominal transfer matrix
tend to zero. Above a certain frequency close to 1∕rev, the amplitude
of the generalized margin grows well above one, and so there is no
need to analyze this region in detail. Instead, when the amplitude of
the margin approaches zero, the system must be considered
marginally stable. Thus, the plot in Fig. 6 indicates that, in this case,
the band of frequencies between 0.7∕rev and 1∕revmaybe critical for
the stability of the plant.

Table 1 Hammond’s rotor parameters (see Fig. 4)

No. of blades b 4

Lag hinge offset e 0.3048 m
Blade mass Mb 94.9 kg
Blade first inertia moment Sb 289.1 kg · m
Blade second inertia moment Ib 1,084.7 kg · m2

Lag damper nominal stiffness Kd0 0.0 N · m∕rad
Lag damper nominal damping Cd0 4,067.5 N · m · s∕rad
Hub equivalent mass x Mx 8,026.6 kg
Hub equivalent mass y My 3,283.6 kg
Hub equivalent spring x; y Kx, Ky 1,240,482.0 N∕m
Hub equivalent damping x Cx 51,079.0 N · s∕m
Hub equivalent damping y Cy 25,539.0 N · s∕m

Fig. 4 Mathematical model of rotor blades and hub.
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Figure 5.6: Schematic of Hammond’s Helicopter ground resonance Ref. [114].
There are two hub modes connected to the ground and rotating blades which
include lead-lag degrees of freedom. (Only one blade is presented for clarity)

The isotropic rotor case, i.e. equally spaced blades with identical
properties, are analyzed and verified with Ref. [113]. The stability
results for the isotropic rotor are not included here in order not to
duplicate the original work. However, the equations of motion is briefly
described to clearly address the sources of periodicity and nonlinearity
in the analysis. The equations of motion in the rotating reference frame
can be written as;

Mr(t)q̈r + Cr(t)q̇r + Kr(t)qr = 0 (5.5)

where qr, Mr, Cr and Kr are degrees of freedom vector and mass,
damping and stiffness matrices in rotating frame with periodic terms
as given in original work [113]. In Hammond’s model there are 4 blades
with an allowed motion around lead-lag hinge(ζi, i being blade index)
having an offset e, static moment Sζ , mass moment of inertia Jζ , lead-
lag damper Cd and lead-lag spring Kd. Moreover the two hub in-
plane degrees of freedom represent the dynamics of the fuselage and
undercarriage system; x being longitudinal and y being lateral and
characterized by Mx,y Cx,y and Kx,y, namely mass, damper and spring
constants. The parameter values are reported in Table 5.1. Then, the
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5.3. Helicopter Ground Resonance

degree of freedom vector of the system is;

qr = [ζ1 ζ2 ζ3 ζ4 x y]T (5.6)

where ψi = ψ+ i2π/N is the azimuth angle of the corresponding blade
with blade index i, whereas ψ is the reference azimuth angle. The
corresponding mass, damping and stiffness matrices in rotating frame
of reference are:

Mr(ψ) =



Jζ 0 0 0 −Sζ cosψ −Sζ sinψ

0 Jζ 0 0 −Sζ sinψ −Sζ cosψ

0 0 Jζ 0 −Sζ cosψ −Sζ sinψ

0 0 0 Jζ −Sζ sinψ −Sζ cosψ

−Sζ cosψ −Sζ sinψ −Sζ cosψ −Sζ sinψ Mx 0

−Sζ sinψ −Sζ cosψ −Sζ sinψ −Sζ cosψ 0 My


(5.7a)

Cr(ψ) =



Cζ 0 0 0 0 0

0 Cζ 0 0 0 0

0 0 Cζ 0 0 0

0 0 0 Cζ 0 0

−2ΩSζ sinψ −2ΩSζ cosψ −2ΩSζ sinψ −2ΩSζ cosψ Cx 0

−2ΩSζ cosψ −2ΩSζ sinψ −2ΩSζ cosψ −2ΩSζ sinψ 0 Cy


(5.7b)

Kr(ψ) =



Kζ 0 0 0 0 0

0 Kζ 0 0 0 0

0 0 Kζ 0 0 0

0 0 0 Kζ 0 0

−Ω2Sζ cosψ −Ω2Sζ sinψ −Ω2Sζ cosψ −Ω2Sζ sinψ Kx 0

−Ω2Sζ sinψ −Ω2Sζ cosψ −Ω2Sζ sinψ −Ω2Sζ cosψ 0 Ky


(5.7c)

The degree of freedom vector and matrices can be transformed into
the non-rotating frame using the multi-blade coordinate transforma-
tion explained in Section 2.7. The transformation matrices, which are
normalized with the angular speed of the rotor, Ω, are T1, its first
time derivative T2 and second time derivative T3. For a rotor having
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Table 5.1: Ground resonance: numerical values of Hammond model parameters

Number of blades, N 4
Blade static moment, Sζ 189.1 kgm
Blade mass moment of inertia, Jζ 1084.7 kg m2

Lag hinge offset, e 0.3048 m
Lag spring, Kd 0 Nmrad−1

Lag damper, Cd 4067.5 Nmsrad−1

Hub mass, Mx, My 8026.6 kg , 3283.6 kg
Hub spring, Kx, Ky 1240481.8 Nm−1, 1240481.8 Nm−1

Hub damper, Cx, Cy 51078.7 Nsm−1, 25539.3 Nsm−1

4 blades, these transformation matrices are:

T1 =




1 cos(ψ1) sin(ψ1) −1 0 0

1 cos(ψ2) sin(ψ2) 1 0 0

1 cos(ψ3) sin(ψ3) −1 0 0

1 cos(ψ4) sin(ψ4) 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(5.8a)

T2 =
dT1

dψ
(5.8b)

T3 =
dT2

dψ
(5.8c)

Then, the degrees of freedom vector in the non-rotating frame is given
as,

qnr = T−1
1 qr = [ζ0 ζ1c ζ1s ζN/2 x y]T ; (5.9)

where qnr includes collective, ζ0, cyclic, ζ1c and ζ1s, and reactionless,
ζN/2 blade lead-lag modes, and the two hub displacement modes x
and y. Note that for a general system with periodic and nonlinear
terms, the collective and reactionless degrees of freedom are expected
to contribute to the dynamics of the rotor when coupled with the
motion of the hub. Hence, as opposed to the isotropic rotor case,
which was an LTI system; all degrees of freedom must be retained for
periodic and nonlinear stability analysis. The equation of motion in
the non-rotating frame can be written as,

Mnrq̈nr + Cnrq̇nr + Knrqnr = 0 (5.10)

with the corresponding mass Mnr, damping Cnr and stiffness Knr ma-
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trices in the non-rotating frame:

Mnr = T−1
1 MrT1 (5.11a)

Cnr = T−1
1 (2ΩMrT2 + CrT1) (5.11b)

Knr = T−1
1 (Ω2MrT3 + ΩCrT2 + KrT1) (5.11c)

Using the matrices formulated in Section 2.7 and the matrices of mixed-
coordinates given in Eq. 5.7, the corresponding matrices in non-rotating
frame are obtained for the isotropic rotor as a basis of periodic and
nonlinear models, which are modified in the analyses depending on the
characteristics of periodicity and nonlinearity. The matrices are:

Mnr = T−1MrT−−−−−−−−−−−−−−−−−−−

=




Jζ 0 0 0 0 0

0 Jζ 0 0 0 Sζ

0 0 Jζ 0 −Sζ 0

0 0 0 Jζ 0 0

0 0 −2Sζ 0 Mx 0

0 2Sζ 0 0 0 My




(5.12a)

Cnr = T−1
(
2ΩMrT/ψ + CrT

)
−−−−−−−−−−−−

=




Cζ 0 0 0 0 0

0 Cζ 2ΩJζ 0 0 0

0 −2ΩJζ Cζ 0 0 0

0 0 0 Cζ 0 0

0 0 0 0 Cx 0

0 0 0 0 0 Cy




(5.12b)

Knr = T−1
(
Ω2MrT/ψψ + ΩCrT/ψ + KrT

)

=




Kζ 0 0 0 0 0

0 Kζ − Ω2Jζ ΩCζ 0 0 0

0 −ΩCζ Kζ − Ω2Jζ 0 0 0

0 0 0 Kζ 0 0

0 0 0 0 Kx 0

0 0 0 0 0 Ky




(5.12c)
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5.3.1 Helicopter GR with Dissimilar Lead-Lag Dampers

In the non-rotating frame, i.e. in multi-blade coordinates as given in
Eq. 5.12, the elements of the matrices of a ground resonance problem
do not depend on the azimuth angle; hence, its stability can be ana-
lyzed using eigenvalue decomposition as a linear time invariant system.
For this reason Hammond’s model is not periodic for an isotropic rotor
(i.e. with identical, equally spaced blades) unless the isotropy of the
system is spoiled, e.g. by removing or modifying one of the charac-
teristics of the blades such as the lead-lag damper or spring restraint.
Whenever the isotropy of the rotor is broken, time dependence surfaces
and eigenvalue decomposition may fail in reflecting the actual stability
characteristics.

A typical case of engineering interest with periodic equations of mo-
tion is that of one blade damper inoperative or has dissimilar damping
constant as compared to the dampers of the other blades. Such a prob-
lem is not a normal operating condition; yet, it needs to be analyzed
to assess stability in case of a malfunction in dampers. In this analyses
the estimates of the stability and sensitivity of stability properties are
illustrated by removing the damper from one blade, and by considering
the rotor angular speed Ω as the parameter. Since the model has a
total of 12 states, only the most critical damping indicators, i.e. the
largest two LCEs, are provided in results for clarity.

The sensitivity of the state space matrix with respect to Ω is straight-
forward using the transformation matrices formulated in Section 2.7
and the matrices of mixed-coordinates given in Eq. 5.7. The sensi-
tivities of mass, damping and stiffness matrices can be obtained in a
similar way to the sensitivities given in the flapping problem and then
sensitivity of the state space model can be formed. In order to skip
lengthy matrices, they are not included here.

For a rotor angular speed range of Ω = 0 RPM to Ω = 400 RPM,
Fig. 5.7 presents the estimation of the largest two LCEs and Fig. 5.8
shows the sensitivity estimation of the corresponding LCEs with re-
spect to rotor angular speed for the same range. The estimated LCEs
and their sensitivity well match with the results obtained using the
Floquet theory. Fig. 5.9 presents the time evolution of LCE estimates
for the angular speed Ω = 400 RPM and Fig. 5.10 gives the zoomed
view of the same case after convergence is achieved. The first two
LCEs show an oscillating behavior; their average slowly converges to
the value given in Fig. 5.8.
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Figure 5.7: Helicopter ground resonance with one blade damper inoperative: es-
timate of the largest LCE with respect to rotor angular speed Ω
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Figure 5.8: Helicopter ground resonance with one blade damper inoperative: sen-
sitivity estimate of the largest LCE given in Fig. 5.7 with respect to rotor angular
speed Ω
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Figure 5.9: Helicopter ground resonance with one blade damper inoperative: time
evolution of the estimates of the largest two LCEs (Ω = 400 rpm)
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Figure 5.10: Helicopter ground resonance with one blade damper inoperative:
time evolution of estimates of the largest two LCEs (Ω = 400 rpm), zoomed
view after convergence
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5.3.2 Helicopter Ground Resonance with Nonlinear Lead-
Lag Dampers

A distinctive advantage of LCEs is their capability to analyze and
quantify the stability of the trajectories of nonlinear, non-autonomous
dynamical systems. The dynamics of rotorcraft is generally described
by nonlinear, time-dependent equations [65]. Among nonlinear phe-
nomena, limit cycle oscillations (LCO) are defined as isolated closed
trajectories of nonlinear dynamical systems; when an LCO develops,
the system oscillates in a self-sustained manner without the need of
an external input as described in Ref. [100]. Although being bounded
seems to be in the favor of the system integrity in the sense that os-
cillations do not grow in amplitude; the occurrence of LCOs can affect
structural life, flight safety and ride comfort of a rotorcraft. As in
the case of nonlinear phenomena, the occurrence of LCOs can only be
detected considering the nonlinearity of the problem [101].

For this purpose, the same ground resonance model of the previous
example is studied with lead-lag dampers; characterized by a nonlin-
ear constitutive law, to verify the application of the method to non-
linear problems. The simple nonlinear constitutive law of the damper
considered in Ref. [114] (a moment quadratic in the angular velocity,
modeling turbulent viscous flow, with saturation), which is plotted in
Fig. 5.11, is modified by adding a linear term to the quadratic charac-
teristic, yielding the moment

fd =

{
χζ̇|ζ̇|+ CLζ̇ ζ̇ < ζ̇L

χ̄ζ̇L|ζ̇L| ζ̇ ≥ ζ̇L
(5.13)

about the lead-lag hinge, where χ = χ̄−CL/ζ̇L to ensure that the value
of damping at the discontinuity point ζ̇L remains the same when the
slope at zero angular velocity, CL, is changed. The slope is chosen as
the parameter for investigating the sensitivity of the LCE estimates.
It is expressed as a fraction of the nominal linear damper Cb given in
Table 5.1. The same parameter values of the damper given in Ref. [114]
are used for the other parameters, as reported in Table 5.2.

Table 5.2: Helicopter ground resonance with nonlinear blade damper: saturated
hydraulic damper parameters, data from Ref. [114].

χ̄ 1.2203× 106 Nms 2 rad −2

ζ̇L 1.0 degs −1
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Figure 5.11: Representation of a nonlinear damper with saturation and its linear
representation, Ref. [114]

In the model of Ref. [114] the slope CL is zero, and Limit Cycle
Oscillations (LCO) are reported. Without the linear term, the model
is not realistic, since flow in a hydraulic damper tends to be laminar
at small flow rates. Thus, the linear term better describes the physics
of the device in the low speed regime and the addition of the linear pa-
rameter CL can improve the accuracy of the model. Nevertheless, this
problem has been selected to obtain a LCO in an otherwise reasonably
realistic model and to test estimation of LCEs and their sensitivity
with a nonlinear problem that may include LCO, exponential stability,
and unstable equilibria.

As explained in Section 5.3, the original form of Hammond’s model
is linear. Whereas in this ground resonance with nonlinear damper
problem, we are interested in changing one linear parameter to a non-
linear one while the linearity of the rest of the model is preserved. In
such a case, if nonlinearity is in one or few components and the rest
of the model is linear, the linearized model of Chapter 2 can be used
to represent the linear dynamics and the nonlinear components can be
included as a force caused by the nonlinear effects. In this particu-
lar case, the nonlinearity is in damping force caused by the lead-lag
motion of the blades. The relation can be written as,

Mẍ + Cẋ + Kx + fNL(ζ̇
2
) = 0 (5.14)
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where ζ̇ is the vector of lead lag angle including contributions of all
blades. Since all the matrices are in non-rotating reference frame,
the nonlinear damping force fNL should also be converted into multi-
blade coordinates using the method explained in Section 2.7. Then the
equations in state space form is:

[
ẋ

ẍ

]
=

[
O I

−M−1K −M−1C

] [
x

ẋ

]
+

[
0

−M−1fNL

]
(5.15)

Similar discussion also holds for the Jacobian matrix evaluation, which
is required in estimating LCEs. Clearly, the derivative of the nonlinear
forcing function with respect to its states fNL/x, i.e. the Jacobian, is a
function of the rate of the lead-lag angle. For this reason, in nonlinear
systems, the stability properties depends on initial conditions, as they
also determine the trajectory and hence the Jacobian. Note that, Jaco-
bian matrix is constant for LTI systems and periodic for LTP systems;
in any case it is not a function of the state in linear systems.

The blade lag motion ζ (only one of four blades is shown for clarity)
is discussed first. In plots, there are two curves each related to sim-
ulations starting from different initial conditions. Fig. 5.12 shows the
blade lag motion for the cases in which the blade experiences LCO in
the absence of linear damping therm (CL = 0). The two curves with
the same amplitude and period are obtained for different initial condi-
tions, although a time shift can be observed. Such a behavior confirms
the limit cycle interpretation of the attractor. Fig. 5.13 presents an
exponentially stable system when the linear damping term is equal to
the nominal value (CL = Cd). The resulting curves converge to ζ = 0,
confirming the interpretation of the attractor as a stable point.

It is worth noticing that ζ = 0 is also an equilibrium solution for the
case CL = 0. However, since solutions obtained with initial conditions
in the vicinity of ζ = 0 converge to the previously mentioned limit
cycle, the solution ζ = 0 is topologically an unstable equilibrium point,
a so-called repellor. The instability of such solution is confirmed by the
present analysis, which estimates a positive LCE.

The same phenomena can also be observed by looking at the phase
plots of the blade motion. Fig. 5.14 presents the map of the blade
lag motion and its time derivative for the cases in which the blade
experiences LCO (CL = 0) and whereas Fig. 5.15 gives the phase
plane for an exponentially stable system (CL = Cd). In both plots,
the simulations start from different initial conditions, marked with “∗”.
Again in Fig. 5.14, both the inner and outer trajectories converge to an
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ellipse with the horizontal axis of ζ = 0.015 deg and the vertical one of
ζ̇ = 0.2 deg/s. In Fig. 5.15, starting from the same initial conditions,
the solutions converge to equilibrium, i.e. ζ = 0 deg and ζ̇ = 0 deg
in case of sufficiently large damping slope at zero lag rate, CL = Cd.
It should be noted here that only the motion of one blade is shown
here, and the intersections observed in the plot (for example the one
on Fig. 5.14 starting from an outer trajectory) does not mean that two
solutions exist at the intersection point. In fact, the problem has 12
states and the plot only shows one pair, projected on a 2D plane.

If the system has a periodic attractor, a so-called LCO, zero-valued
LCE estimates (or very close to zero from a numerical analysis point of
view) are expected [99]. In order to observe this and also further inves-
tigate sensitivity, LCEs and their sensitivity are estimated for a range
of damper slopes at zero lag rate, CL (CL = 0 was used in Ref. [114]).
Results are shown in Fig. 5.16 for largest two LCEs and in Fig. 5.16 for
the corresponding sensitivity of LCEs; as it can be observed, starting
from CL = 0 the largest LCE is zero and remains approximately zero
until CL ≈ 0.35Cd. Hence, a LCO occurs in this range after the sys-
tem encounters a perturbation. For larger values of CL, the two largest
LCEs (nearly) merge (i.e. they become quite close from a numerical
point of view) and the system becomes exponentially stable with all
LCEs being negative. This is verified by looking at the lag motion
of the blade, as given in Fig. 5.12, which corresponds to CL = 0, the
blade motion converges to a stable LCO with magnitude 0.015 deg,
as also reported in Ref. [114]. Increasing the zero lag rate slope pro-
vides asymptotic stability: for example, when CL = Cd, all LCEs are
negative; as shown in Fig. 5.13, system is exponentially stable.

The time evolution of LCE estimates corresponding to the cases of
Fig. 5.12 and Fig. 5.13 are shown in Fig. 5.18 and Fig. 5.19 respectively.
In the case resulting in an LCO, (CL = 0 values of Fig. 5.16), the first
two LCE estimates are distinct and the first LCE, λ1, quickly converges
to zero, corresponding to the stable LCO with magnitude 0.015 deg.
A zero-valued LCE indicates a LCO; hence, the LCE estimates and
the time simulations are in agreement. Increasing the slope at zero lag
rate provides stability; for a sufficiently large value of CL, as shown
in Fig. 5.16, the first two LCE estimates converge to the same value,
suggesting that they are coincident, with multiplicity 2, as if they were
associated with complex conjugate eigenvalues in a LTI system. This
solution is stable, as observed from the time simulations and indicated
by the negative largest LCEs.
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Figure 5.12: Helicopter ground resonance with nonlinear blade damper: blade lag
motion starting from different initial conditions for no damping at zero lag rate
(CL = 0) , resulting in limit cycle oscillations

0 5 10 15 20 25
−0.030

−0.015

0.000

0.015

0.030

Revolution(rev)

ζ 
(d

eg
)

 

 
ζ

0
=0.030 deg

ζ
0
=0.005 deg

Figure 5.13: Helicopter ground resonance with nonlinear blade damper: blade lag
motion starting from different initial conditions for nominal damping at zero
lag rate (CL = Cd) , resulting in exponential stability.
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Figure 5.14: Helicopter ground resonance with nonlinear blade damper: phase
plane of blade lag motion starting from different initial conditions for no damp-
ing at zero lag rate (CL = 0) which corresponds to blade lag motion given in
Fig. 5.12, resulting in LCO
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Figure 5.15: Helicopter ground resonance with nonlinear blade damper: phase
plane of blade lag motion starting from different initial conditions for nominal
damping at zero lag rate (CL = Cd) which corresponds to blade lag motion given
in Fig. 5.13, resulting in exponential stability
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Figure 5.16: Helicopter ground resonance with nonlinear blade damper: the largest
two LCE estimates with respect to damper slope at zero lag rate CL
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Figure 5.17: Helicopter ground resonance with nonlinear blade damper: sensitivity
estimates of the largest two LCEs given in Fig. 5.16 with respect to damper slope
at zero lag rate CL
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Figure 5.18: Helicopter ground resonance with nonlinear blade damper: time
evolution of the largest two LCE estimates for no damping at zero lag rate
(CL = 0), system with LCO
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Figure 5.19: Helicopter ground resonance with nonlinear blade damper: time
evolution of LCE estimates for nominal damping at zero lag rate (CL = Cd),
exponentially stable system
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5.3.3 Helicopter Ground Resonance with Dissimilar and Non-
linear Lead-Lag Dampers

In order to apply the proposed approach to a nonlinear non-autonomous
problem, the one damper inoperative model is modified using the non-
linear damper of Eq. 5.13. Linear damping constant (CL) is selected
as the parameter and stability and sensitivity analyses are performed
for the range of the parameter given in the previous subsection. The
first two LCEs are shown in Fig. 5.20 as functions of the percentage
of linear damping CL. For CL/Cd region up to 75% the first LCE is
greater than zero. Since, for a nonlinear system, a positive LCE in-
dicates chaos as described in Ref. [99], chaotic behavior is expected
in this region. Then the largest two, hence all, LCEs become smaller
than zero, we can expect a stable system.

Fig. 5.21 presents the analytical sensitivity results corresponding to
the largest two LCEs and compared with the finite difference results
which are simply obtained by taking first derivative of the curves in
Fig. 5.20. While the positive LCE remains almost constant the sensi-
tivity for CL/Cd region up to 75%, the other mode has positive gradient
and two modes are merging. Analytical and finite difference results can
be considered close and follow the similar pattern.

In order to check the results, we further analyze the two extreme
points of Fig. 5.20. Fig. 5.22 shows the lag motion of one blade (only
one blade is presented for simplicity) for null slope at zero lag rate
(CL = 0) and compares it with Fig. 5.14, i.e. the results of an isotropic
rotor with identical nonlinear dampers. The solution seems unstable
in the sense that it does not converge to an equilibrium point or a
periodic orbit but at the same time remains within a bounded region
of state space. In fact, this is the distinctive property of chaos, a
never repeating bounded trajectory as explained in Refs. [99] and [100].
Hence, the positive largest LCE and the chaotic motion of the blade
are in agreement. The time evolution of LCEs for this case is given in
Fig. 5.23, which show two separates LCEs.

On the contrary, Fig. 5.24 presents the lag motion of the one blade
for the damper having nominal slope at zero lag rate (CL = Cd). Again
there is no dominant period and the motion seems arbitrary but this
time the amplitude converges to zero, resulting in a stable system.
The corresponding time evaluation of LCEs in time are presented in
Fig. 5.25 showing two LCEs converging to the same value leading to
multiplicity of the largest two LCEs.
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Figure 5.20: Helicopter ground resonance with dissimilar nonlinear blade damper:
the largest two LCE estimates vs. damper slope at zero lag rate CL.
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Figure 5.21: Helicopter ground resonance with dissimilar nonlinear blade damper:
sensitivity estimates of largest two LCEs given in Fig. 5.20 vs. damper slope at
zero lag rate CL.
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Figure 5.22: Helicopter ground resonance with dissimilar nonlinear blade damper:
blade lag motion for no damping at zero lag rate (CL = 0) starting from different
initial conditions, compared with the isotropic damper case
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Figure 5.23: Helicopter ground resonance with dissimilar nonlinear blade damper:
time evolution of largest two LCEs for no damping at zero lag rate (CL = 0)
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Figure 5.24: Helicopter ground resonance with dissimilar nonlinear blade damper:
blade lag motion for nominal damping at zero lag rate (CL = Cd) starting from
different initial conditions, compared with the isotropic damper case
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Figure 5.25: Helicopter ground resonance with dissimilar nonlinear blade damper:
time evolution of first two LCEs for nominal damping at zero lag rate (CL = Cd)
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5.4 Analysis of a Detailed Helicopter Model

The nature of the rotorcraft aeroservoelasticity possesses interaction of
structural dynamics, aerodynamics and control systems of rotorcraft;
with each field having considerable numbers of degrees of freedom,
even in their simplest and the most compact forms. As described in
Chapter 4; the methods of estimating LCEs, including discrete QR,
requires matrix manipulations at each step, with multiplication and
orthogonalization. In the sensitivity estimation, things become more
complicated; the number of manipulations increase as the derivative of
the state transition matrix, hence the derivative of the decomposition,
add more matrix manipulations. More severely, the procedure should
be continued theoretically for an infinite limit and practically till the
convergence of LCEs. As a consequence, the nature of the LCE estima-
tion may cause high computational cost and problems in convergence
as the number of state variables increases.

In such a case where there exist many degrees of freedom; extracting
the most critical LCEs, i.e. the few largest, can be a solution, which
may help improving computation efficiency as stated in Ref. [115,116].
However, there can be many lightly damped LCEs in a detailed ro-
torcraft model. Such lightly damped modes can be critical and are
required to be estimated for an unknown number of LCEs. There-
fore, within the scope of this work, the method should be verified for
a detailed system for its whole spectra.

An aeroservoelastic model of hovering rotorcraft is selected. As
opposed to the ground resonance, which is a purely mechanical prob-
lem as stated in Ref. [22], the aerodynamic contribution of the rotor
and aerodynamic derivatives of the fuselage are involved. Moreover,
the body is not supported, hence there exist unconstrained rigid body
modes. The directional control should be maintained by means of a
tail rotor and sensors for yaw rate. In this section of the chapter; first,
the model is verified in Section 5.4.1 against existing results for the LTI
model using classical eigenvalue decomposition. Then, in Section 5.4.2,
periodicity is introduced using dissimilarity in lead-lag dampers. Sta-
bility and sensitivity of stability properties are estimated using Floquet
method and Lyapunov Characteristice Exponents (LCEs).

5.4.1 Aeroservoelastic Stability of LTI model

This section presents the aeroservoelastic stability analysis of a de-
tailed helicopter model for the comparison of linearized aeroelastic ro-
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tor model formulated in Chapter 2 with respected a reference model.
Since the capability of MASST prior to this work is limited to the
stability analysis of LTI systems, hover condition is presented here
(a forward flight condition with averaged matrices over the rotor disc
could be a possible application as well). The MASST model developed
for the analysis given in Ref. [89] is considered as a basis; the com-
parison is made for rotor matrices originating from different sources.
The fuselage model involves 6 rigid body modes with flight mechanics
derivatives and 10 elastic modes, whereas the aeroelastic rotor modes
involve 3 bending which makes a total of 12 rotor modes in multi-blade
coordinates. The directional controller and corresponding sensors are
also included. This model also serves as a basis for the stability and
sensitivity of the periodic problem of Section 5.4.2.

The aeroelastic eigenvalues (s = λ + ωj) of the model described
in Chapter 2 (LARotor) and reference model of Ref. [89] are com-
pared in non-rotating frame. The results are presented in Fig. 5.26
in which the horizontal axis represents the real part of the eigenval-
ues (λ = Re(s)), whereas the vertical axis gives the imaginary part of
the eigenvalues (ω = Im(s)); in other words damping and frequency
respectively. Good agreement can be observed both in terms of the
damping and frequency values.
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Figure 5.26: Aeroservoelastic Stability of detailed helicopter model in hover: com-
parison of the eigenvalues with Reference solution from Ref. [89]. The differ-
ences in the models originate from the rotor matrices
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5.4.2 Aeroservoelastic Stability with Dissimilar Lead Lag
Dampers

This section presents the analysis of stability and sensitivity of stability
properties for a detailed helicopter model with periodic characteristics
and aeroserveolastic interactions, as an extension to the stability of
LTI system given in Section 5.4.1. An aeroelastic model closely re-
lated to PUMA helicopter that was developed and used in Ref. [89] is
selected for the analysis. The periodic rotor matrices, obtained by the
aeroelastic model of Chapter 2, are added to the MASST model.

In order to introduce periodicity, the lead-lag damper of one blade
is considered as a parameter varying from zero (CL = 0) to the two
times of the nominal value (CL = 2Cd), while the other dampers are
kept at their nominal values (CL = Cd). Hence the resulting model
is linear time periodic. Stability and sensitivity analyses of the LTP
model are performed using Floquet theory as described in Chapter 3
and Lyapunov Theory as explained in Chapter 4 and characteristic
exponents are compared.

In Fig. 5.27 the characteristic exponents are estimated for the pa-
rameter range using both Floquet and Lyapunov. The LCEs show
good correlation with Floquet within the range of the analysis. It can
also be observed that the higher modes are not sensitive to the pa-
rameter change. On the other hand the lightly damped modes, which
has higher contribution from in-plane motion of the rotor, have higher
sensitivity to the dissimilarity in the rotor. This can be better seen in
Fig. 5.28 where only lightly damped modes are captured.

Among those, the mode which is the most sensitive to the parameter
change, is the lightly damped lag mode. The corresponding character-
istic exponents are separately plotted in Fig. 5.29. It can be observed
that even when one damper is completely inoperative the system does
not lose stability in lead-lag direction. This is mainly due to the pres-
ence of the aerodynamic damping coming from the coupled lag-flap
motion. Moreover, on the contrary to a ground resonance, helicopter
is free from ground and hence the dynamics of landing gear on rolling
motion does not cause additional coupling with the in-plane motion of
the rotor center of gravity. The corresponding sensitivity of the LCE
of Fig. 5.29 is given in Fig. 5.30. Comparison of sensitivity estimate of
the LCE with the Floquet sensitivity and with finite difference values
of Fig. 5.29 is also provided. Results show the estimates using LCEs
is close to those obtained by Floquet and finite difference.
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Figure 5.27: Detailed LTP H/C model: Characteristic Exponents estimated
by Floquet Analysis and Lyapunov Theory (LCEs), whole range where lightly
damped modes are marked with blue.
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Figure 5.28: Detailed LTP H/C model: Characteristic Exponents estimated by
Floquet Analysis and Lyapunov Theory (LCEs), lightly damped modes zoomed
from Fig. 5.27 where lightly damped blade lag mode marked with yellow.
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Figure 5.29: Detailed LTP H/C model: Characteristic Exponents estimated by
Floquet Analysis and Lyapunov Theory (LCEs) corresponding to the lightly
damped blade lag mode, zoomed from Fig. 5.28
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Figure 5.30: Detailed LTP H/C model: Sensitivity estimates of characteristic
Exponents estimated by Floquet Analysis and Lyapunov Theory (LCEs) corre-
sponding to the lightly damped blade lag mode of Fig. 5.29.
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CHAPTER6
Conclusions and Future Work

This work presents our research with the scope of achieving a com-
plete rotorcraft aeroservoelastic analysis capability. An aeroelastic
rotor model is developed and coupled with MASST aeroservoelastic
analysis platform. The quantitative stability analysis and sensitivity
of stability properties are formulated using Floquet method for linear
time periodic (LTP) and Lyapunov Characteristic Exponents (LCEs)
for nonlinear non-autonomous rotorcraft systems. The tools and meth-
ods are illustrated and discussed on rotorcraft related problems and the
capacity of capturing periodic and nonlinear phenomena is proved.

The aeroelastic rotor model is verified against respected tools. It is
showed that aeroservoelastic stability of rotorcraft can be performed
with a capacity close to the commercial codes. Still, rotor is a very
complex mechanism and the aeroelastic rotor tool is always open to
improvement. The development will continue especially with higher
fidelity aerodynamics.

The numerical methods of stability and sensitivity of linear time
invariant and linear time periodic systems using eigenvalue calcula-
tion and Floquet analysis are robust. Unless the state space matrix
is singular they can be used with confidence. Moreover stability and
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sensitivity of stability estimates of linear systems can be obtained quite
fast. On the other hand, estimation of LCEs and their sensitivity re-
quire an infinity limit in the estimation and hence much more slower
than eigen-solution and Floquet Analysis. The methods for estimation
of Lyapunov Exponents are also less robust and efficient when the size
of the system increases with multiplicity of LCEs. Although this is the
price of generalizing stability analysis and increasing the capacity of
quantitative estimation of stability properties, more robust techniques
can be developed in order to automatically capture the multiplicity of
the exponents and match the multiple ones. This will help reducing
the computational cost; since when correctly recognized, multiplicity
of Lyapunov Exponent estimates presents a much faster convergence
to the correct value. This is also true for increasing computational
efficiency of the sensitivity of Lyapunov Exponents.

It is believed that a robust and cost efficient estimation of Lya-
punov Characteristic Exponents, with the increasing power of com-
puter, can make it the standard stability estimation. Especially for
several aerospace related applications including rotorcraft aeroservoe-
lasticity; time dependence, often in conjunction with non-strict period-
icity and quasi-periodicity, as well as nonlinearity, cannot be neglected.
LCEs correspond to the real part of the eigenvalues for linear time in-
variant systems, and to Floquet multipliers for linear time periodic
systems; hence, they represent a natural generalization of stability in-
dicators that are familiar in current engineering practice.

The nature of the rotorcraft aeroservoelasticity possesses interaction
of different fields with each field having considerable number of de-
grees of freedom, even in their simplest and most compact forms. The
methods of estimating LCEs, including discrete QR, requires matrix
manipulations at each step, which include multiplication and orthogo-
nalization. In the sensitivity estimation, the number of manipulations
increase as the derivative of the state transition matrix is needed. More
severely, the procedure should be continued theoretically for an infinite
limit and practically for convergence of LCEs; which causes increase in
the computational cost and problems in convergence. Although, there
can be many lightly damped LCEs in a detailed rotorcraft model, ex-
tracting the few largest instead of its whole spectra can help in reducing
computational cost.

Another extension of this work is to make use of the sensitivity of
the stability estimates. Analytical sensitivity of Floquet multipliers
and LCEs that are formulated in this work can proficiently support
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the sensitivity analysis of systems with increasing levels of complexity.
These sensitivities can be used to determine the robustness of stability,
to detect bifurcations and to provide the gradients of stability param-
eters required in optimization and continuation algorithms.
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