
POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOTTORATO DI RICERCA IN INGEGNERIA DELL’INFORMAZIONE

A COGNITIVE FAULT DETECTION AND

DIAGNOSIS SYSTEM FOR SENSOR NETWORKS

Doctoral Dissertation of:
Francesco Trovò

Supervisor:
Prof. Manuel Roveri
Co-supervisor:
Prof. Cesare Alippi
Tutor:
Prof. Francesco Amigoni
The Chair of the Doctoral Program:
Prof. Carlo Ettore Fiorini

2014 – Cycle XXVII

Abstract

COGNITIVE fault detection and diagnosis systems represent a novel
class of systems, which are able to detect and diagnose faults by
characterizing the functional relationships existing among datas-

treams and by learning the nominal conditions and the fault dictionary dur-
ing the operational life directly from incoming data. These abilities make
the use of these systems particularly suitable for the field of sensor net-
works, where no a priori information is generally available about the mon-
itored process and the possibly occurring faults. Moreover, these sensor
networks generally work in harsh environmental conditions, thus the oc-
currence of faults, degradation effects and ageing effects in their units and
sensors are likely to happen. It is of paramount importance to detect and
diagnose such anomalous working conditions of sensor networks.

This dissertation introduces a novel Cognitive Fault Detection and Di-
agnosis System for sensor networks, able to characterize the nominal state
of the process by relying on a fault-free dataset, detect and diagnose faults
as soon as they appear and learn in an on-line manner the set of possi-
ble faults. To the best of our knowledge, we propose the first complete
Cognitive Fault Detection and Diagnosis System where the cognitive ap-
proach is applied to all its phases: detection, isolation and identification.
The proposed system is based on a theoretically grounded statistical frame-
work, able to characterize the functional relationships existing among the
acquired datastreams by relying on their modeling in the space of the pa-
rameters. As a basis for the detection and diagnosis phases, the proposed
system is able to learn a dependency graph, which models the functional

I

relationships existing among the acquired data. The detection phase is per-
formed by analysing the variation of these functional relationships, through
a Hidden Markov Model statistical modeling of the nominal state in the pa-
rameter space of linear discrete time dynamic systems approximating mod-
els. By considering a logic partition of the learned dependency graph, the
proposed system is able to isolate the possible occurring faults, through the
analysis of the statistical behaviour of multiple relationships. The identifi-
cation phase is performed by means of a novel evolving clustering-labeling
algorithm specifically designed for this task, which is also capable of learn-
ing the fault dictionary in an on-line manner.

The proposed Cognitive Fault Detection and Diagnosis System has been
validated in a wide experimental campaign on both synthetic data and two
real-world challenging and valuable applications: an environmental mon-
itoring application for rock collapse and landslide forecasting system and
a water network distribution monitoring system. The experimental results,
compared with state of the art methods in the field, provided evidence for
the better detection and diagnostic abilities of the proposed Cognitive Fault
Detection and Diagnosis System.

II

Sommario

ISistemi cognitivi per la rilevamento e la diagnosi di guasti sono una nuo-
va classe di sistemi, che rilevano e diagnosticano guasti grazie alla ca-
ratterizzazione delle relazioni funzionali esistenti tra le stream di dati:

essi apprendono le condizioni nominali e il dizionario dei guasti durante la
loro vita operativa direttamente dai dati raccolti. Queste caratteristiche ren-
dono l’utilizzo di questi sistemi particolarmente adatto allo scenario delle
reti di sensori, dove solitamente non sono disponibili informazioni a priori
relative al processo monitorato e ai guasti che possono presentarsi. Inoltre,
le reti di sensori operano in condizioni ambientali sfavorevoli, il che implica
che guasti, effetti dovuti all’usura e effetti di invecchiamento si presentino
di frequente nelle loro unità o nei sensori.

Questa tesi di dottorato introduce un nuovo Sistema di Rilevamento e di
Diagnosi di Guasti Cognitivo per reti di sensori, capace di caratterizzare lo
stato nominale del processo basandosi su di un set di dati privo di guasti,
di rilevare e diagnosticare guasti non appena essi si presentano e di appren-
dere on-line l’insieme dei possibili guasti. Proponiamo il primo Sistema di
Rilevamento e di Diagnosi di Guasti Cognitivo in cui l’approccio cognitivo
è stato utilizzato in tutte le sue fasi: rilevamento, isolamento ed identifica-
zione. Il sistema proposto è basato su un solido approccio statistico, che
caratterizza le relazioni funzionali esistenti tra le stream di dati grazie alla
loro modellizzazione nello spazio dei parametri dei sistemi dinamici lineari
a tempo discreto che le approssimano. Alla base delle fasi di rilevamen-
to e diagnosi, il sistema proposto apprende un grafo delle dipendenze, che
modellizza le relazioni funzionali esistenti tra le stream di dati. La fase di

III

rilevamento dei guasti si basa sull’analisi della variazione delle relazioni
funzionali considerate nella fase precedente, che viene rilevata grazie alla
modellizzazione statistica dello stato nominale fornita dagli Hidden Mar-
kov Model. Grazie alla partizione logica del grafo delle dipendenze ed
all’analisi statistica del comportamento di tutte le relazioni funzionali con-
siderate, il sistema proposto riesce inoltre ad isolare il guasto. La fase di
identificazione del guasto viene svolta da un innovativo algoritmo di clu-
stering evolutivo, il quale è in grado di apprendere on-line il dizionario dei
guasti.

Il Sistema di Rilevamento e di Diagnosi di Guasti Cognitivo proposto è
stato validato in un’estesa campagna sperimentale, che ha considerato sia
dati sintetici, sia dati generati da due applicazioni particolarmente interes-
santi: un sistema di monitoraggio ambientale per la predizione di frane ed
un sistema di monitoraggio di una rete di distribuzione idrica. I risultati
sperimentali ottenuti dal Sistema di Rilevamento e di Diagnosi di Guasti
Cognitivo proposto sono stati confrontati con quelli dei metodi nello sta-
to dell’arte nel campo considerato e hanno dimostrato di ottenere migliori
performance in termini di rilevamento e di diagnosi dei guasti.

IV

Contents

1 Introduction 1
1.1 Detection and Diagnosis of Faults in Sensor Networks . . . 3

1.1.1 Fault Detection . 7
1.1.2 Fault Diagnosis . 11

1.2 Cognitive Fault Detection and Diagnosis Systems 11
1.3 Original Contribution . 16
1.4 Dissertation Structure . 17

2 Problem Formulation 19
2.1 Sensor Network Measurements 19
2.2 Fault Modeling . 21
2.3 Modeling the Faulty System 23
2.4 Examples of Faults . 26
2.5 Purposes of Fault Detection and Diagnosis 30

3 The Proposed Cognitive Fault Detection and Diagnosis System 33
3.1 General Architecture . 35
3.2 Dependency Graph . 36
3.3 Modeling Functional Relationships Between Pairs of Sensors 38
3.4 Feature in the Parameter Space 42
3.5 The Phases of the Proposed Cognitive Fault Detection and

Diagnosis System (CFDDS) 43
3.5.1 Graph Learning . 43
3.5.2 Detection . 44

V

Contents

3.5.3 Isolation . 44
3.5.4 Identification . 44

4 Dependency Graph Learning 47
4.1 Modeling the Relationship Between a Couple of Datastreams 48
4.2 Creating the Granger-based Dependency Graph 51

5 Fault Detection 55
5.1 Fault Detection in the Parameter Space 56
5.2 Mahalanobis-based Detection 57
5.3 Hidden Markov Model Change Detection Test 61
5.4 Ensemble Approach to Hidden Markov Model-Change De-

tection Test (HMM-CDT) 64

6 Fault Isolation 71
6.1 Cognitive Fault Isolation 71
6.2 Fault Isolation Phase . 75

7 Fault Identification 79
7.1 Modeling the Nominal State 80
7.2 On-line Modeling the Fault Dictionary 87
7.3 Dealing with Incipient Faults 91

8 CFDDS Implementation 93

9 Experimental Results 97
9.1 The Considered Datasets 97

9.1.1 Application D1: Synthetic Datasets 97
9.1.2 Application D2: Rialba Dataset 99
9.1.3 Application D3: Barcelona Water Distribution Net-

work System Dataset 100
9.2 Dependency Graph Learning 100

9.2.1 Application D1: Synthetic Dataset 102
9.2.2 Application D2: Rialba Dataset 107

9.3 Detection Phase . 108
9.3.1 Application D1: Synthetic Dataset 109
9.3.2 Application D2: Rialba Dataset 113

9.4 Isolation Phase . 114
9.4.1 Application D3: Barcelona Water Distribution Net-

work System Dataset 116
9.5 Identification Phase . 120

9.5.1 Application D1: Synthetic Dataset 123

VI

Contents

9.5.2 Application D2: Rialba Dataset 130
9.5.3 Application D3: Barcelona Water Distribution Net-

work System Dataset 131
9.6 General Remarks . 133

10 Concluding Remarks 135
10.1 Future Perspectives . 137

Bibliography 143

Glossary 149

VII

CHAPTER1
Introduction

Sensor networks represent an important and valuable technological solution
to monitor and acquire data from an environment, a critical infrastructure
or a cyber-physical system. These data are generally used as input for an
application, which is able to take a decision or react to the change in the in-
spected system. Examples of these applications based on sensor networks,
are those inspecting an environmental phenomenon (e.g., a river, a rock
wall or a coral reef) protecting critical infrastructures or those monitoring
the behaviour of a water distribution network.

Sensor networks are composed by a set of sensing units, each of which
is composed by a set of sensors, a processing board and a data transfer
apparatus. Each unit is deployed in a different location in the area influ-
enced by the inspected phenomenon and contains multiple sensors, each
of which gathers meaningful information about it. The measurements pro-
vided by the sensors are homogeneous or heterogeneous, in the sense that
they are measuring the same physical quantity or different but related phys-
ical quantities. The processing boards are responsible for the processing of
the acquired data and management of the units (e.g., they manage the sen-
sors sampling synchronization and/or analog to digital conversion of the
received signals). Finally, the data transferring apparatus sends acquired

1

Chapter 1. Introduction

data to a central processing station, where the data are stored and elabo-
rated. During the operational life of this infrastructure, the sensor network
continuously inspects the system status, by sending measurements to the
central processing station, where the application runs. In fact, based on
measurements coming from the sensor network, applications can be de-
signed to take decisions (e.g., in the case a deviation from the usual work-
ing conditions is registered, an alarm is raised) and contextually react to
the change (e.g., for critical infrastructures, alert the population about the
expected threat).

In this scenario, a model for the inspected phenomenon is usually un-
known and the assumption of process stationarity may not hold, even though
these assumptions would generally improve the decision abilities of the
aforementioned applications. Thus, information coming from the sensor
network is critical to monitor the underlying process, to check the status of
the system and react according to its behaviour. For instance, even if the
modeling of the processes affecting a rock wall is generally not feasible, a
constant monitoring action of cracks width and rock inclination measure-
ments may predict if a collapse is likely to happen.

Sensor networks usually work in harsh real-working conditions, which
may induce permanent or transient faults, thermal drifts or ageing affects
affecting both the embedded electronic boards which manage the sensors
and the sensors themselves. In fact, both the electro-mechanical compo-
nents and the embedded electronics of the sensors are affected by physi-
cal degradation (due to e.g., humidity, dust, chemicals and electromagnetic
radiations), which may induce a gradual deviation of the measured value
from the real one. Moreover, problems may arise on the processing boards,
which may convert data coming from sensors (e.g., from analog to digi-
tal) in a incorrect way. Finally, a correct behaviour of the communication
apparatus is crucial for the collection of the measurements, since a degra-
dation of the information carried by the transferred data may occur during
the transmission phase, both if the channels are physical, e.g., if the cables
are not properly maintained, or if they are wireless, e.g., if an unexpected
perturbation influences the data transmission frequencies.

It is of paramount importance to promptly detect and diagnose faults
occurring in a specific unit, since they could affect the application layer,
which operates based on the assumption that information provided by the
sensor network is not corrupted. If the application does not take into ac-
count the possibility of a fault (i.e., it is not robust to faults), it may take an
incorrect decision, e.g., not alert the population when a threat is present or
vice versa. Moreover, the corruption of a single unit could spread through-

2

1.1. Detection and Diagnosis of Faults in Sensor Networks

out the entire network (domino or cascade effect), which could eventually
compromise the effectiveness of the monitoring action, even in the part of
the network which is working properly.

Moreover, in the sensor network scenario the unexpected deviation from
nominal conditions may be caused either by a fault or by a change in the
inspected process. It is crucial to distinguish between these two situations:
in the former case, direct maintenance should be performed, while the lat-
ter one requires a reaction to an environmental change, specifically chosen
based on the considered application scenario. Thus, the objective of this
dissertation is twofold: at first, to be able to understand when the sensor
network is changing and, after that, to distinguish between the change in
the environment and a fault affecting a sensing unit.

1.1 Detection and Diagnosis of Faults in Sensor Networks

Fault Detection and Diagnosis Systems (FDDSs) are systems specifically
designed to detect and diagnose faults possibly occurring in complex sys-
tems. The general scheme for a FDDS is presented in Figure 1.1, where
it takes into account the data coming from the sensor network to alert the
application level if the data are deviating from nominal conditions. More
specifically, the tasks of a FDDS are:

• detection of the fault, i.e., promptly understand whether a deviation
from the nominal state has occurred;

• diagnosis of the fault to characterize the detected fault. Its main sub-
tasks are:

– isolation, i.e., determine which unit is providing faulty measure-
ments;

– identification, i.e., capture the main characteristics (e.g., type, in-
tensity) associated to the fault;

FDDSs have been widely studied in the past decades [27, 37, 45, 81],
and successfully applied to real world applications [46]. They revealed to
be particularly effective in several application domains, provided that gen-
erally a priori information about the system or the possible faults is (at least
partially) available. To be effective, most of the FDDSs require to have a
priori information about the system or of the possible faults, e.g., the avail-
ability of the fault-free nominal state or the “fault dictionary”, containing
the possibly occurring faults characterizations. Moreover, the knowledge

3

Chapter 1. Introduction

Process/Phenomenon

Sensor Network

Fault detection
and diagnosis

Application

decision/reaction

Figure 1.1: General scheme of a monitoring system: it is able to inspect a process or
a phenomenon with a sensor network. Data are gathered by sensors and transferred
to an application which is able to take decision/reaction based on those data. A fault
detection and diagnosis system is critical to avoid that malfunctioning of the sensor
network might induce an incorrect behaviour of the application.

4

1.1. Detection and Diagnosis of Faults in Sensor Networks

of the noise level (or the assumption of its absence) allows to have math-
ematical models of dynamic processes by theoretical/physical modeling or
by relying on system identification techniques. The knowledge of the fault
dictionary and the noise level is hardly available in the sensor networks
scenario, thus most of the traditional methods are not directly applicable in
real world sensor network applications.

5

Chapter 1. Introduction

FA
U

LT
D

E
T

E
C

T
IO

N
M

E
T

H
O

D
S

da
ta

-d
riv

en
si

gn
al

-b
as

ed

co
rr

el
at

io
n

sp
ec

tr
um

an
al

ys
is

w
av

el
et

an
al

ys
is

m
od

el
-b

as
ed

pa
ra

m
.

es
tim

at
io

n
ne

ur
al

ne
tw

or
ks

st
at

e
ob

se
rv

er
s

st
at

e
es

tim
at

io
n

pa
ri

ty
eq

ua
tio

ns

Fi
gu

re
1.

2:
Fa

ul
td

et
ec

tio
n

ta
xo

no
m

y

FA
U

LT
D

IA
G

N
O

SI
S

M
E

T
H

O
D

S

cl
as

si
fic

at
io

n
m

et
ho

ds

pa
tte

rn
re

co
gn

iti
on

de
ci

si
on

ta
bl

es

st
at

is
tic

al
cl

as
si

fic
at

io
n

ba
ye

s
cl

as
si

fie
r

de
ci

si
on

tr
ee

ap
pr

ox
im

at
io

n
m

et
ho

ds

po
ly

no
m

ia
l

cl
as

si
fie

r

de
ns

ity
-b

as
ed

m
et

ho
ds

ge
om

et
ri

ca
l

cl
as

si
fie

r

ar
tifi

ca
l

in
te

lli
ge

nc
e

m
et

ho
ds

fu
zz

y
cl

as
si

fie
rs

ne
ur

al
ne

t
cl

as
si

fie
r

in
fe

re
nc

e
m

et
ho

ds

bi
na

ry
re

as
on

in
g

pr
ed

ic
at

e
lo

gi
c

ap
pr

ox
im

at
e

re
as

on
in

g

fu
zz

y
lo

gi
c

ne
ur

al
ne

tw
or

ks

Fi
gu

re
1.

3:
Fa

ul
td

ia
gn

os
is

ta
xo

no
m

y

6

1.1. Detection and Diagnosis of Faults in Sensor Networks

Process Observed
Behaviour

Nominal
Behaviour

Comparison Detection

Figure 1.4: Generic fault detection scheme: the Process is characterized through its Nom-
inal Behaviour. The Observed Behaviour is compared with the nominal one and, if a
discrepancy is assessed, the system detects a change

A taxonomy of the methods present in the literature of fault detection
and diagnosis systems, inspired by the one presented in [45], is provided in
Figures 1.2 and 1.3, respectively.

1.1.1 Fault Detection

A general scheme for fault detection is depicted in Figure 1.4. This scheme
is based on the knowledge of the nominal behaviour of the actual system,
which is compared against the observed process behaviour. Usually, the
comparison is performed by inspecting features that reflect the discrepancy
between the two aforementioned behaviours. Different kinds of features
can be encompassed. If we only have information about the characteristic
value or behaviour of the chosen features in nominal conditions, limit or
trend checking is the most simple and frequently used method for change
detection. The measured values or trends (i.e., first derivatives) are mon-
itored and checked to verify whether they exceed certain lower and up-
per thresholds. If we consider a known distribution as the model for fea-
tures, it is possible to check for some meaningful statistics by estimating
the moments of the distribution (e.g., mean, variance, kurtosis). In this
case, Change Detection Tests (CDTs) [21] can be considered to check for
changes in the distribution. This could be performed in an off-line way,
through statistical tests, or by relying on sequential techniques, such as
control charts, which are able to verify whether a change in the data distri-
bution has happened in an on-line manner. Most of the off-line and on-line
tests present in literature require that the distribution of the data is fixed or
known. Finally, more complex methods for accounting for uncertainty in
the system are the ones which are based on the use of adaptive or fuzzy
thresholds.

The features considered in the change detection methods have different

7

Chapter 1. Introduction

Process Sensors Y

ε (Noise)

Feature
Generation

Change
Detection

Nominal
Behaviour

Features
-Data
-Trend

Change Fault

Figure 1.5: Data-driven scheme for fault detection in the sensor network scenario.

nature, which are based on the different models we may consider for the
signal generated from the process: the approaches are data-driven, signal-
based and model-based, as described in Figure 1.2. They differ in the mod-
eling approach used for the signal considered for fault detection. While the
data-driven approach does not assume any model for the incoming data, the
signal-based one makes use of the characteristics of the signal to provide a
detection result. Finally, the model-based approach relies on the modeling
of the process generating the data to detect changes. All the aforemen-
tioned methods rely on one of the change detection techniques previously
described to assess if a discrepancy between the expected and observed
behavior is present.

The first class of modeling approaches for fault detection is the data-
driven one, which is based on the direct analysis of the provided measure-
ments. This approach does not require the assumption of a specific model
for the data generation procedure. Its generic scheme is presented in Fig-
ure 1.5. The features which are monitored for fault detection purposes are
the measured variables or trends present in the data.

When a signal model for the data generation process is provided, fault
detection schemes as in Figure 1.6 can be adopted. If we consider the sig-
nal as a stochastic process, we can consider as features statistics like sample
estimated moments (mean, variance or kurtosis) or autocorrelation. These
statistics can be used in the change detection framework on the hypothe-
sis that the signal distribution is known and fixed over time. Otherwise, if

8

1.1. Detection and Diagnosis of Faults in Sensor Networks

Process Sensors Y

ε (Noise)

Signal
Model

Feature
Generation

Change
Detection

Nominal
Behaviour

Signal-based fault
detection
-Correlation function
-Fourier analysis
-Wavelet analysis
Features
-Exceeded threshold
-Amplitudes
-Frequencies

Change Fault

Figure 1.6: Signal-based scheme for fault detection in the sensor network scenario.

the signal presents periodic behaviours, techniques like bandpass filtering,
Fourier analysis, correlation analysis and cepstrum analysis may be used to
extract features. These techniques coupled with the aforementioned limit
checking methods can be used to detect changes in the signal. If the sta-
tionarity assumption does not hold, short-time Fourier transform or wavelet
transform could be performed to take into account local characteristics of
the signal.

The third class of approaches to fault detection takes into account more
than one stream of data at a time to model the relationship between input
and output of a process, as depicted in Figure 1.7. Model-based meth-
ods exploit the relationships existing among a set of measured variables to
extract information about possible changes caused by faults. These meth-
ods are based on different model identification techniques, both for linear
and non-linear processes, like Least Square (LS) method, polynomial ap-
proximators, Artificial Neural Networks (ANNs) and semi-physical mod-
els. A widely known model-based method is the parity equations one: in
this paradigm the model behaviour in nominal conditions is compared with
the model during the operational life. This discrepancy, called residual, is
checked for consistency to provide a detection. In the case the process is
characterized by a linear continuous and discrete-time state-space dynamic

9

Chapter 1. Introduction

Process Sensors Y

ε (Noise)

Process
Model

Feature
Generation

Change
Detection

Nominal
Behaviour

Model-based fault detection
-Parameter estimation
-Parity equations
-State estimation, observer
-Principal component analysis

Features
-Parameters
-State variables
-Residuals

Change Fault

Figure 1.7: Process-based scheme for fault detection in the sensor network scenario.

system, state observer and state estimation, respectively, can be used for au-
tomatically providing a model for the system. Finally, a method which does
not assume any model for the data, while analyzing all the streams of data
is the Principal Component Analysis (PCA). This unsupervised method
could be used in the fault detection field both as a dimensionality reduc-
tion method, coupled with one of the previously presented methods, or as a
detection method itself, by using its reconstruction error as the feature.

One of the main drawbacks of the presented approaches is that they
generally require a priori information on either the system in nominal con-
ditions or the possible faults. In fact, the data-driven approach requires to
set values for the threshold, which are generally very difficult to tune, since
their proper values (the ones which would provide high detection abili-
ties) depend on the faults we are expecting to face and on the noise level
present in the data. The signal-based and model-based approaches require
the knowledge of the signal or process, respectively, in nominal conditions,
otherwise they might not be directly applicable to a specific problem.

10

1.2. Cognitive Fault Detection and Diagnosis Systems

1.1.2 Fault Diagnosis

The diagnosis task consists in the determination of the faults and all its char-
acteristics, e.g., size and location. The taxonomy of the methods proposed
in the literature is presented in Figure 1.3. In the field of fault diagnosis,
classification methods are able to identify the most probable fault given
a set of information coming from the sensor network, i.e., some specific
features which are likely to characterize the occurred fault. This could be
carried out with pattern classification methods, e.g., Bayesian classifiers,
polynomial classifiers, K-Nearest Neighbours (KNN) classifiers, decision
trees or ANNs. Another viable approach is the use of inference methods,
which are able to express the qualitative knowledge in the form or if-then
rules. Methods choosing this approach rely on the use of fault trees (to
express the binary logic relationship between features and faults) or ap-
proximate reasoning (which extends fault trees to the case of continuous
variables), implemented usually with neural or neuro-fuzzy methods.

Application scenarios taken into account in [45] assume to know the
fault dictionary, i.e., the set of possible faults which may occur to a system.
Once a fault is identified, its characterization can be retrieved from the fault
dictionary, where also its location is provided, thus including the isolation
phase in the identification one.

It is worth to mention that most of the diagnosis techniques presented
above require information about the data generating process and/or the fault
characteristics. Thus, their direct application to the sensor network scenario
is far from being trivial, since, as pointed out before, we do not have in-
formation about the model of the system generating the data, or the fault
dictionary.

1.2 Cognitive Fault Detection and Diagnosis Systems

In recent years, a novel and promising cognitive approach has been pro-
posed to design FDDSs. This novel generation of CFDDS is able to auto-
matically learn the nominal and the faulty states in an on-line manner, and
is generally characterized by the ability to exploit temporal and spatial re-
lationships present among the acquired data. A summary of the available
techniques is presented in Table 1.1. More specifically, the bases of cog-
nitive FDDSs stand on the fact that the sensor network is observing from
multiple points of view the same physical phenomenon, hence it is possi-
ble to exploit redundancies present among the measurements. In fact, if
we consider two different sensors in the same unit they may be affected

11

Chapter 1. Introduction

by a parasitic effect (e.g., dependence from temperature), thus providing
temporal redundant data. Similarly, if we consider two sensors in different
units providing homogeneous measurements we are able to infer if the phe-
nomenon is affecting both the locations in the same way, i.e., if a spatial
redundancy or causality is present. The learned relationships among sensor
measurements are used to detect whether the data are deviating from the
nominal behaviour and, possibly, diagnose the causes of this deviation.

12

1.2. Cognitive Fault Detection and Diagnosis Systems

Ta
bl

e
1.

1:
R

el
ev

an
ta

pp
ro

ac
he

s
in

C
og

ni
tiv

e
F

D
D

S

C
ha

ra
ct

er
is

tic
s

Ta
xo

no
m

y
Pa

pe
r

N
om

in
al

St
at

e
Fa

ul
tD

ic
tio

na
ry

A
pp

lic
at

io
n

D
et

ec
tio

n
D

ia
gn

os
is

[3
6]

G
iv

en
L

ea
rn

ed
D

yn
am

ic
sy

st
em

s
Pa

ri
ty

E
qu

at
io

ns
N

eu
ra

lN
et

w
or

ks
[3

0]
G

iv
en

(b
ou

nd
ed

er
ro

r)
L

ea
rn

ed
D

yn
am

ic
sy

st
em

s
St

at
e

es
tim

at
or

N
.a

.
[8

0]
G

iv
en

(b
ou

nd
ed

er
ro

r)
L

ea
rn

ed
D

yn
am

ic
sy

st
em

s
St

at
e

es
tim

at
or

A
da

pt
iv

e
fil

te
ri

ng
[8

8]
L

ea
rn

ed
G

iv
en

C
he

m
ic

al
pr

oc
es

s
N

eu
ra

lN
et

w
or

ks
N

eu
ra

lN
et

w
or

ks
C

la
ss

ifi
er

s
[4

3]
L

ea
rn

ed
G

iv
en

Tr
an

sf
or

m
er

N
.a

.
N

eu
ra

lN
et

w
or

ks
C

la
ss

ifi
er

s
[8

6]
G

iv
en

O
n-

lin
e

E
le

ct
ri

c
M

ot
or

s
N

.a
.

N
eu

ra
lN

et
w

or
ks

C
la

ss
ifi

er
s

[9
0]

L
ea

rn
ed

G
iv

en
St

ir
re

d
ta

nk
re

ac
to

r
N

.a
.

N
eu

ro
-F

uz
zy

lo
gi

c
[6

1]
L

ea
rn

ed
G

iv
en

B
al

lb
ea

ri
ng

s
N

.a
.

N
eu

ro
-F

uz
zy

lo
gi

c
[7

7]
L

ea
rn

ed
G

iv
en

In
du

ct
io

n
M

ot
or

s
N

.a
.

N
eu

ro
-F

uz
zy

lo
gi

c
[4

4]
L

ea
rn

ed
G

iv
en

Tr
an

sf
or

m
er

s
N

.a
.

Fu
zz

y
lo

gi
c

[6
4]

L
ea

rn
ed

G
iv

en
Tr

an
sf

or
m

er
s

N
.a

.
N

eu
ro

-F
uz

zy
lo

gi
c

[5
7]

L
ea

rn
ed

G
iv

en
M

ar
in

e
pr

op
ul

si
on

en
gi

ne
N

.a
.

N
eu

ro
-F

uz
zy

lo
gi

c
[4

9]
L

ea
rn

ed
G

iv
en

G
ea

rb
ox

es
N

eu
ra

lN
et

w
or

ks
N

.a
.

[3
]

L
ea

rn
ed

G
iv

en
C

ir
cu

it
tr

an
sm

is
si

on
N

.a
.

A
IM

et
ho

ds
[2

6]
L

ea
rn

ed
L

ea
rn

ed
D

yn
am

ic
sy

st
em

s
M

od
el

-B
as

ed
In

fe
re

nc
e

m
et

ho
d

[8
]

L
ea

rn
ed

L
ea

rn
ed

D
yn

am
ic

sy
st

em
s

D
at

a-
dr

iv
en

In
fe

re
nc

e
m

et
ho

d

13

Chapter 1. Introduction

Cognitive approaches generally rely on Machine Learning (ML) tech-
niques to configure the nominal state and characterize the faulty ones with-
out requiring any a-priori information about the fault signature or of the
fault time profile. The ancestors of this approach can be found in works
published starting from the nineties. Most of these papers focus on specific
applications or provide algorithms which confine the cognitive approach to
a specific phase. The idea behind cognitive FDDSs is suggested in [45],
while most of the systematic research relying on this paradigm has been
developed in the last 2-3 years.

Most of existing cognitive FDDSs apply the learning mechanism only
to a single aspect of the system [30, 36, 80], thus they still require at least to
know partial information about the analysed process. In more detail, [36]
proposes a learning procedure for unanticipated fault accommodation, un-
der the assumption that the process model is given. [30] presents a learning
methodology for incipient failure detection based on nonlinear on-line ap-
proximators, which aims at both inspecting variations in the system due to
faults and provides information about the detected faults in an on-line man-
ner. [80] extends the approach presented in [30], by coupling the on-line
approximators with a learning procedure for the accommodation of scheme
parameters.

There is a large literature addressing the design of cognitive FDDSs
for specific applications based on neural networks [43, 86, 88] and fuzzy
logic [3, 44, 49, 57, 61, 64, 77, 90], with cognitive mechanisms mostly ap-
plied during the training phase of the FDDS. For instance, [88] presents a
supervised method for fault classification, which relies on the learning of a
Radial Basis Function (RBF) network for chemical process modeling and
fault detection, while a second neural network is used for fault identification
(classification) task. [43] describes a FDDS specifically designed for fault
identification in power transformers based on genetic algorithms for train-
ing a neural network. In [86], the authors propose an intelligent FDDS for
electric motors based on Adaptive Resonance Theory and Kohonen Neural
Network (ART-KNN): new faults can be included in the dictionary thanks
to the design of a case-based reasoning system, where faults are reported
by experts and automatically included in the system. [90] suggests a fault
identification technique based on the joint use of fuzzy logic and feedfor-
ward neural networks, where the fuzzyfication logic is mainly based on
a priori knowledge of the considered application, i.e., a stirred tank reac-
tor. [61] proposes a classification method for faults occurring in ball bear-
ing, which considers a wavelet analysis on the accelerometer measured sig-
nals, whose results are feed to an Adaptive Network-based Fuzzy Inference

14

1.2. Cognitive Fault Detection and Diagnosis Systems

System (ANFIS) able to adapt to newly received signals. [77] presents an
approach for classification of faults affecting induction motors which re-
lies on a combination of unsupervised and supervised learning to cluster
and classify faulty patterns for the value of the current. [44] extends the
usual dissolved gas analysis for transformer with an evolving programming
fuzzy-based approach for identifying incipient faults, presenting a genetic
approach to train the fuzzy rules used for classification. On the same appli-
cation, in [64] a system based on subtractive clustering, as a basis for fuzzy
rules creation and optimization, is proposed. In [57], a fault identification
system is proposed for the specific field of propeller-shaft marine propul-
sion engine: a neuro-fuzzy system trained with genetic algorithms allows
to distinguish among a predefined set of faults. In [49], a fault detection
algorithm for inspecting the frequency spectrum of vibration signals com-
ing from gearboxes is presented. This method uses function fuzzy c-means
algorithm to cluster spectra and detect if a fault is likely to arise. Finally,
the problem of fault identification in circuit transmission is solved in [3] by
using fuzzy adaptive neural network, which are able to automatically learn
the fuzzy rules associated with a specified set of faults.

We would like to remark that, the solutions designed for specific appli-
cations we mentioned above require supervised information on the faults,
i.e., to know the fault dictionary. As mentioned before, the cognitive aspect
of these methods is confined in the training phase, thus the characterization
of the nominal state is automatic, but information about the fault signature
is needed. Differently, [45] suggests the use of an unsupervised “clustering-
labeling” method to automatically assign observations either to the nominal
or the faulty classes, thus considering the possibility to improve the fault
dictionary during the FDDS operational life. Unfortunately, no technical
details about the implementation of the solution are given.

Two works [8, 26], fully relying on the concept of cognitive, have been
developed in parallel with the work described in this dissertation. In [26]
they propose a method for detection and identification of faults for generic
unknown dynamic discrete-time systems, by relying on an approach based
on the analysis of the provided datastream in the functional space. The
requirement for training such FDDSs is a dataset composed entirely by
fault-free instances of the dynamic system inspected by the sensor network.
In [8] the fault detection problem is entailed by the use of Hidden Markov
Models (HMMs), which are able to model in a statistical way the nom-
inal state of the system. Thanks to this characterization, they develop a
HMM-CDT able to detect faults by inspecting the discrepancy of the faulty
data from the nominal model learned by the HMM. More details about this

15

Chapter 1. Introduction

method will be provided in the sequel of this dissertation.

1.3 Original Contribution

In this dissertation we propose a new CFDDS meant to operate on sensor
networks. The proposed system is able to characterize the nominal condi-
tions of the system, by relying on fault-free data coming from the sensor
network. At first, the proposed system learns the dependency graph exist-
ing among datastreams, to select only relevant functional relationships. The
analysed relationships are able to capture the temporal and spatial redun-
dancies present in the data. Based on them, the proposed CFDDS is able
to perform fault detection, isolation and identification, without requiring a
priori information on either the inspected process or the faulty states.

To model the relationships constituting the causal dependency graph of
the sensor network we rely on the concept of Granger causality, which al-
lows to consider only those relationships providing meaningful informa-
tion for fault detection and diagnosis. After learning the network depen-
dency structure, fault detection and diagnosis is carried out in the space
of estimated parameter vectors of Linear Time Invariant (LTI) models ap-
proximating the functional relationships included in the dependency graph.
Deviations from the learned nominal concept are detected by means of a
decrease of the loglikelihood provided by the HMM modeling, which is
here considered to characterize the statistical pattern of the parameter vec-
tors estimated on fault-free data (nominal state). Following the detection
phase, an isolation mechanism based on the logic partition of the depen-
dency graph is able to distinguish between faults (whose location is also
inferred) and change in the environment. Finally, in the case a fault has
occurred, an identification procedure is executed to characterize and dis-
criminate among different faults. The identification phase is performed by
means of a newly developed evolving clustering-labeling technique in the
space of the parameter vectors. This framework was specifically designed
for fault diagnosis purposes and is able to learn the fault dictionary in an
on-line manner.

The innovative aspects of this cognitive framework for fault detection
and diagnosis are:

• the design of a CFDDS completely based on the cognitive approach,
relying on computational intelligence techniques, which is able to
cover all the phases of fault detection and diagnosis in the sensor net-
work scenario;

16

1.4. Dissertation Structure

• the development of a set of integrated techniques, coming from statis-
tics and machine learning fields, which rely on a theoretically sound
framework developed by the system identification field;

• the ability to characterize the temporal and spatial relationship exist-
ing among data with the dependency graph, learned with the use of a
statistical framework;

• the ability to characterize the nominal state of the system inspected by
the sensor network through learning mechanisms based on the cogni-
tive approach;

• the ability to learn the fault dictionary during the operational life of
the system, without requiring a priori information about the possible
faults.

To validate the abilities of the proposed method we considered two real
world applications of environmental monitoring systems: the rock landslide
and collapse forecasting system of the Rialba Towers in Northern Italy and
the Barcelona Water Network Distribution System (BWNDS). We took into
account these two relevant applications since, despite the lack of informa-
tion about the data-generating process and their complexity, the cognitive
approach is able to effectively address the problem of fault detection and
diagnosis.

1.4 Dissertation Structure

The dissertation is structured as follows: in Chapter 2 the mathematical
framework used in the sequel is presented, including the model of the con-
sidered data-generating processes, the fault models and their influences on
the original process, as well as the purposes of the proposed framework.
In Chapter 3, a general overview of the proposed system is presented, with
particular emphasis on the model approximation techniques adopted and
on the theoretical results they rely on. Chapters 4 to 7 detail the graph
learning, the detection, isolation and identification phases adopted by the
proposed CFDDS, respectively. Chapter 8 provides a brief overview of the
implementation of the developed techniques, while Chapter 9 describes the
wide experimental campaign conducted to validate the performance of the
proposed framework. Finally, in Chapter 10, some concluding remarks are
drawn, as well as future perspectives in the field.

17

CHAPTER2
Problem Formulation

In this chapter, we provide a framework to formally describe data coming
from a sensor network inspecting a process, whose model is unknown be-
cause of the lack of information or because its modeling is too complex. To-
wards this goal, in Section 2.1 we describe the model of the data generating
process we consider. A specification of the considered faults affecting the
sensor network is provided in Section 2.2. Subsequently, in Section 2.3, we
present the model of the sensor network during the faulty state. Then, some
examples of faults are presented in Section 2.4. Finally, the formulation
of the problem of fault detection and diagnosis in the presented modeling
framework is detailed in Section 2.5.

2.1 Sensor Network Measurements

We consider a time-invariant dynamic system P whose model description
is unavailable. A sensor network acquiring data from P is composed by a
set of n ∈ N sensors:

S = {s1, . . . , sn}, (2.1)

where each sensor si acquires scalar measurements coming from P . Selec-
tion of the most appropriate deployment positions for the sensors is outside

19

Chapter 2. Problem Formulation

the scope of this dissertation. The interested reader can refer to [33, 52,
56, 71] for a comprehensive investigation of the placement problem. The
assumption of considering sensors providing scalar measurements may be
overcome in a straightforward way. In fact, for a generic sensor si′ provid-
ing d-variate measurements included in a network S ′, we can replace the
original sensor network with an equivalent one:

S ′ ← S ′ \ {si′} ∪ {s′1, . . . , s′d}, (2.2)

where s′i are sensors providing as scalar measurement the i-th dimension of
the measurement provided by si′ . This transformation allows us to consider
in the sequel only scalar measurements coming from sensors.

We would like to point out that the sensors may observe both heteroge-
neous or homogeneous physical quantities, e.g., sensors may provide tem-
perature in different locations of the network (homogeneous measurements)
or temperature and wind speed in the same one (heterogeneous measure-
ments). All the sensors which are deployed in the same position belongs
to a unit uj of the network or, more formally the network sensors can be
partitioned by a set of m ∈ N units:

U = {u1, . . . , um}, (2.3)

where each unit ui is a set of sensors ui ⊆ S and S =
⋃
i ui, ui ∩ uj =

∅, i 6= j.
In the sequel we consider, for the sake of simplicity, sensor networks

where each unit is composed of a single sensor (m = n or ui = {si} ∀i)
and where each sensor provides scalar measurements. Extensions to the
CFDDS proposed in the following chapters are trivial.

We consider a sensor network that, through a suitable synchronization
algorithm1, is able to provide at each time instant t ∈ N the measurements
column vector:

X(t) =

 x1(t)
...

xn(t)

 ∈ Rn, (2.4)

where xi(t) ∈ R is the scalar measurement acquired at time t by sensor si.
By considering the entire monitoring period of the sensor network we

can define the datastream acquired by sensor si as:

xi = {xi(t)}t∈N (2.5)
1The problem of measurements synchronization is out of the scope of this dissertation. The interested reader

can refer to [12].

20

2.2. Fault Modeling

and the multivariate vector containing datastreams xi as

X =

 x1

...
xn

 . (2.6)

As final remark we would like to point out that in this dissertation we do
not take into account continuous time dynamic processes, nor state-space
formulations. In fact, for many applications of particular interest in the
sensor networks field (e.g., environmental monitoring) we are interested in
the analysis of the discrete-time input-output relationships existing among
datastreams [60].

2.2 Fault Modeling

In general, the behavior of the system under faulty conditions is not known
a priori, however, fault modeling is crucial in the design and analysis of
fault diagnosis schemes, since it allows to fully characterize a posteriori
the possible deviations occurring to the system. This section presents the
overall fault modeling framework that will be used during this dissertation.

Definition 2.2.1. A fault F (·) is defined as an unpermitted deviation of
at least one characteristic property or parameter of the system from the
acceptable/usual/standard conditions. Formally, a fault F : N → R is
represented as:

F (t) =
ν∗∑
ν=1

Bν(t; t(ν)
i , t

(ν)
f)φν(t), (2.7)

where:

• ν∗ is the number of time intervals where fault is present;

• Bν(t; t(ν)
i , t

(ν)
f) ∈ [0, 1] denotes the time profile of the fault that occurs

at time instant t(ν)
i and disappears at time instant t(ν)

f , with t
(ν)
f <

t
(ν+1)
i ;

• t(ν)
i ∈ N and t(ν)

f ∈ N are the occurrence and disappearance time of

the fault in the ν-th time interval, respectively, with t(ν)
i < t

(ν)
f ;

• φν(t) ∈ R is the fault signature within the ν-th time interval at time
instant t.

21

Chapter 2. Problem Formulation

The ν-th time profile Bν : N× N× N→ [0, 1] is described by:

Bν(t; ti, tf) = β
(ν)
i (t− t(ν)

i)− β(ν)
f (t− t(ν)

f) (2.8)

where βi : Z → [0, 1] is the evolution mode of the fault occurrence from
time t(ν)

i and βf : Z → [0, 1] is the evolution mode of disappearance from
time t(ν)

f ,
βi(t) = βf (t) = 0 ∀t < 0 (2.9)

and
β

(ν)
i (t− t(ν)

i) ≥ β
(ν)
f (t− t(ν)

f) ∀t ∈ N. (2.10)

According to the time duration, a fault F can be characterized as [37,
45]:

• intermittent (ν∗ > 1)

F (t) =
ν∗∑
ν=1

Bν
(
t; t

(ν)
i , t

(ν)
f

)
φν (t) , (2.11)

• transient (ν∗ = 1, ∃ t̄ ≤ ∞ s.t. βf (t) = 1 ∀t > t̄):

F (t) = B (t; ti, tf)φ(t), (2.12)

• permanent (ν∗ = 1, βf (t) = 0 ∀t ∈ N):

F (t) = B (t; ti, tf)φ(t), (2.13)

The time profile Bν (and thus the corresponding fault F) can be charac-
terized based on the evolution mode as:

• abrupt:

β
(ν)
k (t) =

{
0 t ≤ 0

1 t > 0
(2.14)

• incipient:

β
(ν)
k (t) =

{
0 t ≤ 0

1− e−rkt t > 0
(2.15)

where k ∈ {i, f} and ri and rf are the evolution rate of occurrence
and disappearance, respectively.

The fault signature φ(t) is usually a generic time varying scalar function.
Here for modeling purposes, we specify some common faults:

22

2.3. Modeling the Faulty System

• constant:
φ(t) = φ̄, φ̄ ∈ R; (2.16)

• drift (linear):
φ(t) = Rt, R ∈ R (2.17)

• precision degradation:
φ(t) ∼ D(t), (2.18)

whereD(t) is a distribution of a stochastic process, such that E[D(t)] =
0.

A graphical representation of the fault models is shown in Figure 2.1. In
the case of intermittent faults, only the abrupt evolution mode of occurrence
and disappearance is depicted. In the general case, for each time interval of
fault presence, the evolution mode may be either abrupt or incipient.

In this dissertation, the assumption that data are continuously recorded,
without any hole, is considered. Otherwise, while modeling faults we
should take into account the possibility that for some time period [ti; tf]
data are not coming from the sensor network, which is usually addressed
as missing data fault. If it is the case and the period is relatively short, it is
possible to adopt reconstruction techniques as described in [13, 14, 69]. If
the fault period is too long such techniques are not viable anymore, since
their reconstruction error may explode with the progressing of time.

2.3 Modeling the Faulty System

Once the model for a fault F is specified, we need to determine how it af-
fects the measurements coming from the sensor network S. A monitoring
system subject to a fault F is presented in Figure 2.2. Under healthy condi-
tions, the output of the sensor network at time t is the measurement column
vector X(t). The faults are usually represented either by external signals
or as parameter deviations and are induced in an additive and/or multiplica-
tive way. The output of the sensor network at time t under faulty conditions
XF (t) is described by the following equations:

XF (t) = [In + Γ(t)]X(t) + Φ(t) (2.19)

where In is the identity matrix of order n, Γ(t) ∈ Rn×n is the multiplicative
matrix at time t and Φ(t) ∈ Rn is the additive column vector at time t,
modeling the effects of faults on the system. Γ(t) is a diagonal matrix such
that each diagonal element [Γ(t)]ii = γii(t) is a fault γii(t) = Fi(t) with

23

Chapter 2. Problem Formulation

Fault signature
Offset Drift Precision Degradation

In
te

rm
itt

en
t

A
br

up
tA

br
up

t

F (t)

t

F (t)

t

F (t)

t

Tr
an

si
en

t A
br

up
tA

br
up

t

F (t)

t

F (t)

t

F (t)

t

A
br

up
t

In
ci

pi
en

t F (t)

t

F (t)

t

F (t)

t

In
ci

pi
en

tA
br

up
t

F (t)

t

F (t)

t

F (t)

t

In
ci

pi
en

t
In

ci
pi

en
t F (t)

t

F (t)

t

F (t)

t

Pe
rm

an
en

t A
br

up
t

F (t)

t

F (t)

t

F (t)

t

In
ci

pi
en

t

F (t)

t

F (t)

t

F (t)

t

Figure 2.1: Specification of the faults considered in this dissertation. For the sake of
concision we depicted only abrupt intermittent faults.

24

2.3. Modeling the Faulty System

Process/Phenomenon

Sensor Network

Fault Detection
and Diagno-
sis System

Application

decision/reaction

Fault

X

XF (t)

F

Figure 2.2: Fault monitoring system: when a fault F occurs, the measurements provided
by the sensor network XF are not describing the behaviour of the underlying sys-
tem/phenomenon, given by X , i.e., XF 6= X . FDDSs are required to detect if this
deviation from nominal condition occurs and to gather information about its causes.

25

Chapter 2. Problem Formulation

specific time profile and signature. The same applies to all the elements in
Φ(t), i.e., [Φ(t)]j = φj(t) = Fj(t).

On the basis of the above definition we can define two different classes
of faults affecting a system: additive and multiplicative.

Definition 2.3.1. An additive fault at time t affecting a sensor network pro-
viding X(t) is defined by Γ(t) = 0 (null matrix of order n) and φ(t) 6= 0,
i.e.,

XF (t) = X(t) + Φ(t). (2.20)

Definition 2.3.2. A multiplicative fault at time t affecting a sensor network
providing X(t) is defined by Γ(t) 6= 0 and φ(t) = 0, i.e.,

XF (t) = [In + Γ(t)]X(t). (2.21)

There exist also some kind of faults which cannot be categorized into
the two definitions presented above. For instance, a commonly occurring
fault is the stuck-at, which results in the freezing of the measurement of
a sensor on a single value over time, can be modeled as Γ(t) = −In and
Φ(t) = C̄, C̄ ∈ Rn, i.e., resulting in:

XF (t) = C̄. (2.22)

2.4 Examples of Faults

In the sequel, we present some examples of faults affecting a system: each
fault is coupled with a real one occurring in a sensor network designed to
forecast rock landslides and collapses deployed at the Towers of Rialba, in
Northern Italy.

Additive Permanent Fault Here we want to model an additive permanent
fault which occurs in a sensor network composed of n = 3 univariate sen-
sors S = {s1, s2, s3}. The fault is influencing only the data coming from
the third sensor s3, occurs at time ti with an abrupt profile and has an un-
known profile µ(t). This fault models the introduction of a dynamic signal
in the nominal behaviour of the sensor, which could be due to an external
cause. By following the modeling we presented in Section 2.2 we have:

26

2.4. Examples of Faults

Figure 2.3: Fault affecting the mounting of units on the rock face; only one of the signals
is affected.

Multiplicative Γ(t) =

 0 0 0

0 0 0

0 0 0

;

Additive Φ(t) =

 0

0

F (t)

;

Fault F (t) = B(t; ti, tf)φ(t);

Time signature B(t; ti, tf) = βi(t− ti)− 0 =

{
0, t ≤ 0

1, t > ti
;

Profile φ(t) = µ(t).

By observing the data acquired by an accelerometer, shown in Fig-
ure 2.3, one may observe that the fault occurring at time ti = 7 has the
time profile and signature described above. The anomalous behaviour of
the signal in the figure is classified as a fault since it is strange that an accel-
eration coming from the inside affects only one of the axes whereas, apart
from very particular situations, all axes should be affected. The rationale

27

Chapter 2. Problem Formulation

Figure 2.4: Thermal drift affecting a MEMS tiltmeter. The reading should be constant but
the thermal parasitic effects affect the measurements.

behind the generation of this accelerometer signature is currently unknown,
however, we give the following most likely interpretation: the fault appears
to be associated with a movement of the nogs and screws system fixing
the monitoring unit to the rock. The movement is probably induced by the
freezing of the water present in the inner part of the drilled hole which, in
turn, pushes the unit outside.

Thermal Drift Here, we want to model a fault affecting a single sensor si,
which is making the signal drift with fixed slope R ∈ R+. The occurrence,
at time ti, of the fault is abrupt and it permanently affects the signal.

Multiplicative γii(t) = 0;

Additive φii(t) = F (t);

Fault F (t) = B(t; ti, tf)φ(t);

Time signature B(t; ti, tf) = βi(t− ti)− 0 =

{
0, t ≤ ti

1, t > ti
;

Profile φ(t) = R (t− ti).

The sensor signal shown in Figure 2.4 is a monoaxial stream coming
from a 3-axis Micro Electro-Mechanical Systems (MEMS) tiltmeter. We
can see that the fault modeled above is able to represent the parasitic ef-
fects induced by variations in temperature over the year (year seasonality)
starting from ti = 0. A similar phenomenon arises with deformometers and
many other sensors which show a temperature influence over time which
needs to be compensated to provide a correct value.

28

2.4. Examples of Faults

Figure 2.5: A low-probability intermittent fault at software level

Intermittent faults Finally we model an intermittent fault composed by v∗ =
2 time intervals. Both the portions of the fault occur and disappear in an
abrupt way and has a fixed magnitude θ ∈ R. Its modeling in the proposed
framework is:

Multiplicative γii(t) = 0;

Additive φi(t) = F (t);

Fault F (t) =
∑2

ν=1Bν(t; t
(ν)
i , t

(ν)
f)φν(t− t(ν)

i);

Time signature Bν(t; t
(ν)
i , t

(ν)
f) =

{
1, t

(ν)
i ≤ t ≤ t

(ν)
f

0, otherwise
;

Profile φ1(t) = φ2(t) = θ.

This fault has a real counterpart in the one shown in Figure 2.5: the first
time interval of the fault appears at t(1)

i = 8.00 July 28 and disappears at
t
(1)
f = 16.00 July 28 and the second one appears at t(2)

i = 0.00 July 29

29

Chapter 2. Problem Formulation

and disappears at t(2)
f = 12.00 July 29. After an analysis of the system

performed by an expert, it was assessed that the real fault was induced by a
software bug which impacted on the data saved in the DataBase (DB).

2.5 Purposes of Fault Detection and Diagnosis

Once the model for the data coming from the sensor network S and for the
possibly occurring faults F is defined, we want to define the task which a
FDDS should perform in this scenario. Suppose that a given fault F̂ (t),
with specific time profile B̂(t; ti, tf) and signature φ̂(t), occurs in the sen-
sor network S = {s1, . . . , sn}. Clearly it will influence the data coming
from the sensor network, which will be XF̂ (t), with either additive φi(t) or
multiplicative γii(t) component2. At first, we need to understand whether a
change in the behaviour of S has occurred, usually by relying on the datas-
tream X coming from the sensor network itself. The fault detection task
may be formalized as follows:

Definition 2.5.1. The fault detection task on the sensor network S for the
faulty data F̂ consists in identifying as soon as possible the occurrence of
a fault. t′ ∈ N is the time instant at which the fault F̂ is detected.

We have a positive detection if ti < t′ < tf . The performance of a
fault detection system may be evaluated on the basis of how long it takes to
detect that a change has occurred, i.e., we want to minimize t′−ti (detection
delay), as well as not to provide false positive detection (t′ < ti) or false
negative (t′ →∞).

Before trying to gather more information about the nature of the fault,
we need to understand if the change detected in the previous phase is due
to a change in the underlying system P or if it is due to a malfunction in
one of the sensors. If a fault is detected, we want to isolate the sensor (or
the unit of the network) where it has occurred. Thus the isolation task can
be formalized as:

Definition 2.5.2. The fault isolation task on the sensor network S for the
fault F̂ is meant to determine the sensor sî s.t.:

∃t̄ ≥ ti | γî̂i(t̄) 6= 0 ∨ φî(t̄) 6= 0, (2.23)

where ti is the time of appearance of the fault, i.e., the one which is influ-
enced by the multiplicative or additive fault, respectively.

2For sake of concision we here consider a fault occurring to a single sensor si and during a single time interval
ν∗ = 1

30

2.5. Purposes of Fault Detection and Diagnosis

We here considered the formulation of the task in its more conservative
formulation, since it may suffice to specify the location of the fault in terms
of unit. In fact, if the fault is isolated in a sensor sî, there exists a single
unit uj s.t. sî ∈ uj .

At last once we detected and isolated the fault, we would like to have
more information about the characteristics it presents. Thus the identifica-
tion task is defined as:

Definition 2.5.3. The fault identification task on the sensor network S for
the fault F̂ is to determine the fault Fh ∈ D, where D is a predetermined
fault dictionary, s.t. F̂ = Fh, where the equality is in term of time profile
and signature, i.e., to be able to classify which fault has occurred choosing
from a fixed set of faults.

Clearly this task requires the knowledge or the definition of a fixed set of
faults. In the considered CFDDS this is not the case, thus the identification
task may be extended with the fault dictionary learning task:

Definition 2.5.4. The fault identification task on the sensor network S for
the fault F̂ is to determine a set of faults D̂ possibly occurring to the sensor
network S and, after that, to determine the fault Fh ∈ D̂ s.t. F̂ = Fh.

31

CHAPTER3
The Proposed Cognitive Fault Detection

and Diagnosis System

In the sensor network scenario, the modeling of a process P is a hard task,
since a priori information about nominal conditions or the faults signatures
is generally not available. In this situation these models can be inferred
from measurements Xprovided by the sensor network S. By relying on
these data, the proposed CFDDS is able to characterize the nominal condi-
tions and learn the structure of the system inspected by the sensor network
and to perform detection and diagnosis. In the approach we considered
in this dissertation, the detection procedure is analogous with the one de-
scribed before, while the diagnosis phase specifically addresses to the sen-
sor network scenario. At first, the identification here refers to the ability
to distinguish between two possible causes for the change of the nominal
conditions:

• fault in a sensor: the measurements provided by a sensor are no
longer reliable, due to a malfunction of the sensor itself or in its pro-
cessing board or in the channel where data are transmitted. The pro-
cess P inspected by the network does not deviate from its nominal
state;

33

Chapter 3. The Proposed Cognitive Fault Detection and Diagnosis System

• change in the inspected system: the measurements coming from the
sensor network do not follow the behaviour they had in nominal con-
ditions. This change is due to the fact that the process P is now in an
alternative state.

These causes trigger completely different countermeasures. For instance,
in the environmental monitoring for critical infrastructure applications we
presented before, when a fault in the sensor is detected, a maintenance ac-
tion should be performed. Otherwise, in the case of a change in the process,
which here corresponds to a change in the environment, an alarm should be
raised, since it might mean that a threat might affect the critical infrastruc-
ture (i.e., a rock collapse has happened or is about to happen).

In the case a fault has been identified, further efforts have to be consid-
ered in the isolation phase. In fact, once the nature of the change has been
discriminated, the information about the location, i.e., the sensor si, where
the fault took place, should be inferred. Finally, once the location of the
fault is correctly identified, a characterization of the fault should be given,
e.g., to be able to identify recurring faults.

The proposed CFDDS is based on the analysis of the functional rela-
tionships existing among acquired sensor measurements. Thanks to a novel
algorithm able to learn both the dependency structure present among the
datastreams and the functional constraints present between couples of sen-
sors, the proposed CFDDS is able to perform fault detection and diagnosis.
In fact, the change in a functional relationship allow us to detect if a change
(in the environment or caused by a fault) has happened, while the analysis
of the dependency structure is used to isolate the fault in a specific sensor of
the network. Finally, if the fault is detected and isolated, the system is able
to build in an on-line manner the fault dictionary and identify the occurred
fault by comparing it with the ones contained in the fault dictionary.

In relation to the detection topology described in Figure 1.2 the proposed
CFDDS could be categorized as a data-driven approach, since the approx-
imating models are estimated directly from data, without considering any
signal- or process-based technique. By taking into account the diagnosis
taxonomy presented in Figure 1.3, the isolation phase is more likely to be
considered as an inference method, while the identification one can be in-
serted in the statistical classification category.

The overall architecture of the proposed CFDDS is presented in Sec-
tion 3.1. After that, the definition of the dependency graph and the theoret-
ical justification for the proposed methodology are provided in Section 3.2
and Section 3.3, respectively. Then, the approach of fault diagnosis in the
parameter space, considered in the proposed CFDDS is detailed in Sec-

34

3.1. General Architecture

Streams of Data

Feature Extraction

Fault Detection

Fault Isolation

Fault Identification

Nominal Concept

Dependency
Graph

Nominal
State

Learning

Figure 3.1: General architecture of the proposed CFDDS: from a set of streams of data,
features are extracted and a nominal concept is learned. After that, the CFDDS de-
tects deviation from the nominal behaviour of the process and isolate the cause of the
change. Only if the cause is identified to be a fault in a sensor, the identification phase
is performed, to better characterize the occurred fault.

tion 3.4. Finally, a brief description of the detection, isolation and identifi-
cation phases of the proposed CFDDS is described in Section 3.5.

3.1 General Architecture

The general architecture of the proposed CFDDS is depicted in Fig-
ure 3.1, while the corresponding high level pseudoalgorithm is provided in
Algorithm 1. The proposed system initially learns the dependency struc-
ture of the network, by means of a dependency graph, and the functional
relationships f(i,j) between data coming from pairs of sensors si and sj for
each corresponding edge in the dependency graph, by relying on a fault-free
training sequence. The dependency graph is learned directly from data, by
relying on the causality concept, while the characterization of each func-
tional relationship relies on the estimation of the parameters of an approx-
imating LTI model and by considering them as features for detection, iso-
lation and identification purposes. The estimated functional relationships
and the dependency graph represent the nominal concept of the sensor net-
work. Deviations from this nominal concept represent anomalous situations
that must be detected and inspected by the proposed CFDDS. The training

35

Chapter 3. The Proposed Cognitive Fault Detection and Diagnosis System

Algorithm 1 CFDDS High Level Algorithm

1: Off-line phase
2: Dependency graph learning;
3: Nominal state characterization;
4: On-line phase
5: for each new data vector provided by the sensor network do
6: Apply the detection phase;
7: if discrepancy is detected then
8: Apply the isolation phase;
9: if a fault is isolated then

10: Apply the identification phase;
11: end if
12: end if
13: end for

phase, which is performed in an off-line way, terminates once the nominal
concept has been learned. During the operational life, all the functional
relationships are inspected to detect variations with respect to the nomi-
nal concept (detection phase). When a change in the functional relation-
ship f(i,j) is detected, by monitoring changes in the parameter vectors, this
might be induced by a fault (either in sensor si or sj), by a change in the
environment in which the sensor network operates or by a false detection,
e.g., induced by a model bias in the estimation of the relationship f(i,j).
To discriminate among these three cases, the proposed CFDDS exploits a
logic partition of the previously learned dependency graph. This last pro-
cedure allows to discriminate (identification phase) whether a change has
happened in the environment or a fault has occurred in a sensor and, in this
case, identify the location where it occurred (isolation phase). Finally, if a
fault is detected and isolated, the proposed CFDDS provides its character-
ization (identification phase) by relying on a novel clustering algorithm in
the parameter vector space, which is able to build in an on-line manner the
fault dictionary.

3.2 Dependency Graph

As a basis for the proposed CFDDS, the learning of the dependency struc-
ture of the considered sensor network is needed. Thus, we considered each
binary relationship f(i,j) between the datastream acquired by sensor si and
sensor sj , which introduces a constraint between the two datastreams. A
dependency graph G models the relationships existing among datastreams
xis. More formally:

36

3.2. Dependency Graph

Definition 3.2.1. Given a sensor network S, a dependency graph G over S
is defined as:

G = (V,E), (3.1)

where V = {s1, . . . , sn} is the set of network sensors and E is a set
of directed edges connecting sensors, such that the directed edge eij =
(sj, si), eij ∈ E represents the relationship f(i,j) between datastreams xi
and xj , provided by si and sj , respectively.

s1 s2

s3

s4s5s6

f(2,1)

f(3,1)

f(3,2)

f(4,1)
f(4,2)

f(4,3)

f(5,1)

f(5,3)

f(6,1)

f(6,2)
f(6,3)

Figure 3.2: Example of dependency graph for a network with n = 6 sensors. V =
{s1, . . . , s6} and E = {e21, e31, e32, e41, e42, e43, e51, e53, e61, e62, e63}. For each
eij ∈ E there is a non-trivial functional relationship f(i,j) between data measured by
sensors si and sj .

An example of a dependency graph for a sensor network is shown in
Figure 3.2. In the figure, it is possible to see that the sensor s1 has functional
relationships with all the other ones, thus the values assumed by s2, . . . , s6

at a given time instant t influence the value acquired by sensor s1 at time
t+ 1. The same does not apply to sensor s5, which is not influenced by any
other sensor, but it influences s1 and s3, i.e., functional relationships f(5,1)

and f(5,3) exist. Finally, for instance, the functional relationship f(5,4) is not
included in G, since it does not exist or is too weak. In fact, the variation
of the value measured by the sensor s5 does not influence the one in s4 and
vice versa.

We would like to point out that the dependency graph G does not coin-
cide with the network topology, but might be influenced by it. In fact, it
is more likely that two sensors near each other have a stronger functional
dependency than far sensors. Nonetheless, depending on the specific appli-
cation also distant sensors could be related as well, for instance the ocean
temperature of water in the Mexican gulf influences the one on the coasts

37

Chapter 3. The Proposed Cognitive Fault Detection and Diagnosis System

of Northern Europe due to the Gulf Stream, thus a strong functional rela-
tionship exists, even though those locations are topologically distant.

3.3 Modeling Functional Relationships Between Pairs of Sen-
sors

Given the dependency graph of the sensor network G, a modeling tech-
nique to analyse each single relationship between a couple of sensors f(i,j)

is needed. We emphasize that the theoretical results presented here are also
valid for the case of a generic Multiple Input Single Output (MISO) func-
tional relationship.

In the following, a functional relationship f(i,j) between the datastream
provided by sensors si and sj is approximated through a LTI predictive
model belonging to a familyM parametrised in θ ∈ DM, DM ⊂ Rp be-
ing a compact C1 manifold. MISO linear predictive models [60], Extreme
Learning Machines (ELMs) [42], Reservoir Networks (RNs) [47, 74] are
valuable instances for M. A complete characterization of the properties
needed for the considered space is provided in the sequel. In this disserta-
tion we opt to present the modeling methodology as a generic linear one-
step-ahead predictive model in the form:

x̂j(t|θ) = f̂(i,j) (t, θ, xj(t− 1), . . . , xj(t− τj), xi(t), . . . , xi(t− τi + 1)) ,
(3.2)

where f̂(i,j) : N × Rp × Rτj × Rτi → R is the approximating function
in predictive form [59], e.g., Auto Regressive eXogenous (ARX), Auto
Regressive Moving Average eXogenous (ARMAX) model, t ∈ N is the
considered time instant, xi(t), xj(t) ∈ R are the model input and output at
time t, respectively, and τi and τj are the orders of the input and output,
respectively. Given a training sequence {(xi(t), xj(t))}Nt=1 of length N and
a quadratic loss function, we define the structural risk [59] to be:

WN(θ) =
1

N

N∑
t=1

E(xi,xj)

[
ε2(t, θ)

]
, (3.3)

where E(xi,xj)[·] is the expected value over the space of the datastreams xi
and xj of length N , and the empirical risk as:

VN(θ) =
1

N

N∑
t=1

ε2(t, θ), (3.4)

38

3.3. Modeling Functional Relationships Between Pairs of Sensors

where ε(t, θ) = xj(t)− x̂j(t|θ) is the prediction error at time t. The optimal
parameter θo ∈ DM is defined as

θo = arg min
θ∈DM

[
lim

N→+∞
WN(θ)

]
. (3.5)

An estimate θ̂ ∈ DM of θo can be obtained by minimizing the empirical
risk:

θ̂ = arg min
θ∈DM

VN(θ). (3.6)

It has been showed that the parameter vector θ̂ is characterized by a spe-
cific asymptotic distribution. More formally, the following theorem holds:

Theorem 3.3.1 (Ljung [58, 59]). Consider a process P , a model spaceM
parametrized by θ ∈ D(M), where D(M) is a compact C1 differentiable
manifold in Rp, a function l(·, ·, ·) : N × Rp × R → R+ and a structural
risk function WN . Under the hypotheses that:

1. ∃C ∈ R+,∃λ ∈ R+, λ ≤ 1,∃δ ∈ R+, δ > 0 s.t. ∀t, ∀s s.t. t ≥
s,∃x0

is(t),∃x0
js(t) random vectors generated by [xi(0), . . . , xi(t)] and

[xj(0), . . . , xj(t)] respectively, independent from [xi(0), . . . , xi(s)] and
[xj(0), . . . , xj(s)] s.t.:

E(xi,xj)

[
|xj(t)− x0

js(t)|4+δ
]
< Cλt−s (3.7)

E(xi,xj)

[
||xi(t)− x0

is(t)||4+δ
]
< Cλt−s (3.8)

where ||·|| is an appropriately defined norm and u0
t (t) = 0, y0

t (t) = 0;

2. ∃C ∈ R, ∃λ ∈ R+, λ ≤ 1, ∀θ ∈ DM (thus ∀f ∈M)

|f(θ, xti1, x
t−1
j1)− f(θ, xti2, x

t−1
j2)| (3.9)

≤ C

t∑
s=0

λt−s [||xi1(s)− xi2(s)||+ |xj1(s)− xj2(s)|] ,

|f(θ, 0t, 0t−1)| ≤ C, (3.10)

where xt = (x(1), . . . , x(t) is a sequence drawn from the datastream
distribution, || · || is a properly defined norm and 0t = (0, . . . , 0), i.e.,
a particular Lipschitz continuity condition [76] suited for the space
we are considering;

3. ∀f(θ, ·) ∈ M(θ), f(θ, ·) is three times differentiable w.r.t. θ ∈ DM
and these derivatives satisfy the conditions of Point 2;

39

Chapter 3. The Proposed Cognitive Fault Detection and Diagnosis System

4. ∃C ∈ R+,∀θ ∈ DM, ∀t ∈ N s.t.:∥∥∥∥ ∂k∂θk l(t, θ, ε)
∥∥∥∥ ≤ C||ε||2 k = 1, 2, 3 (3.11)∥∥∥∥ ∂k∂θk ∂∂εl(t, θ, ε)
∥∥∥∥ ≤ C||ε|| k = 0, 1, 2 (3.12)∥∥∥∥ ∂k∂θk ∂2

∂ε2
l(t, θ, ε)

∥∥∥∥ ≤ C k = 0, 1 (3.13)∥∥∥∥ ∂3

∂ε3
l(t, θ, ε)

∥∥∥∥ ≤ C (3.14)

where || · || is a properly defined matrix norm;

5. ∃δ ∈ R+, ∃N0 ∈ R+ s.t. ∀θ ∈ DM, N ≥ N0:

W ′′
N(θ) > δIp, (3.15)

where W ′′
N is the Hessian matrix of the structural risk

WN(θ) =
1

N

N∑
t=1

E(xi,xj) [l(t, θ, ε(t, θ))] (3.16)

w.r.t. θ and Ip is the identity matrix of order p;

6. ∃δ ∈ R+ s.t. ΣN > δIp, UN > δIp where ΣN ∈ Rp×p is defined as
follows:

ΣN = [W ′′
N(θo)]

−1
UN [W ′′

N(θo)]
−1
, (3.17)

where UN ∈ Rp×p:

UN = NE(xi,xj)

[
V ′N(θo)V ′N(θo)T

]
(3.18)

where it is required that the matrix ΣN is semidefinite positive, in or-
der to be a proper covariance matrix;

then an estimated parameter vector θ̂ estimated by minimizing the empirical
risk:

VN(θ) =
1

N

N∑
t=1

l(t, θ, ε(t, θ)), (3.19)

on a sequence {(xi(t), xj(t))}Nt=1 satisfies

lim
N→∞

θ̂ → θo w.p. 1 (3.20)

40

3.3. Modeling Functional Relationships Between Pairs of Sensors

and

lim
N→∞

√
NΣ

− 1
2

N (θ̂ − θo) ∼ N (0, Ip). (3.21)

The above result assures that, given a sufficiently large dataset, com-
posed by N samples, the estimated parameter vector θ̂ follows a multivari-
ate Gaussian distribution with mean θo and covariance matrix ΣN . Interest-
ingly, the results presented above contemplate the situation where P /∈ M
i.e., a model bias ||M(θo)−P|| 6= 0 is present. This justifies the use of LTI
models even when the dynamic system under investigation is non-linear.
According to Equation (3.21), estimated parameters θ̂s follow a multivari-
ate Gaussian distribution both approximating linear and nonlinear systems,
provided that a sufficiently large dataset is available. We emphasize that, in
what follows, we are not interested in providing a high approximation ac-
curacy, since LTI models are not used for prediction purposes (where non-
linearities in the system might induce a high prediction error) but for fault
diagnosis. Parameter vectors are the features to be used for fault diagnosis
and, since a change in the probability density function of the parameter/fea-
tures is associated with structural changes in the process generating the data
(and non-linearity does not introduce structural changes), we can design a
CFDDS that relies on an analysis in the parameter space.

Although the nonlinearity aspect is contemplated by the theory, we might
experience numerical problems in correspondence with an ill conditioned
Hessian W ′′

N , e.g., following highly correlated inputs. However, we must
comment that if W ′′

N degenerates in rank then, given the linearity assump-
tion for the considered approximation model, we should simply remove
the linear dependent variables. In the case we wish to keep them for the
(small) innovation they provide, a Levenberg-Marquardt (LM) correction
W ′′
N + δIp (δ being a small positive scalar) should be introduced to grant a

definite positive Hessian.
Extension to scenarios where the data generating process P is described

by a finite set of non-overlapping processes {P1, . . . ,Pψ} is immediate,
as long as one knows the states of the system. Clearly this extension re-
quires to have a priori information about the data generating process, for
instance on the seasonality of the system inspected by the sensor network.
Moreover, here we considered as model the MISO models, but an exten-
sion to Multiple Input Multiple Output (MIMO) and Single Input Multiple
Output (SIMO) is trivial, e.g., by considering a set of the aforementioned
functional relationships.

41

Chapter 3. The Proposed Cognitive Fault Detection and Diagnosis System

3.4 Feature in the Parameter Space

From the theoretical results delineated in Section 3.3 parameter vectors es-
timated from fault-free data are distributed according to a Gaussian distri-
bution, provided that N is large enough (even though the system is non-
linear). According to Equation (3.21), the nominal state of a system can
be described by parameter vectors estimated from data coming from the
process, thus sampled from the same Gaussian distribution (each sampled
point is a model).

Given the process P and the sensor network providing the multivariate
datastream X , let us define ZN,t ∈ Rn×N as a finite sequence from time
t−N + 1 to t extracted from X . More formally:

ZN,t := [X(t−N + 1), . . . ,X(t)] , (3.22)

where N ∈ N is the length of the sequence extracted from the datastream
and t ≥ N, t ∈ N is the time instant the sequence of data considered ends.
Moreover, if we want to consider only data coming from a specific couple
of sensors (si, sj) we define Z(ij)

N,t ∈ R2×N as:

Z
(ij)
N,t =

[
xi(t−N + 1) . . . xi(t)

xj(t−N + 1) . . . xj(t)

]
, (3.23)

i.e., the sequence of samples coming from sensors si and sj , starting from
time t−N + 1 and ending at time t.

For each couple of sensors si and sj , the proposed CFDDS relies on
an initial fault-free training sequence Z(ij)

M,M , i.e., the acquired samples ac-
quired from time t = 1 up to t = M , to characterize the nominal state
of the process. For fault diagnosis purposes the training set Z(ij)

M,M is win-
dowed into non-overlapping batches Z(ij)

N,t of length N , each of which is
used to provide a parameter vector estimate θ̂q, q = t

N
. The outcome is the

sequence of L = M
N

1, L ∈ R+ parameter vectors:

Θ
(ij)
L,M =

(
θ̂

(ij)
1 , . . . , θ̂

(ij)
L

)
, (3.24)

where the parameter vector θ̂(ij)
q is estimated by minimizing the empirical

risk on the dataset Z(ij)
N,qN , as described in Section 3.3.

1Without loss of generality we assume M is a multiple of N

42

3.5. The Phases of the Proposed CFDDS

We also considered estimate parameter vectors computed on overlap-
ping batches of the training set Z(ij)

M,M . The obtained sequence is:

Θ
′(ij)
L,M =

(
θ̂(ij)
q

)L
q=1

(3.25)

where L = M −N + 1 and the parameter vector θ̂(ij)
q is estimated by min-

imizing the empirical risk on the dataset Z(ij)
N,N+q−1. Without loss of gen-

erality, we assume a step of one sample between two overlapping batches;
larger steps could be considered as well (e.g., to reduce the computational
complexity of the following computations).

The twofold method for the estimation of the parameter vectors is due
to the fact that the former one is able to provide a clear statistical char-
acterization for the parameter vector sequence distribution, since they are
i.i.d., which can be used during the identification phase, while the latter
lacks of this characterization but provides a parameter vector for each sam-
ple coming from the sensor network, which is more suited for the detection
phase, since it provides a more fine grained characterization of the process
behaviour.

3.5 The Phases of the Proposed CFDDS

In the sequel, details about the phases considered in the proposed CFDDS
are provided. They corresponds to the blocks with bold names in Figure 3.1
and will be treated in detail in Chapters 4 to 7.

3.5.1 Graph Learning

The proposed CFDDS makes use of the concept of Granger causality to
infer the existing causal dependencies among datastreams [15]. Thanks
to a statistical test performed directly on the training set ZM,M , we are
able to assess the causal dependencies between couples of datastreams. If
the presence of the functional dependency f(i,j) is assessed, i.e., if the test
provides enough statistical confidence for the considered causality, an edge
is considered in the edge set E of the dependency graph G = (V,E). The
graph G is not able to provide any diagnostic information per se, but it is
used in the following phases: the detection and identification phases are
performed only on functional relationships in E, while the isolation phase
is based on the logic partition of the dependency graph. The dependency
graph learning procedure is detailed in Chapter 4.

43

Chapter 3. The Proposed Cognitive Fault Detection and Diagnosis System

3.5.2 Detection

The detection phase is performed on all the binary functional relationships
present in the dependency graph G. Each functional relationship the nom-
inal concept is characterized by the sequence of parameter vectors Θ′L,M ,
estimated on overlapping batches of data coming from a fault-free train-
ing sequence ZM,M . The statistical behaviour of the parameter vectors se-
quence is modeled by means of an approach based on HMMs [72]. By
relying on this characterization, it is possible to evaluate the statistical com-
patibility of a sequence of newly estimated parameter vectors Θ′k,t at time t
by computing the loglikelihoods. A detection happens when the loglikeli-
hood of the HMM decreases below an automatically determined threshold.
The detailed description of the proposed cognitive fault detection phase is
provided in Chapter 5.

3.5.3 Isolation

The isolation phase is performed by relying on the learned dependency
graph of the sensor network G. Once a change has been detected, a cogni-
tive level, which exploits a logical partition of the dependency graph G, is
activated. This mechanism is able to distinguish among a fault, a change
in the environment and the presence of model bias [8, 12]. When a fault
affects a sensor, the relationships that are connected to that sensor will
perceive a change (by means of a loglikelihood decrease). When there is
change in the environment, all the relationships in E are affected. Finally,
when there is model bias in the considered relationship, none of the other
relationships in E perceives a change. Furthermore, if the change is asso-
ciated with a fault, the isolation phase is also able to provide information
about its location, in terms of the affected unit. We would like to point out
that, even during this phase, the characterization of the nominal concept of
the inspected system relying on HMM learned during the detection phase
is considered, but for isolation purposes. The isolation logic is formalized
and described in Chapter 6.

3.5.4 Identification

Once the fault is detected and isolated, the proposed CFDDS algorithm is
able to provide a characterization of the occurred fault [10, 11]. This phase
is performed by means of a novel evolving clustering algorithm. During
the training phase, a characterization of the nominal state of the system
is performed by means of a clustering of the parameter vectors sequence
ΘL,M , which are estimated on non-overlapping batches of data coming

44

3.5. The Phases of the Proposed CFDDS

from ZM,M . The theoretical results presented above allow to specifically
design statistics to check if newly estimated vectors belongs to the nominal
state, according to the asymptotic distribution of the parameter vectors in
the parameter space. As soon as the presence of a fault is assessed in the
previous phases (detection and isolation) of the proposed CFDDS, it is iden-
tified by associating it to one of the clusters present in the fault dictionary.
This dictionary, which is initially empty, is automatically populated during
the operational life of the proposed CFDDS. A new cluster representing a
fault is created only if enough confidence on the existence of a new fault
is gathered (i.e., by performing a Kolmogorov-Smirnov (KS) multivariate
test on the expected and empirical distributions). The clustering mechanism
considered for the identification phase is described in Chapter 7.

45

CHAPTER4
Dependency Graph Learning

Since the dependency graph is at the basis of the fault detection, isolation
and identification phases of the proposed CFDDS, the ability to learn it cor-
rectly is fundamental to guarantee the fault detection and diagnosis perfor-
mance. In particular, the ability to correctly learn the dependency graph is
crucial, since it allows the proposed CFDDS to rely only on the relevant re-
lationships (i.e., those relationships that really exist among streams of data).
This allows the proposed CFDDS to increase its performance for two main
reasons. At first, if we keep not relevant relationships in the dependency
graph, false positives in detection might increase, since all relationships
are inspected in parallel. Second, if a relationship providing information
is not included in the dependency graph, we cannot use it in the isolation
and identification phases to distinguish between the occurrence of a fault, a
change in the environment or a model bias.

In this section, we describe the dependency graph learning phase of
the proposed CFDDS, which is based on a statistical framework based on
Granger causality. We recall that the dependency graph G = (V,E) is as-
sociated to the functional relationships existing among data and not to the
topology of the network. The aim of the dependency graph learning phase,
described in Figure 4.1, is to automatically select those relationships pre-

47

Chapter 4. Dependency Graph Learning

ZM,M

Feature extraction

Fault Detection

Fault Isolation

Fault Identification

Nominal Concept

Granger
G = (V,E)

Nominal
State

Learning

Learning

Figure 4.1: Dependency graph learning phase of the proposed CFDDS: by relying on a
fault-free dataset ZM,M and the concept of Granger causality, we select only those
relationships which are relevant to the fault detection and diagnosis phases.

senting causal dependency given a fault-free set of measurements ZM,M

coming from the sensor network and a predefined level of confidence αg
regulating the probability of including not relevant relationships in E. In
particular, in Section 4.1 we describe the technique for assessing the causal
dependency of a single relationship, while in Section 4.2 we extend this
learning mechanism to the entire dependency graph G.

4.1 Modeling the Relationship Between a Couple of Datas-
treams

The level of dependency between datastreams xi and xj associated with
relationship f(i,j) has been analysed also in other FDDSs. For instance,
in [8] the figure of merit used to select functional relationships is the linear
correlation index between two datastreams: when the peak of the crosscor-
relation is above a suitably tuned threshold ρmin, the relationship is consid-
ered to be relevant and worth to be included in E. The main drawbacks of
the aforementioned approach are the lack of a clear characterization of the
user-defined threshold ρmin (it is difficult to set it at design time), the capa-
bility to assess relationships only between couples of datastreams (a rela-
tionship involving more than two datastreams cannot be evaluated through
cross-correlation) and the fact that results are heavily dependent on noise,

48

4.1. Modeling the Relationship Between a Couple of Datastreams

as pointed out in [72].
In the proposed CFDDS the method chosen to model the dependency be-

tween two datastreams relies on causal dependency as defined by Granger
in [38]:

Definition 4.1.1 (Granger Causality). Consider a bivariate discrete-time
stochastic vector (xi, xj). We say that xi is Granger causing xj if the pres-
ence of xi allows for better prediction performance of xj at time t.

Interestingly, approaches based on the Granger causality has been suc-
cessfully applied to different application fields like economic [4] and medi-
cal applications (e.g., functional Magnetic Resonance Imaging (fMRI) data [32]
and ElectroEncephaloGraphy (EEG) analyses [20, 41]). To the best of out
knowledge, the Granger causality have never been considered before for
fault detection/diagnosis purposes in the existing literature.

Definition 4.1.1 is quite general and relies on the comparison between
two different reconstruction abilities: with and without xi as additional
source of information. In the sensor network scenario, a more specific def-
inition of Granger causality can be considered [19]:

Definition 4.1.2 (Multivariate Conditioned Granger Causality). Consider
a multivariate discrete-time stochastic vector X , we say that xi ∈ X is
Granger causing xj ∈ X, j 6= i, conditioned to X \ {xi, xj}, if we are
better able to predict xj by using X instead of using X \ {xi}.

Starting from the last definition, it is possible to derive a statistical test
able to assess the multivariate conditioned Granger causality between two
datastreams. To assess if xi Granger causes xj , we need to model the rela-
tionship existing among all datastreams provided by the sensor network as
a linear Vector AutoRegressive (VAR) model [18, 39]. More specifically,
following the Definition 4.1.2, we want to assess the influence of xi in the
prediction of xj . To achieve this goal we consider two different versions of
the VAR model:M(j)

f (full model), i.e., the one that considers all the avail-
able datastreams X to predict xj , andM(ij)

r (reduced model), i.e., the one
considering as predictors only X \ {xi}. More formally, the two predictive
models assume forms:

M(j)
f : xj(t) =

τ∑
k=1

n∑
h=1

ahjkxh(t− k), (4.1)

M(ij)
r : xj(t) =

τ∑
k=1

n∑
h=1,h6=i

a′hjkxh(t− k), (4.2)

49

Chapter 4. Dependency Graph Learning

where ahjk ∈ R and a′hjk ∈ R are the regression coefficients modeling the
linear relationship between measurements coming from sensors sh and sj
at the k-th time lag for modelM(j)

f andM(ij)
r , respectively, and τ ∈ N is

the order of the model1.
It is possible to show that the problem of assessing the multivariate con-

ditional Granger causality can be formulated as a loglikelihood ratio test
between the full model M(j)

f and the reduced model M(ij)
r [50], where

the null hypothesis is that xi is not Granger causing xj conditioned to
X \ {xi, xj}. More specifically, given a training sequence ZM,M , we esti-
mate parameters âhjk ∈ R and â′hjk ∈ R by mean of a LS procedure applied
to ZM,M . The loglikelihood ratio test is based on the computation of the test
statistic:

Fij =
pf − pr

M − pf − 1

SSR
(ij)
r − SSR(j)

f

SSR
(j)
f

∼ F (pf − pr,M − pf − 1) (4.3)

where pf = nτ is the number of parameters of the full modelM(j)
f , pr =

(n − 1)τ is the number of parameters of the reduced one M(ij)
r , F (pf −

pr,M − pf − 1) is the Fisher distribution with pf − pr and M − pf − 1

degrees of freedom, SSR(j)
f and SSR(ij)

r are the sum of squared residual
on ZM,M of the modelM(j)

f andM(ij)
r , respectively. In the test, the critical

region of level αg for the statistic is:

R
αg
ij = {F ∈ R+|F ≥ Fαg(pf − pr,M − pf − 1)}, (4.4)

where Fαg(pf − pr,M − pf − 1) is the quantile of order 1 − αg of the
Fisher’s distribution with pf−pr andM−pf−1 degrees of freedom. When
there is statistical evidence for rejecting the null hypothesis with confidence
1−αg (i.e., Fij ∈ Rαg

ij), we say thatFxi→xj |z, i.e., the datastream xi Granger
causes xj conditioned to z = X\{xi, xj}, since the datastream xi improves
the prediction of xj . Thus, αg represents the probability to infer that the
use of xi does not improve the prediction of xj when it actually does (type
I error): the more one chooses low values for αg, the more the chance that
a relationship is included in the learned dependency graph when it does not
exists in the real one decreases.

It is worth noting that, in principle, to evaluate the contribution in pre-
diction abilities of datastream xi to stream xj , one could inspect the exoge-
nous coefficients corresponding to xi in the full modelM(j)

f , i.e., aijk ∀k ∈
1Albeit VAR models are linear models, it is possible to show that, under mild assumptions about the data-

generating process (e.g., stationarity of the covariance), they are general enough to model several nonlinear
multivariate time series [16].

50

4.2. Creating the Granger-based Dependency Graph

{1, . . . , τ}. When these coefficients are statistically null (meaning that
stream xi does not provide improvement in the prediction of stream xj),
there is no causal dependency of datastreams xj from xi. On the contrary,
when at least one of the coefficients differs from zero, a causal depen-
dency relation between the two datastreams exists. Interestingly, it is shown
in [50] that the problem of identifying a causal dependency between datas-
treams xi and xj , formulated in Equation (4.4), is equivalent to a hypothesis
test which assesses if at least one of the coefficients aijk, k ∈ {1, . . . , τ} is
statistically different from zero, i.e.:

H0 : aijk = 0 ∀k vs. H1 ∃k | aijk 6= 0. (4.5)

4.2 Creating the Granger-based Dependency Graph

Following the definition of Granger causality and the statistical test de-
scribed above, it is possible to derive a statistical framework to learn the
dependency graph for the whole sensor network. A detailed description of
the proposed statistical framework is provided in Algorithm 2.

Algorithm 2 Granger-Based Dependency Graph Learning Algorithm

1: Input: faulty-free dataset ZM,M , confidence level αg
2: Output: dependency graph G
3: Set an empty dependency graph G = (V,E), with V = {s1, . . . sn} and E = ∅
4: for j ∈ {1, . . . , n} do
5: Estimate coefficients âijk of VAR modelM(j)

f in Equation (4.1) from data ZM,M ;
6: for i ∈ {1, . . . , n} do
7: if i 6= j then
8: Estimate coefficients â′ijk of VAR model M(ij)

r in Equation (4.2) from data
ZM,M ;

9: Compute Fij as in Equation (4.3);
10: if Fij ≥ F αg

n(n−1)
(pf − pr,M − pf − 1) then

11: E ← E ∪ {eij};
12: end if
13: end if
14: end for
15: end for
16: return G;

At first, we consider a training set ZM,M of fault-free data coming from
the sensor network and a user defined confidence level αg ∈ (0, 1) for the
loglikelihood ratio test. A graph G = (V,E) with V = {s1, . . . , sn} and
E = ∅ is initially considered. By considering a couple of sensors si and sj

51

Chapter 4. Dependency Graph Learning

and the dataset ZM,M , we are able to compute the test statistics Fij , as in
Equation (4.3). When:

Fij ≥ F αg
n(n−1)

(pf − pr,M − pf − 1), (4.6)

we have statistical evidence (with confidence αg
n(n−1)

) that xi Granger causes
xj , conditioned on all the other streams of data, and we add eij = (si, sj)
to the edge set E. We repeat the test for each couple of datastreams to
build the dependency graph. Note that we used a confidence level αg

n(n−1)
to

obtain an overall confidence level of αg, thanks to the Bonferroni correction
for multiple hypothesis [50]. The correction is here used since n(n − 1)
hypothesis tests are performed at the same time and it assures to have an
overall type I error of αg.

We emphasize that both the performance and the complexity of the de-
tection and isolation phases of the proposed CFDDS are highly influenced
by the learned Granger-based dependency graph. In fact, the detection
phase will be performed on each edge eij ∈ E, while the isolation phase
relies on G to be able to distinguish among model bias, change in the envi-
ronment and fault and, if this third option occurs, isolate it.

An example of the dependency graph learning phase is presented in Fig-
ure 4.2. To determine the dependency graph, a fault-free dataset ZM,M is
required. Starting from an completely disconnected graph (in the upper
right part of the figure), the Granger-based statistical test considered is able
to determine which are the most relevant functional relationships existing
among datastreams. The confidence on the overall procedure is given by
setting αg.

52

4.2. Creating the Granger-based Dependency Graph

s1 s2

s3

s4s5s6

Data ZM,M

Statistical Granger Test

s2s1

s3

s4s5s6

f(2,1)

f(3,1)

f(3,2)

f(4,1)
f(4,2)

f(4,3)

f(5,1)

f(5,3)

f(6,1)

f(6,2)
f(6,3)

αg

Figure 4.2: Example of dependency graph learning phase

53

CHAPTER5
Fault Detection

In this chapter, we want to inspect the variation of the behaviour in the
relationships f(i,j) such that eij ∈ E to understand if a deviation from the
nominal concept occurred (detection phase). We suppose to have learned
a dependency graph G = (V,E), which describes the causal relationships
existing among datastreams, as described in Chapter 4. In order to detect
changes in the behaviour of the data coming from the sensor network, we
consider all the binary relationships f(i,j) in parallel. Here we want to learn
a characterization of each functional relationship in nominal conditions and
be able to detect discrepancies from it.

In this chapter the detection phase of the proposed CFDDS is provided:
at first, the general approach in the parameter space is delineated in Sec-
tion 5.1, then the description of a Mahalanobis-based change detection
method is presented in Section 5.2. A description of HMM-CDT, intro-
duced in [7] and further developed in [72], is given in Section 5.3, while
the proposed Ensemble approach to Hidden Markov Model-Change Detec-
tion Test (EHMM-CDT) is detailed in Section 5.4.

55

Chapter 5. Fault Detection

Process Sensors Y

ε (Noise)

LTI Model

Parameters
θ̂

Change
Detection

Nominal
behaviour
ZM,M

Change Fault

Figure 5.1: Proposed scheme for fault detection: we do not have a priori information on
the process, the sensors or the noise ε.

5.1 Fault Detection in the Parameter Space

The detection phase of the proposed CFDDS is based on the analysis of the
statistical behaviour the estimated parameter vectors presented in Chap-
ter 2. Let us consider a generic functional relationship between a couple
of streams f(i,j) s.t. eij ∈ E. By relying on a fault-free training dataset
Z

(i,j)
M,M , it is possible to compute a parameter vectors sequence Θ

(ij)
L,M or

Θ
′(ij)
L,M , which characterizes the nominal conditions of the system. After

that, we want to inspect newly estimated parameter vectors of the functional
relationships f(i,j) selected during the graph learning phase and detect vari-
ations in their behaviour.

The general approach considered in this dissertation is presented in Fig-
ure 5.1. Since in the sensor network scenario the generating data pro-
cess is unknown, as well as the noise characterization, we can not rely on
traditional approaches (signal-based or model-based, as described in Sec-
tion 1.1.1). The approach considered in the proposed CFDDS relies on
the approximation the relationship existing among datastreams with a LTI
model, which is able to capture the functional relationship f(i,j) deviation

56

5.2. Mahalanobis-based Detection

Z
(ij)
M,M

Θ
(ij)
L,M

Region Rαs

Fault Isolation

Fault Identification

Nominal Concept

Dependency
Graph

Distribution
(θ̄,SN)

Learning

Figure 5.2: Mahalanobis-based detection phase of the proposed CFDDS: by relying on a
fault-free dataset Z(ij)

M,M , the parameter vector sequence Θ
(ij)
L,M is extracted. They are

used to learn the nominal state by means of a Gaussian distribution in the parameter
space and a region Rαs for the parameter vectors not belonging to the nominal state.

from nominal behaviour. By considering as feature for fault detection the
variations of the LTI estimated parameters θ̂s, we are able to detect changes
in the behaviour of the data from the one we recorded in nominal condi-
tions. The discrepancy from the nominal behaviour can be assessed only if
a correct characterization of the nominal concept is performed beforehand:
here we perform a characterization in the parameter space by relying on
a fault-free dataset ZM,M . Two different methods based on this paradigm
are presented in the following: the former one exploits the asymptotic dis-
tribution of the parameters, while the latter one is able to characterize the
sequence of the parameter vectors through a HMM modeling approach.

5.2 Mahalanobis-based Detection

Thanks to Equation (3.21), the parameter vectors in Θ
(ij)
L,M are distributed

as a multivariate Gaussian distribution, which is fully characterized by its
mean θo and covariance matrix ΣN . Thus, in the parameter space it is pos-
sible to define a region where with probability 1−αs the parameter vectors
estimated from data coming from nominal state can be drawn, by relying
on the Mahalanobis distance [63]. This approach has been considered in
the past, for instance, for quality control charts [50].

57

Chapter 5. Fault Detection

Algorithm 3 Mahalanobis-Based Change Detection Algorithm

1: Data: Training set Z(ij)
M,M , Confidence level αs;

2: Results: Detection time T ;
3: Estimate the sequence Θ

(ij)
L,M from Z

(ij)
M,M ;

4: Compute θ̄ and SN ;
5: while a new parameter vector θ̂(ij)

t is available at time t do
6: if θ̂t /∈ Rαs then
7: return T ← t;
8: end if
9: end while

10: return T ← ∅;

The general architecture of the detection phase based on this distance is
presented in Figure 5.2 and an algorithm describing the procedure to apply
the Mahalanobis-based detection method is provided in Algorithm 3. The
mean θ̄ ∈ Rp and covariance SN ∈ Rp×p can be estimated by using Θ

(ij)
L,M

and constitute the definition of nominal cluster used in the sequel of the
dissertation. More formally:

Definition 5.2.1. Given a parameter vectors sequence Θ
(ij)
L,M estimated on

a dataset Z(i,j)
M,M coming from a single process P , a Gaussian cluster Υ,

induced by the sequence Θ
(ij)
L,M , is a tuple (θ̄, SN , υ) (υ ∈ N), where:

θ̄ =
1

υ

∑
θ̂∈Θ

(ij)
L,M

θ̂, (5.1)

SN =
1

υ − 1

∑
θ̂∈Θ

(ij)
L,M

(θ̂ − θ̄)(θ̂ − θ̄)T , (5.2)

υ = |Θ(ij)
L,M |, (5.3)

and | · | is the cardinality operator.

A Gaussian cluster induces a topology on the parameter space, identified
by the Mahalanobis distance [63], defined as:

Definition 5.2.2. Given a parameter vector θ̂(ij)
t ∈ Rp and a Gaussian

cluster Υ = (θ̄, SN , υ), the Mahalanobis distance m(θ̂
(ij)
t ,Υ) between the

vector θ̂(ij)
t and the cluster Υ is defined as:

m(θ̂
(ij)
t ,Υ) = (θ̄ − θ̂(ij)

t)TS−1
N (θ̄ − θ̂(ij)

t). (5.4)

58

5.2. Mahalanobis-based Detection

θ1

θ2

αs = 0.05

Figure 5.3: Example of Mahalanobis-based detection in 2 dimension (θ1, θ2): the param-
eter vectors estimated on the training set (black circles) defines the nominal state; an
area of probability 1 − αs = 0.95 is defined by the ellipse. The detection phase is
able to discriminate between points belonging to the nominal state region Rαs (green
asterisks) and those not belonging to it (red pluses), with confidence 1− αs.

Since theoretical results presented in Section 3.3 allow us to assume the
Gaussian distribution of the estimated parameter vectors, a neighbourhood
centered in θ̄ can be induced by containing those θ̂(ij)

t s belonging to the
nominal state with probability 1− αs [50], where αs is a given confidence
level. More specifically, the neighbourhoodRαs , containing parameter vec-
tors which belong to the nominal cluster, is defined as:

Rαs =

{
θ̂ | υ(υ − p)

p(υ2 − 1)
m(θ̂,Υ) ≤ Fαs(p, υ − p)

}
, (5.5)

where Fαs(p, υ−p) is the quantile of order 1−αs of the Fisher’s distribution
with parameters p and υ − p.

For instance, in Figure 5.3, an example of the detection phase in a two
dimensional parameter vector space θ = (θ1, θ2) is provided. The nom-
inal state is characterized by the black circles, estimated on the training
set Z(i,j)

M,M : the knowledge of the statistical distribution allows us to define
a region Rαs where a newly estimated parameter vector should fall with
probability 1−αs = 0.95 (inside the black ellipse). New parameter vectors
are considered belonging to the nominal state if they fall inside the ellipse

59

Chapter 5. Fault Detection

S1

S2

S3

θ ∼ D(S1)

θ ∼ D(S2)

θ ∼ D(S3)

a11

a12

a13

a21

a22

a23
a31

a32

a33

Figure 5.4: Example of HMM: it has three hidden states S1, S2, S3 with transition matrix
A = [aij] and each states Si has emission θ, distributed as D(Si).

(green asterisks), while a change is detected when a parameter vector falls
outside Rαs (red pluses).

The proposed Mahalanobis-based detection is potentially a powerful and
versatile method for detection, since it relies on a grounded theoretical base
and requires only to set a confidence value αs (which has a specific sta-
tistical meaning). Nonetheless, it is potentially a slow method, since the
method operates on non overlapping windows and a detection could hap-
pen only every N time instants. In the following we rely on a different
modeling of the nominal concept based on the estimation of parameter vec-
tors on overlapping batches, i.e., by estimating Θ

′(ij)
L,M on Z(i,j)

M,M instead of
Θ

(ij)
L,M , to reduce the detection delay of this approach. Another drawback of

the aforementioned method is that it provides a structural amount of false
positive detections over time. In fact, the use of a statistical test implies
to have the probability of αs structural false positives (type I error) at each
time instant. By repeating the test multiple time in an on-line manner, this
probability increases, for instance, after k time instant the methods has the
probability of a false positive detection of 1 − (1 − αs)k, whose limit for
k →∞ is 1.

60

5.3. Hidden Markov Model Change Detection Test

Z
(ij)
M,M

Θ
′(ij)
L,M

HMM-CDT

Fault Isolation

Fault Identification

Nominal Concept

Dependency
GraphHMM Ĥ

Learning

Figure 5.5: HMM-CDT detection phase: by relying on a fault-free dataset Z(ij)
M,M , the

parameter vectors sequence Θ
′(ij)
L,M is extracted. It is used to learn the nominal state by

means of a HMM, which is used for discrepancy detection in the proposed HMM-CDT.

5.3 Hidden Markov Model Change Detection Test

The idea underlying the HMM-CDT is to analyse the statistical behaviour
of the sequence of parameter vectors Θ

′(ij)
L,t , estimated from X , over time

by means of a HMM modeling. A HMM is a statistical Markov model, in
which the system being modeled is assumed to be a Markov process whose
states are neither known, nor observed. An example of a HMM with three
hidden states (S1, S2, S3) is presented in Figure 5.4. While in traditional
Markov chains, the state is observed and therefore the state transition prob-
abilities aij are the only parameters to be estimated, in a HMM each state Si
is not directly visible, but only the output θ, emitted from one of the states
with a given distributionD(Si), is visible. Therefore, a sequence of outputs
generated by a HMM provides information about the state sequence and
can be used to learn the HMM parameters, i.e., number of states, transition
matrix and emitting distributions. HMMs have been successfully applied
to temporal pattern recognition problems such as speech recognition [70]
and biology [55].

The HMM modeling approach applied to θ̂(ij)
t s allow us to continuously

inspect the relationship behaviour: when the statistical pattern of the esti-
mated parameters does not follow what was learned during an initial train-

61

Chapter 5. Fault Detection

ing phase, a change in the relationship is detected. The general scheme of
the HMM-based detection phase is presented in Figure 5.5. The use of a
HMM ruled by a Gaussian Mixture Model (GMM) over a parameter vectors
sequence Θ

′(ij)
L,t is the natural solution to model a functional relationship in

the parameter space, since it is capable of modeling a Gaussian distribution
and even take care of the possible seasonality or periodicity effects present
in the data coming from a sensor network. More formally, a HMM [34] can
be defined as a tupleH = (S,A, π), where:

• S = {S1, . . . , Ss}, s ∈ N is the indexed set of the states, each of which
has an emission distribution D(Si), defined by a GMM

• A ∈ Rs×s, A = [aij],
∑s

i=1 aij = 1 ∀j ∈ {1, . . . , s} is the transition
matrix, i.e., aij is the transition probability from state i to state j;

• π ∈ [0, 1]s, with
∑s

i=1 πi = 1, is the initial distribution probability
over S.

Algorithm 4 HMM-CDT Algorithm

1: Data: Training set Z(ij)
M,M , Validation set Z(ij)

O,M+O, CD;
2: Results: Detection time T ;
3: Estimate the sequence Θ

′(ij)
L,M from Z

(ij)
M,M ;

4: Estimate HMM Ĥ by using Θ
′(ij)
L,M ;

5: Estimate the sequence Θ
′(ij)
O,O+M from Z

(ij)
O,M+O;

6: for h ∈ {M + k, . . . , O} do
7: Compute l(Ĥ,Θ′(ij)k,h) as in Equation (5.6);
8: end for
9: Compute T as in Equation (5.7)

10: while a new sample [xi(t), xj(t)] is available at time t do
11: Estimate θ̂(ij)

t by using Z(ij)
N,t ;

12: Built the sequence Θ
′(ij)
k,t = (θ̂

(ij)
t−k+1, . . . , θ̂

(ij)
t);

13: Compute l(Ĥ,Θ′(ij)k,t) as in Equation (5.6);

14: if l(Ĥ,Θ′(ij)k,t) ≤ T then
15: return T ← t;
16: end if
17: end while
18: return T ← ∅;

The HMM-CDT method is described in Algorithm 4. The HMM-CDT
relies on an initial parameter vector sequence Θ

′(ij)
L,M , estimated on over-

lapping batches of N data extracted from the fault-free training set Z(i,j)
M,M ,

62

5.3. Hidden Markov Model Change Detection Test

where L = M − N + 1. The parameter sequence Θ
′(ij)
L,M is used to train

a HMM Ĥ, aiming at capturing the statistical behaviour of the estimated
parameter vectors sequence Θ

′(ij)
L,M in nominal conditions. Then, during the

operational phase, the statistical affinity between the estimated parameter
vectors θ̂(ij)

t and Ĥ is assessed by looking at the HMM loglikelihood as
follows:

Definition 5.3.1. Given a parameter vector sequence Θ
′(ij)
k,t = (θ̂

(ij)
t−k+1, . . . , θ̂

(ij)
t)

and a HMM Ĥ the loglikelihood is defined as:

l(Ĥ,Θ′(ij)k,t) = log Pr(θ̂
(ij)
t−k+1|Ĥ) +

t−1∑
h=t−k+1

log Pr(θ̂
(ij)
h+1|Ĥ, θ̂

(ij)
h). (5.6)

where Pr(A|Ĥ, B) is the probability associated to the parameter vector
A given as model the HMM Ĥ and the previously seen parameter vectors
specified in B.

The loglikelihood provides an estimate on how well the sequence Θ
′(ij)
k,t

follows Ĥ, thus it can be used to detect changes in the relationship char-
acterizing the nominal state of the system. In fact, if the relationship does
not change over time, the value of the loglikelihood l(Ĥ,Θ′(ij)k,t) is compa-
rable with the one computed during the training phase. Otherwise, in case
l(Ĥ,Θ′(ij)k,t) falls below an automatically defined threshold T , a change is
detected, since Θ

′(ij)
k,t is no more compatible with the statistical model char-

acterized by Ĥ. More specifically, by relying on a validation set Z(ij)
O,M+O,

we compute a threshold T :

T = l̄ − CD
[
l̄ − min

h∈{M+k,...,O}
l(Ĥ,Θ′(ij)k,h)

]
(5.7)

where

l̄ =

∑O
h=M+k l(Ĥ,Θ

′(ij)
k,h)

O
(5.8)

and CD > 1 is a user-defined coefficient factor, regulating the trade-off be-
tween the false positive detection rate and the promptness in the detection
achieved by the HMM-CDT. High values for the parameterCD corresponds
to low false positive rate and an high delay in the time of detection, while
low values provide a prompter detection but an higher amount of false pos-
itive detections.

63

Chapter 5. Fault Detection

During the operational life of the system, when the loglikelihood de-
creases below T , a change in the statical behaviour of P is detected by the
HMM-CDT. In more details, as soon as a new sample [xi(t), xj(t)] , t >

M + O is available, the algorithm estimates a new parameter vector θ̂(ij)
t

on Z(ij)
t,N . The likelihood for the HMM characterizing the nominal state, i.e.,

l(H,Θ′(ij)k,h), is computed and is compared with the threshold T to assess if a
change is detected. In case of a change, an alarm is raised and the detection
time T = t is returned, otherwise the algorithm keeps on monitoring data
coming from the inspected process P .

5.4 Ensemble Approach to HMM-CDT

One of the key aspects of the HMM-CDT presented above is the estimation
of a HMM on Θ

′(ij)
L,M , which aims at properly characterizing the nominal

state. The state-of-the art training algorithm for HMMs is the Baum-Welch
(BW) algorithm [22], which aims at finding the maximum likelihood esti-
mates of the HMM parameters, given Θ

′(ij)
L,M . Nonetheless, the BW algo-

rithm does not provide any theoretical guarantee about the convergence to
the global maximum of the likelihood function [31]. In fact, the BW al-
gorithm requires a random initialization of the HMM parameters for the
optimization procedure, which could lead the algorithm to get stuck to a
local maximum. Thus, different estimated parameters for the HMM can be
obtained by repeating the training phase with different randomly initialized
parameters on the same training sequence Z(i,j)

M,M . Hence, a viable solution
to weaken the effect of the initialization procedure on the HMM-CDT is
to repeat the use of BW algorithm and select the HMM guaranteeing the
largest likelihood on a validation set. Unfortunately, as pointed out in [62],
this solution may lead to overfit the training sequence Θ

′(ij)
L,M (and this is

particularly evident for reduced training sets), leading to false positive de-
tections (false alarms) during the operational life of the system.

In the framework of the proposed CFDDS, we extend the solution pro-
posed in Section 5.3 by suggesting an Ensemble approach to Hidden Markov
Model-Change Detection Test (EHMM-CDT) based on a set E = {H1, . . . ,HQ},
Q ∈ N of HMMs, where Q is the ensemble cardinality. Interestingly, the
possibility to combine different models to improve the generalization abil-
ity of a single model has been widely studied in the literature (mainly in the
regression and classification scenarios) and effectively applied to different
application fields [54, 68, 91]. Recently, ensembles of models have been
also successfully considered in time series prediction [82, 89] and on-line

64

5.4. Ensemble Approach to HMM-CDT

Z
(ij)
M,M

Θ
′(ij)
L,M

EHMM-CDT

Fault Isolation

Fault Identification

Nominal Concept

Dependency
Graph

ensemble
of HMM E

Learning

Figure 5.6: Detection phase of the proposed CFDDS: by relying on a fault-free dataset
Z

(ij)
M,M , the parameter vector sequence Θ

′(ij)
L,M is extracted. It is used to learn the nomi-

nal state by means of an ensemble of HMM, which are used for discrepancy detection
in the proposed EHMM-CDT.

missing data reconstruction [9]. Moreover, an ensemble of HMMs within
a Bayesian framework for parameter estimation has been derived in [62],
while an algorithm for training HMMs in the ensemble framework is pre-
sented in [29].

The general scheme of the proposed detection phase is described in Fig-
ure 5.6. The main point of the proposed solution is that the HMMsHq ∈ E
are trained on the same training set Z(ij)

M,M with different initialization points
of the BW algorithm. This ensemble approach allows to weaken the influ-
ence of the initial conditions of the HMM training algorithm, providing
a better generalization ability and, consequently, better detection perfor-
mance.

The proposed EHMM-CDT is detailed in Algorithm 5. To characterize
the nominal state we rely on a training set Z(ij)

M,M , which is assumed to be
change-free. We estimate the parameter vectors sequence Θ

′(ij)
L,M on overlap-

ping windows of N data Z(ij)
N,t . We build the ensemble E = {H1, . . . ,HQ}

by repeating e times the training of a HMM on Θ
′(i,j)
L,M , with random initial

conditions for the BW algorithm. Note that, since Z(ij)
M,M is assumed to be

change-free, the ensemble E aims at modeling the statical behaviour of P

65

Chapter 5. Fault Detection

Algorithm 5 EHMM-CDT algorithm

1: Data: Training set Z(ij)
M,M , Validation set Z(ij)

O,M+O, Aggregation method A, CD;
2: Results: Detection time T ;
3: Estimate the sequence Θ

′(i,j)
L,M from Z

(ij)
M,M ;

4: for q ∈ {1, . . . , Q} do
5: Estimate HMMHq using Θ

′(i,j)
L,M by considering a random initialization point;

6: end for
7: Built the ensemble E = {H1, . . . ,HQ};
8: Estimate the sequence Θ

′(i,j)
M,M+O from Z

(ij)
O,M+O;

9: for h ∈ {M + k, . . . , O} do
10: for q ∈ {1, . . . , Q} do
11: Compute l(Hq,Θ′(i,j)k,h) as in Equation (5.6);
12: end for
13: Compute A(h) = A(l(H1,Θ

′(i,j)
k,h), . . . , l(HQ,Θ′(i,j)k,h));

14: end for
15: Compute T as in Equation (5.11);
16: while a new couple [xi(t), xj(t)] is available at time t do
17: Estimate θ̂(i,j)

t by using Z(ij)
N,t ;

18: Built the sequence Θ
′(i,j)
k,t ;

19: for q ∈ {1, . . . , Q} do
20: Compute l(Hq,Θ′(i,j)k,t) as in Equation (5.6);
21: end for
22: Compute A(t) = A(l(H1,Θ

′(i,j)
k,t), . . . , l(HQ,Θ′(i,j)k,t));

23: if A(t) ≤ T then
24: return T ← t;
25: end if
26: end while
27: return T ← ∅;

in nominal conditions.

One of the key aspects of ensemble methods is the definition of the ag-
gregation mechanism A, that, in this case, specifies how to aggregate the
loglikelihoods of the ensemble elements Hq ∈ E to provide the ensemble
output. In this dissertation, we considered two different aggregation mech-

66

5.4. Ensemble Approach to HMM-CDT

anisms, i.e., A ∈ {Amean,Amin}:

A(t) = Amean(l(H1,Θ
′(i,j)
k,t), . . . , l(HQ,Θ

′(i,j)
k,t))) =

Q∑
q=1

l(Hq,Θ
′(i,j)
k,t)

Q

(5.9)

A(t) = Amin(l(H1,Θ
′(i,j)
k,t), . . . , l(HQ,Θ

′(i,j)
k,t))) = min

q∈{1,...,Q}
l(Hq,Θ

′(i,j)
k,t),

(5.10)

whereAmean computes the average value of the loglikelihoods of the HMMs
belonging to the ensemble E , whileAmin takes into account their minimum.
The last step of the EHMM-CDT training phase is the computation of the
threshold T on a validation set Z(ij)

O,O+M . Similarly to what presented in
Section 5.3, T is computed as follows:

T = l̄ − CD
[
l̄ − min

h∈{M+k,...,O}
A(h)

]
(5.11)

where l̄ =
∑O
h=M+k A(h)

O
.

An example of the proposed approach with Q = 5 is proposed in Fig-
ure 5.7. At first the characterization of the process nominal conditions is ob-
tained through the estimation of the ensemble of HMMs E = {H1, . . . ,H5},
trained on the same couple of datastreams (xi, xj). Each HMM provides
a value for the loglikelihood on newly samples coming from the streams
(xi, xj). Loglikelihood values are used in an aggregation mechanism A to
assess if a change has occurred.

While ensemble approaches are generally able to increase the general-
ization ability of a single model, they are characterized by an increased
computational complexity, that in this case scales linearly with the number
of HMMs Q. Two comments arise:

• the most time consuming part of the EHMM-CDT refers to the HMMs
training (the loglikelihood computation is much lighter than training).
Interestingly, the training phase is performed only once during the
initial configuration of the proposed CFDDS, while during the oper-
ational life only the likelihoods are computed. In addition, in sce-
narios where networked embedded systems are operating, the train-
ing of HMMs could be performed in a centralized high-powerful unit,
leaving only the computation of likelihoods directly at the low-power
distributed units of the network;

67

Chapter 5. Fault Detection

xi

xj

H1

H2

H3

H4

H5

A(H1, . . . ,H5) Detection result

l(H1)

l(H2)

l(H3)

l(H4)

l(H5)

Figure 5.7: Example of EHMM-CDT with Q = 5. The loglikelihood computed on each
element of the ensemble of HMM l(Hq) provides information about the discrepancy of
the process from nominal conditions. The detection decision occurs after the loglikeli-
hoods are aggregated through a suitable aggregation mechanism A.

68

5.4. Ensemble Approach to HMM-CDT

• in scenarios where the fault detection ability is a relevant activity, the
increase in the complexity induced by the ensemble approach is well
compensated if we are able to decrease false and missed alarms and
detection delays.

As a final remark we would like to point out that the extension of the
proposed EHMM-CDT to multiple functional relationships is trivial (the
detection occurs when at least one change is detected in a functional rela-
tionship). Moreover, its extension to MIMO models is possible, but is not
suggested here, since it does not allow to perform the isolation phase as
proposed in Chapter 6.

69

CHAPTER6
Fault Isolation

Once we are aware of the fact that the data provided by the sensor net-
work are deviating from the nominal behaviour, by relying on the detection
technique presented in Chapter 5, the following step is to infer if this dis-
crepancy is due to a change of the environment in which the network is
operating, to a fault in a specific sensor or to a model bias. To distinguish
among these situations we have to consider both the dependency graph G
and the HMM modeling used in the previous phases. The isolation phase of
the proposed CFDDS, presented in Figure 6.1, is based on a logic partition
of the dependency graph edge set and the evaluation of the loglikelihood
provided by the ensemble E on each of the partitions. In Section 6.1, we
describe the overall cognitive isolation logic, while in Section 6.2 we de-
scribe in detail the proposed isolation phase.

6.1 Cognitive Fault Isolation

We here consider the dependency graph G = (V,E) learned during the de-
pendency graph learning phase (Chapter 4) and the result of the detection
provided by the detection phase (Chapter 5), i.e., detection of a change on
a specific functional relationship f(̄i,j̄). From now on, we assume that the

71

Chapter 6. Fault Isolation

ZM,M

Θ′L,M

EHMM-CDT (de-
tection on f(̄i,j̄))

Partition of E into
E+(̄i), E−(j̄), EP (̄i, j̄)

Fault Identification

Nominal Concept

Granger
G = (V,E)

ensemble
of HMM E

Learning

Learning

Figure 6.1: Isolation phase of the proposed CFDDS: by relying on a fault-free dataset
ZM,M it is possible to distinguish among model bias, change in the environment and
fault. If a fault is identified, it is also isolated in the sensor where it occurred.

network might be either affected by a change in the environment or a single
fault. To perform the fault isolation task with the proposed CFDDS, we
need to take into account all the edges contained in E at the same time,
since a fault should influence several of the functional relationships corre-
sponding to these edges. After a detection in f(̄i,j̄) has occurred, we need
to partition the edges of the dependency graph in three parts: all those rela-
tionships related to sensor sī, all those related to sj̄ and those not having as
input or output nor sī, neither sj̄ . More formally:

Definition 6.1.1. Given a dependency graph G = (V,E) and a detection
in f(̄i,j̄):

• E+(̄i) = {eij ∈ E | eij 6= eīj̄, i = ī ∨ j = ī}, i.e., all the edges
connected with sī;

• E−(j̄) = {eij ∈ E | eij 6= eīj̄, i = j̄ ∨ j = j̄}, i.e., all the edges
connected with sj̄;

• EP (̄i, j̄) = E \ ({eīj̄} ∪E+ ∪E−), i.e., all the other edges which are
not connected neither to sī, nor to sj̄ .

With this partition we are able to diagnose the cause of the detection
occurring on the relationship f(̄i,j̄). If E+(̄i) or E−(j̄) is also influenced

72

6.1. Cognitive Fault Isolation

by the change, we may infer that a fault has happened on sensor sī or sj̄ ,
respectively. In the case EP (̄i, j̄) is also influenced by the change, we are
facing a change in the environment inspected by the network, while if no
other relationship is influenced by the detected change we infer that the
cause is an incomplete characterization of the nominal state (model bias).

Finally, we define two properties of the fault affecting sensors included
in the dependency graph G. In fact, depending on its topology, a fault can
be isolated on a specific subset of nodes. Formally:

Definition 6.1.2. Given a dependency graph G = (V,E), a fault F oc-
curring in the sensor sh ∈ V is detectable if and only if ∃eij ∈ E s.t.
i = h ∨ j = h.

Definition 6.1.3. Given a dependency graph G = (V,E), a fault F occur-
ring in the sensor sh ∈ V is isolable if and only if K = {eij ∈ E s.t.
i = h ∨ j = h}, |K| > 1.

It is clear that isolability implies detectability, since isolability implies
to have more than one edge connected to a specific sensor sh, while de-
tectability requires the existence of at least one of these edges.

In Figure 6.2a, it is possible to see how faults in s4 cannot be detected
by the proposed CFDDS, since no relationship including the sensor is con-
sidered in the dependency graph. In the situation where a sensor is com-
pletely disconnected in the dependency graph, techniques considering a sin-
gle node could be considered [21], in parallel with the proposed CFDDS. In
this case (a fault is not detectable in the sensor), it is possible to analyze the
datastream provided by the sensor for detection purposes with traditional
CDTs methods and rely on the proposed isolation methodology to spot if a
change in the environment has occurred.

The situation in Figure 6.2b may lead to a detection if a fault occurs
in the sensor s5, but this does not allow to isolate it with the proposed
isolation logic. In this case an enhanced version of the dependency graph
could be considered (Figure 6.2c), including, in this case, f(5,2) and f(5,1).
This inclusion is based on the fact that if the two relationships f(5,3) and
f(3,2) are considered, then also f(5,2) exists (maybe with less significance),
and it could be used to spot faults in s5 during the isolation phase. The
same applies to f(5,1).

An example of the execution of the partitioning of the dependency graph
G, on the basis of a detection, is presented in Figure 6.3. A posteriori of a
detection in the relationship f(3,2) (red solid edge), the isolation algorithm
partitions the dependency graph into three sets:

73

Chapter 6. Fault Isolation

s1 s2

s3

s4s5s6

(a) Since there are no selected relationships
including the sensor s4, faults in this
sensor cannot be detected with the pro-
posed methodology (non-detectable)

s1 s2

s3

s4s5s6

(b) Since there is a single selected rela-
tionships including the sensor s5, faults
in this sensor can be detected (by the
relationship f(5,3)) cannot be isolated
with the proposed methodology (non-
isolable)

s1 s2

s3

s4s5s6

(c) This enhanced version of the dependency
graph allows to isolate faults also in s5

Figure 6.2: Examples of dependency graphs with non detectable and non isolable sensors

74

6.2. Fault Isolation Phase

s1 s2

s3

s4s5s6

(a) Situation after the detection phase: a change
has been detected in the relationship f(3,2)

s1 s2

s3

s4s5s6

(b) The graph is partitioned: all the relation-
ships which includes the sensors s2 and s3
are analysed to identify if a fault has taken
place (green dotted and blue dashed ones,
respectively); all the other relationship are
analysed to identify environmental changes
(magenta dash-dotted ones)

Figure 6.3: Example of the proposed cognitive isolation

• E+(3) = {f(3,1), f(4,3), f(5,3), f(6,3)} (blue dashed edges);

• E−(2) = {f(2,1), f(4,2), f(6,2)} (green dotted edges);

• EP(3, 2) = {f(4,1), f(5,1), f(6,1)} (magenta dash-dotted edges);

The proposed method inspects these sets:

• if the process is affected by an environmental change, it is likely that
all the relationships corresponding to edges in EP(3, 2) perceive the
change;

• if a fault occurs, only those connected with the faulty sensor, i.e.,
E+(3) or E−(2), are influenced by it;

• if the detection was due to a model bias, only the original relationship
f(3,2) is affected by the change.

6.2 Fault Isolation Phase

Following the methodology presented in [8] and by considering the above
definitions we provide an algorithm able to isolate faults within the pro-
posed CFDDS, described in Algorithm 6. The algorithm relies on a train-
ing set ZM,M and a validation set ZO,M+O, similarly to the detection phase,

75

Chapter 6. Fault Isolation

Algorithm 6 Cognitive Isolation Algorithm

1: Input: Training set ZM ;M , Validation set ZO;M+O, CI
2: Output: Isolation result Is, Fault location Loc
3: Learn G = (V,E) by using ZM ;M ;
4: for all eij ∈ E do
5: Train E(ij) by using Z(ij)

M ;M ;
6: Compute l̄(ij) as in Equation (6.1)
7: Compute l(ij)min as in Equation (6.2);
8: end for
9: if a detection occurs on f(̄i,j̄) then

10: Partition E into E+(̄i), E−(j̄) and EP((̄i, j̄)) as described in Section 6.1;
11: if |EP (̄i, j̄)| > 0 ∧ 1

|EP((̄i,j̄))|
∑
eij∈EP((̄i,j̄))

A(ij)−l̄(ij)

l̄(ij)−l(ij)min

≤ −CI then

12: return Is = “environmental change′′ and Loc = ∅;
13: end if
14: if |E+(̄i)| > 0 ∧ 1

|E+ (̄i)|
∑
eij∈E+ (̄i)

A(ij)−l̄(ij)

l̄(ij)−l(ij)min

≤ −CI then

15: return Is = “fault′′ and Loc = sī;
16: end if
17: if |E−(j̄)| > 0 ∧ 1

|E−(j̄)|
∑
eij∈E−(j̄)

A(ij)−l̄(ij)

l̄(ij)−l(ij)min

≤ −CI then

18: return Is = “fault′′ and Loc = sj̄ ;
19: end if
20: return Is = “model bias′′ and Loc = ∅;
21: end if

and an isolation coefficient CI , which similarly to CD regulates the trade-
off between isolation promptness and false positives rate.

During the training phase, which can be performed in an off-line way,
the algorithm learns the dependency graph G = (V,E) of the network based
on ZM,M , relying on the algorithm proposed in Chapter 4. For each edge
eij ∈ E an ensemble of HMM Eij is trained, as depicted in Chapter 5, on
the training data Z(ij)

M,M . For each ensemble Eij , based on the validation set
Z

(ij)
O,M+O the average l̄(ij) and minimum l

(ij)
min loglikelihoods are computed in

the following way:

l̄(ij) =

∑O
h=M+kA(ij)(h)

O
(6.1)

l
(ij)
min = min

h∈{M+k,...,O}
A(ij)(h) (6.2)

(6.3)

where aggregated loglikelihoodsA(ij)(h) are computed with the parameter
vectors sequences Θ

′(ij)
k,h estimated on Z

(ij)
O,M+O. These quantities will be

76

6.2. Fault Isolation Phase

used, as before, to evaluate the discrepancy of newly estimated parameter
vectors from the ensemble of HMM Eij characterizing the nominal state.

As soon as a detection occurs at time t on a specific functional relation-
ship f(̄i,j̄), the algorithm partitions the dependency graph intoE+(̄i), E−(j̄)

and EP (̄i, j̄) and computes aggregated loglikelihoods A(ij)(t) for all eij ∈
E. For each Ê ∈ {E+(̄i), E−(j̄), EP (̄i, j̄)}, if it is not empty, we evaluate
the following expression:

1

|Ê|

∑
eij∈Ê

A(ij) − l̄(ij)

l̄(ij) − l(ij)min

≤ −CI (6.4)

where | · | is the cardinality operator, CI < CD and CD is the coefficient
factor defined in Section 5.3.

At first, we apply the expression in Equation (6.4) to the partitionEP (̄i, j̄),
to evaluate if a change in the environment has occurred. Otherwise, with
the similar procedure applied to E+(̄i) and E−(j̄), we try to isolate faults
in sī and sj̄ , respectively. If none of the above options are assessed, we
consider the detected change due to a model bias in the relationship f(̄i,j̄).

If an environmental change or a fault has been detected and isolated,
the sensor network should be reconfigured, by training again the proposed
CFDDS and by inspecting the damaged unit, respectively. Obviously, if the
result of the proposed isolation algorithm is Is = “modelbias′′, we need to
estimate again the relationship which was affected by the change.

We would like to point out that the coefficient CI regulates how much
the loglikelihood has to decrease before we consider it meaningful: an high
value for CI will require a high loglikelihood drop to isolate a fault.

77

CHAPTER7
Fault Identification

In this chapter we present the identification phase of the proposed CFDDS.
On the basis of the techniques presented in the previous chapters, we sup-
pose to have successfully detected a fault through the technique presented
in Chapter 5 and isolated it in a sensor si through the technique presented
in Chapter 6. After that, we would like to characterize the fault, for in-
stance to understand if the fault already affected the system in the past or if
it presents new characteristics. The general scheme for the proposed iden-
tification phase is presented in Figure 7.1. In this chapter, we consider a
fault-free dataset Z(ij)

M,M coming from a single data generating process P
and that faults affecting the system are of the abrupt type (see Section 2.2
on fault modeling for details).

In Section 7.1 we propose the overall procedure adopted by the pro-
posed CFDDS for fault identification, which is based on a newly developed
evolving clustering technique. In Section 7.2 we detail the procedure for
the fault dictionary learning. Moreover, in Section 7.3 we discuss possible
extensions of the proposed framework to the case of incipient faults.

79

Chapter 7. Fault Identification

ZM,M

ΘL,M

EHMM-CDT (de-
tection on f(̄i,j̄))

Partition of E into
E+(̄i), E−(j̄), EP (̄i, j̄)

Evolving Clustering

Nominal Concept

Granger
G = (V,E)

Gaussian
Cluster Ψ

Learning

Learning

Figure 7.1: Identification phase of the proposed CFDDS: by relying on a fault-free dataset
ZM,M the system characterizes the nominal state by means of a Gaussian cluster Ψ.
New faults are identified by means of an evolving clustering algorithm, able to learn
the fault dictionary in an on-line manner

7.1 Modeling the Nominal State

The identification problem is here addressed as a clustering problem in the
parameter space. In fact, by relying on the fault-free training set, we are
able to characterize only the nominal state, and we have to update the fault
dictionary, (i.e., include a new entity into the fault dictionary when a new
cluster ha to be created) once faults occur. This scenario is well fitted in
the framework usually addressed by evolving clustering methods. In the
literature, there are several clustering methods considering both offline [24,
35, 65, 84] and evolving [17, 79] solutions.

For instance, [35] suggests the Density-Based Spatial Clustering of Ap-
plications with Noise (DBSCAN), which is an algorithm relying on a density-
based notion of clusters designed to discover clusters of arbitrary shape.
This algorithm is appealing since it requires minimal information on the
dataset to properly operate and considers the possibility of having out-
liers (which are desirable due to the Gaussian topology of the parameter
space). [24] shows the Affinity Propagation (AP) that is an algorithm con-
sidering as input measures of similarity between pairs of data points, used
as basis for a mechanism using real-valued messages exchanged between
data points to select a set of exemplars and corresponding clusters. Both

80

7.1. Modeling the Nominal State

the algorithms presented above are not developed in an on-line framework.
Their use in an on-line scenario would require a huge computational effort,
since as soon as a new parameter vector is available they would require
to consider the whole dataset again. Differently, Evolving Cluster Method
(ECM), described in [79], manages clusters with evolving strategies: it re-
quires the setting of a parameterDthr, which is strictly related to the number
of clusters the algorithm will create during the operational life. None of the
aforementioned methods is able to guarantee:

• a logic differentiation among clusters (i.e., those corresponding to
nominal and fault states), inducing a different management on dif-
ferent sets of cluster;

• the use of a Gaussian topology, required by the parameter space topol-
ogy;

• an evolving mechanism able to manage newly estimated parameter
vectors.

Thus, we proposed a newly developed evolving clustering algorithm for the
identification phase, which takes advantage of temporal and spatial depen-
dencies of the estimated parameters. For more details on alternative ap-
proach to cognitive fault identification, other than clustering, the interested
reader can refer to Section 1.2.

For the identification phase, the proposed CFDDS relies on an initial
training phase to characterize the nominal state Ψ by exploiting a fault-free
training sequence Z(ij)

M,M . The dataset is windowed into non-overlapping
batches of length N , each of which is used to provide a parameter vector
estimate θ̂(ij)

t . The outcome is the sequence Θ
(ij)
L,M (L = M/N).

The proposed algorithm is given in Algorithm 7. From results delineated
in Chapter 3 parameter vectors in Θ

(ij)
L,M are distributed according to a Gaus-

sian distribution, provided that N is large enough, even though the system
is non-linear. Here we rely on a slightly different definition of cluster than
definition 5.2.1. In this chapter we consider the following:

Definition 7.1.1. Given a parameter vectors sequence Θ
(ij)
L,M = {θ̂(ij)

1 , . . . , θ̂
(ij)
L },

where θ̂
(ij)
h is estimated on a dataset Z(i,j)

N,hN (non-overlapping batches),
coming from a single process P , a Gaussian cluster Υ, induced by the

81

Chapter 7. Fault Identification

Algorithm 7 Evolving Clustering-Based Identification Algorithm

1: Data: Training set Z(ij)
M,M ; αs, αm, ηt;

2: Results: Nominal cluster Ψ, Fault dictionary Φ;
3: Compute mean θ̄Ψ and covariance matrix SΨ for the nominal state cluster
4: Set nΨ = L and tΨ = L
5: Set Φ = ∅ (φ = 0) and O = ∅
6: while A new θ̂

(ij)
t is available do

7: if Equation (7.6) holds Ψ then
8: Associate θ̂(ij)

t to Ψ
9: if |tΨ − t| ≤ ηt then

10: Update Ψ as in Equations (7.9) to (7.11)
11: end if
12: tΨ∗ ← t
13: else
14: if φ > 0 and Equation (7.6) holds for at least one Φr ∈ Φ then
15: Select Φ∗ minimizing Equation (7.7)
16: Associate θ̂(ij)

t to Φ∗

17: if |tΦ∗ − t| ≤ ηt then
18: Update Φ∗ as in Equations (7.9) to (7.11)
19: for θ̂

(ij)
h ∈ O do

20: if Equation (7.6) holds for Φ∗ then
21: Remove θ̂(ij)

h from outlier set O
22: Associate θ̂(ij)

h to Φ∗

23: if |tΦ∗ − h| ≤ ηt then
24: Update Φ∗ as in Equations (7.9) to (7.11)
25: end if
26: end if
27: end for
28: for Φr ∈ Φ,Φ 6= Φ∗ do
29: if Equations (7.12) and (7.13) hold for Φ∗, Φr then
30: Merge Φ∗, Φr as in Equations (7.14) to (7.17)
31: end if
32: end for
33: end if
34: tΦ∗ ← t
35: else
36: Insert θ̂t in O
37: Create Ō according to Algorithm 8
38: if Ō 6= ∅ then
39: φ← φ+ 1

40: Create Φφ using θ̂(ij)
k ∈ Ō

41: end if
42: end if
43: end if
44: end while

82

7.1. Modeling the Nominal State

sequence Θ
(ij)
L,M , is a tuple (θ̄Υ, SΥ, nΥ, tΥ), where:

θ̄Υ =
1

υ

∑
θ̂∈Θ

(ij)
L,M

θ̂, (7.1)

SΥ =
1

υ − 1

∑
θ̂∈Θ

(ij)
L,M

(θ̂ − θ̄)(θ̂ − θ̄)T , (7.2)

nΥ = |Θ(ij)
L,M | = υ, (7.3)

tΥ = L, (7.4)

and | · | is the cardinality operator.

Thanks to Equation (3.21) the nominal state Ψ can be described as a
Gaussian cluster composed by estimated parameter vectors, whose mean
vector θ̄Ψ and covariance matrix SΨ can be estimated on Θ

(ij)
L,M (Line 3).

For diagnosis purposes we assign to the nominal state the number nΨ of
parameter vectors used to estimate θ̄Ψ and SΨ and the last time instant tΨ
for which a θ̂(ij)

t was associated to the nominal state Ψ. At the end of the
training phase nΨ = L and tΨ = L (Line 4).

During the operational life, the proposed CFDDS estimates parameter
vectors from incoming non-overlapping N -sample data windows. The cor-
responding estimated parameter vector θ̂(ij)

t is then either associated to the
nominal state Ψ or to a generic r-th faulty one Φr present in the fault
dictionary Φ = {Φ1, . . . ,Φφ} (φ represents the current number of faulty
classes in the fault dictionary). If the assignment cannot be granted accord-
ing to a given confidence level, the estimated parameter vector θ̂(ij)

t is cur-
rently considered an outlier and moved to an outlier set O. Similarly, other
“housekeeping” operations are executed on the existing structures (outlier
and faulty sets), e.g., leading to the merge of two faulty states, whenever
appropriate.

An example of the execution of the identification phase is provided in
Figure 7.2. At the beginning, both the fault dictionary and the outlier set
are empty (Figure 7.2a). They are populated during the operational life
of the system, as data come in. The outlier set O is regularly inspected
to determine whether a new faulty state Φφ+1 needs to be generated by
relying on parameter vectors included in it (Figure 7.2b). If a parameter
vector cannot be associated to either the nominal state or one of the faulty
states according to the given confidence level, it is considered an outlier
and moved to the outlier set O (e.g., see the asterisks near the ellipse in the
upper-right side of Figure 7.2d).

83

Chapter 7. Fault Identification

θ1

θ2

(a) The nominal state (crosses) is characterized dur-
ing the training phase

θ1

θ2

(b) The number of outliers (asterisks) is increasing
but no faults are identified yet

θ1

θ2

(c) As soon as enough confidence is gathered for the
presence of a new faulty state, a new cluster is
created (circles) and instances added to it

θ1

θ2

(d) When a different fault is identified (dots), it is
added to the fault dictionary.

Figure 7.2: Example of the identification phase in the proposed CFDDS

84

7.1. Modeling the Nominal State

Here, we assume that a fault affecting the optimal parameter θo (defined
as in Section 3.3) abruptly moves the process from a stationary state to a
new stationary one (abrupt fault). A faulty state Φr is hence characterized
by a mean vector θ̄Φr and a covariance matrix SΦr , which can be estimated
from parameter vectors θ̂(ij)

h ∈ Φr. The proposed CFDDS stores the num-
ber nΦr of vectors used to estimate θ̄Φr and SΦr and the latest time instant
tΦr where θ̂(ij)

h was associated to Φr.
The distance between an estimated parameter vector θ̂(ij)

t and a cluster
Υ can be computed by means of the Mahalanobis distance (as defined in
Section 5.2):

m(θ̂
(ij)
t ,Υ) = (θ̄Υ − θ̂(ij)

t)TS−1
Υ (θ̄Υ − θ̂(ij)

t), (7.5)

where Υ ∈ {Ψ,Φ1, . . . ,Φφ}. Since Ψ and Φr ∈ Φ are Gaussian clusters,
a neighbourhood centered in θ̄Υ can be induced by containing those θ̂(ij)

t s
belonging to Υ with probability 1−αs [50], where αs is a given confidence
level. More specifically, the spatial neighbourhood Rαs of a cluster Υ is
defines as:

Rαs =

{
θ̂ | nΥ(nΥ − p)

p(n2
Υ − 1)

m(θ̂,Υ) ≤ Fαs(p, nΥ − p)
}

(7.6)

holds, where Fαs(p, nΥ − p) is the quantile of order 1− αs of the Fisher’s
distribution with parameters p and nΥ − p. Similarly, a neighbourhood
is assigned to each cluster Υ ∈ {Ψ,Φ1, . . . ,Φφ} and constitutes the core
of the fault identification phase of the proposed CFDDS (Lines 7 and 14).
The proposed CFDDS also contemplates the case of θ̂(ij)

t satisfying Equa-
tion (7.6) for multiple clusters. In this case, θ̂(ij)

t is associated to the cluster
Υ∗ (either nominal or faulty, Line 15):

Υ∗ = min
Υ∈{Ψ,Φ1,...,Φφ}

nΥ(nΥ − p)
p(n2

Υ − 1)
m(θ̂

(ij)
t ,Υ). (7.7)

In other words θ̂(ij)
t is assigned to the nearest cluster, provided that con-

fidence 1 − αs is attained. Once Υ∗ has been determined, we set tΥ∗ = t
(Lines 12 and 34). If θ̂(ij)

t cannot be associated either to Ψ, or to {Φ1, . . . ,Φφ},
it is considered to be an outlier and inserted in O (Line 36).

The algorithm, after taking into account the “spatial” locality between
parameter vectors, analyses the “temporal” one, by evaluating to which
extent θ̂(ij)

t has been associated to Υ∗ (Lines 9 and 17), i.e.,

|tΥ∗ − t| ≤ ηt, (7.8)

85

Chapter 7. Fault Identification

where ηt ∈ N is a temporal threshold (when ηt = 1, the proposed CFDDS
verifies if two consecutive time vectors θ̂(ij)

t and θ̂(ij)
t−1 have been assigned to

the same cluster). This operation is important since we expect models built
over time to be temporally dependent.

If θ̂(ij)
t satisfies both the spatial (Equation (7.6)) and the temporal (Equa-

tion (7.8)) membership conditions for a specific cluster Υ∗, it is inserted in
there and Υ∗ statistics are updated as follows (Lines 10 and 18):

θ̄Υ∗ ←
nΥ∗

nΥ∗ + 1
θ̄Υ∗ +

1

nΥ∗ + 1
θ̂

(ij)
t (7.9)

SΥ∗ ←
nΥ∗ − 1

nΥ∗
SΥ∗ +

nΥ∗ + 1

n2
Υ∗

(θ̂
(ij)
t − θ̄Υ∗)(θ̂

(ij)
t − θ̄Υ∗)

T (7.10)

nΥ∗ ← nΥ∗ + 1. (7.11)

The aforementioned procedure might update cluster Υr so that it partly
overlaps with another one Υk. The proposed algorithm handles this sit-
uation with a cluster merging procedure (Lines 28 to 30). The union of
clusters Υr and Υk is performed when the following two conditions are
jointly satisfied,
nΥr(nΥknΥr − nΥk − p+ 1)

(nΥk + 1)(nΥr − 1)p
m(θ̄Υr ,Υk) ≤ Fαm

2
(p, nΥknΥr − nΥk − p+ 1)

(7.12)
nΥk(nΥrnΥk − nΥr − p+ 1)

(nΥr + 1)(nΥk − 1)p
m(θ̄Υk ,Υr) ≤ Fαm

2
(p, nΥrnΥk − nΥr − p+ 1),

(7.13)

i.e., if the cluster means θ̄Υr and θ̄Υk have probability greater than 1 − αm
to belong to Υk and Υr, respectively. In Equations (7.12) and (7.13),
Fαm

2
(p, nΥknΥr − nΥk − p + 1) is the quantile of order 1 − αm/2 of the

Fisher’s distribution quantile with parameters p and nΥknΥr − nΥk − p +
1. Approximated results for the confidence αm follow from the Bonfer-
roni correction for multiple tests. If the above conditions are satisfied, the
CFDDS merges the two clusters Υr and Υk to generate cluster Υ′ defined
as:

θ̄Υ′ ←
nΥr

nΥr + nΥk

θ̄Υr +
nΥk

nΥr + nΥk

θ̄Υk ; (7.14)

SΥ′ ← SΥr + SΥk +
nΥrnΥk

nΥr + nΥk

(θ̄Υr − θ̄Υk)(θ̄Υr − θ̄Υk)
T ; (7.15)

nΥ′ ← nΥr + nΥk ; (7.16)
tΥ′ ← max{tΥr , tΥk}. (7.17)

86

7.2. On-line Modeling the Fault Dictionary

The exact computation of the update for the covariance matrix is performed
as in [66].

After a cluster update or the merge of two clusters, the proposed CFDDS
checks if parameter vectors in the outlier setO can now be associated either
to the nominal state or to one of the faulty ones (Lines 19 to 24).

7.2 On-line Modeling the Fault Dictionary

We addressed so far the procedure allowing the insertion of the parameter
vectors into the nominal and faulty clusters and the merging of two faulty
clusters. The remaining θ̂

(ij)
t are collected into the outlier set O, where

further inspection is performed during the operational life of the system, to
verify whether a new faulty state must be created or not.

With reference to Algorithm 8, a new cluster needs to be created depend-
ing on the outcome of the KS test (Line 4). The test compares the empirical
Cumulative Distribution Function (CDF) of all the θ̂(ij)

h s estimated by the
proposed CFDDS during both the training and the operational phases and
the CDF induced by considering the estimated nominal state Ψ and faulty
states {Φ1, . . . ,Φφ}. If the distribution of the θ̂(ij)

h s is no more coherent
with the current set of clusters, a new cluster must be created and a new
faulty class inserted in Φ. More in detail, the test is designed as:

H0 : F̂ = FΓ vs. H1 : F̂ 6= FΓ (7.18)

where F̂ is the empirical CDF of all the θ̂s and FΓ is the distribution induced
by Gaussian clusters Γ = {Ψ,Φ1 . . .Φφ}. The KS test statistics takes into
account the maximum distance between the two CDFs

Dp = max
0≤α≤1

|F̂ (Bα)− FΓ(Bα)|, (7.19)

where Bα is the region in the parameter space such that FΓ(Bα) = α
(see [73] for further details). As stated in [73], Dp has the same distribution
of the one-dimensional KS distribution, so, for the KS test, we can compare
it with the asymptotic form of the KS distribution K [53, 78]. Given a con-
fidence level αc, the critical region of the KS test (i.e., for rejecting the null
hypothesis H0) is composed by all Dp:

Dp > Kαc (7.20)

whereKαc is the quantile of order 1−αc of the one-dimensionalK distribu-
tion. The proposed statistical test suffers from the curse of dimensionality,

87

Chapter 7. Fault Identification

i.e., it needs an exponentially increasing number of samples to be effec-
tive as the parameter vectors dimension p increases. Therefore, if needed,
we suggest to apply a dimensionality reduction method to the parameter
vectors θ̂(ij)

h ∈ O, e.g., based on PCA [50] or Random Projection (RP)
method [23].

Once the KS test provides enough confidence to claim that a new clus-
ter must be generated from the outlier set (i.e., hypothesis H0 is rejected),
suitable instances are removed from O and the new cluster is created. We
assume the availability of a supervisor that is able to label new faulty clus-
ters, e.g., by providing the type of encountered fault. This allows us for
creating online the fault dictionary. On the contrary, when the hypothesis
H0 is not rejected, Algorithm 8 returns an empty set (Line 32).

It is worth noting that the Mahalanobis distance cannot be considered to
measure the proximities between couples of parameter vectors in O, since
the distribution of elements in the outlier set is unknown (i.e., we cannot
assume that θ̂(ij)

h s ∈ O are Gaussian distributed as they are not). To address
this issue we defined the spatial-temporal norm on θ̂(ij)

h , θ̂
(ij)
k ∈ O, inspired

by the metric suggested in [92]:

||θ̂(ij)
h − θ̂(ij)

k ||
2
λ = λ

||θ̂(ij)
h − θ̂(ij)

k ||2

2p
+ (1− λ)

|h− k|
t

(7.21)

where || · || is the euclidean norm, t is the last batch of data considered
and λ ∈ [0, 1] is a penalty factor balancing the spatial locality and the
temporal one. A normalization procedure is required so that both the spatial
and temporal components of the norm are constrained to the [0, 1] interval.
The proposed CFDDS adopts the online normalization procedure described
in [48].

To select parameter vectors for the new cluster, we apply to the outlier
set O the Mountain Method (MM) [83, 85, 87], which identifies the density
center for the θ̂(ij)

h s, θ̂(ij)
h ∈ O (Lines 7 to 12). Finally, this algorithm

estimates the density as:

ΩRMM(ck, θ̂
(ij)
h ; r) = exp

(
−||θ̂

(ij)
h − ck||2λ

2r2

)
(7.22)

where ck ∈ Rp is a center and r is an influence radius parameter. The
algorithm iteratively approximates:

c∗ = max
c

∑
θ̂
(ij)
h ∈O

ΩRMM(c, θ̂
(ij)
h , r). (7.23)

88

7.2. On-line Modeling the Fault Dictionary

The potential function ΩRMM is robust to outliers (see [87] for a formal
proof) and, since it decreases slowly when ||θ̂(ij)

h − ck||λ < r and fast if
||θ̂(ij)

h − ck||λ > r, it defines a neighbourhood around each class center
ck. For the purpose of the cluster creation a center will be initialized for
each parameter vector θ̂(ij)

h ∈ O. As described in [85], ηi of Algorithm 8
represents both a tolerance threshold for the convergence of the iterative
procedure to identify the cluster center and the maximum error of the opti-
mization procedure. As one might imagine the method is rather sensitive to
r, which highly influences the clustering results. Here, we suggested three
different heuristics to identify a suitable value for the radius r:

• power estimate using correlation [87];

• median distance criterion [83];

• maximum edge length of minimum spanning tree under the normal
distribution hypothesis [67].

At the end of the mountain method each parameter vector is associated
with a set Os (Lines 14 to 15) and Õ, the set characterized by the largest
cardinality, is selected as a new candidate cluster.

To identify the cluster shape of Õ (we do not have a priori information
about the covariance matrix of the novel cluster), a Minimum Covariance
Determinant search method [40] is executed (Lines 16 to 29), i.e., a sub-
set of elements Ō ⊆ Õ is selected s.t. the determinant of the parameter
covariance is minimal. This method can be applied when the number of
samples in Õ ≥ p. When this condition is satisfied (Line 16), a new cluster
is created: the mean and the covariance of the parameter vectors in Ō are
computed, nΦφ+1

= |Ō|, tΦφ+1
= maxθ̂h∈Ō h and the algorithm returns Ō

(Line 27). Otherwise, when Õ < p, the algorithm returns the empty set ∅
(Line 29).

Note that the algorithm requires at least nΥ = p + 1 parameter vectors
to create a cluster. More parameter vectors would allow a better character-
ization of the cluster itself since the variance of the estimation of the mean
and the covariance matrix scales asymptotically as 1

nΥ
. Moreover, as time

passes, more and more parameter vectors are inserted into the outlier set.
To reduce as much as possible the creation of false faulty classes we should
consider an oblivion coefficient on the parameter vectors in the outlier set or
mechanisms to discard the oldest ones (e.g., by setting a maximum value on
the cardinality of the outlier set and keeping the new ones). The algorithm
can be easily modified to take into account this case.

89

Chapter 7. Fault Identification

Algorithm 8 Faulty Cluster Creation Algorithm

Data: Outlier set O; Clustering Γ; αc, ηi;
Results: Faulty cluster Ō;
Compute Dp according to Equation (7.20)
if Dp > Kαc then

Set ch = θ̂
(ij)
h , ∀θ̂(ij)

h ∈ O and err ≥ ηi
Compute r
while err ≥ ηi do

for k s.t, θ̂(ij)
k ∈ O do

ĉk ← ck

ck ←

∑
θ̂
(ij)
h ∈O ΩRMM (ck, θ̂

(ij)
h ; r)θ̂

(ij)
h∑

θ̂
(ij)
h ∈O ΩRMM (ck, θ̂

(ij)
h ; r)

end for
err = max

k
||ĉk − ck||λ

end while
Associate all centers ck, ch s.t. ||ck − ch||λ ≤ 2ηi to a set, creating the sets
O1, . . . , OS
Let Õ = arg maxs∈{1,...,S} |Os|, i.e., the set with the largest cardinality
if |Õ| ≥ p then

Choose randomly h̄ = |Õ|+p+1
2 elements in Õ to define Ō

Set S∗ =
∑
θ̂
(ij)
h ∈Ō

(θ̂
(ij)
h −c∗)(θ̂(ij)h −c∗)T

h̄−1

while Ō 6= Ō′ do
Ō′ ← Ō
for θ̂(ij)

h ∈ Ō do
d(θ̂

(ij)
h) = (θ̂

(ij)
h − c∗)(S∗)−1(θ̂

(ij)
h − c∗)T

end for
Ō ← arg minO′⊆Õ,|O′|=h̄

∑
θ̂
(ij)
h ∈O′ d(θ̂

(ij)
h)

S∗ ←
∑
θ̂
(ij)
h ∈Ō

(θ̂
(ij)
h −c∗)(θ̂(ij)h −c∗)T

h−1

end while
return Ō

else
return Ō = ∅

end if
else

return Ō = ∅
end if

90

7.3. Dealing with Incipient Faults

7.3 Dealing with Incipient Faults

One of the main assumption of the proposed identification phase is that
faults abruptly moves the process from a stationary state to a new stationary
one (abrupt faults). This is due to the fact that only stationary states induce a
Gaussian topology in the parameter space (see Section 3.3 for more details),
while there are no theoretical results for different kind of faults. Thus, if the
assumption that only abrupt faults occur does not hold, situation different
from those previously described may appear in the parameter space, where
parameter vectors are not identically distributed anymore. Some examples,
where the faults have incipient development are presented in Figure 7.3.

In particular, Figure 7.3a presents the situation where the fault has an
incipient development and, after that, it stabilizes into a stationary state
(incipient permanent fault). In this case, the identification phase of the
proposed CFDDS is still able to deal with this situation, provided that a
strong evidence for the creation of the cluster is provided. For instance, we
could impose a stronger condition for the cluster creation procedure, like
requiring to have at least p̄ >> p+1 to allow the formation of a new cluster.

When the fault induces a set of continuously drifting parameter vectors,
as in Figure 7.3b, the ability to characterize a fault in the parameter space
seem to be not viable anymore. Moreover, in this case the analysis should
be carried on the trajectory the parameter vectors are following, for instance
by relying on joint information on its temporal and spatial evolution (speed
and acceleration in the parameter space).

When the process slowly drifts in the parameter space from a station-
ary state to another, as in Figure 7.3c, it may happen that the nominal and
the faulty clusters significantly overlap. If we are expecting such a phe-
nomenon, a conservative solution is to fix the nominal state at the end of
the training phase (i.e., we do not update its estimated mean θ̄Ψ and covari-
ance matrix SΨ if a new parameter vector belonging to the nominal state is
spotted). With this approach we avoid to include parameter vectors belong-
ing to a fault into the nominal cluster.

91

Chapter 7. Fault Identification

θ1

θ2

(a) The transition phase (for instance,
given by an incipient fault) is fast
and the fault stabilizes in a station-
ary state

θ1

θ2

(b) The fault is rapidly changing (for in-
stance, a continuous drift) and the
evolving algorithm is not able to
characterize it. Its parameter vec-
tors form a trajectory in the param-
eter space)

θ1

θ2

(c) Slowly drifting fault, which overlaps
with the nominal state

Figure 7.3: Example of different incipient faults in the parameter vectors space

92

CHAPTER8
CFDDS Implementation

In this chapter, we report a brief overview of the main functions imple-
menting the previously described phases of the proposed CFDDS, which
are considered in Chapter 9 to validate the proposed framework. The code
developed within this dissertation is available at [2].

Two external toolboxes were considered within the libraries developed:
one for the estimation of the HMM and one for the multivariate granger
causality toolbox [18]. The library implementing the proposed CFDDS is
structured as follows:

• data generation procedures (data_gen directory)

• parameter vectors estimation (model_estimation directory)

• graph learning phase(cogn_net directory)

• detection and isolation phases (cogn_hmm directory)

• identification phase (cogn_fds directory)

93

Chapter 8. CFDDS Implementation

Data Generation

opts_generation: generates the options for the input, output and
fault generation procedures. It needs as input two structures describing the
structure of the signal to be simulated and the fault signature.

input_generation: generates an input for a discrete time dynamic
process. The function allows to generate data from a cosinusoidal func-
tion with additive noise, from a Gaussian random walk process or from a
uniform distribution over [−1, 1].

signal_generation: generates the output of a discrete time dy-
namic process, given the exogenous input and specifics about the dynamic
model to take into account. It is possible to choose among a linear ARX
model, a pendulum and a Van der Pol oscillator [51].

fault_generation: injects faults in a given signal. It allows to
insert structured (with dynamic φ(t) = f(x, y)) faults, as well as non struc-
tured ones (φ(t) = φ̄, φ̄ ∈ R).

Parameter Estimation

idarmax: estimates the orders of a given model family (e.g., ARX),
based on a given dataset. It allows to consider a specific range of orders
and to choose the criterion used for the selection (e.g., Akaike Information
Criterion (AIC), Mean Square Error (MSE) on a validation set).

model_creation: estimates model parameter vectors from an input-
output dataset {(x(t), y(t))}Nt=1 given the orders of the linear dynamic sys-
tem to consider.

Graph Learning

sel_rel: learns the dependency graph from a fault-free dataset, by
choosing among different methods (e,g,. correlation analysis and Granger-
based statistical test).

granger: implements the Granger-based test for assessing the multi-
variate Granger causality in a multivariate dataset.

Detection Phase

train_hmm_fds: estimate the parameters of a HMM or an ensemble
of HMMs relying on a given training dataset. It requires also to specify the
binary relationships which should be considered, i.e., it requires to have a

94

dependency graph in order to decide which set of relationships to take into
account.

test_hmm_fds: given a model trained with train_hmm_fds and
a stream of data, it computes the loglikelihood for each trained HMM and
for each relationship considered during training.

plot_lls: given a model tested with test_hmm_fds it is able to
plot the computed loglikelihood for the data provided during the testing
phase.

hmm_fds_detection: given a HMM model and an aggregation method,
it is able to compute the detection result for a single functional relationship.

detection_net: aggregates the results provided by hmm_fds_detection
and checks the consistency of the previously provided results.

Isolation Phase

fds_isolation: is able to perform the isolation phase of the pro-
posed CFDDS, given the loglikelihoods provided by HMMs on different
functional relationships.

Identification Phase init_clu: initializes an empty clustering structure,
able to store both the cluster representing the nominal state of the system
and the ones representing the faulty states.

clust_train: populates the nominal cluster and updates its statis-
tics.

clust_evol: core of the evolving algorithm described in Algorithm 7.
Given an estimated parameter vector, it is able to automatically decide to
assign it to the nominal state, to a faulty one or to the outlier set, as well
as to create new cluster, merge the old ones if necessary and update their
statistics.

95

CHAPTER9
Experimental Results

In this chapter, we analyse the performance of the proposed CFDDS on
a synthetically generated dataset, a real benchmark coming from sensor
networks designed to perform an environmental monitoring task and a sim-
ulated one based on data coming from a sensor network inspecting a wa-
ter distribution system. We here considered each phase of the proposed
CFDDS one at a time, to evaluate separately the advantages each phase is
providing to the overall framework. The chapter is structured as follows: at
first an overview of the considered datasets is presented in Section 9.1. Af-
ter that the phases of the proposed CFDDS are tested on the aforementioned
datasets in Sections 9.2 to 9.5. Finally, general remarks on the described
experimental campaign are provided in Section 9.6.

9.1 The Considered Datasets

9.1.1 Application D1: Synthetic Datasets

Here, we consider datastreams coming from a synthetically generated sen-
sor network with randomly generated relationships among datastreams. To
generate these data, a directed acyclic graph, representing the dependency

97

Chapter 9. Experimental Results

graph of the existing functional relationships (with a fixed amount of nodes
and a fixed number of edges) is generated. After that, for all those sen-
sors without any incoming edge, we generate samples by relying on the
following autoregressive process:

xi(t) = φxi(t− 1) + ψ(t) (9.1)

where φ = 0.4, ψ(t) ∼ N (0, 0.1), η(t) is an uncorrelated white noise
s.t. η(t) ∼ N (0, σ2) and σ is the standard deviation of the noise. Then,
by considering a topological order of the graph1, datastreams are generated
either through linear L or sinusoidal S models as:

L : xj(t) = θTj z + η(t); (9.2)

S : xj(t) = sin
(
θTj z

)
+ η(t), (9.3)

where:

z =
[
xj(t− 1), xj(t− 2), xi1j(t− 1), xi1j(t− 2),

. . . , xinj(t− 1), xinj(t− 2)
]

(9.4)

z ∈ R2(1+nj) is the vector of the autoregressive (xj(t − 1), xj(t − 2)) and
exogenous (xi1j(t − 1), . . . , xinj(t − 2)), {i1j, . . . inj} components, is the
set of the indexes of those sensors s∗ s.t. exists an edge (s∗, sj) in the
graph, i.e., the indexes of the sensors s∗ with an edge from s∗ to sj , and
θj ∈ R2(1+nj) is a randomly generated vector.

s1 s2

s3

s4s5s6

Figure 9.1: Example of generation of the dependency graph for a network with n = 6
sensors.

1Any of the possible topological orders provides the same results for what it concerns the generation of the
datastreams.

98

9.1. The Considered Datasets

For instance in the graph of Figure 9.1, we generate at first the datas-
treams x6, x5 or x4 from Equation (9.1) (in any order). After that, by fol-
lowing the topologic order of the graph, we generate x3 from either Equa-
tion (9.2) or Equation (9.3) by considering as input streams x6, x5 and x4.
By using the same model chosen to generate x3, we generate x2 (using as
input x6, x4 and x3) and x1 (using as input all the other streams).

9.1.2 Application D2: Rialba Dataset

In this application data are gathered from a rock collapse and landslide
forecasting system, [5, 6] deployed at the Towers of Rialba site, in North-
ern Italy. The sensor network deployment area is inspecting a limestone-
conglomerate rock divided by a system of fractures. The towers are close
to the main civil infrastructures connecting Lecco and Sondrio provinces
(speedway, railway, gas, and electric distribution networks). The monitor-
ing system consists of three sensing and processing units and a base sta-
tion and has been active since July 7th, 2010. The base station relies on a
Universal Mobile Telecommunications System (UMTS) modem for remote
data and commands communication with the Intelligent Embedded System
lab.

This dataset is available at [1]. The sampling period of the provided
data is 5 minutes. We would like to point out that this scenario represents
a particularly challenging application of the techniques developed within
this dissertation, since it is hard to infer a precise analytical model of the
observed phenomenon.

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

Clinometer 2

Clinometer 1

Sample

Figure 9.2: The measurements acquired from two clinometers of the monitoring system
deployed at the Towers of Rialba.

An example of the data coming from this application are presented in

99

Chapter 9. Experimental Results

Figure 9.2, in particular here we show the measurements coming from two
clinometers deployed in two different units of the sensor network.

9.1.3 Application D3: Barcelona Water Distribution Network System
Dataset

Figure 9.3: Scheme for the BWNDS

The second testbed refers to data generated from the BWNDS simulator
[25], whose scheme is provided in Figure 9.3. By relying on a network
of 17 tanks, 26 pumps, 35 valves, 9 external sources of the BWNDS, this
simulator allows to artificially inject faults in a specific flow sensor of the
network, by specifying the fault signature, the fault magnitude and the fault
time-horizon. This simulator has been developed in MATLAB/SIMULINK
environment, using a model calibrated and validated with real data provid-
ing a good degree of representativeness of the actual network behaviour.

9.2 Dependency Graph Learning

The aim of this section is to evaluate the performance of the proposed
dependency graph learning phase using both data synthetically generated
(Application D1) and coming from a real-world sensor network for rock
collapse and landslide forecasting (Application D2). In particular, two dif-
ferent objectives have been considered and evaluated:

• the ability to correctly identify the meaningful relationships existing
among the acquired datastreams;

• the fault detection performance of the HMM-CDT relying on the learned
Granger-based dependency graph.

100

9.2. Dependency Graph Learning

Figures of Merit With respect to the ability to identify the correct relation-
ships in acquired datastreams, we consider the following figures of merit:

• Recall R = |Er∩E|
|Er| : fraction of correctly selected functional relation-

ships that are present in the learned dependency graph;

• Precision P = |Er∩E|
|E| : fraction of functional relationships in the learned

dependency graphed that are correctly selected,

where Er is the set of truly existing relationships among acquired data and
| · | is the cardinality operator.

Differently, for the evaluation of the fault detection performance, we
consider the following figures of merit:

• False Positive rate (FP): fraction of experiments in which the detec-
tion of the change happened before the change occurred;

• False Negative rate (FN): fraction of experiments where no change
was detected in the relationship affected by the fault (or environmental
change);

• Detection Delay (DD): number of samples necessary to detect a change,
if no false positive detection occurred.

Comparison To compare the performance of the proposed dependency graph
learning phase, we considered the correlation analysis adopted in [8]. More
specifically we considered the maximum (w.r.t. different time lags) of the
crosscorrelation between couples of datastream and we consider the rela-
tionship only if its value was higher than the chosen threshold ρ, 0 < ρ < 1.
In particular, we considered three different values of the crosscorrelation
threshold: high crosscorrelation (i.e., ρhigh = 0.9), low crosscorrelation
(ρlow = 0.02) and best crosscorrelation (ρbest defined as the highest value of
crosscorrelation that allows to consider all the truly existing relationships
in the dependency graph). Obviously, the best crosscorrelation threshold
cannot be a priori set (since it requires the knowledge of the true relation-
ships present within the network) and, hence, it represents the correct value
for the threshold. We verified a posteriori that the high and low values of
the threshold have been properly set, since they actually were higher and
lower than the value considered for the best one ρbest, respectively.

Parameters Configuration The confidence on the Granger-based test is set to
αg = 0.05. The parameters of the HMM-CDT have been assigned as fol-
lows: N = 100, k = 10, the best configuration for the HMMs was selected

101

Chapter 9. Experimental Results

by considering s ∈ {3, . . . , 6} hidden states and the number of GMMs is
in {1, 2, 4, 8, 16, 32}. The orders of the Single Input Single Output (SISO)
ARX models are chosen through a model selection procedure based on the
mean square error on a validation set.

9.2.1 Application D1: Synthetic Dataset

Experimental Setting Here, we consider a sequence of 7145 samples gener-
ated from S or L with n = 6, |E| = 6 and the first M = 4085 used for
the training and validation phase, while the remaining ones constitute the
test set for the detection phase. In the experiments regarding the ability to
correctly identify the meaningful relationships existing in acquired datas-
treams, we considered 20 equally spaced noise levels σ ∈ [0.05∆i, . . . ,∆i],
where ∆i = maxt xi(t)−mint xi(t). Differently, in the experiments on the
fault detection performance, an additive constant abrupt fault:

A(2) φi(t) =

{
0.2∆i t > t̄

0 otherwise

has been injected at time instant t̄ = 5309 on each sensor one at a time (to
model a sensor fault) and on all the sensors at the same time (to model a
change in the environment2). Results are averaged over the different faults
and repeated over 100 runs.

Results The experimental results on the ability to correctly identify the
meaningful relationships are presented in Figures 9.4 to 9.7. As expected,
the choice of the threshold value for the crosscorrelation analysis is critical.
In fact, it is possible to see that the choice of a low correlation threshold ρlow
implies the selection of |E| ≈ 30 relationships, leading to a recall R ≈ 1.
As expected, the drawback of this solution is the fact that the precision
P ≈ 0.4, thus the method is considering several non-relevant relationships.
Conversely, the main drawback of the high correlation threshold ρhigh is the
fact that relevant relationships might not be included into the dependency
graph. More specifically, when σ > 0.1, the correlation analysis method
does not select any relationship. As expected, by analysing Figure 9.8, we
can see that the best correlation value ρbest decreases as noise increases.
Thus, one should rely on a priori information about the noise level to be
able to set the proper threshold for the correlation analysis. Conversely, the

2Here, we consider the simplifying assumption that the injected change propagates instantly though the sensor
network.

102

9.2. Dependency Graph Learning

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
P

re
ci

si
on

Noise σ

High corr: ρ = 0.9
Best corr

Low corr ρ = 0.02

Granger: α = 0.05

Figure 9.4: Precision in the linear case

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Noise σ

High corr: ρ = 0.9
Best corr

Low corr ρ = 0.02

Granger: α = 0.05

Figure 9.5: Precision in the sinusoidal case

103

Chapter 9. Experimental Results

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R
ec

al
l

Noise σ

High corr: ρ = 0.9
Best corr

Low corr ρ = 0.02

Granger: α = 0.05

Figure 9.6: Recall in the linear case

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R
ec

al
l

Noise σ

High corr: ρ = 0.9
Best corr

Low corr ρ = 0.02

Granger: α = 0.05

Figure 9.7: Recall in the sinusoidal case

104

9.2. Dependency Graph Learning

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

Noise σ

B
es

t c
or

re
la

tio
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

Noise σ

B
es

t c
or

re
la

tio
n

Figure 9.8: Box-plot for the best correlation: the linear L (top) and sinusoidal S (bottom)
cases

proposed dependency graph learning phase based on Granger causality is
able to maintain acceptable values for both precision and recall (P ≈ 1,
equal to the one obtained by choosing ρlow, and R > 0.7) without any a
priori information about the noise level.

Results about fault detection are shown in Table 9.1. We considered
three different noise levels σ ∈ {0.05, 0.1, 0.3} and three different values
of the parameter C for the HMM-CDT, to allow a fair comparison among
the proposed Granger-based framework (identified from now on with G),
the crosscorrelation algorithm with ρlow and the crosscorrelation algorithm
with ρbest (the one with ρhigh is not considered here). More specifically,
Cgran is the smallest parameter that allows to have FP = 0 for the HMM-
CDT based on the Granger-based dependency graph. Similarly Cbest and
Clow are the ones allowing to have FP = 0 for the HMM-CDT based on
correlation analysis graph, by using ρbest and ρlow, respectively, as thresh-
olds for the crosscorrelation. By looking at the experiments on the lin-
ear function L with σ = 0.05, we can see that, with Cgran, the Granger-
based solution provides DD and FN similar to the ones obtained with
ρbest (DD = 49.7 and FN = 0.113 for G, DD = 49.2 and FN = 0.079
for ρbest), and G provides a lower FP (FP = 0 for G and FP = 0.41 for
ρbest) without requiring any a priori information about the network or the
noise level.

By comparing the proposed Granger-based framework with correlation

105

Chapter 9. Experimental Results

Table 9.1: Detection results for Application D1

L
in

ea
rf

un
ct

io
n
L

σ = 0.05 σ = 0.1 σ = 0.3
Cgran = 4.5 Cgran = 4.9 Cgran = 4.8

ρbest ρlow G ρbest ρlow G ρbest ρlow G
|E| 10.1 16.3 6.0 8.3 16.0 6.1 7.3 15.9 6.0
DD 49.2 65.0 49.7 87.4 93.6 85.7 130.3 131.9 132.1
FN 0.079 0.044 0.113 0.126 0.064 0.181 0.307 0.104 0.354
FP 0.410 0.650 0.000 0.280 0.610 0.000 0.120 0.620 0.000

Cbest = 5.2 Cbest = 5.2 Cbest = 5.0
|E| 10.1 16.3 6.0 8.3 16.0 6.1 7.3 15.9 6.0
DD 56.7 62.0 56.9 88.5 103.2 92.1 124.8 127.6 133.0
FN 0.117 0.061 0.129 0.180 0.080 0.206 0.351 0.129 0.359
FP 0.000 0.390 0.030 0.000 0.460 0.020 0.000 0.530 0.020

Clow = 6.0 Clow = 6.3 Clow = 6.2
|E| 10.1 16.3 6.0 8.3 16.0 6.1 7.3 15.9 6.0
DD 63.1 63.4 62.3 109.6 110.7 112.3 149.0 134.8 156.1
FN 0.139 0.093 0.154 0.217 0.140 0.247 0.434 0.259 0.450
FP 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000

Si
nu

so
id

al
fu

nc
tio

n
S

σ = 0.05 σ = 0.1 σ = 0.3
Cgran = 5.1 Cgran = 5.1 Cgran = 4.6

ρbest ρlow G ρbest ρlow G ρbest ρlow G
|E| 10.0 16.1 6.0 9.0 16.0 6.0 7.4 15.8 5.9
DD 47.5 51.5 49.0 84.3 84.5 82.2 112.0 127.0 14.9
FN 0.081 0.043 0.121 0.111 0.047 0.177 0.256 0.076 0.317
FP 0.350 0.610 0.000 0.360 0.660 0.000 0.200 0.670 0.000

Cbest = 5.7 Cbest = 5.7 Cbest = 5.0
|E| 10.0 16.1 6.0 9.0 16.0 6.0 7.4 15.8 5.9
DD 53.8 60.2 55.2 83.7 86.5 90.1 115.0 127.8 123.3
FN 0.110 0.057 0.136 0.179 0.076 0.200 0.311 0.114 0.346
FP 0.000 0.360 0.030 0.000 0.410 0.030 0.000 0.500 0.000

Clow = 6.7(2.3) Clow = 6.5(4.0) Clow = 6.4(2.2)
|E| 10.0 16.1 6.0 9.0 16.0 6.0 7.4 15.8 5.9
DD 61.5 61.3 63.5 89.9 91.7 95.0 143.9 129.5 152.2
FN 0.127 0.103 0.156 0.203 0.131 0.236 0.383 0.239 0.421
FP 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.000

106

9.2. Dependency Graph Learning

analysis with ρlow, it presents higher values for detection delay and false
positive rate (DD = 65 and FP = 0.65) and is able to maintain a lower
false negative rate (FN = 0.044). Moreover, the amount of considered
edges for G is |E| = 6, while both correlation analysis methods were
proposing |E| > 10 edges.

Table 9.1 highlights in bold those results with threshold C s.t. FP = 0,
to easily compare |E|, DD and FN for the considered methods. By con-
sidering the G performance with Cgran and those obtained with crosscor-
relation analysis with ρbest and Cbest, we can observe that false negative
rates for both methods are similar (FN ≈ 0.11), while G is characterized
by lower detection delay and uses a smaller set of relationships (|E| = 6
for G and |E| = 10.1 for ρbest). At last, if we compare G with Cgran and
ρlow with Clow, we can see that the latter presents a slightly lower num-
ber of false negative detections, while G provides lower detection delay
(DD = 49.7 for G and DD = 63.4 for ρlow). This behaviour suggests
that, if the only concern is to maintain low FN , one should consider all the
available relationships at the expense of high FP . Results about the sinu-
soidal case S, as well as those with different noise levels, are in line with
those of the linear one L with σ = 0.05.

9.2.2 Application D2: Rialba Dataset

Experimental Setting In this set of experiments, we consider n = 10 sensors
(i.e., 3 external temperature sensors, 3 in hole temperature sensors and 4
accelerometer sensors). A total of 1285 data are considered for each sen-
sor and the first M = 800 samples are used for training. Abrupt additive
constant faults:

A(5) φi(t) =

{
0.5∆i t > t̄

0 otherwise

has been injected at time instant t̄ = 1042 in each of the streams one at a
time (to model fault in a sensor) and in all the sensors at the same time (to
model a change in the environment).

Results Since we do not have information about the relevant relationships
existing among acquired data, we neither can evaluate R and P , nor com-
pute ρbest. We report that, by considering the low crosscorrelation threshold
ρlow, 61 relationship are selected, while, with the high one ρhigh, 42 rela-
tionships are chosen. Differently, the proposed dependency graph learning

107

Chapter 9. Experimental Results

phase selects 19 relationships. Interestingly, 12 over 19 of those relation-
ships are in common with the high crosscorrelation selection and 15 are in
common with the low crosscorrelation one.

Table 9.2: Detection results for Application D2: the numeric values are detection delays
DD for different dependency graph learning algorithms, while FP and FN stands
for false positive and false negative detections, respectively.

Cgran = 1.271 Chigh = Clow = 3.141
DD DD

Faulty sensor G ρhigh ρlow G ρhigh ρlow
s1 1 FP FP 2 2 2
s2 1 FP FP 7 7 3
s3 1 FP FP 7 1 1
s4 1 FP FP 2 2 1
s5 2 FP FP FN 8 8
s6 2 FP FP 6 3 3
s7 1 FP FP 2 2 1
s8 2 FP FP 55 55 9
s9 2 FP FP 5 5 5
s10 1 FP FP 3 1 1
All 1 FP FP 1 1 1

Results for the detection phase are provided in Table 9.2. The HMM-
CDT parameter C is here set to Cgran = 1.271 and Chigh = Clow = 3.141,
which are the smallest values s.t. FP = 0 by considering the Granger and
correlation analysis approaches, respectively. The Granger-based method
is able to maintain a DD generally better than the one provided by the cor-
relation analysis. Is it also possible to see that in the case of fault located in
sensor s5 the Granger-based framework does not provide a detection (FN),
supporting the idea that one should select a high number of relationships to
maintain a low FN , at the expense of an increase in the FP .

9.3 Detection Phase

To evaluate the detection performance of the proposed proposed CFDDS
based on the EHMM-CDT algorithm we considered the synthetic (Appli-
cation D1) and a real data scenario (Application D2). Here the specific
aim is the to test the proposed CFDDS to assess its detection promptness
and accuracy, in terms of false positive, false negative rates and detection
delays.

108

9.3. Detection Phase

Figures of Merit To evaluate the detection ability of what proposed, the fol-
lowing figures of merit have been considered:

• False Positive rate (FP): fraction of the experiments where the method
detected a change before it actually appears;

• False Negative rate (FN): fraction of the experiments where the method
did not detected a change;

• Detection Delay (DD): the number of samples necessary to detect a
change.

Comparison The detection phase of the proposed CFDDS is compared with
the HMM-CDT, where a single HMM was considered (the one with largest
loglikelihood on a validation set among those considered for the ensemble).

Parameters Configuration As regards the model family M, we considered
SISO LTI ARX models, whose orders are chosen through a model selec-
tion procedure, i.e., minimizing the mean square one-step-ahead prediction
error on a validation set. The HMMs are configured by considering batches
of N = 100 samples, parameter vector sequences of length k = 10 and
exploring the space of HMMs with s ∈ {3, . . . , 6} hidden states and with
{1, 2, 4, 8, 16, 32} Gaussian distributions in each GMM. The cardinality of
the ensemble was set to Q = 30. Finally, the parameter vectors estimation
is performed with the LS method.

9.3.1 Application D1: Synthetic Dataset

Experimental Setting The data for the synthetic application have been gener-
ated from S with n = 2 sensors, where θ2 ∈ [0, 1]33, σ ∈ {0.01∆2, 0.05∆2},
where ∆2 = maxt x2(t)−mint x2(t). Each experiment lasts 6125 samples,
where M = 3268 are used for training, O = 817 for validation and 2040
for testing. Results are averaged over 1000 independent runs.

To assess the detection abilities of the detection phase for the propose
CFDDS, we injected five different kinds of abrupt permanent faults starting
at time instant t̄ = 5105:

3In this set of experiments we considered only one exogenous input, i.e., the coefficient of x1(t−2) is always
zero.

109

Chapter 9. Experimental Results

A(1) φ2(t) =

{
0.1∆2 t > t̄

0 otherwise

A(2) φ2(t) =

{
0.2∆2 t > t̄

0 otherwise

A(3) φ2(t) =

{
0.3∆2 t > t̄

0 otherwise

M(3) ψ22(t) =

{
0.3 t > t̄

0 otherwise

S

ψ22(t) =

{
−1 t > t̄

0 otherwise

φ22(t) =

{
x2(t̄) t > t̄

0 otherwise

Results Figure 9.9 shows the experimental results in the case of the syn-
thetic scenario (Application D1) and σ = 0.05∆2. Curves are obtained
by considering values of C ∈ [1, 5.1], since 5.1 is the largest value of C
for which FN ≤ 0.1 for all the faulty scenarios. Interestingly, in all the
considered scenarios the ensemble approach is able to improve the detec-
tion ability (in terms of both FP and DD) of the single HMM-CDT. These
curves show that the performance of EHMM-CDT cannot be achieved by
the HMM-CDT by simply tuning the parameter C. In addition, in the faulty
scenario M(3) where FNs are present, the proposed EHMM-CDT behaves
better than HMM-CDT even with respect to this figure of merit (see legend
of Figure 9.9d).

110

9.3. Detection Phase

30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Detection delay

F
al

se
 p

os
iti

ve

HMM−CDT (FN: 0%)
EHMM−CDT mean (FN: 0%)
EHMM−CDT min (FN: 0%)

(a) Fault A1

20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Detection delay

F
al

se
 p

os
iti

ve

HMM−CDT (FN: 0%)
EHMM−CDT mean (FN: 0%)
EHMM−CDT min (FN: 0%)

(b) Fault A2

15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Detection delay

F
al

se
 p

os
iti

ve

HMM−CDT (FN: 0%)
EHMM−CDT mean (FN: 0%)
EHMM−CDT min (FN: 0%)

(c) Fault A3

50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Detection delay

F
al

se
 p

os
iti

ve

HMM−CDT (FN: 9.7%)
EHMM−CDT mean (FN: 8.3%)
EHMM−CDT min (FN: 6.3%)

(d) Fault M

25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Detection delay

F
al

se
 p

os
iti

ve

HMM−CDT (FN: 0%)
EHMM−CDT mean (FN: 0%)
EHMM−CDT min (FN: 0%)

(e) Fault S

Figure 9.9: Results for the detection phase on Application D1: the relationship between
FP and DD is presented with σ = 0.05∆2, where C ∈ [1, 5.1]

111

Chapter 9. Experimental Results

Ta
bl

e
9.

3:
D

et
ec

tio
n

re
su

lts
fo

r
th

e
si

ng
le

an
d

en
se

m
bl

e
H

M
M

-C
D

T
ap

pr
oa

ch
es

fr
om

A
pp

lic
at

io
n

D
1

(w
ith

di
ffe

re
nt

va
lu

es
fo

r
th

e
no

is
e

le
ve

le
σ

)a
nd

A
pp

lic
at

io
nD

2

H
M

M
-C

D
T

E
H

M
M

-C
D

T
A
m
e
a
n

A
m

in

F
N

F
P

D
D

F
N

F
P

D
D

F
N

F
P

D
D

σ=0.01∆2

A
(1

)
0.

00
0

0.
00

7
21

.6
14

0.
00

0
0.

00
7

19
.4

19
0.

00
0

0.
00

6
19

.7
17

A
(2

)
0.

00
0

0.
00

7
17

.4
15

0.
00

0
0.

00
7

15
.3

20
0.

00
0

0.
00

6
15

.6
38

A
(3

)
0.

00
0

0.
00

7
15

.3
96

0.
00

0
0.

00
7

13
.7

24
0.

00
0

0.
00

6
13

.9
98

M
0.

00
0

0.
00

7
37

.0
57

0.
00

0
0.

00
7

35
.3

55
0.

00
0

0.
00

6
35

.7
94

S
0.

00
0

0.
00

7
16

.1
86

0.
00

0
0.

00
7

15
.3

35
0.

00
0

0.
00

6
15

.6
48

σ=0.05∆2

A
(1

)
0.

00
0

0.
00

7
67

.9
39

0.
00

0
0.

00
9

63
.7

45
0.

00
0

0.
00

9
64

.7
08

A
(2

)
0.

00
0

0.
00

7
47

.4
65

0.
00

0
0.

00
9

42
.6

25
0.

00
0

0.
00

9
43

.2
81

A
(3

)
0.

00
0

0.
00

7
39

.6
76

0.
00

0
0.

00
9

34
.7

34
0.

00
0

0.
00

9
35

.0
06

M
(3

)
0.

07
7

0.
00

7
18

5.
98

9
0.

05
7

0.
00

9
16

1.
40

1
0.

05
5

0.
00

9
16

6.
64

1
S

0.
00

0
0.

00
7

45
.1

39
0.

00
0

0.
00

9
42

.4
13

0.
00

0
0.

00
9

42
.7

81

Rialba

A
(1

)
0.

34
0

0.
00

0
31

4.
87

9
0.

00
0

0.
00

0
17

2.
10

0
0.

28
0

0.
00

0
23

4.
50

0
A

(2
)

0.
00

0
0.

00
0

15
2.

10
0

0.
00

0
0.

00
0

14
8.

90
0

0.
00

0
0.

00
0

15
4.

40
0

A
(3

)
0.

00
0

0.
00

0
11

9.
70

0
0.

00
0

0.
00

0
30

.7
00

0.
00

0
0.

00
0

93
.8

00
M

(3
)

0.
04

0
0.

00
0

16
3.

25
0

0.
00

0
0.

00
0

15
3.

20
0

0.
00

0
0.

00
0

16
2.

10
0

S
0.

00
0

0.
00

0
81

.5
00

0.
00

0
0.

00
0

82
.3

00
0.

00
0

0.
00

0
89

.6
00

112

9.3. Detection Phase

Experimental results presented in Table 9.3 refer to FN , FP and DD
with fixed values of C. To ease the comparison we set C in the EHMM-
CDT and HMM-CDT as the lowest values guaranteeing FN = 0 and
FP ≤ 0.01 in Application D1 with σ = 0.01 (i.e., C = 4.814 for HMM-
CDT, C = 4.629 for EHMM-CDT withAmean and C = 4.917 for EHMM-
CDT with Amin). Remarkably, both EHMM-CDT aggregations provide
lower DD than HMM-CDT. Interestingly, the mean aggregation mecha-
nism generally outperforms the minimum one, since the mean is less in-
fluenced than minimum by outliers, which generally induce false alarms.
Nonetheless, by comparing these results with those provided in Figure 9.9,
we may also comment that the mean aggregation does not provide better
results for each value of C: hence the minimum is a viable solution too.

9.3.2 Application D2: Rialba Dataset

Experimental Setting We analysed two temperature datastreams (i.e., n = 2)
composed by 5303 samples, where M = 3000 have been used for training,
O = 1000 for validation and 1303 for testing, coming from two sensors
deployed in different units. We injected faults:

113

Chapter 9. Experimental Results

A(1) φ2(t) =

{
0.1∆2 t > t̄

0 otherwise

A(2) φ2(t) =

{
0.2∆2 t > t̄

0 otherwise

A(3) φ2(t) =

{
0.3∆2 t > t̄

0 otherwise

M(3) ψ22(t) =

{
0.3 t > t̄

0 otherwise

S

ψ22(t) =

{
−1 t > t̄

0 otherwise

φ22(t) =

{
x2(t̄) t > t̄

0 otherwise

at time instant t̄ = 4695. The presented results are obtained by averaging
the results of 50 runs.

Results Experimental results are presented in Table 9.3. Interestingly, the
results on the real-world datasets are in line with those of the synthetic
one: the ensemble approach provides lower FN and DD for most of the
considered scenarios.

9.4 Isolation Phase

In this section we consider the isolation phase of the proposed CFDDS,
which is tested on a real data scenario (Application D3). We here want
to inspect the ability of the isolation mechanism we proposed to correctly
locate a fault in a pump/tank system, by also taking into account the delay,
in term of time instant, needed for this task. Here, we considered also
the detection phase to be able to compare the detection delays with the
delays needed to isolate the fault. In Figure 9.10 the iOrioles subsystem

114

9.4. Isolation Phase

is presented: qin, qout and y are the incoming tank flow, consumer demand
and tank level, respectively, and qinm , qoutm and ym are the corresponding
measured values.

Tank d175LOR

Pump Orioles

flow level

flow

xd175LOR

c175LOR

iOrioles

outm
q

m
yinm

q

in
q

out
q

y

Figure 9.10: iOrioles subsystem

Figures of Merit The performance achieved in this fault detection stage is
measured by the following figures of merit:

• False Positives (FP): percentage of test dataset faultless samples (i.e.,
non-affected by a certain fault) that are determined as faulty by the
fault detection method;

• False Negatives (FN): percentage of test dataset faulty samples (i.e.,
affected by a certain fault) that are determined as faultless by the fault
detection method;

• Detection delay (DD): number of samples needed by the fault diag-
nosis method to detect a certain fault.

Moreover fault isolation algorithms abilities are evaluated by the follow-
ing figures of merit:

• Isolation Delay (ID): number of samples needed by the fault diagno-
sis method to isolate a certain fault;

• ISolation index (IS): percentage of samples that are properly isolated
after a fault occurred.

Comparison We compare the isolation phase of the proposed CFDDS with
the Physical/Temporal Parity Relations (PTPR) presented in [28], which is
based on the physical modeling of the analysed system and by the temporal

115

Chapter 9. Experimental Results

ym

qinmqoutm

f(1,2)f(1,3)

f(2,3)

Figure 9.11: Scheme of the iOrioles dependency graph

analysis of the data coming from the available sensors. Clearly, if we would
like to consider the PTPR method we need the model of the system, i.e.,
equations describing the dynamics of the system (whose parameters might
be unknown). Here, we considered this method to compare the isolation
performance of the proposed CFDDS, which is a model-free approach, with
a method which requires strong assumptions about the system model.

Parameters Configuration The orders of ARX models have been chosen by
means of a validation procedure, while the batch size and the log-likelihood
window length have been set to N = 96 and k = 10, respectively. It
should be mentioned that the HMM-CDT uses linear ARX models for the
extraction of the estimated parameters θ̂is. The dependency graph is learned
by considering all the binary relationships with crosscorrelation greater or
equal to ρ = 0.5: the result is the graph presented in Figure 9.11.

9.4.1 Application D3: Barcelona Water Distribution Network System
Dataset

Experimental Setting The dataset considered to implement this scenario lasts
for 34 days (for a total of 816 samples), with a sampling period one hour
and with a fault appearing at time instant t̄ = 744 in iOrioles pump sen-
sor (qinm) or c175LOR demand sensor (qoutm), respectively. Regarding
the PTPR method initialization, the first thirteen days of data are used as
training dataset to identify the model parameters, the next thirteen days are
used as validation dataset to obtain the corresponding fault detection thresh-
old and the remaining eight days of data is used as test dataset. Similarly,
the proposed CFDDS has been trained on the first twenty-six days. More
specifically, the first twenty-three days (M = 552) has been used to train
the HMMs, while the remaining three days (O = 72) has been used for

116

9.4. Isolation Phase

validation [8].
To test and compare the performance of the proposed CFDDS isolation

phase with the PTPR approach, the following fault scenarios have been
defined:

AA(1,i) φi(t) =

{
0.1Ω t > t̄

0 otherwise

AA(2.5,i) φi(t) =

{
0.25Ω t > t̄

0 otherwise

AI(1,i) φi(t) =

{
0.1Ω(1− e−ri(t−t̄)) t > t̄

0 otherwise

AI(2.5,i) φi(t) =

{
0.25Ω(1− e−ri(t−t̄)) t > t̄

0 otherwise

DA(0.1,i) φi(t) =

{
0.01Ω(t− t̄) t > t̄

0 otherwise

DA(1,i) φi(t) =

{
0.1Ω(t− t̄) t > t̄

0 otherwise

DI(0.1,i) φi(t) =

{
0.01Ω(t− t̄)(1− e−ri(t−t̄)) t > t̄

0 otherwise

DI(1,i) φi(t) =

{
0.1Ω(t− t̄)(1− e−ri(t−t̄)) t > t̄

0 otherwise

117

Chapter 9. Experimental Results

SA(i)

ψii(t) =

{
−1 t > t̄

0 otherwise

φii(t) =

{
xi(t̄) t > t̄

0 otherwise

SI(i)

ψii(t) =

{
−
(
1− e−ri(t−t̄)

)
t > t̄

0 otherwise

φii(t) =

{
xi(t̄)

(
1− e−ri(t−t̄)

)
t > t̄

0 otherwise

where, the stream vector:

X(t) =

 x1

x2

x3

 =

 qinm
qoutm
ym

 (9.5)

ri ∈ R+ denotes is the constant describing the evolution rate of the fault
and Ω = maxt

qinm (t)

qoutm (t)
, is the maximum of flow/demand. Faults are injected

either in the incoming tank flow sensor qinm or in the consumer demand
sensor qoutm .

Results

118

9.4. Isolation Phase

Ta
bl

e
9.

5:
D

et
ec

tio
n

an
d

is
ol

at
io

n
re

su
lts

fo
r

th
e

A
pp

lic
at

io
n

D
3

Ty
pe

of
fa

ul
t

PT
PR

m
et

ho
d

C
FD

S
m

et
ho

d
D

el
ay

FP
FN

IS
D

el
ay

FP
FN

IS
D

D
ID

D
D

ID

q i
n
m

A
A

(1
,1

)
2

4
0

7.
34

22
.2

2
4

4
7.

44
94

.5
2

5.
48

A
A

(2
.5

,1
)

2
2

0
2.

37
79

.1
6

3
3

11
.5

7
4.

11
95

.8
9

A
I(

1,
1)

12
23

0
3.

04
4.

16
35

35
12

.4
0

82
.1

9
17

.8
1

A
I(

2.
5,

1)
9

13
0

4.
53

52
.7

7
16

16
0.

00
27

.4
0

72
.6

0
D

A
(0

.1
,1

)
9

13
0

2.
71

73
.6

1
8

8
13

.2
2

10
.9

6
89

.0
4

D
A

(1
,1

)
3

3
0

2.
78

84
.7

2
4

4
1.

65
5.

48
94

.5
2

D
I(

0.
1,

1)
12

23
0

3.
54

59
.7

2
18

18
9.

92
24

.6
6

75
.3

4
D

I(
1,

1)
7

7
0

4.
09

77
.7

7
4

4
8.

26
8.

22
91

.7
8

SA
(1

)
7

12
0

7.
22

8.
33

17
17

10
.7

4
68

.4
9

31
.5

1
SI

(1
)

19
36

0
7.

52
5.

55
3

3
22

.3
1

73
.9

7
26

.0
3

q o
u
t m

A
A

(1
)

1
3

0
0.

02
65

.2
7

3
3

0.
00

4.
11

95
.8

9
A

A
(2

.5
,2

)
1

3
0

0.
02

65
.2

7
1

1
0.

00
1.

37
98

.6
3

A
I(

1,
2)

10
21

0
0.

29
34

.7
2

47
47

0.
00

64
.3

8
35

.6
2

A
I(

2.
5,

2)
7

11
0

0.
13

58
.3

3
65

65
0.

00
89

.0
4

10
.9

6
D

A
(0

.1
,2

)
7

7
0

0.
11

59
.7

2
33

33
0.

00
45

.2
1

54
.7

9
D

A
(1

,2
)

2
4

0
0.

04
63

.8
8

4
4

0.
00

5.
48

94
.5

2
D

I(
0.

1,
2)

10
15

0
0.

25
52

.7
7

39
39

0.
00

53
.4

2
46

.5
8

D
I(

1,
2)

5
7

0
0.

11
59

.7
2

8
8

38
.0

2
10

.9
6

89
.0

4
SA

(2
)

11
14

0
16

.7
9

6.
94

33
33

0.
00

45
.2

1
54

.7
9

SI
(2

)
59

-
0

92
.8

4
0

58
58

4.
13

79
.4

5
20

.5
5

119

Chapter 9. Experimental Results

In Table 9.5, fault detection and isolation results achieved by the con-
sidered methods are detailed. On the one hand, Table 9.5 shows gener-
ally better detection and isolation delays achieved by the PTPR method
than those of the proposed CFDDS, for the incoming tank flow sensor qinm
(e.g., fault AI(1,1)) and specially when considering the consumer demand
sensor qoutm (e.g., faults AI(1,2), AI(2.5,2), DA(0.1,2), DI(0.1,2), SA(2)).
Moreover, generally better FP and FN rates are obtained with PTPR, with
the only exception regarding stuck-at incipient fault in consumer demand
sensor (fault SI(2)). Both methods achieve similar detection and isola-
tion delay performance when considering abrupt faults (e.g., fault AA(1,1),
AA(2.5,1), DA(1,1) for qinm and AA(1,2) for qoutm). On the other hand,
the proposed CFDDS grants better isolation rates in general (with the ex-
ception of faults AA(1,1) for the incoming tank flow sensor and AI(2.5,2),
DA(0.1,2), DI(0.1,2) for the consumer demand sensor), suggesting to use
it in order to confirm the isolation results provided by the PTPR. It is worth
to recall that the proposed CFDDS provides the performance in Table 9.5
without assuming any a priori information about the system. In the case
of faults with an increasing profile, the detection delays of the proposed
CFDDS are worse than those obtained with the PTPR method. This is due
to the fact that the HMM-CDT is more sensitive to abrupt changes in the
parameter distribution.

Moreover, the proposed CFDDS is generally characterized by higher
FP values. The reason of this behaviour is twofold: the nominal state
approximation and the process time invariance. First, the nominal model
is estimated during an initial training phase that, in principle, could led
to inaccurate models, i.e., model bias due to an incorrect selection of the
family of models, to the lack of enough data for training or to the fact
that training data do not excite the whole dynamics of the process. This
undesired model bias tends to induce FP detections in the testing phase.
Second, the process under monitoring could be intrinsically time-varying,
not following the Markov assumption. This could lead to FP detections
induced by an estimated model which is not able to fully describe the true
process.

9.5 Identification Phase

The aim of this section is to evaluate the effectiveness of the identification
phase of the proposed CFDDS. As we have seen in Chapter 3, each state
of the process (either nominal or faulty) is a cluster of parameter vectors:
creation of the right number of clusters refers to the ability of the method

120

9.5. Identification Phase

to correctly identify the number of states the process explores. Likewise,
an accurate aggregation of parameter vectors coming from the same state
refers to the ability of correctly characterizing the operational state. The
identification phase of the considered CFDDS was applied to three differ-
ent applications: a synthetic one (Application D1), a real-world application
related to rock collapse forecasting (Application D2) and to simulated data
coming from BWNDS (Application D3). On the aforementioned applica-
tions, faults are of the abrupt type as requested by the proposed CFDDS, as
discussed in Section 7.3.

Figures of Merit To evaluate the performance of the suggested method, we
consider the following figures of merit:

• nc: the number of created clusters. It represents the number of states
detected by the algorithm. When nc is equal to the correct number of
states the algorithm operates well;

• r: the percentage of experiments where the algorithm creates the cor-
rect number of clusters. Large values of r suggest that the fault diag-
nosis method is able to correctly characterize the number of process
states;

• a: the accuracy in associating a parameter vector to the correct clus-
ter. It represents the ability to correctly identify the state in which the
process is operating;

• po: the percentage of outliers, i.e., the percentage of parameter vectors
which cannot be associated to any state. Large values of po imply that
the algorithm is not able to associate parameter vectors to any cluster.

Comparison The performance of the proposed CFDDS system has been
compared with those of the DBSCAN [35], the AP [24] and the ECM [79].
In fact, to compare the performance of the proposed CFDDS, we consider
algorithms designed to group unlabelled data, a task commonly addressed
by clustering methods. We consider both off-line clustering algorithms,
i.e., DBSCAN and AP, and an evolving one, i.e., ECM. DBSCAN and AP
process the whole dataset and do not require a priori information about the
number of clusters to be created, hence representing a relevant reference
for the proposed CFDDS. On the contrary, ECM manages clusters with
evolving strategies; the drawback here is that it requires parameter Dthr,
which is strictly related to the number of clusters the algorithm will create

121

Chapter 9. Experimental Results

during the operational life (such information is obviously unknown in real
applications).

Parameters Configuration We considered two different hierarchies of model
family M, since they satisfy the hypotheses required by the theoretical
framework described in Section 3.3:

• the auto-regressive with exogenous input ARX linear model family.
Here, the p = τj + τi dimensional parameter vector θ ∈ Rp is:

θ = (θ1 . . . θτj θτj+1 . . . θτj+τi),

where τj and τi are the autoregressive and exogenous orders, respec-
tively;

• the RN [47] model defined as:

x(t) = g (Wx(t− 1) +Winu(t))

ŷ(t) = θx(t)

where ŷ(t) ∈ R is the prediction value at time t ∈ N, u(t) ∈ Rm is the
input observation vector at time t, x(t) ∈ Rp is the internal state of the
network at time t, W ∈ Rp×p is the internal weight matrix and Win ∈
Rp×m is an input weight matrix, both randomly chosen. g : Rp → Rp

is an activation function (e.g., gi(·) = tanh(·), i ∈ {1, . . . , p}) and
θ ∈ Rp is an output weight vector to be learned.

The considered structural risk is the squared error; the Bayesian Infor-
mation Criterion (BIC) [75] was considered to identify model orders. In
the following, batches of N = 400 not overlapping data are considered to
estimate the parameters of the approximating models.

It is worth mentioning that the proposed CFDDS requires an initial train-
ing phase: it is trained on the training set and tested on a separate test set,
while DBSCAN, AP and ECM are applied to the whole training and test
set. In order to consider an unbiased dataset for the proposed CFDDS, we
considered the performance of the different methods on the test set only.
Since ECM and AP do not generate outliers, po is not provided for them.

Key parameters describing the identification phase of the proposed CFDDS
are given in Table 9.6. In particular:

• the spatial confidence αs has been set to 0.03. This parameter con-
trols the rate of structural outliers generated by the proposed CFDDS.
Large values of αs would create more compact clusters and let the

122

9.5. Identification Phase

Table 9.6: Parameters of the proposed CFDDS

Spatial confidence αs = 0.03
Temporal threshold ηt = 1
Merging confidence αm = 0.05
KS-test confidence αc = 0.1

Spatial-temporal penalization λ = 0.5
Mountain method threshold ηi = 10−6

CFDDS be sensitive to new states, at the expense of a larger outlier
set. On the contrary, small values of αs would reduce the number
of outliers at the expenses of a reduced sensitivity in identifying new
states;

• the temporal threshold ηt has been set to 1, meaning that cluster statis-
tics are updated when two consecutive parameter vectors are inserted
into the same cluster. Larger values of ηt update the cluster statis-
tics with less restrictive conditions. ηt = 1 represents a conservative
choice for this parameter;

• the merging confidence αm has been set set to 0.05. It represents the
confidence of the hypothesis test designed to assess whether two clus-
ters need to be merged or not;

• the cluster creation confidence αc has been set to 0.1. It represents the
confidence of the KS hypothesis test, meant to assess if a new cluster
must be created by looking at the distribution of the parameter vectors
in the outlier set.

Since the CFDDS creates clusters with as low as p + 1 parameter vectors
(required by the minimum covariant determinant procedure), we set the
DBSCAN parameter minPts = p + 1 to have a fair comparison. The
parameter ε of DBSCAN has been set by using the heuristics described in
[35]. The ECM parameter Dthr was set to 0.1, as suggested in [79].

9.5.1 Application D1: Synthetic Dataset

Experimental Setting Synthetic data are generated according to model S,
with n = 2 sensors, θ2 ∈ [0, 1]3 and σ = 10−2.

The length of each experiment is 60300 samples with the first M =
24120 ones used to train the proposed CFDDS. Faults affecting the system
have been modeled as abrupt changes in the parameters θ2. This models
the situation where a fault affecting the system induces a change in the

123

Chapter 9. Experimental Results

dynamics of the relationship between input and output4. The first fault
affects the system in sample interval [24120, 36180], inducing an abrupt
change which shifts the parameters from θ2 to θδ = (1 + δ)θ2, δ being a
positive scalar controlling the intensity of the perturbation. Afterwards, the
data-generating process returns to the nominal state. Then, another fault
affects the system in sample interval [48240, 60300], inducing a change in
the parameters from θ2 to θδ = (1 − δ)θ2. As a consequence, the total
number of states for this application is three (i.e., the nominal state and
the two faulty ones). We considered different scenarios for this application
by taking into account abrupt changes in the parameters with magnitude δ
ranging from 0.01 to 0.3. For each scenario, we generated 200 independent
experiments.

4It is possible to show that this type of faults can be modeled as abrupt faults depending on the input dynamic.
We omit here this derivation for sake of concision.

124

9.5. Identification Phase

Ta
bl

e
9.

7:
N

um
be

r
of

cl
us

te
rs

cr
ea

te
d

fo
r

th
e

co
ns

id
er

ed
ap

pl
ic

at
io

ns
.A

ve
ra

ge
va

lu
es

is
gi

ve
n;

st
an

da
rd

de
vi

at
io

n
in

pa
re

nt
he

si
s.

Fa
ul

t
n
c

C
FD

D
S

E
C

M
D

B
S

A
P

A
pp

lic
at

io
n

D
1

A
R

X

δ
=

0.
0
1
0

1.
8(

0.
8)

12
0.

1(
3.

6)
1.

0(
0.

1)
12

.7
(1

.1
)

δ
=

0.
0
1
5

3.
3(

0.
5)

11
8.

3(
3.

7)
1.

0(
0.

2)
12

.7
(1

.1
)

δ
=

0.
0
2
0

3.
2(

0.
4)

11
3.

8(
3.

7)
1.

1(
0.

4)
12

.9
(1

.1
)

δ
=

0.
0
2
5

3.
2(

0.
5)

10
8.

8(
3.

7)
1.

8(
0.

7)
12

.9
(1

.1
)

δ
=

0.
0
5
0

3.
2(

0.
4)

88
.5

(3
.7

)
3.

0(
0.

2)
11

.6
(1

.1
)

δ
=

0.
1
0
0

3.
2(

0.
5)

60
.7

(3
.3

)
3.

0(
0.

0)
7.

1(
0.

8)
δ

=
0.

2
0
0

3.
2(

0.
4)

33
.8

(2
.8

)
3.

0(
0.

0)
3.

8(
0.

4)
δ

=
0.

3
0
0

3.
1(

0.
3)

21
.5

(2
.2

)
3.

0(
0.

0)
3.

0(
0.

0)

R
N

δ
=

0.
0
1
0

1.
0(

0.
1)

89
.4

(2
0.

6)
1.

0(
0.

0)
11

.2
(2

.0
)

δ
=

0.
0
1
5

1.
0(

0.
2)

90
.2

(2
1.

2)
1.

0(
0.

1)
11

.0
(2

.0
)

δ
=

0.
0
2
0

1.
0(

0.
2)

88
.0

(2
2.

5)
1.

0(
0.

1)
11

.2
(2

.1
)

δ
=

0.
0
2
5

1.
1(

0.
4)

90
.6

(2
2.

0)
1.

0(
0.

0)
11

.1
(1

.9
)

δ
=

0.
0
5
0

1.
5(

0.
8)

88
.8

(2
2.

1)
1.

0(
0.

2)
10

.9
(2

.0
)

δ
=

0.
1
0
0

2.
4(

1.
0)

84
.9

(1
8.

9)
1.

2(
0.

5)
10

.1
(2

.2
)

δ
=

0.
2
0
0

2.
7(

0.
9)

68
.7

(2
2.

0)
1.

9(
1.

0)
8.

1(
2.

9)
δ

=
0.

3
0
0

2.
6(

0.
9)

52
.1

(2
3.

3)
2.

3(
0.

9)
6.

6(
3.

1)

A
pp

lic
at

io
n

D
2

A
R

X
R

1
2

48
1

10
R

2
3

39
1

8

A
pp

lic
at

io
n

D
3

A
R

X

B
W

1
2

38
1

4
B
W

2
3

57
1

6
B
W

3
4

47
2

4
B
W

4
5

59
2

6

125

Chapter 9. Experimental Results

Results Results are presented in Table 9.7 and Table 9.8. In particular,
Table 9.7 shows the number of created clusters nc for the considered algo-
rithms, model hierarchies and fault magnitudes. As expected, the ability to
create the correct number of clusters increases with the magnitude of δ (a
strong fault is easily identified). Interestingly, the proposed CFDDS based
on ARX modeling is able to correctly create three clusters even with very
low fault magnitudes (e.g., δ = 0.015). ECM creates an excessive num-
ber of clusters making this algorithm not useful in this application. The
reason of this behaviour resides in the incorrect setting of Dthr [35]. Un-
fortunately, as explained above, it is hard to set this parameter for fault di-
agnosis purposes, since it is related to the number of clusters to be created,
which is obviously unknown a priori. Interestingly, both DBSCAN and
AP with ARX are able to create the correct number of clusters, for large δ
magnitudes, i.e., δ ≥ 0.05 and δ ≥ 0.3, respectively. Despite the evolving
approach, the proposed CFDDS with ARX is more effective in creating the
correct number of clusters once compared with non-evolving algorithms
such as the DBSCAN and the AP even for small δs. The rationale behind
this refers to the fact that the proposed CFDDS is able to simultaneously
consider both temporal and spatial dependencies among parameter vectors.

RNs provide lower performance than ARX. The reason of this behaviour
can be associated to the fact that the performance of RNs is highly influ-
enced by the choice of the random network topology. In fact, training the
network topology is entirely based on nominal state samples. This leads
to a RN modeling the nominal state, but does not necessarily guarantee
the ability to identify new states during the operational life. However, the
ability to create the correct number of clusters increases with δ and the pro-
posed CFDDS with RN is able to identify the correct number of faults with
magnitude δ ≥ 0.2.

126

9.5. Identification Phase

Ta
bl

e
9.

8:
A

cc
ur

ac
y

re
su

lts
fo

r
th

e
co

ns
id

er
ed

ap
pl

ic
at

io
ns

.A
ve

ra
ge

va
lu

e
is

gi
ve

n;
st

an
da

rd
de

vi
at

io
n

in
pa

re
nt

he
si

s.

Fa
ul

t
C

FD
D

S
E

C
M

D
B

S
A

P
r

a
p
o

r
a

r
a

p
o

r
a

A
pp

lic
at

io
n

D
1

A
R

X

δ
=

0.
0
1
0

12
.0

51
.7

(9
.3

)
3.

4(
3.

8)
0.

0
N

.a
.

0.
0

N
.a

.
N

.a
.

0.
0

N
.a

.
δ

=
0.

0
1
5

72
.5

84
.5

(9
.6

)
2.

7(
2.

8)
0.

0
N

.a
.

0.
0

N
.a

.
N

.a
.

0.
0

N
.a

.
δ

=
0.

0
2
0

82
.0

95
.4

(3
.5

)
3.

1(
3.

3)
0.

0
N

.a
.

1.
5

55
.9

(1
2.

0)
6.

7(
2.

9)
0.

0
N

.a
.

δ
=

0.
0
2
5

83
.5

96
.5

(2
.8

)
3.

0(
2.

8)
0.

0
N

.a
.

13
.0

92
.1

(7
.3

)
5.

6(
2.

4)
0.

0
N

.a
.

δ
=

0.
0
5
0

82
.0

96
.2

(3
.4

)
3.

5(
3.

4)
0.

0
N

.a
.

97
.5

97
.6

(1
.8

)
2.

4(
1.

8)
0.

0
N

.a
.

δ
=

0.
1
0
0

81
.5

96
.7

(3
.1

)
2.

6(
3.

1)
0.

0
N

.a
.

10
0.

0
99

.4
(0

.8
)

0.
6(

0.
8)

0.
0

N
.a

.
δ

=
0.

2
0
0

86
.5

96
.5

(2
.9

)
2.

6(
2.

8)
0.

0
N

.a
.

10
0.

0
10

0.
0(

0.
0)

0.
0(

0.
2)

17
.5

10
0.

0(
0.

0)
δ

=
0.

3
0
0

88
.0

96
.8

(2
.8

)
2.

4(
2.

8)
0.

0
N

.a
.

10
0.

0
10

0.
0(

0.
0)

0.
0(

0.
0)

10
0.

0
10

0.
0(

0.
0)

R
N

δ
=

0.
0
1
0

0.
0

N
.a

.
N

.a
.

0.
0

N
.a

.
0.

0
N

.a
.

N
.a

.
0.

0
N

.a
.

δ
=

0.
0
1
5

0.
0

N
.a

.
N

.a
.

0.
0

N
.a

.
0.

0
N

.a
.

N
.a

.
0.

0
N

.a
.

δ
=

0.
0
2
0

0.
5

66
.7

(0
.0

)
1.

1(
0.

0)
0.

0
N

.a
.

0.
0

N
.a

.
N

.a
.

0.
0

N
.a

.
δ

=
0.

0
2
5

3.
5

63
.0

(2
3.

0)
3.

0(
3.

0)
0.

0
N

.a
.

0.
0

N
.a

.
N

.a
.

0.
0

N
.a

.
δ

=
0.

0
5
0

16
.5

80
.9

(1
6.

8)
3.

7(
3.

4)
0.

0
N

.a
.

1.
5

97
.8

(1
.1

)
2.

2(
1.

1)
0.

0
N

.a
.

δ
=

0.
1
0
0

45
.0

90
.9

(1
0.

5)
3.

9(
4.

4)
0.

0
N

.a
.

6.
5

97
.9

(2
.6

)
2.

0(
2.

7)
0.

0
N

.a
.

δ
=

0.
2
0
0

60
.5

94
.3

(7
.0

)
3.

4(
4.

6)
0.

0
N

.a
.

38
.5

98
.5

(3
.6

)
1.

1(
1.

7)
4.

0
10

0.
0(

0.
0)

δ
=

0.
3
0
0

58
.5

95
.3

(6
.8

)
3.

0(
3.

5)
0.

0
N

.a
.

63
.5

99
.3

(1
.5

)
0.

7(
1.

5)
25

.5
10

0.
0(

0.
0)

A
pp

lic
at

io
n

D
2

A
R

X
R

1
10

0
90

.6
3.

8
0

N
.a

.
0

N
.a

.
N

.a
.

0
N

.a
.

R
2

10
0

92
.5

0.
0

0
N

.a
.

0
N

.a
.

N
.a

.
0

N
.a

.

A
pp

lic
at

io
n

D
3

A
R

X

B
W

1
10

0
95

.5
0.

0
0

N
.a

.
0

N
.a

.
N

.a
.

0
N

.a
.

B
W

2
10

0
81

.8
0.

0
0

N
.a

.
0

N
.a

.
N

.a
.

0
N

.a
.

B
W

3
10

0
81

.5
0.

0
0

N
.a

.
10

0
56

.9
4.

0
0

N
.a

.
B
W

4
10

0
80

.5
3.

4
0

N
.a

.
0

N
.a

.
N

.a
.

0
N

.a
.

127

Chapter 9. Experimental Results

Then, in order to evaluate the ability to correctly identify the states
where the process operates over time, we focus only on those experiments
for which the number of created clusters is correct. Table 9.8 shows r, a
and p0 for ARX, RN and different fault magnitudes, when the number of
clusters created by the algorithm is correct (i.e., nc = 3 for Application
D1).

As expected, the proposed CFDDS improves its performance both in
terms of percentage of experiments which identified the correct number of
clusters r and in terms of the classification accuracy a as the magnitude of
the fault increases. Interestingly, when δ < 0.015 the CFDDS with ARX
reduces its effectiveness in the clustering (i.e., r = 12.0% and a = 51.7%)
meaning that small fault magnitudes represent challenging situations for
the proposed approach. In our opinion, this behaviour is due to the fact that
the real parameter vectors corresponding to faulty states with magnitude
δ ≤ 0.01 are included in the neighbourhood Rαs of probability 1 − αs
induced by the cluster corresponding to the nominal state, thus even the
parameter vectors estimated from faulty data are associated by the proposed
algorithm to the nominal state cluster.

Furthermore, the analysis of p0 allows us to evaluate the effect of the
choice of the proposed CFDDS parameters on performance. More specifi-
cally, the parameter αs controls the percentage of structural outliers of the
CFDDS and this is particularly evident by looking at the values of po in
Table 9.8 which are in line with what expected from the theory. On the
contrary, the percentage of outliers of DBSCAN decreases, when the fault
magnitude increases. This is reasonable since the method does not contem-
plate a fixed percentage of structural outliers.

By inspecting accuracy a, we see that the CFDDS with ARX provides
higher performance than the one with RN in the small perturbation case
(δ ≤ 0.025). As the magnitude δ increases, there is no strong evidence
for selecting a specific model family. Nevertheless, the standard devia-
tion of the accuracy of ARX model is lower than the RN model one. This
behaviour is in line with the difficulties in selecting the RN topology fol-
lowing the discussions given for Table 9.7.

As expected, non evolving clustering algorithms like DBSCAN or AP
provide higher performance than the proposed CFDDS when δ = 0.3. This
is reasonable since these algorithms work in an off-line way, by analyzing
the whole dataset at once. On the contrary, the proposed CFDDS provides
better performance than DBSCAN and AP with small values of δ, making it
suitable to manage subtle and not evident faults. Even in this case, the rea-
son of this behaviour resides in the ability of the method to exploit temporal

128

9.5. Identification Phase

dependencies among parameter vectors during the operational life (while
not evolving algorithms do not exploit time dependencies in the clustering
phase). ECM was never able to correctly identify the number of clusters, in
line with comments following Table 9.7.

0.0025 0.005 0.0075 0.01 0.025 0.05 0.075 0.1 0.25
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

α
s

a
p

o

r

(a) Average accuracy a, outlier percentage po and percentage of exper-
iments where the algorithm creates the correct number of clusters r
are reported for the experiments where nc = 3.

0.0025 0.005 0.0075 0.01 0.025 0.05 0.075 0.1 0.25

2

2.5

3

3.5

4

4.5

α
s

n c

n

c

True number of clusters

(b) Average number of cluster nc created with different values of αs

Figure 9.12: Robustness analysis result for αs

We also performed a robustness analysis to evaluate the effects of vari-
ations of the main parameters of the proposed CFDDS, i.e., αs, αm, ηt and
λ, on the considered figures of merit. In the considered scenario (Applica-
tion D1), which is characterized by a stationary process affected by abrupt

129

Chapter 9. Experimental Results

changes, parameter αs revealed to be the most sensitive one and its be-
haviour is deeply investigated in the sequel. Figures 9.12a and 9.12b show
how the figures of merit a, p0, r and nc vary with αs ranging in the inter-
val [2.5 · 10−3; 2.5 · 10−1]. As expected, p0 increases with αs and this is
quite obvious since we are creating clusters that are more and more com-
pact. For the considered scenario, αs = 0.025 guarantees the highest value
of r. Interestingly, lower values of αs create a reduced number of clusters,
while larger ones create an excessive number of clusters. This behaviour
is evident by looking at the values of nc in Figure 9.12b. The behaviour
of the classification accuracy a is particularly interesting: small values of
αs create very large clusters, hence possibly misclassifying estimated pa-
rameter vectors that belong to a different state (e.g., a faulty one). On the
contrary, large values of αs create very small clusters, hence generating
many outliers (and this is evident by looking at the behaviour of p0 when
αs increases). Due to the fact that αs is closely related to the confidence of
including a parameter vector in a cluster (i.e., 1−αs), reasonable values for
this parameters belong to the interval 0.01 ≤ αs ≤ 0.1.

9.5.2 Application D2: Rialba Dataset

Experimental Setting The dataset here considered, consists in 35652 sam-
ples coming from two clinometers. In this application, the first M = 14260
samples have been used to train the proposed CFDDS. Two different faulty
scenarios have been considered:

R1

An abrupt additive fault affecting the measurements of the
clinometer, regarded as output, is injected in sample
interval [17468, 24956]. The magnitude of the additive
fault is −20% of the signal dynamics

R2

The first 24956 samples are equal to the R1 case. Then, a
degradation fault is injected in the same clinometer in
sample interval [28164, 35652]. The degradation fault
consists in an additive Gaussian noise with zero mean and
standard deviation equal to 30% of the signal one

As a model hierarchy family we here considered the ARX one. Experi-
mental results on this application are particularly interesting since data are
coming from a real monitoring system.

Results In Table 9.8 the value of r is either 0 or 100, since here we are
considering a single experiment. The proposed CFDDS accuracy in R1

130

9.5. Identification Phase

and R2, presented in Table 9.8, are similar (i.e., 90.6% in R1 and 92.5% in
R2), showing that we are able to deal effectively with multiple faults.

By looking at Table 9.7, we see that the number of states of the process
is correctly recognized by the proposed CFDDS in both scenarios whereas
other methods are never able to create the correct number of clusters. These
results are in line with the synthetic scenario (Application D1): AP and
ECM are creating more clusters than necessary and DBSCAN is creating a
single cluster.

9.5.3 Application D3: Barcelona Water Distribution Network System
Dataset

Experimental Setting In this third scenario, we are considering a MISO ARX
model for the estimation of the parameter vectors, where as output we
considered the value of the flow in the iOrioles pump and as input
the values of the flow in pumps near to it, i.e., iStamClmCervello,
iCesalpina1, iCesalpina2 and . Four different scenarios have been
considered. The proposed CFDDS has been trained on the first M = 8736
samples (representing one year of observations in the BWNDS simulator);
as a reference model we consider the ARX.

Four different faulty scenarios have been considered:

131

Chapter 9. Experimental Results

BW1

An abrupt additive fault affecting the measurements of the
iOrioles pump is injected in sample interval
[9546, 17472]. The magnitude of the additive fault is
−20% of the signal dynamic (i.e., the range between the
maximum and minimum value of the signal). The length
of the dataset is 17472 samples

BW2

A sensor degradation fault is injected in sample interval
[18282, 26208]. This fault consists in an additive Gaussian
noise with zero mean and standard deviation equal to 30%
of the signal one. The length of the dataset is 26208
samples. The first 17472 samples are equal to the BW1
case

BW3

A stuck-at fault is injected in sample interval
[27018, 34944]. The length of the dataset is 34944
samples. The first 26208 samples are equal to the BW2
case

BW4

An abrupt additive fault affecting the measurements of the
iOrioles pump is injected in sample interval
[35754, 43680]. The magnitude of the additive fault is
20% of the range of the signal. The length of the dataset
is 43680 samples. The first 34944 samples are equal to the
BW3 case

Results Results given in Table 9.7 (last four rows) are particularly inter-
esting and show how the proposed CFDDS is able to correctly identify the
number of clusters in all the four considered scenarios. All the other con-
sidered methods do not identify the correct number of clusters (with the ex-
ception of AP in the BW3 scenario). In line with the synthetic application
experiments, AP and DBSCAN usually detect a smaller (1-2) and larger
(4-6) number of clusters than necessary, respectively, while ECM creates
an excessive number of clusters, i.e., from 38 to 59. These results corrob-
orate the ability of the proposed CFDDS method to correctly characterize
the states explored by the process over time.

In Table 9.8 (last four rows) the value of r is either 0 or 100, since here
we are considering a single experiment. CFDDS accuracy decreases from
95.5% in BW1 to 81.8% in BW2, while there is no further significant re-
duction in accuracy in the other scenarios. In our opinion in scenario BW2,
the injected degradation fault is particularly hard to be detect, since its ef-
fect on the estimated parameter vectors is not as evident as those induced
by the other considered faults.

132

9.6. General Remarks

We emphasize that, to ease the comparison, R1 and R2 in the Rialba
dataset (Application D2) correspond to BW1 and BW2 in the BWNDS one
(Application D3), respectively. With respect to the BWNDS application,
in the Rialba one we do not have a decrease in performance as the degra-
dation fault appears, suggesting that, in this application, the effect of the
degradation fault is more easy to be perceived by the proposed CFDDS.

9.6 General Remarks

The experimental campaign we presented above provides evidence for the
abilities of the proposed CFDDS to perform the fault detection and diag-
nosis tasks (graph learning, detection, isolation and identification) on the
considered sensor network scenarios. At first, it was shown that an effec-
tive learning of the dependency graph improves the performance in detect-
ing faults or changes in the environment. Then, we showed that the use
of an ensemble of HMM-CDTs improves the detection performance on a
single HMM-CDT. The isolation phase of the proposed CFDDS is able to
provided results which are most of the times comparable with those ob-
tained with the PTPR approach. Interestingly, the proposed solution does
not require any a priori information about the system, while the latter one
requires the analytic model for the data generating process. Finally, results
on the identification phase of the proposed CFDDS provided evidence for
its ability to characterize the nominal state and to identify and learn new
faulty states.

133

CHAPTER10
Concluding Remarks

Sensor networks are well-known technological solutions to monitor com-
plex systems or environmental phenomena. These sensing infrastructures
work in harsh environmental conditions, which might induce degradation
of the mechanical parts of the sensors and malfunctions in the embedded
electronic boards. Hence, an effective fault detection and diagnosis activ-
ity is required. Since traditional methods for fault detection and diagnosis
generally require the knowledge of a priori information about the data gen-
erating process or the faults, in the last few years a novel generation of fault
detection and diagnosis systems has been developed. These systems, that
are usually addressed as “cognitive”, are able to characterize the nominal
conditions of a system and learn the faults, by exploiting functional rela-
tionships present in the acquired data.

In this dissertation we propose a novel Cognitive Fault Detection and Di-
agnosis System (CFDDS), which operates in the sensor network scenario.
This system is able to automatically characterize the nominal state of the
process inspected by the network, by relying on the spatial and temporal re-
dundancies provided by data gathered by the sensor network, and to detect
the occurrence and characterize faults, as they appear. This method does
not require a priori information about either the process in nominal condi-

135

Chapter 10. Concluding Remarks

tions, or the signature of the occurring faults (fault dictionary), but relies
on a dataset composed of fault-free data that are used to characterize the
nominal conditions of the data generating process.

The proposed CFDDS is able to learn the dependency graph correspond-
ing to the functional dependencies existing among data by relying on a
statistical test based on the Granger causality. This procedure does not con-
stitute a diagnostic phase per se, but represents the basis of all the other
detection and diagnosis phases.

The detection phase is carried out by means of a HMM modeling of
the parameter vectors estimated on data coming from the nominal state of
the functional relationships included in the previously learned dependency
graph. A change in a functional relationship is detected by inspecting the
loglikelihood provided by the HMM. An ensemble method for HMM-CDT
has been proposed to further improve the detection performance.

Once the fault has been detected, the joint use of a partition of the
learned dependency graph and the statistical modeling given by the HMM
is used to discriminate between a change in the data generating process or a
fault. In the case a fault occurred, the isolation phase is able also to identify
the location where it appeared.

The proposed CFDDS is able to identify different faults by means of a
novel evolving clustering algorithm, which is able to learn the characteri-
zation of the nominal state of the process in the parameter space, i.e., by
creating a cluster of estimated parameter vectors. Newly estimated param-
eter vectors are assigned to either the nominal cluster or to one of the faulty
ones. The method, starting from an empty fault dictionary, is also able to
characterize new faulty states in an on-line manner.

The CFDDS performance has been tested on a synthetically generated
nonlinear dataset and on two real testbed scenarios, i.e., data coming from a
rock collapse and landslide forecasting system and from a system monitor-
ing a water distribution network. The chosen real benchmarks are valuable
examples of systems where the need for a flexible and reliable framework
for fault detection and diagnosis is of paramount importance. In the former
application the data generating process is not known, thus a priori informa-
tion about the nominal state of the process is missing. Moreover, a direct
inspection of the sensors is far from being trivial. In the latter system, the
difficulty in obtaining a precise modeling of the whole network, as well as
the difficulty in accessing the possibly faulty components (e.g., pipes and
tanks) would benefit from a system which is able to detect and diagnose
changes and faults by relying solely on the inspection of the data coming
from sensors. By considering the performance of the different phases (i.e.,

136

10.1. Future Perspectives

dependency graph learning, detection, isolation and identification) of the
proposed CFDDS one at a time we showed that it outperforms the state
of the art methods for fault detection and diagnosis in the sensor network
scenario, thus providing a complete and useful tool for real world scenarios.

10.1 Future Perspectives

Up to present times, the study of the field of fault detection and diagnosis
in the sensor network scenario is far from being completed. For instance,
in the last few years the problem of handling huge amount of information
(big data) has been raising interest in the scientific and industrial fields.
In the sensor network scenario we could consider two different situations
where this problem is relevant: when the sensor network is characterized
by a very high number of sensors and when it is not possible to store all the
data gathered from the network over time (e.g., due to a very high sampling
rate). In the former case, the study of appropriate techniques for handling
dependency graphs with a high amount of nodes is required, for instance
by considering portions of the network one at a time and then combining
the decisions taken over each subset of the partition. Another viable solu-
tion is to apply dimensionality reduction techniques, where the goal is not
to discard the redundant information provided by the network, but to use it
for fault diagnosis purposes. In the latter case, we should implement algo-
rithms which are able to process data as they come (one pass algorithms)
and update the knowledge base incrementally and in an evolving manner.
The proposed CFDDS, in its evolving clustering identification phase, is
able to address these issues, but the learning of the HMM in the detection
phase has not been designed to take into account this scenario.

In this dissertation we did not take into account the accommodation of
occurred faults. It could be interesting to be able to deal with faults by
maintaining an acceptable level of service provided by the application that
bases its decision on the sensor network data, even if a sensor is no more
reliable. For instance, one could consider systems which are able to either
reconstruct the signal that a faulty sensor would have provided (virtual sen-
sor) or to exclude the faulty sensor from the decision making algorithm.
In the former case efficient and reliable mechanisms for the reconstruction
of the signal should be considered, for instance by exploiting data coming
from other sensors and from past observations of the faulty sensor itself. In
the latter case, mechanisms which are able to reconfigure both the applica-
tion and the fault detection and diagnosis system should be designed.

137

List of Figures

1.1 General scheme of a monitoring system 4
1.2 Fault detection taxonomy 6
1.3 Fault diagnosis taxonomy 6
1.4 Generic fault detection scheme 7
1.5 Data-driven scheme for fault detection 8
1.6 Signal-based scheme for fault detection 9
1.7 Process-based scheme for fault detection 10

2.1 Specification of the considered faults 24
2.2 Fault monitoring system 25
2.3 Fault affecting the mounting of units on the rock face 27
2.4 Thermal drift affecting a MEMS tiltmeter 28
2.5 A low-probability intermittent fault at software level 29

3.1 General architecture of the proposed CFDDS 35
3.2 Example of dependency graph 37

4.1 Dependency graph learning phase of the proposed CFDDS . 48
4.2 Example of dependency graph learning phase 53

5.1 Proposed scheme for fault detection 56
5.2 Mahalanobis-based detection phase of the proposed CFDDS 57
5.3 Example of Mahalanobis-based detection 59
5.4 Example of HMM . 60
5.5 HMM-CDT detection phase 61

139

List of Figures

5.6 Detection phase of the proposed CFDDS 65
5.7 Example of EHMM-CDT 68

6.1 Isolation phase of the proposed CFDDS 72
6.2 Examples of dependency graphs 74
6.3 Example of the proposed cognitive isolation 75

7.1 Identification phase of the proposed CFDDS 80
7.2 Example of the identification phase in the proposed CFDDS 84
7.3 Example of different incipient faults 92

9.1 Example of generation of the dependency graph 98
9.2 The measurements acquired from two clinometers 99
9.3 Scheme for the BWNDS 100
9.4 Precision in the linear case 103
9.5 Precision in the sinusoidal case 103
9.6 Recall in the linear case . 104
9.7 Recall in the sinusoidal case 104
9.8 Box-plot for the best correlation 105
9.9 Results for the detection phase on Application D1 111
9.10 iOrioles subsystem . 115
9.11 Scheme of the iOrioles dependency graph 116
9.12 Robustness analysis result for αs 129

140

List of Tables

1.1 Relevant approaches in Cognitive FDDS 13

9.1 Detection results for Application D1 106
9.2 Detection results for Application D2: the numeric values are

detection delays DD for different dependency graph learn-
ing algorithms, while FP and FN stands for false positive
and false negative detections, respectively. 108

9.3 Detection results for the single and ensemble HMM-CDT
approaches . 112

9.5 Detection and isolation results for the Application D3 119
9.6 Parameters of the proposed CFDDS 123
9.7 Number of clusters created for the considered applications . 125
9.8 Accuracy results for the considered applications 127

141

Bibliography

[1] isense project website: http://www.i-sense.org/, mar 2014.

[2] matlab cognitive fault diagnosis system toolbox and dataset: http://home.deib.
polimi.it/trovo/downloads, jan 2015.

[3] Raj K Aggarwal, QY Xuan, Allan T Johns, Furong Li, and Allen Bennett. A novel approach to
fault diagnosis in multicircuit transmission lines using fuzzy artmap neural networks. Neural
Networks, IEEE Transactions on, 10(5):1214–1221, 1999.

[4] Richard A Ajayi, Joseph Friedman, and Seyed M Mehdian. On the relationship between stock
returns and exchange rates: tests of granger causality. Global Finance Journal, 9(2):241–251,
1999.

[5] C. Alippi, R. Camplani, C. Galperti, A. Marullo, and M. Roveri. An hybrid wireless-wired
monitoring system for real-time rock collapse forecasting. In Mobile Adhoc and Sensor Sys-
tems (MASS), 2010 IEEE 7th International Conference on, pages 224–231. IEEE, 2010.

[6] C. Alippi, R. Camplani, C. Galperti, A. Marullo, and M. Roveri. A high-frequency sampling
monitoring system for environmental and structural applications. ACM Transactions on Sensor
Networks (TOSN), 9(4):41, 2013.

[7] C. Alippi, S. Ntalampiras, and M. Roveri. An hmm-based change detection method for intelli-
gent embedded sensors. In Neural Networks (IJCNN), The 2012 International Joint Conference
on, pages 1–7. IEEE, 2012.

[8] C. Alippi, S. Ntalampiras, and M. Roveri. A cognitive fault diagnosis system for distributed
sensor networks. Neural Networks and Learning Systems, IEEE Transactions on, 24(8):1213
– 1226, 2013.

[9] C. Alippi, S. Ntalampiras, and M. Roveri. Model ensemble for an effective on-line reconstruc-
tion of missing data in sensor networks. In Neural Networks (IJCNN), The 2013 International
Joint Conference on, pages 1–6. IEEE, 2013.

143

http://www.i-sense.org/
http://home.deib.polimi.it/trovo/downloads
http://home.deib.polimi.it/trovo/downloads

Bibliography

[10] C. Alippi, M. Roveri, and F. Trovò. A “learning from models” cognitive fault diagnosis system.
In Artificial Neural Networks and Machine Learning–ICANN 2012, pages 305–313. Springer,
2012.

[11] C. Alippi, M. Roveri, and F. Trovò. A self-building and cluster-based cognitive fault diagnosis
system for sensor networks. Neural Networks and Learning Systems, IEEE Transactions on,
25(6):1021 – 1032, 2014.

[12] Cesare Alippi. Intelligence for Embedded Systems. Springer, 2014.

[13] Cesare Alippi, Giacomo Boracchi, and Manuel Roveri. On-line reconstruction of missing data
in sensor/actuator networks by exploiting temporal and spatial redundancy. In Neural Networks
(IJCNN), The 2012 International Joint Conference on, pages 1–8. IEEE, 2012.

[14] Cesare Alippi, Stavros Ntalampiras, and Manuel Roveri. Model ensemble for an effective
on-line reconstruction of missing data in sensor networks. In IJCNN, pages 1–6, 2013.

[15] Cesare Alippi, Manuel Roveri, and Francesco Trovò. Learning causal dependencies to detect
and diagnose faults in sensor networks. In Computational Intelligence, Intelligent Embedded
Systems (IES), 2014 IEEE Symposium on. IEEE, 2014 (to appear).

[16] T.W. Anderson. The statistical analysis of time series, volume 19. John Wiley & Sons, 2011.

[17] P.P. Angelov, P. Angelov, D.P. Filev, and N. Kasabov. Evolving intelligent systems: methodol-
ogy and applications, volume 12. Wiley-IEEE Press, 2010.

[18] L. Barnett and A.K. Seth. The mvgc multivariate granger causality toolbox: A new approach
to granger-causal inference. Journal of neuroscience methods, 223:50–68, 2014.

[19] A.B. Barrett, L. Barnett, and A.K. Seth. Multivariate granger causality and generalized vari-
ance. Physical Review E, 81(4):041907, 2010.

[20] Adam B Barrett, Michael Murphy, Marie-Aurélie Bruno, Quentin Noirhomme, Mélanie Boly,
Steven Laureys, and Anil K Seth. Granger causality analysis of steady-state electroencephalo-
graphic signals during propofol-induced anaesthesia. PloS one, 7(1):e29072, 2012.

[21] Michèle Basseville, Igor V Nikiforov, et al. Detection of abrupt changes: theory and applica-
tion, volume 104. Prentice Hall Englewood Cliffs, 1993.

[22] L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in the
statistical analysis of probabilistic functions of markov chains. The annals of mathematical
statistics, 41:164–171, 1970.

[23] Avrim Blum. Random projection, margins, kernels, and feature-selection. In Subspace, Latent
Structure and Feature Selection, pages 52–68. Springer, 2006.

[24] Frey Brendan J. and Dueck Delbert. Clustering by passing messages between data points.
Science, 315:972–976, 2007.

[25] E. Caini, V. Puig Cayuela, G. Cembrano Gennari, et al. Development of a simulation environ-
ment for water drinking networks: Application to the validation of a centralized mpc controller
for the barcelona case study. Technical report, Universitat Politècnica de Catalunya, 2010.

[26] H. Chen, P. Tino, A. Rodan, and Xin Yao. Learning in the model space for cognitive fault
diagnosis. Neural Networks and Learning Systems, IEEE Transactions on, 25(1):124–136, Jan
2014.

144

Bibliography

[27] J.B. Comly, P.P. Bonissone, and M.E. Dausch. Fuzzy logic for fault diagnosis. GE Research &
Development Center, 1990.

[28] M.A. Cuguero, J. Quevedo, C. Alippi, M. Roveri, V. Puig, D. Garcia, and F. Trovò. Fault
diagnosis in drinking water transport networks: Physical/temporal parity relations vs. hmm-
based cognitive method. Journal of Hydroinformatics, 2014 (submitted).

[29] R.I.A. Davis and B.C. Lovell. Comparing and evaluating hmm ensemble training algorithms
using train and test and condition number criteria. Formal Pattern Analysis & Applications,
6(4):327–335, 2004.

[30] M.A. Demetriou and M.M. Polycarpou. Incipient fault diagnosis of dynamical systems using
online approximators. Automatic Control, IEEE Transactions on, 43(11):1612–1617, 1998.

[31] A.P. Dempster et al. Maximum likelihood from incomplete data via the em algorithm. Journal
of the Royal statistical Society, 39(1):1–38, 1977.

[32] Gopikrishna Deshpande, Stephan LaConte, George Andrew James, Scott Peltier, and Xiaoping
Hu. Multivariate granger causality analysis of fmri data. Human brain mapping, 30(4):1361–
1373, 2009.

[33] Y. Ding, P. Kim, D. Ceglarek, and J. Jin. Optimal sensor distribution for variation diagnosis in
multistation assembly processes. Robotics and Automation, IEEE Transactions on, 19(4):543–
556, 2003.

[34] R.J. Elliott, L. Aggoun, and J.B. Moore. Hidden Markov Models. Springer, 1995.

[35] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of KDD. KDD,
1996.

[36] J. Farrell, T. Berger, and BD Appleby. Using learning techniques to accommodate unantici-
pated faults. Control Systems, IEEE, 13(3):40–49, 1993.

[37] J. Gertler. Fault detection and diagnosis in engineering systems. CRC, 1998.

[38] C.W.J. Granger. Investigating causal relations by econometric models and cross-spectral meth-
ods. Econometrica: Journal of the Econometric Society, 27(3):424–438, July 1969.

[39] James Douglas Hamilton. Time series analysis, volume 2. Princeton university press Princeton,
1994.

[40] J. Hardin and D.M. Rocke. Outlier detection in the multiple cluster setting using the minimum
covariance determinant estimator. Computational Statistics & Data Analysis, 44(4):625–638,
2004.

[41] Wolfram Hesse, Eva Möller, Matthias Arnold, and Bärbel Schack. The use of time-variant eeg
granger causality for inspecting directed interdependencies of neural assemblies. Journal of
neuroscience methods, 124(1):27–44, 2003.

[42] G.B. Huang, Q.Y. Zhu, and C.K. Siew. Extreme learning machine: theory and applications.
Neurocomputing, 70(1):489–501, 2006.

[43] Yann-Chang Huang. Evolving neural nets for fault diagnosis of power transformers. Power
Delivery, IEEE Transactions on, 18(3):843–848, 2003.

145

Bibliography

[44] Yann-Chang Huang, Hong-Tzer Yang, and Ching-Lien Huang. Developing a new transformer
fault diagnosis system through evolutionary fuzzy logic. Power Delivery, IEEE Transactions
on, 12(2):761–767, 1997.

[45] R. Isermann. Fault-diagnosis systems: an introduction from fault detection to fault tolerance.
Springer Verlag, 2006.

[46] R. Isermann. Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators,
drives, machinery, plants, sensors, and fault-tolerant systems. Springer, 2011.

[47] H. Jaeger. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the
“echo state network” approach. GMD-Forschungszentrum Informationstechnik, 2002.

[48] S. Jaiyen, C. Lursinsap, and S. Phimoltares. A very fast neural learning for classification using
only new incoming datum. Neural Networks, IEEE Transactions on, 21(3):381–392, 2010.

[49] A. Joentgen, L. Mikenina, R. Weber, A. Zeugner, and H.J. Zimmermann. Automatic fault
detection in gearboxes by dynamic fuzzy data analysis. Fuzzy Sets and Systems, 105(1):123–
132, 1999.

[50] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[51] Daniel Kaplan and Leon Glass. Understanding nonlinear dynamics, volume 19. Springer,
1995.

[52] A. Khan and D. Ceglarek. Sensor optimization for fault diagnosis in multi-fixture assembly
systems with distributed sensing. TRANSACTIONS-AMERICAN SOCIETY OF MECHAN-
ICAL ENGINEERS JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING,
122(1):215–226, 2000.

[53] A.N. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. Giornale
dell’Istituto Italiano degli Attuari, 4(1):83–91, 1933.

[54] A. Krogh and P. Sollich. Statistical mechanics of ensemble learning. Physical Review E,
55(1):811, 1997.

[55] Anders Krogh, BjoÈrn Larsson, Gunnar Von Heijne, and Erik LL Sonnhammer. Predict-
ing transmembrane protein topology with a hidden markov model: application to complete
genomes. Journal of molecular biology, 305(3):567–580, 2001.

[56] M. Krysander and E. Frisk. Sensor placement for fault diagnosis. Systems, Man and Cyber-
netics, Part A: Systems and Humans, IEEE Transactions on, 38(6):1398–1410, 2008.

[57] H.C. Kuo and H.K. Chang. A new symbiotic evolution-based fuzzy-neural approach to fault
diagnosis of marine propulsion systems. Engineering Applications of Artificial Intelligence,
17(8):919–930, 2004.

[58] L. Ljung. Convergence analysis of parametric identification methods. Automatic Control, IEEE
Transactions on, 23(5):770–783, 1978.

[59] L. Ljung and P.E. Caines. Asymptotic normality of prediction error estimators for approximate
system models. In Decision and Control including the 17th Symposium on Adaptive Processes,
1978 IEEE Conference on, volume 17, pages 927–932. IEEE, 1978.

[60] Lennart Ljung. System identification. Wiley Online Library, 1999.

146

Bibliography

[61] Xinsheng Lou and Kenneth A Loparo. Bearing fault diagnosis based on wavelet transform and
fuzzy inference. Mechanical systems and signal processing, 18(5):1077–1095, 2004.

[62] D.J.C. MacKay. Ensemble learning for hidden markov models. Technical report, Technical
report, Cavendish Laboratory, University of Cambridge, 1997.

[63] P.C. Mahalanobis. On the generalized distance in statistics. In Proceedings of the National
Institute of Sciences of India, volume 2, pages 49–55. New Delhi, 1936.

[64] R. Naresh, V. Sharma, and M. Vashisth. An integrated neural fuzzy approach for fault diagnosis
of transformers. Power Delivery, IEEE Transactions on, 23(4):2017–2024, 2008.

[65] O. Nasraoui and C. Rojas. Robust clustering for tracking noisy evolving data streams. In Proc.
2006 SIAM Conf. on Data Mining (SDM 2006), pages 80–99, 2006.

[66] Philippe Pébay. Formulas for robust, one-pass parallel computation of covariance and arbitrary-
order statistical moments. Technical report, Sandia National Laboratories, 09 2008.

[67] M.D. Penrose. Extremes for the minimal spanning tree on normally distributed points. Ad-
vances in Applied Probability, 30(3):628–639, 1998.

[68] M.P. Perrone and L.N. Cooper. When networks disagree: Ensemble methods for hybrid neural
networks. Technical report, DTIC Document, 1992.

[69] J Quevedo, V Puig, G Cembrano, J Blanch, J Aguilar, D Saporta, G Benito, M Hedo, and
A Molina. Validation and reconstruction of flow meter data in the barcelona water distribution
network. Control Engineering Practice, 18(6):640–651, 2010.

[70] Lawrence Rabiner and Biing-Hwang Juang. An introduction to hidden markov models. ASSP
Magazine, IEEE, 3(1):4–16, 1986.

[71] A. Rosich, R. Sarrate, V. Puig, and T. Escobet. Efficient optimal sensor placement for model-
based fdi using an incremental algorithm. In Decision and Control, 2007 46th IEEE Conference
on, pages 2590–2595. IEEE, 2007.

[72] Manuel Roveri and Francesco Trovò. An ensemble of hmms for cognitive fault detection in
distributed sensor networks. In Artificial Intelligence Applications and Innovations. Springer,
2014 (to appear).

[73] R. Saunders and P. Laud. The mutltidimensional kolmogorov goodness-of-fit test. Biometrika,
67(1):237–237, 1980.

[74] B. Schrauwen, D. Verstraeten, and J. Van Campenhout. An overview of reservoir computing:
theory, applications and implementations. In Proceedings of the 15th European Symposium on
Artificial Neural Networks. Citeseer, 2007.

[75] Gideon Schwarz. Estimating the dimension of a model. The annals of statistics, 6(2):461–464,
1978.

[76] M.Ó. Searcóid. Metric spaces. Springer Verlag, 2006.

[77] Manjeevan Seera, Chee Peng Lim, Dahaman Ishak, and Harapajan Singh. Fault detection and
diagnosis of induction motors using motor current signature analysis and a hybrid fmm–cart
model. Neural Networks and Learning Systems, IEEE Transactions on, 23(1):97–108, 2012.

147

Bibliography

[78] N. Smirnov. Table for estimating the goodness of fit of empirical distributions. The annals of
mathematical statistics, 19(2):279–281, 1948.

[79] Q. Song and N. Kasabov. Ecm-a novel on-line, evolving clustering method and its applications.
In Proceedings of the fifth biannual conference on artificial neural networks and expert systems
(ANNES2001), pages 87–92. Citeseer, 2001.

[80] A.B. Trunov and M.M. Polycarpou. Automated fault diagnosis in nonlinear multivariable
systems using a learning methodology. Neural Networks, IEEE Transactions on, 11(1):91–
101, 2000.

[81] V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, and K. Yin. A review of process fault
detection and diagnosis:: Part iii: Process history based methods. Computers & chemical
engineering, 27(3):327–346, 2003.

[82] J. Wichard and M. Ogorzalek. Time series prediction with ensemble models. In Proceedings of
International Joint Conference on Neural Networks (IJCNN 2004), pages 1625–1629. Citeseer,
2004.

[83] C.W. Wu, J.L. Chen, and J.H. Wang. Self-organizing mountain method for clustering. In
Systems, Man, and Cybernetics, 2001 IEEE International Conference on, volume 4, pages
2434–2438. IEEE, 2001.

[84] Rui Xu and Don Wunsch. Clustering, volume 10. Wiley-IEEE Press, 2008.

[85] R.R. Yager and D.P. Filev. Approximate clustering via the mountain method. Systems, Man
and Cybernetics, IEEE Transactions on, 24(8):1279–1284, 1994.

[86] B.S. Yang, T. Han, and Y.S. Kim. Integration of art-kohonen neural network and case-based
reasoning for intelligent fault diagnosis. Expert Systems with Applications, 26(3):387–395,
2004.

[87] M.S. Yang and K.L. Wu. A similarity-based robust clustering method. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 26(4):434–448, 2004.

[88] DL Yu, JB Gomm, and D Williams. Sensor fault diagnosis in a chemical process via rbf neural
networks. Control Engineering Practice, 7(1):49–55, 1999.

[89] G.P. Zhang. Time series forecasting using a hybrid arima and neural network model. Neuro-
computing, 50:159–175, 2003.

[90] J Zhang and AJ Morris. On-line process fault diagnosis using fuzzy neural networks. Intelligent
systems engineering, 3(1):37–47, 1994.

[91] Z.H. Zhou. Ensemble methods: foundations and algorithms. CRC Press, 2012.

[92] I. Žliobaitė. Combining similarity in time and space for training set formation under concept
drift. Intelligent Data Analysis, 15(4):589–611, 2011.

148

Glossary

AIC Akaike Information Criterion. 94

ANFIS Adaptive Network-based Fuzzy Inference System. 14

ANN Artificial Neural Network. 9, 10

AP Affinity Propagation. 80, 121, 122, 126, 128, 131, 132

ARMAX Auto Regressive Moving Average eXogenous. 38

ART-KNN Adaptive Resonance Theory and Kohonen Neural Network. 14

ARX Auto Regressive eXogenous. 38, 94, 101, 109, 116, 122, 126, 128, 130, 131

BIC Bayesian Information Criterion. 122

BW Baum-Welch. 64, 65

BWNDS Barcelona Water Network Distribution System. 17, 100, 120, 131, 132

CDF Cumulative Distribution Function. 87

CDT Change Detection Test. 7, 73

CFDDS Cognitive Fault Detection and Diagnosis System. V, VI, 11, 16, 17, 20, 31, 33, 34, 35, 34,
35, 36, 40, 42, 43, 44, 45, 44, 47, 49, 52, 55, 56, 57, 64, 67, 71, 73, 75, 77, 79, 81, 83, 85, 86,
87, 88, 91, 93, 94, 95, 97, 108, 109, 114, 115, 116, 117, 120, 121, 122, 123, 126, 128, 129,
130, 131, 132, 133, 135, 136, 137, 139, 140, 141

DB DataBase. 29

DBSCAN Density-Based Spatial Clustering of Applications with Noise. 80, 121, 122, 123, 126,
128, 131, 132

ECM Evolving Cluster Method. 80, 121, 122, 123, 126, 128, 131, 132

EEG ElectroEncephaloGraphy. 49

EHMM-CDT Ensemble approach to Hidden Markov Model-Change Detection Test. 55, 64, 65,
67, 69, 71, 79, 108, 110, 113, 140

149

Glossary

ELM Extreme Learning Machine. 38

FDDS Fault Detection and Diagnosis System. 3, 11, 13, 14, 15, 23, 30, 48, 141

fMRI functional Magnetic Resonance Imaging. 49

GMM Gaussian Mixture Model. 61, 62, 101, 109

HMM Hidden Markov Model. 15, 16, 43, 44, 56, 60, 61, 62, 63, 64, 65, 67, 71, 76, 93, 94, 95, 101,
109, 116, 136, 137, 139

HMM-CDT Hidden Markov Model-Change Detection Test. VI, 15, 55, 60, 62, 63, 64, 65, 67, 69,
100, 101, 105, 108, 109, 110, 112, 113, 116, 120, 133, 136, 139, 141

KNN K-Nearest Neighbours. 10

KS Kolmogorov-Smirnov. 44, 87, 88, 123

LM Levenberg-Marquardt. 41

LS Least Square. 9, 50, 109

LTI Linear Time Invariant. 16, 35, 38, 40, 56, 109

MEMS Micro Electro-Mechanical Systems. 28

MIMO Multiple Input Multiple Output. 41, 69

MISO Multiple Input Single Output. 38, 41, 131

ML Machine Learning. 14

MM Mountain Method. 88

MSE Mean Square Error. 94

PCA Principal Component Analysis. 9, 87

PTPR Physical/Temporal Parity Relations. 115, 116, 117, 120, 133

RBF Radial Basis Function. 14

RN Reservoir Network. 38, 122, 126, 128

RP Random Projection. 87

SIMO Single Input Multiple Output. 41

SISO Single Input Single Output. 101, 109

UMTS Universal Mobile Telecommunications System. 99

VAR Vector AutoRegressive. 49

150

	Introduction
	Detection and Diagnosis of Faults in Sensor Networks
	Fault Detection
	Fault Diagnosis

	Cognitive Fault Detection and Diagnosis Systems
	Original Contribution
	Dissertation Structure

	Problem Formulation
	Sensor Network Measurements
	Fault Modeling
	Modeling the Faulty System
	Examples of Faults
	Purposes of Fault Detection and Diagnosis

	The Proposed Cognitive Fault Detection and Diagnosis System
	General Architecture
	Dependency Graph
	Modeling Functional Relationships Between Pairs of Sensors
	Feature in the Parameter Space
	The Phases of the Proposed CFDDS
	Graph Learning
	Detection
	Isolation
	Identification

	Dependency Graph Learning
	Modeling the Relationship Between a Couple of Datastreams
	Creating the Granger-based Dependency Graph

	Fault Detection
	Fault Detection in the Parameter Space
	Mahalanobis-based Detection
	Hidden Markov Model Change Detection Test
	Ensemble Approach to HMMCDT

	Fault Isolation
	Cognitive Fault Isolation
	Fault Isolation Phase

	Fault Identification
	Modeling the Nominal State
	On-line Modeling the Fault Dictionary
	Dealing with Incipient Faults

	CFDDS Implementation
	Experimental Results
	The Considered Datasets
	Application D1: Synthetic Datasets
	Application D2: Rialba Dataset
	Application D3: Barcelona Water Distribution Network System Dataset

	Dependency Graph Learning
	Application D1: Synthetic Dataset
	Application D2: Rialba Dataset

	Detection Phase
	Application D1: Synthetic Dataset
	Application D2: Rialba Dataset

	Isolation Phase
	Application D3: Barcelona Water Distribution Network System Dataset

	Identification Phase
	Application D1: Synthetic Dataset
	Application D2: Rialba Dataset
	Application D3: Barcelona Water Distribution Network System Dataset

	General Remarks

	Concluding Remarks
	Future Perspectives

	Bibliography
	Glossary

