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Abstract

Coronary artery disease represents one of the leading causes of mortality worldwide. In fact,
coronary arteries are the only source of blood supply to the heart, and the occlusion of one
or more major coronary arteries may lead to angina pectoris, heart attack and heart failure.
Coronary artery bypass grafting is a surgical procedure to create new paths around narrowed
coronary arteries to restore sufficient blood flow to the heart.

Understanding fluid dynamics in biomedical configurations can be a valuable tool in the
study of the human circulatory system and in the improvement of prosthetic devices such as
coronary artery bypass grafts (CABGs). Clinical studies and experience suggest that bypass
grafts tend to fail after some years due to the process of restenosis. Computational fluid
dynamics can help to assess unfavorable flow conditions near the anastomosis of the CABG,
which can be strictly related to the onset of restenosis.

A computational framework for the simulation of blood flows in three-dimensional patient-
specific CABGs is proposed in this thesis. A close collaboration with clinicians at Ospedale
Luigi Sacco (Divisions of Cardiac Surgery and Radiology) has been established to study
clinically relevant patient-specific cases. This framework is based on the combination of:

1. clinical data and medical imaging: a computational mesh is reconstructed from com-
puted tomography scans of a few selected patient-specific cases. The resulting mesh
includes native coronary arteries and (multiple) bypass grafts. The current clinical trial
investigates representative cases of different grafting procedures, grafting materials and
native coronary artery disease.

2. computational reduction techniques: performing computational studies on patient-specific
geometries is a very challenging task. Considerable computational costs are usually in-
volved, especially when dealing with a parametric study. Reduced-order model tech-
niques for parametrized PDEs, based in particular on proper orthogonal decomposition,
allow to evaluate the haemodynamics for different flow conditions (such as Reynolds
numbers) or different geometrical features (e.g. related to native coronary artery dis-
ease) in a rapid and reliable way.

3. geometrical parametrization and reduction: shape parametrization techniques are ex-
ploited in order to perform local changes to the reconstructed geometry in a flexible
and reliable way. In fact, different choices of anastomoses are possible in the clinical
practice. A local geometrical variation of patient-specific data, performed by means of a
centerlines-based parametrization, is employed to perform a comparison among different
cases.

Numerical results on patient-specific configurations are presented and a detailed clinical dis-
cussion is provided, enlightening relevant physical and geometrical features affecting blood
flow dynamics in a wide range of bypass configurations.






Summary

Coronary artery bypass grafting (CABG) is a surgical procedure in which one or more grafts
are used to create new paths to restore blood flow to the myocardium when severe coronary
artery disease (CAD) occurs. In this case, one or several major coronary arteries are occluded;
this condition undermines the perfusion of oxygen-rich blood to the heart. Due to this
critical issue, although several alternative treatments exist, CABG is still one of the largest
components of surgical practice worldwide. However, current clinical experience suggests
that, after some years, the implanted vessel themselves tend to occlude, leading to the failure
of the surgery and the need of reintervention.

Large clinical experience has been built on this subject since the early attempts on CABG
in the 50s, concerning preliminary assessment of the disease, choices of the bypass grafts and
anastomosis locations during the surgery, and survey of clinical outcomes after the surgery. As
for the preliminary phase, it has been suggested to evaluate the necessity of the intervention
taking into account the number of diseased arteries (single-, double- or triple-vessel) and
the severity of the stenosis. In fact, double or triple-vessel (especially on the left coronary
artery tree) involve a far more critical reduction of blood supply to the heart. Moreover,
during the preparation of the surgery and during the surgery itself, the cardiac surgeon
needs to choose among several possibilities, e.g. concerning grafting materials (arterial or
venous grafts, or both, are usually considered), proximal anastomoses (i.e. what source of
blood should provide the graft; common choices are free grafts in aorta or Y-grafts), distal
anastomoses (e.g. local features of end-to-side anastomoses) and sequential procedures for
complete revascularization (one graft may feature more than one side-to-side anastomosis
and a distal end-to-side anastomosis in order to revascularize multiple coronary arteries).
Some clinical studies have been carried out for each one of these choices; for example, it is
nowadays agreed that, due to anatomical and physiological features, an internal mammary
artery graft is particularly suitable to revascularize the left anterior descending branch (one
of the two main branches of the left coronary tree), and that only critical stenoses should be
bypassed.

Investigating global and local features of the blood flow, in particular near the anasto-
moses is of considerable clinical interest. In fact, some fluid dynamics indicators, such as
wall shear stresses and oscillatory shear index, are strictly related to the development of
intimal thickening and can be efficiently and accurately estimated by means of experimental
methods and numerical simulations. However, experimental measures can be invasive and
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some of these may not be routinely performed in the clinical practice. For this reason, in
the last decades several computational fluid dynamics (CFD) studies of the cardiovascular
system have been performed. In this thesis CFD methods are developed, focusing on complex
geometries obtained from clinical data, with a special attention to computational reduction
techniques, allowing for individualized (patient-specific) simulations.

The title of this thesis contains two keyphrases of the proposed computational framework
for the study of CABGs: reduced-order models and patient-specific.

In the recent decades vast research interest has been devoted to model order reduction
techniques for problems arising from partial differential equations in a broad variety of con-
texts. Reduced-order models (ROM) have been applied for example in heat conduction
problems, acoustics, structural mechanics and fluid dynamics. In all these cases projection-
based ROMs, such as reduced basis methods and proper orthogonal decomposition (POD),
allow to obtain an accurate description of the physical behavior of the system at greatly
reduced computational costs. POD-Galerkin methods are considered in this thesis.

A finite element (FE) discretization is employed in a construction stage (offline), to be
performed once, possibly on high performance computing (HPC) facilities. Afterwards, few
relevant basis functions are computed from a set of snapshots of the full-order model, and
the PDE is projected on the reduced basis space, that is, on the space spanned by these basis
functions. Therefore, the number of degrees of freedom of the evaluation stage (online) is
drastically reduced, allowing for fast computations, which can be performed several times (e.g.
for different physical properties of the system), possibly on a laptop. The main motivation
behind the use of ROMs is that clinical interest lies not only in the simulation on a patient-
specific configuration, but also in addressing the variation of the flow conditions and of the
geometry for a detailed analysis of several scenarios, aiming at a possible improvement of
the design of the surgical operation. The solution of a finite element simulation for each
new physical or geometrical configuration is usually unaffordable, especially in the clinical
context, and reduced-order models are employed to overcome this problem.

Moreover, a second important aspect is to be able to perform individualized and patient-
specific studies. A collaboration with Ospedale Luigi Sacco (Divisions of Cardiac Surgery
and Radiology) in Milan has been established in order to share their experience on the topic,
clinical data (angiography and CT scan) of some representative cases, and feedback to analyze
our computational results.

The proposed reduced-order framework for CFD problems on patient-specific geometries
of coronary artery bypass grafts can be summarized in the following steps:

a) reconstruction of a mesh starting from patient-specific clinical data. The available clinical
dataset is composed of 14 patients, who have undergone a coronary artery bypass surgery
at Ospedale Luigi Sacco in Milan. They feature different characteristics concerning both
the disease (different stenosed coronary arteries) and the surgical procedure (different
grafting materials, anastomosis features, single or sequential grafts). The reconstruction
has been carried out for fourteen patients, starting from CT scan data and implementing
a medical imaging pipeline devised for this particular application.

b) formulation of a shape parametrization for the geometrical variation of the prosthetic
devices. The capabilities of volume-based and line-based parametrizations in this context
have been explored. This experience resulted in the proposal of a centerlines-based
parametrization, which combines line-based parametrization for both local (e.g. stenosis)
and global (e.g. rigid movement) variation of the coronary arteries and grafts, and a
volume-based parametrization for local (e.g. angles) variations near the anastomoses.
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¢) construction of a reduced-order model for the haemodynamics of patient-specific CABG
configurations that takes into account geometrical and possibly physical variations.

d) evaluation of the reduced-order model, for example in a sensitivity /scenarios analysis
procedure.

The structure of the thesis is as follows. Chapter 1 provides an introduction to the
clinical problem. The anatomy of the coronary arteries is recalled, with a focus on the four
major branches where the arteriosclerotic process usually occurs. A brief review of possible
causes of coronary artery disease is presented, together with a summary of clinical evidence
that is usually considered when planning the surgery. A few aspects of coronary artery
bypass grafting are also discussed, concerning graft choices (internal mammary artery, radial
artery, saphenous vein), proximal anastomosis (free graft vs Y-graft), distal anastomosis
(single vs sequential, flow vs T-shaped vs cross). Finally, possible alternative procedures are
summarized.

Part I (Chapter 2) contains a review of the available clinical data and a thorough discus-
sion of the proposed medical imaging pipeline. Angiographical data in a pre-surgical phase
and CT scan data in post-surgical phase are acquired for each patient. A computational mesh
is obtained for each patient by means of a medical imaging pipeline. Nine steps are required,
starting from gray levels fields in the DICOM, preprocessing of the data, centerlines extrac-
tion, to three dimensional lumen surface and volume generation. Fourteen patients have been
reconstructed using this pipeline. The current dataset features a broad variability of both
disease (for example, different two- or three-vessels disease) and surgical intervention (for
example, different combination of single or sequential grafts, Y-grafts or free grafts, radial
artery or saphenous vein grafts). Alongside with the proposed medical imaging procedure,
the detailed reconstruction of such clinical dataset is a main contribution of the present the-
sis. In fact, few studies on patient-specific numerical simulations have been published,but
the present work features a larger and more complete (with respect to anastomosis features,
grafting procedures, coronary artery disease) CABG dataset, and none of the previous con-
tributions has been coupled to computational reduction techniques for parametric studies,
which are the topic of the next Part.

Part II deals with the computational reduction framework.

A POD-Galerkin reduced-order model for steady incompressible Navier-Stokes equations
is introduced in Chapter 3, which is rather technical. An enrichment procedure of the re-
duced spaces by means of supremizer solutions is employed in order to obtain an inf-sup
stable reduced-order model. In fact, in contrast to other references in the literature of POD
reduced-order models for incompressible flows, our aim is to provide a simultaneous online
approximation of both velocity and pressure fields, and not only for the velocity. From the
technical standpoint this is partially motivated by the choice of the transformation to the
reference domain, which does not preserve the incompressibility constraint. Moreover, from
the point of view of the CABG application, this is strongly motivated also by the possible
interest to recover the pressure, because of clinical practice in the pre-operative phase to
evaluate stenosis severity. The capabilities of the proposed ROM are shown by means of
theoretical results and numerical examples. In particular, a theoretical result to detect the
existence of online spurious pressure modes has been proved. Some numerical examples on
CFD test cases are summarized in order to study the relation between the online inf-sup con-
stant and the online dimension of the reduced spaces, characterizing in this way the minimum
number of supremizer basis functions that are needed to obtain an inf-sup stable ROM. Such
an analysis was not available yet in the reduced-order modeling literature, and constitutes a
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contribution of the present thesis.

An extension to the unsteady case is provided in Chapter 4. When both parameter and
time dependence are considered, a computational bottleneck may arise in the offline stage,
requiring a compression of the temporal trajectory. To overcome this obstacle, a two-level
POD technique is proposed, in which two nested PODs are exploited. The innermost provides
a compression of the temporal trajectory, while the outermost accounts for the parametric
dependence. It is shown that this procedure provides reduced spaces which closely resemble
the ones in which the most expensive full POD (on both parametric and time trajectories) is
computed. The application of such two-level POD to unsteady flows is another contribution
of the current work.

Part III (Chapter 5) deals with possible shape parametrization techniques for patient-
specific configurations of coronary artery bypass grafts. Volume-based parametrizations are
first introduced, together with a screening procedure for the selection of the geometrical
design parameters. The application of such screening procedures to shape parametrization
maps is a novel contribution of this thesis. Advantages and drawbacks of this approach are
discussed by means of a numerical example of flows in an idealized bypass configuration.
Among the latter, we mention: need to impose additional constraints in order to ensure
that no undesired variation of geometrical features (radii, in particular) happens during the
deformation; no immediate physical interpretation of the design variables; a rapidly increasing
number of design variables in complex geometries. For these reasons, a new idea of shape
parametrization is combined to the volume-based approach, namely the centerlines-based
shape parametrization. This technique is based on the assumption that coronary arteries and
bypass grafts can be represented as a network of tubular geometries. In this framework, we
manage to obtain an intuitive description of the whole network, accounting for few parameters
related to the variation of relevant design variables, such as stenoses severity and anastomosis
features. To the best of our knowledge, no similar parametrization, with an interface to
patient-specific clinical data and coupling to reduced-order models, has been proposed in
literature.

Part IV (Chapter 6) presents several results of the proposed framework on patient-specific
CABG configurations. We examine variation of inlet flow rates (grafts and coronary arteries)
among physical parameters; this is representative for example of different stress or rest con-
ditions of the patient. Moreover, both disease-related (stenosis severity) and surgery-related
(anastomosis features) geometrical parameters are considered.

As a first scenario, we show that inlet flow rates have a significant impact on the magnitude
of wall shear stress (WSS) and the extension of the region of high oscillatory shear index
(OSI). As a second scenario, we consider both variation of inlet flow rates and stenosis
severity. The relation between stenosis severity and pressure drop or maximum WSS in the
stenosis is explored, and local WSS patterns near the anastomosis are analyzed. As a third
scenario, the variation of both stenosis and end-to-side anastomoses is considered. Different
cases, namely mammary artery, saphenous vein and radial artery, are considered. Possible
relations between anastomosis type and locations where intimal thickening may occur are
discussed.

Finally, some conclusions and an outlook of possible future research conclude this thesis
in Chapter 7.
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CHAPTER

Introduction and motivation

Disease of the cardiovascular system currently represents the leading cause of mortality in
our country. Recent data from the National Institute for Statistics (ISTAT), reported and
analyzed in [198], show that, in fact, cardiovascular diseases accounts for approximately
45% of all deaths in Italy. Moreover, two out of three of the 250,000 annual deaths due
to cardiovascular diseases are related to coronary artery disease. Among the patients with
acute myocardial infarction, approximately 3 out of 10 men and 4 women out of 10 die within
a month of onset of early symptoms, in many cases before being admitted to the hospital.
Those who survive an heart attack become chronic sufferers, resulting in a lower quality of
life. In Italy, according to data compiled by ISTAT, 4.4 per thousand of the population
suffers from cardiovascular disability; 23.5% of Italian pharmaceutical expenses is related to
drugs for the treatment of the cardiovascular system. Ischemic heart disease, ranging from
angina pectoris, to heart attack and heart failure, is estimated to affect 5% of the population,
with over 2,000,000 patients and 350,000 new cases a year. Therefore, a better knowledge of
coronary artery disease and related clinical procedures could potentially have a strong impact
on the quality of life of a relevant percentage of the Italian population.

In case of coronary artery disease, coronary artery bypass grafting (CABG) is a surgical
procedure in which one or more blocked coronary arteries are bypassed by a blood vessel
graft. New pathways are thus created in order to restore sufficient flow of oxygen-rich blood
to the heart. Autologous grafts are commonly used, that is, vessels employed in the proce-
dure are patient’s own arteries or veins. The goals of the surgical procedure are to relieve
symptoms of the coronary artery disease, to decrease the risk of heart attack and related
heart problems, and to enable the patient to resume a normal lifestyle after the procedure.
CABG surgery represents the largest component of surgical practice worldwide, with approx-
imately three quarters of million cases performed annually worldwide [208]. We also refer to
the comprehensive heart disease and stroke statistics review reported in [110], which contains
the most up-to-date statistics on heart disease, stroke, and other vascular diseases.

1



Chapter 1. Introduction and motivation

The availability of imaging techniques, such as angiography and computed tomography
scans, allows a more precise evaluation of the disease in the pre-surgical stage as well as of the
surgery outcomes in the post-surgical stage. We refer to [198,199,246] for recent progresses
and future challenges in CT-scan imaging of coronary arteries and CABGs. Moreover, once
patient-specific data has been acquired and reconstructed, computational fluid dynamics
methods can give a detailed description of the phenomena. We refer to [97] for an overview
of mathematical methods applied to cardiovascular problems.

A detailed description of the coronary arteries, coronary artery disease and a clinical
introduction to revascularization procedures can be found for instance in [74,127,144]; a
basic introduction to these topics, adapted from the previously cited references, is reported
in the next sections.

1.1 Coronary arteries

From an anatomical point of view, the coronary artery network is divided into two trees:
left and right, both arising from the aorta. However, from the surgeon standpoint, four
subdivisions are usually considered: the left main coronary artery (LCA), the left anterior
descending coronary artery (LAD) and its branches, the left circumflex coronary artery (LCX)
and its branches, and the right coronary artery (RCA) and its branches.

To ensure a good perfusion of the whole heart, the major coronary arteries form a loop
about the heart. In particular, a circle is formed by the right coronary and left circumflex
arteries, as they travel across the atrioventricular sulci; the loop between the ventricles,
instead, is formed by the left anterior descending coronary artery and the posterior descending
coronary artery, as they circle the septum. The blood supply to the back of the left ventricle
is guaranteed by a series of parallel arteries, called obtuse marginal coronary arteries, which
are branches of the left circumflex artery. The blood supply to the anterior portion of the left
ventricle comes from the left anterior descending artery and its branches. The left anterior
descending artery is also the source of the blood supply of the ventricular septum (in the
front), together with the posterior descending artery. Variability in the origin of the latter
is referred to as dominance. A right dominant circulation is the one in which the posterior
descending artery is a terminal branch of the right coronary artery; this is the most frequent
case. However, a left dominant circulation occurs in approximately 10 ~ 15% cases, where
the posterior descending artery is a branch of the left circumflex artery.

Various reporting systems have been proposed in the past decades, in order to define a
common nomenclature of the coronary arteries, possibly subdivided in more segments, and
a precise denomination of their branches. We mention in particular [17,236] and the recent
proposals [165,277]. An overview of the coronary artery system, together with the segment
identification proposed in [277], is provided in Figure 1.1.

1.1.1 Left main coronary artery

The left main coronary artery originates from the ostium and travels to the left sinus of
Valsava, where it bifurcates into the left anterior descending artery and the left circumfiex
branch. It is located between the pulmonary artery and the left atrial appendage; its bi-
furcation into two daughter branches occurs near the left atrioventricular groove. It is also
possible that an additional vessel, other than left anterior descending and circumflex arter-
ies, originates from the left main coronary artery; such additional branch is called ramus
intermedius. As a rare variation (occurring in approximately 1% of patients) the left main
coronary artery is not present, and the left anterior descending and left circumflex coronary
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1.1. Coronary arteries

Right
coronary
artery
and its
branches

Left
coronary
artery
and its
branches

Left dominance Right dominance

(a) Differences between left and right dominance. (b) Three-dimensional representation (right
dominant).

Figure 1.1: Sizteen-segment-based coronary segment classification used in SYNTAX (Synergy Between PCI
With Tazus and Cardiac Surgery) score. Adapted from [277] (figure (a)) and [120] (figure (b)).

Nomenclature:

: proximal right coronary artery;

: mid right coronary artery;

: distal right coronary artery;

: posterior descending artery (right dominance only);

left main coronary artery;

: proximal left anterior descending;

: mid left anterior descending;

: apical left anterior descending;

9, 9a: ramus intermedius, also called first diagonal branches of the left anterior descending;
10, 10a: (second) diagonal branches of the left anterior descending;

11: proximal circumflex artery;

12: intermediate/anterolateral artery;

12a, 12b: obtuse marginal;

13: distal circumflex artery;

14, 14a, 14b: left posterolateral;

15: left posterior descending (left dominance only);

16, 16a, 16b, 16¢: posterolateral branch from right coronary artery (right dominance only).
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arteries originate directly from the aorta.

1.1.2 Left anterior descending coronary artery

The left anterior descending coronary artery, which is a branch of the left main coronary
artery, travels along the anterior interventricular sulcus to the apex of the heart. Its distal part
may terminate before the apex or extend around the apex in the posterior interventricular
sulcus, supplying blood to the apical portion of both right and left ventricles. It also supplies
blood to the septum (via its septal branches) and to the left ventricular wall (via its diagonal
branches).

1.1.3 Left circumflex coronary artery

The left circumflex coronary artery originates from the left main coronary artery at approx-
imately a 90° angle. Its mid-distal part, also called atrial circumflex artery, courses around
the left atrium near the atrioventricular groove, and supplies blood to the left atrium. Its
branches, called obtuse marginal arteries, supply blood to the obtuse margin of the heart.
Other bifurcations, named left posterolateral branches, occur downstream to obtuse marginal
arteries; these branches provide blood to the inferior surface of the left ventricle. Only in
hearts with left dominant circulation, the left circumflex artery gives rise to the left posterior
descending artery before the crux.

1.1.4 Right coronary artery

The right coronary artery travels down the right atrioventricular groove. The first large
branch is usually the anterior right atrial artery, which supplies the anterior right ventricular
wall. This branch also gives origin to the sinus node artery. A second large branch of the
right coronary artery arises in the region of the acute margin of the heart, which is called
acute marginal artery, and courses to the apex of the heart. In right dominant systems, the
right coronary bifurcates at the crux of the heart into the right posterior descending coronary
artery and right posterolateral coronary artery. The posterior descending artery travels in the
posterior interventricular sulcus; the posterolateral coronary artery, instead, supplies blood
to inferior part of the left ventricle.

1.2 Coronary artery disease

Coronary artery disease (or, more precisely, stenotic arteriosclerotic coronary artery disease)
is a narrowing of the coronary arteries due to atherosclerosis. Due to this condition, the blood
flow to the myocardium is limited, and this may lead to ischemic heart disease. Initially, the
disease affects the coronary artery circulation only in exercise conditions, decreasing the
capability of the heart to increase coronary blood flow. However, when sufficiently advanced,
the blood flow through the affected artery is reduced even at rest and, in its most severe
form, the coronary artery may be occluded completely.

The arteriosclerotic process in the coronary arteries consists in the accumulation of lipids,
carbohydrates and calcium deposits. The lipoid materials are converted into plaques of
fibrous tissue; these plaques may become very thick and encroach upon the lumen of the
artery. This produces a stenotic lesion. New layers slowly develop on the luminal side
of the plaque, resulting in further narrowing and, possibly, complete coronary occlusion.
Thrombosis may also complicate the coronary arteriosclerotic process, because of platelet
aggregation within the lumen, possibly producing an acute myocardial infarction.
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1.3. Coronary artery bypass grafts

The arteriosclerotic process usually affects multiple coronary arteries (double- or triple-
vessel disease) rather than a single vessel. The disease usually involves the proximal portion
of the major coronary arteries, in particular at the sites of branching or just distally to them.
Moreover, coronary artery stenoses in the main branches of the left anterior descending artery,
circumflex and right coronary arteries often involve also their branches (that is, the diagonal
branch for the LAD, the obtuse marginal for the LCX ad the posterior descending artery
of the RCA). Disease in more distal branches is uncommon. The right coronary artery and
the left anterior descending artery are more involved in the atherosclerotic process than the
circumflex artery.

Myocardial necrosis occurs when myocardial blood flow is sufficiently impaired in compar-
ison to myocardial oxygen demands. Infarctions may occur with different degrees of severity,
ranging from subendocardial (where necrosis does not involve the entire thickness of the ven-
tricular wall) to transmural (where necrosis extends to the entire thickness of the ventricular
wall) infarctions. Without any medical intervention, an infarction affects the myocardial
tissue, causing ventricular systolic and diastolic dysfunction, and possibly ventricular fibril-
lation, which together with additional factors (such as acute thrombosis, sudden increase of
the severity of the stenotic lesion) may even lead to the death of the patient.

The patient with suspected coronary artery disease may undergo a coronary arteriography
(angiography) study in order to assess the location and severity of the stenosis. The surgeon
then evaluates the necessity of the intervention taking into account the number of diseased
arteries (single, double or triple vessel) and the severity of the stenosis. When important
narrowing (stenosis severity greater than 70%) is limited to one major coronary artery survival
rates without surgery are high (5-year survival rate of order of 90%) [67,102,186]; however, a
stenosis of the left anterior descending is more critical than the other main coronary arteries,
and should be treated because it affects more deeply the correct functioning of the left
ventricle. 5-year survival rates drop to 50 ~ 80% when two or more coronary arteries feature
critical stenoses, and again the case of a LAD stenosis is the most critical one [91,207]. Finally,
especially for patient with higher life expectancy, it should also be taken into account when
planning the surgery that non-critical stenoses may progress in time and eventually become
critical.

1.3 Coronary artery bypass grafts

Preliminary strategies to perform myocardial revascularization were reported in 1935 by
Beck [33], who used the left pectoral muscle as a graft, in 1951 by Vineberg [266], who im-
planted an internal thoracic artery directly into the myocardium, and in 1968 by Sen [234],
who performed a transmyocardial acupuncture. Early applications of coronary artery by-
pass graft revascularization procedures appear in the 50s-60s, by Longmire [170] in 1958,
Goetz [111] in 1961 and Kolessov [147] in 1964, employing the internal thoracic artery.
Sabiston (1962) [226], Garrett (1964) [105] and Favaloro (1968) [92] performed the first
revascularization surgeries using saphenous vein grafts instead. Surgery was not common
in the clinical practice before this first pioneering studies. Relevant technical improvements,
both related to the surgery itself (cardiopulmonary bypass, developed by Gibbon [108] in
1954, to take over the function of the heart during the surgery) and its preliminary plan-
ning (coronary arteriography, developed by Sones and Shirey [248] in 1962), contributed to a
more widespread application of coronary artery bypass grafting in the clinical practice. First
occurrences of sequential grafting procedures, in which a single graft is used to revascularize
multiple coronary arteries, appear in the 70s (Flemma 1971 [96], Bartley 1972 [29] and Sewell
1974 [237]).
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Figure 1.2: Internal thoracic artery, radial artery and saphenous vein grafts harvesting.

The strategy of the surgery aims at complete revascularization bypassing all significant
stenoses, in all main coronary arterial trunks and branches. Different grafting materials may
be used: internal thoracic artery (from the chest), radial artery (from the arm) and saphenous
vein (from the leg), as summarized in the next sections (see also Figure 1.2). We refer to [124]
for a comprehensive review and medical guideline on the topic.

1.3.1 Graft choice: internal thoracic artery

The internal thoracic arteries (ITA), also known as internal mammary arteries, arise from
the subclavian arteries (branches of the aorta), and can be harvested in order to be used as a
bypass graft. The diameter of the ITA varies from approximately 2.5 mm at the origin from
the subclavian artery to 1.5 mm just proximal to the anastomosis, [252], although remarkable
variations are possible both because of graft adaptation and different harvest techniques
(pedicle vs skeletonized graft). Several study have shown that the left internal thoracic artery
(LITA) has proven to be the most effective blood vessel to be used as graft to the LAD, in
terms of long-term patency and clinical outcomes [58,76,89,113,171,235]. It is nowadays
widely agreed in the clinical practice that LITA to LAD anastomosis should be performed
whenever possible [208]. The internal thoracic artery shows remarkable resistance to the
development of atherosclerosis, possibly because of some characteristics of its endothelium
[162]. The superior patency of the LITA with respect to venous grafts has been shown in [27].
Moreover, the LITA is able to remodel over time, adapting to the demand for flow by varying
its diameter, in the same way as native coronary arteries would do [117]. Superior patency
and graft adaptation translate into higher survival rates when compared to other grafting
materials, as shown in multiple trials: 1-year patency can be as high as 98% (compared to
87% of vein grafts) [274], 4-year patency 91% (versus 83%) [232] and 15-year patency 85%
(versus 32%) [253].

1.3.2 Graft choice: radial artery

The radial artery (RA) originates from the brachial artery in the upper arm and courses to
the wrist; it features an average length of approximately 20 ¢m and an average diameter
of 2 ~ 3 mm [241]. The use of the RA has been proposed for the first time in 1973 by
Carpentier [63], although its extensive application in the clinical practice is more recent
[1,2,128]. High patency rate has been reported for the RA: a 93% patency rate at 9 months
has been found in [1], and 5-year patency ranges from 85 to 90% [128,204]. However, RA
should be employed only for critical stenosis, because the graft failure rate is higher when
it is employed to revascularize a non critical stenosis; in fact the studies in [84,188] shows
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(a) CT scan reconstruction of a free graft with prozimal (b) CT scan reconstruction of a Y-graft.
anastomosis to the ascending aorta.

Figure 1.3: Free graft versus Y-graft

that radial artery patency increases when bypassing coronary arteries with 70%, or more,
stenosis.

1.3.3 Graft choice: saphenous vein

The greater saphenous vein (SV)is a vein running along the entire length of the leg; segments
of approximately 30 ¢m are needed for a bypass graft. Diameter is usually larger than
3 mm [71]. Although its use is still common, several studies suggest that arterial grafts
feature better performance than SV grafts. In particular, intimal thickening occurs in SV
grafts that have been in place for more than one month [25,51,267]; however, this process is
not a progressive one, and seems to be related to graft modifications in order to match the
vein lumen size to that of the coronary arteries supplied by the graft [245]. The highest rate
of anastomotic closure occurs during the first few postoperative weeks [158]. 10% to 25%
grafts occlude in the first year [72,224], while additional 1% to 2% occlude each year from
the first to the fifth year, and from 4% to 5% from the sixth to the tenth year [44], resulting
in a 10-year patency between 45% and 60% [44,59].

1.3.4 Proximal anastomosis: free graft or Y-graft

In contrast with the other mentioned bypass grafts, the proximal LITA is already in situ
(attached to the subclavian artery) and only a distal anastomosis (to the diseased coronary
artery) needs to be performed. Instead, for radial artery and saphenous vein grafts, also a
proximal anastomosis is made. Common choices are a free graft with proximal anastomosis to
the ascending aorta [3,85] and Y-graft between the LITA and RA/SV (see Figures 1.3-1.5).
The latter procedure involves performing an anastomosis between the LITA and RA/SV,
so that the blood flow in the LITA is divided between the LITA itself and the RA/SV.
This procedure was performed for the first time in the 80s by Mills [185] to avoid placing
vein grafts in a atherosclerotic ascending aorta, and studied in more details in the following
years [231,255]. An advantage of this approach is that the proximal anastomosis of RA/SV
grafts is closer to the heart (and, in particular, distal circumflex and right coronary artery
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Figure 1.4: Y-graft between left internal thoracic artery (employed to revascularize the left anterior descend-
ing artery) and left radial artery (employed to revascularize obtuse marginal branches of the left circumflex
artery). Courtesy of Ospedale Luigi Sacco, Milan.

(a) Step 1. The vein graft is anastomosed to the (b) Step 2. The suture is continued and the anastomosts

mammary artery. The photo shows the incision on is completed.
the mammary artery and the application of the first
stitch.

Figure 1.5: Y-graft between left internal thoracic artery and saphenous vein. Details of two steps in the
surgical procedure. Courtesy of Ospedale Luigi Sacco, Milan.
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(a) Y-graft. (b)  Sequential grafting: (c)  Sequential grafting: (d) End-to-side anastomo-
flow-direction  side-to- diamond-shaped — cross S18.
side anastomosis. anastomosis.

Figure 1.6: Y-graft, sequential anastomosis and end-to-side anastomosis. Adapted from [54].

branches) than when performed to the aorta. This makes it possible to totally bypass patients
with three-vessels disease more easily.

1.3.5 Distal anastomosis: single vs sequential, flow vs T-shaped vs cross

Some of the grafts may be used to bypass more than one coronary artery. In this case the
procedure is called sequential coronary artery bypass grafting. Usually, in order to obtain
a complete revascularization in case of two- or three-vessels disease, at least a graft is used
in a sequential fashion. A sequential graft features some intermediate latero-lateral (side-
to-side) anastomosis and a distal termino-lateral (end-to-side) anastomosis. The alternative
procedure, in which a graft is employed to bypass only a single native artery, is called single
grafting procedure.

Current clinical practice suggests that at least three possible termino-lateral (end-to-side)
anastomoses are possible: flow-direction anastomoses (also called antegrade), which feature
the same direction for graft flow and native vessel flow in the anastomosis, T-shaped (graft is
perpendicular to the native vessel) and retrograde anastomoses (opposite directions for graft
flow and native vessel flow in the anastomosis). The first two options are more common in
the clinical practice than the last one.

Two possible latero-lateral (side-to-side) anastomosis are currently employed: flow-direction
anastomoses and diamond-shaped (also known as cross) anastomoses (see Figure 1.6) In the
flow-direction case, similar to the termino-lateral case which shares the same name, the flow
in the graft (both proximal and distal to the anastomosis) features the same direction as the
native vessel. In contrast, in the diamond case the graft is perpendicular to coronary artery
(similar to a termino-lateral T-shaped anastomosis). This procedure was first introduced
in [114]. Important technical differences occur between these two cases, e.g. concerning the
orientation of the incision to be performed by the surgeon in the native coronary artery [136].
Current clinical practice and anatomical considerations suggest the use of flow anastomoses
in the left anterior descending and diagonal branches (when aiming at a revascularization of
the left anterior descending and its branches), while the cross anastomosis should be used for
left circumflex and obtuse marginal arteries (when aiming at a revascularization of both the
left circumflex and right coronary arterial trees).
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Figure 1.7: Illustration of typical distributions of intimal thickening on an end-to-side anastomosis. Arrows
denote flow direction. Adapted from [175].

1.4 Possible alternative procedures

Several alternative treatments are possible for coronary artery disease. These include: med-
ical therapy (prescription of drugs, such as aspirin, beta blockers and ranolazine), balloon
angioplasty (non-surgical technique to widen narrowed arteries by means of the inflation of a
balloon at the stenosis location), percutaneous coronary intervention (PCI) or percutaneous
transluminal coronary angioplasty (PTCA) (non-surgical technique in which, after the bal-
loon angioplasty, a stent may be placed within the coronary artery to keep the vessel open),
rotablation (removal of the plaque without a surgical intervention, by means of a small drill,
usually associated to PTCA), endarterectomy (surgical removal of plaque from stenosed coro-
nary arteries, formerly associated with the first CABG interventions). Complete guidelines
are reported for each of these treatments, depending on the severity, position and number of
atherosclerotic vessels and clinical history of the patient. Joint studies of American College
of Cardiology Foundation (ACCF) and American Heart Association (AHA) provided a series
of guidelines for these procedures, in particular for both PCI [167] and CABG [124]. For
high risk patients, such as the cases discussed in Section 1.2 (double- or triple-vessel disease),
severe ventricular dysfunction and diabetes mellitus, CABG is the preferred treatment. We
refer to [217], and the references therein, for a detailed comparison between different coronary
artery disease treatments. We also remark that it is possible for these procedures to not be
mutually exclusive, and that more than one of them could be needed during the patient’s life
depending on the evolution of the cardiovascular disease. For example, it was found in [217]
that balloon angioplasty is associated with a greater need for subsequent CABG surgery.

1.5 Outline of the thesis

A deeper understanding of the fluid dynamics in CABGs can be a valuable tool in the study
of such prosthetic devices, possibly contributing to a better explanation of the process of
restenosis. Computational fluid dynamics can help in the assessment of unfavorable flow
conditions near the anastomosis of the CABG, which can be strictly related to the onset of
restenosis. Typical regions [173,249] where this process occurs are shown in Figure 1.7. Some
fluid dynamics indicators, such as wall shear stresses (WSS) and oscillatory shear index (OSI),
have been associated [173] to the development of intimal thickening and can be estimated by
means of numerical simulations.
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Several recent reviews [107,181,184,196] recognize the importance of patient-specific sim-
ulations and parametric studies. On one hand it is important to perform simulations in
realistic configurations, especially when dealing with a complex network of grafts (such as
in sequential grafts, which, as it has been discussed in the previous section, are common
in the clinical practice). On the other hand, clinical interest lies not only in the simula-
tion on patient-specific configurations, but also in parametric studies obtained modifying the
patient-specific data for different flow conditions and/or local geometrical features. For these
reasons, a reduced-order computational framework for the simulation of the haemodynamics
in three-dimensional patient-specific CABGs is proposed in this thesis. The first three Parts
of this thesis will detail each component of this framework. The last Part will show numerical
results on patient-specific CABG configurations. We summarize the main contents of each
Part in the following (see also Figure 1.8). For convenience of the reader, a “focus” (either
clinical or methodological, or both), is assigned to each Part.

Part I, clinical data and medical imaging:

Focus (and keywords): clinical (data acquisition, medical imaging pipeline, reconstructed
patients).

A summary of the clinical data and of the medical imaging pipeline is provided in this
Part.

Patient-specific data have been acquired for each patient; fourteen patients, who have
undergone a coronary artery bypass surgery, have been enrolled in this study. The
current dataset features a broad variability of both disease (for example, different two-
or three-vessels disease) and surgical intervention (for example, different combination of
single or sequential grafts, Y-grafts or free grafts, radial artery or saphenous vein grafts).

For each patient clinical collaborators at Ospedale Luigi Sacco in Milan acquire angio-
graphical data in a pre-surgical phase (in order for the cardiac surgeon to understand
number, location and severity of stenoses) and CT scan data in post-surgical phase
(in order for the surgeon, and his collaborators at the radiology unit, to evaluate the
outcomes of the coronary artery bypass graft surgery).

A clinical imaging pipeline will be introduced and discussed, and relies for the most part
on CT scan data. This is motivated by the higher resolution of the data, availability
of software for image processing and, nonetheless, the presence of bypass grafts (which
are not included in the angiography, because it is performed in a pre-surgical stage in
order to assess the disease). The reconstructions obtained for each patient will also be
discussed, summarizing some details of the surgical intervention (single or sequential
grafts, Y-grafts or free grafts, radial artery or saphenous vein grafts).

Part I, computational reduction techniques:

Focus (and keywords): methodological (reduced-order modeling (ROM), supremizer sta-
bilization of POD-Galerkin ROMs, pressure recovery in ROMs for incompressible flows,
compression of the temporal trajectory in ROMs for unsteady problems).

As we will discuss in this Part, numerical modeling has some advantages over in vivo
or in vitro studies (higher resolution, minor invasivity). One of its main drawback,
however, is the computational cost that is required for each simulation, especially in
parametric studies. Performing a finite element simulation for each new physical or
geometrical configuration is however usually unaffordable, and reduced-order models
are employed to overcome this problem. Some additional motivation for both CFD and
ROM computation are also discussed in the introduction to this Part.
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Model order reduction techniques are introduced in the this Part to cut down large
computational costs. For the sake of a methodological study, these techniques will be
presented on a general domain €2, for general parameters p, and applications to numer-
ical test cases (instead of patient-specific geometries) will be provided. However, the
same model order reduction techniques will be applied in Part III to idealized bypass
configurations and in Part IV to patient-specific CABG configurations. A Proper Or-
thogonal Decomposition (POD)-Galerkin reduced-order model is studied in detail in
this part, with focus on pressure recovery for incompressible flows, inf-sup stabilization
of the resulting ROM, compression of the temporal trajectory for unsteady problems.

Part 111, geometrical parametrization and reduction:

Focus (and keywords): methodological (volume-based parametrizations, screening pro-
cedures for design variables selection) and clinical (centerlines-based parametrization for
deformation of a network of coronary arteries and bypass grafts)

Possible approaches for an efficient geometrical parametrization are discussed in this
Part. Shape parametrization techniques will be employed in Part IV to perform local
changes to the reconstructed geometry. A possible motivation for a parametric study
has been mentioned for instance in Section 1.2, where it has been highlighted that the
outcome of the surgery depends on the stenosis severity; it may be therefore of clinical
interest to compare the haemodynamics for different values of stenosis. Also, different
choices of anastomoses are possible in the clinical practice. We propose in this Part a
shape parametrization, namely the centerlines-based parametrization, to deform patient-
specific configurations to compare some of these choices. It is based on the assumption
that coronary arteries and bypass grafts can be represented as a network of tubular
geometries. The centerlines-based parametrization will provide an intuitive description
of the whole network and of the desired features of clinical interest. In particular, local
variation of the centerline radius accounts for stenosis severity, while local variation
of the centerline reference frame (and in particular, the tangent vector) accounts for
anastomosis features.

The resulting parametrization can be readily coupled to the POD-Galerkin ROM dis-
cussed in Part II, as we will show by tests on an idealized bypass configuration, consider-
ing both physical (Reynolds number, residual flow in the native artery) and geometrical
(grafting angle) parameters.

Part IV, numerical results:

Focus (and keywords): clinical (numerical results of the proposed framework on patient-
specific CABG configurations)

The proposed computational framework will finally be applied to patient-specific CABG
configurations (described in Part II) in this Part. Once a patient-specific mesh has been
generated, numerical simulations can be carried out and some fluid dynamics indices
can be computed to better understand the clinical outcome of the surgery. We will
assume pulsatile, Newtonian flow, under a rigid wall assumption. The POD-Galerkin
reduced-order model introduced in Part II is employed, along with the centerlines-based
parametrization (Part IIT). Parameters of interest in this case are a variation of inlet
flow rates (grafts and coronary arteries), disease-related (stenosis severity) and surgery-
related (anastomosis features) geometrical parameters.

Three cases, with increasing complexity, will be analyzed: variation of inlet flow rates
only, variation of stenosis severity (and inlet flow rates), and variation of anastomosis
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(and stenosis severity). In each case, results on a few patient-specific configurations
will be discussed in detail, by means of fluid dynamic indices such as wall shear stress,
oscillatory shear index, transversal velocity profiles, at the toe and heel of the graft, or
a the arterial bed of the native coronary artery. These indices have been in fact related
to critical regions of the surgical procedures, and their dependence on the considered
physical and geometrical parameters will be discussed.

Finally, we will provide some conclusions and perspectives. We mention here some of
the perspectives, in order for the reader to be aware of two fundamental assumptions
of the present work (although common in the current literature). The first assumption
is on non deformable walls. Future investigations shall be related to the extension to a
fluid-structure interaction model, in order to take into account both myocardial motion
and different rheological properties of the grafts, which are currently out of the scope
of the available clinical data and proposed computational model. A second important
assumption is related to the fact that only short term simulations are carried out. In
fact, more complex phenomena, such as graft adaptation and flow competition, occur
in the long term, but their detailed clinical understanding and mathematical modeling
is not mature yet.
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CHAPTER

Clinical data and medical imaging

Available clinical data on patient-specific configurations of coronary artery bypass grafts,
analyzed in collaboration with clinicians at Ospedale Luigi Sacco in Milan, are presented
in this chapter, along with the description of the imaging procedures performed in order to
obtain a mesh of the reconstructed patients. Section 2.1 details the current clinical data,
covering also some technical details of the acquisition procedures. A presentation of the
clinical imaging pipeline is given in Section 2.2. This procedure has been applied to fourteen
patients in the current clinical dataset, and each one of them is presented in Section 2.3.

2.1 Clinical data

2.1.1 Pre-surgery angiography

A pre-surgery angiographic study is carried out by means of a coronary angiography. A
Thosiba angiography system is employed. The study allows to visualize the morphology of
the coronary arteries, and to detect the location and severity of stenoses. It is necessary for
the patient to fast (avoid food and drinks) for several hours prior the angiographic study.

The examination is divided in three phases: in the first phase the medical team proceed
the introduction of a catheter into the radial or femoral artery. This phase is performed
under local anesthesia. The catheter is then moved to the coronary arteries. In the second
phase of the medical examination a contrast agent is injected through the catheter. This
allows to capture X-ray images of the distribution of the radioactive tracer in the coronary
tree. The third, and final, step is the extraction of the catheter; compression around the area
of introduction is also performed to allow the hemostasis of the radial or femoral artery.
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(a) Left coronary tree. (b) Right coronary tree.

Figure 2.1: Pre-surgery angiography image. Courtesy of Ospedale Luigi Sacco, Milan.

2.1.2 Post-surgery computed tomography scan

Computed tomography (CT) is an imaging technique that allows to perform a reconstruction
of the anatomical structure evaluating the attenuation of a ionizing radiation (in particular,
X-rays). Since each tissue features different capabilities to capture radiation, the attenuation
level can be used to obtain a detailed representation of the anatomy. The resulting image
contains the attenuation data expressed in HU (Hounsfield unit), which is usually rendered
in a gray-scale for visualization purposes. The air assumes values around -1000 (black), the
water and soft tissues around 0 (gray), and bones and solid structures around 1000 (white).
To increase the contrast of vascular structures a contrast agent is usually injected in the
patient: in the resulting image vascular structures are bright. A Philips Brilliance CT 64-
slice system is employed to perform a post-surgery contrast enhanced CT-scan study. This
system allows the acquisition of 64 submillimeter slices per rotation. An optimal image
quality is obtained by combining an isotropic spatial resolution (0.4 mm?) and a rotation
speed of about 0.33s [55]. Coronary artery bypass graft study is carried out by a volumetric
retrospective gating scan of the chest; image acquisition is performed in the interval between
45% and 75 — 80% of the cardiac cycle (systole and meso-telediastole). If the heart rate
is less than 65bpm, then native coronary arteries are studied by a step & shoot cardiac
acquisition mode; otherwise a volumetric retrospective scan is carried out also for native
coronary arteries.

Technical parameters of the CT system include: collimation: 64 x 0.625 mm, maximum
voltage: 120 kVp, maximum current intensity: 1000 mAs, rotation time: 0.4 s, pitch: 0.15,
field of view: 250 mm, reconstruction matrix: 512 x 512, slice thickness: 0.67 mm, recon-
struction thickness: 2.2 mm, Xres standard filter (XCB), acquisition time: 7 s. In particular,
each slice in the final image will be a structured grid of size 512 x 512 (size of the recon-
struction matrix); each cell in this grid is denoted by voxel. The resulting resolution is of the
order of 0.3 ~ 0.4 mm x 0.3 ~ 0.4 mm x 0.3 ~ 0.4 mm.

The examination allows to assess the outcome of the coronary revascularization surgery.
The contrast agent injection protocol involves the administration of approximately 95 ml of
contrast agent (in particular, lopamiro 370 mgl/ml) as follows:
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1. 15 ml in the first dose of a bolus injection, at 3ml/s;
2. 50 — 60 ml in the second dose of a bolus injection, at 6ml/s;
3. 20 ml in the third dose of a bolus injection, at 3ml/s;

4. a fourth injection of 20 ml of physiologic solution, at 3ml/s.

Also for the cardiac CT it is necessary for the patient to fast, at least starting from six
hours before the exam. A short treatment with an oral beta-blocker, starting three days
prior to the examination until the morning of the examination, is also required to optimize
the patient’s heart rate.

The tomographic examination starts with the preliminary acquisition of image (scout-
view). The scout-view is necessary to define lower and upper bounds of the CT scan —
defining the anatomical region of interest (ROI) — and to evaluate the inclination angle.

(a) CT scan of a patient with two free grafts in aorta. (b) CT scan of a patient featuring a surgery with
Anastomosis locations are denoted by red circles. One LITA to LAD and Radial artery Y-graft on obtuse
of the two grafts is also clearly visible. marginal branches. Red circle: Y-graft. Green cir-

cle: LITA to LAD anastomosis.

Figure 2.2: Post-surgery CT-scan slices. Courtesy of Ospedale Luigi Sacco, Milan.

2.2 Medical imaging

In this section we detail the procedure to obtain a mesh starting from patient-specific CT-scan
data. The Vascular Modelling Toolkit vmtk [11] and 3DSlicer [93] are employed.

19



Chapter 2. Clinical data and medical imaging

CT scan Centerlines Coronaries
computation and graft

Angiography Stenosis Stenosed
location coronaries

Figure 2.3: Summary of the medical imaging pipeline

2.2.1 Preprocessing steps
2.2.1.1 Step 1. DICOM image extraction

The Digital Imaging and Communications in Medicine (DICOM) format is a widely used
format for handling and storing medical images, first developed by American College of Ra-
diology and National Electrical Manufacturers Association in 1985. CT-scan data at different
phases of the cardiac cycle are saved in DICOM image format. The following procedure could
be applied to all stored phases, possibly providing a reconstruction of the coronary arteries
and bypass grafts for each phase of the cardiac cycle; however, since the proposed procedure
is not fully automated and highly time consuming we perform the extraction of the CT data
only at a particular phase, at approximately 75% of the cardiac cycle, during which the heart
is in the diastolic phase. This choice is motivated by the fact that in this phase coronary
arteries (which lie on the myocardium and are therefore subject to the heart deformation)
are, in general, less stretched and more perfused by blood than in the systolic phase. For
practical convenience the CT-scan is saved in a different format, namely the Metalmage for-
mat. Moreover, it is also possible to extract a subvolume containing the region of interest
(coronary arteries and bypass grafts) and discarding unnecessary data. This step is per-
formed in 3DSlicer. In the following we will denote by I : C' C R? — R the scalar field of
gray levels discretized by each image voxel.

2.2.1.2 Step 2. Anisotropic diffusion filter

The second preprocessing step concerns the application of gradient anisotropic diffusion to
the image gray scale intensity function /. Anisotropic diffusion methods [200] are devised
to reduce noise in images, still preserving specific image features (in particular edges of the
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vessels). In general, diffusion methods are based on the following partial differential equation

gi = div(e(x, t)VI) = c(z,t)AI + Ve(x,t) - VI, (x,t) € B x[0,T],

coupled with suitable boundary conditions and the initial condition [|;—g = I. Isotropic
diffusion methods employ a constant value for ¢(z,t); however, with this choice, the image
is blurred disregarding edges. A smoother image is obtained for large intervals [0,7]; for
isotropic diffusion, the fictitious time ¢ can also be interpreted as the variance of a Gaussian
kernel G(z,t), for which I(x,t) = I(x) x G(x, t).

Anisotropic diffusion filters, instead, are able to preserve the boundaries of the vessels
by featuring high values of ¢ inside (and outside) the vessels (say, ¢ ~ 1), where smoothing
should occur, and low values of ¢ on the edges (say, ¢ ~ 0). A possible function ¢, employed
in [200], is

1

A®,8) = SN

1 4 ([l
This choice is based on the observation that large spatial variation of the gray scale intensity
occur mostly at the edges, where the diffusion coefficient should be low. The parameter k
can be tuned by the user.

The module GradientAnisotropicDiffusion of 3DSlicer has been employed in practice
to apply the filter. After the application of the diffusion filter a smoother image, featuring
also sharper edges, is obtained as the final solution I(x,7"). For simplicity, the preprocessed

o~

image will be still denoted in the following by I(x).

(2.1)

2.2.1.3 Step 3. Vessel enhancement filter

The purpose of this vessel enhancement filters is to enhance vessel structures with the eventual
goal of vessel segmentation. A widely used filter has been introduced by A. Frangi in [99].
Most vessel enhancement filters are based on the analysis of the eigenvalues of the Hessian
matrix of image intensity. In fact, the magnitude of eigenvalues is helpful to detect the
the shape of the underlying object. In particular, locally isotropic structures feature three
negative! eigenvalues, while tubular structures present only two negative eigenvalues and one
null eigenvalue [99]. Denoting by A; the eigenvalues of the Hessian matrix, sorted such that
M| < |A2] < |A3], a vesselness function can be defined as?

Vs(A1, A2, Ag) = P 202 P 2/32 p 2~2 ) 2 3 ;

0, otherwise,

where

RG(A17>\27>\3) = ’)‘2’/|/\3|7 Rb()‘lv)‘27)‘3> = ‘)\1‘/\/ |>\2)\3|7 S()‘17/\27/\3> =V A% + )‘% + )\§

and «, § and ~ are user-defined parameters. In our case a and 8 were set equal to 0.5, while
~v was assumed equal to 7.0.
Tubular structures are associated with high values of ¥ (A1, A2, A3). In fact:

1. theratio Ry(A1, A2, A3) accounts for deviation from a bob-like structure. Indeed, Ry(A1, Ag, A3)
attains its maximum for blob-like structures (where \; is non-zero) and its minimum
for tubular structures (where A; is small).

IThe negative sign is taken according to the fact that the background is dark, while vascular structures are bright.
2Positive values of A2 or A3 are discarded because correspond to the background.
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2. theratio R, (A1, A2, A3) accounts for the aspect ratio of the structure. Indeed, R, (A1, A2, A3)
is approximately zero in the line-like case, while is approximately unity in the plane-like
case.

3. the term S(A;, Ag, A3) distinguish between the background, in which all the eigenval-
ues are approximately zero because no structure is present (and therefore no variation
induced), and the vascular structures, in which at least an eigenvalues is non-null.

The footer s in T;(A1, A2, A3) indicates that vesselness is not computed on the image
intensity function I , but rather on a smoothed version of it which takes into account spatial
variation at the scale s. A Gaussian smoothing with variance s is for example suitable in this
context. The eigenvalues \; = \;(x, s) of the Hessian of the smoothed intensity function are
thus computed, for each point & € B, in practice. Finally, a multiscale vesselness measure
can be defined computing the vesselness functions for each scale in the interval [Spin, Smax]
and setting

V(x)= max TVi(A(x,s), \a(x,s), \3(x,s)).

se€ [smin sSmax

In the coronary artery case we set sy = 0.7 mm and Sy, = 3 mm, since it is representative
of the radius range for coronary arteries and grafts. The implementation provided by vmtk
in the script vmtkimagevesselenhancement has been used.

2.2.2 Segmentation
2.2.2.1 Step 4. Level sets segmentation

A level sets technique is employed during the segmentation. The idea behind this technique is
that the surface of interest can be represented as the isosurface of level k of a scalar function.
In particular, a surface evolving in time

S:R*x R — R,
can be represented as an isosurface of level k of a time dependent scalar function
d(x,t) : R* xR — R.

so that
S(t) = {m € R*| d(x,t) = k}. (2.2)

is the k level set of @(x,t). In particular we choose k = 0.
Following [9], the following evolution equation should be solved:

0P
E(w,t) = —w1G(x) ||VP| 4+ 2w H (x) | VP|| + w3V P(x) - VP, (x,t) € Bx[0,T],

D(x,0) = Po(x), T € B,
(2.3)
coupled with suitable boundary conditions and the initial condition defined employing the
signed distance function

— Dy(x) if x is inside S(0),
Po(x) =< + Do(x) if x is outside S(0),
0 if x € 5(0),

where Dy(x) = minycgo){||x — y||}. In particular:

22



2.2. Medical imaging

o w1, we, ws are user-defined weights;

o the function G(x) is defined as:

Gl@) =17 Hw i

and is called inflation speed. The term —w,G(x) ||[VP|| is an inflation term. The surface
expands along ||[V@(x)||, which is the direction normal to the zero level of @, with
velocity proportional to G(ax). The inflation speed is lower when image gradient is
higher, so that it is approximately equal to one (maximum value) inside the vessel and
negligible near the edges.

o the function H(x) is defined as:

Vo
H)=v- (nwn)’

and is equal to the curvature of the zero level set of @(x). The term 2w H(x) ||VP|| is a
penalization term to guarantee the smoothness of the surface, penalizing high curvatures.

o the function P(x) is defined as:
po) -~ 7|

and is called attraction potential. The term w3V P(x) - V& defines a convective term
that drives the surface towards the edges.

The solution of this problem in vmtk is performed by the script vmtklevelsetsegmentation.

A critical aspect is the choice of the initial level set function @,. A possible initialization
is based on the colliding front method [11], where it is necessary to manually select two seeds
P;, i = 1,2, on the image at the far ends of the vessel of interest. The selection of the seeds
cannot be fully automated for the coronary artery network, and accounts for the most critical
part in which user-defined input and experience is required. The extraction of the portion of
vessel between these seeds is then computed as propagation of two independent wave fronts,
starting respectively from each seeds, with speed proportional to local image intensity. The
Eikonal equation [11], which is a nonlinear hyperbolic equation, is employed for this purpose

IVT@)l = —
1+ I(x)
where T} and T are arrival time for the two wave fronts, travelling with velocity I(ax) (i.e.
faster where image is brighter, as is typically the case of the lumen), at each point of the
domain.

The initial condition is defined as

@0($) = VTl . VTQ

This choice is motivated by the fact that the scalar product is negative if the two fronts
are colliding (and positive if they move in the same direction), so that @, is negative in the
region connected by the two initial seeds and positive otherwise. This allows to obtain an
approximation of the desired segment of the vessel, also excluding other branches and the
background.

Generally, segmentation is an iterative process; we usually started from the main trunk
of the left coronary artery, proximal right coronary artery, and mammary artery at its origin
from the subclavian artery, and afterwards incrementally added the remaining branches of
the left and right coronary trees and possibly additional bypass grafts.

T;(P;) =0
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2.2.3 Intermediate surface generation
2.2.3.1 Step 5. Marching cubes surface generation

Once the level set segmentation step is completed, a marching cubes algorithm [172] is em-
ployed to generate a polygonal surface, as implemented in the script vmtkmarchingcubes.
However, the generated surface should be post-processed before being used to generate a
three-dimensional mesh of the coronary arteries. In fact, the generated surface may contain
artefacts either arising from CT scan data or our reconstruction procedure. Overall, the
surface may contain incorrect blob-like structures (that would alter the values computed for
important fluid dynamics quantities, such as wall shear stress) or an incorrect reconstruction
of the stenoses (possibly due the precision of CT-scan data or due to the filters applied in
the preprocessing steps). For these reasons we adopt a simplifying assumption and take ad-
vantage of the fact that both coronary arteries and bypass grafts are vessels of a network of
tubular structures, and use the reconstructed geometry to extract the axes (centerlines) of
these tubular structures.

2.2.4 Centerlines generation
2.2.4.1 Step 6. Centerlines generation

Centerlines computation is a fundamental step in our framework and, as shown in Chap-
ter 5, it will be the basic concept in the description of shape deformation maps tailored
specifically for this clinical application. The last part of the medical imaging pipeline de-
tails how to construct the network of tubular structures, or more in general 2%D geometries;
we refer to Z%D as to volumes which can be obtained by sweeping a bidimensional section
(possibly, of variable shape) along a monodimensional path (the centerline). Although being
a simplification (in particular, the full Voronoi diagram may be considered instead of the
centerlines), we believe nonetheless that the main features of the problem are still captured.
This assumption is fundamental in our parametrized framework, is the main motivation for
the shape parametrization proposed in Chapter 5. We refer however to [95] for additional
studies, still carried out in the framework of the collaboration with Ospedale Sacco, in which
this assumption has been weakened.

We refer to centerline as the curve drawn from the two outermost sections of a tubular
structure which locally maximizes the distance from the vessel boundary. Concepts related to
centerlines are the medial axis and the Voronoi diagram [9-11]. The medial axis M A(Q2) of an
object €2 is defined as the locus of centers of maximal spheres into €2. A sphere is maximal if
it is not strictly contained in any other inscribed sphere. Denoting by % a scattered dataset
of points on 0f2, an approximation of MA(2) is the computation of the Voronoi diagram
Vor(P) of P, defined as

Vor(P) = | V(z),

reP

where the Voronoi region V(x),
V() = {y e R’ |z —y| <min [z -y},

is the region of the euclidean space closer to & than to any other point z in 9. We refer
to [9-11] for more details on the topic and their practical computation.

Once the medial axis has been computed, the centerline is sought as the path on the
Voronoi diagram between a source point A and a target point B which maximizes the distance
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from the boundary or, equivalently, the solution of the following optimization problem

v~ H(B)

min F(y(t)) dt
Y€ (4, B)(MA(Q)) /71(,4) (”)/( ))

where I'(4 5y (M A(£2)) is the set of all paths from A to B on MA(), and the cost functional

F(x) = 1/R(x) is the inverse of maximal inscribed sphere radius. As in step 4, the practical

computation of the centerline requires the solution of a Eikonal equation

IVT(z)|| = F(z), e MAQ).

The Eikonal equation on the Voronoi diagram is solved by the script vmtkcenterlines.

Finally, the value of the maximal inscribed sphere radius is associated to each centerline
point. A smoothing procedure (both on the curve coordinates and on the radius) may also be
performed; in particular, we have performed a running average smoothing on the coordinates
and a linearization (with respect to the curvilinear abscissa) on the radius of the vessels
(stenosis are added back in step 9). A reference coordinate frame (tangent, normal and
binormal vector) for each point on the centerlines may also be computed; more details on
this will be given in Chapter 5. A complete monodimensional description (with additional
radius information) can be computed in this way, for each branch of the network.

2.2.5 Canal surface generation
2.2.5.1 Step 7. Canal surface generation and volume meshing

The Q%D geometry of the coronary artery and bypass grafts network can then be obtained
sweeping a circular section of variable radius (stored in the centerline itself) along each
centerline. The resulting surface, which is envelope of maximal inscribed spheres along the
centerlines, produces a canal surface, or tube. The resulting surface can be described as a
generalized cylinder as follows,

C(p,0,s) =~(s)+ pr(s) [cosd ni(s) + sinf na(s)]

being v(s) the centerline, (p, 0, s) “cylindrical” coordinates of the vessel (local radius, angle,
curvilinear abscissa, respectively) and (¢(s(x), ni(s(x), na(s(x)) a reference coordinate frame
on the centerline. Once the surface has been obtained, its interior is filled with volumetric
elements in order to obtain a volume mesh. Tetrahedral mesh generation is performed in vmtk,
using the script vmtkmeshgenerator, which internally uses TetGen for the tetrahedralization.
In particular, a radius adaptive mesh is generated, in order to properly take into account the
variation of the radius along each centerline.

2.2.5.2 Step 8. Canal surface splitting

It is necessary, as a last step in the generation of the canal surface network, to partition the
generated mesh among each branch, taking advantage of the underlying monodimensional
structure. Each point @ in the mesh is projected on every centerline i, and the distance d;(x)
between the point & and the centerline i is computed. If d;(x) is less than the local radius
ri(x) (possibly scaled by a multiplicative factor) for only one index i, then & is a point in
the i-th vessel; if multiple indices i1, 19, ..., ixy have been found, than x is in the intersection
(e.g. bifurcation or anastomosis) between those vessels. Figures in the next section show
the partitioned domains, where different colors denotes different branches. Gray color is
associated to bifurcation/anastomosis.

25



Chapter 2. Clinical data and medical imaging

2.2.5.3 Step 9. Stenosis insertion

Finally, a manual editing of the mesh should be performed in order to insert the stenosis;
this can be performed at step 7 considering a local variation of the radius stored in r(s) for
curvilinear abscissa in the neighborhood of s = p, for example by the relation

“J (o)

in order to represent a stenosis at the point located at curvilinear abscissa p, where the
factor a is the surface reduction and the standard deviation o controls the “extension” of
the stenotic region. In view of the parametrization introduced in Chapter 5, however, we
prefer to generate meshes without stenoses. The shape parametrization will then handle
the insertion of the stenosis, performing the required local variation of the radius. When
available, the location and entity of the stenoses may also be taken from the medical report
of the angiography.

2.3 Reconstructed CABG patients

The medical imaging pipeline described in the previous section has been applied to fourteen
patients, who have undergone coronary artery bypass surgery at Ospedale Luigi Sacco in
Milan. The following color legend is employed in the presentation of the fourteen cases. We
refer to Section 1.1 for a clinical explanation and location of the native coronary arteries,
and to Sections 1.3.1-1.3.3 for a clinical comparison of the different grafts.

I | I |

RCA PDA LAD D|ag LCX OM Mamm. Rad. Saph.

Figure 2.4: Color legend for patient-specific cases. Each branch is denoted by a different color. The right
coronary tree is denoted by blue colors; the left coronary tree by red/yellow colors; grafts are colored with
green tonalities.

Acronyms — right coronary tree:

RCA: right coronary artery;

PDA: posterior descending artery;

PL: postero-lateral artery;

Acronyms — left coronary tree:

LCA: main trunk of the left coronary artery;

LAD: left anterior descending artery;

Diag.: diagonal branch of the left anterior descending artery;
LCX: left circumflex artery;

OM: obtuse marginal artery;

Acronyms — grafts:

Mamm. (LITA): left mammary artery (left internal thoracic artery) bypass graft;
Rad.: radial artery bypass graft;

Saph. (SVG): saphenous vein bypass graft.

In particular:

0. one patient with no relevant coronary artery disease (and, therefore, no grafts) is in-
cluded in the study;

1. one patient with a single bypass is available;
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2. four patients with double bypass surgery are being studied. They feature different
surgery and different disease;

3. three patients with triple bypass surgery are being studied. They feature different sur-
gical procedures and different disease;

4. four patients with quadruple bypass surgery are being studied.
5. one patient with a quintuple bypass is available in the current study.

Table 2.1 gives an overview of the CABG surgery, reporting the graft type (LITA, Radial,
SVG), either single or sequential. More details, concerning also the bypassed native coronary
arteries and the anastomoses features, are also provided in Tables 2.2-2.14, for each patient.
An explanation of the headers single/sequential, Y-graft /aorta, T-shaped /flow /cross has been
discussed in Sections 1.3.4-1.3.5.

) LITA Radial SVG
Patient - - - - - -
single | sequential || single | sequential || single | sequential

1 X X

2 X X X

3 X X

4 X

6 X X

7 X X

8

9 X X

10 X X

11 X X

12 X X

13 X X

14 X X

15 X

Table 2.1: Ouverview of the CABG surgery performed for each patient.
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Patient 1

(a) Three-dimensional reconstruction (coronary arteries, by- (b) Reference three-dimensional reconstruction
pass grafts) obtained employing the medical imaging (coronary arteries, bypass grafts, aorta, heart)
pipeline detailed in Section 2.2. provided by the radiology department.

Figure 2.5: Patient 1: three-dimensional reconstruction.

Patient 1 reconstruction features:
o Coronary arteries: LCA, LAD, LCX-OM; RCA, PDA.
o Bypass grafts: LITA-Diag-LAD; Radial Y-graft on LITA-OM-LCX-PDA.

LITA Radial SVG Anastomosis

Y-graft | Aorta || Y-graft | Aorta || T-shaped | flow | cross

LAD X X

Diag.

LCX X X

oM X X

PDA X X

PL

Table 2.2: Patient 1: detailed report of the CABG surgery.
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Patient 2

(a) Three-dimensional reconstruction (coronary arteries, by- (b) Reference three-dimensional reconstruction
pass grafts) obtained employing the medical imaging (coronary arteries, bypass grafts, aorta, heart)
pipeline detailed in Section 2.2. provided by the radiology department.

Figure 2.6: Patient 2: three-dimensional reconstruction.

Patient 2 reconstruction features:
o Coronary arteries: LCA, LAD, LCX; RCA, PDA, PL.
o Bypass grafts: LITA to LAD; Aorta-SVG-PDA; Aorta-Radial-PL.

LITA Radial SVG Anastomosis
Y-graft | Aorta || Y-graft | Aorta || T-shaped | flow | cross

LAD X X

Diag.

LCX

oM

PDA X X

PL X X

Table 2.3: Patient 2: detailed report of the CABG surgery.

29



Chapter 2. Clinical data and medical imaging

Patient 3

(a) Three-dimensional reconstruction (coronary arteries, by- (b) Reference three-dimensional reconstruction
pass grafts) obtained employing the medical imaging (coronary arteries, bypass grafts, aorta, heart)
pipeline detailed in Section 2.2. provided by the radiology department.

Figure 2.7: Patient 3: three-dimensional reconstruction.

Patient 3 reconstruction features:
o Coronary arteries: LCA, LAD-Diag, LCX.
e Bypass grafts: LITA-Diag-LAD-LAD; Radial Y-graft on LITA-LCX.

LITA Radial SVG Anastomosis
Y-graft | Aorta || Y-graft | Aorta || T-shaped | flow | cross

LAD X X X X
Diag. X X

LCX X

oM

PDA

PL

Table 2.4: Patient 3: detailed report of the CABG surgery.
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Patient 4

(a) Three-dimensional reconstruction (coronary arteries, by- (b) Reference three-dimensional reconstruction
pass grafts) obtained employing the medical imaging (coronary arteries, bypass grafts, aorta, heart)
pipeline detailed in Section 2.2. provided by the radiology department.

Figure 2.8: Patient 4: three-dimensional reconstruction.

Patient 4 reconstruction features:
o Coronary arteries: LCA, LAD-Diag.
o Bypass grafts: LITA-Diag-LAD.

LITA Radial SVG Anastomosis
Y-graft | Aorta || Y-graft | Aorta || T-shaped | flow | cross
LAD X X
Diag. X X
LCX
oM
PDA
PL

Table 2.5: Patient 4: detailed report of the CABG surgery.
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Patient 6

(b) Reference three-dimensional reconstruction
(coronary arteries, bypass grafts, aorta, heart)
provided by the radiology department.

(a) Three-dimensional reconstruction (coronary arteries, by-
pass grafts) obtained employing the medical imaging
pipeline detailed in Section 2.2.

Figure 2.9: Patient 6: three-dimensional reconstruction.

Patient 6 reconstruction features®:
o Coronary arteries: LCA, LAD, LCX; RCA, PDA.
o Bypass grafts: LITA to LAD; Aorta-SVG-PDA.

LITA Radial SVG Anastomosis
Y-graft | Aorta || Y-graft | Aorta || T-shaped | flow | cross
LAD X X
Diag.
LCX
oM
PDA X X
PL

Table 2.6: Patient 6: detailed report of the CABG surgery.

3Patient 5 has been excluded from the study due to several artefacts in the CT scan.
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Patient 7

10 cm

(a) Three-dimensional reconstruction (coronary arteries, by- (b) Reference three-dimensional reconstruction
pass grafts) obtained employing the medical imaging (coronary arteries, bypass grafts, aorta, heart)
pipeline detailed in Section 2.2. provided by the radiology department.

Figure 2.10: Patient 7: three-dimensional reconstruction.

Patient 7 reconstruction features:
o Coronary arteries: LCA, LAD-Diag, LCX-OM.
o Bypass grafts: LITA to LAD; SVG Y-graft on LITA-Diag-OM.

LITA Radial SVG Anastomosis

Y-graft | Aorta || Y-graft | Aorta || T-shaped | flow | cross

LAD X X

Diag. X X

LCX

oM X X

PDA

PL

Table 2.7: Patient 7: detailed report of the CABG surgery.
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Patient 8

(a) Three-dimensional reconstruction (coronary arteries) obtained em- (b) Reference three-dimensional recon-

ploying the medical imaging pipeline detailed in Section 2.2. struction (coronary arteries, aorta,
heart) provided by the radiology de-
partment.

Figure 2.11: Patient 8: three-dimensional reconstruction.

Patient 8 reconstruction features:

e Coronary arteries: LCA, LAD-Diag, LCX-OM; RCA, PDA, PL.
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Patient 9

(a) Three-dimensional reconstruction (coronary arteries, bypass grafts) (b) Reference three-dimensional recon-
obtained employing the medical imaging pipeline detailed in Section struction (coronary arteries, bypass
2.2. grafts, aorta, heart) provided by the

radiology department.

Figure 2.12: Patient 9: three-dimensional reconstruction.

Patient 9 reconstruction features*:
o Coronary arteries: LCA, LAD-Diag, LCX-OM.

e Bypass grafts: LITA-Diag-LAD; Radial Y-graft on LITA to OM.

LITA Radial SVG Anastomosis
Y-graft | Aorta || Y-graft | Aorta || T-shaped | flow | cross
LAD X X
Diag. X X
LCX
oM X X
PDA
PL

Table 2.8: Patient 9: detailed report of the CABG surgery.

4The collaboration of Riccardo Ferrero [95] in the segmentation of this patient is gratefully acknowledged.
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Patient 10

(a) Three-dimensional reconstruction (coronary arteries, by- (b) Reference three-dimensional reconstruction
pass grafts) obtained employing the medical imaging (coronary arteries, bypass grafts, aorta, heart)
pipeline detailed in Section 2.2. provided by the radiology department.

Figure 2.13: Patient 10: three-dimensional reconstruction.

Patient 10 reconstruction features:
o Coronary arteries: LCA, LAD-Diag, LCX-OM, RCA, PDA.
o Bypass grafts: LITA-Diag-LAD; SVG Y-graft on LITA-OM-LCX-PDA.

LITA Radial SVG Anastomosis
Y-graft | Aorta || Y-graft | Aorta || T-shaped | flow | cross

LAD X X
Diag. X X
LCX X X

oM X X
PDA X X

PL

Table 2.9: Patient 10: detailed report of the CABG surgery.
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Patient 11

(a) Three-dimensional reconstruction (coronary arteries, bypass grafts) (b) Reference three-dimensional recon-
obtained employing the medical imaging pipeline detailed in Section struction (coronary arteries, bypass
2.2. grafts, aorta, heart) provided by the

radiology department.

Figure 2.14: Patient 11: three-dimensional reconstruction.

Patient 11 reconstruction features®:
o Coronary arteries: LCA, LAD-Diag 1-Diag 2, LCX.

o Bypass grafts: LITA-Diag 2-LAD; SVG Y-graft on LITA-Diag 1.

LITA Radial SVG Anastomosis
Y-graft | Aorta || Y-graft | Aorta || T-shaped | flow | cross

LAD X X
Diag. 1 X X
Diag. 2 X X

LCX

oM

PDA

PL

Table 2.10: Patient 11: detailed report of the CABG surgery.

5The collaboration of Riccardo Ferrero [95] in the segmentation of this patient is gratefully acknowledged.
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Patient 12

(a) Three-dimensional reconstruction (coronary arteries, by-
pass grafts) obtained employing the medical imaging

pipeline detailed in Section 2.2.

Figure 2.15: Patient 12: three-dimensional reconstruction.

Patient 12 reconstruction features:
o Coronary arteries: LCA, LAD-Diag, LCX.
o Bypass grafts: LITA to LAD; SVG Y-graft on LITA to Diag.

(b) Reference three-dimensional reconstruction
(coronary arteries, bypass grafts, aorta, heart)
provided by the radiology department.

LITA Radial SVG Anastomosis
Y-graft | Aorta || Y-graft | Aorta || T-shaped | flow | cross
LAD X X
Diag. X X
LCX
oM
PDA
PL

Table 2.11: Patient 12: detailed report of the CABG surgery.
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Patient 13

(a) Three-dimensional reconstruction (coronary arteries, by- (b) Reference three-dimensional reconstruction
pass grafts) obtained employing the medical imaging (coronary arteries, bypass grafts, aorta, heart)
pipeline detailed in Section 2.2. provided by the radiology department.

Figure 2.16: Patient 13: three-dimensional reconstruction.

Patient 13 reconstruction features®:
o Coronary arteries: LCA, LAD-Diag, LCX; RCA, PDA, PL.
o Bypass grafts: LITA-Diag-LAD; SVG Y-graft on LITA-LCX-PDA.

LITA Radial SVG Anastomosis

Y-graft | Aorta || Y-graft | Aorta || T-shaped | flow | cross

LAD X X

Diag. X X

LCX X X

oM

PDA X X

PL

Table 2.12: Patient 13: detailed report of the CABG surgery.

6The collaboration of Riccardo Ferrero [95] in the segmentation of this patient is gratefully acknowledged.
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Chapter 2. Clinical data and medical imaging

Patient 14

10cm

(a) Three-dimensional reconstruction (coronary arteries, by- (b) Reference three-dimensional reconstruction
pass grafts) obtained employing the medical imaging (coronary arteries, bypass grafts, aorta, heart)
pipeline detailed in Section 2.2. provided by the radiology department.

Figure 2.17: Patient 14: three-dimensional reconstruction.

Patient 14 reconstruction features:
o Coronary arteries: LCA, LAD-Diag, ramus intermedius, LCX.
e Bypass grafts: LITA to LAD; Radial Y-graft on LITA-Diag-intermedius.

Radial SVG Anastomosis
Y-graft | Aorta || Y-graft | Aorta || T-shaped | flow | cross

LAD X X
Diag.

LITA

Intermedius
LCX
oM

PDA
PL

Table 2.13: Patient 14: detailed report of the CABG surgery.
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2.3. Reconstructed CABG patients

Patient 15

(a) Three-dimensional reconstruction (coronary arteries, bypass grafts) (b) Reference three-dimensional recon-
obtained employing the medical imaging pipeline detailed in Section struction (coronary arteries, bypass
2.2. grafts, aorta, heart) provided by the

radiology department.

Figure 2.18: Patient 15: three-dimensional reconstruction.

Patient 15 reconstruction features:
o Coronary arteries: LCA, LAD, LCX.
o Buypass grafts: LITA to LAD.

LITA Radial SVG Anastomosis
Y-graft | Aorta || Y-graft | Aorta || T-shaped | flow | cross
LAD X X
Diag.
LCX
oM
PDA
PL

Table 2.14: Patient 15: detailed report of the CABG surgery.
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Part 11

Computational reduction framework
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Introduction to Part 11

Motivation for CFD computations and quantities of clinical interest

Clinical experience suggests that coronary artery bypass grafts tend to fail some years after
the surgery due to the development of intimal thickening (restenosis). In fact, even though
early graft failure (within thirty days) might be related to possible surgical technical errors
and thrombosis, late graft failures are caused by progression of atherosclerosis and intimal
hyperplasia [53].

Altered, unfavorable or unnatural flow conditions near the anastomosis are believed to be
important in the genesis and development of intimal thickening [30,125]. Typical locations
of intimal thickening are the distal anastomosis and the coronary artery bed near the anasto-
mosis [173,249]. The quantification of fluid dynamics conditions by means of haemodynamic
indices can be therefore a useful tool. Relevant computational indices in this context are
velocity profiles, transversal velocity profiles, helicity, wall shear stress and oscillatory shear
index [173]:

« recirculation regions may be detected by means of velocity profiles (streamlines) and he-
licity indices. In particular, the local normalized helicity [189], defined as the normalized
scalar product between the velocity w and the vorticity V x u,

u- (V xu)

INH= —— 2~
lu| [V x u|’

—-1<LNH<KI1

is a scalar quantity which describes the occurrence spiral patterns into the flow. A purely
axial motion associated to LNH = 0, while a purely helicoidal flow to |[LNH| = 1.
Positive (negative) LNH values are related to left-handed (right-handed, respectively)
rotating structures;

» the formation of Dean vortices in the region distal to the anastomosis is detected thanks
to transversal velocity profiles. In fact, secondary flow structures (i.e. perpendicular to
the flow direction) are usually not negligible at the anastomosis, and the formation of a
pair of vortical structures has been observed many times [238];

« the existence of a safe bandwidth of wall shear stress (WSS) has been suggested in [145],
highlighting that both low WSS and high WSS may favor the restenosis process. In fact,
high WSS may lead to endothelial injury and cause the development of a lesion. Instead,
low WSS and long particle residence time in flow recirculation zones favors the deposit
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of fatty materials and cholesterol on the surface of the lumen, causing the growth of the
atheroma;

« a correlation between plaque location and oscillating shear stress has been described
in [148], showing that oscillations in the direction of wall shear may cause atherogenesis.
To recognize oscillatory nature of WSS, the oscillatory shear index (OSI), defined as

1 [1_ Jy WSS(t)dt|
2

OSI = = - 0 < O0SI <05,
Jo IWSS(t)|dt

has been introduced, being T the period of the cardiac cycle. OSI ranges from a mini-
mum value of 0, which corresponds to region experiencing no reverse flow, to a maximum
value of 0.5, which corresponds to regions with fully oscillatory flow.

We refer to [161] for a comparison and a study of correlation among these haemodynamic
indices.

Some studies on the correlation between haemodynamics indices and intimal thickening
have been conducted in vivo or in in vitro. We refer in particular to [254] for an overview
on experimental methods in cardiovascular fluid mechanics. Experimental methods, such as
Magnetic Resonance Imaging (MRI) and Doppler ultrasound techniques, can be used to pro-
vide a noninvasive quantification of the blood flow. The computation of the haemodynamic
indices is then carried out to evaluate the disease and the outcome of the medical proce-
dure. Critical regions highlighted by haemodynamic indices are located near the heel and
toe of the graft, and on the arterial bed near to the anastomosis. In the last decades, more-
over, an increasing interest has been devoted to the development of computational methods
for cardiovascular applications (see [97] and references therein), coupled to medical imaging
techniques to obtain patient-specific geometrical configurations. Although experimental and
computational methods for the simulation of blood flows can be used together (for exam-
ple, to provide patient-specific boundary conditions, to validate the results of the numerical
simulation, etc.), in this thesis we will focus only on the latter.

Throughout this thesis we assume to deal with pulsatile, Newtonian flow in patient-specific
coronary arteries, under a rigid wall assumption. More complex models have also been
studied, such as non-Newtonian fluid and fluid-structure interaction models, concerning the
motion due to both vessel compliance (in order to characterize, for example, the different
rheological properties of arterial and venous grafts) and due to the underlying myocardial
motion. The former effects have been found to be negligible in some studies [264, 265].
As noted in [270], including the latter is significantly more challenging (both in terms of
required clinical data and adopted mathematical models) and, although cyclic curvature
deformation of coronary arteries do have strong effect on the local distribution of wall shear
stress [187,206, 273], the deformation affects the magnitude rather than the macroscopic
characteristics of the flow.

Our focus is, instead, to couple patient-specific clinical data to model order reduction
techniques. In fact, a considerable advantage of computational methods is the possibility
to explore cases that are not (easily) available in vivo, depending on different parameters of
the problem, discussed in detail in the next section. In fact, clinical interest lies not only in
the simulation on a given configuration, possibly patient-specific, but also in addressing the
variation of the flow conditions and of the geometrical configuration for comparison among
different scenarios, aiming at a possible improvement of the design of the surgical proce-
dure. However, the solution of a finite element problem for each new physical or geometrical
configuration is usually unaffordable, especially if the aim is to provide, eventually, a fast
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computational toolbox for the surgeon to visualize in real-time the outcome of different sur-
gical procedures or flow conditions. Reduced-order models (ROM) [213] are applied to be
able to do that efficiently and, possibly, on deployed platforms (such as on standard personal
computers available at the hospital, instead of high performance computing facilities).

Motivation for ROM computations

Several recent reviews [107,181, 184, 196] recognize the importance of a physical and geo-
metrical parametrization in the study of coronary artery bypass grafts. Among relevant
parameters, we mention:

o inlet flow rates: different rest or stress conditions are taken into account by means of a
variation of inlet flow rates. In fact, an increased blood flow to the heart is required under
stress conditions, and, since coronary arteries are the only source of blood supply to the
heart, flow across them is increased in response to this need. Moreover, the effect of
graft adaptation [195,197,223,225,251] should be also considered for the internal thoracic
artery, which causes the flow to adapt depending on the native coronary stenosis. In
our model we consider a parametrization on inlet flow rates by means of multiplicative
factors on a reference flow profile available from literature (see Section 6.2);

o stenosis severity: as discussed in Section 1.2, graft patency rates are related to proximal
stenosis severity [124,218,224,225]. A specialized geometrical parametrization has been
devised to change the severity, by performing local variation to the radius of the vessel
(see Section 5.2.2.1);

o local anastomosis configuration: tissue remodeling and intimal hyperplasia are highly
sensitive to the graft configuration near the anastomosis [94, 101, 135, 141, 249]. To
investigate different possible termino-lateral (end-to-side) anastomosis, we introduce in
our parametrized formulation a variation of the angle between the graft and the native
vessel (see Section 5.2.3).

The proposed computational and geometrical reduction framework is able to consider these
aspects by means of few relevant parameters.

Another important aspect that is considered by our computational model, but currently
not by our parametrized formulation (i.e. this property is equal to the one of patient-specific
data and is not parametrized), is

o grafting materials, and related graft-to-host diameter ratio: as discussed in Section 1.3,
the computational model should take into account the different grafting materials (artery
vs vein). A possible relevant distinction between these two cases is related to the different
graft-to-host diameter ratio. In fact it has been observed that larger ratios have better
performance than smaller ones [42,209], and that the small caliber of vein grafts is a
risk factor for graft failure [131,259]. In this thesis the main difference between arterial
and vein grafts is the graft-to-host diameter ratio.

Once a set of relevant parameters has been introduced, model order reduction techniques
can be applied to obtain an efficient evaluation of the parametrized flows. In fact, the
main advantage over classical methods (finite element, finite volume, etc.) is that faster
evaluations are possible thanks to a database a representative solutions, previously computed.
Early results on the coupling between ROM, parametrization techniques and idealized bypass
configurations have been proposed in [4,5,154,180,211,219,220]. An increasing interest has
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been devoted in recent years to model order reduction techniques and a broad range of
biomedical applications:

e a Proper Orthogonal Decomposition(POD)-based ROM coupled with an atlas-based
shape parametrization has been applied in [115,183] to Tetralogy of Fallot patients;

« POD ROMSs have also been applied to cardiac electrophysiology problems in [43];

 areal time approximation of deformable models of non-linear tissues in the human cornea
has been sought in [192,193] by a proper generalized decomposition (PGD) formulation;
the same authors applied PGD also to a liver palpation problem in [194];

« applications to fluid structure interaction problems have been addressed in [37,75].

Moreover, we refer the interested reader to the recent review [77] on real-time simulations for
computational surgery.

Overview

In this Part of the thesis we describe a computational framework to deal with efficient simula-
tion of parametrized nonlinear unsteady flows, based on POD-Galerkin reduced-order models
(ROMs). We thus focus on the following problem: given pu € @ C R”, solve

Sttt 1) — v(p,) Ay () + uo(t; 1) - Vauo(t; )

+Vpo(t; p) = f(t; 1,,) in Q6(p,) x (0,7),
divau,(t; u) =0 in Q,(p,) x (0,7,
uo(t; 1) = gp(t; py) on I'p x (0,7),
u,(t; ) =0, on L'y w(p,) x (0,T),
V(MP)W — Po(t; p)M = gn (1), on Ty,
Uo(t; 1) |i=0 = go(m), in Qo(p,),

In Chapter 6 we will apply the ROM to some of the patient-specific configurations shown
in Section 2.3. The domain €,(u,) is going to be the mesh obtained from the reconstructed
geometries, and the boundaries I'p, ['ow(p,) and I'y are respectively inlet boundaries (LCA
and RCA inlets from the aorta, LITA inlet from the subclavian artery, and possibly inflow
sections of other free grafts from the aorta), lateral surfaces of the coronary arteries and
grafts, and outlet sections (e.g. LAD, LCX, PDA outlet sections, or also outlet sections of
their branches). However in Chapters 3 and 4 we will employ two-dimensional test cases and
simplified configurations to setup and assess the methodology.

In general, reduced-order models are devised to deliver an accurate solution to parametrized
PDEs at lower computational costs. Based on modal analysis and singular value decomposi-
tion [13,14,36,64,216,269], POD has been initially applied to provide efficient model order
reduction in turbulent viscous flow computations, with the aim of preserving the most impor-
tant energetic flow features. In the same period Reduced Basis methods were also proposed
for nonlinear viscous flows [201].

For nonlinear PDEs, several issues need however to be faced when using ROMs in order
to guarantee efficiency, accuracy and reliability. These include the efficient exploration of the
parameters space to build reduced basis spaces that, ideally, should: (7) have low dimension
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but also the capability to capture fine physical features on the whole temporal interval; (7i)
be stable also for noncoercive problems as in the case of saddle-point problems; (iii) allow
accurate and fast estimation of stability factors. Optimal sampling procedures [151,271],
different POD methods such as weighted POD and predefined POD [73], window POD [112]
or a sensitivity analysis enriched POD [122] have been proposed to deal with issue (7). Such
choices allow to obtain a correct representation of the long term behavior of the resulting
ROM in the case of limit cycles and periodic flow solutions [6,243]. Issue (i) arises if the
simultaneous approximation of both velocity and pressure is sought online. Although early
proposal of model order reduction techniques for computational fluid dynamics problems
contemplated only an approximation of the velocity, this is a topic of growing research interest
in the last decades, and several ways to address it have been proposed. Among these, a first
class of methods relies either on pressure Poisson approaches [6,271], possibly combined with
suitable closure terms based on variation multiscale methods and residual-based stabilizations
[35,271], closely related velocity-pressure ROMs based on SUPG-PSPG residual-based online
stabilizations [18,57], or an explicit formulation of the ROM [19,20]. A second class of
methods relies instead on an enrichment of the velocity space [212,221,222], to obtain an inf-
sup stable ROM. Estimation of stability factors (issue (7)) has been in fact closely developed
in conjunction with this second class [82, 106,178,221, 262]; we also refer to [68,69, 150] for
additional insights on error estimates.

Chapter 3 introduces the proposed POD-Galerkin ROM in the steady case and focus on
issues (i) and (%ii), considering an inf-sup stabilization procedure by means of supremizer
enrichment of the reduced velocity space. This model order reduction framework is extended
to the unsteady case in Chapter 4, focusing on issue (i), by means of a two-level POD to
efficiently handle the increased dimensionality of the SVD, to face the time-dependence.
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CHAPTER

POD-Galerkin ROM for parametrized steady
Navier-Stokes equations: supremizer inf-sup
stabilization for velocity-pressure approximation

A reduced-order model for parametrized steady incompressible Navier-Stokes (NS) equations,
based on a Proper Orthogonal Decomposition and Galerkin projection, is introduced in this
chapter!. In particular, parametrized steady incompressible Navier-Stokes problems and
their full-order approximation are introduced in Section 3.1, considering both physical and
geometrical parameters. In Section 3.2 a POD-Galerkin ROM is presented, featuring a POD
for the construction of both pressure and velocity spaces. In the offline stage of the resulting
strategy, several Navier-Stokes truth solutions are computed, and a POD is performed to
extract a low dimensional representation of both velocity and pressure spaces. A key point
which is investigated in Sections 3.3-3.4 is related to possible sources of pressure instabilities,
in order to avoid spurious pressure modes in the POD approximation of parametrized flows.
A supremizer stabilization technique, and a stability analysis based on the introduction of
an inf-sup condition at the reduced level, will be employed to deal with this problem. The
stability analysis is also carried out by means of some numerical tests (Section 3.5).

3.1 Formulation and full-order approximation of parametrized steady
Navier-Stokes equations

3.1.1 Continuous formulation

In the steady case, on a spatial domain §2,(u,) C R?, d = 2,3, NS equations read as follows:

IThis chapter is a re-adaptation of the following publication:
[23] F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza. Supremizer stabilization of POD-Galerkin approximation of
parametrized steady incompressible Navier—Stokes equations. International Journal for Numerical Methods in Engineering (in
press, published online at http://onlinelibrary.wiley.com/doi/10.1002/nme.4772/abstract), 2014.
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Chapter 3. POD-Galerkin ROM for parametrized steady Navier-Stokes equations:
supremizer inf-sup stabilization for velocity-pressure approximation

_V(l'l’p)Alu’O + (U’O ’ V)’U,o + vpo = f(l"’p) in Q(l"’g)a
divu, =0 in Q,(e,,),
Uo = gD(”p) on I'p, (3.1)
u, = 0, on T'ow(p,),
ou,
V(“’p) on = PoM = gN(y’p)7 on FN)

for some given distributed force term f, Dirichlet data g, and Neumann fluxes g,. Here
we denote by p = (u,, p,p)T € 9 C R a vector of parameters which may characterize
either the geometrical configuration Q,(p,) or physical properties of our system, such as
kinematic viscosity v = v(u,), boundary data g, = gp(1,), gy = gn(m,) or source terms
f = f(w,). For the sake of notation, we shall distinguish between n, physical parameters
K, € D, C R" and n, = P — n, geometrical parameters p, € D, C R". We thus denote
by (o, po) = (wo(t), po(pe)) the velocity and pressure fields, by omitting the dependence on
p for the sake of notation.

We denote by I'yy and T'p the portion of 092, where we impose homogeneous (resp.,
inhomogeneous) Dirichlet conditions, whereas we assign on I'y = 9Q\ (I'yy UI'p) the Neumann
conditions; here n denotes the normal unit vector to the boundary. Hereafter we assume that
I'p and I'y are not affected by the geometrical parametrization of the domain: this simplifies
our problem, by avoiding the use of Piola transformation even in presence of geometrical
parametrizations [130]. Indeed, this is not a limitation in view of the clinical application
since, for instance, the position of the inlet sections of LCA and RCA is fixed, as they arise
from the aorta, and cannot be changed by the surgeon. The same is also true for the LITA,
being a branch of the subclavian artery.? For the sake of simplicity, we consider the case
f = gn = 0; the extension to other cases is straightforward. We also define the Reynolds
number as Re = L|u|/v, being L a characteristic length of the domain, w a typical velocity
of the flow and v the kinematic viscosity; in the numerical test cases presented in this chapter
(and also in the clinical application, since we are dealing with small vessels and low velocities)
we will consider flows with Re € [1,10?].

To derive the algebraic formulation of (3.1), we first need to write this problem under weak
form. To do this, we introduce a reference, p-independent configuration €2, by assuming that
each parametrized domain €,(u,) can be obtained as the image of 2 through a parametrized
map T(+; p,) : R? = R? ie. Qo(p,) = T(Q; p,). The choice of the map T is a central issue
in the current clinical application, to which Chapter 5 will be devoted. Moreover, we denote
by V', @ the velocity and the pressure space, respectively, defined over €2; here

V =H, (Q), Q=L*Q)

being T'y = Tp UTy. We equip V' and @Q with the (vector) H'-seminorm and the L*norm,
the former being equivalent to the H'-norm since I'y # @. Bold symbols denote vectorial
functions in the velocity space. The weak formulation can be obtained by multiplying (3.1)
by test functions (v, q) and integrating by parts; then, by tracing everything back onto the
reference domain 2, we end up with the following weak parametrized formulation of (3.1):

find (u,p) € V x @ such that

{a(u, v ) +b(v,p; p) + c(u, u,v; p) + d(u, v; p) = F(o;p) Vo eV (3.2)

b(u, q; p) = G(g; p) Vg eQ

2This is not true however for free grafts anastomized to the aorta, where the surgeon is free to choose where to place the
anastomosis. However, we do not take into account this additional source of complexity. In fact, as we will see in Chapter 6, all
inlet boundary conditions are taken from literature and not from a simulation of the blood flow in the aorta.
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3.1. Formulation and full-order approximation of parametrized steady Navier-Stokes
equations

where
a(u,v;pu) = / Vuk(z; pu) : Vo de, bv,q; pu) = — / qtr(x(z,t;p) Vo)dx  (3.3)
0 Q

are the bilinear forms® related to diffusion and pressure/divergence operators, respectively,
whereas

lw vz = [ (Vox(a.tip)u - 2de (3.4)
Q
is the trilinear form related to the convective term. Here we denote by

k(s ) = v(,) (Jr(@: pry) ™ (T (@5 )~ 1 (@ 1y )|

the tensors encoding both physical and geometrical parametrizations in the NS operators,
obtained with the change of variable from Q,(p,) to Q; Jr € R™? is the Jacobian matrix of
the map T'(+; ,), and |Jr| its determinant.

Other terms are yielded by the lifting of the Dirichlet boundary conditions: denoting by
l(n,) € H'(Q) a parametrized lifting function such that I(u,)|r, = gp(m,), Up,)lr, =0,
we have that

d(u,v; p) = c(l(p,), w, v; p) + c(u, Up,), v; p)
F(o;p) = —a(l(p,), v; p) — c(l(p,), Up,),vip),  Glgp) = —b((w,),q; 1)

In particular, we consider parametrized Dirichlet data gp(p,) = ©p(p,)g, for a given scalar
function ©p(p,) and a suitable inlet profile g. Thus, a parameter independent lifting function

l is actually computed in practice, and l(p,) =© D(up)z. Without loss of generality, we can

assume that I is divergence-free, given e.g. by a suitably scaled solution of an auxiliary Stokes
flow, so that G(q; ) = 0.

3.1.2 The full-order model and its algebraic formulation

To formulate the full-order model (FOM), we introduce two finite-dimensional subspaces
V, C V, Qn C Q of dimension N" and N;, respectively, being h > 0 related to the
computational mesh size. We consider a Galerkin-Finite Element (FE) approximation, and
denote by {¢!}i .. ni and {¢I et N two (Lagrangian) basis of V', and @y, respectively.
The Galerkin-FE approximation of the parametrized problem (3.2) reads as follows: given
p € D, we seek for (the full-order solution) (wy(p), pr(p)) € Vi x @, such that

a(up(p), vi; p) + d(un(p), vi; p) + b(vn, pr(p); 1)
+e(un(p), un(p), v p) = F(op; ) Vo, €V (3.6)
b(un(p), qnip) = Glgn;p)  Yan € Qn.

For algebraic purposes, we state the following bijection between RN and V), (resp. RY » and

Qn):

Nh
y—(v,(ll),...,v,(lNh)) eRM & vh—th P eV,
e (3.7)

(NM)\ 7
a=(", .. ..q " eRY & qh—Zq 't e Q.

3tr denotes the trace of a matrix, and A : B = tr(AT B).
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Chapter 3. POD-Galerkin ROM for parametrized steady Navier-Stokes equations:
supremizer inf-sup stabilization for velocity-pressure approximation

Thanks to this identification, (3.6) is equivalent to the following (nonlinear) system:

h
for the vectors of coefficients u = (ul”, ... u{™)T

i,j < Nland 1 <k < N

h
, P = (pél),...,péN”))T where, for 1 <

(A(p)ij = al@lh, @) +d(@h @), (B())ri = b}, (s 1),

N (3.9)
(Clu(p); 1)y = 2_:1 uy" (e (@l @) ol )
(8 = =b(l, G5 ), (£(w))i = —alln, o} 1) — (b, In, o} 1) (3.10)

and I;, = lh(p,p) € V', is a FE interpolant of the lifting function. Moreover, let us introduce
the mass matrices X, X, for the velocity and pressure spaces, respectively, whose elements
are given by

(Xu)ij = (@], 0l v (Xphu = (¢ o

for 1 <4,j < N} and 1 < k,1 < N/, being (-,-)y and (-,-)q the (discrete) inner products
defined over the two spaces. We denote (with a little abuse of notation) by

(v, W)y = (Xuv,w),  (p,q)q = (X,p,q)

the corresponding vector inner products for velocity and pressure fields, respectively; here
(-,-) denotes the usual Euclidean inner product in RM (N, = N[, N} depending on the case).

Solving the NS system (3.8) requires a nonlinear iteration with a linearized problem (in-
volving nonsymmetric, indefinite matrix) being solved at each step; Newton and fixed-point
(or Picard) iterations are the most common strategies, employed in this thesis.

3.1.3 A key assumption for efficient ROMs: affine parametric dependence

We need to ensure a further assumption on the operators appearing in (3.9)-(3.10), already
at the full-order level. In fact, a key requirement for an efficient ROM evaluation is the
capability to decouple the construction stage of the reduced-order space (offline) from the
evaluation stage (online), thus featuring the so-called offline-online decomposition. To meet
this goal, we require that matrices and vectors appearing in (3.9)-(3.10) can be written as

Qa Qc Qy
Alp) = Zl O (Al Clw;p) = Zl oy (k) C(w),  f(p)= Zl O (w)f?,

and in a similar way for the other terms. When it is possible to express operators in such a
way, we say that they fulfill the assumption of affine parametric dependence. This expression
is straightforward to be obtained in case of (both physical and geometrical) affine parametriza-
tions. Instead, when dealing with more general nonaffine parametrizations, an approximate
affine expansion can be recovered by means of the empirical interpolation method (EIM) [28].
See e.g. [212] for further details. EIM will be required in the application of clinical interest
when dealing with the geometrical parametrizations introduced in Chapter 5.
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3.2. A POD-Galerkin ROM for parametrized Navier-Stokes equations

3.2 A POD-Galerkin ROM for parametrized Navier-Stokes equa-
tions

In this section we present a reduced-order model (ROM) for parametrized NS equations based
on a Proper Orthogonal Decomposition technique and a Galerkin projection. In the context
of parametrized PDEs, ROMs are usually based upon a suitable (and stable) combination
of “snapshot” FE solutions, thus aiming at building reduced spaces Vy C Vi, Qn C @y
of global approximation functions for velocity and pressure, respectively. At least two ap-
proaches in the construction stage of the reduced basis can be pursued: greedy algorithms and
Proper Orthogonal Decomposition [156]. In this thesis we consider the latter [52,57,73,116].

In the context of (possibly, unsteady) incompressible flows depending on physical pa-
rameters, POD-based ROMs usually aim at approximating just the velocity fields. This is
motivated by the fact that each snapshot is already divergence free, and so all the pressure
terms in the momentum equation drop out, that is, the continuity equation is automatically
fulfilled. However, we are interested to get a reduced approximation of the pressure field
too, either because of the application at hand (for example, it is of interest to recover the
pressure field in the coronary artery applications because some clinical assessments of the
stenosis severity in the pre-surgical stage are based on pressure measurements), or since the
divergence-free assumption fails to hold due to the geometrical variation/parametrization.
In this case, the reduced-order model will benefit of a standard Galerkin projection with
orthonormal global approximation basis functions for both velocity and pressure, provided a
suitable stabilization is introduced to fulfill an equivalent inf-sup condition and then recover
correctly the pressure field.

3.2.1 A POD-Galerkin ROM for simultaneous approximation of velocity and
pressure

We will first derive the formulation of our POD-Galerkin ROM, leaving the inf-sup stabi-
lization issue to the following section. In particular, we adopt an algebraic standpoint, by
considering the following bijection between the spaces RM and V' (resp. R and Qy):

Ny
vy =, o) ERY o vy =3 e, € Vi,
=l (3.11)

NP
N, n
dy =0V, a8 )T eRY & gy =3 qV¢ € Qn.
n=1

Let us denote by Zipain = {p!, ..., uMin} € D a (large) training sample of Nyain points
chosen randomly over @, and consider the snapshot matrices

. h . . h .
Su=[a(!) | . [u(uen] € RGeS, = [p(ut) | L | plutien)] € RN,

Here we take Nipain < NI? since we assume to deal with a very fine FE discretization, where
Nh > NI? > 1. A POD basis for the velocity and pressure spaces can be obtained by
considering the singular value decomposition (SVD) of the following matrices

X3PSa =US WY, X128, =U,5,W)
where

h . h . . ..
e U, € RNuxNuain gpd U, € RN *Neain are two matrices containing the first Nipain left
singular vectors;

95



Chapter 3. POD-Galerkin ROM for parametrized steady Navier-Stokes equations:
supremizer inf-sup stabilization for velocity-pressure approximation

o Wy € RVNuainXNuain qnd W, € RNuainxNirain are two orthogonal matrices of right singular
vectors;

o Uy € RNuwainxNuain g 33 ) € RNurainXNsain gre two diagonal matrices, made by the singular
values of Sy and S, so that (X,); = of with o' > ... > o} >0, (5,); = o] with
ol >... > crﬁ,tmin > 0.

In fact, for any Ny, N, < Ny, the POD basis (of dimension Ny, N,) is given by the first
Ny, N, columns of Uy, U, respectively (left singular vectors). In this way, we can define

h h
Ly = [fl | ‘fNu] ERNUXN“7 Zp: [gl ‘ ’ng] ERNpXNp

as the basis matrices for velocity and pressure, respectively. Thus, the basis functions of
spaces V y and @)y are FE solutions, expressed w.r.t. a Lagrangian FE basis by the com-
ponents of the columns of Z,, Z,, respectively. A slightly different option, which however
might be affected by worse conditioning, relies on the solution of the so-called method of
snapshots [244]. In this case, we shall solve two eigenproblems for the correlation matrices

_ T Nt'XNt' _ T Nt'XNt'
Cu — Su XuSu e R rain ram’ Cp — Sp XpSp E R rain rain

and defines the POD bases for velocity and pressure spaces as their first N, (resp. N,)
eigenvectors:

1 1
= — u pu— p ‘:
P, = \/)\T‘Sﬂbj’ ¢ \/A?SPQ/JI’ j=1,...

being
Cuy}lz)\;‘y;‘, Cp? = N7, j=1,...,Ny, l=1,...,N,

and A} = (U;‘)z, N = (oF)?, respectively. Basis functions are automatically orthonormal,
since

1 , 1 Au
o)y = u ST X S aht) = u Uy — | g 12
(o) = gl SIS = WU = (G 612

7

1 1 AP
_ p QT D\ D \P,D\ _ l
¢,.¢)o = Aw( b Sy XpSilf) = = (W M) = | Sy (3.13)

kM kM

We remark that the reduced spaces dimensions Ny, N, can be chosen as the smallest
integers for which the “energy” of the retained modes

2&1(‘71})2 Zlel (Uf)2
Eu((P17...,(PNu> :‘]_7‘77 EP(CI,...,CNP) :77
S N ()2 e (af)?

is greater than 1 — £}, for some prescribed (small) tolerance &},,.

3.2.2 Algebraic formulation of the POD-Galerkin ROM

Once we have obtained two orthonormal sets of basis functions for the spaces V y and Qy,
we seek for a reduced-order approximation of both velocity and pressure field under the form

u(p) = Zyuy(p),  plp) = Zpy(K). (3.14)
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In our case, for any p € D, uy(p) € RM, p, () € R are determined through a Galerkin
projection, that is, we impose that the residual (obtained by inserting (3.14) in (3.8)) is
orthogonal to the columns of Z,,, Z,:

Zy O || £(p) = (A(p) + C(Zauy(p); p)) Zuun(p) = BT (1) Zapy(m) | _ [ O |
l O ZpT] l g(n) — B(p) Zuuy (1) ] lO]

Thus, once we have built the reduced basis for both velocity and pressure fields (during the
offline stage), for any new parameter value g € @ the following reduced-order problem has
to be solved (at the online stage) to find the NS reduced-order approximation:

[ Ay(p) +B(;~VJES;N<M>;M> B ] [Eﬁﬁg ] _ [;ﬁ% ] | (3.15)

Similarly to what shown in [178], [210, Chapter 19],
An(p) =2y A(w) Zo, Bu(p) =2, B(p) Zu,  On(-30) = 2,0(- 5 1) 2y

in the same way, for the right-hand sides we have
fn(p) =2, £(p), gy(k) =7, gw).

We point out that this offline-online decomposition is made possible thanks to the assumption
of affine parametric dependence (see Section 3.1.3).Nevertheless, this features some extra
difficulties in order to handle nonlinear terms in an efficient way. Our current approach is to
store the third order tensor

Cnlpjim) = ZoCl@s; W) Za, Vi=1,....Ny

in order to compute, at each fixed point iteration, the nonlinear term as

Na
Crluy(p)ip) = Y uf/ On(ejin)
j=1
and preserve the offline-online decomposition. We remark however that such (dense) third
order tensor may entail high storage costs; recent alternative approaches make use of a
discrete empirical interpolation method [275] or hyper-reduction techniques, such as gappy
POD [62], or again compressive tensor approximations [61] to alleviate this problem.

3.3 Stability analysis and supremizer enrichment

In this Section we show how to obtain, starting from the POD modes, a couple of reduced
spaces for velocity and pressure which fulfill a (reduced version of the) Ladyzhenskaya-
Babuska-Brezzi (LBB) inf-sup condition. To this goal, we provide a detailed stability analysis
of the POD-Galerkin ROM we have previously derived.

3.3.1 Stability of the full-order approximation and characterization of the sta-
bility factor 5, (u)

In view of the analysis of the POD-Galerkin ROM, let us briefly recall the conditions ensuring
the full-order problem (3.8) to be solvable and stable. A deeper analysis can be found e.g.
in [47,48], whereas we refer to [178] for further details about the analysis in the parametrized
case.

For any pu € &, at each step k = 1,2, ... of the fixed point iteration we need to solve the
linear system obtained from (3.8) by replacing C'(u(p); i) with C(z(w); i), being at each
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step z(p) = u®(p). In order to avoid pressure instability, we require that the spaces V',
and @)y, are chosen in such a way that there exists 5, > 0 such that

"B(p)v

. q
B() = inf sup PO

>0, >0 VYped. (LBBy)
a#0 vzo [|v[lv|lallo

This relation is nothing but the parametrized version of the LBB condition, and guarantees
the unique solvability of (3.8) with respect to the pressure — that is, it prevents (3.8) from
being indefinite. This requirement is met if, e.g., the Taylor-Hood (P,-P;) FE spaces are
chosen. In particular, condition (LBBj) implies that dim(ker(B”(@))) = 0, so that no
spurious pressure modes appear at the numerical level. Moreover, we must have N > N]f;
as we will detail later on, it is mandatory to ensure a similar condition at the reduced-order
level, too, and to provide a suitable criterion to check its validity.

In order to evaluate the stability factor 5,(p) numerically, we can express it (see [23,
Section 4.1] and references therein) as

Br(p) = \/m (3.17)

where \;(p) denotes the minimum eigenvalue solution of the following generalized eigenvalue

problem: i
ErRt IR (3.13)

Moreover, for any q # 0, the corresponding supremizer is defined as the solution s# =
s*(q) of the following problem

Xus'(q) = B (w)a. (3.19)
The name supremizer derives from the fact that s*(q) i

q) is the element which, given q € @,
realizes the supremum in (LBBy), that is,

) — angonp @B

3.20
T (3.20)

We refer to [23, Proposition 1] for a proof of this statement.

3.3.2 Stability of the POD approximation and supremizer enrichment of the
reduced velocity space

Great care is required in order to build compatible reduced approximation spaces for velocity
and pressure so that an equivalent LBB condition holds at the reduced-order level, thus
ensuring the stability of the pressure field approximated through our POD-Galerkin ROM
(3.15). We point out that our effort is made in order to avoid spurious pressure modes,
and not to cure the stability loss due to higher Reynolds numbers — the latter issue will not
be addressed in this thesis, since the application we focus on are associated with moderate
Reynolds numbers, not yielding to strong convection dominated problems.

Following Section 3.3.1, let us now discuss under which conditions the POD-Galerkin ROM
(3.15) leads to a stable pressure approximation. For any g € &, at each step kK =1,2,... of

the online fixed point iteration, we need to solve the linear system obtained from (3.15) by

replacing Cn (uy(p); p) with Cn(zy(p); i), being at each step zy(p) = ggl\;)(u). In order

to avoid pressure instability, we require that there exists Sy > 0 such that

T
B )
Bu(p) = inf sup ~ WOV 5 0 e (LBBy)

ay#0v, 20 [|[Vnllvylldy oy
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A key point is that, even though the velocity basis functions are obtained through a stable
full-order model, a Galerkin projection over the reduced spaces built as in (3.15) does not
guarantee the fulfillment of the reduced LBB condition (LBBy).

For this reason, we need to enrich the velocity space in a suitable way, so that (LBBy)
can be satisfied. Inspired by the current state of the art in the greedy-RB setting (see
e.g. [106,221,222] and different approaches therein) we propose to enrich the velocity space
V y with properly chosen supremizer solutions. We have described in detail in [23] two
possible strategies (exact supremizer enrichment and approximate supremizer enrichment) for
generating Ny supremizer basis functions, resulting in a less or more efficient offline-online
algorithm. In both cases, the enrichment algorithm provides a supremizer basis functions
matrix
Ze=n, | ... | my] € RN,

Note that Zs may depend on p and N, but this dependence is omitted hereon. Then, we
define a velocity space V' of dimension N+ N, as the direct sum of velocity and supremizer
basis functions, where

Nu N ~
VN = (v](;), o ,UJ(VN“),Sg\p, .. .,SS\J,VS))T e RNutNs oy vy = Zv%)cpn + Z s%”)nm ceVy
n=1 m=1

replaces (3.11);. From now on, we will omit the superscript ~ for the enriched velocity space,
and still denote it by V' . Moreover, let us define by

(XNaﬂN)VN = (lelvaaﬂN)v (ENagN)QN = (X]iVENvgN) (321)
the inner products in the reduced spaces, where X2 and XI])V are the reduced mass matrices
for velocity and pressure fields, respectively, defined as
XNuu o xNus| 1 7TX 7w ZIXuZs

XNsa o xNss| TN\ FTX 7w ZIXWZs|’

In particular, owing to the orthonormality of basis functions in Z, (see (3.12)), Zs and Z,
(see (3.13)), X Nuu X Nss and Xzﬁv are identity matrices; this property enhances the algebraic
stability of the resulting ROM. However, we remark that the extra diagonal blocks X2V-us
and X2s" do not vanish because velocity and supremizer basis functions are not mutually
orthogonal. The other reduced data structures (An(p), By(p), etc.) can be redefined in a
similar way:.

XN =

u

X) =21X,Z, (3.22)

The first option, to which we refer as ezact supremizer enrichment, is to enrich the velocity
space is to consider, for any pressure basis function, the solution of problem (3.19), according
to the following algorithm:

Algorithm 3.1 Exact supremizer enrichment.
STAGE: online
INPUT: current parameter p (online query), Ny, Z;
OUTPUT: supremizer basis functions matrix Zg, Ns;
fork=1,...,N, do
solve (3.19) to obtain the supremizer s*(¢, ) corresponding to the k-th basis function ¢, ;
end for
orthonormalize the set {s*(¢ k)}kNil (Gram-Schmidt procedure or POD);
store the corresponding basis functions in the matrix Zs = Zs(p, N,);
define Ng := Np;

Similarly to the greedy-RB case, this option, which we have described in detail in [23,
Section 4.2.2], guarantees that enriching the velocity space with Ny = N,, supremizers ensures
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the fulfillment of the reduced inf-sup condition (LBBy) and, moreover, also that

Bn(p) > Bu(p) >0 VueD, (3.23)

where, similarly to (3.18), By () is the square root of the minimum eigenvalue of the following
reduced-order eigenproblem:

Xo By [vn(w)] _ O O ||vn(p)

Em I w A B e il &2
However, this strategy to enrich the velocity space is hard to be employed in practice. In
fact, the evaluation of the exact supremizers s*(-) would lead to a p-dependent velocity space
because of the dependence on BT (u) in (3.19), and thus would deteriorate the offline-online
efficiency. Not only, condition (3.23) might be in some cases too restrictive, that is, it is
enough to have Sy (u) > 0 without necessarily require that Sy(p) > Sn(p). For this reason,
in the same spirit of the RB methods (see e.g. [106,221,222]) an approzimate supremizer
enrichment is rather preferred.

The approzimate supremizer enrichment algorithm, instead, is based on the solution of
(3.19) for each pressure snapshot (rather than for each pressure basis function), at the cor-
responding value of the parameters, and thus can be entirely performed during the offline
stage, thus allowing a very efficient online evaluation of the NS solution, as follows:

Algorithm 3.2 Approximate supremizer enrichment.
STAGE: offline
INPUT: training sample Zqpain = {p!, ..., pNeain},
OUTPUT: supremizer basis functions matrix Zs, Ng;
for j =1,..., Nyain do v
solve (3.19) to obtain the supremizer s*' (p(u?)) corresponding to the j-th pressure snapshot;

end for ot .
define S = [s# (p(p')) | ... [ (p(p™Nerin))];

compute a POD basis of {s“ (p (u]))}Nt »m by performing the SVD of X1/25S7
store Ng < Nipain Supremizer modes in the matrix Zs;

Compared to the exact enrichment, this algorithm allows to get a strong reduction of online
computational costs, because the matrix Zs does not depend on p and N, anymore. Moreover,
Ng can be chosen different from N,. However, by relying on approximate supremizers, it is
not possible to rigorously show that (3.23) holds. Instead, we can provide some heuristic
criteria to ensure (or, possibly, to check in a post-processing stage) that Sy(u) > 0, thus
yielding pressure stability in the sense of (LBBy)). This is the goal of the following sections.
We refer to [23, Section 4.2.3] for additional details and comments on this procedure.

3.4 Heuristic criteria for online supremizer enrichment

In this Section we give further insights on the stability of the POD-Galerkin ROM, and
provide some practical criteria for the online supremizer enrichment.

The aim of this Section, as well as of the numerical results presented in the next Section,
is to investigate pressure stability by providing an answer to the following questions:

Q1. for which values of (Ny, Ns, N,) is the online system (3.15) stable, i.e. when does it
satisfy the condition (LBBy) 7

Q2. which values of (Ny, Ns, N,) prevent an online locking phenomenon to occur?
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Q3. for which values of (Ny, Ns, N,,) does the POD-Galerkin ROM satisfy the inf-sup condi-
tion in the sense of relation (3.23) (that is, provided that condition (LBBy,) is satisfied
at the full-order level)?

As shown in Section 3.2, a computation of the inf-sup constant can be carried out in order
to check the online stability of the reduced-order model. Question Q1 is thus related to the
dimension of ker(By(u)?), that is, to the possible occurrence of spurious pressure modes for
the reduced-order model. As of question Q2, locking phenomena occur if Sy(p) — 0 as N
“increases”. Finally, question Q3 is equivalent to check whether the inequality Sy (@) > Sn(p)
holds. An a priori practical criterion for online supremizer enrichment is detail in the following
subsections and is inspired by question Q1. More insights on questions Q2 and Q3 have been
discussed in [23, Section 6] through several numerical results. Section 3.5 report a brief
summary of these results.

3.4.1 Case I: physical parametrization only

In the case of parametrized problems involving only physical parameters, a criterion for
choosing the number Ny of supremizer is to assume that Ng > N,. As a matter of fact, let
us consider the matrix

T _ BN,pU(N)T (Nu+Ns)x Np
By(p)' = lBN,ps(/JJ)T €eR

where By ,s(p)? € RY*Ne By ou ()T € RN*Ne. The block By pu(p)? is identically zero
because each velocity basis function is divergence free. Then, a necessary condition for
By ()T to be full-rank is that Ny > N,,. More insights on the practical convenience entailed
by choosing Ny = N, or Ny > N,, will be given in the next section.

3.4.2 Case II: physical and geometrical parametrization

In the case of both physical and geometrical parameters, a possible criterion for the online
supremizer enrichment is based on the following result:

Proposition 3.1. Let Ay (u) > 0, k = k(Ny, Ns, Np; ) € N, be the first non-null eigenvalue
of the generalized eigenvalue problem (3.24). The following relation holds:

kpm=k—1+N,— Ny—Ng>0 = dim(ker By(p)") > 0.
Proof. Equivalently, we shall prove the following:

dim(ker By(p)") =0 = kpym=k—1+N,— N, — N, <0.
For the sake of brevity the dependence on p is omitted. Let

XN BY _
MNle?V ON], Sy = By (XM~ B

1. From (3.24), it follows that dim(ker My) = k — 1. Moreover, from the Guttman rank
additivity formula
rank My = rank XY + rank Sy,

it follows that

dim(ker Sy) = N, — rank My + rank XN =k—-1.
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’ Case \ Case I H Case II
Physical parameters 2: U, Uin 2: U, Uin
Range v [0.05, 2] [0.05, 2]
Range uip [0.5, 5] [0.5, 5]
Resulting range of Reynolds number | [0.75, 300] [0.75, 300]
Geometrical parameters 0 1: H,
Range H,/H - [0.5, 1.5]
Nirain 300 300
POD offline CPU time 3 h x 6 processors || 5 h X 6 processors
Niax 100 100

Table 3.1: Computational details of the offline stage of the test cases.

2. Furthermore, we have
dim(ker BY) = N, — rank B}, = N, — rank By = N, — N, — N + dim(ker By).
3. Finally, owing to the hypothesis dim(ker By(u)?) = 0 and the invertibility of X%,
k —1 = dim(ker Sy) = dim[((X))"'BY) *(ker By)] <
< dim[ker((XX)™'B%)] + dim(ker By) = N, + N — N,,.
O

The previous proposition is an extension to the ROM framework of a similar result holding
for the full-order model (see e.g. [31]). We rely on this criterion in the numerical results in
Section 3.5 to detect the existence of spurious pressure modes; in practice this criterion is
able to discard the choice Ng = 0.

3.5 Numerical results and analysis of the ROM

3.5.1 Case I: physical parameters only

In this section an analysis of the ROM is performed for the case of physical parametrization.
A bidimensional configuration of a backward facing step is considered in this section, with
parametrization of Reynolds number in the interval [0.75,300]. A Taylor-Hood Py — P; FE
discretization has been considered for the full-order model, in order to compare stability fac-
tors between the FOM and ROM. Computational details of the offline stage are summarized
in Table 3.1 (left column). We refer to [23, Section 6] for additional details on both the offline
and online stages and some representative solutions.

Figures 3.1 and 3.2 report stability factors Sy (p) and relative errors for some represen-
tative values of the Reynolds number and different choices Ny and N,, = N,. These results
provide a useful insight, showing that, in the case of physical parameters only, it is sufficient
to consider Ny > NN, supremizers to obtain both a stable ROM and to provide numerical
evidence that Sy(p) > Br(p). Instead, if Ny < N,, the ROM is not stable in the sense
of (LBBy), as Sn(p) = 0. We underline again that the supremizers are subject to a POD
procedure, too: with respect to the most expensive exact supremizer options with online
parametric dependence, the less expensive approximate option is successfully exploited.

We also remark that, although necessary to obtain a stable system, ROM solution com-
ponents corresponding to supremizer basis functions are actually smaller than the smallest
component related to (divergence-free) velocity basis functions.
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Figure 3.1: Case I — physical parameters only: analysis of the stability factor By (w).
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Figure 3.2: Case I — physical parameters only: error analysis on velocity (left) and pressure (right); top:
Re = 30, bottom: Re = 90. Error analysis is not performed for Ns < N, because in these cases the
reduced-order system (3.15) would be singular.
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Ns | k| kpm | spurious pressure modes | [y (p)? Pyl

0 5 4 yes < tol 1.1653e+09
1 4 2 yes < tol 7.5223e+06
) 1 -5 no 1.8201e-09 | 4.3631e+02
7 1 -7 no 3.3185e-08 | 2.6174e+01
10 1] -10 no 1.0258e-06 | 1.1228e+01
15 1| -15 no 1.6581e-05 | 1.1078e+01
30 1| -30 no 1.7305e-02 | 1.1061e+01

FOM | — - no 1.7312e-02 -

Table 3.2: Case II — physical and geometrical parameters: stability analysis of the reduced problem
(Re =150,H,/H =1, Ny, = N, = 30).

3.5.2 Case II: physical and geometrical parameters

We now turn to the second case, dealing with both physical and geometrical parameters.
A bidimensional configuration of a backward facing step is considered in this section, with
parametrization of Reynolds number in the interval [0.75,300] and geometrical variation
of the step height H,. Also in this case a Taylor-Hood P, — IP; FE discretization has been
considered for the full-order model. Computational details of the offline stage are summarized
in Table 3.1 (right column), and we refer to [23, Section 6] for additional details.

Compared to the former, this case requires a more detailed analysis. Figures 3.3 and
3.4 show a plot of stability factors Sy () and relative errors for representative values of the
parameters and for different choices Ng and N, = N,. Moreover, we report in Table 3.2 the
evaluation of the quantities introduced in Proposition 3.1 (namely, the computed values of
k = k(Ny, Ns, Np; ) and kpm = kpm(Nu, Ns, Np; ), together with the value of Sy (p) and
the norm of the reduced pressure [|p,[|qy), for increasing values of Ng and Ny = N, = 30.

We also remark that similar considerations can be made on a wider class of computational
domains and geometrical variations, and they are thus not limited to the two-dimensional
domain and affine shape parametrization considered in the case at hand. For instance,
Figure 3.6 shows a similar analysis on the stability factor Sy(u) in the three-dimensional
idealized bypass configuration of Section 5.1.4, featuring a non-affine shape deformation, and
no noticeable difference in the behavior of Sy () can be observed when compared to the case
reported in Figure 3.3.

Thanks to these results, we can answer the questions highlighted in Section 3.4 as follows:

Q1. In order to ensure dim(ker By(p)”) = 0, it is necessary to enrich the velocity space by
adding at least a few supremizers. In fact, when Ny = 0 or Ny = 1, Table 3.2 (first and
second rows, respectively) shows that k,, > 0. Then, from Proposition 3.1, it follows
that spurious pressure modes occur. Numerically, this is confirmed by the large value
of |pylley (see also Figure 3.5, first and second rows). Moreover, an incorrect approx-
imation of the velocity would be provided by the ROM in these cases (see Figure 3.5,
first row, image on the left).

Q2.

An online locking phenomenon (Sx(p) — 0) may occur if too few supremizers are con-
sidered, say 0 < Ns < N,/2 (see Figure 3.3). Table 3.2 (rows 3 and 4) shows that for
Ng =5 or Ng =7, even though the ROM is inf-sup stable and the velocity is correctly
approximated, yet the pressure is not recovered accurately (see also Figure 3.5, rows
3 and 4). However, if enough supremizers are considered (say, Ns > N, /2), the ROM
is not only inf-sup stable, but also allows to get a better qualitative agreement with
the truth FE solutions. The correct order of magnitude for the solution is recovered
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Figure 3.3: Case II — physical and geometrical parameters: analysis of the stability factor By ().
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Figure 3.4: Case II — physical and geometrical parameters: error analysis on velocity (left) and pressure
(right). From top to bottom: (Re =90, H,/H = 1), (Re =150, H,/H = 1), (Re = 150, H,/H = 0.5),

Re = 150, H,/H = 1.5).
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3.5.

[

Numerical results and analysis of the ROM
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Figure 3.5: Case II — physical and geometrical parameters: POD solutions at Re = 150, H,/H = 1, for
Ny = N, =30 (left: velocity, right: pressure). From top to bottom: Ng = {0,1,5,7,10,15,30}.
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Chapter 3. POD-Galerkin ROM for parametrized steady Navier-Stokes equations:
supremizer inf-sup stabilization for velocity-pressure approximation

0.1

\ N3=40

0.01 | N

Bn

0.001
0

Figure 3.6: Case II (bis) — physical and geometrical parameters: analysis of the stability factor By () in
an idealized bypass configuration with non-affine shape parametrization (see Section 5.1.4).

(see Table 3.2, rows 5 and 6, Ny = 10, 15, respectively, and Figure 3.5, rows 5 and 6).
Moreover, stability factors increase (and errors decrease) as long as Ny increases (see
Figure 3.4).

Q3. As in the case of the previous subsection, we obtain that Sy (p) > Bn(p) if Ng > N, (see
Figure 3.3). Moreover, Ny should not be taken strictly greater than N, = N, because
(i) the online system dimension would increase and (7i) the algebraic stability of the
system deteriorates, so that more iterations of the nonlinear solver would be needed to
converge. The latter drawback is due to the fact that supremizers and velocities basis
functions are orthonormal separately into two different sets.

3.6 Outlook

Key concepts introduced in this chapter (POD-Galerkin ROM, supremizer stabilization,
shape parametrization) are going to be employed throughout the rest of the thesis. However,
before turning to patient-specific simulations (Chapter 6), further attention needs to be de-
voted to the extension of the (stabilized) ROM to time dependent parametrized problems,
since pulsatility is an important feature in the modelling of the cardiovascular system. A
possible computational bottleneck may arise in the offline stage, because the dimension of
the correlation matrices may depend on the number of subintervals of the time discretization
e.g. when considering the whole time evolution in the snapshot matrices. A methodological
focus of the next chapter will therefore be related to a compression strategy of the temporal
trajectory.
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CHAPTER

POD-Galerkin ROM for parametrized unsteady
Navier-Stokes equations: a two-level POD

In this chapter we extend the POD-Galerkin ROM introduced in Chapter 3 to the case of
unsteady flows. Some relevant topics in order to deal with the time-dependent case are
summarized in Section 4.1. The parametrized formulation is introduced in Section 4.2, and
full-order approximation is described in Section 4.3. The reduced-order approximation is
detailed in Section 4.4, along with the two main ingredients of the unsteady POD-Galerkin
ROM, namely the two-level POD and the residual-based greedy algorithm. Some numerical
examples are provided in Section 4.5 for all cases.

4.1 Accounting for unsteadiness in the ROM

Unsteadiness, and in particular pulsatility, is an important feature for the description of
many complex phenomena, among which is the cardiovascular problem of interest in this
thesis. We will detail in this chapter a POD-Galerkin reduced-order model for non-stationary
parametrized Navier-Stokes equations.

The reduced-order framework introduced in the previous chapter can be extended to deal
with the time-dependent case by considering time as an additional parameter. In this case,
computing a POD basis is more challenging, since a single snapshot consists in a sequence
of several solutions, one for each time step. The inclusion of all time steps renders the basis
computation infeasible for temporal discretizations with a small time-step. A compression
of the temporal trajectory is therefore needed; POD has been employed for this task in
POD-greedy algorithms (see e.g. [118,119,191]) in the context of reduced basis methods. A
similar idea can be exploited in the POD-Galerkin context, thus performing two nested PODs,
the innermost on the temporal trajectory and the outermost on the parametric space (not
including time); a closely related method has been proposed in [15,16] to construct spatial
and temporal basis functions of a parabolic problem, where it has been called two-level POD.
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Chapter 4. POD-Galerkin ROM for parametrized unsteady Navier-Stokes equations: a
two-level POD

Other relevant questions for unsteady problems are formulated below:

 should the snapshot temporal difference quotients be used in the POD or not? Both cases
have been considered in literature with similar outcomes, and no agreement has been
reached yet; in particular [69,175,242] do not use difference quotients, while [70, 150]
do use them. See also [81,132] for a recent comparison. In this work we do not use
difference quotients;

 computation of global-in-time versus local-in-time basis functions (see e.g. [215]). This
is particularly useful for instance in problems with transient phenomena, for which the
long term behavior might be different from the short term one. Therefore, local-in-
time basis functions should be computed, to be able to correctly approximate the truth
solution in a small time span of the transient phenomena. The same basis functions
may not be accurate enough on a larger time interval, and therefore a recomputation
of the ROM may be needed. However, since the cardiovascular system exhibits a near-
periodic behavior (at least for short period observations), we believe that global-in-time
basis functions, computed over a period, are sufficient for our problem. In fact in this
chapter we will discuss also the converse idea, that is, we employ POD basis functions
generated on a small time interval and perform a time extrapolation over the global
interval. Although possibly limited to periodic systems and not applicable in general,
time extrapolation of projection-based ROM have also been discussed e.g. in [174,176];

« optimal snapshot location (see e.g. [151]), to reduce the computational cost of the offline
stage by a careful selection of the training parameters; this may be especially prohibitive
in non-stationary problems because, for each training parameter, several finite element
systems need to be solved, one for each time step. For this purpose a residual-based
greedy algorithm is employed in this chapter;

« stability of the reduced-order solution: in this work the approximate supremizer en-
richment, proposed in the previous chapter, has been tested with success, also for the
time-dependent case. See also [19,20,160] for alternative stabilization procedures.

Both the cases of physical and geometrical parametrizations are considered; due to time-
dependence, three cases are indeed possible:

I. physical parameters only (possibly time-dependent);
II. physical and geometrical parameters;
III. physical and time-dependent geometrical parameters.

The presentation of this chapter will focus on case III, which is the most general. Moreover,
few references in literature for ROM for non-stationary problems consider geometrical pa-
rameters (see [260]), and most of those consider time-invariant geometrical parameters (thus,
case II).

4.2 Problem formulation

For the sake of generality, we present the whole formulation on the case involving both phys-
ical and time-dependent geometrical parameters (case III); in fact, if geometrical parameters
are not time-dependent, then the parametrized tensors encoding the geometrical variation
are constant in time and the formulation is equivalent to case II. If no geometrical parame-
ters are considered, then the weak form is already written on the reference domain, and it is
equivalent to case I.
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4.2. Problem formulation

4.2.1 Parameters dependence

Let © C RY d = 2,3, be a (reference) configuration, and assume that the current con-
figuration ,(f1,(t)) can be obtained as the image of a map T'(-;f1,(t)) : R — R?, ie.
x, = T(x;p,(t)) and Q,(p,(t)) = T(Q; f1,(t)). Note that the map T' depends on time only
through f1,(t) € R™. The main assumption of the current framework is that each component
of ;1,(t) can be expressed as

()] = [, Jidgi(0), Vi=1,.m, (4.1)

for some smooth, given, parameter-independent, time-dependent functions d,;(t) and some
time-independent geometrical parameters p,. As we will see in the following, this assumption
is crucial to obtain an efficient offline/online decomposition. Physical properties are encoded
by a vector p, € R" of physical parameters. We assume to express time-dependent physical
parameters (e.g. inlet boundary conditions) in a similar way to (4.1). As in the previous
chapter, we will refer to p = (p,, )" € D C R, P = ny + n, as parameters.

4.2.2 An ALE formulation

Let vo(x,,t) be a function defined on the current configuration €2,(f,(t)) at time ¢, and
let v(x,t) be the function obtained by tracing back onto the reference domain €2, that is,
v(x,t) = vo(T(2; f1,(t)),t). The symbol £ will denote the time derivative in the reference
frame: p
-1 L~
Evo(:co,t) = %U<T (xo; ug(t)),t),

and, in particular, the domain velocity w, is defined as w, = 5@, = 5T (x; f1,(t)). The
unsteady Navier-Stokes equations, in Arbitrary Lagrangian Eulerian (ALE) formulation in
order to consider case III, reads as follows:

Birtto(ts 1) — v(p,) Ao () + ((uo(t; 1) — wo(p)) - V)uo(t; p)

+Vpo(t; ) = F(t; py) in Q,(f2,(t)) x (0,7,
div u(t; u) = 0 in Q,(p,(t)) x (0,7,
u,(t; 1) = gp(t; py) onI'p x (0,7),
U, (t; 1) = wo(t; p), on L'ow(f,(t) x (0,7,
V(N;;)W —pot;m)n = gy (t; 1), on Iy,
Uo(t; 1) |e=0 = go(m), in Q,(p4(0)),

(4.2)
), Neumann flux g (¢; p)
) the velocity and pressure

for some given distributed force term f(t; p), Dirichlet data g, (t;
and initial condition g, (). We thus denote by (u,(t; ), po(t; 1)
fields on the current configuration.

Inhomogeneous Dirichlet boundary conditions are imposed on I'p C 9€2. The boundary
['p is assumed to be fixed. Also I'y C 02, over which Neumann conditions are prescribed,
is fixed'; here n denotes the normal unit vector to I'y. Finally, the boundary I w (f,(t)) is
the image of the reference boundary I'y, under the map T'(+; f1,(t)). The continuity of the
velocity on I', w(f2,(t)) is imposed. The initial condition is assumed to be the solution of the
steady-state problem, for the same parameters, in the current configuration €,(f,(0)) at the
initial time.

L... although this assumption can be weakened e.g. if g5 = 0.
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4.2.3 Weak form
Let us introduce the pressure and velocity spaces on the reference domain
Q=1L1*Q), V=Hy (2, TIg=IpUly

equipped respectively with the (vector) H'-seminorm and the L?-norm. By multiplying
(4.2) for suitable test functions, integrating by parts, and tracing everything back onto the
reference domain 2, we obtain the following weak parametrized formulation:

given p € D, find (u(t; p), p(t; 1)),
u(-;p) € L0, T; H'(Q)) N C([0,T]; L*(Q)),  Lul-
u(s 1) |rpx0r) =9p(i1y),  wlp)lryxor) = 5T
p(-; ) € L*(0,T5Q),s.t.

;p) € L2(0,T: V'),
(m;“ ( ))|FW>< 0,7)»

m(au vit; ) + a(w,v;t; ) + b(v, p; t; p)

+e(w,u,v;t; ) + capp(u, vy t; u) = F(o;t;p), YvoeV, t>0,
b(u,q;t; p) = G(g; t; ), VgeQ,t>0,
uli=o = go(1),

where
a(u,v;t; p) Z/VUH(fB,t; p):Vodz,  b(v,qtip)= —/qtr(x(w,t; p) Vo) dz
Q

m(w,v;t; p) = 7 m(x,t;p)u - vdx, care(uw,v;t;p) = —/ Vuo(x,t;u) - vde
Q

Q
(4.4)
are the bilinear forms related to diffusion, pressure/divergence, mass and ALE operators,
respectively, and

c(u,v,z;t;pu) = /Q(V'v x(xz,t;p))u - zdx (4.5)

is the trilinear form associated to the convective term. As for steady problems, we assume
for simplicity that f = g, = 0, so that the right-hand sides F'(v;t; u) and G(g;t; ) vanish.
Here we denote by
K@, t; ) = v(p,) (Jr(@; i, (1))~ (Jr(@s fiy(1))) [z (3 11y (1))
x(x,tp) = (Jr(@; i, (1))~ Jr (@ Ay (1)),
ﬂ-(wv l; p’) - ’JT(Q:’ l]’g(t))|7
o(z,t; p) = (Jr(; f1,(1)) " GT (25 g (1) Jr (2 By (1)),
the tensors k,x, the vector o and the scalar m encoding both physical and geometrical

parametrization; we recall that Jp € R™? is the Jacobian matrix of the map T'(+; f1,(t)), and
|J7| denotes its determinant.

(4.6)

4.3 Full-order approximation of parametrized unsteady Navier-Stokes
equations

As in the previous chapter, let us introduce two finite-dimensional subspaces V, C V,
Qn C Q of dimension N and N;‘, respectively, based on a Finite Element (FE) discretization

of mesh size h. Denote by {¢!},_; nnand {¢i i N two bases of the FE velocity and
pressure spaces, respectively.
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4.3. Full-order approximation of parametrized unsteady Navier-Stokes equations

4.3.1 The semi-discrete problem

The semi-discrete Galerkin-FE approximation of the parametrized problem (4.3) reads as
follows:

given p € D, find (un(t; p), pu(t; ),
up( ) € L0, Ty HY(Q)) N C([0, Th); L*(Q)),  Zun(-;p) € L2(0,Ty; V),
wn(5 ) rpxom) =i ky)s wn(s )y xor) = 2 T(@; 1y (1)) [ty < (0.1,
pr(ssm) € LP(0,T; Q), 8.

m( Gy, vp; b ) + a(wn, vy t; ) + b(vn, pu; t; )+

c(up, wp, vp;t; ) + capp(un, vy t;p) = F(op; t;p) Yo, € Vi, t >0,
b(wn, gn; t; 1) = G(qn; t; p) Van € Qn, t >0,
uli—o = gon(H)-

4.3.2 Time discretization

Consider a partition of the interval [0,7},] into M; equally spaced time intervals of size At.
Applying an Implicit Euler time discretization we obtain the following discrete problem:

given p € B and (u (), pii(w)), find (uif™ (), pii* (w)), s.t.

wp (), = gp(p)lt =" uwp ™ (p)lry, = §T(2; 1, (")) Iy,
m(uptt ot p) + a(u}frl vt ) + b(vg, P L )+
(UZ—H ’U,Z—H Uh7tn+17’-'l’) +CALE(U;L+ .V tn+17IJ’)
~m(up, vt p) + F(vp; t" p) Yo, eV, n=0,...,M,—1,
b( i astt i) = Glast"tm) Ve € Quun=0,..., My, — 1,
uh = Qo,h(ﬂ)-

4.3.3 Algebraic formulation

Similarly to what we have done in the steady case, we can provide and algebraic formulation
of the semi-discrete problem. The resulting nonlinear ODEs system is as follows:

l M(é; 1) 8 ] l;gz; ]+l L(t; p) +BCg§;u’(Lt); 1) t; ) BT%;M) ] [ggz; 1 _ [ £(t; )

for the vector of coefficients u = (u\”, . .. ,ugNﬁ))T, p= Y, ... ,péN‘}’l))T where, for 1 <i,j <
Nﬂandlgk:g]\f;‘:
(M(t; )iy = mlef pistim),  (Altp)y = (@] @l ),
(B(t; )i = bl (s tim),  (Carp(ti p)ij = cars(@], it 1)
(Cap)it; ) = Sty g™ (8 p)e (@l ol @it )
(£t p))i = Fletstipm),  (8(tm)k =Gt 1)

and L(t; p) = A(t; p) + Carp(t; p).

(4.7)
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The resulting nonlinear system after a time discretization with the Implicit Euler scheme
is

Bt p) 0 (t™ )
l £(t"H ) ] i [ M0 l iZ:Z; 1

g(tn-i-l; N)

Note that the matrices appearing in (4.8) have to be, in principle, reassembled at every
time-step because of the time-dependence of the domain; see also the next section. Non-
homogeneous Dirichlet boundary conditions are imposed by introducing a suitable lifting
function, in a similar way as in steady state problems shown in the previous chapter. At each
time step, the nonlinear system is solved by means of Picard or Newton iterations.

MG 4 Lt ) + C(u(s p)i ) BT (7 ) ] l u(t"th; p) ]
p] (4.8)

0

4.3.4 Affine parametric dependence

An affine parametric dependence assumption on (4.7) is made, i.e.

Qa Qoarp Qr
)= 07 (EwA,  Cappltp) = > Ot Che,  f(p) = > 6] Wi,
q=1 q=1 q=1
QD D 8 Qw
ap(t;pm,) = 67 (t; 1)g%h, 51 T (i (1) = > vt pw, (4.9)

g=1 g=1

and in a similar way for the other terms. As in the previous chapter, this expression is usually
recovered by means of the so-called empirical interpolation method (EIM) [28]. Note that,
thanks to this assumption, the temporal dependence is stored in the coefficients @;(t; ),
the data structures A7, C'%, 5, etc. being instead independent on both p and t. As we will
see in the next section this will be a key point in the offline-online decomposition of the
reduced-order model. Moreover, the term ©7(t; ) is actually the only one with an explicit

time dependence; for the other terms, ©}(t; pu) = (:)j;(p,p, t,(t)), since the parametrized NS
operators do not depend explicitly on time, but only through p, (t).

4.4 A POD-Galerkin ROM for parametrized unsteady Navier-Stokes
equations

We present a POD-Galerkin ROM for solving parametrized unsteady NS equations. The
supremizer solutions enrichment described in the previous chapter is applied to enhance the
stability of the resulting reduced-order model.

Let

Nu,s:QD+Qw+Nu+Nsa Np
be the dimensions of the reduced spaces for velocity V' y and pressure (), respectively. Here,
Ny, Ng, N, are the dimension of the online degrees of freedom for the reduced-order model

for velocity, supremizers and pressure, respectively. ()p and @), are, instead, fixed by the
affine expansion (4.9). As for the full-order model, consider the following bijection between
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4.4. A POD-Galerkin ROM for parametrized unsteady Navier-Stokes equations

the spaces RV and Vi (resp. R and Qy):
Vy = (dﬁ), o ,d§$D) w](v), . wg\?“’) U§v)> . vng“) sg\}), . SS\],VS)) € RMNus
AR UN = ZQD d(Q) i + Zq 1 wg\?)wq + Zn 1 UN Lpn Zn 1 SN T’n € VN7 (4 10)

1 N, Jp n
Ay =@V, an)TERY o gy =Y a\G € Qu.

n=1

where g%, and w? are (divergence-free) extensions of the non-homogeneous Dirichlet boundary
data g}, and w? in (4.9), respectively.

4.4.1 A two-level Proper Orthogonal Decomposition

Let us denote by Zgam = {p!, ..., uVoein} € P a (large) training sample of Ny, points
chosen randomly over @. For each point (i = 1,..., Niin) in the training sample a truth
solve is performed and the temporal evolution of the full-order solutions is stored in the
following snapshot matrices on the temporal trajectory

Sio= (%)) | ..M ph)) € RMNM i =1 Ny,
Si=[p%pl) | ... | pM T )] € RYMe Vi =1, Noin,
St =[s"(pt% ) | ... | " (e p))] € RNMh i =1 Ny,

The notation @(t"; ') refers to the difference between the full-order solution u(t"; ') and
the lifting functions at t = t" and pu = p*. At each time step, the following elliptic problem

Xush(p(t": 1) = B ()p(t"; ) (4.11)

is solved to obtain the supremizer solution s*(p(t"; p')), where X, is the FE matrix of the
inner product on Vj,.
Two strategies have been employed to obtain a POD basis:

1. standard (full) POD: the following snapshot matrices on the temporal trajectory and
parameter space are assembled, that is, we store

Su = [Sl11| - |Sljlv”ai“] c RNI}JLX(Mh'Ntrain),
Sp = [SIH ... ‘S;)Vtrai“] c RNZ})LX(Mh'Ntrain)7
Ss = [Ssl| .. |Sév“ain] c RNSX(Mh'Ntrain)'

Then, a POD is performed for each matrix and the first Ny N , Ng (respectively) left
singular vectors are considered as basis functions {¢, }2=,, {Cn w2 An, s

2. two-level POD: in the previous case, a POD basis for (e.g.) the velocity can be ob-
tained either by a singular value decomposition of Xlll/ 28, or by the so-called method of
snapshots, which entails the solution of an eigenvalue problem for the correlation ma-
trix ST X, S,. Although possibly less well numerically conditioned, the latter is usually
preferred because it allows a considerable dimensionality reduction in the computations.
In fact, the size of the matrix X/2S, is N x (M}, - Nizain ), while the size of the correla-
tion matrix ST XSy is (M}, - Nuain) X (M, -+ Nirain). Therefore, in steady-state problems
(M}, = 1), the cost of the computation of the POD basis is independent on the FE grid
size. For unsteady problems, however, the resulting eigenvalue problem is still dependent
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1 2 N ,-“;,,’1 Ni rain 1 2 N rain_ 1 N rain
Sp Sp Sp N Sp Sp Sp A = S
ot a e G
R ST IS
\ l
- —— == -————
1 1 I 1
1 ZI’ 1 | ZI' 1
(a) Standard POD. (b) Two-level POD.

Figure 4.1: Summary of the standard (full) POD and two-level POD strategies. Box represent data storage;
solid boxes require the FE solution for all time steps, dashed box require a POD. Each arrow represents
the computation of a POD. For the sake of exposition the summary is provided only for the computation
of the pressure basis functions, since the scheme for velocity and supremizer basis functions is similar.

on the temporal discretization, entailing high costs for the storage of all the M}, - Nirain
snapshots and the spectrum computation can thus be very expensive if M), — oo.

Following the approach presented in [16], an alternative strategy can be employed to
overcome this drawback:

(i)

POD on the temporal dynamics: for any p' € Zirain, @ = 1, ..., Ngain, compute
the FE solution for all time-steps and perform a POD on S° (Szi, St, respec-
tively). Then, extract the first My_pop modes and build a “compressed” matrix
Si e RNuxMz-rop (5; € RNy xMa-rop Gi ¢ RNe*Mz—rop | regpectively) containing
those modes (non-weighted version), possibly scaled by the respective singular values
{U§Z)}j:1,...7M2_POD (weighted version). A similar weighting is proposed also in [215].
The most important features of the temporal dynamics should be captured as long
as Ms_pop is large enough. Computational savings are possible if My_pop < Mj,.
The value of Ms_pop may depend on ¢ and on the singular values (T](Z), based on
the same energetic considerations as in Section 3.2.1.

POD on the parameter space: at the end of the training phase, assemble the follow-
ing compressed snapshot matrices on the temporal trajectory and parameter space

=~ =~ ~ . h . .

Su — [S&” ., Sljlvtram:l G RNUX(MQ—POD J\Ttram)7
=~ = =~ . h . .
Sp — I:S;’ L. ,Szj)vtram] E RNP ><(]\4'27POD Ntram)’
Sy = [S?

gNtrain] c RNE?X(M27POD'Ntrain)
<y g

)

perform a second POD (in this case, the spectrum of a matrix of smaller size
Ms_pop - Niain < My, - Nipain needs to be computed), and store the first Ny (N,
Ns, respectively) left singular vectors as basis functions ¢,, (¢,, 1,,, respectively).

A summary of the standard and two-level POD strategies is provided in Figure 4.1. Let

Zu,s

=gyl - 183" |w

! ’ .. c RNLLXNu,s

B R R R A R R

Y

Zy=1¢, | 1 ¢y ) RN

denote matrices whose columns are provided by the offline bases for reduced velocity and
pressure spaces, respectively.
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4.4. A POD-Galerkin ROM for parametrized unsteady Navier-Stokes equations

4.4.2 A greedy algorithm for parameters selection

It is well known that the training space Zi.ain should be carefully chosen in order to have a
good reduced-order model. In fact, on one hand the space should be large enough in order
to well capture the parametric variation of the phenomena; however, on the other hand,
especially when dealing with complex geometrical configurations and unsteady problems,
one would like to be able to perform as little as possible truth solves during the offline stage.
In the same spirit of standard greedy-RB methods [214], a residual-based greedy algorithm
can be considered for the selection of the parameters in the training sample.

Algorithm 4.1 A residual-based greedy algorithm for parameters selection.
INPUT: Z;5t CD, W €N, Nlilm,Nsi“t,NIi)nt, eeR
OUTPUT: Etest C 925, Etrain C 9.
for M =1,...,|Zst|/W do
if M =1 then
Update ROM data structures Ay, By, etc., assuming N = N = N = 0.
else
Update ROM data structures Ay, By, etc.
end if
for all pu € =5 do
Compute the reduced-order solution;
Compute and store the full-order residual of the reduced-order solution.
end for
Sort the parameters in 4.5 by decreasing values of residual;
if all residuals are less than ¢ then
break
end if
Move the first W parameters of Z;cqr t0 Sirain;

Etest = Etest \Etrain;

Perform truth solves for the last W points in Zyqin;

Perform a two-level POD to compute N, Ni**, NI** basis functions.
end for

Let us remark that W should be chosen strictly greater than 1. In fact, the evaluation of
the residual involves computations on the full-order FE grid. Moreover, also the update of
ROM data structures associated to the nonlinear term is expensive, because (7) it requires the
computation of (possibly more than one, depending on the complexity of the shape variation)
dense third-order tensors and (7i) the reduced-order spaces at iteration M and M + 1 are not
hierarchical, because of the addition of new snapshots.

4.4.3 Algebraic formulation of the POD-Galerkin ROM
A reduced-order approximation of both velocity and pressure field is obtained by means

of a Galerkin projection on the reduced spaces Vy and Qn. In particular, we seek an
approximation of the form

u(t;p) = Zusuy(tip),  pltp) = Z,p (6 p), (4.12)

In the online stage, the resulting reduced-order approximation for any p € 9 is as follows:

7



Chapter 4. POD-Galerkin ROM for parametrized unsteady Navier-Stokes equations: a
two-level POD

MGG L ) - Oy (0 )i £ ) BE( ) ] [ W k) ] -

BN(tn+1; [1;) 0 EN(tn+17 /J’)
£N(t’;‘11;u) L] o uy(tp) |
gyt p) 0 0] pyt™mp)

(4.13)

where, similarly to what we did in the previous chapter,

A ( ,,u) ZT A( 7“’) ZLI,87 B ( nu‘) ZT B( 7“’) ZlLS? Cn ( ,,Ll,) ZT C(';t;:u‘)ZILS?

fn(tipw) = Zog £(t; ), gy(m) = Z) g(t; ).

The remaining terms can be obtained in the same way. Moreover, thanks to the affine
parametric dependence, only the matrices and vectors

Ay =ZL AT Zys, By =28 B' Zus,  On(-itip) = Z5,CU - ) Zug,

£ =72, 19, gl =2, g
need to be stored. We remark that, thanks to the affine parametric dependence assumption
(see section 4.3.4), the stored data structures do not depend explicitly on time because
the temporal dependence is stored in the multiplicative factors ©7(¢; u), thus yielding to
storage costs comparable to the steady case. This gives the chance to perform a temporal
extrapolation, i.e. to consider k =0,..., My — 1 with My > M,,.

At each time, the nonlinear system is solved by means of Picard or Newton iterations.
Dirichlet boundary conditions are imposed modifying the first () p+Q),, rows of the online sys-
tem, so that the only non-null term appears on the main diagonal, and the first Q) p+@,, terms
of the right-hand side to store the corresponding values of @qD (t"*; ) and @;”(t”“; ).

4.5 Test cases

4.5.1 Case I: backward facing step

In this Section the same backward facing step flow problem of Section 3.5.1 is considered,
with a parametrization with respect to the Reynolds number. This first example compares
the standard POD approach and the two-level POD approach; moreover the possibility of an
online time extrapolation is explored. Finally, a comparison with an offline stage performed
on a stationary problem is carried out.

Details of the offline stage, FE discretization and temporal discretization are summarized
in Table 4.1. Two physical parameters p, = (v, us,) are considered (viscosity v and magnitude
of the normal velocity u;, at the inlet section), yielding a Reynolds number in the range
[0.75,300]. Dirichlet boundary conditions on the inlet feature Qp = 1, @}I(t; p) = unm(l+
0.5sin(27t)), and g7, is a parabolic profile. The offline stage is performed only in the interval
[0,0.5] (half-period of the inlet profile), while the online phase is performed over the whole
period [0,1]. Homogeneous Dirichlet boundary conditions are imposed on the walls, and
homogeneous Neumann boundary conditions are imposed on the outlet.
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4.5. Test cases

Physical parameters 2: vV, Uip
Range v [0.05, 2]
Range uip [0.5, 5]
Resulting range of Reynolds number | [0.75, 300]
FE velocity order 2

FE pressure order 1

Total number of FE dofs 116,136
Final time T3, 0.5

Time step At 0.01

50 (all time steps, standard POD) or
5 (90% reduction, two-level POD)
Ntrain 75

Niax 75

Snapshots for each parameter

Table 4.1: Computational details of the offline stage.

Comparison between standard POD and two-level POD

Figure 4.2 shows a comparison between standard POD (50 time steps x 75 training samples,
resulting in snapshot matrices of dimension 3750) and two-level POD (5 modes out of 50 are
extracted within the innermost POD x 75 training samples, resulting in snapshot matrices of
dimension 375). The comparison of the POD singular values and retained energy shows that,
in both cases, few basis functions are needed in order to capture the most relevant features
of the problem. A comparison of the retained energy shows that the weighted version of the
two-level POD performs sensibly better than the non-weighted one; a proper weighting in
the innermost POD is therefore important to preserve the most relevant energetic features of
the phenomenon. In fact, even though there is a consistent dimensional reduction (90%) in
the innermost POD, the singular values decay of the weighted two-level POD is comparable
to the one of the standard POD.

Reduced-order solutions for Re = 30,90, 150, ¢t = 0,0.25,0.5 are reported in Figures 4.3,
4.4, 4.5, subfigures (a),(b),(c),(f),(g), images on top and center. We do not notice any strong
difference between standard POD and two-level POD in terms of online accuracy.

Time extrapolation

Reduced-order solutions for Re = 30,90, 150, ¢ = 0.75, 0.9 are illustrated in Figures 4.3, 4.4,
4.5, subfigures (d),(e),(h),(i), images on top and center. Even though the offline stage was
run for ¢ € [0,0.5] (when the Dirichlet datum ©}(t; u) > 1), the reduced-order model is able
to correctly extrapolate for ¢ € (0.5,1] (when the Dirichlet datum ©j(t; u) < 1), although
the errors slightly increase (Figures 4.6, 4.7, 4.8).

Comparison with the stationary case

Figures 4.3, 4.4, 4.5, images on the bottom, show that physical features of the unsteady
phenomena are not correctly captured by basis functions generated from stationary flows,
especially for the velocity at t = 0.75 and the pressure at ¢t = 0.25 and ¢t = 0.75.
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(a) t/T = 0.

(g) t/T = 0.5.

() t/T =0.9.

order solutions two-level POD

= 25, at Re = 150. From top to bottom: standard POD

-0.011048

stationary basis.

POD-Galerkin ROM for parametrized unsteady Navier-Stokes equations

two-level POD

Chapter 4.

82



Test cases

4.5.

‘0GT = 2Y v “mN = mZ =N ="N &0\ NNQOQ ﬁs@%ﬁswww SUOUIN]OS LIPLO-PIONPIL PUD YINA] UIIMIIQ SLOLLI QLIDV]IY

T=.1/1 (P) ‘g0 =1/1 () T=.1/%(q) g0 =1/1 (e)

mmocooo n&ooaq -3 u:oSc 8889 -3 Bowso 3 NBNSQ o 3
mdSc mga BBV 0000~ N_co oooc qooa NQun o
T /ra’ 9 O Tord-o HINEE/ INTn=ny AOPRT T

06 = 9 0 ‘cg = SN = N = "N +4of &QQ& PADPUD]S) SUOWINJOS LIPLO-DIINPAL PUD YINA] UIDMII] S.LOLID 2AD]IY

1=.2/1 (1) 60 =1L/% (9) T=1/1(3) '¢0=1/* (3)
mmmooao mﬁosc‘ - mm_omo mmoof 3 n_:nso 3 3880 o -
__mm_uw:z.u 9 ESG mov :n:Zza mvov qmwm:\,zwoo‘m .,U,E«,o\oo,@ n- N:o,So

0€ =2y 10 ‘Gg = SN = IN = "\ 40f {(QOd P+ppuDis) SUOUN)OS LIP.LO-PIINPAL PUD YINL]) UIIMII S.LOLLD DALID]YT

‘1=u/+ (P) 0=/t (?) T=.1/%(9) '¢0=.r1/1(®)
S_oooc mminu - m.m:om mo_cmn - Nisc g - Encaoc o -
_go mmm me. o D nmN \QAZQ muww _DDO :_JJD,QWO,Z: ‘:c :3:\72 :_ﬂﬁc

Har/nd-a

18 2an31q

1L 2an31q

19§ 2an31g

83



Chapter 4. POD-Galerkin ROM for parametrized unsteady Navier-Stokes equations: a
two-level POD

4.5.2 Case II: a double elbow geometry

In this section a parametrized flow in a double elbow geometry is considered, similar to the one
analyzed in [178]. Both physical and geometrical parameters are considered. Two physical
parameters p, = (v, us) are examined (viscosity v and magnitude of the normal velocity u,
at the inlet section); the resulting range of Reynolds number is [0.5,200]. A single geometrical
parameter /i, is considered, equal to the length of the vertical section of the domain. Dirichlet
boundary conditions on the inlet feature Qp = 1, ©,(t; p) = ugm(1 + 0.5sin(2wt)), and gp,
is a parabolic profile. Homogeneous Dirichlet boundary conditions are imposed on the wall,
and homogeneous Neumann boundary conditions are imposed at the outlet. Details of the
offline stage, FE discretization and temporal discretization are summarized in Table 4.2. A
slower decay of the singular values (Figure 4.9), when compared to the previous example, is
obtained in this case, because of the additional geometrical parameter.

The velocity field for increasing Reynolds numbers and different values of the geometrical
parameter is shown in Figures 4.10, 4.11, 4.12. Recirculation zones appear close to the
channel corners, especially at ¢ = 0.75 (minimum of the inlet profile over the period T = 1).

Physical parameters 2: v, Uip
Range v [0.05, 2]
Range ujy, [0.5, 10]
Resulting range of Reynolds number | [0.25, 200]
Geometrical parameters 1 pg
Range 1, [2, 5]

FE velocity order 2

FE pressure order 1

Total number of FE dofs 34,635
Final time T}, 1.0

Time step At 0.01
Snapshots for each parameter 10 (90% reduction, two-level POD)
Ntrain 75

Niax 75

Table 4.2: Computational details of the offline stage.
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(a) POD singular values: two-level POD. (b) POD retained energy: two-level POD.

Figure 4.9: Results of the offiine stage: POD singular values and retained energy for velocity, supremizers,
pressure.
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Chapter 4. POD-Galerkin ROM for parametrized unsteady Navier-Stokes equations: a
two-level POD

4.5.3 Case III: a moving domain test case

In this section a test case for the ALE formulation is carried out [240,247,250]. Two physical
parameters p, = (v, u;) are considered (viscosity v and magnitude of the normal velocity
Uy at the inlet section). The resulting range of Reynolds number is [285,800]. Details of
the offline stage, FE discretization and temporal discretization are summarized in Table 4.3.
Figure 4.13 shows that, as in the example for case I, the weighted version of the two-level POD
is able to preserve the most relevant features of the phenomenon with fewer basis functions.

Physical parameters 2: U, Uip
Range v 0.0025, 0.0035]
Range u;, 2, 4]

Resulting range of Reynolds number | [285, 800]
Geometrical parameters 1 g

Range p4 [0.5, 1.5]

FE velocity order 2

FE pressure order 1

Total number of FE dofs 35,934

Final time T3, 1.0

Time step At 0.01

Snapshots for each parameter 10 (90% reduction, two-level POD)
Ntrain 75

Niax 75

Table 4.3: Computational details of the offline stage.

The reference domain is = (0,5) x (0,0.5). A single geometrical parameter 1, defines
the current configuration as &, = T'(x; fi,(t)), where

Tio =1
T, 1y <lorz >2,
T20 = ~ .
’ xg — 0.201,(t) sin[27(z1 — 1)], 1< 21 <2,

and
fig(t) = pg sin(mt), pg € [0.5,1.5]

Dirichlet boundary conditions on the inlet feature Qp = 1, @}I(t; 1) = Uy, and g} is
a parabolic profile. The continuity of the velocity is imposed on the walls, and Neumann
boundary conditions are imposed on the outlet.

Figures 4.14, 4.15 and 4.16 show some reduced-order solutions, at different time steps,
Reynolds numbers and geometrical parameters. The complexity of the flow patterns increases
with both Reynolds number and the magnitude of the geometrical parameter fi,.

Streamlines intersect the boundary in the deformable region I',w(f,(t)). This is be-
cause of the boundary condition u,(t; p) = w,(t; p), on Tow(f,(t)) x (0,T), which is non-
homogeneous in the deformable boundary.

During the expansion phase (¢ € [0,0.5]) three vortices appear: vortex 1 at z; = 1.5,
vortex 2 at x; = 1.75 and vortex 3 at z; = 2.25. At ¢t = 0.25 (mid-expansion), vortex 1
and 2 are not present for low Reynolds numbers (Re = 400), and the dimension of vortex 3
increases both with Reynolds number and p,. The region between vortices 1 and 2 features
an high pressure gradient, with a mild dependence on p,. At ¢ = 0.5 (maximum expansion)
all three vortices are present. The size of vortices 1 and 2 depends only on the geometrical
parameter, but not on the Reynolds number. A region of low pressure appears in vortex 3,
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with size increasing both with Re and p,. A shear jet of high velocity appears in the region
above vortex 3; the velocity is increased of 15% (Re = 400), 80% (Re = 600) and 150%
(Re = 800) with respect to the inflow boundary condition.

During the contraction phase (¢t € [0.5,1]) vortices 1 and 2 disappear, for all i, and all
Re. The high velocity jet moves downstream, featuring a smaller peak velocity. For small
ty (pg = 0.5), vortex 3 is almost dissipated. For higher p, (11, = 1,1.5), also vortex 3 moves
downstream; in these cases a fourth vortex appears on the top of the channel (x; = 3),
with size increasing with Re. Moreover, for large Re and large p,, a fifth vortex appears,
downstream to vortex 4, on the bottom of the channel at x; = 4.
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(a) POD singular values: two-level POD. (b) POD singular values: weighted two-level POD.
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(¢) POD retained energy: two-level POD. (d) POD retained energy: weighted two-level POD.

Figure 4.13: Results of the offline stage: POD singular values and retained energy for velocity, supremizers,
pressure.

4.6 Outlook

Although being introduced in a general setting, model order reduction techniques introduced
in this Part, will be applied on coronary artery bypass configurations in the remainder of
this thesis. For the purpose of the clinical application the domain €2 will be the geomet-
rical configuration obtained from the reconstructed geometries of Section 2.3, and a shape
parametrization technique tailored for the specific application is going to be introduced in the
next Chapter 5. Idealized bypass configurations will be used in the next Chapter to motivate
the particular choice of the shape parametrization map T.
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CHAPTER

A centerlines-based parametrization for patient-specific
coronary artery bypass grafts

Once patient-specific data have been processed and a computational domain has been gener-
ated, we aim to compute blood flows not only in the patient-specific configuration, but also in
a perturbed one. The aim is either to perform a sensitivity analysis or answer to query of clin-
ical interest related both to native coronary arteries disease (e.g. stenoses severity) and sur-
gical intervention (e.g. anastomosis features). Relying on a suitable technique for shape rep-
resentation and deformation is a key issue in the current reduction framework [157,177,180].
To meet this goals, in this chapter we propose a shape parametrization specifically tailored
for coronary arteries and bypass grafts or, more in general, tubular structures. Two volume-
based parametrizations are introduced in Section 5.1; these are general tools for deformation
of an arbitrary object by displacing a set of few control points. Volume-based parametriza-
tions will be employed for a local description of the deformation and coupled to a curve-based
parametrization (Section 5.2) for a global description of the coronary artery network. Local
modifications of the curve, as well as variation of the radius, are easily described within this
framework. A test case, reported in Section 5.3, shows the application of the full compu-
tational reduction framework (POD-Galerkin ROM and centerlines-based parametrization)
on a preliminary application to an idealized anastomosis. The same framework will then be
applied to patient-specific cases in the next chapter.

5.1 Volume-based shape parametrizations

In this section we introduce two possible volume-based representations [103] to obtain admis-
sible shapes by mapping a reference shape through a parametric map defined in the global
space. The common assumption is that we can operate on a control volume (regardless of
the object to be deformed, which is then embedded in the volume) and define parametric
maps by introducing a set of control points over the control volume. Their displacements,
which actually induce a shape deformation, can be considered as geometrical parameters. In
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this way, shifting a control point causes a deformation of the embedding space and thereby
induces a global modification of each shape located inside this volume.

5.1.1 The free-form deformation map

The free-form deformation (FFD) map', originally introduced in [233] is a possible example
of volume-based parametrization. A reference (undeformed) domain © C R? is embedded in
a control volume D D €2; then, a grid of control points is defined over D, and the deformed
domain is obtained by a composition of the displacements of each control point (see Fig. 5.1).
The parameters of the map are the displacements of a suitably chosen subset of control points.
The map is named free-form because it is independent of the underlying shape to be deformed:
this ensures that, unlike boundary parametrizations, it can be applied to arbitrarily complex
domains, still keeping a small number of degrees of freedom.

Let us denote by D = [x7"", 2%%] x [z x79%] x [z7¥" x79®] C R3 the control volume
and by 2 C D the fixed reference domain. Moreover, by introducing an affine map v : D —
D=[0,1P & — z = (x):

min
xy
min
min
W21, Ty, 15) = | 2

1, 42,43 LT xgnm )
min

L S

max min
T3 T3

max
Ty

let us define the FFD with respect to a system of coordinates (1, z2,z3) € [0,1]>. We
denote a grid of (K + 1) x (L + 1) x (M + 1) control points over D by

k/K
Brm=| UL |, k=0, K, 1=0,...L, m=0,...,M,
m/M

and the displacement vector fi;;,, € R? of each control point (k,1,m). The deformed position
of the control point (k, [, m) is thus given by

pk,l,m + ’J’k,l,m‘

Furthermore, since it is possible for some control points to be fixed or to be allowed to move
only in some coordinate directions, we denote by p = [p1, ..., |7 € D C RP the vector of
the p enabled displacements, to which we refer as degrees of freedom of the FFD, defined as
follows:

g = (Bypm)i 70, if 72, is enabled to move in the i-th direction, (5.1)

where ¢ is a compact notation for (i, k, [, m).

The deformation of the unitary cube D is thus obtained by a composition of the deformed
position of each control point through the map Trrp(; ) : D — Do(p), T +— Z,(p),
defined as

K L
To(p) = TFFD T ) ZZ Z kaleM ) [Rpim + Bl (5.2)
k=0 1=0 m

IThis section is a re-adaptation of Section 2 of the following publication:
[24] F. Ballarin, A. Manzoni, G. Rozza, and S. Salsa. Shape optimization by Free-Form Deformation: existence results and
numerical solution for Stokes flows. Journal of Scientific Computing, 60(3):537-563, 2014.
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Figure 5.1: Sketch of the Free-Form Deformation map.

K,LM [ KLM(~ ~ =y . . .
where by ;" (Z) = by ;" (21, T2, T3) is the tensor product of one-dimensional Bernstein poly-

nomials

‘7)(1 —2)79%9,

J

BSEY (1,2, 3) = W GBI (2),  bI(E) = (

Finally, the Free-Form Deformation is defined as the map
Trrp(sp): D =R,z x,(p)
defined as the composition

z,(p) = Trrp(x; p) = (T(Y(2); p)); (5.3)

a deformed domain is thus obtained as Q,(p) = Trrp(€2; 1), i.e. by applying the FFD to
the reference domain €2, with degrees of freedom p. A summary of the construction of the
map is sketched in Fig. 5.1.

Extensions of FFD to Non-Uniform Rational B-Splines (NURBS) basis functions, instead
of a d-variate tensor product of Bernstein polynomials, allow a non-uniform distribution of
the control points [7,153,230].

5.1.2 A radial basis functions parametrization

One of the main drawbacks of the FF'D parametrization is the fact that it is not interpolatory,
and therefore the physical interpretation of displacement values may not be trivial. An
interpolatory shape parametrization can be defined thanks to radial basis functions (RBF')
[49,50]. RBF parametrizations have been employed e.g. in [34,78-80,98] for an efficient
solution of FSI problems, and coupled to the reduced basis method for the solution of inverse
problems in haemodynamics in [155,177,179].

Given a reference domain 2 C R3, the RBF parametrization aims at describing the de-
formation of € by means of an interpolation of the deformed positions {72, + g, }i=1..n of a
small number N of control points (or centers) originally located at {7a,}:=1.n. Note that,
in contrast to the FFD definition, the control points need not to be on a lattice. In other
words, the definition of a RBF-based map is reduced to a scattered data interpolation by

means of three scalar functions 7% : R* = R, k = 1,..., 3, of the form
N
(@) = 1(x) + Y wio(e |z — i,), 7(z)=c"+d" =z, a® =a¥,... ad]", (5.4)
i=0
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Gaussian o(r)y=e"
Inverse Multiquadric o(r)y= (142172
Multiquadric o(r) = (1 +r2)/2

a(r) =rF k odd
a(r) =r*logr, k even
Wendland o(r)=1—r)L(1+4r)

Polyharmonic spline

Table 5.1: Some common functions o(r)

where € > 0 is a shape factor, and ¢ : R — R is a fixed basis function, radial with respect to
the Euclidean distance (the most common choices are reported in Table 5.1). The coefficients
w? of the radial term and the polynomial 7% are determined so that 7% interpolates the control
points deformed positions (interpolation constraints):

™) = [+ p )t Vi=1,.. N
and satisfies (side constraints)
wagb(pz) =0 V polynomials ¢(x) of degree one.
Equivalently, the coefficients W(p) = [wF]ix = [wi|ws|... |wy]" € RY*3 e(p) = [F]x €
R3, A(p) = [af]nr = [at]a?|. .. |a®] € R3*3 are the solution of the following linear system

S 1y P ] [W(w) P+ [p]

Iy 0 03 | c(u)|=]| 05
PT 03 Osxs AT(IJ') Osxs
J U(w) B(p)
for
olelle — 1)
s(x) = : . P=[pylnyl.pn]T €RYVED [u] = [y |py| . Juy]" € RV
olellz —myl)

5.1.3 A screening procedure for the design parameters selection

In this section? we propose a screening procedure in order to select a small number of ac-
tive control points — and, ultimately, the degrees of freedom p,...,u, — yet ensuring the
possibility to represent a large variety of admissible shapes. In fact, (i) considering only a
small number of enabled degrees of freedom contributes in preserving the regularity of the
mesh and avoiding self-intersections [104] and (7) it is difficult to obtain a good sampling
of high dimensional parameter spaces (curse of dimensionality), a poor training sample will
negatively affect the performance of the reduced-order model.

In order to implement a simple screening procedure in the volume-based context, we
start with a large number of free parameters, say P, and attempt to find their most effective
subset in representing the shapes of interest while discarding all the other parameters. For this
purpose, we take advantage of the so-called Morris’ randomized one-at-a-time design [60,190].

2This section is a re-adaptation of Section 6.2 of the following publication:
[24] F. Ballarin, A. Manzoni, G. Rozza, and S. Salsa. Shape optimization by Free-Form Deformation: existence results and
numerical solution for Stokes flows. Journal of Scientific Computing, 60(3):537-563, 2014.
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Through this screening procedure, we add to the retained set of parameters those with the
largest observed sensitivities (related to a prescribed output j), by considering the so-called
elementary effects

1, . .
51'(#) = g(](ﬂla ey iy My 0, i, ;MP) _.]<,u/17 ey Mi—1y My i1 - - 7NP))

obtained by varying one parameter at a time while keeping the others fixed. In order to
account also for interactions among the parameters, Morris’ design requires the evaluation
of a random sample of N elementary effects for each of the P parameters — giving a total
cost of O(NP) input/output evaluations — in order to estimate the mean and the standard
deviation of the distribution of elementary effects associated with each input parameter?.

In particular, for volume-based parametrizations it is possible to compute directly the
sensitivities of the output j(p) w.r.t. each displacement p;, that is

_9j
O

(n), pedcCR i=1,...,P

See [24] for more details on the FFD case; a possible choice for j, employed in [24] and in
the following, is the computation of the viscous energy dissipation.

Therefore it is possible, for each parameter component ¢ = 1,..., P, to evaluate the mean

1 X 07

Ei = é <_§i w) e N; <_3ui (“")>

and the standard deviation

(S P R

by Monte Carlo integration, using a (uniform) sample {, }_, C € of size N. This can be
seen as a continuous version of the Morris’ design.

5.1.4 Discussion: strengths and weaknesses of volume-based parametrizations
for the current application

In this section we consider the idealized bypass geometry in Figure 5.2 and:

o we perform the screening procedure introduced in the previous section to detect the
most relevant design variables;

 retaining only the relevant design variables, we compare the flow dynamics in the ideal-
ized bypass shape based on the variation of Reynolds number and FFD parametrization.

3A large absolute value for the mean E; implies that p; has an important overall effect on the output, whereas a high
standard deviation S; indicates that the effect of p; is not constant, which may be implied by a parameter interacting with other
parameters.
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Figure 5.2: FFD control volume (in gray), reference domain Q = D\ B and (image into D of the) FFD
control points grid is represented by small spherical markers.

5.1.4.1 Screening procedure

A screening procedure is performed for all control points denoted by a gray marker in Fig-
ure 5.2. We allow control points displacements in the range [—1, 1] to avoid large variations.
We thus compute the means FE; and the standard deviations S; related to u;,i =1,..., P, by
considering a sample of size N = 200. The solution of a PDE is required for each sample. No
computational reduction is pursued in this stage since the parameter space shall be reduced
in the following. Results of the analysis are shown in Figures 5.3 and 5.4.
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Figure 5.3: Screening procedure: absolute value of the mean vs standard deviation, for each component of
the gradient of the parametrized output j(p).
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Figure 5.4: Screening procedure: mean values in the y (left) and z (right) directions.

5.1.4.2 Flow comparison
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Figure 5.5: FEnabled displacements of the FFD map. Control points of the same color are moved by the
same displacement.

The POD-Galerkin ROM has been applied to the idealized bypass geometry, considering
two physical parametrized quantities (viscosity and magnitude of the inlet velocity) and the
six geometrical degrees of freedom shown in Figure 5.5. Table 5.2 shows some details of the
computational times and results of the offline stage; over 1,000 hours of CPU time on multiple
2 GHz cores of an Intel Xeon cluster are required for the offline preparation phase, 20% of
time being spent in the EIM and remaining time in the POD training and basis construction.
Table 5.3 shows computational details of the online stage.
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Number of physical parameters 2

Number of geometrical parameters 6

Reynolds number range 90, 140]
Geometrical parameters range -2.5, 2.5]

FE velocity order 2

FE pressure order 1

Total number of FE dofs 314,954

Nirain,EIM 150

EIM offline CPU time 5 h x 48 processors
Affine expansions components for a, b, ¢ | 40, 10, 10
Ntrain,POD 150

POD-Galerkin offline CPU time 13 h x 72 processors
N, max 40

Table 5.2: Computational details of the offline stage.

Number of velocity basis functions 40 + 1 lifting
Number of supremizer basis functions | 40

Number of pressure basis functions 40

Online CPU time for each evaluation | = 15 s x 1 processor

Table 5.3: Computational details of the online stage.
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Figure 5.6: Prozimal anastomosis: comparison of the velocity in the reference and the deformed configura-
tion.
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Figure 5.7: Distal anastomosis: comparison of the velocity in the reference and the deformed configuration.
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Figure 5.8: Comparison between the energy dissipation functional in the reference (angle ~ 45°) and de-
formed (angle ~ 30°) for different Reynolds number.
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5.1.4.3 Discussion

The scatter plot of |E;| vs. S; reported in Figure 5.3 shows that the most significant displace-
ments are in the y and z directions. This allows to discard displacements in the = direction,
which is transversal to plane of the vessel and the graft.

Mean values reported in Figure 5.4 show a complex pattern for the sensitivities. Control
points on the boundary of the native vessel feature the highest mean sensitivities in the y
direction; those displacements should be however discarded because the native vessel is not
subject to variation. High mean sensitivities both in the y and z direction are also computed
near the terminal region of the graft; translation of this control points allows for variation of
anastomosis angles and anastomosis-to-vessel diameter ratio.

These results are employed in the choice of design variables for a comparison of the flow
profiles for different physical and geometrical properties (see Figure 5.5). A total of six
parameters is chosen in this test: parameters 1,3 and 1,4 have been selected by the screening
procedure in order to possibly change the diameter ratio; for symmetry, parameters f,; and
ftg2 are also chosen; parameters p,5 and pg6 are chosen to control anastomosis angles, as
suggested by the screening procedure. To improve the quality of the deformation the same
displacement is assigned for each of three longitudinal sections. Moreover, with the aim of
avoiding large radius variations of the graft, displacements pi4 5 and j146 are assigned for two
consecutive rows of control points in the y-direction, for a total of 24 enabled displacements.
A first weakness of volume-based parametrizations is apparent in the latter choice: complex
constraints are needed in order to ensure that the radius of the vessel and/or graft should be
constant away from the anastomosis.

The dependence of the flow patterns on the parameters p, 1, f142 and 1,5 (proximal anas-
tomosis) and on the Reynolds number is shown in Figure 5.6, which features a comparison
between the reference configuration (angle approximately 45°) and a possible deformed con-
figuration (approximately 30°). The effect of a similar deformation on the distal anastomosis
is shown in Figure 5.7. A second drawback can be noticed here: no clear physical inter-
pretation of the parameters is provided by volume-based parametrizations, since clinically
relevant geometrical quantities (such as grafting angles, in this case) are obtained as a post-
processing rather than being directly associated to a component of pr,. Putting this limitation
aside, however, volume-based parametrization are indeed able to perform meaningful local
modifications to the reference geometry such as, in this case, anastomosis angle variation or
anastomosis area variation.

A comparison, in terms of the same energy dissipation functional employed in the screening
procedure, is performed in Figure 5.8 for the reference and deformed configurations. These
clearly show that, once the proper constraints are imposed, volume based parametrizations
(coupled to the POD-Galerkin ROM for a fast evaluation of the input-output relation) are
able to produce a sensible variation of the energy dissipation functional?.

To summarize, we have shown in this section that volume-based parametrizations are
suitable for small local perturbations of an idealized bypass configuration. However, some
weaknesses have arisen in this discussion:

 a screening procedure must be performed in order to detect the most relevant design
variables; this procedure may be computationally expensive;

« additional constraints may be needed in order to ensure that no undesired variation of
geometrical features (radii, in particular) happens during the deformation;

4... which, in this example, is a decrease of the energy functional of approximately 25 — 30% for all Reynolds numbers, since,

for the sake of comparison, geometrical parameters have been chosen in the descent direction provided by the results of the
screening procedure.
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« no immediate physical interpretation of the design variables is usually available;

« arapidly increasing number of control points may be needed in more complex geometries.
In particular, in this example 24 displacements were needed to perform a variation of
two angles; a similar drawback applies to the parametrization an axisymmetric stenosis,
where a minimum of four control points (12 displacements) may be needed to perform
a local variation of (a scalar quantity such as) the radius.

In the remaining part of this chapter we combine volume-based representations with a
different parametrization to overcome these limitations.

5.2 A centerlines-based shape parametrization

In this section a shape parametrization tailored for the current application is introduced. It
is based on the assumption that coronary arteries and bypass grafts can be represented as
a network of tubular geometries and that an efficient variation of geometrical quantities of
clinical interest (such as stenoses entities and anastomosis type) is required. A better repre-
sentation of the deformation can be obtained by considering a curve-based parametrization.
Other curve-based approaches have been proposed in literature [139,159, 168, 278], although
none of them has been coupled to model order reduction techniques; see also [12] for an ap-
plication in a biomedical context. The reliability of volume-based parametrizations on small
local perturbations, as discussed in the previous section, will be exploited near the inter-
sections (bifurcations, anastomoses), to provide suitable interface conditions across different
vessels of the network.

5.2.1 Differential geometry of space curves

Let v : [a,b] — R3 be a curve in R? (in particular, the centerline of one of the vessels in the
network). The first goal is to define a moving coordinate frame attached to v(s). We refer
to [121] for a short introduction on this topic; see also [202] for a biomedical application.

5.2.1.1 Frenet frame

If v(s) € C*([a,b]; R?) with non vanishing first and second derivative for all s € [a,b] the
classical Frenet frame (t(s),n(s),b(s)) can be defined as:

v'(s) v'(s) X ¥"(s)
t(s) = — = bls) = , n(s) = b(s) x t(s).
17 ()l 17 (s) x ~"(s)
Moreover, (t(s),n(s),b(s)) are the solution of the following system of differential equations
(also known as Frenet-Serret formulae):

t'(s) 0 k(s) 0 t(s)
n'(s)| =Vl |=rls) 0 7(s)| [n(s)
b'(s) 0 —7(s) 0 b(s)

where the curvature k(s) and the torsion 7(s) are given by
/ X " / X 1 . n
(s) = |y (S)/ '73(8)“7 (s) = 7(8)/ 8l (S)” ¥ 2(8).
20l ) x 7l
The main drawback of this representation is the fact that (7) normal and binormal vectors
are not defined if the curvature vanishes e.g. ~(s) is (locally) a straight line, and (i) the

normal vector always points towards the center of the osculating circle, and this implies
discontinuities around inflection points (see e.g. [268] or [121]).
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5.2.1.2 Bishop (or parallel transport) frame

Alternative moving coordinate frames can be defined, see e.g. [268] for a rotation minimizing
moving coordinate frame. In this work we employ the so-called Bishop (or parallel transport)
frame; originally introduced in [40], this frames relies on a different choice of the basis for
the plane spanned by (n(s), b(s)).

Given the space curve ~(s), a vector field v(s) is said to be normal if it is perpendicular
to the curve’s tangent t(s) for all s € [a, b]; a normal vector field v(s) is said to be parallel if
its derivative is parallel to the curve’s tangent (s), v'(s) || t(s). Moreover (see [121, Section
2.2]), if v1(s), va(s) are two parallel vector fields, it holds v1(s) - va(s) = v1(sg) - v2(so) for
some 8y € [a, b]; thus, if two fields are orthogonal at s = sg, their orthogonality is preserved.
This property suggests the following (“Frenet-Serret” formulae) definition for an alternative
moving coordinate frame: given the coordinate frame (¢(a),n4(a), n2(a)), solve

t'(s) 0 ki(s) ka(s)| | t(s)
ny(s)| = |7 (s)ll | —ki(s) 0O 0 | |m(s) (5.5)
n(s) —ko(s) O 0 ny(s)

It has been shown (see [40]), that the Bishop curvatures k1 (s) and ko(s) are linked to k(s)
and 7(s) by

ki(s) = r(s) cos(@(s)),  ku(s) = k(s)sin(g(s)), ¢(s) =7(s).

In practice, given a partition {s;}i—o, . n of the interval [a,b], the Bishop frame can be ap-
proximated by means of the following numerical procedure: the tangent at s; is approximated
by

t(s;) = v (sit1) —v(si)
[ (si+1) = v(si)
The idea to obtain an approximation of n,(s) and ns(s) is to find the rotation that has
occurred between t(s;) and t(s;41), and rotate n;(s;) and ny(s;) in the same way to obtain
11 (8;+1) and ma(s;41); orthogonality between m(s;11) and mo(s;41) is preserved by the paral-
lel transport properties. In practice, given n(sg) and 12(so) such that (£(sg), 721(s0), n2(s0))
is a frame at s = sg, the following procedure is performed®

5 t(SN) = t(sN—l)-

Algorithm 5.1 Numerical computation of the Bishop frame.
INPUT: partition {s;},—o,... n of the interval [a, b], tangent vectors {¢(s;)}i=o.....N,
reference frame (t(a),n1(a),n2(a)) at s = sp = a;
OUTPUT: {n(s;)}i=1,...n, {na(si) }i=1,... N;
fori=0,...,N—1do
Rotate the frame at (n1(s;), na2(s;)) of the angle arccos(t(s;) - t(s;+1)), around the normal direction to

S
the plane (£(s;),t(si11)), to obtain (11 (si41), n2(si41)), ie.

for j =1,2 do
ny(sian) = t(s) - tsian) my(ss) + 8(si) X Bsirr) x my(si) + E(s:) x tsipr) LX)
end for
end for

The result of this numerical procedure is shown to converge to the Bishop frame in [121] as
N — +o00. This procedure is performed for each curve of the network, and an approximation
of the reference frame (t(s), n1(s), na(s)) attached to each centerline is thus obtained.

5Recall the Rodrigues’ rotation formula: the rotation of the vector v around the unit vector k (axis) of an angle 6 is given by
1

Vrot = vcosb +k X vsind+kk-v(l —cosf) =vcos+ (ksinh) X v+ (ksinb) (ksin@)-vﬁ
cos

In the present case 6 = arccos((s;) - t(si4+1)) and ksin(f) = t(s;) X t(si4+1)-
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5.2.2 Centerline-based parametrization of a single vessel

Let v : [a,b] — R® be a C? curve in R? | which represents the centerline of a branch of
coronary artery or bypass graft. The main idea behind the proposed shape parametrization
is to be able to deform the vessel by displacing and/or rotating few points on the centerline,
or possibly varying the local radius. This way to obtain a shape parametrization has been
developed because of the straightforward interpretation of its parameters (radius, angles) and
higher quality deformed meshes.

The parametrization and deformation of the vessel is split in three steps, summarized in
the following Figure 5.9.

Radius \) Radlius

HHHO‘BHJ .H\Oﬁ\uuﬂ (B) HJ.OI%\HHHPﬁHHJﬂ

0.2 0.5 0.2 0.5

Figure 5.9: A centerline based parametrization

(A) in a preprocessing step, the curve (s) is computed as the medial axis of the vessel, along
with a local radius r(s). Moreover, a moving coordinate frame (¢(s),n(s),no(s)) at-
tached to «y(s) is defined, by means of the parallel transport procedure (Bishop frame) de-
scribed previously. Finally, “cylindrical” coordinates p(x) € [0,1],6(x) € [0,27), s(x) €
[a, b] are obtained for each point in the vessel reference configuration as follows:

s(x) = argmingepa | —¥(s)[| = {s : [z = ~(s)] - t(s) = O},

_ [o—y(s(a))] ma(s(x)
f(z) = arctan ([x_3<s<x))].nf(s(m) ).

p(a) = |l —~(s(@)l /r(s(x)).

(B) in this step the deformation of the curve is computed. Let {p, p'} be the set of geometri-
cal parameters. A radial basis functions (RBF) parametrization is employed to perform
the deformation of the centerline, interpolating (a) the deformed positions {~(3;) +
W; tiz1,. v of a small number N of control points (centers, interpolation sites) originally
located at {(3;,7(3i))}i=1,...v and (b) the prescribed values {~'(#;) + p;}j=1,..a of the
first derivative at another (possibly overlapping) set of control points {#;};-1 . Note

=
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that, as we will see in Section 5.2.3, the latter allows to perform local modifications to
the tangent vector. The definition of a RBF-based map is thus an interpolation problem

of three scalar functions 7, : R — R, k =1,...,3, of the form
N M
Ti(s) = m(¥(s)) + Y wio(els = a]) = D_ujdso(e|s —)); (5.6)
i=1 j=1

where 7, : R® — R are polynomial functions of degree p, ¢ > 0 is a shape factor and
o0 :R — R is a fixed radial function such that ¢/(0) = 0 (see Table 5.1 in Section 5.1.2
for some common radial functions). The coefficients w¥ and uf of the radial term and
those of the polynomial 7 are determined so that 7, and 7 are interpolatory at the
control points

Tr(9) = [Y(:) F i)k, Vi=1,...,N, and 7.(»;) = [¥(#5) + 1)k, Vi=1,..., M,

and satisfy the following side constraints
N M
S wfp(y(3:) + D ufd(pov)|s=r, =0 V¥ polynomials ¢ € II?,
i=1 j=1

being I1? the space of polynomials of total degree up to p in three unknowns.
In particular, if m;, are chosen to be polynomials of degree p = 1, so that
T (Y(5)) = ek + ax - y(s), ay, € R,
the RBF parametrization results as follows
V(s 1) = e(p, ) + Al )y (s) + W (g, w)r(s) = U (p, p)i(s) =
r(s)
—7r(s
= W () UT(pp!) e(p, ') Ap, )] 1( ),

v(s)

where

The coeflicients

clp i) = ek € R?, A, i) = [a1]ay] .. a]" € R,

W, ') = [wh=0 % € RYS Up, ) = [ub)j=i5, € RS,

can thus be obtained as the solution of the following symmetric linear system of small
size (M + N +4)

Soo Son v P | [W(k ) P+ [p]

Sao Sany O T Ulp, ') | _ T+ ] (5.7)
Iy 0y 0 0y | e (pp) 03 '
PT " 03 Osxs AT(M;M/) Os3x3
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being
P =61 y62)] . von)]" € RYC [u] = [p|ps] .- |y € RY,
T = (#)Y (#2)] ... |7 (ran)]" € RSP (W] = [p)|ph] ... [uy]" € RM,
[Seolizi N =0(els —81D)|s=s, S0 € RV,
[Sonliln = —0s0(e|s — #4])s=s, Sy € RV,
[Saoliz o = 0s0(els = d1)|e=r,,  Sao) € RV,
[San) /=l = —0ss0(e s = 7)) |omrys  Ser) € RMM.
J ooy J

The main differences between this RBF interpolation and the one proposed for the
volume-based parametrization are that (7) in this case the interpolation procedures (and,
thus, deformation) are performed on the curve, rather than on the three-dimensional
vessel, and (%) interpolation of the tangent vector is also sought by means of the pa-
rameters p', in order to be able to perform local variations to angles.

Finally, after the deformation an updated moving coordinate frame (¢(s; , '), n1(s; o, '),
no(s; u, p1')) can be computed.

(C) in the final step the vessel is deformed by the map C(-; p, g/, m) : R? — R3,

C(x; p, ', m) = C({p(x),0(x), s(x)}; 1, ', m)
=y(s(x); p, 1) + pr(s(z);m) [cos O(x) n(s(z); p, 1) (5.8)
+sinf(x) ny(s(x); p, p1')] .

The resulting map C(-; i, ', ) thus provides the deformation of the three-dimensional
vessel between a reference configuration (say, a branch of the patient-specific network)
and the deformed configuration, obtained as a function of the displacements g, variations
p' of the tangent vector, and local radius variations n of the centerline.

5.2.2.1 Stenoses variation

Analyzing the sensitivity of the haemodynamics with respect to the severity of a stenosis
is interesting from a clinical standpoint. In fact, current medical experience suggests that
surgery should be performed only for critical occlusions [124,218,224,225,251]. The challenge
from a computational standpoint is, however, that local geometrical variations need to be
performed to change the value of the stenosis severity. This task is easily carried out by the
proposed parametrization, and in particular considering at step (C) a function

o2

r(sim) = T(S)J 1 —aexp (—(S_M)z> n = (a,p,0)

used to represent a stenosis at the point located at curvilinear abscissa u, where the factor a
is the surface reduction and the standard deviation o controls, in this simplified model, the
“extension” of the stenotic region.

5.2.3 Handling bifurcations and anastomoses

The main advantage of the centerline-based parametrization is the chance of deforming a
three-dimensional shape acting on a one-dimensional object. However, the unidimensionality
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assumption does not hold near bifurcations of native vessels or anastomoses of coronary
arteries and bypass grafts. In these regions a three-dimensional parametrization, based on a
volume-based RBF interpolation (Section 5.1.2), is employed.

Therefore, the proposed centerlines-based parametrization for a network of vessels (in
particular, coronary arteries and bypass grafts) is:

 (5.8) away from bifurcations and anastomoses. Geometrical quantities of clinical interest
can be chosen, such as stenosis variation;

 (5.4) close to bifurcations or anastomoses. To ensure continuity between one-dimensional
and three-dimensional representations some control points of the three-dimensional rep-
resentation need to be chosen, on the interfaces between the different representations.
We explain how to choose such control points with the help of a relevant example in
the clinical practice, namely the variation of end-to-side anastomosis between antegrade
(same direction for graft flow and native vessel flow in the anastomosis), T-shaped (graft
is perpendicular to the native vessel) and retrograde (opposite directions for graft flow
and native vessel flow in the anastomosis) cases, which can be related to the variation
of the grafting angle.

(a) Reference domain and corresponding domain de-  (b) Possible choices for a subset of the control points
composition (blue and green: monodimensional of (5.4).
parametrization (5.8); red: three-dimensional rep-
resentation (5.4)). Possible choices for control
points of (5.4).

Figure 5.10: Reference domain and possible control point choices.

The current parametrization is able to deform a reference anastomosis between the
previous cases, see e.g. Figure 5.11, preserving the mesh quality as much as possible. To
this aim, only two parameters (a, ) are needed. We proceed as follows:

1. we rotate the tangential vector of the graft near the anastomosis as follows: de-
noting by t. and ¢, the tangent vectors of the coronary artery and the graft in the
reference configuration and by ¢,(u’) the tangent vector of the graft in the deformed
configuration, the following choice of p' = p'(a, 56)

t, x t,

k= m, R = I3><3+ [k]x sin 56+ (]_ — COS 56)[’{3]30 M/(a, 6) = (aR—[gxg)tg
g c

enforces a rotation of ¢, of an angle 66 in the plane of (¢.,t,), to obtain t,(u').
(k] € R3*3 denotes the cross-product matrix such that [k],v = k x v for all
v € R3. The scaling coefficient a =~ 1 controls the size of the neighborhood which is
affected by the transformation (see Figure 5.11d for a comparison). The graft (green
subdomain in Figure 5.10a) is then deformed by means of the unidimensional repre-
sentation (5.8), enforcing the new tangent direction ¢,(p'). After the deformation,
the map (5.8) is computed also at the control points denoted by green markers, in
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order to store their deformed position®. These deformed position are then used as
interpolation constraints for the three-dimensional volume-based parametrization,
which deforms the anastomosis region (denoted by the red subdomain) guaranteeing
continuity of the global map.

2. additional control points should also be added in the anastomosis region, see Figures
5.10a (red markers) and 5.10b, to prevent undesired variations of the radius in
the parametrized graft, especially when performing large rotations. However, in
contrast to Section 5.1.4, their position in the deformed domain can be automatically
computed. For example, the deformed position of the control point A is computed as
the intersection between the straight lines AHG (lying on the plane (¢, t,), parallel
to t. at a distance 7. from O, being r. the local radius of the native coronary artery)
and ABC' (lying on the plane (t.,t,), parallel to t,(u’) at a distance r, from O,
being r, the local radius of the graft).

(a) Antegrade (top) anastomosis obtained as a deforma-
tion of a T-shaped (bottom) anastomosis.

(b) T-shaped anastomosis (zoom, mesh). (¢) Antegrade anastomosis (zoom, mesh).

(d) Deformed domain for different values of the parameter
a: a=0.8 (blue), a =1 (cyan), a = 1.2 (orange).

Figure 5.11: Some examples of anastomosis variation.

6The same operations are performed on the blue subdomain and at the blue control points, which are related to the native
coronary artery. However, since no rotation is sought on the coronary artery, the resulting map is the identity.
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5.3 Test case: anastomosis and residual flow variation

In this section we present a test case for the coupling between the centerlines-based parametriza-
tion and the POD-Galerkin ROM. We consider a steady flow in the idealized bypass config-
uration in Figure 5.10a, and two possible physical and geometrical parametrizations:

1. physical parametrization on the Reynolds number (two parameters: viscosity and mag-
nitude of the inlet velocity on the graft), no residual flow in the native vessel, geometrical
parametrization on anastomosis variation (two parameters: angle 6 and scaling coeffi-
cient a);

2. physical parametrization on the Reynolds number (two parameters: viscosity and mag-
nitude of the inlet velocity on the graft), parametrized residual flow in the native vessel
(one parameter %y,, defined as the ratio between the magnitude of the inlet velocity
at the native vessel over the magnitude of the inlet velocity at the graft), geometrical
parametrization on anastomosis variation (two parameters: angle 6 and scaling coeffi-
cient a).

Number of physical parameters (case 1) or 3 (case 2)

2
Number of geometrical parameters 2
2
1

FE velocity order
FE pressure order

Total number of FE dofs 376,254
Nirain,EIM 150
Affine expansions components for a, b, ¢ | 20, 10, 10
Ntrain,POD—Galerkin 50
Nmax 50
| Offline CPU time | =2 days x 36 processor

Table 5.4: Details of the offline stage.

Number of velocity basis functions 50 + 1 lifting (case 1) o 50 + 2 liftings (case 2)
Number of supremizer basis functions | 50

Number of pressure basis functions 50

Online CPU time for each ROM solve | ~ 2 min x 1 processor

Table 5.5: Details of the online stage.

0oC

0 10 20 30 40 50 0 10 20 30 40 50 60
N N

(a) Case 1: POD singular values for velocity, (b) Case 2: POD singular values for velocity,
supremizers, pressure. supremizers, pressure.

Figure 5.12: Results of the offline stage: POD singular values for velocity, supremizers, pressure.
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5.3.1 Numerical results: case 1

Tul/u_{in} Tul/u_{in} Tul/u_{in}
0.25 05 075 1 025 05 075 1 025 05 075 1

I . i [ @ o [ B —
0 1.117609 0 1.154983 0 1.145972
(a) Re =~ 60 (b) Re ~ 100 (¢) Re =~ 140

Figure 5.13: Case 1, § =90°, a = 1. Magnitude of the velocity for increasing Reynolds numbers.

“‘00' “‘00' ”’0“

lu_{yz}! /u_{in}
0.04 0.08 0.
[ S . I [ &
0 0. 0 0. 0

lu_{yz} | /u_{in} lu_tyz} | /u_{in}
0.04 0.08 0.1 0.04 0.08 0.1

(a) Re =60 (b) Re =100 (c) Re ~ 140

Figure 5.14: Case 1, 0 = 90°, a = 1. Magnitude of the transversal velocity for increasing Reynolds numbers.

LNH LNH
0.4 0 04 08 -08  -04 0 04 08
' — [ _—
1 -1 1

(a) Re =~ 60 (b) Re ~ 100 (¢) Re =~ 140
Figure 5.15: Case 1, § = 90°, a = 1. Streamlines and local normalized helicity for increasing Reynolds
numbers.
Tul/u_{in} Tul/u_{in} Tul/u_{in}
5 D 025 05 025 05
1. 004483 1. 00252 1. m8256
(a) Re =~ 60 (b) Re ~ 100 (c) Re =~ 140

Figure 5.16: Case 1, § = 50°, a = 1. Magnitude of the velocity for increasing Reynolds numbers.
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| u_(vz) | /u_(\n)
0.04 D,
- — [ & _ [ b
0 0 0

lu. (VZH/\A_(In) lu (yzH/u {in}
0.04 0.04 U

(a) Re =~ 60 (b) Re ~ 100 (¢) Re =~ 140

Figure 5.17: Case 1, 8 = 50°, a = 1. Magnitude of the transversal velocity for increasing Reynolds numbers.

08 04 .
[ _____BRE _—
-1 1

."- E ; ‘ -
(a) Re =~ 60 (b) Re =~ 100 (c) Re~ 140

Figure 5.18: Case 1, § = 50°, a = 1. Streamlines and local normalized helicity for increasing Reynolds
numbers.

5.3.2 Numerical results: case 2

I W W W

\u | /u_(\n) lul /u_(m) | u | /u_(ln)
1 158265 1 461266 O 1 575683

(a) % = 0.0 (b) %fr =05 (c) % = 1.0

Figure 5.19: Case 2, § =90°, a = 1. Magnitude of the velocity for increasing residual flow, at Re = 100.

“‘Oo' ”‘"' “‘00'

I u_(YZ) ! /u_(ln) | u_(yz) | /u,(m) | u_(yz) | /u,(\n)
0.04 0.12 0.04 0.12 0.04 0.12
.

0_ _ : 0_ _ : 3 0_ —
(a) %f,- =0.0 (b) %fr =0.5 (C) %fr =1.0

Figure 5.20: Case 2, 8 = 90°, a = 1. Magnitude of the transversal velocity for increasing residual flow, at
Re = 100.
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LNH = LNH
-]—o‘s 040 04 gi] J—us 040 0 ! : -]—o.a 04 0 04 n.s]
(a) %jr = 0.0 (b) Y%sr = 0.5 (c) %yr = 1.0

!

Figure 5.21: Case 2, § = 90°, a = 1. Streamlines and local normalized helicity for increasing residual flow,
at Re = 100.

I N N

IuI/u {in} IuI/u (m) Iu\/u(n)z

1. 013186 0 l 46685 0 1. 917177

(a) %f,« =0.0 (b) %0 = 0.5 (c) Y%sr = 1.0

Figure 5.22: Case 2, § = 50°, a = 1. Magnitude of the velocity for increasing residual flow, at Re = 100.

.""' ”‘“' "‘“'
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Figure 5.23: Case 2, § = 50°, a = 1. Magnitude of the transversal velocity for increasing residual flow, at
Re = 100.

LNH

08 04 0 04 O
| &
-1 1

(a) %jr = 0.0 (b) % = 0.5 (c) %pr =10

Figure 5.24: Case 2, 8 = 50°, a = 1. Streamlines and local normalized helicity for increasing residual flow,
at Re = 100.
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5.3.3 Discussion

Figure 5.12 shows a comparison of the POD singular values for velocity, supremizers, pressure.
The additional physical parameter in case 2 causes a slower decay in the POD singular values.
In both cases velocity and supremizers singular values exhibit slower decay than pressure
singular values. Online results are shown in Figures 5.13-5.15 for case 1 on a T-shaped
anastomosis (# = 90°), Figures 5.16-5.18 for case 1 on a flow-direction anastomosis (6 = 50°),
Figures 5.19-5.21 for case 2 on a T-shaped anastomosis (0 = 90°) and Figures 5.22-5.24 for
case 2 on a flow-direction anastomosis (6 = 50°).

Plots of the magnitude of the velocity are reported in Figures 5.13, 5.16, 5.19, 5.22. In
the case of no residual flow and T-shaped anastomosis (Figure 5.13), a jet of high velocity
impacts on the arterial bed, while the toe of the graft shows a recirculation region. Both
the maximum velocity and the size of the recirculation region increase with higher Reynolds
numbers. In contrast, neither higher velocity nor a recirculation region are shown in a flow-
direction anastomosis (Figure 5.16). The size of the recirculation region near the toe appears
to decrease for increasing residual flow in the native artery, for both T-shaped (Figure 5.19)
and flow-direction (Figure 5.22) anastomoses.

Plots of the magnitude of the transversal velocity are reported in Figures 5.14, 5.17,
5.20, 5.23. These figures highlight the formation of two Dean vortices just distally to the
anastomosis, in all considered cases. The magnitude of the maximum transversal velocity
increases with the Reynolds number; the two Dean vortices however quickly dissipate as the
distance downstream the anastomosis increases. Flow-direction anastomoses (Figures 5.17
and 5.23) feature in general lower values of transversal velocity than T-shaped anastomoses
(Figures 5.14 and 5.20), for both the cases with and without residual flow. Dean vortices are
moved closer to the toe and farther from the arterial bed as residual flow grows (Figures 5.20
and 5.23).

Finally, streamlines and local normalized helicity (LNH) are shown in Figures 5.15, 5.18,
5.21, 5.24. High absolute values of LNH are observed near the arterial bed just distally to the
anastomosis. In case 1 (no residual flow), T-shaped anastomosis feature a vortex near the
heel of graft (Figure 5.15). However, case 2 shows that this recirculation region disappears
with an increase of residual flow in the native artery (Figure 5.21). No recirculation region
is highlighted instead for flow-direction anastomoses, neither in case 1 (Figure 5.18) nor in
case 2 (Figure 5.24).
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CHAPTER

Numerical results for patient-specific coronary artery
bypass grafts computationally reduced simulations

The proposed framework (medical imaging for reconstruction of patient-specific coronary
artery bypass grafts, model order reduction techniques based on POD-Galerkin reduced-order
models, and shape parametrization techniques such as the centerlines-based parametrization)
is applied in this chapter to some patient-specific cases. Three possible classes of parameters
of clinical interest (Section 6.2) are considered: physical parameters related to inflow profiles
(Section 6.3), geometrical parameters related to coronary artery disease (Section 6.4), and to
coronary artery bypass graft surgery (Section 6.5). Numerical results and a clinical discussion
on the resulting flow patterns are discussed for each case.

6.1 State of the art

Occlusion of the grafts is a typical problem in the long term behavior of coronary artery
bypass grafts (CABGs), as discussed in Section 1.3. A better understanding, both by means
of experimental measurements or numerical simulations, of the haemodynamics in CABGs,
and in particular near the anastomosis between two grafts (e.g. Y-graft) or between a graft
and a native artery (termino-lateral or latero-lateral), has been sought in the last decades
(107,181,184, 196,254].

Early numerical results on three-dimensional idealized end-to-side anastomoses have been
proposed by [94,133,152,239], under the assumption of steady flow conditions, and in 38,39,
83,90, 164] for time-dependent flow profiles. Several topics have been addressed since these
first studies.

Remarkable research focus has been devoted to parametric studies [141,152, 195,197,
223,225,251]. A first relevant parametric study is on inlet boundary conditions. From a
physiological point of view, this is useful to take into account different exercise conditions of
the patient (stress conditions or rest conditions), which entail a variation in the flow rate.
Variation of graft flow rate is also observed in the clinical practice in the internal thoracic
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artery [197,223,225], and numerical simulations to take this aspect into account have been
recently performed in [195,251], which studied (on a pig, and not on patient-specific cases)
how different flow rates affect the local flow patterns in the anastomosis, combining invasive
blood flow measurements, acquisition of the anatomical model and computational methods.
Moreover, from a numerical point of view, a flow rate parametrization has been used on
idealized geometries also to account for different coronary artery disease progression. In fact,
for example, a study of the haemodynamics in an idealized distal anastomosis for different flow
conditions in the native artery (to simulate partial occlusion, complete occlusion, retrograde
flow) has been proposed in [141,152]. In our work, we propose a parametrization on the flow
rate to account for different stress or rest conditions, rather than stenosis variation, which
instead is accounted for thanks to its own parametrization.

Large attention has been also given to the optimization of existing designs [22,88,163,182,
205,229], and the resulting possible proposal of new designs, for example in II-composite grafts
[203], sequential grafts [137,138] or helical-type grafts [272]. Optimal grafts or new proposed
designs have been obtained considering local geometrical variations of the coronary arteries
and grafts. This topic has been also addressed in [87,94,101,109, 135,141,238, 249] (grafting
angles) and [42, 131,209, 259,276] (graft-to-host diameter ratio). However, these results are
obtained mostly on idealized geometries. On one hand, as it has been shown in Chapter
2, patient-specific geometries are far more complex than simplified end-to-side anastomosis;
moreover, only few of the previous studies consider sequential grafting procedures. On the
other hand, many practical constraints need to be considered during the surgery, which may
in fact limit the choice of grafting angles (for example, when operating on a patient with three-
vessels disease the aim should be to revascularize the entire left and right coronary trees, and
the length of the available grafts poses a severe constraint) or graft-to-host diameter ratios
(for example, since grafts are autologous materials, it is difficult in practice to change graft
diameters). For these reasons, it is important, even if performing just local variations, to
start from a complete, sequential, patient-specific configuration. This is a major difference
between the results proposed in this chapter and the cited literature.

Few studies have been carried out on patient-specific configurations, reconstructed from
clinical data. Among them we mention [45,65,142] on native (healthy) coronary arteries,
and [88,100,228] on coronary artery bypass grafts. Our current dataset is however larger,
and more complete (with respect to anastomosis features, grafting procedures, coronary
artery disease) than the previous references, and some methodological differences are also
present. In particular, [100] proposed CFD simulations on only two patients, the first one
featuring a single graft and the second one a double sequential graft. Both surgeries, how-
ever, were performed only with saphenous vein grafts, and more complex structures (such
as Y-grafts) were not studied. Finally, variation of parameters of clinical interest was not
considered. Geometrical variations were considered instead in [88], but they were performed
on two-dimensional configurations and then applied to the three-dimensional patient-specific
configuration in a post-processing stage. Moreover, the variation of grafting angles proposed
in [228] requires a new segmentation for each new angle. Besides involving a time consuming
procedure, the resulting method cannot be formulated in a parametrized framework, and thus
it cannot take advantage of the model order reduction techniques proposed in this thesis to
efficiently perform a sensitivity analysis of the flow patterns.

Finally, as already mentioned in the introduction to Part II, early results on the coupling
between reduced-order models, parametrized formulations and idealized bypass configura-
tions have been proposed in the last ten years in [4,5,154, 180,211,219, 220]. A peculiar
characteristic of the present work is to present, for the first time, the results of the coupling
between reduced-order models and patient-specific clinical data of CABGs.
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6.2 Parameters of interest: boundary conditions and geometrical
features

In this chapter the POD-Galerkin ROM is employed for fast computation of the haemody-
namics in patient-specific configurations of coronary artery bypass grafts. Several parameters
are of clinical interest; they represent:

 physical parametrization on inflow boundary conditions (right coronary artery,
left coronary artery, internal thoracic artery): variation of inlet flow rates may be of
clinical relevance e.g. when interested in the evaluation of the surgery under both rest
or stress conditions.

— For the LCA, clinical literature (see e.g. [8,66, 126,140, 256]) agrees on dominant
diastolic flow, i.e. coronary blood flow peaks in diastole.

— In the case of the RCA, instead, some studies suggest neither diastolic nor systolic
dominance (see e.g. [46,140,257]), others systolic dominance [39,263] and others
diastolic dominance [279], featuring also very different time-averaged flow rates.

— Finally, we refer e.g. to [26,39,56,87,134, 166,169, 169,227,263] for some studies on
the LITA. Moreover, the effect of graft adaptation should be considered also for
the LITA [86,195,197,223,225,251], which causes the flow (and also the diameter of
the graft itself) to adapt over time. In [149], the flow is found to be predominantly
diastolic in the short-term and in distal sections of the artery, but predominantly
systolic in the long-term period after the surgery.

Although possible, considering all these factors would entail a high dimensional para-
metric space (e.g. to change the RCA flow from predominantly systolic to predomi-
nantly diastolic) and to a more difficult interpretation of the results. For this reason
only one case of systolic/diastolic dominance has been studied (LCA: diastolic domi-
nance; RCA: neither diastolic nor systolic dominance; LITA: systolic dominance) and

two physical parameters, factor{s™" and factor*"’, have been considered for each inlet

i, 1 =LCA, RCA, LITA. The parametrized flow rate is then given by

ave,i ampl,i ave,i ave,i ampl,i

q;(t; factory”", factorz, ") = factorfy, ™ ¢; + factorp, " factory, " ¢i(t).

ave,i

The parameter factory, ™ (range [2/3,4/3]) is a multiplicative factor on the time-averaged
flow rate @;, while the amplitude ¢}(¢) of the oscillation during the period is multiplied
by factorfr?" (range [0.1,1]) times factorf®. These parameters are able to account
rest/stress conditions; stress conditions are obtained e.g. increasing the time-averaged

flow rate.

The time-averaged flow rates ¢; and the profiles of ¢.(¢) employed in the current numerical

simulations have been adapted from [134] (LITA) and [140] (LCA and RCA). A plot is

. . ) 1. .
provided in Figure 6.1 for the reference cases factory, " = factory.”" = 1, corresponding

to time-averaged Reynolds number equal to 130 (LITA) and 100 (LCA and RCA).

o disease-related geometrical parameters: we consider different values of stenosis
severity. With the notation of Section 5.2.2.1, the section reduction parameter « of
the centerlines-based shape parametrization is considered as the geometrical parameter
related to native coronary artery disease. The location of the stenosis (denoted by
i in the aforementioned Section) and the extension of the stenosis region (previously
denoted by o) are instead obtained from the available clinical data. In case of double- or
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Figure 6.1: Inlet flow rates (LITA [134], LCA and RCA [140]).

triple-vessel coronary artery disease, multiple geometrical parameters «; are consider,
where 7 denotes the stenosed artery (e.g. 7 = LAD, LCX, RCA, etc.). Stenosis factors
vary in the range [0,90%)], in order to compare critical cases (a; > 70%) to non-critical
ones (a; < 70%). In fact, current clinical experience suggest that surgery should be
performed only for critical occlusions [124,218,224,225,251].

» surgery-related geometrical parameters: local variation to anastomoses are per-
formed by means of the centerlines-based shape parametrization, as detailed in Section
5.2.3. Current clinical experience suggests at least three possible termino-lateral (end-
to-side) anastomosis are employed in the clinical practice: antegrade (same direction for
graft flow and native vessel flow in the anastomosis), T-shaped (graft is perpendicular
to the native vessel) and retrograde (opposite directions for graft flow and native vessel
flow in the anastomosis). The ROM is employed to compare the haemodynamics in the
different cases. The grafting angle is considered as geometrical parameter, in the range
[25°,155°]; antegrade cases correspond to angles approximately equal to 45°, T-shaped
to 90°, and retrograde to 135°.

Flow patterns are analyzed in the following sections, for several patient-specific configu-
rations, by means of some of the fluid dynamics indices mentioned in the Introduction to
Part II. In particular, we will present and discuss results on wall shear stress (WSS), oscilla-
tory shear index (OSI), transversal velocity profiles, and pressure drops. Regions of interest
are the heel and toe of the graft, and the proximal and distal arterial floor near the anas-
tomosis (see also Figure 1.7). We refer to heel of the graft as the location of the proximal
suture line, while the toe of the graft refers to the distal suture line. The adjectives proximal
and distal are defined with respect to the direction of the flow in the native coronary artery.
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6.3 Fast haemodynamics simulations for several values of physical
parameters

In this section we apply the POD-Galerkin ROM for a fast evaluation of the fluid dynamics
in patient-specific CABGs, considering a variation of physical parameters (inflow boundary
conditions) only, in order to quantify the sensitivity of the haemodynamics in the patient-
specific configuration with respect to inlet flow rates.

6.3.1 Parametrization and reduced-order models details

Patient 1 7 9

Number of physical parameters 6 4 4
LCA inlet flow rate parameters 2 2 2
RCA inlet flow rate parameters 2 no no
LITA inlet flow rate parameters 2 2 2

Number of geometrical parameters 0 0 0

FE velocity order 2

FE pressure order 1

Total number of FE dofs 1325 530 [ 970 618 | 1 261 527

Temporal step 0.01

Number of time steps per cardiac cycle 80

CPU time for one cardiac cycle 11~13h L 8~9h L 10~12h

Ntrain 50

Nmax 50

M>_pop 20

Affine expansion components for m, a, b& c 1,1,1 \ 1, 1,1 \ 1,1,1

Table 6.1: Details of the reduced-order model.

Details of the reduced-order model are summarized in Table 6.1. The number of considered
physical parameters is reported for each patient; physical parameters are related to the
variation of inlet flow rates of left coronary artery, right coronary artery (if present) and
bypass grafts.

A Taylor-Hood Py, — P; FE discretization is employed for the space discretization; an
Implicit Euler method is considered for the time discretization. Niaim FE problems are
solved for random values of the parameters. A compression of the temporal trajectory by
means of the two-level POD, as detailed in Chapter 4, is performed considering only Ms pop
POD modes in the innermost POD. The offline stage is performed in parallel, for 24 ~ 32
Processors.

The truth solution for each sample point (and for each cardiac cycle) requires approxi-
mately 10 hours (to be multiplied by the number of processors to obtain the actual CPU
time). The online stage, instead, is performed on a single processor. Thanks to the consid-
erable reduction in the number of degrees of freedom (N, = N5 = N, = Npax) and efficient
offline-online procedure, each online ROM solution requires only a couple of minutes, with
computational savings in terms of user time of approximately 99%.
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Figure 6.2: Results of the offline stage: POD singular values for velocity, supremizers, pressure.
Figure 6.2 shows a plot of the POD singular values for velocity, supremizers, pressure.

The pattern is similar for the three studied patients; in all cases velocity (and supremizers)
feature a considerably slower decay than pressure.
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6.3.2 Numerical results

Patient 1

(a) Bypass grafts near the studied anastomosis. Colored arrows denote blood flow direction.
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Figure 6.3: Patient 1 - Y-graft between LITA and Radial. Comparison of time-averaged wall shear
stress [Pa] for different inflow boundary conditions.
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(a) Coronary arteries and bypass grafts near the studied anastomosis. Colored arrows denote
blood flow direction.
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Figure 6.4: Patient 1 - LITA to LAD anastomosis (flow-direction, termino-lateral). Comparison
of time-averaged wall shear stress [Pa] for different inflow boundary conditions.
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(a) Coronary arteries and bypass grafts near the studied anastomosis. Colored arrows denote
blood flow direction.
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Figure 6.5: Patient 1 - Radial to OM and LCX anastomosis (cross, latero-lateral). Comparison
of time-averaged wall shear stress [Pa] for different inflow boundary conditions.
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(a) Coronary arteries and bypass grafts near the studied anastomosis. Colored arrows denote
blood flow direction.
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Figure 6.6: Patient 1 - Radial to PDA anastomosis (T-shaped, termino-lateral). Comparison of
time-averaged wall shear stress [Pa] for different inflow boundary conditions.
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Patient 7

(a) Coronary arteries and bypass grafts near the studied anastomosis. Colored arrows denote
blood flow direction.
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Figure 6.7: Patient 7 - Y-graft between LITA and SVG, LITA to LAD (flow-direction, termino-
lateral), SVG to Diag (cross, latero-lateral). Comparison of oscillatory shear index for different

inflow boundary conditions.
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(a) Bypass grafts near the studied anastomosis. Colored arrows denote blood flow direction.
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Figure 6.8: Patient 7 - Y-graft between LITA and SVG. Comparison of time-averaged wall shear
stress [Pa] for different inflow boundary conditions.

128



6.3. Fast haemodynamics simulations for several values of physical parameters

Patient 9
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Figure 6.9: Patient 9 - Y-graft between LITA and Radial artery. Comparison of time-averaged wall
shear stress [Pa] for different inflow boundary conditions.
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(a) Coronary arteries and bypass grafts near the studied anastomosis. Colored arrows denote
blood flow direction.
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Figure 6.10: Patient 9 - LITA to Diag anastomosis (flow-direction, latero-lateral) and LITA
to LAD anastomosis (flow-direction, termino-lateral). Comparison of time-averaged wall shear
stress [Pa] for different inflow boundary conditions.
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(a) Coronary arteries and bypass grafts near the studied anastomosis. Colored arrows denote
blood flow direction.
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Figure 6.11: Patient 9 - Radial to OM anastomosis (flow-direction, termino-lateral). Compari-
son of time-averaged wall shear stress [Pa] for different inflow boundary conditions.

131



Chapter 6. Numerical results for patient-specific coronary artery bypass grafts

computationally reduced simulations

N

P4
-
P g

(a) Coronary arteries and bypass grafts near the studied anastomosis. Colored arrows denote
blood flow direction.

LITA LLLITA LITA LLLITA
(b) factory” =1, factory ™" =1 (c) factory” = 1.33, factory"" =1
ave,LCA __ ampl,LCA __ ave,LCA __ ampl,LCA __
factory, =1, factory, =1 factory, = 0.66, factory, =1

A

(d) factor§ o™ T4 =1.33, factorfy P TA = 0.5
factort?e A = 0.66, factor® P = 0.5

Figure 6.12: Patient 9 - LCX-OM bifurcation, Radial to OM anastomosis (flow-direction,
termino-lateral). Comparison of oscillatory shear index for different inflow boundary conditions.
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6.3.3 Discussion

Patient 1.

o Y-graft between LITA and Radial. Figure 6.3 shows a comparison of time-averaged wall
shear stress near the Y-graft for different inflow boundary conditions. (%) A region of
high wall shear stress is found near the Y-graft, for both LITA and Radial artery. (i)
This region is highly sensitive to the graft flow (factorfy™™"*), and features a larger

area for increasing graft flow.

e LITA to LAD anastomosis (flow-direction, termino-lateral). Figure 6.4 shows a compar-
ison of time-averaged wall shear stress near the LITA to LAD flow-direction anastomosis
for different inflow boundary conditions. (i) A region of high wall shear stress is found
in the graft near the anastomosis, and in the LAD distal to the anastomosis. (ii) An
increased factorfe“™™4 to factor{e “* ratio causes an increase of maximum WSS value
(compare figures (d) and (e) to (b) and (c)). (i) Moreover, a larger region of interme-

diate wall shear stress is present on the distal arterial bed. (iv) The size of this region

decreases with amplitude factors, especially for factor(]’%”:’LlTA = 1 (compare figure (b)

to figure (c)).

e Radial to OM and LCX anastomosis (cross, latero-lateral). Figure 6.5 shows a com-
parison of time-averaged wall shear stress near the Radial-OM-LCX cross anastomosis,
for different inflow boundary conditions. (i) A region of high wall shear stress is found

in the arterial beds of both OM and LCX distal to the anastomosis. (i) However, in
ave,LITA

contrast to the pattern most noticeable in the Y-graft, an increased factory, to
factoraR”ee’LCA ratio causes only a modest increment in the maximum WSS value. Also,

WSS patterns are not sensible in this case to amplitude factors. (7iz) Nevertheless, in all
four parametrized cases the maximum WSS near the OM (first cross anastomosis from
the top) is slightly larger than the one near the LCX (second cross anastomosis from
the top).

e Radial to PDA anastomosis (T-shaped, termino-lateral). Figure 6.6 shows a comparison
of time-averaged wall shear stress for different inflow boundary conditions. (%) The
magnitude of WSS is higher in the PDA arterial bed distal to the anastomosis than in
the proximal PDA and in the graft. Similar magnitude is also observed near the toe of
the graft. (i7) In this case the most important amplitude factor is the one related to
the RCA coronary artery itself rather than the LITA graft. In fact, a decrease of RCA
inlet flow rates affects the resulting WSS in the distal PDA, which also decreases, while
variation of inlet flow rate of LITA does not seem to affect this anastomosis. The latter
is due to the fact that other two coronary arteries have been already bypassed with the
radial artery (which was anastomized with a Y-graft to the LITA), so that the increased
blood flow to the LITA has been already redistributed to other native coronary arteries.
(ii1) Moreover the WSS at the anastomosis is lower than the one observed on the Radial-
OM-LCX cross anastomosis. This is in agreement with the previous discussion (Radial
to OM and LCX cross latero-lateral anastomosis), and shows that in sequential grafts
distal anastomoses feature lower time-averaged WSS than proximal anastomoses.

Patient 7.

o Y-graft between LITA and SVG, LITA to LAD (flow-direction, termino-lateral), SVG to
Diag (cross, latero-lateral). Figure 6.7 features a comparison of oscillatory shear index
for different inflow boundary conditions. (7) The Y-graft between the mammary artery
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and the saphenous vein grafts features high OSI. (i) An increased flow rate in the graft
causes flow reversal in the diagonal branch. (i7i) Moreover, an increased maximum to
average flow ratio causes flow reversal in the diagonal branch and higher OSI in the
saphenous vein graft.

o Y-graft between LITA and SVG. Figure 6.8 shows a comparison of time-averaged wall
shear stress for different inflow boundary conditions. (i) A region of high wall shear
stress is found near the Y-graft, for both LITA and SVG grafts. The region of high
WSS is larger in the SVG graft than in the LITA. (77) This region is highly sensitive to
the graft flow (factorfy™™'"*), and features a larger area for increasing graft flow. (i)
High WSS appear also in the LITA graft proximal to the Y-graft, especially where the
centerline features higher curvature. (7v) Average WSS values in the distal LITA are
lower than in the proximal LITA, because of the flow subdivision between the LITA and

SVG grafts.
Patient 9.

o Y-graft between LITA and Radial artery. The time-averaged WSS near the Y-graft is
shown in Figure 6.9. (i) The comparison of figures (b)-(c) and (d)-(e) reveals that, as
in the previous patients, an increased graft flow causes higher maximum values of WSS.
(7i) Regions of high WSS are located both proximally and distally to the suture line of
the Y-graft. (iii) A region of high WSS appears also in the distal LITA, but not in the
distal Radial artery. (7v) Amplitude factors have an influence mostly on the size of the
latter region, rather than the one near the suture line (compare figures (b) and (c)).

o LITA to Diag anastomosis (flow-direction, latero-lateral) and LITA to LAD anastomosis
(flow-direction, termino-lateral). A detailed view of the sequential LITA graft, which
features first a latero-lateral flow-direction anastomosis on a diagonal branch and a
termino-lateral flow-direction anastomosis on the LAD, is provided in Figure 6.10. (i)
A region of high WSS is present at the arterial bed of the latero-lateral anastomosis.
(i) The magnitude of WSS on the arterial bed at the latero-lateral is sensible both
to increased graft flow (compare figures (b) and (d)) and increased amplitude factors
(compare figures (c) and (b)). (%) The latero-lateral anastomosis features higher WSS
on the arterial bed than the termino-lateral anastomosis.

o LCX-OM bifurcation, Radial to OM anastomosis (flow-direction, termino-lateral). Fig-
ures 6.11 and 6.12 study the Radial to OM anastomosis. (i) Region of maximum OSI
are found at the LCX-OM bifurcation and at the radial-OM anastomosis, near the toe.
(ii) An increased graft flow factorr®“"# causes an increase of the region of high OSI
value for the radial-OM anastomosis. (i) Moreover, a decrease in amplitude factors
involves a reduction of the region of high OSI value for both LCX-OM bifurcation and
radial-OM anastomosis. (iv) Regions of low WSS are found near the toe and the heel of
the graft, while the arterial bed features highest WSS. (v) An increased graft flow causes
higher WSS at the arterial bed (compare figures 6.11(b) and 6.11(d)). (vi) Decreased
graft amplitude factors contribute in a larger region of low WSS (stagnation) near the
toe of the graft and lower WSS at the arterial bed (compare figures 6.11(b) and 6.11(c)).
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6.4 Fast haemodynamics simulations for several values of stenoses
severity

In this section we apply the POD-Galerkin ROM and the centerlines-based parametrization
for a fast evaluation of the haemodynamics in patient-specific CABGs considering different
values of stenoses severity, in order to compare critical and non-critical stenoses, and possibly
also allowing for a variation of physical parameters (inflow boundary conditions).

6.4.1 Parametrization and reduced-order models details

Patient 1 3 4 7 12 13

Num. physical parameters 6 4 4 4 4 6
LCA inlet flow rate parameters 2 2 2 2 2 2
RCA inlet flow rate parameters 2 no no no no 2
LITA inlet flow rate parameters 2 2 2 2 2 2

Num. geometrical parameters 3 2 2 3 2 4
LCA parametrized stenosis no no no 1 no no
LAD/Diag parametrized stenosis 1 2 2 1 2 2
LCX/OM parametrized stenosis 1 no no 1 no 1
RCA parametrized stenosis 1 no no no no 1

FE velocity order 2

FE pressure order 1

Total number of FE dofs

1325530 [ 813197 [ 1325044 [ 970 618 | 1624 370 | 1 426 060

Temporal step 0.01

Num. time steps/cardiac cycle 80

CPU time for one cardiac cycle

11~13h [ 4~7h [11~13h[ 9~12h [12~15h | 9~1lh

= - = = =

Ntrain 50
Nmax 50
M2 pop 20
Affine exp. comp. for m, a, b&c || 14, 36, 37 | 28, 53, 40 | 15, 39, 38 | 19, 42, 40 | 38, 57, 43 | 19, 48, 33

Table 6.2: Details of the reduced-order model.

Details of the reduced-order model are summarized in Table 6.2. The number of considered
physical and geometrical parameters is reported for each patient; physical parameters are
related to the variation of inlet flow rates of left coronary artery, right coronary artery (if
present) and bypass grafts. The entities of several stenoses are considered as geometrical
parameters. The location of the stenoses is also summarized.

As in the previous section, a Taylor-Hood P, — P; FE discretization is employed for the
space discretization; an Implicit Euler method is considered for the time discretization. Nipain
time-dependent FE problems are solved for random values of the parameters, and Ms pop
POD modes are retained in the two-level POD.

The offline stage is performed in parallel, for 24 ~ 32 processors. The truth solution
for each sample point (and for each cardiac cycle) requires approximately 10 hours (to be
multiplied by the number of processors to obtain the actual CPU time). The online stage,
instead, is performed on a single processor. When compared to the previous case (physical
parametrization only), slightly higher CPU times are required; this is motivated by the
fact that additional computations are required in the evaluation of the centerlines-based
parametrization. Thanks to the considerable reduction in the number of degrees of freedom
(Ny = Ns = N, = Npax) and efficient offline-online procedure, each online ROM solution
requires from 5 to 15 minutes. Online CPU times are higher than the case with no geometrical
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parameters because of larger affine expansions, but computational savings are still consistent
(more than 95%).
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(a) Patient 1: POD singular values (b) Patient 4: POD singular values (c) Patient 12: POD singular values
for velocity, supremizers, pressure for velocity, supremizers, pressure for velocity, supremizers, pressure
(solid lines). (solid lines). (solid lines).

Figure 6.13: Results of the offline stage: POD singular values for wvelocity, supremizers, pressure. Solid
lines: physical parametrization and stenosis variation; dotted lines: physical parametrization only.

Figure 6.13 shows a plot of the POD singular values for velocity, supremizers, pressure.
The pattern is similar for the three studied patients; in all cases velocity (and supremizers)
feature a considerably slower decay than pressure. A comparison, on the same patient,
between the case of physical parametrization only (dotted lines) and physical parametrization
and stenosis variation (solid lines) is also shown. Slower decay is the result of additional
geometrical parameters.
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6.4.2 Numerical results

Patient 4

Parametrized
LAD stenosis 1

Parametrized
LAD stenosis 2

Figure 6.14: Patient j - location of parametrized stenoses. Two LAD stenoses have been considered.
Their area reduction can be varied, and is denoted by arap,1 and apap,2.

(a) Coronary arteries and bypass grafts near the stud-
ted anastomosis. Colored arrows denote blood flow
direction.
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Figure 6.15: Patient 4 - LITA to Diag anastomosis (flow-direction, latero-lateral), second LAD
stenosis. Comparison of the oscillatory shear index for different inflow boundary conditions and stenosis.
(continued on next page).
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Figure 6.15: Patient 4 - LITA to Diag anastomosis (flow-direction, latero-lateral), second LAD
stenosis. Comparison of the oscillatory shear index for different inflow boundary conditions and stenosis.
(continued on next page).
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Figure 6.15: Patient 4 - LITA to Diag anastomosis (flow-direction, latero-lateral), second LAD
stenosis. Comparison of the oscillatory shear index for different inflow boundary conditions and stenosis.
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Patient 7
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Figure 6.16: Patient 7. Dependence of the mazimum wall shear stress [Pa] near the stenosis on Reynolds
number and stenosis factors.
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(a) Coronary arteries near the studied bifurcation. Colored ar-
rows denote blood flow direction.
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Figure 6.17: Patient 7 - LAD-LCX bifurcation. Comparison of time-averaged wall shear stress [Pa]
for different inflow boundary conditions and stenosis.
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Parametrized
LCX stenosis

(a) Coronary arteries and bypass grafts near the studied bifurca-
tion. Colored arrows denote blood flow direction.
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Figure 6.18: Patient 7 - LCX-OM bifurcation. Comparison of time-averaged wall shear stress [Pa],
both pre- and post-surgery, for different inflow boundary conditions and stenosis. (continued on next page)
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Figure 6.18: Patient 7 - LCX-OM bifurcation. Comparison of time-averaged wall shear stress [Pa]
both pre- and post-surgery, for different inflow boundary conditions and stenosis.
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Patient 3

(a) Bypass grafts near the studied anastomosis. Colored arrows denote blood flow direction.
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Figure 6.19: Patient 3 - Y-graft between LITA and Radial artery. Comparison of time-averaged
wall shear stress [Pa] for different inflow boundary conditions.
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(a) Coronary arteries near the studied bifurcations. Colored arrows denote blood flow direction.
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Figure 6.20: Patient 3 - LAD-LCX and LAD-Diag bifurcations. Comparison of time-averaged wall
shear stress [Pa] for different inflow boundary conditions and stenosis.
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(a) Coronary arteries and bypass grafts near the studied anastomoses. Colored arrows denote

blood flow direction.
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Figure 6.21: Patient 8 - From top-right to bottom-left: LITA-Diag anastomosis (flow-direction,
latero-lateral), LITA-LAD anastomosis (flow-direction, latero-lateral), LITA-LAD anasto-
mosis (flow-direction, termino-lateral). Comparison of time-averaged wall shear stress [Pa] for
different inflow boundary conditions and stenosis.
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(a) Coronary arteries and bypass grafts near the studied anastomosis. Colored arrows denote
blood flow direction.
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Figure 6.22: Patient 3 - Radial-LCX anastomosis (flow-direction, termino-lateral). Comparison
of time-averaged wall shear stress [Pa] for different inflow boundary conditions and stenosis.
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Patient 1
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Figure 6.23: Patient 1. Dependence of the normalized pressure drop at the stenosis on Reynolds number
and stenosis factors.
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Patient 12
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(a) Bypass grafts near the studied anastomosis. Colored arrows denote blood flow direction.
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Figure 6.24: Patient 12 - Y-graft between LITA and SVG. Comparison of time-averaged wall shear
stress [Pa] for different inflow boundary conditions.
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(a) Coronary arteries near the studied bifurcations. Colored arrows denote blood flow direction.
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Figure 6.25: Patient 12 - From top-right to bottom-left: LAD-LCX and LAD-Diag bifurcations,
SVG-Diag anastomosis (flow-direction, termino-lateral). Comparison of time-averaged wall shear
stress [Pa] for different inflow boundary conditions and stenosis.
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Patient 13
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(a) Bypass grafts near the studied anastomosis. Colored arrows denote blood flow direction.
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Figure 6.26: Patient 13 - Y-graft between LITA and SVG. Comparison of time-averaged wall shear
stress for different inflow boundary conditions.
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Figure 6.27: Patient 13 - From top-right to bottom-left: LAD-Diag bifurcation, LITA-
Diag anastomosis (flow-direction, latero-lateral), LITA-LAD anastomosis (flow-direction,
termino-lateral). Comparison of time-averaged wall shear stress for different inflow boundary conditions
and stenosis.
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Figure 6.28: Patient 18 - SVG-LCX anastomosis (cross, latero-lateral). Comparison of time-
averaged wall shear stress for different inflow boundary conditions and stenosis.
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6.4.3 Discussion
Patient 4.

o LITA to Diag anastomosis (flow-direction, latero-lateral), second LAD stenosis. Results
in Figure 6.15 highlight that:

— Amplitude factors: comparing the figures by row (e.g. (b) and (c), (d) and (e),
etc.) it can be noted that amplitude factors do not have significant effects on the
OSI for healthy (arap2 = 0%) or non critical stenosis (apap2 = 50%). However, a
complex variation of OSI patterns with respect to amplitude factors can be noted
for the case with critical stenoses (apap2 = 90%), comparing Figures (f) and (g),
(n) and (o).

— LITA time-averaged flow factor: comparing figures (a)-(i) and (j)-(o) it can be
remarked that larger LITA flow rates has significant effect in the stenotic case,
causing a larger OSI value in the LITA-Diag anastomosis and entailing also smaller
OSI values in the region proximal to the second LAD stenosis.

— Stenoses: regions both proximal and distal to the second LAD stenoses feature
high OSI in the critical case (apap2 = 90%), being more widespread for increasing
amplitude factors and decreasing LITA time-averaged flow factor. Moreover, all
healthy and non-critical cases feature high OSI in the LITA to Diag anastomosis,
because an high residual flow can still go through the native vessel. Instead, for
critical LAD —1 and LAD — 2 stenoses, three out of four cases (figures (f), (g), (o),
but not figure (n)), feature smaller OSI. Finally, in the study of this anastomosis
the LAD — 2 stenosis is more critical then the LAD — 1: in fact, no significantly
different flow patterns can be observed for non-critical LAD —2 and critical LAD —1
(compare e.g. figures (d) and (h), (e) and (i)).

Patient 7.

e Dependence of the maximum WSS near the stenosis on Reynolds number and stenosis
factors. A test to assess the reliability of the reduced-order model, and its ability to span
over the entire parametric range (increasing inlet flow rates, and critical to non critical
stenoses) is performed. The maximum value of wall shear stress in each one of the three
stenosis (LCA, LCX, LAD) is computed. Resulting patterns are shown in Figure 6.16,
and show a monotonically increasing value of WSS, both with respect to inlet flow rates
and stenosis severity. WSS is higher in the LCA stenosis than in the LCX and LAD
ones; this is motivated by the fact that the blood flow in the LCA is split between LAD
and LCX.

o LAD-LCX bifurcation. Figure 6.17 provides a detailed view of the LCA stenosis and
LAD-LCX bifurcation. The arterial wall near the bifurcation features high WSS; max-
imum WSS values are influenced both by the inlet flow rate at the LCA ostium and
the severity of the LCA stenosis. In fact, lower values of the former parameter cause
a smaller region of high WSS (compare figures (b)-(c) to (d)-(e)). Moreover, the im-
pingement of the jet of high velocity, formed by critical stenosis, on the arterial wall, is
an additional cause of higher WSS, regardless of the inlet flow rates (compare figures
(b)-(d) to (c)-(e)). Figure (f) provides a confirmation of this phenomena for a wide
range of stenosis severity and inlet flow rates.

o LCX-OM bifurcation. A similar study is performed for the LCX-OM bifurcation. Figure
6.18 shows the time-averaged wall shear stress patterns both before and after the surgery.
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The pattern of WSS at the bifurcation before the surgery, summarized in figure (j), is
similar to the one at the LAD-LCX bifurcation (although smaller values of WSS are
identified). In contrast, after the surgery maximum values of WSS are not sensible
anymore to neither LCA inlet flow rate and stenosis factor. This is motivated by the
fact that, in this case, the SVG graft is the main source of blood flow for both LCX and
OM branches.

Patient 3.

o Y-graft between LITA and Radial artery. A comparison of the WSS near the Y-graft for
increasing inlet flow rates at the LITA graft is shown in Figure 6.19. The anastomosis
near the Y-graft features local high values of WSS, both distally and proximally. Higher
WSS is present in the LITA graft than in the Radial artery.

o LAD-LCX and LAD-Diag bifurcations. Figure 6.20 studies the LAD-LCX and LAD-
Diag bifurcations, and LAD stenosis. As in the previous patient, local high regions of
WSS are located at arterial walls near bifurcations. A recirculation region is also appar-
ent downstream the stenosis (figures (d) and (e)), as highlighted by WSS approximately
equal to zero.

e LITA-Diag anastomosis (flow-direction, latero-lateral), LITA-LAD anastomosis (flow-
direction, latero-lateral), LITA-LAD anastomosis (flow-direction, termino-lateral). The
sequential LITA graft is studied in Figure 6.21. It is composed of three anastomoses:
LITA-Diag anastomosis (flow-direction, latero-lateral), LITA-LAD anastomosis (flow-
direction, latero-lateral) and LITA-LAD anastomosis (flow-direction, termino-lateral).
The first anastomosis is the most critical, as it features the highest WSS values; WSS
gradually decreases at the remaining anastomoses. LAD is divided in two segments by
the second anastomosis (the first one contains a stenosis); higher WSS are present in
the second segment, because it is perfused by the blood coming from the LITA graft,
especially in the case of increased coronary flow rates. In a similar way, higher WSS is
observed in the LITA (especially in its second segment) if graft flow rate is increased.

e Radial-LCX anastomosis (flow-direction, termino-lateral). Finally, the anastomosis be-
tween Radial artery and LCX is shown in Figure 6.22. A region of high WSS is located
at the arterial bed (figures (d) and (e)). In this anastomosis, in contrast to the sequen-
tial graft, an increased flow rate does not cause significant differences (compare figures
(b) and (c), (d) and (e)). The additional blood flow is thus fully routed to the triple
sequential LITA graft.

Patient 1.

o Dependence of the pressure drop at the stenosis on Reynolds number and stenosis factors.
Figure 6.23 shows the result of a test to assess the capability of the pressure recovery of
the supremizer-stabilized ROM on patient-specific geometries, computing the pressure
drop at the stenosis. For each one of the considered stenosis, an increasing pressure drop
is observed both with Reynolds number and stenosis severity. It is relevant to be able
to produce such plots in the medical practice, especially in the pre-surgical phase. In
fact, some clinical exams to detect the presence of a stenosis are based on experimental
measures of pressure drops. A plot similar to Figure 6.23 can then be employed to
precisely quantify the severity of the stenosis.
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Patient 12.

o Y-graft between LITA and SVG. Figure 6.24 provides a comparison of the WSS at the
Y-graft between LITA and SVG, for increasing LITA flow rate. The anastomosis of
the Y-graft is a critical region, as in the previous cases (e.g. Patient 3). Other regions
of high WSS are located where the LITA graft features high curvature. A correlation
between increased graft flow rate and increased maximum WSS can be detected.

o LAD-LCX and LAD-Diag bifurcations, SVG-Diag anastomosis (flow-direction, termino-
lateral). A study of the SVG-Diag anastomosis is performed in Figure 6.25. The anas-
tomosis features high WSS. A recirculation region (highlighted by zero magnitude of
WSS) is observed in the distal native coronary artery, near the toe of the graft. Instead,
the arterial bed features high WSS, because of the blood flow from the graft.

Patient 13.

o Y-graft between LITA and SVG. Figure 6.26 provides a comparison of the WSS at the
Y-graft between LITA and SVG, for increasing LITA flow rate. Both the anastomosis
of the Y-graft and LITA segments characterized by high curvature are critical regions.
However, in contrast to the previous patient, values of WSS are higher proximally to

the anastomosis than distally; this is related to the larger diameter that characterizes
the SVG in this case.

e LAD-Diag bifurcation, LITA-Diag anastomosis (flow-direction, latero-lateral), LITA-
LAD anastomosis (flow-direction, termino-lateral). Figure 6.27 details the double se-
quential graft (LITA-Diag-LAD). Higher values of WSS are observed for the latero-
lateral LITA-Diag anastomosis, than the termino-lateral LITA-LAD. The effect of in-
creased LCA flow rates is visible at the LAD-Diag bifurcation, and is the source of a
region of locally higher WSS at the LAD wall both proximally and distally the bifurca-
tion. Increased LITA flow rates are a possible cause of larger critical regions both on
the arterial bed and at the anastomosis at the LITA-Diag anastomosis.

o SVG-LCX anastomosis (cross, latero-lateral). The SVG-LCX anastomosis is studied in
Figure 6.28. A region of high WSS is located on the arterial bed distal to the cross
anastomosis. Increased LCX flow rates, both as a consequence of increased native LCA

flow rates or decreased stenosis, have a significant impact on the local pattern of the
WSS in this region.
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6.5 Fast haemodynamics simulations for several types of anasto-
mosis

In this section we apply the POD-Galerkin ROM and the centerlines-based parametrization
for a fast evaluation of the fluid dynamics in patient-specific CABGs considering a variation
of stenoses severity and anastomoses type (antegrade, T-shaped, retrograde), in order to
perform a comparison based on both “input data” (stenoses severity) and “surgical control
variables” (anastomoses type).

6.5.1 Parametrization and reduced-order models details

Patient 2 6 15

Number of physical parameters 0 0 0

Number of geometrical parameters 3 3 2
LCA parametrized stenosis no no no
LAD/Diag parametrized stenosis 1 1 1
LCX/OM parametrized stenosis no no no
RCA parametrized stenosis 1 1 no
Parametrized anastomosis 1 (Rad-PL) | 1 (SVG-PDA) | 1 (LITA-LAD)

FE velocity order 2

FE pressure order 1

Total number of FE dofs 1826495 | 2038891 | 12190918

Temporal step 0.01

Number of time steps per cardiac cycle 80

CPU time for one cardiac cycle 12~15h L 15~ 18 h L 11~13h

Ntrain " 50 -

Nmax 50

M> pop 20

Affine expansion components for m, a, b&c || 49, 163, 61 45, 154, 60 37, 133, 53

Table 6.3: Details of the reduced-order model.

Details of the reduced-order model are summarized in Table 6.3. The number of considered
geometrical parameters is reported for each patient; no physical parameters are considered
in this analysis (the multiplicative and amplitude factors on the flow rate are chosen equal
to one). Both entities of one or more stenoses and variation of end-to-side anastomosis are
considered as geometrical parameters. The location of the stenoses is summarized, alongside
with the parametrized anastomosis.

As in the previous sections, a Taylor-Hood P, — IP; FE discretization is employed for the
space discretization; an Implicit Euler method is considered for the time discretization. Ni;ain
time-dependent FE problems are solved for random values of the parameters, and Ms pop
POD modes are retained in the two-level POD.

The offline stage is performed in parallel, for 24 ~ 32 processors. The truth solution
for each sample point (and for each cardiac cycle) requires approximately 13 hours (to be
multiplied by the number of processors to obtain the actual CPU time). The online stage,
instead, is performed on a single processor. Thanks to the considerable reduction in the
number of degrees of freedom (N, = Ny = N, = Npax) and efficient offline-online procedure,
each online ROM solution requires from 25 to 35 minutes. As in the previous section, online
CPU times are higher than the case with no geometrical parameters because of considerably
larger affine expansions, but computational savings are still remarkable (more than 95%).
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6.5.2 Numerical results

Patient 15
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Figure 6.29: Patient 15 - LITA to LAD anastomosis (termino-lateral). Comparison of wall shear
stress [Pa] at different phases of the cardiac cycle for three anastomoses types (from left to right: antegrade,
T-shaped, retrograde). Prozimal stenosis: 90%.
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Figure 6.30: Patient 15 - LITA to LAD anastomosis (termino-lateral). Comparison of wall shear
stress [Pa] at different phases of the cardiac cycle for three anastomoses types (from left to right: antegrade,
T-shaped, retrograde). Proximal stenosis: 60%.
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Figure 6.31: Patient 15 - LITA to LAD anastomosis (termino-lateral). Comparison of wall shear
stress [Pa] at different phases of the cardiac cycle for three anastomoses types (from left to right: antegrade,
T-shaped, retrograde). Proximal stenosis: 0%.
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(a) t =0.15s

(c) t =0.55s

Figure 6.33: Patient 15 - LITA to LAD anastomosis (termino-lateral). Comparison of normalized transversal velocity profiles at different phases
of the cardiac cycle for three anastomoses types (from top to bottom: antegrade, T-shaped, retrograde; from left to right: increasing distance from the

anastomosis). Prozimal stenosis: 60%.
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Figure 6.35: Patient 15 - LITA to LAD anastomosis (termino-lateral). Comparison of the pressure
drop [mmHyg] in the anastomosis at different phases of the cardiac cycle for three anastomoses types (from
left to right: antegrade, T-shaped, retrograde). Proximal stenosis: 90%.
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Figure 6.36: Patient 15 - LITA to LAD anastomosis (termino-lateral). Comparison of the pressure
drop [mmHyg] in the anastomosis at different phases of the cardiac cycle for three anastomoses types (from
left to right: antegrade, T-shaped, retrograde). Prozimal stenosis: 60%.
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Figure 6.37: Patient 15 - LITA to LAD anastomosis (termino-lateral). Comparison of the pressure
drop [mmHyg] in the anastomosis at different phases of the cardiac cycle for three anastomoses types (from
left to right: antegrade, T-shaped, retrograde). Proximal stenosis: 0%.
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(a) Mazimum wall shear stress [Pa] at the arterial bed as a function of the anastomosis angle.

Maximum WSS at the heel of the anastomosis (log scale)
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(b) Mazimum wall shear stress [Pa] at the heel of the anastomosis as a function of the anas-
tomosis angle.

Maximum WSS at the heel of the anastomosis / maximum WSS at the arterial bed (log scale)

angle [°]

(c) Ratio between maximum wall shear stress at the heel of the anastomosis over mazimum
wall shear stress at the arterial bed as a function of the anastomosis angle.

Figure 6.38: Patient 15 - LITA to LAD anastomosis (termino-lateral). Dependence of the maxi-
mum wall shear stress [Pa] on the anastomosis angle, at different locations near the anastomosis.
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Figure 6.39: Patient 6 - SVG to PDA anastomosis (termino-lateral). Comparison of wall shear
stress [Pa] at different phases of the cardiac cycle for three anastomoses types (from left to right: antegrade,

T-shaped, retrograde). Prozimal stenosis: 90%.
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Figure 6.40: Patient 6 - SVG to PDA anastomosis (termino-lateral). Comparison of wall shear
stress [Pa] at different phases of the cardiac cycle for three anastomoses types (from left to right: antegrade,

T-shaped, retrograde). Prozimal stenosis: 80%.
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(c) t=10.55s (d) t=0.8s

Figure 6.41: Patient 6 - SVG to PDA anastomosis (termino-lateral). Comparison of wall shear
stress [Pa] at different phases of the cardiac cycle for three anastomoses types (from left to right: antegrade,
T-shaped, retrograde). Proximal stenosis: 60%.
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Figure 6.42: Patient 6 - SVG to PDA anastomosis (termino-lateral). Comparison of wall shear
stress [Pa] at different phases of the cardiac cycle for three anastomoses types (from left to right: antegrade,
T-shaped, retrograde). Proximal stenosis: 0%.
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Figure 6.43: Patient 2 - Radial to PL anastomosis (termino-lateral). Comparison of wall shear
stress [Pa] at different phases of the cardiac cycle for three anastomoses types (from left to right: antegrade,
T-shaped, retrograde). Proximal stenosis: 90%.
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Figure 6.44: Patient 2 - Radial to PL anastomosis (termino-lateral). Comparison of wall shear
stress [Pa] at different phases of the cardiac cycle for three anastomoses types (from left to right: antegrade,
T-shaped, retrograde). Proximal stenosis: 80%.
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Figure 6.45: Patient 2 - Radial to PL anastomosis (termino-lateral). Comparison of wall shear
stress [Pa] at different phases of the cardiac cycle for three anastomoses types (from left to right: antegrade,
T-shaped, retrograde). Prozimal stenosis: 60%.
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Figure 6.46: Patient 2 - Radial to PL anastomosis (termino-lateral). Comparison of wall shear
stress [Pa] at different phases of the cardiac cycle for three anastomoses types (from left to right: antegrade,
T-shaped, retrograde). Proximal stenosis: 0%.
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Figure 6.47: Patient 2 - Radial to PL anastomosis (termino-lateral). Comparison of oscilla-
tory shear index at different phases of the cardiac cycle for three anastomoses types (from left to right:
antegrade, T-shaped, retrograde).
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Figure 6.48: Patient 2 - Radial to PL anastomosis (termino-lateral). Comparison of normalized transversal velocity profiles at different phases

of the cardiac cycle for three anastomoses types (from top to bottom: antegrade, T-shaped, retrograde; from left to right: increasing distance from the
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Figure 6.50: Patient 2 - Radial to PL anastomosis (termino-lateral). Comparison of normalized transversal velocity profiles at different phases
of the cardiac cycle for three anastomoses types (from top to bottom: antegrade, T-shaped, retrograde; from left to right: increasing distance from the
anastomosis). Prozimal stenosis: 60%.
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Figure 6.52: Patient 2 - LITA to LAD anastomosis (termino-lateral). Comparison of oscillatory
shear indez at for decreasing proximal stenosis (from top to bottom: 90%, 80%, 60%, 0%).

6.5.3 Discussion

The comparison is carried out for four different times: ¢t = 0.15 s (peak LITA flow in systolic
phase), t = 0.4 s (minimum LITA flow), t = 0.55 s (maximum LITA and LCA flow), t = 0.8s
(end diastole).

Patient 15.

o LITA to LAD anastomosis (termino-lateral) — WSS comparison. Figures 6.29, 6.30 and
6.31 show a comparison of wall shear stress at different phases of the cardiac cycle for
three anastomoses types (from left to right: antegrade, T-shaped, retrograde) and for
three different values of stenosis (90%, 60%, 0%).

—t=0.15 sand t = 0.55 s: both T-shaped and retrograde anastomosis feature worse
patterns than the antegrade anastomosis. This conclusion is based on the following
facts: (i) at the distal arterial floor, maximum WSS values in the T-shaped and
retrograde cases are approximately two times higher than the antegrade case. This
pattern is unaltered with different stenosis severities. (7i) Intermediate WSS values
are also observed in the proximal part of the arterial floor. This region is larger for
T-shaped and retrograde anastomoses than the antegrade, although minimum and
maximum value are not affected by the anastomosis type. Moreover, this region
appears to enlarge (in particular at t = 0.15 s) as the degree of proximal stenosis
decreases, because of the higher residual flow in the native coronary. (7i) The region
downstream to the toe features low WSS; for the T-shaped anastomosis, however, a
smaller area of slightly higher WSS is present. (iv) Overall, higher WSS is present
in the graft and in the distal coronary artery than in the proximal native artery,
due to the higher blood flow.

—t = 0.4 s: no sensible differences can be observed among the three anastomosis
types at this time step. In particular: (i) WSS of the same order of magnitude
is observed in both the graft and the LAD. (7i) The toe of the graft features high
values of WSS; the area of the region of high WSS slightly increases as the proximal
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stenosis decreases. (7ii) The region of highest WSS on the arterial floor is more
downstream in the T-shaped and retrograde cases than in the antegrade case; how-
ever, apart from this region, the magnitude of the WSS on the proximal arterial
floor is comparable to the magnitude on the distal part. (7v) The magnitude of the
maximum WSS increases for decreasing stenosis.

— t = 0.8 s: both T-shaped and retrograde anastomosis feature worse patterns than
the antegrade anastomosis. In particular: (i) a region of high WSS is present near
the toe of the graft for both T-shaped and retrograde; this region is however not
present in the antegrade case. Maximum WSS in the former case are approximately
two times higher than the latter. This behavior is not influenced by the stenosis.
(77i) The proximal arterial floor features low WSS, while the distal arterial floor
features higher values of WSS. This behavior is different than the one observed at
t = 0.15 s. (iv) Low WSS is also computed in the region downstream to the toe;
T-shaped and retrograde anastomosis feature a wider region of low WSS.

Thanks to the fast evaluation of the reduced-order model it is possible to study the
behavior of the WSS for several different configurations of antegrade, T-shaped and
retrograde grafts, characterized by different grafting angles 6 (antegrade: 6 < 90°, T-
shaped: 6 ~ 90°, retrograde: 6 > 90°). Figure 6.38(a) shows the maximum WSS at
the arterial bed as a function of the anastomosis angle and time. This plot shows, in
agreement with the previous discussion, that WSS increases with the grafting angle at
t =0.15 s and t = 0.55 s. Figures 6.38(b)-(c) study also the WSS at the heel of the
anastomosis. For small anastomosis angles (antegrade anastomoses) WSS at the heel
and at the arterial floor are comparable in the whole time interval, except that in a
neighborhood of ¢ = 0.4, when WSS at the heel is smaller than WSS at the bed. This
is the most favorable condition. In contrast, for larger anastomosis angles, the ratio
between WSS at the heel and WSS at the arterial floor is smaller than one, except for
t = 0.4 s. Local minima are found near T-shaped configurations: this is caused both
by the increasing WSS at the arterial floor, and WSS at the heel that is decreasing for
6 < 90° and increasing for 8 > 90°.

LITA to LAD anastomosis (termino-lateral) — transversal velocity profiles comparison.
The analysis of transversal velocity profiles (normalized by the maximum velocity in the
anastomosis, at the same time), carried out in Figures 6.32, 6.33 and 6.34, highlights the
formation of Dean vortices in the region of the anastomosis. A comparison of transversal
velocity profiles at different phases of the cardiac cycle for three anastomoses types,
different values of stenosis (90%, 60%, 0%) is carried out at increasing distance from
the anastomosis. The formation of at least two Dean vortices is observed in all cases,
and at all times. (7) Peak values of transversal velocity are reached at ¢t = 0.55 s, when
both LITA and LCA feature maximum flow. (%) Minimum values over the whole time
interval are reached at ¢ = 0.4 s, when LITA flow is minimum. (44) Dean vortices
are dissipated more quickly in the antegrade anastomosis than in the T-shaped and
retrograde ones. (iv) Although it is apparent that antegrade anastomosis features lower
transversal than both T-shaped and retrograde anastomoses in the section closest to the
anastomosis, a comparison among the latter cases yields different results for different
time steps (¢t = 0.15 s: T-shaped features higher transversal velocity; the opposite is
true instead for t = 0.4 s and ¢t = 0.8 s, while a similar behavior among the two cases is
observed for ¢t = 0.55 s). (v) A third vortex may be formed in retrograde anastomosis,
especially for high stenosis and a peak LITA flow. This is particularly apparent in the
second slice on the third row of Figure 6.32(a).
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o LITA to LAD anastomosis (termino-lateral) — pressure drop comparison. Figures 6.35,
6.36 and 6.37 show a comparison of the pressure drop in the anastomosis. The pressure
drop is minimum for antegrade anastomosis; T-shaped and retrograde anastomoses fea-
ture instead an higher pressure drop. An higher pressure drop is obtained decreasing the
stenosis severity; this is a strong confirmation of the clinical experience that a CABG
surgery should be performed only for critical stenoses (greater than 70%).

Patient 6.

o SVG to PDA anastomosis (termino-lateral) — WSS comparison. Figures 6.39, 6.40, 6.41
and 6.42 show a comparison of wall shear stress at different phases of the cardiac cycle
for three anastomoses types and for four different values of stenosis (90%, 80%, 60%,
0%). Remarkable differences can be highlighted with respect to Patient 15. Those
differences are because of the different graft material. In fact, while a LITA (arterial)
graft was employed in Patient 15, in this case a SVG (venous) graft is studied, which
is characterized by a larger radius. (i) WSS on the graft is lower than WSS in the
distal arterial floor. This is in contrast to the arterial anastomosis case, where those
WSS values were of the same order of magnitude. This is motivated by the larger
diameter of the SVG graft. (7i) In the retrograde case, maximum values of WSS are
observed on the lateral arterial surface distal to the anastomosis and near the toe of the
graft. The magnitude in these regions is almost twice the magnitude in the antegrade
and T-shaped cases. (iii) Antegrade and T-shaped anastomoses behave similarly at
t =015 s, t = 0.55 s and t = 0.8 s; intermediate WSS values (approximately half
than the retrograde case) are obtained near the toe and distal to the anastomosis. At
t = 0.4 s, instead, retrograde and T-shaped anastomoses behave in similar way, with
comparable values of WSS near the toe.

Patient 2.

e Radial to PL anastomosis (termino-lateral) — WSS comparison, OSI comparison. Fig-
ures 6.43, 6.44, 6.45 and 6.46 show a comparison of wall shear stress at different phases
of the cardiac cycle for three anastomoses types and for four different values of stenosis
(90%, 80%, 60%, 0%). OSI is showed in Figure 6.47. The analysis in this case is similar
to the one carried out for Patient 6. Moreover: (7) the arterial floor close to the anas-
tomosis features a region of low WSS at ¢t = 0.4 s and ¢t = 0.8 s. This is in contrast to
Patient 15, where local maxima of WSS were present in the same region. This different
behavior is also related to the larger radius of the Radial artery graft than the LITA
graft. The same region features high OSI values. (i) Maximum WSS values at t = 0.8 s
increase as the stenosis decreases: this is in agreement with the current clinical practice,
that prescribes the usage of radial artery as a graft only when stenosis is greater than
70%. Maximum values are located near the heel of the graft. The region also features
intermediate OSI values.

» Radial to PL anastomosis (termino-lateral) — transversal velocity profiles comparison.
The analysis of transversal velocity profiles, carried out in Figures 6.48, 6.49, 6.50 and
6.51, highlights that Dean vortices may appear in the region of the anastomosis. In
contrast to the LITA-LAD anastomosis in Patient 15: (7) transversal velocity maximum
value is the same for t = 0.15 s and ¢ = 0.55 s. (7)) No Dean vortices appear at t = 0.4 s.
(7i) The magnitude of transversal velocity is lower than the one observed in Patient 15,
for all considered time steps. (7v) A third vortex does not appear in the retrograde case.

o LITA to LAD anastomosis (termino-lateral) — OSI comparison. Figure 6.52 shows the
OSI for the LITA to LAD anastomosis. OSI assumes its maximum value in the LAD,
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proximal to the anastomosis, and near the toe of the graft. Moreover, a larger area of
maximum OSI can be noted near the toe of the graft for decreasing proximal stenosis;
this is motivated by the higher residual flow in the LAD.
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CHAPTER

Conclusions and perspectives

7.1 Conclusions

A computational framework for the study of the haemodynamics in patient-specific config-
urations of coronary artery bypass grafts (CABGs) has been proposed in this thesis. This
framework is composed of three Parts:

L.

I1.

in the first Part, concerning clinical data and medical imaging, a pipeline for the acqui-
sition of patient-specific geometries has been described.

The current clinical dataset presents a broad variability of both disease and surgical
intervention, with the aim of being representative of the most common cases. To the
best of our knowledge, although few recent works have been devoted to the study of
patient-specific CABGs, our current dataset is significantly wider than any of the pre-
vious studies. This is an important contribution of the present work, especially in the
study of complex sequential grafting procedures (Y-graft of the internal mammary artery
with radial artery or saphenous vein, and successive anastomoses to obtain a complete
revascularization of the heart) that are widely employed in the clinical practice but not
yet completely studied from a numerical standpoint.

A medical imaging pipeline has been setup to build a mesh from CT-scan clinical data.
Even though it is partially based on existing software toolboxes, their combination (filters
to enhance the image, level set segmentation, centerline extraction, tubular structure
representation), their specialization to the case of CABGs and its extensive application
to a large dataset of patient-specific CABGs is an important contribution of the current
work. The proposed pipeline has in fact been then applied to each one of the fourteen
patients in the current clinical dataset.

the focus of the second Part has been instead on the methodological development of
model order reduction techniques. Parametric studies are relevant in the present CABG
study, since the interest of the clinician is to evaluate the outcome of the surgery not only
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for a single physical or geometrical configuration, but for several related ones obtained
either because of different flow conditions (such as inlet flow rates at the grafts) caused
by an increased blood request due to physical activity, or because of the interest in the
comparison of the outcome of the surgery for relevant local variations of the geometry,
related both to native coronary artery disease (stenosis severity) or surgery (different
anastomosis geometry). In the context of parametrized problems, reduced-order models
have been introduced in the last decades to decrease the required computational costs.

A POD-Galerkin reduced-order model (ROM) has been introduced in this Part. Two
aspects have been addressed in particular, namely the proposal of a ROM for the simulta-
neous approximation of velocity and pressure in unsteady incompressible Navier-Stokes
flows, and efficient compression of the temporal trajectory. For the first issue, we pro-
posed an enrichment procedure of the reduced velocity space by means of supremizer
solutions in order to obtain an inf-sup stable reduced-order model. A theoretical re-
sult to detect the existence of spurious pressure modes in the online stage has been
proved, and the relation between the online stability factors and the online dimension
of the reduced spaces has been studied, characterizing in this way the minimum number
of supremizer basis functions that are needed to obtain a stable ROM. For the second
issue, we proposed a two-level POD to provide a compression of the temporal trajectory.

III. in the third Part, shape parametrization techniques are discussed.

A new idea of shape parametrization has been introduced, and has been named centerlines-
based parametrization. It is based on the assumption that coronary arteries and bypass
grafts are represented as a network of tubular geometries. This parametrization is an
additional model order reduction technique itself, since deformation of three-dimensional
vessels is ascribed to the variation of few relevant parameters defined on the unidimen-
sional centerlines, such as local radii or local tangent vectors. These account in particular
for stenosis severity and anastomosis features, respectively.

The proposed framework has then been applied to some patient-specific CABG configu-
rations. As a first case, we considered variation of physical parameters only related to inlet
flow rates. These results have shown that such parameters have a significant impact on the
magnitude of wall shear stress (WSS) and the extension of the region of high oscillatory shear
index (OSI). We also noted that the Y-graft features in general highest WSS, and that WSS
in the successive side-to-side and end-to-side anastomoses gradually decreases. Regions with
high and oscillatory stresses are clearly identified by the proposed reduced computational
framework, leading to several insights on the locations where the intimal hyperplasia may
occur in each patient-specific configuration.

As a second scenario, we considered the variation of both inlet flow rates and stenosis
severity. Critical and non-critical cases are compared; in particular, the variation of the
regions of high OSI, both upstream and downstream stenoses and near anastomoses, with
respect to physical and geometrical parameters have been shown on patient-specific cases.
Moreover, the exploration of the entire parameter space by means of the ROM allows, for
example, to investigate the relation between stenosis severity and pressure drop or maximum
WSS in the stenosis. These relations are in fact of particular interest in the pre-surgical phase
since, for example, pressure measurements are used to assess the coronary artery disease. The
effect of the severity of the stenosis is evaluated both near anastomoses and at native coronary
arteries bifurcations; both regions are critical from a fluid dynamics standpoint, and increased
stenosis severity causes in fact higher WSS at native bifurcations. Moreover, a comparison on
the same patient before and after the surgery is performed, to evaluate the variation induced
by bypass grafts on these patterns.
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As a third case, the variation of both stenosis and end-to-side anastomoses has been
studied. Some differences are observed between mammary artery, saphenous vein and radial
artery cases; in particular, we have observed that in the mammary artery case flow-direction
anastomosis presents better haemodynamic indicators than T-shaped anastomosis, while in
the saphenous vein the two anastomosis are comparable. Local patterns of transversal velocity
distal to the anastomosis show the formation of two Dean vortices. Critical regions are located
near the heel and the toe of the graft, and on the arterial bed of the native vessel. Querying
the ROM allows for example to draw a plot of the maximum WSS at these critical regions
with respect to the grafting angle, showing that WSS on the arterial bed increases with the
the grafting angle.

In all cases, after a computationally intensive offline stage performed on HPC architectures,
our POD-Galerkin ROM has allowed to obtain haemodynamics simulations at greatly reduced
computational costs, with savings up to 99% of user time for each new online query.

7.2 Perspectives

Several improvements are possible for the proposed framework and in the study of patient-
specific coronary artery bypass grafts. In particular, we mention the following aspects:

o compliance and rheological properties of the grafts: as discussed in Section 1.3, remark-
able differences have been observed in the clinical practice on the outcome (patency
rates) of the surgery depending on the graft employed (mammary artery, saphenous
vein, radial artery). The proposed model has allowed us to consider a first relevant
aspect that differentiates these materials: the average radius of the vessel. Numerical
results (see in particular Section 6.5) have shown that the different graft-to-host di-
ameter ratios alone are able to account for different results in the comparison between
flow-direction, T-shaped and retrograde anastomoses. These results are in good agree-
ment with the current clinical practice. However, as an improvement of the proposed
computational model, compliance effects should be taken into account. The rigid walls
assumption should then be relaxed and a fluid-structure interaction (FSI) problem shall
be solved. This is a very challenging aspect. In fact, a thorough analysis on the struc-
tural properties of the grafts needs to be performed. On one hand, different rheological
models should be used to differentiate between arterial and vein grafts. On the other
hand, even in the sole class of arterial grafts, the structural model should be able to
capture the remarkable differences that occur in the clinical practice between mammary
artery grafts and radial artery grafts. In fact, it is nowadays agreed in the clinical com-
munity that the mammary artery graft is the gold standard for the revascularization of
the left anterior descending, and that the same performance cannot be obtained when
employing a radial artery graft.

o heart motion: another important development could be oriented to the inclusion of
myocardial motion, since coronary arteries lie on the myocardium. Although cyclic
curvature deformation of coronary arteries do have strong effect on the local distribution
of wall shear stress [187,206,273], it typically changes the magnitude rather than the
macroscopic characteristics of the flow. For these reasons, this aspect has been neglected
in this thesis. Asnoted in [270], this topic is significantly challenging. From the modeling
point of view, a fluid-structure interaction (FSI) problem shall be solved in this case
[206, 256, 258]. Two effects need to be taken into account for the structural model:
myocardial motion, and the contraction/dilation of the coronary arteries during the
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cardiac cycle. The current medical imaging pipeline shall be improved in order to
extract (if possible) such information from the clinical data.

o graft adaptation and flow competition: these two aspects are particularly relevant in
the study of mammary artery grafts, and concern the variation over time of the flow
rate in the graft [117]. In fact, it has been observed that mammary artery grafts are
able to adapt their flow rate in response to the severity of the stenosis in the native
coronary arteries. The latter phenomena, which in the clinical literature is usually
referred to as flow competition, entails a monotonically increasing dependence between
the flow rate in the mammary artery graft and the severity of the stenosis. Sources
of additional complexity arise from the nonlinear nature of this relation, that cannot
be fully taken into account by a multiplicative factor on the graft flow rate. In fact,
also the geometrical features of the graft (in the whole vessel, not just at the inlet from
the subclavian artery) are affected by this phenomena, since the flow rate adaptation is
obtained through a variation of the radius of the graft and, thus, cannot be completely
modelled by a multiplicative factor on the boundary condition. As a final source of
complexity, these phenomena usually occur years after the surgery.

o cxtension of the centerlines-based parametrization: the proposed parametrization could
also be extended to capture more accurately local geometrical features of the patient-
specific configuration. In particular, a more general shape (rather than a circle with
variable radius) could be swept along the centerlines in the generation of the tubular
network of coronary arteries and grafts.

o more complex outflow boundary conditions: the feasibility of the application of more
advanced boundary conditions on the outflow sections, such as multiscale lumped pa-
rameters models [142,228] or empirical flow-diameter relations [261], should be assessed.
Their integration with required clinical data (ventricular volumes, ventricular pressures,
etc.) should also be investigated.

 patient-specific coronary arteries flow rates: a considerable effort has been made through-
out the thesis to develop personalized (patient-specific) simulations. A possible improve-
ment, still in view of a better personalization, would be to replace the flow rates in
Section 6.2 with patient-specific ones. This will pose a significant challenge from the
technical point of the acquisition of clinical data, since methods for the measurements
of velocities and flow rates are still too invasive to be used in the daily clinical practice.

o integration between different patients: numerical results in Chapter 6 have shown that
the proposed computational framework is able to provide numerical simulations on
patient-specific geometries at greatly reduced computational costs. A computation-
ally expensive phase needs to be performed once, for each patient. The next step for
the extensive application of reduced-order models in the clinical practice would then be
to store a database of offline basis functions for each patient (say, for each one of the
fourteen patients reconstructed in this thesis) and to be able to query it each time a
new patient arrives. Formidable challenges need to be undertaken to implement this
idea. From a technical point of view, possibly a better integration between the soft-
ware employed at the radiology departments of the hospitals and the computational
mesh generation pipeline (such as the one proposed in Chapter 2) should be sought. In
this way, the mesh generation step itself would be deployed in the clinical environment.
From a methodological point of view, techniques like the reduced basis element method,
or reduced basis hybrid methods, or more in general reduced-order models based on a
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domain decomposition approach (see [129] and references therein) should be integrated
in this application. This is an area of ongoing research, even on simplified geometrical
configurations and test cases. These methods would, in principle, allow to decompose
the patient-specific geometry in a sequence of subdomains (say, one for the LAD, one for
the LAD-LCX bifurcation, one for the LITA-LAD anastomosis, etc.), and then combine
them for each new patient. A considerable challenge for this idea is, finally, that no
one-to-one correspondence between the vessels of two patients can be obtained in gen-
eral, because of different anatomical features (for instance, left or right dominance, or
presence or absence of the ramus intermedius) and grafting procedures (different revas-
cularized coronary arteries, different anastomosis locations, single or sequential grafts).
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