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Abstract

THE context of the present PhD thesis is the research domain oriented towards the
development and assessment of advanced simulation tools, employing the most
recent reduced order methods, for nuclear reactor core spatial dynamics.

The potential of reduced order methods with respect to the current and/or classi-
cal approaches is firstly addressed. In particular, two modelling approaches based on a
Modal Method and on the Proper Orthogonal Decomposition technique, for developing
a control-oriented model of nuclear reactor spatial kinetics, are compared. The com-
parison of the outcomes provided by the two approaches focuses on the capability of
evaluating the reactivity and the neutron flux shape in different reactor configurations,
where different type of perturbations (i.e., homogeneous or localized) are applied.

Subsequently, taking advantage of the capabilities of reduced order models just
highlighted, the modelling of control rods movement is dealt, solving ad hoc parametri-
zed multi-group neutron diffusion equations both in the time-dependent and stationary
formulations. Several accurate and reliable reduced order models have been developed,
which are able to take into account the spatial effects induced by the rods movement
still featuring a real-time computational time. A different sampling technique, within
the Reduced Basis framework, has been employed, namely, the centroidal Voronoi tes-
sellation, which allows for a hierarchical parameters space exploration, without relying
on an a posteriori error estimation. In this way, the Offline computational time might
be sensibly reduced.

Even though the aforementioned analysis is “limited” to neutronics only, the poten-
tial of a multi-physics approach (i.e., where all the involved physics are solved within
the same computational environment) has been considered as well. In fact, a multi-
physics time-dependent model for a Lead Fast Reactor single-channel analysis is de-
veloped and presented. Thereafter, relying on this work, a preliminary multi-physics
reduced order model is proposed as proof of concept, where all the methodologies and
skills acquired during the PhD work are applied.
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Introduction

IN the analysis of the nuclear reactor dynamics, which is governed by the neutronics,
the most spread approach is constituted by the point-kinetics equations (Schultz,
1961). This description of the neutronics is based on a set of coupled non-linear

ordinary differential equations that describe both the time-dependence of the neutron
population in the reactor and the decay of the delayed neutron precursors, allowing
for the main feedback reactivity effects. Among the several assumptions entered in
the derivation of these equations, the strongest approximation regards the shape of the
neutron flux, which is assumed to be represented by a single, time-independent spatial
mode.

Nuclear reactors are generally characterized by complex geometries and may fea-
ture asymmetric core configurations. Therefore, more accurate modelling approaches
might be needed to provide more detailed insights concerning the reactor behaviour dur-
ing operational transients. It is worth mentioning that the innovative reactor concepts,
for instance Generation IV reactors (GIF, 2010), feature power density and temperature
ranges, experienced by structural materials, such that the corresponding spatial depen-
dence cannot be neglected. Moreover, in order to develop suitable control strategies for
such reactors, the spatial effects induced by the movement of the control rods have to
be taken into account as well.

From the modelling viewpoint, the highest fidelity approach is the so called Multi-
Physics (MP) approach (see e.g., (Cammi et al., 2011; CASL, 2012; Mahadevan et al.,
2012; Mylonakis et al., 2014)), where all the partial differential equations, which de-
scribe the involved physics, are solved within the same computational environment.
The main drawback of the MP is that the computational burden is quite high, and sim-
ulating the entire core turns out to be very demanding in terms of computational costs
and times. In addition, it is quite difficult to get the dynamics of the governing system
and then set up a simulation tool that may assess and represent the dynamic response
of the overall system at different operating conditions.

In this context, a computational reduced order technique, such as the Reduced Ba-
sis (RB) method (Rozza et al., 2008; Quarteroni et al., 2011), can lead to a simulation
tool with real-time simulation, still solving a set of partial differential equations. The
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goal of a computational reduction technique (Manzoni et al., 2012) is to capture the
essential features of the input/output behavior of a system in a rapid and reliable way,
i.e. (i) by improving computational performance and (ii) by keeping the approximation
error between the reduced-order solution and the full-order one under control. In par-
ticular, the reduced order modelling is aimed at approximating a parametrized partial
differential equation (or a set of partial differential equations) solution with a hand-
ful of degrees of freedom instead of thousands or millions that would be needed for a
full-order approximation. In this way, the full-order problem has to be solved only for
few instances of the input parameter (through a demanding Offline computational step),
in order to be able to perform many low-cost reduced-order simulations (inexpensive
Online computational step) for several new instances of the input.

It is worth mentioning that simplification – or approximation – of an equation, or
a system of equations, describing a phenomenon is indeed a reduced order technique
and it can be phrased as: “Reduce-then-discretize”. The herein proposed reduced order
methods are complementary and can be described as: “Discretize-then-reduce” and
they can still benefit from the former approach.

This PhD work is aimed at tackling the need of nuclear engineering field to have
accurate and reliable fast-running simulation tools, which can be tailored to common
control systems, able to reproduce spatial effects, in particular those induced by the
control rod movement. The present contribution can be considered as a first step to-
wards building a bridge between the “world of design” and the “world of control”. The
goal is to demonstrate that reduced order modelling is suited to be applied in more
complex (and coupled) industrial problems in order to introduce competitive compu-
tational performance and allowing, at the same time, a better investigation, thanks to
the parametrization of involved phenomena. To this aim, a methodological approach
for developing a reduced order model for systems with increasing complexity, up to a
preliminary multi-physics LFR single channel, has been proposed as proof of concept.

Objective and outline of the work

The present thesis focuses on the development and assessment of innovative simula-
tion tools, which are oriented to control and design purposes, for reactor core spatial
dynamics, with particular attention to neutronics. The main novel contribution is the
application of most recent advances in computational mathematics, namely the reduced
order methods, such as the certified reduced basis method, to nuclear engineering field.
According to the author’s knowledge and to the current state of the art, this is the first
time that such techniques have been employed in this context. Therefore, the work
focused more on setting up and assessing an innovative methodology, rather than re-
produce a real reference reactor.

Chapter 1 is devoted to address the potential of reduced order methods with respect
to current and/or classical approaches, for developing control-oriented model of nu-
clear reactor spatial kinetics. This part was very important to understand what are the
advantages of reduced order methods, when they might be useful, and how they can
be applied. The potential and benefits of reduced order methods for reproduce spatial
effects, highlighted in this analysis, have defined the track of the following research
activity, which proceeded towards the modelling of control rods movement.

In particular, in Chapter 2 two approaches, based on the certified Reduced Basis
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(RB) method, are developed for simulating the movement of nuclear reactors control
rods in time-dependent (and non-coercive) settings. Throughout this Chapter, the RB
method is detailed and applied to a set of parabolic equations (ten in this work) given
by the multi-group neutron diffusion equations, which has been parametrized in order
to allow for control rod movement. This work was the first step in the “RB world”,
and the skills as well as the methodological approach borrowed in this framework have
been subsequently employed and improved.

An alternative quite popular in the reactor physics community to the direct dis-
cretization of the time-dependent neutron diffusion (or transport) equation is the so-
called quasi-static approach (see e.g., Girardi et al., 2012). This approach is formally
close to the adiabatic one (Duderstadt and Hamilton, 1976), except that the flux shape
is recalculated at intervals during transients. Therefore, Chapter 3 is devoted to develop
a reduced order model of a parametrized multi-group neutron diffusion equations in the
stationary formulation, which is a generalized eigenvalue problem. The parametriza-
tion has been developed in order to allow for a continuous movement of the control
rods. This contribution is thought to provide a methodological approach to improve
the already employed control-oriented simulation tools, which are mostly based on the
point-wise kinetics, allowing for the spatial effects. The main idea is that the tempo-
ral evolution can still be described according to PK equations, but at each time step
the reactivity (and the neutron flux shape) is estimated by means of a fast-running and
reliable reduced order model.

For these studies, the TRIGA (Training Research and Isotope production General
Atomics) Mark II (General Atomic, 1964) of the University of Pavia (Italy) has been
chosen as case study, because it is a pool-type reactor featuring a non-symmetric core
configuration. The TRIGA reactor is briefly described in Appendix A.

Despite the fact that the aforementioned studies are “limited” to neutronics only, the
potential of a multi-physics approach (i.e., where all the involved physics are solved
within the same computational environment, allowing for higher-order coupling among
the different physics, with respect to the classical approach based on the so-called cou-
pled code techniques) has been considered as well and it is addressed in Appendix B.
In fact, a multi-physics time-dependent model for a Lead Fast Reactor single-channel
analysis is detailed. Thereafter, starting on this work, the methodologies developed in
this thesis have been applied to a preliminary parametrized multi-physics LFR single
channel, which is proposed as proof of concept in Appendix C. The potential of re-
duced order methods is addressed by taking into account both physical and geometric
parameters. Moreover, a particular strategy for handling the non-linear coupling terms
in order to achieve an efficient Offline/Online computational split is developed as well.

Throughout this PhD work, the reduced order models have been developed relying
on different computational environments, i.e.: FreeFem++ (Pironneau et al., 2012),
libMesh (Kirk et al., 2006) within the rbOOmit framework (Knezevic and Peterson,
2011), and FEniCS (Logg et al., 2012). This has been done in order to emphasize
that reduced order methods are not restricted to a particular software or library and
that they can foster, in this way, a computational collaboration. Moreover, a developed
on purpose procedure, which implements the certified reduced basis method, has been
developed within the computational environment offered by the open-source finite el-
ement library FEniCS. Such procedure has been tested on different problems, which
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are collected in Appendix D. It is worth mentioning that the developed procedure has
begun to be used for teaching purposes within the SISSA (Scuola Internazionale Su-
periore di Studi Avanzati) doctoral programme Mathematical Analysis, Modelling and
Applications (AMMA), as well as within the Master in High Performance Computing
held by SISSA and ICTP (International Centre for Theoretical Physics).
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CHAPTER1
Potential of reduced order methods

To understand the potential of reduced order methods, with respect to cur-
rent and/or classical approaches, two modelling approaches based on a
Modal Method (MM) and on the Proper Orthogonal Decomposition (POD)
technique, for developing a control-oriented model of nuclear reactor spa-
tial kinetics, are presented and compared. Both these methods allow de-
veloping neutronics description by means of a set of ordinary differential
equations. The comparison of the outcomes provided by the two approaches
focuses on the capability of evaluating the reactivity and the neutron flux
shape in different reactor configurations, with reference to a TRIGA Mark
II reactor. The results given by the POD-based approach are higher-fidelity
with respect to the reference solution than those computed according to the
MM-based approach, in particular when the perturbation concerns a re-
duced region of the core. If the perturbation is homogeneous throughout
the core, the two approaches allow obtaining comparable accuracy results
on the quantities of interest. As far as the computational burden is con-
cerned, the POD approach ensures a better efficiency rather than direct
Modal Method, thanks to the ability of performing a longer computation in
the preprocessing that leads to a faster evaluation during the Online phase.
The advantage of reduced order methods, highlighted in this Chapter, have
defined the track of the following research activity.

Main results are published in: Sartori, A., Baroli, D., Cammi, A., Chiesa, D., Luzzi,
L., Ponciroli, R., Previtali, E., Ricotti, M.E., Rozza, G., Sisti, M., 2014, “Comparison
of a Modal Method and a Proper Orthogonal Decomposition approach for multi-group
time-dependent reactor spatial kinetics”, Annals of Nuclear Energy 71, 217 – 229. The
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Chapter 1. Potential of reduced order methods

methodology has been presented and discussed also into a seminar at MOX (Politecnico
di Milano) entitled “Reduced Order Techniques in Nuclear Physics”, June 3, 2013.
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1.1. Introduction

1.1 Introduction

IN the development of the control systems, the preliminary stage of modelling mainly
concerns the correct evaluation of the representative system time constants, and
getting the fundamental aspects related to the plant response to the outside per-

turbations. For this reason, in control oriented simulators, the model is usually based
on non-linear systems of Differential-Algebraic Equations (DAEs), expressed by ẋ =
f(t,x, z). Indeed, the system of Ordinary Differential Equations (ODEs) for x(t) de-
pends on additional variables and the solution is forced to satisfy algebraic constraints
0 = g(t,x, z) (Ascher and Petzold, 1997). In many cases, it is sufficient to employ
simplified lumped parameter models, which neglect the spatial dependence of the vari-
ables, studying only the average behaviour of the system and its temporal evolution.
In addition, these systems of differential equations can be easily linearized in order
to study the system behaviour close to a given operating condition. In this way, it is
possible to use the tools of linear analysis, which allow achieving effective solutions
that can be applied to the original non-linear models. For these reasons, in the anal-
ysis of the nuclear reactor dynamics, the most diffused approach is constituted by the
Point-Kinetics (PK) equations (Schultz, 1961). This description of the neutronics is
based on a set of coupled non-linear ODEs that describe both the time-dependence of
the neutron population in the reactor and the decay of the delayed neutron precursors,
allowing for the main feedback reactivity effects. Among the several assumptions en-
tered in the derivation of these equations, the strongest approximation regards the shape
of the neutron flux, which is assumed to be represented by a single, time-independent
spatial mode. Indeed, it is common to adopt a shape function characterizing a critical
core configuration if the reactor is close to the critical state or on a truly asymptotic
period. When the changes in core composition are sufficiently slow, an instantaneous
steady-state criticality calculation of the shape function can be performed, even though
this shape will slowly change with time. Such a scheme is known as the adiabatic
approximation (Duderstadt and Hamilton, 1976).

Otherwise, whether the reactors are characterized by complex geometries and asym-
metric core configurations, more accurate modelling approaches may provide more
detailed insights concerning the reactor behaviour during operational transients. It is
worth mentioning that the development of innovative reactor concepts, for instance
Generation IV reactors (GIF, 2010), feature power density and temperature ranges,
experienced by structural materials, such that the corresponding spatial dependence
cannot be neglected.

It is therefore necessary to develop a sufficiently accurate description of the reactor
core spatial dynamics, based on a set of ODEs to be employed in a control-oriented
simulator. To this aim, in the present Chapter, the capabilities of two approaches –
the Modal Method (MM) (Stacey, 1969; Xia et al., 2012) and one based on the Proper
Orthogonal Decomposition (POD) (Holmes et al., 1996; Chatterjee, 2000; Liang et al.,
2002; Buchan et al., 2013) technique – are compared on a 2D domain. The comparison
focuses on the capability of the two approaches of reproducing both the reactivity and
the neutron flux shape for different reactor configuration, with reference to a TRIGA
Mark II reactor (General Atomic, 1964). Such reactor has been selected as case study
because it is a pool-type reactor, whose core features a non-symmetric configuration.

Politecnico di Milano 7 Alberto Sartori



Chapter 1. Potential of reduced order methods

However, the focus of the present Chapter is the comparison of the above mentioned
MM and POD approaches to find out the right track to be pursued in the future. There-
fore, since this study is more concerned on the modelling approaches, rather than the
reactor model itself, the geometry of the reactor has been taken 2D to speed up the
computational time.

The MM approach was theorized in the sixties (Stacey, 1969) but it was not system-
atically employed because of the high computational burden for the determination of
the higher order eigenfunctions of a reactor core. The MM, basically, approximates a
function by means of a linear combination of its eigenfunctions. Nowadays, in liter-
ature it is possible to find many attempts in developing non-zero dimensional reactor
models for different applications by means of modal synthesis method. For example,
the harmonic synthesis method has been used to perform the reconstruction of a reactor
core flux distribution starting from the Online data acquired inside the reactor itself (Fu
et al., 1997). Subsequently, a 3D reactor power distribution control in a load-following
mode was investigated based on this developed reactor kinetic model (Wenfeng et al.,
2001). A similar modal method has been used to describe the neutron diffusion process
(Miró et al., 2002). This method has been applied to investigate in-phase and out-of-
phase oscillations in a BWR. An eigenvalue separation technique has been investigated
(Obaidurrahman and Singh, 2010) for 3D neutronic coupling and decoupling aspects of
a 1000 MW PWR nuclear reactor. The modal analysis has also been applied for study-
ing temporary instabilities observed in a BWR (Ginestar et al., 2002). More recently,
the MM approach has been applied to study the kinetics of a CANDU reactor (Xia
et al., 2012, 2014).

Similarly to the MM, the POD was not recently theorized (Pearson, 1901) but it was
not widely exploited until the advent of electronic computers. The POD is a reduction
order technique aimed at obtaining the most characteristic structure of the problem us-
ing a low-dimensional approximate descriptions of a high-dimensional process (Quar-
teroni et al., 2011). Applications of POD include image processing, data compression,
signal analysis, modelling and control of chemical reaction systems, turbulence mod-
els, coherent structures in fluids, control of fluids and electrical power grids. In the
nuclear engineering field, POD has not been extensively employed, even though its
potentialities have been underlined, e.g., (Merzari and Ninokata, 2011) and (Prill and
Class, 2014) to name a few. In literature, examples of the application of POD to neu-
tronics can be found in (Wols, 2010) and (Buchan et al., 2013). The former presents a
POD-based reduced order model for the mono-energetic generalized eigenvalue equa-
tion, which is associated to the neutron diffusion equation in the steady state condition.
In the latter, the multi-group time-dependent neutron flux is approximated as a linear
combination of α-eigenfunctions, while the POD is briefly addressed and not applied
to the time-dependent problem. The study reported in the present paper shares some
aspects with the work of (Wols, 2010) and such approach has been further improved.
Indeed, for the first time, the POD capabilities are exploited for solving the multi-
group time-dependent neutron diffusion equation by training the POD basis to handle
localized perturbations. In this work, two opportunities of this approach have been ex-
ploited: the primal Galerkin projection onto a low dimensional space, which is spanned
by the so-called most energetic basis (Merzari and Ninokata, 2011), and Offline/On-
line decomposition strategies, which allow achieving small calculation cost for a high
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1.2. Modelling

performance in real-time simulation. As a major outcome, there is a great saving in
Online computation for each input-output evaluation of the quantities of interest, while
an increase of pre-processing (Offline) calculation has to be dealt with (Rozza et al.,
2008).

The Chapter is organized as follows. Section 1.2 presents the reactor chosen as case
study and its modelling. The MM and the POD approaches are described in Sections 1.3
and 1.4, respectively. In Section 1.5, the Inverse Method used to compute the reactivity
according to the two approaches is presented. Subsequently, the comparison between
the MM and POD results is detailed in Section 1.6. Finally, the main conclusions are
drawn in Section 1.7. The adopted nomenclature is listed at the end of the Chapter.

1.2 Modelling

The TRIGA Mark II reactor of the University of Pavia (Italy) has been chosen as case
study (see Appendix A on page 89).

In order to describe the neutron kinetics the multi-group diffusion theory (Duder-
stadt and Hamilton, 1976), with two energy groups and eight group of precursors (Cm)
has been employed. In equations, it reads:



V −1∂Φ

∂t
= ∇ ·

(
D∇Φ

)
− ΣaΦ− ΣsΦ + (1− β)χpF

TΦ+

+
∑
m

λmχdCm

∂Cm
∂t

= −λmCm + βmF
TΦ for m = 1, · · · , 8

(1.1)

(1.2)

with a given initial condition

Φ(t = 0) = Φ0 and Cm(t = 0) = C0
m (1.3)
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Chapter 1. Potential of reduced order methods

where 

Φ =

 Φ1(r, t)

Φ2(r, t)


V −1 =

 1

v1

(r) 0

0
1

v2

(r)


D =

[
D1(r) 0

0 D2(r)

]

Σa =

[
Σ1
a(r) 0

0 Σ2
a(r)

]

Σs =

[
Σ1→2
s (r) −Σ2→1

s (r)

−Σ1→2
s (r) Σ2→1

s (r)

]

χp =

 χ1
p

χ2
p


F T =

[
νΣ1

f (r) νΣ2
f (r)

]
χd =

 χ1
d

χ2
d



(1.4)

1.2.1 Neutronic input generation with SERPENT

The neutronic parameters (V −1, D,Σa,Σs, χp, F
T , χd) have been generated by means

of the continuous energy Monte Carlo neutron transport code SERPENT (SERPENT,
2011, 2011), which features group constant generation capabilities, using the nuclear
data library JEFF 3.1 (Koning et al., 2006). As far as the SERPENT model is con-
cerned, the core and the pin geometries are represented, respectively, in Figs. 1.1 and
1.2. All the fuel pins have been taken into account with the surrounding cladding, the
two irradiation channels have been considered empty (filled with air), whereas, for the
sake of simplicity, the control rods, the dummy elements and the source have been
“replaced” with water. The isotopic composition of the input materials is provided in
Table 1.1.

The group constants have been obtained after runs of 10 millions active neutron
histories. Simulations consist of 500 active cycles of 2 · 104 neutrons, leading to a stan-
dard deviation lower than 3% for all the computed parameters.1 Fifty inactive cycles
are adopted to allow the convergence of the fission source distribution employed for
the active cycles. When the neutronic parameters for the void have been generated,
the air has been homogenized with the surrounding water ensuring that the diffusion
approximation holds. In addition, for the sake of simplicity, the fuel pins have been

1Thanks to the reduced values of the obtained standard deviations, performing an uncertainty propagation has not been consid-
ered necessary.
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1.2. Modelling

Figure 1.1: Geometry employed in SERPENT code for representing the system configuration.

Figure 1.2: Geometry of the pin employed in SERPENT code.
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Chapter 1. Potential of reduced order methods

Table 1.1: Isotopic composition of the SERPENT input materials.

Fuel Cladding Water
Isotope wt% Isotope wt% Isotope wa%
U-235 1.607 V-nat 0.10 O-16 1.0
U-238 6.531 Cr-nat 0.02 H-1 2.0
Zr-nat 90.836 Mn-nat 0.01
H-1 1.026 Fe-nat 0.10 Air

Al-27 99.57 Isotope wt%
Cu-nat 0.10 O-16 10.0
Ga-nat 0.10 N-14 90.0

Table 1.2: Neutronic parameters generated by the SERPENT code.

Parameter Fuel Water Void

D1 [cm] 8.77 · 10−1 8.51 · 10−1 3.82
D2 [cm] 1.92 · 10−1 1.39 · 10−1 7.13 · 10−1

Σ1
a [cm−1] 4.85 · 10−3 5.04 · 10−4 1.23 · 10−4

Σ2
a [cm−1] 7.53 · 10−2 1.70 · 10−2 4.18 · 10−3

Σ1
f [cm−1] 3.15 · 10−3 – –

Σ2
f [cm−1] 1.08 · 10−1 – –

Σ1→2
s [cm−1] 3.04 · 10−2 5.34 · 10−2 9.08 · 10−3

Σ2→1
s [cm−1] 3.21 · 10−4 2.49 · 10−4 1.18 · 10−4

1/v1 [s/cm] 5.87 · 10−8 7.58 · 10−8 6.58 · 10−8

1/v2 [s/cm] 3.00 · 10−6 3.47 · 10−6 3.30 · 10−6

χ1
p [−] 1.0 – –
χ2
p [−] 0.0 – –
χ1
d [−] 1.0 – –
χ2
d [−] 0.0 – –

homogenized with the cladding and the coolant. The parameters generated, which have
been used as input for both the MM and POD approaches, are reported in Table 1.2.

The homogeneous Dirichlet Boundary Conditions (BC) have been set, which lead to
a good approximation of flux shape and reactivity value. Indeed, the core is surrounded
by a ring of reflector of graphite, which improves the neutron thermalization. This leads
to a small increase of the thermal flux near the border that cannot be taken into account
with the employed BC. Therefore, the flux shape is correctly evaluated throughout the
core, except near the external border. Since this work is more focused on the compari-
son of the two approaches, rather than on the development of an accurate model of the
reactor, the adoption of such BC may be still considered acceptable.

1.2.2 Deriving the system of ODEs

In order to derive the system of ODEs, which describes the reactor kinetics, the flux
has been approximated as follows:

Φ(r, t) '
N∑
i=1

bi(r)ai(t) (1.5)
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1.3. Modal Method approach

In Eq. (1.5), bi(r) is a spatial basis where the flux is projected, and ai(t) are the time-
dependent coefficients, which are the unknowns of the obtained ODEs system. In this
work, two spatial bases have been considered, one generated by the eigenfunctions
associated to Eq. (1.1) (MM approach), and one generated by means of the POD tech-
nique.

Once the Eqs. (1.1) and (1.2) are projected onto the corresponding spatial basis, the
following N equations are obtained for both the approaches:

N∑
i=1

τjiȧi(t) =
N∑
i=1

[
Ajiai(t) + (1− β)Fp,jiai(t)

]
+

+
8∑

m=1

λmCmj(t)

˙Cmj(t) = −λmCmj(t) + βm

N∑
i=1

Fd,jiai(t) for m = 1, · · · , 8

(1.6)

(1.7)

where the expressions for the parameters τji, Aji, Fp,ji, Cmj, Fd,ji will be given in Sec-
tion 1.3 and 1.4 for the MM and POD approach, respectively.

The needed calculations for the definition of the two spatial bases have been per-
formed using the finite element method (Quarteroni and Valli, 2008). The mesh em-
ployed (Fig. 1.3) features a 2D geometry using tri-noded triangular elements, where,
for the sake of simplicity, all the fuel pins have been homogenized and only the two
irradiation channel regions have been taken separated.

1.3 Modal Method approach

The essential feature of modal methods is spanning the expansion of spatial modes
generated from the reference configuration, which is described by the non symmetric
generalized eigenvalue problem associated to the Eq. (1.1), namely:(

−∇ ·D∇+ Σa + Σs

)
ψi = λiχpF

Tψi (1.8)

where the first eigenfunctions of each group ψ0 give the fundamental flux distribution.
The core criticality condition is determined by the inverse of λ0.

The former equation can be rewritten in the operator theory context as follows:

Lψi = λiMψi (1.9)

where the operators denoted in (1.9) are the neutronic removal operator

L =
(
−∇ ·D∇+ Σa + Σs

)
and the production operatorM is given by

M = χpF
T

Because of the non-Hermitian operator L, the adjoint generalized problem associated
to Eq. (1.8) has to be solved, in order to obtain the bi-orthogonal adjoint eigenvectors
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Chapter 1. Potential of reduced order methods

Figure 1.3: Mesh employed for the finite element calculations.

ψ†
i for the former harmonic function. From finite element fashion, the modal approach

appears as a Petrov-Galerkin projection on high dimensional space where the trial func-
tions are the harmonic modes and the test functions are the adjoint modes.

The steps necessary to derive the system of ODEs, which describes the reactor spa-
tial dynamics according to the MM approach, are the following:

1. compute N eigenfunctions ψi from Eq. (1.8);

2. compute N adjoint eigenfunctions ψ†
i from the adjoint problem;

3. flux Φ is approximated as

Φ '
N∑
i=1

ψi ai(t) (1.10)

where 
ψi =

[
ψ1
i (r) 0

0 ψ2
i (r)

]

ai(t) =

 a1
i (t)

a2
i (t)

 (1.11)

4. substitute the expression of Eq. (1.10) into Eqs. (1.1) and (1.2);

5. pre-multiply Eq. (1.1) by ψ†
j and Eq. (1.2) by ψ†

jχd;
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1.4. POD-based approach

6. integrate over the spatial domain Ω.

Finally, for the Eqs. (1.6) and (1.7), the following parameters have been obtained:

τji =
∫
Ω

ψ†
jV
−1ψidΩ

Aji =
∫
Ω

ψ†
j

[
∇ ·D∇− Σa − Σs

]
ψidΩ

Fp,ji =
∫
Ω

ψ†
jχpF

TψidΩ

Cmj =
∫
Ω

ψ†
jχdCmdΩ

Fd,ji =
∫
Ω

ψ†
jχdF

TψidΩ

(1.12)

It is worth mentioning that for such approach, the number of eigenfunctions needed to
represent the quantities of interest with a certain level of accuracy for a given perturbed
reactor configuration cannot be evaluated a priori (i.e., before the eigenfunctions are
computed) nor a posteriori (i.e., once the eigenfunctions have been computed).

1.4 POD-based approach

The Proper Orthogonal Decomposition method by means of the snapshot technique
(Sirovich, 1987) gives the possibility to reduce the dimensionality of a system by trans-
forming the original solutions, called snapshots, onto a set of uncorrelated modes such
that the first few modes retain most of the energy (i.e., most of the information) present
in all of the original variables (Quarteroni et al., 2011). In this way, it is possible to
obtain a reduced representation through a spectral decomposition by means of the Sin-
gular Value Decomposition (SVD). Each snapshot is the solution of the generalized
eigenvalue problem associated to a given vector D,Σa,Σs.

Thanks to the possibility of decomposing the computation in Offline and Online,
the greatly expensive computation for generating the snapshots and the computation of
the SVD is performed in the Offline phase. Given a discrete set of train of data Θtrain,
which for this work reads Θtrain(D,Σa,Σs), the Offline computation consists in the
following steps:

1. compute Ns snapshots ω1(µ1), . . . , ωNs(µNs), where µi ∈ Θtrain;

2. build the vector of the snapshots X = [ω1, . . . , ωNs ];

3. perform the SVD on X , so as to obtain:

X = U S V

In this work, the number of retained snapshots is equal to one hundred. Once the
SVD is computed, the columns of the matrix U , ui, are the POD orthonormal modes,
while the singular values, si, associated to each mode are sorted in descending order in
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the diagonal matrix S. The singular value is proportional to the energy of each mode
(i.e., to the information carried by the mode itself). As a major outcome of the POD
approach, the subspace V POD spanned by the ui constitutes the optimal approximation
of the full discrete original problem in the least square sense.

Once the Eqs. (1.1) and (1.2) are projected onto the POD basis, the same functional
forms of Eqs. (1.6) and (1.7) are obtained in which the following parameters have been
employed: 

τji =
∫
Ω

ujV
−1uidΩ

Aji =
∫
Ω

uj

[
∇ ·D∇− Σa − Σs

]
uidΩ

Fp,ji =
∫
Ω

ujχpF
TuidΩ

Cmj =
∫
Ω

ujχdCmdΩ

Fd,ji =
∫
Ω

ujχdF
TuidΩ ∀ui, uj ∈ V POD

(1.13)

Differently from the Modal Method, the POD approach ensures an a posteriori estimate
about the amount of information stored in the V POD space, defined by the following
criterion (Atwell and King, 2004):

e∑
i=1

si

Ns∑
i=1

si

> E (1.14)

where e provides an estimate of the number of basis functions necessary for an approx-
imation with a desired mean square error less than (1 − E)

∑Ns
i=1 si. In this way, the e

modes retain E · 100 percent of the information stored in the vector of the snapshots
X . The set of train Θtrain has been defined as a random sampling of the values of the
parameters D,Σa, and Σs, which can vary only within the spatial regions of the two
irradiation channels (central and RABBIT, see Fig. A.1 on page 90).

1.5 Reactivity evaluation by means of the Inverse Method

In the Introduction, it has been stated that the developed approaches allow getting the
system spatial dynamics, in addition to the time-dependent one, in order to monitor the
evolution during operational transients of quantities of interest. Conversely, the most
relevant output variable that allows the operator to effectively programme the control
rod motion is the system reactivity, whose value determines the time-dependence of
the externally imposed reactivity to yield a certain power variation. Therefore, from a
control and safety oriented perspective, it is fundamental to evaluate the contribution of
the several reactivity feedbacks.

Indeed, the perturbation performed on the system will be localized to certain zone
of the core. According to the position, the reactivity variation will be different, and the
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1.5. Reactivity evaluation by means of the Inverse Method

model should get these aspects and predict how the perturbation will extend to other
core regions, reproducing these spatial dynamics effects. In the present work, the evalu-
ation of the reactivity has been derived by means of the Inverse Method (Duderstadt and
Hamilton, 1976). After a brief description of the classical formulation, it will be indi-
cated how the algorithm has been modified and related to the time-dependent variables
of the Modal-based and the POD-based approaches.

The Inverse Method refers to the following system of non-linear equations consti-
tuting the PK model: 

dΨ

dt
=
ρ(t)− β

Λ
Ψ +

8∑
m=1

βm
Λ
ηm

dηm
dt

= λmΨ− λmηm

(1.15)

(1.16)

The state of the system is represented by the following normalized variables:
Ψ(t) =

P (t)

P (0)

ηm(t) =
Cm(t)

Cm(0)

(1.17)

(1.18)

whose initial conditions are defined as ηm(0) = 1 and Ψ(0) = 1. By substituting the
analytical solution of precursor concentration into Eq. (1.15), it is possible to write:

dΨ

dt
=
ρ(t)− β

Λ
Ψ +

8∑
m=1

βm
Λ

e−λmt +

t∫
0

[
λmΨ(t′)eλm(t′−t)

]
dt′

 (1.19)

Once defined the delay quantity τ = t − t′ and identified the “delayed neutron
kernel” as:

D(τ) =
8∑

m=1

(
λmβm
β

)
e−λmτ

it is possible to rearrange the Eq. (1.19), obtaining an integro-differential form of the
reactor point kinetics:

ρ(t) = β +
Λ

Ψ(t)

dΨ

dt
− 1

Ψ(t)

8∑
m=1

βme
−λmt+

− β

Ψ(t)

t∫
0

D(τ)Ψ(t− τ)dτ (1.20)

This expression indicates that by properly combining the PK equations it is possible
to get an expression of the overall system reactivity, ρ(t), as a function of the normal-
ized power Ψ(t). Given this result, the classical formulation of the Inverse Method
has been extended, starting from the outcomes provided by the Modal and POD ap-
proaches. First of all, the expression of the thermal power density can be expressed
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as:

q′′′(r, t) =
∑
l

w
(l)
f Nl(r)

∞∫
0

σ
(l)
f (E)Φ(r, E, t)dE (1.21)

where l refers to the l − th fissile isotope, w(l)
f is the recoverable energy for each iso-

tope fission event, Nl(r) is the isotope density, σ(l)
f (E) is the microscopic fission cross

section for the l − th isotope, Φ(r, E, t) is the neutron flux as function of position,
energy and time. In the developed model, two neutron energy groups have been taken
into account. Therefore, in the Eq. (1.21) the integral is substituted by the following
expression:

q′′′(r, t) =
∑
l

w
(l)
f Nl(r) ·

[
σ

(l)
f1

(E)Φ1(r, t) + σ
(l)
f2

(E)Φ2(r, t)
]

(1.22)

After having obtained the fission macroscopic cross section for the considered domain,
by integrating the above expression (1.22) on the fuel pins volume, it possible to derive
the value of the overall thermal power produced as follows:

P (t) = wf ·
∫
V

[
Σ1
f (E)Φ1(r, t) + Σ2

f (E)Φ2(r, t)
]

dV (1.23)

According to the presented approaches, the thermal and fast neutron fluxes have been
expressed as a series of suitably defined functions in the form:

Φ1(r, t) =
N∑
i=1

b1
i (r)a

1
i (t) Φ2(r, t) =

N∑
i=1

b2
i (r)a

2
i (t) (1.24)

By substituting these expressions in the Eq. (1.23), the instantaneous value of the ther-
mal power produced in the reactor core is achieved:

P (t) = wf ·
N∑
i=1

[
a1
i (t) · 〈Σ1

f |b1
i 〉V + a2

i (t) · 〈Σ2
f |b2

i 〉V
]

(1.25)

The terms 〈Σ1
f |b1

i 〉V and 〈Σ2
f |b2

i 〉V of the summation are evaluated Offline, while the
a1
i (t) and a2

i (t) coefficients are computed by solving the developed ODE system defined
by Eqs. (1.6) and (1.7). In order to derive the normalized power Ψ(t), represented by
Eq. (1.17), it is necessary to refer P (t) to the power at nominal conditions P (0). In this
work, it has been assumed P (0) = 1 · wf . Therefore, Ψ(t) is simply given by:

Ψ(t) =
P (t)

P (0)
=

N∑
i=1

[
a1
i (t) · 〈Σ1

f |b1
i 〉V + a2

i (t) · 〈Σ2
f |b2

i 〉V
]

(1.26)

By substituting Ψ(t) into Eq. (1.20), the system reactivity ρ can be derived.

1.6 Results and discussion

The comparison of the outcomes provided by the MM and the POD approaches focuses
on the capability of evaluating the reactivity and the neutron flux shape. The different
considered reactor configurations are the following:

Alberto Sartori 18 Politecnico di Milano



1.6. Results and discussion

(a) Case i (b) Case ii (c) Case iii (d) Case iv

Figure 1.4: The four reactor configurations simulated. The perturbed areas, with respect to nominal
configuration (Case i), are highlighted in red.

(i) both the irradiation channels are empty (nominal configuration,2 unperturbed);

(ii) water in the central channel, the RABBIT is empty;

(iii) water in the RABBIT, the central one is empty;

(iv) absorption cross sections have been reduced by 3‰.

The above mentioned configurations, which are shown in Fig. 1.4, have been chosen
in order to test the reliability and accuracy of the two approaches on the basis of both
localized perturbations (Cases ii and iii) and homogeneous perturbation (Case iv). The
POD basis has been trained with localized perturbations on the two irradiation channels,
hence it is expected that the POD approach leads to high-fidelity results for Cases (ii)
and (iii). On the other hand, the MM approach is likely to give good results for a
homogeneous perturbation. The Cases (ii) and (iii) have been selected in order to asses
if the two approaches manage to take into account spatial effects. Indeed, the same
perturbation (i.e., void is replaced by water) is applied to different positions of the core
where the neutron flux importance is different. Hence, the reactivity values are expected
to be different in these two cases.

1.6.1 Methodology

For each configuration, an eigenvalue calculation – see Eq. (1.8) – has been performed
by means of the open source finite element code FreeFem++ (Pironneau et al., 2012)
relying on the ARPACK packages (Lehoucq et al., 1998), which implement an efficient
implicit Arnoldi procedure, and on the MUltifrontal Massively Parallel sparse direct
Solver (MUMPS) (Amestoy et al., 2000). The obtained reactivity value and flux shape
will be referred to as reference solution.

Subsequently, using the MATLAB/Simulink environment (MATLABr and SIMULINKr

software, 2005), the evolution of the system described by Eqs. (1.6) and (1.7), within
the first 60 seconds, has been simulated according to the MM and POD approaches.
The reactivity has been estimated by means of the described procedure of the Inverse
Method (Section 1.5). In order to compare the computed flux shapes with the reference
one, which is time-independent, the former, at the end of the simulation, are normalized

2The eigenfunctions of the MM have been computed for this configuration.
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Table 1.3: Reactivity calculations for the configuration corresponding to Case i.

Reactivity [pcm]
# of functions Reference POD MM

1 0 -765.3 4.5
2 0 -14.7 4.5
3 0 -0.7 4.5
4 0 0.8 4.5
5 0 0.8 4.5
6 0 0.8 4.5
7 0 0.8 4.5
8 0 0.8 4.5
9 0 0.8 4.5
10 0 0.8 4.5
50 0 0.8 4.5

100 0 0.8 4.5

as follows: ∫
Ω

(Φ1 + Φ2)dΩ = 1 (1.27)

A sensitivity analysis for the outcomes provided by the MM and POD approaches
has been carried out varying the number of basis functions up to 100. For the sake of
completeness, the trivial case with only one basis function has been considered as well,
showing the necessity of allowing for an increased number of modes.

In the following, the outcomes of the two approaches, for each reactor configuration,
will be presented and discussed.

1.6.2 Case i: unperturbed configuration

This case is the nominal configuration (unperturbed) of the reactor. According to the
two approaches, the estimated values of reactivity, varying the number of basis func-
tions, are reported in Table 1.3, and they are graphically compared in Fig. 1.5. The POD
prediction, if the basis is made of only the first function, is very far from the reference
value but it gets closer when two and three functions are used. If four or more functions
are employed, the value of the reactivity does not change anymore. Even increasing the
number of functions employed, the reactivity values estimated by means of the MM
approach does not change, since the reference flux shape is precisely the first eigen-
function of each group. The flux shape of the energy group 2 (from now on referred
to as thermal group) given by the two approaches is compared to the reference one in
Fig. 1.6. In particular, the reference flux shape (a), POD (b) using 4 functions, and MM
(c) employing 10 eigenfunctions are depicted. The MM flux shape is coincident with
the reference one, while the POD flux shape is very close.
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Figure 1.5: Reactivity calculations for the configuration corresponding to Case i.
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(a)

(b)

(c)

Figure 1.6: Thermal flux shape for Case i: reference (a), POD (b), and MM (c). Data are reported in
arbitrary units.
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Table 1.4: Reactivity calculations for the configuration corresponding to Case ii.

Reactivity [pcm]
# of functions Reference POD MM

1 166.4 650.4 365.2
2 166.4 155.6 365.2
3 166.4 167.5 365.2
4 166.4 167.2 365.2
5 166.4 167.2 365.1
6 166.4 167.2 345.5
7 166.4 167.2 345.5
8 166.4 167.2 345.5
9 166.4 167.2 345.4

10 166.4 167.2 345.4
50 166.4 167.2 300.4

100 166.4 167.2 266.9

1.6.3 Case ii: water in the central channel

This kind of perturbation may be considered as the worst case, since the perturbation
is quite localized in a position where the neutron flux is higher. The reactivity values
provided by the two approaches, employing different number of basis functions, are
reported in Table 1.4, and the chart shown in Fig. 1.7 compares the results. The POD
prediction, if the basis is made of only the first function is very far from the reference
value but it gets closer when two and three functions are used. If four or more functions
are employed, the value of the reactivity does not change anymore. The reactivity val-
ues estimated by means of the MM approach slightly converges to the reference value
as the number of functions employed increases. This slight change is due the fact that
for such perturbation, only the odd eigenfunctions manage to reflect a change in the
middle of the core, but the series of all eigenfunction does not inherit this property. As
a result, even employing 100 eigenfunctions, the reactivity is overestimated by a factor
of 1.6. Conversely, by employing only four POD functions, the reactivity differs from
the reference value by 0.8 pcm, which is the offset when compared to the unperturbed
configuration (Case i, see Table 1.3). In Fig. 1.8, the reference (a) flux shape, the one
computed according to the POD approach (b) employing 4 functions, and according
to the MM approach (c) using 10 functions, are represented. The MM approach can-
not represent any flux shape variation if compared to the nominal configuration (see
Fig. 1.6) – even though the estimated reactivity is more than twice the reference one.
On the other hand, the flux shape computed by the POD approach fits very well the
reference one.
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Figure 1.7: Reactivity calculations for the configuration corresponding to Case ii.
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(a)

(b)

(c)

Figure 1.8: Thermal flux shape for Case ii: reference (a), POD (b), and MM (c). Data are reported in
arbitrary units.

Politecnico di Milano 25 Alberto Sartori



Chapter 1. Potential of reduced order methods

Table 1.5: Reactivity calculations for the configuration corresponding to Case iii.

Reactivity [pcm]
# of functions Reference POD MM

1 3.4 -745.0 1.510
2 3.4 7.5 1.505
3 3.4 3.6 1.505
4 3.4 4.2 1.504
5 3.4 4.2 1.490
6 3.4 4.2 1.502
7 3.4 4.2 1.490
8 3.4 4.2 1.485
9 3.4 4.2 1.485
10 3.4 4.2 1.468
50 3.4 4.2 0.985

100 3.4 4.2 0.577

1.6.4 Case iii: water in the RABBIT channel

In this test case, the same perturbation as in the previous Case (ii) is applied, but lo-
calized in a different position. In fact, the water is placed in the peripheral RABBIT
channel, where the flux importance is much lower compared to the middle of the reactor
core. This leads to a lower reactivity change, in comparison with the previous case. The
estimated reactivity, according to the two approaches, varying the number of functions
employed, is reported in Table 1.5, and the corresponding chart is shown in Fig. 1.9.
The POD prediction behaves as discussed in the previous cases. Indeed, if the basis is
made of only the first function, the outcome is quite different from the reference value,
while with four or more basis functions employed the value of the reactivity does not
change anymore. The difference between the prediction of the POD approach differs
by 0.8 pcm with respect to the reference value, which is the offset when compared to
the unperturbed configuration (Case i, see Table 1.3). The reactivity values estimated
by means of the MM approach barely change by increasing the number of functions
employed, but the trend seems to be divergent in comparison with the reference value.
If the entity of this perturbation, in terms of reactivity, is compared to the previous one,
it can be deduced that both the two approaches effectively reproduce the system spa-
tial effects. Indeed, both the methods have provided a bigger reactivity change, with
respect to the unperturbed configuration, when the perturbation is applied in the center
of the core. Otherwise, a smaller effect has been seen when the same perturbation is
applied where the importance of the neutron flux is much lower.

In this case, the flux shape variation is small, hence it is not worthy to show the
neutron fluxes provided by the two approaches.
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Figure 1.9: Reactivity calculations for the configuration corresponding to Case iii.
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Table 1.6: Reactivity calculations for the configuration corresponding to Case iv.

Reactivity [pcm]
# of functions Reference POD MM

1 309.0 -462.6 297.936
2 309.0 287.8 297.936
3 309.0 301.8 297.936
4 309.0 303.3 297.936
5 309.0 303.3 297.936
6 309.0 303.3 297.936
7 309.0 303.3 297.935
8 309.0 303.3 297.935
9 309.0 303.3 297.935
10 309.0 303.3 297.935
50 309.0 303.3 297.935

100 309.0 303.3 297.935

1.6.5 Case iv: homogeneous perturbation

In this case, a homogeneous perturbation throughout the core is simulated by reducing
the absorption cross sections by 3‰. According to the two approaches, the computed
reactivity values, varying the number of basis functions, are given in Table 1.6, and they
are graphically compared in Fig. 1.10. Also for this kind of perturbation, the outcomes
provided by the POD approach are not accurate when only one basis function is em-
ployed. If four or more modes are adopted, the reactivity value is closer to the reference
one and it does not change anymore by increasing the number of functions. The esti-
mation of the reactivity provided by the MM does not change sensitively by increasing
the number of functions employed. However, the outcomes of both approaches are in
fair agreement with the reference value.

As in the previous test case (Case iii), the homogeneous perturbation does not
change significantly the flux shape, hence the neutron fluxes provided by the two ap-
proaches are not worthy of remarks.

1.6.6 Discussion

The comparison between the presented control-oriented approaches for the nuclear re-
actor kinetics has been performed on different reactor configurations.3 Whether a ho-
mogeneous perturbation is evaluated (Case iv), both the approaches exhibit good capa-
bilities to approximate the flux shape. On the other hand, if the perturbation is localized,
the MM requires a considerable number of eigenfunctions to correctly predict the re-
activity. Moreover, the flux shape predicted according to the MM does not reflect the
localized perturbation. Conversely, the outcomes provided by the POD approach, em-
ploying only four basis functions, are high-fidelity with respect to the reference ones,
in terms of reactivity and flux shape, independently on the kind of applied perturbation.

The motivation of the better results obtained by POD are due to the difference be-
tween the shape of the corresponding POD (Fig. 1.11) and MM (Fig. 1.12) basis func-
tions, where for brevity only the modes for the thermal group are shown. The first POD

3The considered reactor core configurations have been achieved starting from an unperturbed configuration, to which either
localized or homogeneous perturbations have been applied.
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Figure 1.10: Reactivity calculations for the configuration corresponding to Case iv.

function (starting from the left) provides the overall flux shape, while the higher order
functions give contributions only where the perturbations can be applied. On the other
hand, the shape of the MM functions depends on the operators L andM of the general-
ized eigenvalue equation (1.9) and on the geometry of the unperturbed core. Therefore,
the MM basis has no information where the perturbations may occur.

For each case considered, the outcomes provided by the POD approach behave in
the same way. In particular, if a single basis function is employed, the reactivity value
is quite far from the reference one, whereas it gets closer when two and three functions
are used. If four or more functions are employed, the value is in good agreement with
the reference one and does not change anymore. Indeed, the importance of contribution
given by each POD function is decreasing, meaning that the next function carries less
information (or energy) than the previous one. The energy associated to each POD
function is shown in Fig. 1.13. The difference between the first and the fourth value
is equal to several orders of magnitude. This means that the information stored in
the vector of the snapshots can be reproduced by only few functions. Relying on the
a posteriori criterion, Eq. (1.14), the retained information, expressed in percent, with
respect to the number of functions employed, is reported in Fig. 1.14. It can be seen that
with two basis functions more than the 99% of the information stored in the vector of
the snapshots is allowed for, and with four functions all the information is reproduced.
Hence, the contribution of the functions beyond the fourth one is negligible. For this
reason, the outcomes, obtained employing more than four functions, do not change
considerably.

Conversely, the outcomes provided by the MM approach behave differently in the
considered cases. In particular, for the unperturbed configuration, the quantities of
interest do not change by increasing the number of functions. For Case (ii), as the
number of modes is increased, the reactivity value slightly converges to the reference
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Figure 1.11: The first four POD basis functions for the thermal group.
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Figure 1.12: The first four MM basis functions for the thermal group.
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Figure 1.13: Energy of POD functions for the thermal group.

Figure 1.14: Relative information taken into account with respect to the number of functions employed
for the POD spatial basis.
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value. In Case (iii), although the reactivity value is close to the reference one, there is
a divergent trend. Finally, when a homogeneous perturbation is applied (Case iv), the
reactivity value does not change by increasing the number of functions. The importance
of each eigenfunction depends on the kind of perturbation, and it cannot be provided
neither a priori nor a posteriori estimation. For example, in the Case (ii), only the odd
eigenfunctions can contribute to reveal a change in the middle of the core.

1.7 Concluding remarks

In this Chapter, two control-oriented approaches, based on a Modal Method (MM)
and on the Proper Orthogonal Decomposition (POD) technique, for the nuclear reactor
kinetics have been presented and compared. Both are able to simulate the spatial dy-
namics of the reactor, while the usually adopted point-wise kinetics is not sensible to
spatial effects. In order to asses the reliability of these two approaches, different reactor
core perturbations have been simulated, with reference to a TRIGA Mark II reactor. In
particular, either localized or homogeneous perturbations have been investigated. The
system reactivity and the neutron flux shape predicted by the MM and POD approaches
have been the subject of the comparison. The outcomes provided by the POD approach,
employing as few as four basis functions, are high-fidelity, with respect to the reference
ones, for all the cases considered. Conversely, the MM approach leads to good results
when the perturbation is homogeneous. On the other hand, if the perturbation is local-
ized, a considerable number of eigenfunctions may be required to correctly predict the
reactivity.

In the present investigation, several advantages of reduced order methods have been
addressed. In particular, they are suited for handling parametrized partial differen-
tial equations; they promote a competitive Offline/Online computational decouple; the
basis is trained to reproduce many configurations given by the parameters; the space
spanned by the basis functions obtained is hierarchical, meaning that increasing the
number of basis functions, the accuracy of the outcomes will improve – this is not
necessarily verified for the MM approach.

The capabilities of reduced order methods, which have been highlighted through-
out this Chapter, have defined the track of the following research activity towards the
modelling of the control rods movement, which is dealt in the following Chapters.
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Chapter 1 Nomenclature

Latin symbols

bgi ith generic spatial basis function of the gth energy group [cm s−1]
Cm concentration of the mth precursor group [cm−3]
Dg neutron diffusion coefficient in the gth energy group [cm]
g refers to the considered energy group (g = 1 for the fast group,

g = 2 for the thermal group)
N number of the employed basis functions [-]
Ns number of the computed snapshots [-]
m subscript referring to the precursor groups (m = 1, · · · , 8)
P thermal power [W ]
r spatial coordinate [cm]
t time [s]
ugi ith POD basis functions of the gth energy group [cm s−1]
vg neutron speed of the gth energy group [cm s−1]
w

(l)
f recoverable thermal energy per fission event for the l-isotope

[MeV ]

Greek symbols

β total delayed neutron fraction [-]
βm delayed neutron fraction of the mth precursor group [-]
ηi normalized concentration of the ith precursor group [-]
λi ith eigenvalue [-]
λm decay constant of the mth precursor group [s−1]
Λ prompt neutron generation time [s]
ν average number of neutrons emitted per fission [-]
ρ system reactivity [pcm]
Σ macroscopic cross-section [cm−1]
Σg
a macroscopic absorption cross-section in the gth energy group

[cm−1]
Σg
f macroscopic fission cross-section in the gth energy group [cm−1]

Σg→g′
s macroscopic group transfer cross-section from energy group g to g′

[cm−1]
Φg neutron flux in the gth energy group [m−2 s−1]
χgd fraction of delayed neutrons generated in the gth energy group [-]
χgp fraction of prompt neutrons generated in the gth energy group [-]
ψgi ith spatial eigenfunction of the neutron flux in the gth energy group

[m−2 s−1]
Ψ normalized thermal power [-]
Ω spatial domain [cm2]
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CHAPTER2
Reduced basis approaches in time-dependent

settings for control rod movement

After that the capabilities of reduced order models in order to correctly
estimate spatial effects have been addressed in the previous Chapter 1, in
this new Chapter, two approaches, based on the certified Reduced Basis
method, have been developed for simulating the movement of nuclear re-
actor control rods, in time-dependent non-coercive settings featuring a 3D
geometrical framework. In particular, in a first approach, a piece-wise
affine transformation based on subdomains division has been implemented
for modelling the movement of one control rod. In the second approach, a
“staircase” strategy has been adopted for simulating the movement of all
the three rods featured by the nuclear reactor chosen as case study. Both
the reduced order models, developed according to the two approaches, pro-
vided a very good accuracy compared with high-fidelity results, assumed
as “truth” solutions. At the same time, the computational speed-up in the
Online phase, with respect to the fine “truth” finite element discretization,
achievable by both the proposed approaches is at least of three orders of
magnitude, allowing a real-time simulation of the rod movement and con-
trol.

The main results presented in this Chapter are contained in: Sartori, A. Cammi, A.,
Luzzi, L. and Rozza, G., “Reduced basis approaches in time-dependent non-coercive
settings for modelling the movement of nuclear reactor control rods”. Submitted in
a revised form to Communication in Computational Physics, 2015. The methodol-
ogy has been presented at the 22nd International Conference on Nuclear Engineering
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(ICONE22) in Prague, Czech Republic in July 2014 1 and at INDAM YS3 Young Sci-
entists Seminars Series on Reduced Order Modelling, Trieste, Italy, October 8-9, 2014.

1Sartori, A., Baroli, D., Cammi, A., Luzzi, L., and Rozza, G. “A Reduced Order Model for Multi-Group Time-Dependent
Parametrized Reactor Spatial Kinetics”. In: Proceedings of the 2014 22nd International Conference on Nuclear Engineering
(ICONE22), Prague Czech Republic, July 7-11, 2014. Paper 30707, ©ASME 2014.
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2.1 Introduction

A computational reduced order technique, such as the Reduced Basis (RB) method
(Rozza et al., 2008; Quarteroni et al., 2011), can lead to a computational tool
with real-time simulation, still solving a set of partial differential equations.

The goal of a computational reduction technique (Manzoni et al., 2012) is to capture
the essential features of the input/output behavior of a system in a rapid and reliable
way, i.e.: (i) by improving computational performances and (ii) by keeping the ap-
proximation error between the reduced-order solution and the full-order solution under
control. In particular, it aims at approximating a parametrized partial differential equa-
tion (or a set of partial differential equations) solution with a handful of degrees of
freedom instead of thousands or millions that would be needed for a full-order approx-
imation. In this way, the full-order problem has to be solved for a suitable number
of instances of the input parameter (through a very demanding Offline computational
step), in order to be able to perform many low-cost real-time simulations (inexpensive
Online computational step) for several new instances of the input.

The first use of reduced basis methods can be found in computational nonlinear
mechanics for the instability analysis of structures (Noor and Peters, 1980). The next
decades saw further expansion into different applications and classes of equations, such
as fluid dynamics and in particular the incompressible Navier-Stokes equations (Peter-
son, 1989; Ito and Ravindran, 1998, 2001). During the last ten years, the efforts within
the RB framework has been devoted to the development of a posteriori error estimation
procedures, as well as effective sampling strategies (Veroy et al., 2003; Grepl and Pat-
era, 2005; Cuong et al., 2005). Most recent applications of RB can be found within the
Haemodynamics context (Ballarin et al., 2013), as well as uncertainty quantification
(Chen et al., 2013) and spectral element methods (Pitton and Rozza, 2015). Accord-
ing to the author’s knowledge, the present PhD work employs for the first time the RB
methods within the nuclear engineering field.

In this Chapter, the Reduced Basis method (built upon a high-fidelity “truth” Finite
Element (FE) approximation, relying on the libMesh library (Kirk et al., 2006)) has
been applied to model real-time control rod movement within a nuclear reactor, simu-
lating a 3D framework, with reference to the TRIGA Mark II nuclear reactor (General
Atomic, 1964) of the University of Pavia (Italy). In particular, two different parame-
trized models have been considered: a first one, with just one rod, then a second one
with three control rods. The physics has been modeled by time-dependent non-coercive
parametrized equations. Indeed, the neutron kinetics has been described by means of
parametrized multi-group time-dependent diffusion equations (Duderstadt and Hamil-
ton, 1976), which are a set (ten in the present work) of coupled parabolic equations
where the heights of the control rods (i.e., how much the rods are inserted) play the role
of the varying parameters. For the one-rod model, a piecewise affine transformation
based on subdomain division has been implemented (Rozza et al., 2008). On the other
hand, for the three-rods model, the movement of the control rods has been discretized
by splitting the rods in many subdomains, which are like “steps”.

This contribution stems from the need of nuclear engineering field to have a fast-
running simulation tool, which can be tailored to common control systems, able to
reproduce spatial effects (Sartori et al., 2014a), in particular those induced by the con-
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trol rod movement, in order to build a bridge between the “world of design” and the
“world of control”. The goal is to demonstrate that reduced order modelling is suited
to be applied in more complex (and coupled) industrial problems in order to introduce
competitive computational performances and allowing, at the same time, a better in-
vestigation, thanks to parametrization of involved phenomena. The original elements
introduced in this Chapter are related to reduced order modelling approaches in a com-
plex parametrized industrial systems modelled into a 3D geometrical setting, which is
held by several time-dependent non-coercive equations whose solutions have been ver-
ified by accurate error bounds. At the best of our knowledge and at the current state of
the art this is the first time that the certified reduced basis method has been employed
to these problems.

The Chapter is organized as follows. The modelling approach for describing the
reactor kinetics is briefly introduced in Section 2.2. Thereafter, the Reduced Basis
method, which is detailed in Section 2.3, is applied to the parametrized reactor spatial
kinetics for the one-rod model (Section 2.4) and for the three-rods model (Section 2.5),
highlighting some representative results. The main conclusions are presented in Sec-
tion 2.6.

2.2 Modelling approach

As anticipated, the TRIGA Mark II reactor (General Atomic, 1964) of the University
of Pavia (Italy) has been chosen as case study (see Appendix A on page 89). It is
worth recalling that this work is more focused on testing and assessing an innovative
methodology for a 3D reactor spatial dynamics, rather than reproducing the real ref-
erence reactor. Therefore, simplified 3D models have been adopted, and they will be
presented in the following Sections.

As stated in the Introduction, the so called multi-group diffusion theory (Duderstadt
and Hamilton, 1976) has been employed. According to this approximation, the spec-
trum of the neutron energy is split into groups and, for each group, equivalent cross
sections are computed that are constant in the energy range of the group. In particular,
two energy groups and eight groups of precursors (ci), where ci is the concentration of
the i-th precursor group, have been employed leading to a set of ten coupled parabolic
equations, reported below in their strong formulation.2

1

v1

∂Φ1

∂t
= ∇ · (D1∇Φ1) + [(1− β)νΣf1 − Σa1 − Σs1→2 ] Φ1

+ [(1− β)νΣf2 + Σs2→1 ] Φ2 +
8∑
i=1

λici, (2.1)

1

v2

∂Φ2

∂t
= ∇ · (D2∇Φ2) + Σs1→2Φ1 − [Σa2 + Σs2→1 ] Φ2, (2.2)

∂ci
∂t

= −λici + βi [νΣf1Φ1 + νΣf2Φ2] , i = 1, . . . , 8, (2.3)

with a given initial condition

Φ1(t = 0) = Φ0
1, Φ2(t = 0) = Φ0

2, ci(t = 0) = c0
i , (2.4)

2All the parameters and fluxes are spatially dependent, however this dependence has not been reported in order not to further
burden the notation.
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Table 2.1: Neutronic parameters generated by means of the SERPENT code.

Parameter Fuel Water Rod
D1 [cm] 8.77 · 10−1 8.51 · 10−1 7.52 · 10−1

D2 [cm] 1.92 · 10−1 1.39 · 10−1 1.32 · 10−1

Σa1 [cm−1] 4.85 · 10−3 5.04 · 10−4 7.07 · 10−2

Σa2 [cm−1] 7.53 · 10−2 1.70 · 10−2 4.57 · 10−1

νΣf1 [cm−1] 3.65 · 10−3 0.0 0.0
νΣf2 [cm−1] 1.25 · 10−1 0.0 0.0
Σs1→2

[cm−1] 3.02 · 10−2 5.34 · 10−2 1.36 · 10−2

Σs2→1 [cm−1] 3.27 · 10−4 2.49 · 10−4 5.83 · 10−4

1/v1 [s/cm] 5.87 · 10−8 7.58 · 10−8 2.61 · 10−8

1/v2 [s/cm] 3.00 · 10−6 3.47 · 10−6 3.14 · 10−6

Precursor group λ [s−1] β [-]
1 1.25 · 10−02 3.83 · 10−04

2 2.83 · 10−02 1.34 · 10−03

3 4.25 · 10−02 9.63 · 10−04

4 1.33 · 10−01 1.92 · 10−03

5 2.92 · 10−01 3.08 · 10−03

6 6.66 · 10−01 8.61 · 10−04

7 1.63 7.88 · 10−04

8 3.55 2.31 · 10−04

where the subscript 1 refers to the fast group (i.e., the most energetic group) and 2 to the
thermal one; v is the velocity of the neutrons, Φ is the neutron flux, D is the diffusion
coefficient, β is the fraction of delayed neutrons and β =

∑8
i=1 βi, νΣf are the number

of neutrons emitted per fission reaction, Σa is the absorption cross section, Σsi→j
is

the scattering cross section from group i to group j, λi is the decay constant of the
precursor group i. It is worth mentioning that the bilinear form associated to the elliptic
part of the equations is non-coercive and non-symmetric. Different spatial domains
have been defined for the two approaches developed in the present work and they will
be introduced in the following Sections. For the sake of simplicity, the homogeneous
Dirichlet boundary conditions have been employed.

The FE discretization of the Eqs. (2.1)–(2.3), adopting the uniform Backward Euler
(BE) in time with twenty time intervals of length 5× 10−4 s, has been assumed as the
“truth” solution. All the simulations needed by the RB method, for both the Offline and
Online step, have been performed relying on the C++ library libMesh (Kirk et al.,
2006) within the rbOOmit framework (Knezevic and Peterson, 2011).

The neutronic parameters (v, D, Σa, Σs, νΣf , βi) have been generated by means
of the continuous energy Monte Carlo neutron transport code SERPENT (SERPENT,
2011), which features group constant generation capabilities – i.e. it is able to compute
the equivalent cross sections – using the nuclear data library JEFF 3.1 (Koning et al.,
2006). The computed parameters are reported in Tab. 2.1, and such neutronic quantities
have been taken constant for all the simulations.

2.3 Reduced basis method

In this Section, the strategies upon which the Reduced Basis (RB) method relies are
firstly recalled. Subsequently, the essential ingredients of the RB for parabolic partial
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differential equations (herein PDEs), with reference to the multi-group time-dependent
neutron diffusion equations, are presented. For a general comprehensive presentation
of the RB method the reader may refer to (Patera and Rozza, 2007; Rozza et al., 2008;
Rozza, 2014), and, for the parabolic case, to (Grepl and Patera, 2005).

2.3.1 Reduced basis strategies

The philosophy of reduced order methods, such as RB, even if based on Galerkin pro-
jection method, is very different with respect to finite element method. In fact, finite
element method approximates the exact solution u, which belongs to an infinite di-
mensional space X , of a partial differential equation with uN , that is a piece-wise
polynomial approximation, which belongs to a finite dimensional space XN . On the
other hand, RB approximates uN using a low dimensional space XN . The basis func-
tions (also called shape functions) employed for constructing the space XN feature
“small” support (i.e. the support is given by a few elements of the mesh on which a
finite element approximation has been built for this work), and they are independent of
the problem considered. Conversely, RB employs ad hoc built basis functions, whose
support is the entire spatial domain, and strictly related to the considered case.

Before going more deeply inside the methodology, the essential ingredients of RB
methodology (Quarteroni et al., 2011), employed in this Chapter, can be summarized as
follows: a Galerkin projection onto a low-dimensional space of basis functions properly
selected, an affine parametric dependence enabling to perform a competitive Offline-
Online splitting in the computational procedure, and a rigorous a posteriori error es-
timation used for both the basis selection and the certification of the solution. The
combination of these three factors yields substantial computational savings which are
at the basis of an efficient model order reduction, ideally suited for real-time simulation
and many-query contexts (for example, optimization, control or parameter identifica-
tion). It is worth recalling that the rational of this approach stands in the fact that the set
of all solutions, as function of the parameters, behaves well (Patera and Rozza, 2007),
or, more precisely, that the Kolmogorov n-width is small (Maday, 2006).

The Offline step can be depicted as in the flow chart reported in Fig. 2.1. The
starting point is the “truth” model, which is a high fidelity finite element approximation
of a set of parametrized partial differential equations (PDEs). Relying on a POD-greedy
algorithm, which is recalled in Section 2.3.2, the “truth” model is solved for a suitable
number of parameter instances, and matrices for the Reduced Order Model (ROM) as
well as for error bounds estimation are computed and stored (more details are given
in Sections 2.3.2 and 2.3.2, respectively). At the end of this step, the RB method
leads to a ROM of the “truth” one, along with an a posteriori error estimation for the
greedy parameter space exploration and basis functions selection. The Offline step is
performed only once and it may be very expensive in terms of computational burden.
Most of the physical information (or energy) of the system is stored in the RB space.

When the ROM is obtained, the Online step consists of the input/output evaluation
for a given parameter µ, as shown in Fig. 2.2. The computational time required to solve
the ROM, is usually very short. The gain of the so obtained reduced model can be
expressed as the ratio between the time required to solve the “truth” model with respect
to the Online step duration. Such gain is referred to as computational speed-up. Finally,
the number of basis functions employed can be set Online, so the ROM matrices can
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Truth
Parametrized PDEs

Reduced Basis
Construction
(POD-greedy)

ROM preparation
(matrices)

Error Bounds
(residuals, stability factors)

Figure 2.1: Conceptual flow chart for the Offline step.

Parameter µ ROM
Output

Error

Figure 2.2: Conceptual flow chart for the Online step.

have (in the scalar case) dimension N ×N , for N = 1, . . . , Nmax, and N � N , where
N is the finite element space dimension of the “truth” model.

2.3.2 Application to neutron diffusion equations

As shown in Section 2.2, the neutron kinetics has been described according to the so-
called multi-group time-dependent neutron diffusion equation (Duderstadt and Hamil-
ton, 1976), which is a set of coupled parabolic PDEs. Moreover the bilinear form,
associated to the elliptical part of the equations, is not symmetric neither coercive.

Abstract formulation

A parabolic model problem, parametrized with respect to the input parameter p-vector
µ, can be defined as follows (Quarteroni et al., 2011): given µ ∈ D ⊂ Rp, ∀t ∈ I =
[0, tf ], find u(t;µ) ∈ L2(I;X(Ωo)) – the subscript o will be clear in the following – is
such that

m

(
∂u(t;µ)

∂t
, v;µ

)
+ a (u(t;µ), v;µ) = f(v), ∀v ∈ X(Ωo),∀t ∈ I, (2.5)

subject to initial condition u(0;µ) = u0. Ωo is a spatial domain in Rd (for d = 2
or 3), X = X(Ωo) is a suitable Hilbert space, with a given inner product (·, ·)X and
an induced norm ‖ · ‖X =

√
(·, ·)X . In the considered case u(t;µ) can be defined as

follows:

u(t;µ) =


Φ1(t;µ)
Φ2(t;µ)
c1(t;µ)

...
c8(t;µ)

 , (2.6)

and the test function v as

v =


ψΦ1

ψΦ2

ψc1
...
ψc8

 . (2.7)
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In the following, the dependence of the neutron flux and precursors on the time and pa-
rameter µ has to be intended, nut is not reported in order to not overburden the notation.
The operators m and a can be formulated as follows:

m(u(t;µ), v) =

∫
Ωo(µ)

[
1

v1

∂Φ1

∂t
ψΦ1 +

1

v2

∂Φ2

∂t
ψΦ2 +

8∑
i=1

ciψci

]
, (2.8)

a(u(t), v) =

∫
Ωo(µ)

D1∇Φ1 · ∇ψΦ1︸ ︷︷ ︸
a1

+

∫
Ωo(µ)

D2∇Φ2 · ∇ψΦ2︸ ︷︷ ︸
a2

+

∫
Ωo(µ)

Σa1Φ1ψΦ1︸ ︷︷ ︸
a3

+

∫
Ωo(µ)

Σs1→2Φ1ψΦ1︸ ︷︷ ︸
a4

−
∫

Ωo(µ)

(1− β)νΣf1Φ1ψΦ1︸ ︷︷ ︸
a5

−
∫

Ωo(µ)

Σs2→1Φ2ψΦ1︸ ︷︷ ︸
a6

−
∫

Ωo(µ)

(1− β)νΣf2Φ2ψΦ1︸ ︷︷ ︸
a7

−
∫

Ωo(µ)

8∑
i=1

λiciψΦ1︸ ︷︷ ︸
a8

−
∫

Ωo(µ)

Σs1→2Φ1ψΦ2︸ ︷︷ ︸
a9

+

∫
Ωo(µ)

Σa2Φ2ψΦ2︸ ︷︷ ︸
a10

+

∫
Ωo(µ)

Σs2→1Φ2ψΦ2︸ ︷︷ ︸
a11

−
∫

Ωo(µ)

8∑
i=1

βiνΣf1Φ1ψci︸ ︷︷ ︸
a12

−
∫

Ωo(µ)

8∑
i=1

βiνΣf2Φ2ψci︸ ︷︷ ︸
a13

+

∫
Ωo(µ)

8∑
i=1

λiciψci︸ ︷︷ ︸
a14

, (2.9)

(2.10)

where ψ is the test function for the corresponding variable. For the neutron fluxes and
corresponding test functions, the H1(Ω0(µ)) Hilbert space has been chosen, whereas
the L2(Ω0(µ)) space has been used for the precursors. It is worth pointing out that
the bilinear form a is non-symmetric. Moreover, it has been observed that the pro-
duction terms a7 and a8 make the bilinear form non-coercive, for the values of the
neutronic quantities reported in Tab 2.1 on page 39. In order to have a stationary neu-
tron flux distribution when the reactor is subcritical (i.e., when the number of neutrons
produced is lower than the number of neutrons absorbed), a uniform source, equal to
1 neutron cm−2 s−1, within the fuel has been considered. In weak formulation, it reads

f(v) =

∫
Ωfuel
o

1× ψΦ1 . (2.11)

It is assumed that the bilinear forms a(u(t;µ), v;µ) and m(u(t;µ), v;µ) are contin-
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uous with continuity constants γ and ρ,

a(u, v;µ) ≤ γ(µ)‖u‖X‖v‖X ≤ γ0‖u‖X‖v‖X , ∀u, v ∈ X, ∀µ ∈ D, (2.12)
m(u, v;µ) ≤ ρ(µ)‖u‖X‖v‖X ≤ ρ0‖u‖X‖v‖X , ∀u, v ∈ X, ∀µ ∈ D. (2.13)

Finally, it is assumed that a and m depend affinely on the parameter µ, hence they can
be expressed as

a(u, v;µ) =

Qa∑
q=1

Θq
a(µ)aq(u, v), ∀u, v ∈ X, ∀µ ∈ D, (2.14)

m(u, v;µ) =

Qm∑
q=1

Θq
m(µ)mq(u, v), ∀u, v ∈ X, ∀µ ∈ D, (2.15)

for some integers Qa and Qm. The coefficients of the affine expansions (2.14) and
(2.15) can be easily derived when they are related to physical properties (e.g., diffusion
coefficients, thermal conductivity). Whether the µ-vector includes geometric proper-
ties, the derivation of the Θ(µ) coefficients may require a dedicated treatment. When
affine parameter dependence is not valid, as well as in case of non-linearities, an equiva-
lent recovered affine formulation (to allow offline-online computational decomposition)
can rely on a well established Empirical Interpolation Method (Barrault et al., 2004).

Geometric parametrization

Let Ωo(µ) be a parametrized spatial domain, which is called original domain. The RB
framework requires also a reference (µ-independent) domain Ω = Ωo(µref) in order to
compare, and combine, FE solutions that would be otherwise computed on different
domains and grids. For this reason, Ωo(µ) has to be mapped to Ω in order to get the
transformed problem, which is the point of departure of the RB approach3. In order
to build a parametric mapping related to geometrical properties, a conforming domain
decomposition of Ωo(µ) has to be introduced

Ωo(µ) =

Ldom⋃
l=1

Ωl
o(µ), (2.16)

consisting of mutually non-overlapping open subdomains Ωl
o(µ), such that Ωl

o(µ) ∩
Ωl′
o (µ) = ∅, 1 ≤ l < l′ ≤ Ldom. Original and reference subdomains must be linked via

a mapping T (·;µ) : Ωl → Ωl
o(µ), 1 ≤ l ≤ Ldom such that

Ωl
o(µ) = T l(Ωl;µ), 1 ≤ l ≤ Ldom. (2.17)

These maps must be individually bijective, collectively continuous, and such that

T l(x;µ) = T l′(x;µ), ∀x ∈ Ωl ∩ Ωl′ , 1 ≤ l < l′ ≤ Ldom. (2.18)

In this work, the following affine transformation, for µ ∈ D and x ∈ Ωl, has been
employed

T li (x;µ) = C l
i(µ) +

d∑
j=1

Gl
ij(µ)xj, 1 ≤ i ≤ d, (2.19)

3From finite element consolidated fashion, such mapping may be seen as the isoparametric transformation from the original
mesh element to the reference element to perform the Gaussian integration.
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for given translation vector C l : D → Rd and linear transformation matrices Gl : D →
Rd×d. The following terms, which will be useful later on, can be defined

J l(µ) = | det(Gl(µ))|, 1 ≤ l ≤ Ldom, (2.20)

Dl(µ) = (Gl(µ))−1, 1 ≤ l ≤ Ldom. (2.21)

The class of admissible operators, which allow an affine expansion for a geometric
parametrization, can be expressed by the following associated bilinear forms (Rozza
et al., 2008)

ao(w,ψ;µ) =

Ldom∑
l=1

∫
Ωlo(µ)

[
∂w

∂x

∂w

∂y

∂w

∂z
w

]
Klo(µ)



∂ψ

∂x
∂ψ

∂y
∂ψ

∂z
ψ


, (2.22)

where, w is a generic variable (e.g., Φ1, c1, etc.), ψ the corresponding test function,
Klo : D → R(d+1)×(d+1), 1 ≤ l ≤ Ldom, are prescribed coefficients. In particular,
the upper d × d principal submatrix of Klo is the matrix of diffusivity; the (d + 1, d +
1) element of Klo represents the reaction terms; the other terms are set to zero. For
example, substituting w and ψ with Φ1 and ψΦ1 , respectively, the Klo can be expressed
as follows:

Klo =


D1 0 0 0
0 D1 0 0
0 0 D1 0
0 0 0 Σa1 + Σs1→2 − (1− β)νΣf1

 . (2.23)

In addition, the following relation has to be considered as well

mo(w,ψ;µ) =

Ldom∑
l=1

∫
Ωlo(µ)

wMl
o(µ)ψ, (2.24)

whereMl
o : D → R represents the identity operator. By identifying u(t;µ) = uo(t;µ)◦

T (·;µ)∀t > 0, and tracing (2.22) back to the reference domain Ω by the mapping
T (·;µ), it follows that the bilinear form a(w,ψ;µ) can be expressed as

a(w,ψ;µ) =

Ldom∑
l=1

∫
Ωl

[
∂w

∂x

∂w

∂y

∂w

∂z
w

]
Kl(µ)



∂ψ

∂x
∂ψ

∂y
∂ψ

∂z
ψ


, (2.25)

where Kl : D → R4×4 is given by

Kl(µ) = J l(µ)Gl(µ)Klo(µ)
(
Gl(µ)

)T
, (2.26)

Alberto Sartori 44 Politecnico di Milano



2.3. Reduced basis method

and

Gl(µ) =

[
Dl(µ) 0
0 1

]
. (2.27)

Similarly, the transformed bilinear form m(·, ·;µ) can be expressed as

m(w,ψ;µ) =

Ldom∑
l=1

∫
Ωl

wMlψ, (2.28)

whereMl : D → R is given by

Ml(µ) = J l(µ)Ml
o(µ). (2.29)

At this point, the original problem has been reformulated on the reference domain,
resulting in a parametrized problem where the effect of geometry variations is traced
back onto its parametrized transformation tensors. For example, the affine formulation
(2.14) can be derived by expanding the expression (2.25) in terms of the subdomains
Ωl and the different entries of Klij leading to

a(w,ψ;µ) = K1
11(µ)

∫
Ω1

∂w

∂x

∂ψ

∂x
+K1

22(µ)

∫
Ω1

∂w

∂y

∂ψ

∂y
+ . . . (2.30)

It is worth pointing out that Kl can be non-diagonal even if Klo is diagonal.

Construction of the reduced basis approximation

The RB method is built upon a fine approximation (i.e., finite element or finite volume),
assumed as “truth” solution. This implies that the error of the RB solution is estimated
with respect to the fine approximation. The error of the “truth” solution, with respect
to the real world, is inherited by the ROM. Let the following expression be the dis-
cretization of the parabolic problem (2.5) adopting the finite difference in time, using
the Backward Euler (BE) method, and Finite Element (FE) (Quarteroni and Valli, 2008)
in space

1

∆t
m(uk(µ)− uk−1(µ), v;µ) + a(uk(µ), v;µ)

= f(v), ∀v ∈ XN , 1 ≤ k ≤ K, (2.31)

subject to initial condition (u0, v) = (u0, v), ∀v ∈ XN , where the time interval I has
been divided into K subintervals of equal length ∆t = tf/K, tk = k∆t, and XN is the
FE approximation space of dimension N (usually very large).

Then, given a positive integer Nmax, let XN , for N = 1, . . . , Nmax, be an associ-
ated sequence of approximation spaces (RB spaces), where XN is a N -dimensional
subspace of XN . The RB spaces are such that they are hierarchical

X1 ⊂ X2 ⊂ · · · ⊂ XNmax ⊂ XN . (2.32)

The RB approximation of the discretized parabolic problem (2.31) can be stated as
follows

1

∆t
m(ukN(µ)− uk−1

N (µ), v;µ) + a(ukN(µ), v;µ)

= f(v), ∀v ∈ XN , 1 ≤ k ≤ K, (2.33)
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subject to initial condition (u0
N , v) = (u0, v),∀v ∈ XN . Let ξNn ∈ XN , 1 ≤ n ≤ Nmax

be a set of orthonormal functions and let such functions be the basis of the RB spaces

XN = span
{
ξNn , 1 ≤ n ≤ N

}
, 1 ≤ N ≤ Nmax. (2.34)

The RB approximation ukN(µ) ∈ XN can be expressed as

ukN(µ) =
N∑
i=1

ukN,i(µ)ξNi . (2.35)

Then, by denoting

Z =
[
ξN1 | . . . |ξNN

]
∈ RN×N , 1 ≤ N ≤ Nmax, (2.36)

the bilinear forms aq and mq can be projected onto the RB space XN as follows

Aq
N = ZTAqNZ, (2.37)

Mq
N = ZTM q

NZ, (2.38)

fN = ZTFN , (2.39)

where

(AqN )ij = aq(ψj, ψi), (2.40)

(M q
N )ij = mq(ψj, ψi), (2.41)

(FN )i = f(ψi), (2.42)

being {ψi}Ni=1 the basis of the FE space XN . Hence, the following algebraic equations
associated to the parabolic problem (2.33) are obtained[

Qa∑
q=1

Θq
a(µ)Aq

n +
1

∆t

Qm∑
q=1

Θq
m(µ)Mq

n

]
uN(tk;µ)

= fN +
1

∆t

Qm∑
q=1

Θq
m(µ)Mq

n uN(tk−1;µ), (2.43)

where
(
uN(tk;µ)

)
i

= ukN,i(µ). It is worth mentioning that the linear system (2.43),
which isN×N , is independent of the FE space dimensionN , andN � N . This means
that the size of the reduced model does not depend on the mesh of the “truth” problem,
but on the number of bilinear forms aq and mq and the number of basis functions.

A posteriori error estimation

Effective a posteriori error bounds for field variables and outputs of interest are cru-
cial for both the efficiency and the reliability of RB approximations (Quarteroni et al.,
2011). The first ingredient is the dual norm of the residual

εN(tk;µ) = sup
v∈XN

rN(v; tk;µ)

‖v‖X
, 1 ≤ k ≤ K, (2.44)
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where rN(v; tk;µ) is the residual associated with the RB approximation (2.33) and it is
given by

rN(v; tk;µ) = f(v)− 1

∆t
m
(
ukN(µ)− uk−1

N (µ), v;µ
)

− a(ukN(µ), v;µ), ∀v ∈ XN , 1 ≤ k ≤ K. (2.45)

The second ingredient is a lower bound for the inf-sup constant βNinf−sup(µ) such that

0 < βNLB(µ) ≤ βNinf−sup(µ), ∀µ ∈ D. (2.46)

The error bounds can thus be defined (Quarteroni et al., 2011) for all µ ∈ D and all N

‖uk(µ)− ukN(µ)‖µ ≤ ∆k
N(µ) 1 ≤ k ≤ K, (2.47)

where ∆k
N(µ) ≡ ∆N(tk;µ) is given by

∆k
N(µ) =

(
∆t

βNLB(µ)

k∑
m=1

ε2
N(tm;µ)

)1/2

. (2.48)

The above presented error bounds are without any utility if not accompanied by an
Offline-Online computational approach, which is an equivalent formulation of (2.43).
To begin with (Nguyen et al., 2010), the residual equation (2.45) can be rewritten ac-
cording to the affine expansion, Eqs. (2.14) and (2.15), and the reduced basis represen-
tation (2.35)

rN(v, tk;µ) = f(v)− 1

∆t

Qm∑
q=1

N∑
i=1

Θq
m(µ)

[
ukN,i(µ)− uk−1

N,i (µ)
]
mq(ξNi , v)

−
Qa∑
q=1

N∑
i=1

Θq
a(µ)

[
ukN,i(µ)− uk−1

N,i (µ)
]
aq(ξNi , v), (2.49)

for 1 ≤ k ≤ K. It shall prove convenient to introduce the Riesz representation of
rN(v, tk;µ) : êN(tk;µ) ∈ XN satisfies(

êN(tk;µ), v
)
X

= rN(v; tk;µ), ∀v ∈ XN . (2.50)

It now follows directly from (2.50) and (2.49) that

êN(tk;µ) = Γ +
1

∆t

Qm∑
q=1

N∑
i=1

Θq
m(µ)

[
ukN,i(µ)− uk−1

N,i (µ)
]

Λq,i
N

+

Qa∑
q=1

N∑
i=1

Θq
a(µ)

[
ukN,i(µ)− uk−1

N,i (µ)
]

Υq,i
N , (2.51)

where

(Γ, v)X = f(v), ∀v ∈ XN , (2.52)

(Λq,i
N , v)X = −mq(ξNi , v), ∀v ∈ XN , 1 ≤ q ≤ Qm, 1 ≤ i ≤ N, (2.53)

(Υq,i
N , v)X = −aq(ξNi , v), ∀v ∈ XN , 1 ≤ q ≤ Qa, 1 ≤ i ≤ N. (2.54)
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For duality arguments, the εN(tk;µ) can be expressed as

ε2
N(tk;µ) = ‖êN(tk;µ)‖2

X , 1 ≤ k ≤ K. (2.55)

Substituting Eq. (2.51) into the above expression follows that

ε2
N(tk;µ) = Cff +

N∑
i=1

N∑
j=1

ukN,i(µ)ukN,j(µ)Caa
Ni,j(µ)

+
1

∆t2

N∑
i=1

N∑
j=1

[
ukN,i(µ)− uk−1

N,i (µ)
] [
ukN,j(µ)− uk−1

N,j (µ)
]
Cmm
Ni,j(µ)

+ 2
N∑
i=1

ukN,i(µ)Cfa
Ni(µ) +

2

∆t

N∑
i=1

[
ukN,i(µ)− uk−1

N,i (µ)
]
Cfm
Ni (µ)

+
2

∆t

N∑
i=1

N∑
j=1

[
ukN,i(µ)− uk−1

N,i (µ)
]
ukN,j(µ)Cam

Ni,j(µ), 1 ≤ k ≤ K, (2.56)

where

Cff = (Γ,Γ)X , (2.57)

Caa
Ni,j(µ) =

Qa∑
q=1

Qa∑
q′=1

Θq
a(µ)Θq′

a (µ)
(

Υq,i
N ,Υ

q′,j
N

)
X
, 1 ≤ i, j ≤ N, (2.58)

Cmm
Ni,j(µ) =

Qm∑
q=1

Qm∑
q′=1

Θq
m(µ)Θq′

m(µ)
(

Λq,i
N ,Λ

q′,j
N

)
X
, 1 ≤ i, j ≤ N, (2.59)

Cfa
Ni(µ) =

Qa∑
q=1

Θq
a(µ)

(
Υq,i
N ,Γ

)
X
, 1 ≤ i ≤ N, (2.60)

Cfm
Ni (µ) =

Qm∑
q=1

Θq
m(µ)

(
Λq,i
N ,Γ

)
X
, 1 ≤ i ≤ N, (2.61)

Cam
Ni,j(µ) =

Qm∑
q=1

Qa∑
q′=1

Θq
m(µ)Θq′

a (µ)
(

Λq,i
N ,Υ

q′,j
N

)
X
, 1 ≤ i, j ≤ N. (2.62)

Therefore, in the Offline phase, Γ,Λq,i
N and Υq,i

N are found and the inner products
(Γ,Γ)X ,

(
Υq,i
Nmax

,Υq′,j
Nmax

)
X

,
(

Λq,i
Nmax

,Λq′,j
Nmax

)
X

,
(
Υq,i
Nmax

,Γ
)
X

,
(
Λq,i
Nmax

,Γ
)
X

,
(

Λq,i
Nmax

,Υq′,j
Nmax

)
X

are computed.

βinf−sup stability constant computation

The inf-sup condition (Quarteroni et al., 2011), for a parametrized non-coercive bilinear
form a(·, ·;µ) : X1 ×X2 → R, can be formulated as follows:

∃β0 > 0 : βinf−sup(µ) := inf
w∈X1

sup
v∈X2

a(w, v;µ)

‖w‖X1‖v‖X2

≥ β0, ∀µ ∈ D. (2.63)
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This condition can be reformulated (Quarteroni et al., 2011) in terms of the so-called
inner supremizer operator T µ : X1 → X2,

(T µw, v)X2 = a(w, v;µ), ∀w ∈ X1,∀v ∈ X2; (2.64)

by Cauchy-Schwarz inequality and taking v = T µw, it follows that for any w ∈ X1,

a (w, T µw;µ) ≥ βinf−sup(µ)‖w‖X1‖T µw‖X2 . (2.65)

Equivalently, the βinf−sup constant can be computed as follows:

β2
inf−sup = inf

w∈X1

(T µw, T µw)X2

‖w‖2
X1

, (2.66)

which is a Rayleigh quotient.
It must pointed out that the computation of the βinf−sup(µ) has to be performed only

over the symmetric part of the bilinear form a(·, ·). The reader may refer to (Huynh
et al., 2007; Quarteroni et al., 2011) for some examples.

Usually, the Successive Constraint Method (SCM) (Huynh et al., 2007, 2010) is used
in order to provide accurate and inexpensive approximations of a lower bound for the
βinf−sup(µ). However, different approaches may be considered as well (e.g., (Lassila
et al., 2012)). Indeed, in the present work, surrogate models for the βinf−sup(µ) have
been developed by interpolating over a suitable set of values of βinf−sup(µ) obtained
solving the generalized eigenvalue problem (2.66). In Fig. 2.3, the exponential fit of
the computed βinf−sup(µ) is reported as function of the parameter µ, which is the height
of the control rod1.

Sampling strategy: POD-greedy approach

During the Offline phase the RB approximation space XN is built using a POD-greedy
procedure (Haasdonk and Ohlberger, 2008; Quarteroni et al., 2011; Nguyen et al.,
2009): the greedy algorithm selects for whom µ∗i the FE system (2.5) is solved, while
the POD (Proper Orthogonal Decomposition (Holmes et al., 1996; Chatterjee, 2000))
is used to capture the causality associated with the evolution equation. As a result, one
or more functions ζNi (µ∗i ) ∈ XN are retained for each µ∗i . Then, the RB space can be
generated as

XN = span
{
ζNi , 1 ≤ i ≤ N

}
. (2.67)

Such procedure is performed iteratively until eitherN = Nmax or when the error bound
∆k
N(µ) is beyond a threshold ε∗, where both Nmax and ε∗ are given by the user. As a

result, a uniform rapid convergence over the parameter domain is provided (Quarteroni
et al., 2011).

For the sake of clearness, a greedy algorithm is first presented for a stationary prob-
lem (i.e., time-independent), subsequently the POD-greedy procedure will be given
as well. The greedy sampling procedure can be implemented as described in Algo-
rithm 2.1. Initially, the full-order problem is solved for a given µ1 and the reduced

1For the three-rods model, the superposition of the effects has been hypothesized to hold, i.e. the three rods have been assumed
as independent. Actually, there is a sort of “control rod shadowing” (Lamarsh, 1977), meaning that the effect induced by one
rod may rely on the positions of the other rods. However, the hypotheses entered in the derivation of the model itself introduce
errors, with respect to the real phenomena, that are more important than this one. Therefore, the “control rod shadowing” has been
considered negligible for the purposes of the present Chapter.
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Figure 2.3: Exponential fit of the βinf−sup stability constant.

Algorithm 2.1: Greedy algorithm (no time dependency)

1 compute uN (µ1) ;
2 XRB

1 = span{uN (µ1)} ;
3 for N = 2 : Nmax

4 µ∗ = arg maxµ∈Ξtrain
‖uN−1(µ)− uN (µ)‖ ;

5 εN−1 = ‖uN−1(µ∗)− uN (µ∗)‖ ;
6 i f εN−1 ≤ εtol

7 break ;
8 end
9 compute uN (µ∗) ;

10 XRB
N = XRB

N−1 ∪ spanuN (µ∗) ;
11 end

space XRB is simply given by the just computed snapshot. Then, within a loop (line
3 of the Algorithm 2.1), it is found for which µ – over all candidates µ ∈ Ξtrain – the
error between the reduced order solution and the full order one is maximum (line 4 of
the Algorithm 2.1). If such maximum error εN−1 is below a given tolerance the reduced
order model has reached the desired accuracy and the loop can be escaped (line 7 of
the Algorithm 2.1), otherwise the reduced space has to be enriched with the snapshot
computed for µ∗ (lines 9-10 of the Algorithm 2.1). Such implementation is not efficient
because it requires to solve the full order problem for all µ ∈ Ξtrain in order to compute
εN−1. Therefore, in order to implement an efficient greedy procedure (Algorithm 2.2),
the true error has to be replaced by the a posteriori error estimation, which is sharp and
computationally inexpensive.

Algorithm 2.3 implements an efficient POD-greedy algorithm. The starting point
is the solution of the full order problem, for a given µ∗, for all the time steps K (line
2 of Algorithm 2.3). Subsequently, the POD is performed onto the vector of the just
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Algorithm 2.2: Efficient greedy algorithm (no time dependency)

1 compute uN (µ1) ;
2 XRB

1 = span{uN (µ1)} ;
3 for N = 2 : Nmax

4 µ∗ = arg maxµ∈Ξtrain∆N−1(µ) ;
5 εN−1 = ∆N−1(µ∗) ;
6 i f εN−1 ≤ εtol

7 break ;
8 end
9 compute uN (µ∗) ;

10 XRB
N = XRB

N−1 ∪ spanuN (µ∗) ;
11 end

Algorithm 2.3: Efficient POD-greedy algorithm (time-dependent) (Quarteroni et al., 2011)

1 set Z = ∅ ;
2 compute

{
ukN (µ∗), 1 ≤ k ≤ K

}
;

3 while N ≤ Nmax

4 {χm, 1 ≤ m ≤M1} = POD
({
ukN (µ∗), 1 ≤ k ≤ K

}
,M1

)
;

5 Z ← {Z, {χm, 1 ≤ m ≤M1}} ;
6 N ← N +M2 ;
7 {ξn, 1 ≤ n ≤ N} = POD (Z, N) ;
8 XRB

N = span {ξn, 1 ≤ n ≤ N} ;
9 µ∗ = arg maxµ∈Ξtrain

∆k
N |k=K(µ∗) ;

10 εN = ∆k
N |k=K(µ∗) ;

11 i f εN ≤ εtol

12 break ;
13 end
14 end

computed solutions, where the first M1 basis are retained (line 4 of Algorithm 2.3).
Thereafter, in order to avoid/minimize duplication on the RB space, a second POD is
performed onto the vector of the basis Z computed so far (line 7 of Algorithm 2.3).
Typically, M1 is set in order to satisfy and internal POD error criterion, and M2 ≤ M1

(Quarteroni et al., 2011). When the new RB space is constructed (line 8 of Algo-
rithm 2.3), the next candidate µ∗ is the one for which the error bound, at the last time
step K, is maximum (line 9 of Algorithm 2.3). The procedure is repeated until either
a tolerance εtol or a maximum number of basis functions Nmax is reached. It is worth
mentioning that a pure greedy approach both in time and µ might “stall” (Grepl and
Patera, 2005).

2.4 One rod 3D modelling: piece-wise affine transformation

The RB method has been applied to model the parametrized movement of a control rod
(the SHIM rod, see Fig. A.1 on page 90) in a 3D simplified domain of the TRIGA Mark
II reactor.The considered model is reported in Figs. 2.4a and 2.4b, where the position
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(a) x− y cross section view. (b) y − z cross section view.

(c) 3D view of the control rod volume.

Figure 2.4: Simplified 3D model employed

(a) (b) (c)

Figure 2.5: Three different positions of the control rod, in red, followed by water, in blue.

Figure 2.6: y − z view of the parametrized domain.
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(a) (b) (c)

Figure 2.7: Domain decomposition of: the original domain with µ = −10 cm (a) and (b); reference
domain (c).

of the control rod is highlighted in red. The rod is surrounded by a fissile material.
In particular, a rectangular parallelepiped of dimension 48 cm× 48 cm× 35.6 cm has
been considered, where a control rod, having square basis of side equal to 2 cm, is
placed in a non-symmetric position. Figure 2.4c highlights the portion of the domain
where the control rod can move. When the rod is withdrawn, its volume is filled by
water. Figure 2.5 shows an example of three different configurations that the developed
model has to handle in a rapid and reliable way, when the height of the rod (i.e., the
parameter µ) is set in the Online phase. To this aim, the y− z view of the parametrized
geometry is reported in Fig. 2.6. The movement of the rod has been modeled according
to a piecewise affine transformation based on subdomain division (Rozza et al., 2008).
In order to guarantee the continuity between elements of the mesh, the original domain
has to be divided in suitable subdomains. In Fig. 2.7, the original domain, when µ =
10 cm, is reported with the corresponding subdomain decomposition. As stated in the
Section 2.3.2, the RB framework requires also a reference (µ-independent) domain
in order to compare, and combine, finite element solutions that would be otherwise
computed on different domains and grids. The reference domain has been chosen with
µ = 0, and it is depicted in Fig. 2.7c. The reference domain has been discretized using
P1-elements by means of the Gmsh mesh generator (Geuzaine and Remacle, 2009).
The mesh, which is shown in Fig. 2.9, is made by 365 362 elements, with a mesh size
of ∼6 mm. When the “truth” model has been solved, a tolerance of 1× 10−9 has been
set.

According to the adopted subdomain splitting, the variation of the original subdo-
mains with respect to the reference ones are simply stretching deformations. In order
to understand how to compute the affine transformation (2.19), it is now defined for
a tetrahedron, which is the most elementary building block for a 3D geometry. More
details can be found in (Gelsomino and Rozza, 2011).

Let the two tetrahedra shown in Fig. 2.8 be considered. The reference domain is
µ−independent, while the desired, or original, domain is µ−dependent. In order to
derive the translation vector C : D → R3 and linear transformation matrix G : D →
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(x1, y1, z1) (x2, y2, z2)

(x3, y3, z3)

(x4, y4, z4)

(a)

(xo1(µ), yo1(µ), zo1(µ)) (xo2(µ), yo2(µ), zo2(µ))

(xo3(µ), yo3(µ), zo3(µ))

(xo4(µ), yo4(µ), z4(µ))

(b)

Figure 2.8: (a) Reference domain Ω, and (b) Original domain Ω(µ).

R3×3 let the following matrix B ∈ R12×12 and vector V(µ) be defined,

B =



1 0 0 x1 y1 z1 0 0 0 0 0 0
0 1 0 0 0 0 x1 y1 z1 0 0 0
0 0 1 0 0 0 0 0 0 x1 y1 z1

1 0 0 x2 y2 z2 0 0 0 0 0 0
0 1 0 0 0 0 x2 y2 z2 0 0 0
0 0 1 0 0 0 0 0 0 x2 y2 z2

1 0 0 x3 y3 z3 0 0 0 0 0 0
0 1 0 0 0 0 x3 y3 z3 0 0 0
0 0 1 0 0 0 0 0 0 x3 y3 z3

1 0 0 x4 y4 z4 0 0 0 0 0 0
0 1 0 0 0 0 x4 y4 z4 0 0 0
0 0 1 0 0 0 0 0 0 x4 y4 z4



, V(µ) =



xo1(µ)

yo1(µ)

zo1(µ)

xo2(µ)

yo2(µ)

zo2(µ)

xo3(µ)

yo3(µ)

zo3(µ)

xo4(µ)

yo4(µ)

zo4(µ)



, (2.68)

where V(µ) is the vector of coordinates of nodes of the original domain. Then, the
translation vector C : D → R3 and linear transformation matrix G : D → R3×3 can be
obtained as follows:

[C1(µ), C2(µ), C3(µ), G11(µ), G12(µ), G13(µ), G21(µ), G22(µ), G23(µ),

G31(µ), G32(µ), G33(µ)]T = B−1 V(µ). (2.69)

It is worth mentioning that B is non-singular as long as the four points on the reference
domain do not belong to the same plane. Therefore, the affine transformation (2.19), for
the problem addressed in this Chapter, can be computed choosing four points, among
the vertices of the subdomain, which do not belong to the same plane.

2.4.1 Parametrized formulation

As already pointed out, the varying parameter is the height of the control rod position
µ ∈ [−16 cm, 16 cm]. Such parameter, according to the piece-wise affine transfor-
mation based on subdomain division, does not explicitly enter in the equations, but in

Alberto Sartori 54 Politecnico di Milano



2.4. One rod 3D modelling: piece-wise affine transformation

Figure 2.9: Spatial mesh adopted for the one rod model.

the shape of the subdomains Ωl
o(µ), as reported in Section 2.3.2. For each subdomain

Ωl
o(µ), the following bilinear forms have been defined

ml =

∫
Ωlo(µ)

[
1

v1

Φ1ψΦ1 +
1

v2

Φ2ψΦ2 +
8∑
i=1

ciψci

]
, (2.70)

a1
l =

∫
Ωlo(µ)

[
D1

∂Φ1

∂x

∂ψΦ1

∂x
+D2

∂Φ2

∂x

∂ψΦ2

∂x

]
+

∫
Ωlo(µ)

[
D1

∂Φ1

∂y

∂ψΦ1

∂y
+D2

∂Φ2

∂y

∂ψΦ2

∂y

]
+

∫
Ωlo(µ)

[Σa1 + Σs1→2 − (1− β)νΣf1 ] Φ1ψΦ1

−
∫

Ωlo(µ)

[Σs2→1 + (1− β)νΣf2 ] Φ2ψΦ1

−
∫

Ωlo(µ)

8∑
i=1

λiciψΦ1 −
∫

Ωlo(µ)

Σs1→2Φ1ψΦ2

+

∫
Ωlo(µ)

[Σa2 + Σs2→1 ] Φ2ψΦ2 −
∫

Ωlo(µ)

8∑
i=1

βiνΣf1Φ1ψci

−
∫

Ωlo(µ)

8∑
i=1

βiνΣf2Φ2ψci +

∫
Ωlo(µ)

8∑
i=1

λiciψci , (2.71)

a2
l =

∫
Ωlo(µ)

[
D1

∂Φ1

∂z

∂ψΦ1

∂z
+D2

∂Φ2

∂z

∂ψΦ2

∂z

]
, (2.72)

where ψ is the test function for the corresponding variable. Due to symmetry, the total
number of bilinear forms can be reduced. Indeed, all the subdomains belonging to the
upper part of the domain are subjected to the same affine transformation. Similarly,
for the subdomains of the lower part of the domain. Therefore, according to the affine
expansions (2.14) and (2.15), Qa = 4 and Qm = 2.
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Figure 2.10: Non-dimensional maximum relative error bound, with respect to the number of basis func-
tions employed.

2.4.2 Some representative results

We now consider the main results obtained both during the Offline and Online phases
are presented.

Offline phase

During the Offline phase, the RB space is constructed and the “truth” model is pro-
jected on it to obtain the ROM, and a a posteriori error estimation is provided as well
for the greedy parameter space exploration and basis functions selection. Figure 2.10
shows the maximum relative error bound with respect to the number of basis functions
employed. After 70 basis functions, the accuracy of the solution provided by the ROM
reaches an imposed tolerance.

The value of the parameter for each point in the graph is chosen according to a POD-
greedy algorithm (Haasdonk and Ohlberger, 2008; Nguyen et al., 2009, 2010). The
whole Offline phase lasted almost 20 hours of cpu time on the IBM PLX supercomputer
of the Cineca (Italy)2.

Online phase

The developed reduced order model has been tested for different values of the parameter
µ. In Fig. 2.11, the flux shape distribution provided by the ROM, employing seventy
basis functions, is reported for four different heights of the rod. The corresponding
“truth” solutions are depicted in Fig. 2.12. As it can be seen, the outcomes provided by
the ROM are high-fidelity with respect to the “truth” solutions.

As far as the computational time is concerned, in Tab. 2.2 the times required to solve
the “truth” FE problem and the developed ROM for the four values of µ are reported.
The proposed reduced model allows an Online computational speed-up of more than
60 000 times per single time step per single cpu. Therefore, the Offline step is offset
by the achievement of a modelling tool with real-time simulation, which was the goal
of the present work. In addition, it must be pointed out that when the reduced model is

2All the calculations have been performed on such supercomputing facility. Therefore, all the computational times are referred
to the above mentioned supercomputer and the reference to it will be omitted in the following.

Alberto Sartori 56 Politecnico di Milano



2.4. One rod 3D modelling: piece-wise affine transformation

(a) µ = −16 cm (b) µ = −10 cm

(c) µ = 3 cm (d) µ = 13 cm

Figure 2.11: Thermal neutron flux shape [1/cm2 s] provided by the ROM, employing N = 70 basis
functions, at the last time step.

(a) µ = −16 cm (b) µ = −10 cm

(c) µ = 3 cm (d) µ = 13 cm

Figure 2.12: Thermal neutron flux shape [1/cm2 s] assumed as “truth” solution, at the last time step.
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Table 2.2: Computational time per single cpu per single time step.

Truth ROM Speed-up
µ = −16 cm 148.35 s 2.2 ms 67 432
µ = −10 cm 148.02 s 2.1 ms 70 486
µ = 3 cm 148.68 s 2.5 ms 59 472
µ = 13 cm 148.72 s 2.4 ms 61 967

Table 2.3: Relative error bounds in L2 norm, at the last time step.

Error bounds
µ = −16 cm 9.36× 10−6

µ = −10 cm 2.48× 10−4

µ = 3 cm 4.65× 10−4

µ = 13 cm 1.85× 10−4

solved, the a posteriori error estimation is performed as well to certify the outcomes. In
Tab. 2.3, the relative error bounds are reported, which have been computed as the ratio
between the L2 norms of the error and the solution (more details about the error bounds
can be found in Section 2.3.2). Error bounds are an estimate of the error between the
RB solution and the high order one. In order to be efficient, the error bounds should
overestimate a bit the error and never underestimate it. The ratio between the estimated
error with respect to the true error is called effectivity. Therefore, the effectivity should
be always greater than one but not too big. The average, maximum and minimum
effectivity, for several instances of the parameter, are reported in Tab. 2.4, where, for
the sake of completeness, the influence of the mesh size on the effectivity has been
addressed as well. Effectivities increase when the mesh size is increased, on the other
hand, when the mesh size is reduced.

For the sake of completeness, it must be introduced the computational break-even,
i.e., the number of full order simulations after that the RB method is more efficient and
recommended. The break-even can be defined as follows:

break-even =
Whole Offline computational time

Time of one FE simulation
=
∼ 20 h
∼ 8 min

= 150 . (2.73)

Therefore, if more than 150 full-order simulations have to be computed, the reduced
order model should be preferred.

It is worth recalling that the aim of the present work is to develop a fast-running
simulation tool able to accurately reproduce spatial effects induced by the control rods,
with respect to the “truth” solutions. To achieve this goal we had to face and incorporate
into the computational tool the capability to manage parabolic non-coercive problems,
as well as theirs error bounds (and stability factors).

Table 2.4: Effectivity.

Mesh size Average Maximum Minimum
h=6 mm 16.749 52.826 3.574

h/2 18.879 289.395 3.535
2h 62.340 199.983 17.453
4h 499.970 6850.664 268.990
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Figure 2.13: 3D model of the TRIGA reactor with three control rods.

2.4.3 Additional remarks

The presented methodology, namely the piece-wise affine transformation based on sub-
domain division, can be used also with multiple rods. In this case, the elementary
building block will be tetrahedron and the subdomain shapes will not be simple par-
allelepipeds as in the presented work and the computation of the affine transformation
will be much more involved. Moreover, cylindrical control rods may be employed as
well. For example, the cylinder might be inscribed within the parallelepiped, or even
curvy-triangles may be considered (see e.g. Rozza et al., 2008).

2.5 Three rods 3D modelling: a “staircase” approach

In this Section, the modelling of three control rod movement is addressed employing a
different technique from the previous Section. The geometry of the model considered
for this approach is reported in Fig. 2.13. The TRIGA Mark II reactor is equipped with
a pneumatic bar (TRANS), which can be completely inserted or completely withdrawn,
without other positions in between. Conversely, the other two rods, REG and SHIM,
can assume different positions. The idea behind such approach is to simulate a discrete
movement (like a staircase). To do so, the portion of the spatial domain (i.e., the three
cylinders) occupied by the rods has been divided as shown in Fig. 2.14. In particular:
SHIM and REG, the cylinders have been split into 15 “steps”; TRANS, only 1 big
“step”. The spatial mesh has been generated by discretizing the domain using the
Gmsh software and the P1-elements. Such mesh is reported in Fig. 2.15 and it features
287 577 elements, with an average mesh size of ∼6 mm. A tolerance of 1× 10−9 has
been chosen for the solution of the “truth” model.

The movement is simulated by “turning on” or “turning off” the water (or the rod)
within each “step”. According to this kind of approach, the parameters are the height
of the control rods (REG and SHIM), which are discrete – from 0, inserted, to 15,
withdrawn – and if the TRANS is inserted or withdrawn, namely 0 or 1. Therefore, the
following bilinear forms have been defined:3

3Since the domain does not change, like in the previous Section, the subscript o will be omitted.
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Figure 2.14: Control rods spatial domain subdivision.

Figure 2.15: Spatial mesh adopted for the three rods model.
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• within fuel domain

mfuel =

∫
Ωfuel

[
1

vf1
Φ1ψΦ1 +

1

vf2
Φ2ψΦ2 +

8∑
i=1

ciψci

]
, (2.74)

afuel =

∫
Ωfuel

Df
1∇Φ1 · ∇ψΦ1 +

∫
Ωfuel

Df
2∇Φ2 · ∇ψΦ2

+

∫
Ωfuel

[
Σf
a1

+ Σf
s1→2
− (1− β)νΣf1

]
Φ1ψΦ1

−
∫

Ωfuel

[
Σf
s2→1

+ (1− β)νΣf2

]
Φ2ψΦ1

−
∫

Ωfuel

8∑
i=1

λiciψΦ1 −
∫

Ωfuel

Σf
s1→2

Φ1ψΦ2

+

∫
Ωfuel

[
Σf
a2

+ Σf
s2→1

]
Φ2ψΦ2 −

∫
Ωfuel

8∑
i=1

βiνΣf1Φ1ψci

−
∫

Ωfuel

8∑
i=1

βiνΣf2Φ2ψci +

∫
Ωfuel

8∑
i=1

λiciψci , (2.75)

• within each subdomain of the control rods

ml = µlmr + (1− µl)mw, µl = 0 or 1 (2.76)
al = µl ar + (1− µl) aw, µl = 0 or 1 (2.77)

where

mr =

∫
Ω

[
1

vr1
Φ1ψΦ1 +

1

vr2
Φ2ψΦ2 +

8∑
i=1

ciψci

]
, (2.78)

mw =

∫
Ω

[
1

vw1
Φ1ψΦ1 +

1

vw2
Φ2ψΦ2 +

8∑
i=1

ciψci

]
, (2.79)

ar =

∫
Ω

Dr
1∇Φ1 · ∇ψΦ1 +

∫
Ω

Dr
2∇Φ2 · ∇ψΦ2

+

∫
Ω

[
Σr
a1

+ Σr
s1→2
− (1− β)νΣf1

]
Φ1ψΦ1

−
∫

Ω

[
Σr
s2→1

+ (1− β)νΣf2

]
Φ2ψΦ1

−
∫

Ω

8∑
i=1

λiciψΦ1 −
∫

Ω

Σr
s1→2

Φ1ψΦ2

+

∫
Ω

[
Σr
a2

+ Σr
s2→1

]
Φ2ψΦ2 −

∫
Ω

8∑
i=1

βiνΣf1Φ1ψci

−
∫

Ω

8∑
i=1

βiνΣf2Φ2ψci +

∫
Ω

8∑
i=1

λiciψci , (2.80)
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Figure 2.16: Non-dimensional maximum relative error bound, with respect to the number of basis func-
tions employed.

aw =

∫
Ω

Dw
1∇Φ1 · ∇ψΦ1 +

∫
Ω

Dw
2∇Φ2 · ∇ψΦ2

+

∫
Ω

[
Σw
a1

+ Σw
s1→2
− (1− β)νΣf1

]
Φ1ψΦ1

−
∫

Ω

[
Σw
s2→1

+ (1− β)νΣf2

]
Φ2ψΦ1

−
∫

Ω

8∑
i=1

λiciψΦ1 −
∫

Ω

Σw
s1→2

Φ1ψΦ2

+

∫
Ω

[
Σw
a2

+ Σw
s2→1

]
Φ2ψΦ2 −

∫
Ω

8∑
i=1

βiνΣf1Φ1ψci

−
∫

Ω

8∑
i=1

βiνΣf2Φ2ψci +

∫
Ω

8∑
i=1

λiciψci (2.81)

Therefore, according to the affine expansion (2.14) and (2.15), Qa = Qm = 32.

2.5.1 Some representative results

In this Section, the main results obtained both during the Offline and Online phases are
presented.

Offline phase

During this phase, the RB space is built, the ROM is obtained by projecting the “truth”
model on it, and the a posteriori error estimation is provided as well. Figure 2.16
shows the maximum relative error bound with respect to the number of basis functions
employed. The values of the parameters for each point in the graph is chosen according
to a POD-greedy algorithm (Haasdonk and Ohlberger, 2008; Nguyen et al., 2010). The
whole Offline step lasted almost 200 hours of cpu time. The great increase of the Offline
duration, with respect to the approach proposed in the previous Section, is due to the
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Figure 2.17: Employed sections to visualize the thermal flux.

Table 2.5: Computational time per single cpu per single time step.

µ = {TRANS, REG, SHIM} Truth ROM Speed-up
µ = {0, 4, 8} 191.0 s 110 ms 1736
µ = {1, 2, 10} 190.4 s 110 ms 1730
µ = {1, 16, 16} 191.1 s 112 ms 1705

higher number of Qa and Qm. Almost the 60% of the time is spent to compute the
terms needed by the a posteriori error estimation (see Section 2.3.2).

Online phase

During the Online step, the thermal flux has been reconstructed for different combina-
tions of parameters employing 50 basis functions. In the following, the thermal flux
is presented within the region of the control rods, on the planes reported in Fig. 2.17,
without displaying the flux within the fuel region for the sake of clarity. In particular,
the outcomes provided by the developed ROM are reported in Fig. 2.18. On the other
hand, the solutions assumed as “truth” are depicted in Fig. 2.19. As it can be seen, the
spatial effects induced by the movement of the control rods are accurately reproduced
by the reduced model.

Comparing the cpu times required to solve the “truth” finite element problem and
the developed ROM, reported in Tab. 2.5, the computational speed-up is of ∼ 2000
times per single time step per single cpu. The lower speed-up, with respect to the
model developed in the previous Section, is due to the higher number of bilinear forms
required by the affine decomposition.

The ratio between the L2 norms of the error and the solution, for the cases con-
sidered, provided by the developed ROM and computed as described in Section 2.3.2,
are reported in Tab. 2.6. Finally, in order to verify the efficiency and rigor of the error
bounds, the average, maximum and minimum effectivity (i.e., the ratio between the
error bound and the true error between the reduced solution and the high order one)
are reported in Tab. 2.7. Such values have been computed for several instances of the
parameters and for different mesh size in order to investigate the influence of the mesh
size on the effectivity and they are in agreement with general considerations in (Patera
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(a) TRANS is inserted, and the height of the REG
and SHIM is 4 and 8 “steps”, respectively

(b) TRANS is withdrawn, and the height of the REG
and SHIM is 2 and 10 “steps”, respectively

(c) TRANS is withdrawn, and the height of the REG
and SHIM is 16 and 16 “steps”, respectively

Figure 2.18: Thermal flux [1/cm2 s], provided by the ROM, inside the control rod spatial domains for
different combination of the parameters.

(a) TRANS is inserted, and the height of the REG
and SHIM is 4 and 8 “steps”, respectively

(b) TRANS is withdrawn, and the height of the REG
and SHIM is 2 and 10 “steps”, respectively

(c) TRANS is withdrawn, and the height of the REG
and SHIM is 16 and 16 “steps”, respectively

Figure 2.19: Thermal flux [1/cm2 s], assumed as “truth” solution, inside the control rod spatial domains
for different combination of the parameters.
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Table 2.6: Relative error bounds in L2 norm, at the last time step.

µ = {TRANS, REG, SHIM} Error bounds
µ = {0, 4, 8} 6.02× 10−5

µ = {1, 2, 10} 1.92× 10−4

µ = {1, 16, 16} 1.14× 10−4

and Rozza, 2007; Rozza et al., 2008).

Table 2.7: Effectivity.

Mesh size Average Maximum Minimum
h=6 mm 4.768 10.480 1.670

h/2 5.027 10.795 1.656
2h 24.552 48.230 10.937

The break-even (see Eq (2.73)) for this case is given by

break-even =
∼ 200 h
∼ 10 min

= 1200 . (2.82)

Therefore, if more than 1200 full-order simulations have to be computed, the reduced
order model should be preferred.

2.6 Concluding remarks

In this Chapter, two different approaches for simulating the movement of nuclear re-
actor control rods, in a 3D framework, have been proposed. In order to provide the
outcomes in a rapid and reliable way, the certified Reduced Basis method has been em-
ployed. The neutronic behaviour has been modeled according to the so-called multi-
group diffusion equation, which is, in fact, a set of coupled (parametrized) parabolic
equations (ten in our problem). The heights of the rods (i.e., how much the rods are
withdrawn) are the varying parameters, which are geometric-type parameters. The pa-
rametrized bilinear form associated to the elliptic part of the system is non-symmetric
and non-coercive, yet it can be affinely decomposed. The efforts have been focused on
the methodological approach.

As far as the first approach is considered, the movement of a single control rod has
been modeled. In particular, a piece-wise affine transformation based on subdomain di-
vision has been developed, where the subdomain shapes change in order to simulate the
movement of the rod. On the other hand, in the second approach, all the three control
rods of the TRIGA Mark II nuclear reactor of the University of Pavia (Italy) have been
taken into account. In order to present a different methodology, the movement of the
rods has been discretized like a staircase. Both the reduced models are capable to accu-
rately reproduce the neutron flux distribution allowing to take into account the spatial
effects induced by the control rods, whose height can be set in the Online phase. More-
over, the computational time required to solve the reduced system is four (three) order
of magnitude lower with respect to the fine finite element discretization, for the first
(second) approach, respectively. The lower speed-up provided by the second approach
is due to the higher number of the terms of the affine expansion.
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It is worth mentioning that the presented methodology is general and it could also
be employed for other industrial applications with different 3D parametrized time-
dependent problems representing other complex phenomena.

An alternative to the direct discretization of the time-dependent neutron diffusion
equation, as presented in this Chapter, is the so-called quasi-static approach (Girardi
et al., 2012). Such approach is formally close to the adiabatic one (Duderstadt and
Hamilton, 1976), except that the flux shape is recalculated at intervals during transients.
Therefore, in the following Chapter a reduced order model for parametrized multi-
group neutron diffusion equations in the stationary formulation, which is a generalized
eigenvalue problem, will be discussed.
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CHAPTER3
Reduced basis approach for generalized

eigenvalue calculation

This Chapter presents an alternative Reduced Order Model (ROM), with
respect to those presented in the previous Chapter, aimed at simulating nu-
clear reactor control rods movement and featuring fast-running prediction
of reactivity and neutron flux distribution as well. In particular, the neu-
tronics has been modelled according to a parametrized stationary version
of the multi-group neutron diffusion equation, which can be formulated as
a generalized eigenvalue problem. Within the reduced basis framework, the
centroidal Voronoi tessellation is employed as sampling technique thanks
to the possibility of a hierarchical parameter space exploration, without
relying on a “classical” a posteriori error estimation, and saving an im-
portant amount of computational time in the Offline phase. The here pro-
posed ROM is capable to correctly predict, with respect to the high-fidelity
finite element approximation, both the reactivity and neutron flux shape. In
this way, a computational speed-up of at least three orders of magnitude is
achieved.

The main results presented in this Chapter are collected in: Sartori, A., Cammi, A.,
Luzzi, L., and Rozza, G. “A Reduced basis approach for modelling the movement of
nuclear reactors control rods”. Submitted to Journal of Nuclear Engineering and Radi-
ation Science, 2014.
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3.1. Introduction

3.1 Introduction

THE present contribution would offer, with respect to the previous Chapter 2, an al-
ternative methodological approach to improve the already developed simulation
tools, which are based on point-wise kinetics, allowing for the spatial effects.

The main idea, based on the so-called quasi-static approach (Girardi et al., 2012), is
that the temporal evolution can still be described according to PK equations, but at
each time step the reactivity is estimated by means of a fast-running Reduced Order
Model (ROM). Indeed, a ROM for simulating nuclear reactors control rods movement,
which features fast-running computational time for both reactivity and flux shape pre-
diction, has been developed relying on the reduced basis method (Rozza et al., 2008;
Quarteroni et al., 2011). The reactivity and neutron flux shape are computed solving
the stationary version of the multi-group neutron diffusion equation (Duderstadt and
Hamilton, 1976), which can be formulated as a generalized eigenvalue problem. A 2D
x − z model featuring two control rods surrounded by fissile material, with reference
to a TRIGA Mark II nuclear reactor (General Atomic, 1964), has been employed. The
governing partial differential equations have been parametrized allowing for geomet-
ric deformations of the subdomains in order to model a continuous movement of the
control rods, where the heights of the rods are the varying parameters. Within the re-
duced basis method framework, the centroidal Voronoi tessellation has been employed
as sampling technique for the parameter space exploration. All the simulations have
been performed relying on a procedure developed on purpose within the computational
environment offered by the open-source FEniCS library (Logg et al., 2012).

The Chapter is organized as follows. The reduced basis strategies are firstly pre-
sented in Section 3.2 for a generalized eigenvalue model problem. The parametrized
reactor spatial kinetics and the implementation of the reduced basis method are ad-
dressed in Section 3.3. The main representative results are given in Section 3.4. Finally,
in Section 3.5, the main conclusions and future perspectives are presented.

3.2 Reduced basis strategies for generalized eigenvalue problems

In this Section, the fundamental mathematical aspects of the Reduced Basis (RB)
method for a generalized eigenvalue problem are addressed. For the sake of brevity,
a scalar problem is considered, since the extension to the vectorial case is straightfor-
ward. A detailed presentation of RB methodology for elliptic and parabolic problems
can be found in (Grepl and Patera, 2005; Patera and Rozza, 2007; Rozza et al., 2008;
Quarteroni et al., 2011), while for eigenvalue problems Refs. (Machiels et al., 2000;
Zanon and Veroy-Grepl, 2013) might be of interest.

Let the following be the abstract formulation of a generalized eigenvalue model
problem, parametrized with respect to the input parameter p-vector µ. Given µ ∈ D ⊂
Rp, evaluate (u(µ), λ(µ)) – eigenvector and eigenvalue, respectively – such that

a (u(µ), v;µ) = λ(µ)m (u(µ), v) , ∀v ∈ X(Ω), (3.1)

where a(·, ·) and m(·, ·) are the bilinear forms associated to the left and right hand side,
respectively, v is the test function, Ω is a spatial domain in Rd (for d = 2 or 3), X =
X(Ω) is a suitable Hilbert space, with a given inner product (·, ·)X and an induced norm

Politecnico di Milano 69 Alberto Sartori



Chapter 3. Reduced basis approach for generalized eigenvalue calculation

‖ · ‖X =
√

(·, ·)X . It is worth recalling that the reactivity of a nuclear system is related
to the smallest real eigenvalue, and the neutron flux distribution reflects the associated
eigenvector. Therefore, in the present work, only the couple

(
umin(µ), λmin(µ)

)
will be

computed. In the following, the superscript “min” will be omitted so as not overburden
the notation.

In order to have a complete Offline/Online decoupling, the bilinear forms a and m
are affinely decomposed on the parameter µ:

a(w, v;µ) =

Qa∑
q=1

Θq
a(µ)aq(w, v), ∀w, v ∈ X, ∀µ ∈ D (3.2)

m(w, v;µ) =

Qm∑
q=1

Θq
m(µ)mq(w, v), ∀w, v ∈ X, ∀µ ∈ D (3.3)

for some integers Qa and Qm.
The coefficients of the affine expansions (3.2) and (3.3) can be easily derived when

they are related to physical properties (e.g., diffusion coefficients, thermal conductiv-
ity). Whether the µ-vector includes geometric properties, the derivation of the Θ(µ)
coefficients may require a dedicated treatment, see e.g. (Rozza et al., 2008; Sartori
et al., 2014b).

The RB method is built upon a fine approximation (i.e., finite element or finite vol-
ume), assumed as “truth” solution. Let the following expression be the discretization of
the eigenvalue problem (3.1) adopting the Finite Element (FE) (Quarteroni and Valli,
2008) in space

a (uN (µ), v;µ) = λN (µ)m (uN (µ), v) , ∀v ∈ XN , (3.4)

where XN is the FE approximation space of dimensionN (usually very large); uN and
λN are the “high-fidelity” eigenvector and eigenvalue, respectively.

Then, given a positive integer Nmax, let XN , for N = 1, . . . , Nmax, be an associated
sequence of approximation spaces (RB spaces), where XN is a N -dimensional sub-
space of XN . Let ξNn ∈ XN , 1 ≤ n ≤ Nmax be a set of orthonormal functions and let
such functions be the basis of the RB spaces

XN = span
{
ξNn , 1 ≤ n ≤ N

}
, 1 ≤ N ≤ Nmax. (3.5)

Typically, the orthonormal functions ξNn are solutions of the problem (3.4), computed
for different instances of the parameter µ, that are orthogonalized by means a Gram-
Schimdt procedure.

The RB approximation of the discretized eigenvalue problem (3.4) can be stated as
follows

a (uN(µ), v;µ) = λN(µ)m (uN(µ), v) , ∀v ∈ XN , (3.6)

where the RB approximation of the eigenvector uN(µ) ∈ XN can be expressed as a
projection of the basis functions ξNi

uN(µ) =
N∑
i=1

uN,i(µ)ξNi , (3.7)
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while λN(µ) is the eigenvalue associated to the eigenvector uN(µ). Finally, the alge-
braic system to be solved in order to compute the weights uN,i(µ) has to be derived. To
this aim, by denoting

Z =
[
ξN1 | . . . |ξNN

]
∈ RN×N , 1 ≤ N ≤ Nmax, (3.8)

the bilinear forms aq and mq can be projected onto the RB space XN as follows

Aq
N = ZTAqNZ, (3.9)

Mq
N = ZTM q

NZ, (3.10)

where

(AqN )ij = aq(ψj, ψi), (3.11)

(M q
N )ij = mq(ψj, ψi), (3.12)

being {ψi}Ni=1 the basis of the FE space XN . Hence, the following algebraic equations
associated to the reduced eigenvalue problem (3.6) are obtained

AN(µ) uN(µ) = λN(µ)MN(µ) uN(µ), (3.13)

where

AN(µ) =

Qa∑
q=1

Θq
a(µ)Aq

N , (3.14)

MN(µ) =

Qm∑
q=1

Θq
m(µ)Mq

N , (3.15)

and
(uN(µ))i = uN,i(µ). (3.16)

It is worth mentioning that the eigenvalue problem (3.13), which is N ×N , is indepen-
dent of the FE space dimension N , and N � N .

During the Offline phase, the functions ξNn and the matrices Aq
N and Mq

N , which are
µ-independent, are computed and stored. In the Online phase, for each instance of the
parameter, the system (3.13) is assembled and solved. In this way, the Offline phase is
N−dependent while the Online phase in N−independent.

3.3 Parametrized model

The neutron kinetics has been modeled according to the stationary multi-group diffu-
sion equation (Duderstadt and Hamilton, 1976) with two energy groups. In equations
it reads: (

−∇ ·D∇+ Σa + Σs

)
Φ = λχF TΦ, (3.17)
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where 

Φ =

 Φ1(r)

Φ2(r)

 ,
D =

[
D1(r) 0

0 D2(r)

]
,

Σa =

[
Σ1
a(r) 0

0 Σ2
a(r)

]
,

Σs =

[
Σ1→2
s (r) −Σ2→1

s (r)

−Σ1→2
s (r) Σ2→1

s (r)

]
,

χ =

 χ1

χ2

 ,
F T =

[
νΣ1

f (r) νΣ2
f (r)

]
.

(3.18)

The subscript 1 refers to the fast group and 2 to the thermal one; Φ is the neutron flux,D
is the diffusion coefficient, νΣf are the number of neutrons emitted per fission reaction,
Σa is the absorption cross section, Σsi→j

is the scattering cross section from group i to
group j, χ is the fission yield. For the sake of simplicity, the homogeneous Dirichlet
boundary conditions (i.e., neutron flux equal to zero) have been employed.

Being the introduction of an innovative approach for reactor spatial dynamics the
focus of the present contribution, a simplified 2D x − z model has been adopted, with
reference to the TRIGA Mark II reactor (General Atomic, 1964) of the University of
Pavia (Italy). Such system features a non-symmetric core configuration. Figure 3.1a
shows the map of the core, which is equipped with three control rods (SHIM, TRAN-
SIENT, REGULATING), two irradiation channels (C.T., RABBIT), and one channel
where the source for the start-up of the reactor is placed surrounded by two elements of
graphite (DUMMY). All other elements are fuel pins. The employed model has been
developed considering the section drawn in Fig. 3.1a, where the fuel pins and the C.T.
have been homogenized except for the REG and the SHIM, which have been explic-
itly taken into account. In Fig. 3.1b, the parametric x − z model of the TRIGA core
is depicted. In particular, the control rods are depicted in green, the water is in blue,
and in the other region a homogeneous mixture between the fuel and coolant has been
considered, which will be referred to as fuel.

The neutronic parameters (v, D, Σa, Σs, νΣf , χ) have been computed by means of
a full 3D core calculation based on the SERPENT code (SERPENT, 2011) and they
are reported in Tab. 3.1. Such neutronic quantities have been taken constant for all the
simulations.

The FE discretization of the Eq. (3.17), employing P1 elements, has been assumed
as the “truth” solution. An ad hoc procedure has been implemented within the compu-
tational environment offered by the open-source library FEniCS (Logg et al., 2012) in
order to perform all calculations needed by the RB method, for both the Offline and On-
line step. For the solution of the generalized eigenvalue FE problem, the PETSc suite
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(a) Map of the TRIGA Mark II reactor core.

(b) x− z model for the RB method.

Figure 3.1: Map of the TRIGA Mark II reactor core (a), and x− z model employed for the RB method.
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Table 3.1: Neutronic quantities employed for the simulations (Sartori et al., 2014b).

Parameter Fuel Water Rod
D1 [cm] 8.77 · 10−1 8.51 · 10−1 7.52 · 10−1

D2 [cm] 1.92 · 10−1 1.39 · 10−1 1.32 · 10−1

Σa1 [cm−1] 4.85 · 10−3 5.04 · 10−4 7.07 · 10−2

Σa2 [cm−1] 7.53 · 10−2 1.70 · 10−2 4.57 · 10−1

νΣf1 [cm−1] 3.65 · 10−3 – –
νΣf2 [cm−1] 1.25 · 10−1 – –
Σs1→2

[cm−1] 3.02 · 10−2 5.34 · 10−2 1.36 · 10−2

Σs2→1 [cm−1] 3.27 · 10−4 2.49 · 10−4 5.83 · 10−4

1/v1 [s/cm] 5.87 · 10−8 7.58 · 10−8 2.61 · 10−8

1/v2 [s/cm] 3.00 · 10−6 3.47 · 10−6 3.14 · 10−6

χ1 [−] 1.0 – –
χ2 [−] 0.0 – –

Figure 3.2: RB triangulation of the reference domain.

(Balay et al., 2014) and the SLEPc library (Hernandez et al., 2005) have been em-
ployed. While, in the Online phase, the reduced eigenvalue problem has been solved
by means of the Python SciPy package (Jones et al., 2001–).

3.3.1 Geometrical parametrization

The piece-wise affine transformations based on subdomains division (Rozza et al.,
2008; Sartori et al., 2014b) has been implemented for modelling a continuous move-
ment of the rods. According to such technique, the parametrized spatial domain (also
called original domain) Ωo(µ) is divided into a suitable number of subdomains Ωl

o(µ)
(the so-called RB triangulation) such that

Ωo(µ) =

Ldom⋃
l=1

Ωl
o(µ). (3.19)

The movements of the rods are modelled by a geometric deformations of the subdo-
mains Ωl

o(µ). The RB methodology requires a µ-independent domain, called reference
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Figure 3.3: RB triangulation of the original domain Ωo(µ).

domain Ω in order to compare, and combine, FE solutions that would be otherwise
computed on different grids. The chosen reference domain, with its RB triangulation is
depicted in Fig. 3.2. The original domains are mapped onto the reference domain and
a transformed problem is obtained, which is the point of departure of the RB approach.
In Fig. 3.3, it is shown the RB triangulation of the parametric original domain when
µ = (12, 20).

The height of the control rods REG and SHIM (i.e., how much they are inserted
within the core) are the parameters µ = (µ1, µ2), and they can vary within the range
[1, 35] cm. For each subdomain Ωl

o(µ), belonging to the original domain Ωo(µ), the
following bilinear forms have been defined

a1
l =

∫
Ωlo(µ)

[
D1

∂Φ1

∂x

∂ψ1

∂x
+D2

∂Φ2

∂x

∂ψ2

∂x

]
+

∫
Ωlo(µ)

[Σa1 + Σs1→2 ] Φ1ψ1

−
∫

Ωlo(µ)

Σs2→1Φ2ψ1 −
∫

Ωlo(µ)

Σs1→2Φ1ψ2

+

∫
Ωlo(µ)

[Σa2 + Σs2→1 ] Φ2ψ2 (3.20)

a2
l =

∫
Ωlo(µ)

[
D1

∂Φ1

∂z

∂ψ1

∂z
+D2

∂Φ2

∂z

∂ψ2

∂z

]
(3.21)

ml =

∫
Ωlo(µ)

νΣf1Φ1ψ1 + νΣf2Φ2ψ1 (3.22)

where ψ is the test function for the corresponding variable. Due to symmetry, the total
number of bilinear forms can be reduced to one half leading to the number of ml = 4
and al = 8. Therefore, according to the affine expansions (3.2) and (3.3), Qa = 8 and
Qm = 4.

Mapping the bilinear forms (3.22)-(3.22) onto the reference domain, as detailed in
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(Sartori et al., 2014b), the Θq
a(µ) coefficients are obtained. Roughly speaking, from

finite element consolidated fashion, such mapping may be seen as the isoparametric
transformation from the original mesh element to the reference element to perform the
Gaussian integration (Sartori et al., 2014b).

3.3.2 Sampling strategy

The effectivity of the RB approximation relies on the RB space, which is generated
by the span of the snapshots (i.e., solutions of the high fidelity FE problem) computed
for the sampled values of the parameters. Clearly, an efficient sampling technique,
employed in the Offline phase, is essential for exploring the parameter space without
wasting computational time, as can occur, for example, by means of a simplistic random
sampling. Naturally, different sampling strategies may be adopted. For example, with
an a posteriori error estimation1, a greedy algorithm (Rozza et al., 2008; Haasdonk
and Ohlberger, 2008; Quarteroni et al., 2011; Nguyen et al., 2009) may be employed.
For this kind of problem (i.e., parametrized eigenvalue problems), two methods for the
error bound estimation have been proposed (Prud’homme et al., 2002), but one method
is asymptotic, meaning that the error estimation is good only for N → ∞, the other
relies on quantities that are not self-evident or that are not readily computed, and is
very computational expensive. To overcome this issue, in this work, the Centroidal
Voronoi Tessellation (Du et al., 1999; Burkardt et al., 2006), within the RB framework,
has been employed. The proposed CVT does not require an error estimation, but relies
on the true error between the computed snapshots and the reduced order model that is
constructed (or updated) at each iteration. Starting from an initial discrete set Θtrain

of values of µ (for example, the corners of the parameter domain D), the sampling
procedure can be described by the following steps:

1. Compute a Delaunay triangulation2 (Watson, 1981) in the parameter space where
the vertexes are the points belonging to Θtrain. For example, in Fig. 3.4a, the
Delaunay triangulation (blue line) and the Voronoi tessellation (dotted line) of the
initial discrete set Θtrain are depicted. The computed snapshots, which are the
eigenvectors associated to the minimum eigenvalue for the different values of the
parameter µ, are depicted with red dots.

2. Compute the residuals between the reduced order solution and the FE one in each
vertex of the Delaunay triangulation. In this work, the residuals have been com-
puted as the difference between the minimum eigenvalue, which is related to the
reactivity of the system, provided by the reduced order model and the FE one.

3. For each triangle, compute the sum of the residuals in its vertexes times the area
of the triangle itself (Bergmann et al., 2014).

4. The next snapshot will be computed for µ∗, which is given by the barycenter of
the element for whom the sum of the residuals times the area of the element is
maximum. For example, the upper left triangle of Fig. 3.4a featured the maxi-
mum residual, and Fig. 3.4b shows the Delaunay triangulation and the Voronoi

1The error estimation refers to the residual between the reduced order solution and the high-fidelity FE.
2It is worth recalling that in R2 the Dealaunay triangulation is the dual tessellation of the CVT (Du et al., 1999).
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(a) (b)

(c)

Figure 3.4: Delaunay triangulation (blue line) and Voronoi tessellation (dotted line) of the initial set
(a), of the next iteration (b), and at last iteration.

tessellation of the next iteration, where µ∗ = (6.600, 29.267) has been added to
Θtrain.

Such procedure is iterated until a given tolerance is reached (e.g., a maximum number
of the snapshots). For example, Fig. 3.4c reports the Delaunay triangulation and the
Voronoi tessellation at the last iteration, where 97 snapshots have been computed. At
the end of the simulation, in order to further reduce the dimension of the basis – and of
the reduced order model itself – a Proper Orthogonal Decomposition (POD) (Sirovich,
1987; Holmes et al., 1996; Chatterjee, 2000) has been performed on the vector of the
computed snapshots. In Fig. 3.5, energy (i.e., the information retained) by each POD
mode is reported.

3.4 Representative results

In this Section, the performance of the developed reduced order model are presented. It
is worth recalling that this work is more focused on testing and assessing an innovative
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Figure 3.5: Energy of the POD modes.
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Table 3.2: Absolute error eλ(µ) [pcm] with respect to number of basis functions employed. Values have
been computed for 100 samples, randomly chosen.

# basis functions < eλ(µ) > max eλ(µ)
10 196.998 601.788
20 19.134 166.892
40 1.551 25.248
60 0.436 5.388
80 0.157 3.248

Figure 3.6: High fidelity FE spatial flux distribution [cm−2 s−1].

methodology, rather than reproducing the real reference reactor.
The capabilities of the developed reduced model has been tested for different values

of the parameters in the Online step for different number of basis functions. Both the
eigenvalue prediction and the flux shape have been taken into account.

3.4.1 Reactivity estimation

The minimum eigenvalue is the inverse of system reactivity. The error between the
value of the reactivity provided by the ROM and FE solution eλ(µ) has been computed
as follows:

eλ(µ) = |λN(µ)− λN (µ)| (3.23)

In Table 3.2, the average and the maximum absolute error eλ(µ) are reported as func-
tion of the number of basis functions. Values have been computed for 100 samples,
randomly chosen, of µ = (µ1, µ2). The reliability of the outcomes provided by the
ROM increases as the number of basis functions employed is increased. Forty basis
functions are sufficient for correctly estimate the reactivity at the order of the pcm, on
average. To further reduce the error, much more basis functions are required.
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(a) N = 10 (b) N = 20

(c) N = 40 (d) N = 60

(e) N = 80

Figure 3.7: Neutron flux distribution [cm−2 s−1] provided by the ROM, as function of N .
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(a) N = 10 (b) N = 20

(c) N = 40 (d) N = 60

(e) N = 80

Figure 3.8: Spatial error between the ROM and the FE solution [a.u.], as function of N .
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Table 3.3: Error eΦ(µ) between the neutron flux provided by the ROM and by the high fidelity FE model.

# basis functions Error
10 5.09× 10−3

20 4.88× 10−3

40 2.83× 10−5

60 1.75× 10−5

80 1.52× 10−6

Table 3.4: Average computational time [s] and speed-up.

# basis functions ROM FE Speed-up
10 0.0057 33.423 5862
20 0.0064 33.423 5221
40 0.0094 33.423 3554
60 0.0162 33.423 2062
80 0.0289 33.423 1156

3.4.2 Neutron flux shape reconstruction

For the sake of brevity, in this subsection the outcomes provided by the ROM, employ-
ing different number of basis functions, for only one case with µ = (25.67, 12.93), are
discussed. Figure 3.6 shows the high fidelity FE spatial flux distribution. Figure 3.7
reports the neutron flux distribution provided by the ROM employing 10, 20, 40, 60
and 80 Basis Functions (BFs), respectively, while the corresponding spatial error is de-
picted in Fig. 3.8. The error eΦ(µ) between the total neutron flux provided by the ROM
and the FE one has been computed as follows:

eΦ(µ) =

∫
Ω

|ΦN (µ)− ΦN(µ)|. (3.24)

In Table 3.3, the error eΦ(µ) is reported as function of the basis functions employed.
As it can be seen, eΦ(µ) and eλ(µ) has the same order of magnitude as function of basis
functions employed

As final remark, in Tab. 3.4, the average computational times required to solve the
FE problem given by Eq. (3.17) and the developed ROM are reported. The developed
reduced order model allows a speed-up of at least three orders of magnitude. It is worth
recalling that the time required to solve the ROM is degrees-of-freedom-independent,
while the FE problem is strongly dependent on the degrees of freedom. Therefore,
employing a finer mesh, or more energy groups, would end up with an even higher
computational speed-up.

3.5 Concluding remarks

The reduced basis method has been employed in this Chapter to develop a Reduced
Order Model (ROM) for simulating control rods movement. In particular, the reactivity
and neutron flux distribution have been estimated solving a parametrized generalized
eigenvalue problem associated to the stationary formulation of the multi-group neutron
diffusion equation. In fact, the movement of two control rods, surrounded by fissile
material, has been simulated. An alternative sampling technique, with respect to the
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more “classical” option provided by greedy algorithms, has been adopted by proposing
the Centroidal Voronoi Tessellation (Burkardt et al., 2006). To further reduce the basis
dimension, a proper orthogonal decomposition has been performed on the vector of the
snapshots computed according to the CVT.

The presented ROM is capable to provide high-fidelity outcomes, with respect to
a fine finite element discretization, in terms of both reactivity and neutron flux shape,
employing only forty basis functions. In particular, with such number of basis, the
reactivity is correctly predicted up to the pcm. Obviously, increasing the number of
basis functions, the accuracy is improved. Moreover, the ROM features a computational
speed-up of at least three orders of magnitude.

This contribution is intended to be useful for control-oriented studies. Indeed, al-
ready developed simulation tools, based on the classical point-wise approach, could be
improved by computing, at each time step, the system reactivity by a ROM similar to
the here proposed one, in order to take into account spatial effects.
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CHAPTER4
Conclusions

This PhD work is aimed at tackling the need of nuclear engineering field to have a
fast-running simulation tool, which can be tailored to common control systems, able to
reproduce spatial effects, in particular those induced by the control rod movement. The
present contribution can be considered as a first step towards building a bridge between
the “world of design” and the “world of control”. The goal has been to demonstrate
that reduced order modelling is suited to be applied in more complex (and coupled)
industrial problems in order to introduce competitive computational performance and
allowing, at the same time, a better investigation, thanks to the parametrization of in-
volved phenomena. To this aim, a methodological approach for developing a reduced
order model for systems with increasing complexity, up to a multi-physics LFR single
channel, has been set up.

In the present PhD thesis, innovative simulation tools have been developed for re-
actor core spatial dynamics, with particular attention to neutronics, relying on the most
advanced computational techniques, namely, the reduced basis method. The efforts
have been focused on the methodological approach, whose main achievements can be
summarized as follows:

• The potential of reduced basis methods, both for control and design oriented
studies, has been highlighted in comparison with the approaches conventionally
adopted in the nuclear reactor analysis.

• Several accurate, reliable reduced order methods for control rod movement have
been developed, solving the parametrized multi-group neutron diffusion equation.
The reduced order models are able to accurately taken into account the spatial
effects induced by the rods’ movement, still featuring a real-time computational
time.
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Chapter 4. Conclusions

• The reduced basis method, for modelling the nuclear reactor control rods, has
been employed both in time-dependent and stationary settings.

• For the time-dependent neutron diffusion equation, a surrogate model for the
βinf−sup stability factor has been developed, relying on the observed monotonicity
of the βinf−sup with respect to the reactivity of the reactor, which is related to the
movement of the control rods.

• A different sampling technique, within the Reduced Basis framework, has been
employed, namely, the centroidal Voronoi tessellation, which allows for a hier-
archical parameters space exploration, without relying on an a posteriori error
estimation with a greedy algorithm (considerable part of the Offline phase is spent
in computing the components needed for the error estimation between the reduced
order model and the full order one). Skipping this part, the Offline computational
time may be sensibly reduced.

During the doctoral research, attention has also been paid to the multi-physics mod-
elling approach, where all the involved physics are solved within the same compu-
tational environment. In fact, a multi-physics and time-dependent model for single-
channel transient analysis of a Lead Fast Reactor (LFR) has been developed (see Ap-
pendix B on page 93). The work focused on the coupling among the neutronic, the
thermal-elastic and the fluid-dynamic phenomena. A purpose-made six-group neutron
diffusion model has been developed, which allows taking into account the local depen-
dency of the neutron macroscopic cross-sections on the temperature and density fields.
It is worth mentioning that the majority of LFR analyses available in literature, which
employ computational fluid dynamics codes, do not allow for explicit neutronic feed-
backs. Relying on this work, a reduced order model of a parametrized multi-physics
model of a LFR single channel has been developed (see Appendix C on page 121). The
potential of such approach has been addressed by choosing both geometrical and phys-
ical parameters. Indeed, the outcomes provided by the developed reduced order model
have the same accuracy of the full-order multi-physics problem and a fast-running com-
putational time, allowing estimation of a wide set of output of interest in real-time. A
particular strategy for handling the nonlinear coupling terms has been proposed in order
to allow for an efficient Offline/Online decoupling.

Numerous possible extensions of the present work are desirable. Since the thesis
work was focused on the methodological approach, more detailed description of the
TRIGA Mark II reactor, as well as the adoption of the neutron transport equation are
foreseen in order to benchmark the outcomes with ad hoc collected experimental data.
The performance of the reduced basis method achieved in the conducted studies gives
encouragement for pursuing this track. In particular, the investigation of the so-called
Reduced Basis Element Method (RBEM) would be interesting. According to RBEM,
the reduced order model is computed for several “simple” domains where the bound-
ary/interface conditions are parametrized. In the Online phase, the modelled physics
are solved on more complex domains, obtained by combining the “simple” domains.
For example, it would be interesting to develop a parametrized multi-physics ROM for
a single fuel assembly, and then try to model the whole core as a repetition of the same
fuel assembly, with proper interface conditions. Different strategies for handling non-
linearities, such as the Empirical Interpolation Method, might be considered as well.
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In the multi-physics modelling approach, mechanical and irradiation-induced ef-
fects were beyond the scope of the work. Nevertheless, such phenomena, along with
the handling of pellet-cladding mechanical interaction, might be the object of future
investigations. The reduced order model of the parametrized multi-physics LFR single
channel model could be improved by taking into account the coupling with the thermo-
elasticity. Moreover, the extension to the time-dependent settings should be considered
as well.
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APPENDIXA
TRIGA Mark II reactor

THE TRIGA (Training Research and Isotope production General Atomics) Mark
II is a pool type reactor moderated and cooled by light water. It has a nomi-
nal power of 250 kW in stationary-state operation. The core is shaped as a right

cylinder and contains 90 slots, distributed over 5 concentric rings. Figure A.1 shows the
map of the core, which features three control rods (SHIM, TRANSIENT, REGULAT-
ING), two irradiation channels (C.T., RABBIT), and one channel where the source for
the start-up of the reactor is placed surrounded by two elements of graphite (DUMMY).
All other elements are fuel pins.

TRIGA fuel consists of a uniform mixture of zirconium hydride (ZrH) and uranium,
enriched 19.75% wt in 235U. Fuel rod structure is described in Fig. A.2: the fuel itself
[A] is placed at the center, while the top and bottom parts of the rod, made of nuclear
graphite, play the role of axial neutron reflectors [B]. Two burnable poison disks [C],
containing samarium oxide (Sm2O3) are placed between the fuel and the reflectors. Ev-
erything is contained by a 0.76 mm-thick aluminum cladding [E] and by two aluminum
endcaps [D].

The TRIGA Mark II reactivity control is handled by three absorbing rods, named
SHIM, Regulating (REG) and Transient (TRANS). The SHIM and REG control rods
are made of hot-pressed boron carbide powder (B4C); the TRANS rod is a solid graphite
rod containing 25% wt free boron. The documentation at our disposal describes just
the SHIM and REG rods geometrical structure in great detail (Fig. A.3); the Transient
rod was modeled in the same way, assuming that there are no great differences between
the three rods.

The interested reader can find more details in (General Atomic, 1964; Cammi et al.,
2013; Alloni et al., 2014).
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Figure A.1: Map of the TRIGA Mark II reactor core.

Figure A.2: Fuel rod structures. Values are measured in centimeters [cm].
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Figure A.3: Control rod structure. Values are measured in centimeters [cm].
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APPENDIXB
A multi-physics time-dependent model for the

Lead Fast Reactor single-channel analysis1

TRADITIONALLY, nuclear reactor analysis is performed by coupling neutron ki-
netics and thermal-hydraulic codes (Avramova and Ivanov, 1997; Salah et al.,
2008). These coupled code techniques are often based on the operator-splitting

technique, in which the time-dependent solution is reached using the output from one
code (e.g., the neutron kinetics code) as input to another code (e.g., the thermal-hydraulic
code) at each time step. Often, the nonlinearities due to the coupling are not resolved
in a time step, possibly reducing the overall accuracy (Mahadevan et al., 2012). The
developed Multi-Physics Modelling (MPM) approach allows for higher-order coupling
between the different physics, and it is possible to perform solver iteration up to a de-
sired degree of accuracy.

Concerning the Lead Fast Reactor study (LFR), the MPM approach allows to simul-
taneously evaluate a wide set of core parameters (e.g., temperature field, velocity field,
and neutron fluxes). This advantage may be valuable for core designing, when verifying
the satisfaction of the above mentioned operational constraints. It is worth mentioning
that the majority of LFR analyses available in literature, which adopt Computational
Fluid Dynamic (CFD) codes (e.g., Tuček et al., 2006), do not allow for explicit neu-
tronic feedbacks.

In this Appendix, the MPM approach is adopted to study the behaviour of an LFR
single-channel representative of the active-core average conditions (from now on re-
ferred to as core-average channel). Reference is made to the European Lead-cooled
System (ELSY) (Alemberti et al., 2011), developed in the frame of the EU-FP6-ELSY

1The main results presented in this Appendix have been published in: Aufiero, M., Cammi, A., Fiorina, C., Luzzi, L., Sartori,
A., 2013, “A multi-physics time-dependent model for the Lead Fast Reactor single-channel analysis”, Nuclear Engineering and
Design 256, 14–27.
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project. The choice of ELSY as case study is mainly due to the availability of detailed
core design specifications.

The present work is focused on the coupling among neutronics, fluid dynamics, heat
transfer, and thermal expansions.

The multi-group neutron diffusion model, the CFD model, and the linear elasticity
model are implemented in the same computational environment offered by the gen-
eral purpose finite-element software COMSOL Multiphysics (COMSOL, 2011). For
the CFD and the solid mechanics treatment the models available in COMSOL are em-
ployed. On the other hand, for the neutronic treatment, a purpose-made six-group diffu-
sion model is developed. This model is proved against the Monte Carlo code SERPENT
(SERPENT, 2011).

The proposed Multi-Physics (MP) model is adopted to investigate both the steady-
state conditions of the ELSY core-average channel, and two transients: an insertion of
reactivity and a perturbed inlet lead temperature transient. Such transients are simu-
lated both taking into account and neglecting the thermal expansion effects. Through
these studies, the importance of thermal expansion effects is caught. It is also shown
that the presented MP model represents a suitable simulation tool for a preliminary
investigation of the LFR transient behaviour.

The Appendix is organised as follows. Section B.1 describes how the different mod-
els are implemented in the MPM approach. The validation of the neutronic model is
detailed in Section B.2. In Section B.3, the results obtained by the present MP model
are shown in terms of steady-state spatial distribution of some quantities of interest,
and two case studies are presented to exemplify the MPM capabilities for simulating
the transient behaviour. At the end of the Appendix, the Nomenclature is reported.

B.1 Multi-physics modelling approach

In this section, the MP scheme of analysis is presented by describing the different
equations adopted for neutronics, fluid dynamics, and heat transfer, and solved in the
same simulation environment. Thermal expansion effects are included in such scheme
via the equations of solid mechanics and combining them with the other physics, by
means of the “moving mesh” technique.

B.1.1 System description

The single-channel layout chosen for the present study is based on the ELSY reactor
with the Open Square Fuel Assembly (OSFA) design (Alemberti et al., 2011; Sarotto
et al., 2009). The core is arranged in 162 fuel assemblies, having fuel pins disposed
in a square array, and surrounded by reflector assemblies. Such reactor features a core
thermal power of about 1500 MWth. The inlet temperature of the lead, at nominal
condition, is set equal to 400◦C, in order to avoid solidification. The outlet temperature
of the lead, at nominal condition, is set to 480◦C in order to limit the corrosion of the
structural and cladding materials that becomes significant at temperatures higher than
550◦C. The active-core diameter is equal to 4.65 m, and the active height is equal to
0.90 m. The proposed MP model is a two-dimensional axial-symmetric representation
(r, z) of a single-channel, limited to the active height. Reference is made to the core
average conditions at Beginning Of Life (BOL). Table B.1 gives the main parameters of
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Table B.1: Main parameters of the analysed core single-channel (Sarotto et al., 2009)

Average linear power 23.5 kW m−1

Inlet lead temperature 400 ◦C
Outlet lead temperature 480 ◦C
Inlet lead velocity 1.6 m s−1

Pu enrichment 17 vol.%
Fuel density 95 %TD 1

Fuel pin active height 900 mm
Fuel pellet hole diameter 2.0 mm
Fuel pellet outer diameter 9.0 mm
Cladding inner diameter 9.3 mm
Cladding outer diameter 10.5 mm
Pin-pitch 13.9 mm

Additional model parameters
UO2 thermal insulator height 20 mm
Spring height 50 mm
Upper plug height 50 mm
Inactive channel length 300 mm

Table B.2: Energy structure adopted in multi-group neutron diffusion

Group number Upper boundary Lower boundary
1 20 MeV 2.23 MeV
2 2.23 MeV 0.82 MeV
3 0.82 MeV 67.38 keV
4 67.38 keV 15.03 keV
5 15.03 keV 0.75 keV
6 0.75 keV 0 keV

the presented model. Figure B.1 shows a transversal cross section of the analysed fuel
pin. Figure B.2 represents the longitudinal (r, z) view of the modelled geometry (for
clarity, the aspect ratio of the image is not preserved). An inactive channel length, below
the active height, is adopted to allow for a complete lead flow development in order to
avoid inaccurate estimation of the heat transfer between the lead and the cladding in the
first centimetres of the active height. The evaluation of the effects related to the core
radial expansion cannot be intrinsically caught by single channel analysis. The adoption
of artificial corrective factors to take into account this effect is out of the scope of the
present work.

B.1.2 Neutronics

The multi-group diffusion theory is employed in the neutronic model of the ELSY
single-channel (Duderstadt and Hamilton, 1976). Integrating over a set of six energy
intervals (see Table B.2) the continuous neutron diffusion equation, along with the bal-
ance equations for eight groups of precursors, the following set of partial differential
equations is obtained:
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Figure B.1: Analysed fuel pin and surrounding lead. Radial sizes at nominal conditions (room temper-
ature), expressed in mm.

Figure B.2: Longitudinal (r, z) view of the modelled geometry.
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1
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All the group constants are given in the COMSOL model as input. In the fuel, the
dependency of the macroscopic neutron cross-sections on the local temperature and
density is taken into account by means of the following equation:

Σ(T, ρ) =

(
ρ

ρ0

)[
Σ0 + α log

(
T

T0

)]
(B.3)

For the lead cross-sections, the above functional form is reduced to:

Σ(T, ρ) =

(
ρ

ρ0

)
Σ0 (B.4)

neglecting the Doppler broadening effects. For the sake of simplicity, the cross-sections
are kept constant in the cladding, spring, plug, and thermal insulator domains. The
functional forms of Eqs. (B.3) and (B.4) allow for the heterogeneity of temperature
and density fields inside the core channel, in this way the thermal-hydraulic feedbacks
on reactivity are caught. The accuracy of such simple approach will be assessed in
Section B.2.

B.1.3 Fluid dynamics and heat transfer

The model of the fluid flow (liquid lead) is based on the incompressible form of the
Reynolds-Averaged Navier-Stokes (RANS) equations, considering in particular the stan-
dard k − ε turbulence model described by the following equations:

ρ
∂v
∂t

+ ρ (v · ∇) v = ∇ ·
[
−pI + (η + ηT )

(
∇v + (∇v)T − 2

3
ρkI
)]

(B.5)

∇ · v = 0 (B.6)

ρ
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+ ρv · ∇k = ∇ ·
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ηT
σk

)
∇k
]
− ρε+ ηT

[
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(
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(B.7)
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+
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(
∇v + (∇v)T

)]
(B.8)
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The empirical constants are given as Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09, σk = 1.0,
σε = 1.3.

The heat transfer model within the lead domain is described as follows:

ρCp
∂T

∂t
+∇ · [− (K +KT )∇T ] = ρCpv · ∇T (B.9)

The turbulent thermal conductivity KT is given by

KT =
Cp ηT
PrT

(B.10)

The turbulent Prandtl number PrT is calculated using the extended Kays-Crawford
model (Weigand et al., 1997):

PrT =

[
1

2PrT∞
+

0.3√
PrT∞

CpηT
K
−
(

0.3
CpηT
K

)2 (
1− e−

K
0.3CpηT PrT∞

)]−1

(B.11)

where
PrT∞ = 0.85 +

100K

Cpη (Re∞)0.888 (B.12)

and Re∞ is set to 1.1× 105.
As to the heat transfer modelling in the cladding, thermal insulator and plug materi-

als, the following energy balance equation is adopted:

ρCp
∂T

∂t
= ∇ · (K∇T ) (B.13)

with the corresponding values for the thermal conductivity, the density and the specific
heat. Eq. (B.14) is adopted in the fuel domain:

ρCp
∂T

∂t
+∇ · (−K∇T ) = Q (B.14)

The volumetric heat source Q is explicitly computed, by means of the calculated neu-
tron fluxes:

Q =
6∑
g=1

(Σf,g · Ef · φg) (B.15)

where Σf,g are the macroscopic fission cross-sections, andEf is the value of the average
energy released per fission. The heat is considered to be released instantaneously and
locally (i.e., disregarding gamma transport and delayed nuclear decay).

The heat transfer model takes into account the heat conduction and the radiative
contribution across the helium gap between the fuel and the cladding. The radiative
heat transfer is modelled by means of a heat flux from the fuel outer surface to the
cladding inner surface as follows:

q(z)′′ = σB
1

1
εfuel

+ 1
εcladding

− 1

[
T 4
fuel(z)− T 4

cladding(z)
]

(B.16)

where εfuel and εcladding are the emissivities of the outer fuel surface and of the inner
cladding surface, respectively. These values are kept constant during the simulations
(εfuel = 0.95 and εcladding = 0.5).
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It is worth noting that the radiative contribution is computed locally at each node of
the mesh at the outer boundary of the fuel and at the inner boundary of the cladding.

In order to speed up and simplify the calculations, effective and constant values
of the thermo-physical properties Cp and K are adopted for the considered materials
(Helium, MOX, UO2, T91 steel and lead). It is noteworthy that the local value of
temperature and density are adopted to compute the macroscopic cross-sections in order
to intrinsically catch the thermal-hydraulic feedbacks on reactivity .

B.1.4 Solid mechanics and moving mesh

In order to take into account the fuel and cladding thermal expansion effects, the fol-
lowing equations of linear elasticity are introduced into the MP model:

ρ
∂2u
∂t2

= ∇ · σ (B.17)

ε =
1

2

[
(∇u) + (∇u)T

]
(B.18)

σ = C : (ε− αth(T − Tref )I) (B.19)
The coefficient of thermal expansion, as well as the Young modulus and the Poisson
coefficient are kept constant with the temperature in order to simplify the problem so-
lution. The Poisson coefficient and the Young modulus are used to derive the stiffness
tensor C under the isotropic material hypothesis. The column of fuel pellets is modelled
as a unique continuous structure. Cracking, irradiation induced and other mechanical
(e.g., creep) effects are neglected. In general, the dynamics of these effects can be con-
sidered slow when compared to the time-scales of the transients treated in this work.
The evaluation of such phenomena is beyond the scope of this work, which is focused
on the intrinsic computation of the coupled effects involving the thermal expansion.
The spring between the plug and the upper thermal insulator is simply modelled as a
solid cylinder with a suitable Young modulus modified to reproduce the spring mechan-
ical properties . For the sake of simplicity, the gravitational force is neglected.

The “moving mesh” technique offered by COMSOL allows to dynamically deform
the mesh of the simulated domain. In the present work, the thermal-mechanical de-
formations are used to redefine the geometry, at each solver iteration. In this way, the
different physics are influenced by the displacement field of the fuel and the cladding.
Hence, the coupled effects due to thermal expansion (e.g., gap thermal resistance reduc-
tion, fuel expansion feedbacks on neutronics) are explicitly considered. Due to axial
expansion of the fuel and the cladding, the two domains undergo high relative displace-
ment during transients. This leads to a continuous change of the mesh boundary nodes
facing each other across the gap. Such phenomenon gives rise to a computational con-
cern for the radiative heat transfer model. To handle this issue, a boundary mapping is
performed between the nodes of the fuel outer surface and the nodes of the cladding in-
ner surface. In this way, at each time step, each node of the fuel outer boundary always
interacts with the closest node belonging to the cladding inner boundary.

B.1.5 Boundary conditions

Below, the used boundary conditions are dealt with. Figure B.3 summarizes the main
boundary conditions applied for the neutronic model. The present model is limited to
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Figure B.3: Main boundary conditions applied for the neutronic model.

Figure B.4: Main boundary conditions applied for the thermal-fluid dynamic model.
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a core single-channel. As a consequence, the choice of the neutronic boundary condi-
tions is a relevant issue. The albedo boundary conditions are judged to be a suitable
compromise between accuracy of the spatial characterization of the neutron fluxes and
computational requirements. Albedo boundary conditions are imposed at the upper,
lower and radial boundaries of the COMSOL model domain, namely:

n · (D∇φg) = −γzφg (B.20)

n · (D∇φg) = −γrφg (B.21)
The computation of γz and γr is discussed in sub-section B.1.7.

Figure B.4 summarizes the main boundary conditions applied for the thermal-fluid
dynamic model. A condition of thermal insulation is applied to the lower boundary
of the lower thermal insulator and to the upper boundary of the steel plug. Symmetry
conditions are considered at the outer radius of the fluid domain, accounting for the
surrounding channel. At the lower boundary, the lead inlet velocity and temperature
are imposed (Tin, vin). In order to allow for a proper flow development below the active
height, an inactive entrance channel 30 cm long is considered in the model. At the
upper boundary of the fluid domain, the outlet boundary condition is applied, imposing
the outlet pressure (pout) and no viscous stress. The boundary condition at the interface
between cladding and molten lead is treated by means of the standard wall function
approach available in COMSOL (COMSOL, 2011).

As far as the solid mechanics model is concerned, a condition of no axial dis-
placement is applied to the lower boundaries of the lower thermal insulator and of the
cladding domain. No radial displacement of the mesh is allowed at the outer radius of
the channel. Within the lead domain, at the upper boundary, the moving mesh is forced
to follow the cladding axial thermal expansion.

B.1.6 Numerical solution

The set of partial differential equations described above has been simultaneously solved
by means of the “general-purpose” finite element software COMSOL Multiphysics.

The geometry described in sub-section B.1.1 is meshed so as to achieve a good
compromise between numerical accuracy and computational requirements. In particu-
lar, as shown in Fig. B.5, a mapped mesh is judged suitable for the cladding and lead
domains. A progressive mesh refinement near the wall is adopted in the lead domain
(in green), while the fuel (in red) is meshed with triangular elements. The adopted
elements are Lagrangian and quadratic-order. In order to reduce the computational
cost of the simulation, the segregated solver is adopted. Table B.3 shows the variables
belonging to the different segregated groups. Segregated groups 1 to 4 are solved us-
ing the MUltifrontal Massively Parallel Sparse direct Solver (MUMPS). The equations
of the RANS k − ε turbulence treatment are solved by means of the PARallel sparse
Direct and multi-recursive Iterative linear SOlver (PARDISO). Transient analyses are
treated with the implicit second order Backward Differentiation Formula (BDF) time
integration method.

B.1.7 Neutronic input generation with SERPENT

The group constants (Dg, vg, βi, νΣf,g, Σa,g, Σs,gg′ , χd,g, χp,g) are calculated by means
of the Monte Carlo neutron transport code SERPENT, using the nuclear data library
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Table B.3: Segregated groups

Group Variables
1 φ1... φ6 neutron fluxes
2 c1... c6 precursors density
3 T , u temp. and displacement
4 p, v pressure and velocity
5 k, ε turbulence variables

Figure B.5: Meshed geometry

JEFF 3.1 (Koning et al., 2006). SERPENT is a three-dimensional continuous energy
Monte Carlo neutron transport code, with group constant generation capabilities. The
results presented in the following are obtained after runs of 250 million active neutron
histories with the version 1.1.17 of the code. Simulations consist in 500 active cycles of
5·105 neutrons subdivided in 32 parallel tasks. Fifty inactive cycles are adopted to allow
for the convergence of the fission source distribution. Results related to reactivities are
obtained by means of the k (multiplication factor) implicit estimate. Detectors with
collision estimate of neutron flux are adopted to obtain the axial flux profiles.

As far as the SERPENT model is concerned, an infinite lattice of pins is simulated
on the transversal (x, y) plane. Infinite lead reflectors are adopted above the steel plug
and below the lower thermal insulator. Figures B.6 and B.7 show the transversal (x, y)
and longitudinal (x, z) cross section views of the SERPENT geometry, respectively.

The γz coefficient of Eq. (B.20) is calculated so as to have the same keff in both
COMSOL and SERPENT models at nominal conditions. Then, t he γr coefficient of
Eq. (B.21) is set to allow for the radial leakage term and calculated so as to bring the
system critical.

Table B.4 gives the isotopic composition of the input materials.
An ad-hoc Octave (Eaton et al., 2008) procedure is developed for the conversion

of the neutronic input for the different materials (i.e., fuel, lead, cladding, insulators
and spring) from the SERPENT output to a COMSOL readable format. The procedure
automatically produces a set of temperature and density dependent cross-sections and
diffusion coefficients, according to Eqs. (B.3) and (B.4). The other neutronic param-
eters (i.e., vg, βi, λi, χd,g, χp,g), which are calculated at nominal conditions, are kept
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Figure B.6: Transversal (x, y) cross section view of the SERPENT geometry.

Figure B.7: Longitudinal (x, z) cross section view of the SERPENT geometry.
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Table B.4: Isotopic composition of the SERPENT input materials.

Fuel T91 Steel Lead
Isotope wt% Isotope wt% Isotope wt%
U-234 0.002 Si-nat 0.50 Pb-204 1.4
U-235 0.295 V-nat 0.25 Pb-206 24.1
U-238 72.479 Cr-nat 9.00 Pb-207 22.1
Pu-238 0.364 Mo-nat 1.00 Pb-208 52.4
Pu-239 8.839 Fe-nat 88.30
Pu-240 4.197 Ni-nat 0.13 Thermal Insulator
Pu-241 0.949 Mn-55 0.60 Isotope wt%
Pu-242 1.197 Nb-93 0.10 U-238 88.32
O-16 11.678 C-nat 0.12 O-16 11.68

Figure B.8: Fuel macroscopic capture cross-section versus temperature of energy group 3.

constant during the simulations.

B.2 Validation of COMSOL neutronic model

B.2.1 Validation of the macroscopic cross-sections functional form

In the following, a brief discussion about the suitability of functional forms of Eqs.
(B.3) and (B.4) is presented. For this purpose, the deterministic ECCO cell code (Rim-
pault, 2005) is employed to evaluate the macroscopic cross-sections over a wide range
of fuel and lead temperatures and densities. Subsequently, the data are compared with
the macroscopic cross-sections calculated according to the Eq. (B.3). The choice of
a deterministic code for this particular analysis is mainly due to its low computational
requirements and the absence of statistical scattering of the points in the following
comparisons.

Figure B.8 shows the fuel macroscopic capture cross-sections versus temperature,
for the energy group 3. This group is chosen as the most representative because almost
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Figure B.9: Fuel macroscopic capture cross-section versus density of energy group 3.

40% of the neutrons belong to the energy range between 0.82 MeV and 67.38 keV , in
nominal conditions. The macroscopic cross-sections of the other energy groups exhibit
a similar behaviour and are not shown for brevity. For such analysis the fuel density
is kept constant at nominal value (10.46 g/cm3). The α coefficient of Eq. (B.3) is
calculated as follows:

α =
Σ2 − Σ1

lnT2
T1

(B.22)

where T1 is 900 K, T2 is 1500 K, Σ1 and Σ2 are the macroscopic cross-sections evalu-
ated at these temperatures. As it can be seen in Fig. B.8, the logarithmic approximation
well estimates the evaluated cross-sections over a wide range of temperatures.

Figure B.9 shows the fuel macroscopic capture cross-sections versus the fuel den-
sity, for the energy group 3. For such analysis the fuel temperature is kept at 1200 K.
As shown in Fig. B.9, Eq. (B.3) well predicts the cross-sections dependence on the
ratio ρ/ρ0.

In Section B.1.2, it was mentioned that the functional form expressed by Eq. (B.4)
is adopted for the calculation of the macroscopic cross-sections in the lead domain.

Figures B.10 and B.11 show the lead macroscopic capture cross-sections versus the
lead temperature and density, respectively, for the energy group 3. As it can be deduced
by comparing the two figures, the effect forced by the temperature variation is one order
of magnitude lower than the one caused by the density variation. It is worth mentioning
that the density range employed in Fig. B.11 is calculated from the temperature range
considered in Fig. B.10, according to the lead thermal expansion coefficient:

ρ = ρ0 [1− βlead (T − T0)] (B.23)

The use of approximation expressed by Eq. (B.4) is acceptable for the lead domain,
according to the purpose of the work.
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Figure B.10: Lead macroscopic capture cross-section versus temperature of energy group 3.

Figure B.11: Lead macroscopic capture cross-section versus density of energy group 3.
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Figure B.12: keff estimate versus fuel temperature. SERPENT: bullets, COMSOL: lines.

B.2.2 Validation of the adopted neutron diffusion model

After assessing the cross-section functional dependence, the overall multi-group diffu-
sion model implemented in COMSOL is assesed against the SERPENT code by com-
paring, for several cases, the multiplication factor keff . For this comparison, the albedo
γr coefficient in COMSOL is set equal to zero, in order to simulate an infinite lattice
of pins, as in SERPENT. The γz coefficient is kept constant and calculated in order
to have the same keff both in SERPENT and COMSOL codes at nominal conditions.
Within the COMSOL environment, the eigenvalue solver is employed to estimate the
keff . The analysed cases can be summarized as follows:

• Fuel temperature ranging from 900 K to 1800 K, the other material properties and
the geometry are kept at nominal condition.

• Fuel axial expansion varying from -0.5% to +1% of the nominal active length, the
other material properties are kept at nominal condition.2

• Lead density variation from -2% to +1% of the nominal density, the other material
properties and the geometry are kept at nominal condition.3

For this study, two nuclear data libraries are adopted, namely: JEFF 3.1 (Koning
et al., 2006) and ENDFb VII (Chadwick et al., 2006). The set of group constants
employed as input in the COMSOL model is generated by means of a SERPENT run
at nominal conditions with both libraries.

Figure B.12 shows the keff of the infinite lattice of pins predicted by COMSOL and
SERPENT versus the fuel temperature. COMSOL results are presented in solid and
dashed lines, while SERPENT results are depicted with bullets with an error bar of

2These values correspond approximatively to a fuel temperature ranging from 750 K to 2100 K.
3These values correspond approximatively to a lead temperature ranging from 600 K to 900 K.
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Figure B.13: keff estimate versus relative fuel axial expansion. SERPENT: bullets, COMSOL: lines.

±2 standard deviations. As it can be seen in Fig. B.12, the COMSOL neutronic model
results have a good agreement with the Monte Carlo predictions. Despite the difference
between the absolute keff estimates given by the two libraries, the trend of the curves
is similar.

Figures B.13 and B.14 show the predicted keff versus the fuel axial expansion and
the lead density variation, respectively. In these cases, the differences between COM-
SOL and SERPENT are greater than the previous case, but still acceptable for the pre-
liminary evaluation of the coupled effects involving thermal-mechanical expansion in
the fuel pin.

For brevity, only results obtained employing the nuclear data library is JEFF 3.1 are
shown in the following.

Figures B.15 and B.16 show the total neutron fluxes calculated by the two codes
versus the z-coordinate and their relative difference, respectively. As it can be seen
in Fig. B.15, the flux profiles appear in good agreement. Figure B.16 shows that the
difference between the flux computed by the COMSOL model and the SERPENT code
is higher than the statistical uncertainty of the Monte Carlo run. The error in the COM-
SOL estimation is higher nearby the upper and lower interfaces. However, the maxi-
mum error is lower than 4%.

In conclusion, the adoption of the six-group diffusion approach in the MP model
appears to be a reasonable approximation for analysing the ELSY single-channel.

B.3 Results and discussion

B.3.1 Steady state behaviour of the system

In this sub-section, the capability of the proposed MP model to evaluate, in the same
computational environment, the most relevant variables of the coupled physics is ex-
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Figure B.14: keff estimate versus lead density variation. SERPENT: bullets, COMSOL: lines.

Figure B.15: Axial neutron flux profiles within the active height. SERPENT: bullets, COMSOL: lines.
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Figure B.16: Relative difference between axial neutron fluxes computed by COMSOL and SERPENT.

ploited to analyse the nominal steady-state behaviour of the system.
Figure B.17 shows the spatial descriptions of temperature field. The maximum fuel

temperature is reached quite above the mid of the active height. The fuel temperature
profile reflects the axial shape of the neutron flux. Nevertheless, a certain asymmetry
in the temperature field is due to the heat transfer with the lead, whose temperature
grows along the channel length. Figure B.18 shows the cladding outer temperature and
lead bulk temperature versus the z-coordinate, at nominal power conditions, useful for
a preliminary verification of the respect of the temperature constraint (about 550◦C) .
The maximum difference between the cladding outer surface temperature and the lead
bulk temperature, of about 15◦C, is reached at the mid active height ,where the neutron
flux features its maximum value.

Figure B.19 shows results from the fluid-dynamic analysis, specifically, the veloc-
ity field in the lead domain. It can be noticed that the employed inactive inlet channel
allows for the complete hydro-dynamic development of the fluid flow. It is worth re-
calling that the model is focused on the active height, and the modelling of the whole
channel (e.g., lower plenum, diagrid, etc.) is beyond the aim of this work. The mod-
elled inactive channel is only accounted for the proper lead flow development, in order
to avoid a inaccurate estimation of the heat transfer between the lead and the cladding,
within the first centimetres of the active height. The lead velocity at the wall is not zero
in Fig. B.19, due to the wall function treatment available in COMSOL.

In Fig. B.20, the effects of the thermal expansions of fuel and cladding, leading
axially to a different gap reduction, are clearly visible. The gap thermal resistance
undergoes a sensible variation along the axial coordinate, being lower at the mid-height,
where the power generation is higher. This is typically neglected when simulations are
performed by means of the conventional coupling of neutronic and thermo-hydraulic
codes (Bandini et al., 2011). Such figure presents an example of the potentialities
provided by the fully-coupling between neutronics and thermal-elasticity.
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Figure B.17: Channel temperature field at nominal power conditions.

Figure B.18: Cladding outer temperature and lead bulk temperature versus the z-coordinate, at nominal
power conditions.
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Figure B.19: Velocity field inside the fluid domain.

Figure B.20: Outer fuel radius and inner cladding radius, as a function of the axial coordinate, at
nominal power conditions and at room temperature conditions.
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B.3.2 Transient behaviour of the system

In this sub-section, two scenarios are considered as examples of the MPM potential
to investigate the reactor transient behaviour, namely: an insertion of reactivity and a
perturbed inlet lead temperature transient. For each of the two scenarios, transient anal-
yses are performed both with and without thermal expansion effects. In the latter case,
the displacement field is kept at nominal power conditions (i.e., not at room tempera-
ture conditions). This comparison allows to appreciate the importance of the thermal
expansion modelling in transient analyses.

Reactivity insertion

A step-wise insertion of reactivity (150 pcm) is simulated. Figure B.21 shows the
system response to the reactivity insertion in terms of total pin power. The solid line
represents the simulation without considering the thermal expansion effects, while the
dashed line represents the simulation in the presence of these effects. An insertion of
reactivity leads to a keff greater than one. As a consequence, the power begins to rise,
as shown in Fig. B.21, with a prompt effect on the fuel temperature (Fig. B.22), whose
increase corresponds to a negative feedback limiting the power to a maximum value,
which is almost two times the nominal value. The negative temperature feedback is
given by two major contributions: the Doppler effect, and the thermal expansion effect.
The first contribution acts on the neutron cross-sections and is taken into account as
discussed in Section B.2. The thermal expansion feedback on neutronics is due to the
reduction of the fuel-to-coolant mass ratio and is intrinsically modelled by the moving
mesh technique. When considered, the axial expansion of the fuel gives further negative
feedback, by lowering the maximum peak and the stationary power level, and the fuel
temperature. When comparing the two analyses (with and without thermal expansion),
notwithstanding that the Doppler effect plays the major role in limiting the power rise,
the thermal effects lead to a sensible difference of the end-of-transient power levels.

Figure B.23 shows the fuel column (fuel and thermal insulators) relative axial ex-
pansion compared to the nominal power conditions. As expected, thermal expansion
promptly follows the temperature rise. Thermal expansion also leads to an average gap
size reduction of about 10%, as shown in Fig. B.24, reducing the overall gap thermal
resistance by a similar value (in the present work, the helium thermal conductivity is
kept constant).

Figure B.25 shows the cladding outer surface temperature at different instants during
the reactivity insertion transient. Such insertion of 150 pcm (about 0.4 $) gives rise to
an increase of about 40◦C of the maximum cladding temperature in few seconds. This
figure points out the potential of the MPM approach to describe in detail point-wise
values of important quantities during transient analysis.

Perturbed inlet lead temperature

In this case study, t he inlet lead temperature is raised by 20◦C in one second.
Figure B.26 shows the system response to the transient in terms of total pin power.

Initially, a positive reactivity is inserted by the hot lead entering the channel, as effect
of the lower lead density, which increases the fuel-to-coolant mass ratio. This causes
a rise in the power level. After few seconds, the increase of the fuel temperature (Fig.
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Figure B.21: Total pin power during the transient case study with a reactivity insertion of 150 pcm.

Figure B.22: Average fuel temperature during the transient case study with a reactivity insertion of
150 pcm.
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Figure B.23: Fuel axial expansion during the transient case study with a reactivity insertion of 150 pcm.

Figure B.24: Average gap size during the transient case study with a reactivity insertion of 150 pcm.
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Figure B.25: Axial profile of the cladding outer surface temperature during the transient case study with
a reactivity insertion of 150 pcm.

Figure B.26: Total pin power during the transient case study with inlet lead temperature increase of
20◦C.
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Figure B.27: Average fuel temperature during the transient case study with inlet lead temperature in-
crease of 20◦C.

B.27) smoothly reduces the reactivity and stabilises the power level to a value lower
than the initial one.

Also in this transient, the fuel thermal expansion effects are significant (see Figs.
B.26 and B.27): the final pin power level and the final fuel average temperature vari-
ations are reduced of about 0.2 kW (∼ 50%) and 5◦C (∼ 60%), respectively, when
compared to the simulation without considering the thermal expansion effects.

Figure B.28 shows the cladding outer surface temperature at different instants during
the perturbed lead inlet temperature transient. The hotter coolant causes an increase
of the cladding outer surface temperature at the beginning of the active height. The
perturbation propagates along the z-axis with a delay related to the lead velocity (about
1.2 m/s) and the system thermal inertial. It is worth recalling that, in this work, the
diagrid expansion is not simulated. This effect may play a significant role reducing the
reactivity of the system (Sarotto et al., 2009).
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Figure B.28: Axial profile of the cladding outer surface temperature during the transient case study with
inlet lead temperature increase of 20◦C.
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Appendix B Nomenclature

Latin symbols
C stifness tensor [Pa]
ci concentration of the ith precursor group [m−3]
Cp specific heat [J kg−1 K−1]
Cε1 k − ε model empirical constant [-]
Cε2 k − ε model empirical constant [-]
Cµ k − ε model empirical constant [-]
D neutron diffusion coefficient [m]
Ef average energy released per fission [J]
I identity matrix [-]
k turbulent kinetic energy [m2 s−2]
keff effective neutron multiplication factor [-]
K thermal conductivity [W m−1 K−1]
KT lead turbulent thermal conductivity [W m−1 K−1]
n surface normal unit vector [-]
p fluid pressure [Pa]
pout outlet pressure [Pa]
PrT turbulent Prandtl number [-]
PrT∞ maximum turbulent Prandtl number defined in Eq. (B.12) [-]
Q volumetric heat source [W m−3]
q(z)′′ radiative heat flux [W m−2]
r radial coordinate [m]
Re∞ free stream Reynolds number used in Eq. (B.12) [-]
t time [s]
T temperature [K]
Tcladding cladding inner surface temperature [K]
Tfuel fuel outer surface temperature [K]
Tin inlet lead temperature [K]
Tref reference temperature used in Eq. (B.19) [K]
T0 reference temperature used in Eqs. (B.3) and (B.23) [K]
T1 generic temperature used in Eq. (B.22) [K]
T2 generic temperature used in Eq. (B.22) [K]
u displacement vector [m]
v velocity vector [m s−1]
vg neutron speed of the gth group [m s−1]
vin inlet lead velocity [m s−1]
x Cartesian x-coordinate of the SERPENT model [m]
y Cartesian y-coordinate of the SERPENT model [m]
z axial coordinate [m]

Politecnico di Milano 119 Alberto Sartori



Appendix B. A multi-physics time-dependent model for the Lead Fast Reactor
single-channel analysis

Greek symbols

αth linear thermal expansion coefficient [K−1]
α coefficient used in Eq. (B.3) [-]
β total delayed neutron fraction [-]
βi delayed neutron fraction of the ith precursor group [-]
βlead volumetric lead thermal expansion coefficient [K−1]
γr radial albedo coefficient used in Eq. (B.21) [-]
γz axial albedo coefficient used in Eq. (B.20) [-]
ε turbulent dissipation rate [m2 s−3]
εcladding cladding inner surface emissivity [-]
εfuel fuel outer surface emissivity [-]
ε strain tensor [-]
η lead dynamic viscosity [Pa s]
ηT lead eddy viscosity (= ρCµK2/ε) [Pa s]
λi dacay constant of the ith precursor group [s−1]
ν average number of neutrons emitted per fission [-]
ρ density [kg m−3]
ρ0 reference density used in Eqs. (B.3), (B.4), and (B.23) [kg m−3]
σ Cauchy stress tensor [Pa]
σB Stefan Boltzmann constant [W m−2K−4]
σε k − ε model empirical constant [-]
σk k − ε model empirical constant [-]
Σ macroscopic cross-section [m−1]
Σa macroscopic absorption cross-section [m−1]
Σf macroscopic fission cross-section [m−1]
Σs,gg′ macroscopic group transfer cross-section (from group g to g′) [m−1]
Σs,g′g macroscopic group transfer cross-section (from group g′ to g) [m−1]
Σ0 reference macroscopic cross-section used in Eqs. (B.3) and (B.4) [m−1]
Σ1 generic macroscopic cross-section used in Eq. (B.22) [m−1]
Σ2 generic macroscopic cross-section used in Eq. (B.22) [m−1]
φ neutron flux [m−2 s−1]
χd,g fraction of delayed neutrons generated in the gth group [-]
χp,g fraction of prompt neutrons generated in the gth group [-]

Subscripts

g gth neutron energy group
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APPENDIXC
A multi-physics reduced order model for the

analysis of Lead Fast Reactor single channel1

IN the previous Appendix B, the potential of Multi-Physics approach has been high-
lighted. However, the main drawback of the MP is that the computational burden
is quite high, which may mean a long computational time. In a design process, it

is often necessary to run again a simulation with just one or few parameters changed.
Moreover, a process of optimization, employing the full order model, might be unfea-
sible. In this context, a parametrized MP model with real-time simulation could be an
even more powerful tool for design-oriented studies.

In this work, the Reduced Basis method (Rozza et al., 2008; Quarteroni et al.,
2011), with basis functions computed by a Proper Orthogonal Decomposition (POD)
(Sirovich, 1987; Holmes et al., 1996; Chatterjee, 2000), has been employed to develop a
reduced order model of a multi-physics parametrized LFR single-channel model, which
is based on the work presented in Appendix B. The work focused on the methodological
approach and to the coupling between the neutronics and heat transfer in time-invariant
settings. In order to address the potential of such approach, two different kinds of pa-
rameters have been taken into account, namely one related to a geometric quantity (i.e.,
the inner radius of the fuel pellet) and one related to a physical quantity (i.e., the inlet
lead velocity).

The capabilities of the presented ROM has been tested and compared with the high-
fidelity finite element model (upon which the ROM has been constructed) on different
aspects. In particular, the comparison focused on the system reactivity prediction (with
and without thermal feedbacks on neutronics), the neutron flux and temperature field

1The main results and methodologies presented in this Appendix are contained in: Sartori, A., Cammi, A., Luzzi, L., Rozza,
G., “A multi-physics reduced order model for the analysis of Lead Fast Reactor single channel. In preparation.
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reconstruction, and on the computational time.
The Appendix is organized as follows. In Section C.1, the parametrized MP model is

described and the essential ingredients of the RB methodology, employed in this work,
are presented in Section C.2. In Section C.3, the results obtained by the developed
reduced order model are compared with respect to the high-fidelity FE model. The
adopted Nomenclature is reported at the end of the Appendix.

C.1 Parametrized multi-physics model

A parametrized LFR single channel model has been developed starting from the work
detailed in Appendix B on page 93, where reference is made to the European Lead-
cooled System (ELSY) (Alemberti et al., 2011). In particular, as shown in Fig. C.1
(for clarity, the aspect ratio of the image is not preserved), a r − z model has been
considered, where two varying parameters have been taken into account:

µ1 ∈ [0.1, 0.43] (cm), (C.1)

which is the inner radius of the fuel pellet, and the second parameter

µ2 ∈ [0.8, 1.6] (m/s), (C.2)

is the inlet lead velocity. This two parameters have been employed in order to address
the potential of reduced order techniques including both a geometric and a physical pa-
rameter. The development of a detailed and exhaustive simulation tool for fuel pin de-
sign, where more parameters and physical phenomena are taken into account, is beyond
the aim of the present contribution, which is focused on the methodological approach
with some simplifications.

C.1.1 Multi-physics approach

The work focused on the coupling between neutronics and heat transfer, in time-independent
settings, where thermal feedbacks on neutronics are explicitly taken into account rely-
ing on ad hoc expressions, whose validity has been addressed in (Aufiero et al., 2013).
In the following equations, the dependence of neutron flux and temperature on the pa-
rameter µ = (µ1, µ2) has to be intended, but is not reported in order to not overburden
the notation.

Neutronics

As far as the neutronics is concerned, the multi-group neutron diffusion equations
(Duderstadt and Hamilton, 1976), in the stationary formulation, which is a general-
ized eigenvalue problem, have been employed with six energy groups. In equation it
reads as follows: (

−∇ ·D∇+ Σa + Σs

)
Φ = λminχF

TΦ, (C.3)
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Figure C.1: Longitudinal (r, z) view of the modelled geometry.

where 

Φ =

 Φ1(r)
...

Φ6(r)

 ,

D =

 D1(r) · · · 0
. . .

0 · · · D6(r)

 ,

Σa =

 Σ1
a(r) · · · 0

. . .
0 · · · Σ6

a(r)

 ,

Σs =


∑
g′ 6=1

Σ1→g′
s (r) · · · −Σ6→1

s (r)

. . .
−Σ1→6

s (r) · · ·
∑
g′ 6=6

Σ6→g′
s (r)

 ,

χ =

 χ1

...
χ6

 ,
F T =

[
νΣ1

f (r) · · · νΣ6
f (r)

]
.

(C.4)

Politecnico di Milano 123 Alberto Sartori



Appendix C. A multi-physics reduced order model for the analysis of Lead Fast
Reactor single channel

The subscript 1 refers to the fastest group and 6 to the thermal one; Φ is the neutron
flux, D is the diffusion coefficient, νΣf are the number of neutrons emitted per fission
reaction, Σa is the absorption cross section, Σi→j

s is the scattering cross section from
group i to group j, χ is the fission yield. The neutronic parameters have been computed
by means of the Monte Carlo SERPENT code (SERPENT, 2011) (see Appendix B on
page 93). Within the fuel domain, the dependency of the macroscopic neutron cross
sections on the local temperature and density is taken into account by means of the
following expression (Aufiero et al., 2013):

Σ(T, ρ) =
ρ

ρ0

[
Σ0 + α log

(
T

T0

)]
. (C.5)

For the lead cross sections, the above functional form is reduced to:

Σ(T, ρ) =
ρ

ρ0

Σ0, (C.6)

neglecting the Doppler broadening effects. For the sake of simplicity, the cross sections
are kept constant within the cladding and gap domains.

Heat transfer

As to the heat transfer modelling within the cladding and gap domains is considered,
the following energy balance equation is adopted:

∇ · (K∇T ) = 0, (C.7)

with the corresponding values for the thermal conductivity. Within the helium gap,
the model takes into account only the conductive contribution, neglecting the radiative
contribution. In the fuel domain, the following equation is employed:

−∇ · (K∇T ) = Q, (C.8)

where the volumetric heat source Q is given by the calculated neutron fluxes:

Q =
6∑
g=1

Σg
f · Ef · Φg . (C.9)

The heat transfer within the lead domain is given by the following equation:

−∇ · [(K +KT )∇T ] = ρCpv · ∇T, (C.10)

where, for the sake of simplicity, a uniform velocity field has been assumed, and the
lead turbulent thermal conductivity KT has been retrieved from the work presented in
Appendix B, where a standard RANS k − ε has been implemented. In order to speed-
up and simplify the calculations, effective and constant values of the thermo-physical
properties Cp and K are adopted for the considered materials (MOX, Helium, T91 steel
and lead).
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Figure C.2: Meshed geometry.

Boundary conditions

As far as the heat transfer modelling is concerned, the symmetry conditions are im-
posed at the inner radius of the fuel domain and at the outer radius of the fluid domain.
Homogeneous Neumann conditions are imposed at the bottom and top of the domain.

The albedo boundary conditions (Duderstadt and Hamilton, 1976) have been em-
ployed for the neutron fluxes, leading to a good compromise between accuracy and
computational requirements. In particular, the albedo boundary condition are imposed
at the upper, lower and radial boundaries of the model domain, namely:

n · (Dg∇Φg) = −γzΦg (C.11)

n · (Dg∇Φg) = −γrΦg (C.12)

The γz and γr coefficients have been chosen in order to have the system critical at the
nominal conditions.

Numerical simulations

The set of partial differential equations have been discretized according to the finite
element method (Quarteroni and Valli, 2008), with linear-order Lagrangian elements.
In Fig. C.2, the employed mesh is depicted, which features 60 490 elements.

The discrete equations have been solved within the computational environment of-
fered by the open-source library FEniCS (Logg et al., 2012). In particular, a segregated
approach for the neutronics and heat transfer has been employed, relying on the fixed
point iteration for the non-linearities (Ortega and Rheinboldt, 2000). The generalized
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eigenvalue problem has been solved relying on the SLEPc library (Hernandez et al.,
2005), and the neutron flux has been normalized to the nominal power.

The reduced order model has been obtained relying on a procedure developed on
purpose within the FEniCS library.

C.2 Reduced basis strategies for the coupled problem

In this Section, the fundamental mathematical aspects of the Reduced Basis (RB)
method, used in the present work, are presented. More details about the RB method-
ology can be found in (Patera and Rozza, 2007; Rozza et al., 2008; Quarteroni et al.,
2011; Rozza, 2014) and for particular application of the RB method to the generalized
eigenvalue problem given by the multi-group neutron diffusion equation, the reader
may refer to (Sartori et al., 2014c). Thereafter, the strategy employed in this work for
achieve an efficient Offline/Online computational decoupling for handling non-linear
terms will be presented.

The basic principle of a reduced order technique is to project a parametrized discrete
the problem onto an ad hoc built space (the reduced space), which is spanned by basis
functions that are characteristic of the studied problem.

C.2.1 Methodology

The RB method is built upon a fine approximation (i.e., finite element or finite volume),
assumed as truth solution. Hence, let the finite element discretization of the considered
multi-physics problem be the following: for a given µ ∈ D find φ(µ) ∈ V N and
T (µ) ∈ WN such that

a (φ, v;µ,Σ(T )) = λminm (φ, v;µ,Σ(T )) , ∀v ∈ V N , (C.13)
d(T,w;µ) = f (w;µ, S(φ)) , ∀w ∈ WN (C.14)

where V N and WN are given finite element space of dimensions proportional to N ,
which is typically very large. Eqs. (C.13) and (C.14) are the abstract formulations of
the neutronic problem (C.3) and of the heat transfer problem, respectively. The term
Σ(T ) is meant to underline that the neutronic flux φ is coupled with the temperature T
by means of the cross sections. Similarly, the term S(φ) is to express that the volumetric
heat source in the heat transfer equations is given by the neutron fluxes.

It is assumed that the operators a, m, d and f depend affinely on the parameter µ:

a (φ, v;µ,Σ(T )) =

Qa∑
q=1

Θq
a(µ)aq (φ, v; Σ(T )) , (C.15)

m (φ, v;µ,Σ(T )) =

Qm∑
q=1

Θq
m(µ)mq (φ, v; Σ(T )) , (C.16)

d(T,w;µ) =

Qd∑
q=1

Θq
d(µ)dq(T,w), (C.17)

f (w;µ, S(φ)) =

Qf∑
q=1

Θq
f (µ)f q (w;S(φ)) , (C.18)
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for given integers Qa, Qm, Qd and Qf .
The RB method is aimed at constructing reduced order solutions φNf and TNT such

that

a
(
φNf , v;µ,Σ(TNT )

)
= λNminm

(
φNf , v;µ,Σ(TNT )

)
, ∀v ∈ V Nf ⊂ V N , (C.19)

d(TNT , w;µ) = f
(
w;µ, S(φNf )

)
, ∀w ∈ WNT ⊂ WN . (C.20)

The reduced spaces V Nf and WNT have dimension equal to Nf and NT , respectively,
(in general Nf 6= NT ) and are defined as follows:

V Nf = span
{
ξf1 , · · · , ξ

f
Nf

}
, (C.21)

WNT = span
{
ξT1 , · · · , ξTNT

}
, (C.22)

where ξf and ξT are properly computed basis functions for the neutron flux and temper-
ature, respectively. Therefore, the RB approximations φNf and TNT can be expressed
as a projection of the basis functions

φNf =

Nf∑
i=1

φN,i ξ
f
i , (C.23)

TNT =

NT∑
j=1

TN,j ξ
T
j . (C.24)

Then, by denoting

Zf = [ξf1 | · · · |ξ
f
Nf

], (C.25)

ZT = [ξT1 | · · · |ξTNT ], (C.26)

the reduced order problems (C.19) and (C.20) can be rewritten as follows

a (ZfφN , v;µ,Σ(ZTTN)) = λNminm (ZfφN , v;µ,Σ(ZTTN)) , ∀v ∈ V Nf , (C.27)

d(ZfTN , w;µ) = f (w;µ, S(ZfφN)) , ∀w ∈ WNT , (C.28)

where

(φN)i = φN,i, (C.29)
(TN)j = TN,j. (C.30)

It is now discussed the strategy employed in this work to achieve an efficient Of-
fline/Online computational split for the considered multi-physics problem. For the sake
of brevity, the discussion is limited to a representative term of the coupling between the
neutronics and temperature in the bilinear forms aq (φ, v; Σ(T )) and mq (φ, v; Σ(T )),
which can be formulated as follows:

c(T,Φ, v) =

∫
Ω

Σ(T ) Φ vdx, (C.31)
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where Σ is a generic cross section (e.g., absorption, scattering, fission) and Φ is the
neutron flux2. The corresponding trilinear form of the RB approximation can be stated
as follows:

c(TNT ,ΦNf , v) =

∫
Ω

Σ(TNT ) ΦNf vdx . (C.32)

In the present work, it has been chosen to project Σ onto the reduced space spanned by
the snapshots of the temperature, i.e.,

Σ(TNT ) =

NT∑
q=1

σq ξ
T
q . (C.33)

Substituting Eq. (C.33) into (C.32), it follows that

c(TNT ,ΦNf , v) =

∫
Ω

NT∑
q=1

σq ξ
T
q ΦNf vdx

=

NT∑
q=1

σq

∫
Ω

ξTq ΦNf vdx

=

NT∑
q=1

σq c
q
(
ξTq
)
. (C.34)

In this way, the following third order tensors can be computed and stored during the
Offline phase

Cq
N = Z ′fC

q
NZf , (C.35)

where Zf is the vector of the basis functions of the neutron flux (see Eq. (C.25)), and
Cq
N are the matrices associated to cq

(
ξTq
)
. It must be pointed out that such tensors may

require high storage requirements. Different approaches could be pursued as well. For
example, compressive tensor approximations (Carlberg et al., 2011) or hyper-reduction
techniques, such as gappy POD (Carlberg et al., 2013), might be employed to alleviate
this storage issue. It is worth mentioning that the non-linearities can be tackled by
means of the Empirical Interpolation Method (Barrault et al., 2004) as well in order to
recover an affine formulation (to allow Offline/Online computational decomposition).

C.3 Numerical results

In the following, the main results obtained both during the Offline and Online phases
are presented.

C.3.1 Sampling

During the Offline phase, the RB space is built and the matrices associated to the alge-
braic formulation of the reduced order model are constructed and stored. The effectivity
of the RB approximation relies on the RB space, which is spanned by the selected basis

2The actual type of cross section and the energetic group are not relevant for the purpose of this reasoning.
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Figure C.3: Energy of the POD modes.

functions. For the present work, the full-order problem has been solved for 100 in-
stances of the parameter µ = (µ1, µ2), which have been randomly chosen. During the
iterative solution of the MP problem, 646 snapshots (i.e., solutions) have been stored.
In order to eliminate redundancy from the vector of the snapshots, the Proper Orthogo-
nal Decomposition (POD) (Sirovich, 1987; Holmes et al., 1996; Chatterjee, 2000) has
been performed on it. In Fig. C.3, energy (i.e., the information retained) by each POD
mode of temperature (blue dots) and neutron flux (green dots) is reported. As it can
be seen in Fig. C.3, the energy of the POD modes of the temperature decreases slower
than the modes of the neutron flux. Therefore, it is expected that a greater number of
POD modes has to be employed for the temperature with respect to the neutron flux in
order to have the same accuracy.

C.3.2 Reactivity prediction

The POD technique build a set of modes whose importance is decreasing, meaning
that the accuracy of the reduced order model is expected to improve as functions of the
number of POD modes employed, and the rate of improvement is decreasing. However,
the energy of the POD modes refers to the information present in the vector of the snap-
shots, not to the whole parameter space. Therefore, a sensitivity on the error as function
of the number of POD modes employed has to be performed. Since the energy of the
POD modes of neutron flux decreases more rapidly than the modes of temperature,
the first sensitivity has been performed by studying the average error on the minimum
eigenvalue of Eq.(C.3), without the thermal feedbacks. The error between the value
of the reactivity provided by the ROM and FE solution eλ(µ) has been computed as it
follows:

eλ(µ) = |λN(µ)− λN (µ)|, (C.36)
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Table C.1: Average absolute error eλ(µ) as function of the basis functions employed for the neutron flux
Nf , without thermal feedbacks. Values have been computed for 100 samples, randomly chosen.

# basis functions Nf eλ(µ)
2 1.286× 10−2

3 9.936× 10−3

4 1.088× 10−3

5 9.227× 10−4

10 1.097× 10−4

14 8.887× 10−6

Table C.2: Average absolute error eλ(µ) as function of the basis functions employed for the tempera-
ture NT , taking into account the thermal feedbacks. Values have been computed for 100 samples,
randomly chosen, and employing 14 basis functions for the neutron flux.

# basis functions NT eλ(µ)
2 2.688
3 8.694× 10−1

10 7.499× 10−4

14 4.241× 10−5

20 2.652× 10−5

where λN(µ) and λN (µ) is the minimum eigenvalue of the ROM and FE model, re-
spectively. In Table C.1, the average absolute error eλ(µ) is reported as function of
the number of basis functions Nf employed for the neutron flux. Values have been
computed for 100 instances of the parameter µ1. The average error drops below the
pcm when 14 basis functions are employed. If the number of POD modes is further
increased, the average error does not decrease anymore. In order to improve the accu-
racy, the number of snapshots retained should be increased. As an alternative, different
sampling technique could be taken into account, such as Centroidal Voronoi Tessella-
tion (Burkardt et al., 2006; Sartori et al., 2014c), or by means of a greedy algorithm
(Haasdonk and Ohlberger, 2008; Rozza et al., 2008; Nguyen et al., 2009; Quarteroni
et al., 2011) provided that an efficient a posteriori error bound is available.

The sensitivity study on the number of basis functions for the temperature field is
performed employing 14 basis functions for the neutron flux. In particular, the error
eλ(µ) is computed taking into account the thermal feedbacks given by Eq. (C.5) and
(C.6). For this analysis, 100 randomly chosen instances of the parameter µ = (µ1, µ2)
have been considered. The average absolute error eλ(µ) as function of the basis func-
tions employed for the temperature NT is reported in Table C.2. When 20 basis func-
tions for the temperature are employed, the average error is of the order of pcm. Further
increasing the number of basis functions there is no appreciable reduction of the error.

C.3.3 Neutron flux shape reconstruction

The neutron fluxes provided by both the high-fidelity FE model and the developed
ROM have been compared for two different instances of the parameter µ = (µ1, µ2)
taking into account the thermal feedbacks. In particular, 14 and 20 basis functions have
been employed for the neutron flux and temperature, respectively. In Figs. C.4 and C.5,
the normalized neutron flux provided by the high-fidelity FE model and the ROM is
depicted, as well as the spatial error between the two solutions for µ = (0.146, 1.445)
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and µ = (0.387, 1.466), respectively. The outcomes provided by the ROM are in good
agreement with the FE ones, and the spatial error is almost uniform throughout the
computational domain.

C.3.4 Temperature field reconstruction

In the following, the capabilities of the ROM for the reconstruction of the temperature
field are presented for two randomly selected instances of µ = (µ1, µ2). For this analy-
sis, 14 and 20 basis functions have been employed for the neutron flux and temperature,
respectively. In Figs. C.6 and C.7, the temperature field provided by the high-fidelity
FE model and the ROM is depicted, as well as the spatial error between the two so-
lutions for µ = (0.366, 1.188) and µ = (0.144, 1.137), respectively. The outcomes
provided by the two models (i.e., the FE and ROM) are in satisfactory agreement. The
error is greater within the fuel domain because the equations are more involved in such
computational domain with respect to the clad and lead domains.
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(a) “Truth”

(b) ROM

(c) Error

Figure C.4: Normalized neutron flux provided by the FE model (a), by the ROM (b), and the spatial
error (c) for a representative configuration µ = (0.146, 1.445).
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(a) “Truth”

(b) ROM

(c) Error

Figure C.5: Normalized neutron flux provided by the FE model (a), by the ROM (b), and the spatial
error (c) for a representative configuration µ = (0.387, 1.466).
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(a) “Truth”

(b) ROM

(c) Error

Figure C.6: Temperature field provided by the FE model (a), by the ROM (b), and the spatial error (c)
for a representative configuration µ = (0.366, 1.188).
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(a) “Truth”

(b) ROM

(c) Error

Figure C.7: Temperature field provided by the FE model (a), by the ROM (b), and the spatial error (c)
for a representative configuration µ = (0.144, 1.137).
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Table C.3: Average computational time and speed-up.

Computational time
Plot Finite Element ROM Speed-up
NO ∼60 min ∼0.3 s ∼ 11 800
YES ∼60 min ∼2.3 s ∼ 1500

C.3.5 Speed test

The average computational time required to solve the multi-physics problem according
to the high-fidelity FE model and to the ROM is reported in Table C.3. The proposed
model allows a computational time of at least three orders of magnitude. It is worth
recalling that the reduced order model is mesh-independent if no plot are required.
Whether plots are produced, the mesh size has to be taken into account, therefore the
performance is different.

Moreover, for the sake of completeness, it must be introduced the computational
break-even, i.e., the number of full order simulations after that the RB method is more
efficient and recommended. The break-even can be defined as follows3:

break-even =
Whole Offline time

Time of one FE simulation
=
∼ 101 h
∼ 1 h

= 101 .

Therefore, if more than 101 full-order simulations have to be computed, the reduced
order model should be preferred.

C.4 Concluding remarks and perspectives

In this Appendix, the reduced basis method, with basis functions computed by a proper
orthogonal decomposition, has been employed to develop a reduced order model of
a multi-physics parametrized LFR single channel. This model is proposed as proof
of concept to address the potential of reduced order techniques in a many-query con-
text. The work focused on the methodological approach and to the coupling between
neutronics and heat-transfer phenomena in time-invariant settings, where a particular
strategy for achieve a competitive Offline/Online computational split is developed. As
far as the parametrized model is concerned, two different kinds of parameters have been
taken into account, namely one related to a geometrical quantity (i.e., the inner radius
of the fuel pellet) and one related to a physical quantity (i.e., the inlet lead velocity).

The capabilities of the proposed reduced order model has been tested and compared
with the high-fidelity finite element model (upon which the reduced order model has
been constructed) on several aspects. In particular, the comparison focused on the
system reactivity prediction (with and without thermal feedbacks on neutronics), the
neutron flux and temperature field reconstruction, as well as on the computational time.
According to such analysis, the presented reduced order model is capable to provide
outcomes as accurate as the high-fidelity finite element model, employing 14 and 20
basis functions for the neutron flux and temperature, respectively. The reactivity is
correctly predicted up to the order of the pcm. In addition, the reduced order model
fosters a computational speed-up of at least three orders of magnitude.

3The hours are to be intended as cpu hours, not “real world time” hours.
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The present contribution is a first step towards a more detailed and complex simula-
tion tool for design-oriented studies (e.g., sensitivity, optimization, shaping, etc.) of in-
novative nuclear reactor concepts. To this aim, the coupling with the thermo-elasticity,
as well as the adoption of a more dedicated turbulence model (e.g., k−ω) are foreseen.
Different techniques for handling the non-linearities, such as the Empirical Interpola-
tion Method, might be considered as well. The extension to the time-dependent settings
could give important insights for accidental scenarios.
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Appendix C Nomenclature

Latin symbols

Cp specific heat [J kg−1 K−1]
D neutron diffusion coefficient [m]
Ef average energy released per fission [J]
K thermal conductivity [W m−1 K−1]
KT lead turbulent thermal conductivity [W m−1 K−1]
n surface normal unit vector [-]
Q volumetric heat source [W m−3]
r radial coordinate [m]
T temperature [K]
T0 reference temperature used in Eq. (C.5) [K]
u generic trial function [-]
v velocity vector [m s−1]
v generic test function [-]
w generic trial function [-]
x generic vector of spatial coordinates [(m,m)]
V generic Hilbert space for the neutron fluxes [-]
W generic Hilbert space for the temperature [-]
z axial coordinate [m]
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Greek symbols

α coefficient used in Eq. (C.5) [-]
γr radial albedo coefficient used in Eq. (C.12) [-]
γz axial albedo coefficient used in Eq. (C.11) [-]
Θq generic coefficient of the qth term [-]
λ eigenvalue associated to Eq. C.3 [-]
µ vector of parameters [m,m/s]
µ1 varying parameter: inner fuel radius [m]
µ2 varying parameter: inlet lead velocity [m/s]
ν average number of neutrons emitted per fission [-]
ξ generic basis function [-]
ρ density [kg m−3]
ρ0 reference density used in Eqs. (C.5) and (C.6) [kg m−3]
σq generic coefficient of the qth term [-]
Σ macroscopic cross section [m−1]
Σa macroscopic absorption cross section [m−1]
Σf macroscopic fission cross section [m−1]
Σg→g′
s macroscopic group transfer cross section (from group g to g′) [m−1]

Σ0 reference macroscopic cross section used in Eqs. (C.5) and (C.6) [m−1]
φ weak solution of neutron flux [m−2 s−1]
Φ neutron flux [m−2 s−1]
χg fraction of prompt neutrons generated in the gth group [-]
ψ generic test function [-]
Ω generic spatial domain [m2]

Subscripts / superscripts

′ transpose
f reference to neutron flux
g gth neutron energy group
N reference to the reduced order model
N f reference to the reduced order model of neutron flux
NT reference to the reduced order model of temperature
N reference to the full order model
T reference to the temperature field
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APPENDIXD
Algorithms and benchmarks

During the PhD work, an implementation of the certified reduced basis method has
been developed within the computational environment offered by the open-source finite
element library FEniCS. Such procedure has been tested on different problems, whose
solutions are either known or easily benchmarkable beside being non-trivial.

It is worth mentioning that the developed procedure has begun to be used for teach-
ing purposes within the SISSA doctoral programme Mathematical Analysis, Modelling
and Applications (AMMA), as well as within the Master in High Performance Com-
puting held by SISSA and ICTP.

D.1 Heat transfer: thermal block

D.1.1 Parametrized formulation

The strong formulation of this parametrized problem is given by: for some parameter
µ ∈ P, find u(µ) such that 

∇ · kµ∇u(µ) = 0 in Ω,

u(µ) = 0 on Γtop,

kµ∇u(µ) · n = 0 on Γside,

kµ∇u(µ) · n = µ2 on Γbase.

(D.1)
(D.2)
(D.3)
(D.4)

The output of interest s(µ) is computed as

s(µ) = µ2

∫
Γbase

u(µ). (D.5)
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Figure D.1: Finite element mesh.

D.1.2 Finite element model

The Finite Element method, employing P1 elements, has been chosen as the “truth”
model. In Fig. D.1 is reported the mesh, which features 812 elements. The chosen
ranges for the parameters are

µ1 ∈ [0.1, 10] (D.6)

µ2 ∈ [−1, 1] (D.7)

D.1.3 Basis functions selection

The basis functions have been obtained by orthogonalization, through a Gram-Schimdt
procedure, of snapshots computed for greedly selected parameters spanning a Ξtrain

with cardinality equal to 6500. In Fig. D.2 the graph showing the maximum absolute
error bound with respect to the number of basis functions employed is reported.

In Fig. D.3, the first four snapshots are depicted.
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D.1. Heat transfer: thermal block

Figure D.2: Maximum absolute error bound with respect to the number of basis functions employed.

Figure D.3: First four basis functions.
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(a) (b)

(c)

Figure D.4: Comparison between FE model (a), ROM (b) for µ = (6.68, 0.94). The difference between
the two solutions is reported in (c).

Table D.1: Output error bounds and effectivity metrics as function of N .

N ∆s
N,ave ηsN,max ηsN,ave

2 0.68 5.22 1.59
3 4.85× 10−5 5.35 2.98
4 1.33× 10−9 5.22 2.96
5 1.41× 10−12 54.16 3.73

D.1.4 ROM performances

In Fig. D.4, the outcomes provided by the FE model and the ROM, for a randomly
chosen µ = (6.68, 0.94) and N = 5, are compared, and the difference between the two
is plotted as well.

In Tab. D.1 the output error bounds and effectivity metrics as function of basis func-
tions employed are presented. The values have been averaged over 100 samples.
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D.2. Heat transfer: thermal block with a parametrized hole

Figure D.5: Finite element mesh.

D.2 Heat transfer: thermal block with a parametrized hole

D.2.1 Parametrized formulation

The bilinear form associated to the left-hand-side of the problem is given by:

ao(w, v;µ) =

∫
Ωo(µ)

∇w · ∇v + µ3

(∫
Γo,5

w v +

∫
Γo,6

w v +

∫
Γo,7

w v +

∫
Γo,8

w v

)
.

(D.8)
A constant heat flux is imposed on the interior walls and in equation it reads:

Fo(v) =

∫
Γo,1

v +

∫
Γo,2

v +

∫
Γo,3

v +

∫
Γo,4

v. (D.9)

The output of interest so(µ) is computed as

so(µ) = Fo(u(µ)). (D.10)

D.2.2 Finite element model

The Finite Element method, employing P1 elements, has been chosen as the “truth”
model. In Fig. D.5 the mesh of the reference domain is reported, and features 4136
elements. The RB triangulation of the reference domain is depicted in Fig. D.6.

D.2.3 Basis functions selection

The basis functions have been obtained by orthogonalization, through a Gram-Schimdt
procedure, of snapshots computed for greedly selected parameters spanning a Ξtrain

with cardinality equal to 3000. In Fig. D.7 the graph showing the maximum absolute
error bound with respect to the number of basis functions employed is reported.

In Fig. D.8, the first four snapshots are depicted.
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Figure D.6: RB triangulation.

Figure D.7: Maximum absolute error bound with respect to the number of basis functions employed.
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Figure D.8: First four basis functions.

Table D.2: Output error bounds and effectivity metrics as function of N .

N ∆s
N,ave ηsN,max ηsN,ave

10 7.50× 10−1 17.65 10.93
20 4.20× 10−2 17.94 11.34
30 4.02× 10−3 16.17 11.01
40 5.60× 10−4 20.81 11.37
50 1.12× 10−4 14.96 11.36
60 3.48× 10−5 14.33 11.08

D.2.4 ROM performances

In Fig. D.9, the outcomes provided by the FE model and the ROM, for a randomly cho-
sen µ = (1.176, 0.761, 0.530) and N = 60, are compared, and the difference between
the two is plotted as well.

In Tab. D.2 the output error bounds and effectivity metrics as function of basis func-
tions employed are presented. The values have been averaged over 100 samples.

D.3 Heat transfer: thermal fin

D.3.1 Problem description

This problem address the performance of a heat sink for cooling electronic components.
The heat sink is modelled as a spreader (see Fig. D.10, depicted in blue) which supports
a plate fin exposed to flowing air (depicted in red, Fig. D.10). The heat transfer from
the fin to the air is taken into account with the Biot number, which is the parameter µ1.
The second parameter is the relative length of the fin with respect to the spreader, and it
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(a) (b)

(c)

Figure D.9: Comparison between FE model (a), ROM (b) for µ = (1.176, 0.761, 0.530). The difference
between the two solutions is reported in (c).
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Figure D.10: Subdomain division.

is labelled as µ2. The third parameter µ3 is the ratio between the thermal conductivity
of the spreader and the of the fin. The ranges of the parameters are the following:

µ1 ∈ [0.1, 1.0],

µ2 ∈ [0.5, 10.0],

µ3 ∈ [1.0, 10.0].

D.3.2 Boundary conditions

Uniform heat flux is imposed at the base of the spreader. Robin boundary conditions
are imposed on the vertical face of the fin. The homogeneous Neumann conditions are
imposed at all other surfaces.

D.3.3 Parametrized formulation

The bilinear form associated to the left-hand-side of the problem is given by:

ao(w, v;µ) = µ3

∫
Ω1
o

∇uo(µ) · ∇v +

∫
Ω2
o(µ2)

∇uo(µ) · ∇v + µ1

∫
Γside

uo(µ) v. (D.11)

A constant heat flux is imposed on the bottom wall and in equation it reads:

Fo(v) =

∫
Γbottom

v. (D.12)

The output of interest so(µ) is computed as

so(µ) = Fo(u(µ)). (D.13)

Politecnico di Milano 149 Alberto Sartori



Appendix D. Algorithms and benchmarks

Figure D.11: Finite element mesh.

D.3.4 Finite element model

The Finite Element method, employing P1 elements, has been chosen as the “truth”
model. In Fig. D.11 the mesh of the reference domain is reported, and features 22 979
elements.

D.3.5 Basis functions selection

The basis functions have been obtained by orthogonalization, through a Gram-Schimdt
procedure, of snapshots computed for greedly selected parameters spanning a Ξtrain

with cardinality equal to 3000. In Fig. D.12 the graph showing the maximum absolute
error bound with respect to the number of basis functions employed is reported.

In Fig. D.13, the first four snapshots are depicted.
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Figure D.12: Maximum absolute error bound with respect to the number of basis functions employed.

Figure D.13: First four basis functions.
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(a) (b) (c)

Figure D.14: Comparison between FE model (a), ROM (b) for µ = (0.75, 2.39, 1.74). The difference
between the two solutions is reported in (c).

Table D.3: Output error bounds and effectivity metrics as function of N .

N ∆s
N,ave ηsN,max ηsN,ave

10 3.11× 10−4 7.46 4.26
20 2.71× 10−6 8.12 4.28
30 1.94× 10−7 8.82 4.64

D.3.6 ROM performances

In Fig. D.14, the outcomes provided by the FE model and the ROM, for a randomly
chosen µ = (0.75, 2.39, 1.74) and N = 30, are compared, and the difference between
the two is plotted as well.

In Tab. D.3 the output error bounds and effectivity metrics as function of basis func-
tions employed are presented. The values have been averaged over 100 samples.

D.4 A linear elasticity block

D.4.1 Parametrized formulation

Figure D.15 reports the subdomain division of the elastic block that has been modelled.
The bilinear form associated to the left-hand-side of the problem is given by:

a(w, v) =
8∑
p=1

µp

∫
Ωp

∂vi
∂xj

Cijkl
∂wk
∂xl

+ 10

∫
Ω9

∂vi
∂xj

Cijkl
∂wk
∂xl

, (D.14)

where µp is the ratio between the Young modulus of the Ωp and Ω9 subdomains, re-
spectively, and µp

µp ∈ [1.0, 100.0] for p = 1, . . . , 8. (D.15)

The following boundaries conditions have been applied:
n · w = µ9 on Γ1,

n · w = µ10 on Γ2,

n · w = µ11 on Γ3,

w = 0 on Γ \ (Γ1 ∪ Γ2 ∪ Γ3),

(D.16)
(D.17)
(D.18)
(D.19)
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D.4. A linear elasticity block

Figure D.15: Subdomain division.

Figure D.16: Finite element mesh.

where
µp ∈ [−1.0, 1.0] for p = 9, . . . , 11. (D.20)

The output of interest s(µ) is computed as

s(µ) =

∫
Γ1∪Γ2∪Γ3

w(µ). (D.21)

D.4.2 Finite element model

The Finite Element method, employing P1 elements, has been chosen as the “truth”
model. In Fig. D.16 is reported the mesh, which features 4152 elements.

D.4.3 Basis functions selection

The basis functions have been obtained by orthogonalization, through a Gram-Schimdt
procedure, of snapshots computed for greedly selected parameters spanning a Ξtrain

with cardinality equal to 2048. In Fig. D.17 the graph showing the maximum absolute
error bound with respect to the number of basis functions employed is reported.

In Fig. D.18, the first four snapshots are depicted.
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Figure D.17: Maximum absolute error bound with respect to the number of basis functions employed.

Figure D.18: First four basis functions.
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(a) (b)

(c)

Figure D.19: Comparison between FE model (a), ROM (b) for µ =
(7.737, 7.124, 0.729, 4.620, 3.072, 6.314, 3.590, 7.687,−0.804, 0.129,−0.232). The difference
between the two solutions is reported in (c).

D.4.4 ROM performances

In Fig. D.19, the outcomes provided by the FE model and the ROM, for a randomly
chosen

µ = (7.737, 7.124, 0.729, 4.620, 3.072, 6.314, 3.590, 7.687,−0.804, 0.129,−0.232),

and N = 53, are compared, and the difference between the two is plotted as well.
In Tab. D.4 the output error bounds and effectivity metrics as function of basis func-

tions employed are presented. The values have been averaged over 100 samples.

Table D.4: Output error bounds and effectivity metrics as function of N .

N ∆s
N,ave ηsN,max ηsN,ave

10 0.21 365.99 25.02
20 1.56× 10−3 20.74 1.25
30 6.03× 10−4 27.11 1.79
40 1.76× 10−4 138.70 2.22
50 1.00× 10−4 58.82 1.62
60 4.50× 10−5 17.58 1.16
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