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ABSTRACT

This research considers energy efficient algorithms in the context of Wireless Sensor

Network (WSN) localization. In this dissertation, the term localization refers to the

concepts of static localization or fingerprinting for a single shot estimation of a target

position and tracking of target positions over different time instants. Considered

localization scenarios cover both active and passive localization. In active localization,

the target participates in the estimation process of inter-node ranging information

while in passive scenarios the target does not participate in the estimation process.

The general trend in the design of localization algorithms is towards achieving more

accurate position estimate. Additionally, algorithms should respect energy efficiency

constraints due to the limited battery life in WSN nodes. The contribution of this

thesis mainly focuses on the investigation and the proposal of localization algorithms

which should achieve these two crucial design objectives:

• accuracy improvement;

• energy efficiency.

As already mentioned, according to these design objectives the thesis considers algo-

rithms which exploits both active and passive localization scenarios.

The first section of the thesis deals with the investigation of energy efficient lo-

calization algorithms in which passive localization plays a crucial role. The first

part developed for passive scenarios is devoted to the theoretical analysis of a hybrid

tracking algorithm composed of active and passive steps. The analysis of this scheme,

based on the Posterior Cramer Rao Bound (PCRB), confirms that mixing active and

xi



passive cases can be an effective tool towards energy efficiency. The second part of

the investigation related to passive scenarios deals with the energy efficiency issue

inspired by two perspectives. A hybrid tracking algorithm composed of Extended

Kalman Filter (EKF) based tracking and Fingerprinting (FP) is proposed in order

to tackle conventional problems related to the implementation of either tracking or

fingerprinting separately. One of the common drawbacks of FP is the large data size

and the consequent large search space as a result of either vastness of surveillance

area or finer grid resolution in FP grid map; this usually limits the application of

FP to small environments or scenarios with largely spaced grid points, leading to

poor localization performance. The hybrid algorithm developed here enables FP to

be applied in larger environments or environments with finer space grids. The second

aspect of the scheme deals with the critical concern related to tracking more than

one passive target. When targets move close to each other, the correct discrimination

among measures, resulting from occurred ambiguity in paths clusters scattered by

different targets, turns out to be a challenging task. The final phase of this analysis

is devoted to considering a TOA-based ranging technique called soft ranging and its

potential characteristics for providing more accurate ranging measures by means of

feeding a kind of a-priori information. This solution provides EKF update steps with

more precise ranging measures leading to a better localization performance. Simula-

tion results validate a zero-energy tracking algorithm in which the mobile target does

not consume energy.

The second section of the thesis deals with energy efficient algorithms for active

localization scenarios. Accordingly, transmit power allocation among the beacons (i.e.

the reference points for the localization) is an effective tool toward this objective. In

the section we present a pervasive literature review on existing Power Allocation

(PA) schemes and, in particular, of the optimal ones, based on the minimization of

a localization error bound (SPEB), function of the transmission power from each

xii



beacon. Then, two new sub-optimal algorithms are investigated. The former is based

on the definition of a parameter called uncertainty area, which is a convex function of

transmission power in the pair-wise selection of beacons. Numerical results confirm

a notable performance advantage of localization with PA schemes w.r.t to the case of

uniform power allocation among beacons specially in target locations in the vicinity

of beacons. The latter proposed algorithm is based on the fact that the optimal SPEB

based PA approach does not show any advantage when performance (i.e. Mean Square

Error (MSE)) of the ranging estimator achieves a floor corresponding to a certain

threshold in the received Signal to Noise Ratio (SNR). This corresponds to the

behaviour of a practical ranging estimator where achieving higher ranging accuracy

is not possible by increasing transmission power over a certain threshold because

of phenomena like the limits imposed by the maximum sampling rate and by the

computational load available in sensors. Consequently, this sub-optimal, simplified

PA algorithm is based on the distribution of transmit powers of beacons with the SNR

above the threshold to beacons with the SNR below the threshold, realizing a type

of simple Adaptive Power Allocation (APA) directly based on the measured SNRs.

Simulation results confirm that such a simple strategy can be effective in medium-low

SNR regions, even w.r.t. more sophisticated optimization procedures.

xiii



CHAPTER I

Introduction

As a matter of fact, position information is clearly an indispensable element for

monitoring and tracking applications. In other words, numerous applications in the

context of wireless sensor networks (WSNs) require position information for improving

their effectiveness or they rely completely on position information (e.g. assume an

application in the context of fire detection in an environment without having position

information by the sensing nodes). Global Positioning System (GPS) is already a

response or, in some cases, a promising candidate for providing pervasive and precise

localization estimates [57]. However, GPS signals face a considerable attenuation in

environments with strong blockage like indoor environments. In addition, the position

estimation accuracy resulting from application of GPS is not generally sufficient in

indoor environments with smaller dimensions. Moreover, the implementation of GPS

in sensor nodes from an energy efficiency point of view is not feasible. Consequently,

there is an increasing research trend toward the evaluation of position by deploying

a local and possibly ad-hoc network being able to exploit specific local algorithms.

Wireless sensor networks (WSN) are important part of this research and development

trend [12].

A WSN is a network in which actions of sensing, processing and sharing sensed

data is possible by taking advantage of inexpensive nodes [18]. Considering the facts
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that WSN are applied in environments in which the locations of nodes are hard to

reach and installed nodes are usually battery powered devices, we can surely state that

the impact of low-power consumption in network design is of vital concern. Equiv-

alently, novel localization algorithms should satisfy this demand of energy-efficiency.

Moreover, these design lines intervene in a general trend which is toward the design

of localization algorithms being able to provide more precise location information.

Ultra-wide Band (UWB) technology is counted as a propitious candidate for WSN

requirements in the context of wireless localization. A distinguishing feature of UWB,

and particularly impulse radio (IR) UWB, arises from its embedded nature, i.e. the

application of very short pulses (few nano seconds), leading to a very large bandwidth.

This characteristic is remarkable from several points of view. It enables wireless

communication with low transmission power spread over a large bandwidth leading to

an increased penetration capability in materials due to the presence of low frequency

content, low probability of interference with other existing wireless technologies in

the occupied frequency spectrum, license free transmission respecting frequency mask

imposed on the working frequency region and other features pervasively described in

Sec. 2.2.

As previously mentioned, due to an increased penetration capability of UWB

signals in materials, the UWB signal can achieve a connection even in the presence

of physical obstructions. This issue plays a key role in the performance of time based

ranging techniques. In the earliest studies on UWB, these wireless systems were

carrier-less, with a bandwidth from few kHz to several GHz, making simple receiver

structures possible and avoiding the conventional intermediate frequency stage and

related issues.
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1.1 Objectives of the thesis

The localization scenarios considered in the thesis cover active scenarios, in which

target actively participates in inter-node distance dependent parameter estimation as

well as passive scenarios, in which the reflected (or scattered) signal information from

the target is exploited in the estimation of location dependent parameters.

In this thesis, the term localization refers to a more general family of technologies

and algorithms w.r.t. conventional approaches. Here localization is referred as any

of the different approaches used to acquire position information: these approaches

include static localization, fingerprinting (FP) techniques and tracking strategies.

These different approaches will be also combined in hybrid ways for taking advantage

of all the positive aspects of each solution. Static localization and FP are obviously

associated to the estimation of a position in a single shot procedure. Static localization

is usually composed of two steps:

• ranging,

• positioning.

In ranging, location-dependant (LD) ranging measures are estimated depending

on the type of localization scenario. Then, position of target is finally estimated using

positioning techniques. FP also pursues a procedure like the one in static localization

with the difference that distance dependent parameters are measured over a radio

map (also called grid) and saved in an off-line phase. Subsequently, target position

is estimated according to pattern matching techniques between ongoing measured

distance dependent parameters and those stored in the data base. Unlike the one

shot nature of static localization and FP, tracking strategies aim to estimate position

of a target along a trajectory, over different time steps. All of these three categories

are investigated extensively in Sec. 2.3.2.
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As mentioned before, due to the fact that WSN nodes are battery-enabled de-

vices, energy efficiency of localization algorithm will directly influence lifetime of a

sensor node and consequently performance of the whole network. On the other hand,

providing more accurate estimation of position is an inevitable part of localization

algorithm design. The main contribution of this thesis is along these two important

issues.

1.2 Thesis outline and original contributions

Chapter II presents an extensive description of conventional Location Dependent

(LD) measures and their application to position estimation in the context of static

localization, FP and tracking. Conventional LD measures are Angle of Arrival (AOA),

Received Signal Strength (RSS), Time of Arrival (TOA) and Time Difference of

Arrival (TDOA). Then, a brief review of usual static localization techniques, including

Least Squares (LS) approaches, is reported. In particular the chapter resumes an

explanation of the FP approach; finally, the discussion ends with an explanation of

commonly used tracking strategies and, in particular, of those based on Extended

Kalman filters (EKF).

Chapter III provides a detailed review of existing lower bounds on MSE perfor-

mance of static localization and EKF based tracking. The lower bound on MSE per-

formance of static localization, also denoted as Squared Position Error Bound (SPEB),

is based on classical Cramer-Rao bound (CRB) analysis for an unbiased estimate of

vector parameters. The reader can find a pervasive review of different aspects of

SPEB. Then discussion continues with a similar analysis for investigating the exist-

ing lower bound on MSE performance of discrete time non-linear filtering problem,

called Posterior CRB (PCRB), with a special emphasis on iterative computation of

this lower bound. It is concluded that, when filtering equations are linearized around

a working point, like in the procedure involved in EKF (explained in Sec. 2.3.2.3),
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the inverse of the recursively computed a posteriori Fisher Information matrix (FIM)

coincides with the predicted a posteriori covariance matrix in EKF.

The main contributions of this thesis are reported in chapters IV and V. Chapter

IV investigates two novel energy-efficient algorithms for passive localization scenarios.

The first one is dedicated to analytical analysis of MSE performance related to a

tracking strategy composed of active and passive steps. The difference between these

two steps corresponds to the type of ranging measures applied for evaluating the

computational elements of EKF-based tracking. The evaluation of the algorithm leads

to the fact that using this hybrid tracking strategy can provide a considerable energy

efficiency advantage at the cost of a reasonable loss in the performance. The second

part of the investigations for passive scenarios deals with the energy efficiency issue

from two other aspects. A hybrid tracking algorithm composed of EKF-based tracking

and FP is proposed in order to tackle conventional problems related to implementation

of either tracking or fingerprinting separately. In fact one of the common drawbacks

of FP is the large data size and the consequent large search space as a result of either

vastness of surveillance area or finer grid resolution in FP grid map, which limits the

application of FP to small environments or scenarios with largely spaced grid points

leading to poor localization performance. This hybrid algorithm enables FP to be

applied in larger environments or environments with finer space grids. The second

aspect of the scheme deals with the critical concern when tracking more than one

passive target, i.e. to make the correct discrimination among measures as a result

of occurred ambiguity in paths clusters scattered by different targets especially when

targets are moving close to each other. The final phase of this analysis is dedicated

to considering the application of a TOA-based ranging technique called soft and

its potential characteristics for providing more accurate ranging measures by means

of feeding a kind of a priori information. This issue provides EKF update steps

with more precise ranging measures leading to a better localization performance.
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Simulation results validate a zero-energy tracking algorithm in which target does not

consume energy. The results of this chapter are published in A and E.

Chapter V considers two new localization algorithms with increased accuracy for

active localization scenarios. To this end, appropriate PA among beacons is an effec-

tive tool for implementing localization with increased accuracy. Before proceeding to

the proposed algorithms, there is a brief review on existing optimal PA strategies in-

vestigated in the literature. Subsequently, the first algorithm is based on a parameter

called uncertainty area, which is defined w.r.t interaction of beacons in a pair-wise

selection procedure. The proposed parameter is a convex function of beacons’ trans-

mission power. A general selection strategy among multiply allocated transmission

powers for each beacon completes the algorithm structure. Simulation results are

focused on the performance evaluation of the proposed algorithm and its comparison

with the performance of static localization with optimal PA and without PA (i.e.

Uniform Power Allocation (UPA)). Simulation results confirm a promising perfor-

mance improvement by the application of the proposed PA algorithm for considered

localization scenario and they also show the fact that optimal SPEB based PA does

not give any advantage w.r.t UPA when the ranging estimator MSE achieves a floor

as the received SNR passes a certain threshold. This behavior of ranging MSE is evi-

dent in practical ranging estimators where increasing transmission power, leading to a

received SNR over a threshold SNR, does not provide any MSE performance improve-

ment; this effect can be due to numerous causes, including maximum sampling rate

and the computational load available in the sensors. This is the motivation behind the

second investigated PA approach in this chapter. Consequently, this PA algorithm

is based on distributing transmit power of beacons with SNR above threshold SNR

to beacons with SNR below threshold SNR realizing a type of APA directly based

on measured SNRs and, consequently, much simpler than other techniques. Simula-

tion results confirm that such a simple strategy can be effective at medium-low SNR
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regions, even w.r.t. more sophisticated optimization procedures. The investigated

localization algorithms have been published in B, C and D.

1.3 List of publications

Paper A L. Reggiani and S. Bybordi, “Performance trade-offs for energy efficient

localization based on EKFs,” 2012 International Symposium on Wireless Com-

munication Systems (ISWCS), August 2012.

Paper B S. Bybordi and L. Reggiani, “Algorithm for power allocation in localization

processes,” 2013 International Symposium on Wireless Communication Systems

(ISWCS), August 2013.

Paper C S. Bybordi and L. Reggiani, “Impact of real ranging on algorithms for

power allocation in localization processes,” 2014 IEEE International Conference

on Ultra-Wideband (ICUWB 2014), September 2014.

Paper D S. Bybordi and L. Reggiani, “A Review on suboptimal power allocation

schemes for WSN localization,” the 3rd International Conference on Circuits,

Systems, Communications, Computers and Applications (CSCCA14), Novem-

ber 2014.

Paper E S. Bybordi and L. Reggiani, “Hybrid fingerprinting-EKF based tracking

schemes for indoor passive localization,” International Journal of Distributed

Sensor Networks, vol. 2014, pp. 1-11, 2014.
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CHAPTER II

Localization fundamentals

2.1 Wireless sensor networks in localization scenarios

Due to recent developments in hardware electronics and communications, low-

cost and low-power WSN have found great importance in diverse applications such

as industrial, medical, public services and many other fields. A WSN is collection

of small, cheap, low-power sensing devices which are able to sense parameters to be

monitored, process and broadcast sensed information. Considering the fact that nodes

are distributed over surveillance area in which nodes locations are hard to reach, they

should be manufactured with low cost and they should be able to operate by wireless

communication. Additionally, since they are usually battery powered devices, wireless

communication protocols should respect low-power constraints [2].

Since the main source of energy consumption in a single node is constituted by

communication with other nodes, there is an increasing research trend for enabling

nodes to process sensed information locally and in a distributed way [2]. This fact

provides the network with longer action periods and less communication load unlike

traditional sensor networks where the sensed information are required to be processed

in a central processor.

A sensor node is usually equipped with a sensing part, a processor, memory, a

power supply, a radio and a circuit enabling the management of all these functions
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[21]. Generally speaking, WSN applications can be categorized into two cases: moni-

toring and tracking [21]. Monitoring applications can be summarized in applications

such as environmental monitoring, battlefield surveillance, telemonitoring of human

physiological data, etc.

Tracking applications are concerned with tracking objects, animals, humans and

vehicles. Owing to the fact that sensor nodes are devices with limited energy resource

and memory, wireless communication seems to be a suitable choice for exchanging

required data in the network. Also, considering the fact that sensor nodes use limited

energy resources like batteries, low power consumption is a crucial part of their design.

Having accurate position information of a single node in most of WSN applications

is of great importance. For example there is an increasing interest in deployment of

WSN in dangerous and remote environments. Regardless of the application context,

when there is not an exact knowledge about position information of WSN nodes,

localization plays a key role either as an assisting feature for application or as a major

goal. To be clear, assume a WSN supposed to monitor temperature inside a building.

Of course, the position information of nodes can be easily accessible. However, in

case of WSN application for monitoring purposes in large areas, WSN application is

pointless without having position information of nodes (e.g. WSN applications for

detecting fire events over a large surveillance area like a forest). The global positioning

system (GPS) of course can be a propitious candidate for this purpose in some cases

[57]. On the other hand, owing to the fact that GPS signals travel long distances with

low power, GPS signal is weakly received in environments with strong obstruction.

Therefore, GPS signal is not practical in indoor scenarios for localization purposes. On

the other hand, considering the low accuracy of GPS w.r.t to the dimensions of indoor

environments, application of WSN in localization problems seems to be inevitable.

In order to have target position estimated, a group of nodes, called beacons, should

have a-priori information about their position. Generally speaking, due to positioning
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structure in WSN and taking advantage of estimated ranging measures between each

couple of beacons, final target position is estimated once pair-wise range measures

are ready.

Pervasively applied measurements in position estimation are time of arrivals (TOA),

time difference of arrival (TDOA), received signal strengths (RSS) and angle of ar-

rivals (AOA). Measurements are based on information obtained from the signal ex-

changes among nodes. Consequently, the accuracy of the position estimate is depen-

dent on the type of measurements between different nodes. In range based localiza-

tion, firstly the ranges between nodes are measured in a phase called ranging. Then,

the target position is estimated based on these measurements in a phase called po-

sitioning via static localization and/or fingerprinting (FP) in a single-shot determi-

nation of target position or tracking strategies using Bayesian filtering for estimating

target position repeatedly over different time instants.

2.2 Ultrawide Band as a promising underlying technology

Based on the Federal Communications Commission (FCC) announcement, a sig-

nal is refereed as Ultrawide Band (UWB) which occupies a bandwidth greater than 20

percent of the center frequency or 500 MHz. Considering the fact that UWB occupies

a large bandwidth, there will be possibility of interference with other existing wireless

technologies. Consequently, FCC has forced some kind of limits on emission power

which can have different values depending on the working frequency range [1]. Low

level of transmission power spread over a large bandwidth makes UWB as a suitable

choice for WSN requirements. In fact, UWB is able to coexist with other existing

wireless standards in the same occupied bandwidth. In addition, UWB enabled WSNs

can be deployed without any requirement for special permission for a targeted fre-

quency spectrum occupation. Considering the license-free nature of UWB systems,

there has been an increasing interest in deploying UWB in applications requiring
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cheap wireless implementation. The large bandwidth, present in UWB systems, facil-

itates the use of low power wireless communication which is in agreement with WSN

requirements. Of course, UWB signals are pervasively investigated in the literature

[19, 14].

UWB technology is capable of communicating at very low energy levels, spread

over a large bandwidth. Obviously, due to high bandwidth of UWB, there will be

a fine resolution of Multipath Components (MPCs) at the receiver. Consequently,

UWB is much more immune to multipath fading than other wireless technologies [26].

In the context of low data rate sensor applications, the large bandwidth is obtained

by the usage of short pulses in the time domain which is called impulse radio UWB

(IR-UWB). As a result, there will be a high temporal resolution of MPCs, which is

one of the most influential factors in the accuracy of time-based ranging techniques

[22]. In other words, the larger the bandwidth is, the better the accuracy will be.

Just to elaborate this concept, an UWB pulse with the duration of 2 ns will result

in a spatial resolution of about 60 cm. Equivalently, MPCs are commonly resolvable

without any need for a complicated algorithm [42]. So UWB is surely a promising

candidate for time based ranging techniques [31].

The earliest UWB systems were based on the usage of narrow, even sub nanosec-

onds, pulses without a need for using carrier, so realizing a carrier-less communication.

The Absence of a conventional carrier eliminates the need for conventional circuitry

required for the Intermediate Frequency (IF) stage. This issue makes the transceiver

structure much simpler. In this thesis, according to the more recent IEEE 802.15.4a

standard evolutions, we will consider narrow pulses with lower bandwidth (around

500 MHz) and modulated at carrier frequencies above 3 GHz. One of the greatest

challenges in indoor positioning is the Non-Line-of-Sight (NLoS) impact: when the

LoS link is highly attenuated or absent at the receiver, performance of ranging is

severely deteriorated. As previously mentioned, one technique is to apply signals
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with high penetration capability. Due to large bandwidth of UWB technology con-

taining also low-frequency contents, UWB has an acceptable penetration capability in

complex indoor environments. This issue means that, under certain conditions, UWB

signal could pass group of materials or, equivalently, a LoS link necessarily is not a

visible path between transmitter and receiver. In practice, the beacon distribution

over surveillance areas should be designed for guaranteeing a LoS link between trans-

mitting and receiving nodes as much as possible. Otherwise, the number of beacons

is preferred to be increased at the gain of increasing the WSN implementation cost.

2.3 Localization

In localization scenarios based on WSNs, there are two groups of nodes. One group

of nodes are the ones which have a priori information about their location coordinates.

Another group is referred as targets, whose positions have to be estimated. Estimation

of target position or, equivalently, localization mainly contains two phases. Firstly,

inter-node distances are estimated using distance dependent features of the received

signals like TOA, RSS, AOA in a phase called ranging. Ranging is done by WSN

nodes which are mainly battery powered devices. Consequently, also complexity of

ranging algorithms is of great concern and it should be kept as limited as possible.

The second phase, in which target position is estimated, is commonly referred as

positioning. Estimations of targets’ position can be realized via static localization,

tracking strategies or FP [17, 43]. The first two cases are based on the acquisition of

LD features from received signals, like RSS or TOA, by means of ranging and finally

estimation of position using techniques as trilateration in static localization and EKF

in tracking. On the other hand, FP takes advantage of LD features of received signals,

exploited as unique signatures associated to the target locations. Firstly, a radio map

containing stored LD parameters measured over predetermined points (grid points) is

built during an off-line or training phase. Subsequently, target position is estimated
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via pattern matching between ongoing measured LD parameters and those previously

recorded.

2.3.1 Common ranging measures

2.3.1.1 Angle of arrival (AOA)

Ranging schemes using information related to AOA mostly take advantage of an-

tenna arrays to estimate the direction, from which the signal is coming [35]. Antenna

arrays are required at each receiving node instead of a single antenna. In fact, AOA

based schemes estimate the node position by intersecting estimated information of

direction related to signal arrival. This technique is usually referred as triangulation.

However, some factors, such as the expensive implementation of antenna arrays, limit

application of AOA based localization in indoor environments. Besides, the estima-

tion accuracy of AOA based localization is influenced by different factors like dense

multipath components in indoor environments and absence of LoS link between trans-

mitter and receiver [30].

On the other hand, AOA based localization has the following advantages. For

example the clock bias effect is not present, while this issue is of great concern in

time based techniques like TOA. Also, in comparison with time based techniques,

AOA based localization needs less receivers for computing the final position of target.

For example, in case of a two dimensional scenario, two receivers are adequate to

implement localization.

2.3.1.2 Received signal strength (RSS)

Transmitted power normally experiences an attenuation resulting from fading,

channel variations and shadowing. Normally, the received power is a decreasing func-

tion of the distance between transmitter and receiver. Received signal strength (RSS)

is implemented by measuring signal strength via measuring the power of the received
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signal [31]. Then, the distance between transmitter and receiver is estimated accord-

ing to some mathematical models describing propagation basic elements. The RSS

measures are usually present in wireless chips. As a matter of fact, objects present in

the scenario, like furniture, influence transmitted signal via absorption, reflection and

additional attenuation components. This explains why RSS based localization cannot

reach the same accuracy of the other methods, based on TOA or AOA. Important

advantages and drawbacks of RSS can be summarized as follows. RSS based ranging

is usually chip and easily implementable; in addition there are no rigid requirements

for expensive and challenging time synchronization among nodes. However, as pre-

viously mentioned, RSS based localization accuracy is lower than other time based

localization schemes [42].

In fact, performance of RSS depends on the accuracy of the defined model for

propagation. A review of different models can be found in [16]. While the basic idea

is to use free space propagation [33], the more realistic, commonly used model can be

defined as

RSS = 10 · log10(Pr/P0) = 10 · log10(Pt/P0) +Gt +Gr − L0 − 10γlog10(d/d0) +X,

(2.1)

where d is the distance between the transmitter and receiver (d0 is a reference distance,

e.g. 1 m and L0 is the pathloss at d0), Pt and Pr are transmitted and received powers

in linear scale respectively (P0 is the reference power, e.g. 1 mW), Gr and Gt are

the antenna gains (usually equal to 0 dB in this context), γ is the path loss exponent

and X is a log-normal random variable representing the shadow fading component

(Gaussian in the dB scale).

14



2.3.1.3 Time of arrival (TOA)

Another candidate for estimating the distance between two nodes is to use the

information related to time of arrival corresponding to the received signal. TOA

based ranging uses the estimated information corresponding to the time of arrival

of the received signal in order to obtain the distances among nodes. Of course, the

distance between transmitting and receiving nodes is achievable by multiplying the

estimated TOA by the speed of light. TOA estimations are commonly realized by

taking advantage of correlators or matched filters at the receiving nodes [9]. As a

matter of fact, TOA requires an acceptable level of time synchronization between

transmitter and receiver considering its time based nature. Since UWB technology

has a relatively high temporal resolution, it is a promising candidate for TOA based

ranging.

TOA estimation can be implemented in one way or two way versions. In one

way version, transmitting nodes transmit the signal in a synchronized scenario. The

receiving nodes estimate TOA, knowing the corresponding times of transmission. In

two way TOA, nodes are required to transmit and receive according to a precise

protocol. The receiving node sends an acknowledgment to the transmitter and, con-

sequently, TOA will be derived by the half of the round trip time after subtracting

the processing and other offset times. The disadvantage of two way TOA is the fact

that two transmissions should be done for each ranging measurements unlike one way

TOA [42] .

Time difference of arrival (TDOA) alleviates the synchronization requirement of

TOA. In TDOA, transmitters are only required to be synchronized. TDOA measures

difference of TOA between two transmitting nodes and a receiving node [57]. Unlike

TOA in which each measurement can be interpreted as a circle around transmitting

node defining all possible locations of receiving node on the circle perimeter, in TODA,

each measurement can be interpreted as a hyperbola showing all possible location of
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receiving node considering that the two transmitting nodes are the hyperbola foci.

The performance of time based ranging techniques is strongly dependent on the

availability of the direct link between transmitting and receiving node [22]. The direct

link is not necessarily equal to a physical link in the sense that in NLoS scenarios,

in which the direct physical link is absent or attenuated, direct link can sometime be

detected despite the fact that it is attenuated by obstruction or strong attenuation.

The ranging algorithms used in this work are based on ranging techniques proposed

in [20, 29]. The first one is based on using threshold techniques. In [20], authors

propose a TOA estimator that selects the first correlator output peak that exceeds

a fixed fraction of the strongest peak magnitude. In fact, it is a low-complexity

estimator based on a threshold for detecting the first path.

The ranging technique mentioned in [29] outputs a discrete vector of likely dis-

tances with an associated approximation of the probability that these distances cor-

respond to the estimates. This estimator can be used to increase the accuracy of

distance estimates on a measurement by measurement basis, instead of assuming a

fixed error variance which is the same for all measurements. This soft information

is also used to provide a measure of the uncertainty of the distance estimate, i.e.,

an estimate of the error magnitude; in fact a large uncertainty is often associated

to a NLOS measure or to a measure obtained at low Signal-to-Noise Ratio (SNR).

This choice allows a realistic simulation of the algorithm, with low and high quality

ranging measures.

2.3.2 Positioning

There are different classifications concerning the features of localization algo-

rithms.

Cooperative and non-cooperative

Obviously, the larger the number of beacons is, the better the position estimate
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will be. However, it is not always feasible to increase the number of beacons.

One alternative can be to let targets communicate with each other to exchange

some of the parameters and have a better position estimate; this is conceptually

referred as cooperative positioning. A cooperative scenario considers all type of

measurements including inter-target measurements and those between targets

and reference nodes. On the other hand, in a non-cooperative scenario, position

estimation relies just on the measurements between targets (agents) and refer-

ence nodes (beacons). Of course, it is obvious that the results of cooperation

among agents will improve estimation accuracy.

Centralized and distributed

In centralized positioning, there is a central processing center in which position

estimation is accomplished once the estimated ranging measures are sent to the

processing center. However, in distributed positioning, as also it is evident from

the name, the WSN nodes try to accomplish positioning by exchanging ranging

measures among them. In centralized localization, nodes are not required to

be complex from a processing point of view. However, since all of the ranging

information is needed to be transmitted to a central station, there will be an

increased traffic in the network.

Active and passive

In active localization, targets participate in the exchange of data in the local-

ization procedure while in passive localization, targets do not participate in the

exchange of data. In fact, the ranging measures are estimated according to

information obtained from the signal reflected or scattered from the target.
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2.3.2.1 Static localization

The commonly used approach in static localization is based, firstly, on the collec-

tion of distance dependent parameters of received signals (e.g. TOA) in the ranging

phase. Then, the unknown position of the target is estimated using methods like

multi-lateration or multi-angulation depending on the type of available ranging mea-

sures.

In the context of static localization, the position of a target can be calculated using

the well-known geometrical method called lateration or angulation depending on the

type of ranging parameters. Here, lateration and consequent formulation is pursued.

Each ranging measure like TOA or RSS can be interpreted as a circle representing all

possible locations of the target on a circle perimeter in which the beacon is the circle

center. Therefore, by intersecting these circles, target position can be calculated.

The minimum number of ranging measures or, equivalently, the number of beacons

required for multi-lateration is 3 for 2D positioning. Assuming TOA as ranging

measure, the nonlinear function between ranging measures and target position can

be written as

d2i = gi(X) = (x− xi)
2 + (y − yi)

2 , (2.2)

where X = [x y]T is the target coordinate, di is the ranging measure related to ith

beacon, [xi yi]
T is the coordinate of ith beacon.

However, trilateration is suitable when we have exact knowledge of ranging mea-

sures. In this case, three circles will intersect in one point which shows the position

of the target. However, in practice, the ranging measures face uncertainty due to the

ranging imperfect estimation process. Therefore, we will have an uncertainty area in-

stead of a point as a result of just using multi-lateration technique. Consequently, in

18



practice the solution is to use statistical methods in order to minimize the estimation

error (MSE).

Here, a brief review of the commonly used approaches for static localization will

be presented. Position estimation based on range measurements is commonly carried

out by finding minimum or maximum of an objective function. Equation (2.2) implies

a nonlinear function relating the target position with range measures.

Least squares

Assuming [x y]T and [xi yi]
T i = 1, .., Nb as coordinates of target and the ith

beacon respectively, the distance estimate can be written as

d̂i = di + ni =

∥∥∥∥∥∥∥

x− xi

y − yi

∥∥∥∥∥∥∥
+ ni, (2.3)

where ‖.‖ is the Euclidean norm operator, ni is the ith range measure error

which can have different mean values and variances depending on the different

channel conditions.

As a matter of fact, when there is no a priori knowledge about statistics of

distance error, LS solution is a promising candidate. In case of having a pri-

ori knowledge about statistics of distance error, using Weighted Least Squares

(WLS) approach can improve localization performance.

As previously mentioned, the final goal is to minimize
Nb∑
i=1

(
d̂i − gi(X)

)2
which

is essentially a nonlinear function of target coordinates. In order to obtain a

final position estimate using least squares, nonlinear function mentioned in (2.2)

can be linearized around the point X0 = [x0 y0]
T , which can be done simply by

taking advantage of a Taylor’s expansion [23] as
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gi(X) = gi(X0) +
∂gi
∂x

∣∣∣∣
X0

(x− x0) +
∂gi
∂y

∣∣∣∣
X0

(y − y0). (2.4)

So the final version can be summarized as

G(X) = G(X0) +H

∣∣∣∣
X0

(X−X0), (2.5)

where

G(X) =




g1(X)

...

gNb
(X)



, (2.6)

and

H =




∂g1
∂x

∂g1
∂y

...
...

∂gNb

∂x

∂gNb

∂y



=




x−x1√
(x−x1)

2+(y−y1)
2

y−y1√
(x−x1)

2+(y−y1)
2

...
...

x−xNb
√

(x−xNb)
2
+(y−yNb)

2

y−yNb
√

(x−xNb)
2
+(y−yNb)

2



. (2.7)

As previously mentioned the objective is to minimize the following cost function

Nb∑

i=1

(
d̂i − gi(X̂)

)2
=
(
d̂−G(X̂)

)T (
d̂−G(X̂)

)
. (2.8)
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If H

∣∣∣∣
X0

is denoted H0, the least square solution can be expressed [23]

X̂ = X0 +
(
H0

TH0

)−1
H0

T (d̂−G(X0)). (2.9)

As it can be inferred from the equation, an initial estimate of target location is

required. In fact, the solution can be achieved iteratively by setting an accuracy

threshold between the iteration steps or setting a max number of iterations. As

mentioned previously, knowledge of the ranging error statistics will improve

localization performance by using WLS technique [23], i.e.

X̂ = X0 +
(
H0

TWH0

)−1
H0

TW(d̂−G(X0). (2.10)

The weights are usually assumed proportional to the inverse of the measurement

variances. When the error associated with each ranging measure is assumed to

be a zero mean Gaussian random process, WLS and Maximum Likelihood (ML)

estimates coincide.

Another alternative for static localization is to linearize the function mentioned

in (2.2) in a different way. By subtracting one of the equations (let us assume

for example the equation related to d1) from the others, we obtain [36, 4]

(x1 − xj)x+ (y1 − yj)y =
1

2
(x1

2 − xj
2 + y1

2 − yj
2 + dj

2 − d1
2). (2.11)

Consequently, we have a set of linear equations under the formulation
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


x1 − x2 y1 − y2
...

...

x1 − xNb
y1 − yNb






x

y


 =

1

2




x1
2 − x2

2 + y1
2 − y2

2 + d2
2 − d1

2

...

x1
2 − xNb

2 + y1
2 − yNb

2 + dNb

2 − d1
2



.

(2.12)

Equation (2.12) is a set of linear equations and A · X = b will have a closed

form solution

X =
(
XTA

)−1
XTb. (2.13)

We can also observe that the minimum required number of beacons is 4 [4].

2.3.2.2 Fingerprinting (FP)

Conventional localization algorithms using signal information like TOA, RSS,

AOA and TDOA face a serious performance degradation in indoor environments

affected by phenomena like harsh multipath and Non Line of Sight (NLoS). Taking

advantage of LD features of signal, there can exist a radio map containing LD pa-

rameters measured in predetermined points called grids so that target position can

be estimated using pattern matching algorithms. Fingerprinting contains two basic

steps: in the first step which is an offline phase, LD parameters of signal are measured

in a grid based map over the surveillance area in order to be used as a reference in the

second phase of FP. This is an online phase in which target position is estimated by

pattern matching between ongoing measurements of LD parameters and stored LD

parameters in the offline phase.

The most common LD parameter is RSS. However, due to high temporal res-
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olution of UWB signals, application of UWB Channel Impulse Response (CIR) or

some of its features has been reported in the literature [48, 6, 11, 5, 58]. In [48],

authors propose CIR as the LD metric during FP. For pattern matching required in

FP, a parameter called channel spatial correlation is introduced. The target position

is estimated by maximizing channel spatial correlation over FP grid points. However,

due to imperfection in CIR estimation, a threshold is required to be set in order to

consider reasonable spatial correlations in pattern matching.

In [6], CIR is used as a location dependent parameter. There is one fixed receiver

recording CIR data collected from different location of a transmitter over different

geometrical regions during the FP training (offline phase). Using a complex Gaussian

distribution assumption for channel taps corresponding to a specific region, sample

mean and covariance matrix are estimated over multiple observation of CIR over a

specific area. In order to align measured CIRs, the strongest path is considered by

taking the maximum absolute value. Besides, some simplifying assumptions including

zero mean assumption and independent channel taps leading to a diagonal covariance

matrix are considered. According to binary hypothesis testing, a probabilistic metric

as a result of Gaussian assumption is built for two regions in order to map the location

of transmitters. Because of the existence of more than two regions, it is introduced a

pair-wise selection among regions and a consequent computation of a metric for each

pair.

In [11], CIR is applied as a location dependent signature of a transmitter. More

specifically, Average Power Delay Profile (APDP) of CIR is used for region decision.

Their considered scenario contains one receiver in the way that receiver location is

fixed and a test transmitter is located in different regions. During the training phase,

multiple CIR PDP measurements are stored in a data base. However, localization

accuracy can be improved by increasing the number of receivers as in the case of

time dependent ranging techniques. Assuming the outcome of statically indepen-
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dent Gaussian random variables for APDP of different regions and using a maximum

likelihood estimator, the position of the transmitter is determined.

In [5], a sub-category of CIR features including the mean excess delay, the rms

delay spread, the maximum excess delay, the total received power, the number of

multipath components, the power of the first path, the arrival time of the first path

of the channel are used as LD parameters. For the pattern matching part of the FP,

an artificial neural network (AAN) based algorithm is proposed.

Finally [58] presents a pervasive review of existing fingerprinting techniques for

both active and passive localization.

One of the simplest mapping techniques is the selection of target coordinates based

on the coordinates of FP grid point leading to minimum Euclidean distance between

measured LD metric and the metric related to that specific FP grid point measured

during FP offline phase. For formulating the metric, let us assume that the number

of LD measures be NM . For the sake of simplicity in mathematical representation,

LD metric is assumed to be scalar although an extension to the LD vector case is

straightforward. During the offline phase of FP , the LD metric vector Mpi
(NM × 1)

is measured at each point of FP grid (pi) and stored in a database. Consequently,

target position is estimated based on minimizing the following Euclidean distance

over grid points

Arg min
{pi}

‖M−Mpi
‖, (2.14)

where M is the LD metrics vector measured during online phase of FP .

2.3.2.3 Tracking

Frequent estimation of moving target position over time using previously estimated

position information is namely called tracking. Additionally, other motion related

parameters like velocity and acceleration can be tracked. One of the commonly used
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tools in tracking is Kalman Filter (KF). First introduction of KF was by Rudolph

Emil Kalman [40]. The distinguished feature of KF is related to repetitive estimation

over evolving time steps rather than a single one-hot estimation as in the case of static

localization or FP. Mainly, it is applied for state estimation of dynamical system under

the assumption that the system is linear and all the errors including those in state

transitions and measurements are Gaussian. In fact, the state estimation is done

by taking advantage of the estimated state in the previous time step and current

measurements. The details of conventional KF for dynamical systems in which both

state transition and measurement functions are linear can be found in [44]. In this

section, presented KF formulation is dedicated to dynamical systems with nonlinear

equations (denoted as EKF) w.r.t. their application in position tracking. KF contains

two main steps, i.e. prediction and update stages. In fact, the next state is predicted

using a motion model. Then, the predicted state is corrected according to the new

measured data.

Extended Kalman filter (EKF)

When either state transition equation or measurement equation are not linear,

by linearizing them around related working points, EKF can be applied to

state tracking of the system with nonlinear equations. State transition can be

represented as:

xk+1 = f(xk) +wk, (2.15)

where xk is the state vector at time step k. The state transition noise vector

is assumed to be a zero mean Gaussian random process with covariance matrix

Qk i.e. wk ∼ N (0,Qk) where f is in general a nonlinear function showing state
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transition over time.

The measurement equation can be written as

zk = h(xk) + vk, (2.16)

where zk is the the measured data at time k, h is the nonlinear function showing

predicted measurements based on the state xk, vk is the measurement (obser-

vation) noise assumed to be a zero mean Gaussian noise with covariance matrix

Rk i.e. vk ∼ N (0,Rk).

EKF estimates the state vector iteratively through the following procedure:

1. computation of a-priori estimate (prediction) using previously computed

a-posteriori estimate i.e.

x̂−
k = f(x̂k−1). (2.17)

2. Computation of a-priori covariance matrix using previously computed a-

posteriori covariance matrix and process noise covariance matrix via

Pk
− = AkPk−1Ak

T +Qk, (2.18)

where Ak =
∂f
∂x

∣∣∣∣
x̂k−1

3. Computation of Kalman gain matrix
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Gk = Pk
−Hk

T [Sk]
−1 , (2.19)

where Hk is the linearized measurement function at x̂−
k i.e. Hk = ∂h

∂x

∣∣∣∣
x̂
−

k

and Sk is the covariance matrix related to so-called innovation process (ỹk)

which in fact is the residual between the observed measurement (zk) and

predicted measurement (h(x̂−
k )) i.e. ỹk = zk − h(x̂−

k ). Consequently, Sk

can be written as

Sk = HkPk
−Hk

T +Rk. (2.20)

4. A priori estimate is updated to a posteriori estimate

x̂k = x̂−
k +Gkỹk. (2.21)

5. Finally, the a posteriori covariance matrix is computed

Pk = (I−GkHk)Pk
−. (2.22)
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CHAPTER III

Lower bounds on localization

3.1 The lower bound for static localization

In this Section we will develop the tools necessary for understanding and using

the lower limits of the positioning error associated to a static localization process.

3.1.1 Derivation of Fisher information matrix for target position estima-

tion

The scenario we are considering includes one moving target (with unknown posi-

tion) and a set of fixed nodes with known positions (called beacons). This is done by

measuring time of arrival (TOA) of communicated signal between target and each of

the beacons (ranging) and solving the associated positioning problem. We assume a

set of unbiased distance (TOA) estimates

d̂j = dj + ej; j = 1, ..., Nb, (3.1)

where d̂j and dj are the estimated and actual distances between the target and the

jth beacon and Nb ≥ 3 is the number of beacons. Distance estimates are assumed

to be unbiased and subject to a Gaussian error ej ∼ N(0, σ2
j ). The actual distance
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between the target and the jth beacon is

dj =

√
(x− xj)

2 + (y − yj)
2. (3.2)

The variables



x

y


 and



xj

yj


 are positions of the target and the jth beacon in

2D coordinates respectively. The goal is to achieve a lower bound for the mean

squared error (MSE) of target position estimate. MSE for a set of unbiased parameter

estimates can be written as

E
[
(θ̂ − θ)T (θ̂ − θ)

]
= tr

{
cov(θ̂)

}
, (3.3)

based on Cramer Raw Bound (CRB) for a vector of parameters to be estimated

(θ̂). We have

cov(θ̂) ≥ J−1, (3.4)

where J is the Fisher Information Matrix (FIM). This matrix can be written as

J =



Jxx Jxy

Jyx Jyy


 (3.5)

and each FIM element can be computed as
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[J]ij = −E

[
∂2L

∂θi∂θj

]
, (3.6)

where L is log-likelihood function which will be defined in the following. Assum-

ing that distance measurements are statistically independent, the joint conditional

probability density function can be written as

P (d̂|x, y) =
∏

j

e
−

(d̂j−dj)
2

2σ2
j

√
2πσ2

j

, (3.7)

where d̂ is the observation vector related to Nb independent distance (TOA) mea-

surements between the target and each of the beacons. So the log likelihood function

can be written as

L = −1

2

∑

j

Ln(2πσ2
j )−

∑

j

(d̂j − dj)
2

2σ2
j

. (3.8)

Here, due to the similarity in the derivation of all FIM elements, we consider only

Jxx. From Equation(3.6), we have

Jxx = −E

[
∂2L

∂x2

]
(3.9)

and the second derivative of log-likelihood function with respect to x is
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∂2L

∂x2
= −

∑

j

1

2σ2
j

[−2d̂j
(
(x− xj)

2 + (y − yj)
2)−0.5

+2d̂j
(
(x− xj)

2 + (y − yj)
2)−1.5

(x− xj)
2 + 2]. (3.10)

Since E
[
d̂j

]
=
(
(x− xj)

2 + (y − yj)
2)0.5, by combining (3.9) and (3.10), Jxx is

computed as

Jxx =
∑

j

1

σ2
j

(x− xj)
2

(x− xj)
2 + (y − yj)

2

=
∑

j

cos2(αj)

σ2
j

(3.11)

In brief, using (3.5),(3.6) and (3.8), FIM is computed as

J =




∑
j

cos2(αj)

σ2
j

∑
j

sin(αj)cos(αj)

σ2
j

∑
j

sin(αj)cos(αj)

σ2
j

∑
j

sin2(αj)

σ2
j


 , (3.12)

where sin(αj) and cos(αj) are defined as

cos(αj) =
x− xj√

(x− xj)
2 + (y − yj)

2
(3.13)

and
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sin(αj) =
y − yj√

(x− xj)
2 + (y − yj)

2
. (3.14)

Coming back to (3.3), we have

MSE = E
[
(x̂− x)2 + (ŷ − y)2

]
≥ tr

{
J−1
}
. (3.15)

and therefore

MSE ≥ J−1
xx + J−1

yy =

∑
j

1
σ2
j

1
4
·



(
∑
j

1
σ2
j

)2

−
(
∑
j

cos(2αj)

σ2
j

)2

−
(
∑
j

sin(2αj)

σ2
j

)2


. (3.16)

Additional considerations on the MSE associated to multiple targets can be found

in [8]-[53]. In (3.16), MSE of target position estimate is denoted as SPEB in [53].

There is a slightly different notation in the presentation of (3.16) in [53] in the sense

that λj =
1
σ2
j

. In the following, some observations related to the FIM eigen-analysis

are briefly mentioned [53]-[54]-[52].

3.1.2 Eigen analysis of FIM

FIM is a symmetric matrix. Based on the algebraic interpretation in Sect. 3.1.1

and taking into account FIM dimension, i.e 2×2, xTJx = 1 describes a rotated ellipse

in 2D. The vector x is a set of points in R
2 and, therefore, FIM can be decomposed

as [54]-[52]
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Figure 3.1: Information ellipse [54] described by semi-major and semi-minor length
of

√
µ1 and

√
µ2 respectively and by the rotation angle γ

J =
∑

j

λjJr(αj) = U



µ1 0

0 µ2


UT , (3.17)

where

Jr(αj) =




cos2(αj) sin(αj)cos(αj)

sin(αj)cos(αj) sin2(αj)


 , (3.18)

and µ1, µ2 are the eigenvalues of FIM. The matrix U =



cos(γ) −sin(γ)

sin(γ) cos(γ)




contains the eigenvectors associated to eigenvalues µ1 and µ2. Let us define the

information ellipse as [54]-[52]
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xTJ−1x = 1. (3.19)

Considering the structure of the information ellipse, we have an ellipse with major

and minor axis length of 2
√
µ1 and 2

√
µ2 respectively. In fact, the rotation matrix

U represents a rotation of the the old coordinates to a new coordinates system cor-

responding to the major and minor axes of the rotated ellipse (Fig. 3.1).

In the following, there will be a discussion about the properties of the FIM eigen-

structure and its application to a localization scenario in order to achieve better

localization accuracy.

3.1.2.1 FIM eigenstructure for a single beacon

In Equation (3.16), λj is the Ranging Information Intensity (RII) related to the

jth beacon [54]. The matrix Jr(αj) is a rank one matrix with eigenvalues µ1 = 1 and

µ2 = 0 and respective eigenvectors of U1 =



cos(αj)

sin(αj)


 and U2 =



−sin(αj)

cos(αj)


. It

should be kept in mind that the eigenvector U2 is in the null-space of J.

As previously mentioned, FIM can be completely described by µ1, µ2 and γ, i.e.

J = F (µ1, µ2, γ). For a single beacon, it can be written as λkJr(αk) = F (λk, 0, αk).

In fact, this formulation belongs to a degenerate ellipse (a line segment) rotated with

an angle of αk.

3.1.2.2 FIM eigenstructure for two beacons and more

For the sake of simplicity, the following FIM notation will be applied in the sequel,
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J =



a b

b c


 . (3.20)

It is worth to elaborate the eigen-structure of FIM in (3.17). Solving the charac-

teristic equation in order to find the eigenvalues µ1 and µ2, we have

det(J− µiI) = 0 [i = 1, 2] (3.21)

and

µ1,2 =
a+ c±

√
(a− c)2 + (2b)2

2

=

∑
j

λj ±

√√√√
(
∑
j

λjcos(2αj)

)2

+

(
∑
j

λjsin(2αj)

)2

2
. (3.22)

It is obvious that

µ1 + µ2 =
∑

j

λj = tr {J} , (3.23)

µ1µ2 =

(
∑
j

λj

)2

−
(
∑
j

λjcos(2αj)

)2

−
(
∑
j

λjsin(2αj)

)2

4
. (3.24)

and
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µ1 − µ2 =

√
(a− c)2 + (2b)2

=

√√√√
(
∑

j

λjcos(2αj)

)2

+

(
∑

j

λjsin(2αj)

)2

. (3.25)

According to (3.16), (3.23) and (3.24), the numerator of SPEB is nothing but

µ1 + µ2 and the denominator is µ1µ2. Therefore,

SPEB =
µ1 + µ2

µ1 · µ2

=
1

µ1

+
1

µ2

= tr







µ1 0

0 µ2








−1

, (3.26)

which confirms the fact mentioned in [54] stating that SPEB is independent from

the coordinate system. Equation (3.26) is an evidence of this phenomenon. Another

proof using cyclic property of the trace operator is provided in [54]. This issue allows

us to consider SPEB in two decoupled orthogonal directions and regardless of the

coordinate system [50].

Now, let us focus on the structure of the eigenvectors. Both eigenvectors of FIM

are described by γ (rotation angle of ellipse). Using (3.17), we have

UTJU =



µ1 0

0 µ2


 . (3.27)

Simplifying the right side of (3.27), we obtain
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


a · cos2(γ)

+ c · sin2(γ)

+ 2b · sin(γ)cos(γ)

(c− a) · sin(γ)cos(γ)

+ b · (cos2(γ)

− sin2(γ))

(c− a) · sin(γ)cos(γ)

+ b · (cos2(γ)

− sin2(γ))

a · sin2(γ)

+ c · cos2(γ)

− 2b · sin(γ)cos(γ)




=



µ1 0

0 µ2


 . (3.28)

By putting one of the off-diagonal elements of the right side matrix in (3.28) equal

to zero, rotation angle can be computed as

tan(2γ) =
2b

a− c
. (3.29)

Taking into account (3.25) and (3.29) (this is also shown in Fig. 3.2 in the right

triangle ABC), it can be concluded that

sin(2γ) =
2b

µ1 − µ2

=

∑
j

λjsin(2αj)

µ1 − µ2

, (3.30)

and

cos(2γ) =
a− c

µ1 − µ2

=

∑
j

λjcos(2αj)

µ1 − µ2

. (3.31)

It is worth to simplify some of the trigonometric identities appearing in FIM and
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SPEB formulations for later use:

(
∑

j

λjcos(2αj)

)2

+

(
∑

j

λjsin(2αj)

)2

=
∑

j

λ2
j +

Nb−1∑

i=1

Nb∑

j=i+1

2λiλjcos(2(αi − αj)). (3.32)

(
∑

j

λj

)2

=
∑

j

λ2
j +

Nb−1∑

i=1

Nb∑

j=i+1

2λiλj. (3.33)

Using the above-mentioned simplifications, (3.16) can be rewritten as

SPEB =

2
∑
j

λj

Nb−1∑
i=1

Nb∑
j=i+1

λiλj(1− cos(2(αi − αj)))

. (3.34)

This last formulation of SPEB is the one mentioned in [50] as the objective function

in order to achieve better localization performance via power allocation.

3.1.2.3 FIM structure transformation with a new beacon addition

Let us consider now the FIM structure when a new beacon is added to a set of

previously present beacons in the localization scenario. This section is a summary

of some related sections in [54] and [52] with some mathematical extensions and

elaborations in the necessary parts.

If we assume the FIM, related to present beacons, denoted by F (µ1, µ2, γ) and,

with the new added beacon, denoted by F (λk, 0, αk) which is an equivalent represen-

tation of λkJr(αk), the new FIM (J̃) will be
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J̃ = J+ λkJr(αk). (3.35)

In other words,

F (µ̃1, µ̃2, γ̃) = F (µ1, µ2, γ) + F (λk, 0, αk) (3.36)

and, now, µ̃1, µ̃2 and γ̃ should be computed. Assuming that J̃ is written as

J̃ =



ã b̃

b̃ c̃


 =




a+ λkcos
2(αk) b+ λksin(αk)cos(αk)

b+ λksin(αk)cos(αk) c+ λksin
2(αk)


 , (3.37)

and, according to (3.22), for the new set of eigenvalues we obtain

µ̃1,2 =
ã+ c̃±

√
(ã− c̃)2 + (2b̃)2

2
. (3.38)

Considering the new elements of (3.38), the first important term to be considered

is

ã+ c̃ = a+ c+ λk (3.39)

and the second key term is
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Figure 3.2: A schematic presentation of the effect due to the addition of a new beacon
on the FIM structure.

(ã− c̃)2 − (2b̃)2 = (a− c+ λk · cos(2αk))
2 + (2b+ λk · sin(2αk))

2

= (µ1 − µ2 + λk · cos(2(αk − γ)))2 + (λk · sin(2(αk − γ)))2. (3.40)

Consequently

µ̃1,2 =
µ1 + µ2 + λk

2

±
√
(µ1 − µ2 + λk · cos(2(αk − γ)))2 + (λk · sin(2(αk − γ)))2

2
. (3.41)

The computation of γ̃ can be derived analytically by means of (3.29). However, it

is also simple to be computed by means of the geometrical interpretation. From (3.41),

it can be noticed that the addition of a new beacon causes a growth of λk · cos(2α′
k)

(α′
k = αk − γ) in the direction of µ1 − µ2 (µ1 − µ2 + λk · cos(2α′

k)) and a growth of

λk · sin(2α′
k) in the orthogonal direction (the right triangle ADE in Fig. (3.2)). To

shed more light on this, we observe also an angular growth of arctan(
λk·sin(2α

′

k
)

µ1−µ2+λk·cos(2α
′

k
)
)

in the previous angle 2γ leading to the new angle 2γ̃. Consequently, the new rotation
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angle (after addition of a new beacon) can be computed as

2γ̃ = 2γ + arctan(
λk · sin(2α′

k)

µ1 − µ2 + λk · cos(2α′
k)
), (3.42)

and therefore

γ̃ = γ +
1

2
· arctan( λk · sin(2α′

k)

µ1 − µ2 + λk · cos(2α′
k)
). (3.43)

If we focus on the new formulation of SPEB, we will have

˜SPEB =
1

µ̃1

+
1

µ̃2

=
µ̃1 + µ̃2

µ̃1µ̃2

=
µ1 + µ2 + λk

µ1µ2 + λk(µ2 + (µ1 − µ2)sin2(α′
k))

. (3.44)

There are some nice theoretical conclusions resulting from the above-mentioned

formulations [54, 52]. The minimum in the new SPEB formulation occurs when

αk = γ ± π
2
and is given by

˜SPEBmin =
µ1 + µ2 + λk

µ1(µ2 + λk)
. (3.45)

In this case, the received RII from a new beacon is along the direction of the

eigenvector corresponding to µ2. On the other hand
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˜SPEBmax =
µ1 + µ2 + λk

µ2(µ1 + λk)
(3.46)

and this is the case when αk = γ, i.e. the received RII from the new added beacon

is along the direction of the eigenvector corresponding to µ1. In conclusion, a target

should select the beacon which has strong intensity and a position close to the minor

axis of information ellipse associated to the previously present beacons.

3.2 The Cramer Rao Bound for tracking scenarios

The conventionally referred CRB is a lower bound for MSE of a unbiased estimator

that is deterministic but generally unknown. However, in tracking scenarios, our state

vector is repeatedly changing and can be treated as a random variable. Consequently,

a Bayesian estimator will be required and, consequently, the lower bound will depend

on the evaluation of a posteriori probability density function. As in the case of

classical CRB, the assumption about statistical distribution related to the noise term

is of great importance in the computation of the related lower bound. This lower

bound for the first time was investigated in [46] and it is also known as PCRB.

However, the introduced lower bound does not have a recursive nature [32]. The

works [32, 39] provide a recursive computation of the PCRB from one time step to

the next.

Coming back to (2.15) and (2.16), describing dynamic nature of a nonlinear time

varying system, the goal of PCRB is to find a lower bound for the covariance matrix

related to the unbiased estimates of vector parameters, i.e.

Pn = E
{
[x̂n − xn] [x̂n − xn]

T
}
≥ Jn

−1, (3.47)
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let us assume P (Xn,Zn) be the joint probability distribution ofXn=
[
x0

T x1
T . . .xn

T
]T

and Zn =
[
z0

T z1
T . . . zn

T
]T

for an arbitrary n. By separating Xn as
[
Xn−1

T xn
T
]T
,

Fisher information matrix J(Xn) can be written as

J(Xn) ,



An Bn

Bn
T Cn




=



E
{
−∆

Xn−1

Xn−1
log(P (Xn,Zn))

}
E
{
−∆xn

Xn−1
log(P (Xn,Zn))

}

E
{
−∆

Xn−1
xn log(P (Xn,Zn))

}
E
{
−∆xn

xn
log(P (Xn,Zn))

}


 ,

(3.48)

where ∆Λ
θ is defined as

∆θ
Λ = ∇Λ∇θ

T (3.49)

with ∇θ = [ ∂
∂θ1

, . . . , ∂
∂θr

]T .

Of course, we are interested in the information sub-matrix of FIM (J(Xn)) related

to xn, i.e. Jn by which we will be able to define a lower bound for MSE of the unbiased

estimate vector at time step n i.e. x̂n. Using Schur’s complement characteristics [32]

Jn = Cn −Bn
TAn

−1Bn. (3.50)

As it is observable, the last equation has not a recursive nature. In [32], the

authors propose the computation of Jn recursively via
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Jn+1 = D22
n −D21

n

(
Jn +D11

n

)−1
D12

n (3.51)

where

D11
n = E

{
−∆xn

xn
log(P (xn+1|xn))

}
, (3.52)

D12
n = E

{
−∆xn+1

xn
log(P (xn+1|xn))

}
, (3.53)

D21
n = E

{
−∆xn

xn+1
log(P (xn+1|xn))

}
, (3.54)

and

D22
n = E

{
−∆xn+1

xn+1
log(P (xn+1|xn))

}
+ E

{
−∆xn+1

xn+1
log(P (zn+1|xn+1))

}
. (3.55)

In [39], authors investigate the closed form of (3.52)-(3.55) using the same linear

system model of EKF. Final version of the recursive procedure can be computed as

Jn+1 = Hn+1
TRn+1

−1Hn+1 +
(
Qn +AnJn

−1An
T
)−1

. (3.56)

Let us remark that A and H are linearized process and measurement function
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Table 3.1: a summary of different localization scenarios considered in this thesis

Downlink
(DL)

B.tx B.rx T.tx T.rx active /
passive

Alg. compu-
tation

Ranging mea-
sure

DL1 • • active B,T/C,D TOA
DL2 • • passive B/C,D TOA
DL3 • • relay B/C,D TOA

Uplink
(UL)
UL1 • • active B/C,D TOA

Two way
ranging
(TWR)
TW1 • • • • active B,T/C,D TOA

respectively and Q, R are covariance matrices related to the process and measurement

noises.

3.3 Reference scenarios

Table 3.1 presents a summary of the considered localization scenarios in this thesis.

The acronyms Downlink (DL) and Uplink (UL) describe the way of communication

between target and beacons, i.e. the way that they point out communication from

beacon to target and vice versa respectively. The technique TwoWay Ranging (TWR)

has been described in Sect. 2.3.1.3. The letters B and T indicate the role of beacons

and target in the localization scenario respectively. The suffices tx and rx indicate

that the related entities, either at beacons or targets, act as transmitter or receiver

respectively. The letters C and D reveal the centralized or distributed nature of the

localization algorithm that can be applied (see also Sect. 2.3.2).

Considering the previously defined abbreviations in table 3.1, we can specify the

following categories for an active localization scenario:

• Beacons act as transmitters while the target acts as receiver. Consequently,
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the localization algorithm has a centralized nature and it is implemented at the

target.

• The target performs as a transmitter and the beacons act as receivers. As a

result, localization algorithms can be either centralized or distributed and they

are implemented at the beacons.

• Both target and beacons act as transmitters and receivers in the context of

TWR. Obviously, localization algorithms can have a centralized nature in one

node (either target or beacons) or a distributed nature at the beacons or also

with some shared tasks between target and beacons.

Subsequently, this classification can be specified for passive localization scenarios:

• The transmitted signal from one beacon, after being reflected from the target

acting as a passive scatterer or a device enabled with backscattering mechanism,

is received by another beacon. As a result, the localization algorithm can be

implemented either in a centralized or a distributed version at the beacons.
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CHAPTER IV

Energy efficient algorithms

for passive localization scenarios

Reliable position information, obtained with a reasonable complexity overhead

and possibly low energy consumption, is necessary for a successful operation of a

WSN. This chapter investigates algorithms for passive localization scenarios respect-

ing energy efficiency issues.

In Sec. 4.1, the PCRB revised in Sect. 3.2 is applied for analyzing theoretically

the performance of the tracking systems proposed in [37] in order to achieve a trade-

off between localization performance and the ratio between regenerative and non-

regenerative steps. As a result, it is concluded that non-regenerative steps during

tracking is an effective way for realizing interesting energy savings.

Sec 4.2 investigates two ways for improving performance of passive tracking:

1. use of a-priori information for enhancing ranging quality;

2. hybrid tracking achieved by a combination of standard EKFs and fingerprinting

techniques based on different channel signatures.

In fact, due to structure of soft ranging, which can take advantage of some a-priori

information about cluster parameters, the use of a-priori information can improve the
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ranging measure, hence leading to a better localization performance. More impor-

tantly, the proposed hybrid tracking technique composed of a fingerprinting stage and

its fusion with the measures resulting from EKFs shows a remarkable performance

enhancement in all the cases with a single target. On the other hand, in the scenarios

with more than one target and passive localization, performance, even if improved,

remains unsatisfactory in a large percentage of cases because of the ambiguities in

associating the ranging measures to the different targets especially at critical points

when the targets intersecting each others’ trajectory or they are too close. This fact

is particularly evident since here each target acts as a passive scatterer as in a typical

radar scenario and specific techniques should be adopted for limiting the impact of

these ambiguities.

The possible application areas of this type of algorithm are numerous including,

e.g., indoor asset localization using low-complexity amplify-and forward devices and

monitoring systems. Moreover, these technologies may be used as radio infrastruc-

tures for implementing broadband location-based services in environments like railway

stations, airports and industrial facilities.

4.1 Analytic evaluation of hybrid localization composed of

active and passive phases

The section regards the analysis of the performance bounds of an approach for

improving the trade-off between energy consumption and performance in a localiza-

tion and tracking process. A set of fixed beacons is used for localizing a target that

is moving in a limited environment and tracking is realized by mixing active signal

transmissions, which allow using standard techniques for deriving distances and lo-

cations, as well as passive signal receptions, which exploit scattering caused by the

target during signal propagation. Obviously, when the beacons exploit passive signal
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Figure 4.1: System reference scenario with positions of beacons. Combination of re-
generative (a) and non-regenerative (b) measures.

reflections, the target does not consume energy, differently from the steps character-

ized by the active exchange of radio signals.

The principle exploited in the process is simple: the target device alternates phases

in which it acts as an active transmitter with signal regeneration (namely, it trans-

mits a specific packet to the beacons for allowing estimation of times of arrival and

distances as in Fig. 4.1-a) to phases without signal regeneration in which it acts as a

passive scatterer, a backscatterer or a simple relay (Fig. 4.1-b). So, when the target is

in a regenerative phase, the i-th beacon estimates the direct distance di to the target.

On the other hand, when the target is in a non-regenerative phase, each couple of

beacons, i and j, is interested in the measure of the reflected or relayed path, di + dj

(Fig. 4.1).
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We analyze the performance bounds of an algorithm for tracking mobile devices

that can behave alternatively as active transmitters and passive scatterers or relays

with low signal amplification. The algorithm, originally proposed in [37], can be used

for saving energy in small mobile devices, or sensors, extending their limited battery

life. Here, we come back to the principle, used in the tracking process, i.e. alternating

active and passive transmissions, and we apply PCRB for understanding analytically

how effectively this principle constitutes a way for tuning the trade-off between energy

consumption and localization performance.

4.1.1 An introduction to the hybrid localization algorithm

The tracking algorithm, described in [37], is composed of regenerative and non-

regenerative phases. The difference between these two phases at the beacons is the

following: in regenerative phases, the beacons exploit the signal, received from the tar-

get, for estimating the corresponding distance while, in the non-regenerative phases,

the beacons derive measures based on the total reflected paths between each couple of

beacons. The tracking algorithm combine these two types of transmissions by means

of an adapted EKF.

Based on what discussed in chapter II, inverse of recursively computed FIM in

PCRB computation procedure coincide with estimated a posteriori covariance ma-

trix in EKF. Therefore, the elements required either for EKF procedure or PCRB

computation will be the same. In the following, there is a brief description about

computation of the aforementioned elements.

In our scenario, the mobile targets move in a delimited area with two-dimensional

coordinates (x, y). The set of NB beacons have known coordinates (xB(i), yB(i))

(i = 1, · · · , NB). Trajectories, randomly extracted for deriving the average MSE (or

Root Mean Square Error (RMSE)), respond to different models. Both equations of

state transition and measurement describing dynamic nature of the system can be
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derived w.r.t the scenario considered in our simulations. In fact, the equation related

to state transition is based on the conventional kinematic equation for a constant

acceleration object. Therefore, the state transition equation can be written as

xk+1 = Akxk +wk (4.1)

where xk = [x, vx, ax, y, vy, ay]
T is the state vector containing the coordinates, the

velocity and the acceleration in both x and y directions. Ak is the state matrix and

wk is a Gaussian noise process with covariance Qk. If TS denotes the sampling rate

of the process, the state and the covariance matrices can be expressed as [51]

Ak =




1 TS 0.5T 2
S 0 0 0

0 1 TS 0 0 0

0 0 1 0 0 0

0 0 0 1 TS 0.5T 2
S

0 0 0 0 1 TS

0 0 0 0 0 1




(4.2)

and

Qk = σ2
w




Q0 0

0 Q0


 (4.3)

with

Q0 =




1/20T 5
S 1/8T 4

S 1/6T 3
S

1/8T 4
S 1/3T 3

S 1/2T 2
S

1/6T 3
S 1/2T 2

S TS



. (4.4)

The process is completed by the observation model, i.e. the relation between the

observations, the vector zk, and the state vector and it is defined as
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zk = h(xk) + vk (4.5)

where vk is the Gaussian noise with covariance Rk. The linearized measurement

matrix Hk depends on the type of step, regenerative or non-regenerative, since the

measures are different in the two phases. So, at the k-th update step, the set of

measures, accumulated by the ranging phase, is passed to the EKF. In fact, the

measures coming from regenerative and non-regenerative steps are subject to different

update steps, implemented in the EKFs. If {x̂−
k , ŷ

−
k } denotes the predicted coordinates

of the target position, the linearized measurement function (Hk) for regenerative

(active) phase will be a Nb × 6 matrix and its main elements can be expressed as

hk(i, 1) =
x̂−
k − xB(i)√

(x̂−
k − xB(i))2 + (ŷ−k − yB(i))2

hk(i, 2) =
ŷ−k − yB(i)√

(x̂−
k − xB(i))2 + (ŷ−k − yB(i))2

(4.6)

for the ith beacon.

On the other hand, during non-regenrative(passive) phase, With NB beacons, we

will have NM =




NB

2


 ranging measures. Accordingly, the linearized measurement

function (Hk) for non-regenerative (passive) phase will be a NM × 6 matrix and its

main elements can be stated as
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hk(i, 1) =
x̂−
k − xB(ci,1)√

(x̂−
k − xB(ci,1))2 + (ŷ−k − yB(ci,1))2

+
x̂−
k − xB(ci,2)√

(x̂−
k − xB(ci,2))2 + (ŷ−k − yB(ci,2))2

hk(i, 2) =
ŷ−k − yB(ci,1)√

(x̂−
k − xB(ci,1))2 + (ŷ−k − yB(ci,1))2

+
ŷ−k − yB(ci,2)√

(x̂−
k − xB(ci,2))2 + (ŷ−k − yB(ci,2))2

(4.7)

for the ith pair {ci,1, ci,2} of beacons (Fig. 4.1). The other elements of Hk turn

out to be zero in both phases of regenerative and non-regenerative.

When a beacon is not transmitting, it is monitoring the received signal and

searches for the preambles of the other nodes in the network. When it finds one

such preamble, it executes a ranging algorithm for estimating the distance. When

the target is in a regenerative phase, it transmits a signal, e.g. a packet with a known

preamble and time stamped on it, that is used by the beacons for estimating the

NB distances between the target and the beacons; if we assume that beacons can

communicate with each other and cooperate, they can solve the localization problem.

During this phase, the mobile target spends an energy EA, fixed at each active step

since we suppose that its transmit power PT and the packets lengths are constant

during the trajectory. When the target is in the non-regenerative phase, the beacons

transmit a packet and they receive it after its interaction with the target. In this

phase we may distinguish the following cases:

• the target acts as a scatterer and reflected paths are received by all the beacons.

This situation may correspond to small targets which can be approximated as

scattering points in the environment.

• The target exploits a backscattering mechanism into the transceiver device. In
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this case, the target is associated to a device, that can generate a backscattered

signal, independently from its size. This has been recently investigated for UWB

technology in [47][56].

• The target acts as a relay, which amplifies the signal without regenerating it.

Differently from two previously mentioned cases, this case does not correspond

to a complete passive phase. Since the target transmits with a power that is

equal to ARPR where AR is the fixed relay amplification and PR is the power

received by a beacon. Consequently, the energy spent in this phase is not zero

but EA · ARPR/PT . The relay case will not be considered in the numerical

results presented in this section.

The necessity of using reflected paths (in non-regenerative phase) between two

beacons instead of directly reflected paths (e.g. between each beacon and the target)

depends on the fact that each beacon is generally not able to transmit and receive

simultaneously; in this application, due to the indoor short distances, the duration

of a packet transmission is often much longer than the propagation time. Finally we

remark that

• Here, energy savings are referred only to the energy saved by the mobile target

since the beacons are supposed to be fixed and without limited battery life.

• in the non regenerative phases, either the energy spent for transmitting or the

energy for decoding and other computational tasks is saved at the mobile tar-

gets. So, we do not need to separate the amount of energy spent for transmitting

from that spent for decoding, usually much lower.

The combination of regenerative and non-regenerative steps corresponds to a pre-

defined pattern characterized by the fraction λ of non-regenerative steps w.r.t. the

total one; so, the generic pattern has a period composed by NREG regenerative and
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(1− λ)/λ ·NREG non-regenerative steps. Energy savings, when the target power PT

is kept fixed, will be proportional to the factor λ.

4.1.2 Posterior Cramer-Rao Bound for EKF tracking

PCRB has been shown to be the MSE bound for an unbiased sequential Bayesian

estimator and methods based on the process linearization can provide the result

corresponding to the EKF implementation. Sect. 4.1.3 resumes the CRB bounds on

the ranging measures that are the fundamental components of the measure covariance

matrix in the PCRB and EKF processes. Then Sect. 4.1.4 presents the steps of the

analysis.

4.1.3 Ranging measures covariance matrices

In order to compute the measurement covariance matrix, we use classical CRBs.

For Time-of-Arrival (TOA) estimation, the CRB can be expressed as [46]

σ2
TOA ≥ 1

8π2 · β2EP/N0

(4.8)

where β is the effective bandwidth of the pulse and EP/N0 is the signal to noise

ratio. EP is the received energy. There are two options for Ep. The first one is the

received energy of the first path. The second one is the total energy if the receiver

performs an algorithm for estimating all the relevant paths. There is an average gap

(in dB) between these two energies. In our case, the second option is considered.

Simply, CRB for ranging distance can be obtained by the product c2 · σ2
TOA where

c is the speed of light. The distance between two nodes can also be measured using

the received signal strength (RSS) and the CRLB for a distance di using RSS can be

written as [34]

σ2
RSS ≥

(
ln10

10

)2

·
(
σSdi
γ

)2

, (4.9)
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where σS is the standard deviation of a zero-mean Gaussian random variable describ-

ing the log-normal shadowing effect and γ is the path loss exponent factor.

In our scenario, with NB beacons, the measurement covariance matrix Rk in the

regenerative steps is written as a diagonal (NB × NB) matrix with entries equal

to {σ2
TOA(d1), σ

2
TOA(d2), · · · , σ2

TOA(dNB
)} while in the non-regenerative ones, with a

measure for each of the NM couple of beacons, Rk is a (NM ×NM) diagonal matrix

with entries equal to {σ2
TOA(d1+d2), σ

2
TOA(d1+d3), · · · , σ2

TOA(dNB−1+dNB
)}. Similar

entries are assumed for the RSS case (4.9). The measure variance depends on the

total path distance since distance is the factor that affects EP/N0 in (4.8) or that

appears directly in (4.9). Finally, we remark that, for the validity of the CRB, we

focus on unbiased estimates, which correspond to Line-of-Sight (LoS) measures.

4.1.4 PRCB computation for hybrid EKF tracking

The key equations for deriving the Posterior CRB for recursive Bayesian esti-

mation through the updating of the posterior Fisher information matrix have been

presented in [13, 45, 32], and in [38, 39, 7] the whole procedure has been realized and

applied to radar tracking systems. The estimation of the nonlinear PCRB is com-

puted by means of a linearization that reflects exactly the Extended version of the

Kalman filtering. Consequently, the procedure for computing the final localization

MSE bound is similar to the EKF iterative procedure but, here, the Fisher infor-

mation matrix Jk is the object of the recursion. In fact, when the process and the

observation models are described by the linear equations (4.1) and (4.5), it can be

shown that

Jk+1 = HT
k+1 ·R−1

k+1 ·Hk+1 + (Qk + Ak · J−1
k · AT

k )
−1. (4.10)

The estimator CRB turns out to be the covariance
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Figure 4.2: RMSE as a function of λ for TOA-based localization and different room
sides d. The dashed curve are the simulations, reported here as a verifi-
cation for the analytical PCRB results (continuous lines).

E[(x̂k − xk) · (x̂k − xk)
T ] ≥ J−1

k . (4.11)

The overall iterative procedure starts from an initial estimate

J0 = E[−∇x0
∇T

x0
ln(p(x0))] =




σ−2
I 0 · · · 0

0 σ−2
I · · · 0

0 0 · · · 0

0 0 · · · σ−2
I




(4.12)

where σ2
I is the error variance on the initial state vector and the probability density

function p(x0) is assumed Gaussian.
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4.1.5 Evaluation of PCRB

Numerical results will be focused on the relation between the localization error (i.e.

the difference ǫ between estimated and correct points at each algorithm step) and the

factor λ for fixed performance conditions. Performance is expressed by the position

RMSE, derived by the PRCB analysis (Sect. 4.1.2), and by simulations, based on the

standard EKF. The computations and simulations have been carried out in square

rooms with variable side of d m and the number of beacons is fixed to the symmetric

configuration NB = 4 at the room corners for all figures except for Fig. 4.6 where

NB varies from 3 to 8. Both procedures achieve the RMSE estimate by averaging

100 different trajectories starting from the room center and corresponding to the

constant acceleration model perturbed by the Gaussian noise process with covariance

(4.3) and σw = 0.4 m/s2 for both x and y coordinates. Simulated trajectories have

20− 100 time samples according to the room side d, and a sample interval TS = 0.5 s

for a total observation time equal to 30 · d/25 s (scaled w.r.t. the room side). The

measurement data are generated by adding the measurement noise, assumed to be a

white random variable with zero mean and standard deviation given by the CRBs for

ranging measures resumed in Sect. 4.1.3. The initial estimation of the target position

is subject to a Gaussian error with σI = 0.1 m for TOA and 1 m for RSS. Here only

passive non-regenerative steps are considered (i.e. no relays are used).

The physical parameters of the transmission are taken from the UWB technology.

The standard pulse has a reference bandwidth of 512 MHz and the propagation

exponent changes from a favorable value γ = 1.63 (according to residential LoS UWB

channel model) to a more severe γ = 4. Each receiver noise figure is fixed to 7 dB

and each node (beacon or target) has a transmission spectral power density equal to

−41.3 + ∆ET dBm/MHz where ∆ET can vary in order to compare the systems at

the same RMSE and obtain a fair comparison among the energy saving options (in

terms of λ).
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The channel path loss parameters and the transmit power spectral density are

used for computing the CRB of the ranging measures according to (4.8): in fact the

signal-to-noise ratio depends on the transmitted power, on the distance and on the

corresponding path loss.

The numerical results are divided into two groups, the first category (Figs. 4.2-

4.3) reporting the RMSE as a function of λ for several parameter selections in order

to see the impact of non-regenerative step on performance and also for comparing

analytical with simulative results, and the second category (Figs. 4.4-4.6) reporting

the transmit target energy reduction ∆ET that can be achieved by fixing the output

RMSE as a function of λ. In Figs. 4.2-4.3, we can observe the RMSE for TOA and

RSS based localization systems respectively for different d and channel parameters

and the curves reveal a slight RMSE increase as λ approaches 1. In the plots, λ = 0,

or absence of non-regenerative steps, can be considered as the reference performance

point.

Figs. 4.4-4.6 reveal the amount of energy savings realized by the different re-

generative and non-regenerative patterns keeping the RMSE and hence the output

performance fixed in order to realize a more significant comparison. The factor ∆ET

[dB] is the reduction of the target transmitted energy that takes into account two

contributions: the increase of energy spent during the regenerative steps for compen-

sating the performance reduction due to the λ increase and the decrease of energy

obtained from the fraction of non-regenerative steps, proportional to λ.

The main result of this analysis is that the hybrid technique turns out to be

effective in the extension of the energy savings as λ increases without loss in the

output performance, as can be seen in Fig. 4.4 for different target RMSE. This kind

of energy gap turns out to be present for all the variations of the main parameters

used in the reference scenario: the room side d and the signal bandwidth BW (Fig.

4.5) affect the signal attenuation and the TOA resolution respectively, the number
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of beacons has an impact on the localization precision (Fig. 4.6), the propagation

exponent γ affects the signal-to-noise ratio. In all the cases, the potential energy

savings w.r.t. the all regenerative tracking (λ = 0) vary, when 0.5 < λ < 1, from 1 to

about 10 dB for low γ = 1.63 and from 0 to about 4− 5 dB for higher γ = 4.

4.2 A hybrid tracking algorithm composed of FP and EKF

based tracking

The focus of this section is on passive signal reception exploiting scattering caused

by target(s) during signal propagation. Here, a combination of fingerprinting (FP)

and tracking is investigated in order to tackle conventional problems related to im-

plementation of either tracking or fingerprinting separately. One of the common
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drawbacks of FP belongs to large data size and consequent large search space as a

result of either vastness of surveillance area or finer grid resolution in FP grid map

which limits the application of FP to small environments or scenarios with largely

spaced grid points leading to poor localization performance. By taking advantage

of latest position estimate gotten from EKF, a Virtual Surveillance Area (VSA) is

defined around the estimate. The dimension of this defined surveillance area is much

smaller than the size of indoor environment. Consequently, there will be a possibility

for FP to be applied in larger areas maintaining the possibility of adding necessary

grid points in order to achieve a desired localization performance.

The second aspect of the scheme deals with the critical concern when tracking

more than one passive target, i.e. to make the correct discrimination among measures

as a result of occurred ambiguity in paths clusters scattered by different targets

especially when targets are moving close to each other. This issue is alleviated by

applying a hybrid tracking technique composed of the fusion of FP measure with

the measure resulting from EKF inside the aforementioned VSA. Of course, this is

also applicable for tracking one target with improved performance. In addition, in

order to improve accuracy of ranging, we investigate the impact of the knowledge

of a-priori information related to the clusters impulse responses and other features;

the ranging algorithm for time of arrival (TOA) estimation, based on our previously

presented algorithm called soft, is modified in order to take advantage of this a-priori

information and to make its decision variables more accurate. Consequently, there

will be more precise ranging measures passed through EKF update steps. Simulation

results show a promising performance improvement via using the proposed hybrid

tracking technique and applying a-priori information to soft ranging. The trade off

is along a reasonable increased implementation complexity.

The main core of the applied tracking strategy is based on [25], which is realized

by passive signal receptions that exploit diffused reflections caused by the target(s)
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(as a passive small scattering object or by means of a backscattering process) during

signal propagation. Here, we focus on indoor environments where a set of static

nodes, called beacons, is used for localizing one or more targets moving in a limited

area. The ranging process at each receiving beacon derive measures based on the

total reflected paths between each couple of beacons. The tracking algorithm is done

by means of a bank of Extended Kalman Filters (EKFs) and by managing available

multiple measures in an appropriate manner. In each EKF update step, time of arrival

(TOA) ranging measures resulting from soft ranging (SR) algorithm [29] is applied.

Soft ranging outputs a vector of distances with associated likelihoods, instead of a

single distance estimate and hence it is well-suited to perform multiple hypothesis

testing with a multi-filter system for tracking multiple objects. In [28] and [24], a

static version of the problem is considered and an algorithm based on Lagrangian

relaxation is proposed to solve it.

Here the goal is to to deal with commonly addressed problem related to FP and

tracking by proposing a combination of tracking and FP with a fusion mechanism

between measures resulting from tracking and FP separately. One of the disadvan-

tages related to FP online phase is the large data size depending on the size of the

area under surveillance or on the large number of FP grid points for having better

position estimates. This issue limits FP application to small indoor environments or

larger areas with largely spaced grid points. To circumvent this drawback, the pro-

posed algorithm defines a VSA around the latest estimate gotten from EKF which is

much smaller than the original total search area. The FP part of the proposed hybrid

algorithm is done over this aforementioned VSA and it is investigated and compared

for different signatures, i.e. impulse response, intensity profile, power and duration.

Another contribution is the hybrid tracking method obtained by applying a mea-

sure fusion algorithm between measures from the fingerprinting procedure and mea-

sures resulting from the EKF inside the defined VSA. It is shown that the proposed
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method presents a performance enhancement w.r.t the tracking algorithm proposed

in [25] especially when tracking two passive targets, a task made really difficult by

the ambiguity in the identification of paths clusters scattered by different targets and

received overlapped.

Finally, the performance of tracking algorithm in [25] is investigated under the as-

sumption of soft ranging measures enriched by different a-priori information (impulse

response, intensity profile, power and duration like in the FP case) and, consequently,

with EKF update steps improved by more accurate ranging measures. To the best of

our knowledge, the combined impact of a-priori channel information in ranging and

FP has not been investigated before in the literature for passive and active localiza-

tion. It should be emphasized that the considered tracking scenario in this work is

tracking moving devices not transmitting to the beacons, i.e. without energy con-

sumption, since the final objective is to discuss the tracking performance of targets

without energy consumption. The proposed hybrid algorithm is applicable for track-

ing mobile devices that can work as passive scatterers or relays with low or without

signal amplification.

4.2.1 Hybrid algorithm structure

The applied scenario in the analysis is constituted by a bi-dimensional square area

with NB = 4 beacons in the corners, as sketched in Fig. 4.7 (d is the room side). In

this sample configuration presented in Fig. 4.7, there are one or two targets moving

along related trajectories. Two distinguished targets are shown with circle and square

dots.

Here, targets do not participate in an active exchange of signals except in the

initial connection of target(s) to WSN. They act as passive scatterers while beacons

cooperate for estimating the distance of the reflected path and execute the tracking

algorithm described in Sect. 4.2.2. To shed more light on this, this fact is shown
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Figure 4.7: A sample presentation of system reference scenario.

in Fig. 4.1 in a way that a sample pair-wise connection among the beacon pairs

(2, 3) and (1, 4) is presented for each of the targets shown by circle and square dot

respectively.

All simulations are made at baseband and in discrete time using complex baseband-

equivalent channel models adopted by the IEEE 802.15.4a working group [3]. These

channels are a low-pass filtered tapped delay-line where signal components arrive at

the receiver in independent clusters. Given a couple of beacons at locations Bi and

Bj, the presence of a scattering device at location P is modeled by adding all the sig-

nal paths that are described by the convolution between the channel impulse response

from Bi to P and that from P to Bj (ideal point scatterer or relay).

In our model, we assume that impulse responses generated by a target in two

different locations are independent if the distance between these two location is greater

or equal to a coherence distance dC . From a practical point of view, the indoor

environment is covered by a rectangular grid of points at distances multiple of dC and
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the impulse response of a target in a generic location P is obtained by interpolating 4

independent impulse responses at the corners of the rectangular area that includes P .

The rectangular grid map is depicted in Fig. 4.1. Finally, after passing the channel,

the signal is affected by additive white Gaussian noise (AWGN) with zero mean.

When a beacon does not transmit, it monitors the received signal and searches for

the preambles of the other nodes in the network. When it finds one such preamble,

it executes a ranging algorithm for estimating the distance. The necessity of using

reflected paths between two beacons instead of directly reflected paths (e.g. between

each beacon and the target) depends on the fact that each beacon is generally not

able to transmit and receive simultaneously; in this application, due to the indoor

short distances, the duration of a packet transmission is often much longer than the

propagation time.

4.2.2 Algorithm for Zero Energy Localization

The principle exploited in the process is simple: the localization algorithm in-

corporates two components, ranging and tracking, which are implemented by soft

ranging and a bank of NEKF EKFs. Each couple of beacons, i and j, is interested in

the measure of the reflected or relayed path, di + dj (Fig. 4.1). Sect. 4.2.3 elaborates

the issue related to providing EKF update step by ranging measures with a-priori

information. Sect. 4.2.4 provides a brief review of the basic structure of the tracking

strategy based on [25]. Finally the proposed hybrid tracking algorithm is introduced

in Sect. 4.2.5.

4.2.3 Ranging with a-priori parameter knowledge

In this work, we use soft ranging algorithm [29], whose output is composed of a

discrete vector of likely distances with an associated approximation of the probability

that these distances correspond to the estimates. This soft information is also used to
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provide a measure of the uncertainty of the distance estimate, i.e., an estimate of the

error magnitude; in fact, a large uncertainty is often associated to a NLoS measure

or to a measure obtained at low Signal-to-Noise Ratio (SNR). The propagation path

length between the beacons over a point scatterer at coordinates s, is

dj(s) = ‖xj,1 − s‖+ ‖xj,2 − s‖, (4.13)

where j = 1, . . . , NM ; NM =




NB

2


. The term ‖ · ‖ denotes Euclidean norm, and

xj,1,xj,2 ∈ Rd are the transceiver coordinates of the j-th pair in d = 2 or d = 3

dimension. An estimate d̂j(s) is given by a cluster time of arrival. In general, each

transceiver pair will compute several multipath distance estimates.

The commonly made assumption about soft ranging assumes that nodes have no

a-priori channel state information. However, due to the structure of soft ranging in the

formation of decision variables for TOA estimation, it is inferred that when a-priori

information about some parameters of the signal is available, ranging performance

can be improved. The soft ranging is based on the computation of probabilities of

presence or absence of signal in a local interval around the early arrived signal paths

(Pn is the probability that no signal component is present at correlator offset n in the

local interval with n = 0, · · · , Nw). These probabilities are used in combination with

the a-priori information for improving the cluster ranging implementation. Without

a-priori information, first-path likelihood measure is given by

l(n) = (
n−1∏

j=n−Nw

Pj)(1− Pn)(1−
n+Nw∏

j=n+1

Pj), (4.14)

where Nw is the window parameter. So an estimated cluster first-path probability

vector p̂ is formed by computing likelihoods l(n) for all correlator offsets in memory,

and normalizing to unity for each detected cluster of paths. Soft ranging is easily
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suited to the inclusion of a-priori knowledge of some channel parameters for improving

the ranging output; the presence of this a-priori information can be exploited for the

following cases.

CD The knowledge of the cluster duration allows to substitute in (4.14) the general

window Nw with the cluster duration in that area or location NCD.

CP The knowledge of the cluster power is used for improving the estimate of Pn,

which is computed through the evaluation of noise and signal power. When no

a-priori knowledge is available, the signal power is estimated by averaging some

detected paths.

CIP The knowledge of the power associated with each path composing the cluster

allows to refine further the previous point, since a probability of cluster presence

is computed by exploiting jointly the signal power in each path. Notice that

CIP knowledge includes previous CP and CD knowledge.

CIR Here the impulse response of the cluster allows to change the probabilistic

assumptions done in [29, 25]; in fact all the received complex samples assume

simply a Gaussian distribution with mean value equal to expected signal path

and variance given by the noise power. The presence of the cluster is clearly

given by the joint probability of these Gaussian variables.

In order to test the potential performance improvement due to ranging with a-

priori knowledge of some channel parameters, the numerical results will be obtained

by using the ideal knowledge of CD, CP , CIP and CIR respectively. From a practical

point of view, the implementation of such a system can be achieved in two sub-optimal

ways:

1. by means of the data stored in the FP grid, during the tracking procedure it is

possible to recover a set of a-priori channel parameters according to the target
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position predicted by the EKFs;

2. by means of an iterative procedure between the soft ranging algorithm and

a conventional channel estimation process: after a first soft ranging estimate

without a-priori knowledge, an estimate of the channel parameter (CD, CP ,

CIP or CIR) is done and it is used as a-priori knowledge for a new soft ranging

call with the aim of achieving a refined identification of the cluster.

4.2.4 Tracking strategies

4.2.4.1 Track Initialization

The mobility model applied in our simulations corresponds to the EKF equations

introduced in (4.1)-(4.5).

In our scenario we assume that:

• the initial position estimate and the identification of the target is performed by

exchanging dedicated packets between the beacons and the target. So, the initial

connection of the target to the WSN is operated with an active cooperation of

the target itself. After this initial step, the target switches off and tracking

is performed exploiting scattering caused by the target. This initial ”active”

phase has the following clear advantage in the sense that the set of beacons not

only know the number of targets in the environment but also obtain a precise

position estimate of the first trajectory sample.

• When the number of targets is greater than 1, they are initially divided uni-

formly among all the available NEKF EKFs. So, each target is initially assigned

to an equal number of EKFs.
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4.2.4.2 Filters Update

Due to the aforementioned nature of soft ranging producing multiple ranging

estimates with corresponding likelihoods, there will be a number of more or less likely

first cluster-path distance estimates for each beacon pair during each measurement

cycle. Consequently, each EKF must select one estimate from each beacon pair in

a possibly large number of different estimates with varying likelihood values. A

metric is built and updated for selecting the most likely trajectories in a hypothesis

tree that is updated at each step of the tracking process. Let us define a selection

Z̃
(k)
n = [d̂

(k)
1 , . . . , d̂

(k)
J ] as a possible set of distance estimates to use for updating the

n-th filter at update cycle k. In order to evaluate the merits of this selection and

compare it to other different sets of estimates, we want to evaluate the probability

P (Z̃
(k)
n |r(k),X(k−1)

n ), i.e., the probability that distances in Z̃
(k)
n , conditioned on the

received signals r(k) and the previous filter state X
(k−1)
n , are estimates of multi-path

distances corresponding to the object currently tracked by filter n. If we assume that

the received signals and the last filter state are statistically independent and apply

Bayes’ rule, we can write:

P
(
Z̃(k)

n |r,X(k−1)
n

)
=
P
(
r|Z̃(k)

n ,X
(k−1)
n

)
P
(
Z̃

(k)
n ,X

(k−1)
n

)

P (r)P (X
(k−1)
n )

=
P
(
r|Z̃(k)

n

)
· P
(
Z̃

(k)
n |X(k−1)

n

)

P (r)

=
P
(
Z̃

(k)
n |r

)
· P
(
Z̃

(k)
n |X(k−1)

n

)

P (Z̃
(k)
n )

. (4.15)

Now, P (Z̃
(k)
n |r) can be interpreted as the probability that distance estimates in

Z̃
(k)
n really correspond to first cluster-path distances (as opposed to generated by

noise or located in the middle of a cluster). This factor can therefore be approxi-
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mated by P (Z̃
(k)
n |r) =∏6

j=1 p̂
(k)
j (ij) where ij is the index in p

(k)
j corresponding to the

estimate from j-th pair in Z̃
(k)
n . The factor P (Z̃

(k)
n ) is a normalization term, while

P (Z̃
(k)
n |X(k−1)

n ) can be evaluated by means of the Gaussian assumption used in the

motion model of the EKF filters [23]. If we let the estimated a-priori error covariance

matrix of the n-th EKF be S
(k|k−1)
n , we can write

P
(
Z̃(k)

n |X(k−1)
n

)
=

1√
(2π)6

∣∣∣S(k|k−1)
n

∣∣∣
· (4.16)

· exp
(
−1

2
(Z̃(k)

n − Z(k|k−1)
n )TS(k|k−1)−1

n (Z̃(k)
n − Z(k|k−1)

n )

)
, (4.17)

where Z
(k|k−1)
n is a vector of predicted multi-path distances at the n-th EKF. Each

EKF in the filter bank has an associated figure of merit λ̃
(k)
n , that measures how well

the n-th filter has tracked its intended target until k-th step in the hypothesis tree.

By computing this metric for all possible measurement combinations Z̃
(k)
n , we can

select which measurements to use for filter update. The figure of merit for a given

measurement combination is given by [25], i.e.

λ(k)
n = λ(k−1)

n − (Z̃(k)
n − Z(k|k−1)

n )T · (Z̃(k)
n − Z(k|k−1)

n ), (4.18)

where λ
(k−1)
n is the current figure of merit of the n-th EKF (at start-up all figures of

merit are initialized as λ
(0)
n = 0). The term NM , as previously defined, is the number

of measures per target at each EKF update step; Z
(k|k−1)
n is a vector of predicted

multipath distances at the n-th EKF. According to the figure of merit defined in

(4.18), the following filter assignment and update strategy is applied for a bank of

NEKF EKFs: the NEKF measurement combinations and filter states with highest merit

are re-assigned to the corresponding filters. This means that an EKF can at any time

be re-initialized to a new trajectory.
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4.2.5 Hybrid fingerprinting and EKF based tracking

The strategies for passive tracking suffer from several problems related primarily

to the low SNR levels and the large delay spread of clusters. Additionally, in case of

multiple tracking, the difficulty of associating the measured distances with the correct

target and hence the correct EKF is of great importance. In fact, when different tar-

gets are close to each other, the presence of multipath creates severe ambiguities since

paths clusters, scattered by different targets’ overlap, make the correct discrimina-

tion among measures very challenging. In order to enhance robustness of the tracking

algorithms, we introduce a hybrid tracking algorithm by means of a fusion strategy

between two measurements of fingerprinting and the conventional tracking.

As previously mentioned, one of the simplest mapping techniques is the selection

of target coordinates based on the coordinates of FP grid point leading to minimum

Euclidean distance between measured LD metric and the metric related to that spe-

cific FP grid point measured during FP offline phase. To elaborate, let us assume

the number of LD measures to be NM . For the sake of simplicity in mathematical

representation, LD metric is assumed to be scalar although extension to the case,

where LD parameter is a vector, is straightforward. During the offline phase of FP,

the LD metric vector Mpi
(NM × 1) is measured at each point of FP grid (pi) and

stored in a database. Consequently, target position is estimated based on minimizing

the following Euclidean distance over grid points

Arg min
{pi}

‖M−Mpi
‖ (4.19)

where M is the LD metric vector measured in online phase of FP. Here, applied

LD metrics are the same parameters related to a-priori information in ranging and

can be mentioned from the least to the most effective as

• knowledge of the cluster duration (CD);
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• knowledge of the cluster power (CP);

• knowledge of the cluster intensity profile (CIP), i.e. the mean power of the

resolvable paths composing the cluster;

• knowledge of the cluster impulse response (CIR), i.e. the amplitudes and phases

of the resolvable paths composing the cluster.

A VSA is defined around the latest target position estimate gotten from EKF.

Assuming [x̂ ŷ]T as target position estimate, the square surveillance area is defined

with four vertices [x̂±FPr ŷ±FPr]
T where FPr is the expansion of surveillance area.

The vertex coordinate, exceeding room dimensions in x or y or both axis direction,

will be replaced with corresponding room coordinates. Let’s assume the number of

FP grid points, which fall inside VSA, be ix · iy where ix and iy are the number

of the coordinates of FP grid points along x and y axis respectively. For each of

the grid points inside VSA, two Euclidean distances are independently computed.

The first distance parameter is related to conventional calculated Euclidean distance

(dFP ) between measured LD metric and that of stored in FP offline phase. The

second distance parameter (dEKF ) is the Euclidean distance between target position

estimate via EKF and coordinate of each of FP grid points in the surveillance area.

Considering two mentioned Euclidean distances to be computed for each of the

grid points, there will be NFP = ix ·iy values for each of Euclidean distances. For each

grid point pi with the coordinate [xpi ypi ]
T and related FP metric Mpi

, two Euclidean

distances d
(i)
FP and d

(i)
EKF are defined as

d
(i)
FP = ‖M−Mpi

‖ (4.20)

and
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d
(i)
EKF =

∥∥∥∥∥∥∥

x̂− xpi

ŷ − ypi

∥∥∥∥∥∥∥
(4.21)

where i = 1, . . . , NFP .

Assuming a Gaussian distribution and considering the fact that d
(i)
FP and d

(i)
EKF are

independent, for each grid point pi, two independent probability metrics i.e. P
(i)
FP and

P
(i)
EKF can be assigned which are exponential function of two distances d

(i)
FP and d

(i)
EKF

receptively. It should be mentioned that after computation of probability metrics for

all grid points, they are normalized. Afterward, final decision variable is calculated

as Pi = P
(i)
FP · P (i)

EKF . The grid location with highest Pi will be considered as target

position estimate. This estimate will be passed as a-priori estimate to the next EKF

update step.

4.2.6 Performance evaluation of hybrid algorithm

The physical parameters of the transmission are taken from the UWB technology.

The standard pulse has a reference bandwidth of 512 MHz and the propagation

exponent is fixed to a value of γ = 1.79 according to residential Line-of-Sight UWB

channel model (channel model CM = 1). Each receiver noise figure is fixed to 7

dB and each node respects the UWB transmission power spectral density of −41.3

dBm/MHz. In this test scenario, we exploit ranging algorithms based on the times

of arrival and characterized by soft detection techniques that have demonstrated

performance advantages w.r.t. other approaches. Numerical results present the effect

of the proposed tracking algorithm on localization error (i.e. the distance ǫ between

estimated and correct points at each algorithm step).

The reference scenario is a square room with room side d = 30m and the number of

beacons is fixed to NB = 4 at the room corners as a typical localization environment.
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Each LoS link is modeled by the IEEE 802.15.4a residential channel models (CM =

1). The transmitted signal experiences a channel that is obtained by the convolution

between the channel realizations corresponding to the links between beacon a and

the target and between the target and the beacon b that is supposed to receive the

transmitted signal (in a selected beacon pair (a, b)). This approach provides the

approximate impact on the propagation of a target that can be assumed as a small

(point) scatterer or as a passive relay without signal amplification (e.g. exploiting

backscattering mechanisms). As previously mentioned, the path loss parameters are

taken according to residential LoS parameters (i.e. propagation exponents γ = 1.79

[3]). The path loss model of the overall reflected path is computed in the simulations

according to [10]. The number LPCK of pulses in a packet is 32 and all antenna gains

are set to 0 dB. At each simulation, the set of 100 trajectories is used for averaging

all the location errors. The localization algorithm is supposed to obtain distance

measures corresponding to a sampling time ∆T = 1 s on one (two) target(s) moving

with a random walk model

xk = xk−1 + v · cos(αk)∆T (4.22)

yk = yk−1 + v · sin(αk)∆T (4.23)

with αk = αk−1 + δ and δ zero mean Gaussian random variable with σ2
δ within

an observation time equal to 45 s. We will show a set of selected, significant figures

reporting the cumulative distribution function (CDF) of the localization error. For

simplicity, the ranging technique is referred as SR+APR (soft ranging) or TR+APR

(threshold ranging) with a-priori information APR = {CIP,CD,CP,CIR}; on the

other hand the fingerprinting process, when present in addition to the EKFs bank, is

referred as FP [SG] with signature SG = {CIP,CD,CP,CIR}.
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Figure 4.8: CDF of localization error when tracking a single scatterer (σδ = π/15)
using soft ranging with one EKF and no FP.
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Figure 4.9: CDF plots of localization error when tracking a single scatterer (σδ =
π/15) using soft ranging SR or SR + CIR with one EKF and FP.
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Figure 4.10: CDF of localization error when tracking a single scatterer (σδ = π/15)
using threshold ranging with one EKF and no FP.
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Figure 4.11: CDF plots of localization error when tracking a single scatterer (σδ =
π/15) using threshold ranging TR or TR+CIP with one EKF and FP.
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Fig. 4.8 depicts the CDF of the distance error for the localization with ranging

enriched by a-priori information and without the FP scheme. As expected, using a-

priori information related to knowledge of cluster impulse response (CIR) or cluster

intensity profile (CIP ) shows a relevant advantage since this knowledge allows to

increase the amount of received energy available for the cluster identification; little or

no advantage can be observed for SR+CD and SR+CP since the ranging algorithm

still estimates locally these parameters for detecting its first path. Similar results are

obtained for threshold ranging (TR) in which the CIR and CIP cases coincide (Fig.

4.10). On the other hand, Fig. 4.9 presents the error CDFs by using the proposed FP

scheme associated to the absence (left) and to the presence (right) of the best a-priori

information (CIR in Fig. 4.8). As expected, FP [CIR] and FP [CIP ] show the best

performance advantage due to taking advantage of cluster complete information i.e.

impulse response even if when no a-priori information for ranging is present during

tracking. In the error interval of interest, depending on the type of signature, we

generally observe a performance improvement that increases with complexity; here

also the cases FP [CP ] and FP [CD] can provide a remarkable improvement since

one of the main performance key factors is the inclusion of the path delay in each FP

signature, which provides a windowing effect on the estimated signatures. In fact each

point of the grid obviously contains also the distance and hence propagation delay

information and this assists the fusion between the outputs of the EKFs and the

correct positions. The synergy related to the interaction of the EKF based tracking

and the FP process is observable in Fig. 4.9. Also the synergy between a-priori

information in ranging and the FP process can be observed comparing the left and

right figures in Fig. 4.9. Similar considerations can be derived from the threshold

ranging case, reported in Fig. 4.11.

Fig. 4.12 depicts CDF of the distance error obtained from passive tracking of two

scatterers without using the FP scheme. As for one target, using a-priori information
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Figure 4.12: CDF plot of localization error when tracking two scatterers (σδ = π/15)
using soft ranging with two EKFs and no FP.
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Figure 4.13: CDF plots of localization error when tracking two scatterers (σδ = π/15)
using soft ranging SR or SR + CIR with two EKFs and FP.
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related to knowledge of CIR and CIP provides an advantage. At the same time, it is

clear that when two objects are present in the environment, the average performance

is considerably decreased by phenomena of ambiguity between the overlapping cluster

signals received by passive reflections by the objects (see Fig. 4.8). Fig. 4.13 presents

CDFs of the distance error for two scatterers by using the proposed FP schemes

without any a-priori information (left) and with the best CIR a-priori information.

Here it is interesting to see that FP provides little advantage in the small error region

(when localization is successful without ambiguity) either in absence (left) or presence

(right) of SR with a-priori information, pointing the main issue of occurred ambiguity

between multiple targets when localization is performed in a passive way. We may

conclude that, in the presence of multiple targets and without specific algorithms for

solving targets’ ambiguity, FP does not provide a relevant advantage since, especially

in a small environment, the mutual interference between targets’ signals affect nega-

tively the search and association of the signatures; on the other hand, improving the

ranging algorithm by using advanced form of a-priori information concerning cluster

multipath response or intensity profile gives an important performance improvement

since their exact knowledge gives the possibility of distinguishing the different signals.
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CHAPTER V

Power allocation algorithms

for active localization scenarios

Information about the position of individual nodes, either absolute or in relation

to other nodes in the network, is often crucial for a successful fulfillment of the

WSN purpose. Accurate ranging and localization is considered as one the crucial

applications for wireless sensor networks. This chapter consider algorithms for active

localization scenarios working on the allocated powers at the beacons and possibly

providing increased accuracy. In Sec 5.1, a review of power allocation techniques

during a localization process is considered. Then, in Sect. 5.2, a suboptimal power

allocation (PA) method based on a minimization of a parameter, called uncertainty

area, is proposed. The algorithm performance evaluation leads to the fact that better

localization performance is achievable via PA w.r.t localization with uniform power

allocation.

In Sec 5.3, the impact of real ranging on existing PA algorithms in localization

scenarios is studied. Unlike the common assumption that variance of range estimator

achieves CRB, the MSE of practical ranging algorithms does not improve by increasing

SNR over a certain SNR threshold. Therefore, a simple PA algorithm, which takes

advantage of this phenomenon, is presented and evaluated.
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5.1 Power allocation in localization

5.1.1 Literature review of optimal approaches

In [53] and [54], a lower bound for target position estimate is derived. Consid-

ering that the achieved lower bound, SPEB, is a function of the transmit power, a

consequent minimization of SPEB with respect to transmit power from each beacon

has been pursued in [50, 52, 55, 49]. In [50], authors consider the position error in

a specific direction, called directional position error bound (DPEB), and they show

that SPEB can be seen as a sum of two DPEBs in two orthogonal directions. A

consequent minimization of DPEB is achieved along the direction in which the error

is maximum (called maximum DPEB or mDPEB).

The main focus of [52] is on the eigenanalysis of Fisher Information Matrix (FIM)

related to SPEB and both optimal power allocation (PA) and optimal beacon deploy-

ment are discussed in order to obtain the minimum SPEB. Taking into account that

the parameters involved in the SPEB minimization, like angles and path losses be-

tween target and each beacon, are subject to uncertainty in practice, robust versions

of the SPEB minimization are considered in [49].

All the above-mentioned formulations are for active localization where positioning

is implemented geometrically by the intersection of different circles in which each

beacon is in the center of the corresponding circle. In [15] a similar theoretical analysis

using Cramer Rao Bound (CRB) is pursued in order to compute a lower bound for the

error of target position estimate and the corresponding power allocation formulation

is obtained for passive localization in which localization is implemented geometrically

by the intersection of ellipses, each one characterized by a pair of beacons located in

their foci.

In chapter III, a lower bound for the error of target position estimate via active

localization was discussed. Equation (3.16) is a lower bound for MSE of unbiased
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estimate of target position. Since this formulation deals with variance of each of

distance (TOA) estimates between target and each of beacons, it is worth to elaborate

variance of each range measurement using CRB for TOA estimation

σ2
j = E[(d̂j − dj)

2] ≥ ζ

prj
=

ζLi

ptj
; ζ =

c2 · pnoise
8 · π2 ·B2

. (5.1)

In (5.1), prj is the received power from beacons j at the target, B is a measure

of bandwidth, Pnoise is the noise power, Lj is the path loss between target and jth

beacon, i.e. prj =
ptj
Lj
.

Assuming that variance of distance (TOA) estimator achieves CRB and replacing

(5.1) in (3.16), we have

P =

4 · ζ ·∑
j

ptj
Lj



(
∑
j

ptj
Lj

)2

−
(
∑
j

ptj ·cos(2αj)

Lj

)2

−
(
∑
j

ptj ·sin(2αj)

Lj

)2


. (5.2)

It is obvious that (5.2) is a function of two vital major parameters i.e. transmit

power
{
ptj
}
, j = 1, ..., Nb and signal bandwidth. Consequently, localization MSE can

be changed by playing with these two parameters. However, in all of the presented

formulations and, in the sequel, related to power allocation (PA), signal bandwidth

is assumed to be constant.

Considering (5.2), SPEB is a convex function of
{
ptj
}
, j = 1, 2, ..., Nb [49]. Con-

sequently, SPEB can be minimized with respect to the major parameters
{
ptj
}
, j =

1, 2, ..., Nb. This minimization problem can be formulated as
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minimize
{ptj}

SPEB = tr
{
J−1
}

subject to
∑

j

ptj = Ptot,

(5.3)

which is a minimization of SPEB with respect to a constraint of fixed total trans-

mitted power (Ptot). On the other hand, there can be another formulation based on

the minimization of the total transmitted power w.r.t a specific accuracy requirement

(ρ):

minimize
{ptj}

∑

j

ptj

subject to SPEB = tr
{
J−1
}
= ρ.

(5.4)

The critical concern about these two problems is the fact that other minor pa-

rameters like the angles of target with respect to each beacon (αj) and the path loss

between target and each beacon are subject to uncertainty in practice. In [50], [52]

and [55], the two above-mentioned optimization problems are considered under the

assumption that an actual, ideal knowledge of minor parameters is available.

There is also another formulation for (5.3). In [50] the authors suggest to use maxi-

mum directional error bound (mDPEB) as the objective function in (5.3). Directional

position error bound is defined considering the error of target position estimate in a

specific direction and it is defined as [54]

P (U)
∆
= UT

[
J−1
]
U. (5.5)

From (3.17) and (5.5), it is obvious that, if we set U =



cos(γ)

sin(γ)


 or U =
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

−sin(γ)

cos(γ)


, SPEB will be equal to 1

µ1
or 1

µ2
respectively. Based on the assump-

tion µ1 ≥ µ2, the smallest eigenvalue will give a greater contribution in the position

error [50]. Consequently, the minimization problem turns out to be

minimize
ptj

1

µ2

subject to
∑

j

ptj = Ptot.
(5.6)

As previously mentioned, minor parameters are due to uncertainty in practice.

Authors in [49] consider the case where there is uncertainty in the estimation of

minor parameters.

All the above-mentioned formulations are for active localization where positioning

is implemented by intersection of different circles in which every beacon is in the

center of the related circle. In [15], similar theoretical analysis using CRB is pursued

in order to compute a lower bound for the error of target position estimate and

the corresponding power allocation formulation using passive localization in which

localization is implemented by intersection of ellipses in which two beacons are located

in the foci of each ellipse.

5.2 An algorithm for power allocation based on a likelihood

area

One of the main goals in designing localization algorithms is to to provide more

accurate estimates of target position. In order to achieve this objective, also power

allocation among beacons can be effective for enhancing localization performance.

Here, a power allocation scheme is presented which is to be applied among beacons

with respect to a fixed amount of the total transmitted power. The proposed scheme

is based on a power allocation procedure performed in a pair-wise way among beacons

86



and a successive selection strategy in order to pick the most appropriate allocated

power for each beacon. Despite its suboptimal nature, simulation results confirm an

improvement of localization performance via power allocation.

Here, the scenario of application is constituted by a set of fixed beacons used for

static localization of one target in a limited environment. The technology considered

in the simulations is the Ultra-WideBand Impulse Radio (UWB-IR). The general

structure of algorithm is based on the fact that, using the well-known Cramer-Rao

lower bound (CRLB) for each of the time of arrival (TOA) estimates obtainable be-

tween the target and each beacon in a selected beacon pair, a ”likelihood area” is

defined as a bi-dimensional area representing the level of reliability of the localiza-

tion measure. The algorithm is composed by two stages. In the first, a PA scheme

acts on each pair of beacons. In the second, since each beacon is participated in the

pair-wise selection procedure more than once, there will be multiple allocated powers

for each beacon and, therefore, an algorithm derives an overall power allocation for

the whole beacons set by selecting appropriate allocated powers from the first stage

outcomes. For assuring a limited computational complexity in the first part, the

proposed algorithm aims to minimize the likelihood area by selecting an appropriate

power allocation among beacons in a pair-wise selection procedure w.r.t. the con-

straint of a given total transmitted power. Finally, since each beacon is involved in

more than one pair, the algorithm selects one of the allocated powers for each beacon

based on a defined procedure.

The scenario used for testing the algorithm characteristics represents the simplest

localization scenario and it is chosen for highlighting the algorithm properties and

minimizing the impact of any other system model parameter or of the nodes layout:

• the number of beacons is 3, i.e. the minimum geometrical setup for obtaining

a localization solution;

• the beacons are at the corners of a square area;
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• the target locations are situated inside the perimeter of the beacons in order to

focus on the best localization conditions.

The localization can be performed at the target, at the beacons or in a central

processing station; here we assume that

• the beacons transmit a packet towards the target, which estimates locally the

distances from the beacons (with a ranging algorithm), computes locally its

position and returns it to the beacons or to a central processing station (alter-

natively it returns the distance estimates directly to a central processing station

for the whole localization and power allocation computations);

• the algorithm for power allocation is processed at the target or at a central

processing station because it needs the data of all the links between the beacons

and the target;

• in order to intercept and discuss here the best potential performance of the

algorithm, the algorithm is processed with perfect knowledge of the parameters

that are needed for deriving the powers to be allocated (see Sect. 5.2.1).

For testing the algorithm the targets are located inside the triangular region de-

limitated by the 3 beacons, as sketched in the example in Fig. 5.3.

5.2.1 Structure of the proposed PA algorithm

The proposed algorithm implements power allocation among the beacons in the

sense that there exists a performance advantage over localization with uniform power

allocation among beacons. The proposed PA algorithm is composed by two stages:

in the first, it performs PA among beacons in a pair-wise procedure in the sense that

it selects two beacons as a pair and accomplishes PA for all available pairs. The

important parameters in the algorithm decision process are the estimated path losses
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Figure 5.1: A schematic representation of the target range from each beacon. Solid
circles show the real possible locations of the target around each beacon.
Dashed circles depict estimated possible locations of the target around
each beacon. The considered scenario is in 2D coordinates.

and the angles between target and each beacon; in a real tracking implementation,

these parameters can be obtained from a previous localization step.

Based on the proposed formulation of the likelihood area (LA), the algorithm

minimizes the LA by means of an appropriate power allocation among the beacons of

each considered pair. As a rule thumb, the algorithm will reduce transmitted power

of the beacon to which the target is closer while it increases the transmitted power of

the other beacon, from which the target is farther. When the target is located in the

middle of two beacons, the algorithm allocates power uniformly among the beacons

of that pair.

In our test scenario, characterized by three beacons, each beacon is selected twice

in the pair-wise selection procedure (3 pairs). Consequently, there will be two amounts

of allocated powers for each beacon. In order to select one of these multiple (in our

test scenario two) allocated powers for each beacon, the second part of the algorithm

decides between these two allocated powers via a selection procedure described in
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Section 5.2.3. In the following, an explanation of the two stages of the algorithm is

presented.

5.2.2 Power allocation in a pair-wise selection of beacons

The first part of algorithm is based on power allocation among beacons in a pair-

wise selection of the beacons. The principle, exploited in the process, is simple.

Using CRLB for TOA estimates, we define a likelihood area which is dependent on

the received SNR and on the angle between target and beacon. The likelihood area

for the pair (i, j) is defined by an expression as

A = (sin(ϕi) · σi + sin(ϕj) · σj)× (cos(ϕi) · σi + cos(ϕj) · σj) (5.7)

where, according to CRLB, σi is the standard deviation for a TOA estimator

related to ith beacon defined in (5.1). Considering a fixed total power constraint on

the transmit powers, the algorithm minimizes the likelihood area at each beacons pair.

Due to implementation purposes using conventional optimization tools, we present

the proof of convexity for the proposed likelihood area before proceeding with the

main core of algorithm.

One way to check whether a multidimensional function is convex or not, is to

check the Hessian matrix of function from definiteness point of view. If the Hessian

matrix is a positive semi-definite matrix, the function is a convex function. Also,

if the Hessian matrix is a positive definite matrix, the function is a strictly convex

function. To this end, the Hessian matrix related to LA function (A) can be written

as
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H =




∂2A
∂p2ti

∂2A
∂pti∂ptj

∂2A
∂ptj ∂pti

∂2A
∂p2tj




=



2acLip

−3
ti + 3

4
(ad+ bc)

√
LiLjp

−2.5
ti p−0.5

tj
1
4
(ad+ bc)

√
LiLjp

−1.5
ti p−1.5

tj

1
4
(ad+ bc)

√
LiLjp

−1.5
ti p−1.5

tj 2bdLjp
−3
tj + 3

4
(ad+ bc)

√
LiLjp

−0.5
ti p−2.5

tj


 (5.8)

where a = sin(ϕi), b = sin(ϕj), c = cos(ϕi) and d = cos(ϕj). In order to prove

convexity of A, it should be proved thatH is a positive semidefinite or positive definite

matrix. If a matrix is either positive semidefinite matrix or positive definite matrix,

all of its eigenvalues should be nonnegative or positive respectively. For the Hessian

matrix, we have

det(H) = λ1 · λ2 > 0 (5.9)

and

tr {H} = λ1 + λ2 > 0 (5.10)

where λ1 and λ2 are eigenvalues of the Hessian matrix. Equation (5.9) and (5.10)

implies that two eigenvalues are positive. Consequently Hessian matrixH is a positive

definite matrix and it is proved that A is a strictly positive function.

As previously discussed, the proposed LA is a convex function of its variables

(pti , ptj). Consequently, if LA has a local minimum, it will be also global minimum.

So, the minimization problem for the selected pair (i, j) can be written as
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minimize
pti ,ptj

ζ · (sin(ϕi) ·
√

Li

Pti

+ sin(ϕj) ·
√

Lj

Ptj

)× (cos(ϕi) ·
√

Li

Pti

+ cos(ϕj) ·
√

Lj

Ptj

)

subject to pti + ptj = Ptot.

(5.11)

Since the objective function is a convex function and equality constraint is an

affine function of optimization parameters, the formulated problem is a convex opti-

mization problem. Consequently, the minimization problem can be solved by convex

optimization solvers like CVX [27].

Fig. 5.1 shows the considered scenario in which we have three beacons B1, B2 and

B3 and the target marked by a red point. Solid circles show the possible locations of

the target around each beacon resulting from actual target distance from each beacon.

Obviously, their intersection will lead to exact position of target (red point). Dashed

circles represent the possible locations of the target around each beacon resulting from

estimated distance of the target from each beacon obtainable via TOA estimation of

received signal from beacon. Estimated position of the target will be inside this area.

In fact, the algorithm goal is to minimize the uncertainty area limited by the points

A, B and C as shown in Fig. 5.1. It is worth mentioning that the proposed likelihood

area is an approximation of the section of above-mentioned uncertainty area related

to each beacon pair. As an example, the uncertainty area in Fig. 5.1 is shown in

the case of ranging overestimation. When the algorithm achieves PA among beacons

of each selected pair, there will be more than one allocated power for each beacon.

Consequently, one of the allocated powers should be assigned to each beacon, by

means of the second part of the algorithm.
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5.2.3 Selection strategy among multiple allocated powers at each beacon

The second part of the algorithm is responsible for an appropriate assignment

of one of the allocated powers computed in the first part. Since each beacon is

selected by the PA algorithm more than once, after finishing the pairwise selection

procedure, the algorithm looks for the best amount of allocated power for each beacon

according to the following approach. As it is shown in Fig. 5.2, the algorithm

calculates its distances from beacons using latest predicted position information. It

selects the closest beacon to the target which has the minimum computed distance.

Taking into account that there are two allocated powers for the selected closest beacon

being participated in two different pair-wise selection procedures, the difference of

allocated powers with respect to the value of uniformly allocated power are computed.

Assuming beacon i as the selected closest beacon to the target, the power differences

(j = 1, 2) are calculated according to

∆P j
i = P j

i − Puniform, (3)

where P 1,2
i are the two allocated powers acquired from two pair-wise selection

procedures for beacon i and Puniform is the power for uniform power allocation among

beacons. If two computed differences have opposite sign, it means that two different

policies should be applied to the transmitted power of considered beacon. If this

condition occurs, the algorithm implements uniform power allocation on all the 3

beacons.

If the two computed differences have equal signs, it can be noticed that the alloca-

tion, imposed by twice selection of the beacon in the pair-wise selection procedure, is

coherent w.r.t. the increase or decrease of the transmitted power in beacon i. There-

fore the algorithm selects the allocated power which has the largest absolute value.
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Figure 5.2: Representation of the algorithm second stage. After finding the beacon
closest to the target, a decision procedure selects the allocated powers for
each beacon.

The beacon participating in the pair-wise-selection procedure which determines this

largest computed difference for the closest beacon, is allocated the power determined

via the mentioned pairwise selection. The power at the last beacon, not participat-

ing to the pair-wise selection procedure with closest beacon and largest ∆P j
i , is not

changed.

5.2.3.1 Justification of the general selection strategy via SPEB analysis

As mentioned in Sect. 3.1.2.1, FIM can be be completely described by its two

eigenvalues and the related rotation angle, i.e. J = F (µ1, µ2, γ). For a single beacon

i, it can be expressed as λiJr(αi) = F (λi, 0, αi). Obviously, selection of a beacon

with the largest RII is the best option which is also coherent with conclusions of Sect.

3.1.2.3. Considering the fact that the considered ranging scheme is TOA based, let

us elaborate RII as
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λi =
1

σ2
i

. (5.12)

By substituting (5.1) in (5.12), we have

λi =
8 · π2 ·B2SNRi

c2
, (5.13)

where SNRi is the received SNR from ith beacon, which is an inverse function of

the distance between beacon and target. Consequently, the selection of closest beacon

i.e. with shortest distance will lead to the strongest RII.

5.2.4 Performance evaluation

In this test scenario, numerical results are presented for two categories. In the first

category, the ranging estimator MSE is assumed to achieve CRB for TOA estimator

(mentioned in 5.1) while in the second category, the real ranging model mentioned

in 5.14 is used which is a model for MSE of soft ranging. These two categories will

be referred as first category and second category in figures and related descriptions

respectively. Numerical results focus on the localization error (i.e. the distance ǫ

between estimated and correct locations at each algorithm step). For the sake of

simplicity, localization without PA, localization with PA based on uncertainty area

and localization with optimal PA based on SPEB minimization will be denoted as

WPA, UCA and SPEB based respectively. The simulated scenario is a square room

with a side length equal to 50 m in which there are three fixed beacons in the corners

(Fig. 5.3).

In order to show the advantages and the limits of the proposed scheme, simulations

are done in two different conditions. Firstly, localization performance of WPA, UCA
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Figure 5.3: Simulation reference scenario with three beacons. Red dots show the
positions of beacons. Blue circles show the point in which the algorithm
with PA and without PA is evaluated.

and SPEB based versus increasing transmission power is presented. The second set

of results is related to localization performance evaluated in a number of points in the

area limited by the beacons. The set of points is chosen in order to understand the

different algorithm responses according to the target location; there are points which

are close to the beacons and points which are approximately in a symmetric position

with respect to the three beacons.

The physical parameters of the transmission are taken from the UWB technology.

The standard pulse has a reference bandwidth of 512 MHz and the propagation

exponent is fixed to a value of γ = 1.79 according to residential Line-of-Sight UWB

channel model. Each receiver noise figure is fixed to 7 dB and each node (beacon or

target) respects the UWB transmission spectral power density of −41.3 dBm/MHz.

Fig. 5.4 represents the RMSE performance comparison among WPA, UCA and

SPEB based versus increasing transmit power for first category evaluated in two

regions, one in the proximity of one of the beacons in a circular area with radius
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Figure 5.4: RMSE performance of WPA, UCA and SPEB based power allocation
(CRB based TOA estimator).

equal to 5 m and another one in the neighborhood of center of the room in a circular

area with radius equal to 5 m keeping in mind that the parts of interest are within

the triangle area limited by three beacons. For each value of transmit power (Ptx),

localization performance is averaged over 300 uniformly distributed points inside the

two mentioned regions. This kind of analysis gives us an insight on which areas in

the room receive an effective advantage from the application of the considered local-

ization algorithms with PA. In the region close to a beacon, due to a considerable

difference in received SNR from each beacon, a considerable performance gap be-

tween localization with PA and localization without PA is observed. However, in the

region close to the room center in which all of the received SNR from the beacons

have similar values, there is no considerable performance gap between performance

of localization with PA (either SPEB based or UCA) and the localization without

PA. Focusing on target locations in the vicinity of beacons where received SNRs have

different values, it is observed that the best performance is associated with optimal
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Figure 5.5: RMSE performance of WPA, UCA and SPEB based (real ranging
model).

PA of SPEB based. Meanwhile, the proposed UCA performs better than the case

of uniform power allocation (WPA) but not better than SPEB based. It is observed

that as the transmission power increases, performance gap gets smaller.

Fig. 5.5 presents performance comparison of WPA, UCA and SPEB based for

the second category of results, obtained with a real ranging model. The same behavior

as the one observed for first category is apparent in this plot. There is one interesting

observation that the optimal SPEB approach does not show any advantage over a

certain transmission power and this is the motivation behind the approach proposed

in Sect. 5.3. Consequently, in the successive figures related to the real ranging model,

localization performance related to SPEB based is not shown.

The localization RMSE for the first category, evaluated in the points of Fig. 5.3 is

shown in Fig. 5.6. The best performance is achieved by SPEB based strategy, which

is the optimal PA strategy in all the points. Comparing the performance of WPA

and UCA, the considerable performance gap between localization appears in target
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Figure 5.6: Localization performance in assumed points inside the indoor environ-
ment delimited by three beacons (CRB based TOA estimator).

locations in the vicinity of beacons like 1, 6 and 12. In other points, UCA performance

is equal to that of WPA or slightly better confirming the fact that when the target

approaches a beacon, UCA achieves performance better than WPA. Otherwise,

the PA strategy for WPA tends to implement uniform PA leading to performance

equivalent to WPA. This behavior leads to better localization performance fixed the

same total transmit power at beacons or energy savings once fixed the performance

level.

The same analysis for a practical ranging estimator i.e. soft is presented in Fig.

5.7. All the conclusions made for Fig. 5.6 are also valid for Fig. 5.7.

Fig. 5.8 depicts in more detail some numerical results, reporting the cumulative

density functions (CDFs) of the distance error for the WPA, UCA and SPEB based

for first category results. The plots reveal the CDFs of distance error at two points,

1 (Fig. 5.8.a) and 19 (Fig. 5.8.b), one close to the beacon located at the top corner

of the room and one located almost in the middle of the room. As it is expected,
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Figure 5.7: Localization performance in the points inside the indoor environment de-
limited by three beacons and related to the real ranging model.
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Figure 5.8: CDF plots of localization error related to CRB based TOA estimator in
two points.
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Figure 5.9: CDF plots of localization error related to second category results in two
points.

the localization advantage, with the proposed PA algorithm, is present only at the

point closer to the beacon while it is absent in the other point, where the best power

allocation is just the uniform one (this is obvious also by using simple geometrical

considerations). This is also correct for the second category results, reported in Fig.

5.9.

5.3 Impact of real ranging on algorithms for power allocation

As presented in (5.3)-(5.4), optimal PA is achieved by considering ranging mea-

sures as necessary inputs of the localization algorithm. In the literature, on one hand

the common assumption about ranging measures is that their ideal values are equal

to their corresponding Cramer-Rao bounds but, on the other hand, at high signal-

to-noise ratios, real ranging estimators are characterized by different lower limits on

their performance mainly as a result of maximum sampling rate and computational
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load available in the sensors. This section considers the impact of a real ranging

method on PA procedure in localization processes and a computationally efficient

simplification is proposed.

In this work, we use a model of a realistic ranging algorithm, based on the division

into two regions: in the first region, the performance worsens as SNR increases (sim-

ilar to the CRB formulation for TOA ranging estimates) while the second region is

characterized by a floor in which ranging performance is not improved with increasing

SNR anymore. On the other hand, as a practical example for ranging estimator with

this kind of behavior we use soft ranging, which outputs a discrete vector of likely

distances with an associated approximation of the probability that these distances

correspond to the estimates [29, 28].

The principles mentioned in Sec. 5.2 are also valid in this section i.e. the scenario

used for testing the algorithm characteristics represents the simplest localization sce-

nario and it is chosen for highlighting the algorithm properties and minimizing the

impact of any other system model parameter or of the nodes layout:

• the number of beacons is 3, i.e. the minimum geometrical setup for obtaining

a localization solution;

• the beacons are at the corners of a square area;

• the target locations are situated inside the perimeter of the beacons in order to

focus on the best localization conditions.

The beacons cooperatively estimate the unknown positions of the target and they

can update their transmit powers according to the target position estimate. The

localization can be performed at the target, at the beacons or in a central processing

station; here we assume that

• the beacons transmit a packet towards the target, which estimates locally the

distances from the beacons (with a ranging algorithm), computes locally its
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Figure 5.10: MSE performance of a practical ranging estimator.

position and returns it to the beacons or to a central processing station (alter-

natively it returns the distance estimates directly to a central processing station

for the whole localization and power allocation computations);

• the algorithm for power allocation is processed at the target or at a central

processing station because it needs the data of all the links between the beacons

and the target;

• in order to intercept and discuss here the best potential performance of the

algorithm, the algorithm is processed with perfect knowledge of the parameters

that are needed for deriving the powers to be allocated.

5.3.1 Proposed PA algorithm for real ranging estimators

There is one common assumption in the formulations reviewed in Sect. 5.1.1, i.e.

estimator variance achieves the CRB. In other words, ranging accuracy is proportional

to the inverse of SNR and the more SNR increases, the better ranging precision is. In
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this Section, we discuss the impact of real ranging estimators, in which there is a floor

in MSE performance, i.e. MSE remains approximately constant while SNR grows over

a certain threshold. This behavior is due primarily to maximum sampling rate and

computational load achievable in sensors. Fig. 5.10 shows MSE performance of soft

ranging estimator [29, 28] evaluated at several SNR in a fixed link for residential LoS

channel; SNR is here defined as the ratio between the total received signal energy

and the noise spectral density N0 (corresponding to the SNR that can be measured

at the output of an ideal RAKE receiver).

It is clear that there are two performance regions: in the first region, estimation

accuracy is improved as SNR is increased till a threshold SNR (SNRthr
dB ) and, in the

second region, a floor is observed in the way that estimation accuracy remains almost

fixed while SNR exceeds the threshold SNR. Equivalently, in this context increasing

transmit power of a beacon with an SNR above SNRthr
dB will not provide better

accuracy on the corresponding ranging measure and consequently on its contribution

to the target localization; so the basic idea is based on distributing transmit power

of beacons with SNR above SNRthr
dB to beacons with SNR below SNRthr

dB realizing a

type of adaptive power allocation (APA) based directly on measured SNRs.

The following notations are used in the sequel: xdB and xlin are variable x in

logarithmic and linear scale respectively. For the sake of simplicity, beacons with SNR

above SNRthr
dB are titled high beacons and the beacons with SNR below SNRthr

dB are

titled low beacons. The transmit power of each beacon (in dBm) for uniform power

allocation (UPA) is denoted as PU
dBm.

The APA algorithm structure is as follows: firstly, difference of SNR related to

each beacon with respect to the threshold SNR is calculated. Then, based on the

sign of each element of the vector δSNRdB, it can be determined which SNR is

above or below SNRthr
dB . Before proceeding to the main core of algorithm, it is worth

elaborating the cases where UPA is assumed as a solution of this algorithm. The first
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case is the one in which all elements of δSNRdB are positive. In other words, all

beacons’ SNR are above the SNRthr
dB and hence there is no beacon with SNR under

which estimation accuracy is improved by increasing the transmit power. The second

case occurs when all elements of δSNRdB are negative; as a result, there is no beacon

with SNR above SNRthr
dB for reducing its transmit power leading to an SNR equal

to SNRthr
dB . Excluding these cases, the algorithm really works in a scenario with one

group of beacons high and another low.

When one group of δSNRdB elements has positive sign while another group con-

tains negative values, the first phase is dedicated to decreasing transmit power of

beacons with positive δSNRi
dB in a way that the resulting SNR after power cutting

is equal to SNRthr
dB (lines 8-12). After the equalization of transmit power of high

beacons, the second phase corresponds to distribution of total cut power (P tot
cut) over

low beacons. The priority is with low beacons having lowest SNR. Simultaneously

with this prior selection, one condition is checked confirming the fact that the amount

of power required for the SNR of selected low beacon to reach SNRthr
dB is smaller than

total cut power. In fact it is infeasible to distribute an amount of power greater than

P tot
cut in order to respect the constraint of fixed total transmit power (line 18). Each of

the low beacons, satisfying the aforementioned condition, will be allocated the power

so that the related SNR reaches SNRthr
dB , keeping in mind that the selection of low

beacons starts from the one with lowest SNR. After completion of PA for qualified

low beacons, if there is any remaining P tot
cut, it is allocated to the beacon with lowest

SNR. The main core of algorithm is iterated to ensure that SNRs related to newly

allocated powers does not pass SNRthr
dB .

5.3.2 Performance evaluation

The physical parameters of the transmission are taken from the UWB technology.

The standard pulse has a reference bandwidth of 512 MHz and the propagation
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Algorithm 1 Pseudocode for the APA algorithm structure (xdB and xlin refer to
variable x in logarithmic and linear scale respectively).

1: Calculate δSNRi
dB = SNRi

dB − SNRthr
dB

2: if max(δSNRi
dB) < 0 then

3: do UPA
4: else
5: if min(δSNRi

dB) > 0 then
6: do UPA
7: else
8: for each beacon Bi

9: if δSNRi
dB > 0 then

10: PNi

dBm = PU
dBm − δSNRi

dB

11: PNi

lin = 10P
Ni
dBm

/10

12: P tot
cut =

∑
i

PU
lin − PNi

lin

13: end if
14: end if
15: end if

Allocate the cut power from beacons with SNR above threshold to the beacons
with SNR lower than threshold giving priority to beacons with worst situation
i.e. with lowest SNR below SNRthr

dB

16: if δSNRi
dB < 0 then

17: compute P check
dBm = PU

dBm − δSNRi
dB

18: if P check
lin < P tot

cut then
19: PNi

dBm = P check
dBm

20: P tot
cut = P tot

cut − PNi

lin

21: end if
22: end if

Decision about possible remaining power
23: if P tot

cut > 0 then
24: Allocate it to remaining links with SNR below SNRthr

dB

25: end if
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exponent is fixed to a value of γ = 1.79 according to residential Line-of-Sight UWB

channel model (channel model CM = 1). Each receiver noise figure is fixed to 7

dB and each node (beacon or target) respects the UWB transmission spectral power

density of −41.3 dBm/MHz. In this test scenario, we exploit ranging algorithms

based on the times of arrival and characterized by soft detection techniques that have

demonstrated performance advantages w.r.t. other approaches. Numerical results

focus on the localization error. The reference scenario is a square room with side

d = 50m. The number of beacons is fixed to NB = 3 at 3 adjacent corners of the

room and SNRthr
dB is set to be 21 dB. In order to give an additional reference on the

signal-to-noise level in the system, when the transmit power Ptx of a beacon is −14.3

dBm the average SNR inside the room, measured as in Sect. 5.3.1 and Fig. 5.10,

turns out to be about 34 dB.

We remark that the crucial parameters for considered PA algorithms are the path

loss and the angles between the target and each of the beacons; optimal knowledge

of these parameters is assumed in our simulations [55, 41]. The proposed PA scheme,

the PA based on SEPB minimization and localization without PA will be referred as

APA, SPEB based and WPA respectively.

The MSE of practical ranging scheme contains two performance regions. In the

former region, MSE is decreased by increasing SNR with an inversely proportional

relation as in the CRB (5.1), excluding very low SNRs with very high MSE but with

no interest for practical applications. In the latter performance region, MSE is not

improved significantly by increasing SNR and remains almost constant (Fig. 5.10).

Therefore, we use a simple model to describe the behavior corresponding to variance

of practical ranging required to compute SPEB. The model is defined as

σ2
j =





c

SNRj

lin

if SNRj
lin < SNRthr

lin

c
SNRthr

lin

if SNRj
lin ≥ SNRthr

lin

, (5.14)
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Figure 5.11: MSE performance of APA, SPEB based and WPA. The mentioned
model for soft ranging MSE is applied for computing the SPEB.

where, considering the particular case of Fig. 5.10, c has been evaluated equal to

130 according to a simple curve fitting procedure.

Fig. 5.11 represents the MSE performance comparison among APA, SPEB based

and WPA versus increasing transmit power. For each value of transmit power (Ptx),

localization performance is averaged over 400 uniformly distributed points inside the

triangle area limited by three beacons. It is evident that for small values of transmit

power (low SNR regime with SNRthr
dB equal to 21 dB) where SNR is in the first

performance region of the range estimator, SPEB based performs better than APA.

In addition, it is worth mentioning that APA shows an advantage w.r.t localization

without PA. By increasing transmit power, the performance gap between SPEB

based and APA decreases and the two performance curves intersect at Pint = −30.3

dBm. This behavior is due to the fact that SNR approaches the threshold SNR

and consequently ranging MSE achieves the floor. By increasing Ptx over Pint, the

performance gap changes in favor of the proposed algorithm.
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Figure 5.12: MSE performance of APA, SPEB based and WPA. Direct evaluation
of soft ranging algorithm is applied for computing the SPEB.

It is interesting that by increasing further transmit power or, equivalently, moving

into the second performance region of the ranging estimator, there is no performance

advantage by means of PA. Fig. 5.12 depicts the performance comparison among

SPEB based, APA and WPA when soft ranging is directly evaluated to compute

SPEB, instead of the model (5.14). Note that the same behavior commented for Fig.

5.11 is also apparent here. Fig. 5.13 depicts MSE performance of considered localiza-

tion schemes evaluated in two regions, one in the proximity of one of the beacons in a

circular area with radius equal to 5 m and another one in the neighborhood of center

of the room in a circular area with radius equal to 5 m keeping in mind that the

parts of interest are within the triangle area limited by three beacons. For each value

of transmit power (Ptx), localization performance is averaged over 100 uniformly dis-

tributed points inside the two mentioned regions. Soft ranging is directly evaluated to

compute SPEB, instead of the model (5.14). This kind of analysis gives us an insight

on which areas in the room receive an effective advantage from the application of the
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Figure 5.13: MSE performance of APA, SPEB based and WPA evaluated in two
regions one close to the room center and another one close to a beacon.

considered localization algorithms with PA. In the region close to a beacon, due to a

considerable difference in received SNR from each beacon, a considerable performance

gap between localization with PA and localization without PA is observed. However,

in the region close to room center in which all of the received SNR from the beacons

have similar values, there is no considerable performance gap between performance

of localization with PA and localization without PA.

Fig. 5.14 shows MSE performance comparison of APA, SPEB based and WPA

versus path loss exponent evaluated for two different values of transmit power −29.3

dBm and −14.3 dBm. Soft ranging is directly evaluated to compute SPEB, instead

of the model (5.14). For transmit power of −29.3 dBm, since the ranging MSE lies

in the second region for small values of the path loss exponent (till 2), on one hand

optimal SPEB based does not provide any advantage overWPA. On the other hand,

APA performs better taking advantage of the impact of real ranging. By increasing

path loss exponent over 2 or, equivalently, moving towards the first region of ranging
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Figure 5.14: MSE performance of APA, SPEB based and WPA versus path loss
exponent.

MSE, the MSE curve of optimal SPEB based intersects that of APA and it starts

to show a performance advantage w.r.t APA and WPA as expected. For transmit

power of −14.3 dBm, since ranging MSE lies in the second region despite increasing

path loss exponent, optimal SPEB based does not show advantage. In the high SNR

context, APA does not improve UPA, so realizing a localization performance very

close to WPA. By increasing path loss exponent over 2.2 or correspondingly sliding

gradually toward first performance region of soft ranging MSE, proposed APA shows

an advantge over SPEB based and WPA.
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