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Abstract

In the last years, social media have attracted millions of users and have been integrated in
people’s daily practices. They enable users to create and share content or to participate in social
networking. User-generated content, i.e., the various forms of media assets publicly available and
created by end-users, is published every day on the Web and mostly in social media at a massive
scale, either in the form of textual documents (e.g., blog articles, posts on social networks,
comments and discussion) or in the form of multimedia items (e.g., images and videos). Most
user-generated content is about personal lives and facts about users. However, users often
publish more structured and complex information.

Crowdsourcing has gained increasing importance in the last years. The term crowdsourcing
generally refers to the outsourcing of a non-automatable task to people. The growth of the time
spent online has led to a growth of interest in crowdsourcing. Several works have been developed,
either making users actively participate in the resolution of tasks or exploiting data they generate
and publish over the Web. We refer to these approaches as, respectively, active crowdsourcing
(i.e., active participation of motivated users in task execution) and passive crowdsourcing (i.e.,
exploitation of user-generated content to extract useful information).

On the one hand, active crowdsourcing is the process of outsourcing tasks to a large group
of people, called workers. In this scenario, human workers are asked to perform very specific
tasks (called crowd tasks), which usually are easy to be solved by humans but hard to be solved
by machines. In the context of active crowdsourcing, only tasks difficult to be performed by
a machine are submitted as crowd tasks. They are often based on uncertain data, since these
data can hardly be processed by computers, due to their unstructured nature. Unfortunately,
an appropriate modeling of the impact of a crowd task answer on uncertain data is yet to be
defined. Moreover, similarly to the use of machine resources, which cost, also human compu-
tational resources are not freely available in any amount, and may provide erroneous answers.
Consequently, an approach for the selection of the best candidate set of tasks to submit to the
crowd under some fixed constraints (e.g., costs and time) needs to be devised, together with
quality assurance procedures that guarantee an appropriate result quality level.

On the other hand, passive crowdsourcing denotes an alternative approach for leveraging
the online activity of users for task resolution, which amounts to analyzing a huge amount of
publicly available contents, to extract information about behaviors, interests and activities of
the social media population. Researchers from different fields (e.g., social science, economy and
marketing) analyze a variety of user-generated datasets to understand human behaviors, find
new trends in society and possibly formulate adequate policies in response. However, due to the
uncontrolled nature of users’ participation on the Web, the huge mass of available data contains
replicated information, as well as low quality or irrelevant content. Moreover, content is often
replicated maliciously: users copy content created by others (and often subject to copyright
laws), rename it and pretend they are the authors of the corresponding original content.

In this Thesis, we propose methods to overcome these problems, both in the active and
passive crowdsourcing field, with the objective of maximizing the quality of results, under the
assumption of budget and time constraints.
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Sommario

Durante gli ultimi anni, i social media hanno attratto milioni di utenti, e sono stati integrati
progressivamente nella loro routine quotidiana. Essi permettono di creare e condividere con-
tenuto, o di connettersi con altre persone. Lo user-generated content, ovvero le varie forme di
contenuto creato dagli utenti e disponibile sui media, è pubblicato ogni giorno sul Web in quan-
tità enormi, sia in formato testuale (ad esempio sottoforma di articoli in blog, post sui social
network, commenti e discussioni) sia sottoforma di file multimediali (ad esempio immagini e
video). La maggior parte del contenuto parla di fatti personali che gli utenti vogliono condi-
videre con altre persone nella propria cerchia sociale. Tuttavia, altri utenti pubblicano spesso
informazione più strutturata e complessa.

Il crowdsourcing è diventato uno degli argomenti più discussi degli ultimi anni. Il termine
crowdsourcing generalmente fa riferimento all’esecuzione da parte di un gruppo di persone di un
compito non automatizzabile (detto anche task). La crescita del tempo che le persone spendono
online ha aumentato via via l’interesse che le persone mostrano nei confronti del crowdsourcing.
Di conseguenza, molti lavori di ricerca hanno studiato a fondo aspetti riguardanti il crowd-
sourcing, sia creando politiche di partecipazione attiva degli utenti alla risoluzione di task, sia
sfruttando i dati che gli utenti pubblicano tutti i giorni sul Web. Ci riferiamo a questi ap-
procci come, rispettivamente, active crowdsourcing (cioè: partecipazione attiva di utenti mo-
tivati nell’esecuzione di task) e passive crowdsourcing (cioè: sfruttamento dello user-generated
content per l’estrazione di informazione altrimenti non nota).

L’active crowdsourcing è il processo di esecuzione di task da parte un largo gruppo di persone,
chiamati lavoratori. In questo scenario, si chiede ad un lavoratore umano di eseguire un compito
specifico (chiamato crowd task), che solitamente è semplice da eseguire per il lavoratore, ma
difficile da eseguire per una macchina. Nel contesto dell’active crowdsourcing, solo i compiti
difficilmente automatizzabili vengono fatti eseguire da lavoratori umani. Di conseguenza, i crowd
task vanno spesso a trattare dati incerti, non strutturati e non comprensibili da componenti
automatiche. Sfortunatamente, non è ancora stato quantificato appropriatamente l’impatto che
la risoluzione di un crowd task su dati incerti potrebbe avere sul grado di incertezza dei dati.
Inoltre, come accade anche con l’impiego di risorse automatiche, anche l’impiego di lavoratori
umani ha un certo costo, ed inoltre i lavoratori non sono sempre disponibili e potrebbero fornire
risposte errate. Di conseguenza, è necessario progettare un approccio per la selezione dell’insieme
di crowd task più promettente, dati alcuni vincoli (ad esempio, di tempo e di costo), così che
l’esecuzione dei suddetti possa garantire una alta qualità del risultato.

Il passive crowdsourcing denota invece un approccio alternativo per sfruttare l’attività on-
line degli utenti: esso richiede di analizzare grosse quantità di dati (resi pubblici dagli utenti
stessi), per estrarre informazione sui comportamenti, sugli interessi e sulle attività svolte dalla
popolazione dei social media. Ricercatori di diversi campi (ad esempio delle scienze sociali,
economiche e di marketing) analizzano una grande varietà di dati creati dagli utenti per com-
prenderne il comportamento, per trovare nuovi trend nella società e per formulare politiche
adeguate in risposta. Tuttavia, data la natura incontrollata della partecipazione degli utenti sul
Web, una grande quantità di dati contiene informazione replicata, di bassa qualità ed irrilevante.
Inoltre, il contenuto viene spesso replicato senza permesso: gli utenti copiano contenuto creato
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da altri (anche se soggetto a copyright), lo rinominano e fingono di esserne gli autori.
In questa Tesi, proponiamo metodi per superare i problemi citati, sia nel campo dell’active

crowdsourcing sia in quello del passive crowdsourcing, con l’obiettivo di massimizzare la qualità
del risultato, anche in presenza di vincoli di budget e di tempo.
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Chapter 1

Introduction

In the last years, social media have attracted millions of users and have been integrated in
people’s daily practices. They enable users to create and share content or to participate in
social networking. Social networks are web-based services where individuals can create a virtual
profile, list users with whom they share a connection, and visualize profiles made by others in the
same system [Ellison et al., 2007]. Classical examples of these social applications are Facebook1,
Twitter2 and Instagram3. A social network allows users to maintain a virtual copy of their real-
world social graph, i.e., a representation of the relationships with other people (e.g., friends and
family). However, these websites often encourage users to interact also with strangers, based
on shared interests. Twitter is a typical example, where users follow (i.e., create a relationship
with) other users just based on the interest in the content they publish. Some sites are thought
for the general public, while others attract users based on common language, religious identity,
ideas and nationality.

With the diffusion of mobile devices, a new form of social networking has started: mobile
social networking. People with similar interests converse and connect with one another through
their mobile devices (e.g., smartphones and tablets), which makes social networks more pervasive:
in any moment, either at home or in mobility, users can connect to their profiles, check updates
from their friends, publish fresh content.

User-Generated Content, i.e., the various forms of media assets publicly available and created
by end-users, is published every day on the Web and mostly in social media at a massive scale,
either in the form of textual documents (e.g., blog articles, posts on social networks, comments
and discussion) or in the form of multimedia items (e.g., images and videos).

Most user-generated content is about personal lives and facts about users. However, users of-
ten publish more structured and complex information. For instance, when breaking-news events
happen (e.g., earthquakes, shootings, attacks), people start to publish text, photos and videos
massively, so as to describe the ongoing event to their own friends and acquaintances [Sakaki
et al., 2010]. Sometimes the publishing rate is so powerful that content reaches users before
the actual event hits: [The Washington Post, 2011] showed that tweets talking about earth-
quakes can travel faster than earthquakes themselves. As another example, when new products
are released, expert users massively create product reviews that contain textual descriptions,
images and videos commenting the product. These materials always generate great interest in
consumers, who want to retrieve detailed information about products before buying them. For
instance, after the release of iPhone6 in September 2014, a user realized that the released phone
could be bended with a little pressure, and demonstrated his discovery with a video, reaching
53.4 millions of views in two weeks.

The booming interest on social networks multiplies the number of people that every day

1http://www.facebook.com
2http://twitter.com
3http://instagram.com
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interconnect themselves on the Web. Somehow, this relates with human nature: humans are
innately social and cooperate to achieve objectives [Porter, 2010]; they tend to form social
circles (i.e., a group of socially interconnected people) and obtain benefits from them [Levine
and Kurzban, 2006]. Social circles existed well before social networks were invented. People
clustered in social circles in the real world (i.e., communities sharing the same interests, religions,
ideas), and the information a person had access to was that flowing through her social circle.
Information generated by other circles was not visible. Now, with the diffusion of new media
(e.g., the Internet and social media), the situation is the opposite: the amount of available
information has grown substantially, data coming from all circles is always available, and each
social circle acts as a filter for the information delivered every day [Ma et al., 2011]. Social
networks promote content coming from people close in one’s circle, who usually share the same
interests and ideas.

A direct benefit of real-world social circles is that they allow users to ask directly their friends
for advice or opinions. A similar mechanism can be applied to online social networks, where
data is automatically filtered according to the opinions coming from social circles, so that users
are provided only with information that can potentially answer their needs. The benefit of this
approach is that, while the number of advices and opinions that can be handled manually by a
person is limited, the introduction of machines allows millions of items, covering a large social
circle [Luz et al., 2014].

Socially filtered recommendations are an outstanding example of information retrieval imple-
mented by the harmonic cooperation of humans and computer systems. Back in the 1960s, [Lick-
lider, 1960] believed that machines and computers were just part of a scale which weighs humans
on one side, and computers on the other [Luz et al., 2014]. According to his vision, humans and
computers should work together with complementary roles: massive data computation is left
to computers, while tasks that require some additional knowledge and reasoning are performed
by humans. Recently, this idea was further developed by other authors [Gruber, 2008], with
the introduction of the social Web and collective intelligence applications [Malone et al., 2009].
In these works, the authors argue that humans and computers have complementary abilities,
and that users can act as computational units. Even nowadays, many tasks that are trivial for
humans continue to challenge the most sophisticated computer programs. These tasks, due to
their intrinsic complexity, cannot be fully automatized, and it is thus necessary to perform them
manually. Typically they require some degree of creativity or common sense, plus some back-
ground knowledge [Singh et al., 2002,Chklovski, 2003]. Image annotation is a common example:
tagging images requires the ability of recognizing objects and scenes in photos, which is typical
of humans. Machines, on the other hand, if provided with a large dictionary of shapes, can only
state if two objects are similar. This automatic decision is usually based on the comparison of
key points (i.e., significant points in the image), which is obviously not robust to illumination,
rotation and position change, and thus prone to errors.

For these reasons, crowdsourcing has gained increasing importance in the last years [Howe,
2008,Von Ahn, 2009,Quinn and Bederson, 2011]. The term “crowdsourcing” [Howe and Robin-
son, 2006] generally refers to the outsourcing of a non-automatable task to people.

The growth of the time spent online has led to a growth of interest in crowdsourcing. In this
inception phase, most business crowdsourcing applications are developed in an ad-hoc manner;
in the academy most work has focused on such aspects as mixed human-machine computational
techniques and performance analysis. Several works have been developed, either making users
actively participate in the resolution of tasks [Yuen et al., 2011, Luz et al., 2014] or exploiting
data they generate and publish over the Web [Xintong et al., 2014]. We refer to these approaches
as, respectively, active crowdsourcing (i.e., active participation of motivated users in task exe-
cution) and passive crowdsourcing (i.e., exploitation of user-generated content to extract useful
information).

The common trait of active and passive crowdsourcing is that they rely on the coordinate
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work of humans and machines to solve a specific task meeting quality standards and respecting
budget constraints. In active crowdsourcing humans are engaged explicitly and quality of work
can be achieved with techniques that work a priori (e.g., task design). In passive crowdsourcing
human work is exploited a posteriori, and optimization techniques work by filtering out irrelevant
data to retain only information that can actually contribute to resolving the task.

Active crowdsourcing

Active crowdsourcing is the common notion of crowdsourcing found in the literature, which we
qualify as active in order to distinguish it from the passive collection of contributions from user-
generated content. Active crowdsourcing is the process of outsourcing tasks to a large group of
people [Quinn and Bederson, 2011], called workers. In this scenario, human workers are asked to
perform very specific tasks (called crowd tasks), which usually are easy to be solved by humans
but hard to be solved by machines. An example of crowd task is image annotation, in which
workers are provided with an image and are required to state whether the image contains a
specific object.

Usually, crowd tasks are submitted to crowdsourcing platforms, where workers are paid with a
fixed (typically monetary) reward, do not cooperate among themselves in solving tasks [Von Ahn
and Dabbish, 2008], and can pick and execute the tasks they prefer. Workers generally tend
to select tasks that require a short execution time, so as to maximize the reward. Single task
executions are generally avoided because in this way a worker wastes more time in selecting the
task than in executing it, reducing profit.

Work quality varies according to both task design and user motivation in performing the
task. The simpler the task and the more motivated the user, the better the expected work
accuracy. Several works in the literature focus on how to induce workers to answer tasks with
the best possible accuracy: user motivation [Harris, 2011a,Mason and Watts, 2010,Kazai, 2010],
clean task design [Grady and Lease, 2010,Yang et al., 2008], quality management policies [Sheng
et al., 2008,Snow et al., 2008,Rashtchian et al., 2010,Nowak and Rüger, 2010] and cheating de-
tection [Eickhoff and de Vries, 2011] are the most studied factors. A common approach used to
ensure quality is redundancy with majority voting [Sheng et al., 2008,Snow et al., 2008,Nowak
and Rüger, 2010]. This approach replicates tasks so as to collect multiple answers for the same
task instance, and averages the collected answers to extract an aggregated opinion. This results
in the reduction of erroneous answers: if the hypothesis that the majority of workers provides
the correct answer holds, the damage caused by wrong answers is limited.

In the context of active crowdsourcing, only tasks difficult to be performed by a machine
are submitted as crowd tasks. They are often based on uncertain data, since these data can
hardly be processed by computers, due to their unstructured nature. Some famous examples of
crowd tasks on unstructured data are: image tagging tasks [Nowak and Rüger, 2010] (in which
workers are asked to detect a specific visual component in an image), OCR tasks [Von Ahn et al.,
2008] (in which workers are asked to convert images of typewritten text into text), matching of
complex structures [Zhang et al., 2013] (e.g., object matching, schema matching), fuzzy query
answering [Franklin et al., 2011]. However, the concept of uncertain data is broad [Aggarwal and
Yu, 2009]. Uncertainty may arise in different forms (e.g., uncertain attribute values of tuples in
databases, uncertainty on data correctness, uncertainty on the existence of tuples in real world)
and may affect the results of different applications (e.g., uncertain data mining, uncertain query
answering, classification).

Several works have shown preliminary evidence that the application of crowdsourcing tech-
niques can improve the performance of state-of-the-art automatic algorithms for uncertain data
processing [Bozzon et al., 2012]. Since automatic uncertain content analysis components (e.g.,
multimedia content processors [Nowak and Rüger, 2010], uncertain data validators [Zhang et al.,
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Figure 1.1: Overview of the steps of active crowdsourcing. In bold, the components of the
pipeline we will optimize in this Thesis

2013]) have often low accuracy, they introduce errors in the output. Thus, humans are asked
to replace or integrate them, hopefully increasing the ultimate accuracy. Similarly to the use of
machine resources, which cost, also human computational resources are not freely available in
any amount. The larger the number of tasks to perform, the larger the amount of money the
requester has to pay to ensure the desired number of workers engage and deliver the requested
level of accuracy. Thus, it is necessary to devise a strategy to minimize the number of posed
questions, while guaranteeing a high result quality [Parameswaran et al., 2011].

Figure 1.1 shows the basic steps of active crowdsourcing. We summarize them as follows:

• Task design: design of crowdsourcing tasks and evaluation of the impact of a worker
answer;

• Task selection: selection of the set of tasks that minimizes the underlying residual data
uncertainty;

• Result quality control : implementation of quality control policies to guarantee quality of
the result;

• Deployment : publication of tasks on crowdsourcing platform and collection of contribu-
tions.

Passive crowdsourcing

The term Passive crowdsourcing denotes an alternative approach for leveraging the online activ-
ity of users for task resolution, which amounts to analyzing a huge amount of publicly available
contents, to extract information about behaviors, interests and activities of the social media pop-
ulation. Researchers from different fields (e.g., social science, economy and marketing) analyze
a variety of user-generated datasets to understand human behaviors, find new trends in society
and possibly formulate adequate policies in response [Xintong et al., 2014]. Two applications of
these techniques are the prediction of user interests in products (e.g., given the preferred dress
colors of past seasons, predict which color will be chosen by users in the next season) and the
tracking of felonious behaviors (e.g., track the insurgence of extremist groups, which often use
Twitter as a platform for the diffusion of messages and discussions [Lynch et al., 2014]).

However, due to the uncontrolled nature of users’ participation on the Web, the huge mass
of available data contains replicated information, as well as low quality or irrelevant content.
Thus, in recent years, content relevance has emerged as a relevant topic in the context of passive
crowdsourcing [De Choudhury et al., 2011b,Ghosh et al., 2013,Lerman and Hogg, 2010,Bakshy
et al., 2011]. When data need to be analyzed (either to extract relevant content to be shown to
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Figure 1.2: Overview of the steps of passive crowdsourcing, inspired by [Charalabidis et al.,
2013]. In bold, the components of the pipeline we will optimize in this Thesis

users or to extract relevant information to build reports) it is necessary to pre-filter them so as to
discard irrelevant content and analyze only pertinent data. Several works in the literature apply
machine learning techniques and graph structure analysis to extract relevant content from social
media [Sun and Ng, 2013,Silva et al., 2013,Schenkel et al., 2008,Gou et al., 2010,Yin et al., 2010].
Their analysis reveals relationships between content and content creators: influential users (i.e.,
the ones with the largest visibility in the network) are the ones producing more exploitable
content (e.g., original content characterized by novelty and relevance to a topic).

Figure 1.2 shows the basic steps of passive crowdsourcing. We summarize them as follows:

• Data acquisition: definition of a crawling architecture that retrieves user-generated content
from social media;

• Data classification: classification of data so as to recognize topic-related content;

• Opinion mining : analysis of content to extract significant information;

• Visualization and analysis: visualization of the extracted reports.

1.1 Problem statement

In this Section we present the problems related to the contexts of active and passive crowdsourc-
ing, which will be addressed in this Thesis.

1.1.1 Active crowdsourcing

We restrict the range of active crowdsourcing applications to those addressing a specific, yet
extremely relevant task: reducing the uncertainty inherent to some input data to improve its
usability, e.g., to build predictive models or to extract information actionable by human decision-
makers. Uncertainty reduction can not be fully addressed with automated tools alone, due
to such factors as the fuzzy definition of the data usage goal, the probabilistic nature of the
resolution algorithms, or even the unavailability of data processing algorithms.

Therefore, uncertain data processing lends itself as a natural playground for active crowd-
sourcing applications, where machines are employed to make a first processing of data at a
very large scale, and humans are called to the rescue after such initial screening, to resolve the
residual uncertainty of a smaller, hopefully significant, pool of data.
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However, several questions still need to be addressed, related to the interplay between data
uncertainty, the nature of the task submitted to the crowd and the uncertainty on crowd workers
behavior (e.g., human errors, cheating, fatigue).

First, an appropriate modeling of the impact of a crowd task answer on uncertain data needs
to be defined. Answers collected by the crowd help requesters in gaining unknown information,
which in turn can be exploited to reduce the underlying data uncertainty. However, it is not yet
clear how the requester can take advantage of this information once it has been acquired.

Second, requesters need to devise an approach for the selection of the best candidate set of
tasks to submit to the crowd under some fixed constraints. Several tasks that involve different
data may contribute differently to uncertainty reduction, since some of them may be more
informative than others. Therefore, an efficient and effective strategy that takes into account
constraints of latency and cost has to be designed.

Third, task answers may be affected by low quality, due to either complex task design,
cheating behaviors or lack of user motivation. Consequently, quality assurance procedures are
necessary to guarantee an appropriate result quality level.

Problem Statement:
Given a crowd task that aims at reducing the uncertainty of a data corpus,
devise a crowdsourcing strategy that ensures a maximal reduction of residual
uncertainty, taking into account constraints, such as latency, cost and result quality

1.1.2 Passive crowdsourcing

Passive crowdsourcing is the approach that considers all users of social media as potential
crowd workers and thus aims at extracting useful information from the massive amount of
user-generated content available online.

Like in active crowdsourcing, also passive crowdsourcing has problems of quality and uncer-
tainty of results and is subject to time and processing cost constraints. However, the challenges
posed by passive crowdsourcing and the techniques to face them differ from those found in active
crowdsourcing.

First, a problem related to user-generated content is that it contains a large percentage of
redundant, low-quality and non-relevant information. Nevertheless, a small part of it is highly
informative and provides clues about who are the experts and which is the most relevant content
for each topic. A simple approach that requires to crawl the whole content and filter out the
irrelevant one would ensure maximum recall, but it would not be feasible, due to the huge
quantity of data to be processed. A manual validation would also be infeasible, because of
its high cost (although some real scenarios such as the study of socially mediated civil war in
Syria via social networks [Lynch et al., 2014] may be so important to justify such a high level
of investment). Thus, a way of automatically discarding irrelevant material and retaining only
relevant content has to be devised.

Second, content is often replicated maliciously: users copy content created by others (and
often subject to copyright laws), rename it and pretend they are the authors of the corresponding
original content. Causes of this behavior may be found in the interest of receiving visibility over
the Web, where other users visualize, comment and share the copies as if these were original. As
a result, users fake their expertise in one topic, and the volume of required resources to store all
these copies exceeds the capacity of the processing system available. Thus, a mechanism that
allows content analysts to discard all the copies and identify the original content is needed.

Problem Statement:
Given a passive crowdsourcing goal, devise techniques for the automatic
analysis of user-generated content, so as to identify relevant entities (e.g., content
and users) about a specific topic respecting time and cost (e.g., storage) constraints
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1.2 Research questions

In this Section, we formulate the research questions of this Thesis in order to address the afore-
mentioned problems.

1.2.1 Optimizing active crowdsourcing

In this Section we enumerate the research questions related to the active crowdsourcing context.
Our contributions will concern the steps indicated in bold in Figure 1.1. All the other steps will
employ known techniques in the state of the art. In the following, we list the essential research
questions, together with the architecture steps the associated research work will improve.

Research question 1. How can uncertainty of structured data be modeled?

Different forms of uncertainty may affect data, and different crowdsourcing techniques may
be designed so as to reduce the uncertainty of the underlying data. However, in order to devise
a proper uncertainty reduction strategy, a way of modeling and measuring data uncertainty is
needed. Answering this question will improve the performance of the Uncertainty measurement
step in Figure 1.1.

Research question 2. How do crowd task answers impact on data uncertainty?

Task design is a crucial dimension of crowdsourcing. Small tasks that involve few concepts
are preferred to tasks that require workers to do complicate reasoning. Moreover, a good moti-
vation mechanism (typically monetary) assures that workers will be prompted in providing good
answers for a large amount of tasks. Nevertheless, a good task design has to be matched with a
good integration strategy for the information coming from workers’ answers. Answers provide
information that was unknown before the related tasks were answered. If harnessed correctly,
this information can greatly reduce the uncertainty on the underlying data. Thus, it is necessary
to design a methodology for the exploitation of such information. Answering this question will
improve the performance of the Answer impact evaluation step in Figure 1.1.

Research question 3. How do task selection and budget constraint affect uncertainty on struc-
tured data?

Several tasks can be posted to workers, but some of them are more informative than others,
and some others are redundant. Requesters usually have constraints on task execution, such as
latency or cost, hence asking all the available tasks does not suit the requirements. Therefore, the
success of a crowdsourcing campaign depends not only on task design, but also on task selection.
We argue that a good solution should accurately select the tasks that assure the maximum
expected uncertainty reduction. Answering this question will improve the performance of the
Task selection policy definition step in Figure 1.1.

Research question 4. How does worker quality impact on crowd tasks effectiveness?

Workers are not oracles, and thus can provide wrong contributions. When collecting answers
from workers, requesters usually apply replication policies to retrieve multiple answers for the
same task instance, which are in turn averaged out to obtain a unique opinion. However, this
replication has its own costs, since multiple workers have to be paid to execute the same task.
Thus, more refined techniques that weigh a worker’s answer impact according to her accuracy
may be applied, so as to guarantee result quality while still asking a small number of tasks.
Answering this question will improve the performance of the Quality control policy step in
Figure 1.1.
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1.2.2 Optimizing passive crowdsourcing

In this Section we enumerate the research questions related to the passive crowdsourcing context.
Our contributions will concern the aspects indicated in bold in Figure 1.2. All the other steps will
employ known techniques in the state of the art. In the following, we list the essential research
questions, together with the architecture steps the associated research work will improve.

Research question 5. What seed queries can be used to initialize topic-related information
retrieval?

Crawlers are components used to retrieve user-generated data from social media. These
components work by specifying a set of search criteria to follow, so that any content that matches
at least one of the search criteria is retrieved. However, user conversations are dynamic and thus
fixing a set of predefined search criteria limits the information a crawler can retrieve. Hence, a
dynamic modification of search criteria is needed, so that search criteria change in response to
what is currently discussed by users in social media. Answering this question will improve the
performance of the Key words extraction step in Figure 1.2, which will in turn retrofit positively
on the Data Acquisition step.

Research question 6. What type of data can be analyzed to improve the accuracy of topic-
related information retrieval?

Simple validation techniques used to state whether a content is topic-related require manual
validation, where annotators (generally experts) evaluate content to state whether it is credible
and relevant. However, manual validation has a huge drawback: since the amount of data is
huge and experts are costly, manually evaluating user-generated content requires a large amount
of money and a significant waste of time. Thus, an automatic solution that employs machine
learning techniques has to be applied to classify content as either relevant or not relevant for a
topic. In the literature, several works are based on text-classification only. However, multimedia
content could provide further insights on content relevance, and thus we argue that a proper
solution should consider multimedia content classification too. Answering this question will
improve the performance of the Topic classification step in Figure 1.2.

Research question 7. How are influential content producers defined and identified?

Influential users are expert users that produce relevant and interesting content for a specific
topic. Influential users change over time and may produce topic-unrelated content. Thus, it is
necessary to devise a strategy to define what is influence and track influential users over time.
This strategy should take into account the amount of original, topic-related content produced
by those users: the larger the amount of created relevant content, the higher the influence.
However, when content is replicated maliciously, the expertise and influence degree of a user are
wrongly estimated, since copying content from others increases the amount of original content
attributed to that user. Thus, given a set of duplicates, a strategy for the recognition of the
original content (and the original author) is necessary. Answering this question will improve the
performance of the Expert mining and Duplicate detection steps in Figure 1.2, which will in turn
retrofit positively on the Data Acquisition step.

Research question 8. What is the impact of considering content producers’ influence level on
the accuracy of topic-related information retrieval?

According to works in the literature, influential users produce relevant content. Thus, we
argue that tracking content produced by influential users and consequently using it to change
crawlers’ search criteria should improve the accuracy of the retrieval system. However, it is
necessary to define an evaluation metrics for the impact of influence level on the accuracy of the
retrieved results. Answering this question will improve the performance of the Expert mining
step in Figure 1.2, which will in turn retrofit positively on the Data Acquisition step.
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1.3 Contributions

The contribution of this Thesis are as follows:

• We present a framework for the reduction of data uncertainty via crowdsourcing, with spe-
cific interest in the top-K query context [Ilyas et al., 2008]. In this context, uncertainty
on data induces multiple possible orderings. Thus, crowdsourcing is used to gather infor-
mation about the relative order of objects, which in turn is used to discard incompatible
orders. Contributions can be summarized as follows:

– we model data uncertainty (this answers to Research Question 1);

– we design crowd tasks and evaluate worker answers impact on data uncertainty (this
answers to Research Question 2);

– we give a formal definition of Uncertainty Resolution problem;

– we define strategies to solve the Uncertainty Resolution problem by selecting the
set of B questions that ensures the maximum (expected) uncertainty reduction (this
answers to Research Questions 3 and 4).

• We present a pipeline for the automatic analysis of user-generated content, with the objec-
tive of recognizing relevant content and influential users for a specific topic. Contributions
can be summarized as follows:

– we define a topic-related real-time crawling system for multimodal data, which auto-
matically discards non-relevant content;

– we mix multimedia content analysis and text content analysis to find relevant, topic-
related content (this answers to Research Question 6);

– we extract statistics from the crawled relevant content, such as the most used topic-
related terms, to be used as content search criteria (this answers to Research Question
5);

– we identify and track influencers for the selected topic (this answers to Research
Question 7);

– we evaluate the impact of considering influential users on the accuracy of topic-related
information retrieval (this answers to Research Question 8).

• We study the detection of original content in a set of duplicates, with specific interest in
duplicated videos. Contributions can be summarized as follows:

– we define video similarity graph, where nodes are videos and (directed) edges (a, b)
indicate candidate copy relationships (i.e., b could be a duplicate of a);

– we translate video similarity graph in video phylogeny, where roots identify original
content (this answers to Research Question 7).

1.3.1 Summary of findings

Active crowdsourcing

In this Thesis we prove that, given a set of uncertain and incomplete data, active crowdsourcing
techniques help in reducing the underlying uncertainty, and that an accurate selection of crowd
tasks allows the requester to save budget and maximize the expected uncertainty reduction.

Specifically, we introduced several algorithms that help in reducing uncertainty under budget
constraints:
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• some algorithms require the full materialization of the space of possible orderings, so as to
identify the best crowd task among all the available ones;

• some other algorithms avoid the full materialization of the space of possible orderings,
which may be huge, selecting the best crowd task among the subset of available tasks.

The best crowd task is defined as the task that allows us to gain the highest expected uncertainty
reduction. In order to identify it, we devise four different uncertainty metrics to measure the
uncertainty of the space of possible orderings, which take into account the probability of each
ordering and the structure of the space of possible orderings: spaces that contain a large number
of highly different orderings are more uncertainty than spaces with a small number of similar
orderings.

Our findings are as follows:

• the algorithms that require the full materialization of the space perform better than incre-
mental algorithms, since they have a larger choice of crowd tasks to be asked to workers,
and thus can identify the most promising questions in early stages (saving up to 50% of
budget), although requiring a long time to materialize the whole space (even hours in case
of trees containing thousands of orderings);

• in general, our algorithms allow one to save up to 80% of budget compared to techniques
that choose randomly crowd tasks;

• the state-of-the-art uncertainty metrics that consider only ordering probabilities (e.g., en-
tropy) model uncertainty worse than metrics that consider also the structure of the space
of possible orderings; thus, algorithms using state-of-the-art uncertainty metrics have low
performance and require larger budgets to eliminate uncertainty.

Passive crowdsourcing

In this Thesis we show that a multimodal (text + visual content) automatic classification process
of user-generated content on social media allows us to discover influential users on a selected
topic, that in turn generate high-quality content for the same topic.

First of all, multimodal classification proves to be more accurate than text classification only,
since it captures aspects of content that are hidden in multimedia items (i.e., images, videos and
audio) and that could give some extra hints on content relevance. Specifically, the accuracies
of multimodal classification and text classification are respectively 82% and 73% on real-time
Twitter data and 87% and 89% on offline, manually filtered data.

Furthermore, we show that an elaborate influence metrics that mixes different aspects such
as originality, activity and communicativeness of users is effective: users retrieved with this
influence metrics produce a large amount of relevant content (i.e., 76% of produced content is
topic-related) and are particularly influential for the selected topic. On the other hand, simpler
state-of-the-art measures based on popularity and activity retrieve users that produce a small
amount of relevant content (i.e., 25% of produced content is topic-related).

Finally, it is clear how users that produced original content are potentially influencers for the
selected topic, while others that mainly replicate content should have a lower influence score.

1.4 Outline of the Thesis

The rest of the Thesis is organized as follows.
Chapter 2 defines the context of the work in terms of crowdsourcing techniques, mathe-

matical background, uncertain data features and machine learning. For each topic, we describe
the concepts that will be used throughout the following Chapters.
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Chapter 3 discusses an application of active crowdsourcing techniques in the context of
uncertain structured data, with particular emphasis on top-K query applications, where the
available information is not sufficient to characterize a unique ordering for the underlying data.
In this Chapter, we define the space of possible orderings for a set of uncertain structured data.
Then, we propose a metrics to measure the uncertainty of that space. Finally, we devise several
approaches to select the set of questions that, if asked to the crowd, minimize the uncertainty of
the space of possible orderings. The approaches consider also the possibility that crowd answers
may be incorrect.

Chapter 4 introduces the automatic procedure for the extraction of a set of influencers for
a specific topic from a microblogging platform. First, we define the architecture of the crawling
pipeline used to gather potentially topic-related content. Then, we introduce the filtering chain
used to filter out irrelevant content, which considers both textual and multimedia content.

Chapter 5 explores the techniques useful for extracting ancestry relationships between user-
generated content, so as to identify malicious behavior of users that copy content from other
users. First, we give a definition of content similarity. Then, we build a graph similarity that
shows similarity relationships between multiple multimedia objects generated by users. Finally,
we devise a strategy for the extraction of ancestry relationships from the similarity graph.

Chapter 6 presents the experimental evaluation that covers Chapters 3, 4 and 5. Here, the
performance of the proposed techniques is assessed, and results show the advantages of applying
crowdsourcing techniques to the presented scenarios.

Chapter 7 presents the related work for the proposed scenarios.
Finally, in Chapter 8 conclusions are drawn and future work directions are presented.
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Chapter 2

Background

In this Chapter, we present the context of the work in terms of crowdsourcing techniques,
mathematical background, uncertain data features and machine learning basic techniques. These
concepts will be used throughout the following Chapters.

2.1 Crowdsourcing: active and passive contexts

In the following, we introduce some key concepts on active and passive crowdsourcing, which
will be used in the following Chapters.

2.1.1 Social media: a classification

Recently, the Web has shifted towards user-driven technologies such as blogs, social networks
and video-sharing platforms [Smith, 2009]. According to Forrester Research, 75% of Internet
surfers use social media in 2008 by reading blogs, contributing reviews to shopping sites or
joining social networks [Kaplan and Haenlein, 2010]. As a result, social media have gained large
popularity, producing an unprecedented mass of data and generating large participation on the
Web. People are prone to the participation on conversations, share information about their
relations with others and their lives, cooperate in the production of new content.

This shift towards social media was caused by a shift in the technology used to build Web
applications, generally referred to as Web 2.0 [O’reilly, 2009]. With this term, we describe a
new way in which software developers and end-users started to utilize the Web: as a platform
whereby content and applications are no longer created and published by individuals, but instead
are continuously modified by all users in a participatory and collaborative fashion [Kaplan and
Haenlein, 2010]. This helps users in the creation of User-Generated Content [Krumm et al.,
2008], i.e., the various forms of media content that are publicly available and created by end-
users. Content is considered as user-generated if it is compliant to the following criteria: i) it
is published either on a publicly accessible website or on a social networking site accessible to a
selected group of people; ii) it shows a certain amount of creative effort; iii) it has been created
outside of professional routines and practices. Hence, social media is a group or Internet-based
applications that build on the ideological and technological foundations of Web 2.0, and that
allow the creation and exchange of User-Generated Content.

In the following, we provide a classification of social media based on the taxonomy by [Kaplan
and Haenlein, 2010], as shown in Figure 2.1.

Collaborative projects

Collaborative projects enable the joint and simultaneous creation of content by many end-users.
Collaborative projects are differentiated between wikis (i.e., websites which allow users to add,
remove and change text-based content) and social bookmarking applications (i.e., websites that

23
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Figure 2.1: Social media classification

enable the group-based collection and rating of Internet links or media content). The main idea
underlying collaborative projects is that the joint effort of many actors leads to a better outcome
than any actor could achieve individually.

Two classical examples of collaborative projects are Wikipedia1 and Delicious2.

Blogs

Blogs are special types of websites that usually display date-stamped entries in reverse chrono-
logical order. They are a modern version of personal web pages, and can come in a multitude of
different variations, from personal diaries describing the author’s life to summaries of all relevant
information in one specific content area.

Content communities

The main objective of content communities is the sharing of media content between users.
Content communities exist for a wide range of different media types, including text (e.g.,
BookCrossing3), photos (e.g., Flickr4), videos (e.g., YouTube5) and PowerPoint presentations
(e.g., SlideShare6).

Social networking sites

Social networking sites are applications that enable users to connect by creating personal in-
formation profiles, inviting friends and colleagues to have access to those profiles, and sending
e-mails and instant messages between each other.

The most famous social network is Facebook7.

1http://en.wikipedia.org
2https://delicious.com
3http://www.bookcrossing.com
4http://flickr.com
5http://youtube.com
6http://slideshare.net
7www.facebook.com

http://en.wikipedia.org
https://delicious.com
http://www.bookcrossing.com
http://flickr.com
http://youtube.com
http://slideshare.net
www.facebook.com
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Figure 2.2: Human computation taxonomy

Virtual worlds

Virtual worlds are platforms that replicate a three-dimensional environment in which users can
appear in the form of personalized avatars and interact with each other as they would in real
life.

Virtual game worlds. A virtual game world requires its users to behave according to strict
rules in the context of a massively multiplayer online role-playing game. An example of virtual
game world is World Of Warcraft.

Virtual social worlds. A virtual social world allows inhabitants to choose their behavior
mode freely and essentially live a virtual life similar to their real life. Virtual social world users
appear in the form of avatars and interact in a three-dimensional virtual environment. However,
there are no rules restricting the range of possible interactions, except for basic physical laws such
as gravity. The most prominent example of virtual social world is the Second Life application.

2.1.2 Human computation: taxonomy

The idea of humans and machine working together to achieve a common goal was envisioned in
1960 in the work [Licklider, 1960]. However, only in the last years, the words human computation
and crowdsourcing put the idea of cooperation between humans and computers in practice.
This shift was mainly caused by the evolution of the Web from a publishing platform, where
people were interested in publishing content or accessing to content published by others, to a
collaborative tool, in which users share opinions, cooperate in the production of content and the
execution of tasks, play games and participate to communities.

In the following, we present a taxonomy for human computation systems, inspired by the
work [Quinn and Bederson, 2011].

Human computation

The modern use of the term human computation is inspired by the work [Von Ahn, 2009], where
human computation is defined as:

a paradigm for utilizing human processing power to solve problems that computers
cannot yet solve.

Human computation can be described by two distinctive features: i) the treated problems
fit the general paradigm of computation, and as such they could be someday solved by machines
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rather than humans; ii) the human participation is controlled by the computational system, who
manages the creation of tasks and the retrieval of answers by users.

However, human computation do not include many of the activities that users perform every
day on the Web: online discussions and creative projects do not fit into the paradigm of human
computation, since they require creativity and innovation, which does not play a role in a
predefined plan to solve a computational problem.

Crowdsourcing

The term crowdsourcing was coined by Howe and Robinson [Howe and Robinson, 2006]:

Crowdsourcing represents the act of a company or institution taking a function once
performed by employees and outsourcing it to an undefined (and generally large)
network of people in the form of an open call. This can take the form of peer-
production (when the job is performed collaboratively), but is also often undertaken
by sole individuals. The crucial prerequisite is the use of the open call format and
the large network of potential laborers.

In the following, other works gave alternative definitions. Brabham [Brabham, 2008] stated
that crowdsourcing is an online, distributed problem-solving and production model. Doan [Doan
et al., 2011] defined crowdsourcing as a system that enlists a crowd of humans to help solve a
problem defined by the system owners, and in doing so, it addresses the challenges of recruiting
and retaining users, defining which contributions can be made by users, combining these contri-
butions and evaluating user performance [Luz et al., 2014]. More recently, the work [Estellés-
Arolas and González-Ladrón-de Guevara, 2012] integrated older definition in a new one, where
crowdsourcing is seen as an online activity where individuals, institutions, companies propose to
a group of individuals the voluntary undertaking of a task. These individuals, also called work-
ers, have different knowledge and are heterogeneous. Moreover, according to this definition, the
task has mutual benefit: the workers perform the task for the requester (i.e., the individual
submitting the task), while the task brings knowledge, money or entertainment to the workers.

There is some overlap between human computation and crowdsourcing [Quinn and Bederson,
2011]: this intersection represents those applications that could reasonably be considered as
replacements for either traditional human roles or computer roles. For example, translation
is a task that can be done either by machines (when speed and cost are the priority) or by
professional translators (when quality is the priority).

Crowdsourcing has two separate branches: active crowdsourcing, where users answer actively
to tasks posted on crowdsourcing platforms by requesters (Section 2.1.3), and passive crowd-
sourcing, where user-generated content is exploited so as to extract interesting insight about
specific topics and contexts (Section 2.1.4).

Social computing

Blogs, wikis and online communities are examples of social computing [Parameswaran and Whin-
ston, 2007]. Their scope is broad, although it always include communication between humans
that is mediated by technology.

The key distinction between human computation and social computing is that social com-
puting facilitates natural human behavior with technology, while participation in a human com-
puting system is primarily directed by the system itself.

Data mining

Data mining is the application of specific algorithms for extracting patterns from data [Fayyad
et al., 1996]. These algorithms do not constitute human computation, since they do not nec-
essarily require the collection of data, while human computation does. Moreover, challenges
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common to human computation systems (i.e., resistance to cheating, user motivation etc.) do
not apply to the context of data mining.

Collective intelligence

Collective intelligence has a broad meaning, which is: people can accomplish great objectives
when working together. Thus, collective intelligence is a superset of social computing and
crowdsourcing, because both are defined in terms of social behavior. Moreover, some data
mining applications benefit from groups.

The key distinction with human computation is that collective intelligence requires a group
of people working together, while users may work individually when performing tasks in a human
computation system.

2.1.3 Active crowdsourcing

Active crowdsourcing (generally referred to as crowdsourcing) is the process of obtaining services,
ideas and information by soliciting active contribution from a large group of people, rather than
from employees or suppliers.

Active crowdsourcing in the state of the art

Crowdsourcing can be seen from two different perspectives: a business domain-specific perspec-
tive, and a technical domain-independent perspective [Luz et al., 2014]. Several works in the
state of the art try to solve problems related to these perspectives. From a business perspec-
tive, there is great interest on accomplishing specific business tasks efficiently and effectively
in terms of time and monetary costs. Thus, works in this area focus on user motivation and
quality-control aspects. From a technical perspective, the emphasis is on methods, techniques
and frameworks for solving problems that machines are not able to solve. Thus, works in this
area focus on creation and deployment of mechanisms that efficiently and effectively facilitate
crowdsourcing and human computation process.

Crowdsourcing platforms

With the term crowdsourcing platform we generally indicate an online platform on which workers
perform microtasks. A microtask is a small task which is simple to be executed by a person,
but difficult for a machine. Tasks are usually created to perform those small jobs for which
there does not exist an algorithm that can perform them efficiently, but that can be completed
easily and reliably by humans. In return, each worker receives a small amount of money for each
executed task. A classical example of microtask is the one in which workers are asked to classify
a set of images as belonging to a class or not (e.g., discriminate between images containing a
dog and images not containing a dog).

We call explicit crowdsourcing crowdsourcing activities performed via these platforms: during
these activities workers are aware that they are working towards solving specific tasks [Luz et al.,
2014].

Worker selection. Workers usually belong to at least one community and may be filtered
according to different characteristics such as their profile information, demographics (e.g., coun-
try of residence) and expertise. Thus, six types of worker selection strategies can be identified:
workers can be selected either from multiple communities or from a single community; filtering
can be performed based on either assessment, or expertise test, or profile characteristics, or
demographic characteristics. Assessment strategies are either manual (i.e., performed by the
requester) or automatic (i.e., performed by the crowdsourcing systems depending on a set of
attributes) [Luz et al., 2014].
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Worker demographics. Some authors [Downs et al., 2010,Ross et al., 2010, Ipeirotis, 2010]
studied the demographics of these platforms, to discover that the population is always changing
over time, and that professionals, students and non-workers tend to take tasks more seriously
than financial workers, hourly workers and other workers.

Examples of crowdsourcing platforms. In the following, we list the most known crowd-
sourcing platforms. Amazon Mechanical Turk8 enables requesters to post tasks (called HITs, i.e.,
Human Intelligence Tasks), which are performed by human workers. Workers can browse among
existing tasks and complete them for a small monetary payment (decided by the requester).
Crowdflower9 is another platform where workers are asked to perform microtasks such as la-
beling, data cleaning, data categorization, sentiment analysis, transcription. Samasource10 is a
nonprofit organization whose mission is to alleviate poverty by connecting unemployed youth
and women in impoverished countries to digital work. A similar company is Mobileworks11,
which offers online works to underemployed communities around the world. Microtask12 is a
Finnish company with a private crowd where requesters can submit groups of small tasks. Since
the crowd is private, Microtask assures the quality of its workers.

Motivation of users

One of the challenges of crowdsourcing (and human computation) is finding a way to motivate
people to perform tasks. Unlike traditional jobs, which almost always pay with money, human
computation workers may be motivated by a number of factors [Quinn and Bederson, 2011],
from providing enjoyment and relying on altruism, to receiving monetary rewards [Faradani
et al., 2011].

[Harris, 2011a] found that financial incentives actually encourage quality if the task is
designed appropriately, although [Mason and Watts, 2010] proved that increased financial in-
centives increase the quantity, but not the quality, of work performed by crowdsourcing work-
ers. [Kazai, 2010] found that low pay conditions result in increased levels of unusable and spam
answers, and [Moreno et al., 2009] concluded that question-answering sites should function bet-
ter with both long-term and short-term rewards. However, although monetary crowdsourcing
incentive is dominant, some crowdsourcing systems do not offer monetary rewards to their work-
ers: attention (e.g., number of downloads) is an important driver of contribution [Huberman
et al., 2009], while altruism, learning and competency are frequent motivations for community
question answering top answerers to participate [Nam et al., 2009].

In the following, we list all the types of incentives works in the state of the art used to induce
workers to perform crowd tasks.

Money. Financial rewards are the easiest way to recruit workers. These are usually gained in
the form of money, gift certificates, or virtual currency. Unfortunately, in order to gain more,
workers are somehow tempted to cheat, and this is also caused by the fact that they are generally
working as anonymous workers. Thus, a way of performing quality control needs to be integrated
in the system.

Payment in this context has been the subject of some criticism due to the creation of cheap
labour marketplaces [Harris, 2011b]. In particular, the current monetary rewards are not suffi-
cient to be a primary source of income, and often they are not enough to serve as a motivator [Luz
et al., 2014,Mason and Watts, 2010,Paolacci et al., 2010].

8https://www.mturk.com/mturk/welcome
9http://www.crowdflower.com

10http://samasource.org
11https://www.mobileworks.com
12http://www.microtask.com

https://www.mturk.com/mturk/welcome
http://www.crowdflower.com
http://samasource.org
https://www.mobileworks.com
http://www.microtask.com
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Altruism. Altruism could motivate people to perform tasks. However, this is feasible only if
workers think the problem is important and interesting.

Enjoyment. By making a task entertaining, it is possible to engage humans to do tasks that
contribute to a computational goal (see Section 2.1.3 for games with a purpose).

Reputation. Where the problem is associated with an organization of some prestige, human
workers may be motivated by the chance to receive public recognition for their efforts.

Implicit work. It is possible to hide a computational task in the activity users are already
performing. ReCAPTCHA is a famous example of this approach [Von Ahn et al., 2008], in which
users are asked to perform an OCR task on a photo of old books and newspapers.

Task design

The work [Alonso and Lease, 2011] gives some generic tips for task design: i) experiments should
be self-contained; ii) instructions for task must be short and simple, brief and concise (too
complex tasks or ambiguous instructions for workers to understand will generate poor quality
answers); iii) if a similar task has been published, there is no need to replicate it; iv) always ask
for feedback in an input box; v) highlight important concepts on the user interface.

Many workers complete tasks in multiple batches, introducing effects on training or fatigue,
and thus it is necessary to ensure that each experiment involves a different set of workers in
order to increase output accuracy [Grady and Lease, 2010]. Moreover, most workers become
inactive after only a few submissions, others keep attempting tasks, and others tend to select
tasks with higher expected rewards [Yang et al., 2008].

Several types of tasks can be executed by humans instead of machines. In particular, a voting
task is a task in which the user has to select the correct answer among a set of possible answers.
Some examples are: geometric reasoning tasks [Heer and Bostock, 2010] (i.e., the ability to
interpret and reason about shapes), named entity annotation [Finin et al., 2010] (i.e., identi-
fication and categorization of textual references to objects in the world), opinions [Mellebeek
et al., 2010] (i.e., subjective preferences gathering), relevance evaluation [Alonso et al., 2008]
(i.e., determination of document relevance for a topic), natural language annotation [Akkaya
et al., 2010] and spam identification.

Handling noisy workers

Since workers are not oracles and can introduce errors while answering to tasks, it is necessary
to consider worker quality while retrieving answers from the crowd.

Majority voting. Several works in the state of the art try to overcome the problem of noisy
workers (i.e., workers that answer wrongly to the submitted questions) by applying very simple
techniques such as majority voting, which requires that a single task is replicated and performed
by multiple workers. All the answers are aggregated to find the most recurrent one, which
becomes the final answer for that task [Sheng et al., 2008,Snow et al., 2008,Nowak and Rüger,
2010]. Task replication improves data quality at low cost [Sheng et al., 2008], especially when
answers are noisy. [Snow et al., 2008] proved that it is required to collect an average of four
non-expert labels to emulate expert-level answer quality, especially in labeling tasks. Moreover,
when different annotators judge the same data, the inter-annotator agreement among different
annotators can ensure quality [Nowak and Rüger, 2010].
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Compute worker’s error probability. However, other works apply more refined techniques
to model the noise on the answer. Several of them, such as [Zhang et al., 2013], assume to know
the error probability of the user, and act accordingly, making the answer effect more shallow as
the error probability grows. Still, this approach has one problem, which is how to compute the
error probability for the set of workers. In fact, all the workers are different and act differently
when the task difficulty and the number of tasks change. Thus, works such as [Joglekar et al.,
2013] and [Venetis and Garcia-Molina, 2012] propose a way of estimating the error probability
from data. Here, a probability estimate for each worker is computed depending on the number of
disagreements the worker had with other worker answers: the larger the number of disagreement,
the larger the error probability.

Compute a score for each worker. Other types of work compute a quality score for each
worker while still gathering answers. An example of these works is [Marcus et al., 2012]. Here,
the quality score is proportional to the number of answers by the worker that are close to the
average of all the answers gathered by the crowd, i.e., if the worker deviates from the average
answer, then she is a spammer. The work proposes also an algorithm that assures robustness to
coordinated attacks by a set of workers.

This is similar to the idea of computing a reputation score for the user. In Amazon Me-
chanical Turk, requesters can require a minimum quality level for the workers, and some other
qualifications (e.g., language skills). When cheating is detected, the reputation reduces. Finally,
when the reputation is too low, the worker is put in a blacklist [Heimerl et al., 2012]. [Allah-
bakhsh et al., 2012] proposes a reputation management framework which adequately takes into
account the values of the tasks completed, the trustworthiness of the assessors, the results of the
tasks and the time of evaluation in order to achieve more credible quality metrics for workers.

Pre-filtering of humans. Finally, the worker may lack expertise or skills to handle some kind
of complex job. Thus, some works [Liu et al., 2012] provide some basic knowledge to workers
before they are put into work, or require some qualifications to prove themselves qualified to
finish the task. Some other works [Rashtchian et al., 2010] propose an approach in which the
use of a qualification tests (i.e., screening users before letting them performing tasks) provides
the highest improvement of quality of linguistic data.

Gold standards. Obviously, an easy way of measuring workers’ quality is to build a gold
standard (i.e., a small group of data annotated by experts, so that it contains only reliable
answers), and then compare the gold standard data with the workers’ answers, so as to spot the
workers with low quality [Bernstein et al., 2012,Le et al., 2010,Bernstein et al., 2011].

Recognition of malicious users. Malicious workers often try to maximize their financial
gains by producing generic answers rather than actual working on the task. [Eickhoff and de Vries,
2011] concluded that malicious workers are less frequently encountered in novel tasks that involve
a degree of creativity and abstraction, and crowd filtering can reduce the number of malicious
workers.

Games with a purpose: an alternative way of asking questions

A Game With A Purpose (GWAP) is a human-based computation technique in which a compu-
tational process performs its function by outsourcing certain steps to humans in an entertaining
way [von Ahn, 2006]. The aim of a game with a purpose is to exploit the enormous amount of
time people spend online playing games, to solve complex problems that involve human intel-
ligence. As a result, gamers become workers, and games become tasks, so that crowdsourcing
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is hidden in the gameplay and the requester ‘pays ’workers by providing them a tool (i.e., the
game) that entertains them.

We call implicit crowdsourcing the crowdsourcing activities performed via these games: users
are not aware of the crowdsourcing work they are performing [Luz et al., 2014].

Some examples of tasks hidden in games with a purpose are: object recognition in images,
OCR results verification, protein folding and multiple sequence alignment algorithms in molec-
ular biology [Cooper et al., 2010]. Another classical example is ReCAPTCHA [Little et al.,
2010].

Several game designs have been proposed in the last years [Von Ahn and Dabbish, 2008]. One
of the most famous serious game by von Ahn is the ESP-game. This game, which is played by
two partners, encourages players to assign obvious tags to a non-tagged photo, which are most
likely to lead to an agreement between the partner. When an agreement on the tag is found (i.e.,
the players propose the same tag for the photo), they gain points. ESP-game authors presented
evidence that the labels produced by the players were useful descriptions of the photos. Thus,
ESP-game proved itself to be a valid tool for performing image tagging efficiently and at no
cost.

2.1.4 Passive crowdsourcing

Passive crowdsourcing techniques are used to analyze automatically data users publish on social
networks and social media to extract some useful information. In the state of the art, passive
crowdsourcing is applied to several context.

Environment analysis. Users are producing every day a massive amount of photos on social
media (e.g., Flickr13), and several of them regard landscapes and cities. Several works analyze
those photos to extract information about level of rainfall and snowfall, population density,
plant and flower species distribution, population density in cities. In the following, we list some
examples. The work [Hays and Efros, 2008] estimates land cover and population density on
woods and cities based on visual descriptors of geotagged uploaded images. The works [Zhang
et al., 2012] and [Wang et al., 2013a] quantify snow cover, snowfall, vegetation density and flower
species distribution by analyzing multimedia content of photos in Twitter. The work [Goodchild
and Glennon, 2010] applies crowdsourcing to the harnessing of geographical information for
disaster response, such as occurrences of wildfires in Santa Barbara (California). Finally, the
works [Fedorov et al., 2013] and [Fedorov et al., 2014] identify mountain peaks in photos crawled
from Flickr, and estimate the snow cover on each peak to quantify the amount of water that
will be available in summer in those areas.

Localization. Several photos are uploaded on social media without any geographical reference
about where they were taken. Thus, positioning those photos over a map becomes a challenge.
Several works accept that challenge and analyze similarity between photos and associated tags to
find a geographical location to each photo [Serdyukov et al., 2009,Gallagher et al., 2009,Crandall
et al., 2009].

Fashion trend. During the last years, some authors [Galli et al., 2012] developed several
works that segment user-generated images to extract dress colors, texture features of garments
and their association with the features of the subject wearing them, to analyze automatically
the current fashion trends. This analysis can be useful for fashion industries, that, by analyzing
content with an automatic pipeline, understand which are the product characteristics people
prefer, and adapt their products accordingly.

13https://www.flickr.com

https://www.flickr.com
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Event detection. When a noteworthy event happens, microblogs such as Twitter and social
media like Flickr get filled with content talking about that event. Several earthquakes hit a
place after tweets describing the same incoming earthquake arrived to it [The Washington Post,
2011]. Several works treated this topic. The work [Nitta et al., 2014] studied event detection by
using time, location information and text tags attached to images in Flickr. The work [Gupta
et al., 2014] performed the detection of events baed on tweet content and external sources. The
works [Zhou and Chen, 2014] and [Sakaki et al., 2013] performed real-time detection of events
over streams such as Twitter.

User profiling. Some works perform tweet content and profiles analysis to extrapolate demo-
graphic information about the user. Such information can be useful to identify the targets for
political campaign, product campaign and recruiting. Two examples can be found in [Gupta
et al., 2014] and [Ikeda et al., 2013], where user profiling is performed by focusing on location
prediction of the user and on tweet content and community relationships, respectively.

Topic classification. In other cases (e.g., Twitter) the social networking site gives humans
the permission to create friends categories: users assign tags to their posts in order to follow up
the trending topics, and this facilitates quick retrieval and summary report on posts [Barbier
et al., 2012].

Influence evaluation. Influencers, or opinion leaders, are people who can influence people’s
thought and sentiment about a specific topic. Chapter 4 will talk extensively about this subject.
In the state of the art many works that cover this topic can be found [Jabeur et al., 2012,Cha
et al., 2010,Agarwal et al., 2008]. Here, published content and social graph are jointly analyzed
to capture the capability of each user to spread information over the network.

Sentiment analysis. User-generated content can be analyzed to determine consumer sen-
timent towards a brand or a topic. The work [Ghiassi et al., 2013] determines the sentiment
towards a brand by automatically analyze tweets citing the name of that brand. The work [Kon-
topoulos et al., 2013] perform sentiment analysis of Twitter posts to discover sentiments and
opinions on topics.

Video phylogeny. Multimedia content can be analyzed automatically to discover copies of the
same content that are shared through different media. In fact, it happens often that users who
want to gain visibility copy content from others and repost it as it was created by them. Many
examples of works that cope with this problem can be found for videos [Dias et al., 2011,Ngo
et al., 2013], images [Dias et al., 2010] and audio [Nucci et al., 2013].

Crisis map. A typical crowdsourcing application is the crisis map, where mass data is analyzed
and displayed in a straightforward way in real time during a crisis. User-generated content
is analyzed and clustered into meaningful categories [Goolsby, 2010]. As an example, people
generated numerous messages and photos after the devastating earthquake in Haiti in 2010,
through social media networking [Gao et al., 2011].

Homeland security. Crowdsourcing can benefit homeland security: crowds can contribute
in delivering quality information and identifying the suspects. When the Boston marathon
bombing happened in 2013, citizens submitted photos and videos they might have taken during
the marathon. Then, by aggregating the available data, the suspects were identified actively by
the crowd [Markowsky, 2013].
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2.1.5 Other types of crowdsourcing

Crowd voting. Crowd voting [Kirkels and Post, 2013] is the process of asking opinions on a
topic. Usually, these opinions are collected through the Web and used by producers to change
their products, capture the mass’ view on politics, give opinion about a leadership. Two famous
examples of crowd voting are the one of Threadless14 (which selects the t-shirt it sells by having
users provide their own design and vote the ones they like) and the one of Lego15 (which collects
ideas from users about new toy kits and let the crowd vote the ones they would buy in stores).

Crowd searching. Crowd searching is a virtual search party in which internet users cooperate
in looking for lost items, pets or people. This is usually done by joining a group of users through
dedicated social networks, such as Crowdfynd16.

Crowd funding. Crowd funding is the process of funding projects by a large group of people
contributing a small amount of money. The most known crowd funding website is Kickstarter17.

2.2 Uncertainty on data: taxonomy

Data uncertainty has become a well-studied problem in the last years, since it affects the re-
sult quality of different algorithms, e.g., query processing, data mining and clustering. In the
following, we enumerate the uncertainty types works in the state of the art study, the possible
representations of uncertainty that one can find in other works, and a set of problems related to
uncertainty.

2.2.1 Types of uncertainty

Uncertainty on data may arise in different forms. In the following, we enumerate the types of
uncertainty reviewed in the state of the art, as synthesized in Figure 2.3.

Score uncertainty [Soliman et al., 2010]. A top-K query is a query that retrieves the best
K tuples matching the user’s information need. In order to compute the score of an object for a
query, a scoring function aggregates the objects’ attribute values in a deterministic value, which
reflects the importance of that object for the user need.

When score is not uncertain (i.e., it is deterministic), it induces a total order over the available
objects, i.e., it is possible to order the objects from the most relevant to the least relevant.
However, there are cases in which some sources of uncertainty (e.g., not known attributes)

14https://www.threadless.com/make/submit/
15https://ideas.lego.com
16https://www.crowdfynd.com
17https://www.kickstarter.com

https://www.threadless.com/make/submit/
https://ideas.lego.com
https://www.crowdfynd.com
https://www.kickstarter.com
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influence the score computation, so that the score becomes not deterministic and thus described
as a set of possible values. Score uncertainty induces a partial order over the underlying records,
where multiple rankings are valid.

Tuple existence [Soliman et al., 2008]. In probabilistic databases, tuples may be related
with an existence probability, i.e., a tuple actually exists in the real world with a specified
probability. This means that not all the tuples enlisted in the database necessarily corresponds
to real data.

This type of uncertainty is usually referred to as membership uncertainty. It treats tuples
as uncertain events capturing the belief that they belong to the database. The probabilities of
such events originate from different sources, e.g., reliability of data source in data integration
environment, or similarity measures in approximate-matching.

Data correctness [Soliman et al., 2008]. Sometimes a tuple in the database is associated
with the probability of giving correct information. This probability models the fact that the
information contained in the tuple may be inadequate, due to some noise in the data.

Value uncertainty [Soliman et al., 2008, Ilyas et al., 2008]. A tuple attribute could be
defined probabilistically as multiple possible values drawn from discrete or continuous domains.
Value uncertainty represents attributes as probability distributions on continuous or discrete
domains of possible values.

We assume that value uncertainty is transformed into a single probability distribution over
tuple score [Li and Deshpande, 2010]. If an attribute does not contribute to the score, its
uncertainty can be ignored for ranking purposes.

Noisy data [Bi and Zhang, 2004]. In traditional formulations of supervised learning, we
seek a predictor that maps input x to output y. Sometimes errors are not only confined to the
output y, i.e., noise is present in the input x too. Noise sources in this case could be identified
as errors in the initial phases of data processing, e.g., in image classification applications some
features may rely on image processing outputs that introduce errors.

2.2.2 Uncertain data representations and modeling

In uncertain data management [Aggarwal and Yu, 2009], data records are typically represented
by probability distributions rather than deterministic values. A key issue is modeling uncertain
data: the database designer has to find a way of capturing the underlying uncertainty, while
keeping the data usable for database management applications. In the following, we introduce
some typical representation of data uncertainty, as synthesized in Figure 2.4.
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Probabilistic database

Uncertain data is not deterministic, and thus it can take many values. Each value is a possible
materialization (i.e., instance) of the data in the real world. Thus, several instances of the same
data are valid.

A probabilistic database [Aggarwal and Yu, 2009] is a finite probability space whose out-
comes are all possible database instances consistent with a given schema. A database instance,
also called possible world, is a possible materialization of the database in the real world. A
probabilistic database can be represented as the pair (X , p) where: i) X is a finite set of possible
database instances consistent with a given schema; ii) p(I) is the probability associated with
any instance I ∈ X . We note that, since p(·) represents the probability vector over all instances
in X , we have that

∑
I∈X p(I) = 1.

The validity of some tuple combination is determined based on the underlying tuple depen-
dencies [Ilyas et al., 2008]. For instance, two tuples might never appear together in the same
world if they represent the same real-world entity.

The uncertainty associated to tuples in the database may be represented in different ways [Ilyas
et al., 2008]. Most applications work on two kinds of uncertainty:

1. Existential uncertainty: a tuple may or may not exist in the database, and the presence or
absence of one tuple may affect the presence or absence of another tuple in the database. In
some cases, tuple independence assumption is used. Furthermore, there may be constraints
that correspond to mutual exclusivity of certain tuples in the database

2. Attribute level uncertainty: a number of tuples and their modeling have already been
determined. Uncertainties of the individual attributes are modeled by a probability density
function, or other statistical parameters such as the variance

Tuples’ probabilities arise as an additional ranking dimension that interacts with tuples’
scores [Ilyas et al., 2008]. Consequently, both probabilities and scores need to be factored in the
interpretation of queries in probabilistic databases. Combining scores and probabilities using
some score aggregation function could eliminate uncertainty completely, but this could not be
meaningful in some cases.

Sometimes, probability is the only ranking dimension, since tuples are not scored by a scoring
function. Tuple are then treated as probabilistic events.

Probabilistic ?-tables. Since each tuple t comes with the probability that t is present in the
database, the probability of the instance I is defined as:

Pr(I) =
∏
t∈I

Pr(t) ·
∏
t/∈I

(1− Pr(t))

If Q is a query and Q(I) is the output of Q restricted to a single possible world, the
probability of an output tuple tq is:

Pr(tq) =
∑

I:tq∈Q(I)

Pr(I)

Probabilistic or-set tables. A probabilistic or-set table models the probabilistic behavior
of each attribute for a tuple that is known to be present in the database. Each attribute is
represented as an or over various possibilities along with corresponding probability values.

An instance of the database is obtained by picking each outcome for an attribute indepen-
dently.
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Fig. 3 Probabilistic partial order and linear extensions

scores. Based on Definition 2, Property 1 immediately fol-
lows:

Property 1 Score Dominance is a non-reflexive, asymmetric,
and transitive relation.

We assume the independence of score densities of indi-
vidual records. Hence, the probability that record ti is ranked
above record t j , denoted Pr(ti > t j ), is given by the follow-
ing two-dimensional integral:

Pr(ti > t j ) =
upi∫

loi

x∫

lo j

fi (x) · f j (y)dy dx (1)

When neither ti nor t j dominates the other record, [loi ,upi ]
and [loj ,up j ] are intersecting intervals, and so Pr(ti > t j )

belongs to the open interval (0, 1), and Pr(t j > ti ) = 1 −
Pr(ti > t j ). On the other hand, if ti dominates t j , then we
have Pr(ti > t j ) = 1 and P(t j > ti ) = 0.

We say that a record pair (ti , t j ) belongs to a probabilistic
dominance relation iff Pr(ti > t j ) ∈ (0, 1).

We next give the formal definition of our ranking model:

Definition 3 [Probabilistic Partial Order (PPO)] Let R =
{t1, . . . , tn} be a set of real intervals, where each interval
ti = [loi ,upi ] is associated with a density function fi such
that

∫ upi
loi

fi (x)dx = 1. The set R induces a probabilistic
partial order PPO(R,O,P), where (R,O) is a strict partial
order with (ti , t j ) ∈ O iff ti dominates t j , and P is the prob-
abilistic dominance relation of intervals in R.

Definition 3 states that if ti dominates t j , then (ti , t j ) ∈ O.
That is, we can deterministically rank ti above t j . On the
other hand, if neither ti nor t j dominates the other record,
then (ti , t j ) ∈ P . That is, the uncertainty in the relative order
of ti and t j is quantified by Pr(ti > t j ).

Figure 3 shows the Hasse diagram and the probabilistic
dominance relation of the PPO of records in Table 2. We also
show the set of linear extensions of the PPO.

The linear extensions of PPO(R,O,P) can be viewed as
tree where each root-to-leaf path is one linear extension. The

root node is a dummy node since there can be multiple ele-
ments in R that may be ranked first. Each occurrence of an
element t ∈ R in the tree represents a possible ranking of t ,
and each level i in the tree contains all elements that occur at
rank i in any linear extension. We explain how to construct
the linear extensions tree in Sect. 5.

Due to probabilistic dominance, the space of possible lin-
ear extensions is viewed as a probability space generated by a
probabilistic process that draws, for each record ti , a random
score si ∈ [loi ,upi ] based on the density fi . Ranking the
drawn scores gives a total order on the database records,
where the probability of such order is the joint probability
of the drawn scores. For example, we show in Fig. 3, the
probability value associated with each linear extension. We
show how to compute these probabilities in Sect. 4.

2.2 Problem definition

Based on the data model in Sect. 2.1, we consider three clas-
ses of ranking queries:

Record- Rank Queries. Queries that report records that
appear in a given range of ranks, defined as follows:

Definition 4 [Uncertain Top Rank (UTop-Rank)] A UTop-
Rank(i, j) query reports the most probable record to appear
at any rank i . . . j (i.e., from i to j inclusive) in possible
linear extensions. That is, for a linear extensions space Ω

of a PPO, the query UTop-Rank(i, j), for i ≤ j , reports
argmaxt (

∑
ω∈Ω(t,i, j)

Pr(ω)), where Ω(t,i, j) ⊆ Ω is the set
of linear extensions with the record t at any rank i, . . . , j .

For example, in Fig. 3, the query UTop-Rank(1, 2) reports
t5 with probability Pr(ω1) + · · · + Pr(ω7) = 1.0, since t5
appears at all linear extensions at either rank 1 or rank 2.

Top- k- Queries. Queries that report a group of top-
ranked records. We give two different semantics for Top-
k- Queries:

Definition 5 [Uncertain Top Prefix (UTop-Prefix)] A UTop-
Prefix(k) query reports the most probable linear exten-
sion prefix of k records. That is, for a linear extensions
space Ω of a PPO, the query UTop-Prefix(k) reports
argmax p(

∑
ω∈Ω(p,k)

Pr(ω)), where Ω(p,k) ⊆ Ω is the set
of linear extensions having p as the k-length prefix.

For example, in Fig. 3, the query UTop-Prefix(3) reports
〈t5, t1, t2〉 with probability Pr(ω1) + Pr(ω2) = 0.438.

Definition 6 [Uncertain Top Set (UTop-Set)] A UTop-Set(k)
query reports the most probable set of top-k records of linear
extensions. That is, for a linear extensions space Ω of a PPO,
the query UTop-Set(k) reports argmaxs(

∑
ω∈Ω(s,k)

Pr(ω)),
where Ω(s,k) ⊆ Ω is the set of linear extensions having s as
the set of top-k records.

123

Figure 2.5: Space of possible orderings for a set of tuples

Score uncertainty

The score s(ti) of the record ti is modeled as a probability density function fi defined on a score
interval [li, ui] [Soliman et al., 2010].

The density function can be: i) directly obtained from uncertain attributes (e.g.,a uniform
distribution), or ii) computed from the predictions of missing/incomplete attribute values, or
iii) constructed from histories and value correlations.

The space of possible orderings is viewed as a probability space generated by a probabilistic
process that draws, for each record ti, a random score s(ti) ∈ [li, ui] based on the density fi.
Ranking the drawn scores gives a total order on the database records, where the probability of
such order is the joint probability of the drawn scores.

Possible orderings

Uncertainty induces a partial order over the underlying records [Soliman et al., 2010].
The linear extensions of a partial order are all possible topological sorts of the partial order

graph.
Linear extensions can be viewed as tree where each root-to-leaf path is one linear extension.

Each occurrence of the record t in the tree represents a possible ranking of t.
Possible world probabilities are determined based on the probabilistic correlations among

tuples (e.g., mutual exclusion of tuples that map to the same real world entity). We call such
correlations generation rules, since they control how the possible worlds space is generated.

Examples of generation rules [Soliman et al., 2007] are:

• Exclusiveness: tuples never co-exist in the same world

• Implication: the existence of one tuple in some world leads to the existence of another
specific tuple in the same world

• Equivalence: both tuples always exist together

Whenever tuples are independent, the joint probability of any combination of tuple events is
computed by multiplying the probabilities of the corresponding tuple events. On the other hand,
working with correlated tuples means that generation rules are present too. In this case, the
joint probability of any combination of tuple events is computed based on tuples’ probabilities
and rules semantics.

2.2.3 Problems related to uncertainty

In case of data uncertainty, one wishes to adapt traditional database management techniques so
as to handle both uncertain data and deterministic data. For this reason, since the results of data
mining applications are affected by the underlying uncertainty in the data, it is critical to design
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Figure 2.6: Problems related to uncertainty

data mining techniques that can take such uncertainty into account during the computations.
In the following we enlist how classical data retrieval problems are affected by data uncertainty
(as synthesized in Figure 2.6), and how to overcome such issues.

Queries

In traditional database management, queries are typically represented as SQL expressions which
are then executed on the database according to a query plan [Aggarwal and Yu, 2009].

A given query on an uncertain database may require computation or aggregation over a large
number of possible instances of the uncertain data. In some cases, queries may be nested, which
greatly increases the complexity of the computation. Thus, two semantic approaches to over-
come these problems were introduced in the state of the art. On the one hand, the intensional
semantics models the uncertain database in terms of an event model, which defines the possible
worlds, and uses tree-like structures of inferences on these event combinations. The tree struc-
ture enumerates all the possibilities over which the query may be evaluated and subsequently
aggregated. In this case, developing a probabilistic relational algebra is required, and correct
results are always obtained. On the other hand, the extensional semantics designs a plan which
can approximate these queries without having to enumerate the entire tree of inferences. In this
case uncertainty is represented as a generalized truth value attached to formulas. We attempt to
evaluate, or approximate, the uncertainty of a given formula based on that of its sub-formulas.
The extensional semantics is not able to capture the underlying complexity and dependencies
in the query results. Consequently, it is useful in case of evaluating simple expressions.

Example. Consider a possible worlds model in which k possible tuples are present: t1, . . . , tk.
Each tuple has an existence probability pti . We want to compute the probability of having both
t1 and t2 in the database. An intensional plan would require us to create the event variables
e(t1), e(t2) and to compute the probability Pr(e(t1) ∩ e(t2)). An extensional plan would just
compute the probability P (t1) · P (t2), without taking into account any correlation between t1
and t2.
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Top-k queries. We classify top-k processing techniques based on query and data certainty as
follows [Aggarwal and Yu, 2009, Ilyas et al., 2008]:

• Exact methods over certain data: deterministic top-k queries are processed over
deterministic data

• Approximate methods over certain data: techniques that operate on deterministic
data, but report approximate answers in favor of performance. The approximate answers
are associated with probabilistic guarantees indicating how far they are from the exact
answer

• Uncertain data: techniques that work on probabilistic data. Some approaches treat
probabilities as the only scoring dimension, while others study the interplay between the
scoring and probability dimension

In case of uncertain data, the aim is to find the top-k answers for a particular query. The
top-k ranking is based on some scoring function in deterministic applications. However, in
uncertain applications, a tuple in a top-k answer does not depend only on its score but also on
its membership probability.

The usage of the possible world semantics allows complex correlations among tuples in the
database. We call generation rules the logical formulas that determine valid worlds. Conse-
quently, all responses to the queries need to be defined in valid possible worlds in order to avoid
answers inconsistent with generation rules and other database constraints.

The goal is to evaluate the top-k query in the most probable world. This leads to two possible
interpretations: i) extract the top-k tuples in the most probable world, or ii) extract the most
probable top-k tuples that belong to the valid possible worlds. Both the interpretations involve
both ranking and aggregations across possible worlds.

Top-k queries - Deterministic data, approximate methods Reporting the exact top-k
query answers could be neither cheap nor necessary for some applications [Ilyas et al., 2008].
Users may thus sacrifice the accuracy of query answers in return of savings in time and resources.

Tuples are partitioned into certain and possible tuples. As more certain data is read from
base tables, more certain tuples are inserted into approximate relations while more possible
tuples are deleted.

The problem is that, since usually a parameter θ is chosen in order to denote the required level
of approximation, the selection of this parameter is mostly application-oriented. Approximate
answers are more useful when they are associated with some accuracy guarantees. Consequently,
a probability p is associated with a candidate tuple ti, stating that ti can be in the top-k set
with probability p.

An example of approximate query is the similarity search query. A similarity search algorithm
uses a distance metrics to rank objects according to their distance from a target query object.
In this case, a query is represented as a hypersphere centered in the target object. Since in many
cases no actual data points (or a small number of data points) are included in the hypersphere,
there is no way to precisely determine the useless regions, i.e., regions that do not contain data
and thus that cannot provide useful results. A proximity measure is used to decide if a data
region should be inspected or not; data regions whose proximity to the query region is greater
than a specified threshold are accessed.

Uncertain Top Rank. A UTop-Rank(i,j) [Soliman et al., 2010] query reports the most prob-
able record to appear at any rank i, . . . , j in possible orderings.

Uncertain Top Prefix. A UTop-Prefix(k) [Soliman et al., 2010] query reports the most
probable linear extension prefix of k records.
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Uncertain Top Set. A UTop-Set(k) [Soliman et al., 2010] query reports the most probable
set of top-k records of linear extensions.

Rank Aggregation. Rank aggregation [Soliman et al., 2010] is the problem of computing
a consensus ranking for a set of candidates C using input rankings of C coming from different
voters. The optimal rank aggregation is the ranking with the minimum average distance to all
input rankings.

Uncertain Top-k query. A UTop-k query [Soliman et al., 2008] reports a top-k vector with
the highest aggregated probability across all worlds.

Let D be a probabilistic database, Q a query to be processed on D and Q(D) the output
tuples of the query. Let PW be the set of possible worlds for a probabilistic database. Let
T = {T 1, . . . , Tm} be the set of all k-length tuple vectors in Q(D) such that each T i ∈ T is the
top-k answer in a set of possible worlds W (T i) ⊆ PW.

The probability of a top-k vector T j ∈ T is

Pr(T j) =
∑

PW i∈W (T j)

Pr(PW i)

The UTop-k query returns a k-length tuple vector T ∗ ∈ T with the highest probability among
all tuple vectors in T .

Uncertain k-Rank query. A U-kRanks query reports a set of tuples that might not form
together the most probable top-k vector. However, each tuple is a clear winner at its rank over
all worlds.

Uncertain Top-k Aggregate Query [Soliman et al., 2008] Let Q be a group-by query,
A be a set of grouping attributes. Let Gi = 〈g1, . . . , gk〉 be the top-k group vector in a nonempty
set of possible worlds W (Gi) ⊆ PW, based on A. We define the probability of a top-k-group
vector Gi as

Pr(Gi) =
∑

PW l∈W (Gi)
Pr(PW l)

A UTopk-Agg query [Soliman et al., 2007] returns a k-length vector G∗ with the highest proba-
bility.

Other uncertain queries. In the following, we list some of the queries one can perform on
uncertain data.

The range queries require to find all the objects in a given range. Since the objects are
uncertain, their exact positions are not known, and thus their membership in the range cannot
be known deterministically.

The nearest neighbor queries require to determine the objects with the least expected nearest
neighbor distance to the target. The probabilistic NN queries are formulated in terms of the
nonzero probability that a given object is the nearest neighbor to the target. The technique
involves evaluating the probability of each object being closest to the query point.

In the case of the aggregate queries one wants to determine the aggregate statistics from
queries such as the sum of the max.

The probabilistic threshold queries are queries that determine all objects whose behavior
satisfies certain conditions with a minimum probability.
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Indexing uncertain data

The problem of indexing uncertain data [Aggarwal and Yu, 2009] arises when data is updated
only periodically in the index, and therefore the current attribute values cannot be known exactly
(they can only be estimated).

There are many types of queries that can be answered with the use of index structures. All
the queries can be classified in two categories:

• An entity-based query returns a set of objects that satisfy the condition of the query

• A value-based query returns a single value, which can be for instance the value of a specific
dimension, or a statistical function of a set of objects satisfying query constraints.

OLAP Model

The queries that are most relevant for the OLAP setting [Aggarwal and Yu, 2009] are the
aggregation queries, in which one attempts to aggregate a particular function of the data on a
part of the data cube.

A set of criteria has been identified in order to handle ambiguities:

• Consistency: the consistency criterion from the OLAP perspective

• Faithfulness: more precise data should lead to more accurate results

• Correlation preservation: the correlation properties of the data should not be affected
by the allocation of ambiguous data records

An extension is to introduce a new measure attribute which represents uncertainty. This is
in the form of a probability distribution function over the base domain. In this case, the query
needs to aggregate over different probability density functions. The problem of aggregating
PDFs is closely related to a problem studied in the statistics literature, which is that of opinion
pooling. The opinion pooling problem is to form a consensus opinion from a given set of opinions
θ. The set of opinions as well as the consensus opinion are presented as pdf’s over a discrete
domain O.

Join processing

In the following, we illustrate some of the techniques used to perform join queries on uncertain
data [Aggarwal and Yu, 2009].

Probabilistic Join Queries. In these queries, each item is associated with a range of possible
values and a pdf, which quantifies the behavior of the data over that range. Each join-pair is
associated with a probability, to indicate the likelihood that the two tuples are matched.

The join may contain a number of false positives. Since each tuple-pair is associated with a
probability that indicates the likelihood of the join, those pairs which have low probability values
can be discarded in order to reduce the number of false positives. This variant is referred to as
Probabilistic Threshold Join Query. We note that the use of thresholds reduces the number of
false positives, but it may also result in the introduction of false negatives. A tradeoff between
the number of false positives and false negatives is chosen.

A key operator in the case of joins is that of equality, since a join is performed only when
the corresponding attribute values are equal. In this case, a pair of attributes are defined to be
equal to one another within acceptable resolution c.



2.2. Uncertainty on data: taxonomy 41

Similarity join. In these queries, similarity is measured by the distance between the two
feature vectors. The join is performed on this distance.

The most popular similarity join is the distance-range join. In this case, we perform the join
between two records if the distance between the two does not exceed a parameter ε. However,
the expected distance may not reflect the true likelihood that a given pair of records may join
on a particular attribute. Consequently, different joins which have similar probability of lying
within the range of ε may be treated inconsistently. Therefore, a probability value is assigned
to each pair of objects, reflecting the likelihood that the pair belongs to the join result set.

Probabilistic Skylines on Uncertain Data

The skyline computation [Aggarwal and Yu, 2009] allows to recognize the best object in a set
of objects that are defined by d different dimensions. For instance, if different NBA players
are considered, different parameters are used to evaluate their performance, e.g., the number of
assists, the rebounds, the baskets. We want to identify the best player among the set of players.

We say that an object u dominates another object v if, for each dimension i ∈ {1, . . . , d} we
have ui ≤ vi, and for some dimension io ∈ {1, . . . , d} we have ui0 ≤ vi0 . Then, given a set of
points S, a point u is a skyline point if there exists no other point v ∈ S such that v dominates
u. The skyline of S is the set of all skyline points.

A probabilistic skyline captures the dominance relationship between uncertain objects. In
this case, the probability of an object being in the skyline is the probability that the object is
not dominated by any other objects. The challenge in this case is that the probability density
function of uncertain data objects is not available explicitly.

Mining applications

The presence of uncertainty can affect the results of data mining applications significantly [Ag-
garwal and Yu, 2009]. In the case of a classification application, an attribute which has lower
uncertainty is more useful than an attribute which has a higher level of uncertainty. In a clus-
tering application, instead, the attributes which have a higher level of uncertainty need to be
treated differently from those which have a lower level of uncertainty.

Clustering uncertain data. The presence of uncertainty changes the nature of the underlying
clusters [Aggarwal and Yu, 2009]. We need to compute uncertain distances effectively between
objects which are probabilistically specified. The fuzzy distance is defined in terms of the
distance distribution function, that encodes the probability that the distances between two
uncertain objects lie within a certain user-defined range.

Classification of uncertain data. A closely related problem is that of classification of un-
certain data in which the aim is to classify a test instance into one particular label from a set of
class labels [Zhang, 2005].

The support vector machine (SVM) technique functions by constructing boundaries between
groups of data records. The margin created by the SVM can be modified by using the uncertainty
of the points which lie in the boundary.

A geometric algorithm has to be found, in which we optimize the probabilistic separation
between the two classes on both sides of the boundary.

Frequent pattern mining. In this model we assume that each item has an existential un-
certainty in belonging to a transaction [Aggarwal and Yu, 2009]. The probability of an item
belonging to a particular transaction is modeled in this approach.
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Figure 2.7: Supervised learning process

Outlier detection with uncertain data. In the problem of outlier detection differing levels
of uncertainty across different dimensions may affect the determination of the outliers in the
underlying data [Aggarwal and Yu, 2009]. It is possible to define the concept of an outlier in
terms of the probability that a given data point is drawn from a dense region of the overall data
distribution.

2.3 Machine learning

In the following, we introduce some background concepts on state-of-the-art machine learning
techniques, and more specifically on text and image classification, which will be used in Chap-
ter 4.

2.3.1 Supervised learning

In this Section, we illustrate come key concepts of supervised learning, as shown in Figure 2.7.
Let x(i) ∈ X be a set of input variables, called features, and y(i) ∈ Y the output variable we

would like to predict, called target. For instance, x(i) could represent some characteristics for the
house i (i.e., number of bathrooms, number of bedrooms), while y(i) may characterize its price.
Our objective is to learn the model used to give a price to a house with some characteristics,
so that, given a house j and its characteristics x(j), we are able to predict its price y(j). When
y is continuous, the learning problem we would like to solve is called a regression problem. On
the other hand, when y takes only a small number of discrete values, then we are solving a
classification problem.

Let (x(i), y(i)) be a training sample. The value y(i) is called label for the value x(i). Then,
the set of training samples T = {(x(i), y(i)) : i = 1, . . . ,m} is called training set and represents
the dataset we will use to learn y.

More formally, given a training set T , we would like to learn a function h : X → Y, called
hypothesis, so that h(x) is a good predictor for the corresponding y.
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Figure 2.8: Model choice to fit the training samples (x(i), y(i))

Binary classification problem

We will focus on the binary classification problem, in which y can take only two values, i.e., 0
or 1.

For instance, if we are building a topic-related content classifier, then x(i) can be the text to
be classified, and y can be 1 if the text is related to a specific topic T , or 0 otherwise. Here, 0
is called negative class, while 1 is called positive class.

The problem of overfitting and underfitting

Given a set of training samples (x(i), y(i)), we would like to find the model that best subdivides
the points (x(i), y(i)) in the positive and negative classes.

As a first step, what one could do is to select manually a family of possible models (e.g.,
linear, polynomial) and then find the parameters that best fit for that model family and those
training samples.

For instance, consider Figure 2.8.
In Figure 2.8(a) a simple, linear model was selected. Unfortunately, this model is too poor

to fit the data in the training set: this situation is characterized by the phenomenon called
underfitting, or high bias.

On the other hand, in Figure 2.8(c) a complex polynomial model was selected. Here, the
model is rich enough to cover all the samples (x(i), y(i)) in the training set, and consequently it
reveals to be perfect for the available data. Unfortunately, the model ‘learned ’the data, and
thus when other training samples (x(j), y(j)) are selected, the model is not generalized enough
to be able to fit them. This situation is characterized by the phenomenon called overfitting, or
high variance.

Cross validation set and test set

Let T be the training set used to train the classifier. If several models are available, then a
possible solution could be to train each available model Mi on T , to get some hypothesis hi,
and then pick the hypotheses with the smallest training error, i.e., the hypotheses that best
fit the available data. Unfortunately, this solution does not work: the higher the order of the
polynomial, the better it will fit the training set T , the lower the training error. Consequently,
this method will always select a high-variance model.

A smarter approach is the one of dividing the available data in two sets: the training set
Ttrain, containing 70% of the data, and the test set Ttest, containing the remaining 30% of the
data. With this method, each modelMi is trained on Ttrain, to get some hypothesis hi, and then
we select the hypothesis that generates the smallest test error on the test set Ttest. However,
this methodology has its drawbacks too: we selected a model according to the error that is
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Figure 2.9: Sigmoid function g(z)

generated on already seen data (the test set Ttest), and thus we cannot have proof of which is
the performance on new data.

A third solution is to subdivide the set of data in three sets: the training set Ttrain, the test
set Ttest and the cross validation set TCV. In this case, each model Mi is trained on Ttrain to
get some hypothesis hi, the one with the highest performance on TCV is selected and the final
classifier performance (on new data) is computed on Ttest. Notice that in this case Ttrain contains
60% of the data, while TCV and Ttest contain both 20% of the data.

Algorithms

Logistic regression.
The hypothesis hθ(x) is generally expressed as:

hθ(x) = g(θTx) =
1

1 + e−θT x
(2.1)

where g(z) is called sigmoid function. Figure 2.9 shows a plot of g(z), where g(z) tends toward
1 as z tends toward ∞, and g(z) tends toward 0 as z tends toward −∞.

To fit the parameters θ, the maximum likelihood approach can be used. At first, we assume
that:

Pr(y = 1|x; θ) = hθ(x)

and:
Pr(y = 0|x; θ) = 1− hθ(x)

Consequently,
p(y|x; θ) = (hθ(x))y(1− hθ(x))1−y

Assuming that the training samples were generated independently, the likelihood of the param-
eters can be written as follows:

L(θ) =

m∏
i=1

(hθ(x
(i)))y

(i)
(1− hθ(x(i)))1−y(i) (2.2)

Finally, the parameters θ will be chosen so that they maximize the log-likelihood `(θ) = logL(θ).

Support Vector Machines.
This Section presents the main concepts behind the construction of a Support Vector Machine

(SVM) learning algorithm.
Considering the definition of logistic regression, we predict y = 1 on the input x if and only

if hθ(x) ≥ 0.5, or equivalently, if θTx ≥ 0. Moreover, it is natural to say that the larger is θTx,
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Figure 2.10: Decision boundary for a support vector machine. In green: support vectors, i.e.,
those training samples (x(i), y(i)) at the minimum distance from the decision boundary (Source:
http://www.mblondel.org/images/svm_linear.png)

the higher is our confidence that the label for x is 1. The same holds for the negative class: if
θTx < 0, then y = 0, and the outcome is correct with a high confidence if θTx� 0.

The objective of an SVM is the one of finding a decision boundary that, while separating
the positive class from the negative class, allows us to make confident predictions on the train-
ing samples. This is obtained by finding the decision boundary that maximizes the geometric
margins, i.e., the distance of each training sample from the decision boundary itself.

Kernels. Let x be the set of input attributes of a problem. It is possible to map these values
to other quantities, called input features. This is generally done via a feature mapping φ, which
maps the attributes to the features.

Rather than applying the SVM on the original input attributes x, we could want to use
the features φ(x). A kernel is a function K(·) that enable us to operate in a high-dimensional,
implicit feature space without ever computing the coordinates of the data in that space.

Several kernel functions can be used with an SVM. Generally, we can decide to avoid the
usage of a complex kernel (i.e., we use a linear kernel) in case the number of training samples is
high and the number of features is low. However, in case the number of tracked features is high
and the training set is small, it is convenient to use a more refined kernel, e.g., the Gaussian
kernel.

Parameters. An SVM classifier is mainly characterized by two parameters: the cost parameter
C and the kernel width σ.

When σ is large, then features vary smoothly, thus leading to high bias and low variance.
On the other hand, small values of σ lead to a sharp variation of the features, a lower bias and
a higher variance.

Furthermore, when C is large, we come up with a situation of low bias and high variance.
On the other hand, small values of C lead to a situation of high bias and low variance.

Build feature vectors: text-based approach

When classifying text, we would like to find a way of translating the content of each document
in a feature vector, that can be fed as an input to a classification algorithm and then processed

http://www.mblondel.org/images/svm_linear.png
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as a training sample (x(i), y(i)). Thus, text (intended as sequence of words and symbols) needs
to be processed so as to compute a vector of numerical values (representing the feature vector).

One of the classical processing techniques for textual documents is the term frequency-inverse
document frequency (tf-idf) approach. This approach is a statistic intended to reflect the impor-
tance of a word in a document belonging to a collection of documents. The tf-idf value is meant
to increase proportionally to the number of times a word appears in a document; however, a
penalty term (i.e., the idf) is added to the computation, to penalize words that appear very
frequently in most of the documents in the collection. Using this approach, every pair term-
document ti, di is associated with a value tf− idf(i, j), which indicates the importance of ti
for di, weighted by the representativeness of ti for the whole document collection D:

tf− idf(i, j) = tf(i, j)idf(i) = frequency(ti, dj) log
|D|

|{dj ∈ D|ti ∈ dj}|

Thus, given a document dj , we subdivide it in words. Each word extracted from a document dj
is used as a term ti, and is thus associated with a value tf− idf(i, j).

To build the feature set, every document dj in the training set Ttrain is subdivided in words:
every word will correspond to a feature.

The feature vector for a document dj is such that the i-th value is computed as tf− idf(i, j).

Stop words. A stop word is a word that is filtered out prior to processing of text. This is
usually done since stop words are not discriminative to any topic, due to their nature, and thus it
would be useless to consider them as features describing a text. Usually we consider stop words
terms as the, as, on, which. Obviously this concept can be extended to include other types of
terms which are generally diffused and not particularly discriminative (e.g., want or like).

Stemming. Stemming is the process used for reducing inflected words to their stem (i.e., root
form). A stemmer for English for instance should identify that the words cat, cats, catlike are
all related to the same term cat. Stemming is used to group together words with a similar
basic meaning. Consequently, by applying this process we can understand that two documents
reporting two different words that resemble the same term (e.g., cat and cats) are probably
referring to the same concept. Note that the extracted stem does not have to be identical to
the morphological root of the word: it is sufficient that related words map to the same stemmed
term. One of the most diffused stemming algorithms is the Porter stemmer.

Image classification

Classifying images into semantic categories is a problem of great interest [Yang et al., 2007]. For
instance, if an online collection of photos is available, we could need to classify those photos as
belonging to a specific topic T or not.

In the last ten years, there has been a trend of using image key-points (or local interest
points) in image retrieval and classification. A key-point is a salient image patch that contains
rich local information of an image. Usually, a key-point can be automatically detected using
various detectors and represented using various descriptors. In Figure 2.11, the key-points are
denoted by small crosses in the three images.

An image can be represented by a set of key-point descriptors, i.e., the set of descriptors
for all the points in the image. However, this set varies in cardinality and lacks meaningful
ordering. This creates difficulties for many learning methods, that require feature vectors of
fixed dimension as input. Thus, it is still desirable to transform raw key-point features into an
image feature with a fixed dimension. To do so, key-points are grouped into a large number
of clusters using the k-means clustering algorithm [Hartigan, 1975], so that those with similar
descriptors are assigned into the same cluster. We call each cluster visual word : a visual word is
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keypoint detectors, keypoint descriptors, and clustering and
classification algorithms [8, 9, 5, 18, 23, 22]. In compari-
son, this paper focuses on the representation choices of the
visual-word features, which are critical to the classification
performance but yet to be thoroughly studied. By evaluat-
ing various representation choices, we intend to answer the
question of what visual-word representation choices (w.r.t
dimension, weighting, selection, etc) are likely to produce
the best classification performance in terms of accuracy and
efficiency.

We evaluate the image classification performance based on
various visual-word representations generated by text cate-
gorization techniques on two benchmark corpora, TRECVID
and PASCAL. The experiments lead to the following impor-
tant observations: (1) the size of an effective visual-word
vocabulary varies from thousands to tens of thousands; (2)
binary visual-word features are as effective as tf or tf-idf
weighted features; (3) using selection criteria such as chi-
square and mutual information, half of the visual words in
the vocabulary can be eliminated with minimum loss of clas-
sification performance; (4) frequent visual words are usually
very informative and must not be removed; (5) the spatial
information of keypoints is helpful under small vocabular-
ies. These observations are critical to designing the most
effective visual-word representation for image classification
and other related tasks. We also study the performance ob-
tained by combining visual-word features with conventional
color/texture features, from which we find the two types of
features are complementary.

In Section 2, we briefly review the existing works on image
classification and text categorization. We describe the gen-
eration of bag-of-visual-words image representation in Sec-
tion 3, and discuss the text categorization techniques for
generating various representations in Section 4. We intro-
duce the testing corpora and explore the distribution of vi-
sual words in Section 5. The experiment results and conclu-
sions are presented in Section 6 and Section 7, respectively.

2. RELATED WORK
Representing images by effective features is crucial to the

performance of image retrieval and classification. The most
popular image representation has been the low-level visual
features, which describes an image by the global distribu-
tion of color, texture, or other properties. Features like color
histograms and Gabor filters belong to this category. To in-
clude spatial information, an image is partitioned into either
rectangular regions or segments of objects and backgrounds,
and features computed from these regions/segments are con-
catenated into a single image feature vector. These conven-
tional image representations are in the form of real-valued
feature vectors, which is different from the sparse term vec-
tors representing text documents.

Recently, the computer vision community has found key-
points to be an effective image representation for tasks vary-
ing from object recognition to image classification. Key-
points are salient image patches that contain rich local in-
formation of an image. They can be automatically detected
using various keypoint detectors, which are surveyed in [12]
and [22]. Keypoints are depicted by descriptors like SIFT
(scale-invariant feature transform) [11] and its variant PCA-
SIFT [7]. The keypoint descriptors are surveyed in [13].
Keypoint features can be used in their raw format for di-
rect image matching [23], or vector-quantized into a repre-

Figure 1: Generating visual-word image representa-
tion based on vector-quantized keypoint features

sentation analogous to the bag-of-words representation of
text documents. There have been works using this vector-
quantized keypoint feature, or bag-of-visual-word represen-
tation, for image classification [8, 9, 5, 18, 23, 22]. Our work
examines the effectiveness of various representation choices,
which is yet to be thoroughly studied in previous work.

Text categorization (TC) is a well studied area in IR. In
TC, documents are represented as “bags of words” after
stop-word removal and stemming. Each document is de-
scribed either by a binary vector indicating the presence or
absence of terms (e.g., [4]), or by a vector consisting of the
tf or tf-idf weights of the terms (e.g., [6], [20]). Yang et
al. [21] has studied the feature selection methods in TC,
and found that up to 98% of the unique terms in the vo-
cabulary can be eliminated without sacrificing classification
accuracy. Different learning algorithms have been applied
to TC, including SVM, k-Nearest Neighbor, Naive Bayes,
Linear Least Square Fit, which are surveyed in [20] and [4].

3. BAG-OF-VISUAL-WORDS
Similar to terms in a text document, an image has local

interest points or keypoints defined as salient image patches
(small regions) that contain rich local information of the
image. Denoted by small crosses in the three images in Fig-
ure 1, keypoints are usually around the corners and edges of
image objects, such as the edges of the map and around peo-
ple’s faces. We use the Difference of Gaussian (DoG) detec-
tor [11] to automatically detect keypoints from images. The
detected keypoints are depicted using PCA-SIFT descriptor,
which is a 36-dimensional real-valued feature vector [7].

An image can be represented by a set of keypoint descrip-
tors, but this set varies in cardinality and lacks meaningful
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Figure 2.11: Extraction of a bag of visual words [Yang et al., 2007]

an entity that represents a specific local pattern shared by the key-points in that cluster. From
this point on, each key-point is referred to as the index of the cluster it belongs to.

There exists a correspondence between visual words in images and words in textual docu-
ments. In textual documents, a word represents a concept, and a concept can be expressed by
means of several synonyms. In the same way, a visual word represents a visual concept (i.e., a
visual pattern), and it is such that every patch comprised in the related cluster is a synonym
for the same concept.

Then, given a large collection of photos, one could extract all the contained visual words and
build the so-called visual-word vocabulary, i.e., a collection of visual word describing all kinds
of local image patterns. The number of clusters determines the size of the vocabulary, which
usually varies from hundreds to over tens of thousands.

When a new image is submitted to the system, its key-points are extracted and mapped
to a visual word. That is, for each key-point, we find the visual word that is most similar to
the key-point descriptor. What we obtain is a collection of words that describe the image, so
that the image representation is now a series of textual term and the image can be treated as
a textual document itself. We call bag of visual words the set of visual words in that image.
This representation is analogous to the bag of words document representation in terms of form
and semantics. Both representations are sparse and high dimensional, and just as words convey
meanings of a document, visual words reveal local patterns characteristic of the whole image.

The bag of visual words representation can be then converted into a visual word vector similar
to the term vector of a document. The visual word vector is such that each bin represents the
(normalized) count of the corresponding visual word in the vocabulary. That is, it represents
the number of image key-points in the corresponding cluster. Such bag of visual word can be
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thus used as a feature vector in classification task, as explained in Section 2.3.1.

2.3.2 Decision trees

When performing a classification task we are provided with a set of K objects o ∈ O, each one
described by a finite set of attributes Ao. Each attribute a ∈ Ao measures an important feature
of o. For instance, suppose that the objects were days and the classification task involved the
weather. In this case, an effective set of attributes could be the following:

Ao = {outlook, temperature, humidity, windy}

where each attribute may have values:

outlook : sunny, overcast, rain
temperature : cool, mild, hot
humidity : high, normal
windy : true, false

Each object o ∈ O belongs to a class c ∈ C.
In our setting, O is our training set, i.e., a set of objects whose class is known. A classification

rule need to be defined, so that, when a new object onew /∈ O is fed as an input, its class can be
determined. The classification rule will be expressed as a decision tree built on the training set.

A decision tree, as defined in [Quinlan, 1986], is a tree in which leaves are labeled with
class names and other nodes represent tests that will be performed on some object attribute
a ∈ Ao. Each test T produces N branches, where N is the number of possible values for a. For
instance, if T is a test on ‘humidity’, its two possible branches correspond to the values ‘high’
and ‘normal’. The classification process for the object o starts from the root of the tree and goes
down to the leaves. When a test T on the attribute a is evaluated for the object o, the branch
corresponding to the value va,o of the attribute in o is taken. The process terminates when a
leaf (labeled with class c) is encountered, at which time the object is said to belong to c.88 J.R. QUINLAN 
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Figure 3. A complex decision tree. 

number  of  such trees is finite but very large, so this approach would only be feasible 
for small induction tasks. ID3 was designed for the other end of  the spectrum, where 
there are many  attributes and the training set contains many  objects, but where a 
reasonably good decision tree is required without much computat ion.  It has generally 
been found to construct simple decision trees, but the approach it uses cannot 
guarantee that better trees have not been overlooked. 

The basic structure of  ID3 is iterative. A subset of  the training set called the win- 
dow is chosen at random and a decision tree formed from it; this tree correctly 
classifies all objects in the window. All other objects in the training set are then 
classified using the tree. I f  the tree gives the correct answer for all these objects then 
it is correct for the entire training set and the process terminates. I f  not, a selection 
of  the incorrectly classified objects is added to the window and the process continues. 
In this way, correct decision trees have been found after only a few iterations for 
training sets of  up to thirty thousand objects described in terms of  up to 50 attributes. 
Empirical evidence suggests that a correct decision tree is usually found more quickly 
by this iterative method than by forming a tree directly f rom the entire training set. 
However,  O'Keefe  (1983) has noted that the iterative f ramework cannot be 
guaranteed to converge on a final tree unless the window can grow to include the en- 
tire training set. This potential limitation has not yet arisen in practice. 

The crux of  the problem is how to form a decision tree for an arbitrary collection 
C of  objects. I f  C is empty or contains only objects of  one class, the simplest decision 
tree is just a leaf labelled with the class. Otherwise, let T be any test on an object with 
possible outcomes O1, Oz . . . .  Ow. Each object in C will give one of  these outcomes 
for T, so T produces a parti t ion [ C1, C2 . . . .  Cw} of  C with Ci containing those ob- 

Figure 2.12: Example of decision tree. Here, two classes are present: P (positive class) and N
(negative class)

It is always possible to build at least one decision tree that correctly classifies each object
in the training set, but usually there are many correct decision trees. The ID3 algorithm allows
one to find a reasonably good decision tree without much computation. ID3 is iterative: in the
first step a selection of objects Ow, called window, is extracted from the training set, and the
decision tree is built on it; then, if the tree classifies correctly all the objects o ∈ {O\Ow}, the
algorithm terminates, otherwise a subset of incorrectly classified objects is added to the window
and the process continues.
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Let Tk be a test on the attribute a, whose possible outcomes are va,1, . . . , va,N . If O is the set
of objects on which T is evaluated, O will be split into N groups O1, . . . ,ON . The i-th outgoing
branch of Tk will end into another test Tk+1, which will be evaluated on Oi.

The open question is about how to choose a test for a node in the tree. The decision
tree can be seen as a source of messages, whose content is the retrieved class label. Let P =
〈p1, . . . , pM 〉 be the probabilities of belonging to the classes c1, . . . , cM respectively. Let I(P )
be the information needed to generate this message (i.e., the entropy of the probabilities P ,
H(P ) = −∑M

i=1 pi log pi). Let E(a) be the expected information required for the tree with a

as root, i.e., E(a) =
∑N

i=1
|Oi|
|O| I(P ), where N is the number of possible values for a. Then, the

information gained by branching on a is:

G(a) = I(P )− E(a)

The attribute that will be chosen to fit in the root of the tree will be the one that maximizes
the information gain:

Troot = arg max
a

G(a)

Algorithm 1 shows the procedure for the construction of a decision tree. The complexity of
ID3 is evaluated in [Quinlan, 1986]. At each non-leaf node the gain of the attribute a must be
computed. This means that each object need to be analyzed in order to determine how many
objects belong to each set Oi. Consequently, for each internal node the complexity is O(K|A|).
Since no exponential growth in time has been observed, ID3 can be applied to large tasks.

The analysis conducted by [Mitchell, 1997] shows that this algorithm may produce trees
that overfit the training set. This happens mostly when the number of training samples is
either too small to characterize a significant sample of the true target function or when data
is noisy. Figure 2.13 shows the result of this analysis. The x-axis indicates the total number
of nodes in the decision tree. The solid line shows the accuracy in the classification of training
samples, while the broken line shows the accuracy over new data. Obviously the accuracy in the
classification of training samples increases monotonically as the tree grows, since the algorithm
is ‘learning’ the data. Unfortunately this is not valid for new data: once the number of nodes
exceeds 25, the accuracy in the classification decreases. This is due to the fact that data could
present coincidental regularities, and consequently some attribute may partition the training set
very well, despite being unrelated to the actual target function. A way to prevent overfitting
may be the post-pruning of the tree: first of all the tree is left growing and overfitting the data,
then it is pruned using some predefined approach. A way to verify whether the correct tree size
is reached is the training and validation set approach. In this approach, the available data are
separated into two sets: the training set (used to form the decision tree) and the validation set
(used to evaluate the accuracy of the tree).

Decision trees for uncertain data

[Tsang et al., 2011] applies the decision tree algorithm in the field of uncertain data.
Usually, when considering an attribute a of an object, we think about values that are either

categorical or numerical. However, there are many scenarios in which uncertainty is introduced
in the data set, e.g., when a temperature is captured by a sensor network it could be uncertain
because of noise. In these cases the value of a is captured by a range of possible values instead
of a single point value. Each possible value v can be assumed with a given probability p(v);
consequently, a probability distribution f(a) over the range of possible values [l, u] is defined,
and this distribution will synthesize the value of a.

In this scenario, a test object ot contains uncertain attributes, each one described by a
PDF: ot = 〈f(a1), . . . , f(aN )〉. A classification model is a model that maps ot to a probability
distribution over C = {P,N}, where P and N are classes.
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reasonable strategy, in fact it can lead to difficulties when there is noise in the data, 
or when the number of training examples is too small to produce a representative 
sample of the true target function. In either of these cases, this simple algorithm 
can produce trees that overjt the training examples. 

We will say that a hypothesis overfits the training examples if some other 
hypothesis that fits the training examples less well actually performs better over the 
entire distribution of instances (i.e., including instances beyond the training set). 

Definition: Given a hypothesis space H, a hypothesis h E H is said to overlit the 
training data if there exists some alternative hypothesis h' E H, such that h has 
smaller error than h' over the training examples, but h' has a smaller error than h 
over the entire distribution of instances. 

Figure 3.6 illustrates the impact of overfitting in a typical application of deci- 
sion tree learning. In this case, the ID3 algorithm is applied to the task of learning 
which medical patients have a form of diabetes. The horizontal axis of this plot 
indicates the total number of nodes in the decision tree, as the tree is being con- 
structed. The vertical axis indicates the accuracy of predictions made by the tree. 
The solid line shows the accuracy of the decision tree over the training examples, 
whereas the broken line shows accuracy measured over an independent set of test 
examples (not included in the training set). Predictably, the accuracy of the tree 
over the training examples increases monotonically as the tree is grown. How- 
ever, the accuracy measured over the independent test examples first increases, 
then decreases. As can be seen, once the tree size exceeds approximately 25 nodes, 

On training data - 
On test data ---- i 

Size of tree (number of nodes) 

FIGURE 3.6 
Overfitting in decision tree learning. As ID3 adds new nodes to grow the decision tree, the accuracy of 
the tree measured over the training examples increases monotonically. However, when measured over 
a set of test examples independent of the training examples, accuracy first increases, then decreases. 
Software and data for experimenting with variations on this plot are available on the World Wide 
Web at http://www.cs.cmu.edu/-torn/mlbook.html. 

Figure 2.13: Analysis on the performance of the decision tree algorithm

Algorithm 1: ID3 algorithm for the construction of a decision tree. A is the target
attribute that we have to learn
Input: Examples O, Attributes A, Target attribute A
Output: Decision tree D

Create root r for the tree D;
if all elements in O are of class P then

label(r) = P ;
else if all elements in O are of class N then

label(r) = N ;
else if A is empty then

label(r) = most common value of A in O;
else

T = arg maxa∈AG(a);
test(r) = T ;
for all values vi of a do

Add a new branch to r;
Ovi = {o ∈ O : va,o = vi};
if Ovi = ∅ then

label(Dsub) = most common value of A in O;
else

Dsub = ID3(Ovi , A, A \ {a});
Add Dsub as child of the new branch;

return r
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Given a node n associated to the attribute ajn , the following rule is applied:

T =

{
va,o ≤ zn go right
otherwise go left

zn is called split point for the attribute ajn , since this is the value used to split between the left
and the right branch.

An object ox is associated to a weight wx ∈ [0, 1], that is updated while running the algorithm.
The quantity φn(x; ox, wx) is the conditional probability that ox is labeled c when a tree with
root at n is used to classify ox with weight wx. If n is associated to the attribute ajn and the
split point zn, then we can compute the probability pL of going to the left branch after the test
as:

pL =

∫ zn

ljn

f(t)dt

Consequently, the probability pR of going to the right branch after the test is:

pR = 1− pL

ox is then divided into two sub-objects oL and oR. Object oL will have weight wL = wx · pL;
moreover, its feature vector is copied from the one of ox, apart from f(ajn), which is computed
as follows:

f(ajn) =

{
f(ajn)/wL x ∈ [ljn , zn]
0 otherwise

Object oR is built in the same way.
Thus, we can define:

φn(c; ox, wx) = pL · φnL(c; ol, wL) + pR · φnR(c; oR, wR)

where nL and nR are the left and right child of node n respectively. If n is a leaf node,

φn(c; ox, wx) = wx · Pn(c)

Finally, for each class c, P (c) = φr(c; ot, 1), where r is the root node of the decision tree. This
probability indicates how likely it is that the test object ot has class label c.

The simpler way of handling uncertain data is called averaging. In this case, for each object
oi and attribute aj the mean value vi,j =

∫ ui,j
li,j

xfi,j(x)dx is taken as representative value.
At each node n, the objects are checked in order to verify whether they all have the same

class label c. If this is the case, then n is set as a leaf node and Pn(c) = 1. Otherwise, an
attribute aj is selected together with a split point zn and the objects are divided into the left
and right subsets; Pn(c) is set equal to the fraction of objects that are labeled as c. All the
attributes aj are evaluated, each one using its possible values {vj,1, . . . , vj,N} as split points zn.
At the end, the pair 〈aj , zn〉 that minimizes the entropy of the probabilities is chosen as a test
for the current node.

2.4 Mathematical background

2.4.1 Depth-First Search in graphs

In the following, we introduce the main concepts behind the Depth-First Search algorithm in
graphs, which will be used in Chapter 5.

A search algorithm is an algorithm used for traversing trees and graphs. The idea is to
incrementally explore paths from the root(s). A frontier is defined as the set of paths from
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the start node that have been explored. Initially, the frontier contains the root node (in case of
multiple root nodes, the algorithm is iterated for each of them). Then, as the algorithm proceeds
exploring the graph, the frontier expands into unexplored nodes until a leaf is encountered.

Depth-First search is a search graph whose search starts at the root, and navigates as deep as
possible in the graph before backtracking. In a phylogeny, the search starts at nodes containing
only original content (i.e., the roots) and proceeds visiting those nodes that are duplicates of the
root. The frontier acts like a stack, in which nodes are stored and then visited one at a time.
Paths are visited in a depth-first manner: a path is completely visited, from the root to the leaf,
before trying an alternative path. The backtracking allows to select a first alternative at each
node, and to backtrack to the next alternative when all the paths from the first selection have
been visited (see Figure 2.14(a)).
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Figure 2.14: DFS algorithm

Let G(V,E) denote a graph, where V is the set of vertices and E is the set of edges. The
exploration made by DFS takes time O(|E|) and uses space O(|V |) in the worst case for stacking
vertices on the current search path.

In case of cyclic graphs DFS allows to detect cycles, since each time a node is visited it is
queued in the stack, and whenever the same node appears twice in the stack that means that a
cycle has just been visited.



Chapter 3

Optimizing active crowdsourcing:
Fighting uncertainty on structured data

An emerging trend in data processing is active crowdsourcing [Ipeirotis and Gabrilovich, 2014],
defined as the systematic engagement of humans in the resolution of tasks through online dis-
tributed work. This approach combines human and automatic computation in order to solve
complex problems, and has been applied to a variety of data and query processing tasks, includ-
ing multimedia content analysis, data cleaning, semantic data integration, and query answering.

Usually the data that is treated via crowdsourcing techniques is neither structured nor stan-
dard, and thus difficult to be processed in an automatic way. Two classical examples of non-
structured data are multimedia content and uncertain data.

In the case of multimedia content, its analysis requires to posses a complex knowledge base to
understand what it contains, which is not typical of machines. For instance, if we ask a machine
to identify a dog in an image, we will be unlikely to receive a correct answer, since a machine
does not have the concept of ‘what is a dog ’, and for sure even if it is trained to recognize N
types of dogs, since dogs are all different between each other, it is not assured that the machine
will recognize the (N + 1)-th type. Moreover, this automatic analysis becomes more and more
difficult as the multimedia content becomes more and more complex (e.g., from image to audio
content to video). On the other hand, a human possesses the required knowledge base, and thus
is able to recognize multimedia content with little effort.

In the case of uncertain data processing, data is probabilistic instead of deterministic. This
uncertainty may depend on either errors in the data collection, or low precision on the tools
that were used to collect the data. In order to deal with this data, an automatic process needs
to redefine it, reduce its uncertainty and approach as much as possible the deterministic version
of it. This is usually done via the collection of further information on the data, which may
be collected from other sources and used to reduce errors, or introduce more precision. Again,
humans could possess this new information and deliver it to us with little effort.

In all these scenarios, we need a standard way to ask the required information to users: i) as
many time as needed; ii) using always the same interface.

Consequently, what is usually done is to design a crowd task, i.e., a task that is submitted
to a crowd of users and allows us to collect the required information. Each task can be usually
solved by any user in the crowd, so that, when the answer is collected, we do not know the
identity of the answer’s author.

Crowd tasks are published on crowdsourcing platforms, such as Amazon Mechanical Turk1,
Crowdflower2, Microtask3. Humans that participate are usually paid a certain amount of money
for each task (or set of tasks), so that the reward prompt them in answering more tasks. An

1www.mturk.com
2http://www.crowdflower.com
3http://www.microtask.com
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Figure 3.1: An example of task on Amazon Mechanical Turk. Here, a task is called a HIT.
Notice that in this case the requirement is the one of processing multimedia content manually,
while the reward for each task is 0.06$

example of task posted on Amazon Mechanical Turk is shown in Figure 3.1.
Unfortunately for us, choosing tasks whose answers will bring us little information makes us

waste budget, and would require us to post more and more tasks to the crowdsourcing platform,
in need of new information. Moreover, crowdsourcing has problems of its own [Allahbakhsh
et al., 2013]: the output of humans is uncertain, too, and thus the additional knowledge must be
properly integrated, notably by explicitly taking into account the noisiness of human judgment
and by aggregating the responses of multiple contributors. Due to this redundancy, further
significant budget savings may be achieved by avoiding to post even a small amount of tasks.

These problems require an appropriate policy in the formulation of the tasks to submit to
the crowd, aimed at reaching the maximum reduction of uncertainty with the smallest number
of crowd task executions.

In this Chapter we introduce a use case for the application of active crowdsourcing techniques,
based on the context of top-K queries.

3.1 The scenario: Uncertainty on top-K query results

Both social media and sensing infrastructures are producing an unprecedented mass of data that
are at the base of numerous applications in such fields as information retrieval, data integra-
tion, location-based services, monitoring and surveillance, predictive modeling of natural and
economic phenomena, public health, and more. The common characteristic of both sensor data
and user-generated content is their uncertain nature, due to either the noise inherent to sensors
or the imprecision of human contributions. Therefore query processing over uncertain data has
become an active research field [Wang et al., 2013c], where solutions are being sought for coping
with the two main uncertainty factors inherent in this class of applications: the approximate
nature of users’ information needs and the uncertainty residing in the queried data.

In the well-known class of applications commonly referred to as “top-K queries” [Li et al.,
2011], the objective is to find the best K objects matching the user’s information need, formu-
lated as a scoring function over the objects’ attribute values. If both the data and the scoring
function are deterministic, the best K objects can be univocally determined and totally ordered
so as to produce a single ranked result set (as long as ties are broken by some deterministic
rule).

However, in application scenarios involving uncertain data and fuzzy information needs, this
does not hold. For example, in a large social network the importance of a given user may be
computed as a fuzzy mixture of several characteristics, such as her network centrality, level of
activity, expertise, and topical affinity. A viral marketing campaign may try to identify the
“best”K users and exploit their prominence to spread the popularity of a product [Kempe et al.,
2003]. Another instance occurs when sorting videos for recency or popularity in a video sharing
site [Cha et al., 2009]: for example, the video timestamps may be uncertain because the files
were annotated at a coarse granularity level (e.g., the day), or perhaps because similar but not
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identical types of annotations are available (e.g., upload instead of creation time). Sometimes,
data processing may also be a source of uncertainty; for example, when tagging images with
a visual quality or representativeness index, the score may be algorithmically computed as a
probability distribution, with a spread related to the confidence of the algorithm employed to
estimate quality [Kennedy and Naaman, 2008,Sheikh et al., 2006].

Furthermore, uncertainty may also derive from the user’s information need itself; for example,
when ranking apartments for sale, their value depends on the weights assigned to price, size,
location, etc., which may be uncertain because they were specified only qualitatively by the user
or estimated by a learning-to-rank algorithm [Yu et al., 2005].

When either the attribute values or the scoring function are nondeterministic, there may be
no consensus on a single ordering, but rather a space of possible orderings. For example, a query
for the top-K most recent videos may return multiple orderings, namely all those compatible
with the uncertainty of the timestamps. To determine the correct ordering, one needs to acquire
additional information so as to reduce the amount of uncertainty associated with the queried
data.

When data ambiguity can be resolved by human judgment, crowdsourcing becomes a viable
tool for converging towards a unique or at least more determinate query result. For example, in
an event detection and sorting scenario, a human could know the relative order of occurrence of
two events; with this information, one could discard the incompatible orderings.

In this Chapter, we would like to define and compare task selection policies for uncertainty
reduction via crowdsourcing, with emphasis on the case of top-K queries. Given a data set with
uncertain values, our objective is to execute the set of tasks (in the form of questions posed
to a crowd) that, within an allowed budget, minimizes the expected residual uncertainty of the
result, possibly leading to a unique ordering of the top K results.

3.2 Score distribution for uncertain data

We consider the problem of answering a top-K query over a relational database table T con-
taining N tuples. The relevance of a tuple to the query is modeled as a score.

Let ti ∈ T be a tuple in the database, defined over a relation schema A = 〈A1, . . . , AM 〉,
where A1, . . . , AM are attributes. Let s(ti) denote the score of tuple ti, computed by applying a
scoring function over ti’s attribute values. Generally, s(ti) is computed by using an aggregation
function

s(ti) = F (s(ti[A1]), . . . , s(ti[AM ]);w1, . . . , wM ), (3.1)

where ti[Aj ] is the value of the j-th attribute of ti, s(ti[Aj ]) its relevance with respect to the
query, and wj is the weight associated with the j-th attribute, i.e., the importance of Aj with
respect to the user needs. It is common to define (3.1) as a convex sum of weighted attribute
scores [Soliman et al., 2011].

When both the attribute values and the corresponding weights are known, the tuples in T
can be totally ordered in descending order of s(ti) by breaking ties deterministically. Instead,
if either the attribute values or the weights are uncertain, the score s(ti) can be modeled as a
random variable. The corresponding probability density function (pdf) fi can be obtained either
analytically, from the knowledge of the application domain, or by fitting training data.

Some examples of uncertain score distributions can be found in real-life scenarios. For
instance, Apartments4 groups similar apartments, and consequently shows aggregated intervals
of prices, number of bedrooms, etc (Figure 3.2(c)). Another example can be found in those
websites that collect user opinions, e.g. on movies (IMDB5, Figure 3.2(a)), hotels (TripAdvisor6,

4www.apartments.com
5www.imdb.com
6www.tripadvisor.com

www.apartments.com
www.imdb.com
www.tripadvisor.com
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(a) IMDB (b) TripAdvisor

(c) Apartments

Figure 3.2: Uncertain scores from real scenarios
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Figure 3.3: Deterministic and uncertain scores for a pair of tuples. While a deterministic score
allows one to define a total order between the tuples, an uncertain score induces a partial order
over tuples

Figure 3.2(b)), in which user opinions may not coincide and thus generate score distributions
for the analyzed tuples. In all these cases, it is not possible to characterize a deterministic score
value, and thus a distribution can be inferred, either as an uniform distribution (as in the case
of Apartments, in which we are just given with the interval extrema) or as a more complex
distribution (as in the case of IMDB and TripAdvisor, in which the score distribution coincides
with the distribution of votes by the users).

In the following we focus on the case in which fi represents a continuous random variable,
from which the simpler discrete case can be derived. We make very weak assumptions on the
class of pdf’s: fi can be any function that can be approximated with a piecewise polynomial
function defined over a finite support [li, ui], where li and ui are the lowest and highest values that
can be attained by s(ti). This approximation allows us to handle the most common probability
distributions [Li and Deshpande, 2010].

For ease of presentation, from now on we focus on uniform probability distributions. Let
then δi denote the spread of the score distribution associated with the tuple ti, i.e., δi = ui −
li. Without loss of generality, we assume that the scores are normalized in the [0, 1] interval.
Therefore, li ∈ [0, 1− δi] and ui ∈ [δi, 1]. Figure 3.4(a) illustrates an example with three tuples
whose score is represented by means of a uniform pdf.

3.3 Tree of possible orderings

Let ti, tj be a pair of tuples. In the following, we will indicate with ti ≺ tj the situation in which
ti is ranked higher than tj .
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Figure 3.4: (a) Score pdf’s for tuples t1, t2 and t3; (b) their tree of possible orderings T . Each
node is labeled with the probability of the corresponding prefix

A deterministic knowledge of the scores s(ti) induces a total order over the tuples. That is,
given a pair of tuples, the tuple having a larger score is ranked higher than the tuple having a
smaller score. As an example, Figure 3.3(a) shows two tuples having deterministic score. Here,
t1 ≺ t2, since s1 > s2.

However, the uncertain knowledge of the scores s(ti) induces a partial order over the tu-
ples [Soliman and Ilyas, 2009]. Indeed, when the pdf’s of two tuples overlap, their relative order
is undefined. As a consequence, it is not possible to identify a unique ordering for the analyzed
tuples. As an example, Figure 3.3(b) shows two tuples having an uncertain score. Here, we
cannot state whether either t1 ≺ t2 or t2 ≺ t1, since the score distribution overlaps. Thus,
Figure 3.3(b) generates two orderings: the one in which t1 is ranked higher and the one in which
t2 is ranked higher.

We define the space of possible orderings as the set of all the total orderings compatible
with the given score probability functions. This space can be represented by means of a tree of
possible orderings, in which each node (except the root) represents a tuple ti, and an edge from
ti to tj indicates that ti is ranked higher than tj . Each path tr(1) ≺ tr(2) ≺ . . . ≺ tr(N), where
r(k) is the index of the tuple ranked at position k, is associated with a probability value, stating
how probable is the prefix it represents. Complete paths from the root (excluded) to the leaf
tr(N) (included) represent a possible ordering ω of the underlying set of tuples T .

For example, Figure 3.4(b) shows the tree of possible orderings obtained from the score
distributions in Figure 3.4(a), where each ordering is associated with its probability value.

3.3.1 Construct the tree

Build the topology

A method for constructing a tree of possible orderings T was proposed in [Soliman and Ilyas,
2009].

Let T be a table containing the tuples {t1, . . . , tN} whose uncertain scores are represented
by the pdf’s {f1, . . . , fN}. A tuple ti is dominated if there exists at least one tuple tj ∈ T such
that lj > ui. A source is a tuple ti ∈ T that is not dominated by any other tuple tj 6= ti. For
instance, in Figure 3.5(a) t3 is the only source, since there does not exist any other tuple that
dominates it (while t1 and t2 are dominated by t3). On the other hand, in Figure 3.5(b) both
t1 and t2 are sources, since there does not exist any other tuple that dominates them.

The tree is built as described in Algorithm 2, by calling buildTPO(T ). First, a dummy root
node (not associated with any tuple) is created. Then, the sources are extracted from T and
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Figure 3.5: A source is a tuple ti that is not dominated by other tuples. Sources can be either
unique (a) or multiple (b)

Algorithm 2: Building the tree of possible orderings
Function: buildTPO.
Input: Tuple set T . Output: The tree of possible orderings for the tuples in T .

1. r := node with label ‘root’; // the dummy root node
2. addNodesToTPO(T , r);
3. return tree rooted in r;

Subroutine: addNodesToTPO.
Input: Tuple set T , Root note r. Side effect: Adding descendants to r.

4. for each ti ∈ T
5. if ti is source for T
6. n = node with label ti;
7. Add n as a child of r;
8. addNodesToTPO(T \ {ti}, n);

attached as children of the root. Next, each extracted source is used as a root for computing
the next level of the tree. Finding the sources at each level of the tree requires comparing each
tuple with all the other tuples in the current table T . Hence, the asymptotic time complexity
of building the tree up to level K is O(KN2).

Compute the orderings probability

Once the structure of the tree is determined, the probability Pr(ω) of any ordering ω in the tree
can be computed, e.g., with the generating functions technique [Li and Deshpande, 2010] with
asymptotic time complexity O(N2), or via Monte Carlo sampling.

In the following, we illustrate the procedure based on [Li and Deshpande, 2010] to compute
Pr(ω) for each ordering ω in the tree T . For ease of presentation, we will focus on uniform
distribution, although the same reasoning can be done for every distribution that can be ap-
proximated with a piecewise polynomial function. Without loss of generality, we consider an
ordering t1 ≺ . . . ≺ tN , call it ω, for which ti appears at rank i (i.e., r(i) = i) for 1 ≤ i ≤ N .
Then, the probability Pr(ω) is given by the integral:

Pr(ω) =

∫ ∞
−∞

∫ +∞

xN

. . .

∫ +∞

x2

fN (xN ) . . . f1(x1)dx1 . . . dxN , (3.2)

where fi is the score pdf associated with tuple ti in ω.
Let I be the set of P small intervals, i.e., the intervals generated by the tuples pdf’s extrema,

as shown in Figure 3.6.
We start by integrating the pdf associated with the top-1 tuple in the ordering ω. Once the

i-th integral is computed, we switch to the integration of the (i + 1)-th pdf. At each step, the
polynomial Pj(xi) (corresponding to the result of the i-th integral on the small interval Ij) is
stored for each small interval Ij .

Given a polynomial Pj(xi) corresponding to the j-th small interval, there could be a set of
other intervals Iki (usually adjacent) such that Pj(xi) = Pki(xi). Let Ik = {Iki} be the set of
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Figure 3.6: Small intervals: I = {Ia, Ib, Ic, Id, Ie, If , Ig}. fi is the score pdf for the tuple i, while
Fi is its cdf

Algorithm 3: Computing ordering probabilities
Function: computeOrderingProbability.
Input: Ordering ω = 〈t1, . . . , tN 〉, Small Intervals I. Output: Probability Pr(ω).

1. Set Pj(x1) = 1 for every small interval Ij ∈ I
2. for i = 1 to N − 1
3. for each Ij ∈ I
4. if i <> 1
5. Pj(xi) =

∫ uk
xi

Pj(xi−1)dxi−1 +
∑P

n=kM+1

∫ un
ln

Pn(xi−1)dxi−1

6. else if overlap(Ij ,fi)
7. Pj(xi) = Pj(xi)

1
ui−li ;

8. else
9. Pj(xi) = 0;
10. Pr(ω) =

∑
INi
∈IN

∫ uNi
lNi

PNi(xN )dxN

these small intervals, having cardinality M and extrema [lk, uk]. The polynomial Pj(xi) is thus
computed as:

Pj(xi) =

∫ uk

xi

Pj(xi−1)dxi−1 +

P∑
n=kM+1

∫ un

ln

Pn(xi−1)dxi−1

When the i-th integral is evaluated, its result is multiplied by the pdf of the i-th tuple:

• the polynomials Pj(xi) that overlap the pdf are multiplied by 1
ui−li

• the polynomials Pj(xi) that do not overlap the pdf are set equal to 0

Evaluating the N -th integral in the chain results in the ordering probability Pr(ω). If IN is
the set of small intervals that overlap the N -th tuple:

Pr(ω) =
∑

INi
∈IN

∫ uNi

lNi

PNi(xN )dxN

Algorithm 3 shows how to compute the probability of an ordering ω.
The asymptotic time complexity of computing Pr(ω) can be obtained by observing that the

computation of (3.2) requires the evaluation of N sub-integrals; each sub-integral is solved by
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Figure 3.7: (a) Tree of possible orderings T ; (b) its cut at depth K = 2.

splitting the domain of real numbers in up to 2N+1 intervals delimited by {li, ui}, i = 1, . . . , N ,
and then iterating over all such intervals, which has a complexity of O(N2) [Li and Deshpande,
2010].

Finally, since a complete tree contains N ! leaves (in case every score distribution overlap
with all the others), computing the probabilities for each ordering ω in the tree has complexity
of O(N2N !) (in the worst case).

Resulting tree

Figure 3.4(b) shows the tree of possible orderings obtained from the score distributions in Fig-
ure 3.4(a), along with the probability of each ordering, indicated next to each leaf. Each internal
node n at depth d is associated with a probability Pr(n), obtained by summing up the proba-
bilities of the children of n; such a value denotes the probability of the prefix of length d formed
by the nodes along the path from the root to node n.

3.3.2 Limit the tree at depth K

We observe that processing a top-K query over uncertain data only requires computing the
orderings of the first K tuples compatible with the pdf’s of the tuple scores. In other words,
when a top-K query is posed, only the sub-tree TK of possible orderings up to depth K is
relevant to answer the query.

Building the complete tree T of depth N is thus unneeded, as the probabilities Pr(ωK)
for each ωK ∈ TK can be computed without knowing T and its probabilities, and thus much
more efficiently. This is done by generating the tree of possible orderings up to depth K and
computing its orderings probabilities. Clearly this procedure returns the same result obtained
by summing up all the probabilities of the orderings in T with prefix ωK , but is much more
efficient. Indeed, while |T | increases exponentially with N and δ, |TK | is typically slightly larger
than K.

Figure 3.7(a) shows an example tree of possible orderings with 4 tuples; Figure 3.7(b) shows
the same tree of possible orderings when only the first K = 2 levels are considered.

3.3.3 Optimization: Database shrink

[Soliman and Ilyas, 2009] propose an extended approach for shrinking the database and avoid
useless comparisons between tuples that will not be included in the top-K prefix. This speeds
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up the procedure used for building the tree of possible orderings, since as a result only K tuples
will be included in T , and thus the asymptotic time complexity of building the tree is O(K3)
instead of O(KN2) (where K << N).

Here, a tuple ti is called K-dominated if at least K other records in T dominate ti. The idea
is that any K-dominated tuple can be ignored while building the tree of possible orderings up
to depth K, since those tuples are not meant to be included in any ordering of length K.

The shrinking procedure assumes to build a list L in which tuples are ordered in descending
upper bound (ui) order, Moreover, we assume that the tuple tK having the K-th largest lower
bound lK is known. Then, a binary search is conducted to find a tuple t̂ such that t̂ is dominated
by tK and t̂ is the tuple located in the highest position of L. The tuple t̂ is K-dominated by
definition, and thus it can be discarded. Moreover, if p is the position of t̂ in L, then all the
tuples in L having positions greater than p can be discarded too, since they are K-dominated.

3.3.4 Computing Pr(r(ti) = j)

The work proposed by [Li and Deshpande, 2010] can be used to compute the probability of a
tuple ti to be located at level j in the tree, i.e., Pr(r(ti) = j).

Let Fi and fi be the cdf and the pdf of the score for ti, respectively. The support of fi is
[li, ui]. If the pdf is uniform, the cdf for ti is defined as follows:

Fi(`) =


0 ` ≤ li
`−li
ui−li li < ` < ui
1 ` ≥ ui

Moreover, let F̄i = 1− Fi.
Let I be the set of small intervals, and Ii be the subset of those contained in the support of

fi.
Let Tî = T\ti and Fî,m,k be the cdf of the score the m-th object in Tî over the k-th small

interval. Moreover, let B = {B1, . . . , Bk} be the set of binary sequences whose number of 1s is
equal to j − 1, i.e.,

∑|Bb|
m=1Bb(m) = j − 1. For instance, when j = 2, B = {01, 10}.

Given Iik ∈ Ii, a contribution for Pr(r(ti) = j) is:

pik =

|B|∑
b=1

x

∫ uik

lik

1

ui − li

|Ti|∏
m=1

[(1−Bb(m))Fî,m,k(`) +Bb(m)F̄î,m,k(`)x]d`

The probability Pr(r(ti) = j) is finally obtained by summing all the contributions pik:

Pr(r(ti) = j) =
∑
Iik∈Ii

pik

3.3.5 Statistics on the tree of possible orderings

Number of overlaps between score distributions

Uncertainty on the relative order of pairs of tuples happens when the associated score distribu-
tions overlap. We would like to estimate the expected number of overlaps between the tuples’
score pdf’s.

For this purpose, let δ be the spread of the score pdf’s, i.e., δ = ui− li. The probability that
a pair of score pdf’s s(ti), s(tj) overlap is computed as the probability Pr(|li − lj | < δ), since
whenever the distance between the lower bounds of the score pdf’s is less than the pdf’s spread
δ, an overlap is encountered. This probability is evaluated by computing the highlighted area
in Figure 3.8, leading to:

Pr(|li − lj | < δ) =
(1− δ)2 − (1−2δ)2

2 · 2
(1− δ)2

=
2δ − 3δ2

(1− δ)2



62 Chapter 3. Optimizing active crowdsourcing: Fighting uncertainty on structured data

s1 s2

l2 u2u1l1

ρ(x)

µ(x)

x

x

x

1 − ρ(x)

µ(x)

x

s1s2

µ(x)

x

l2 u2u1l1

l2 u2u1l1

s2s1

Decision tree

2 - 3

3 - 4

0 2 - 4

0 0

3 - 4

2 - 4

0 1 - 2

0 0

1 - 2

0 0

ω1

ω3ω2 ω6

ω4 ω5

ω7 ω8

δ δ

li lj

δ

δ

1 − δ

1 − δ

Figure 3.8: Computing the probability of having an overlap Pr(|l1 − l2| < δ)

When considering a pair of tuples in T , they may or may not overlap. Thus, the probability
distribution of the number of overlaps can be seen as a binomial, whose expected value is:

E[O] =

(
n

2

)
Pr(|li − lj | < δ)

where n is the maximum number of overlaps between N pdf’s, i.e., n = N(N−1)
2 .

Number of dominant nodes in the tree

A dominant tuple is a tuple contained in one of the top-K levels of the tree. The expected
number of dominant tuples E[DK ] in the first K levels of the tree can be computed as follows:

E[DK ] =
N∑
n=1

nPr(n,K)

where Pr(n,K) is the probability of having exactly n tuples in the firstK levels. This probability
can be computed as:

Pr(n,K) =
∑
Tn∈T

Pr(Tn ∈ {1, . . . ,K})

where Tn is a set of n tuples extracted from T and Pr(Tn ∈ {1, . . . ,K}) is the probability that
the n tuples in Tn are the tuples contained in the first K levels of the tree. It follows that:

Pr(n,K) =
∑
Tn∈T

 ∏
ti∈Tn

Pr(ti ∈ {1, . . . ,K}) ·
∏

tj∈T\Tn
Pr(ti ∈ {K + 1, . . . , N})


where Pr(ti ∈ {1, . . . ,K}) is the probability that ti is in one of the first K levels of the tree and
Pr(ti ∈ {K + 1, . . . , N}) is the probability that tj is not in the first K levels.

The probability Pr(ti ∈ {1, . . . ,K}) can be found by computing Pr(r(ti) = `), i.e., the
probability of ti of being ranked at the level ` in the tree (see Section 3.3.4).

Thus, we find that:

Pr(ti ∈ {1, . . . ,K}) =
K∑
`=1

Pr(r(ti) = `)

Eventually, the expected number of tuples in the first K levels of the tree can be computed
as follows:

E[DK ] =

N∑
n=1

n ·
∑
Tn∈T

 ∏
ti∈Tn

K∑
`=1

Pr(r(ti) = `) ·
∏

tj∈T\Tn

N∑
`=K+1

Pr(r(tj) = `)
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3.4 Distance metrics

In the following, we introduce a distance metrics that quantifies the difference between two
orderings ωi and ωj (both contained in the tree of possible orderings TK). This metrics is an
adaptation of the weighted Kendall-Tau distance [Kumar and Vassilvitskii, 2010] to the top-K
context, as follows.

Let ω1 and ω2 be two orderings in the tree TK . Let us indicate with σi(t) the position of
tuple t in ωi, and with I(ω1, ω2) the set of pairs of tuples whose order is inverted in ω1 and ω2,
i.e.

I(ω1, ω2)= {(t,t′)|(σ1(t)− σ1(t′))(σ2(t)− σ2(t′))<0,t∈ω1,t
′∈ω2}. (3.3)

We define:
d(ω1, ω2) =

∑
(t,t′)∈I(ω1,ω2)

π(σ1(t), σ2(t)) · π(σ1(t′), σ2(t′)) (3.4)

where π(·, ·) is a weight that decreases as its arguments increase. In this way, inversions involving
a tuple near the head of the orderings weigh more than near the tail.

In the following, we illustrate two possible choices of π(·, ·). The first choice of π(·, ·) let
them vary with a logarithmic trend (adapted from [Kumar and Vassilvitskii, 2010] to the top-K
context):

π(i, j) =


1

log(min(i,j)+1) (i > K ∨
j > K)

1
log2(min(i,j)+1) − 1

log2(max(i,j)+2) otherwise
(3.5)

The second choice of π(·, ·) let them vary with a linear trend:

π(i, j) =

{
K−min(i,j)+2

K i > K ∨ j > K
|i−j|+1
K otherwise

(3.6)

3.4.1 Application in the bioinformatic field

Our extension for the weighted Kendall Tau distance can be applied to many contexts in which
lists are used to collect and order data. In the following, we introduce an application of the
metrics in the bioinformatic field, where there is the need of comparing lists of gene function
annotations (produced as output from different algorithms) to assess their difference [Chicco
et al., 2014].

In bioinformatics, a gene function annotation A = 〈g, t〉 is the association of a gene g with a
term t that represents a functional feature; such term is usually either part of a terminology or
structured in an ontology (e.g., the Gene Ontology (GO) [Consortium, 2001]). The annotation
A states that the gene g has a specific physical/behavioral characteristics represented by the
annotation term t. For instance, A = 〈VMA9, transmembrane transport〉 is an annotation
indicating that the gene VMA9 is involved in the transmembrane transport.

Despite their biological significance, it may happen that either available annotations are
erroneous (due to evaluation errors) or some annotations may be missing [Karp, 1998]. Thus,
computational methods and software tools are often used to produce ranked lists of reliably
predicted annotations, called annotation lists. These lists rank annotations according to their
probability of being correct (from the most probable to the least probable).

Unfortunately, all these methods involve key parameters that influence the output, and
there does not exist any study about how changing a specific parameter changes the resulting
annotation lists. Thus, a similarity measure that compares different output lists in order to
assess their difference is required. To accomplish this, the most consistent measures are the
Spearman rank correlation coefficient and the Kendall-tau rank distance. In the following, we
explain how the adapted top-K versions of these measures can be used for this purpose.
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Annotation categories

Let A = [aij ] be a m × n matrix, representing the training set, i.e., a matrix where the known
annotations are enlisted. Here, each row i corresponds to a gene gi and each column j corresponds
to a functional feature term gj of a terminology or ontology: aij = 1 if gi is annotated to the
feature term tj , or aij = 0 otherwise.

Suppose that a prediction algorithm elaborates the matrix A to produce an output matrix
Ã, with the same dimensions of A and containing the predicted annotations. Each element ãij ,
if not null, represents the probability that the corresponding predicted annotation A = 〈gi, tj〉
is true. Consequently, a high ãij value indicates that the probability of gi to be associated with
tj is high.

Finally, each predicted annotation A = 〈gi, tj , ãij〉 is classified in one of the following cate-
gories.

• Annotation Confirmed (AC): aij = 1 ∧ ãij > θ (corresponding to True Positive)

• Annotation Predicted (AP): aij = 0 ∧ ãij > θ (corresponding to False Positive)

• Non-Annotation Confirmed (NAC): aij = 0 ∧ ãij ≤ θ (corresponding to True Negative)

• Annotation to be Reviewed (AR): aij = 1 ∧ ãij ≤ θ (corresponding to False Negative)

Extract the annotation list

The predicted annotations contained in the output matrix Ã are extracted and sorted by de-
scending values of ãij . The list can be fractioned in four parts: AClist, APlist, NAClist and
ARlist, respectively containing those annotations that were classified as AC, AP, NAC, AR.

Compare different annotation lists

Each prediction algorithm has parameters that, when changed, lead to different output annota-
tion lists. Thus, to understand how the selected parameter values influence the output lists, it
is important to define similarity metrics that compare annotation lists resulting from different
algorithm parameterizations. To this extent, in the following we present significant variants to
two well-known similarity metrics, i.e. the Spearman ρ coefficient and the Kendall τ distance.

Spearman rank correlation coefficient Suppose that two annotation lists la and lb are
composed of the same elements (and consequently have the same length n). Given an element
Ai, let xi denote its position in la, yi its position in lb and di = |xi − yi| the distance of its
positions in la and lb. The final normalized Spearman ρ value is computed as:

ρ = 1− (6 ·
∑

d2
i )/(n · (n2 − 1)) (3.7)

A maximum positive correlation ρ = +1 occurs when la and lb are identical (i.e. with the same
elements in the same order), while the maximum negative correlation ρ = −1 occurs when la
and lb contain the same elements but in inverse order.

Weighted Spearman rank correlation coefficient When two lists la and lb have different
length and/or contain different elements, they are not properly handled by the classical Spearman
rank correlation coefficient. To manage these cases, we apply the Weighted Spearman rank
correlation coefficient (ρw), which features penalty distance weights wsi for each element Ai
absent from one of the two lists.



3.4. Distance metrics 65

The penalty weight wsi for an element Ai in list la and/or lb is computed as follows, by
penalizing elements present in only one of the two lists:

wsi =

{
1− 1

|xi−yi|+1 {Ai ∈ la ∧Ai ∈ lb}
1 otherwise

(3.8)

Let q = |la ∪ lb|. The Weighted Spearman rank correlation coefficient ρw value is computed as:

ρw =

∑q
i=1wsi
q

(3.9)

High correlation is found when ρw ' 0 (i.e. very few penalties are assigned), while low correlation
is found when ρw ' 1 (i.e. many penalties are assigned). If the two lists are equal, ρw = 0,
otherwise, if they have no common elements, ρw = 1.

Extended Weighted Spearman rank correlation coefficient Yet, the Weighted Spear-
man rank correlation coefficient has a flaw: as stated before, an annotation list can be divided in
four sublists, and it would be reasonable to weigh differently the presence/absence of annotation
in different sublists. In particular, since APlist and NAClist are the most relevant in bioinfor-
matic sense, given two lists la and lb (respectively containing the sublists 〈APlista, NAClista〉
and 〈APlistb, NAClistb〉), between the cases:

A ∈ APlista
A /∈ APlistb
A ∈ NAClistb

and 
A ∈ APlista
A /∈ APlistb
A /∈ NAClistb

we would like to penalize more this second scenario (since A falls off both APlistb and NAClistb).
Thus, we defined a new penalty weight vi, more suitable to our application domain , where the
first scenario gets a lower penalty than the second one. To do so, we first defined the penalized
position of each element Ai in NAClista (NAClistb), with respect to the length of the related
list APlista (APlistb), as: ẑi = zi + n · 2 , where zi denotes the position of Ai in NAClista
(NAClistb), n is the length of the related APlista (APlistb) and 2 is a penalty factor for Ai not
to be in APlista (APlistb) but in NAClista (NAClistb). Then, we expressed the new penalty
weight as follows:

vsi =



1− 1
|xi−yi|+1 {Ai ∈ APlista, Ai ∈ APlistb}

1− 1
|xi−ẑi|+1 {Ai /∈ APlista, Ai ∈ NAClista, Ai ∈ APlistb}∨

{Ai ∈ APlista, Ai /∈ APlistb, Ai ∈ NAClistb}
1 {Ai /∈ APlista, Ai /∈ NAClista, Ai ∈ APlistb}∨

{Ai ∈ APlista, Ai /∈ APlistb, Ai /∈ NAClistb}

(3.10)

where xi is the Ai element position in APlista, yi is its position in APlistb and ẑi is its penalized
position in NAClista (NAClistb). The Extended Spearman rank correlation coefficient (ρe) is
then computed as:

ρe =

∑q
i=1 vsi
q

(3.11)

As for the Weighted Spearman rank correlation coefficient, high ρe values lead to low correlation,
while ρe ' 0 suggests high correlation.
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Extended Kendall tau distance The Kendall rank distance (τ) [Kendall, 1938] is related
to the number of pairwise disagreements between two lists la and lb of ranked elements, i.e. the
number of bubble-sort swaps needed to sort the two lists in the same order. Obviously, when
the two lists are identical, τ = 0. On the other hand, if the two lists are equal but in reverse
order, then τ = 1. Let la and lb be two lists of length n. Given an element Ai, let xi be its
position in la and yi its position in lb. Thus, the set K of required swaps between list elements
is computed as:

K(la, lb) = {(i, j) : (xi < yi ∧ xj > yj)|(xi > yi ∧ xj < yj)} (3.12)

Then, the normalized Kendall rank distance τ is given by:

τ =
|K|

n · (n− 1)/2
(3.13)

Notice that the Kendall rank distance τ does not express negative correlation between lists.
Moreover, while the Spearman rank correlation coefficient ρ is focused on the distance between
the ranks of each element in the two lists, the Kendall rank distance τ considers just the number
of swaps in the element rank.

Weighted Kendall tau distance Similarly to what concerns the Spearman rank correlation
coefficient, a flaw of the classical normalized Kendall rank distance is its usability only when the
two lists have the same length and the same elements. To avoid this limitation, we introduce
weights to consider, but with a penalty, the elements that are present in one list but absent from
the other. The weight wk for each swapped element Ai in a list is defined as:

wki =

{ 1
log(xi+2) − 1

log(xi+3) {Ai ∈ la ∧Ai ∈ lb}
0.5 otherwise

(3.14)

We chose this weight function to make the weight higher if the element is in the list first
positions, and lower if it is in the last ones; we consider bubble-sort swaps in the first positions
more important. The Weighted Kendall rank distance τw is thus computed as:

τw =

∑
(i,j)∈K(la,lb)wkiwkj

|K| (3.15)

As for the classical Kendall rank distance τ , low correlations correspond to high τw values,
whereas τw = 0 if the two lists are identical (since no swap occurs).

Extended Weighted Kendall tau distance Again, similarly to what concerns the Weighted
Spearman rank correlation coefficient, all elements {Ai : Ai /∈ APlista ∨ Ai /∈ APlistb} are
weighted equally, independently if they are, or are not, included in a related list (i.e. NAClista
or NAClistb). Thus, we also define a penalty weight vki for the swapped elements as:

vki =



1
log(xi+2) − 1

log(xi+3) {Ai ∈ APlista, Ai ∈ APlistb}
0.5− h {Ai /∈ APlista, Ai ∈ NAClista, Ai ∈ APlistb}∨

{Ai ∈ APlista, Ai /∈ APlistb, Ai ∈ NAClistb}
0.5 {Ai /∈ APlista, Ai /∈ NAClista, Ai ∈ APlistb}∨

{Ai ∈ APlista, Ai /∈ APlistb, Ai /∈ NAClistb}

(3.16)

where, when an element Ai missed from APlista (APlistb) is present in a related NAClista
(NAClistb) list, Ai gets a lower penalty weight, i.e. vki = 0.5 − h. In particular, the penalty
reduction h can be defined as: h = 0.5− zi/(m · 2), where zi is the position of Ai in NAClista
(NAClistb) and m is the length of NAClista (NAClistb).
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Alternatively, if the elements in NAClista (NAClistb) have an associated likelihood value,
then h = ãij . (Notice that the likelihood value h used to define vki decreases along the rank).
We chose the weight function in Equation 3.16 so that it decreases when the element gets a
lower rank.

Thus, we introduce the Extended Kendall rank distance τe as:

τe =
∑

(i,j)∈K(la,lb)

vkivkj (3.17)

As for the Weighted Kendall rank distance, τe is high when APlista and APlistb are very
different, whereas τe ' 0 when the two lists APlista and APlistb are very similar.

3.5 Measure tree uncertainty

Reducing uncertainty via crowdsourcing requires acquiring additional knowledge from the crowd.
Thus it becomes important to quantify the uncertainty reduction that can be expected by the
execution of a crowd task.

Given a tree of possible orderings TK , we propose four measures to quantify its level of
uncertainty. For convenience, we treat TK as a set and write ω ∈ TK to indicate that ω is one
of the orderings in TK , and |TK | to denote the number of orderings in TK .

3.5.1 Entropy

The first measure relies on Shannon’s entropy, which quantifies the average information conveyed
by a source that emits symbols from a finite alphabet. In our context, the alphabet is represented
by the orderings in TK . Each ordering ω ∈ TK is mapped into a symbol having probability Pr(ω).

Then, UH(TK) measures the uncertainty of TK , based on the probabilities of its leaves:

UH(TK) = −
∑
ω∈TK

Pr(ω) log2 Pr(ω). (3.18)

When a unique total order can be determined, i.e., when the scores are deterministically known,
then UH(TK) = 0. Conversely, when all orderings are equally likely, which corresponds to the
case of maximum uncertainty, then UH(TK) = log2 |TK |. In general, 0 ≤ UH(TK) ≤ log2 |TK |.

Assuming the ordering probabilities are known, the procedure used for computing UH(TK)
has a complexity of O(|TK |).

3.5.2 Weighted entropy

The measure UH(TK) only considers the probabilities of the leaves of TK . However, in a top-
K context, better ranked tuples are more important. Thus, we define weighted entropy as a
weighted combination of entropy values at the first K levels of the tree of possible orderings:

UW (TK) =
K∑
k=1

η(k)UH(Tk) (3.19)

where η(k) weighs the relevance of level k , i.e., the smaller k, the larger η(k).
Computing UW (TK) has a complexity of O(|nodes(TK)|).
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3.5.3 ORA

The third measure is based on the idea of comparing all the orderings in TK with an ordering
that is representative in some sense. To this end, we adopt the Optimal Rank Aggregation
(ORA) as the “average” ordering [Soliman et al., 2011]: the ORA is the ordering with minimum
average expected distance from all other orderings in TK . That is,

ωORA = arg min
ω∈TK

1

|TK |
∑
ωi∈TK

d(ωi, ω) Pr(ωi), (3.20)

where d(·, ·) measures the distance between two orderings. Here we use the weighted Kendall-Tau
distance shown in Section 3.4.

The average expected distance from ωORA induces an uncertainty measure:

UORA(TK) =
1

|TK |
∑
ωi∈TK

d(ωi, ω
ORA) Pr(ωi) (3.21)

Computing UORA(TK) has a complexity of O(|TK |2).

3.5.4 MPO

The last measure is similar to UORA but refers to another representative ordering, i.e., the Most
Probable Ordering (MPO) [Soliman et al., 2011]:

ωMPO = arg max
ω∈TK

Pr(ω). (3.22)

In turn, this induces an uncertainty measure:

UMPO(TK) =
1

|TK |
∑
ωi∈TK

d(ωi, ω
MPO) Pr(ωi) (3.23)

Computing UMPO(TK) has a complexity of O(|TK |).
In the following, we will drop the subscript and simply write U(TK) to denote the uncertainty

of a tree of possible orderings, because the implementation of our algorithms for uncertainty
reduction is orthogonal to the specific way of measuring uncertainty.

3.6 Uncertainty Reduction (UR) problem

The number of orderings in a tree of possible orderings (i.e., paths from the root to a leaf in T )
depends on the number of tuples N and on the overlaps of their pdf’s fi, i = 1, . . . , N , and can
be very large even for small values of N .

We have two main ways of reducing uncertainty in T to quickly converge to the correct
ordering:

i) building only the first K levels of the tree of possible orderings, as was shown in Section 3.3.2,
thereby focusing on TK instead of T

i) defining crowd tasks for disambiguating the relative order of tuples in order to reduce the
number of orderings in T

In the following, we illustrate how to design crowd tasks whose answers are used to disam-
biguate the relative order of tuples. Then, we give a definition for the Uncertainty Reduction
problem.
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Figure 3.9: Tree pruning when it is known that either t1 ≺ t2 or t2 ≺ t1

3.6.1 Designing crowd tasks

Tree pruning

If the relative order of two tuples in a tree of possible orderings is known, e.g., as determined
by a crowd answer assumed to be correct, we can prune all the paths incompatible with such an
order.

In particular, when considering two tuples ti and tj in the full tree T (i.e., when K = N),
each path in T agrees either with ti ≺ tj or with ti 6≺ tj . Thus, T can be partitioned into two
sub-trees:

• T ti≺tj , which contains all the paths (from the root to a leaf) in T in which ti is ranked
higher than tj , and

• T ti 6≺tj , which contains all the remaining paths.

As an example, Figure 3.9(b) shows two sub-trees derived from the tree in Figure 3.9(a) when
either t1 ≺ t2 or t1 6≺ t2.

Note that the leaf probabilities are always normalized so that they sum up to 1, i.e., each
probability Pr(ω) in a sub-tree T ′ ∈ {T ti≺tj , T ti 6≺tj} is recomputed as Pr(ω)∑

ω′∈T ′ Pr(ω′) . The sub-
tree that agrees with the known relative order of ti and tj becomes the new tree of possible
orderings.

Instead, when K < N , it may happen that some orderings in TK are not affected by the
knowledge of the relative order of some tuples. For instance, consider the tree of possible
orderings T in Figure 3.7(a) and its restriction T2 to K = 2, shown in Figure 3.7(b). When
considering the relative order of t3 and t4, the paths 〈t1, t2〉 and 〈t2, t1〉 in T2 belong to both
T t3≺t42 and T t3�t42 , although with different probabilities, as shown in Figure 3.10. In such cases,
each path ωK in which the relative order of ti and tj is ambiguous must be inserted in both the
sub-trees T ti≺tjK and T ti�tjK , and the probability of each path must be computed accordingly.

Task design

Several question types may be selected so as to gather new information about the real ordering
from the crowd. Some examples are: i) comparison between two tuples ti and tj to select the
most relevant; ii) comparison between a set of tuples {ti}, with cardinality greater than 2 to
select the most relevant; iii) gather new information on the score distribution, to reduce its
uncertainty. However, when the tasks are too complex (e.g., finding the most relevant tuple in
a huge set of tuples, manually redefining a score), they lose effectiveness, since giving an answer
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becomes more and more difficult, and thus human answer becomes more and more uncertain.
Thus, among all the available tasks design, it is advisable to select the simplest one.

Hence, we consider crowd tasks expressed as questions of the form q = ti ?≺ tj , which compare
ti and tj to determine which one ranks higher.

We initially assume that a crowd worker’s answer ans(q), which is either ti ≺ tj or ti 6≺ tj ,7
always reflects the real ordering of the tuples (we shall relax this assumption in Section 3.8).
With that, we can prune from TK all those paths that do not agree with the answer.

Computing Pr(ti ≺ tj)
We now show how to compute the probability Pr(ti ≺ tj) of a tuple ti of being ranked higher
than another tuple tj . This is equivalent to compute the probability Pr(s(t1) > s(t2)).

Notice that Pr(ti ≺ tj) can be equally computed by summing up the probabilities Pr(ω) of
every ordering ω in which ti ≺ tj . Moreover, if we define a question q = ti ?≺ tj , then Pr(ti ≺ tj)
is the probability that the user will answer that ti ≺ tj , leading to the output T ti≺tjK .

This probability is easily evaluated in the case s(t2) is fixed: when Pr(s(t1) > s(t2)|s(t2)) is
known for a specific value of s(t2), then Pr(s(t1) > s(t2)) can be found by making s(t2) vary
between −∞ and +∞, as follows:

Pr(s(t1) > s(t2)) =

∫ +∞

−∞
[Pr(s(t1) > s(t2)|s(t2)) · Pr(s(t2))] ds(t2)

We distinguish between six different contexts, as shown in Figure 3.11.
Context 1 (3.11(a)).
s(t1) can be greater than s(t2) only when s(t2) varies between l2 and u1. If s(t2) is fixed

(s(t2) ∈ [l2, u1]), then Pr(s(t1) > s(t2)|s(t2)) = (u1−s(t2)) 1
u1−l1 , i.e., the area of the pdf of s(t1)

between s(t2) and u1.

Pr(s(t1) > s(t2)) =

∫ u1

l2

Pr(s(t1) > s(t2)|s(t2)) Pr(s(t2))ds(t2) =

=

∫ u1

l2

u1 − s(t2)

u1 − l1
1

u2 − l2
ds(t2) =

=
1
2u

2
1 − u1l2 + 1

2 l
2
2

(u1 − l1)(u2 − l2)

7We assume the existence of a deterministic rule known to the crowd worker for breaking ties and thus write
equivalently ti 6≺ tj and tj ≺ ti.
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Figure 3.11: Probability distribution context

Context 2 (3.11(b)).
s(t1) can be greater than s(t2) when s(t2) varies between l1 and u2. In this case, Pr(s(t1) >

s(t2)|s(t2)) = u1−s(t2)
u1−l1 . Moreover, s(t1) is surely greater than s(t2) when s(t2) varies between l2

and l1 (Pr(s(t1) > s(t2)|s(t2)) = 1).

Pr(s(t1) > s(t2)) =

∫ l1

l2

Pr(s(t1) > s(t2)|s(t2)) Pr(s(t2))ds(t2)+

+

∫ u2

l1

Pr(s(t1) > s(t2)|s(t2)) Pr(s(t2))ds(t2) =

=

∫ l1

l2

1

u2 − l2
ds(t2) +

∫ u2

l1

u1 − s(t2)

u1 − l1
1

u2 − l2
ds(t2) =

=
l1 − l2
u2 − l2

+
u1u2 − 1

2u
2
2 − u1l1 + 1

2 l
2
1

(u1 − l1)(u2 − l2)
=

=
−1

2 l
2
1 − 1

2u
2
2 + l1l2 + u1u2 − u1l2

(u1 − l1)(u2 − l2)

Context 3 (3.11(c)).
s(t1) can be greater than s(t2) when s(t2) varies between l2 and u2. In this case, Pr(s(t1) >

s(t2)|s(t2)) = u1−s(t2)
u1−l1 .

Pr(s(t1) > s(t2)) =

∫ u2

l2

Pr(s(t1) > s(t2)|s(t2)) Pr(s(t2))ds(t2) =
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=

∫ u2

l2

u1 − s(t2)

u1 − l1
1

u2 − l2
ds(t2) =

=
u1u2 − 1

2u
2
2 − u1l2 + 1

2 l
2
2

(u1 − l1)(u2 − l2)

Context 4 (3.11(d)).
s(t1) can be greater than s(t2) when s(t2) varies between l1 and u1. In this case, Pr(s(t1) >

s(t2)|s(t2)) = u1−s(t2)
u1−l1 . Moreover, s(t1) is surely greater than s(t2) when s(t2) varies between l2

and l1.

Pr(s(t1) > s(t2)) =

∫ l1

l2

Pr(s(t1) > s(t2)|s(t2)) Pr(s(t2))ds(t2)+

+

∫ u1

l1

Pr(s(t1) > s(t2)|s(t2)) Pr(s(t2))ds(t2) =

=

∫ l1

l2

1

u2 − l2
ds(t2) +

∫ u1

l1

u1 − s(t2)

u1 − l1
1

u2 − l2
ds(t2) =

=
l1 − l2
u2 − l2

+
1
2u

2
1 − u1l1 + 1

2 l
2
1

(u1 − l1)(u2 − l2)

=
−1

2 l
2
1 − 1

2u
2
2 + l1l2 − u1l2

(u1 − l1)(u2 − l2)

Context 5 (3.11(e)).
s(t1) is never greater than s(t2).

Pr(s(t1) > s(t2)) = 0

Context 6 (3.11(f)).
s(t1) is always greater than s(t2).

Pr(s(t1) > s(t2)) = 1

Score distribution updated based on a prior knowledge

We now discuss how a prior knowledge on the relative order of two tuples ti and tj impacts on
the associated score distributions s(ti) and s(tj).
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Figure 3.12: Context: pdf’s and cdf’s of the tuples t1 and t2

Consider the tuples t1 and t2 in Figure 3.12. Knowing that t1 comes before or after t2
modifies our knowledge about the pdf’s of the two tuples according to the new information.
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(a) t1 ≺ t2
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(b) t2 ≺ t1

Figure 3.13: Modified pdf’s of the tuples t1 and t2

Prior knowledge: s(t1) > s(t2)

The pdf of t1 is modified as follows:

Pr(s(t1)|s(t1) > s(t2)) =
Pr(s(t1) > s(t2)|s(t1)) Pr(s(t1))

Pr(s(t1) > s(t2))
=

=
Pr(s(t2) < x|s(t1) = x) Pr(s(t1) = x)

Pr(s(t1) > s(t2))
=

=
F2(x)f1(x)

Pr(s(t1) > s(t2))

Similarly, the pdf of t2 is modified as follows:

Pr(s(t2)|s(t1) > s(t2)) =
Pr(s(t1) > s(t2)|s(t2)) Pr(s(t2))

Pr(s(t1) > s(t2))
=

=
Pr(s(t1) > x|s(t2) = x) Pr(s(t2) = x)

Pr(s(t1) > s(t2))
=

=
[1− F1(x)]f2(x)

Pr(s(t1) > s(t2))

Prior knowledge: s(t1) < s(t2)

The pdf of t1 is modified as follows:

Pr(s(t1)|s(t1) < s(t2)) =
Pr(s(t1) < s(t2)|s(t1)) Pr(s(t1))

Pr(s(t1) < s(t2))
=

=
Pr(s(t2) > x|s(t1) = x) Pr(s(t1) = x)

Pr(s(t1) < s(t2))
=

=
[1− F2(x)]f1(x)

Pr(s(t1) < s(t2))

Similarly, the pdf of t2 is modified as follows:

Pr(s(t2)|s(t1) < s(t2)) =
Pr(s(t1) < s(t2)|s(t2)) Pr(s(t2))

Pr(s(t1) < s(t2))
=

=
Pr(s(t1) < x|s(t2) = x) Pr(s(t2) = x)

Pr(s(t1) < s(t2))
=

=
F1(x)f2(x)

Pr(s(t1) < s(t2))
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Dependency between questions

While asking the second question in order to know whether t1 comes before t2 or not, the pdf’s
of the tuples are again modified:

Pr(s(t1)|s(t1) < s(t2), s(t2) < s(t3)) =
Pr(s(t1) < s(t2), s(t2) < s(t3)|s(t1)) Pr(s(t1))

Pr(s(t1) < s(t2), s(t2) < s(t3))
=

=
Pr(s(t1) < s(t2), s(t2) < s(t3)|s(t1)) Pr(s(t1))

Pr(s(t1) < s(t2)|s(t2) < s(t3)) Pr(s(t2) < s(t3))
=

=
Pr(s(t2) > x, s(t2) < s(t3)|s(t1) = x) Pr(s(t1) = x)

Pr(s(t2) > x|s(t2) < s(t3)) Pr(s(t2) < s(t3))

Equivalently:

Pr(s(t1)|s(t1) < s(t2), s(t2) < s(t3)) =
Pr(s(t1), s(t1) < s(t2)|s(t2) < s(t3)) Pr(s(t2) < s(t3))

Pr(s(t1) < s(t2)|s(t2) < s(t3)) Pr(s(t2) < s(t3))
=

=
Pr(s(t1), s(t1) < s(t2)|s(t2) < s(t3))

Pr(s(t1) < s(t2)|s(t2) < s(t3))

3.6.2 Problem definition

We now focus on the problem of Uncertainty Resolution (UR) and use TK as a starting point of
our investigation, knowing that TK can be built with the techniques described in the previous
sections.

For convenience, let ansω(q) indicate the answer to question q compatible with an ordering
ω ∈ T . Also, for a sequence of answers ans = 〈ans1, . . . , ansn〉, let T ans

K indicate the tree
(. . . (T ans1K ) . . .)ansn obtained by pruning the tree of possible orderings TK accordingly.

Formally, an underlying real ordering ω is part of the problem definition, although ω does
not need to be known in practice.

Definition 3.6.1. A UR problem is a pair 〈TK , ω〉, where TK is a tree of possible orderings and ω
is an ordering of all tuples in TK , called real ordering, such that an ordering ωK ∈ TK is a prefix
of ω. A solution of 〈TK , ω〉 is a sequence of questions 〈q1, . . . , qn〉 such that T 〈ansω(q1),...,ansω(qn)〉

K

only contains ωK . A solution is minimal if no shorter sequence is also a solution.

We consider two classes of algorithms: i) offline algorithms, which determine the solution
a priori, before obtaining any answer from the crowd, and ii) online algorithms, whereby the
solution is determined incrementally as the answers to previous questions arrive. These classes
reflect two common situations in crowdsourcing markets: one where the interaction is limited to
the publication of a batch of tasks, which is evaluated for acceptance as a whole; and one where
the employer can inspect the outcome of crowd work as it becomes available and incrementally
publish further tasks8.

The difference between these two classes lies in the ability of each online algorithm A to
probe the real ordering so as to choose at each step a new question, via a function φA, according
to the answers to previously posed questions.

Definition 3.6.2. A UR algorithm A takes as input a pair 〈TK , B〉, where TK is a tree of possible
orderings and B (the budget) is a nonnegative integer, and outputs a sequence Q = 〈q1, . . . , qB〉
of questions on the tuples in TK . A is offline if Q is a function of 〈TK , B〉. A is online
if there is a function φA such that, for any real ordering ω and for 1 ≤ i ≤ B, we have
qi = φA(〈TK , 〈q1, . . . , qi−1〉, 〈ansω(q1), . . . , ansω(qi−1)〉〉).

An algorithm is optimal if it always finds a minimal solution.
8http://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ExternalQuestionArticle.html

http://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ExternalQuestionArticle.html
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Figure 3.14: Asking the question t1 ?≺ t2 brings new information on the total order of the tuples,
while asking either t1 ?≺ t3 or t2 ?≺ t3 does not bring any new information, and thus is useless

Definition 3.6.3. A UR algorithm A is optimal if, for every UR problem P = 〈TK , ω〉 and
minimal solution Q of P, the output of A on 〈TK , |Q|〉 is also a solution of P.

Theorem 3.6.4. No deterministic algorithm is optimal.

Proof. Let T = {t1, t2, t3} be such that t1 dominates t3, while t2’s pdf overlaps with both t1’s and
t3’s. Only three orderings are possible: ω1 = 〈t1, t2, t3〉, ω2 = 〈t1, t3, t2〉, and ω3 = 〈t2, t1, t3〉.
The only two questions on overlapping tuples are: q1 = t1 ?≺ t2 and q2 = t2 ?≺ t3. Each
deterministic algorithm must commit to a choice of either q1 or q2 as the first question, with
no prior knowledge on the real ordering. However, if the real ordering is ω2, each deterministic
algorithm choosing q1 as the first question fails to identify the correct ordering with just one
question, which could have been done by choosing q2. Analogously, if the real ordering is ω3,
each deterministic algorithm choosing q2 fails in a similar way (q1 suffices to identify the real
ordering). Therefore, for every deterministic algorithm there is a UR problem whose minimal
solution consists of one question while the algorithm’s solution includes two questions.

3.7 Algorithms for UR problem resolution

With the result of Theorem 3.6.4 we cannot hope to find an optimal algorithm. Therefore we
now turn our attention to an attainable form of optimality that is of a probabilistic nature, in
that it refers to the expected amount of uncertainty that remains in the tree of possible orderings
after posing the questions selected by an algorithm.

In the following, we firstly define the set of available questions that one could ask to the
crowd. Then, we devise a method for selecting the most promising questions to be asked.

3.7.1 Available questions

Let t1, . . . , tN be the set of tuples in the tree of possible orderings, whose scores are defined by
means of a probability distribution.

A question q = ti ?≺ tj is defined as a comparison between a pair of tuples (see Section 3.6.1
for further details). Since we can build a question out of each pair of tuples in the tree, a naive
way of building the question set is the following:

Qnaive
K = {ti ?≺ tj | ti, tj ∈ TK ∧ i < j} (3.24)

Here, the number of available questions is |Qnaive
K | =

(
N
2

)
= N(N−1)

2 .
However, there may be tuples whose score distribution do not overlap. In this case, asking

a question that involves a pair of these tuples is not useful, since their relative order is not
ambiguous. For instance, consider Figure 3.14. Here, receiving an answer for the question
t1 ?≺ t2 allows us to disambiguate the relative order between t1 and t2, while receiving an answer
for either t1 ?≺ t3 or t2 ?≺ t3 does not help in reducing uncertainty, since it is clear that t3 has
to be ranked higher than t1 and t2 (i.e., their relative order is not ambiguous). Asking these
useless question would require to involve humans in the process, without gathering any benefit.
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Thus, a more convenient approach requires to discard those questions that involve tuples
whose score distributions do not overlap.

The set of relevant questions is thus:

QK = {ti ?≺ tj | ti, tj ∈ TK ∧ overlap(fi, fj) ∧ i < j} (3.25)

In this case, the number of available questions is |QK | ≤
(
N
2

)
.

3.7.2 Approaches for residual uncertainty estimation

We now introduce the notion of residual uncertainty as a means of finding the best sequence of
questions for a given tree of possible orderings TK .

The residual uncertainty Rappr
Q (TK) that can be expected after a crowd worker has answered

the questions Q can be estimated with three approaches (appr): average (avg), optimistic (opt),
and pessimistic (pess).

Average approach

With the average approach, the expected uncertainty is:

Ravg
Q (TK)=

∑
ans

Pr(ans)U(T ans
K ) (3.26)

where ans = 〈ans1, . . . , ans|Q|〉 ranges over all possible sequences of answers for the questions
in Q, T ans

K is the pruned tree obtained from TK according to the answers ans, and Pr(ans) =

Pr(
∧|Q|
j=1 ans(qj) = ansj) is the probability that each answer ansj in ans is the actual worker’s

answer to question qj ∈ Q.
For a single question Q = {ti ?≺ tj}, we have Ravg

Q (TK) = Pr(ti ≺ tj)U(T ti≺tjK )+Pr(ti 6≺
tj)U(T ti 6≺tjK ).

Optimistic and pessimistic approaches

The optimistic approach (resp. pessimistic approach) expects the crowd worker to always provide
the answers that minimize (resp., maximize) the residual uncertainty:

Ropt
Q (TK) = min

⋃
ans

{U(T ans
K )} (3.27)

Rpess
Q (TK) = max

⋃
ans

{U(T ans
K )} (3.28)

3.7.3 Select the best questions: online and offline approaches

In crowdsourcing applications, restrictions in the budget used for rewarding workers or in the
available time allotted for collecting answers usually limit the number of questions that can be
posted to the crowd. In practical scenarios, such restrictions are yet more significant if the crowd
is noisy and thus same question needs to be posed to several workers to increase confidence.

Let B denote the maximum number of questions (budget) that can be asked to the crowd
workers. Our goal is then to select the best sequence of questions Q∗ = 〈q∗1, . . . , q∗B〉 ⊆ QK that
causes the lowest amount of expected residual uncertainty.

Based on this, we introduce a relaxed version of optimality for offline algorithms, and show
how to attain it. Then we discuss sub-optimal, but more efficient algorithms.
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Figure 3.15: Solution space of A*

Offline question selection strategies

We first observe that an offline algorithm determines all the questions to pose before obtaining
any answer from the crowd. Therefore, permuting the order in which the questions selected by
such an algorithm are asked always leads to the same uncertainty reduction on the tree TK . The
order of questions is thus immaterial, and we shall then consider that the output of an offline
algorithm is simply a set (instead of a sequence) of questions.

Definition 3.7.1. An offline UR algorithm is offline-optimal wrt. approach appr if it outputs
the set of B questions Q∗ that minimizes the expected residual uncertainty, i.e.:

Q∗ = arg min
Q : |Q|=B∧Q⊆QK

Rappr
Q (TK). (3.29)

In the following, we propose a set of offline algorithms whose aim is to reduce the uncer-
tainty on the space of possible orderings. These algorithms, as demonstrated in the experimental
evaluation, have different performance: the more performant is the algorithm, the higher its com-
plexity, the higher is the required computational time. Thus, different options should be used
to achieve different objectives: when the degree of uncertainty is too large, a less performant
but faster algorithm (e.g., TB−off) should be selected, while more performant (and slower)
algorithms (e.g., C−off and A∗−off) should be selected when high performance is needed and
the degree of uncertainty is limited.

Best-first search offline algorithm (A∗−off). An implementation of an offline-optimal
algorithm can be obtained by adapting the well-known A* best-first search algorithm [Hart
et al., 1968] to UR. A∗−off explores the solution space with the help of a solution tree defined
as follows:

• each node n is associated with a gain function f(n), which determines the priority of the
node in the search process for the optimal solution;

• each edge outgoing from n represents the choice of a question q ∈ QK ;

• the maximum tree depth is B;

• for each pair of paths P and R of B questions, |P ∩ R| < B (so as to avoid considering
the same set of questions multiple times).
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An example of solution space is shown in Figure 3.15.
Let n be a node in the solution tree at depth d and let Qn denote the sequence of questions

on the path between the root and n. The gain function f(n), defined as knowledge plus heuristic,
is f(n) = g(n) + h(n). The knowledge g(n) is given by the uncertainty reduction expected by
asking the questions in Qn:

g(n) = U(TK)−Rappr
Qn

(TK). (3.30)

Since the contribution to uncertainty reduction of a set of dependent questions is at most the
sum of the single contributions (and at most the residual uncertainty), the following heuristic
h(n) is an upper bound on the uncertainty reduction expected by asking (B−d) more questions:

h(n) = min{Rappr
Qn

(TK),
∑

q∈Qbest

Rappr
Qn

(TK)−Rappr

Qn◦〈q〉(TK)} (3.31)

where Qbest is the set of (B − d) questions (obtained by enumeration) that, if asked after Qn,
guarantee the highest uncertainty reduction. A* traverses the solution tree keeping a sorted
priority queue of nodes. The higher the expected gain f(n) achieved by traversing a node, the
higher the node priority. Thus, high priority nodes will be explored before others. When the
algorithm traverses a path of length B, the questions on that path become the selected set Q∗.

Theorem 3.7.2. A∗−off is offline-optimal.

Offline-optimality follows immediately from the fact that A* is complete [Hart et al., 1968],
and thus considers all candidate solutions, while retaining only the optimal one. Yet, A∗−off
is computationally very expensive, so we shall also consider two sub-optimal, but more efficient
algorithms.

Top-B offline algorithm (TB−off). This simpler method computes for each question q ∈
QK the expected residual uncertainty Rappr

q (TK). Then, we sort the questions in ascending
order of Rappr

q (TK) and define Q∗ as the set of top B questions.

Conditional offline algorithm (C−off). This method iteratively selects one question at a
time based on the previous selections.

Let {q∗1, . . . , q∗i } be the first i selected questions (∅ when i = 0). The (i + 1)-th question
q∗i+1 is selected by C−off from QK \ {q∗1, . . . , q∗i } so as to minimize Rappr

〈q∗1 ,...,q∗i ,q∗i+1〉
(TK), i.e., the

residual uncertainty conditioned by the choice of the previously selected questions q∗1, . . . , q∗i .
As an example, consider Figure 3.16. Here, we suppose question qi = ta ?≺ tb was already

selected. Then, the residual uncertainty of qj = tc ?≺ td conditioned by the previously selected
question qi is:

Rappr

〈qi,qj〉(TK) = Pr(ta ≺ tb)Rappr

〈qj〉 (T ta≺tbK ) + Pr(ta ⊀ tb)Rappr

〈qj〉 (T ta⊀tbK ) (3.32)

The final output is thus Q∗ = {q∗1, . . . , q∗B}.

Decision trees (DT). In this method we build a decision tree θ(TK) in which each internal node
represents a question comparing two tuples in TK . Each such node has two outgoing branches,
corresponding to the two possible answers to the question. Then, each path from the root to
a node represents a sequence of questions. Each leaf is associated with the sub-tree of possible
orderings that includes only the orderings of TK that agree with the answers encountered along
the path from the root to the leaf.

The idea of this strategy is to construct the decision tree up to depth B and to choose the
leaf associated with the best sequence of up to B questions (and up to B − 1 corresponding
answers). To do this, we shall introduce a measure of goodness of a leaf node.
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Theorem 3.7.2. A⇤�off is offline-optimal.

Offline-optimality follows immediately from the fact that A* is complete [Hart et al., 1968],
and thus considers all candidate solutions, while retaining only the optimal one. Yet, A⇤�off

is computationally very expensive, so we shall also consider two sub-optimal, but more efficient
algorithms.

Top-B offline algorithm (TB�off). This simpler method computes for each question q 2
QK the expected residual uncertainty Rappr

q (TK). Then, we sort the questions in ascending
order of Rappr

q (TK) and define Q⇤ as the set of top B questions.

Conditional offline algorithm (C�off). This method iteratively selects one question at
a time based on the previous selections. Let {q⇤1, . . . , q

⇤
i } be the first i selected questions (;

when i = 0). The (i + 1)-th question q⇤i+1 is selected by C�off from QK \ {q⇤1, . . . , q
⇤
i } so as

to minimize Rappr

hq⇤1 ,...,q⇤i ,q⇤i+1i
(TK), i.e., the residual uncertainty conditioned by the choice of the

previously selected questions q⇤1, . . . , q
⇤
i .

As an example, consider Figure 3.16. Here, we suppose question qi = ta ?� tb was already
selected. Then, the residual uncertainty of qj = tc ?� td conditioned by the previously selected
question qi is:

Rappr

hqi,qji(TK) = Pr(ta � tb)Rappr

hqji (T ta�tb
K ) + Pr(ta ⌃ tb)Rappr

hqji (T ta⌃tb
K ) (3.32)

The final output is thus Q⇤ = {q⇤1, . . . , q
⇤
B}.

Decision trees (DT). Let ✓ be a decision tree, defined as follows: i) each leaf in ✓ corresponds
to an ordering ! (i.e., the set of classes coincides with the set of possible orderings); ii) crowd
tasks (i.e., questions q) are assigned to each internal node as tests; iii) since each question has
two possible answers, ✓ is a binary tree with two possible outcomes for each internal node. An
example of decision tree is shown in Figure 3.17. The decision tree ✓ is built to identify the most
convenient path (i.e., sequence of question) to ask so as to identify the real ordering.

t1 ?� t2 t2 ?� t3

In our context, in order to choose the root of the decision tree all the questions are evaluated
and their information gains are computed. The root of the tree will contain the question that
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selected. Then, the residual uncertainty of qj = tc ?� td conditioned by the previously selected
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The final output is thus Q⇤ = {q⇤1, . . . , q
⇤
B}.

Decision trees (DT). Let ✓ be a decision tree, defined as follows: i) each leaf in ✓ corresponds
to an ordering ! (i.e., the set of classes coincides with the set of possible orderings); ii) crowd
tasks (i.e., questions q) are assigned to each internal node as tests; iii) since each question has
two possible answers, ✓ is a binary tree with two possible outcomes for each internal node. An
example of decision tree is shown in Figure 3.17. The decision tree ✓ is built to identify the most
convenient path (i.e., sequence of question) to ask so as to identify the real ordering.
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Figure 3.17: Example of decision tree for the tree in Figure 3.4(b). Each node represents a
question q ∈ Q, while each leaf represents an ordering ωi of T

The decision tree is constructed incrementally starting from the root, corresponding to the
first selected question q∗1, as in Algorithm 4. Its two children are then created and associated with
the corresponding sub-trees. Then, the construction proceeds iteratively: for each internal node
n, we determine the question that minimizes the residual uncertainty of the sub-tree associated
with n:

q∗n = arg min
q∈Q\Qn

Rappr
q (Tn), (3.33)

where Qn represents the sequence of questions corresponding to the path from the root to node
n, and Tn denotes the sub-tree of possible orderings associated with node n, which depends on
both Qn and the corresponding answers. No children are generated if n is at depth B or if
Tn identifies a unique ordering. Note that Algorithm 4 leads to a sequence of questions that
corresponds to a specific path of θ(T ).

In order to illustrate the procedure, the tree T in Figure 3.7(a) and the corresponding
decision tree θ(T ) in Figure 3.17(b) will be used as examples, with a budget of B = 2 questions.
Let θB(T ) denote the first B levels of θ(T ). The two leaf nodes in θB(T ) correspond to the
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Algorithm 4: Top-1 online algorithm (T1−on)
Input: Tree of possible orderings TK , Budget B
Output: Optimal sequence of questions Q∗
Environment: Underlying real ordering ω
Parameters: Question selection approach appr among avg, opt, pess

1. Q∗ := ∅;
2. for i := 1 to B
3. if |TK | = 1 then break;
4. q∗i := arg minq∈QK\Q∗ R

appr

〈q〉 (TK); // see Equations (3.26)–(3.28)
5. Q∗ := Q∗ ◦ 〈q∗i 〉; // appending the selected question
6. Ask q∗i to the crowd and collect the answer ansω(q∗i )

7. TK := T ansω(q∗i )
K ; // updating the tree

8. return Q∗;

sequences of questions P1 = 〈t3 ?≺ t4, t1 ?≺ t3〉 and P2 = 〈t3 ?≺ t4, t1 ?≺ t4〉.
The goal is to select the leaf corresponding to the optimal sequence of questions Q∗ (i.e.,

either P1 or P2). We assign a goodness measure G(Pn) to each leaf node n, based on two criteria:
i) the uncertainty reduction gained by asking the questions in Pn (and receiving the answers
indicated in Pn’s path); ii) the probability of observing Pn’s path.

We define the residual uncertainty Rappr(Pn) of a leaf node n as Rappr
q∗n

(Tn), i.e., the value of
the objective function in (3.33). Indeed, this is the expected uncertainty obtained by asking q∗n
given the tree of possible orderings Tn resulting from the answers to (up to) B−1 questions. For
instance, the residual uncertainty Rappr(P1) in Figure 3.17(b) can be computed by considering
the expected residual uncertainty obtained by asking t3 ?≺ t4 (and receiving t3 ≺ t4 as an answer),
followed by t1 ?≺ t3.

The probability Pr(Pn) associated with a leaf node n can be computed by considering the
B − 1 answers corresponding to the path from the root to n and summing up the probabilities
of the orderings in T that are compatible with these answers. For example, Pr(P1) = Pr(ω1) +
Pr(ω3) + Pr(ω5) + Pr(ω6).

The goodness measure G(Pn) we adopt is computed as follows:

G(Pn) = Pr(Pn)(U(T )−R(Pn)). (3.34)

The best sequence of questions Q∗ selected by this approach are therefore computed as
follows:

Q∗ = arg max
n∈Λ
G(Pn), (3.35)

where Λ is the set of leaf nodes of θB(T ).

Online question selection strategies

An online algorithm has the ability to determine the i-th question based on the answers col-
lected for all the previously asked i − 1 questions. Differently from the offline case, the output
of an online algorithm is treated as a sequence and not as a set, since each received answer may
influence the choice of the next question, and thus the order matters.

In the following, we propose two different online algorithms, which have different perfor-
mance (as demonstrated in the experimental evaluation) and different complexities. Again, one
should select the most appropriate algorithm according to the degree of uncertainty and the
needed performance: A∗−on is most suited for situation with limited uncertainty, achieving
high performance, while T1−on should be selected in case of high uncertainty.
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Best-first search online algorithm (A∗−on). An online UR algorithm can be obtained
by iteratively applying A∗−off B times. At the i-th step, 1 ≤ i ≤ B, A∗−on identifies the
i-th question q∗i in its output and asks it to the worker, thus obtaining the answer ansω(q∗i ).
Question q∗i is simply the first element of the sequence Q∗i returned by A∗−off for the tree of
possible orderings T 〈ansω(q∗1),...,ansω(q∗i−1)〉

K with budget (B − i + 1), where ω is the real ordering
and q∗1, . . . , q∗i−1 are the previously selected questions (initially, A∗−off is applied on TK with
budget B and the first question in its output is chosen as q∗1). Intuitively, each step chooses the
most promising question q∗i within the horizon of the remaining B − i+ 1 questions to be asked
based on the current knowledge of ω. Note that, as new answers arrive, the next most promising
questions might no longer coincide with the rest of the previously planned sequence Q∗i .

Being based on A∗−off, A∗−on is costly. Thus, we also consider a simpler but more efficient
online algorithm.

Top-1 online algorithm (T1−on). Algorithm 4 illustrates the T1−on algorithm, which
builds the sequence of questions Q∗ iteratively until the budget B is exhausted (line 2). At
each iteration, the algorithm selects the best (Top-1) unasked question, i.e., the one that min-
imizes the expected residual uncertainty with budget B = 1 (line 4). The selected question
q∗i is then appended to Q∗ and asked to the crowd. Depending on the answer, the tree of
possible orderings TK is updated to the sub-tree that agrees with the answer to q∗i (line 7).
Early termination may occur if all uncertainty is removed, i.e., the tree is left with a single path
(line 3).

3.7.4 Strategies for quick question selection

Quantifying the uncertainty of a tree of possible orderings with the proposed techniques requires
to build completely the tree, i.e., firstly building the structure and then filling it with the
probabilities Pr(ω) associated with its leaves (i.e., orderings). However, computing the whole
tree may be costly, in particular when a large number of overlaps exists (i.e., large number of
orderings in the tree).

In the following, we propose some strategies for quick tree construction and question selection,
so as to speed up the proposed procedures.

Approximate probabilities via Monte Carlo sampling

One simple way to avoid this cost is to approximate Pr(ω) by sampling, as suggested in Sec-
tion 3.3.1. Given the tree of possible orderings structure, we can sample the tuple scores and
count the frequency of occurrence of each leaf of the tree of possible orderings:

Pr(ω) =
occurrences of ω

# samples
(3.36)

Obviously, the higher the number of samples used, the better the approximation.

Incremental construction of the tree of possible orderings

The number of orderings in a tree of possible orderings can be large if there are many overlaps
in the tuple score distributions, thereby affecting the execution time of our algorithms.

We propose a new algorithm, called Incremental, that does not start with a tree of possible
orderings TK , but rather builds it incrementally, one level at a time, alternating a tree construc-
tion step with a cycle of question answering and tree pruning.

Online selection strategy. In the online version of out Incremental algorithm (Incr− On,
shown in Algorithm 5), each tree of possible orderings Tk, 1 ≤ k ≤ K, is built by adding one
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Algorithm 5: Incremental algorithm (Incr)
Input: Tuple set T , Budget B, Depth K
Output: Optimal sequence of questions Q∗
Environment: Underlying real ordering ω
Parameters: Question selection approach appr among avg, opt, pess

1. Q∗ := ∅; ans := ∅; T0 := tree of possible orderings with only the root node;
2. for k := 1 to K
3. Tk := tree of possible orderings obtained by extending Tk−1 by one level;
4. Qk := relevant questions for Tk (as in Equation (3.24));
5. while |ans| < B and |Tk| > 1
6. q∗ := arg minq∈Qk\Q∗ R

appr

〈q〉 (Tk); // as in Equations (3.26)–(3.28)
7. Q∗ := Q∗ ◦ 〈q∗〉; // appending the selected question
8. ans := ans ◦ 〈ansω(q∗)〉 // appending the crowd’s answer
9. Tk := T ans

k ; // updating the tree of possible orderings
10. return Q∗;

level to Tk−1 (line 3): in each ordering ωk−1 of Tk−1, we add the unused sources as children
of the leaf (we assume, for efficiency, that the probabilities are approximated by sampling, as
mentioned in Section 3.3.1).

Then, we ask as many questions as possible until either the budget B is consumed or no
uncertainty is left in Tk (line 5). We thus keep the tree of possible orderings as pruned as
possible, and only proceed to computing the next level when the uncertainty in the previous
levels is removed. Each time, we select the question that minimizes the residual uncertainty of
Tk and immediately pose it to the crowd in an online fashion (lines 6-9).

As a result, since questions are asked in the top levels of the tree at first, many orderings
are pruned from the tree at a time.

An example is shown in Figure 3.18. Figure 3.18(a) shows the complete tree of possible
orderings. The real ordering ω is marked with a bold line. The incremental algorithm starts to
build the first level of the tree (Figure 3.18(b)): here, two orderings are defined: ω1 = t1 and
ω2 = t2, respectively with probabilities Pr(ω1) = Pr(t1 ≺ t2) and Pr(ω2) = Pr(t1 ⊀ t2). Then,
the question t1 ?≺ t2 is asked and the answer is used to delete the ordering ω2. After that, the
second level of the tree is built (Figure 3.18(c)), but since the tree contains only one path up to
now (i.e., ω1 = t1 ≺ t2), no questions are asked to the crowd. Next, another level of the tree is
built (Figure 3.18(d)): here, two orderings are present (ω1 = t1 ≺ t2 ≺ t3 and ω2 = t1 ≺ t2 ≺ t4),
and the question t3 ?≺ t4 is asked to discard the ordering ω1. Finally, the fourth level of the tree
is built (Figure 3.18(e)), and since the tree contains just one ordering, the procedure terminates
and the real ordering ω = t1 ≺ t2 ≺ t4 ≺ t3 is returned.

Hybrid question selection strategy The hybrid version of the Incremental algorithm
(called Incr− Hyb) is a generalization of Incr− On, where 1 ≤ n ≤ B questions are asked
during each cycle of question answering and tree pruning. After each construction step, we
select the n questions whose expected uncertainty reductions are higher. However, since the
space of possible orderings is not fully materialized, it may happen that the number of available
questions is smaller than n. In this case, we keep constructing new levels of Tk until at least n
questions are available.

Estimation of the effectiveness of questions

We can avoid altogether the estimation of the probabilities Pr(ω) by assessing the effectiveness
of questions based solely on i) the overlap between score pdf’s, and ii) the topology of the tree.
While the former provides a rough indication of the amount of uncertainty that will be removed
from the tree of possible orderings when the related question is answered (the larger the overlap,
the larger the uncertainty reduction), the latter may help selecting questions that involve pairs
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Figure 3.18: Incremental algorithm. Complete tree of possible orderings (a), where the real
ordering is marked with a bold line, and steps required to find the real ordering

of tuples appearing in the top levels of the tree.
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Figure 3.19: Score distributions for the objects t1, t2, t3 and t4

To illustrate, consider Figure 3.19, where four tuples t1, t2, t3, t4 are such that the only
overlaps of their pdf’s are between f1 and f2 (top 2 tuples, partial overlap) and f3 and f4

(bottom 2 tuples, total overlap). Only two questions are relevant: q1 = t1 ?≺ t2 and q2 = t3 ?≺ t4.
Answering the question regarding the largest overlap (q2, i.e., the most uncertain using the
metrics we discussed earlier) identifies the top-3 tuple. However, answering q1 identifies the
top-1 tuple and thus is likely to be more relevant in a top-K context. This suggests that the
overlap alone (which is used in [Zhang et al., 2013]) is not sufficient, and the topology of the
tree of possible orderings should also be taken into account.

Let µ(t) indicate the median rank of tuple t in the orderings of TK , where t’s rank is set to
K + 1 if t is not in the ordering.

We define the effectiveness of q = ti ?≺ tj as:

R̃εq(TK) =
µ(ti) + µ(tj)

2
· (1−H(Pr(ti ≺ tj))), (3.37)

where H(Pr(ti ≺ tj)) = −Pr(ti ≺ tj) log2(Pr(ti ≺ tj))− Pr(ti 6≺ tj) log2(Pr(ti 6≺ tj)).
Then, R̃εq(TK) can be used as a proxy for residual uncertainty that does not require the

computation of the probabilities of TK ’s leaves. The UR algorithms shown in Section 3.7.3 can
thus be reformulated by using R̃εq rather than Rappr

q .

3.8 Handle noisy workers

In a crowdsourcing scenario, the collected answers might be noisy.
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Let p denote a crowd worker’s accuracy (i.e., the probability that his/her answer is correct).
When p < 1, it is possible that the answer ansq given by the user for the question q = ti ≺ tj is
not correct. Thus, when the techniques presented in the previous sections are applied, pruning
those paths that are not consistent with ansq could cause the deletion of paths that are in fact
reporting the correct relative order of ti and tj .

Consequently, handling noisy workers requires a simple redefinition of the trees T ti≺tjK , T ti 6≺tjK .
Here, we will not delete paths from the trees: both trees will represent the whole set of possible
orderings included in TK , but the probabilities of the orderings need to be adjusted to reflect
the incoming information.

The tree T ans
K obtained collecting all answers is defined as before, i.e., (. . . (T ans1K ) . . .)ansn ,

in which the probabilities of the orderings are recomputed for each answer, without performing
pruning.

Let Pr(ω) and Pr(ω|ansq = ti ≺ tj) denote, respectively, the probability of the same ordering
ω in TK and T ti≺tjK . Then, by Bayes’ theorem [Zhang et al., 2013]

Pr(ω|ansq =ti ≺ tj) =
Pr(ansq = ti ≺ tj |ω) Pr(ω)

Pr(ansq = ti ≺ tj)

=
Pr(ansq = ti ≺ tj |ω) Pr(ω)

pPr(ti ≺ tj) + (1− p) Pr(ti 6≺ tj)
, (3.38)

where Pr(ansq = ti ≺ tj |ω) = p, if ti ≺ tj in ω; otherwise, 1− p.
A similar expression can be written for T ti 6≺tj :

Pr(ω|ansq =ti 6≺ tj) =
Pr(ansq = ti 6≺ tj |ω) Pr(ω)

Pr(ansq = ti 6≺ tj)

=
Pr(ansq = ti 6≺ tj |ω) Pr(ω)

pPr(ti 6≺ tj) + (1− p) Pr(ti ≺ tj)
, (3.39)

3.9 Summary

In this Chapter we proposed a methodology for the application of active crowdsourcing tech-
niques so as to reduce uncertainty in a corpus of data, with specific focus on the top-K query
context. We started the some state-of-the-art works that suggest how to materialize the space
of possible orderings. We suggested how to adapt these techniques to the top-K context and
how to model uncertainty in the resulting space. Finally, we proposed several techniques which
can be used to maximize the expected uncertainty reduction on the space of possible orderings.

The proposed work answers to the following research questions:

• Research question 1: How can uncertainty of structured data be modeled? In
this Chapter we proposed four uncertainty metrics which can be used to quantify uncer-
tainty in a corpus of data. Specifically, we noticed that while some metrics in the state
of the art (e.g., entropy) are based only on the probabilities of each ordering, without
capturing the structure of the space of possible orderings, other measures can involve the
tree structure in the computation. In this way, these metrics adhere more precisely to the
problem structure, being able to judge differently trees having similar probabilities but
different structure.

• Research question 2: How do crowd task answers impact on data uncertainty?
In this Chapter we studied how an answer from a crowd worker can affect the degree of
uncertainty in the space of possible orderings: each answer provides new information, which
could not be extracted from data, and thus it can reduce uncertainty by removing some



3.9. Summary 85

orderings from the space (in case of answers from experts) or modifying their probabilities
(in case of answers from noisy workers).

• Research question 3: How do task selection and budget constraint affect uncer-
tainty on structured data? In this Chapter we demonstrated that some tasks produce
a larger expected uncertainty reduction, while others affect poorly uncertainty. Thus, it is
possible to estimate the uncertainty reduction brought by each available task, and select
the most promising one, so as to maximize the expected uncertainty reduction. Moreover,
we proposed several task selection techniques which can be used when a budget constraint
is provided. Some of them require the full materialization of the tree of possible orderings,
with high performance but high costs, while others build incrementally the tree, with more
limited performance but low costs. These techniques can be used both in online mode (i.e.,
by asking one question at a time) and offline mode (i.e., by selecting a set of questions to
be asked in batch).

• Research question 4: How does worker quality impact on crowd tasks effective-
ness? In this Chapter we proposed a technique to handle noisy answers, so that orderings
are not blindly deleted from the tree if the workers suggest it: their probabilities are simply
remodeled so as to take into account the possibility that the provided answers are wrong.
Obviously wrong answers introduce noise, but with the proposed techniques we are able
to limit its negative effect.
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Chapter 4

Optimizing passive crowdsourcing:
Influencers retrieval on multimodal
dynamic data

Every day, a massive amount of content is produced by users in social media. These data are
publicly available, and contain information about behaviors, interests and activities of the social
media population. Passive crowdsourcing is the process of analyzing user-generated content and
convert it into a comprehensible structure for further use. When a user expresses a need, in
order to gather information that could answer to that specific need, one could decide to navi-
gate through the massive amount of user-generated content and retrieve relevant and fresh data
from it. However, when retrieving information about a specific topic, due to the high diversity
of people posting every day, user-generated content could be redundant, not representative, not
well presented and related to different topics. Thus, a way of filtering it is needed, so as to
discard irrelevant content and focus on pertinent data.

In this Chapter, we introduce a first use case for the passive crowdsourcing application. Here,
we filter content that is published on Twitter so as to retrieve influencers and relevant content
about a specified topic.

4.1 The scenario: Twitter influencers

A preliminary definition of social influence can be found in [Katz and Lazarsfeld, 1970]. Ac-
cording to this work, a minority of people, called opinion leaders, act as intermediaries between
the society and the mass media. An opinion leader is a subject which is very informed about
a topic, well-connected with other people in the society and well-respected. Since information
is passing through the opinion leaders before going to the society, this communication model
is called two-step communication model, where in the first step information goes from mass
media to opinion leaders, and in the last step reaches the society through the opinion leaders.
After this analysis, the expression influential users (or influencers) [Merton, 1957] started to
spread through different fields, such as innovation [Rogers Everett, 1995], communication re-
search [Weimann, 1994] and marketing [Chan and Misra, 1990]. The power of this theory is
behind the ability of influencers of spreading rapidly and easily information: a viral campaign
can reach a large audience at a small cost (needed to identify influencers and convince them to
diffuse the information).

However, more modern works suggested that influencers alone are nor necessary not sufficient
to diffuse information through the society [Watts and Dodds, 2007]. In fact, influencers may
be the ones that generate large flows of information to be spread through the network, but
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then average users are the one that diffuse it. Thus, influence is a key factor in the generation
of a convincing information, but then the network is the last needed ingredient to make the
information survive through the network.

More recently, computer scientist began creating theories about influence in social networks.
The first works that considered the propagation of influence in a social network are [Domingos
and Richardson, 2001, Richardson and Domingos, 2002]. In this works, the authors build a
probabilistic model in which users are assumed to be influenced by their nearest users in the
social network. Thus, a heuristic is proposed to identify influencers. Then, the works [Kempe
et al., 2003,Chen et al., 2010,Leskovec et al., 2007] define and solve the influence maximization
problem. This problem is defined as follows: given a social network, select a set of K users such
that they influence the largest number of users in the network.

In recent years Twitter has gained a huge visibility as a platform on which users share ideas
and opinions. Thus, several works focused their solutions for the influence maximization problem
on this social network. These works focus their analysis on the graph structure and the textual
content of each post, to state whether a person is an influencer for a specific topic. Typical
metrics that are used to evaluate the influence of a user are her number of followers and friends,
her number of posts related to the topic, the number of retweets, etc.

However, in the state of the art there is a lack of works that consider the whole published
content, which comprises not only textual content, but also multimedia content and linked
content. In fact, often the text of a post is ambiguous and hardly attributable to a topic, while
the associated extra content (i.e., URLs and multimedia files) can be useful to disambiguate.
This often causes wrong classification of the content, and thus wrong count of the topic-related
posts for an author. Thus, more refined techniques are needed to get a rich view of the content
and disambiguate the content topic.

Figure 4.1: False positive captured by a text classifier when the topic is cooking

Moreover, several works are focusing their analysis on data sets collected in fixed time spans.
However, influencers change over time [Cha et al., 2010], and thus a real-time analysis of the
social network posts and users is needed to capture the most updated influencers list.

In this Chapter, we introduce our solution for the influence maximization problem, with
focus on real-time data and multi-modal analysis of content. In Section 4.3 we introduce the
architecture of the topic-related content retrieval pipeline. Then, Section 4.4 and Section 4.6
give details about the crawling process and the multi-model classification process, respectively.
Section 4.7 illustrates how to keep updated the crawling criteria, so that the retrieved content
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always reflect the active communications on Twitter. Section 4.8 presents the influence metrics
used in this work. Finally, Section 4.9 discusses how to present the results and evaluate their
quality.

4.2 Open problems in influencer detection

The concept of trust has been studied in sociology [Molm et al., 2000], psychology [Cook et al.,
2005], economics [Huang, 2007] and computer science [Maheswaran et al., 2007]. Moreover,
during the last years many companies have emerged in the market having as core business to
analyze social media and extract various statistics about users and content, e.g., Blogmeter1,
Klout2, PeerIndex3 and ProSkore4. These statistics include online reputation, influence evalu-
ation, engagement and content relevance. Usually, the offered services are grouped in software
suites that allow one to analyze dynamically content (e.g., by filtering it by topic and relative
subtopics, or by extracting the most diffused terms and concepts for a specific topic) and users
(e.g., by visualizing who are the most active users in the field).

The most common strategies for influence evaluation in social media are: i) either to identify
influencers, or ii) to study the maximization of influence’s spread in a social network. In [Kiss
and Bichler, 2008] the identification of influencers is achieved by considering the structural
properties of networks. In [Lu et al., 2012] a graph-based framework is used to predict the
evolution of influencers. [Scripps et al., 2009] investigated how different decisions such as
selection and influence affect the dynamics of social networks. [Gomez Rodriguez et al., 2010]
developed a method to trace paths of diffusion and influence through networks. Furthermore,
some researchers investigated the problem of maximizing influence on a person network (ego-
net) for applications such as viral marketing [Domingos and Richardson, 2001, Kempe et al.,
2003,Goyal et al., 2010]. In [Tan et al., 2010], authors studied how to track and predict users’
action according to a learning model. However, these works neither consider heterogeneous
information nor learn topics and influence strength jointly: there are no works in the state of
the art that analyze the full spectrum of multimedia content produced and consumed by users to
estimate a local and contextual notion of trust. Moreover, they did not consider the topic-level
influence: in most of these works, a user is influencer if she is interesting for a large part of
users, independently from the topic of interest one is tracking. However, this falls on the million
follower fallacy, where a user is influential if she is a celebrity.

In the state of the art, patterns of temporal variation of popularity have been investigated
too, mostly focusing on the attention received by pieces of content. Previous works include
for instance the study of video popularity saturation on YouTube in relation to content visibil-
ity [Figueiredo et al., 2011] and the classification of bursty Twitter hashtags in relation to the
volume of related tweets before and after the peak [Lehmann et al., 2012]. Time series have been
used to predict popularity in blogs, where the reaction time of the crowd is strongly correlated
to the expected overall popularity [Lerman and Hogg, 2010]. However, a few works focus on
the mining of temporal patterns in content diffusion and people activity on social media, which
could help in tracing the dynamics of influence.

Another aspect regards multimedia search. Multimedia search before the social media
era aimed at answering multimedia queries (using e.g., query by example approach) on static
databases. Social media change the scene by generating and sharing huge volumes of ephemeral
content. The volumes of image/video shared through the social media every day and the
ephemeral nature of the postings require new indexing and searching methodologies. It is thus
necessary to design and develop a NoSQL-based time-aware multimedia search service that is

1http://www.blogmeter.eu
2https://klout.com/home
3http://www.peerindex.com
4http://www.proskore.com

http://www.blogmeter.eu
https://klout.com/home
http://www.peerindex.com
http://www.proskore.com
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able to answer complex time related and multimedia queries, supporting large but ephemeral
multimedia content processing.

Syria’s socially mediated civil war

A real scenario where the recognition of influential users and relevant content is difficult to be
performed can be found in the study of the socially mediated civil war in Syria [Lynch et al.,
2014]. An exceptional amount of what the outside world knows about Syria’s nearly three-year-
old conflict has come from videos, analysis and commentary circulated through social networks.
In the state of the art, several remarkable number of creative and important efforts to exploit
the vast quantities of information about Syria can be found. Journalists use videos and social
media accounts to report on an exceptionally difficult and dangerous conflict, while analysts
inside and outside governments have also used online information to paint detailed accounts of
the factions of the Syrian insurgency.

However, English-language conversation about Syria is particularly insular and interacts only
with itself, creating a badly skewed impression of the broader arabic discourse. Arabic-language
conversation, on the other hand, quickly came to dominate the online discourse, requiring dozens
of experts to analyze manually the produced content to extrapolate interesting and non-polarized
information. Thus, it is becoming more and more difficult to guarantee a balanced analysis
between different sources. More specifically, the deluge of information made it difficult for even
specialists to evaluate the credibility and significance of videos, images or information circulating
online.

Some online hubs (i.e., famous users in this scenario) have been selected as curators for
the online content, sorting through, interpreting and synthesizing the online materials. An
interesting insight is that a large number of individual hubs that are little known to the wider
public have massive influence within discrete communities, while large audiences tend instead
to rely on a relatively small number of such individuals. Such hubs played an important role in
newspapers and television, although no assumption could be made about the independence or
neutrality of these hubs: many (if not most) hubs were activists on one side or the other.

The primary use of Internet by researchers has been to search online sources to extract
otherwise unknown information about the conflict. These efforts range from the very simple
(i.e., watching YouTube videos for evidence of jihadist involvement or foreign weapons) to the
more complex (i.e., estimating deaths and casualties). Several research teams are thus created
so as to contain a mixture of competences: researchers with Arabic-language skills, developers
of automatic text analyzers, analysts that watch videos to look for specific content (e.g., new
types of weaponry). Countless hours are thus spent by people to manually validate available
online content and spot the most relevant published videos, images and texts. Moreover, these
studies depend heavily on the validity of the underlying data. Several of the datasets employed
are produced by organizations that belong to the Syrian opposition.

Nevertheless, requiring humans to process manually the data to assess its quality is dangerous
and costly. First of all, humans are not able to process a large corpus of data, which usually
is collected by analyzing large social networks, with consequent loss of quality. Moreover, this
requires to pay additional resources to perform manual validation.

4.3 Retrieving relevant content from Twitter: our solution

To solve the problems presented in Section 4.2, we now introduce our topic-related content
retrieval pipeline, which, given a topic T , automatically identifies the most relevant terms de-
scribing T , uses them as search criteria to download topic-related content from Twitter and
analyzes it to extract influencers.
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Figure 4.2: Topic-related content retrieval from Twitter: general architecture

4.3.1 Terminology

The Twitter firehose is the massive, real-time tweets production by users that flow from Twitter
every day 5.

A keyword is a term that begins with a letter or a number and appears in topic-related
content with statistically unusual (and typically high) frequency. A hashtag is a metadata tag
characterized by a word or an un-spaced phrase prefixed with the sign #.

An influencer is a user with influence. Social influence is the ability of affecting others’
emotions, opinions and behaviors.

4.3.2 Topic-related content retrieval pipeline

Figure 4.2 shows the general architecture of the topic-related content retrieval pipeline, which
solves problems related to the Topic classification, Key words extraction, Expert mining and
Report visualization in Figure 1.2. Given a specific topic T , the pipeline crawls the Twitter
firehose, finds relevant content (i.e., content focused on topic T ) and extract useful information
and statistics such as: i) who are the influencers for the topic T ; ii) which are the most popular
keywords and hashtags for the topic T .

The pipeline is structured as follows.
At first, three lists U , K and H (containing respectively an initial seed of relevant users,

keywords and hashtags for the topic T ) are built (step Key words extraction in Figure 1.2). The
list U contains references to users that mainly publish topic-related content, while the lists K
and H contain respectively keywords and hashtags that are typical of T . For instance, if T is

5http://apivoice.com/2012/07/12/the-twitter-firehose/

http://apivoice.com/2012/07/12/the-twitter-firehose/
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Figure 4.3: During the release of the first trailers for the X-Men movie, many people used
the hashtag #xmen (trending topic) to make their own tweet gain visibility, although the tweet
content was not related to the movie itself

cooking, K may contain the terms cake, pasta and apple, while the list H may contain the
hashtags #RecipeOfTheDay and #EasyRecipes. Section 4.7 will suggest how to build such lists.

Before the main crawling process is started, a crawler (see Section 4.4.2) accesses to the
stream of users contained in the list U and reads tweets they published in the past days. These
tweets are manually annotated as either relevant or not relevant for the topic T , and then fed
as an input to a classifier (see Section 4.6), which is in this way trained to recognize relevant
content for topic T (step Topic classification in Figure 1.2).

At this point, the lists U , K and H are fed as an input to the real-time crawling process.
A streaming crawler, i.e., a real-time crawler drinking tweets directly from the Twitter firehose
(see Section 4.4.3), retrieves the tweets that either are produced by a user in U , or contain at
least one keyword from K or a hashtag from H.

Notice that the retrieved content may not be relevant, although it contains one of the specified
search criteria. This may happen for different reasons: i) users in U may publish something that
is not related to T ; ii) words in K may have multiple meanings, not all related to T (e.g., apple
is both a fruit and a brand); iii) hashtags in H that are popular may be used to make their
tweets gain visibility, although those tweets are not related to T (see an example in Figure 4.3).
Hence, in the following step the trained classifier is used to filter out those tweets that are not
relevant for the topic T .

Then, the relevant tweets are analyzed to extract knowledge about new keywords, hashtags
and users that were not included in the lists U , K and H (steps Expert mining and Key words
extraction in Figure 1.2). This information is used to enrich those lists, and keep updated the
set of search criteria. This update has several advantages:

• Influencers: influence changes over time [Cha et al., 2010]. Thus, keeping updated U
allows us to discover people that are gaining influence

• Keywords: by updating K we are able to track how communication moves between the
sub-topics of T

• Hashtags: hashtags on Twitter have a short life, and after a while people stop using
them [Kywe et al., 2012]. Thus, if H is not updated, after a while it will not serve as an
entry point for filtering the firehose, since there will not be any tweet (or a few of them)
containing the hashtags in H

Finally, a visual dashboard shows the up-to-date sets of influencers, keywords and hashtags,
ordered by relevance (step Report visualization in Figure 1.2).

In the following sections we will describe each component of the architecture in Figure 4.2.
Section 4.4 shows how to build a REST crawler and a streaming crawler for Twitter. Then,
Section 4.6 illustrates how to model and train a classifier for topic-related content. Section 4.7
explains how to populate an initial version of the lists K and H, and how to keep them updated.

4.4 Retrieval of topic-related content from Twitter

In this Section we illustrate the process used to retrieve topic-related content from Twitter.
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4.4.1 Twitter APIs

The Twitter platform offers access to the tweets produced every day by users, via a family of
APIs. Each API represents a different facet of Twitter. In the following, we present the idea
behind the main APIs.

REST API. This API allows developers to access the main information behind every
Twitter profile, i.e., timelines, status updates and profile information. The retrieved content
includes also profile avatars and information about the graph of the people that the analyzed
user is following. With this API, it is possible to specify a set of users to be followed, so that
during the crawling phase the past tweets that were produced by those users are retrieved.

Streaming API. This API allows to retrieve a real-time sample of the Twitter firehose.
With this API, it is possible to specify a set of keywords, hashtags and users to be tracked, so
that during the crawling phase the entire firehose is filtered and only the tweets matching with
one of the search criteria are retrieved. This requires to create a stable HTTP connection and
maintain it as long as the crawling is needed.

These APIs come with some restrictions 6.

• When using the current REST API version (i.e., 1.1), applications are allowed to make
150 logged out (i.e., unauthenticated) requests per hour, or 350 authenticated requests

• When using the current Streaming API version, applications are allowed to download 1%
of the firehose. Whenever this limit is reached, the firehose access is momentarily stopped,
and restored after some seconds (causing the loss of some data, which are passing through
the firehose but not captured by the crawler)

4.4.2 Implementation of the Twitter REST crawler

A Twitter REST crawler is a crawler that reads past tweets generated by a set of specified users.
Given a list of filtering user IDs (denoted by Fu), the crawler accesses to the related profiles,

reads all the tweets those users generated and stores them without any further filtering process:
tweets are generally not filtered by keyword and/or hashtag in this crawling procedure.

4.4.3 Implementation of the Twitter streaming crawler

A Twitter streaming crawler is a crawler that monitors the firehose, looking for all those tweets
that match some search criteria.

The search criteria for a Twitter streaming crawler, according to the Twitter APIs, are of
two types: user IDs (denoted by list Fu) and keywords (denoted by list Fk). The list Fu is filled
with those user IDs contained in the list U , i.e., Fu = U . The list Fk is instead filled with the
keywords and hashtags contained in the lists K and H.

The filtering lists Fu and Fk are fed as an input to the crawler, that constantly accesses the
firehose and returns those tweets that contain at least one of the specified criteria. This means
that either the tweet is produced by one of the specified users, or it contains a topic-related
keyword or hashtag, or a combination of these factors.

The streaming crawler is meant to run as a long-term running process. Thus, it requires to
open an HTTP connection to the Twitter API services, that remains open as long as we need
to access to the firehose. Once the connection is interrupted or lost, the crawling stops and the
real-time tweets that are passing through the firehose while the crawler is not working are lost
forever (since there is no way of accessing to a past time frame of the firehose).
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Figure 4.4: Tweet data model

4.5 Tweet data model

Figure 4.4 shows the data model used to store tweets in the database. In the following, we
illustrate its details.

Tweet entity This entity represents a tweet in the database. Every tweet that is retrieved
by the crawler and considered as relevant by the classifier is stored in the database according to
this schema.

Every tweet is created by a Twitter user (see Section 4.5) and may contain extra content,
in the form of hashtags, user mentions, media files and URLs (see Sections 4.5-4.5). Moreover,
other users may contribute to its writing, and thus the tweet can be associated with a contributor
(see Section 4.5).

The tweet is mainly identified by its textual content and its creation date. Moreover, it is
associated with a language, which is generally the one spoken by its creator.

Furthermore, the Tweet entity registers if the tweet was retweeted and/or favorited, together
with the number of retweets and likes the tweet received.

Finally, the entity registers also the place in which the tweet was written, which will have a
non-null value in case the user allowed its device to register the geolocation while posting.

User entity This entity represents a Twitter user in the database.
A Twitter user is a subject that either creates relevant tweets (see Section 4.5), or contributes

in writing tweets for other accounts (see Section 4.5), or is mentioned in other users’ tweets (see

6https://dev.twitter.com/docs/rate-limiting/1

https://dev.twitter.com/docs/rate-limiting/1


4.6. Identification of relevant content 95

Figure 4.5: Example of contribution: here the user @bradnelson contributes to a tweet for
the @Starbucks profile. Source: http://cdn.mashable.com/wp-content/uploads/2009/12/
Fullscreen.jpg

Section 4.5).
We identify a user by specifying her name, her screen name (i.e., pseudonym), her descrip-

tion, the URL pointing to her profile page and her language. Moreover, the entity registers
some statistics about her activity on Twitter (i.e., number of followers and followees, number of
published tweets, number of favorites), her location, her time zone and her profile image.

Finally, it is possible to tag a profile as verified, meaning that it represents an authentic
identity. This is mainly used by public figures which would like to guarantee the authenticity of
their profile.

Hashtag entity This entity represents a hashtag cited in the tweet.

User mention entity This entity represents a user mentioned in the tweet. Generally the
tweet contains the screen name, represented as @screenname. From this, we retrieve the whole
user profile and link it to the tweet citing the user.

Url entity This entity represents a URL reported in the tweet. Usually Twitter users shorten
the links they post on Twitter, since tweets are limited in length. Thus, the entity contains also
the expanded version of the URL.

Media entity This entity represents a multimedia file that is linked in the tweet. The entity
specifies the file type (e.g., image), the URL used to retrieve the image and its expanded version.

Contributor entity A contributor is a user that generates a tweet for another Twitter profile
(see an example in Figure 4.5).

This feature was created by Twitter to help companies to manage their profile: multiple
contributors can publish content to the company account, so that all other contributors can see
it and answer to it as in a real conversation. The feature appends the contributor’s username
to the tweet, so that who reads knows more about the people behind organizations.

4.6 Identification of relevant content

The Twitter streaming crawler introduced in Section 4.4.3 is used to retrieve topic-related tweets.
Given a topic T and a set of search criteria for T , the crawler retrieves all the tweets that are
produced in real-time and match at least one of the specified search criteria (i.e., users, hashtags,
keywords). However, this does not suffice to state that the content is relevant: keywords may
have multiple meanings, hashtags may be used incoherently and users are not always talking

http://cdn.mashable.com/wp-content/uploads/2009/12/Fullscreen.jpg
http://cdn.mashable.com/wp-content/uploads/2009/12/Fullscreen.jpg
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Figure 4.6: Identification of relevant content

about a specific topic. Thus, in this Section we will introduce some classification methodologies
used to filter out irrelevant tweets from the result set. The identification pipeline is shown in
Figure 4.6.

4.6.1 Text-based approach

In this section we illustrate how to filter out irrelevant tweets by analyzing their textual content.
The text filtering process is divided in the following phases: i) filter out non-English content;

ii) filter out non-appropriate content; iii) classify text to state whether the tweet content is
relevant for the topic T . If a tweet survives to these three stages, then it is considered relevant
and thus stored in the database according to the schema in Section 4.5.

Filter out non-English content

Our target is English content. Thus, it is necessary to filter out all the tweets that are written
in other languages.

As a first, simple filter one could detect the profile language of the user: if it differs from
English, then the content produced by that user is automatically discarded.

However, several users write content in other languages, although their Twitter account is
registered as an English profile, and viceversa. Consequently, filtering out content based on the
user profile is not sufficient: the proposed simple filter ignores the language of the tweet itself,
assuming that a user writes all her tweets always in the declared language.

Thus, we developed a language detector, based on the Language Detection library7. This
component, given a tweet text, recognizes its language by comparing its content with a set
of predefined language profiles. When a tweet is retrieved, if the detector recognizes that its
language is not English, we discard it before performing any other classification step.

Non-appropriate content filtering

Non-appropriate content is intended as content including references to sexually explicit content
and violence. All the tweets containing references to these topics should be discarded a priori,
without any chance of being evaluated by the text classifier as positive samples.

To do so, we retrieved the Google list of blocked terms [Google, 2014], commonly used by
the search engine to filter out inappropriate content.

When a new tweet is received by the streaming crawler, it is divided in words. Then, if the
tweet contains at list one word that is present in the Google list of blocked terms, it is discarded.

7https://code.google.com/p/language-detection/

https://code.google.com/p/language-detection/
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Text classification

Text classification is performed via an SVM classifier (see Section 2.3.1). In the following, we
introduce the procedure used to setup the classifier.

Training set building. Given a topic T , we manually select a set of relevant users (i.e.,
users that are mainly writing content about topic T ) and a set of non-relevant users (i.e., users
who normally do not talk about topic T ). Then, using a REST crawler (see Section 4.4.2),
we download the tweets those users produced during a fixed time span. The first set will
produce mainly positive samples containing words that are typical of T , while the second set
will produce unrelated tweets (which we call hard negatives). All these tweets are collected in
the set of training samples T . Each training sample (x(i), y(i)) ∈ T is manually annotated as
either relevant (i.e., positive class with label Y) or non-relevant (i.e., negative class with label N).
Finally, only in case the number of positive and negative samples in T differs, we rebalance the
dataset by downloading other tweets, annotating them and selecting only those ones that are
needed (i.e., positive samples if the number of negatives is larger than the number of positives,
or viceversa).

Tweet processing. Every tweet is subdivided into words. A word is a piece of text surrounded
by either spaces or punctuation. From the list of words we delete the user mentions (typically
written as @username), since they are not useful for understanding the topic of the analyzed
text. Moreover, we remove the stop words. Hashtags, on the other hand, could be used as
discriminative features, and thus are kept in the list (although without the # symbol). Then,
we normalize all the words, by lowering all the letters and applying Porter stemming.

Classifier training. We subdivide the set of collected samples T in training set Ttrain (60%
of dataset), cross validation set TCV (20% of dataset) and test set Ttest (20% of dataset). Then,
we process the tweets in Ttrain with the procedure explained above. All the stemmed words that
survive the processing are collected in a unique dictionary D, which constitutes the feature set.
The feature vector for each tweet in the training set Ttrain is thus built according to a TF-IDF
approach. In this vector, the j-th component for the i-th tweet is computed as:

vij = TF (fj , di)IDF (fj) (4.1)

where TF (fj , di) is the term-frequency of the feature fj in the tweet di:

TF (fj , di) = frequency(fj , di)

while IDF (fj) is the inverse document frequency:

IDF (fj) = log
|Ttrain|

|{d ∈ Ttrain|fj ∈ d}|

The SVM classifier is finally trained on the available training set Ttrain, by varying the SVM
parameters C and σ. The combination of parameters that guarantees the best performance on
the cross validation set TCV is selected, and then the classifier performance is computed on the
test set Ttest using the selected parameters.

Banned words

In this Section, we introduce a new filter that allows one to filter out tweets containing specific
unwanted terms. As an example, consider Figure 4.7. Here, we report two non-relevant tweets
produced by the user @Galaxy_Sleeves and classified as relevant by the textual classifier for the
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Figure 4.7: An example of misclassified tweets for the topic food

topic food. As one may notice, the misclassification occurred because the tweet text, if cleaned
from all the extra content (URLs, hashtags), reports either terms that are not known by the
classifier (since they are very specific for another topic, e.g., Samsung for the topic smartphones)
or terms that are apparently related to food. As a result, our pipeline continuously crawled
content from this account, detecting it as influencer for the selected topic. However, this user
is a bot that automatically publishes advertisements for food-shaped smartphones sleeves and
pouches. Thus, it cannot be considered a relevant user for the topic food.

As a solution, one could think of retraining the classifier every time these situations occur,
by introducing some hard negative samples containing the unwanted terms. Unfortunately, this
operation is costly, since it requires to download other samples (which are in part containing
the content to be filtered), annotating them as relevant/non-relevant, and re-parameterize the
classifier. On the other hand, if we could have the possibility of filtering some keywords from
the crawled one (e.g., in the example above, Samsung and Galaxy), one could avoid to retrieve
(and misclassify) the unwanted content.

Consequently, we introduced a new filtering level in the pipeline, that allows one to filter out
content containing some manually filtered words. This filter works exactly as the non-appropriate
content filter, but instead of working on a fixed taxonomy, it allows us to manually populate
the list of filtered words. Thus, every time we detect terms that deterministically happen to be
misclassified (e.g., Galaxy in the example above), we add those terms in the filtered words list:
from that point on, the pipeline will automatically discard tweets containing any of the specified
filtered terms.

4.6.2 Image-based approach

In this Section we illustrate how to filter out irrelevant tweets by analyzing their multimedia
content.

The image classification process is divided in the following phases: i) extraction of a common
vocabulary for both negative and positive images; ii) training set building; iii) classification of
images to state whether they are relevant for the topic T . In the following, we operate on a
dataset of images T I extracted from tweets in the set T (both relevant and non-relevant), which
were downloaded in a fixed time span.

Extraction of a common vocabulary

We manually annotate the images in T I as relevant for the topic T (i.e., belonging to the positive
class) or non-relevant (i.e., belonging to the negative class). Then, we extract an equal (and
small) number of positive samples and negative samples from T I and analyze them: firstly, we
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extract their key-points, and then we compute the related SIFT descriptors [Lowe, 1999]. These
descriptors, also known as visual words, characterize the set of candidates to be considered
as features in the feature set. By applying the well-known k-means clustering technique, we
aggregate the extracted descriptors in W clusters, and extract the center of the learned clusters
as representative terms. These W extracted visual terms characterize the visual dictionary, and
thus will be used as feature set.

Training set building

We subdivide the set of images T I in three sets: the training set T Itrain, the cross validation
set T ICV and the test set T Itest. Each sample (x(i), y(i)) in these sets is then analyzed to extract
its feature vector, as follows. At first, we extract the key-points of (x(i), y(i)) (and related
descriptors). Then, for each key-point we find the three nearest neighbor in the dictionary of
visual terms (i.e., the three terms whose descriptors are the most similar to the query key-point).
Finally, we build a histogram of occurrences of the found nearest neighbors and normalize it.
The output of this procedure produces the feature vector for the sample (x(i), y(i)).

Classifier training

An SVM classifier is finally trained on the available training set T Itrain, as in Section 4.6.1.

4.6.3 Combine multiple classifiers into a multi-modal classifier

Let Γ = {Y, N} be the set of relevance classes for a topic T . A tweet t belongs to class γ = Y if
it is relevant for T , and to class γ = N otherwise. We will denote with lT (t) the true label of t.
This label takes values in the set Γ, i.e., lT (t) = Y if t is relevant for T , and lT (t) = N otherwise.

Let C be the set of classifiers we use to classify each tweet as either relevant or non-relevant for
topic T (e.g., text classifier, image classifier). Each classifier c ∈ C, when a tweet t is provided,
returns the label lc(t), which again takes values in the set Γ, i.e., lc(t) = Y if the classifier
classifies t as relevant, and lc(t) = N otherwise.

Our purpose is to combine the set of labels lc(t) provided by the classifiers c ∈ C so as to
find the aggregated label L(t). In the following, we introduce a method based on the work [Xu
et al., 1992], which applies Bayesian formalism and belief functions to estimate the aggregated
label L(t).

First, let CM(c) denote the confusion matrix for the classifier c ∈ C, defined as:

CM(c) =

[
nY,Y nY,N

nN,Y nN,N

]
where each row corresponds to a true label lT (t) (i.e., either Y or N), each column corresponds
to a classifier label lc(t) (i.e., either Y or N), and ni,j is the number of samples (in a test set)
with true label lT (t) = i and classifier label lc(t) = j.

Suppose the classifier c suggested the label lc(t) for the sample t. Hence, the probability
that t is of class γ ∈ Γ (i.e., lT (t) = γ), given the label lc(t), can be computed as follows:

Pr(lT (t) = γ|lc(t)) =
nγ,lc(t)∑

γ̄∈{Y,N} nγ̄,lc(t)
(4.2)

We can aggregate such probabilities so as to build the belief function bel(t, γ). This function
represents our belief that a tweet t belongs to a class γ ∈ Γ given the set of opinions {lc(t)} by
the classifiers c ∈ C. The belief function is expressed as:

bel(t, γ) = η
∏
c∈C

Pr(lT (t) = γ|lc(t)) (4.3)
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where η is a constant defined as:

η =
1∑

γ∈{Y,N}
∏
c∈C Pr(lT (t) = γ|lc(t)) (4.4)

Finally, the aggregated label L(t) is computed as:

L(t) =

{
Y bel(t, Y) > bel(t, N)
N otherwise (4.5)

where bel(t, Y) and bel(t, N) are the belief that the tweet t belongs to class Y and N, respectively.

4.7 Definition of search keywords and hashtags set

The Twitter streaming crawler shown in Section 4.4.3 retrieves tweets that either are produced
by users in the list U , or match keywords and hashtags in the lists K and H.

In this Section, we explain how to populate conveniently the lists K and H, so that they are
dynamically modified to contain keywords and hashtags that describe the real-time communi-
cation trends on Twitter.

4.7.1 Static selection of filtering terms

Keyword and hashtag lists K and H could be initially populated by manually selecting the most
relevant keywords and hashtags in a predefined time span, and keeping them unchanged along
the whole crawling period.

Let T be a set of samples that were downloaded from Twitter and manually annotated to
confirm whether they are relevant for a specific topic T or not. The static selection of keywords
and hashtags requires to do an analysis of the content of the samples in T to find the elements
(both keywords and hashtags) that are very frequent in the relevant samples and almost absent
from the non-relevant samples. These elements are the most representative terms for the topic
T in the monitored sample.

Let W be the set of words (either a set of keywords WK or a set of hashtags WH) that are
extracted from the set of samples T . These words are pre-filtered so as to remove stop words;
duplicates are not removed. Each word w ∈ W is associated with a score s(w), computed as
follows:

s(w) = log
p(1− r)
(1− p)r (4.6)

where:
p =

Pr(relevant|w) Pr(w)

Pr(relevant)
(4.7)

and:
r =

Pr(non-relevant|w) Pr(w)

Pr(non-relevant)
(4.8)

This score takes large values in case the word w appears very frequently in the relevant documents
(i.e., documents t ∈ T such that class(t) = relevant) and almost never in the non-relevant
documents (i.e., documents t ∈ T such that class(t) = non-relevant).

Pr(relevant|w) is the probability that, once a word w is selected, it is relevant for topic T :

Pr(relevant|w) =
|{t ∈ T : class(t) = relevant ∧ w ∈ t}|

|{t ∈ T : w ∈ t}|
Equivalently, Pr(non-relevant|w) is the probability that, once a word w is selected, it is not
relevant for topic T :

Pr(non-relevant|w) =
|{t ∈ T : class(t) = non-relevant ∧ w ∈ t}|

|{t ∈ T : w ∈ t}| = 1− Pr(relevant|w)
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Algorithm 6: extractSearchCriteria keeps updated the list of search criteria (i.e.,
keywords and hashtags) by analyzing the incoming tweets
Input: Time period P , Annotated samples T

1. W = terms(T )
2.
3. while true
4. W̄ = unique(W)
5.
6. for each w ∈ W̄
7. Compute s(w)
8. Order W̄ in descending order of s(w)
9. W∗ = top-K elements of W̄
10.
11. T = tweets retrieved by pipeline during period P
12. W =W ∪ terms(T )

Pr(relevant) is the probability of a sample t ∈ T of being relevant for topic T :

Pr(relevant) =
|{t ∈ T : class(t) = relevant}|

|T |

Equivalently, Pr(non-relevant) is the probability of a sample t ∈ T of being not relevant for
topic T :

Pr(non-relevant) =
|{t ∈ T : class(t) = non-relevant}|

|T | = 1− Pr(relevant)

Finally, Pr(w) is the probability that, when a word is sampled from W, it coincides with w:

Pr(w) =
|{v ∈ W : v = w}|

|W|

When the scores for all the words w ∈ W are computed, we order the words in descending
order of s(w). Then, the top-K words (K = 50) are selected as the most relevant words for the
topic T .

Notice that this procedure does not depend on the fact that the list W contains hashtags
or keywords. Thus, the procedure is run two times (once for hashtags and once for keywords),
so that the top-K selected hashtags populate the list H, while the top-K selected keywords
populate the list K.

4.7.2 Automatic expansion of filtering terms

A static list of filtering terms (such as keywords and hashtags) is not the best solution one could
adopt: it does not reflect the current discussions and topics, and thus it could include outdated
terms that are not used frequently by users. A typical example is the one of hashtags, which
have a limited life: after a while, Twitter users stop using them and create new hashtags. If we
select hashtags statically in a predefined time span, these will cease to exist very soon: thus, if
we use them to crawl content, we will not retrieve any tweet, since there will not be any tweet
containing them.

Thus, we propose a way to automatically keep updated the keyword list K and hashtag list
H. Since the procedure does not depend on the fact that we are extracting hashtags or keywords,
in the following we indicate the set of candidates with W and the set of selected search criteria
with W∗, which can correspond either to sets of hashtags or to sets of keywords.

We are given with a set of annotated samples T . At first, we extract a set of candidate terms
W from T , which is constituted by all the (non-stop words) terms contained in each sample t ∈ T
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(line 1). This set will be periodically updated, with period P (set to 10 minutes). Every time
an update is requested, we extract the set of unique words W̄ contained in W (line 4) and we
compute their score s(w), according to Equation (4.6) (line 6). The list W̄ is then ordered in
descending order of s(w), and the top-K words are extracted as new search criteriaW∗ (lines 8-
9). Then, new tweets are collected until the next update, that will happen after a period P .
During the next update, the terms extracted from the newly collected tweets are added to W
(line 12), and W∗ is recomputed accordingly.

4.7.3 Filter out non-relevant keywords

Unfortunately, a completely automatic solution for the expansion of the keywords and hashtags
set is not accurate. In fact, if for some reason (e.g., a misclassification error of the downloaded
content) a non-relevant keyword happens to be in the list K, then the crawler will start down-
loading non-relevant content and will introduce noise in the data set.

Thus, we decided to introduce a new filtering level on the keyword selection process. Hash-
tags, on the other hand, are not filtered, since they are not necessarily attributable to a mean-
ingful expression, and thus it is difficult to analyze them automatically to understand whether
they are relevant for topic T or not.

In order to filter out non-relevant keywords, we built a topic taxonomy out of already existing
taxonomies. In particular, since in our use case we considered the topic food, we merged the
following taxonomies: i) NDSR 2014 Foods in the NCC Food and Nutrient Database8; ii) the
Google product taxonomy, kitchen and food sections9. The obtained set of terms are typical of
the selected topic, and thus useful to filter out all the words that do not match with topic T .
Consequently, we added a new step in Algorithm 6, so that during the keyword selection process,
if a keyword with high score is not included in the topic taxonomy, then it is automatically
discarded, since it is not relevant for topic T .

4.8 Influencers retrieval

In this Section we are going to introduce the influence metrics we will use to compute the
influence degree of users in social media.

4.8.1 Influence metrics

Preliminaries

Let Rt be the set of relevant tweets, i.e., the set of tweets that were retrieved from the firehose
and classified as relevant for topic T by the classifier. Moreover, let Ru be the set of relevant
users, i.e., the users that tweeted at least one of the tweets in Rt.

Let creator(t) be the user that originally created the tweet t.
Let P(u) be the set of tweets published by the user u ∈ Ru, defined as follows:

P(u) = {t ∈ Rt : publisher(t) = u}

where publisher(t) is the user that published the tweet t.
Let O(u) be the set of original tweets published by the user u ∈ Ru, defined as follows:

O(u) = {t ∈ Rt : publisher(t) = u ∧ retweeted(t) = false}

where retweeted(t) states whether t is a retweet of another tweet or not.

8http://www.ncc.umn.edu/products/database.html
9https://support.google.com/merchants/answer/1705911?hl=en

http://www.ncc.umn.edu/products/database.html
https://support.google.com/merchants/answer/1705911?hl=en
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Let retweet(t) denote a retweet of the original tweet t. Moreover, let RT(t) be the set of
retweets for the tweet t as follows:

RT(t) = {t′ ∈ Rt : t′ = retweet(t)}
Let RT(u) be the set of retweets made by u for tweets created by others.

Let mention(u, u′) denote a user mention of the user u made by u′. Moreover, let UM(u) be
the set of users mentioning u.

Metrics

The metrics proposed in this Section is based on the work [Pal and Counts, 2011], where the
components are adapted to the real-time case (i.e., the case in which content is downloaded in
real-time). In this case, in fact, APIs present some limitations on the retrieval of information.

Let u ∈ Ru be a user who either published or retweeted a relevant tweet.
The creativity C(u) of u expresses her ability of generating topic-related original content:

C(u) =
|O(u)|
|P(u)| (4.9)

The retweet impact of a user u measures the impact of retweets of a Twitter user, expressed
as the difference between how much u is retweeted by others and how much u retweets others.

RI(u) =
∑

t∈O(u) |RT(t)| · log(
∑

t∈O(u) |publisher(RT(t))|)+
−|RT(u)| · log(|creator(RT(u))|) (4.10)

The mention impact of a user u measures the impact of mentions of a Twitter user, expressed
as the difference between how much u is mentioned by others and how much u mentions others.

UMI(u) =
∑

u′∈Ru\u |mention(u, u′)| · log(|UM(u)|)+
−∑u′∈Ru\u |mention(u′, u)| · log(

∑
u′∈Ru\u |UM(u′)|) (4.11)

The activity A(u) of u measures the activity level of u on Twitter. Let τ be the time that
passed after the last published tweet of user u. Then:

A(u) = e−ατ (4.12)

The multimedia enrichment M(u) measures the rate of publication of multimedia content:

M(u) =
|{t ∈ O(u) : containsImage(t) = true}|

|O(u)| (4.13)

The external content enrichment E(u) measures the rate of publication of external content,
via URLs included in the tweet:

E(u) =
|{t ∈ O(u) : containsURLs(t) = true}|

|O(u)| (4.14)

4.9 Visualization of results

In the following, we illustrate the Web application used to visualize reports about influencers
analysis. We will refer to this application as dashboard.

Two kinds of analysis can be shown to users via the dashboard: real-time analysis on the
data that are currently being read from the firehose, and past data analysis on the data that
were stored in the database in past moments.

The Web application architecture is shown in Figure 4.8. The main components are: i) the
interface, which constitutes the interface that shows users a detailed report of the retrieved
information; ii) the REST API, which connects to the database containing the crawled data
and retrieves them.

In the following, we introduce the design of these two components.
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Figure 4.8: Architecture of the Web application used to show reports on influencers analysis

Figure 4.9: Real-time tweet density, showing the number of incoming tweets

4.9.1 Design of visual interface

The interface displays the following reports: a tweet density graph, a feed of incoming tweets, a
list of influencers, a keywords tag cloud and a hashtags tag cloud.

Tweet density graph

The tweet density graph shows the number of incoming tweets (either current or past data).
The real-time data view is shown in Figure 4.9. With this view, the user is provided with the

density of incoming tweets that are read in real-time from the firehose. This view is automatically
updated every 10 seconds, so as to dynamically change its content as tweets are stored in the
database. From this view, it is possible to move to the past data view of the same graph.

The past data view is shown in Figure 4.10. With this view, the user is provided with the
density of tweets that were collected in the past. This view is not periodically updated: the user
is required to specify the period (in the form of start date and end date) for which she would
like to visualize the collected data. The user can specify the visualization period for the data
(30 minutes, 1 hour or 1 day). From this view, it is possible to move to the real-time data view
of the same graph.
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Figure 4.10: Past tweet density, showing the number of tweets collected in the past

Figure 4.11: Incoming tweets feed

Incoming tweets feed

The incoming tweets feed shows the last 20 received tweets, and is updated dynamically as
tweets are stored in the database. The most recent tweets are shown in the upper part of the
list. If the tweet contains an image, a clickable thumbnail is shown together with the text: if
the user clicks on it, the original image is displayed. Moreover, by clicking on the user name,
the original user profile is shown on Twitter.

Influencers list

The influencers list is a ranked list showing the top-20 current influencers. Each name, if clicked,
brings to the influencer’s Twitter user profile. The users are ordered according to the influence
score (see Section 4.8).

It is possible to specify a fixed time period in the past (in the form of start date and end
date) and visualize the influencers in that period.
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(a) Hashtags (b) Keywords

Figure 4.12: Keywords and hashtags tag clouds

Keywords and hashtags tag clouds

The keywords and hashtags tag clouds show the most used keywords and hashtags in a fixed
period of time (either in real-time or in past data).

These views are shown in Figure 4.12. The interface rendering is the same for past data and
real-time data, although the source changes: when past data visualization is required, the user
specifies the period (in the form of start date and end date) for which she would like to visualize
the collected data, while if real-time data visualization is required, the most frequent terms in
the last 12 hours are shown.

4.9.2 Visualizing the map of influential users

Every user on Twitter, when she registers herself to the platform, can specify where she lives
by inserting a textual description of her permanent address. Unfortunately, this field is neither
mandatory nor constrained to any rules. Thus, while a large percentage of users specify their
location, others either do not specify it, or provide imaginary locations (e.g., Neverland and
Wonderland), inaccurate descriptions and text containing typos.

In the following, we illustrate how we extracted the location for each influential user, so as
to visualize the top-25 list of influencers in a map.

Extraction of user location

Our objective is to extract geographical coordinates (i.e., latitude and longitude) from a textual
location description.

Several GIS tools that extract latitude and longitude from a text are available. These services
are usually queried via a REST interface, and go through the available maps to look for the
place whose name is the most similar to the provided text. Then, they extract the coordinates
of the selected place and return them to the user that queried the service.

In this work, we selected the ARCGIS service10. Given a location textual description (pro-
vided by the user), we query the service to retrieve the related coordinates. The system looks

10https://geocode.arcgis.com

https://geocode.arcgis.com
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Figure 4.13: Influencers map

for the provided location in the maps, and if it does not find it (e.g., in case of imaginary or
wrong locations) it returns empty coordinates. Otherwise, the correct coordinates are retrieved.

Visualization on a map

We modified the visual interface introduced in Section 4.9 so as to visualize the list of influencers
in a map.

We used the JavaScript Leaflet library11, which, given as an input a list of points (described
by latitude and longitude), displays them in the world map, as shown in Figure 4.13. Each pin
pointing to a location of an influencer is decorated with the influencer username.

4.10 Implementation details

4.10.1 Pipeline for content retrieval

Parallelization

The Twitter throughput can be really large in case the selected search criteria are used frequently
by users. Consequently, it may happen that the crawler retrieves a really large number of tweets,
that are stored in memory waiting to be processed. However, the crawling process is faster than
the tweet analysis process, and thus as a result the tweets are continuously accumulated in the
memory, until it saturates and the process is killed.

11http://leafletjs.com

http://leafletjs.com
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Figure 4.14: Parallelization of topic-related content retrieval pipeline

Hence, we modified the pipeline so as to parallelize the crawling and analysis process. Fig-
ure 4.14 shows the result of the parallelization of the architecture presented in Figure 4.2. The
idea is to store momentarily in the database those tweets that are still not processed. The archi-
tecture is consequently divided in two parts: the first segment reads tweets from the incoming
queue and stores them in the database; the second segment extracts the non-processed tweets
from the database and analyzes them to understand whether they are relevant or not (in case
throwing away the non-relevant ones). Moreover, to speed up the process, we designed the two
segments so that the processing is done in parallel by N threads. Consequently, N different
threads extract tweets from the queue to store them in the database, and N other threads read
from database to analyze them. As a result, the incoming tweets do not saturate the memory,
and the process can run continuously without being stopped due to low performance.

4.10.2 Dashboard

REST API for data statistics retrieval

The following calls are used by the interface to retrieve real-time and past data via the REST
API for the tweet density graph:

• rest/tweetPastCount?startDate=&endDate=&mode= retrieves past data between startDate
and endDate. The parameter mode specifies the data visualization mode:

– mode=m requires a visualization period of 30 minutes

– mode=h requires a visualization period of 1 hour

– mode=d requires a visualization period of 1 day

• rest/tweetCount retrieves the number of relevant tweets currently stored in the database

• rest/periodicTweetCount retrieves the last 10 tweets count of the relevant tweets collec-
tion, to be displayed as points in the real-time tweet density graph

The following calls are used to retrieve data to populate keywords and hashtags tag clouds:
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• rest/keywords?startDate=&endDate= retrieves the keywords contained in tweets col-
lected from startDate and endDate

• rest/hashtags?startDate=&endDate= retrieves the hashtags contained in tweets collected
from startDate and endDate

The following call retrieves influencers:

• rest/influencers?startDate=&endDate= retrieves the top-20 influencers in the period
between startDate and endDate

Finally, the following call retrieves tweets for the tweet feed:

• rest/tweetFeed?startDate=&endDate= retrieves the 20 most recent tweets in the period
between startDate and endDate

Indexing

To speed up the retrieval of statistics that compose these reports, we precompute indexes for
the data in the database, so as to avoid content processing at each request.

The tweet density graph index is composed of: i) a real-time frequency histogram, main-
taining a cache of the last 10 database counts to be displayed in a real-time graph fashion (see
Figure 4.9); ii) a past frequency histogram, where each bin has a 5 minutes depth and maintains
the count of tweets collected in those 5 minutes.

As for the keywords, hashtags and influencers, we maintain a collection of tuples, each one
having a 5 minutes depth, where we store the top influencers, top keywords and top hashtags
we collected in those 5 minutes.

4.11 Summary

In this Chapter we proposed a methodology for the application of passive crowdsourcing tech-
niques so as to extract relevant content and influential users from social media. The extraction
is based on the automatic multimodal analysis of user-generated content, based on the assump-
tion that relevant content is produced by influential users. The automatic pipeline reads in
real-time tweets from the Twitter firehose, and classifies them as either relevant or non-relevant
for the selected topic. Then, the most relevant keywords and hashtags are extracted from the
topic-related content and fed as an input to the pipeline, as new keywords for the keyword-based
tweet search. This assures to follow dynamically changes in communication topics.

The proposed work answers to the following research questions:

• Research question 5: What seed queries can be used to initialize topic-related
information retrieval? In this Chapter we proposed a probabilistic method that identi-
fies the most relevant keywords and hashtags in a set of topic-related tweets. These terms,
if used to initialize the content retrieval procedure, allow us to retrieve a large quantity of
topic-related information. Unfortunately, conversations are not always focused on the same
sub-topics, and thus relevant keywords and hashtags change day by day. Consequently, in
architectures like the one we proposed in this Thesis, which monitor user-generated con-
tent in real time, it is necessary to periodically update the set of keywords used to retrieve
content. Thus, in our solution we analyze periodically the retrieved relevant content, we
extract keywords and hashtags, and we feed them as an input to the crawler, so as to
retrieve fresh and updated conversations.
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• Research question 6: What type of data can be analyzed to improve the accuracy
of topic-related information retrieval? In this Chapter we proposed a multimodal
approach that analyzes both textual and multimedia content in order to assess whether
content is topic-related. We show that this is a good approach, as demonstrated in the
experimental section, since images may contain hints on the relevance of content, which
are not captured by text.

• Research question 7: How are influential content producers defined and iden-
tified? In this Chapter we proposed a metrics for the identification of influential users,
which takes into account several factors such as the activity, originality and communica-
tiveness of a user. In the experimental section we show that this metrics allows us to
retrieve a large number of relevant and influential users for the selected topic.

• Research question 8: What is the impact of considering content producers’
influence level on the accuracy of topic-related information retrieval? In the
experimental section we show that the retrieved influential users produce a large quantity
of topic-related information, which is not retrieved by using other (baseline) influence
metrics.



Chapter 5

Optimizing passive crowdsourcing:
Detection of video ancestry
relationships

In this Chapter, we introduce a second use case for the passive crowdsourcing application. Here,
we exploit the multimedia content users publish on the YouTube social media to detect any
ancestry relationships between multimedia files.

User-generated content is easily distributed on the Web, and it is often replicated in more
copies which are spread through different channels. Duplications sometimes involve modifica-
tions of the content. For instance, images and videos may be modified by transformations such
as color corrections, insertion of artifacts, compressions, scaling and rotations, and then repub-
lished. This generates multiple copies of the same content which are similar (but not necessarily
identical).

Sometimes it is useful to track down all the copies of a given multimedia content, for instance
in case of copyright enforcement, in which the copied content was subjected to copyright laws.
The family of problems in which we need to detect all the copies of a given document cohabiting
on the Web is named NDDR, i.e., Near Duplicate Detection and Recognition.

A more ambitious task is the one of identifying among a set of multimedia documents the
ones that are original and the structure of generation of each duplicate. That is, given a set
of near duplicates, we would like to trace the history of transformations that generated the
duplicates.

The evolution process of images and videos is similar to a phylogenetic tree, or phylogeny,
i.e., the branching process whereby populations are altered over time and may split into separate
branches, hybridize together or terminate by extinction. In case of video content: i) a branch
corresponds to the duplication of some parts of a video into another video; ii) a hybrid is the
product obtained by mixing clips deriving from multiple videos; and iii) an extinction is the
absence of further duplications of a given clip.

We would like to exploit the information about similarities among the individuals (i.e., videos
in a video collection) to identify the evolving history of the original multimedia content.

Previous works [Dias et al., 2010] [Dias et al., 2011] deal with the problem of identifying the
root in a collection of near duplicates (either images or videos). However, this process is limited
to a set of documents in which the root is unique and all the other documents duplicate its
content. This is obviously a very special case in which the phylogeny is a tree, i.e., a structure
in which the content of each child is a duplicate of the content of a single parent, and does
not replicate the content of any other document. However, cases in which a document includes
content which was duplicated from two or more other documents are very diffused. Consider
for instance the creation of news video summaries: they are usually composed of many clips

111



112 Chapter 5. Optimizing passive crowdsourcing: Detection of video ancestry relationships

which may be duplicated from many sources. This suggests that a video may inherit content
from several videos, and thus many roots (i.e., videos whose content is entirely original) may be
present.

In this Chapter we propose a method for constructing the video phylogeny of a set of near
duplicate videos, without any limitation on number of roots and graph structure. We start from
a simple matching phase whose output is a preliminary phylogeny. Since the algorithms used
for segmenting videos and performing the matching are subjected to uncertainties, the produced
phylogeny will contain noise, i.e., some non-existing similarity relationship will be detected and
some existing relationship will not. Thus, we run an adapted version of the well-known DFS
algorithm so as to remove noise and restore the real phylogeny.

5.1 Video similarity graph computation

Suppose a user queries a video sharing platform (e.g., YouTube) requiring all the videos related to
a specific topic. As a running example consider the case in which we require all the videos whose
topic is the resignation of pope Benedict XVI in 2012. Let V denote the retrieved collection of
videos.

Figure 5.1: An example of a collection of videos in which content is replicated. Each time the
original content is copied, it could be subjected to transformations (e.g.: clipping, rotation,
rescaling)

Each video v ∈ V could include either original content (i.e., content that was not duplicated
from any other document in V) or replicated content (i.e., content that was copied from other
documents in V). This usually happens in presence of viral content, which is copied in a huge
amount of multimedia files and then spread over the Web in new versions. In our running
example, as represented in Figure 5.1, many clips are duplicated in more videos, since either TV
shows or users on the Web copied part of the content of the original videos and split it in multiple
versions. In the represented example, the videos colored in blue contain only original content,
while all the others contain replicated content. The arrows illustrate the flow of duplications
that created the copies.

Figure 5.2 illustrates a possible duplication process for a sample of 6 videos. Notice that
each duplicate may contain either an exact copy the original content or a modified version of
it. These modifications are usually caused by superimposition of artifacts (logos, text) or by
transformations (e.g., cropping, scaling, color corrections).

In the following, we propose a method for producing a similarity graph for the videos v ∈ V,
i.e., a graph in which each node is a video v in the video collection and each edge (vi, vj) specifies
the degree of similarity of vi and vj .
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Figure 5.2: Video similarity graph on a real dataset. Notice that the duplicated clips are modified
and then combined together in new videos

5.1.1 Similarity graph: definition

In this Section, a definition of video similarity graph is provided.
Let V be a collection of videos. Moreover, suppose that each video v ∈ V is composed of a

set of video segments Sv = {s1, . . . , sN}, i.e., portions of video which shoot the same scene in
their entire duration.

We select two video segments: sk is a segment in Svi and sl is a segment in Svj . These
segments may be either duplicates or distinct segments. In order to establish whether sl is a
duplicate of sk, the similarity degree σ(sk, sl) can be computed:

σ(sk, sl) =

{
M(sk, sl) M(sk, sl) ≥ τ
0 M(sk, sl) < τ

(5.1)

where M(sk, sl) returns the confidence score of the matching between sk and sl and τ is a
threshold on the confidence value. That is, whenever the confidence value is lower than τ the
two segments do not match and their similarity is 0.

A video similarity graph is defined as a graph in which: i) each node represents a video;
ii) each node contains a number of sub-nodes, representing its segments; iii) edges are traced
between pair of segments; iv) an edge e = (sk, sl) whose starting node is sk and whose destination
node is sl is labeled with their similarity degree σ(sk, sl). An example of video similarity graph
is shown in Figure 5.3(a). We call roots the videos whose indegree is 0, and leaves the videos
whose outdegree is 0.

The similarity relationships between videos can be synthesized by analyzing the similarity
relationships between segments. For instance, the graph in Figure 5.3(a) suggests that some
segments of v1 are copied in v2 and v3 and that some segments of v4 are copied in v1 and v2.
The synthesized relationships can be represented in a graph in which segments are not visualized,
as shown in Figure 5.3(b). The weight of the edge (vi, vj) represents the similarity degree of the
two connected videos, computed as:

σ(vi, vj) =

∑
sk∈Svi

∑
sl∈Svj {M(sk, sl) > τ}
|Svi | · |Svj |

(5.2)
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Figure 5.3: Video similarity graph

5.1.2 Video Processing Pipeline

We suppose that the video collection V is available as an input. Several steps are needed to
process it and extract the video similarity graph. In this Section we propose a video processing
pipeline, where V is fed as an input and the similarity graph is produced as an output.

General overview

The video processing pipeline is divided into two main phases: the indexing phase and the
matching phase.

In the indexing phase, we are provided with a collection of videos V and our aim is to extract
keyframes and descriptors from them. These descriptors will be then used as an input for the
matching phase. In order to identify keyframes, each video v ∈ V is segmented into shots. Then,
for each shot one or more keyframes are selected, extracted from the video and processed so as
to compute their descriptors.

In the matching phase, the descriptors that were previously extracted from the video seg-
ments are used to perform the matching between pairs of segments (sk, sl) (i.e., by computing
the quantity M(sk, sl)). For each pair sk, sl in the collection the similarity σ(si, sj) is com-
puted according to Equation 5.1. Finally, the video similarity graph is built, as described in
Section 5.1.1.
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Figure 5.4: Video processing pipeline

Figure 5.5 represents the component diagram of the application. The application structure
is divided into two main components, i.e., the Indexer component and the Similarity graph
extraction component. The first one is in charge of indexing the video collection, thus its sub-
components are the Video segmentation component, the Keyframe extractor component and
the Visual feature extractor component. The Indexer component produced output is then
used by the Similarity graph extraction component, which is in charge of computing the
similarities between the videos in the video collection and returns the video similarity graph.
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Finally, the Browser visualization application component is the one employed by users
for visualizing the video similarity graph. Here, the result is read by the Similarity graph
extraction component, which checks whether the graph was already indexed by the Storage
component, and if it is not the case, asks to the Matcher component to compute the video
similarity graph and then stores the result using the Storage component.

Figure 5.5: Component diagram

Phases

Video segmentation The video segmentation is the process of partitioning a video v ∈ V
into sets of consecutive frames that are homogeneous according to some defined rule.

When a video v is segmented, it is partitioned into camera takes (i.e., subsets of consecutive
frames that are captured by a single camera from the moment it starts shooting to the moment it
stops), shots (i.e., subsets of consecutive frames belonging to the same camera take in an edited
video) and scenes (i.e., a group of continuous shots that are semantically connected) [Vid, 2013].

For each shot one or more keyframes are extracted. The number of extracted keyframes
depends on the camera motion in the scene, i.e., the more the camera moves, the more the
captured frames content changes, the larger is the number of required frames to represent the
shot.

In this work, the video segmentation was performed using either one of two modules: the
human segmentation module and the automatic segmentation module.
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Figure 5.6: Video segmentation components

The human segmentation module requires a human to segment the set of videos into shots
and extract the related keyframes. This prevents to over-segment (or under-segment) the videos,
which may happen when an automatic component is used to perform the segmentation. As a
result, a manual segmentation improves the performance, although it cannot be applied in large
datasets, since the operation is time-consuming.

On the other hand, the automatic segmentation module automatically detects shots, represen-
tative keyframes and scenes. In this work we adopted a component called IDMT Temporal Video
Segmentation [FRH, 2012], developed by Fraunhofer IDMT. With this component, keyframes
are detected depending on changes between adjacent frames in a shot. As stated earlier, this
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solution may be less accurate than manual segmentation, although it is strongly suggested with
large datasets.

Descriptors extraction The descriptor extraction phase extracts a global (a set of local)
descriptor(s) for each extracted keyframe. In this work we extract SIFT-based descriptors [Lowe,
1999] and color descriptors [van de Sande et al., 2010].
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Figure 5.7: Descriptors

The SIFT Descriptor and the Color Descriptor are based on custom implementations (in
OpenCV and Java, respectively).

The Color SIFT Descriptor implementation is based on the ColorDescriptor component [RGB,
2012] developed by Koen van de Sande. The derived descriptors increase illumination invari-
ance and discriminative power of descriptors, so that the obtained description is robust to light
intensity changes/shifts and to light color changes/shifts [van de Sande et al., 2010].

Matching During the matching phase, the similarity degree between videos and video seg-
ments is computed. Let sk ∈ Svi and sl ∈ Svj denote two video segments. Their similarity
degree is computed as stated in Equation 5.1. The matching is performed:

• symmetrically in the case of color descriptors, i.e., if M(sk, sl) ≥ τ then sk matches with
sl and viceversa;

• asymmetrically in the case of SIFT-based descriptors, i.e., ifM(sk, sl) ≥ τ then sk matches
with sl, but it is not sure that sl matches with sk (M(sl, sk) is computed so as to verify is
this is the case).

In case of SIFT-based descriptors, given two keyframes Kk ∈ sk and Kl ∈ sl, the confidence
score of their matching is computed as the percentage of the key-points of Kk that match with
the key-points of Kl:

M(Kk,Kl) =
|KP(Kk) ∩KP(Kl)|

|KP(Kk)|
(5.3)

where KP(K) is the set of key-points of the keyframe K. Thus, the confidence score of the
matching of sk and sl is computed as:

M(sk, sl) = max
Kk∈sk,Kl∈sl

M(Kk,Kl) (5.4)

In case of color descriptors, given two keyframes Kk ∈ sk and Kl ∈ sl, the confidence score
of their matching is computed according to the Bhattacharyya distance, as follows:

M(Kk,Kl) =
∑
b∈B

√
HKk

(b) ·HKl
(b) (5.5)

where HKk
and HKl

are the color histograms of the keyframes Kk and Kl, respectively, and B
is the set of bins of the two histograms. Thus, the confidence score of the matching of sk and sl
is computed as stated in Equation 5.4.
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In order to build the video similarity graph, the S segments in the video collection V are
inserted in a unique array (keeping the reference to the videos they belong to). Then, an S × S
matrix is built, where the entry on the i-th row and j-th column represents the similarity degree
σ(si, sj) between the i-th and j-th segments in the array. This matrix is used as the adjacency
matrix of the video similarity graph.
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Figure 5.8: Translate a similarity matrix into a graph

5.2 Video phylogeny reconstruction

In this section the algorithms used for removing noise from a corrupted phylogeny are introduced.

5.2.1 Phylogeny structure analysis

A video phylogeny is a graph structure describing the evolution of multimedia content over time.
Some videos contain the original content, which is copied, in case modified and reshared over
the Web.

The duplication process follows a unique direction, i.e., from past copies to new copies.
Indeed, since new copies are created by mixing new content and existing video clips, it never
happens that parts of a newer video are copied in an older video. That is, if a video v is created
at time t(v) and a (complete or partial) duplicate vc of v is created at time t(vc), then it is
always true that:

t(vc) > t(v) (5.6)

In other words, if the phylogeny contains a path from v to vc, there does not exist a path
that starts from vc and goes to v, otherwise the constraint in Equation 5.6 would be violated.
Consequently, the phylogenetic tree is a directed acyclic graph.

5.2.2 Problems related to phylogeny construction

When a set of videos V is given as an input, we build a preliminary phylogeny by computing
the video similarity graph (see Section 5.1.1).

In an ideal situation, the similarity graph that is returned as the output of our pipeline is
a directed acyclic graph. This means that: i) roots, i.e., nodes whose indegree is 0, represent
those videos whose content is original, i.e., not duplicated from other videos; ii) leaves, i.e.,
nodes whose outdegree is 0, represent those videos whose content is at least partially duplicated
(unless the node is both a root and a leaf, meaning that it is disconnected from the graph and its
content is original); iii) paths represent the content duplication process, i.e., the steps through
which the original content was copied in other videos.

However, the algorithms that are used to extract descriptors and perform matching are
usually uncertain, meaning that false positives (i.e., edges that are in the graph but that do not
exist in reality) and false negatives (i.e., edges that exist in reality but that are not detected)
may be introduced.
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Figure 5.9: Original phylogeny (a) and output of the video processing phase (b)

This results in a graph that does not reflect the real phylogeny of the video collection V:

• when a false positive is introduced, the duplication process represented in the graph is
enriched with respect to the original one, reporting that the content of a video vi was
copied from the content of a video vj (which is not true);

• when a false negative is introduced, the edge between two videos vi and vj is not detected
and the real duplication process that was going from a root vr to a node v is broken in
two pieces, from vr to vi and from vj to v. This means that vj and vi may be reported as
a root and a leaf in the graph, respectively.

As a consequence, new roots may be introduced and the real roots may be incorporated in
the graph as either internal or leaf nodes. This means that the information about which videos
carry the original content may be corrupted. The same applies for leaves.

Moreover, due to the insertion of false positives, cases in which the new edges violate the
constraint in Equation 5.6 are frequent. This means that cycles are introduced in the video
similarity graph, and this result in a structure which is not compliant with the video phylogeny
features.

An example of phylogeny corruption is shown in Figure 5.9. The dashed red lines and the
red line show the introduced false negatives and false positives, respectively. Notice that both
roots (in green) and leaves (in red) change between the two graphs. Moreover, a cycle is created,
invalidating the phylogeny structure.

5.2.3 DFS algorithm for phylogeny reconstruction

Suppose a phylogeny corrupted by noise is given as an input. Our aim is to reconstruct the
original phylogeny by removing cycles and restoring the original roots, leaves and edges.

The Depth-First Search algorithm can be used so as to remove cycles from the graph structure
and reconstruct the original phylogeny. The idea behind this procedure is that if the search
starts from the roots, whenever an edge that violates the constraint in Equation 5.6 is found, it
is deleted. Thus, by following the duplication process directionality (from root to leaves), DFS
easily identifies the false positives and eliminates them. To this end, we devised two different
approaches for this strategy.

DFS: single iteration

Algorithms 7 and 8 illustrate the procedure used for deleting cycles from the video similarity
graph using the DFS algorithm.

The algorithm navigates the edges connecting pairs of video segments and deletes them if a
cycles between videos is detected. Since there may be more than one connected component in
the graph, the cycle removal is started from each video v ∈ V (line 2 of Algorithm 7), so as to
explore the entire graph and detect all the cycles.
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For each starting point v, Algorithm 8 is used to navigate the set of videos in the graph
that can be reached from v. At each step, we check whether the current video v was visited
in previous steps (line 1), and if it is the case, a cycle is detected and broken by deleting the
last visited edge. Otherwise (line 3) the video is tagged as visited by queuing it in the stack of
visited nodes. Then, all the edges ei that are outgoing from any segment s ∈ Sv are selected and
analyzed (lines 5 and 6): the destination video d of each edge ei is selected and used as starting
point for the next step. Eventually, the acyclic graph is returned.

Figure 5.10 shows a run of the algorithm when v1 is used as start point. At step 1 the two
outgoing edges of v1 are selected and the first one (from v1 to v3) is crossed. Then, at step 3 v3

is analyzed and its outgoing edge (from v3 to v4 is crossed). Finally, the outgoing edge of v4 is
selected so as to be crossed, but it brings to v1 (which was already visited), and thus this last
edge is deleted from the graph. Finally, the edge between v1 and v2 is crossed at step 5, reaching
a leaf and terminating the algorithm. The outcome of this procedure is a phylogeny with v1 as
a root node and v2, v4 as leaves.
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Figure 5.10: Steps of a DFS run for cycle removal

DFS: multiple iterations

The quality of the output provided by of the algorithm proposed in Section 5.2.3 depends on
the order with which the videos in V are used as starting point for the depth-first search. For
instance, consider the case in Figure 5.11. If the cycle is entered from different nodes, different
edges will be deleted by the algorithm. However, deleting randomly one of the edges in a cycle

Algorithm 7: RemoveCycles uses the DFS algorithm so as to remove cycles from the
video similarity graph
Input: Corrupted phylogeny PC
Output: Reconstructed phylogeny P

1. P = PC ;
2. for each v ∈ V
3. P = DFSCyclesRemoval(P, v, ∅, ∅);
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Figure 5.11: Different starting points for the DFS algorithm lead to the deletion of different
edges

could bring either to the right solution or to the wrong solution. Thus, the cycle access point
cannot be defined randomly.

In the following, we define a method for initializing the algorithm multiple times and then
aggregate the results achieved by different iterations. The main idea is that each time the DFS
algorithm is executed, it will retrieve a graph in which edges are either existing or not existing.
The edges that are reported as existing will receive one vote. If we start DFS multiple times
changing the starting nodes at each iteration, the graph exploration will be different each time.
Consequently, some iterations will vote some edges as existing, while others will not. We call
strong edges the ones which are annotated as existing by a large number of DFS iterations,
and weak edges the ones that receive a small number of votes. Eventually, strong edges will
be preferred to weak edges. This makes the procedure more robust, since if the number of
iteration is large, most of them will foresee the correct phylogeny direction, and weak edges will
correspond to the ones violating the constraint in Equation 5.6.

Algorithm 9 illustrates the procedure. At first, the DFS algorithm is instantiated N times,
and the resulting N graphs are collected in an array P (lines 1-5). In each iteration, the DFS
starting nodes are redefined by randomizing the order of the videos v ∈ V. Consequently, each
graph in P corresponds to an annotation made by the DFS algorithm on the presence/absence
of the edges in the phylogeny. In order to aggregate the N annotations, for each edge e = (si, sj)
the number of received votes is computed (lines 8-10). Finally, we evaluate whether each edge
e will be inserted in the final phylogeny. To do so, we start integrating the strong edges and
then we move to the weak ones. At each iteration, we select the set E of edges which received
exactly a votes (line 13), where a is varying between N and 1. Then, we start integrating the
edges e ∈ E in a new phylogeny whose set of edges is initially empty (line 15). For each edge
e we check whether inserting it into the phylogeny generates a cycle (line 16): if this is not the
case, e is inserted in the final phylogeny.

Algorithm 8: DFSCyclesRemoval applies the DFS algorithm to a graph G in order
to remove cycles. The search starts at v
Input: Graph G, Current node v, Last visited edge el, List of visited videos L
Output: Graph G

1. if v ∈ L then
2. Remove el from G
3. else
4. Add v to L
5. E = getOutgoingEdges(v, G);
6. for ei ∈ E
7. d = getDestinationVideo(ei);
8. G = DFSCyclesRemoval(G, d, ei, L);
9. return G;
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Algorithm 9: N-RemoveCycles applies N times the DFS algorithm to a graph G in
order to remove cycles
Input: Corrupted phylogeny PC , Number of iterations N
Output: Reconstructed phylogeny P

1. for i = 1 to N
2. P[i] = PC ;
3. Set Vi as a random sequence of the videos in V;
4. for v ∈ Vi
5. P[i] = DFSCyclesRemoval(P[i], v, ∅, ∅);
6.
7. Set S as the collection of all the segments in V;
8. for si ∈ S
9. for sj ∈ S
10. votes[i][j] = computeEdgeVotes(P, si, sj);
11.
12. Po = (V, ∅);
13. for a = N to 1
14. Set E = {(si, sj)} as the set of edges corresponding to the cells votes[i][j] = a;
15. for e ∈ E
16. if Po ∪ e is not cyclic
17. Add e to Po;
18. return Po;

5.2.4 Integration in the software architecture

Figure 5.12: Integration of the DFS module in the software architecture

Figure 5.12 shows the integration of the DFS module in the software architecture presented in
Section 5.1.2. The Noise removal component is the module in charge of applying the DFS
algorithm so as to remove noise from the phylogeny. Once the computation ends, the result is
stored in memory using the Storage service component.

5.2.5 Problems that DFS cannot solve

In this work, we exploit the DFS algorithm so as to remove cycles and delete those edges which
violate the constraint in Equation 5.6. However, there are problems which DFS cannot solve.

First of all, let e be a false positive, i.e., an edge that is not present in the real phylogeny,
which does not generate a cycle in the corrupted phylogeny. The DFS algorithm will not identify
it as a wrong edge, and thus it will be present in the output.

Secondly, the DFS algorithm is used to remove edges from the corrupted graph. However,
it happens sometimes that two segments are not recognized as similar in the matching phase.
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(a) Original (b) Small amount of noise (c) Large amount of noise

Figure 5.13: Problems related to DFS
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Figure 5.14: Web application architecture for the visualization and validation of results

Thus, false negatives are introduced, i.e., some edges are missing in the output. DFS is not
capable of restoring those edges, and thus some relationships will be missing.

In an ideal situation in which a small amount of false positives and false negatives are
present, these problems do not impact seriously on the algorithm performance, since errors are
introduced at segment similarity level and are globally masked by the video similarity level.
However, in all those cases in which the introduced noise is high, the outcome could differ from
the real phylogeny, affecting the performance. Nevertheless, we will show how in real cases the
performance is still good.

An example is shown in Figure 5.13. Notice that if the amount of noise is limited (e.g.,
in Figure 5.13(b) an edge is missing, two are introduced), then the phylogeny is perfectly re-
constructed, since the introduced edges are recognized as false positives and removed, and the
remaining edges replace the false negatives. However, when the amount of noise is larger (e.g.,
in Figure 5.13(c)), the reconstructed phylogeny differs from the original one: notice that both
the root set (in green) and the

5.3 Visualization and validation

In the previous chapters we proposed algorithms for building the video similarity graph and
reconstructing the phylogeny. However, a visual representation of the result would be useful to
validate the correctness of the reported video similarity relationships. Moreover, since the result
could be subjected to uncertainty (as stated in Section 5.2.5), manual annotation could be used
to remove false positives and restoring false negatives.

In this Chapter the application used for visualizing and validating the output of the algorithm
is presented.
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5.3.1 Web application architecture

Since the application is asked to collect annotations from a crowd, it needs to be accessible
through the Web. Thus, we built a Web application and deployed it on a server, so that it can
be accessed from different workstations.

The architecture is described in Figure 5.14. The phylogeny, which has a graph structure,
is fed as an input to the Web application. Firstly, it is translated in an XML document. The
XML document reports the structure of each video and the list of all the detected relationships
among video segments.

<VideoDuplicateDescription>
<Content>

[...]
</Content>
<Relationship>

[...]
</Relationship>

</VideoDuplicateDescription>

The Content tag contains information related to the structure of the video collection. Each
child ContentObject contains the description of a single video in the video collection (reporting
the MIME type of the video, its ID, its name and the location). Each video contains also a
MediaSegments tag, whose children represent the video segments.

<ContentObject MIMEType="videoMIMEType"
ID="videoID" MediaLocator="URL">

<Descriptions ID="videoID" Name="videoName">
<ItemAnnotations Duration="durationInSeconds"

CreationTS="creationTimeStamp"/>
<MediaSegments>

<SceneSegmentDescription ID="segmentID" <!-- a segment -->
StartTS="segmentStartTimeStamp"
EndTS="segmentEndTimeStamp"/>

</MediaSegments>
</Descriptions>

</ContentObject>

The Relationship tag contains the list of all the detected relationships between video seg-
ments. Each relationship (listed as TemporalRelationship) refers to two video segments (the
start node and the destination node, respectively), together with the relationship confidence
value.

<TemporalRelationship refID1="segmentID1" refID2="segmentID2">
<SegmentRelationshipAnnotation>

<Confidences>
<Value>

<ConfidenceValue Value="value"/>
</Value>

</Confidences>
</SegmentRelationshipAnnotation>

</TemporalRelationship>

The interface displays the phylogeny structure described in the XML file. Users can visualize
the underlying relationships (together with the confidence value), and if a relationship is recog-
nized to be a false positive, it is possible to mark it as a candidate for the deletion. Each time a
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(a) Visualization of videos and relationships

(b) Login form (c) Visualization of video
segments and relationships

Figure 5.15: Validation interface

user confirms the relationship or discards it, her annotation is stored in a database. Finally, it is
possible to merge all the annotations and update the phylogeny by deleting those relationships
that were marked as non existing by most of the users.

5.3.2 Visualization

We suppose the users to be registered in our system.

The entry point of the application is a login form, shown in Figure 5.15(b). Since we supposed
that many descriptors can be used for indexing the video content, we suppose here that one graph
for each descriptor type is created. This means that many XML files are available, one for each
loaded graph. Thus, using the drop-down list, the user selects the XML he is interested in and
visualizes the result. In the figure, we are loading the SIFT.xml file.

Once the user submits her data, the required graph is visualized (see Figure 5.15(a)). The
visualized structure is a matrix in which each row and each column represent a video. A colored
matrix cell represents the presence of a relationship between the corresponding pair of videos,
while a blank cell states that there doesn’t exist any pair of segments in those videos which
are similar. By clicking on the row (column) title, a preview of one of the keyframes for the
corresponding video is visualized in a popup.

Finally, if the user selects the colored cell corresponding to the videos vi and vj , he accesses
to a second matrix reporting the relationships between the segments of vi, vj (see Figure 5.15(c)).
Again, by clicking on the row (column) title the user can visualize a preview for the segment,
composed of its keyframes. Notice that here the colored cells have different intensities: the
higher is the saturation, the higher is the confidence value.
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(a) (b)

Figure 5.16: Examples of validation popups

5.3.3 Validation

Once the relationships between the segments of two videos vi, vj are visualized (Figure 5.15(c)),
the user could decide to annotate them as true positives or false positives. To do so, he has
to click on one of the colored cells. A popup is visualized, reporting the keyframes of the two
segments and the matching score. Two examples are shown in Figure 5.16.

As shown in the Figure, the user could decide to click either on the Confirm button or on
the Discard button. In either case, the specified annotation is stored in the database and the
relationship is tagged as ‘annotated’ by that user, so as to prevent the insertion of two (or more)
annotations for the relationship from the same user.

5.4 Summary

In this Chapter we proved how an automatic analysis of multimedia content can help in the
identification of the original content among a set of duplicate copies. The analysis is based on
computer vision techniques, that firstly identify copies in a pool of multimedia object, and then
try to infer relationships between them. Each relationship is a copy relationship, indicating that
one item is copied from another, and that it may introduce some variation on the content (e.g.,
color corrections, rescaling).

The proposed work answers to the following research question:

• Research question 7: How are influential content producers defined and iden-
tified? Users that are mainly focused on a single topic and that produce original content
are probably experts in that topic, and experts produce relevant content. Thus, the iden-
tification of duplicated content allows us to discard users that do not usually produce
relevant and topic-related content, hence improving the accuracy of the retrieval process.
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Chapter 6

Experimental evaluation

In this Chapter we will discuss the experiments that support the claims introduced in Chap-
ters 3, 4 and 5.

6.1 Active crowdsourcing optimization: Fighting uncertainty on
structured data

In this section we evaluate the proposed offline and online uncertainty reduction methods on
several synthetic and two real datasets, and collect answers through a real crowdsourcing plat-
form.

First, we exploit the synthetic datasets to investigate the impact of uncertainty; the study
shows that even small sizes of the dataset (N < 100) might lead to an extremely large number
of possible orderings. This justifies the need for considering top-K query results, which dramat-
ically reduce the number of orderings by restricting the analysis to the tuples occurring in the
first K levels of the tree (Figure 6.5).

Then, we compare the online and offline methods described in Section 3.7 on uncertain
datasets characterized by thousands of possible orderings of top-K tuples (Figures 6.7 and 6.10).

6.1.1 Baselines and Oracle algorithm

For completeness, we include in our analysis the comparison with an omniscient algorithm
(Oracle), plus two simple algorithms used as baselines: Random and Naive.

Oracle algorithm

The Oracle solution is obtained by: i) generating all the possible sets of B questions; ii) test-
ing them with a hypothetical omniscient and fair worker, who knows the real ordering and
works at no cost; iii) evaluating the uncertainty reduction derived from each answer, and then
iv) returning the set providing the highest uncertainty reduction.

First baseline: Random algorithm

The Random algorithm returns a sequence of B different questions chosen completely at random
among all possible tuple comparisons in TK , i.e., drawing questions from

Qall = {ti ?≺ tj |ti, tj ∈ TK ∧ i < j}. (6.1)

127



128 Chapter 6. Experimental evaluation

Full name Parameter Tested values
Size of dataset N 100, 500, 1000, 10000, 100000, 1000000

Number of results K 1, 3, 5, 7, 10
Question budget B 1, 3, 5, 7, 10

Score probability distribution spread δ 1e-6, 1e-5, 1e-4, 1e-3
Uncertainty estimation approach appr avg, opt, pess

Measure of uncertainty U entropy (UH), weighted entropy (UW ), ORA (UORA), MPO (UMPO)
Score interval distribution - uniform, Zipfian
Accuracy of annotators p 0.8, 0.9, 1

Table 6.1: Operating parameters (defaults in bold)

Second baseline: Naive algorithm

The Naive algorithm avoids irrelevant questions by returning a sequence of B different questions
chosen randomly from QK (see Equation (3.24)), i.e., from all the possible comparisons between
tuples in TK that have overlapping pdf’s.

Other baselines

Two other baselines were considered: these are relaxed versions of the Naive and Random algo-
rithms, in which the set of questions are defined, respectively, as:

QN = {ti ?≺ tj |ti, tj ∈ T ∧ overlap(fi, fj) ∧ i < j}

and
QNall = {ti ?≺ tj |ti, tj ∈ T ∧ i < j}

However, the number of questions in QN and QNall is huge, since every pair of objects in the
complete tree T is used to define a question. Thus, it is very difficult for the algorithm to select
randomly a relevant question (i.e., a question that, if asked, reduces at least a bit of uncertainty),
and as a result, these baselines achieve a null uncertainty reduction.

Consequently, for fairness we decided to drop these baselines from our experiments.

6.1.2 Datasets

The experimental phase exploits one synthetic and two real datasets.

Synthetic datasets

The synthetic datasets consist of collections of tuples with uncertain scores. The score of each
tuple s(ti) is uniformly distributed within the interval [li, ui].

We used δ = ui− li as a parameter to tune the level of uncertainty: the larger is δ, the larger
is the uncertainty on the score distribution.

For each tuple, the value li is sampled at random in the interval [0, 1 − δ] from either a
uniform (Figure 6.1(a)) or a Zipfian (Figure 6.1(b)) distribution, such that 0 ≤ li < ui ≤ 1.

For each configuration of the parameters, we generate 10 instances in order to compute the
average performance.

The real ordering ωr of the tuples in T is simulated by sampling, for each tuple, a value of
the score from the corresponding pdf, and sorting tuples in decreasing value of score. Such an
ordering corresponds to one of the paths of the tree of possible orderings T .

YouTube dataset

Real datasets are often characterized by tuples whose score uncertainty cannot be represented
with a uniform distribution.
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(a) Uniform distribution
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(b) Zipfian distribution

Figure 6.1: Uniform distribution (a) and Zipfian distribution (b) for a set of 500 objects. Notice
how, while in the first case the objects are equally distributed in the entire score space, using
the Zipfian distribution the number of objects with high score is reduced

Event Event date Upload date
Curiosity landing on Mars 6-aug-12 (1st) 6-aug-12 (1st)
King Richard III body found 12-sep-12 (2nd) 25-oct-12 (3rd)
Felix Baumgartner freefall 14-oct-12 (3rd) 15-oct-12 (2nd)
Obama election 6-nov-12 (4th) 7-nov-12 (4th)
Palestine entering UN 29-nov-12 (5th) 19-dec-12 (6th)
S.H. school shooting 14-dec-12 (6th) 15-dec-12 (5th)
Los Roques lost airplane 4-jan-13 (7th) 7-jan-13 (7th)
Solomon Islands tsunami 6-feb-13 (8th) 22-feb-13 (9th)
Pope Benedict XVI resignation 11-feb-13 (9th) 11-feb-13 (8th)
Città della Scienza fire 4-mar-13 (10th) 10-mar-13 (10th)

Table 6.2: Event occurrence date and upload date of one set of videos in the YouTube dataset.

As a concrete example, we considered the case of videos downloaded from YouTube and their
associated upload timestamps. The upload time is an uncertain indication of the occurrence time
of the event captured by a video, since, given a YouTube video, it is not sure whether the user
uploaded it as soon it was shot or not.

Therefore, we estimated the distribution foffset describing the temporal offset between the
upload time and the event time from a training dataset. The dataset was obtained by download-
ing 3000 YouTube videos in response to keyword queries referring to events happened in October-
November 2012, either unexpected (e.g., Canada earthquake) or announced (e.g., Obama elec-
tion, Hurricane Sandy in New Jersey, Felix Baumgartner’s freefall). The events that were taken
into account in this fase are enlisted in Table 6.2.

At first, we manually processed this dataset so as to remove the irrelevant videos returned in
response to the keyword queries, i.e., video that, although being part of the result set proposed
by YouTube, were not related to the events we were considering. After preprocessing, the
training dataset contained 939 videos, whose timestamps were used to estimate foffset. In order
to do this, we shifted the timestamps of the videos by setting the origin (t = 0) to the actual
occurrence time of the event, i.e., we moved each timestamp T of the event happened at time
Te to the timestamp T − Te.

Figure 6.2 shows the estimated cumulative density function (crosses), as well as the para-
metric model obtained by fitting a piecewise polynomial with degree n = 3 and 12 intervals
(solid line). This approximation is needed to compute the probabilities of the orderings using
the algorithm in [Li and Deshpande, 2010], as discussed in Section 3.3.1.

Then, we considered a separate test dataset, which contains 10 sets of N = 10 videos each.
Within each set, each video refers to a separate event. As an example, Table 6.2 reports the
video upload date for one of the sets used in the experiments and the corresponding event date.
For each set of videos it is possible to build a tree of possible orderings, by assigning to each
video an uncertain occurrence time, modeled with a non-uniform distribution foffset centered
in the video upload time. On average, each tree of possible orderings contains approximately
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Figure 6.2: CDF estimate for the YouTube training dataset
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Figure 6.3: A sample of images from the IVC dataset. Some of the images are distortion-free (a),
while others are corrupted by blurring (b), JPEG compression (c) or other types of distortion

450 orderings. Note that, in this case, K = N , since the ordering is based on time rather than
on the relevance score computed with respect to a user query.

The test dataset was used to evaluate the proposed algorithms, with the goal of measuring
the number of questions needed to determine the correct ordering ωr of events in each set. Each
question asks the worker to indicate the correct temporal ordering of two events.

Image quality dataset

The second real dataset consists of a collection of images affected by different types of distortion
(e.g., blur, Gaussian noise, JPEG compression, etc.) extracted from the IVC dataset [Le Callet
and Autrusseau, 2005]. A sample is shown in Figure 6.3.

Each image comes with a Mean Opinion Score (MOS) value (a number in the range [0, 100]),
which can be used to determine the real ordering ωr of the images based on their quality. MOS
values are difficult to obtain, since they are the result of the aggregation of scores provided by
individuals that take part in time-consuming subjective evaluation campaigns. For this reason,
objective image quality metrics have been proposed in the literature to automatically assign
quality scores. For example, the SSIM metrics introduced in [Wang et al., 2004] evaluates the
difference between an image Id and its original (distortion-free) version Io, and produces as
output an objective quality metrics for Id.

Due to the different kinds of distortion affecting digital images and the complex task of mod-
eling visual perception, objective metrics (including SSIM) provide an approximate (uncertain)
indication of image quality. In [Wang et al., 2004], a mapping between the objective/subjective
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Figure 6.4: Number of overlaps in T as dataset size N and pdf’s spread δ vary

scores is provided, showing that a single SSIM value may correspond to a range of MOS values,
comprised on average within an interval of 10 MOS units. This finding allows modeling uncer-
tainty in image quality scores with a uniform probability distribution fq centered on the SSIM
value, with a spread δ of 10 MOS units.

We considered 10 different sets of N = 15 images each, with the goal of determining the
top-K (K = 3) images in each set based on their quality. The proposed methods were used to
determine which questions to ask, i.e., which pairs of images need to be compared to sort images
according to their visual quality.

This dataset is characterized by a very high level of uncertainty due to difficulties in devising
objective quality metrics mimicking the human visual system. Increasing N would lead to
compare pairs of images with too similar a quality, thus being adversely affected by the subjective
nature of the task.

6.1.3 Evaluation measures

In the experiments, we assess performance of the various algorithms by comparing the average
distance from the real ordering in the obtained tree of possible orderings. Note that, if uncer-
tainty is measured as a distance from a representative ordering (such as ORA or MPO), which
in turn is a probabilistic proxy for the real ordering, then minimizing the residual uncertainty
indeed amounts to minimizing an expectation of the distance from the real ordering.

The average distance D(ωr, TK) between the real ordering ωr and the orderings in the tree
TK is computed as follows:

D(ωr, TK) =
∑
ω∈TK

Pr(ω)d(ωr, ω), (6.2)

where d(ωr, ω) is a weighted Kendall-Tau distance (see (3.4)).

6.1.4 Uncertainty and problem size

We start by examining the impact of uncertainty on full datasets containing all the N tuples.
Note that the amount of uncertainty depends on the combination of N and δ (i.e., the spread of
the score distribution). Indeed, given a fixed value of δ, the number of overlaps among the pdf’s
increases with N , since the score distributions are more densely spaced in the [0, 1] interval.
Figure 6.4 shows this phenomenon for limited sizes of dataset N .

The size of the problem, measured in terms of the number of orderings in T , grows exponen-
tially in both N and δ. Thus, even with relatively small values of N , the number of orderings
quickly becomes intractable when increasing δ. For example, when N = 100 and δ = 0.001,
there are 12 overlapping pairs of tuples (see Figure 6.4), which generate as many as |T | = 4000
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Figure 6.5: Number of overlaps and orderings in TK (K=10) as dataset size N and pdf’s spread
δ vary

possible orderings. Note that increasing N to just 110 tuples makes the number of orderings
grow by an order of magnitude.

However, users are mostly interested in the top-K results only. Indeed, regardless of N , we
observed that the number of tuples in the first K levels of T is only slightly larger than K,
growing slowly when increasing δ. Figure 6.5 shows the impact of uncertainty when one focuses
on TK , for K = 10 and several different values of N and δ. Both the number of overlaps of
tuples and the number of orderings grow with N , although in a much more tractable manner:
for N = 100 and δ = 0.001 the average number of orderings is |TK | = 1.2, while for N = 1000
and δ = 0.001 the average number of overlaps is 10, leading to |TK | = 273. A similar problem
size is obtained, e.g., when N = 106 and δ = 10−6 (|TK | = 203).

Although there are combinations of the parametersN and δ for which the number of orderings
is exceedingly large, they correspond to cases of little practical interest. Indeed, in such cases,
the pdf’s of the tuples in the first K levels are nearly all overlapping with each other, indicating
an extremely large amount of uncertainty in the data. In those cases, very little is known about
the ordering among tuples, and human intervention would not be useful in reducing uncertainty,
since in those circumstances it would be quite impossible to identify the real ordering. Thus,
other means to reduce uncertainty (e.g., aggregating/fusing data from additional sources) should
be performed beforehand [Zhang et al., 2006].

6.1.5 Performance with different uncertainty measures

Figure 6.6 shows the performance of T1−on and C−off with the four different uncertainty
measures (UH , UW , UMPO, and UORA). In particular, while Figures 6.6(a) and 6.6(b) show the
results obtained when the weights π(·, ·) used for the extended weighted Kendall-Tau distance in
Equation (3.4) vary with a logarithmic trend (adapted from [Kumar and Vassilvitskii, 2010] to
the top-K context), as shown in Equation (3.5). On the other hand, Figures 6.6(c) and 6.6(d)
show the results with a linear trend, as shown in Equation (3.6).

The choice of π(·, ·) does not change the relative strength of the various algorithms: the
results obtained with entropy (UH) are consistently worse than with all the other measures,
which make the algorithms converge to the real ordering much more slowly. Indeed, UH only
takes into account the probabilities of the orderings, thus neglecting the structure of the tree of
possible orderings and inadequately quantifying its uncertainty. For instance, with UH , a tree of
possible orderings with branching only at level K − 1 may easily be considered more uncertain
than a tree of possible orderings with branching close to the root.
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(a) T1−on, weights as in (3.5)
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(b) C−off, weights as in (3.5)
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(c) T1−on, weights as in (3.6)
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(d) C−off, weights as in (3.6)
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(e) T1−on, CPU time
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Figure 6.6: Performance of different measures when the T1−on and C−off algorithms are used
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The three other measures achieve better performance (Figures 6.6(a)–6.6(c)–6.6(b)–6.6(d)),
since they all consider the tree structure in the evaluation of the uncertainty: trees that contain
less orderings and/or whose branching happens in the lowest levels are considered as more
certain. Although they all achieve similar performance, UMPO requires the lowest CPU time
(Figures 6.6(e) and 6.6(f)); thus, we adopt UMPO as the default measure.

Moreover, since the choice of π(·, ·) is orthogonal to the choice of algorithm, for fairness we
use Equation (3.6), which is less convenient in terms of performance (i.e., it causes the algorithms
to converge more slowly to the real ordering).

Note that Figures 6.6(e) and 6.6(f) do not include the time needed to compute the tree of
possible orderings, which is the same for all the measures and algorithms; full execution times
are shown in Figure 6.10(b), along with various optimizations.

6.1.6 Comparing the methods on synthetic data

In this section we compare the effectiveness of the proposed offline and online methods in reducing
the number of possible orderings, using the Random and Naive algorithms as baselines. We adopt
the default values of the parameters indicated in Table 6.1, unless stated otherwise.

In this Section, we assume that each crowd worker’s answers ans(q) always reflect the real
ordering of the tuples. Thus, we prune from the tree TK only the paths that do not agree with
the relative order of objects in the real ordering ωr.

Number of questions B

Increasing the number of questions B to ask reduces the uncertainty while converging to the
underlying real ordering, as shown in Figure 6.7(a). This is because the collected answers allow
discarding incompatible orderings from the tree of all possible orderings.

The T1−on algorithm achieves nearly the same performance as the Oracle solution, both in
terms of uncertainty reduction and distance from the real ordering (Figure 6.7(a)). In particular,
both converge to the real ordering with B = 10 questions, when considering the default param-
eters. The offline algorithms, namely TB−off and C−off, obtain the same result as the T1−on
strategy when B = 1 (since in this case the strategies coincide) and eliminate all uncertainty
when B = 10. However, since none of the answers are available when choosing the questions,
TB−off and C−off are outperformed by T1−on, which has knowledge of previous answers.
C−off performs better than TB−off, because at each step a new question is selected by taking
into account the past choices. As for the baselines, selecting questions at random (Random) yields
very poor results. With respect to the simple Naive heuristics, the online algorithm attains the
same performance with 50% to 80% fewer questions.

Similar results are shown in Figure 6.9(a), where the uncertainty degree is higher. Here,
Incr− Hyb and Incr− On algorithms are shown too. It is shown how they have lower perfor-
mance with respect to non-naive algorithms that require the full materialization of the tree.
However, these algorithms perform better than baselines that choose questions at random.

Figure 6.7(a) does not include the two algorithms based on A∗, namely A∗−on and A∗−off.
This is due to their high computational complexity, which makes them impractical for a problem
size using the default parameters. Hence, we repeated the same experiment with N = 500 and
K = 7, whose result is visible in Figure 6.8. In this case, we observed that T1−on achieved
nearly the same performance as A∗−on, and C−off did the same with A∗−off (in both cases
less than 1% difference in the required budget). Therefore, T1−on and C−off attain the best
tradeoff between execution time and result quality.

Figure 6.7(a) does not include the algorithm based on the decision trees, namely DT, since
its results proved to be worse than the other algorithms (about 10% worse). This happens
because the choice of a path in the decision tree (that consequently brings to the choice of a
set of questions to be asked to the crowd) depends on both questions and answers. Thus, every
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Figure 6.7: Distances to real ordering as B, K, approaches and worker’s accuracy vary (δ =
0.001)
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time we choose a path, we base our choice on the assumption that users will always answer to
questions with the associated most probable answer. This is obviously not true in all cases, and
thus, when users’ answers deviate from the expected behavior, the best path may not be the one
that we selected. In order to adjust this problem we should modify the choice every time the
user returns us an answer, but since this means to transform an offline algorithm to an online
one, and DT in an online version equals to T1−on, we did not include the results in the analysis.

Figure 6.7(b) shows the results obtained when N = 104 tuples are sampled according to
Zipf’s distribution and K = 10. The results are similar to those in Figure 6.7(a). Yet, T1−on
outperforms Naive by an even larger margin when B is small. The Random algorithm reaches
very poor results, as it is more likely to select irrelevant questions.

Number of results K

Increasing the number of results K increases the uncertainty, as a larger number of possible
orderings can be generated. Indeed, Figure 6.7(c) shows that, for a fixed budget of B = 3
questions, the distance from the real ordering increases when increasing K. The differences
between algorithms become virtually more significant, due to the increase in the number of
questions that can be potentially selected, but their difference is smoothed out by the use of the
weighted Kendall-Tau distance.

A similar behavior can be seen in Figure 6.9(b), where the uncertainty degree is larger. Here,
the difference between algorithms is more visible, due to the larger number of questions needed
to remove uncertainty.

Uncertainty reduction estimation approach

Figure 6.7(d) compares the average, optimistic, and pessimistic approaches for the T1−on algo-
rithm. The average and pessimistic approaches give the best results and achieve good uncertainty
reduction even with very small budgets.

Conversely, the optimistic approach performs poorly, as it expects workers to always answer
in the most convenient way, i.e., with the answer that guarantees the highest uncertainty reduc-
tion. However, the answer provided by a worker could differ from the expected one; when this
happens, this approach essentially amounts to randomly selecting pertinent questions (as the
Naive algorithm).

A similar behavior can be seen in Figure 6.9(c), where the uncertainty degree is larger.
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NDCG metrics

Figure 6.9(d) shows the performance of the proposed algorithms when the NDCGmetrics [Järvelin
and Kekäläinen, 2002] is used to measure the quality of the output. Since NDCG measures the
quality of a ranking, the performance of the algorithms increase while B increases. This is due
to the fact that the larger is the number of posed questions, the lower is the uncertainty in the
tree.

Number of questions in a batch n

Figure 6.9(e) shows the performance of the Incr− Hyb algorithm when the number of questions
n in each batch varies. The results show that the larger the number of questions in a batch, the
higher the performance, since larger n require to build a larger part of TK , thus bringing to a
larger question choice.

Accuracy of the workers

Figures 6.7(e) and 6.7(f) show the distance from the real ordering when a worker’s accuracy p
varies for T1−on and C−off. When p = 1 the worker always answers correctly, while when
p = 0.5 answers are random.

For p < 1, we compare the effect of pruning the tree of possible orderings as in Section 3.6.1
vs. keeping the entire tree of possible orderings and adjusting its probabilities as in Section 3.8
(“no pruning”). For low p values, pruning is likely to remove the correct ordering, especially
when many answers are collected (B high). Conversely, “no pruning” always keeps the entire
tree of possible orderings, which may be overly cautious for high p and low B.

It turns out that pruning is more effective when B is low (B < 5 with default values), while
“no pruning” is preferable when B is high. Yet, both approaches reduce the distance from the
real ordering as B increases if p is reasonably high (p ≥ 0.8).

Note that majority voting or more sophisticated approaches can be conveniently employed to
aggregate the answers of noisy workers, so as to attain a sufficiently high quality of the answers.
Aggregating answers from multiple workers requires scaling up the budget by a non-negligible
factor [Sheng et al., 2008], thus making the budget savings obtained with our algorithms yet
more significant.

A similar behavior can be seen in Figure 6.9(f), where the uncertainty degree is higher.

CPU time and optimizations

Figure 6.10(a) shows the required CPU time for selecting the questions when B varies. The
results show that the CPU time increases with B.

A fixed amount of time, not shown in the bars, is needed to build the tree of possible order-
ings; this is a cost paid only once before asking any question to the workers, and required nearly
13 seconds in our experiments with the default parameter values if tree of possible orderings’s
probabilities are computed exactly.

A∗−off is computationally intractable even for a small B. Conversely, T1−on is the fastest,
requiring a negligible amount of time. Among the offline algorithms, C−off has the highest
overhead, because at each iteration it analyzes all the questions in QK to select a question; on
the other hand, TB−off exhibits the lowest overhead, because it analyzes the questions in QK
only once, on the first iteration.

Figures 6.10(b) and 6.10(c) show the results obtained with the strategies of Section 3.7.4.
We compared the standard T1−on (with MPO and exact probabilities) against T1−on with
MPO and probabilities approximated by sampling (“T1−on, sampling”), as well as T1−on with
the effectiveness criterion (T1−on + ε) and the incremental algorithm (Incr− On).
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Figure 6.9: Distances to real ordering as B, K, approaches and worker’s accuracy vary (δ =
0.003, N = 1000)
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Figure 6.10: CPU time (N = 1000, δ = 0.001, K = 10)
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The results obtained with sampling (100, 000 samples) are nearly as good as those with exact
probabilities, at a fraction of the time for building the tree of possible orderings (1.6s vs 13s, as
shown in the lower part of the bars). The quality of the results obtained with T1−on + ε and
T1−on is comparable, but the former is much quicker, since computing the orderings probabilities
is not required.

Although Incr− On still achieves good results, its quality is slightly lower, as TK is not
completely built, and thus only a subset of questions can be selected. Note that Incr− On’s
CPU time decreases as B increases, since Incr− On prunes orderings early in the process, thus
alleviating the burden of computing many of the ordering probabilities, and thus becoming the
least costly. Moreover, since Incr− On considers a small number of questions at a time, the
algorithm execution time is small too.

6.1.7 Comparing the methods on real data

In the following, we compare the effectiveness of the proposed online and offline methods on real
datasets (as described in Section 6.1.2). Then, we test our methodologies on a real crowdsourcing
platform.

YouTube dataset

Figure 6.11(a) shows the uncertainty reduction obtained by varying B between 1 and 10 and
asking workers to sort pairs of videos based on temporal order of the captured event. C−off has
almost the same performance as T1−on when B is low, while Naive and Random require many
additional questions to find the real ordering. This confirms that a random question selection,
even if restricted to relevant questions, is highly inefficient , since it disregards the underlying
distribution capturing the uncertainty.

The same experiment was repeated adopting the ORA measure. In this case, when B = 1,
both T1−on and C−off reduce uncertainty by 68%, gaining 30% with respect to the case
in which the entropy measure is adopted. However, after B ≥ 7 questions, the uncertainty
reduction achieved by using both measures is the same in case of the T1−on algorithm, while
B = 10 questions are needed to achieve the same performance in the case of the C−off algorithm.

Image quality dataset

Figure 6.11(b) shows the uncertainty reduction when asking workers to compare pairs of images
in terms of their visual quality. The results confirm the findings obtained on the synthetic
datasets: T1−on and C−off always dominate Naive. However, here Naive achieves almost the
same results as Random, since the number of overlaps between the score pdf’s is very high. Thus,
it is very likely that a question picked at random is relevant.

The same experiment was repeated adopting the ORA measure. In this case, when B = 1
the uncertainty is reduced by 52% by both T1−on and C−off, a 30% gain with respect to
the entropy measure. However, when B ≥ 5, the same performance is attained by using both
measures.

6.1.8 Tests on Microtask

In this section we analyze the effectiveness of C−off when questions are asked to noisy workers
on the Microtask1 crowdsourcing platform. Ten videos from the YouTube dataset describing ten
events are selected and the tree of possible orderings TK is created. Then, C−off is run to get
the best B = 10 questions to ask to 20 annotators.

1http://www.microtask.com/

http://www.microtask.com/
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Figure 6.11: Distance to solution achieved on real datasets, when B varies (T1−on and C−off)

Each question is of the form “Did A happen before B?” (where A and B are labels describing
each event, e.g., ‘Obama elections ’). Moreover, the interface presents a screenshot of the related
videos and links the YouTube videos describing A and B. Users can decide their answer either by
heart (i.e., remembering the order of the events by reading the labels / looking at the screenshots)
or open the videos to look for some hint in their content. A sample of the interface design is
shown in Figure 6.12

After the answers are collected, the aggregated annotation is computed via majority voting.
Figure 6.11(c) shows the results obtained when the number of annotators A varies. When A is
small, although uncertainty is anyhow reduced, erroneous answers will increase the distance to
the real ordering. Conversely, higher values of A make majority voting more likely to remove
incorrect annotations.

6.1.9 Tests on Crowdflower

In this Section we analyze the effectiveness of Incr− Hyb when questions are asked to noisy
workers on the Crowdflower2 crowdsourcing platform. In order to assess the quality of workers,
we built 279 questions from the YouTube dataset. Each question is of the form “Did A happen
before B?” and links the YouTube videos describing A and B. Only questions involving videos
whose PDFs overlap were considered. We replicated each question 4 times, and selected 5
questions as test questions, in order to filter out workers with low quality. When a worker fails
to answer correctly to more than 70% of test questions, she is considered untrusted and her
answers are discarded. We paid each answer 0.01$. In this experiment, 158 workers provided
answers, and their estimated accuracy on the proposed set of questions was 69.5%. Then, we ran

2https://crowdflower.com

https://crowdflower.com
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Did the event ‘Obama elections’ happen before the event ‘Curiosity lands on Mars’?

https://www.youtube.com/watch?v=nv9NwKAjmt0 https://www.youtube.com/watch?v=P4boyXQuUIw

Yes

No

Figure 6.12: Interface for a task on the real crowdsourcing platform Microtask. The interface
shows a snapshot of the related videos, along with their links. The user can visualize the videos
before answering the question

a second experiments on a larger set of questions, where 419 questions were replicated 5 times
and a more selective test question set of 10 items was used to filter out low quality workers. In
this second experiment, 142 workers provided answers, and their estimated accuracy was 91.2%.
The performance on the second experiment was higher, since the selected test question set was
larger and more selective, and thus answers provided by low quality workers were automatically
excluded.

Figure 6.13 reports the results we conducted on the Crowdflower platform. Specifically,
Figures 6.13(a)-6.13(c) show the results obtained on the first experiment, while Figures 6.13(d)-
6.13(f) show the results obtained on the second experiment.

The results show the latency of answers, the amount of provided correct answers and the
participation of workers during the experiments.

6.2 Passive crowdsourcing optimization: Influencers retrieval on
multimodal dynamic data

In the following, we show the experiments conducted for the Twitter influencers retrieval use
case. The reference topic for these experiment is food.

6.2.1 Initial seed of users, keywords and hashtags

An initial set of users, keywords and hashtags was selected manually from Twitter, as shown in
Table 6.3.

As for keywords and hashtags, the procedure shown in Section 4.7.1 was used to select the
top 50 keywords and 50 hashtags, as shown in Table 6.3. These terms were sampled from the
annotated data set that was used to train the text classifier (see Section 6.2.2 for further details).

As for the users, we manually crawled Twitter to select 50 users whose focus is the topic
food. An initial seed of 10 users was provided by a field expert; the other profiles were found by
navigating in the Twitter social graph and selecting relevant friends and followers of the already
stored relevant users. We did not order users according to any principle.

6.2.2 Classifiers

Text classifier

In the following, we illustrate the procedure used to train the text classifier and the obtained
results.
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Keywords Hashtags Users
banana #recipeoftheday @smittenkitchen
pasta #vegan @wichcraft
coco #healthy @foodgawker

asparagus #chicken @northernspyfood
brownie #yum @foodfest2014
berries #meat @TASTOUR
toast #mexican @bombfood

coconut #cupcake @Fooddotcom
cinnamon #gfree @TOCEatOut
grilled #cupcakes @ItsTheFoodPorn
soup #fdbloggers @Melbfoodandwine

avocado #gfreefoodie @LAMagFood
salmon #grill @GoVeggieFoods
shrimp #bacon @rawgurl
onion #meatlessmonday @QuadrilleFood

pancake #mexicanfood @sortedfood
yogurt #pizza @PBSFood
basil #apple @ColorsFood

caramel #beer @BuzzFeedFood
peas #breakfast @LAistFood

strawberries #cheese @HealthyEats
blueberry #chefmovie @EatClean

fries #delicious @HealthyFood
muffins #dessert @ArtofEating
nutella #lunch @Food_And_Think

mushroom #macaron @ImCravingFood
brownies #vegetarian @FoodChannel
crisp #brunch @DailyFoodPix

pancakes #burrito @JamiesFoodTube
waffles #butter @FoodPornMenu
rosti #cookies @HeraldSunFood

meatless #easy @OnlyFoodPorn
artichoke #eatclean @YourFoodPorn
creamy #kosher @kraftfoods
spinach #lemon @TescoFood
stir #macarons @BeFitFoods

mozzarella #pasta @olivemagazine
pretzel #sliceofcomfort @foodrepublic
biscuit #sugarfree @cookbooks365
frosting #sundaysupper @WOWFoodPics
juice #yummy @YahooFood
layer #baking @SBS_Food
melon #biscoff @DIYfoods
pastry #blueberrypie @HeaIthFood
pesto #britishsandwichweek @thedailymeal
pickle #culinarystudent @TestKitchen

pineapple #deliciouslinks @FoodHealth
quinoa #diy @FoodPornsx
carrot #eatseasonal @TastingTable

casserole #eggs @lafood

Table 6.3: Initial users, keywords and hashtags
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Figure 6.13: Correctness of answers (a-d), Latency (b-e) and Number of involved workers (c-f)

Samples 28452
Positive samples 14234
Negative samples 14218

Table 6.4: Annotated samples which will constitute training, cross validation and test set for
text classification

Training set. We used a REST crawler to download a large set of tweets, which were then
used to constitute the training, cross validation and test sets. A large part of the collected
sample was retrieved by crawling the feeds of the seed users. However, crawling from these
topic-focused users provided us with a large set of positive samples and a more restricted set of
negative samples. Thus, to make the data set symmetrical (i.e., so that it would contain the
same number of positive and negative samples), we downloaded additional tweets from topic-
unrelated profiles (e.g., actors, singers, producers, sportsmen). As a positive side effect, these
additional samples enriched the dictionary with words that are not related to the topic food,
thus enlarging the classifier’s known set of terms.

At the end, the set of downloaded samples contained 28452 tweets, which were manually
annotated as either relevant or not relevant for the topic food. The positive population contains
14234 tweets, while the negative population contains 14218 tweets (see Table 6.4). Then, we
divided the set in training set Ttrain (60% of data), cross validation set TCV (20% of data) and
test set Ttest (20% of data).

Each tweet was processed as follows: i) we removed URLs and user mentions from the tweet
content; ii) we removed the hash signs from the hashtags; iii) we divided the text in words,
removing the punctuation; iv) we removed the stop words; v) we normalized the words by
lowering the characters and stemming them. The dictionary (i.e., feature set) was finally built
out of the 12988 (stemmed) words in the training set.
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Algorithm 10: Inter-annotator agreement computation
Input: Annotation set Θ, Number of annotations for each annotator K, Annotator set A
Output: Inter-annotator agreement I

1. ε = 0
2. for each ai ∈ A
3. for each aj ∈ A \ ai
4. for k = 1 : K
5. ε = ε+ Θi(k)⊕Θj(k)
6. I = (K · |A|!− ε)/(K · |A|!)
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Figure 6.14: Training error and cross validation error for the text classifier

Inter-annotator agreement. Some tweets are characterized by ambiguous content, and thus
annotating them as relevant or not relevant is difficult for a human annotator too. Thus, we
estimated the inter-annotator agreement on a subset of the training set, to understand which is
the percentage of ambiguous tweets. The selected sample, ofK = 1000 tweets, has been provided
to three human annotators, that independently annotated each tweet as either relevant or non-
relevant for the topic food. These annotation were fed as an input to Algorithm 10, to finally
compute the inter-annotator agreement. The procedure is very simple: it simply iterates over
the annotators, every time setting their annotations as ground truth, and then compute the
number of errors the other annotators do with respect to the defined ground truth. Here, Θi is
the set of K annotations provided by i-th annotator, while Θi(k) is the k-th annotation from
annotator ai. At the end, we found that the inter-annotator agreement is 93.86%.

Performance. The classifier was tested on training set and cross validation set, and the train-
ing error and cross validation error were evaluated, as shown in Figure 6.14. The figure shows
training error and cross validation error when the parameters C and σ varies. The colder the
color, the smaller the errors. We would like to choose a combination of parameters in which
both the errors (i.e., training error and cross validation error) are low: this combination guaran-
tees that the classifier is neither in overfitting (i.e., low training error and high cross validation
error) nor in underfitting (i.e., high training error and high cross validation error). The cho-
sen parameter combination is C = 15 and σ = 0.01, since it avoids both overfitting (i.e., low
training error and high cross validation error) and underfitting (i.e., high training error and high
cross validation error). With this parameterization, the training error is 5.88% and the cross
validation error is 11.99%. This brought to a test error equal to 11.75%.

Figure 6.15 shows the learning curves for the textual classifier. On the x axis, we indicate
the percentage of available training samples used to train the classifier. It is clear how increasing
the number of samples, the classifier learns the model, since the cross validation error decreases
and the training error increases (symptom of a classifier leaving the state of overfitting).
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Figure 6.15: Learning curves for the textual classifier

Samples 23505
Positive samples 11759
Negative samples 11746

Table 6.5: Annotated samples which will constitute training, cross validation and test set for
image classification

Image classifier

Training set. In order to build the training sample set for the image classifier, we let the
pipeline run for an hour, so that it could retrieve tweets and images contained in those tweets.
Then, we selected 20000 images from the retrieved sample and manually annotated them as
either relevant or non-relevant for the topic food. Finally, to balance the data set (so that it
would contain the same amount of positive and negative samples) we downloaded 3505 hard
negative images, by activating a streaming crawler on random keywords (e.g., cat, sport, school,
phone). At the end of the process, we obtained 11759 positive samples and 11746 negative
samples.

Initially, we built a visual vocabulary by: i) selecting 50 positive samples and 50 negative
samples at random from the sample set; ii) extracting their SIFT features; iii) clustering them
in 5000 clusters. Each cluster, represented by its centroid, corresponds to a word in the visual
dictionary. Each image was then processed so as to extract its feature vector, as follows: i) ex-
tract its SIFT features; ii) associate each extracted feature with a word in the visual dictionary;
iii) build a histogram of occurrences of the words in the dictionary and normalize it.

Performance. The classifier was tested on training set and cross validation set, and the train-
ing error and cross validation error were evaluated, as shown in Figure 6.16. The figure shows
training error and cross validation error when the parameters C and σ varies. The colder the
color, the smaller the errors. We would like to choose a combination of parameters in which both
the errors (i.e., training error and cross validation error) are low: this combination guarantees
that the classifier is neither in overfitting (i.e., low training error and high cross validation error)
nor in underfitting (i.e., high training error and high cross validation error). The chosen param-
eter combination is C = 1 and σ = 1000, since it avoids both overfitting (i.e., low training error
and high cross validation error) and underfitting (i.e., high training error and high cross vali-
dation error). With this parameterization, the training error is 5.87% and the cross validation
error is 20.17%. This brought to a test error equal to 19.95%.

Figure 6.17 shows the learning curves for the visual classifier. On the x axis, we indicate the
percentage of available training samples used to train the classifier. It is clear how when the
number of samples in the training set is low, the classifier shows overfitting (i.e., low training
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Figure 6.16: Training error and cross validation error for the visual classifier
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Figure 6.17: Learning curves for the visual classifier

error, large cross validation error). Instead, when the number of samples in the training set is
increased, the training error increases and the cross validation decreases.

Aggregate classifiers

We collected via a streaming crawler 886 tweet samples composed of both text and image and
containing at least one of the seed keywords/hashtags. These tweets were manually annotated
as either relevant or non-relevant for the topic food, by considering both text and visual content.

Then, we ran the text classifier, the image classifier and their aggregation on the collected
dataset. With this analysis, we discovered that using a single classifier allows us to achieve
lower performance with respect to the case in which multiple classifier opinions are integrated.
In particular: i) 87.92% of tweets were classified correctly by the text classifier; ii) 81.72% of
tweets were classified correctly by the image classifier; and iii) 89.28% of tweets were classified
correctly by the aggregation of classifiers.

Evaluation on real-time data

Previous Sections evaluate the classifiers performance in a controlled environment, where du-
plicates, empty tweets and ambiguous samples (where abbreviations and typos are introduced)
were manually removed. In this Section we want to prove that our methodology guarantees an
improvement in performance also when non-filtered tweets from the real-time feed are classified.

To prove our claim, we instantiated two pipelines for the automatic download and classifi-
cation of real-time feed tweets: i) the first one classified tweets with text classification; ii) the
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Text tweets Text+Image tweets

Text classification Accuracy = 0.75218
Precision = 0.65665
Recall = 0.80538
F1− measure = 0.72345

Accuracy = 0.73467
Precision = 0.63612
Recall = 0.80299

F1− measure = 0.70988

Multimodal
classification

Accuracy = 0.8223
Precision = 0.79125
Recall = 0.97215

F1− measure = 0.87239

Table 6.6: Performance of text classification and multimodal classification over real-time data

second one classified tweets with multimodal classification. The pipeline ran from 1st to 15th

January 2015. Then, we extracted and manually annotated a random sample of 1900 tweets:
i) among the ones containing only text and processed via text classification; ii) among the
ones containing both text and images and processed via text classification; iii) among the ones
containing both text and images and processed via multimodal classification. Annotators were
required to state if each tweet was cooking-related. Finally, we computed accuracy, precision,
recall and F1-measure in all three cases. The results are reported in Table 6.6. It is shown
that text classification performance degrade when images are involved, since text classification
is not able to interpret multimedia content and may misinterpret the text associated with the
image. On the other hand, multimodal classification improves performance with respect to text
classification only, increasing both precision and recall.

Throughput and processing time

The estimated throughput of tweets processed by the classification pipeline is 323 each minute.
Each tweet is processed in 0.19 seconds.

The percentage of relevant tweets is 37.14%, and the percentage of irrelevant tweets is
62, 86%.

The processing time for the text classifier is 0.366 seconds for each tweet that passes all the
filtering phases (i.e., non-appropriate content filtering, bad words filtering). The processing time
for the image classifier is 0.420 seconds for each image.

6.2.3 Influence evaluation

In this Section, we demonstrate how the proposed influence metrics is able to retrieve users that
are topic-focused and relevant.

Baselines

In this Section we illustrate the influence computation baselines we used in this work to assess
the quality of our influence metrics.

Tweet count metrics. This metrics ranks users according to their tweet post frequency: the
larger the number of posted tweets, the higher the influence. This generates from the assumption
that the more active is a user (i.e., the more content she publishes), the more influential she is.

Number of followers metrics. This metrics ranks users according to the number of their
followers: the larger the number of followers, the higher the influence. This generates from the
assumption that a user with a large number of followers is considered an interesting user by
other users in the network, and thus a potential influencer for the field. Several works base their
influence score computation on this baseline (see Section 7.2.1 for references).
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Results

We collected daily the top-25 influencers list over the period 1st December 2014-15th December
2014, for the following three metrics: i) tweet count metrics, ii) number of followers metrics,
and iii) our custom metrics. Figure 6.18 shows a classification of influential users retrieved using
these metrics.

The retrieved influential users were manually assigned to classes, which describe their profile
over Twitter. The results show the following:

1. The tweet count baseline metrics retrieves mainly common users and spammers, which are
neither well known over the network, nor focused on the topic. These users are very active
and publish a large quantity of content, which is not necessarily relevant for the analyzed
topic, and often generated automatically by bots. Other topic-related users are retrieved
as influential too: however, their percentage is still very limited.

2. The number of followers baseline metrics retrieves mainly real-life celebrities (e.g., actors,
singers, sportsmen) and social media celebrities (e.g., quote feeds, users who publish vi-
ral videos). These users are very well known over the network, but publish a really small
amount of topic-related content. Food celebrities are retrieved as influencers too: however,
these users are usually involved in TV shows and/or write books, and their activity over
Twitter is focused on advertising their products rather than publishing topic-related con-
tent. Other topic-unrelated sources (e.g., media channels, magazines, news feeds, generic
blogs) are retrieved too, because they are read by a large number of users.

3. Our metrics retrieves mainly topic-related accounts (e.g., food porn accounts, recipe feeds,
food magazines). This happens since the creativity, activity and communicativeness of
users are taken into account while computing their influence degree over the network,
excluding those users that either publish mostly topic-unrelated content (as for the tweet
count metrics) or are generic celebrities.

6.2.4 Content relevance

In this Section, we demonstrate that the retrieval of influencers via an appropriate metrics allows
us to retrieve also large quantities of relevant, topic-related content.

We collected the lists of top-25 users in the period 1st-15th December, and extracted the set
of unique users that in this period were reported as influencers. Then, we retrieved 10 tweets for
each user in this set via REST API. These tweets were manually annotated as either relevant
or non-relevant for the considered topic, for each influence metrics. The results show that:

1. the tweet count metrics retrieved 23.07% of relevant content

2. the number of followers metrics retrieved 26.60% of relevant content

3. our influence metrics retrieved 76.77% of relevant content

6.3 Passive crowdsourcing optimization: Detection of video an-
cestry relationships

6.3.1 Methodology

In the following, the datasets used in the experimental evaluation are described.

Synthetic dataset.

The synthetic dataset consists of V = 30 videos, whose number of segments is comprised in the
interval [1, 7].
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Figure 6.18: Comparison between influence metrics.
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Minimum video length 00:55
Maximum video length 54:33

Minimum number of segments per video 1
Maximum number of segments per video 129
Average number of segments per video 24

Table 6.7: Parameters for pope− dataset

Non-corrupted phylogeny. We suppose the original content to be incorporated in a set R
of root nodes (containing a maximum of 5 videos). The similarity graph G = (V, E) initially
contains the roots: V ≡ R, E ≡ ∅. Then, it is expanded by copying the content of R in other
videos. To do so, we generate new videos V̄ = {v1, . . . , vk} (k < V − |V|), we simulate the
duplication by connecting the segments in V with the segments of some vi ∈ V̄ and we add
V̄ to V. Then, process is repeated. The construction of the graph terminates when the graph
contains V nodes.

Corrupting the phylogeny. The graph G corresponds to a non-corrupted phylogeny, in
which the weight of non-existing edges is w = 0, while the weight of existing edges is w = 1.
In the following, we describe the procedure used for integrating noise in the phylogeny, so that
false positives and false negatives are added, i.e., existing edges may become non-existing and
viceversa. To do so, we created two Normal distributions N0 = (0, σ0) and N1 = (1, σ1), and
we used them to resample weights for non-existing edges and existing edges, according to the
following methods:

• Gaussian-only: the weights of non-existing edges are sampled from N0 (introducing false
positives); the weights of existing edges are sampled from N1 (introducing false negatives)

• Binary-Gaussian: the weights of non-existing edges are sampled from N0 (introducing
false positives); for each existing edge e = (si, sj) a weighted coin is tossed (q is the
probability of getting head): if we get head the weight of ē = (sj , si) is sampled from N1

(introducing false positives), otherwise it is sampled from N0; moreover, the weights of
existing edges are sampled from N1 (introducing false negatives)

Obviously, the larger is σ0, the larger is the number of introduced false positives, while the
larger is σ1, the larger is the number of introduced false negatives. Then, all the weights are
thresholded (τ = 0.5), so that if a weight w is such that w < τ , we set it to 0.

Real dataset

The real dataset (pope− dataset) consists of a collection of 15 videos, which where downloaded
from Youtube. All the videos in the dataset are related to a specific topic (‘pope Benedict
resignation’). The videos were downloaded by specifying the following queries: pope Benedict
resignation, pope Benedict last Angelus, papa Benedetto ultimo incontro parroci. The
length of the videos varies between one minute and one hour.

In total, the collection contains 367 segments, which were manually segmented so as to avoid
over-segmentation or under-segmentation problems (using an automatic segmentation process).
The features of the dataset are summarized in Table 6.7. Then, we generated the video similarity
graph by matching the SIFT descriptors of the segment keyframes.

6.3.2 Metrics

In this section the metrics used to test the performance of the algorithms are presented.
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Figure 6.19: False positive rate (a), False negative rate (b) and number of cycles(c) (binary-
gaussian noise)

The roots metrics measures the percentage of root nodes that are correctly restored by
the algorithm. If P is the non-corrupted phylogeny (having R as root nodes set) and PC is a
corrupted version of P (having RC as root nodes set), then:

roots =
|R ∩ RC |
|R ∪ RC | (6.3)

Similarly, the leaves metrics measures the percentage of leaf nodes that are correctly re-
stored by the algorithm. If L is the set of leaves for P and LC is the one for PC then:

leaves =
|L ∩ LC |
|L ∪ LC | (6.4)
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6.3.3 Results

Binary-gaussian noise

σ1

q

 

 

0 0.3 0.6 0.9

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1

(a) roots metrics

σ1
q

 

 

0 0.3 0.6 0.9

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1

(b) leaves metrics

Figure 6.20: Features of the corrupted phylogeny PC (binary-gaussian noise)

The first experiment was conducted on the synthetic dataset when σ0 = 0, σ1 is varying between
0 and 0.9 and q varies between 0 and 0.6. The produced false positive rate and false negative
rate are shown in Figure 6.19.

The phylogeny P was firstly built and then corrupted, producing PC . Figure 6.20 shows the
roots and leaves measures when no algorithms were executed to restore the original phylogeny.
The results show that the larger q, the lower the coherence of PC with respect to P, since the
larger is q, the higher is the probability of adding the edge ē = (sj , si) as false positive when
e = (si, sj) already exists. However, when both σ1 and q are large, the similarity of P and PC
is larger, since the left tail of N1 is under the threshold τ and there could be the possibility
for the weight of ē of being thresholded (without introducing any false positive). This result is
confirmed when looking at the number of cycles that are introduced in the phylogeny P (see
Figure 6.19(c)), which is very large when σ1 is small and q is large.

Figure 6.21 shows the performance of the DFS algorithm when 1, 30 and 80 iterations are
performed. Notice that a single iteration is sufficient to increase the similarity between P and
PC with respect to Figure 6.20. Moreover, the larger is the number of iterations, the higher is
the performance. However, we are not able to restore completely the original phylogeny P, due
to the problems exposed in Section 5.2.5.

Gaussian noise

The second experiment was conducted on the synthetic dataset when q = 0.6 and σ0, σ1 are
varying. The produced false positive rate and false negative rate are shown in Figure 6.22.
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Figure 6.21: Performance of the DFS algorithm (binary-gaussian noise)
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Figure 6.23: Features of the corrupted phylogeny PC (gaussian noise)
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Figure 6.22: False positive rate (a) and False negative rate (b) (gaussian noise)

Again, the phylogeny P was firstly built and then corrupted, producing PC . Figure 6.23
shows the roots and leaves measures when no algorithms were executed to restore the original
phylogeny. The results shown that the larger σ1 and σ0, the lower the similarity between P and
PC .

Figure 6.24 shows the performance of the DFS algorithm when 1, 30 and 80 iterations are
performed. It is shown that the larger is the number of iterations, the higher the performance.
However, due to the problems introduced in Section 5.2.5, the DFS algorithm is not sufficient
for restoring completely the phylogeny P.

Experiments on the real dataset

Figure 6.25 shows the performance of the DFS algorithm applied on pope− dataset. In par-
ticular, we considered two versions of the graph:

• notAnnotated graph: the actual graph, as returned after the SIFT matching phase;

• annotated graph: a modified version of the notAnnotated graph, which was annotated
by the crowd, with the goal of deleting some of the relationships that are incorrect. A
total of 488 annotations were collected.

The results show that the performance are quite low on the notAnnotated graph, since videos
were all similar between each other and thus a huge amount of noise was introduced in the graph
(115 cycles were present). However, when the annotated graph is considered, the performance of
the DFS algorithm are increased, although part of the noise still remains in the graph (60 cycles
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are still present). This is because by deleting part of the noise from the graph, the directionality
of the duplication process is easily identified, together with roots and leaves.
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Figure 6.25: Performance on the real dataset

6.4 Discussion of results

In this Section we discuss about the findings of this Thesis, as proved by the experiments
presented in this Chapter.

6.4.1 Active crowdsourcing optimization: Fighting uncertainty on struc-
tured data

Objective. In this Section we devised strategies for the minimization of uncertainty in a space
of possible orderings via crowdsourcing. The experiments were run in a context in which the
maximum budget (i.e., the maximum amount of crowd tasks that can be asked to the crowd)
was fixed to B questions. The objective was to find the set of B questions that guaranteed the
maximum uncertainty reduction over the set of possible orderings.

Approach. The designed strategies are classified in two families: the first family of algorithms
require to materialize the full space of possible orderings, with consequent delay at indexing time,
while the second family (called incremental) alternates tree construction steps with question
selection steps. Moreover, each algorithm involve different selection strategies: with the online
strategies, questions are asked one at a time and question selection takes into account already
collected answers, while with offline strategies, B questions are selected in batch before asking
them to the crowd. The selection is based on the expected uncertainty reduction a question can
provide: the larger the expected uncertainty reduction, the higher the probability the question
will be selected. To this extent, we defined several metrics that measure the underlying data
uncertainty. Experiments were conducted on both synthetic and real data.

Results. The experiments were divided in two slots:

• choice of the best uncertainty metrics, to quantify uncertainty over the set of uncertain
data;

• performance measurement for the set of proposed uncertainty reduction algorithms.

Selection of uncertainty metrics. The selection of an appropriate uncertainty metrics is
crucial: given a set of unstructured and incomplete data, it is necessary to quantify how a crowd
task reduces uncertainty when posed to workers. In the context of top-K queries, where the
nature of the problem is strictly related to the structure of orderings and rankings, using a
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simple metrics such as entropy proved to be a poor choice: this metrics looks only to ordering
probabilities and not to their structure, and thus does not give different value to different
orderings with similar probabilities. Thus, we devised a set of metrics that take into account
both orderings structure and probabilities, namely, the ORA metrics, the MPO metrics and
the weighted entropy metrics. These metrics outperformed entropy: when used to measure
uncertainty over the space of possible orderings, allowed to save budget and reduce quickly
uncertainty. However, some of them are complex and thus require large execution time. As a
consequence, we selected MPO as the best tradeoff between performance and complexity.

This section answers to the research question 1 (How can uncertainty of structured data be
modeled? ).

Performance of algorithms: full materialization of tree. Some of the proposed algorithms
(namely, T1−on, TB−off, C−off, Naive and Random) required a full materialization of the
tree in order to run. That is, before performing any selection strategy, the space of possible
orderings TK needs to be computed, along with its ordering probabilities. This may require a
long execution time, specifically with large instances where the degree of uncertainty is high.
However, the full materialization of tree allows the algorithm to be aware of all the valuable
questions that may be asked to the crowd: having a large choice of questions allows one to pick
up the best question possible, and leave others for later stages. Consequently, these algorithms
are suggested for cases in which instances are small and the uncertainty degree is limited.

Among all the algorithms, the T1−on algorithm performed better, since it has the possibility
of reshaping the tree of possible orderings at every received answer. Thus, its selection strategy
provides the best reply at each stage. With respect to the simple Naive heuristic, the online
algorithm attains the same performance with 50% to 80% fewer questions. Offline algorithms
such as TB−off and C−off, instead, are outperformed by the T1−on ones, since they select
blindly questions at the first stage, and are not aware of the answers that workers provide.
C−off, however, has good performance, since it tries to foresee which answer a (good quality)
worker will provide at each stage, and acts consequently. In all cases, all these algorithms
outperform naive algorithms (i.e., Naive and Random) that select randomly questions. These
algorithms do not apply any logic in question choice, and thus it is very probable that the
selected questions are redundant or useless.

This section answers to the research questions 2 (How do crowd task answers impact on data
uncertainty? ), 3 (How do task selection and budget constraint affect uncertainty on structured
data? ) and 4 (How does worker quality impact on crowd task effectiveness? ).

Performance of algorithms: incremental algorithms. We devised a family of algorithms,
called incremental, that do not require the full materialization of tree, but rather alternate a
tree construction step (level by level) and a question selection step. These algorithms act blindly
with respect to what will appear in the non-built levels of the tree, and thus are outperformed
by all the algorithms (but not the baselines) that require the full construction of trees. This is
obviously related to the fact that the smaller the number of built levels, the more limited the
question choice, and thus the best reply may be hidden behind those non-built levels that will
come in the following steps. However, it happens often that the budget is completely consumed
before reaching those best replies, and thus performance is lowered. However, since it is not
required to build the full tree, these algorithms are performing better in terms of execution
time. Consequently, these algorithms are suggested for cases in which instances are large and
the uncertainty degree is large.

Specifically, the Incr− Hyb algorithm allows one to pose batches of questions on a crowd-
sourcing platform, and get batches of answers that reshape at the same time the tree. If the
number n of questions in the batch is varied, it is clear how performance changes: a larger
n requires a larger construction of the tree, enlarging the pool of questions among which one
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can choose, and thus the execution time increases, but performance increases too; a smaller n
requires a limited construction of the tree, shrinking the pool of questions among which one can
choose, and thus the execution time shrinks and performance worsens too.

This section answers to the research questions 2 (How do crowd task answers impact on data
uncertainty? ), 3 (How do task selection and budget constraint affect uncertainty on structured
data? ) and 4 (How does worker quality impact on crowd task effectiveness? ).

Analysis on real data. Real data turn out to be very uncertain in some contexts. For instance,
recommendation systems for items such as movies, books and hotels (e.g., IMDB, Tripadvisor,
Goodreads) collect hundreds of thousands of opinions from users, which are all diversified: it
happens often that the best movies are not liked by all users, and that the worse books are
appreciated by at least some people. Thus, when we try to build the score PDFs for those items,
we find out that all of them are overlapping, and that there is not a predominant, most probable
ordering: probabilities are distributed uniformly and question selection is almost random. As
an example, we report in Figure 6.26 five score distributions of books users evaluated on the
Goodreads3 website. Different colors are related to different objects. It is clear how all the PMFs
are overlapping, leading to a large uncertainty degree. Moreover, assuming to be able to select
at least one question to be asked to the crowd, users will answer quite randomly, since the score
here is subjective. Thus, in this Thesis we did not focus on subjective scores and cases in which
the uncertainty degree is too large.

Instead, we focused on cases in which the groundtruth is non-subjective, as in the case
of queries on real-world events. However, also in these cases the effect of uncertainty can be
difficult to be handled, and thus when the number of involved objects or the overlap between
PDFs increase, some of the proposed algorithms take a very long time to run (specifically the
ones that require a whole materialization of the tree). In these cases, the incremental algorithm
characterizes a good tradeoff: since it does not require to materialize the full space, it allows to
reduce uncertainty with acceptable costs.

6.4.2 Passive crowdsourcing optimization: Influencers retrieval on multi-
modal dynamic data

Objective. In this Section we devised strategies for the automatic processing of user-generated
content so as to retrieve topic-related content and influential users with the minimal cost (time
and storage).

Approach. We created a pipeline for the automatic analysis of content created in real-time
on the Twitter microblogging platform. When the objective is to download content for a given
topic, the content is processed via the following phases: i) exclusion of non-appropriate content;
ii) exclusion of non-English content; iii)multimodal (i.e., image and text) classification of content
to retain only topic-related posts; iv) dynamic recognition of topic-related keywords, hashtags
and users so as to track dynamically communications.

Results. The conducted experiments purpose is twofold:

• assess the performance of the multimodal classification;

• assess the performance of the proposed influence metrics.

Change of topics in social communications. In this Thesis we proposed a method to track
changes of topics in communications. Keywords and hashtags are always changing and reflect
the interests of users that are talking on social media.

3http://www.goodreads.com

http://www.goodreads.com
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This section answers to research question 5 (What seed queries can be used to initialize
topic-related information retrieval? ).

Multimodal classification performance. In this Thesis we proved that a multimodal classifica-
tion that merges the opinions of text classifier and image classifier performs better than a simple
text classifier (that ignores multimedia content while assessing content relevance). Specifically,
the performance of text classification and multimodal classification on a filtered test set are,
respectively, 87.92% and 89.28%. On tweets collected in real-time from the Twitter firehose,
instead, the gain is much more evident: the performance of text classification alone is 73.45%,
while multimodal classification increases performance up to 82.23%. This result suggests that
images (and in general multimedia content) carry important information, that text alone is
not able to convey. Some accounts in social media publish posts that are mainly focused on
multimedia content, where text is masked in images, written on photos, used as caption. This
content would not be correctly classified by the most common machine learning techniques that
just implement a text classifier. In this work, we proved that multimodal classification may help
in increasing accuracy also in these cases.

This section answers to research question 6 (What type of data can be analyzed to improve
the accuracy of topic-related information retrieval? ).

Influence metrics performance. Influential users are commonly identified in the state of the
art by looking for those people that are very well connected and that publish a lot of content.
However, in this Thesis we proved that these simple influence metrics do not perform well.

When we retrieve well-connected people as influencers, we may wrongly retrieve social media
celebrities or real-life celebrities. These people are in general very famous either for their public
profile or for the content that they publish, but are rarely very focused on the topic we are
interested in. Real-life celebrities often mix posts about the topic with posts about their personal
life, while social media celebrities often talk about random topics, publish quotes of various
authors and share random news. We show that the amount of topic-related content these people
publish amounts to 26%.

When we retrieve active users as influencers, we may wrongly retrieve spammers or common
people taking about random topics. These people are in general very active, since they want to
gain visibility by posting as many tweets as possible, and are not necessarily real people: often
behind a very active account hides a spam bot (whose accounts are often closed due to excessive
spam). Once in a while it happens also that these people are really focused on the topic and very
active, and thus deserve to be considered as influential; however, in most cases very active users
produce a large quantity of topic-unrelated posts. We show that the amount of topic-related
content these people publish amounts to 23%.

Our metrics, instead, proved to be very accurate, retrieving influencers that produce a large
amount of topic-related content. This is favored by the fact that the metrics considers different
aspects when establishing the score of a person: her activity, her connection with other users,
her originality, her ability of generating interesting communications. We show that the amount
of topic-related content these people publish amounts to 77%.

This section answers to research question 7 (How are influential content producers defined
and identified? ) and 8 (What is the impact of considering content producers’ influence level on
the accuracy of topic-related information retrieval? ).

6.4.3 Passive crowdsourcing optimization: Detection of video ancestry rela-
tionships

Objective. In this Section we devised strategies for reconstruction of a video phylogeny start-
ing from a set of near duplicates.
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Approach. We defined a similarity graph as a graph in which nodes represents videos and
(directed) edges indicate the direction of information duplication. Then, we defined an approach
for the elimination of false positive relationships from the graph. This strategy is iterative, and
removes cycles from the similarity graph, which are not consistent with a phylogeny structure,
thus restoring the replication chain. The approach was evaluated on both synthetic and real
data.

Results. The devised approach resulted effective in case the similarity graph presents a re-
duced level of noise, i.e., when the number of copies is limited and few near-duplicate relation-
ships are established between nodes in the graph. Obviously, since the algorithm is iterative and
each iteration removes more noise with respect to previous iterations, the larger the number of
iterations, the larger the amount of noise (expressed as number of cycles in the graph) that can
be removed from the similarity graph, and the higher the performance.

Unfortunately, in case of large noise (as the one presented in the real dataset), the perfor-
mance of the algorithm is limited. The noise is too large, and thus it is difficult to understand
which is the copy direction in the graph and which one among the near duplicates is the orig-
inal copy. However, in this case active crowdsourcing may be helpful: workers are better than
machines in analyzing visual content and understanding its content, and may be more accurate
in recognizing superimposed logos, modification of colors and shapes, resizing etc. Thus, we
performed some test using an internal crowd, where workers were required to annotate some
of the relationships in the similarity graph as verified/non-verified: a verified relationship is a
directed annotation between nodes A and B that the worker verified as existing, while a non-
verified relationship is a relationship the worker recognized as non-existing. This increased the
performance of 50% on the real dataset.

This section answers to research question 7 (How are influential content producers defined
and identified? ).
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Figure 6.24: Performance of the DFS algorithm (gaussian noise)
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Figure 6.26: Goodreads: PMFs of 5 objects. On the x axis: scores. Different colors are related
to different objects. It is clear how all the PMFs are overlapping
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Chapter 7

Related work

In this Section, we contextualize and assess the work discussed in the previous Chapters with
respect to academic literature.

7.1 Active crowdsourcing

7.1.1 Fighting uncertainty on top-K queries

Tree building

The problem of ranking tuples in the presence of uncertainty has been addressed in several
works [Soliman and Ilyas, 2009,Li et al., 2009,Li and Deshpande, 2010]. The main idea in most
proposals is to compute the space of possible orderings and its probability distribution in an
efficient way. The information contained in this space is then exploited in order to retrieve the
answers to different types of queries.

The work in [Soliman and Ilyas, 2009] presents a probabilistic model based on partial orders,
in which the possible orderings are derived by exploiting the available information about the
relative order of tuples. The space of possible orderings is thus encapsulated in a compact
data structure, and techniques for processing the probability distribution over the space in an
efficient way are presented. However, the probabilities attached to each ordering in the space
are computed by means of a Monte Carlo simulation, which is very expensive.

The works in [Li et al., 2009] and [Li and Deshpande, 2010] propose a unified approach to
ranking in probabilistic databases, providing parameterized ranking functions that generalize or
approximate many of the previously proposed ranking functions. These functions are exploited
so as to rank multiple tuples having uncertain scores. However, these techniques are only used
to compute the probability that a tuple is ranked at a certain position, with no emphasis on the
structure of the space of possible orderings.

Crowdsourcing application to resolve uncertainty

Many works in the crowdsourcing area have studied how to exploit a crowd to obtain reliable
results in uncertain scenarios.

In a crowdsourcing setting, tasks are materialized as a set of simple questions (e.g., in the
form yes/no), so that they can be easily tackled by humans. However, since these tasks are
small, the gathered information is small too, and thus the requester is often forced to create a
large number of tasks (and invest a large amount of money in their resolution by the crowd).

On the other hand, there may be tasks providing the same information, and thus performing
all of them may be redundant. Consider for instance the case in which we would like to cluster
objects in a collection so that each cluster contains instances of the same object. If we find out

163
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that object A differs from object B, and that object B is equal to object C, then asking to the
crowd if A is equal to C is useless, since this information can be extracted by transitivity.

Thus, recent works focused on finding a way of optimizing the selection of questions, so as
to minimize some cost metrics.

In [Parameswaran et al., 2011], the authors provide one of the first studies on the optimization
of human computation. In the proposed scenario, binary questions are used to label nodes in
a directed acyclic graph, showing that an accurate question selection improves upon a random
question selection.

Similarly, [Parameswaran et al., 2012] and [Marcus et al., 2011a] aim to reduce the time and
budget used for labeling objects in a dataset by means of an appropriate question selection.

Instead, [Guo et al., 2012] proposes an online question selection approach for finding the
next most convenient question so as to identify the highest ranked object in a set.

A query language where questions are asked to either humans or algorithms is described
in [Parameswaran and Polyzotis, 2011]; humans are assumed to always answer correctly, and
thus each question can be asked once.

All these works do not apply to a top-K setting and thus cannot be directly compared to
our work.

Fighting uncertainty on top-K context with crowdsourcing

We now discuss recent works on uncertain top-K scenarios where questions comparing tuples in
a set are asked to a crowd.

In [Davidson et al., 2013], the authors consider a crowd of noisy workers and tuples whose
scores are totally uncertain. This approach does not lend itself well to our scenarios, where prior
knowledge on the score pdf’s is assumed: for instance, when N = 1000, δ = 0.001 and workers
answer correctly with probability 0.8, their approach would require 999 questions to determine
the top-1 tuple, while 2.7 are in average sufficient with our T1−on.

The work in [Marcus et al., 2011b] proposes a query interface that can be used to post tasks
to a crowdsourcing platform such as Amazon MTurk. When addressing a top-K query, their
method first disambiguates the order of all the tuples by asking questions to the crowd, and
then extracts the top-K items. This amounts to asking many questions that are irrelevant for
the top-K prefix, since they could involve tuples that are ranked in lower positions. The wasted
effort grows exponentially as the dataset cardinality grows. Instead, our work only considers
questions that involve tuples comprised in the first K levels of the tree.

A more recent work in [Polychronopoulos et al., 2013] builds the top-K (top-1 in [Venetis
et al., 2012]) list by asking workers to sort small sets of s tuples whose scores are, again, totally
uncertain. The top-K tuples are determined via a voting mechanism that refines the set of
top-K candidates after each “roundtrip” of tasks, until only K tuples are left. Although when
s = 2 the tasks are a comparison of two tuples like in our approach, their question selection is
completely agnostic of any prior knowledge on the tuples, thus resulting in a much higher overall
amount of questions in scenarios like those considered in this paper.

In [Das Sarma et al., 2014] the authors propose procedures for the extraction of k objects that
have a specified property. The proposed algorithms extract sets of n objects that are analyzed
in parallel by humans. At each round, n tasks are submitted to the crowd, and the objects that
are recognized as relevant (i.e., objects having the specified property) are retrieved. Rounds are
continuously created, until exactly k objects are retrieved. The work takes into account both
the cases in which humans are oracles or noisy workers. However, the work just proposes way
of extracting a set of objects, which is not guaranteed to contain the k most relevant objects,
and does not order the retrieved instances.

In [Nieke et al., 2014] the authors build the top-K list of a set of objects described by several
attributes. At first, all the objects with certain score are extracted and ordered by descending
score, producing a tentative top-K list. Then, objects with uncertain scores are ordered in
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descending order of their probability of being relevant, and one after another are posted to a
crowdsourcing platform to disambiguate the missing attributes. The answers are then used to
update the resulting list of objects, in an online fashion. However, the authors handle only those
cases in which the score distributions are uniform. Moreover, the proposed crowd tasks in which
users are required to fill in missing attributes are far too complicated, so that in most of the
data set it would be really difficult to obtain a significant answer.

Fighting uncertainty with crowdsourcing in object matching

In [Zhang et al., 2013], uncertainty in schema matching is tackled by posing questions to work-
ers. The same authors propose a demonstrator of the same techniques in [Zhang et al., 2014].
Uncertainty is measured via entropy, and two algorithms (online and offline) are proposed to
select the questions reducing uncertainty the most. A similar approach is proposed in [Fan et al.,
2014] for the context of web tables schema matching, although only an online scenario is con-
sidered in this case. We have shown that, in top-K contexts, the results obtained by measuring
uncertainty via entropy are largely outperformed by the use of other criteria (e.g., UMPO and ε).

Noisy workers are used to validate schema matchings also in [Hung et al., 2013], with em-
phasis on the design of questions, so as to maximize their informativeness and reduce the noise
in validations. Yet, [Hung et al., 2013] does not present any question selection strategy, which
we have shown to be a useful means to obtain good results even with a noisy crowd and simple
boolean questions.

There are several other works about object matching in the state of the art. An example
is [Wang et al., 2013b], where the objective is to identify all pairs of matching objects between
two collections of objects. The authors propose a mixed online and offline approach, where
the selected sequence of question is annotated partially by machines and partially by users,
and the sequence is selected so as to minimize the number of questions answered by humans.
However, the authors of [Vesdapunt et al., 2014] proved that the claims by [Wang et al., 2013b]
are wrongs and the solutions are improvable. Thus, they propose two alternative algorithms for
entity resolution. Another work is [Wang et al., 2012], where entity resolution (i.e., find different
records that refer to the same entity) is performed via a hybrid approach, where machines identify
the most uncertain pairs (i.e., those pair of objects with high probability of being instances of the
same entity) and users disambiguate those pairs. Tasks are of two types: the first one is about
validating the equivalence of pairs of objects; the second one is about labeling single objects in
different categories.

Applications of crowdsourcing techniques in other contexts

A very recent work [Parameswaran et al., 2014], which extends another work from the same
authors [Parameswaran et al., 2012], mixes human computation and machine computation so as
to perform the task of filtering, i.e., using humans to evaluate or rate items such as images, videos
or text. In this work, possible answer states are enumerated and the optimal state minimizing
the cost and the error is found via linear programming. The updates with respect to the previous
work include distinct worker abilities (i.e., workers may have different performance on the same
set of tasks) and prior information (i.e., some knowledge about the fact that some items are
more likely to pass the filter than others), which is computed automatically.

The work [Marcus et al., 2012] treats the problem of counting occurrences of an object in a
set of uncertain objects. The use case is the one of finding all the photos of a red-headed person
in a collection of images. People are asked to evaluate either some or all the images in the set,
and the analysis of the provided answers produces an estimate for the number of instances of
the query object. The work proposes two approaches: i) the first one requires users in the crowd
to label manually images as relevant/non-relevant, until a large sample is annotated and the
confidence of the estimate is high; ii) the second one provides a set of randomly selected images,



166 Chapter 7. Related work

and requires the user to provide an estimate of the number of instances of the query object in
the set. The results show that the first approach is suited for every type of data sets, although
it is costly, while the second one is suited for multimedia data sets only, since humans are not
able to count the number of text instances without reading all the samples.

The work [Franklin et al., 2011] proposes SQL schema and query extensions that enable the
integration of crowdsourced data and processing in the DBMS. With this approach, people help
the DBMS in answering queries, by performing tasks that complete missing data or validate
possibly wrong tuples. Thus, developers can write SQL queries without having to focus on
which operations will be done in the database and which will be done by the crowd.

7.2 Passive crowdsourcing

7.2.1 Influencers retrieval from multimodal activity data

Characteristics of influencers

Influencers in Twitter are mainly celebrities, popular bloggers and organizations [Zhai et al.,
2014,Cataldi and Aufaure, 2014,Bi et al., 2014], and result related to similar arguments of dis-
cussion (i.e., fashion, music, etc. that could be labeled as entertainment) [Cataldi and Aufaure,
2014]. Moreover, Twitter users tend to strengthen the relationships with users in the same areas
of interest. Thus, their retweet connections with similar users allows to identify and discriminate
their main area of influence [Cataldi and Aufaure, 2014].

It is evident that each estimated influence value is strictly dependent from the considered
topic-based community: National Geographic has a higher influence value on the scientific do-
main than the one of Barack Obama on political news when considering number of retweets, since
a larger number of authoritative information sources retweeted National Geographic [Cataldi and
Aufaure, 2014]. Highly connected users and/or community can easily result in higher estimated
influence values in their domains of interest [Cataldi and Aufaure, 2014].

On the other hand, passive users (i.e., people who follow many people but retweet a small
percentage of the information they consume) are robot accounts (which automatically aggregate
keywords or specific content from any user on the network), suspended accounts (which are
likely to be spammers) and users who post extremely often. Moreover, the amount of attention
a person gets may not be a good indicator of the influence they have in spreading the message,
and users with very low number of followers often have high influence [Romero et al., 2011].

There is evidence that influence changes over time, so that the group of top-10 influencers
change frequently, leaving space for other people to become influencers for the same topics [Cha
et al., 2010].

Influence metrics

Several metrics were proposed in the state of the art for identifying an influencers on a social
network. These metrics try to infer the degree of influence of a given user, and are all mainly
based on: i) some descriptor of the text of the user posts; ii) some descriptor of the social
network of the user. Generally, the multimedia content (e.g., photos contained in the posts) is
not considered.

In the following description, we consider the use case of Twitter. Similar metrics may be
found for the other social media, but since Twitter is the most analyzed source in this field of
research, we can focus on it.

Text metrics. In this Subsection, we introduce some possible descriptors of the text of the
user tweets.

Analysis of original tweets of a user.
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The most used descriptors of the posts text are be the number of original tweets, the number
of shared URLs, the number of used keywords and hashtags [Pal and Counts, 2011,Jabeur et al.,
2012], which come natural. Moreover, when the analysis focuses on a specific topic, one could
decide to measure the self-similarity score of a user, which measures how similar are the author’s
recent tweets with respect to her previous tweets: if the author focuses himself on a topic, then
the self-similarity of her posts is expected to be high [Pal and Counts, 2011].

Furthermore, some works [Weng et al., 2010] take into account the homophily of different
authors: users that talk about similar topics are easily involved in what the other is saying,
while low homophily profiles do not share topics of interest.

Finally, since users could produce text containing typos, some works [Cataldi and Aufaure,
2014] compute all the possible n-grams (i.e., all the possible combinations of characters of every
word in the original tweet text) and use them as a descriptor of the produced text. This
introduces more robustness on the typos in the text, since at least one of the produced n-grams
will contain the correct, typo-free term.

However, there are some works which deviate from the typical approach. An example can
be found in a quite recent work [Quercia et al., 2011] that evaluates the influence of an author
by estimating her behavioral traits. This work uses the LIWC dictionary 1 to extract language
categories which are typical of some personality traits (e.g., self-esteem, self-confidence). Then,
for each tweet one can extract the percentage of words that describe each language category:
if the most shown traits are typical of an influential person, then the user is considered an
influencer.

User involvement.
A mention in the form of @user captures a user attention to follow the content published by

the author. Some works [Pal and Counts, 2011,Jabeur et al., 2012,Cha et al., 2010,Lian et al.,
2012] use this factor as a metrics for stating how much a user is able to involve others in the
topic. The degree of involvement is measured by taking into account, for instance, the number
of mentions of others by the authors and the number of users mentioned by the authors.

Conversational degree of a user.
Some works in the state of the art measure the conversational degree of a user on Twitter,

based on the presence of mentions in the tweet text [Pal and Counts, 2011,Lian et al., 2012].
A conversational tweet is a tweet directed to other user. To create such tweets the authors

put the mention @user before the tweet text, meaning that the tweet is directed to the user
@user. The conversational degree of a user is thus generally computed depending on the number
of conversational tweets produced by the user, the number of conversations started by the user
(i.e., those conversations whose first conversational tweet was produced by the user) and the
number of conversational tweets that involve the user.

Content replication on Twitter.
A retweet on Twitter is the copy of forwarding of a user’s posts by other users. To create

such tweets the authors put the string RT @user, meaning that the tweet is copied from the
user @user (i.e., the original author of the post is @user).

Several works consider the content replication degree (i.e., the capability of diffusing the
content on Twitter) as a possible descriptor of the influence of a user [Pal and Counts, 2011,
Jabeur et al., 2012,Lian et al., 2012,Cataldi and Aufaure, 2014,Cha et al., 2010,Kong and Feng,
2011]. This degree is measured in terms of the number of tweets the user copies from others, the
number of tweets others copy from the user, the number of users that were involved in retweeting
operations with the user and the number of topic-related retweets.

Aggregated metrics.
Some works [Pal and Counts, 2011,Zhai et al., 2014] propose ways of aggregating the factors

explained so far, which, by combining simple statistics on the tweets (such as number of retweets,

1http://www.liwc.net

http://www.liwc.net
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number of conversational tweets, etc.), measure the topical focus of an author, her retweet
impact, her ability of diffusing content etc.

Graph metrics. In this Subsection, we introduce some possible descriptors of the social net-
work of a user’s social graph.

The influence of a user depends on the structure of her social network: the larger it is, the
higher is the probability that the information is diffused and shared. Several works [Zhai et al.,
2014,Pal and Counts, 2011] captures the extension of a user’s social network by considering the
number of her followers (i.e., the users reading her contents) and friends (i.e., the users whose
content is read by her). However, not all the followers and friends are interested in the content
the user publishes, since their focus could be other topics. Thus, a more refined analysis [Cha
et al., 2010,Agarwal et al., 2008] filters the number of followers and friends so as to consider just
the ones that talk about the topic on which the user in analysis is focused.

When talking about influence on the social network of a user, one could consider two impor-
tant factors: homophily and reciprocity [Kwak et al., 2010]. Homophily is the similarity between
a user and her followers and friends: it states how much the topics, the geographic position and
the popularity degree of the friends/followers in are similar to the ones of the user in analysis.
Reciprocity, on the other hand, is the property for which a user in the social network follows
another user just because that user followed her. While homophily is a good descriptor of how
much two users in a social network are close (i.e., are similar), reciprocity is not a good descriptor
of the relevance of a user for another, since it is just an expression of politeness towards one’s
followers.

Other works use other mathematical properties of graph structures to measure the level of
influence of users. For instance, the works [Shetty and Adibi, 2005,Sun and Ng, 2013] measure
the influence of a user u by removing her from the graph G(U): if the difference between the
graph entropy of G(U) and the graph entropy of G({U \u}) is high, then this means that u has
high influence on the graph structure. In other cases, instead, the influence of a user on another
user is measured by computing their distance on the network, which can be expressed either as
a sum of the weights connecting the two nodes in the network (where the weight depends on the
relationship type, i.e., friend, follower, not in relation) [Weitzel et al., 2012], or simply by the
number of edges separating the two nodes [Cataldi and Aufaure, 2014].

Finally, several works [Pal and Counts, 2011,Zhai et al., 2014,Kazienko and Musial, 2007,Sun
and Ng, 2013,Agarwal et al., 2008] build aggregated metrics that compute the information diffu-
sion, the topical follower signal, the social position, the relationship strength and the topological
influence of a user in her network.

Other metrics. Other works build descriptors based on other factors. For instance, the work
in [Chen et al., 2014] checks if the profile of a user is verified, meaning that she corresponds with
high probability to a celebrity and thus has a high influence. Moreover, the same work applies
sentiment analysis techniques to state whether the user is talking good or bad about a specific
topic. Indeed, usually fans talk well about a subject, while experts criticize it. Detecting a high
expertise level of a user is a suggestion of the fact that he is an influencer on the topic.

Datasets

In the state of the art, most of the works focused on influence evaluation on social networks
build their own datasets by crawling the target social network for a certain period of time. Thus,
it happens rarely that the proposed machinery analyzes the social network in real time to find
out which are the changes in influence. However, the work in [Cha et al., 2010] states that the
influence degree changes over time and attention of the most moves to other topics and users,
so that the top-10 influencers are renewed from time to time.
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Algorithms

Score computation. The simplest used influencers retrieval approach used in the state of the
art is the one of computing an influence score for each user, and then return the top-K users
with the largest influence score [Agarwal et al., 2008,Kong and Feng, 2011,Bi et al., 2014].

Clustering and classification. Some works perform user clustering based on user influ-
ence characteristics, to find groups of users having similar influence on the network [Pal and
Counts, 2011, Chen et al., 2014]. In other cases, users are classified in influence classes (e.g.,
influential, popular, listener, highly read) according to their features (both text-based and graph-
based) [Quercia et al., 2011].

Graph structure analysis. In the state of the art, some works that classify the importance
of a node with respect to the graph topology can be found too [Shetty and Adibi, 2005]. Here,
each node ni is temporarily removed from the graph G, and the graph entropy gap between G
and G \ ni is computed. Then, the node ni with the largest entropy gap is selected as the most
influential, since it causes the largest impact on the graph. Similar works analyze the network to
find those users with the largest ability of spreading news and content over the network [Saez-
Trumper et al., 2012]. Other works create algorithms inspired to PageRank [Jabeur et al.,
2012,Cataldi and Aufaure, 2014,Weng et al., 2010].

Baselines

In the following, we list some algorithms used by other authors as baselines for influencers
retrieval.

The work [Pal and Counts, 2011] uses the same retrieval algorithm, although the influence
metrics is downgraded to a simpler version (e.g., when the metrics considers both graph-based
and text-based metrics, baselines could be defined as the same metrics, in which either the
graph-based or the text-based dependence is relaxed).

Several works use the PageRank algorithm [Page et al., 1999] as baseline [Romero et al.,
2011,Saez-Trumper et al., 2012,Kong and Feng, 2011,Huang et al., 2013,Kwak et al., 2010,Weng
et al., 2010] or a variant of the same algorithm [Jabeur et al., 2012]. Other works [Kong and
Feng, 2011] consider the HITS algorithm as baseline.

Centrality metrics [Huang et al., 2013] (e.g., degree, closeness) and graph-based characteris-
tics [Jabeur et al., 2012,Kwak et al., 2010] (e.g., number of followers [Weng et al., 2010], number
of retweets) can be used as baselines to estimate the user importance.

Finally, works in which the topic of the tweets is estimated from the data use other (sim-
pler) classification algorithms (e.g., Naive Bayes classifiers, K-nearest neighbors classifiers) as
baselines [Cataldi and Aufaure, 2014].

Results evaluation

Influence is a subjective measure, and thus multiple way of assessing the performance of the
proposed metrics and algorithms are proposed in the state of the art.

Trivial metrics. Some works use some trivial metrics to state the accuracy of their work. For
instance, the work in [Weng et al., 2010] computes the accuracy measure by intersecting the
obtained result set (i.e., set of influencers) with the set of most active users in the dataset. The
implicit assumption here is that an active user is also an influencer, which in some cases can be
true. However, since this does not hold always, this metrics is too simple to capture an intricate
measure such as the influence (which depends on several factors).
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Manual evaluation. Several works propose evaluation metrics based on manual evaluation
of the result set [Pal and Counts, 2011, Shetty and Adibi, 2005,Cha et al., 2010,Huang et al.,
2013, Zhai et al., 2014, Bi et al., 2014, Cataldi and Aufaure, 2014, Weng et al., 2010]. This
evaluation procedure is based on the manual check of the influencer profile, to see whether it
can be considered as an influencer by humans. For instance, if the topic is the movie ‘Toy Story
3 ’, then the director of the same movie can be considered as an influencer for the topic.

User study. Other works [Pal and Counts, 2011,Hannon et al., 2010,Jabeur et al., 2012,Chen
et al., 2014] perform users studies with numerical evaluation of the topic relevance and influence
metrics. In these studies an annotator (which usually is a specific expert in the field) or a set
of annotators are required to go through the set of results, to assess its quality. Evaluations
can be either anonymous (e.g., only the text is shown to the annotator, and thus the influencer
profile is not visible) or non-anonymous (e.g., the name of the user is known and thus the profile
is visible). In case of multiple annotators, the opinions are aggregated in a unique evaluation,
using classical methodologies (e.g., majority voting).

Manual ground truth. When the focus is the one of classifying tweets in topics [Cataldi and
Aufaure, 2014], manual ground truth construction is performed on the collected dataset, so as
to compute the accuracy at the end of the classification process. This can be generally done
when a fixed dataset or a fixed training set is crawled from the social network.

Top-K posts on other services. Some work use other services to evaluate their topic classi-
fication quality. These services are usually news aggregators whose aim is to select viral Internet
issues. Consequently, the top-K posts one can find on those services correspond to the K posts
with the highest visibility on the network. For instance, the work in [Cataldi and Aufaure, 2014]
compares its results with the top-K posts on Digg2. Another example can be found in [Kwak
et al., 2010], which compares its result set with the one of Google Trends3 (i.e., a collector of
trending topics by Google) and CNN Headlines4.

Other works use the same principle, but exploiting information that is already present in
the analyzed social network. For instance, [Bi et al., 2014] computes the accuracy of its results
by counting the number of verified profiles that are present in the retrieved result set, since the
verified users are considered celebrities (and thus relevant users).

Content relevance

The growth of social media caused the growth of the volume of user-generated content. Showing
the whole set of published content to users brings to a poor user experience, where users are not
able to visualize only the most relevant content: spam and replicated content can be shown to
the users too if not filtering techniques is applied.

Mixing content relevance and user influence. Some works mix influence metrics and
content relevance metrics to identify relevant content. The idea behind these works is that if a
user is influent for a specified topic, then she is also producing relevant content for the topic.
Thus, selecting her content as the most relevant guarantees a high quality in the retrieved results.

The work [Silva et al., 2013] builds a bipartite graph with users and posts, and unleashes a
random tweeter that randomly selects a tweet from a Twitter feed, navigates to the related user
page, and restarts with the tweet random selection step. The most visited users are the ones
considered as most influent, and their posts are considered the most relevant.

2www.digg.com
3http://www.google.com/trends/
4www.cnn.com/QUICKNEWS/

www.digg.com
http://www.google.com/trends/
www.cnn.com/QUICKNEWS/
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The work [Schenkel et al., 2008] queries the social graph to retrieve the most relevant docu-
ments, by checking two factors: i) the similarity between the query keywords and the documents,
and ii) the social context around the user that performs the query. The idea is that the docu-
ments created by the user’s friends will be appreciated, since people that are close in the social
network tend to share the same interests.

A similar work is [Gou et al., 2010], where user geolocation, social context, topics of interest
and bookmarks of the user that is performing a query are used to assign a document a first
relevance score, which is then refined by computing the similarity between the document and
the query keywords.

Another work exploiting the same idea is [Yin et al., 2010], where social influence and
document similarity with the query are combined to compute the relevance score of a document.

Graph characteristics. The work [Bakshy et al., 2011] investigates the influence of Twitter
users by estimating the diffusion depth and visibility of their content. The authors build cascades,
i.e., phylogenies in which the flow of reposts of the original content is shown. The larger the
cascade, the larger the visibility of that content, the larger the influence of the user.

Diversity of content. The works [De Choudhury et al., 2011b] and [De Choudhury et al.,
2011a] (extension) does not look for content created by influencers, stating that this approach
would bring to the selection of tweets from celebrities, which are not necessarily relevant. Thus,
the work looks for relevant tweets by selecting a diversity level, and retrieving the most relevant
tweets with that degree of diversity. Diversity guarantees that content is always new and not
replicated.

Content relevance via sampling. Some past works propose to select at random content
and show it to users, so as to reduce the amount of shown information and thus help users in
focusing on what they are presented with. However, this obviously brings to low performance,
since the sampled content is not guaranteed to be relevant. Thus, more refined techniques can
be found in the state of the art for the selection of relevant content.

Given a topic, [Ghosh et al., 2013] proposes to select at first experts for that topic, and then
retrieve a fixed number of sample from their tweet feeds. This helps in increase the content
quality, since it is supposed that expert users publish topic-related content.

Content relevance prediction. The work [Lerman and Hogg, 2010] predicts which Digg
articles will become relevant (and come up in the first page) in short time. This is done by
modeling the way in which news enter and exit from the top-K list of relevant news, and
applying it to current, real-time data to predict future outcomes.

Similarly, [Khosla et al., 2014] applies various techniques from computer vision and machine
learning to predict the view count for each image in a dataset.

Content relevance on community question answering. Several works analyze commu-
nity question answering (such as Yahoo! Answers5 or Stackexchange6) so as to recognize the
most relevant answers and questions. As an example, [Agichtein et al., 2008] builds a graph in
which users, answers and questions characterize nodes in a graph, and with a PageRank-based
solution recognizes the most important nodes.

5http://answers.yahoo.com
6http://stackexchange.com

http://answers.yahoo.com
http://stackexchange.com
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Assessment via active crowdsourcing. Some works design crowd tasks in which workers
are asked to establish the content quality of some (usually multimedia) objects. As an exam-
ple, [Keimel et al., 2012] design tasks to assess video quality. Here, two videos (the original video
and its distorted video) are shown to the workers, with the request of evaluating the quality
difference between the two versions. This study shows how the comparison of multimedia com-
plex objects (such as videos) may bring to bad crowdsourced results, since users tend to leave
the task unfinished, due to fatigue. Moreover, this type of evaluation cannot be applied to large
data sets, since the effort needed to manually evaluate thousands of objects is too large.

The work [Vonikakis et al., 2014] asks workers to select a representative set of relevant
images from a pool of portrait photos. The crowdsourcing study reveals identifiable patterns in
the photo selection process, with more appealing photos securing more HITs than less appealing
photos. Then, a classifier is trained so as to identify the most relevant photos automatically,
using the manually annotated photos as training set.

The work [Van Kleek et al., 2012] uses a game with a purpose called Twiage to find relevant
content on Twitter. The game shows the player a set of tweets, and consists in the recognition
of the most relevant tweet in the pool. For each annotation, users get scores, so as to motivate
them.

Classification of tweets in topics

The work [Lee et al., 2011] proposes a strategy for the classification of trending topics (i.e.,
a popular topic on Twitter) based on a text classifier and an influence metrics. The idea is
that the textual content can help in the classification of a tweet in a predefined category (e.g.,
sports, cooking, art, fashion), and consequently in the classification of the contained trending
topics. Moreover, given two topics T1 and T2, if the set of influencers for those topics have strong
overlaps, then the topics are similar and should be classified as belonging to the same class.

The work [Yerva et al., 2011] classifies tweets containing a given keyword, to state whether
it is related or not to a given company. A company profile is traced by collecting keywords from
the related website. These keywords are used as feature set, and the relevance of the tweet for
that company is computed by classifying its content with a text classifier on the selected feature
set.

The work [Sriram et al., 2010] proposes an approach for the classification of tweets into
predefined set of generic categories such as News, events, Opinions, Deals and Private Messages.
The features are extracted from the tweets and user’s profile, while the feature set for each
category is learned from a manually annotated training set.

The work [Genc et al., 2011] introduces a Wikipedia-based classification technique, where
tweets are classifies by mapping message them into their most similar Wikipedia pages, and
calculating semantic distances between messages based on the distances between their closest
Wikipedia pages.

The work [Becker et al., 2011] explores approaches for the distinction of tweets between real-
world events and non-event messages. The authors use an online clustering technique to group
topically similar tweets together, and compute features that can be used to train a classifier to
distinguish between event and non-event clusters.

Focused Web crawling algorithms

The information available on the Web can be exploited to collect more on-topic data by intelli-
gently choosing what links to follow and what pages to discard. This process is called focused
crawling [Novak, 2004]. With this procedure, a crawler is started with a set of seed pages that
indicate the type of content the user is interested in, and provide the initial links. These pages
are put in a priority queue and are subsequently downloaded. Retrieved pages are then evaluated
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for topic relevance. Hyperlinks found on pages are extracted and ran through a filter, so as to
filter pages that are specified as black-listed pages.

In some early works [De Bra et al., 1994] Web crawling was simulated by a group of fish
migrating on the Web, where each URL corresponds to a fish and its survivability depends on
the visited page relevance. Only when a fish traverses a specified amount of irrelevant pages it
dies. [Hersovici et al., 1998] extends this concept, so that URLs of pages are prioritized by taking
into account a linear combination of source page relevance, anchor text and neighborhood of
the link on the source page. Later, some works based on PageRank were proposed [Cho et al.,
1998].

[Chakrabarti et al., 1999] uses an existing document taxonomy and seed documents to
build a model for classification of retrieved pages into categories. In [Chakrabarti et al., 2002]
page relevance and URL priorities are decided by separate models. [Ehrig and Maedche, 2003]
considers an ontology-based algorithm for page relevance computation. Entities are extracted
from the page and counted, and page relevance depends on the number of entities it contains.

[Aggarwal et al., 2001] introduces a concept of intelligent crawling where the user can
specify an arbitrary predicate (e.g., keywords, documents similarity) and the system adapts
itself in order to maximize the harvest rate.

Multi-modal classifiers

In the state of the art, several works that suggest how to merge different classifiers opinions can
be found.

The most used technique is the majority voting, which can be applied in different ways [Woź-
niak et al., 2014]: i) unanimous voting, in which a sample is classified as positive only if all the
classifiers agree; ii) simple majority, in which a sample is classified as positive only if the per-
centage of consensus the sample had is greater than half the pool of classifiers; and iii) majority
voting, in which a sample is classified as positive if the majority of received votes is positive. An
alternative way of collecting votes requires to weigh differently the decisions coming from the
classifier pool [Woźniak et al., 2014]. Similar techniques are the max rule, min rule and median
rule [Kittler et al., 1998].

In case of multi-classifiers systems in which all the classifiers work together on the same
feature set, approaches like boosting (e.g., AdaBoost) and bagging (i.e., bootstrap aggregating)
can be used [Briem et al., 2002]. With the boosting technique the classifier is iteratively trained
on a training set where weights for easy samples (i.e., the ones that the classifier classifies
correctly) decrease and weights for hard samples (i.e., the ones that the classifiers classifies
wrongly) increase. With the bagging technique the classifier is trained several times on re-
sampled subsets of training set, and the opinions are then aggregated so that every opinion has
equal weight during the voting. This helps in reducing the error on the test set, since multiple
training configurations are used and this increases the generalization.

In other cases, support function fusion can be used to aggregate different classifiers opin-
ions [Woźniak et al., 2014]. A support function provides a score for the decision taken by an
individual classifier. The value of a support function is the estimated likelihood of a class, com-
puted either as a neural network output, a posteriori probability, or fuzzy membership function.

Finally, some trainable fusers can be applied to aggregate probabilistically classifier opin-
ions [Woźniak et al., 2014]. As an example, Dempster and Shafer’s theory allows to reach
a consensus on the weights to combine several decisions. Similar results can be obtained by
applying Bayesian formalism [Xu et al., 1992].
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7.2.2 Video phylogeny and ancestry relationships detection for multimedia
objects

The work [Kender et al., 2010] characterizes a seed work in this field. Here, a YouTube dataset
is analyzed to characterize near duplicates between videos. Videos, in this perspective, are
like organisms within an ecology, competing for survivals. Each organism (i.e., video) breed
generating new organisms, which contain DNA samples (i.e., video segments) inherited from
their ancestors. The work builds a graph in which near duplicate relationships are specified, and
a plot of a possible phylogeny is provided.

The work [Dias et al., 2010] supposes that, when an image is manipulated by users, it
is possible to track down the structure of transformation the image was subjected to. Thus, it
introduces the definition of an Image Phylogeny Tree (IPT), i.e., a tree where the root represents
an image, and each branch represents a manipulation of the original image that brings to a new
version of it. Obviously, each manipulated version of the image can be further manipulated,
branching again the tree in a new level. All the manipulations of the same image are called
near duplicates of the original image, in the sense that their content is similar and that the
duplicate can be traced back to the original version. Hence, the authors propose a method for
the construction of an IPT starting from a set of images potentially containing some duplicates.
The tree, when constructed, is able to suggest which is the original content, which images have
been duplicated from it, and which kind of transformations were applied to the image to bring to
those modified versions. A similar approach is proposed in [Dias et al., 2011], where a phylogeny
tree is built for a set of videos instead of a set of images. However, all these works suppose
that there can be only a single root for a phylogeny, and that all other duplicates are generated
from a single source. Nevertheless, multimedia objects (specifically videos) can be generated by
pasting together multiple pieces of videos coming from different sources.



Chapter 8

Conclusions

In this dissertation we have shown how to optimize the application of active and passive crowd-
sourcing techniques to minimize costs and maximize the quality of the output.

In the context of active crowdsourcing, we proved that data uncertainty can deeply affect the
quality of the result, and that via crowdsourcing humans could help in reducing that uncertainty
and improve the outcome. However, the application of crowdsourcing has its own cost: the larger
the number of tasks workers have to solve, the larger the cost the requester has to bear. Thus,
we developed a framework for measuring the uncertainty on the underlying data and identifying
the most promising tasks to be posed to the crowd, with particular focus on top-K queries, so
as to minimize the costs and achieve the largest expected uncertainty reduction. Results show
that an accurate selection of tasks allows us to save budget and converge to an uncertainty-free
result in short times.

In the context of passive crowdsourcing, we developed a framework for the automatic analysis
of user-generated content, so as to identify topic-related content in short times and focused
crawling. The analysis is conducted both on textual data and images, with the objective of
identifying relevant content and influencers (i.e., celebrities for the topic). Results show that an
accurate, real-time analysis of content brings to a low cost identification of relevant entities (i.e.,
interesting content and people).

8.1 Summary of the work

In the following, we summarize the research work carried out in this Thesis.

8.1.1 Active crowdsourcing

The research process in the field of active crowdsourcing reported in this Thesis was focused
on the top-K query application. Some works in the state of the art proposed to model data
uncertainty via a tree of possible orderings (i.e., a set of orderings which are all potentially valid
for the underlying set of tuples), while others proposed how to compute the probability of an
ordering. We started with the aggregation of several contribution in this field, and adapted them
to the top-K context.

Then, we designed a crowd task type that could help in reducing the uncertainty in the
tree of possible orderings, and we defined how an answer to that task could modify the tree
of possible orderings (i.e., by deleting some of the orderings that are not compliant with the
collected answer).

After that, we defined four uncertainty metrics that measure the amount of uncertainty in the
tree of possible orderings. When a specific crowd task is provided as an input, these metrics allow
us to compute the expected uncertainty reduction that task would produce. Consequently, given
a set of possible crowd tasks, we order them according to the expected uncertainty reduction
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they would bring, and select the task (or the set of tasks) that are most promising, i.e., that
bring to the largest uncertainty reduction over the tree of possible orderings.

The selection of tasks can be performed in different ways: a first type of selection methods
requires the full materialization of the tree of possible orderings (which can be huge when the
uncertainty on the data is large), while a second type requires to materialize the tree incre-
mentally. Among the first type, we can list the online methods (i.e., methods that select the
i-th question by considering all the answers that were collected with the previous (i− 1) tasks)
and the offline methods (i.e., methods that select batches of B questions without requiring to
collect any answer in the meanwhile). Among the second type, we can list the incremental
online method (i.e., a method in which the tree is built incrementally one level after another,
and each construction step is alternated with a question selection step) and the incremental
hybrid method (i.e., a method in which each construction step is alternated with the selection of
a batch of n questions). Results show that methods that require the full materialization of the
tree are slower, but more precise (since the question selection horizon is more extensive), while
incremental methods lose precision (due to the limits during question selection phases) but are
faster.

8.1.2 Passive crowdsourcing

The research process in the field of passive crowdsourcing started with the creation of a past
data crawler for the microblogging platform Twitter, which retrieves tweets generated by a set
of manually selected topic-related set of users. The retrieved tweets (containing both text and
images) were manually annotated as either relevant or non-relevant, and used for two purposes:
i) train two classifiers (a textual one and an image one) so as to recognize automatically topic-
related content; ii) select an initial set of topic-related keywords and hashtags.

Then, a real-time crawler collecting currently created tweets was started so as retrieve any
content that contained at least one of the identified keywords, hashtags and users. In order to
follow dynamically the conversation changes, the crawler is set so as to change the monitored key-
words/users periodically. Moreover, tweets are automatically classified as relevant/non-relevant
by merging the opinions of the classifiers.

After that, we defined an influence metrics that judges user influence by considering char-
acteristics that depend on both the social graph and the produced content. The more relevant
and original is the produced content and the more the user is connected with others, the larger
is the influence degree.

Results prove that our metrics retrieves users that are more topic-focused with respect to
users retrieved by baseline metrics, and that these users produce large quantities of relevant
content. Moreover, we created a dashboard that allows one to manually inspect past and real-
time data, trends in communication and influencers profiles.

8.2 Contributions

The most significant contributions of this work are:

1. A framework for the quantification of data uncertainty. The main innovation of the pro-
posed approach consists in the definition of uncertainty measures that depends not only on
the probabilities on the orderings, which is the classical approach, but also on the structure
of the tree of possible orderings, which makes the uncertainty measure more adherent to
the structure of the problem.

2. A framework for the reduction of data uncertainty. In this Thesis, we proposed several al-
gorithms for the selection of the best questions to be asked to the crowd (i.e., the one with
the highest expected uncertainty reduction). Online and offline algorithms that require to
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materialize the whole space of possible orderings have high performance, but are best suited
with small instances, where the uncertainty of data is small and it is possible to material-
ize the space of possible orderings in little time. The incremental algorithms characterize
instead a good tradeoff between latency (i.e., computational time and crowdsourcing la-
tency) and performance, fitting the nature of the problem more than other classical online
and offline algorithms, and work well also in case the degree of data uncertainty is high.

3. A multimodal classification of user-generated content, which considers not only the tex-
tual information, but also multimedia content. Images are indeed often published as a
support to tweet text, and may carry fundamental information needed to understand if
the published content is relevant or not. Thus, we merge the opinion of the two classifiers
to have a general opinion on the relevance of the published content.

4. A pipeline for the automatic identification of topic-related content, so as to easily identify
relevant content and users for a topic in an efficient and low-cost way. The main innovation
of the proposed approach consists in the introduction of a scoring function that gives more
credits to words appearing mainly in positively classified (i.e., topic-related) tweets. With
this approach, words that describe currently produced content are periodically extracted
from the analyzed tweets and fed as an input to the pipeline, so as to track dynamically
changes in communication topics.

5. A metrics for the identification of influential users in social media. The metrics, which
comes natural, scores as the most influential users those users that produce original and
topic-related content, that are very active on the topic, and that generate large interest
and communications.

6. A methodology for the automatic identification of replicated content on social media. The
approach allows one to recognize among a set of near duplicates (i.e., a set of copies of the
same original multimedia object) which was the original content, and how transformations
(e.g., color corrections, content alteration) were spread over the network.

8.3 Open problems

In this Section, we discuss the open problems that will be investigated in the future.
In the context of active crowdsourcing, we did not treat cases in which scores are subjective

and the degree of overlap between score distributions is too large. In these situations, the amount
of uncertainty is too large to be treated with our algorithms, which would require long time to
reduce uncertainty without eliminating it completely. Thus, additional techniques that remove a
portion of uncertainty before applying our algorithms are needed. Some possible solutions could
be found in: asking users to reduce the spread of an uncertain score distribution by excluding
some score values, reshaping automatically score distribution so as to cut tails, mixing multiple
sources of information in order to build score distributions.

In the context of passive crowdsourcing, we limited our study to microblog content and users.
Here, posts are short and mainly focused on a specific topic, since there is no room for focusing on
different subjects. However, moving our interest on richer content (e.g., the one extracted from
blogs or news feeds) could make topic-specific content extraction more difficult to be performed,
since content is often not structured and talks about several entities and subjects. Moreover,
the influence metrics, which is now very focused on the content a user produces, can still be
improved by adding new factors related to user profile and connection between users. Influence,
as shown by works in the state of the art, is contagious, and thus if a person is very influent,
it is probable that some of the users that are connected to her will be influent too for the same
topic. Finally, further investigation on the relationships between content and users are needed
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to understand the nature of influence itself: is interesting content generating user influence, or
are charismatic people creating interesting content?

8.4 Future work

The described work covers important steps of a broader research program that will address
several open issues such as:

1. Generalization of the uncertainty reduction problem in the field of active crowdsourcing, so
as to work on other uncertain data and queries. For example, in skill-based expert search,
queries may be desired skills and result sets may contain sequences of people sorted based
on their uncertain topical expertise.

2. Application of automatic user-generated content analysis and influencers/relevant content
extraction to other dynamic contexts where the geospatial component is very relevant.
For instances, in cases such as floods of earthquakes, content should move as the event
moves in time and space, and thus following its evolution over the network could help in
understanding and predicting its evolution in the real world.

3. Analysis of trends and patterns in influence change and topic focus change in communica-
tion, so as to track how influence change, how influencers stop being the most influential
users to give space to other users, and how certain sub-topics (represented by keywords
and hashtags) come back in vogue after being absent from communication for a certain
time.

4. Analysis of sentiment and emotions of produced content, so as to understand if there is a
correlation between the emotion one shows in her content and her degree of influence on
the network.
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