
 

__________

 
 
 
 
 
 
 
 
 
 

S

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Supervisor: 
Prof. Fabio
 
The Chair o
Prof. Robe

Doct
___________

EISMIC P
DISS

o Biondini 

f the Doctora
erto Paoluc

Depart
toral School 

____________

PERFOR

SIPATIVE

 

al Program: 
cci 

POLITE
ment of Civil
in Structural,
___________

RMANCE 

E CLADD

Year 20

ECNICO DI M
l and Environ
, Earthquake 
___________

OF PRE

DING PA

 

 

 

 

015 – Cycl

 

 

MILANO 
nmental Engi
and Geotech

___________

CAST ST

ANEL CO

e XXVI 

ineering 
hnical Engine
___________

TRUCTUR

ONNECTI

Bru

eering 
___________

RES WIT

IONS  

Doctoral Di
uno Alberto

__________

TH 

ssertation of:
o Dal Lago

 

: 
o 



 
 

This page is left intentionally blank 

 

 

 

 

 

 

 

 

 

 



 

 
 

Seismic Performance of Precast Structures with Dissipative Cladding Panel Connections 
 

PhD thesis by: Bruno Alberto Dal Lago 

Supervisor: Prof. Fabio Biondini 

 

February 2015 

 

 

Doctoral School in Structural, Earthquake and Geotechnical Engineering 

Department of Civil and Environmental Engineering 

Politecnico di Milano 

 

Board Committee: 

 

Prof. Roberto Paolucci (coordinator) 

Prof. Raffaele Ardito 

Prof. Fabio Biondini 

Prof. Gabriella Bolzon 

Prof. Claudia Comi 

Prof. Alberto Corigliano 

Prof. Dario Coronelli 

Prof. Claudio di Prisco 

Prof. Marco di Prisco 

Prof. Roberto Felicetti 

Prof. Liberato Ferrara 

Prof. Attilio Frangi 

Prof. Elsa Garavaglia 

Prof. Cristina Jommi 

Prof. Pier Giorgio Malerba 

Prof. Stefano Mariani 

Prof. Umberto Perego 

Prof. Federico Perotti 

Prof. Lorenza Petrini 

Prof. Luigi Zanzi 



 

 
 

This page is left intentionally blank



 

 
I 

 

 

Acknowledgements 
I am very grateful to prof. Fabio Biondini for his constant scientific advisement and tutoring 

activity. Special thanks go to my two old masters, my father and prof. Giandomenico Toniolo. 

Marco Lamperti also deserves special acknowledgements for his fundamental contribution. 

The work developed during the Research activity at Politecnico di Milano related to my thesis 

has been funded by the European Commission within the Safecast and especially the 

Safecladding projects and by the Italian Department of Civil Protection through the ReLUIS 

program. Both funding institutions are gratefully acknowledged.  

Many acknowledges go to the team of researchers, technicians and students with whom I have 

been cooperating at Politecnico di Milano. They are prof. Liberato Ferrara, prof. Roberto 

Felicetti, dr Andrea Titi, dr Francesco Foti and Giulia Carozzi, Giovanni Lobina, Antonio 

Cocco and Paolo Broglia, Silvia Bianchi, Giulia Marelli, Roberto Segala, Giulia Mariani 

Orlandi, Alessandro Rocci, Nicola Zoeddu and Marjo Cerriku. 

For what concerns the Safecladding consortium, Antonella Colombo from Assobeton, Alessio 

Rimoldi from BIBM, Paolo Negro and Francisco Javier Molina from ELSA/JRC, prof. Matej 

Fischinger, prof. Tatjana Isakovic and Blaž Zoubek from the University of Ljubljana, prof. 

Joannis Psycharis and Joannis Kaliviotis from the Technical University of Athens, prof. Faruk 

Karadogan, prof. Ercan Yuksel, Ihsan Egin Bal and Eleni Smyrou from the Istanbul Technical 

University, Bulent Tokman from TPCA and Alejandro Lopez Vidal from ANDECE are 

gratefully acknowledged, among the others. 

The following partners from the industry are also acknowledged: Antonello Gasperi, Claudio 

Pagani and Enzo Ruggeri from BS-Italia, Uberto Marchetti and Massimo Martinetti from DLC, 

Roberto Ragozzini and Ivan Marinelli from Ruredil, Stefano Terletti and Diego Carminati from 

Halfen, Mauro and Luciano Nava from MC prefabbricati.  

A hug goes to Beatrice for her collaboration in the layout of the book cover graphics. 

 

 

 

 



 

 
II 
 

 

Abstract 

The inadequate seismic behaviour of the cladding panel connections of precast structures and the 
consequent failures occurred under recent earthquakes in Southern Europe showed that a revision of 
the technology and design philosophies adopted for this type of systems is necessary. To solve this 
problem, a general framework for the seismic design of precast structures based on innovative 
fastening systems of the cladding panels is proposed. In this framework, the stability of the cladding 
panels under seismic action is ensured by means of a dissipative system of connections in between 
the panels that allows to control the level of forces and to limit the displacements. The proposed 
connection systems consist of friction-based or plasticity-based devices inserted in between panels, 
that are connected to the structure through a statically determined arrangement. In this way, the 
panel-to-panel connections lead the cladding panels to become integral part of the whole façade, 
making it much stiffer up to the limit force associated with the friction threshold or yielding of the 
devices. Plasticity-based dissipative connectors to be inserted between columns and panels are also 
proposed and investigated. The technological aspects and design choices of materials and shapes 
leading to a stable hysteretic behaviour of the dissipative devices are discussed and subjected to 
experimental verification at Politecnico di Milano by means of monotonic and cyclic tests carried 
out on single devices, as well as on full scale two-panel structural sub-assemblies with dissipative 
connections. The silicone sealant, that is generally interposed in between the panels, is also 
mechanically characterised through experimental testing. Design guidelines for single devices are 
derived based on the interpretation of the experimental results. Capacity design procedures for 
structural sub-assemblies and systems are also developed based on the mechanical characteristics of 
the dissipative connectors. The efficiency of the proposed approach is demonstrated by means of 
non-linear dynamic analyses of typical precast frame-panel structural systems, as well as through a 
further experimental campaign carried out at ELSA Laboratory of the Joint Research Centre of the 
European Commission on a full-scale prototype of a precast building with cladding panels. This 
experimental program includes pseudo-dynamic and cyclic tests on structural assemblies provided 
with vertical and horizontal panels and different types of connection systems, including the friction-
based panel-to-panel dissipative connections tested at Politecnico di Milano. Numerical simulation 
of the pseudo-dynamic and cyclic tests is performed to calibrate the modelling criteria provided in 
the design guidelines and to validate simplified procedures for the estimation of the maximum drift 
attained during a seismic event. The role of the diaphragm action on the efficiency of the proposed 
connection systems is finally investigated by means of dynamic nonlinear analyses carried out on a 
set of precast buildings with different plan geometry and distribution of the earthquake-resisting 
system. The results confirm the remarkable improvement of the seismic performance of precast 
structures based on the beneficial effects of dissipative cladding connections, which can provide 
suitable energy dissipation capacity and limit forces and displacements when the effectiveness of 
the horizontal diaphragms is ensured.  
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Sommario 
L’inadeguato comportamento sismico delle connessioni dei pannelli di parete delle strutture 
prefabbricate e i conseguenti fenomeni di collasso che si sono verificati durante recenti eventi 
sismici in Europa meridionale evidenziano la necessità di una revisione delle metodologie di 
progetto e delle tecnologie realizzative di tali sistemi. In questo lavoro si propone una 
soluzione del problema attraverso una nuova impostazione della progettazione sismica di 
strutture prefabbricate basata sull’impiego di sistemi innovativi di connessione dei pannelli di 
parete. In tale impostazione, la stabilità sotto sisma dei pannelli viene garantita mediante un 
sistema di connessioni dissipative che consente il controllo di forze e spostamenti. Si tratta di 
semplici dispositivi metallici con funzionamento ad attrito o a comportamento plastico da 
inserire nei giunti tra i pannelli, che sono vincolati alla struttura con un assetto isostatico. Con 
l’introduzione dei dispositivi si ottiene l’integrazione dei pannelli nel sistema sismo-resistente, 
che presenta quindi una elevata rigidezza fino al raggiungimento della soglia di attrito o del 
limite di snervamento dei dispositivi stessi. Nella tesi vengono inoltre proposte e studiate 
connessioni dissipative da inserire tra pannelli e pilastri. Si presentano le scelte tecnologiche di 
materiali e forme che assicurano un efficace comportamento isteretico dei dispositivi e si 
mostrano i risultati di una campagna sperimentale svolta presso il Politecnico di Milano con 
prove monotone e cicliche sia su singoli connettori, sia su sottoinsiemi strutturali costituiti da 
due pannelli in scala reale. Nell’ambito di tale campagna vengono svolte prove sperimentali 
anche per studiare le caratteristiche meccaniche dei sigillanti siliconici generalmente interposti 
tra i pannelli. Sulla base dei risultati sperimentali vengono quindi definite delle linee guida di 
progetto sia per i singoli dispositivi di connessione, sia per assiemi strutturali di pannelli 
mediante criteri di gerarchia delle resistenze. L’efficacia dell’approccio proposto viene 
mostrata sia con analisi dinamiche non lineari di strutture telaio-pannelli, sia con ulteriori 
prove sperimentali svolte presso il laboratorio ELSA del Centro Comune di Ricerca della 
Commissione Europea su un prototipo in scala reale di un edificio prefabbricato con pannelli 
di parete. Il programma sperimentale comprende prove pseudo-dinamiche e cicliche su assiemi 
strutturali con pannelli verticali e orizzontali e differenti sistemi di connessione dei pannelli, 
tra cui i connettori dissipativi ad attrito studiati al Politecnico di Milano. La simulazione 
numerica delle prove pseudo-dinamiche e cicliche consente inoltre di validare i criteri di 
modellazione proposti nelle linee guida e le procedure per la stima degli spostamenti massimi 
attesi. Il lavoro si conclude con lo studio del ruolo dei diaframmi di piano sull’efficienza del 
sistema di connessione proposto, svolto mediante analisi dinamiche non lineari di edifici 
prefabbricati con diversa geometria e distribuzione del sistema sismo-resistente. I risultati delle 
analisi confermano il significativo miglioramento delle prestazioni sismiche di strutture 
prefabbricate con sistemi di connessioni dissipative, che con una efficace azione diaframma 
possono conferire una elevata capacità di dissipazione e limitare in modo significativo l’entità 
di forze e spostamenti. 
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Chapter 1 

1. Introduction 
 
 
The present chapter introduces the relevance of the research activity carried out related to the 
thesis. Motivation, objectives and scope of the study are described. A seismic design framing 
of precast structures with cladding panels is proposed. Finally, a brief outline of the document 
is provided. 
 
 
1.1. Motivation of the study 
 

Precast concrete buildings have been diffusing worldwide since the decade of 1960s, gaining a 
large diffusion for industrial and commercial buildings with frame structures, and also for 
residential buildings mainly with large panel structures, especially diffused in Eastern Europe, 
Russian federation and Commonwealth of Independent States (CIS). The large diffusion of 
such structures highlights the crucial importance that they have on the safety of people 
working or living in those buildings and on the economy of a nation or a continent.  

The latest version of the European design standard, Eurocode 8 (CEN-EN 1998:2004), 
recognizes that precast frame structures can be designed with the energy dissipation capacity 
comparable to that of the corresponding cast-in-situ structures. Based on this view, the current 
design practice of precast buildings is based on a bare frame model where the peripheral 
cladding panels enter only as masses without any stiffness.  

For what concerns the practice of the structural connections of cladding panels, P.J. Harrison 
starts its description of cladding panels fixings with the following statement (Taylor 1992): 
“Fixings are generally the most misunderstood and misused items involved in the cladding of 
any building”. Actually, precast concrete cladding panels have always been considered as non-
structural elements. The panels are then connected to the structure with fastenings dimensioned 
with a local calculation on the base of their mass for anchorage forces orthogonal to the plane 
of the panels. The technology available in practice offers, however, connections that are 
designed to be fixed and distributed in several locations over the cladding panel. This approach 
does not work, as it was recently dramatically shown by several recent violent shakes in 
Southern Europe, including L’Aquila in 2009, Grenada in 2010 and Emilia in 2012. The 
panels, fixed in this way to the structure, come to be integral part of the resisting system 
conditioning its seismic response. The high stiffness of this resisting system leads to forces 
much higher than those calculated from the frame model. These forces are related to the global 
mass of the floors and are primarily directed in the plane of the walls, as it is normally 
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1.3. Innovative concepts for seimic design of cladding panel connection systems 
 

 

1.3.1. Types of panel connection systems 

 

Regardless of the shape of the cladding panels, they are typically designed to carry only the 
self-weight, wind forces to which the panels are directly exposed, and seismic forces 
associated to the panel self-weight. In most cases, the forces generated in the panel during the 
manufacturing and erection stages of construction govern the reinforcement design of the panel 
(PCI 1989). According to Arnold (1989), there are four degrees of façade structural 
participation with the lateral load resisting system of a building, namely: 

 

1) Theoretical Detachment (push-pull connections). While, in theory, push-pull connections 
detach the cladding from the structure, in a building with hundreds of cladding panels it is 
likely that the detachment is not complete, and there is some transmission of forces from the 
structure to the panels and vice versa.  

 

2) Accidental Participation (slotted connections and sliding joints). Because of deterioration or 
errors in installation, the separation between the cladding and structure is not effective. This is 
uncontrolled participation. 

 

3) Controlled Stiffening or Damping. This involves the use of devices to connect the cladding 
to the structure in such a way that the damping of the structure is modified (usually increased) 
or the structure is stiffened. 

 

4) Full Structural Participation. The cladding and the structure become a new integrated 
composite structure in which each element performs an assigned role. The cladding may 
participate in vertical support, and definitely contributes to lateral resistance. 

 

This classification, which is very reasonable, is referred to existing cladding panels, while the 
accidental participation solution shall be disregarded for a new intervention, since it may cause 
serious problems in the seismic behaviour of the building. Special attention shall be given to 
sliding connection in order to make their behaviour stable and reliable, granting an efficient 
detachment effect.  

A new classification based on the panel structural sub-assembly is proposed to define the 
possible connection systems that can be employed in a new construction from the structural 
participation point of view. The proposal is also reported in Biondini et al. (2010a, 2013b), 
Colombo & Toniolo (2010, 2012c) and Toniolo (2014). The following four options are 
considered: 
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(a) Isostatic systems. The isostatic connection system involves a rigid motion of the panel. All 
actions on the connections depend exclusively on the statically determined arrangement 
chosen, while building deformation and dynamics plays a secondary role on in-plane actions. 
Damage is not expected to occur within the panel and all connections are likely to remain in 
elastic field, although slight damage is admitted in ductile connections. Within the building 
design the cladding panels may be omitted, but their contribution in terms of seismic mass and, 
eventually, stiffness, shall be taken into account, according to the chosen isostatic mechanism. 
The panel connections may then be designed according to their sub-assembly static scheme 
only.   
 

(b) Integrated systems. The integrated connection system provides a full participation of the 
panel in the lateral load resisting system of the building. It is desirable that panels and 
connections remain elastic, but slight damage is admitted in ductile connections and/or in the 
panels (provided with ductile reinforcement detailing). Within the building design the cladding 
panels shall be explicitly considered, and their connections shall be adequately proportioned on 
the base of the combined seismic actions. 
 

(c) Dissipative systems. The dissipative connection system is an evolution of the isostatic, 
where dissipative connections are added between cladding and structure or within the cladding 
panels. All energy dissipation is likely to occur within the specific dissipative devices, with the 
panel and those connections that create the isostatic system remaining elastic. The cladding 
participates to the lateral load resisting system with forces that are controlled by the dissipative 
connections. Within the building design the cladding panels may be considered explicitly or 
with simplified methods, and their connections may be designed according to their sub-
assembly static scheme. 
 

(d) Second-line systems. Second-line systems consist in additional safety devices that link the 
structure and the panel in order to restrain it from falling once the primary load-bearing system 
fails. This solution can be added to one of the previous, and can not substitute none of them. It 
can be used for the temporary safe restraint of existing panels linked with possible 
deficiencies. Since the devices enter in use only after the panel tends to fail, they can be 
omitted in the building design. They can be designed according to the panel sub-assembly 
static scheme only. Some technological examples of such connections are included in 
Protezione Civile (2012). 
 

Conceptual sketches of the working principle of a precast frame with isostatic or integrated 
cladding panel connection systems are illustrated in Figure 1.7 for vertical panels and in Figure 
1.8 for horizontal panels. A typical precast frame structure is highly flexible, due to its un-
braced cantilever-type column static scheme. An isostatic solution, for instance provided with 
fixed hinge connections positioned in order to create a truss element, fully allows the structure 
to displace without inducing stiffness. On the contrary, an integrated solution, for instance 
provided with four fixed connections placed at the panel corners in order to create a double 
clamped beam element, introduces a large in-plane additional stiffness associated to the 
displacement of the frame, to which correspond large forces arising in the connections and in 
the panels.  
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prototype structure provided with different cladding panel systems and subjected to pseudo-
dynamic and cyclic tests are presented, together with numerical simulation. Simplified 
performance-based procedures for the estimation of the maximum drift are also applied and 
their efficiency is commented.   

The sixth chapter is dedicated to the study of the influence of the diaphragm stiffness on the 
seismic response of precast structures through non-linear dynamic analysis of a case sudy 
precast structure and a parametric investigation for buildings with different plan geometries. 

The seventh chapter contains the conclusions, together with the expected future developments 
and challenges. 
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Chapter 2 

2. Seismic behaviour of precast 
concrete frame structures 
 
 
The state of the art for what concerns both practice and research on precast concrete structures 
is summarised in the present chapter. The precast concrete structural arrangements that have 
been developing in practice are illustrated. A brief overview of the research history performed 
on dry-assembled precast frame concrete structures is also provided. The specific behaviour of 
classical precast frame connections and their role on the seismic response of the structure is 
addressed, followed by a deepening about the practice of cladding panel arrangements, the 
research activity performed on dissipative cladding panel connections and the existing design 
philosophies and methods. 
 
 
2.1. Precast structural arrangements 

Precast concrete structures can be divided into three main categories based on the typology of 
bearing members, namely frame, panel and block structures.  

Each typology can further be subdivided into two categories, according to the technology of 
joints, wet and dry assembled. Wet assembled structures are conceived in order to emulate 
cast-in-situ concrete structures, by realising clamped connections with in-situ concrete pouring 
of the connection zone, usually provided with rebars protruding from the precast members. Dry 
assembled structures are connected by mechanical devices that couple the precast members. 
The latter denomination also includes semi-dry connections, with an in-situ completion 
procedure involving a small amount of mortar pouring.  

Dry assembled frame structures are the most typical technology developed and used in Europe 
(see Mandelli Contegni et al. 2008 and Bonfanti et al. 2008 for details about typical Italian 
precast structural systems). 

 

2.2. Research on seismic behaviour of precast structures 

Traditional cast-in-situ frame structures have been largely investigated in past researches, as 
for their seismic behaviour: with the currently gathered knowledge, their seismic performance 
can now be reliably predicted and appropriately “governed” in the design stage, even when 
complex and/or irregular structures are concerned; also, a unified design philosophy for 
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optimum seismic performance of traditional concrete structures has been developed: the so–
called “capacity design” approach, which has also been codified in the most recent versions of 
the relevant normative documents, such as Eurocode 8 (ENV 1998: 1994). 

The same cannot be said for precast structures: in fact, in spite of the overgrowing diffusion of 
this kind of structures, their peculiar characteristics and, in particular, their response to seismic 
excitation, have not been so thoroughly investigated and univocally determined at present. 
Detailed review of the available literature has shown that only a few state-of-the-art reports 
related to seismic design of precast concrete building structures exist. Important work was 
done in the 1980s in the frame of two major initiatives:  

- ATC-8 action – “Design of prefabricated concrete buildings for earthquake loads”. The 
proceedings of the workshop (ATC-8:1981) contain eighteen state-of-practice and 
research papers and six summary papers in particular related to the precast systems in 
New Zealand, Japan, USA and Europe. 

- Building construction under seismic conditions in the Balkan region (Simeonov 1985). 
 

The connection and fastening systems addressed in these two works are predominantly limited 
to equivalent monolithic connections in frame structures and specific joints in large panel walls 
(wet assembled structures). 

The most recent state-of-art report was published by the fib Task group 7.3 in Bulletin No. 27 
“Seismic design of precast concrete building structures” (Park et al, 2003) reporting on (at that 
time) latest developments in New Zealand, Mexico, Indonesia, Chile, USA, Slovenia, Japan 
and Italy. A separate chapter is devoted to modelling and analytical methods. 

In all these and related documents (in particular Sheppard 1981, Restrepo et al. 1993, Shiohara 
& Watanabe 2000) special attention is given to the seismic behaviour and analytical modelling 
of the connections. However, although these are the most comprehensive existing documents, 
they cover only some specific precast structural systems and connections. The Balkan project 
was strongly oriented to large panel systems, which were extensively used in Eastern Europe 
and Russian Federation. 

The capacity design concepts, providing the designer with a relatively easy and powerful tool 
to govern ductility resources channelling them to dissipative failure mechanisms, can be 
properly applied to precast structures, in order to over-proportion non ductile connections with 
respect to the critical regions of the columns (e.g. Ferrara et al. 2004, Biondini et al. 2010b).  

 

2.2.1. Precast frame structures 

Over the last two decades an extensive research activity aimed to investigate the seismic 
behaviour of precast concrete frame structures has been carried out at European scale. The 
results of this activity allowed to consolidate a good knowledge of the seismic behaviour of 
precast systems and contributed to the achievement of prefabrication in Europe with 
outstanding realizations in terms of both quality and reliability (Biondini & Toniolo 2010). 

The first stage of this research developed between 1992 and 1996 during the drafting of the 
first ENV version of Eurocode 8. The initial draft of the specific rules for precast structures 
gave them the presumption of a very bad seismic behaviour. Industrial mono-storey precast 
buildings were defined as inverted pendulum systems to which a very low value of the 
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- displacement ductility ratios between 3,5 and 4,5 consistent with the code provisions for cast-in-
situ frames. 

 

Based on these results, the Eurocode 8 was therefore published with precast structures no more 
treated as inverted pendulum, but still penalised with a lower behaviour factor with respect to 
cast-in-situ systems.   

The seismic behaviour of cast-in-situ and precast structures has been investigated in a second 
stage of the research by means of proper numerical models on probabilistic bases (Biondini & 
Toniolo 2002, 2003, 2004, 2009). This investigation was carried out by means of non linear 
dynamic analyses reproducing the real vibratory behaviour of the structures under earthquake 
conditions. Two prototypes were considered, the first cast-in-situ with monolithic connections, 
the second precast with beam-to-column hinged connections. They have the same overall 
dimensions, with the size and reinforcement of the columns chosen to achieve the same 
vibration periods and the same design seismic capacity in terms of base shear strength. The 
seismic response of these prototype was investigated in probabilistic terms for lognormally 
distributed material strengths and under artificial accelerograms, randomly generated so to 
comply with the design response spectrum. A Monte Carlo simulation based on a large sample 
of incremental nonlinear dynamic analyses taken up to collapse was therefore carried out for 
each prototype to compute the statistical parameters of the seismic performance. The results 
proved that precast structures have the same seismic capacity of the corresponding cast-in-situ 
structures, and confirmed the adequacy of the values given by the code to the behaviour factor 
of concrete frames (q=4,5). 

The third stage of the research developed during the revision of Eurocode 8 for its conversion to the 
final EN version. The preceding analytical demonstration was effective, but an experimental 
confirmation was still necessary. Therefore, taking advantage of the Ecoleader programme for 
the free use of the large European testing facilities, two pseudodynamic tests on full scale 
prototypes have been performed at ELSA Laboratory (Biondini et al. 2004). Figure 2.2 shows a 
view of the full scale prototypes. The aim of the tests was the experimental comparison of the 
seismic capacities of cast-in-situ and precast structures, and at the same time the validation of 
the analytical model used in the numerical investigations (Biondini & Toniolo 2004). The 
results of the tests highlighted the expected large seismic capacities (critical PGA equal to 
about 1,0g) of this type of structures and confirmed the overall equivalence of the seismic 
behaviour of precast and cast-in-situ structures. 

The fourth stage of the research was developed within the Growth programme. Two prototypes 
consisting of six columns and a mesh of beams and roof elements were designed to investigate 
the seismic behaviour of precast structures with roof elements placed side by side (Ferrara et 
al. 2006, Biondini et al. 2008, Biondini & Toniolo 2008). Figure 2.3 shows a view of the 
prototypes and of the testing plants. The prototypes differ only for the orientation of the beams 
and roof elements with respect to the seismic action.  
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Hinged connections are used between roof elements, beams and columns. The control of the 
pseudodynamic tests is based on two degree of freedoms, associated with the top horizontal 
displacements of the lateral frames, and of the central frame. The measured top displacements 
of lateral and central columns during the pseudodynamic tests resulted practically coincident. 
This result proves that double connections between beams and roof elements gives a rotational 
restraint in the roof plane which enables the activation of an effective diaphragm action, even 
if the roof elements are not connected among them.  

The results of the tests have been also used for a further validation of the analytical model used 
in the numerical analyses (Biondini & Toniolo 2009). After the pseudodynamic tests, both 
prototypes have been subjected to a cyclic test under imposed displacements up to collapse. 

With a ultimate displacement du ≈ 360 mm and a yielding displacement dy ≈ 80 mm, a global 
displacement ductility equal to 4,5 is evaluated, as assumed by the final version of Eurocode 8 
for the behaviour factor of precast frame systems. 

The results of the investigations carried out under the Ecoleader and Growth research projects 
showed the good seismic performance of precast structures provided that the connections are 
properly over-dimensioned (Biondini 2009). The last aspect to be still clarified is therefore the 
actual behaviour of connections under seismic excitation. Based on these needs, the European 
research program Safecast has been performed to investigate the seismic performance of 
connections in precast systems, exploring possible innovative structural solutions.  

This project involved a campaign of experimental static tests carried out on single specimens, 
such as those shown in Figure 2.4, as well as pseudo-dynamic tests on a three-storey full-scale 
prototype shown in Figure 2.5. The problem of the influence of the connections is also 
addressed in Fabbrocino et al. (2006) and Biondini et al. (2013c), where the seismic response 
of industrial precast buildings with poor connections is addressed. Fischinger et al. (2008) and  
Magliulo et al. (2008) provide indications for the seismic assessment of existing industrial 
buildings. In particular, Biondini et al. (2011b), Titi (2012), Camnasio (2013) and Titi & 
Biondini (2013, 2014) cover the life-cycle assessment of concrete structures exposed to 
corrosion, with specific reference to precast concrete structures.  

Investigations that proceeded to the Safecast project proved that the precast systems can have 
comparable energy dissipation capacity/seismic performance as cast-in-situ systems but only if 
the connections are properly designed and drift limitations and other minimum requirements 
provided by Eurocode 8 are respected. The analytical investigations described in Kramar et al. 
(2010) support the previous assumption, highlighting also the large seismic resistance that 
precast frames can provide.  

Another important outcome is that very large column rotations (corresponding to very large 
drifts, in some cases over 5%) are needed to fully exploit columns and/or structural energy 
dissipation capacity. This arises the problem of the displacement compatibility in real 
structures with claddings installed.  

In general, in recent years the problem of the seismic behaviour of the so-called non-structural 
elements, not only with reference to cladding panels, is gaining interest from the scientific 
community (e.g. Filiatrault & Sullivan 2014). 
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2.2.2. Innovative solutions for dry-assembled precast structures 

Several structural concept solutions have been conceived in order to limit the deformability of 
dry-assembled precast frame structures, among them the possibility to realise dry-assembled 
clamped beam-to-column connections with mechanical devices and the possibility to insert dry 
or wet assembled precast structural bracing walls within the precast frame (Dal Lago & Dal 
Lago 2011, 2012b and Toniolo 2012a). Both the solutions have been detailed and 
experimentally assessed within the ELSA/JRC full scale prototype testing. 

Alternative precast concrete structural arrangements based on the use of precast dry-assembled 
rocking walls and frames have been deeply studied, as it can be found in Wiebe & 
Christopoulos 2014. The use of re-centring unbonded strands and dissipative connections is the 
base of the PreSSS system, to which a large experimental campaign has been devoted at the 
end of the 1990s and further (Stanton et al. 1991, Priestley 1991, Priestley 1996, Priestley et 
al. 1999, Kurama 2000, Pampanin 2000, Kurama 2001, Pampanin et al. 2001, Kam et al. 2010, 
Smith et al. 2011). The results show that a large ductility is obtained with this hybrid system, 
associated to a low-moderate damage of the concrete components. Numerical models for 
rocking systems are also provided in Roh & Reinhorn 2009. 

The Research has been developing, bringing to the PREWEC system (Aaleti et al. 2008), in 
which a combined wall-external columns member with intermediate dissipative devices 
provides a large energy dissipation together with re-centring capability and low damage at 
large displacements. 

 

 

2.3. Connections in precast frame systems 

 

The connections play a fundamental role in the seismic response of precast frames, as pointed 
out in Toniolo (2012b). The frame connections in a precast building can be classified as: 

- Column-to-foundation, 
- Beam-to-column, 
- Floor-to-beam, 
- Floor-to-floor. 

 

2.3.1. Column-to-foundation connections 

The column-to-foundation connection plays a key role in the traditional static scheme typical 
of European precast frame practice, where cantilever columns concentrate at their base all the 
ductility and energy dissipation seismic demand. Wet assembled equivalent monolithic 
connections with pocket foundations have been widely studied in Saisi & Toniolo (1998), 
taking advantage of the large crop of results gained within the Assobeton leaded research 
project in collaboration with ELSA/JRC laboratory. The results of this research activity have 
been previously summarised.  

In Dal Lago et al. (2010, 2012c, 2013) the behaviour of mechanical dry-assembled 
connections, that are facing a large spreading within the precast practice due to their 



Seismic behaviour of precast concrete frame structures 

 
26 
 

advantages in terms of speed and ease of erection, has been studied within a comprehensive 
experimental campaign comparing the cyclic behaviour of bolted sockets, mechanical couplers 
and semi-dry solutions like protruding bars. Also few innovative bolted socket solutions have 
been designed and tested with the aim to improve their mechanical behaviour. The research 
pointed out similar results obtained for different technologies, although their failure mode 
suggested different behaviours, like the concentration of the plastic hinge within the partially 
threaded rebar going in foundation (bolted sockets), or the free development of plastic hinge 
within the column (couplers). The design guidelines, proposed by the authors and inserted in 
Negro & Toniolo (2012) design book, show however that on typical tall and slender columns 
the effects of the shortening of the plastic hinge effective length become remarkable, 
completely changing the ductility capacity of the member and, correspondily, of the building. 

Metelli et al. (2011) proposed a solution with concentration of damage in the foundation 
rebars, that are however provided with a debonding tube, pre-defining then the plastic segment 
of the rebar. 

 

2.3.2. Beam-to-column and floor-to-beam connections 

In non-seismic European areas, it has been commonly used as beam-to-column and floor-to-
beam connections a simple dry support, consisting in the simple juxtaposing of members one 
on top of the other with interposed a support layer (usually in neoprene or plumb) in order to 
better distribute the load and to admit room for in-plane edge rotations. This poor technology 
has been demonstrated to be largely inadequate for seismic loading, among the others by 
Magliulo et al. (2011) and Biondini et al. (2013c).  

Typical beam-to-column and floor-to-beam connections largely diffused in all dry-assembled 
precast frames all around the world are dowel connections, made with large diameter rebars 
protruding from the bearing member (or screwed in pre-installed bushes) and grouted once the 
supported member is placed in position. The dowel shows negligible purely flexural stiffness, 
allowing relative rotations between the members, but is able to provide a considerable shear 
resistance with a combined shear-flexure-axial behaviour of the dowel itself. Vintzeleou & 
Tassios (1985, 1987), Soroushian et al. (1987a, 1987b) and Tsoukantas & Tassios (1989) were 
among the first to experimentally study this kind of connection and to propose design 
methodologies specifically referred to its use in precast frames. Dei Poli et al. (1992, 1993) 
performed an experimental investigation on dowel connections with special regard to thin 
concrete covers, proposing design values for the subgrade stiffness of the concrete embedment. 
Capozzi et al. (2010) performed monotonic tests on precast dowel connections, developing 
also an analytical model able to catch the experimental behaviour. Psycharis & Mouzakis 
(2012a, 2012b) recently performed an extensive experimental campaign with local pure shear 
tests and full-scale shaking table tests on beam-to-column structural sub-assemblies provided 
with dowel connections with different geometries within the Safecast project, highlighting the 
large resistance reduction in case of cyclic load in comparison with monotonic and the ductile 
behaviour of the connection if adequately provided with a considerable amount of transversal 
reinforcement around the dowel. Easily applicable design guidelines are also proposed. 
Fischinger et al. (2012b and 2013) and Zoubek et al. (2014) performed an experimental 
campaign within the same research project regarding the behaviour of dowel connections at 
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large relative rotations, through monotonic and cyclic tests. They found that a non-negligible 
resistance reduction occurs at large relative rotations, identifying similar failure modes with 
respect to pure shear tests. A robust numerical 3D model has been used to catch and to 
interprete the experimental results and to exptrapolate them in order to produce more reliable 
design guidelines for these connections. 

Another typical solution to connect dry-assembled floor and beam members only is made with 
post-installed angles in correspondence of the floor member ribs. The complex flexural-
torsional-shear behaviour of such a connection has been studied by Felicetti et al. (2010) with 
monotonic and cyclic experimental tests on floor-beam precast structural sub-assemblies, 
showing that the behaviour is in general over-resisting and highlighting the danger of using 
typical hot-rolled thick angles, with which it has been observed a brittle failure of concrete. 
Cold-formed profiles have been proposed and tested in order to ensure a ductile behaviour of 
the connection. An experimental investigation on the horizontal dowel connection resistance of 
the precast member rib is reported in Dal Lago et al. (2012a).  

Design guidelines for all the connections cited above are provided in Negro & Toniolo (2012). 

Other types of dry assembled beam-to-column connections, such as moment resisting (Dal 
Lago & Dal Lago 2012a) or hybrid (Karadogan et al. 2012) are not considered in the present 
chapter, due to their limited use. 

 

2.3.3. Floor-to-floor connections 

Floor-to-floor connections can  be performed only in those slabs in which the floor members 
are placed in adjacent position. Tipically, welded connections are used. A large experimental 
research with monotonic and cyclic tests specifically devoted to the mechanical 
characterisation of floor-to-floor welded (dry) and topping (wet) connections has been 
performed by Naito et al. (2009) and Cao & Naito (2009) with regards to both axial and shear 
behaviour. The majority of the connections subjected to shear with opening restrained 
exhibited high compression forces coupled with high shear capacity. However, a tension action 
compromises the shear strength. Topping connections made with welded wire meshes 
exhibited brittle behaviour.   

 

2.3.4. Precast diaphragms 

Storey diaphragms are traditionally made with in-situ concrete screed pouring, which are likely 
to be avoided in the perspective of totally dry-assembled precast structures. Pushed by the 
observation of the poor seismic behaviour of large dry-assembled precast parking facilities in 
the USA (Fleischman et al. 1998), especially during the Northridge earthquake in 1994, for 
problems mainly induced by the diaphragms, an extended research on the subject has been 
developing in the country. Tena-Colunga & Abrams (1996) performed a general numerical 
work involving masonry, timber and concrete structures, analysing the increase of the natural 
periods of the structures with the diaphragm flexibility, together with the accentuation of 
torsional effects on the lateral load resisting systems. In Fleischman & Farrow (2001, 2003) 
and Fleischman et al. (2002) an extensive numerical study on dry-assembled precast 
diaphragms inserted in wall-frame or frame structures is reported. They concluded that 
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perimeter lateral-system structures with flexible diaphragms can produce inadequate seismic 
performance due to excessive drifts in the gravity-system remote to lateral-system elements, or 
large unintended ductility demand on the diaphragm, and that the results from dynamic non-
linear analyses reach much larger values with respect to what suggested by the code, especially 
considering wall-frame structures. Furthermore, the larger storey forces have been computed at 
the lower storeys, in contradiction with what is suggested in the code. The authors suggest to 
adopt an elastic-plastic design of diaphragm, with the insertion of ductile connection between 
the members, and suggest improvements for the evaluation of diaphragm seismic loads. They 
also suggest not to use largely flexible diaphragms in any construction. 

The Diaphragm Seismic Design Methodology consortium promoted research activities in the 
field of design guidelines draft (Fleischman et al. 2005b) and experimental validation 
(Fleischman et al. 2005a). While elastic behaviour of the diaphragm is required for 
serviceability limit state, plasticity behaviour can be exploited in order to sustain larger 
earthquakes, employing a full diaphragm capacity design from the diaphragm level to the joint 
and the detail level. An extensive experimental activity has been performed within the research 
project, the most challenging of which regards a series of shaking table tests on a full-scale 3-
storey totally dry assembled precast concrete building provided with external post-tensioned 
rocking walls that act as lateral load resisting system, performed at the NEES facility. The 
results are described in Schoettler et al. (2009). The prototype showed an elastic behaviour of 
diaphragm under the serviceability limit state, while it faced flexural yielding damage of the 
connections under ultimate limit state seismic action. Also innovative ductile steel welded wire 
meshes floor-to-floor connections performed satisfactorily, facing several strong damage 
cycles without breaking. Diaphragm design procedures are contained in Nakaki (1998). 

Recent research has been devoted to the interaction of spandrel cladding panels with the 
diaphragm mechanism, highlighting through a numerical investigation (Wan et al. 2012) the 
influence of diffused welded panel connections in the modification of strength, stiffness and 
deformation capacity of the diaphragm.    

Peculiar characteristics of multi-storey dry-assembled precast frame structures have been 
studied within numerical and large scale experimental projects. Those research projects, 
including Safecast (Bournas et al. 2012a, 2012b, 2013a, 2013b and Biondini et al. 2012b, 
2012c), showed how the contribution of higher mode effect, which becomes important for 
flexible structures like multi-storey contilever column precast structure, leads to a dramatic 
enlargement of diaphragm forces and column shear with respect to what predicted with 
dynamic modal analysis with response spectrum. Formulas that properly take into account this 
effect have been proposed by Fischinger et al. (2012a) following the approach that Keintzel 
(1992) and Eberhard & Sozen (1993) developed for reinforced concrete walls. 

Valente (2010) also contains information about the seismic behaviour of precast systems with 
different degrees of diaphragm stiffness.  
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2.4. Precast concrete cladding panels 

 

2.4.1. Typical cladding panel and connection elements 

Cladding panels are typically provided with thermal insulation and ventilation air chamber, 
with an internal bearing screed (often ribbed) and an external one. In case the external screed 
is suspended on the inner with connection systems that allow for relative thermal deformation, 
or in general its stiffness is negligible if compared to the inner, the panel is non-composite. In 
case the screeds are strongly connected, for instance in case of hollow core panels, the element 
is composite. Even if different technologies of connections are generally used in many 
countries, a common distinction is made among bearing, shear and tie-back connections. 
Bearing connections have the function of sustaining the gravity weight of the panel, shear 
connections restrain horizontal relative displacements between panel and structure and tie-back 
connections restrain out-of-plane relative displacements. A single connector can provide 
multiple functions. 

European practice concerns in general simple bearing foundation connections for both vertical 
(on panel foundation beams) and horizontal stacked (on column foundation) panels. Suspended 
horizontal panels are generally provided with inclined bracket bearing connections. All panels 
are then equipped with tie-back connections of various technologies, the most diffused of 
which is the strap type. It is important to note that, while some brackets are designed to allow 
horizontal sliding, tie-back connections are for the large majority fixed, possibly acting 
unintentionally as shear connectors. An overview of the Italian typical cladding connections 
with reference to their specific technology is available in Mandelli Contegni et al. 2007). 
Furthermore, reference to the specific technologic products available in Europe can be found 
within the official reports of the Safecladding project.  

Traditionally, US cladding panels are designed with two combined bearing-shear connections 
positioned in a row and several tie-back connections, positioned in order to leave the panel in 
its position during a lateral load event. This static configuration is referred to the “cantilever” 
statically determined scheme for vertical panels and to the “swaying” statically determined 
scheme for horizontal panels. Usually the tie-back connections are made with fixed slender 
steel rods that can provide large out-of-plane axial resistance while sustaining large in-plane 
deformation demand, or with sliding devices obtained through slotted profiles. 

Several technical details of typical connections can be found in Hegle (1989), Iverson (1989), 
PCI (1989), McCann (1991), NIST (1995) and NPCA (2012). 

Japanese connections are largely devoted to bring to a static scheme that allows the panel to 
rock around the base connections. This static configuration is referred to the “rocking” 
statically determined scheme. The typical connections are placed in four symmetric positions 
along the panel, two at the top and two at the base, and all of them are load-bearing. Technical 
details can be found in NIST (1995) among others. 
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2.4.2. Frame-cladding interaction 

The claddings are usually conceived as non-structural components (considering the seismic 
load), which are completely detached from the load-bearing structure. Therefore, they are 
usually completely neglected when the seismic analysis of the frame precast structures is 
performed, with an exception of their mass, which is added to the total mass of the structure 
according to the panel static scheme. However, in many past and recent investigations it was 
realized that typical connections between claddings and the bearing structure cannot ensure the 
design assumption. Therefore, claddings can have a significant influence to the stiffness of the 
structure and consequently to the overall seismic response of the building.  

Comprehensive state of the art collections can be found in Hunt & Stojadinovic (2010), 
Maneetes (2007) and NIST GCR 95-681. Goodno & Craig (1989, 1998) provide an overview 
on the studies devoted to the cladding-frame collaboration. 

Weidlinger (1973), Gjelvik (1973) and Oppenheim (1973) were among the first to promote the 
idea to use the cladding panels as part of the lateral load resisting system of a building, also 
noting an existing interaction between cladding and structure with the available common 
technologies of that time (that are not dramatically changed up to today). An extensive 
research of the influence of the cladding systems to the vibration and seismic response 
properties of multistory buildings was performed by the research team at the Georgia Institute 
of Technology (Goodno et al. 1980, Palsson & Goodno 1982, Goodno et al. 1983, Palsson et 
al. 1984, Goodno & Palsson 1986, Palsson & Goodno 1988, Goodno et al. 1988) also through 
the study of a 25-storey steel-framed office structure. Three sets of ambient tests and one 
forced vibration test were performed, and the building was also investigated analytically. Since 
the analytical and measured periods did not agree, the research of the effects of the claddings 
to the overall structural response was performed. The analytical periods of the bare frame 
structure without claddings were up to 34% and 48% greater than the measured translational 
and torsional periods, respectively. The corrected numerical model with added claddings gave 
the similar results if compared to the experimental. The above references include also the study 
of the claddings to the roof displacements and damping.  

The effect of a simple cladding system on the modal properties of a multistory concrete framed 
building was investigated analytically by Henry & Roll (1986) through a case study. They 
investigated two-dimensional, nine-storey, three-bay concrete moment-framed structure. The 
cladding system consisted of spandrel panels attached to the structural frame at the panel 
corners. The following properties of analysed structure were varied: 1) bay widths (35 ft, 25 ft, 
and 15 ft.), 2) panel heights (0 ft, 3 ft, 5 ft, 7 ft, and 9,5 ft.), and 3) weight of the panels (150 
pcf and 100 pcf). The storey height was taken as 10 ft. The fundamental period of the model 
with cladding was 18% - 55% smaller than the fundamental period of the bare frame model, 
depending on the bay width, panel height and weight. Hunt & Stojadinović (2010) criticised 
these analysis. In their opinion the disadvantage of the Henry & Roll modelling approach was 
that the authors assumed that all of the deformations in the cladding system occurred in the 
panels themselves. Modelling the cladding system in this manner overestimates the 
contribution of the cladding to the lateral stiffness of the building. In reality, the shear stiffness 
of the cladding connectors is much lower than the panels, which can be assumed to act as rigid 
blocks. Henry & Roll tested also the influence of the claddings to the frame drifts. The lateral 
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roof displacement decreased as the height of the panel increased. The lateral roof displacement 
decreased up to the 75% comparing to the model, which consisted of bare frame only.  

The contribution of cladding to the lateral stiffness of bare frame structures was also studied 
by comparing the drifts of frames with and without cladding in Smith & Gaiotti (1989) and 
Gaiotti & Smith (1992). A single-storey structure, representing a typical end-bay-width story 
of the frame was analysed. The cladding system, described as typical of low seismicity areas, 
consisted of one panel constructed over the full storey high and a full bay width with two 
window openings. The cladding panels reduced the displacement from 12,6 cm to 3,6 mm. 
These results seem to be, however, unrealistic, since the stiffness values assigned to the 
connectors were unrealistically large.  

The effect of precast concrete cladding on the lateral response of multistory buildings was also 
investigated by Charney & Harris (1989). They performed analytical studies of a four-storey, 
two-bay steel moment-resisting frame building. The two inches thick panel decreased the 
lateral displacement for about 28%. The connectors and panels contributed 14,4% and 8,4%, 
respectively, to the total drift. When the panel thickness was increased to 6 inches, these 
contributions were changed to 20,3% and 4,3% for the connectors and panels, respectively. For 
the 60 inches. thick panel (which represents the infinitely rigid case), the connector was 
responsible for 24,4% of the total drift.  

Thiel et al. (1986) studied the effect that the cladding system has on the damping properties of 
a ductile steel moment-frame. The researchers performed nonlinear time-history analyses of a 
benchmark 15-storey building. The cladding was modelled as dampers lumped at each floor 
and idealized as having elastic-perfectly plastic behaviour. The main conclusions were that the 
effectiveness of the dampers, which represented the cladding system, increased with increasing 
yield level. The cladding dampers required relatively high stiffness, comparable to the 
structure’s stiffness to be most effective. For high yield levels and 2% viscous damping in the 
frame, the cladding damper reduced the response of the structure by approximately 40% of the 
maximum roof displacement and 45% of the base shear. In summary, the authors argue that the 
effective damping of a building can be increased through activation of part of the lateral force 
resistance capacity of the cladding panels and controlled hysteretic behavior of their 
connections to the structure. However, as stated in their paper, the cladding connections 
require very high stiffness to be effective, which is not feasible given the connection details 
and design approach currently used at that time and today.  

Wolz et al. (1992) used an analytical model and time-history analyses to study the response of 
a six-storey, 1:4 scale model of a moment-resisting frame provided with two cladding panels 
per bay. The time-history of the roof displacement of the bare frame model and the model with 
cladding were recorded. The maximum roof displacement of the model with cladding was 
approximately 33% less than the roof displacement of the bare frame model.  

Cohen & Powell (1993) conducted a design study to explore the use of structural cladding 
panels with energy dissipating cladding-to-frame connections in order to enhance the seismic 
behaviour of the frame itself, showing through the results of non-linear dynamic analyses how 
a dissipative cladding solution could improve the global seismic behaviour of the building.  

Pinelli et al. (1993, 1995) developped a design method aimed to the optimisation of dissipative 
cladding connections in energetical terms, by choosing the device that provides the largest 
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energy dissipation within the building façade. The validity of the proposed design criterion has 
been validated through a parametric investigation on case studies, with non-linear dynamic 
analyses and with reference to a plasticity-based tapered connector, which mechanical 
behaviour can be defined according to the elastic stiffness and the yield force.  

Memari et al. (2004) carried out a numerical investigation on the effect of near-source vertical 
ground motion on the demand on cladding connections, finding that forces in the connection 
can significantly increase in occurrence of a near-source seismic event and suggesting to 
explicitly include the vertical acceleration component in the formulas for the evaluation of 
actions on connections. 

De Matteis (2005) focused on the seismic design of moment resisting steel frames with 
structural lightweight cladding panels. The main purpose of the study was to investigate the 
possible beneficial effects of the claddings in the serviceability and the ultimate limit states of 
the structure. An original design procedure was proposed, where the stiffening of the structure 
due to the cladding panels was taken into account. Several non-linear dynamic time-history 
analyses have been performed. The main parameters affecting the seismic performance of the 
structure have been investigated: the frame configuration, the mechanical and hysteretic 
characteristics of cladding panels and their distribution. It was concluded that cladding panels 
provided an improvement of the global seismic performance. A simplified procedure to 
account for such an effect was also proposed.  

In Singh et al. (2006a, 2006b) comprehensive work has been done in order to validate and 
enhance the methodology of evaluation of the out-of-plane forces of building non-structural 
components, both for rigid and flexible components. At the end of a large parametric 
numerical investigation on forces on non-structural components arising in tall buildings carried 
out with non-linear dynamic analyses, the formulation provided by the US standards seems to 
be very conservative, since it does not take into account the real complex dynamic interaction 
between structure and component. More accurate formulations are provided in the cited papers. 
Recently, a parametric study of the interaction between cladding panels and the bearing 
structure was performed by Baird et al. (2011a). Different failure mechanisms and various 
configurations were considered in order to show the effect of the entire cladding system upon a 
structure’s seismic behavior. The results showed that there was an increase in strength of at 
least 10-20% for all systems when the influence of cladding panels was taken into account. 
This contribution was greater when panels were attached to the columns rather than to the 
beams because the beams deflected more and activated the connections later. 

An increase in hysteretic damping for all systems has also been observed. Frame height to span 
ratio did not largely affect the yield force of the system. However, increasing it allowed for a 
higher deflection/drift of the system at yield. When both panel and connections were strong the 
capacity of the system was increased but the ductility was decreased. They further concluded 
that it was apparently more advantageous to design for a connection governed failure 
mechanism instead that for a failure mechanism governed by either the panel or the frame. 
Connection governed failure allowed greater damping, strength and stiffness over many cycles, 
provided that the connections are able to achieve large ductility. The post-earthquake 
substitution of failed connections is seen to be more favourable than having to replace entire 
damaged panels or to repair the frame.  
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The same authors (Baird et al. 2012), performed a special study, which had the main goal to 
explain more precisely the damage sustained by cladding systems in the earthquake that struck 
Christchurch on the 22nd of February 2011. The cladding panels were attached to the frame 
using two fixed connections at the base and two flexible tie-back connections at the top. Static 
push-over analyses were used to determine the change in strength and stiffness of the system. 
Results showed that when cladding interaction is taken into account, the frame is provided 
with larger stiffness and strength, though with an earlier onset of collapse. Dynamic nonlinear 
response history analysis was also performed. The maximum inter-storey drift and subsequent 
cladding connection damage was inferred. Results confirmed the high influence of cladding 
systems upon the seismic behaviour of multi-storey buildings. Some additional details about 
these studies can also be found in Baird et al. (2011b) and Diaferia et al. (2011).  

Hobelmann et al. (2012) report about the design and the realisation of a set of buildings 
ranging from four to six stories in which the lateral force resisting system consisted in 
horizontal stacked cladding panels with strong panel-to-structure and panel-to-panel shear 
connections. The cladding panels used have all the same shape and are provided with two large 
punched window openings. Forces in shear connections have been extimated to be up to 330 
kN. 
With specific reference to the technology used in Southern Europe, Ercolino et al. (2013) 
carried out a numerical investigation on the influence of infilled vertical cladding panels on the 
dynamic behaviour of one-storey precast industrial buildings. The parametric study shows a 
high influence of the panels on the first period of the structure, as well as the inadequacy of the 
code relationships for the evaluation of the natural period for such typology of structure. More 
suitable relations are proposed in order to evaluate the seismic demand of one story precast 
buildings both in the case of bare and infilled system.  
The stiffening effect of cladding panels provided with interactive connection systems provides 
a shift in the vibration frequencies of precast buildings, possibily enlarging the seismic demand 
on them, as presented in  Magliulo et al. (2014a). 
General overviews about dissipative devices can be found in Symans et al. (2002, 2008) and 
Whittaker & Constantinou (2004), among many, and in Towashiraporn et al. (2002) with 
specific reference and application to precast cladding panels.  
 
2.4.3. Field observation of precast cladding seismic peformance 

The most comprehensive and reliable data about the response of the panel connections, 
typically used in Southern Europe, were obtained during the recent L’Aquila (2009), Lorca 
(2010) and Emilia (2012) earthquakes. In the L’Aquila (Menegotto 2010, Colombo & Toniolo 
2012a, 2012b) and Lorca (Espín 2011) earthquakes the precast frame structures behave 
satisfactorily, with heavy damage observed only in very few buildings. The same cannot be 
said for the precast concrete cladding panels, that suffered from generalysed problems in a 
large amount of buildings located nearby the earthquake epicentres. The Emilia earthquake 
provided quite a different scenario (Savoia et al. 2012, Magliulo et al. 2014b), with a poor 
performance of both precast structures, with many global collapses occurred, and cladding 
panels. It has to be pointed out that, while L’Aquila area has been considered seismically 
active in the Italian national standards since the beginning of diffusion of precast structures, 
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the area surrounding Modena has been classified as significantly seismically active only since 
2005. 

Practically in all cases the failure of the connection between panels and bearing structure was 
followed by the collapse of the panels. Although in majority of the cases the main reason of the 
failure of the claddings was the failure of the connector body, in some cases the failure of the 
anchors between connector and panel was also noted.  

For what concerns the observation of the behaviour of cladding panels under earthquake in 
USA, Cohen (1995) and Iverson & Hawkins (1994) reported the damage of cladding panels 
observed during the Northridge earthquake. They concluded that cladding panels and 
connections unintentionally participated in lateral load-resisting structural systems. As a 
consequence, unanticipated cladding damage occurred, including life-safety problems when 
dozens of panels fell and others were left hanging precariously. Nevertheless the experimental 
and analytical investigation proved that the claddings had an important role to the overall 
response of the buildings, they were usually completely ignored by the designers. Cohen 
further concluded that multidisciplinary efforts are needed to change the codes and practice in 
order to ensure predictable, reliable, and safe performance of cladding during seismic events.  

Schoettler et al. (2012) reported the behaviour of precast structures, with focus on parkeing 
facilities, that have been subjected to the Christchurch (New Zealand) earthquake of February 
2011.   

 
2.4.4. Laboratory experimentation on cladding panel and connection elements 

There are several experimental works reported in the literature, where mostly cladding 
connections typical for US and Japan practice were examined.  

In 1979, a cooperative US–Japan testing program was performed on a full-scale steel structure 
to determine the seismic performance of non-structural elements (Wang 1986a, 1986b, 1987, 
1992). A full scale six-storey steel building was tested. It consisted of two bays frame in each 
direction of the building. Free vibration tests were performed before and after the construction 
of the non-bearing components. The non-structural elements reduced the natural period of the 
building by 30%, which suggested that the overall structural stiffness was increased by more 
than 100%. The stiffness decreased when the non-structural elements were damaged. At storey 
drift of 0,3%, most of the additional stiffness was lost. Despite these insights from the free 
vibration tests, it was not possible to separate the contribution of the cladding because the free 
vibration tests included either all or none of the non-structural components. Both swaying (US) 
and rocking (Japan) static schemes were tested, considering typical construction details of both 
countries. The main observations obtained within the presented tests are summarized below.  

Long ductile rods used for lateral connections, can accommodate very large story drift, but 
sliding connections may have problems either due to insufficient slot length or impedence of 
the sliding mechanism. Although it is possible to design a sliding connection that enhances 
their reliability, they are still potentially fraught with problems ranging from weathering and 
ageing of the connection, to improper installation, or poor detailing. Lateral connections, in 
particular, should not depend upon subjective criteria for installation such as tightening of nuts 
which cannot be easily perceived during inspections. Once the connection's sliding mechanism 
gets tangled, the failure of the connection may be sudden and dangerous. If sliding connections 
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are to be allowed, they must be detailed such that correct installation does not require great 
experience and skill on the part of the installer. Slot length needs to be large, to avoid 
imposition of large stresses in panels and connections.  

Bearing connections must be sufficiently flexible to avoid conveying stress to the panel, 
resulting from interstory drift in regard of both in-plane and out-of-plane components of 
direction. The choice of tube or angle connections makes a great difference in the degree of 
cracking of the panels. Care should be taken to not inadvertently stiffen connections, such as 
pouring new concrete around the connection body.  

Panels should be "hung" such that bearing connections are at the top and lateral connections 
are at the bottom, whenever possible. The common practice of bottom bearing connections 
may result in falling out of panels if the tie-back connections fail.  

Connections from a panel to frame should be oriented in the same horizontal direction, 
otherwise extensive warping and cracking of the panel will occur. This caution is particularly 
noteworthy in design of cladding for corner conditions.  

Joints must be wide enough to avoid contact between panels as a result of drift. Adjacent 
panels should be designed to respond to drift, in a similar manner whenever possible. Thus, 
placing wall panels attached to girders, next to column covers attached to columns, must be 
detailed with extreme caution, to avoid "bumping" of adjacent panels.  

The general concepts and specific design recommendations, which resulted from this project 
are stated in full cognizance of the limitations of testing. Thus, the evidence from the test is 
overwhelming before a conclusion is stated. The findings, nonetheless, narrow the broad range 
of opinion on a number of aspects regarding cladding performance, and give a basis to decision 
making in seismic design of cladding.  

Meyyappa et al. (1981) tested a 24-storey steel office tower with a lightweight precast 
cladding and glazing system under free vibrations. They measured the free vibration modes 
before and after installation of the claddings. The fundamental period of the structure increased 
after the cladding were fully attached, mainly due to the addition of mass.  

Sakamoto et al. (1987) performed an experimental evaluation of the correct functioning of 
rocking connections, diffused in the Japanese practice with the use of Autoclave Light-weight 
Concrete (ALC) panels, proving a satisfactorily behaviour.  

The vibration properties of a two-storey structure with and without cladding were 
experimentally investigated by Rihal (1988, 1989). The test structure was a two-storey steel 
moment-resisting frame structure with one bay in each direction. The cladding configuration 
and connection details were developed in consultation with a precast manufacturer who 
fabricated the cladding system in accordance with the practices. The modal response of the 
structure was measured experimentally. When claddings were attached to the bearing structure 
the first two modal periods were increased for about 20%. One possible explanation offered by 
Rihal for the increase in period after adding the cladding is that the effects of the added mass 
of the precast panels seems to have overcome the additional stiffening offered by the cladding 
panels and connection assemblies to the test structure. The same author performed static tests 
on typical threaded-rod lateral (push-pull) cladding connections in order to investigate the 
strength and behaviour of these connections. Cyclic in-plane racking tests of a precast concrete 
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cladding panel with bearing connections at the bottom and threaded-rod lateral connections at 
the top was carried out. The in-plane resistance was controlled by the binding deformation of 
the top threaded rod connections. The 8-inches long threaded rod failed at an applied load of 
1,2 kips and an interstorey drift ratio of 1,2%. The in-plane lateral forces in the top 
connections were approximately 0,25–0,40 times the panel weight at a drift ratio of 1,0%. The 
load capacity of the push-pull connectors decreased with increasing rod length.  

Sack et al. (1989) performed experimental tests on simple cladding connections to determine 
their force-deformation behaviour and energy dissipation characteristics. They tested one-
storey, single-bay frame assemblage containing two precast panels. The panels were connected 
to the frame with bearing connections at the base and slotted and threaded rod connections at 
the top. The results of the experimental tests of the connectors were used to model the cladding 
system analytically. A non-linear static analysis was performed assuming the structural frame 
behaving linear elastically and the panel-frame connections behaving with material non-
linearity. The analytical studies showed that the model with cladding had 17% greater stiffness 
than the bare frame. However, the experimental measurements of stiffness showed no 
appreciable increase in lateral stiffness when the panel was attached, due to the low stiffness of 
the threaded rod connections and slotted connections.  

In Craig et al. (1986) and Craig et al. (1988) particular tests of behaviour of steel inserts in 
cladding panels are reported. These tests were carried out in order to determine their lateral 
stiffness, energy dissipation, and ductility. The method of failure was the undesirable mode of 
concrete fracture, and therefore the authors point out how an improvement in the connections 
should be performed. A correlated numerical work is reported in Craig et al. (1992).  

Pinelli & Craig (1989) examined seven concrete panels with steel plate inserts. The embedded 
inserts were supported with either welded 90-degree rebar J-hooks or welded rebar parallel to 
the surface of the concrete. The inserts showed limited energy dissipation. The cyclic load tests 
revealed pinching in the hysteretic loops. Low levels of load were resisted primarily by the 
surrounding concrete, and as the lateral movement increased, the stiffness increased as the 
rebar engaged the concrete. After failure of the surrounding concrete, the inserts behaved as a 
hinge. Failure resulted from either failure of the concrete or fracture of the weld between the 
rebar and plate.  

Pinelli et al. (1992, 1996) performed experimental testing devoted to the mechanical 
characterisation of a cladding-to-structure dissipative connection based on plasticity called 
tapered tube. The results obtained showed that the connection behaviour is satisfactory for 
what concerns ductility, strength, dissipation and cyclic stability. The authors provide a design 
guideline and a design chart for the connection. 

The Japanese rocking system has been further experimentally investigated by Itoh et al. (1998) 
with tests on full scale panels with regards to the connection hardware, and by Matsumiya et 
al. (2004) and Okazaki et al. (2007) by analysing the interaction between the external wall 
cladding and the seismic load resisting frame of a three-storey steel building structure. Full 
cyclic tests were performed. The building specimen had Autoclaved Lightweight Concrete 
(ALC) panels installed and anchored to the structural frame as external wall cladding, using a 
standard Japanese method developed following the 1995 Kobe earthquake. During the tests it 
was observed that the ALC panel claddings had negligible influence to the overall stiffness and 
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strength, even under a very large storey drifts. No visible damage was noted in the ALC panels 
other than minor cracks and spalling of the bottom of the panels in the first storey. However, 
the authors point out that special zones of the cladding system, such as corners and openings, 
should be deeper investigated. The authors also suggest that a real situation with dynamic 
multi-directional loads may have detrimental effects on claddings. 

The response of Autoclaved Aerated Concrete panels was also investigated by Getz and 
Memari (2006). They used the conventional USA connectors to attach the panels to the 
structure. The study found that conventional connectors have not been designed for in-plane 
seismic resistance and would need to be redesigned in order to safely satisfy building code's 
allowable drift. 

Chan (2003) performed four monotonic experiments on push-pull connections in two 
orthogonal directions. The goal was to investigate the behaviour under bending and axial load. 
Axial tension and compression occurs as a result of out-of-plane panel movements, and 
represent the forces that the rods are intended to resist. Bending of the rods occurred as a result 
of in-plane panel movements. Although push-pull rods were not intended to resist lateral forces 
on panels via shear, their bending was significant, particularly if they were short. Concerns 
about their fracture due to bending would not seem justified until deflections exceed 25% of 
their length.  

McMullin et al. (2004) carried out eight full-scale tests of cladding connections. Tie-back 
push-pull threaded rod connections and welded plate lateral seismic connections were 
subjected to monotonic loading. All connections tested showed ductile failure modes, with 
some amount of energy dissipation before final failure. Weld fracture was always the failure 
mode for the lateral seismic connection except for the threaded rod tie-back push-pull 
connections. Slipping of the push-pull connections was seen only in the axial tests and then 
only after significant plate bending had occurred. This happened even though the plate washers 
were not tack-welded to the support. Push-pull connections were dominated by the strength 
and stiffness of their supports. While showing significant energy dissipation, these connections 
had very low stiffness to resist both intended and unintended modes of loading. The lateral 
seismic connection resulted in the plate carrying a significant amount of load when the panel 
moves out-of-plane, which is not intended by the original design. This resulted from the large 
flexibility developed by local dishing of the supporting tube. When large displacements occur, 
the weld of the plate fractured, resulting in a lack of in-plane resistance. It was demonstrated 
that the complexity of the geometric configurations of many cladding connections did not 
allow for accurate prediction of the force-displacement relationship based upon traditional 
structural models. Maximum strengths, initial and plastic stiffnesses and overall ductilities 
were all significantly different than expected.  

Hans et al. (2005) performed in situ measurements of existing buildings. The main goal was to 
identify the dynamic behaviour of ordinary intact buildings built in a conventional practice. 
Taking advantage of their demolition, it was possible to experimentally extimate the actual 
influence of the light work elements, full precast façade panels, bearing masonry walls, and the 
presence of neighbouring joined buildings to the dynamic properties. They concluded that 
comparative tests performed on intact and modified structures enabled to identify and quantify 
the leading and negligible phenomena that may influence the actual quasi-elastic behaviour. It 
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is shown that full precast façade panels or masonry shear walls do have a significant role in the 
building response. 

At the San Diego University (UCSD), in the cooperation with the Network for Earthquake 
Engineering Simulation (NEES), a shaking table experimental campaign of a benchmark full 
scale 5-storey precast building provided with non-structural components was performed (Chen 
et al. 2010, Hutchinson et al. 2012, Pantoli et al. 2013). Complementary testing and conceptual 
project design are illustrated in McMullin & Nguyen (2008) and McMullin & Ortiz (2009). 
The cladding panels were installed at upper two storeys. Three full-scale experiments have 
been carried out, two of which include precast concrete cladding panels. Seismic base isolation 
has been tested, together with clamped foundations. Different types of damage and failure are 
investigated, including loss of air seal at joints, closing of the slip connection at the top of 
column cover panels, damage to the corners of concrete panels when excessive rotation results 
in the contact between adjoining panels, damage including possible bolt fracture to the pin 
connections at the base of the column cover panels, cracking of the window glass due to 
crushing and damage to the connections supporting the return panels resulting in potential 
instability of panels. Two types of push-pull connections were tested and their capability to 
accommodate in-plane storey drifts was assessed. Namely, fixed rod and sliding rod 
connections of varying rod lengths were installed and tested in an effort to understand the 
relationship between rod length and connection performance. Inspection of residual damage 
after each test motion revealed that the connections did not undergo any substantial damage in 
the isolated configurations. During the clamped foundation tests, however, plastic yielding of 
both the fixed rod and sliding rod connections were observed, with the exception of the sliding 
short rod connections, which showed no signs of damage under any test. The developed 
analytical models are reported in (Hunt and Stojadinović 2010).  
Studies of the typical connectors used in Europe are quite limited. Belleri et al. (2010) carried 
out four mono-axial cyclic tests on typical European full scale horizontal panel structural sub-
assemblies with concrete columns, testing three different connections: rotational and 
translational bearing brackets, providing lower support to the panel, and tie-back connections 
(also commented in Piras et al. 2010). The panels were intended to have a swaying type static 
scheme. In the first test a large tightening torque has been applied without control to the tie-
back connection, made of a vertical anchor channel at the column side connected through a 
short threaded rod to a horizontally slotted Ω-shaped profile at the panel side, as representative 
of a typical non-accured installation that may occur in practice. As a result, the panel 
interacted with the columns, bringing to large forces and failure of the tie-back connection, 
that unintentionally acted as a shear connector, at low drift. In all other tests, in which an 
improved bracket solution with low-friction pads has also been tested, the sub-assembly 
showed negligible stiffness up to the maximum stroke allowed by the horizontal slot. It was 
concluded that the amount of dissipated energy within the cladding provided by distortion of 
the threaded rod or unintentioned friction is negligible if compared to the dissipation capacities 
of a precast column base, and that it is of fundamental importance to not tightenen the threaded 
rod of the connection, to which a complete change of the static scheme of the panel would be 
associated.  

A significant in-plane interaction between panels and the main structure was observed during 
the Growth project (Ferrara et al. 2004, 2006, a picture of the structure is reported in Figure 
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2.3b). The vertical panels, connected with the typical hampered rocking scheme, significantly 
influenced the cyclic behaviour of the precast building, introducing a large additional shear 
contribution. However, this interaction was experimentally investigated only for the 
serviceability limit state. 

Several shaking table tests of cladding connections were performed at LNEC (Lisbon) by the 
team leaded by Ema Coelho in the frame of the Safecast project (Toniolo 2012) with the aim of 
evaluating both in-plane and out-of-plane behaviour of the panel connections. Two 
configurations of the horizontal cladding panels, and two types of the connections were 
investigated, with reference to existing solutions. Six tests were performed, were the seismic 
load was applied in different directions; in-plane, out-of-plane and bidirectional tests were 
carried out. The global results, showing a large interaction of the panels with the frame and 
several connection failures, again suggest that the traditional cladding connection systems shall 
be reviewed. 

 

2.4.5. Code requirements for cladding panels 

An extended chapter of NIST GCR 95-681 provides information about the practice for precast 
concrete cladding panel seismic design in several countries all over the world up to 1995. In 
Villaverde (1997), Sielaff (2005) and Filiatrault & Sullivan (2014) the evolution of the USA 
standard requirements on the subject is traced. 

Up to the present, all code requirements about cladding panels and related connections refer to 
a statically determined connection system and provide resistance requirements with respect to 
the out-of-plane seismic excitation on the base of the single panel mass. Equivalent static 
forces method is used in all cases. Some standards also provide minimum drift accommodation 
distances. In any case, none of them explicitly considers forces acting in the in-plane direction. 
Furthermore, most codes include cladding panels as non-structural elements, which definition 
is matter of debate (Bachman & Dowty 2008). Standard rules from Europe and USA will be 
illustrated in the following, neglecting contributions from other countries that are, however, 
aligned with one of those illustrated. 

 

2.4.5.1. European standards 

Eurocode 8 includes cladding panels among non-structural elements. The out-of-plane 
equivalent static action is calculated according to the following equation: =	 	 (2.1)

where Fa is the out-of-plane horizontal force, Wa is the weight of the element, qa is the 
maximum behaviour factor (equal to 2,0 for façade elements), γa is the importance factor 
(equal to 1,0 for façade elements) and Sa is the seismic coefficient, which can be determined 
according to the following equation: 

= 3 1 +1 + 1 − − 0,5 	≥ 	 	 (2.2)
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where α is the ratio of the design ground acceleration on subsoil type A, ag, to the acceleration 
of gravity g, S is the soil factor, z is the height of the non-structural element (centre of mass) 
above the level of application of the seismic action, H is the building height measured from the 
foundation or from the top of a rigid basement, Ta is the fundamental period of the element and 
T1 is the fundamental vibration period of the building in the relevant direction. 

The Italian construction standards up to D.M.L.P. 1996 only referred to the necessity to verify 
that under seismic/wind drift the stability of non structural elements is granted. No explicit 
information or instruction was provided according to the calculation of seismic loading on the 
non structural members. European member nations have accepted Eurocode 8 rules for the 
design of cladding panels and related connections as non structural elements. In the Italian 
Nuove norme tecniche delle costruzioni (2008) it is kept in addition to the seismic resistance 
calculation the consideration that non-structural elements shall accommodate the drift of the 
structure subjected to the design seismic excitation. 

 

2.4.5.2. US standards 

The 1967 Uniform Building Code already introduced regulatons about the cladding panel 
connections. For what concerns drift allowance, it was indicated to be larger than twice the 
maximum drift caused by wind or seismic load or one fourth of an inch (6,4 mm), whichever is 
the greater. The seismic forces acting on the single panel were estimated according to the 
following equation: = 		 (2.3)

where Fp is the total lateral design seismic force acting on the component, Z is the seismic 
zone factor, Cp is the horizontal force factor (equal to 1,0 for non-structural components) and 
Wp is the panel weight. In the 1979 UBC version, only the introduction of the multiplying 
factor I, namely the importance factor, has been adopted as a modification of the previous 
formula. The value of the importance factor was suggested to be equal to 1,0. However, an 
important distinction is added for what concerns the force factor. In fact, a unity value is given 
for all elastic portions of the connections, while the body of the connection could be made with 
ductile devices which could be calculated according to a larger force factor, equal to 3,0. 

In the following 1991 UBC version, the formula for lateral forces remained unchanged, while 
the drift allowance lower limit doubled to half on an inch.  

The 1997 UBC version introduced several important changes in the calculation methodology. 
While the drift allowance remained unchanged but with indications on how to compute the 
drift, two alternative formulae were provided for the evaluation of seismic lateral forces, 
described in the following equations, together with a lower and higher limitation. 4,0 ≥ = 4,0 	≥ 	0,7  (2.4)4,0 ≥ = 1 + 3ℎℎ ≥ 0,7  

 

(2.5)
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where ap is the in-structure component amplification factor (equal to 1,00 for rigid 
components), Rp is the component response modification factor (equal to 3,00 for the body of 
the connection and to 1,00 for other non-ductile connections), hx is the element attachment 
elevation with respect to grade and hr is the structure roof elevation with respect to grade. 

The 2000 and 2003 UBC versions converged on a slightly different version, introducing the 
design earthquake spectral design acceleration at short period SDS. The calculation is then 
modified as per the following equation. 1,6 ≥ = 0,4 1 + 2ℎ ≥ 0,3  (2.6)

The most recent version of the IBC refers to ASCE 7 Standard for the seismic requirements on 
non-structural components. The most recent version, ASCE 7-10, includes the calculation of 
the vertical seismic component Fpv, calculated as per the following equation. = ±0,2  (2.7)

In addition to the calculation rules, FEMA 461 provides instructions about standard 
experimental tests aimed to assess the correct functioning of non-structural elements and 
connections. Finally, general approaches for non-structural buiding components can be found 
in Filiatrault et al. (2001). 

 

2.4.6. Seismic design methodologies 

Different approaches have been formulated and are available in literature regarding the seismic 
design of structures. Those approaches may be divided in very general terms into force based 
and displacement based. 

Equivalent static forces and modal analysis with response spectrum are the most typical 
seismic design methodologies that use a force based approach (Biondini et al. 2010b). Those 
types of analysis are derived from elastic structural analysis, with which designers are very 
comfortable, and have been adapted to inelastic structural behaviour through the definition of a 
behaviour factor that, taking into account the large dissipation of energy provided by hysteretic 
damping during ductile plastic behaviour (unless explicit displacement rate-dependant devices 
are used, e.g. viscous dampers), reduces the fictitious elastic force demand on the structure. 
Several proposals for the evaluation of the behaviour factor are available in literature (Miranda 
& Bertero 1994 among others), from which the Eurocode 8 adopted the concept of equal 
elastic and anelastic displacement for flexible structures and equal dissipated energy for stiff 
structures (Fajfar & Fischinger 1988), with reference to well known standard construction 
technologies and relative bearing member cyclic behaviour. The maximum expected 
displacement can be determined at the end of the procedure.  

The scientific and technical community has been focusing during the last 30 years to the 
development of different approaches, recognising the larger importance of a correct evaluation 
of the displacement demand induced by the seismic event, to which structural damage and 
seismic performance is strictly related. The main feature of those approaches is to use a static 
non-linear procedure and to compare the obtained capacity curve with the demand curve, that 
can be expressed according to different methodologies.  
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Fajfar & Gaspersic (1996) approach combines the pushover analysis of a multi-degree-of-
freedom model with inelastic response spectrum analysis of an equivalent single-degree-of-
freedom system. The inelastic response spectrum relies again on the behaviour factor, which is 
consistent from a physical point of view, since it represents the effect of a hysteretic 
dissipation of energy (Fajfar 1999).  

Since the definition of the maximum behaviour factor allowed for a certain structure is based 
on experimental and numerical experience that the scientific community gained through time 
and is mainly dependant on probability based large crops of analysis, this approach is not 
suitable for non-standard structural technologies, unless new analysis campaigns based on 
experimental evidence are performed every time with a probabilistic procedure. 

Another approach is the so-called Capacity Spectrum Method (Freeman 1978), in which the 
static non-linear analysis of the structure is performed not only monotically (pushover), but 
also cyclically. The capacity curve, corresponding to the monotonic plot, is then compared 
with the demand in the form of an over-damped elastic spectrum, where the over-damping is 
viscous and is calculated with reference to the equivalent hysteretic energy dissipated at a 
cycle of a certain amplitude. The method ends when convergence between the performance 
point (the intersection between capacity and demand curves) and the displacement considered 
for the calculation of the equivalent damping ratio are close, providing the expected drift of the 
equivalent single-degree-of-freedom structure. The procedure may be plotted in a unique 
diagram in the Acceleration-Displacement-Response-Spectrum (ADRS) format (Freeman 
1998).   

This method, although translating the hysteretic energy in an equivalent viscous (adapted from 
Jacobsen 1930), which is not physically consistent, has been proved to be effective in the 
quantification of the performance displacement and, unlikely the previous, may be used to 
determine the seismic performance of structural systems having whichever hysteretic shape, 
without the need of defining any initial stiffness, yielding displacement or hysteretic property. 
A version of the method has been adopted by the US standard ATC-40 (1996). 

The definition of equivalent viscous damping is of main importance within the capacity 
spectrum method. The dissipated energy is adimensionalised with respect to the specific 
energy, which is generally calculated in accordance with the elastic deformation energy. Its 
definition has been usually provided for symmetric hardening structural systems (Freeman 
1998, Kim et al. 2003, Chopra 2006, Priestley et al. 2007, Filiatrault et al. 2013), while in 
Priestley et al. (1996) is provided a more general definition. However, some authors (Tsopelas 
et al. 1997) suggest to refer to an explicit viscous-type related specific energy.  

In Chopra & Goel (1999), Fajfar (2000), Priestley et al. (2007), Belleri & Riva (2008) and 
Martinelli & Faella (2010)  a critical comparison of the above mentioned methods is available.  

An innovative design procedure that starts from the demand definition in displacement form is 
called Direct Displacement Based Design (Sullivan et al. 2005, Priestley et al. 2007), where to 
acceleration spectra are directly substituted displacement spectra. 

All the above-mentioned performance-oriented methods rely on the transformation of a 
complex structural system into a single-degree-of-freedom equivalent structure (Shibata & 
Sozen 1976), and then to the performance of a static non-linear analysis. It is clear that, as 
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stated in Krawinkler & Severinatna (1998), the validity of the methods is respected the more 
the natural vibration mode is predominant. Even if efforts have been provided to cover the case 
of multi-modal pushover analyses (Chopra & Goel 2002, Antoniou & Pinho 2004a and 2004b), 
precast industrial or commercial mono-storey buildings, generally featured by a highly 
symmetric structure, are in the majority of cases easily modellable with a single translational 
degree of freedom in each horizontal direction, and therefore the applicability of the 
performance based design seems to be promising.  

For what concerns methods explicitly developed for friction damped structures, Fu & Cherry 
(2000) provide a tri-linear model to simulate the seismic resisting mechanism of single degree-
of-freedom structures provided with double yielding displacements (of the friction connections 
and of the frame). The method is based on an evolution of the ASE method for bi-linear 
systems (Iwan & Gates 1979). Levy et al. (2001) provide a design methodology originally 
developed for friction damped steel frames concerning a two-phase iterative force-based modal 
analysis scheme. Bhaskararao & Jangid (2006) explore two numerical models to represent the 
dynamic behaviour of structures provided with friction dampers, together with indications on 
how to obtain an optimised slip threshold load distribution among the connections at different 
levels. With direct reference to a particular precast concrete system, Morgen & Kurama (2007) 
illustrate a design procedure to determine joint rotational friction damper slip threshold loads, 
assuming a linear elastic analysis of the structure under equivalent lateral forces.
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Chapter 3 

3. Innovative dissipative connections 
for cladding panels  
 

The present chapter illustrates the experimental work concerning the mechanical 
characterisation of the cyclic behaviour of proposed dissipative connection devices. Design 
rules for the single devices are provided. 

The Research activity has been focused on three types of innovative dissipative connections 
specifically designed to be used in between precast concrete panels, namely Friction Based 
Devices (FBD) that dissipate energy through friction and Multiple Slit Devices (MSD) and 
Folded Plate Devices (FPD) that dissipate energy through plasticity. The theoretical 
investigation on their behaviour and on their design has been accompanied by an experimental 
campaign aimed to characterise their mechanical behaviour under both monotonic and cyclic 
loading.  

 

 

3.1. Local test setup and displacement protocols 
 

The local tests on single devices have been carried out on a uniaxial ± 1000 kN Schenck test 
machine at the Laboratorio Prove e Materiali of Politecnico di Milano and subjected to vertical 
displacement histories. The tests are performed in displacement control, thruogh a ± 150 mm 
control transducer installed on the machine. 

The connections are tightened through bolts to a strong support made by two L-shaped HEA 
steel profiles welded together. The L-shaped profiles are then tightened through nailed thick 
steel plates provided with large diameter bolts to the machine. Figure 3.1 shows pictures of the 
test setup with the different connections under testing. In addition to the standard machine 
instrumentation, two redundant ± 150 mm displacement transducers are always installed with 
magnetic bases in order to measure the exact drift between the L-shaped profiles. Other 
additional instruments have been placed depending on the needs of each connection. The data 
acquisition is performed through an external logger and the control is performed by the 
standard machine controller. 
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Protocol A 

Protocol B Protocol C 

 

Figure 3.2 – Increasing displacement amplitudes cyclic protocols A, B and C 

 

Protocol D Protocol E 

 

Figure 3.3 – Constant displacement amplitudes cyclic protocols D and E 

 

For calculations of dissipated or specific energy the raw data has been truncated at the drift 
limit of each cycle, making therefore a more precise comparison between different systems. 

For instance, if one cycle reached 15.1 mm instead of 15, the curve is truncated at 15 mm and 
all the consequent energy calculation is made on the new curve. 

The dissipated energy is calculated as the area contained in each semi-cycle curve (Figure 3.4). 
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a Brass Friction Device, in accordance with the classification made by Schultz et al (1994). 
Martinelli & Mulas (2010) and Valente (2013) provided a numerical work based on the use of 
a friction device working in torque in between columns and beams showing how the seismic 
behaviour improves through non-linear dynamic analyses on a precast building prototype. The 
particular set of the shear connection considered hereinafter has been previously tuned by 
Ferrara et al (2011) and applied to structural systems in Biondini et al. (2010a, 2013b). The 
work here presented considers several technological improvements with respect to the original 
version, together with a theoretical design procedure that has been generalized to different 
connection geometries.   

The FBD is made by three elements assembled through bolts: 

• Support profile, made with mild steel, which connects the device to the concrete panel. It can be 
T-shaped, in such a way to obtain a symmetric device-to-panel connection, or L-shaped, for an 
asymmetric connection. The member is provided with vertical slots that allow the mutual 
vertical displacement between the two adjacent support profiles and with holes or short 
horizontal slots on the panel side for a bolted device-to-panel connection or for temporary 
support for a welded device-to-panel connection. A symmetric profile can be symmetrically 
connected with the panel side, leading to a distribution of forces that disregards any torsion, 
however forcing the assemblage to be performed from two sides, in order to tighten all bolts. An 
asymmetric profile leads to torsional components in the panel connection, though allowing the 
assemblage to be performed from one side only (in general, the inner side of the building). 
Figure 3.6 shows that the force distribution related to a shear force V applied to the connection 
brings to an additional inclined torsional component for the L-shaped support profile.  

• Brass sheet, made with brass, provided with two round holes in a column and with two 
horizontal slots in the other column, which realise the bolted connection with the support 
profiles, providing also an horizontal mounting tolerance which is a related to the length of the 
slots. 

• Cover plate, made with mild steel, having the same geometry of the brass sheet.  
 

The connection can be pre-assembled by mounting two support profiles, two brass sheets and 
two cover plates with bolts, nuts and washers without tightening, placed in position and then 
tightened, or assembled with each component at a time (an exploded assonometry of the 
connection mounted on L-shaped support profiles with inverted plate configuration is shown in 
Figure 3.7). The former solution eases the assemblage from one side only. Figure 3.8 shows 
the assembled device subjected to imposed displacement and Figure 3.9 shows a technical 
drawing of the assembled connection. The vertical tolerances are very large, since in vertical 
direction large slots are provided. Horizontal in-plane tolerance is provided by the horizontal 
slots on brass and cover plates. The horizontal out-of-plane tolerance s provided by the short 
horizontal slots on the support profile. Brass and cover plates can be mounted in mirrored or 
inverted configuration. The first configuration yields to a symmetric distribution of forces up 
to the sliding shear threshold, after which all horizontal reactions due to shear increments 
coming from the rotational equilibrium of the plates are taken by the support profile adjacent 
to the round holes of the plates. The second configuration always provides a symmetric 
distribution of forces.  



 

Figure 3.6

Figure 3.7 
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3.2.1. Experimental programme 

The cyclic tests that have been carried out are listed in Table 3-1. The tests have been carried 
out with the aim to set the best configuration of the device and to investigate several 
technological issues, both regarding the performance of the connection and its operability 
(Biondini et al. 2014b, 2014e). Those issues regard:  

- The necessity of using the brass plates; 
- The behaviour under different velocities of displacement application; 
- The efficiency of sandblasting surface treatment, aimed to enlarge the steel-brass friction 

coefficient; 
- The necessity of controlling the torque; 
- The possibility of re-use of the same components also after several cycles; 
- The behaviour considering different types of washers; 
- The behaviour with symmetric or asymmetric support profiles.  
 
 

Table 3-1 – List of the performed tests on FBD 

 

 
 
 
 
 

DEVICE
TEST 
TYPE

CYCLIC 
LOAD 

PROTOCOL
SPEED KIND OF SAMPLE BOLTS

TIGHTENING 
TORQUE

WASHER TEST ID

SLOW NEW 134 THIN 1
SLOW USED 134 THIN 2
FAST USED 134 THIN 3
FAST NEW 134 THIN 4
FAST SANDBLASTED1 134 THIN 5
FAST SANDBLASTED2 134 THIN 6
FAST REVERSED 134 THICK 7
FAST NEW 134 THICK 8
FAST NEW 80 THICK 9
FAST USED 134 THICK 10
FAST NEW 134 BELLEVILLE 11
FAST NEW 134 ELASTIC 12
FAST NEW 190 BELLEVILLE 13
FAST REVERSED_NEW 190 BELLEVILLE 14
FAST REVERSED_USED 190 BELLEVILLE 15
FAST ANGLES - NEW 190 BELLEVILLE 18
FAST ANGLES - USED 190 BELLEVILLE 19
FAST NEW 134 THICK 20
FAST NEW 134 BELLEVILLE 21
FAST NEW 134 ELASTIC 22
FAST NEW 190 BELLEVILLE 23
FAST USED 190 BELLEVILLE 24
FAST REVERSED(NO BRASS) 190 BELLEVILLE 25
FAST ANGLES-NEW 190 BELLEVILLE 28
FAST ANGLES-USED 190 BELLEVILLE 29

FBD CYCLIC

D

8.8

E

10.9

B

8.8

10.9



Innovative dissipative connections for cladding panels 

 
52 
 

3.2.2. Necessity of brass plates 

While none of the performed tests with the traditional configuration of a brass friction device 
showed cyclic instability, the only test performed without the use of the brass plates, which 
means that the sliding occurs between the steel surfaces of the support profile and the plate, 
thus reducing the cost of the device, showed a clear tendency of cyclic instability. Figure 3.10 
shows the load vs displacement experimental cycles of the specimen without brass sheets, and 
it can be noted that a cyclic instability occurred, since the slip load rapidly increases with large 
drifts. This happened because of tangling of the steel surfaces, which is also called 
“mechanical welding” effect. Figure 3.11 shows the load vs displacement experimental 
diagram of a “traditional” connection provided with brass sheets, where tendencies to 
instability are not observed. The entanglement of the connection without brass sheet caused a 
large increase in the force, which moved the deformation from the sliding of the central portion 
to the plastic deformation of the support profiles, as shown in Figure 3.12.     

 
Figure 3.10 – Load vs displacement for specimen without brass sheet (test 25) 

 

 
Figure 3.11 – Load vs displacement for  specimen provided with brass sheet (test 23) 
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3.2.4. Effect of sandblasting surface treatment 

Sandblasting surface treatment has been applied to both the inner sides of the brass sheets in 
order to increase the friction coefficient between steel and brass, trying to maximize the slip 
load threshold. The cyclic behaviour that has been reported in Figure 3.15 shows that the 
surface treatment is efficient in increasing the slip load threshold, both static and dynamic. 
However, the results show that this effect is strongly active only for monotonic loading, since 
after the first semi-cycle the behaviour quickly tends to that of a specimen provided with a 
regular brass sheet (Figure 3.16), which is due to the abrasion of the sandblasting, occurring 
very soon. Figure 3.17 shows the comparison between a sandblasted and a regular brass sheet 
after a test with protocol C. The sandblasted surface is strongly abraded, exposing the smooth 
surface under the treated.   

 

 
Figure 3.15 – Load vs displacement for specimen with inner sandblasted brass sheets (test 5) 

 

 
Figure 3.16 – Load vs displacement for specimen with untreated brass sheets (test 3) 
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Figure 3.18 – Load vs displacement for specimen with 80 Nm torque (test 9) 

 
 

 
 

Figure 3.19 – Load vs displacement for specimen with 136 Nm torque (test 10) 
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3.2.7. Use of different types of washer 

A comparison among specimens provided with different types of washer show that this 
component can have a large influence on the cyclic response of the connection. Four different 
types of washers have been considered, from normal thin M14 washers to thick M14 washers, 
up to improved types of washers such as elastic (spiral-shaped cut washer) and belleville (with 
spherical profile). The hysteretic cycles of the specimen with standard thin washers (Figure 
3.14) show a large loss of dynamic load slip threshold through cycles, with a lowering that 
reaches about 20 kN within the second and the third cycles. At the end of the test, the residual 
axial load in the bolts has been approximated caught by using again the mechanical wrench for 
unscrewing. At the only side subjected to slippage, a residual torque of less than 50 Nm, the 
minimum allowed by the wrench, has been measured for both bolts, while a higher torque of 
about 100 Nm has been measured for the bolts of the side not subjected to slippage. The 
energy dissipation properties of this connection are reported in the charts of Figure 3.22, from 
which it can be deduced that the energy dissipation decay through cycles is rapidly occurring. 
Looking at the specific energy computed with reference to a perfect plastic cycle having the 
same maxima drifts and loads of the analysed, again a noticeable decay is occurring, starting 
from about 0,6 down to 0,35. The specimen with thick washers (Figure 3.19) also shows large 
losses, reaching a threshold of about 20 kN within the second and third cycles. Residual 
torques measured at both sides are equal to 60 – 70 – 70 – 100 Nm. The energy dissipation 
properties reported in the charts of Figure 3.22 show that the energy dissipation decay through 
cycles is rapidly occurring. Looking at the specific energy, an improvement of the behaviour is 
noticed, with values that float around 0,6.   

Some improvements can be noticed at the specimen provided with elastic washers (Figure 
3.24), with which three to four cycles can develop before the threshold lowers down to 20 kN. 
Residual torques are as follows: 50 – 90 – 90 – 110 Nm. Figure 3.25 shows that the energy 
dissipation decay through cycles is occurring more softly. Looking at the specific energy, an 
improvement of the behaviour is noticed, with values that float around 0,6.   

The best performance is noticed with the specimen equipped with belleville washers (Figure 
3.26), which also shows a tendency to lower the threshold, reducing though losses in such a 
way that the threshold is of about 30 kN also after the full performance of ten large 
displacement cycles. The residual torques that have been measured are equal to 70 -110 – 110 
– 110 Nm for the other three. Figure 3.27 shows that the energy dissipation decay through 
cycles is occurring much more softly with respect to the tests with other types of washers. 
Looking at the specific energy, a stable behaviour is noticed, with values that float around 0,6. 
Those losses are due to the abrasion of the brass sheet. The bolts are tightened within a short 
length, between 24 and 28 mm in the performed tests, and thus a superficial abrasion of several 
hundredths of millimetres can cause a shortening in the bolt that corresponds to a strong loss. 
Traditional flat washers do not provide a restraint for the bolt shortening, but improved 
washers, such as elastic and belleville, are aimed to keep the pre-load even under small 
shortening, as per their stiffness. A slight increase of elastic stiffness of the connection with 
stiffer washers is also noticed, from a value of about 40 kN/mm with thin washers, to 45 
kN/mm with thick washers, to 50 kN/mm with elastic washers up to 55 kN/mm with belleville 
washers.  
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Figure 3.22 – Energy dissipation properties for specimen with thin washers (test 4) 

 

 
Figure 3.23 – Energy dissipation properties for specimen with thick washers (test 10) 
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Figure 3.24 – Load vs displacement for specimen with elastic washers (test 12) 

 

 
Figure 3.25 – Energy dissipation properties for specimen with elastic washers (test 12) 
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Figure 3.26 – Load vs displacement for specimen with belleville washers (test 11) 

 

 
Figure 3.27 – Energy dissipation properties for specimen with belleville washers (test 11) 
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protocol E and Figure 3.29 shows the energy dissipation properties. A large cyclic stability is 
achieved, together with a very large specific energy. Similar results are obtained from the same 
test with used components (Figure 3.30 and Figure 3.31). The tests performed with protocol B 
also show a large cyclic stability and dissipation properties, both for the new specimen (Figure 
3.32and Figure 3.33) and for the used (Figure 3.34 and Figure 3.35). 

 

 
Figure 3.28 – Load vs displacement (test 18) 

 

 
Figure 3.29 – Energy dissipation properties (test 18) 
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Figure 3.30 – Load vs displacement (test 19) 

 

 
Figure 3.31 – Energy dissipation properties (test 19) 
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Figure 3.32 – Load vs displacement (test 28) 

 

 
Figure 3.33 – Energy dissipation properties (test 28) 

 

-100

-80

-60

-40

-20

0

20

40

60

80

100

-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45

Lo
ad

 [k
N

]

Displacement [mm]

MAX F+ [kN] MAX F- [kN] MAX d+ [mm] MAX d- [mm]

78,26 62,47 38,70 38,92

y = 45 x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8
Dissipated energy

Cycle [−]

D
is

si
pa

te
d 

E
ne

rg
y 

[k
N

*m
]

 

 
whole cycle
positive semicycle
negative semicycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−1

−0.5

0

0.5

1
Energy losses through cycles (u losses)

Cycle [−]

S
pe

ci
fic

 E
ne

rg
y 

[−
]

 

 
positive semicycle
negative semicycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8
Dissipation − comparison (u comp)

Cycle [−]

S
pe

ci
fic

 E
ne

rg
y 

[−
]



Innovative dissipative connections for cladding panels 

 
65 

 

 
Figure 3.34 – Load vs displacement (test 29) 

 

 
Figure 3.35 – Energy dissipation properties (test 29) 
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3.2.9. Design recommendations 

From the analysis of the experimental data, it is noticeable how similar tests yielded to 
different results in terms of maximum load, depending on complex local random phenomena 
related to friction. Anyhow, the tendency of the cyclic behaviour of the connection can be 
identified as elastic-plastic, with an elastic stiffness within the range 40~60 kN/mm and a 
plastic branch up to the maximum allowed drift. The maximum drift is equal to the gross 
length of the vertical slots diminished by the bolt diameter and by the vertical assemblage 
tolerance. The calculation of the plateau value to be used for the design of the device should 
take into account three different necessities: a mean value for a serviceability design, a safe 
side value for the design of the overall structure in which the FBDs improve the seismic 
response and, finally, a safe side value for the design of the components stressed by the FBD 
and designed according to its capacity. Direct reference to the shear force transmitted by the 
connection is made, with a lower value V, corresponding to the dynamic shear force on which 
the connection stabilises after several cycles, and an upper V+ΔV, corresponding to the 
maximum expected shear force. The forces arising in the connection are displayed in Figure 
3.36 with reference to regular 4 bolted plates connected with two bolts to the panel side and 
the following geometrical parameters: 

e: horizontal distance between bolts considering the maximum tolerance on the safe side  

d: vertical distance between bolts 

B: horizontal distance between vertical slots and panel  

eb: horizontal distance between connecting bolts and centre of mass of sliding surfaces  

db: vertical distance between connecting bolts and panel  

ds: useful height of the connecting section  

The rotational equilibrium of the plate, subjected to counter-acting shear forces distanced by e 
brings to inclined actions on the bolts. The vertical component is always equal to half the shear 
force, while the horizontal component depends on the polar moment of inertia of the 
connection. In the regular case with four bolts, this component is equal to the ratio between the 
moment and twice the vertical distance d. It is then possible to relate the axial load N acting in 
the bolt with the shear force V transmitted by friction. The following equation shows this 
relationship with reference to the static load threshold Vs:  

2

2

1

2

d

e

nk
NV ss

s

+

= μ

 

(3.1)

where μs is the static friction coefficient between brass and steel, that can be considered equal 
to 0,51, n is the number of sliding surfaces (standard connection has two sliding surfaces), ks is 
a coefficient depending on the shape of the hole (for slots it can be assumed equal to 0,63 
according to EN 1993-1-8:2005).  

The mean dynamic slip load threshold can be obtained by substituting μd to μs, where μd is the 
dynamic friction coefficient between brass and steel, that can be considered equal to 0,44. 
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The resistance of the bolts subjected to contemporary shear and axial loading and the bearing 
resistance of the profile can be calculated on the base of traditional standards. In the case in 
which also the FPD-to-panel connection is bolted, the bolts are subjected to combined vertical 
shear and axial load if support profiles are symmetric, and to an additional torsional shear 
component if supports are asymmetric.  

 

 

3.3. Multiple Slit Device (MSD) 
 

Multiple Slit Devices are steel plates with slits of various shapes and sizes that allow to move 
the stiff shear behaviour of a compact square or rectangular plate to a flexural type, which is 
more suitable for energy dissipation. MSD have been developed as dissipative connections 
mainly within the field of structural steel seismic engineering, and can be considered as an 
evolution of the ADAS devices (Aiken et al. 1993, Soong & Spencer Jr 2002), in which several 
slender steel beams are linked together in a row and dissipate energy through plasticity, by 
means of juxtaposing the beams in a column instead of a row, by performing cuts in a steel 
plate. Several types of plate dissipating devices have been experimented by Chan et al., from 
buckling restrained plain (Chan & Albermani 2008) to constant section beams multiple slit 
(Chan et al. 2009) to perforated (Chan et al. 2013). Oh et al. (2009) carried out experimental 
testing on a full scale beam-to-column steel joint enhanced with a MSD. An analytical study 
on shape optimization of a multiple slit device carried out by Ghabraie et al. (2010) brought to 
the definition of an optimized hourglass-shaped beam device, that has also been tested and 
reported within the same work. Also Ma et al. (2010) devoted efforts to the design procedures 
and the experimentation of MSDs with different beam shapes, from constant to butterfly. 
Analytical tools for the design are also provided in Karavasilis et al. (2012). The concept of 
the device is shown in Figure 3.37, where a set of elementary beams are formed by making 
linear laser cuts. In such a way, the yield force and displacement of the device can be 
calibrated on the basis of the design need.  

The aim of the work developed is mainly to traduce this type of connection to a proper use 
within precast concrete cladding panels, by reducing its dimensions with respect to what 
considered in the previously cited works and introducing large mounting tolerances to the 
device with the separation of the connection in multiple slit plate and support profile, then 
bolted together to get the final connection. This new way of assemblage of MSDs allows to 
introduce several technological improvements, among which the avoidance of axial induced 
stresses due to the axial elongation restraint thanks to the introduction of a slot and the 
possibility of combining a friction mechanism with the plastic (Biondini et al. 2014d, 2014e).  

The conception of the specimens illustrated in the following is based on the trial to avoid a 
depth vs width ratio of the single beam higher than four, in order to farther the risk of flexural-
torsional buckling, that occurred in most of the previously tested specimens, due to their 
dimensions. Large drifts can be achieved with large profiles also by forming multiple column 
beams, with the possibility to fulfil the avoidance of lateral buckling, since the thickness of the 
plate shall be handled by the laser cutter. Furthermore, the size effect can increase the ductility 
of smaller beams, since to equal imposed curvatures correspond lower maximum strains. 



 

Figure 3.
displacem
while vert
cut. Devic
slippage. I
have been
flanges are
side with o

   

38 shows 
ent. The h
tical toleran
ce-to-panel
In addition 
n considere
e provided 
one plate o

the func
orizontal to
nces can be
l connectin
 to the sup

ed for the t
with threa
nly. 

Figure

Figure 

In

tioning sc
olerances c
e obtained
ng bolts sh
port profile
tests on th
ded holes f

 

e 3.37 – Mu

3.38 – Fun

nnovative d

cheme of 
can be prov
by the sup

hall be stro
es shown in

he MSD sp
for the dire

ultiple slit co

 

nctioning sc

 

 

dissipative 

the conne
vided by h
port profile

ongly tighte
n Figure 3.
ecimens w

ect applicati

onnection d

cheme of th

connection

ection und
orizontal s
e, in which
ened in or
6, also UP

with horizon
ion of the b

devices 

he MSD 

ns for cladd

der impose
slots cut on
h vertical s
rder to avo
PN symmetr
ntal slots. 
bolt from th

ding panels

69

ed vertical
n the plate,
lots can be

oid vertical
ric profiles
Both UPN
he external

 

s 

 
9 

l 
, 
e 
l 
s 

N 
l 

 



Innovative

 
70 
 

3.3.1. Tes

Figure 3.3
lateral dis
devices wi
optimizati
that all be
following 
except for
and ultima
having the
undergoin
Thus, also
horizontal
resistance.
horizontal

The compl

  

Figure 3

e dissipativ

st program

39 shows t
placements
ith not mor
on of the b
eam sectio
therefore a

r the very c
ate force a
e same bas
g large def

o plates pr
 mounting 
. All plates
 slots, whic

lete list of 

3.39 – Mult
co

ve connectio

mme 

the device 
s. The need
re than two
beam profil
ons can yie
a height lo
central por
are therefor
se height, w
formation, 
ovided wit
tolerance. 

s are made
ch is made 

the perform

(a) 

 

(c) 

tiple slit co
olumn, (c) h

ons for clad

shapes tha
d of maxim
 columns o
le, have be
eld at the 
owering wh
tion, that c
re not expe
while its fle
a second or
th horizont
All the pla

e with stee
with a stee

med tests is

 

 

onnection d
hourglass, 

dding pane

at have be
mizing the 
of slender b
een tested. 

same time
hich is prop
cannot und
ected to be
exibility ge
rder axial c
tal slots ha
ates have b
el grade S2
el grade S3

s reported in

evices teste
(d) hourgla

els 

en constru
area of ste

beams. Also
Such profil
e under an
portional to
ergo a cert
e lowered w
ets improv
component
ave been te
been design
235, except
55. 

n Table 3-5

ed devices:
ass with ho

ucted and t
eel that had
o hourglass
les are con

n imposed 
o the squar
tain minimu
with respec
ed, as prev
may arise,

ested, gran
ned in order
t that with 

5, for a tota

(b) 

(d) 

 (a) single 
rizontal slo

tested unde
d to yield 
s shapes, ba
nceived in s

lateral dis
re root of 

mum height.
ct to a stra
viously sho
, decreasin

nting also t
r to achiev
hourglass 

al of 16. 

column, (b
ots 

er imposed
brought to

ased on the
such a way
placement,
the length,
. The yield
aight beam
own. When
g ductility.
the needed

ve a similar
shape and

 

 

b) double 

d 
o 
e 
y 
, 
, 

d 
m 
n 
. 

d 
r 
d 



Innovative dissipative connections for cladding panels 

 
71 

 

Table 3-2 – Performed cyclic tests on multiple slits devices 

 
 
 

3.3.2. Monotonic behaviour 

Monotonic tests have been carried out on the four different typologies of Multiple Slit Device. 
Figure 3.40 shows the devices before the test and under the maximum imposed drift. The 
specimens with constant height beams are subjected to a large plastic deformation at the edges 
and an almost rigid rotation of the central portion. A large diffused plasticity is observed on 
the contrary within the hourglass-shaped specimens, providing a better exploitation of the 
device.  

The results are collected in Figure 3.41. The curves show that the response is initially very 
stiff, with stiffness depending on the profile for very low displacement, after which all curves 
show a linear branch with an average stiffness of about 12 kN/mm, with a smooth stiffness 
softening up to a final hardening branch with an average stiffness of about 1,4 kN/mm. 
Stiffness softening started for all specimens at around 5~6 mm of drift, which corresponds to 
7,4~8,8% of ratio with respect to the length of the elementary beam (doubled for the 2-
columns specimen). All specimens show a very large residual plastic deformation after the test, 
as noticeable from Figure 3.42. The specimens with constant height beam show that a plastic 
deformation of the plate around the corner holes occurred, due to the combination of a vertical 
reactions due to shear and a radius-wise inclined reaction due to rotational equilibrium. The 
resulting component is inclined, as clearly shown by the hole deformation. 

TEST TYPE
CYCLIC 
LOAD 

PROTOCOL

BOLT 
CLASS

TEST 
SPEED

8.8 2mm/s
12.9 2mm/s

D 12.9 2mm/s
PUSHOVER - 12.9 0,25 mm/s

8.8 2mm/s
12.9 2mm/s

D 12.9 2mm/s
PUSHOVER - 12.9 0,25 mm/s

8.8 2mm/s
12.9 2mm/s

A 12.9 2mm/s
PUSHOVER - 12.9 0,25 mm/s

A 10.9 2mm/s
D 10.9 2mm/s

PUSHOVER - 10.9 0,25 mm/s
MSD+FBD CYCLIC B 10.9 2mm/s

DEVICE

MSD

1 COLUMN
A

HOURGLASS 
WITH SLOTS

CYCLIC

A

2 COLUMNS
A

HOURGLASS

CYCLIC

CYCLIC

CYCLIC



Innovative

 
72 
 

 

 

Figure 3
colum

 

e dissipativ

(a) 

(e) 

3.40 – MSD
mn, (c-d) do

0

20

40

60

80

100

120

Lo
ad

 [k
N

]

ve connectio

Ds under m
ouble colum

Figure 3.4

0 3 6

y = 1,4 x

ons for clad

(b) 

(f) 

onotonic te
mn, (e-f) ho

41 – Pushov

9 12 1

1-Sl
2-Sl
Hou
Hou

y

dding pane

 

 

est from un
ourglass an

ver test resu

5 18 21
Displaceme

its
its

urglass
urglass+Slots

y = 12 x

els 

(c)

(g)

ndeformed t
d (g-h) hou

ults for all 

24 27 30
ent [mm]

 

to maximum
urglass with

specimens 

0 33 36

(d

(h

m drift: (a-
h horizonta

 

 

39 42

d) 

 

h) 

b) single 
al slots 



 

Figure 3.4

 

3.3.3. Low

Cyclic tes
investigate
for service
low displa

The result
with the r
device and
for the spe

Regarding
deduced, w
hardening 
drift. The 
values floa

The test o
with an yi
branch is 
specific en
floating be

On both sp
due to sm
one millim

(a) 

42 – MSDs
double 

w displace

sts with lo
e the devic
eability hor
acement ran

s of the tes
relative ene
d in Figure 
ecimen with

g the single
with an yie
branch is 
specific en

ating betwe

on the doub
ielding loa
observed, 
nergy in c
etween 0,25

pecimen re
mall rigid ro
metre enlarg

 

s under mon
column, (c

ement cycli

ow displac
ce behaviou
rizontal loa
nge (within

st performe
ergy dissip
3.45 with 

h double co

e column d
elding load
observed, 

nergy in co
een 0,22 an

ble column
d of about 
with a sm

comparison
5 and 0,35.

esults, a pin
otations of 
ged by plas

In

(b) 

notonic tes
c) hourglass

ic behaviou

ement cyc
ur and its st
ads (e.g. wi
n approxima

ed on the co
pation prop
the relative
olumns.  

device, an i
d of about 
with a sm

omparison w
nd 0,30. 

ns device sh
20 kN occ

ooth stiffn
with perf

 

nching effe
the plates 

stic local de

nnovative d

 

st residual p
s and (d) ho

ur 

clic protoco
tability und
ind loads). 
ately 10% o

onstant heig
perty diagra
e energy di

initial elast
33 kN occ

mooth stiffn
with perfec

hows an in
curred at a

ness softeni
fect rigid-p

ct is observ
occurred b

eformation

dissipative 

(c)

plastic defo
ourglass wi

ol A have
der low dis
All specim

of drift).  

ght beam d
ams in Fig
issipation p

tic stiffnes
curred at a
ness softeni
ct rigid-pla

nitial elasti
about 0,8 m
ing starting
plastic equi

ved, affecti
because of 
.   

connection

 

ormation: (a
ith horizon

e been carr
splacement,
mens show 

devices are 
gure 3.44 fo
property dia

s of about 
about 1,2 m
ing starting
stic equiva

c stiffness 
mm. After y
g at around
ivalent syst

ing energy 
standard b

ns for cladd

(d

a) single co
ntal slots 

rried out in
, which is 
a large rel

shown in F
for the sing
agrams in F

27 kN/mm
mm. After 
g at around
alent system

of about 3
yielding, a
d 5 mm of
tems leads

dissipation
bolt-hole to

ding panels

73

d) 

 

olumn, (b) 

n order to
also useful
iability for

Figure 3.43
gle column
Figure 3.46

m could be
yielding, a
d 6 mm of
ms leads to

32 kN/mm,
 hardening

f drift. The
s to values

n, probably
olerance of

s 

 
 

o 
l 
r 

 
n 
6 

e 
a 
f 
o 

, 
g 
e 
s 

y 
f 



Innovative dissipative connections for cladding panels 

 
74 
 

 

Figure 3.43 – Single column device: load vs displacement 

 

 

Figure 3.44 – Single column device: energy dissipation properties 
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Figure 3.45 – Double column device: load vs displacement 

 

 

Figure 3.46 – Double column device: energy dissipation properties 
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The results of the test performed on the hourglass-shaped beam devices are shown in Figure 
3.47 for the single column device with the relative energy dissipation property diagrams in 
Figure 3.48 and in Figure 3.49 with the relative energy dissipation property diagrams in Figure 
3.50 for the specimen with double columns. The tests have been performed according to 
protocol A, after which enlarged displacement amplitudes at 1 mm step cycled three times 
have been performed up to failure.  

Regarding the hourglass-shaped device, an initial elastic stiffness of about 28 kN/mm could be 
deduced, with an yielding load of about 25 kN occurred at about 1,0 mm. After yielding, a 
hardening branch is observed, with a smooth stiffness softening starting at around 5 mm of 
drift. Failure has been attained with rupture of the central portion of the beams, at a section of 
about 2 mm from midspan, that started at the last semi-cycle with displacement amplitude of 
10 mm. The specific energy in comparison with perfect rigid-plastic equivalent systems leads 
to values floating between 0,30 and 0,50. 

The test on the hourglass-shaped device with horizontal slots shows a lower initial elastic 
stiffness of about 25 kN/mm, with an yielding load of about 30 kN occurred at about 1,2 mm. 
After yielding, a hardening branch is observed, with a smooth stiffness softening starting at 
around 6 mm of drift. Failure has been obtained with rupture of the beam edges that started at 
16 mm displacement cycles. The specific energy in comparison with perfect rigid-plastic 
equivalent systems leads to values floating between 0,15 and 0,30. 

Pinching is less pronounced on hourglass-shaped devices, providing a better dissipation of 
energy. Figure 3.51 shows the specimens after the tests. Hourglass-shaped devices are broken, 
since they have been taken to a larger drift with respect to constant section beam profiles. 

A small enlargement in the elementary beam midspan depth over the edge depth, fro 5,2 
(hourglass) to 5,0 (hourglass with horizontal slots) moves the failure from midspan to the edge, 
showing that the otimised ratio is in between those values. Failure of the edge is suggested to 
be adopted in the design, since it is associated with the maximum attainable displacement. 

 

Figure 3.47 – Hourglass device: load vs displacement 
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Figure 3.48 – Hourglass device: energy dissipation properties 

 

 

Figure 3.49 – Hourglass device with horizontal slots: load vs displacement 
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Figure 3.53 – Single column device: load vs displacement 

 

 

Figure 3.54 – Single column device: energy dissipation properties 
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Figure 3.55 – Double column device: load vs displacement 

 

 

Figure 3.56 – Double column device: energy dissipation properties 
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Figure 3.57 – Hourglass device with horizontal slots: load vs displacement 

 

 

Figure 3.58 – Hourglass device with horizontal slots: energy dissipation properties 
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Figure 3.60 – Combined FBD and hourglass with horizontal slots MSD device: load vs 
displacement 

 

 

Figure 3.61 – Combined FBD and hourglass with horizontal slots MSD device: energy 
dissipation properties 
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The yielding displacement can then be found by imposing that the maximum bending moment 
along the beam is equal to the yield moment of that cross section: 

66
1

1
6

2

2

2

bh
f

GAL

EIL

EI
d yy =

















+ χ           

That leads to: 









−

=

LG

Eh
Eh

L
fd yy

2
13

2

2

χ
 for constant height profile     (3.8) 

Eh

L
fd yy

2

78,0=   for hourglass height profile     (3.9) 

And the corresponding yield vertical load can be obtained by multiplying the yield 
displacement by the translational stiffness: 

vyy kdP =            (3.10) 

The ultimate load increases with respect to the yield because of the combination of the 
diffusion of plasticity along the cross section height and the material over-resistance. The edge 
chord of the cross section fails when the maximum longitudinal stress reaches the ultimate 
resistance. All the lower chords, however, are subjected to a lower stress and therefore a 
contemporaneity factor should be applied to the coefficients referring to those phenomena. The 
formulation of the ultimate load can be expressed according to the following equation. 

ΨΦΦ= orplyu PP           (3.11) 

where the plastic and over-resistance factors are defined as follows: 

5,1==Φ
el

pl
pl W

W
 For rectangular section only        (3.12) 

y

u
or f

f=Φ            (3.13) 

While the contemporaneity factor Ψ depends on the stress-strain relationship of the material. If 
considering a linear-plateau-parabola model for steel as shown in Figure 3.65, the development 
of longitudinal stresses along the section for increasing applied bending moments is shown in 
Figure 3.66, with reference to the yield and the ultimate stress distribution and to a rectangular 
section made with steel S275 with nominal resistance values.     
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Figure 3.65 – Longitudinal stress-strain relationship for steel (S275 with nominal resistance 
values in Figure) 

 

 

Figure 3.66 – Yield and ultimate stress distribution along the cross section height due to pure 
bending 

 

The results for different steel grades are collected in Table 3-3. They show that the 
contemporaneity factor Ψ can be taken with a small approximation equal to 0,94 for all grades. 

 

Table 3-3 – Determination of Ψ factor for different steel grades 
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MPa MPa MPa MPa - - -

S235 235 360 360* 510* 1,53 1,5 0,939
S275 275 430 410* 560* 1,56 1,5 0,936
S355 355 510 470* 630* 1,44 1,5 0,946

* for thickness > 3 mm and < 100 mm
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Studying the whole device, that can be made with a combination of several elementary beams 
in parallel with m rows and in series with n columns, the following can be written considering 
the average properties: 

n

d

d

n

j

y

toty

j
== 1

,           (3.14) 

m

P
P

m

i

y

toty

i
== 1

,           (3.15) 

toty

toty
toty P

d
k

,

,
, =            (3.16) 

)min(, jutotu dd =           (3.17) 

and the total ultimate load can be calculated as the sum of all beam loads corresponding to the 
ultimate displacement du,tot. 

)( ,
1

, totu

m

i
utotu dPP

i
=

=           (3.18) 

By comparing the experimental results with the analytical according to the described 
procedure, as shown in Table 3-4, good accordance is found only for what concerns the 
ultimate shear load, calculated according to characteristic mechanical values, satisfactorily 
predicting the low-displacement cyclic test ultimate load. Important differences are observed if 
comparing the ultimate load with that of the monotonic behaviour, which is significantly larger 
than the predicted. Anyhow, the design procedure leads to safe-side estimations. The yield load 
values differ significantly from the experimental results, but it has to be pointed out that the 
experimental yield point has only been estimated, while a smooth passage to the plastic branch 
occurs due to the diffusion of plasticity along the section. The expected yield displacement 
calculated according to the simplified procedure is largely under-estimating the experimental, 
which is predominantly influenced by the contribution of bolt tolerances. Both monotonic and 
cyclic experimental tests are suggested to be performed to characterise the behaviour of new 
devices.  

 

Table 3-4 – Comparison among experimental and simplified design procedure results 

 

Py Pu μ ф Pu μ ф dy Py Pu

[mm] [%] [kN] [mm] [%] [kN] [-] [-] [mm] [%] [kN] [-] [-] [mm] [kN] [kN]

1-slits 1,2 1,8 33 29 43 100 16,4 3,0 9,4 14 80 7,8 2,4 0,1 34 73,4

2-slits 0,6 0,8 20 31 42 115 38,2 5,8 9,5 13 84 15,8 4,2 0,1 35 75,6

hourglass 1,0 1,5 28 35 51 120 23,8 4,3 10 15 69 10,0 2,5 0,2 34 73,4

hourglass 
with slots 1,2 1,8 30 37 54 120 21,0 4,0 16 24 86 13,3 2,9 0,2 40 81,6

* The design procedure neglects the influence of rigid rotations due to bolt tolerances

dy du du

LOW-DISPL CYCLIC BEHAVIOUR DESIGN PROCEDURE*MONOTONIC BEHAVIOUR
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tends to emphasize, weakening the critical sections.  It is possible to evaluate an approximated 
elastic stiffness equal to 1,5 kN/mm. The unload branch at the upwards drift side shows a 
progressive stiffness degradation from almost rigid to flexible, due to the second order effect 
and the passage from a stiff combined axial-flexural behaviour to a purely flexural. 
Figure 3.74 shows the energy dissipation properties of the connection. Up to the maximum 
displacement cycles, the positive and negative semi-cycles seem to dissipate about the same 
amount of energy. The specific energy, if compared to a perfect plastic equivalent system with 
equal maximum displacements and forces, rises up to about 0,48 for the ± 40 mm cycle and 
0,52 for the ± 60 mm cycle, as shown in the energy diagram, while a perfect elasto-plastic 
equivalent system with the same elastic stiffness as identified above gives a comparison of 
about 0,86 for the ± 40 mm cycle and 0,77 for the ± 60 mm cycle. The large out-of-plane 
displacement tendency is confirmed by looking at its history in Figure 3.75. 

 
Figure 3.73 – Load vs displacement 

 

Figure 3.74 – Energy dissipation properties 
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Figure 3.75 – Comparison between the vertical and horizontal displacement components with 
protocol C 

 

Similar results are obtained within the test on a similar specimen subjected to cyclic protocol 
B. Figure 3.76 shows the load vs displacement diagram. Failure has not been attained. The 
cyclic behaviour is confirmed but less emphasised because of the lower drift achieved, with 
different maxima load attained, equal to 22 kN and 29 kN, respectively. The yield load and 
displacement could not be clearly identified, also because a pinching effect has been recorded, 
mainly due to rigid rotation of the horizontal plate-support connection that occurred because of 
mounting tolerances. It is possible to evaluate an approximated elastic stiffness equal to the 
previous. 

 

 

Figure 3.76 – Load vs displacement 
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Figure 3.77 shows the energy dissipation properties of the connection. Up to the maximum 
displacement cycles, the positive and negative semi-cycles seem to dissipate about the same 
amount of energy. The specific energy, if compared to a perfect plastic equivalent system with 
equal maximum displacements and forces, rises up to about 0,40 for the ± 40 mm cycles, as 
shown in the energy diagram, while a perfect elasto-plastic equivalent system with the same 
elastic stiffness as identified above gives a comparison of about 0,70 for the same cycles. 
The results are in very good agreement with those obtained from the same specimen subjected 
to the cyclic protocol C, as showed by the superposition of the experimental loops in Figure 
3.78, which suggests that the behaviour of the connection is reliable and cyclically stable. 
 

 

Figure 3.77 – Energy dissipation properties 

 

 
Figure 3.78 – FPD 1 under cyclic test with non-restrained out-of-plane displacement: 
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Figure 3.80 shows the load vs displacement diagram. Failure occurred at the last cycle (± 70 
mm) at the left edge of the horizontal segment of the plate (panel side). Figure 3.81 shows the 
ductile failure mechanism of the plate.  

The cyclic behaviour is asymmetric: elastic–under-resisting for the downward direction and 
elastic–over-resisting for the upward direction, with very different maxima load attained, equal 
to 37 kN and 60 kN, respectively, which are much larger with respect to those attained within 
the same test with non-restrained horizontal displacement.  

The yield load and displacement could not be clearly identified, while it is possible to evaluate 
an approximated elastic stiffness equal to 2,6 kN/mm. As also shown by previous tests, the 
unload branch at the upwards drift side shows a progressive stiffness degradation from almost 
rigid to flexible, due to the second order effect and the passage from a stiff combined axial-
flexural behaviour to a purely flexural. 

Figure 3.82 shows the energy dissipation properties of the connection. Up to about half of the 
maximum displacement cycles, the positive and negative semi-cycles seem to dissipate about 
the same amount of energy, while the balance tends towards the positive semi-cycles for larger 
amplitudes.  
The specific energy, if compared to a perfect plastic equivalent system with equal maximum 
displacements and forces, rises up to 0,48 for the ± 40 mm cycle and 0,46 for the ± 60 mm 
cycle, as shown in the energy diagram, while a perfect elasto-plastic equivalent system with 
the same elastic stiffness as identified above gives a comparison of 0,78 for the ± 40 mm cycle 
and 0,66 for the ± 60 mm cycle. 
 

 

Figure 3.80 – Load vs displacement 
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Figure 3.87 – FPD 1 under cyclic test with restrained out-of-plane displacement: comparison 
between the curves obtained with protocols B and C 

 

3.4.4. Results from additional tests 

Thicker specimens provided similar results if compared with those shown above, in terms of 
cyclic behaviour. A larger initial pinching is detected, due to the difficulty to avoid small rigid 
body rotations due to tolerances for stiffer profiles. 

Considering only the results with cyclic protocol D and free horizontal displacement, larger 
elastic stiffness, of about 2,0 kN/mm for the 10 mm thick specimens and in about 2,3 kN/mm 
for the 12 mm thick specimens, have been achieved, together with larger maximum loads, of 
about 50 kN for positive semi-cycles and 40 kN for negative semi-cycles for the 10 mm thick 
specimens and of about 65 kN for positive semi-cycles and 50 kN for negative semi-cycles for 
the 12 mm thick specimens. Figure 3.88 and Figure 3.89 show the results of the tests 
performed on FPD 2 with cyclic protocol D and C limited to ± 40 mm, respectively.  

As it can be noticed by the comparison of the results collected in Figure 3.90 and in Figure 
3.91, the cyclic behaviour of the profiles with different bending diameter is very similar. A 
temporary partial block of the horizontal slider, occurred at the first negative semi-cycle with 
amplitude 40 mm of the test on FPD 4, as shown in Figure 3.92, clarifies how the load can 
increase when out-of-plane deformation is prevented.  
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Figure 3.88 – Load vs displacement for cyclic protocol E on FPD 2 

 

 

 

Figure 3.89 – Load vs displacement for cyclic protocol N limited to ± 40 mm on FPD 2 
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Figure 3.90 – Load vs displacement for cyclic protocol E on FPD 3 

 

 

Figure 3.91 – Load vs displacement for cyclic protocol E on FPD 4 

 

 

Figure 3.92 – Temporary block of horizontal displacement for cyclic protocol E on FPD 4 
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3.4.5. Design recommendations 

If the profiles are mounted following the suggested symmetric configuration, the global 
behaviour turns symmetric also in case of FPD with restrained out-of-plane displacement, 
characterised by a single device asymmetric behaviour. The global envelope of two devices 
mounted symmetrically is shown in Figure 3.93 with reference to FPD 1 with both restraint 
conditions, by summing of two inverted experimental curves. The curve shows that the 
behaviour is symmetric and that it is characterised by a large plateau followed by an over-
resisting branch due to second order large displacement effect, for which a pure bending 
behaviour turns into a combined axial-bending. However, the dimensioning of the device-to-
structure connection, made with post-installed fasteners or dowels, shall be performed 
according to the capacity design with reference to the specific behaviour of the single 
connection, considering both forces and bending moments. 

 

 

Figure 3.93 – Symmetric envelope curve for two FPD 1 with restrained horizontal 
displacement placed symmetrically on the panel  
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Chapter 4 

4. Panel sub-assembly behaviour of 
dissipative systems 
 

The present chapter contains information about the panel sub-assembly behaviour of 
dissipative systems and the related isostatic base configurations. The behaviour of the 
suggested vertical panel systems is studied experimentally, together with the influence that 
silicone sealant can have on the cyclic behaviour of those systems. Design rules for the sub-
assembly level are provided. The influence of silicone sealant is also studied through the 
experimental characterisation of its local behaviour. Design recommendations are provided 
also for silicone sealant.  

 

 

4.1. Isostatic systems 
 

Dissipative devices are conceived as additional energetic fuse ductile connections that can 
dissipate energy through different mechanisms. The safest use of those connections consists in 
excluding them from the panel resistant mechanism, that can be provided by bearing 
connections properly arranged to create an isostatic system. In such a way, risk of collapse of 
the panels is avoided by designing the bearing connections (and the panels) to remain elastic 
and undamaged also while the dissipative connections are subjected to a strong use, possibly 
allowing their safe substitution or re-activation after the earthquake.  

The study of isostatic configurations is therefore essential to create a solid base for the 
exploitation of improved systems. Suggested isostatic arrangements are described in the 
following, taking into account their ease of use in practice, both for vertical and horizontal 
panels. Proper procedures to evaluate the correct loads acting on primary bearing connections 
in case of dissipative systems are suggested, together with experimental tests aimed at 
verifying the correct functioning of several isostatic and dissipative systems.   

The dissipative connections are assumed to be mounted on pendulum or rocking isostatic 
arrangement, for vertical panels, and on swaying arrangement for horizontal panels.  
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4.2. Role of silicone sealant 

 

Silicone sealant is a natural completion material of precast panels, since it is universally used 
to fill and close the joints in between panels and between panels and other components, only at 
the external side or at both external and internal. The main reason of its application is to 
provide waterproofing. 

Silicone sealant is not a structural product, since its perfect receipt would allow to have a non-
limited shear deformating material with null stiffness, in order to not damage even under large 
imposed drift and to not collaborate with the building at a structural level.  

Many improvements in the field have been attained in this direction, but scarce information 
about the actual maximum loads and mean stiffness achievable is present in literature. In 
particular, Meunier et al. (2008) observed through experimental tests on single silicone strips 
that the material is characterised by a similar behaviour under shear and tension but a more 
rigid behaviour in compression.  

In ASTP STP-1243 recommendations, Lacasse et al. (1995) treat the phenomenon of cyclic 
fatigue of silicone sealant strips subjected to tension.   

In all the proposed isostatic configurations, relative sliding always occurs during an earthquake 
event, imposing a certain drift to long silicone sealant strips. An experimental campaign has 
been carried out at the Laboratorio Prove e Materiali of Politecnico di Milano in order to 
provide information about the influence of silicone sealant at structural level, regarding both 
local tests on small specimens and panel sub-assembly tests (Biondini et al. 2014a).  

The tests are performed under different strain rates, but still quasi-static, with a much lower 
strain rate than those occurring during an earthquake for the proposed configurations.  

Roland (2006) points out how the mechanical behaviour of rubber polymeric material is in 
general influenced by the strain rate to which is subjected, with both resistance and stiffness 
increasing with the strain rate.  

  

4.2.1. Local tests 

Several local tests on silicone strips (market available and diffused product) applied to small 
concrete blocks have been carried out, as listed in Table 4-1, regarding both monotonic and 
cyclic behaviour. The specimens are made with three concrete blocks, to which four silicone 
strips with different length and square cross-section sides are applied at the interface edges, as 
shown in Figure 4.8. In particular, three specimen geometries have been tested, namely with 10 
mm side and 60 mm length, 15 mm side and 90 mm length and 20 mm side and 120 mm 
length, as reported in Figure 4.9.  
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(a) (b) 

 
(c) 

Figure 4.11 – Experimental monotonic and cyclic stress-strain relationship for (a) specimens 1, 
(b) specimens 2 and (c) specimens 3 

 

(a) (b) 

Figure 4.12 – Evolution of failure mechanisms for (a) low speed tests, with formation of 
inclined struts and failure at mid-span and (b) larger speed tests, with formation of sliding 

surfaces and combined failure at support and mid-span 
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All tests have been performed under a strain rate that varies from 0,01 to 0,025 s-1, range 
corresponding to quasi-static actions. However, the comparison of the obtained results 
suggests that silicone sealant behaviour has a dependency on the strain rate, in particular 
reducing its maximum strain according to a negative logarithmic law, enlarging its maximum 
stress according to a positive logarithmic law and linearly enlarging its apparent shear 
modulus, as shown in Figure 4.13. Therefore, in case of much larger strain rate, as typical 
during seismic events, the obtained results are only indicative. Further experimentation with 
very large strain rates have to be performed, in order to cover this range, too.  

 
    (a)        (b)           (c) 

Figure 4.13 – Distribution of (a) maximum strain, (b) maximum stress and (c) apparental shear 
modulus with different strain rate and tendency curves 

 

4.2.2. Sub-assembly test 

A single sub-assembly test on silicone sealant has been performed on the pendulum connection 
arrangement. Silicone sealant has been placed at both sides of the panel interface along the 
contact lines with the exception of the upper, in which silicone has not been inserted because 
of the presence of the beam. Each silicone section is about 10/15 mm by 10/15 mm, depending 
on natural imperfections in panel position and silicone depth. The maturation period has been 
of 12 days. 

The test is cyclic, performed in displacement control. Single cycles have been performed with 
the following amplitudes, in accordance with cyclic protocol B used for particular tests with 
modified amplitudes of 6 mm; 11 mm; 22 mm; 42 and 85 mm, corresponding roughly to 0,2; 
0,4; 0,8; 1,6; 3,2 % of drift. Such displacement steps have been derived from the corresponding 
steps of the cyclic tests with cyclic protocol B on local specimens of silicone, assuming a rigid 
body motion of the panels. The cycle frequency of the actuator is controlled in such a way to 
represent the fast speed of the local tests, maintained constant during the whole test. Figure 
4.14 shows the load vs vertical relative displacement diagram. The behaviour is stiffness 
degradating, with a soft initial branch with low stiffness of about 0,2 kN/mm and a progressive 
damage that got accentuated at the last displacement step cycles. The hysteresis shows a large 
pinching, as typical for shear behaviour. If considering the combination of very low stiffness 
and poor cyclic shape, the dissipation of energy attained is negligible with respect to that 
potentially dissipated by bearing structural members (even larger with dissipative 
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Figure 4.16 – Comparison of results 

 
4.2.3. Design recommendations  

The presence of silicone sealant can influence the serviceability limit state and increase the 
load on the panel connections. It is not suitable to sustain large structure drifts, tipically 
associated with ultimate limit state, since it tends to failure for shear strain larger than 200%. 
Its stiffening contribution is, however, limited and not reliable, since the mechanical 
characteristics of the product may largely vary. Therefore, it is suggested to consider the effect 
of the presence of silicone sealant only in those cases in which it is on the unsafe side, like for 
the calculation of actions on the panel connections. Its stiffening contribution is suggested to 
be disregarded when considering the possible beneficial effect on the seismic behaviour of the 
whole structure. Silicone sealant can reach a tangential upper bound stress τs up to 0,25 MPa, 
with an average tangential Young modulus Gs of about 0,25 MPa. Its behaviour is elastic up to 
about 100÷150% of strain with a pseudo-plateau up to about 200% of strain, after which the 
resistance rapidly decreases.  

 

 

4.3. Dissipative systems with FBDs 
 

The recesses in the panels have been designed in order to accommodate the FBDs made with 
symmetric T-shaped profiles and class 10.9 M14 bolts provided with Belleville washers. The 
support profile-to-panel connection is bolted, with six 8.8 M16 bolts that connect the profile 
with a steel counter-plate provided with bushes and with a bull horn bent Φ20 B450C rebar 
welded in its vertical portion to the counter-plate. The tests listed in Table 4-2 have been 
carried out with the aim to investigate the cyclic behaviour of all components in a real 
application, observing the general response of the sub-assembly and the evolution of the 
behaviour with a progressive number of connections per side, up to three. The protocol 
displacement amplitudes have been amplified by the mechanical aspect ratio of the panels.   
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Table 4-2 – Performed sub-assembly tests with FBDs 

 

 

4.3.1. Pendulum arrangement: three FBDs 

The deformed shape of the specimen provided with three FBDs per side is shown in Figure 
4.17, with a particular view of the central device in Figure 4.18. The results of the test 
performed with cyclic protocol B are reported in the diagram of Figure 4.19 with reference to 
the horizontal applied load and the vertical relative displacement directly measured between 
the panels, showing a very similar behaviour with respect to the particular performed tests. A 
very large elastic stiffness of about 120 kN/mm is recorded, which is as expected three times 
the stiffness value of a single device. The first cycle attains large loads, that get attenuated 
already at the second cycle, showing afterwards a large cyclic stability. If looking at the 
general response of the sub-assembly, however, as shown in Figure 4.20, it is possible to note 
that a largely reduced initial stiffness of about 1,5 kN/mm is obtained for a short branch, after 
which the stiffness increases to about 25 kN/mm. The elasticity of the loading frame and the 
unavoidable tolerances of all components are the cause of this reduction of elastic stiffness, 
that may relevantly affect energy dissipation, especially for low-displacement cycles, since the 
pinching branch is constant. Figure 4.21 shows that the internal base vertical transducers have 
a linear behaviour, while the external show the formation of a gap, which is due to a quasi-
rigid body rotation of the two panels as a whole, before sliding occurs.   

The results from the test carried out with cyclic protocol E are illustrated in Figure 4.22. As 
previously observed, largely stable cycles follow the first cycle with slight hardening 
behaviour. 

In both tests, the mean slip load threshold is less that the predicted according to the previously 
presented design methodology, which is 90 kN. The design value, equal to 60 kN, seems to be 
over-predicted if compared with the experimental results. The reason could be found in a non-
perfect vertical alignment of the support profiles, provided with an out-of-plane horizontal 
tolerance as low as 1 mm, which could have resulted in a bad tightening operation for one or 
more devices. The same phenomenon has been later observed within the full scale prototype 
tests. The maximum load attained is lower than the expected maximum, calculated equal to 
144 kN.  

 

DEVICE
DEVICES 
PER SIDE

TEST 
TYPE

LOAD 
PROTOCOL

BOLTS
TIGHTENING 
TORQUE [Nm]

WASHER

1 B M14 10.9 190 BELLEVILLE
1 E M14 10.9 190 BELLEVILLE
2 B M14 10.9 190 BELLEVILLE
2 E M14 10.9 190 BELLEVILLE
3 B M14 10.9 190 BELLEVILLE
3 E M14 10.9 190 BELLEVILLE

FBD CYCLIC



Panel sub-

 
120 
 

3,2 %

Figur

3,2

-assembly b

% drift pull

re 4.17 – Sp

 % drift pu

L
d

[k
N

]

behaviour o

 
ling 

pecimen w

ulling 

Figure 4

Figure 4.1

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

-40 -3

Lo
ad

 [k
N

]

MAX F+ [kN

89,26

of dissipati

ith three FB

 

4.18 – Parti

19 – Load v

30 -20
Vertica

N] MAX F- [kN] MAX

75,28

ive systems

0 % drift

BDs in a ro

 

0 % dri

icular view

vs vertical r

-10 0
al relative displac

X d+ [mm] MAX d- [mm

31,6 31,6

s 

 

ow: deform

ift 

 of the cent

relative dis

10 20
cement [mm]

y = 120 x

m]

3,2 %

med shape at

 
3,2

tral FBD 

splacement 

30 40

% drift pus

t maximum

2 % drift pu

 

0

 
shing 

m drift 

ushing 



Panel sub-assembly behaviour of dissipative systems 

 
121 

 

 

Figure 4.20 – Load vs top displacement 

 

Figure 4.21 – Panel edge vertical displacement vs vertical relative displacement 

 

 

Figure 4.22 – Load vs vertical relative displacement 
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4.3.2. Pendulum arrangement: two FBDs 

The cyclic response for the equivalent cyclic protocol B is shown in Figure 4.23 for the 
specimen with two connections positioned at the top and bottom recesses and in Figure 4.24 
for the test with equivalent cyclic protocol E.  

In both tests, slip load threshold is in between the predicted mean and the design values, 60 
and 40 kN, respectively. The maximum load attained, equal to 100 kN, is very close but 
slightly larger than the expected maximum, equal to 96 kN.  

 

 

Figure 4.23 – Load vs vertical relative displacement 

 

 

Figure 4.24 – Load vs vertical relative displacement 
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4.3.3. Pendulum arrangement: one FBD 

The cyclic response for the equivalent cyclic protocol B is shown in Figure 4.25 for the 
specimen with one connections positioned at the central recess and in Figure 4.26 for the test 
with equivalent cyclic protocol E.  

In both tests, slip load threshold is in between the predicted mean and the design values, 30 
and 20 kN, respectively. The maximum predicted load, calculated as 48 kN, is equal to that 
experimentally attained.  

 

 

Figure 4.25 – Load vs vertical relative displacement 

 

 

Figure 4.26 – Load vs vertical relative displacement 
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4.5.2. Addition of interface actions 

The addition of interface forces in between the panels due to mechanical connecting devices or 
sealants leads to the introduction of additional forces in the panel bearing connections. These 
forces can be simply added to those arising in an isostatic configuration. Interface forces 
follow in general the displacement of the panels, and therefore do not increase 2nd order 
effects. The envelope of two conditions is considered to derive forces in the connections: the 
action of the maximum lateral forces F and the possible unbalance between two sides, leading 
to a difference in the modulus of the equivalent total load, that will be referred as ΔF. 
Instructions for the calculation of those two values are provided in the following with specific 
reference to FBDs, MSDs, FPDs and silicone sealant. 

)( VVnF n Δ+= ψ   for FBDs      

unVF =   for MSDs and FPDs   (4.13) 

HtF suτ=   for silicone    

 

where ψn = 1 – 0,1(n – 1) ≥ 0,8 is a contemporaneity factor that takes into account the presence 
of multiple (n) FBDs along a single interface and ts indicates the gross width of the silicone 
strips. 
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4.5.2.3. Swaying arrangements 

The presence of lateral forces leads to the following additional in-plane reactions, with 
reference to Figure 4.36, that are different for central and edge panels. The horizontal elastic 
stiffness of the connections are in series, and therefore an equivalent lateral stiffness can be 
calculated according to the following formulae: 
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Chapter 5 

5. Global structural behaviour of 
dissipative systems 
 
The overall structural behaviour of structural systems provided with dissipative cladding 
panels is illustrated in the following for what concerns both numerical and experimental 
studies (Biondini et al. 2010, 2011, 2012a, 2013b). The present chapter refers to the behaviour 
of single nave structures, in which the actual flexibility of the diaphragm does not play a role. 
The considerations hereinafter made are, however, applicable to large structures provided with 
rigid diaphragm. Numerical analyses are performed on a benchmark building provided with 
vertical and horizontal panels at a time, with a structural arrangement representative of a 
typical industrial precast building, and are aimed to study the role of stiffness of the panel-to-
panel dissipative connections on the seismic response of the structure.  
A large experimental campaign has been carried out at ELSA/JRC laboratory at Ispra (Varese, 
Italy) concerning a full scale precast concrete prototype structure. The performed tests include 
cyclic and pseudo-dynamic with different panel connection arrangements (statically 
determined, integrated, dissipative) on the prototype with both vertical and horizontal panels. 
Results and related numerical simulations are elaborated for what concerns isostatic and 
dissipative arrangements on the prototype provided with FBD and FPD connections. 
 

 
5.1. Numerical analyses on a benchmark building 

The investigated structural prototype is a one-storey precast frame building of 40,5 by 25,0 m 
of dimensions in plan, made of two lines of five columns 7,0 m high and spaced by 10,0 m. 

The roof is made of five transverse shed beams supporting ribbed elements. Under seismic 
condition the dead loads of the roof are related to: 

– roof elements (including permanent finishings) = 2,8 kN/m2; 

– shed beams (average weight) = 17,5 kN/m; 

– longitudinal beams (panel supporting) = 3,2 kN/m; 

that lead to a vertical action of 600 kN on each of the 3 + 3 middle columns and 410 kN on 

each of the 2+2 end columns. All the columns have a square cross-section with side width of 

60 cm and are reinforced with 12 Φ 20 mm longitudinal bars corresponding to the minimum 
reinforcement ratio of 1 % given by Eurocode 8 (CEN-EN 1998-1, 2004). The steel Class is 
B450C. The concrete Class is C45/55, with elastic modulus equal to 30 Gpa. 
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Figure 5.7 – Base shear in the panels and top displacement vs the connection stiffness 

 

 

Figure 5.8 – Repartition ratio F1/F2 vs the connection stiffness 

 

It is worth noting that the transition interval for the repartition ratio in the connections (Figure 
5.8) is moved towards higher stiffness values with respect to both the repartition ratio of the 
base shear and the top displacement (Figure 5.7). The difference of the forces F1 and F2 is 
negligible for values of stiffness lower than 10 kN/mm. 

The seismic response of the structure is affected by the non-linear behaviour of its members. 

In particular, the effectiveness of the mutual panel connections depends primarily on their 
ductility capacities. To investigate this aspect a series of non-linear static analyses with 
monotonic loading (pushover) is performed. 

Figure 5.9 shows the moment-curvature relationship of the column cross-sections for the two 
levels of axial forces. These diagrams are computed with a parabola-rectangle stress-strain 
model for concrete, neglecting its tensile strength, and with a bi-linear hardening stress-strain 
model for the steel reinforcement. An elastic behaviour is assumed for the wall panels relying 
on their over-strength with respect to the capacity of the mutual connections. 
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For these connections an elastic-plastic behaviour is assumed with different values of the 
initial elastic stiffness and of the ultimate resisting force. The ultimate deformation of the 
connecting devices is not specified and the plastic branch is left indefinite. 

Figure 5.10 shows a family of pushover curves of the structural system for different values of 

the initial elastic stiffness of the connections and for a very high ultimate resisting force (R = 

200 kN). From the initial slope of the curves the elastic stiffness of the structure is deduced 
and the natural vibration period T is evaluated. This period depends on the collaboration 
degree between columns and panels, provided by the stiffness of the connections, and it varies 
from 1,2 to 0,05 s. Figure 5.11 shows how the natural vibration period decreases with the 
higher values of the elastic stiffness of the connections. The same diagram also indicates the 
corresponding variation of the structural response in terms of ratio a/ag between the maximum 
acceleration a and the peak ground acceleration ag, computed from the elastic response 
spectrum given by Eurocode 8 for subsoil type B. A large increase of the seismic force can be 
noted in the solution with wall panels integrated in the structural assembly, with values of the 
ratio a/ag that initially increases with the connection stiffness from 1.3 to 3.0 and then decrease 
to 1.8 for the case of rigid connections. This response factor does not consider the energy 
dissipation possibly offered by the structural system.  

Figure 5.12 shows that the pushover curve of the structural system is limited to the level 
corresponding to the different possible strengths of the connections. It is worth noting that the 
shear ratio taken by the wall panels in the elastic stage (see Figure 5.7) decreases progressively 
after the yielding of the connections with the development of their plastic deformation until the 
yielding of the columns, as shown in Figure 5.13. From these results it is clear that, if the 
connections have sufficient plastic deformation capacity, the choice of their strength level can 
influence the energy dissipation capacity and properly regulate the structural response with 
reference to the intensity of the seismic action expected on site. An example of this regulation 
will be presented in the next section devoted to nonlinear dynamic analysis of the prototype. 

 

 

Figure 5.9 – Bending moment-curvature relationship of the column cross-sections 
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Figure 5.10 – Pushover curves for R = 200 kN 

 

 

Figure 5.11 – Parameters of the dynamic response 

 

 

Figure 5.12 – Pushover curves for k = 10 kN/mm 
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Figure 5.13 – Plastic repartition of base shear for k = 100 kN/mm 

 

Non-linear dynamic analyses of the prototype are carried out considering the dissipative FBD 
connection. Figure 5.14 shows a pushover curve of the structure with SPAV connections 
computed with the elastic-plastic model based on an initial stiffness of 60 kN/mm, a slip 
resistance of 60 kN and a “functional” stroke limit of  ±25 mm. 

 

 

Figure 5.14 – Pushover curve with FBDs 
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compared to the Eurocode 8 spectrum. It is worth noting that the scanty compatibility of the 
response spectrum of L’Aquila earthquake with the Eurocode 8 standard spectrum, due to its 
poor content of frequencies, could lead to a weaker impact on the actual structural response. 

 

(a) (b) 

Figure 5.15 – L’Aquila earthquake (AQK-WE): (a) accelerogram and (b) response spectrum 
compared with the model of Eurocode 8 

 

(a) (b) 

Figure 5.16 – Artificial accelerogram (SC): (a) accelerogram and (b) response spectrum 
compared with the model of Eurocode 8 

 

 

Figure 5.17 – Set of artificial earthquakes: response spectra compared with the model of 
Eurocode 8 
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The different response of the three structural configurations (statically determined, integrated 
and dissipative) under L’Aquila earthquake (AQK-WE) is shown in terms of vibratory curves 
in Figure 5.15. The diagram at the top gives the displacement time history response for a zero 
connection stiffness (pure frame structure), with large storey drifts; the diagram at the bottom 
shows the structural response with rigid connections (wall structure), with small storey drifts 
and high connection forces; the diagram in the middle shows the structural response with 
dissipative SPAV connections (dissipative structure), with intermediate storey drifts and 
limited connection forces. The same analyses are performed for the set of ten artificial 
accelerograms. Figure 5.16 shows the vibratory curves of the system under one artificial 
accelerogram from the set (SC, Figure 5.16a). 

The strong effectiveness of the connections can be noticed in lowering the maximum storey 
drift of the statically determined system from 80 to 4 mm and 0,6 mm under L’Aquila 
earthquake, and from 80 to 6 mm and 0,8 mm under the artificial accelerogram, for SPAV 
connections and rigid connections, respectively. The large increase of vibration frequencies of 
the structural responses of the integrated systems can also be noted. 

In particular, the response with rigid connections corresponds to a pure elastic behaviour of a 
stiff wall system. 
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Figure 5.18 – Vibratory curves for AQK-WE accelerogram 
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Figure 5.19 – Vibratory curves for SC accelerogram 

 

The residual displacements of the integrated structure with dissipative connections indicate 
that an inelastic slide occurred in the connections and, therefore, the friction mechanism 
worked in dissipating energy. This is more evident for the artificial accelerograms that have, 
with their full content of frequencies, a stronger impact on the structure. The measure of the 
energy dissipation can be deduced from the force-displacement diagrams shown in Figure 5.18, 
where the area within the cycles is much wider for the artificial accelerogram. The vibratory 
curves corresponding to the whole set of artificial accelerograms are compared in Figure 5.19 
for the configuration with dissipative devices. Figure 5.20 shows the absolute values of the 
maximum and residual displacements associated to the set of artificial earthquakes. The values 
of representative parameters of the structural response for the set of artificial earthquakes and 
L’Aquila earthquake are listed in Table 5-1. It is worth noting that the maximum displacements 
reached with the artificial accelerograms are much higher than with the recorded one, and are 
characterized by a relatively low dispersion. A mean residual displacement of 2,71 mm is 
expected under the artificial earthquakes, with a large scatter due to the variability of time 
history of each accelerogram. The energy dissipation is mainly provided by the nonlinear 
behaviour of the devices, while the columns remain almost linear elastic. In all the studied 
cases the maximum total horizontal force Fmax applied to the structure was limited by the slip 
resistance (strength) of the connections:  
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where: 

nc = 3 number of connections for each joint; 

np = 16 number of the panels; 

Rc = 60 kN strength of one connection; 

b = 2,5 m width of a panel; 

h = 7,08 m height of the upper support. 

This is the maximum value of the base shear for the panels, to be added to the contribution of 
the columns in the overall response, which is much smaller but not negligible. It is finally 
noted that, with reference to the maximum force values of the elastic response with rigid 
connections, force reduction factors varying from 2,24 to 6,09 are deduced for the dissipative 
connections herein studied. This range provides an indication of the order of magnitude of the 
behaviour factor to be used in a typical elastic analysis of this type of systems.  

 

 

(a) 

  

 

(b) 

Figure 5.20 – Base shear vs displacement diagrams for (a) AQK-WE and (b) SC accelerograms 
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5.1.3. Concluding remarks 

The results of this investigation provides important information related to the magnitude 
distribution of the forces that the mutual connections between the panels have to transmit. The 
elastic forces are obtained for a medium-low seismicity zone in the Italian territory with 

αg=0,15 and would become much larger for higher risk areas. These are very high forces that 
put difficult problems for the design of connectors. The problems would become even more 
difficult for a seismic force acting in the transversal direction of the building along which its 
effects would be subdivided by a much lower number of panel connections, involving also the 
connections of the roof in its diaphragm behaviour. The dissipative solution, employing 
statically undetermined arrangements of connection with limited strength, leads to a large 
reduction of the maximum and residual drift, with a consequent avoidance of yielding at the 
base of the columns and structural damage in the whole structure. 

 

 

5.2. Cyclic and pseudo-dynamic tests on a full scale precast prototype 
 

An extensive experimental campaign regarding the cyclic and pseudo-dynamic behaviour of a 
precast building prototype has been designed by Politecnico di Milano research group and 
carried out by ELSA/JRC team within the SAFECLADDING project. The specimen has been 
designed in detail, cast and assembled by Styl-Comp company.  

The prototype is a dry-assembled single-storey precast frame structure representing a typical 
industrial building in Southern Europe, with single 5 m wide nave and 8 m span double bay.  

The prototype represents a wider building model with a 16 m nave and TT cross-section 
shaped floor members. In order to more easily handle the specimen and to make it fit the 
geometries of the ELSA laboratory, unrealistic 5 m long and 35 cm deep solid concrete plates 
have been used for flooring. They transmit a distributed shear reaction on beam equal to 0,35 
m by 5 m by 25 kN/m3 = 43,7 kN/m. They have been chosen in such a way to match the weight 
of the equivalent 16 m long TT member provided with roof finishing, weighting 2,7 kN/m2 and 
applying a distributed shear reaction on beams equal to 2,7 kN/m2 by 16 m = 43,2 kN/m, which 
is fairly similar to the previous, as intended. Figure 5.28 shows the basic geometry of both the 
laboratory prototype and the equivalent building model. The cladding panels, only placed in 
the building longitudinal direction, assuming large openings in the transversal direction, have 
been considered to have a distributed mass equal to 400 kg/m2. Assuming an isostatic cladding 
connection system with a pendulum arrangement for the building with vertical panels, half of 
the mass of the panels is considered concentrated at the floor height. A total mass of 170 tons 
is computed for the building provided with vertical panels. Assuming an isostatic cladding 
connection system with a swaying arrangement for the building with horizontal panels, again 
half of the mass of the panels is considered concentrated at the floor height,  for a total mass of 
175 tons. 
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Table 5-2 –  Building model design resuming table 

 

 

The laboratory prototype geometry is described in the following, together with the typology of 
member connections. The foundations are made with six large pocket elements 2,40 by 1,40 
wide and 1,40 m deep, provided with 0,80 m deep pocket and with running holes for the 
installation on the strong floor of the laboratory with post-tensioned bars. Each pocket 
foundation is connected with the adjacent in the longitudinal building direction through full-
depth 0,50 m wide beams with strong welded connections, for a total of 4 elements. The 6 
columns have a free height of 7,00 m from the top of the pocket foundation and a square cross-
section with 0,50 m of side. The connection with the foundation is cast in laboratory and is 
considered as a full moment-resisting joint. A picture of the connection during casting is 
provided in Figure 5.31. 0,50 m wide and 0,75 m deep beams are connected with the columns 
with dowel connections. Each joint is provided with two distanced large diameter high 
resistance dowels (Figure 5.32a), and it has been considered as a hinged connection for the 
beam gravity rotations and as a clamped connection for the beam out-of-plane bending. The 
slab is made with 7 solid reinforced concrete panels with 2,35 m of width, 5,22 m of length 
and 0,35 m of depth. It is also reinforced with two distanced large diameter dowels. The 
diaphragm has been further improved by performing 3 floor-to-floor welded rebar connections 
per interface (Figure 5.32b). Figure 5.33 shows a global view of the assembled prototype 
frame. The slab members are also provided with large steel plates anchored in the member that 
have been used to weld the lateral load transmission system that connects the structure with the 
large ELSA reaction wall through 4 jacks with a 1000 kN capacity each. In the transversal 
direction, in correspondence of the 3 column lines, out-of-plane steel bracers are installed for 
safety matters. They are de-coupled from the structure for a few centimeters gap, in order to 
start working only in case of collapse risk, without interfering with the tests.  

The prototype plan views are shown in Figure 5.29 for the foundation and roof levels, while in 
Figure 5.30 the elevation views are collected for both longitudinal and transversal sides. 

 

 

Period T 1,19 s
Behaviour Factor q 3,00
Design Spectral Acceleration 0,126 g
Axial Load on Central Column 276,8 kN
Axial Load on Edge Column 153,0 kN
Theta Factor 0,115                  < 0,30
2nd Order Magnification Factor 1,13
Base Shear at ULS 242,55 kN
Single Column Shear at ULS 40,43 kN
Single Column Base Moment 282,98 kNm        < 337,70
ULS Displacement 151,48 mm
SLS Displacement 60,59 mm
ULS Drift Ratio 2,16 %
SLS Drift Ratio 0,87 %              < 1,00

EARTHQUAKE COMBINATION
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Table 5-3 –  Test sequence 

 

 

 

Figure 5.37 – Cyclic protocol 
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elastic-hardening model has been used for steel. A Takeda cyclic model has been assigned to 
the elements. Each beam is divided into several beam elements, in order to accommodate the 
geometry. The rotation around the orthogonal horizontal axis is left free, in order to reproduce 
a perfectly hinged connection over the column. Each solid floor is modelled with two beam 
elements. They are connected with the beams through master/slave links coupling all degrees 
of freedom except the rotation around the orthogonal horizontal axis, which is left free in order 
to reproduce a perfectly hinged connection over the beam. Each panel is modelled with thick 
rectangular plate/shell elements, with regular sides. For the pendulum system dissipative and 
isostatic, they are provided with a single hinged connection at the bottom centre and a single 
connection at the top centre (out-of-plane and horizontal directions are coupled). Finally, the 
dissipative connections are modelled through a beam connection element, provided with a non-
linear perfect elastic-plastic behaviour. The cyclic hysteresis model assigned is a kinematic 
hardening.  

The ADRS approach has been chosen because of its large adaptability to different structural 
behaviours, such as elastic, hyper-elastic (rocking), friction damped and mixage of the 
previous. Actually, the method can be directly applied to the experimental results, since it does 
not depend on the definition of a previously defined multi-linear simplified behaviour, with the 
problem of indicating yielding displacement in structures in which this definition could be 
largely random or characterised by multiple yielding (e.g. flexible ductile frames braced with 
dissipative connections). 

The procedure follows the following steps: 

- The experimental results from the cyclic test are analysed in terms of specific dissipated 
energy in order to get a series of equivalent viscous damping factors on the base of the 
formulation: ζeq = ζ0 + Ed/(4πEs), where ζ0 is the explicit viscous damping of the 
structure (which is considered negligible for the material used and has not been included 
in the pseudo-dynamic testing procedure) and Es = δ(Pmax + ǀPminǀ)/4 is calculated 
according to the illustration of Figure 5.45 for a non-symmetric and non-injective cyclic 
behaviour, which corresponds to one eight of the specific dissipated energy calculated 
with reference of an equivalent perfect rigid-plastic cyclic behaviour. Since three cycle 
repetitions have been performed according to the cyclic load protocol, an average value 
is used among the three obtained. 

- The experimental results from the cyclic test are plotted in terms of backbone capacity 
curve on an acceleration vs displacement diagram. A pushover curve correctly fitting the 
backbone curve can be plotted in order to estimate the behaviour at larger displacement 
than the maximum attained during the cyclic test.  

- The demand curve is plotted according to the response spectrum of the accelerogram in 
the same diagram, with an initial equivalent damping ratio ζeq guess value. 

- The intersection point between the capacity and the demand curve represents the 
performance point. The equivalent damping ratio ζeq value is then updated on the base of 
the corresponding displacement estimation and the interpolation (or extrapolation, if 
applicable) value between those experimentally obtained. This operation is repeated 
until convergence is attained. 
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(a) 

 

(b) 

 

(c) 

Figure 5.47 – Pendulum arrangement, cyclic test 1: (a) frame shear load history, (b) base shear 
vs displacement and (c) energy dissipation properties 

Table 5-4 –  Pendulum arrangement, cyclic test 1: equivalent viscous damping ratio 
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(a) 

 

(b) 

 

(c) 

Figure 5.48 – Pendulum arrangement, cyclic test 2: (a) frame shear load history, (b) base shear 
vs displacement and (c) energy dissipation properties 

 

Table 5-5 –  Pendulum arrangement, cyclic test 2: equivalent viscous damping ratio per step 
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(a) 

 

(b) 

Figure 5.49 – Pendulum arrangement, PsD test with PGA = 0,10g: (a) vibratory curve and (b) 
base shear vs displacement 

 

(a) 

 

(b) 

Figure 5.50 – Pendulum arrangement, numerical simulation with PGA = 0,10g: (a) vibratory 
curve and (b) base shear vs displacement 
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The ADRS procedure leads to an accurately estimated value of peak displacement for the 
experimental and the pushover curve, equal to 57 mm (-4% with respect to the experimental 
results) with an interpolated equivalent viscous damping ratio equal to 2,3% (Figure 5.51). The 
same procedure shows that column yielding would occur for the earthquake scaled at not less 
than 0,22g of PGA. The corresponding equivalent viscous damping, obtained for extrapolation 
of the experimental results, is very low. 

 

Figure 5.51 – Pendulum arrangement: maximum displacement according to ADRS procedure 

 

5.2.4.2. Pendulum arrangement with silicone sealant 

The pendulum structural configuration with added double layer of 10 mm deep silicone strips 
is represented in Figure 5.52. Silicone has been sprayed at the exterior and interior interfaces 
between panels, for a total external length of 7,5 m (8,4 m less three recesses of 0,3 m of 
length each) and a total internal length of 6,1 m (under beam height of 7,0 m less three 
recesses of 0,3 m of length each). The equivalent silicone strip length for each interface is 
therefore equal to 7,5 + 6,1 = 13,6 m. Silicone has been left 10 days to attain maturation, due 
to the strict laboratory testing program. Small samples sprayed in contemporaneity with the 
application to the structure and cut before the test execution suggested that the polymeration of 
silicone had been correctly reached before the test. 

A pseudo-dynamic test has been carried out with a PGA equal to 0,10g. The numerical 
simulation, conducted in accordance with the panel sub-assembly design rules regarding the 
stiffness change in presence of silicone, which results are reported in comparison with the 
experimental in Figure 5.53, shows that the numerical model is able to catch with accuracy the 
experimental results. A direct comparison with the pure isostatic arrangement, graphed in 
Figure 5.54, shows that to slightly reduced displacements correspond slightly enlarged forces. 
The elastic stiffness is increased by about 50%. A cyclic test has been performed afterwards, in 
order to not risk to damage the silicone before the pseudo-dynamic test. The results, reported 
in Figure 5.55, show a similar behaviour with respect to what observed during the PsD test. A 
relevant force cyclic degradation has been observed during the maximum displacement cycle, 
which suggests that silicone attained its maximum reistance and entered the softening branch. 
The values of average equivalent viscous damping ratio per each displacement step are 
reported in Table 5-6. Figure 5.56 shows the displaced silicone. 
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(a) 

 

(b) 

 

(c) 

Figure 5.54 – Pendulum arrangement with silicone sealant, PsD test with PGA = 0,10g: (a) 
vibratory curve, (b) base shear load history and (c) base shear vs displacement 

 

The ADRS procedure leads to the same slightly under-estimated value of peak displacement 
for the experimental and the pushover curve, equal to 43 mm (-11% with respect to the 
experimental results) with an interpolated equivalent viscous damping ratio equal to 4,0% 
(Figure 5.57). Since silicone is taken close to failure at this level of displacement, the 
simplified method for stronger earthquakes should be applied with reference to the purely 
isostatic connection arrangement.  
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(a) 

 

(b) 

 

Figure 5.55 – Pendulum arrangement with silicone sealant, cyclic test: (a) frame shear load 
history, (b) base shear vs displacement and (c) energy dissipation properties 

 

Table 5-6 –  Pendulum arrangement with silicone sealant, cyclic test: equivalent viscous 
damping ratio 
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(a) 

 

(b) 

 

(c) 

Figure 5.59 – Rocking arrangement, cyclic test: (a) frame shear load history, (b) base shear vs 
displacement and (c) energy dissipation properties 

 

Table 5-7 –  Rocking arrangement, cyclic test: equivalent viscous damping ratio 
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(a) 

 

(b) 

Figure 5.60 – Rocking arrangement, PsD test with PGA = 0,18g: (a) vibratory curve and (b) 
base shear vs displacement 

 

(a) 

 

(b) 

Figure 5.61 – Rocking arrangement, numerical simulation with PGA = 0,18g: (a) vibratory 
curve and (b) base shear vs displacement 

-40

-30

-20

-10

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

To
p 

di
sp

la
ce

m
en

t [
m

m
]

Time [s]

-300

-200

-100

0

100

200

300

-80 -60 -40 -20 0 20 40 60 80

Ba
se

 sh
ea

r [
kN

]

Displacement [mm]

y = 19 x

MAX F+ [kN] MAX F- [kN] MAX d+ [mm] MAX d- [mm]
243,25 244,64 36,9 28,9

-50
-40
-30
-20
-10

0
10
20
30
40
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

To
p 

di
sp

la
ce

m
en

t [
m

m
]

Time [s]

numerical
experimental

-300

-200

-100

0

100

200

300

-50 -40 -30 -20 -10 0 10 20 30 40 50

Ba
se

 sh
ea

r [
kN

]

Displacement [mm]

numerical
experimental



Global structural behaviour of dissipative systems 

 
179 

 

 

Figure 5.62 – Rocking arrangement: maximum displacement according to ADRS procedure 

 

 

5.2.5. Structure with vertical panels – Dissipative systems with FBDs 

 

5.2.5.1. Preliminary connection tuning and testing 

Several problems had to be faced and solved before the FBDs installed within the full scale 
prototype started working as assumed during the design. 

Zinc-coated bolts have been wrongly delivered to the ELSA laboratory. While applying the 
torque to the bolts, coupled with burnished steel Belleville washers, the technicians observed 
that the bolts started rotating after the application of a certain load level, without enough 
gripping. Tightening while holding the opposite nut with a key allowed to apply the required 
force, but then very large losses were measured immediately after the operation, since the 
additional needed torque was applied to the opposite side technician arm, instead that on the 
bolt itself. This effect is due to the unproper use of zinc-coated bolts for friction applications. 
In addition, a similar effect occurred if applying the torque to burnished bolts heads instead of 
nuts, due to the fact that part of the torque was lost for friction between the bolt and hole 
contact surface.    

After substituting all zinc-coated bolts with burnished ones, some devices could not be 
tightened at the required level because of imperfect alignment between plates and support 
profiles. Horizontal tolerance in the support profile-to-panel connection, provided by the hole 
diameter enlargement with respect to the bolt, proved to be not enough. Therefore, horizontal 
short slots have been milled at the support profiles, after which tightening of all FBDs 
occurred successfully. 

Cyclic tests performed on the building provided with three FBDs per interface led to hysteretic 
loops with a large pinching effect, with about 15 mm of horizontal branch, affecting energy 
dissipation capacity. This is due to the effect of mounting tolerances, which is in accordance 
with the results obtained on the panel sub-assembly experimental tests. However, an additional 
negative contribution to this extent is due to the vertical tolerance of the support profiles, that 
have been designed with a profile-to-panel bolted connection not based on friction grip. 
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Provided that the round hole has been executed with a two millimetre diameter tolerance 
instead of the single millimetre prescribed, the whole contribution of the device tolerance in 
terms of horizontal branch extent becomes equal to the double of the round hole diameter 
tolerance multiplied by the mechanical aspect ratio of the panel, in the case of the ELSA 
building 4 mm x 7800 / 2500 =  12,5 mm. This pinching horizontal branch remains at a 
constant length independently from the displacement amplitude, and this suggests that the 
contribution of this effect in reducing the dissipation of energy of the overall building is 
predominantly important for serviceability limit state seismic events, to which relative small 
displacements are associated, rather than for ultimate limit state seismic events. 

Furthermore, the milling of the horizontal slots allowed for a certain torsional degree of 
freedom, complicating the mechanical behaviour of the connection. After the consideration 
that a friction grip connection with an angle shaped support profile, characterised by large 
torsional actions, was not feasible with the given geometries, it has been decided to directly 
weld the support angle profiles to the steel counter-plates inserted in the panel recesses. 
Welding has been performed on the connection already tightened with the originally used 
bolts, that have been left during the tests. 

A comparison between the experimental cyclic behaviour of the building provided with bolted 
and welded connections is shown in Figure 5.63 in terms of single device average load versus 
panel relative vertical displacement. The single device average load has been obtained by 
subtracting to the experimental load history the contribution of the frame alone, as measured 
with the previously performed test, and dividing the load by the number of connections. With 
welded connections, the pinching effect is largely reduced to about 3 mm, with the only 
contribution from mounting tolerances of the panel bearing connections acting. 

The mean slip threshold load corresponding to the FBD geometry of those inserted within the 
ELSA prototype with each bolt tightened at 220 Nm, calculated according to the proposed 
design procedure, is equal to about 75 kN. The experimental values are of about 60 kN (-20%) 
for the specimen with bolted support-to-panel connections and of about 90 kN (+20%) for that 
with welded support-to-panel. The first reduced value may be due to the vertical displacement 
and torsional rotation degrees of freedom, while the latter enlarged value could have occurred 
because of a larger friction coefficient acting on the bolt thread or within brass and steel. 
Another possible reason for this slip threshold load enlargement could be found in the much 
lower test velocity at ELSA laboratory with respect to the tests performed at Politecnico di 
Milano, which could have turned the response to be depending on the static burnished steel-
brass friction coefficient, instead on the dynamic. With the values already considered within 
the FBD design methodology description, the enlargement from the dynamic to the static 
friction coefficient is equal to about 16%.  

The comparison between the dynamic behaviour of the structure provided with three bolted or 
welded FBDs per panel interface when subjected to a base accelerogram with PGA equal to 
0,18g is shown in Figure 5.64, highlighting how the behaviour could dramatically change for 
low displacement demanding seismic events. In this case, the dissipative connections barely 
entered into the slipping phase, maintaining the building largely within the fully operability 
limit state. 
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Figure 5.63 – Pendulum arrangement with three FBDs per interface: comparison between 
cyclic behaviour with welded and bolted support profiles 

 

 

Figure 5.64 – Pendulum arrangement with three FBDs per interface: comparison between PsD 
tests with PGA equal to 0,18g with welded and bolted support profiles 

 

 

5.2.5.2. Pendulum arrangement: three FBDs 

To the pendulum arrangement, three FBDs have been added at each panel interface (Figure 
5.65). Each slipping bolt of the connections has been tightened with a torque equal to 220 Nm, 
to which corresponds an average slip threshold shear load equal to 75 kN according to the 
design rules previously suggested for the single device. The results of the cyclic test, 
illustrated in Figure 5.66, show a highly dissipative behaviour, with a very large area included 
within the hysteretic cycles. The experimental slip threshold is slightly larger than what 
predicted, and is equal to about 90 kN per connection. This may be due to a slightly different 
friction coefficient of bolts and nuts, and/or to the fact that the test has been performed under 
relatively slow speed if compared to the particular tests on the single device. The difference 
between the static and the dynamic brass-steel coefficient is 16%, which is very similar to the 
difference between the experimental and the expected threshold (20%).  

The values of average equivalent viscous damping ratio per each displacement step are 
reported in Table 5-8. 
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(a) 

 

(b) 

 

(c) 

Figure 5.66 – Pendulum arrangement with 3 FBDs per interface, cyclic test: (a) frame shear 
load history, (b) base shear vs displacement and (c) energy dissipation properties 

 

Table 5-8 –  Pendulum arrangement with 3 FBDs per interface, cyclic test: equivalent viscous 
damping ratio 
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(a) 

 

(b) 

 

(c) 

Figure 5.67 – Pendulum arrangement with 3 FBDs per interface, PsD test with PGA = 0,18g: 
(a) vibratory curve, (b) frame shear load history and (c) base shear vs displacement 
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equal to 0,72g the estimated maximum displacement is 82 mm (+77% with respect to the 
experimental results) with an interpolated equivalent viscous damping ratio of 35,7%, for the 
test with PGA equal to 1,00g the estimated maximum displacement is 127 mm (+45% with 
respect to the experimental results) with an interpolated equivalent viscous damping ratio of 
35,7%. The same procedure shows that column yielding would occur for the earthquake scaled 
at not less than 1,10g of PGA. The corresponding equivalent viscous damping, obtained for 
extrapolation of the experimental results, has been taken equal to 38,5%. 

 

 

(a) 

 

(b) 

(c) (d) 

Figure 5.68 – Pendulum arrangement with 3 FBDs per interface, numerical simulation with 
PGA = 0,18g: (a) vibratory curve, (b) base shear vs displacement, (c) column base moment vs 

curvature and (d) FBD hysteretic cycles 
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Within the test with PGA equal to 0,36g, corresponding to the ultimate limit state of the model 
structure, still a very low displacement has been attained by the structure. The results (Figure 
5.69) show that the hysteretic cycles of the overall structure correspond to a large dissipation 
of energy due to the dissipative connections, and that a satisfactory symmetry has been shown 
by the parallel frames. The numerical simulation, which results are collected in Figure 5.70, is 
characterised by a similar stiffness behaviour, but the response seems to be under-damped with 
respect to the experimental results in the range of free vibrations after the motion. The column 
bases reached cracking but they are very far from rebar yielding. By comparing the structure 
hysteretic cycles, it can be noticed a slight hardening of the response, which is likely to be due 
to difficultly predictable hardening of the dissipative connections.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.69 – Pendulum arrangement with 3 FBDs per interface, PsD test with PGA = 0,36g: 
(a) vibratory curve, (b) frame shear load history and (c) base shear vs displacement 
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(a) 

 

(b) 

(c) (d) 

Figure 5.70 – Pendulum arrangement with 3 FBDs per interface, numerical simulation with 
PGA = 0,36g: (a) vibratory curve, (b) base shear vs displacement, (c) column base moment vs 

curvature and (d) FBD hysteretic cycles 
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reached cracking but they are very far from rebar yielding.  
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(a) 

 

(b) 

 

(c) 

Figure 5.71 – Pendulum arrangement with 3 FBDs per interface, PsD test with PGA = 0,72g: 
(a) vibratory curve, (b) frame shear load history and (c) base shear vs displacement 
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(a) 

 

(b) 

(c) (d) 

Figure 5.72 – Pendulum arrangement with 3 FBDs per interface, numerical simulation with 
PGA = 0,72g: (a) vibratory curve, (b) base shear vs displacement, (c) column base moment vs 

curvature and (d) FBD hysteretic cycles 
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(a) 

 

(b) 

 

(c) 

Figure 5.73 – Pendulum arrangement with 3 FBDs per interface, PsD test with PGA = 1,00g: 
(a) vibratory curve, (b) frame shear load history and (c) base shear vs displacement 
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The values of average equivalent viscous damping ratio per each displacement step are 
reported in Table 5-9. The global initial elastic stiffness is lowered to about 60 kN/mm, and 
still a larger unload stiffness equal to about 120 kN/mm is observed (which is two thirds of the 
unload stiffness of the structure with three FBDs per interface), followed by a small (±1,5~2,5 
mm) pinching branch and a much lower reload stiffness. Only very slight difference in terms 
of loads between the two parallel frames can be observed in Figure 5.80a, probably due to 
slight difference in local behaviour of the connections.  

 

(a) 

 

(b) 

 

(c) 

Figure 5.80 – Pendulum arrangement with 2 FBDs per interface, cyclic test: (a) frame shear 
load history, (b) base shear vs displacement and (c) energy dissipation properties 
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Table 5-9 –  Pendulum arrangement with 2 FBDs per interface, cyclic test: equivalent viscous 
damping ratio 

 
 

 

(a) 

 

(b) 

 

(c) 

Figure 5.81 – Pendulum arrangement with 2 FBDs per interface, PsD test with PGA = 0,36g: 
(a) vibratory curve, (b) frame shear load history and (c) base shear vs displacement 
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damping ratio of 31,5%. The same procedure shows that column yielding would occur for the 
earthquake scaled at not less than 0,95g of PGA. The corresponding equivalent viscous 
damping, obtained for extrapolation of the experimental results, has been taken equal to 31,0%. 
A pseudo-dynamic test with PGA equal to 0,36g, corresponding to the ultimate limit state PGA 
of the model structure, has been executed. The results (Figure 5.81) show that two FBDs per 
interface are still very effective in reducing the top drift and, consequently, the damage on the 
structure. Even with a lower number of dissipative connections, a satisfactory symmetry has 
been shown by the parallel frames. The numerical simulation (Figure 5.82) is able to catch the 
displacement history trend of the structure, even if non-negligible differences in terms of top 
displacement reached are noticed on the unsafe side. The structural hysteretic cycles 
satisfactorily juxtapone to the experimentally measured, with a good estimation of the slip load 
threshold. 

 

(a) 

 

(b) 

(c) (d) 

Figure 5.82 – Pendulum arrangement with 2 FBDs per interface, numerical simulation with 
PGA = 0,36g: (a) vibratory curve, (b) base shear vs displacement, (c) column base moment vs 

curvature and (d) FBD hysteretic cycles 
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A further pseudo-dynamic test with PGA equal to 0,72g, corresponding to the double of the 
ultimate limit state PGA of the model structure, has been executed, pushing the 
experimentation with respect to the originally scheduled 0,54g value of PGA. The results 
(Figure 5.83) show that the top displacement attained is less than 80 mm, to which column 
base yielding is still not associated. The numerical simulation (Figure 5.84) is able to catch the 
displacement history trend of the structure together with the maximum displacement values. As 
already observed in previous tests, the first cycle at large displacement is associated to a 
hardening behaviour, which re-alignes to the numerical analysis within further cycles. The 
maximum slippage of the FBDs is equal to 24 mm, which is less than half of their capacity. 

 

(a) 

 

(b) 

 

(c) 

Figure 5.83 – Pendulum arrangement with 2 FBDs per interface, PsD test with PGA = 0,72g: 
(a) vibratory curve, (b) frame shear load history and (c) base shear vs displacement 
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(a) 

 

(b) 

  
(c) (d) 

Figure 5.84 – Pendulum arrangement with 2 FBDs per interface, numerical simulation with 
PGA = 0,72g: (a) vibratory curve, (b) base shear vs displacement, (c) column base moment vs 

curvature and (d) FBD hysteretic cycles 

 

Figure 5.85 – Pendulum arrangement with 2 FBDs per interface: maximum displacement 
according to ADRS procedure 
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(a) 

 

(b) 

 

(c) 

Figure 5.87 – Pendulum arrangement with 1 FBD per interface, cyclic test: (a) frame shear 
load history, (b) base shear vs displacement and (c) energy dissipation properties 

 

Table 5-10 –  Pendulum arrangement with 1 FBD per interface, cyclic test: equivalent viscous 
damping ratio 
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A single pseudo-dynamic test has been carried out with PGA equal to 0,36g, corresponding to 
the ultimate limit state acceleration of the building model. The experimental results are 
collected in Figure 5.88. The maximum top displacement attained is lower than 52 mm, and 
therefore all structural members have performed in elastic field. The seismic response shows a 
larger flexibility with respect to the tests with three connections per interface, but still much 
stiffer if compared to the isostatic configuration. The numerical analysis, which results are 
shown in Figure 5.89, provides a good estimation of the vibratory curve and the hysteresis of 
the building. The FBDs have been subjected to moderate slippage, equal to 14 mm, and this 
suggests that the structure is provided with large over-resources and that it could sustain much 
larger PGA earthquakes.   

 

(a) 

 

(b) 

 

(c) 

Figure 5.88 – Pendulum arrangement with 1 FBD per interface, PsD test with PGA = 0,36g: (a) 
vibratory curve, (b) frame shear load history and (c) base shear vs displacement 
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(a) 

 

(b) 

(c) (d) 

Figure 5.89 – Pendulum arrangement with 1 FBD per interface, numerical simulation with 
PGA = 0,36g: (a) vibratory curve, (b) base shear vs displacement, (c) column base moment vs 

curvature and (d) FBD hysteretic cycles 

 

The ADRS procedure leads to the following displacement estimations (Figure 5.90): for the 
test with PGA equal to 0,36g the estimated maximum displacement is 58 mm (+12% with 
respect to the experimental results) with an interpolated equivalent viscous damping ratio equal 
to 26,9%. The same procedure shows that column yielding would occur for the earthquake 
scaled at not less than 0,57g of PGA. The corresponding equivalent viscous damping, obtained 
for extrapolation of the experimental results, has been taken equal to 15,8%. 
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The experimental slip threshold corresponds to about 30 kN horizontal per panel interface, 
which is composed by the self-centring effect of the panels (13 kN) and by the horizontal shear 
component due to the dissipative connections, that is about 17 kN, coming from a vertical slip 
threshold of the single connection of about 50 kN.  

The hysteretic cycles are flag-shaped, since the lateral contribution provided by the panels 
does not correspond to dissipation of energy, which is all concentrated in the dissipative 
devices. The values of average equivalent viscous damping ratio per each displacement step 
are reported in Table 5-11. The global initial elastic stiffness is of about 38 kN/mm, and a 
larger unload stiffness equal to about 60 kN/mm is observed, followed by a very large pinching 
branch due to the peculiarity of the rocking system.  

Those stiffness values are identical to the corresponding of the tests on pendulum arrangement 
with single FBD per interface. Practically no difference in terms of loads between the two 
parallel frames can be observed in Figure 5.92a.  

A pseudo-dynamic test has been conducted with PGA equal to 0,36g, corresponding to 
ultimate limit state PGA of the building model. The vibratory curve suggests that the 
behaviour is very stiff while displacements are in the range in which the panels do not lift, and 
that for larger displacements the behaviour turns to be quite flexible. The top displacement 
attained is less than 58 mm, which means that all structural members behaved elastically. 

Pictures with the elevation views of the panels before the test and subjected to the maximum 
drift are shown in Figure 5.94. The numerical simulation, which results are reported in Figure 
5.95, show a very good correspondence with the experimental results in terms of vibratory 
curve. Also the matching of the hysteretic cycles is good, with a numerical over-estimation of 
the initial stiffness, probably due to non-critical damage occurred in most panel shear 
connections during their sliding, which may have caused an experimental decreased stiffness. 

The ADRS procedure leads to the following displacement estimations (Figure 5.96): for the 
test with PGA equal to 0,36g the estimated maximum displacement is 62 mm (+9% with 
respect to the experimental results) with an interpolated equivalent viscous damping ratio equal 
to 19,3%. The same procedure shows that column yielding would occur for the earthquake 
scaled at not less than 0,53g of PGA. The corresponding equivalent viscous damping, obtained 
for extrapolation of the experimental results, has been taken equal to 10,0%. 
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(a) 

 

(b) 

 

(c) 

Figure 5.92 – Rocking arrangement with 1 FBD per interface, cyclic test: (a) frame shear load 
history, (b) base shear vs displacement and (c) energy dissipation properties 

 

Table 5-11 –  Rocking arrangement with 1 FBD per interface, cyclic test: equivalent viscous 
damping ratio 
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(a) 

 

(b) 

 

(c) 

Figure 5.93 – Rocking arrangement with 1 FBD per interface, PsD test with PGA = 0,36g: (a) 
vibratory curve, (b) frame shear load history and (c) base shear vs displacement 
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(a) 

 

(b) 

(c) (d) 

 

Figure 5.95 – Rocking arrangement with 1 FBD per interface, numerical simulation with PGA 
= 0,36g: (a) vibratory curve, (b) base shear vs displacement, (c) column base moment vs 

curvature and (d) FBD hysteretic cycles 
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Figure 5.96 – Rocking arrangement with 1 FBD per interface: maximum displacement 
according to ADRS procedure 

 
5.2.6. Design considerations 

From the comparison among the experimental maximum top displacement and its estimation 
with the ADRS procedure (Table 5-12), it can be noticed how the method generally provides 
safe-side displacement predictions. The few cases of under-estimation concern only few 
millemetres of error. In the majority of the over-estimated cases, it can be observed that the 
unpredictable over-resistance of the FBDs led to a stiffer response, justifying the safe-side 
error. In the case of the isostatic rocking system, the response for serviceability limit state is 
largely over-estimated, anyway always on the safe side. 

 

Table 5-12 –  Maximum top displacement for (a) PsD test results and (b) estimation with 
ADRS procedure 

 

(a) 

 

(b) 
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EC8-PGA = 0,36g; ζeq = 19,3%
MT-PGA = 0,36g; ζeq = 19,3%
EC8-PGA = 0,67g; ζeq = 10,0%
MT-PGA = 0,67g; ζeq = 10,0%
backbone curve
pushover

PGA [g] isostatic silicone 3FBD 2FBD 1FBD isostatic 1FBD
0,10 59,3 48,2 - - - - -
0,18 - - 10,9 - - 36,9 -
0,36 - - 21,2 31,4 51,6 - 57,1
0,72 - - 46,3 79,5 - - -
1,00 - - 87,6 - - - -

pendulum rocking
Experimental maximum top displacement [mm]

PGA [g] isostatic silicone 3FBD 2FBD 1FBD isostatic 1FBD
0,10 57 (-4%) 43 (-11%) - - - - -
0,18 - - 7 (-36%) - - 72 (+95%) -
0,36 - - 16 (-25%) 33 (+5%) 58 (+12%) - 62 (+9%)
0,72 - - 82 (+77%) 102 (+28%) - - -
1,00 - - 127 (+45%) - - - -

Estimated maximum top displacement with ADRS procedure [mm]
pendulum rocking
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This method may be used not only as an analysis tool to check the experimental behaviour, but 
also as a performance-based design tool. In particular, the design procedure according to the 
ADRS method may be defined with the following steps: 

- The level of performance is defined. 
- An initial guess of the structure geometry is draft. 
- A pushover and cyclic analysis of the structure is performed. 
- The distribution of equivalent viscous damping factors is calculated. 
- The numerical results from the pushover analysis are plotted in terms of backbone 

capacity curve on an acceleration vs displacement diagram. 
- The demand curve is plotted according to the response spectrum of the accelerogram in 

the same diagram, with an initial equivalent damping ratio ζeq guess value. 
- The intersection point between the capacity and the demand curve represents the 

performance point. The equivalent damping ratio ζeq value is then updated on the base of 
the corresponding displacement estimation and the interpolation (or extrapolation, if 
applicable) value between those numerically obtained. This operation is repeated until 
convergence is attained. 

- The level of performance is checked. 
- In case of non-satisfactory level of performance, the design shall restart from the initial 

guess.  

 

As a rapid dimensioning criteria, the concept of equivalent total dissipated energy may be used 
to identify the properties of the new structure. In fact, if analysing the experimental total 
dissipated energy, it can be noted (Table 5-13) how even structures having a very different 
behaviour (from isostatic to dissipative to integrated) dissipate in very general terms a 
comparable amount of energy.       

 

Table 5-13 –  Total experimental dissipated energy from the PsD tests on different structures 

 

 

 

 

 

cantilever
PGA [g] isostatic silicone 3FBD 2FBD 1FBD isostatic 1FBD integrated

0,10 4,4 9,5 - - - - - -
0,18 - - 15,9 - - 9,5 - 12,8
0,36 - - 67,8 86,9 93,3 - 82,1 74,9
0,72 - - 246,6 334,2 - - - -
1,00 - - 520,2 - - - - -

Total dissipated energy [kJ]
pendulum rocking
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Chapter 6 

6. Seismic performance of precast 
buildings with dissipative systems 
 

 

The seismic behaviour of multi-nave or multi-span buildings is largely influenced by the 
diaphragm stiffness. Large plan mono-storey precast concrete buildings for industrial or 
commercial use are often provided with roof structures made by distanced floor members with 
interposed lightening openings. This type of roofing, based on the current spans of the 
elements, does not provide a rigid diaphragm. The actual flexibility of the roofing systems 
depend on the floor-to-beam connection arrangement. Also dry-assembled precast slabs with 
adjacent floor members can act as non-rigid diaphragm, depending on the connection stiffness 
and on the presence of mutual floor-to-floor connections. A non-rigid diaphragm can lead to 
in-plane distortions and different seismic response for the frames of the structure. A study of 
the influence of this phenomenon is provided in the present chapter through a case study. A 
more systematic parametric analysis considering mono-storey buildings with different shapes 
and roofing technology provided with dissipative cladding panel connections is also addressed. 

 
 
6.1. Role of the diaphragm action 

 

The horizontal actions stress the diaphragm on the base of the distribution of mass and 
stiffness of the different lateral force resisting systems acting in parallel.   

The problem of the diaphragm behaviour of precast roofing systems has been addressed in 
literature, among others, by Fleischman et al. (2002) and Ferrara et al. (2004) with reference to 
specific dry-assembled structural arrangements. 

When the diaphragmatic action cannot take place, for instance in case of mono-ribbed floor 
members connected with typical hinged connections or double-ribbed elements similarly 
connected only at one rib, each frame of the overall structural assembly behaves substantially 
independently from the adjacent, with dynamic behaviour depending only on its own stiffness 
characteristics and pertinent mass.  
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The modal analysis is conducted considering a halved elastic stiffness of the columns, in order 
to take into account the effect of cracking as suggested by Eurocode 8. All other elements, in 
which cracking is not expected to occur, are provided with plain stiffness.  

The results of modal analyses performed on the structure with variable panel-to-panel 
connection stiffness kp in case of rigid diaphragm are illustrated in Figure 6.2a and in Figure 
6.2b. The condition of null stiffness of the connections corresponds to a statically determined 
panel arrangement and a consequent pure frame behaviour of the structure, with a fundamental 
natural frequency equal to 0,97 Hz. The condition of maximum stiffness of the panel-to-panel 
connections  (1010 kN/m) refers to a wall behaviour of the structure, with a highly rigid 
response, to which a fundamental natural frequency equal to 19,78 Hz is associated.  

For increasing values of panel-to-panel connection stiffness, a global stiffening of the structure 
is observed. In particular the stiffness range between 104 and 106 kN/m represents the 
transtition phase from a frame behaviour to a wall type.  

The sum of the participating factor associated to the fundamental vibration modes is practically 
constant with the connection stiffness, with a percentage of about 87% of the global mass. The 
missing percentage refers to local modes of panels and columns, to each of which a very small 
percentage of participating mass is associated.   

Exploring the influence of a non-rigid diaphragm on the dynamic behaviour of the structure, 
the translational stiffness of the floor-to-beam connection kt is varied through the modal 
analyses. In Figure 6.3a and Figure 6.3b the fundamental natural frequency and the relative 
participation factor are, respectively, plotted for variable kp and kt. For kt = 0 (null diaphragm), 
the fundamental vibration mode eith frequency equal to 0,91 Hz only involves the central 
frame (the participation mode is 30%), since the lateral ones act independently.   

 

(a) (b) 

Figure 6.2 – Structure with rigid diaphragm and variable panel-to-panel connection stiffness 
kp: a) fundamental natural frequency, b) associated participation factor  
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(a) (b) 

Figure 6.3 – Structure with variable floor-to-beam connection stiffness kt and panel-to-panel 
connection stiffness kp: a) fundamental natural frequency, b) associated participation factor  

 

For low stiffness panel-to-panel connections, the fundamental frequency is scarcely dependent 
on kt, since all frames have similar mass and stiffness. It increases from 0,91 Hz, representing 
the vibration mode of the only central frame, to 0,97 Hz, which is associated to the whole 
building vibration mode. Anyway, the response of the frames can be uncoupled and therefore 
largely out-of-phase for values of kt lower than 100 kN/m, even if a full participation of all 
frames is only reached after 104 kN/m. To increasing values of kp corresponds a gradual 
stiffening of the fundamental mode with kt. It is interesting to note that the plateau frequency 
value for fixed connections, equal to 5,61 Hz, is much lower than the corresponding frequency 
with rigid diaphragm, equal to 19,78 Hz. This is due to the out-of-plane deformability of the 
floor members and suggests that out-of-plane double clamped floor members cannot perform 
as a rigid diaphragm. 

It is also possible to trace the trends of intermediate solutions: the fundamental frequency is 
subjected to a large variation in between 104 and 107 kN/m of kt, stabilyzing on larger plateau 
values with larger stiffness kp.  

The participation factor trend shows a transition phase that is strongly depending on the 
stiffness kp, in particular it develops in between 102 and 104 kN/m for low values of kp and in 
between 105 and 107 kN/m for large values of kp, stabilyzing on decreasing values with larger 
kp. For what concerns the upper modes, Table 6-1 and Table 6-2 contain the most relevant 
results from the modal analyses on extreme cases for the direction parallel to the panels and 
orthogonal, respectively. Multiple frequencies indicate that the specific dynamic behaviour is 
individuated by different uncoupled modes within the structure. In those cases, the frequency 
range is indicated, together with the sum of each participation factor contribution.  

In the direction parallel to the panels three dynamic behaviours are observed: 

Mode 1: overall frame deformation according to cantilever deformed shape of columns 

Mode 2: local flexure of columns without top displacement 

Mode 3: local in-plane flexure of the panels with top displacement 
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Table 6-1 –  Natural frequencies and associated participation factors for the relevant vibration 
modes in direction parallel to the cladding panels for (a) kp = 0, b) kp = 1010 kN/m 

 
(a) (b) 

 

Table 6-2 –  Natural frequencies and associated participation factors for the relevant vibration 
modes in direction perpendicular to the cladding panels for (a) kp = 0, b) kp = 1010 kN/m 

 
(a) (b) 

It is noted how, for the building with statically determined panel connection arrangement (kp = 
0), the dynamic behaviour is determined by the only Mode 1. To hinged floor members 
corresponds however an uncoupled behaviour. For the building with rigid panel connections, 
the dynamic behaviour is substantially modified only for what concerns the first vibration 
mode, while the upper keep similar values of both frequency and participation factor (Table 
6-1).  

In the direction orthogonal to the panels, four dynamic behaviours are observed:  

Mode 1: coordinated flexure of all frames according to cantilever deformed shape of the 
columns 

Mode 2: counter-phase flexure of frames according to cantilever deformed shape of the 
columns 

Mode 3: local flexure of panels with single curvature 

Mode 4: local flexure of panels with double curvature 

It is noted how, moving from a null diaphragm to double clamped floor members, the dynamic 
behaviour does not change substantially with the degree of inter-connection of the panels, 
except for the fact that Mode 2 disappears for stiff diaphragm, since the frames are driven to 
move together (Table 6-2). 

The seismic behaviour of the structure is studied through non-linear time-history analysis. The 
non-linear behaviour of columns and FBD connections is defined in analogy with clause 6.1.1. 

The modified Tolmezzo accelerogram (Figure 5.38) scaled at PGA = 0,32g is used as input 
motion, applied only in the direction parallel to the panels. The analyses are performed with 
different combinations of panel connections and diaphragm deformability.  

For what concerns the panel-to-panel connections, the following solutions are examined:  

- no connections (statically determined solution) 
- rigid connections (integrated solution) 
- FBD connections (dissipative solution) 

MODE 1 2 3 4
0,91 - 1,00 - - - frequency [Hz]

86,45 - - - Part. Factor [%]
0,97 - - - frequency [Hz]
86,35 - - - Part. Factor [%]

Panel in plane direction - kp = 0

kt = 0

kt = 1010

MODE 1 2 3 4
0,91 19,76 - 20,25 26,91 - 27,01 - frequency [Hz]
29,64 15,90 41,61 - Part. Factor [%]
5,61 19,78 - 20,27 27,46 - 27,52 - frequency [Hz]
32,54 13,59 41,50 - Part. Factor [%]

Panel in plane direction - kp = 1010

kt = 0

kt = 1010

MODE 1 2 3 4
0,91 - 1,00 1,56 5,40 - 5,42 - frequency [Hz]

80,99 1,81 5,93 - Part. Factor [%]
0,96 - 5,41 - 5,45 - frequency [Hz]
83,15 - 5,62 - Part. Factor [%]

kt = 0

kt = 1010

Panel out of plane direction - kp = 0
MODE 1 2 3 4

0,92 1,57 5,46 - 5,49 20,06 frequency [Hz]
81,08 1,75 7,01 1,08 Part. Factor [%]
0,96 - 5,47 - 5,50 19,38 frequency [Hz]
83,17 - 7,33 2,14 Part. Factor [%]

Panel out of plane direction - kp = 1010

kt = 0

kt = 1010
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For what concerns the diaphragm flexibility, the following solutions are examined:  

- rigid diaphragm (numerically imposed) 
- out-of-plane clamped floor-to-beam connection (both double-T ribs hingely connected) 
- out-of-plane hinged floor-to-beam connection (only one double-T rib hingely 
connected) 

 

6.1.1. Isostatic systems 

Figure 6.4 shows the vibratory curves corresponding to the central and external frames of the 
structure with statically determined panel connection arrangement for the three diaphragm 
typologies.  

For the case of out-of-plane clamped floor members there is no difference among the curves 
corresponding to different frames, as it is naturally observed in the case of rigid diaphragm. 
The building shows a flexible behaviour, with a maximum top displacement equal to about 18 
cm. Considering an out-of-plane hinged floor-to-beam connection, corresponding to a null 
diaphragm, a slight out-of-phasing is observed between the responses of different frames, with 
moderate distortion of the slab. The difference is due to the slight difference of mass 
associated to the frames.  

(a) (b) 

 
(c) 

Figure 6.4 – Vibratory curves for the building with statically determined panel connection 
arrangement: (a) with rigid diaphragm, (b) with clamped floor member edges, (c) with hinged 

floor member edges 
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6.1.2. Integrated systems 

The vibratory curves corresponding to the application of the accelerogram to the structure with 
integrated panel connection arrangement with the three typologies of diaphragm are illustrated 
in Figure 6.5.  

The building with a rigid diaphragm shows a very rigid behaviour, with maximum top 
displacement as low as 0,36 mm.  

With a deformable diaphragm, large differences between the displacement amplitudes are 
reported, with a maximum displacement of 8 mm for the central frame and of 0,3 mm for the 
external. The responses are in-phase. It is noted that, although the difference in terms of 
displacement is very large, its absolute value is low. 

With null diaphragm, out-of-phase responses are reported, with the central frame vibrating 
very flexibly and in accordance with the statically determined connection curve and the 
external frame practically remaining still.  

 

6.1.3. Dissipative systems 

FBDs are inserted in between the panels, which behaviour is described by an elastic-plastic 
model with stiffness of 60 kN/mm and a threshold load of 60 kN. The corresponding vibratory 
curves are plotted in Figure 6.6 for the three different diaphragm typologies. 

The building with rigid diaphragm is characterised by a rigid response up to the threshold limit 
of the connections, after which the response becomes more flexible, associated with a large 
energy dissipation hysteretic behaviour. The maximum drift is reduced to 13 mm with respect 
to the statically determined case.  

With deformable diaphragm, similar responses are obtained, with the central frame moving 
slightly more than the external, with a maximum top displacement of 17 mm for the central 
and 14 mm for the external. The diaphragm effect is relevant, although the difference in the 
response is not negligible. 

Finally, with null diaphragm, the behaviour is very different, with the central frame largely 
displacing and damaging according to the statically determined corresponding curve and the 
external remaining almost still.  

The load-displacement behaviour of the dissipative connections is shown in Figure 6.7. In both 
cases of (a) rigid and (b) deformable diaphragm large dissipative cycles are observed, while for 
(c) null diaphragm cycles with lower displacement amplitude are computed, with a lower 
associated energy dissipation.  

From the above considerations, it can be stated that dissipative cladding connections need a 
stiff diaphragm in order to fully activate their energy dissipation capacity and to limit the 
deformation of the building, to which corresponds structural damage at the base of the 
columns.  

The maxima foces acting on the central panel connection system are reported in Table 6-3a, in 
particular for panel-to-panel, panel-to-beam and panel-to-foundation. 
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(a) 

 

(b) 

 

(c) 

Figure 6.5 – Vibratory curves for the building with integrated panel connection arrangement: 
(a) with rigid diaphragm, (b) with clamped floor member edges, (c) with hinged floor member 
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(a) 

 

(b) 

 

(c) 

Figure 6.6 – Vibratory curves for the building with dissipative panel connection arrangement: 
(a) with rigid diaphragm, (b) with clamped floor member edges, (c) with hinged floor member 
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For statically determined configuration, the very low horizontal reactions are due to the second 
order effect of the panel in the pendulum configuration, while the vertical reaction is due to 
panel own weight. For integrated configuration, forces rise much higher for both panel-to-
panel, reaching up to 109 kN, and for panel-to-structure, reaching up to 119 kN. For the 
dissipative arrangement, forces are limited according to the friction threshold and the 
equilibrium of the single panel.  

 

(a) (b) (c) 

Figure 6.7 – Hysteretic cycles of a FBD of the central cladding panel: (a) with rigid diaphragm, 
(b) with clamped floor member edges, (c) with hinged floor member edges 

 

Table 6-3b contains the maxima load values for an edge panel. With statically undetermined 
configurations a maximum vertical reaction of 261 kN is obtained, with limited horizontal 
reactions. The different force distribution with respect to the central panel is due to the 
presence of connections only at one side. 

Table 6-4 resumes the maximum shear load on the floor-to-beam connections, that are very 
large in the floor direction for the statically undetermined diaphragm cases. 

 

Table 6-3 –  Maximum force in panel connections for (a) a central panel and (b) an edge panel 

 
(a) (b) 
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SYSTEM
DIAPHRAGM

PANEL-
PANEL

PANEL-
BEAM 

(horizontal)

PANEL-
FOUNDATION 

(vertical)

PANEL-
FOUNDATION 
(horizontal)

RIGID 0 7 64 6
DEFORMABLE 0 7 64 6

NULL 0 7 64 6
RIGID 98 83 64 107

DEFORMABLE 109 98 64 119
NULL 54 42 64 64
RIGID 60 48 64 69

DEFORMABLE 60 55 64 68
NULL 60 45 64 69

ISOSTATIC

INTEGRATED

DISSIPATIVE

MAX ACTION IN CONNECTIONS [kN]

CLADDING 
CONNECTION 

SYSTEM
DIAPHRAGM

PANEL-
PANEL

PANEL-
BEAM 

(horizontal)

PANEL-
FOUNDATION 

(vertical)

PANEL-
FOUNDATION 
(horizontal)

RIGID 0 7 64 6
DEFORMABLE 0 7 64 6

NULL 0 7 64 6
RIGID 78 13 228 40

DEFORMABLE 85 22 261 40
NULL 54 3 180 29
RIGID 60 24 253 49

DEFORMABLE 60 31 250 47
NULL 60 22 248 48

DISSIPATIVE

MAX ACTION IN CONNECTIONS [kN]

ISOSTATIC

INTEGRATED
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Table 6-4 –  Maximum force in floor-to-beam connections for a central floor member 

 

 

From the above considerations, the following statements can be draft: 

- A homogeneous distribution of mass and stiffness leads to a uniform seismic response of 
the structure, even with flexible diaphragm, 

- With flexible diaphragm, a non-homogeneous distribution of mass and stiffness causes 
relevant slab distortions and out-of-phase response of the single frames, with a vibratory 
motion that is amplified for the more flexible frames and reduced for the stiffer, 

- With rigid diaphragm, a non-homogeneous distribution of mass and stiffness leads to 
large actions on the diaphragm members and connections, 

- An homogeneous distribution of mass and stiffness in a precast frame structure can be 
achieved through the adoption of a statically determined cladding panel connection 
system, 

- A statically undetermined cladding connection system (dissipative or integrated) leads to 
differences in terms of stiffness between external and internal frames, 

- The adoption of an integrated cladding connection system leads to large actions in the 
connections, 

- The forces in the connections can be limited with a dissipative cladding connection 
system, 

- The efficiency of a dissipative cladding connection system is reduced in structures with 
flexible diaphragms. 

 

 

6.2. Parametric investigation 

 
In order to verify the actual influence of cladding panels on the seismic behaviour of precast 
buildings with different shapes, a wide parametric investigation has been performed by means 
of numerical analyses on several structural assemblies representing the most common 
typologies of precast buildings. The aim is to analyse how the different types of connection 
systems (isostatic and dissipative) play their role in the structural response, so to spot the 
situations where this role is important and address on these situations further deeper 
investigations on the practical applicability conditions. 

CLADDING 
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SYSTEM
DIAPHRAGM

FLOOR-BEAM 
LONGITUDINAL 

SHEAR

FLOOR BEAM 
TRANSVERSAL 

SHEAR

RIGID - -
DEFORMABLE ~ 16 ~ 14

NULL ~ 9 ~ 10
RIGID - -

DEFORMABLE ~ 304 ~ 36
NULL ~ 20 ~ 27
RIGID - -

DEFORMABLE ~ 234 ~ 28
NULL ~ 31 ~ 29

INTEGRATED

DISSIPATIVE

ISOSTATIC

MAX ACTION IN CONNECTIONS [kN]
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Dynamic non-linear analyses have been performed with reference to both serviceability and  
no-collapse Limit State. The modified Tolmezzo accelerogram (Figure 5.38) has been used as 
input seismic action. The analyses have been elaborated with different 3D overall structural 
models of the structure. The panel connection arrangements have been represented with the 
simplified assumption of cantilever and pendulum respectively for the statically determined 
and the dissipative system. Frame systems of structures for one-storey buildings with industrial 
and commercial destination have been considered. The following construction parameters have 
been assumed in the parametric analyses: 

- structural arrangement: regular 

- roof deck: short beams with long roof elements 

- column height: 7,5 m 

- cladding walls: on four sides 

- type of panels: vertical 

- panel connections (isostatic - dissipative system) 

- shape ratio: elongated 3/1 - medium 3/2 - compact 3/3 

- roof diaphragm: null - deformable - rigid 

- action intensity: 0,18g - 0,36g - 0,60g 

- action direction: longitudinal - transversal 

Details on the building typologies and on different analyses performed are given hereafter. A 
proportioning on sizes and reinforcement has been made following Eurocode 8 design rules, 
with PGA equal to 0,30g and subsoil class B. For the columns a concrete Class C45/55 is 
adopted with rebars made with steel grade B450C. The mean values of material strength and 
deformability have been assumed in the calculations. The numerical models have been built 
with the same features of those illustrated in Chapter 5.  

The combination of all the aforementioned parameters leads to 3x3x2x3x2=108 different cases 
to be analysed. A reduced number of output parameters are identified as significantly 
representative of the structural response under earthquake, as a function of the investigated 
typology case. The list is specified below. 

The plans and the sections of the three 3/1, 3/2 and 3/3 shape ratios are shown in Figure 6.8 
(only for the rigid roof diaphragm): the lay-out consists of 1, 2 or 3 roof bays of 20,0 m in x 
direction and 8 beam spans of 7,5 m in y direction. The net column height is 7,5 m.  

In Figure 6.9 the three type of roof diaphragm are shown as actually available in the ordinary 
production typologies: (a) spaced Y-shape roof elements with single rib end connections for a 
null diaphragm action (modelled as double hinged); (b) spaced double-Ts elements with double 
rib end connections for a deformable diaphragm (modelled as clamped); (c) attached double-Ts 
connected to each other with welds for a rigid diaphragm (modelled as clamped).  

The cladding panels are all supported on their foundations and the connection with the frame is 
made with the frame beams in Y-direction, whilst in X-direction they are connected with the 
frame floor members in the case of rigid diaphragm and with an additional frame made by one 
column and two beams for each span in the cases of null and deformable diaphragms. The 
corners are provided with soft elements, in order to avoid panel contact issues.   
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(a) 

 

(b) 

 

(c) 

Figure 6.8 – Building plan shapes considered: (a) 3/1, (b) 3/2, (c) 3/3 
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h2  relative (-): maximum force in wall panel-to-structure connection divided by the reference x 
(or y) column shear 

i1  maximum force wall-wall (kN): maximum force in wall panel-to-panel connection 

i2  relative (-): maximum force in wall panel-to-panel connection divided by the reference x (or y) 
column shear 

j1  total base shear (kN): maximum sum of contemporary base x (or y) shear of columns and wall 
panels 

j2 relative (-): total base x (or y) shear divided by the reference total x (or y) base shear 

k1  total column base shear (kN): maximum sum of contemporary base x (or y) shears of columns 

k2  ratio (%): sum of base x (or y) shear of columns divided by the total base x (or y) shear of 
columns and wall panels 

l1  mean column shear (kN): total column base x (or y) shear of columns divided by the number of 
columns 

l2  relative (-): mean column base x (or y) shear divided by the reference x (or y) column base 
shear 

m1 maximum column shear (kN): maximum base x (or y) shear in a column 

m2 ratio (%): maximum base x (or y) shear in a column divided by the mean column base x (or y) 
shear 

Reference x (or y) displacement: is the top x (or y) displacement calculated for a given structural 
arrangement, roof deck and shape ratio, assuming cladding wall panels on four sides, statically 
determined connection system with cantilever arrangement and a rigid roof diaphragm. 

Reference x (or y) column base shear: is the mean x (or y) column shear of columns calculated for 
a given structural arrangement, roof deck and shape ratio, assuming cladding wall panels on four 
sides, statically determined connection system with cantilever arrangement and a rigid roof 
diaphragm. 

Reference x (or y) total base shear: is the maximum sum of contemporary base x (or y) shear of 
columns and wall panels calculated for a given structural arrangement, roof deck and shape ratio, 
assuming cladding wall panels on four sides, statically determined connection system with 
cantilever arrangement and a rigid roof diaphragm. 

 

Table 6-5 –  Reference values  

Building 
type 

Quantity 
x-direction y-direction 

0.18 g 0.36 g 0.60 g 0.18 g 0.36 g 0.60 g 

Single-bay 
Reference displacement [mm] 100 191 230 96 183 236 
Reference column base shear [kN] 73 94 97 71 93 96 
Reference total base shear [kN] 1453 1886 1939 1419 1865 1910 

Two-bays 
Reference displacement [mm] 98 186 229 98 186 227 
Reference column base shear [kN] 75 97 99 75 96 98 
Reference total base shear [kN] 2316 2996 3074 2337 2973 3045 

Three-bays 
Reference displacement [mm] 104 194 238 104 196 275 
Reference column base shear [kN] 73 92 98 77 96 98 
Reference total base shear [kN] 3059 3881 4136 3239 4012 4111 
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Table 6-6 –  single bay building, null diaphragm 

 

  DIS3-1nul x - direction y - direction 

   PGA=0,18g PGA=0,36g PGA=0,60g PGA=0,18g PGA=0,36g PGA=0,60g

a1 

a2 

Maximum top drift (mm)

Ratio (%) 

111 

1,5 

218 

2,9 

346 

4,6 

6 

0,1 

21 

0,3 

38 

0,5 

b1 

b2 

Differential top drift 
(mm) 

Ratio (%) 

113 

1,5 

218 

2,9 

375 

5,0 

74 

1,0 

132 

1,8 

175 

2,3 

c1 

c2 

Maximum top drift (mm)

Relative (-) 

111 

1.11 

218 

1.14 

346 

1.73 

6 

0.07 

21 

1.11 

38 

1.16 

d1 

d2 

^Max connection slide 
(mm) 

Relative (-) 

1 

0.01 

5 

0.03 

11 

0.05 

2 

0.02 

6 

0.03 

11 

0.05 

f1 

f2 

Max force roof-beam 
(kN) 

Relative (-) 

35 

0.48 

50 

0.53 

72 

0.74 

21 

0.29 

22 

0.24 

29 

0.31 

g1 

g2 

Max force beam-column 
(kN) 

Relative (-) 

68 

0.93 

90 

0.95 

101 

1.05 

21 

0.30 

39 

0.42 

60 

0.62 

h1 

h2 

Max force wall-structure 
(kN) 

Relative (-) 

300 

4.11 

311 

3.31 

319 

3.29 

309 

4.36 

315 

3.38 

326 

3.39 

 i1 

 i2 

Max force wall-wall 
(kN) 

Relative (-) 

60 

0.82 

60 

0.64 

60 

0.62 

60 

0.85 

60 

0.65 

60 

0.62 

 j1 

 j2 

Total base shear (kN) 

Relative (-) 

2300 

1.58 

4226 

2.24 

5622 

2.90 

3837 

2.70 

4706 

2.52 

5398 

2.83 

k1 

k2 

Total column shear (kN) 

Relative (-) 

5734 

0.25 

934 

0.22 

1174 

0.21 

387 

0.10 

406 

0.09 

656 

0.12 

l1 

l2 

Mean column shear (kN)

Relative (-) 

29 

0.39 

47 

0.50 

59 

0.61 

19 

0.27 

20 

0.22 

33 

0.34 

m1 

m2 

Max column shear (kN) 

Relative (-) 

76 

2.65 

111 

2.37 

122 

2.07 

59 

3.03 

45 

2.21 

69 

2.11 

h1v 

h1h 

Max vert.force wall-
struct.(kN) 

Max hor. force wall-
struct.(kN) 

297,98 

66,18 

308,17 

74,19 

314,71 

83,35 

306,66 

67,29 

311,59 

73,10 

321,56 

83,99 

^ connection slides all equal                                                   
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Table 6-7 –  single bay building, deformable diaphragm 
 

  DIS3-1def x - direction y - direction 

   PGA=0,18g PGA=0,36g PGA=0,60g PGA=0,18g PGA=0,36g PGA=0,60g

a1 

a2 

Maximum top drift (mm)

Ratio (%) 

45 

0,6 

80 

1,1 

124 

1,6 

6 

0,1 

18 

0,2 

40 

0,5 

b1 

b2 

Differential top drift 
(mm) 

Ratio (%) 

46 

0,6 

67 

0,9 

66 

0,9 

74 

1,0 

137 

1,8 

165 

2,2 

c1 

c2 

Maximum top drift (mm)

Relative (-) 

45 

0,45 

80 

0,42 

124 

0,54 

6 

0,06 

18 

0,10 

40 

0.17 

d1 

d2 

^Max connection slide 
(mm) 

Relative (-) 

4 

0,04 

14 

0,08 

31 

0,14 

2 

0,03 

5 

0,03 

12 

0,05 

f1 

f2 

Max force roof-beam 
(kN) 

Relative (-) 

517 

7.08 

735 

7.82 

715 

7,37 

73 

1,03 

87 

0,93 

147 

1.53 

g1 

g2 

Max force beam-column 
(kN) 

Relative (-) 

79 

1,08 

113 

1,20 

129 

1,33 

23 

0,32 

48 

0,51 

95 

1,00 

h1 

h2 

Max force wall-structure 
(kN) 

Relative (-) 

309 

4,23 

315 

3,35 

328 

3,38 

312 

4,39 

316 

3,39 

334 

3,48 

 i1 

 i2 

Max force wall-wall 
(kN) 

Relative (-) 

60,00 

0,82 

60,00 

0,64 

60,00 

0,62 

60,00 

0,85 

60,00 

0,65 

60,00 

0,62 

 j1 

 j2 

Total base shear (kN) 

Relative (-) 

2435 

1,68 

3554 

1,88 

3890 

2,01 

3694 

2,60 

4930 

2,64 

5265 

2,76 

k1 

k2 

Total column shear (kN) 

Relative (-) 

824 

0,34 

1218 

0,34 

2873 

0,734 

415 

0,11 

759 

0,15 

813 

0,15 

l1 

l2 

Mean column shear (kN) 

Relative (-) 

41 

0,56 

61 

0,65 

144 

1,48 

21 

0,29 

38 

0,41 

41 

0,42 

m1 

m2 

Max column shear (kN) 

Relative (-) 

167 

4,05 

149 

2,44 

204 

1,42 

33 

1,62 

59 

1,56 

92 

2,27 

h1v 

h1h 

Max vert.force wall-
struct.(kN) 

Max hor. force wall-
struct.(kN) 

307 

66 

312 

63 

323 

85 

310 

67 

313 

75 

330 

83 

^ connection slides all equal                                                  
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Table 6-8 –  single bay building, rigid diaphragm 
 

  DIS3-1rig x - direction y - direction 

   PGA=0,18g PGA=0,36g PGA=0,60g PGA=0,18g PGA=0,36g PGA=0,60g

a1 

a2 

Maximum top drift 
(mm) 

Ratio (%) 

32 

0,4 

62 

0,8 

113 

1,5 

9 

0,1 

30 

0,4 

73 

1,0 

b1 

b2 

Differential top drift 
(mm) 

Ratio (%) 

7 

0,1 

8 

0,1 

10 

0,1 

0 

0,0 

0 

0,0 

0 

0,0 

c1 

c2 

Maximum top drift 
(mm) 

Relative (-) 

32 

0,32 

62 

0,32 

113 

1,17 

9 

0,09 

30 

0,16 

73 

0,31 

d1 

d2 

^Max connection slide 
(mm) 

Relative (-) 

9 

0,09 

18 

0,10 

34 

0,15 

3 

0,03 

10 

0,05 

22 

0,09 

e1 

e2 

Max force roof-roof 
(kN) 

Relative (-) 

196,40 

2,69 

227,06 

2,42 

328,84 

3,39 

132,37 

1,86 

153,72 

1,65 

183,49 

1,91 

f1 

f2 

Max force roof-beam 
(kN) 

Relative (-) 

31 

0,42 

43 

0,46 

43 

0,45 

52 

0,73 

56 

0,60 

63 

0,66 

g1 

g2 

Max force beam-column 
(kN) 

Relative (-) 

59 

0,81 

91 

0,97 

136 

1,41 

12 

0,17 

30 

0,32 

59 

0,61 

h1 

h2 

Max force wall-
structure (kN) 

Relative (-) 

309 

4,23 

320 

3,44 

327 

3,51 

313 

3,36 

315 

3,39 

324 

3,37 

 i1 

 i2 

Max force wall-wall 
(kN) 

Relative (-) 

60,00 

0,82 

60,00 

0,64 

60,00 

0,62 

60,00 

0,85 

60,00 

0,65 

60,00 

0,62 

 j1 

 j2 

Total base shear (kN) 

Relative (-) 

2051 

1,41 

2978 

1,58 

3958 

2,04 

3879 

2,73 

4800 

2,57 

5349 

2,80 

k1 

k2 

Total column shear 
(kN) 

Relative (-) 

959 

0,47 

1589 

0,53 

2423 

0,61 

334 

0,09 

621 

0,13 

1038 

0,19 

l1 

l2 

Mean column shear 
(kN) 

Relative (-) 

53 

0,73 

88 

0,94 

135 

1,39 

19 

0,26 

35 

0,37 

58 

0,60 

m1 

m2 

Max column shear (kN) 

Relative (-) 

59 

1,10 

96 

1,08 

145 

1,08 

19 

1,04 

36 

1,04 

75 

1,29 

h1v 

h1h 

Max vert.force wall-
struct.(kN) 

Max hor. force wall-
struct.(kN) 

307,17 

59,04 

317,24 

69,39 

323,24 

74,66 

307,97 

66,06 

309,62 

74,83 

316,10 

83,73 

^ connection slides all equal                                                  
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Table 6-9 –  two bays building, null diaphragm 
 

  DIS3-2nul x - direction y - direction 

   PGA=0,18g PGA=0,36g PGA=0,60g PGA=0,18g PGA=0,36g PGA=0,60g

a1 

a2 

Maximum top 
drift (mm) 

Ratio (%) 

114 

1,5 

224 

3,0 

321 

4,3 

95 

1,3 

209 

2,8 

328 

4,4 

b1 

b2 

Differential top 
drift (mm) 

Ratio (%) 

113 

1,5 

227 

3,0 

318 

4,2 

94 

1,3 

204 

2,7 

335 

4,5 

c1 

c2 

Maximum top 
drift (mm) 

Relative (-) 

114 

1,16 

224 

1,21 

321 

1,40 

95 

0,97 

209 

1,12 

328 

1,45 

d1 

d2 

^Max connection 
slide (mm) 

Relative (-) 

1 

0,01 

3 

0,01 

5 

0,04 

2 

0,02 

7 

0,04 

16 

0,07 

f1 

f2 

Max force roof-
beam (kN) 

Relative (-) 

5 

0,07 

11 

0,11 

15 

0,15 

39 

0,52 

48 

0,50 

70 

0,71 

g1 

g2 

Max force beam-
column (kN) 

Relative (-) 

83 

1,11 

99 

1,02 

122 

1,23 

93 

1,24 

133 

1,39 

166 

1,69 

h1 

h2 

Max force wall-
structure (kN) 

Relative (-) 

244 

3,25 

311 

3,20 

319 

3,22 

310 

4,13 

316 

3,30 

324 

3,31 

 i1 

 i2 

Max force wall-
wall (kN) 

Relative (-) 

57 

0,76 

60 

0,62 

60 

0,61 

60 

0,80 

60 

0,62 

60 

0,61 

 j1 

 j2 

Total base shear 
(kN) 

Relative (-) 

2590 

1,12 

3927 

1,31 

5925 

1,93 

4043 

1,73 

5145 

1,73 

6269 

2,06 

k1 

k2 

Total column 
shear (kN) 

Relative (-) 

1485 

0,57 

2447 

0,62 

3029 

0,51 

1045 

0,26 

1322 

0,26 

1658 

0,26 

l1 

l2 

Mean column 
shear (kN) 

Relative (-) 

48 

0,64 

79 

0,81 

98 

0,99 

34 

0,45 

43 

0,44 

53 

0,55 

m1 

m2 

Max column shear 
(kN) 

Relative (-) 

78 

1,63 

114 

1,45 

129 

1,32 

95 

2,83 

137 

3,21 

230 

4,30 

h1v 

h1h 

Max vert.force 
wall-struct.(kN) 

Max hor. force 
wall-struct.(kN) 

241 

59 

307 

74 

314 

83 

308 

68 

313 

75 

320 

83 

^ connection slides all equal                                                  
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Table 6-10 –  two bays building, deformable diaphragm 
 

  DIS3-2def x - direction y - direction 

   PGA=0,18g PGA=0,36g PGA=0,60g PGA=0,18g PGA=0,36g PGA=0,60g

a1 

a2 

Maximum top 
drift (mm) 

Ratio (%) 

69 

0,9 

120 

1,6 

133 

1,8 

41 

0,5 

54 

0,7 

82 

1,1 

b1 

b2 

Differential top 
drift (mm) 

Ratio (%) 

46 

0,6 

67 

0,9 

66 

0,9 

38 

0,5 

45 

0,6 

54 

0,7 

c1 

c2 

Maximum top 
drift (mm) 

Relative (-) 

69 

0,71 

120 

0,65 

133 

0,58 

41 

0,42 

54 

0,29 

82 

0,36 

d1 

d2 

^Max connection 
slide (mm) 

3 11 29 2 9 23 

Relative (-) 0,03 0.06 0,13 0,01 0,05 0,10 

f1 

f2 

Max force roof-
beam (kN) 

Relative (-) 

- 

- 

- 

- 

1007 

10,17 

362 

4,82 

- 

- 

541 

5,52 

g1 

g2 

Max force beam-
column (kN) 

Relative (-) 

- 

- 

- 

- 

163 

1,65 

38 

0,51 

- 

- 

66 

0,67 

h1 

h2 

Max force wall-
structure (kN) 

Relative (-) 

308,39 

4,11 

317,34 

3,27 

327,34 

3,31 

312,50 

4,17 

315,77 

3,29 

331,67 

3,38 

 i1 

 i2 

Max force wall-
wall (kN) 

Relative (-) 

60 

0,80 

60 

0,62 

60 

0,61 

60 

0,80 

60 

0,62 

60 

0,61 

 j1 

 j2 

Total base shear 
(kN) 

Relative (-) 

2345 

1,01 

3426 

1,14 

4391 

1,43 

4086 

1,75 

5585 

1,88 

6594 

2,17 

k1 

k2 

Total column 
shear (kN) 

Relative (-) 

2246 

0,96 

3444 

1,01 

4117 

0,94 

825 

0,20 

1149 

0,20 

1714 

0,26 

2 

2 

Mean column 
shear (kN) 

Relative (-) 

72 

0,97 

111 

1,15 

133 

1,34 

27 

0,35 

37 

0,39 

55 

0,56 

m1 

m2 

Max column shear 
(kN) 

Relative (-) 

121 

1,67 

163 

1,47 

192 

1,44 

65 

2,43 

81 

2,18 

124 

2,24 

h1v 

h1h 

Max vert.force 
wall-struct.(kN) 

Max hor. force 
wall-struct.(kN) 

306 

67 

314 

74 

323 

83 

310 

67 

317 

75 

328 

84 

^ connection slides all equal                                                  
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Table 6-11 –  two bays building, rigid diaphragm 

  DIS3-2rig x - direction y - direction 

   PGA=0,18g PGA=0,36g PGA=0,60g PGA=0,18g PGA=0,36g PGA=0,60g

a1 

a2 

Maximum top 
drift (mm) 

Ratio (%) 

26 

0,3 

57 

0,8 

106 

1,4 

17 

0,2 

50 

0,7 

93 

1,2 

b1 

b2 

Differential top 
drift (mm) 

Ratio (%) 

5 

0,1 

7 

0,1 

7 

0,1 

3 

0,0 

5 

0,1 

4 

0,1 

c1 

c2 

Maximum top 
drift (mm) 

Relative (-) 

26 

0,27 

57 

0,31 

106 

0,46 

17 

0,17 

50 

0,27 

93 

0,41 

d1 

d2 

^Max connection 
slide (mm) 

Relative (-) 

6,61 

0,07 

14,83 

0,08 

28,95 

0,13 

4,14 

0,04 

6,80 

0,04 

26,66 

0,12 

e1 

e2 

Max force roof-
roof (kN) 

Relative (-) 

309 

4,13 

354 

3,65 

383 

3,87 

151 

2,02 

235 

2,45 

208 

2,13 

f1 

f2 

Max force roof-
beam (kN) 

Relative (-) 

58,46 

0,78 

67,07 

0,69 

70,74 

0,71 

69,13 

0,92 

93,77 

0,98 

87,50 

0,89 

g1 

g2 

Max force beam-
column (kN) 

Relative (-) 

48 

0,64 

88 

0,91 

138 

1,40 

23 

0,30 

46 

0,48 

73 

0,74 

h1 

h2 

Max force wall-
structure (kN) 

Relative (-) 

311 

4,15 

320 

3,30 

324 

3,27 

311 

4,15 

321 

3,34 

329 

3,36 

 i1 

 i2 

Max force wall-
wall (kN) 

Relative (-) 

60 

0,80 

60 

0,62 

60 

0,61 

60 

0,80 

60 

0,62 

60 

0,61 

 j1 

 j2 

Total base shear 
(kN) 

Relative (-) 

2950 

1,27 

4147 

1,38 

5391 

1,75 

4586 

1,96 

5638 

2,00 

5969 

1,96 

k1 

k2 

Total column 
shear (kN) 

Relative (-) 

1419 

0,48 

2337 

0,56 

3350 

0,62 

665 

0,14 

1603 

0,28 

1874 

0,31 

l1 

l2 

Mean column 
shear (kN) 

Relative (-) 

53 

0,70 

87 

1,15 

124 

1,25 

25 

0,33 

59 

0,62 

69 

0,71 

m1 

m2 

Max column shear 
(kN) 

Relative (-) 

54 

1,03 

93 

1,07 

143 

1,16 

29 

1,19 

76 

1,27 

107 

1,55 

h1v 

h1h 

Max vert.force 
wall-struct.(kN) 

Max hor. force 
wall-struct.(kN) 

309 

61 

318 

66 

320 

76 

307 

67 

315 

72 

322 

86 

^ connection slides all equal                                                  



Seismic performance of precast buildings with dissipative systems 

 
233 

 

Table 6-12 –  three bays building, null diaphragm 
 

  DIS3-3nul x - direction y - direction 

   PGA=0,18g PGA=0,36g PGA=0,60g PGA=0,18g PGA=0,36g PGA=0,60g

a1 

a2 

Maximum top 
drift (mm) 

Ratio (%) 

116 

1,5 

200 

2,7 

315 

4,2 

96 

1,3 

201 

2,7 

313 

4,2 

b1 

b2 

Differential top 
drift (mm) 

Ratio (%) 

115 

1,5 

199 

2,6 

316 

4,2 

98 

1,3 

202 

2,7 

320 

4,3 

c1 

c2 

Maximum top 
drift (mm) 

Relative (-) 

116 

1,11 

200 

1,03 

315 

1,32 

96 

0,92 

201 

1,03 

313 

1,14 

d1 

d2 

^Max connection 
slide (mm) 

Relative (-) 

1 

0,01 

1 

0,01 

3 

0,01 

2 

0,02 

5 

0,03 

13 

0,05 

f1 

f2 

Max force roof-
beam (kN) 

Relative (-) 

93 

1,28 

169 

1,84 

230 

2,34 

124 

1,60 

212 

2,20 

373 

3,81 

g1 

g2 

Max force beam-
column (kN) 

Relative (-) 

83,15 

1,14 

103,03 

1,12 

125,43 

1,28 

68,67 

0,89 

94,97 

0,99 

102,67 

1,05 

h1 

h2 

Max force wall-
structure (kN) 

Relative (-) 

203 

2,78 

306 

3,32 

316 

3,23 

312 

4,05 

312 

3,25 

319 

3,25 

 i1 

 i2 

Max force wall-
wall (kN) 

Relative (-) 

33 

0,45 

59 

0,64 

60 

0,61 

60 

0,78 

60 

0,62 

60 

0,61 

 j1 

 j2 

Total base shear 
(kN) 

Relative (-) 

3378 

1,10 

6531 

1,68 

8871 

2,14 

4949 

1,53 

6051 

1,51 

8450 

2,06 

k1 

k2 

Total column 
shear (kN) 

Relative (-) 

1247 

0,37 

1749 

0,27 

2378 

0,27 

1425 

0,29 

1850 

0,31 

2174 

0,26 

l1 

l2 

Mean column 
shear (kN) 

Relative (-) 

30 

0,41 

42 

0,45 

57 

0,58 

34 

0,44 

44 

0,46 

52 

0,53 

m1 

m2 

Max column shear 
(kN) 

Relative (-) 

81 

2,72 

116 

2,78 

133 

2,35 

82 

2,41 

117 

2,65 

152 

2,93 

h1v 

h1h 

Max vert.force 
wall-struct.(kN) 

Max hor. force 
wall-struct.(kN) 

201 

26 

302 

50 

311 

66 

310 

67 

309 

74 

314 

82 

^ connection slides all equal                                                  
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Table 6-13 –  three bays building, deformable diaphragm 
 

  DIS3-3def x - direction y - direction 

   PGA=0,18g PGA=0,36g PGA=0,60g PGA=0,18g PGA=0,36g PGA=0,60g

a1 

a2 

Maximum top 
drift (mm) 

Ratio (%) 

78 

1,0 

111 

1,5 

161 

2,1 

56 

0,7 

76 

1,0 

119 

1,6 

b1 

b2 

Differential top 
drift (mm) 

Ratio (%) 

80 

1,1 

110 

1,5 

121 

1,6 

46 

0,6 

76 

1,0 

80 

1,1 

c1 

c2 

Maximum top 
drift (mm) 

Relative (-) 

78 

0,75 

111 

0,57 

161 

0,67 

56 

0,53 

76 

0,39 

119 

0,43 

d1 

d2 

^Max connection 
slide (mm) 

Relative (-) 

2 

0,02 

10 

0,05 

31 

0,13 

3 

0,03 

10 

0,05 

34 

0,12 

f1 

f2 

Max force roof-
beam (kN) 

Relative (-) 

319 

4,37 

423 

4,60 

538 

5,49 

354 

4,60 

497 

5,17 

559 

5,70 

g1 

g2 

Max force beam-
column (kN) 

Relative (-) 

84 

1,15 

125 

1,36 

145 

1,48 

54 

0,70 

55 

0,58 

83 

0,85 

h1 

h2 

Max force wall-
structure (kN) 

Relative (-) 

314,39 

4,31 

321,96 

3,50 

324,95 

3,32 

312,37 

4,06 

313,39 

3,26 

343,17 

3,50 

 i1 

 i2 

Max force wall-
wall (kN) 

Relative (-) 

60,00 

0,82 

60,00 

0,65 

60,00 

0,61 

60,00 

0,78 

60,00 

0,62 

60,00 

0,61 

 j1 

 j2 

Total base shear 
(kN) 

Relative (-) 

5275 

1,72 

7164 

1,85 

9873 

2,39 

5594 

1,35 

5964 

1,49 

8042 

1,96 

k1 

k2 

Total column 
shear (kN) 

Relative (-) 

1776 

0,34 

3144 

0,44 

5002 

0,51 

1116 

0,20 

1804 

0,30 

3288 

0,41 

l1 

l2 

Mean column 
shear (kN) 

Relative (-) 

42 

0,58 

75 

0,81 

119 

1,22 

27 

0,35 

43 

0,45 

78 

0,80 

m1 

m2 

Max column shear 
(kN) 

Relative (-) 

113 

2,68 

146 

1,95 

169 

1,42 

47 

1,76 

69 

1,60 

95 

1,21 

h1v 

h1h 

Max vert.force 
wall-struct.(kN) 

Max hor. force 
wall-struct.(kN) 

312 

65 

319 

48 

320 

85 

310 

66 

310 

74 

339 

83 

^ connection slides all equal                                                  
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Table 6-14 –  three bays building, rigid diaphragm 
  DIS3-3rig x - direction y - direction 

   PGA=0,18g PGA=0,36g PGA=0,60g PGA=0,18g PGA=0,36g PGA=0,60g

a1 

a2 

Maximum top 
drift (mm) 

Ratio (%) 

29 

0,4 

60 

0,8 

110 

1,5 

22 

0,3 

55 

0,7 

98 

1,3 

b1 

b2 

Differential top 
drift (mm) 

Ratio (%) 

5 

0,1 

7 

0,1 

7 

0,1 

6 

0,10 

6 

0,1 

7 

0,1 

c1 

c2 

Maximum top 
drift (mm) 

Relative (-) 

29 

0,27 

60 

0,31 

110 

0,46 

22 

0,22 

56 

0,28 

96 

0,35 

d1 

d2 

^Max connection 
slide (mm) 

Relative (-) 

7 

0,07 

15 

0,08 

30 

0,13 

6 

0,06 

15 

0,08 

30 

0.11 

e1 

e2 

Max force roof-
roof (kN) 

Relative (-) 

229 

3,14 

252 

2,74 

265 

3,44 

285 

3,70 

285 

2,96 

293 

2,99 

f1 

f2 

Max force roof-
beam (kN) 

Relative (-) 

65,39 

0,90 

68,13 

0,74 

88,31 

0,90 

76,83 

1,00 

88,45 

0,92 

104,74 

1,07 

g1 

g2 

Max force beam-
column (kN) 

Relative (-) 

39,02 

0,53 

75,06 

0,82 

121,23 

1,24 

25,42 

0,33 

43,80 

0,46 

75,45 

0,77 

h1 

h2 

Max force wall-
structure (kN) 

Relative (-) 

328 

4,50 

329 

3,58 

335 

3,42 

314 

4,07 

319 

3,33 

326 

3,33 

 i1 

 i2 

Max force wall-
wall (kN) 

Relative (-) 

60 

0,82 

60 

0,65 

60 

0,61 

60 

0,78 

60 

0,62 

60 

0,61 

 j1 

 j2 

Total base shear 
(kN) 

Relative (-) 

4892 

1,60 

6316 

1,63 

8928 

2,16 

4849 

1,50 

6635 

1,65 

6777 

1,65 

k1 

k2 

Total column 
shear (kN) 

Relative (-) 

2279 

0,47 

4236 

0,67 

6081 

0,68 

1392 

0,29 

2132 

0,32 

3324 

0,49 

l1 

l2 

Mean column 
shear (kN) 

Relative (-) 

63 

0,87 

118 

1,28 

169 

1,72 

39 

0,50 

59 

0,62 

92 

0,94 

m1 

m2 

Max column shear 
(kN) 

Relative (-) 

87 

1,37 

169 

1,44 

248 

1,47 

63 

1,63 

90 

1,52 

148 

1,60 

h1v 

h1h 

Max vert.force 
wall-struct.(kN) 

Max hor. force 
wall-struct.(kN) 

326 

73 

326 

79 

330 

87 

309 

66 

314 

73 

319 

83 

^ connection slides all equal                                                  
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The most relevant results of the structural analyses can be summerised as follows: 

- At service (0,18g) limit conditions, maximum drifts varying from 1,5% to 1,0% and 
0,4% have been evaluated respectively for null, deformable and rigid diaphragm (that is 
from 116 to 78 and to 29 mm).  

- At no-collapse (0,36g) limit conditions, maximum drifts varying from 3,0% to 1,6% and 
0,8% have been evaluated respectively for null, deformable and rigid diaphragm (that is 
from 224 to 120 and to 57 mm).  

- With a rigid diaphragm, in roof-to-roof connections maximum forces from 196 kN to 
309 kN have been evaluated at service (0,18g) limit conditions and from 227 kN to 354 
kN at no-collapse (0,36g) limit conditions.  

- At service (0,18g) limit conditions, in roof-to-beam connections maximum forces from 
35 kN to 124 kN have been evaluated for null and rigid diaphragm, from 354 kN to 517 
kN for deformable diaphragm.  

- At no-collapse (0,36g) limit conditions, in roof-to-beam connections maximum forces 
from 35 kN to 124 kN have been evaluated for null and rigid diaphragm, from 497 kN to 
735 kN for deformable diaphragm.  

- In general the forces in roof-to-roof and roof-to-beam connections are really high 
especially for deformable diaphragm and this causes problems for their design.  

- At service (0,18g) limit conditions, in beam-to-column connections maximum forces 
from 39 kN to 84 kN have been evaluated for all types of diaphragm.  

- At no-collapse (0,36g) limit conditions, in beam-to-column connections maximum 
forces from 75 kN to 125 kN have been evaluated for all types of rigid diaphragm.  

- At both in service (0,18g) and no-collapse (0,36g) limit conditions, an almost constant 
value of the force (from 309 kN to 328 kN) in the panel-to-structure connections derives 
from the slide limit of friction devices.   

A comparison of the maxima displacements attained is graphed in Figure 6.10. 

For 1-bay the diaphragm action is not relevant in y (longitudinal) direction, is very important 
in x (transverse) direction. 

For 2 and 3-bays the diaphragm action is always very important in reducing the maximum 
displacements. 

Also deformable diaphragms have a relevant influence in reducing the maximum 
displacements. 

It has to be pointed out that additional panel-supporting frames in X-direction for null and 
deformable structures showed very large out-of-plane displacements with seismic action 
insisting on the Y-direction, due to their independent dynamics with respect to the main frame 
structure. This solution would require special attention during the design. 
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PGA = 0,18g PGA = 0,36g PGA = 0,60g 

 
 

X  NULL DIAPHRAGM 

 

 

DEFORMABLE DIAPHRAGM 

 

RIGID DIAPHRAGM 

Figure 6.10 – Comparison of maximum displacement attained 

 

A comparison of the maximum base shear attained is graphed in Figure 6.11. 

The influence of the roof diaphragm on the global response of the structure is small. 

At service (0,18g) and no-collapse (0,36g) limit conditions for 1 and 2-bays the global 
response is higher in y (longitudinal) than in x (transverse) direction because of the higher 
stiffening influence of the wall panels. 

Close to collapse (0,60g) conditions the above difference lowers and changes, being affected 
by the actual distribution of the plastic resources in the structural elements. 

In general the global response for increasing number of bays grows less than proportionally to 
the correspondent involved masses. 
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 Figure 6.11 – Comparison of maximum base shear attained 

 

A direct comparison with the reference values coming from the analyses on the same buildings 
provided wth isostatic cantilever panel connection arrangement is graphed in Figure 6.12. 

With respect to the isostatic arrangement the stiffening effect of wall panels leads to higher 
responses that arrive to almost 3 times for 1-bay in y (longitudinal) direction.  

In general the above effect decreases with the higher number of bays in y (longitudinal) 
direction. 
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Figure 6.12 – Comparison of relative base shear attained 

 

Finally, a comparison of complementary data, including serviceability limit state displacement 
over reference values, base shear at no-collapse limit state over reference values and 
differential drift ratio for PGA equal to 0,60g, is graphed in Figure 6.13. 

Except for 1-bay in y (longitudinal) direction, at service (0,18g) limit conditions the null 
diaphragm corresponds to the isostatic arrangement in terms of maximum displacements. 

At the service (0,18g) limit condition the deformable and rigid diaphragms lead to a relevant 
reduction of displacements in both directions with respect to the isostatic arrangement. 

The stiffening effect of wall panels, at the no-collapse (0,36g) limit condition, leads to a 
relevant reduction of the shear in columns in y (longitudinal) direction with respect to the 
isostatic arrangement. 

The above effect is not so relevant in general in x (transverse) direction. 
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Figure 6.13 – Comparison of complementary data 

 

The results obtained from the parametric analysis confirm the validity of the statements drafted 
with regards to the case study. As also noted within the case study analysis, very large forces 
arise in the slab connections, both the floor-to-beam and the floor-to-floor, if adopted. Those 
forces are an outcome of the analyses in which perfect elastic elements have been used to 
model them. The possibility of using ductile connections could be exploited to limit the forces 
in the connections, providing though a larger flexibility to the diaphragm. Dissipative ductile 
connections could also allow to participate in the energy absorption during the seismic motion. 

This solution will be the subject of further studies. 

  

0,0

1,0

2,0

3,0

1 2 3

dx / dx0

Bays
0,0

1,0

2,0

3,0

1 2 3

Vx / Vx0

Bays

0,0

1,0

2,0

3,0

1 2 3

∆dx [%]

Bays

0,0

1,0

2,0

3,0

1 2 3

dy / dy0

Bays
0,0

1,0

2,0

3,0

1 2 3

Vy / Vy0

Bays
0,0

1,0

2,0

3,0

1 2 3

∆dy [%]

Bays



 

 
241 

 

 

Chapter 7 

7. Conclusions 
 
 

 

7.1. Objectives achieved 

 

A general framework for the structural conception and seismic assessment of precast structures 
with cladding panels has been proposed, with several cladding connection systems based on 
the panel sub-assembly static scheme that fully incorporate the panels within the design of the 
structure. Dissipative cladding solutions are found to be very effective, exploiting both the 
large flexibility of typical precast frames and the large stiffness of typical cladding wall panels 
to improve the seismic behaviour of the whole structure. 

Three innovative dissipative cladding connections have been conceived, designed and 
experimentally characterised. They are Friction Based, Multiple Slit and Folded Plate devices. 
The experimentation allowed to define optimal technological features for the single devices. 
Simple design guidelines for single connections have been provided.  

FBDs provide a quasi rigid-plastic behaviour to which a very large dissipation of energy is 
associated, with a typical friction-type hysteresis. The connection provided with brass sheets 
exhibited a very large cyclic reliability, to which also corresponds the possibility of re-use of 
the same connection after many large amplitude cycles. It has been shown that the connection 
does not suffer from damage up to its maximum drift, which is a design parameter depending 
on the length of the vertical slots, and that the brass sheets can be re-used even if subjected to 
strong abrasion. Since the abrasion causes friction load threshold losses, which can be strongly 
limited with the use of belleville washers, the connections only need to be re-tightened after 
use. Moderate uncertainty is associated with the definition of the slip load threshold due to the 
friction mechanism, which has been taken into account in the definition of the design rules.  

MSDs can provide large elastic stiffness and a smooth well-defined strongly hardening 
behaviour, due to the diffusion of plasticity along the rectangular section of each elementary 
beam and to the material hardening. The device shows a large cyclic stability only for beam 
drift not larger than about 10%, after which the behaviour turns unstable, even if monotonic 
drift up to about 50% have been attained prior to failure. Devices with optimised hourglass-
shaped beams allow to distribute the plasticity along the whole member, instead of locating it 
at the beam edges, as noticed for straight beam profiles. Despite the large relative displacement 
capacity of the device, the maximum displacement attained is relatively low due to the small 
dimensions, that are needed in order to easily apply the device in between cladding panels.  
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A mixed friction-plastic solution has been conceived and tested, showing that the length of the 
vertical slots directly increase the displacement capacity, still ensuring a largely dissipative 
behaviour, if the friction load threshold is calibrated in between MSD yielding and unstable 
branch load thresholds. 

FPDs provide an in-plane flexible behaviour with large displacement capacity, to which good 
energy dissipation properties are associated, ensuring a contemporary large out-of-plane 
strength and stiffness. The device is characterised by a large cyclic stability and a smooth and 
well-defined elastic-plastic backbone curve. Even if the mechanical behaviour of the single 
device is largely influenced by the out-of-plane restraints and can turn to be strongly 
asymmetric, the global response is always symmetric, due to the selected installation scheme. 
Plate thickness larger than 8 mm installed with a single line of bolts has been shown to 
introduce pinching effects that jeopardise the energy dissipation properties of the device. 

Silicone sealant has also been experimentally characterised, showing a very large shear 
flexibility and deformation capacity, up to about 200% of drift, with a typical hysteretic shear 
behaviour. Since the strength of silicone is very low and its drift accommodation capacity is 
typically overcome at ULS drift, its contribution may be omitted when favourable. However, 
the very long strips typically sprayed in between the panels can produce a non-negligible 
increase of actions on the bearing connections of the panel in case of seismic event. Design 
guidelines are provided to take into account its influence based on capacity design.        

The behaviour of panel structural sub-assemblies with dissipative connection systems has been 
characterised through experimental testing for selected configurations. Design guidelines of 
the panel bearing connections for different dissipative systems based on capacity have been 
drafted, together with indications on the design features of the basic isostatic systems. The 
experimentation highlighted the effect of mounting tolerances on the global behaviour of the 
sub-assembly, that may significantly affect the hysteretic shape especially for low drift. The 
tested panel-to-panel dissipative devices performed as expected and any local damage of the 
panels has been observed, even at large attained drift. 

A case study performed on a typical precast structure shows how the dissipative cladding panel 
solution allows to dramatically reduce the drift under a seismic event while controlling the 
forces, largely improving the seismic performance of the overall structural system.  

A full-scale prototype of precast structure has been subjected to a wide experimental campaign 
at ELSA laboratory of the Joint Research Centre of the European Commission concerning 
cyclic and pseudo-dynamic tests with both isostatic and dissipative panel connection 
arrangements. The results confirm the large effectiveness of the dissipative solution in 
enhancing the seismic behaviour of the whole structure, with reliable and predictable 
behaviour that confirm the remarkable advantages induced by the added stiffness and 
dissipation of energy. The adoption of dissipative cladding solutions allowed the structure to 
remain in elastic field even under a seismic event with a PGA six times larger than the SLS 
design of the same structure with isostatic panel connection arrangement. 

Numerical analysis, performed on the base of the given guidelines for single devices and panel 
sub-assemblies, shows a very satisfactory matching with the experimental results. A simplified 
design procedure based on the ADRS (Acceleration-Displacement Response Spectrum) method 
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has been applied to the experimental results and has been verified to provide a rough safe-side 
estimation of the maximum attained drift.   

The study has been extended to large plan structures, exploring the influence of the diaphragm 
flexibility on the seismic behaviour of a set of mono-storey buildings provided with dissipative 
cladding connections. A parametric analysis has been performed on a set of buildings with 
different plan geometry. The results confirm the remarkable improvement of the seismic 
performance of precast structures based on the beneficial effects of cladding dissipative 
connections, which can provide suitable energy dissipation capacity and limit at the same time 
forces and displacements when relevant stiffness of the horizontal diaphragms is ensured. 

 

 

7.2. Future developments and challenges 

 

The results of numerical analyses pointed out that large forces arise in rigid and flexible 
diaphragms of buildings provided with cladding panel dissipative connections. Traditional 
mechanical floor-to-beam post-installed angle connections seem to be inadequate to carry 
those forces and provide the required stiffness, which could be provided by strong dowel 
connections, depending on the specific cases. The adoption of floor-to-floor connections 
relevantly help increasing the dry-assembled diaphragms stiffness, contemporarily reducing 
the actions on the floor-to-beam connections. However, the traditional welded connections, 
that provide large stiffness and resistance, are subjected to very large forces, which are hardly 
compatible with the resistance of surrounding concrete. Ductile floor-to-floor mechanical 
connections with load threshold may represent a good balance between added stiffness and 
control of forces. New connection devices are required in order to achieve this objective, and 
some dissipative devices considered in the present work may be adapted to this use. 

Furthermore, the cladding panels considered in the present work are very stiff, while panels 
provided with openings or realised with different technology may provide a non-negligible 
flexibility and modify the response of the cladding provided with dissipative connections. 
Their distribution in the building may also introduce in-plane non-regularities, leading to 
torsional effects. Future research along these lines is necessary.   
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