
POLITECNICO DI MILANO

DEPARTMENT OF MECHANICAL ENGINEERING

DOCTORAL PROGRAMME IN MECHANICAL ENGINEERING

Data Fusion for Process Optimization and

Surface Reconstruction

Doctoral Dissertation of:

Luca Pagani

ID number: 785772

Supervisor:

Prof. Bianca Maria Colosimo

Tutor:

Prof. Alfredo Cigada

The Chair of the Doctoral Program:

Prof. Bianca Maria Colosimo

2014 - XXVII Cycle





Acknowledgement

I would like to express my gratitude to Professor Xiangqian (Jane) Jiang for hosting

me for 6 months in her research group at Huddersfield university. I would like

to thank the EPSRC centre for innovative manufacturing in advance metrology

group for letting me work aside them, have been a great experience that changed

my personal and professional mindset.

i





Contents

Introduction vii

I Surface Reconstruction 1

1 Data Fusion via Gaussian Process 1

1.1 Measurement Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Classification of Measurement Devices . . . . . . . . . . . . 2

1.1.2 Contact Devices . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Non Contact Devices . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Multiple Sensor Data Fusion . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Process and Surface Modeling via Gaussian Process . . . . . . . . . 8

1.3.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Parameters Estimation . . . . . . . . . . . . . . . . . . . . . 12

1.4 Gaussian process model for data fusion . . . . . . . . . . . . . . . . 14

1.5 A real case study: data fusion to reconstruct a free form surface . . 21

1.5.1 Structured Light Scanner . . . . . . . . . . . . . . . . . . . . 21

1.5.2 Coordinate Measuring Machine . . . . . . . . . . . . . . . . 23

1.5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . 25

2 Surface Reconstruction in the “Big Data” Scenario 31

2.1 Multilevel B-spline Approximation . . . . . . . . . . . . . . . . . . 32

2.2 Least Squares B-spline Approximation . . . . . . . . . . . . . . . . 35

2.3 Least Square B-spline Approximation for Data Fusion when Big

Data are Available . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iii



iv Contents

2.4 Case Study: Free Form Surface Reconstruction . . . . . . . . . . . . 40

2.5 Case study: Micro Surface Reconstruction . . . . . . . . . . . . . . 45

2.5.1 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . 48

3 Modeling Uncertainty in Data Fusion 55

3.1 Weighted Least Squares B-spline Approximation for Handling Un-

certainty Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 An example of Surface Reconstruction via WLSBA . . . . . . . . . 59

4 Statistical Process Control of Regularly Structured Surfaces 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Feature Parameters Extraction . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Watershed Segmentation . . . . . . . . . . . . . . . . . . . . 71

4.3 Case Study: Dimpled Surface Feature Extraction and Monitoring . 71

4.3.1 Data Acquisition and Pre-processing . . . . . . . . . . . . . 73

4.3.2 Watershed Segmentation . . . . . . . . . . . . . . . . . . . . 74

4.3.3 Dimple Identification . . . . . . . . . . . . . . . . . . . . . . 74

4.3.4 Selection of Dimple Descriptors . . . . . . . . . . . . . . . . 76

4.4 Gaussian Process Control Chart for Regularly Structured Surfaces . 77

4.4.1 GP Control Chart Design . . . . . . . . . . . . . . . . . . . 77

4.5 Performance Study of the SPC Procedure . . . . . . . . . . . . . . 79

4.5.1 Univariate Control Chart . . . . . . . . . . . . . . . . . . . . 80

4.5.2 Performance on a Real Case Study . . . . . . . . . . . . . . 82

4.5.3 Performance on Simulated Case Studies . . . . . . . . . . . 83

II Process Optimization 85

5 Process Optimization 87

5.1 Process Optimization: Efficient Global Optimization Algorithm . . 89

5.1.1 Example of Optimization Performance with Artificially Gen-

erated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Case Study: Design of an Anti-intrusion Side bar for Vehicles . . . 93

5.2.1 The Hi-Fi Data: Experimental Data . . . . . . . . . . . . . 96

5.2.2 The Lo-Fi Data: Finite Element Method Model . . . . . . . 97



Contents v

5.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Conclusion and Future Research 105

Appendices 109

A Proof of GP fusion model 111

A.1 Prediction of new Point and its Propriety . . . . . . . . . . . . . . . 111

Bibliography 115





Introduction

Last years are characterize by the impact of global trends and manufacturing

technology is faced with a number of different challenges. The topics of customized

products, reduced life time, increased product complexity and global competition

have become essential in production today. The changing in modern manufacturing

towards a customized productions is characterized by high-variety and high-quality

products, a paradigm shift in metrology is coming on (Jiang et al. 2007a; Jiang

et al. 2007b). Geometric tolerances are more and more often used in technical

drawings to provide a more comprehensive way for defining allowable variation for

a given product geometry. Globalization has made possible for production to be

linked on a worldwide basis, in which the exchange of information is becoming more

and more important in securing quality. Much of this information, particularly that

concerned with the state of the products and production processes, is obtained with

the aid of metrology.

Due to the paradigm shift, the complexity and accuracy of the product require-

ments are increasing. At the same time, smart sensorization of equipments and

processes is providing new opportunities, which have to be appropriately man-

aged. A large amount of data can be available to aid production and inspection

and appropriate methods to process the “big data” have to be designed.

In this scenario, multisensor data fusion methods can be employed to achieve

both holistic geometrical measurement information and improved reliability or

reduced uncertainty of measurement data to an increasing extent (Weckenmann

et al. 2009).

vii



viii Introduction

Research purpose

The main purpose of this thesis is to explore new approaches for reconstructing a

surface starting from different sources of information, which have to be appropri-

ately fused. Surface is meant in a broad sense, both as the geometric pattern of a

physical object to be inspected and as the surface representing a response function

to be optimized.

The first part of the PhD thesis focuses on the reconstruction of the surface

geometry via data fusion. In this case, it is assumed that multiple sensors are

acquiring the same surface, providing different levels of data density and/or accu-

racy/precision. The thesis starts exploring the performance of a two-stage method,

where Gaussian Processes (also known as kriging) are appropriately used as model-

ing tool to combine the information provided by the two sensors. Then, the thesis

faces the problem of suggesting a data fusion method when large point clouds, i.e.,

“big data” (as the ones commonly provided by non contact measurement systems)

have to be managed. In this case, the use of Gaussian Processes poses some compu-

tational challenges and this is why a different method based on multilevel B-spline

is proposed. As a second contribution, the thesis presents a novel method for data

fusion, where the uncertainty of the specific measurement system acquiring data

is appropriately included in the data fusion model to represent the uncertainty

propagation. Eventually, the thesis faces the problem of using surface modeling

to quickly detect possible out-of-control states of the machined surface. Starting

from a real case study of laser-textured surface, an approach to combine surface

modeling with statistical quality control is proposed and evaluated.

The second part of the PhD thesis focuses on using data fusion for process

optimization. In this second application, data provided by computer simulations

and real experiments are fused to reconstruct the response function of a process. In

this case, the aim is to find the best setting of the process parameters to maximize

the process performance. It is shown how data fusion can be effectively used in

this context to reduce the experimental efforts.
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Chapter 1

Data Fusion via Gaussian Process

In this chapter a data fusion model based on Gaussian process is applied to the

reconstruction of smooth free form surfaces. In order to explain why data fusion

can be effective in the actual industrial scenario, this chapter will start with an

overview of some modern measurement devices. Then, the use of Gaussian pro-

cesses for metrology data fusion is described. Finally, the advantages provided by

multisensor data fusion are shown.

1.1 Measurement Devices

A measurement device is an instrument for measuring a physical quantity. Mea-

surement is defined as the activity of obtaining and comparing physical quantities

of real-world objects.

Measurement characteristics are discussed in the International Vocabulary of

Metrology (VIM 2008):

• measurement accuracy : closeness of agreement between a measured quantity

value and a true quantity value of a measurand. This concept is not a

quantity and is not associated to a numerical value. A measurement is said

to be more accurate when it offers a smaller measurement error.

• measurement trueness : closeness of agreement between the average of an in-

finite number of replicate measured quantity values and a reference quantity

value. Measurement trueness is not a quantity and thus cannot be expressed

1



2 1. Data Fusion via Gaussian Process

numerically, but measures for closeness of agreement are given in ISO5725

(e.g., mainly expressed in terms of bias).

• measurement precision: closeness of agreement between indications or mea-

sured quantity values obtained by replicate measurements on the same or

similar objects under specified conditions. Measurement precision is usually

expressed numerically by measures of imprecision, such as standard devi-

ation, variance or coefficient of variation under the specified measurement

conditions.

• resolution: the smallest change in a quantity being measured that causes a

perceptible change in the corresponding indication.

1.1.1 Classification of Measurement Devices

In the following sections, the main advantages and disadvantages of contact and

non contact sensors will be briefly presented to motivate the need of data fusion.

A more detailed description of some common measuring sensors will be provided

while presenting the real case studies throughout the thesis. Weckenmann et al.

(2009) provides an overview on different methods for geometric data acquisition,

the main classification is based on the way the measurement is taken, i.e., con-

sidering the interaction between the device and the surface or volume of inter-

est. Instruments are divided into two sets: contact and non contact measurement

systems. A hybrid category also exists, where contact and non contact devices

cooperate in order to perform a better surface acquisition. A simple classification

of methods is represented in Figure 1.1.

1.1.2 Contact Devices

Tactile devices are based on the principle of touching specific points of a surface

using a mechanical arm and use sensing devices in the joints of the arm in order

to determine the coordinate locations of the touched point. Contact methods have

usually high performance (i.e., high precision, high accuracy, high repeatability,

etc.), but are usually applied in cases where surface measurement requires acquiring

a small set of data point, because the time to acquire each single point is usually

long.
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(a) Contact methods (b) Non contact methods

Figure 1.1: Classification of 3D acquisition systems (Rocchini et al. 2001)

1.1.3 Non Contact Devices

Non contact measurements systems allow one the acquire the point cloud on a sur-

face without requiring mechanical interaction between the sensor and the object.

The point cloud can be computed with a variety of optical methods as trian-

gulation, ranging, interferometry, structured lighting and image analysis.

A classification of non contact methods based on sensor technology can be

found in (Tamas, Ralph, and Jordan 1997), while a classification based on data

acquisition techniques is proposed in (Rocchini et al. 2001).

A further classification of optical devices is proposed by Isgro, Odone, and

Verri (2005), where the systems are classified in active and passive sensors. Passive

sensors use only natural or man-made illumination, while active sensors project

a source of energy onto the object. They allow more accurate measurements of

depth when compared to passive sensors.

Compared to contact devices, the main advantages of non contact sensors are:

• no physical contact is required, so fragile workpiece can be measured without

damaging the object;

• fast acquisition of large objects;

• ability to acquire colors;

• ability to acquire complex shapes on large sizes where, for example, a contact

probe can have problems to reach some features on large measurand.
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On the other side, disadvantages are:

• possible limitations for transparent or reflective surfaces, holes and under-

cuts;

• performance influenced by the light conditions;

• lower accuracy, compared with the one of contact methods.

1.2 Multiple Sensor Data Fusion

Both contact and non contact devices have some advantages and disadvantages, so

there is no technology that outperforms the other. As a consequence, the device

to be used depends on the specific application. In the following, the term High-

Fidelity (Hi-Fi) and Low-Fidelity (Lo-Fi) will be used to refer to data provided by

contact and non contact sensors, respectively.

In modern manufacturing technology, the manufactured surfaces have often

complicated features, designed to meet functional specifications. In this competi-

tive environment the ability to rapidly design, produce and check the specifications

of these pieces is becoming essential. To this aim, measurement with more than

one sensor can be effective.

The main idea of a multiple sensor device is to use different sensors to acquire

the same object, a classification of multiple sensor systems according to the way

the information contribute to the final objective can be found in Girao, Pereira,

and Postolache (2006):

• complementary: the sensors are not directly dependent but their output can

be combined to yield better data, under a pre-defined criterion;

• competitive: the sensors provide independent measurements of the same

quantity. They can be identical or can use different measuring methods and

they compete in the sense that when discrepancies occur, a decision on which

to believe must be made. Sensors are put in competition either to increase

the reliability of a system or to provide it with fault tolerance;

• cooperative: the sensors’ outputs are combined to produce information that

is unavailable from each sensor if used alone;
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• independent: all the remaining cases, basically when the sensors’ outputs

are not combined.

The process to combine multiple data from different sensors is defined in (Weck-

enmann et al. 2009) as combining data from several sources (sensors) in order that

the metrological evaluation can benefit from all the available sensor information

data. According to Weckenmann et al. (2009) the steps needed to combine data

coming from multiple sensors are:

1. pre-processing: the data are transformed in the required level of abstraction.

It can be at signal, feature or symbol level (Dasarathy 1997);

2. registration: this is one of the most import step in datafusion. The measured

data are aligned and transformed to share a common coordinate system;

3. data fusion: at this step, a decison is taken to select which measurement data

is integrated into the final data set and how data are combined together;

4. data reduction (optional): e.g., decimation of the data set in order to easily

transport it;

5. meshing (optional): the point cloud can be converted into a mesh to recon-

struct the surface of the object;

6. data format conversion (optional).

A machine equipped with multiple sensors is the hybrid CMM (Figure 1.2). It

is able to combine the data from optical and contact sensor in order to produce

the measurement of a specific object with higher precision, increased measurement

areas and (possibly) reduced time with respect to traditional CMMs.
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Figure 1.2: An example of hybrid measurement device

A classification of the sensors that can be mounted on a classical CMM in order

to improve performance is reported in Neuman and Christoph (2007) (Figure 1.3).

Figure 1.3: Type of sensors that can be mounted on a CMM (Neuman and Christoph

2007)
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With this machine, the registration phase can be skipped because relative po-

sition of the two sensors is known and they can simply refer to a common coor-

dinate system. This kind of measurement device allows one to partially reduce

the purchasing costs (compared with costs of buying the two different solutions

independently).

The literature on data fusion often suggests sequential use of the two sensors.

In Carbone et al. (2001) and Shen, Huang, and C. (1999) the optical and contact

sensors are sequentially used for reverse engineering applications. Firstly, the point

cloud is acquired with the optical system and there is a first digitization of the

object. With this information, it is possible to write the CMM part program that

acquires the desired point cloud. The final CAD model is thus build by refining

the first raw model (based on non contact data) with the more precise CMM data

points.

An example of competitive data fusion can be found in (Ramasami, Raja, and

Boudreau 2013) where a multiscale approach based on wavelet decomposition is

presented. The authors show how an appropriate multiscale model can increase

the measurement result in micro-scale manufacturing.

Another example where the two sensors are used in a competitive way can be

found in (Xia, Ding, and Mallick 2011). The authors used a data fusion technique

in order to align point clouds coming from two different sensors. In this case, the

main idea is to reconstruct the information provided by the Lo-Fi sensor with a

bayesian GP model. Then, the alignment with the Hi-Fi data is performed thanks

to a local kernel smoothing technique and with a rigid transformation matrix

(translation and rotation).

Starting form the approach proposed by Xia, Ding, and Mallick (2011), Colosimo,

Pacella, and Senin (2014) presented a data fusion model to merge data from non

contact (Lo-Fi) and contact (Hi-Fi) devices with a GP model. The model was

applied to reconstruct a surface with application to normal and large scale metrol-

ogy. The fusion process was performed using Hi-Fi data to locally correct the Lo-Fi

model. This model will be presented in the next section and used as starting point

of the thesis.
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1.3 Process and Surface Modeling via Gaussian

Process

Gaussian Process (GP) is a method originally developed in the geostatistics field,

also known as kriging (Cressie 1993; Schabenberger and Gotway 2005). The ap-

proach was proposed by Danie G. Krige, a South African Mining Engineer, to

evaluate mineral resources (Krige 1951). Recent interests to GP originate from

applications to describe the output of a computer experiment (Santner, Williams,

and Notz 2003) and to represent a smooth surface (Xia, Ding, and Wang 2008;

Xia, Ding, and Mallick 2011; Colosimo et al. 2014; Colosimo, Pacella, and Senin

2014; Del Castillo, Colosimo, and Tajbakhsh 2013).

Let S represents a continuous and fixed subset of Rd with positive d-dimensional

volume. Following Cressie (1993) and Schabenberger and Gotway (2005), a spatial

process in d dimensions is denoted as {Z(s) : s ∈ S, ω ∈ Ω} where {Ω,F , P} is a

probability space and Z is the random process.

The random process {Z(s) : s ∈ S} is defined through the finite-dimension

distribution Z(s) ∈ Rn, where n is the number of the observed locations. If

for any s1, . . . , sn in S the vector Z(s) = (Z(s1), . . . , Z(sn)), has a multivariate

normal distribution, Z(s) is a Gaussian random function.

Gaussian random function belong to the class of probabilistic models that

specify distributions over function spaces. They are completely determined by

their mean function, µ(s) ≡ E{Z(s)}, for s ∈ S, and by their covariance function

C(s1, s2) ≡ Cov{Z(s1), Z(s2)} = E[{Z(s1) − µ(s1)}{Z(s2) − µ(s2)}], for any

s1, s2 ∈ S, or by their correlation function defined as:

R(s1, s2) =
C(Z(s1), Z(s2))√

V ar(Z(s1))V ar(Z(s2))
, −1 ≤ R(s1, s2) ≤ 1.

The definition of the correlation reflects the fact that values at two sample

locations si and sj are stochastically dependent or independent. If the correlation

is positive, we expect high (low) values to be surrounded by high (low) values. If

it is negative, high (low) values should be surrounded by low (high) values. When

the spatial dependency changes as a function of the particular direction the process

is called anisotropic.

Many statistical methods of spatial data analysis make some assumptions about
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the behavior of the covariance function C(·); the most used is known as station-

arity assumption. A stochastic process Z(·) is strongly stationary if the spatial

distribution is invariant under translation of the coordinates, i.e., for any h ∈ Rd,

any s1, . . . , sk ∈ X with s1 + h, . . . , sk + h ∈ X, then (Z(s1), . . . , Z(sk)) and

(Z(s1 + h), . . . , Z(sk + h)) have the same distribution.

As the name suggests, strong stationarity is a stringent condition; most sta-

tistical methods for spatial data analysis are satisfied with stationary conditions

based on the moments of the spatial distribution rather than the distribution itself.

Typically only a second order stationarity is required. It means that the random

processes (Z(s1), . . . , Z(sk)) and (Z(s1 +h), . . . , Z(sk +h)) always have the same

mean and the covariance is a function of the spatial separation between points

only, i.e. Cov{Z(s1), Z(s2)} = Cov{Z(s1), Z(s1 +h)} = C(h) where h = s1−s2.

The assumption of second order stationarity implies that V ar[Z(s)] = σ2 is

not a function of spatial location, i.e., the variance of the spatial process is the

same everywhere. The covariance function does no longer depend on s and the

correlation function becomes:

R(h) =
C(h)

σ2

As previously shown, the second moment structure of a weakly stationary ran-

dom field is a function of the spatial separation h, but the covariance function

can depend on the direction. When a GP is invariant under rotations, that is

the covariance function depends only on the absolute distance between points, the

function is termed isotropic. This property can be expressed as:

Cov(h) = C(‖h‖)

where ‖ • ‖ is the Euclidean norm of the lag vector, ‖(s + h) − s‖ = ‖h‖ =

(
∑

i h
2
i )

1/2.

The covariance function C(h) of a second order stationary random field has

several other properties. In particular:

• C(0) ≥ 0;

• C(h) = C(−h), i.e., C is an even function;

• C(0) = |C(h)|
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• C(h) = Cov[Z(s), Z(s+ h)] = Cov[Z(0), Z(h)];

Moreover, to be a valid covariance function for a second order stationary spatial

random field, C must satisfy the positive-definiteness condition:

∑∑
aiajC(si − sj) ≥ 0 (1.1)

for any set of locations (si and sj) and real numbers (ai and aj).

A typical class of desirable covariance functions is one that links the correlation

between errors to the distance between the corresponding points and it has to

decrease with increasing spatial separation, a common fact to many statistical

models for spatial data. A common choice is the exponential model. In this type

of model the covariance between measurements at two locations is an exponential

function of the interlocation distance, typically given by

d(s1, s2) =
d∑
j=1

ϑj(s1j − s2j)
pj , ϑj > 0, pj ∈ (0, 2] ∀ j = 0, 1, . . . d

Given this distance definition, a whole class of correlation functions is introduced

under the name of power exponential correlation functions:

R(s1, s2) = exp(−d(s1, s2)) = exp

{
−

d∑
j=1

ϑj(s1j − s2j)
pj

}
(1.2)

where ϑj is the scale correlation parameter that controls how fast the correlation

decays with the distance along the j-th coordinate direction, and pj is the power

parameter, which controls the smoothness of the data fitting. When the scale

parameter ϑj increases, the correlation decreases and the random field shows a be-

havior closer to a white noise, conversely as ϑj decreases, the correlation increases

until the value one and the random field becomes closer to the process mean.

The power exponential form includes two commonly used correlation functions

as special cases: the exponential (when p = 1) and the squared exponential (when

p = 2), also called the Gaussian correlation function. The last type of correlation

function has nice property in terms of smoothness (or differentiability in the mean

square sense) and thus it is a very popular choice in areas like machine learning

(where is also known as radial basis kernels) and computer experiments modeling.

Besides, past experience indicates that this correlation function is able to model
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various spatial features (Zimmerman and Harville 1991; Gaudard et al. 1999) and,

as suggested by Xia, Ding, and Mallick (2011), it appears reasonable for a large

number of manufactured geometric features.

For a detailed discussion on other kinds of correlation functions the interested

reader can refer to (Stein 1999; Santner, Williams, and Notz 2003; Rasmussen and

Williams 2006).

Without loss of generality, let us assume that the random field can be described

by the model

Z(s) = µ(s) + η(s) + ε (1.3)

where µ(s) is the mean function or rather the large-scale trend of the random

field, η(s) is a Gaussian stationary process with zero mean and covariance function

C(h) = σ2
η R(h) and the last term ε is a random component which denotes a white

noise measurement error with variance σ2
ε . We further suppose that the random

variables η(s) and ε are independent.

When computer experiments with deterministic simulations are analyzed, the

term ε is not included, since no random error has to be modeled and the fitted

model has to be an exact interpolator.

Typically, it is assumed that the mean function is a linear or nonlinear function

of s

µ(s) =
∑
h

fTh (s)βh. (1.4)

In traditional linear models, the practical problem of finding the correct func-

tional form for the regressor terms can introduce some difficulties. On the contrary,

one of the main advantages of GP is its flexibility in modeling any complex pat-

tern. This is why most of the times, the regression part shown in Equation 1.4 is

limited to a constant or a linear term (i.e. f(s) = 1 or f(s) = [1, u, v]T ), without

affecting the whole model prediction ability.

1.3.1 Prediction

When using GP models, usually the main target is predicting the underling func-

tion at a location s0 ∈ S, when obervations z are available. Prediction can be

required at a new or an already existing location. Usually when prediction is done
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at locations where data were already observed, the main objective is to filter noise,

i.e. measurement error.

In order to find a predictor, a loss function L(Z(s0), p(Z; s0)) has to be selected.

This function measures the “cost” incurred by using p(Z; s0) as a predictor of

Z(s0). The squared-error loss function L(Z(s0), p(Z; s0)) = (Z(s0)− p(Z; s0))2 is

commonly used; under squared-error loss, the cost function induced is the mean

squared error (MSE) and the prediction criterion is based on the minimization of

the Mean Squared Prediction Error (MSPE).

It is possible to show that the predictor of Z(s0) that minimizes the MSPE

for the model (1.3) is linear in the observed data and its value is given by the

conditional expectation:

E[Z(s0)|Z = z] = fT (s0)β + σ2
ηr

T
0 Σ−1(z − Fβ) (1.5)

where z ∈ Rn is the vector of the observed values, F = [f(s1),f(s2), . . . ,f(sn)]T

is the so called model matrix, r0 = Corr(Z(s0),Z(s)) and Σ = σ2
ηR+ σ2

εI where

R is matrix with entries rij = R(si, sj)

Another attractive property of the GP model is that the prediction accuracy

can be simply expressed as a function of the conditional variance, i.e.:

Var[Z(s0)|Z = z] = σ2
η − σ4

η r
T
0 Σ−1r0. (1.6)

1.3.2 Parameters Estimation

The prediction model previously described assumes that the vector of parameters

β and Ψ = (ϑ, σ2
η, σ

2
ε) are known. In most practical cases these quantities are un-

known. The common approach is to assume a structure of the covariance function

that depends on a vector of parameters Ψ and estimate all the unknown param-

eters using the maximum likelihood (ML) or the restricted maximum likelihood

(REML) (Harville 1977).

In order to make a distributional assumption for Z(s), Mardia and Marshall

(1984) described how ML estimator for spatial models can be obtained for the

Gaussian case, when residuals are correlated and when the covariance among the

residuals is determined by a parametric model containing unknown parameters.

ML estimation is the simultaneous solution to the problem of minimizing the
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negative of twice the Gaussian log likelihood

−2 l = n log 2π + log |Σ(Ψ)|+ (z − Fβ)TΣ−1(Ψ)(z − Fβ). (1.7)

In equation (1.7), it is possible to obtain a closed form expression for the parame-

ters β, enabling one to remove these parameters from the optimization (a process

termed profiling) thus reducing the dimension of the solution space. In oreder to

profile β, it is necessary to take the derivatives with respect to β equaling the

vector to 0. The result is the generalized least squares (GLS) estimator

β̂ =
(
F TΣ−1(Ψ)F

)−1
F TΣ−1(Ψ)z.

Harville (1977) suggested to use the REML estimation because the ML estimate

of the process variance is biased. The RMLE of the parameters can be found by

minimizing the function

−2 lβ̂ = n log 2π+log |Σ(Ψ)|+(z−F β̂)TΣ−1(Ψ)(z−F β̂)+log
∣∣F TΣ(Ψ)F

∣∣ (1.8)

Since the function lβ̂ has many local minima (Spall 2003), a global optimization

routine is preferable, unless a good starting point for the local optimization algo-

rithm is provided. Therefore, one or more initial solutions are usually found con-

sidering a global optimization algorithm (e.g. simulated annealing, direct Monte-

Carlo sampling, etc.) and then yhese solutions are refined using a local optimiza-

tion algorithm (e.g. Newton-Raphson, Quasi-Newton). Even though this method

provides no formal guarantee for global optimization, it is a reliable strategy and

offers a reasonable computational effort in the optimization of multiparameter

functions.

After the the parameter β has been estimated, the kriging variance (MSPE)

became (Schabenberger and Gotway 2005)

Var[Z(s0)|Z = z] =σ2
η − σ4

η r
T
0 Σ−1r0 +

(
f 0 − F TΣ−1r0

)T(
F TΣ−1(Ψ)F

)−1 (
f 0 − F TΣ−1r0

)
.

(1.9)

Test case

In order to show the prediction ability of the GP model the Matlab peaks function

is used. This function is a mixture of translated and scaled bivariate Gaussian

probability density function.
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The peaks function is given by

f(s) = 3(1− u)2 e−u
2−(v+1)2 − 10

(u
5
− u3 − v5

)
e−u

2−v2 − 1

3
e−(u+1)2−v2 . (1.10)

Assume to take measurements from the peaks function where noise is added to

represent measurement errors

Z(s) = f(s) + ε, ε ∼ N (0, 0.42) (1.11)

in the [−3, 3]× [−3, 3] domain.

Figure 1.4 shows the simulated points together with the surface reconstructed

assuming the following GP model

z(s) = β0 + η(s) + ε.

The color map on the reconstructed surface is a map of the prediction error.

It is possible to observe that the GP model with a simple trend term (β0) can

estimate even a complex unknown shape with small prediction error (the range of

the absolute error is almost 5% of the surface range).

Figure 1.4: Simulated point and reconstruction with GP

1.4 Gaussian process model for data fusion

In the previous sections a GP model was used to reconstruct the single response

of a process or a measurement system. In this section a model is proposed to link
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the data coming from different sources.

The proposed model originates from Kennedy and O’Hagan (2000), where a

model to improve efficiency by combining expensive runs of a complex computer

code with relatively cheap runs from one or more simpler approximations is pre-

sented. In a subsequent work, the authors used the same model in a calibration

framework (Kennedy and O’Hagan 2001); i.e., to correct any inadequacy of the

computer approximation which is revealed by a discrepancy between the observed

data and the model predictions. Starting from these seminal papers, others data

fusion models based on computer responses where proposed in (Qian et al. 2006;

Qian and Wu 2008). In these works, the authors used GP to model and obtain

data fusion moving from a frequentist to a bayesian approach.

(Xia, Ding, and Mallick 2011) extends the model presented by (Qian et al.

2006; Qian and Wu 2008) to deal with multisensor data alignment for surface

metrology. In this case, the main idea is to reconstruct the information provided by

all the different sensors to perform the fusion step. Similarly, (Colosimo, Pacella,

and Senin 2014) used a similar model for normal and large-scale metrology data

fusion. These approaches have the main advantage of including statistical modeling

while reconstructing the information provided by different data sets, thus providing

prediction intervals for the local discrepancies between different data sets as well

as for the final prediction of the shape at any given location. A second advantage

of these approaches consist in relaxing the assumption of acquiring all the data at

the same location set.

In this thesis, use of bayesian approaches will not be explored. In fact, prelim-

insry tests allowed us to conclude that bayesian methods become computationally

intractable as the number of data points increases, a situation that characterized

almost all the real case studies faced in this research work.

The data fusion model in the (frequentist) approach is a two-stage model.

The first stage consists of modeling the low-fidelity (Lo-Fi) response observed at

location si using the following GP model

zl(si) = fTl (si)βl + η(si) + εl, i = 1, . . . , nl. (1.12)

where fTl (si)βl is the regressor term, η(si) is a Gaussian stationary process, εl, also

known as nugget, describes the random component due to the measurement error

and it is assumed to be independent and normally distributed, i.e. εl ∼ N (0, σ2
l ).
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Here the subscript l is used to indicate the Lo-Fi model. If the model is used to

describe deterministic computer simulations (as in the second part of this thesis),

this last term will not be included.

The main objective of the hierarchical model is to combine the Lo-Fi and Hi-Fi

data in order to improve predictions achievable by using the Lo-Fi or the Hi-Fi

data sets alone. The core of the data fusion model is the linkage or the second

stage model, which represents the connection between Lo-Fi and Hi-Fi data and

can be expressed as (Qian et al. 2006)

zh(si) = ρ(si) ẑl(si) + δ0 + δ(si) + ε∆ i = 1, . . . , nh. (1.13)

The aim of this second stage model is to correct the Lo-Fi predictions ẑl(si) (i.e.,

predictions done using the Lo-Fi data only) using a “scale” and a “shift” effects,

represented by ρ(si) and δ0+δ(si), respectively. The term ε∆ is the random term of

the linkage model, which is assumed to be independent and normally distributed,

i.e., ε∆ ∼ N (0, σ2
∆). This nugget effect is included to represent randomness char-

acterizing the Hi-Fi data, where randomness exists because Hi-Fi data are random

variables.

Following Qian et al. (2006), the scale effect can be modeled as

ρ(si) = fT∆(si)ρ, (1.14)

where f∆(si) is a known basis function acting as regressor term when computed

at si, and ρ is the vector of unknown parameters to be estimated. Usually a

first-order term (linear model) for f∆(si) is enough to model the scale effect (Qian

et al. 2006). Subscript ∆ is included to show that these regressors are modeling

the difference between Lo-Fi and Hi-Fi data and hence regressors can be different

from the ones assumed in equation (1.12) to reconstruc the Lo-Fi data only.

The shift effect is represented by δ0 + δ(si), where δ0 is a constant and δ(si)

is a GP. In order to estimate the process parameters, the linkage model can be

written in matrix form

zh = P ẑl + δ01nh + δ + ε∆ (1.15)

where zh = (zh(s1), zh(s2), . . . , zh(snh))T is the vector of the observed Hi-Fi data,

P is a diagonal matrix with entries ρ(si) (see Equation (1.14)) for i = 1, . . . , nh



1.4 Gaussian process model for data fusion 17

and 1nh ∈ Rnh is a vector of ones. ML parameter estimation can be performed by

minimizing the function

−2 l = nh log 2π+log |Σ∆|+(zh − P ẑl − δ01nh)T Σ−1
∆ (zh − P ẑl − δ01nh) (1.16)

where Σ∆ is known as the mean squares prediction error (MSPE) or kriging vari-

ance. The kriging variance can be computed as

Σ∆ = PΣ0P
T + σ2

δRδ + σ2
∆Inh (1.17)

where Σ0 is the kriging variance of the Lo-Fi model (given by the first stage

equation 1.13), but computed at the Hi-Fi locations. Rδ = {rδ(si, sj)} is the

correlation matrix of the GP for the shift effect δ(si), Inh ∈ Rnh×nh is an identity

matrix and 1nh ∈ Rnh is a vector of ones.

If the partial derivative with respect to δ0 are computed and set to 0, the ML

estimator of δ0 is given by:

δ̂0 =
1′nhΣ

−1
∆ (zh − P ẑl)

1′nhΣ
−1
∆ 1nh

. (1.18)

The other unknown parameters can be found by minimizing twice the logarithm

of the restricted likelihood (Harville 1977) given by

−2lδ̂0 =nh log 2π − log
(
F T

∆F∆

)
+ log | Σ∆ | + log | F T

∆Σ−1
∆ F∆ |

+
(
zh − P ẑl − δ̂01nh

)T
Σ−1

∆

(
zh − P ẑl − δ̂01nh

)
.

(1.19)

According to the assumed combination of the linkage (or second stage) equation

(1.13) and the first stage equation (1.12), the hierarchical approach allows one to

fuse data in order to compute a prediction at any new location s0 as (see Appendix

A for details)

E[Zh(s0)|Zh = zh,Z l = zl] = ρ̂(s0) ẑl(s0) + δ̂0

+
(
σ̂2
δ r̂δ + σ̂0

)T
Σ̂
−1

∆

(
zh − P̂ ẑl − δ̂0 1nh

) (1.20)

where r̂δ = Corr(zh, zh(s0)), σ̂0 is a vector with entries σ0i = ρ(si) · ρ(s0) ·
Cov(ẑl(si), ẑl(s0)) ∀ i = 1, . . . , nh.
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The prediction, or kriging, variance can be expressed as

Var[Zh(s0)|Zh = zh,Z l = zl] = σ̂2
δ + σ̂2

l (s0)
[
fT∆(s0) ρ̂

]2
−
(
σ̂2
δ r̂δ + σ̂0

)T
Σ̂
−1

∆

(
σ̂2
δ r̂δ + σ̂0

)
+

[
1− 1TnhΣ̂

−1

∆ (σ̂2
δ r̂δ + σ̂0)

]2

1TnhΣ̂
−1

∆ 1nh

(1.21)

where σ̂2
l (s0) is the prediction variance of the Lo-Fi model in the new location s0.

Test case

In this section, the advantages of combining different datasets with a hierarchical

data fusion approach are explored. To this aim, performance of four different

models are compared:

• Lo-Fi model: where predictions are computed using a single GP model that

considers the Lo-Fi data only;

• Hi-Fi model: where predictions are computed using a single GP model that

considers the Hi-Fi data only;

• Addition model: where predictions are based on a single GP model that uses

all the Lo-Fi and Hi-Fi data as they come from a single source;

• Fusion model: where predictions are based on the two-stage hierachical

model presented before.

The performance indicator used throughout this thesis is the Root Mean Square

(prediction) Error (RMSE), defined as

RMSE =

√√√√ 1

n

n∑
i=1

e2(si) (1.22)

where e(si) is the prediction error at location si, given by

e(si) = z(si)− ẑ(si)

where z(si) is the true point at location si and ẑ(si) is the value predicted at the

same location using one of the aforementioned approaches.
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The peaks surface described in section 1.3.2 is used in this section to test

the ability of the data fusion approach. The Hi-Fi data are simulated from the

following model

zh(s) = f(s) + εh, ε∆ = N (0, 0.22). (1.23)

while the Lo-Fi data model are randomly generated using the following equation:

zl(s) = f(s) + bias(s) + εl, εl = N (0, 0.42) (1.24)

where a bias term is added. This bias term is assumed to have the following model:

bias(s) =
u2

10
+
v2

10
,

which describes a Lo-Fi measurement system where the bias increases as the u

and v coordinates increase in module. This bias term gives evidence to the need

of performing data fusion. As a matter of fact, the Hi-Fi data have to be used to

correct the Lo-Fi bias where needed.

A total number of 2500 Lo-Fi points are generated from a regular grid of

[50 × 50] points in u and v directions. Since the number of the available Hi-

Fi points is usually lower than the Lo-Fi sample size, only 100 Hi-Fi points are

generated on a regular grid of [10× 10] points.

For each of the competitive models, an error map is computed as the difference

between the predicted and the nominal value at each location (e(si)). The error

maps are reported in Figure 1.5. The shape of the error map of the Lo-Fi model

shows the simulated bias affecting those data. The error map of the Hi-Fi model

shows that the error is generally smaller (because those data are assumed to be

characterized by zero bias). The behavior of the prediction error of the addition

model is similar to the map observed for the Lo-Fi model because the number of

Lo-Fi data is high compared to the Hi-Fi data sample size. In this model data are

simply merged without any correction and this is why the error map is basically

guided by the larger set of Lo-Fi data. The error map of the fusion model shows

that a hierarchical model can correct the error of the Lo-Fi model where needed,

using only a small set of Hi-Fi data.
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(a) Lo-Fi model (b) Hi-Fi model

(c) Addition model (d) Fusion model

Figure 1.5: Predicted surface with error map

Considering this peaks model as a toy example, 10 different realizations of the

surface were run and the prediction ability of each model was tested using the

RMSE.

The confidence interval on the mean of the RMSE computed on these 10 repli-

cations are drawn in Figure 1.6. It is clear that the fusion model outperforms all

the other methods in this case study.
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Figure 1.6: Models’ RMSE

1.5 A real case study: data fusion to reconstruct

a free form surface

The aim of this section is to show the advantages of the data fusion model when

applied to the reconstruction of a real smooth free form surface. In this case study,

the performance of different models are computed while varying the number of Hi-

Fi points. Furthermore, two different sampling plans to locate Hi-Fi points are

analyzed: i) a uniform sampling plan according to a classic regular grid; ii) a Latin

Hypercube (LH) sampling plan, which is widely used in computer experiments

(Santner, Williams, and Notz 2003) and it is also used in the metrology field in

(Xia, Ding, and Mallick 2011).

The measured data of a free form surface were acquired using a Structured Light

(SL) scanner (Lo-Fi) and a Coordinate Measuring Machine (CMM) Zeiss “Prismo

5 HTG VAST” equipped with a analog probe head with maximum probing error

MPEP = 2µm (Hi-Fi). A brief overview of the characteristics of these two devices

is firstly presented.

1.5.1 Structured Light Scanner

SL scanner is an non contact device that projects light with a known structure on

the object. An example of this device is shown in Figure 1.7. With this device, it

is possible to acquire a dense point cloud with a simple and cheap hardware.
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Figure 1.7: Example of a structured light device (Irwin 2012)

The light projected on the object can be made of single points, strip, grid or more

complex pattern of coded light (Figure 1.8). Before acquiring the measurement,

an important step is the device calibration. This is done through the acquisition

of 2D figures of known shapes in order to evaluate object distortions, which are

then corrected by the device software. The surface scanner distance is computed

through the pattern deformation on the object computed considering the triangu-

lation technique on each point projected on the surface.

(a) Sheet of light (b) Colored coded light

Figure 1.8: Example of structured light projected

The characteristics of structured light scanners are:

• low cost and easy implementation;

• readily available;
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• fast and high density data acquisition;

• color information available.

Because of these advantages, there are a lot of companies that produce these

devices (such as 3D3 Solutions, 3DDynamics, 3D-Shape GmbH, 4D Culture Inc.,

AGE Solutions S.r.l., Creaform, etc.). Although there are a lot of different devices

available on the market, as all the optical methods, it is difficult to acquire reflective

or transparent surfaces such as skin, marble, wax and plants.

1.5.2 Coordinate Measuring Machine

CMM is a contact device for measuring the physical geometrical characteristics of

an object (Figure 1.9). The measured point is acquired by a probe mounted on

the moving axis of the machine. This machine can be manually controlled by an

operator or it may be computer controlled.

Figure 1.9: Coordinate measuring machine
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The first CMM was developed in the 1950s, although this machine only had

2 axes. The first 3-axes models began appearing in the 1960s (Bosch 1995). The

typical structure of a CMM is composed by three axes that are orthogonal to each

other in order to form a typical three-dimensional coordinate system.

In modern machines, the gantry type superstructure has two legs and is often

called a “bridge”. This moves freely along the granite table with one leg following

a guide rail attached to one side of the granite table. The opposite leg simply rests

on the granite table following the vertical surface contour. Air bearings are the

chosen method to ensure friction free travel.

Probe is responsible for point location acquisition and is usually placed on the

third axis of the machine (Figure 1.10). A common probe is made by soldering

a hard ball to the end of a shaft. This is ideal for measuring a whole range of

flat, cylindrical or spherical surfaces. Other probes aimed at measuring specific

shapes (for example the outer diameter of a screw) are also available. A typical

electronic touch trigger probe has a sensitive electrical contact that emits a signal

when the probe is deflected from its neutral position by the slightest amount. As

the probe touches the component surface, the coordinate positions are recorded

by the CMM controller, and appropriately corrected for overtravel and probe size.

A CMM with a touch-trigger probe can be programmed to follow planned paths

along a surface.

Figure 1.10: Touch probe of a coordinate measuring machine
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1.5.3 Numerical Results

In their work, Petrò, Cavallaro, and Moroni (2009) acquired the point clouds of

the free form surface shown in Figure 1.11 with both SL (Lo-Fi) and CMM (Hi-Fi)

systems.

This case study will be used to compare perfromance of three competitive

approaches:

• Lo-Fi: GP model based on the Lo-Fi (SL) points only;

• Hi-Fi: GP model based on the Hi-Fi (CMM) points only;

• Fusion: two-stage fusion model based on both the Lo-Fi and the Hi-Fi points.

Figure 1.11: Free form surface

The number of points acquired with each device was 9635. Clearly, acquiring

this sample size via CMM required a long acquisition time, which is almost un-

feasible in real practice. As a matter of fact, it will assumed that only a subset

of these Hi-Fi (CMM) data are effectively available to perfrom data fusion, while

the remaining set will be used as test set to compute the prediction errors of all

the competitive methods. In other words, nh = h% · 9635 data will be used to

reconstruct the surface with all the proposed methods, while the remaining set of

ntest = 9635−nh points will be used to represent the “real” surface. Predictions at
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all the locations of ntest data will be computed with all the competitive methods

and the corresponding prediction errors (e(si)) will be computed.

The whole set of 9635 Lo-Fi points available are shown in Figure 1.12a, while

in Figure 1.12b the discrepancy map between the Hi-Fi and Lo-Fi point clouds

is shown. The difference between the two point clouds cannot be described with

a simple function, so the linkage model must be able to predict an unknown and

complex shapes.

(a) Points acquired with the SL (Lo-Fi)

scanner

(b) Discrepancy map between CMM

(Hi-Fi) and SL (Lo-Fi) points (val-

ues in mm)

Figure 1.12: Lo-Fi points and discrepancy map between the Lo-Fi and the Hi-Fi points

In order to compute the performance of each model as a function of the number

of Hi-Fi points, the percentage h of the Hi-Fi data used to fit the surface models

was changed (to a maximum value of 4%, i.e., nh = 400 Hi-Fi data points).

Furthermore, in order to study the effect of the Hi-Fi point locations on the

prediction ability of the competitive methods, two sampling strategies were as-

sumed for the Hi-Fi data: a uniform sampling and a max-min latin hypercube

(LH) sampling (Santner, Williams, and Notz 2003). As an example, in order to

select 100 points according to a uniform sampling, a regularly spaced grid of 10

points has to be drawn such that the distance along the u and v directions between

the points is constant (Figure 1.13). A LH sampling for the same set of 100 Hi-Fi

points is shown in Figure 1.14, where it is possible to note that the regularity is
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missing.

Figure 1.13: Example of 100 Hi-Fi points sampled with the uniform sampling plan

(triangles figure on the left)

Figure 1.14: Example of 100 Hi-Fi points sampled with the LH sampling plan (trian-

gles figure on the left)

The performance comparison of the competitor models are based on the RMSE
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(see Equation (1.22)). Figure 1.15 shows the RMSE of all the models as a function

of the number of Hi-Fi points available, considering both the uniform (left) and the

LH (right) sampling plans. Under a uniform sampling, (Figure 1.15a) the fusion

model achieves better results compared with all the other approaches when the

number of Hi-Fi (CMM) points available is not so high (less than 150). Then,

performance of the fusion and the Hi-Fi models are comparable (i.e., adding SL

data to the CMM data does not induce any advantage, since the CMM point cloud

is dense enough to appropriately reconstruct the surface pattern).

When a LH sampling is considered (Figure 1.15b), data fusion is convenient if

the number of Hi-Fi data is lower than 250.

(a) Uniform sampling (b) Latin Hypercube sampling

Figure 1.15: RMSE of the GP model with different sampling strategies

An example of the surface reconstructed with all the models considered is shown

in Figure 1.16. To construct these error maps, the parameters of the Hi-Fi and

fusion models were estimated on 100 Hi-Fi points sampled according to the LH

procedure.
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(a) Lo-Fi model (b) Hi-Fi model

(c) Fusion model

Figure 1.16: Error map of the prediction error of the three models based on a LH

sampling and 100 Hi-Fi points

Figure 1.16 shows the error maps of all the three models (considering 100 Hi-

Fi data and a LH sampling strategy). It is possible to observe that the error

map of the Lo-Fi model reflects the discrepancy between the Lo-Fi (SL) and the

Hi-Fi (CMM) points shown in Figure 1.12b. The error map of the Hi-Fi model

shows that, due to the small number of Hi-Fi points available, the model has large

errors in some locations of the reconstructed surface. On the contrary, the fusion
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model uses the information of both the Lo-Fi model and the Hi-Fi points to better

reconstruct the free form surface thus reducing the error magnitude everywhere.

The GP fusion model can therefore “correct” the prediction of the Lo-Fi model

using the Hi-Fi points as “attractors”.

Eventually, Figure 1.17 compares the performance of the data fusion model

using a uniform vs a LH sampling strategy. It is possible to conclude that a data

fusion model where the Hi-Fi data are placed according to a LH sampling plan has

to be preferred to the same model using a uniform sampling strategy to locate the

same data set, especially when the Hi-Fi sample size is high.

Figure 1.17: Comparison of the data fusion models with different sampling strategies

for the Hi-Fi data (uniform vs LH)



Chapter 2

Surface Reconstruction in the

“Big Data” Scenario

The approach described in Chapter 1 requires one to estimate all the unknown

parameters of the GP models at the first and the second stages of the hierarchical

data fusion method. This computation becomes slow as the number of data points

increases. Clearly, the problem of estimating the GP model parameters can become

easily unfeasible considering the large data set that are nowadays available via non

contact sensors. Park, Huang, and Ding (2011) proposed an approach to overcome

problems of the GP model when large data have to be treated. The main idea

is to decompose of the initial surface in subdomains and then estimate the GP

parameters on each region (assuring continuity along the subregions’ borders).

Although this approach can work for medium scale problems, it is not feasible in

the very big data framework, because the number of regions easily increases.

A different approach for multisensor data fusion when large data est have to

be managed is proposed in this chapter. In this novel method, the GP model is

replaced with a Least Squares B-spline Approximation (LSBA), to be used in both

the two stages of the hierarchical model for data fusion. The proposed LSBA model

uses the output of a fast algorithm, the Multilevel B-spline Approximation (MBA),

as a starting step to solve a least squares problem using B-spline as regressor terms.

In the proposed approach, the uncertainty of the predictions is taken into account

while computing the data fusion reconstruction.

In this chapter, the LSBA approach for a single stage (i.e., monosensor data)

31
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is firstly presented. Then, the two-stage model is described and its performance

as fusion algorithm evaluated on a set of test cases.

2.1 Multilevel B-spline Approximation

The Multilevel B-spline Approximation (MBA) algorithm (Lee, Wolberg, and Shin

1997; Hjelle 2001) is a method, which reconstruct a surface as the sum of different

levels of surface approximation

z(s) = z0(s) + z1(s) + · · ·+ zq(s) (2.1)

where zi(s) ⊂ Si, i = 0, . . . , q are surfaces where q depends on the desired approx-

imation and S0, . . . , Sq is a nested sequence of subspace

S0 ⊂ S1 ⊂ · · · ⊂ Sq.

This algorithm is based on a recursive refinement of the surface depending on the

level of desired accuracy (q). The approximation level of the algorithm, q, can

be chosen through a k-fold cross-validation procedure (Arlot and Celisse 2010),

considering for example the RMSE as performance index. In Equation (2.1), the

superscript is used to highlight that the predicted surface is a sum of different

surfaces computed on finer grids. The predicted surface shown in Equation (2.1),

after the refinement operation is completed, is eventually given by the following

expression

ẑ(s) = ẑ(u, v) =
3∑

k=0

3∑
l=0

Bk(r)Bl(t)ϕ̂(i+k)(j+l) (2.2)

where ϕ̂(i+k)(j+l) is the estimated regressor, i = buc − 1, j = bvc − 1, r = u− buc,
t = v − bvc and B• are uniform cubic B-spline defined as:

B0(t) =
(1− t)3

6
(2.3)

B1(t) =
3 t3 − 6 t2 + 4

6
(2.4)

B2(t) =
−3 t3 + 3 t2 + 3 t+ 1

6
(2.5)

B3(t) =
t3

6
(2.6)
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with 0 ≤ t < 1.

The main idea of the MBA algorithm is now described (for a detailed expla-

nation, the interested reader can refer to (Hjelle 2001)).

Let Φk be a control lattice (see Figure 2.1) defined on a rectangular domain

Ω = [0,m) × [0, n) and ϕi,j the value of the ij-th control point at (i, j) for i =

−1, 0, . . . ,m+ 1 and j = −1, 0, . . . , n+ 1.

Figure 2.1: Lattice control scheme over domain

The main idea of the MBA algorithm is to estimate the B-spline coefficients on

a coarse grid Φ0. The resulting prediction function z0(s) is an initial approxima-

tion of the surface. After that, the algorithm computes the deviation between the

predicted surface z0(s) and the available points and compute the B-spline coeffi-

cients on a finer grid Φ1. After this step, the predicted surface is the sum of the

surface z0(s) and the surface z1(s), which was in turn based on the discrepancies.

The procedure is iterated until a desired control lattice data Φq is reached.

From Equation (2.2), it is possible to observe that only 4× 4 = 16 coefficients

(ϕij) are used to predict a point ẑ(s) in a location s = (u, v). Since each regressor

(Bk(t) with t = 0, 1, 2, 3) has a limited support, i.e. it is different from 0 on a

closed domain, only some points contribute to its estimation (as shown in Figure

2.2). These points depend on the extension of the specific grid Φk, which in turn

depends on the current approximation level (ranging from 0 to q). Let Pk denote

the set of points influencing the estimation of the coefficients on the current grid



34 2. Surface Reconstruction in the “Big Data” Scenario

Φk.

Figure 2.2: (4×4)- neighbors of a regressor coefficient and points used for its estimation

Let zc be the value observed at one of the locations in the set Pk, this point

influences all the 16 coefficients in the grid Φk through the equation:

ϕ̂kl|c =
Bk(r)Bl(t) zc∑3

a=0

∑3
b=0B

2
a(r)B

2
b (t)

, (k, l) = (0, 0), (0, 1), . . . , (3, 3) (2.7)

If the cardinality of the set Pk is bigger than one, then an overlapping between

the contributions of different points to the B-spline coefficients is present. As

an example, Figure (2.3) shows that some coefficients (corresponding to positions

where both a cross and a circle are drawn) are influenced by both the points p1

and p2 shown in the Figure. Therefore, the coefficient estimation should mix all

the contributions due to the neighbour data, and can be computed as (Hjelle and

Daehlen 2005)

ϕ̂kl =

∑
cB

2
i (r)B

2
j (t)ϕ̂kl|c∑3

a=0

∑3
b=0B

2
a(r)B

2
b (t)

, c ∈ Pk (2.8)

where ϕ̂kl|c is the regressor estimated via equation (2.7).

Figure 2.3: (4× 4)-neighbors of coefficients in the tensor product grid of two points p1

and p2
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2.2 Least Squares B-spline Approximation

Once the MBA algorithm is run, the surface is roughly estimated. In order to refine

the reconstruction, the solution provided by MBA is taken as starting reference for

a finer estimation procedure called Least Squares B-spline Approximation (LSBA)

(Hjelle and Daehlen 2005).

The LSBA approach assumes that the response function can be described by

the model

z = F β + ε (2.9)

where z ∈ Rn is the vector of the observed data, β ∈ Rp is the vector of coefficients,

F ∈ Rn×p is the sparse matrix of B-spline regressors

F =


B1(u1, v1) . . . Bp(u1, v1)

B1(u2, v2) . . . Bp(u2, v2)
...

B1(un, vn) . . . Bp(un, vn)


where B• correspond to the B-spline regressors, λ ≥ 0 is a smoothing penalty

coefficient and ε is the vector the measurement errors, which are assumed to

be independent and identically distributed normal random variables. The LSBA

compute the unknown coefficients by minimizing the function

SSE =
n∑
i=1

(zi − ẑi)2 + λβTEβ

= (z − Fβ)T (z − Fβ) + λβTEβ (2.10)

where zi and ẑi are the value observed and predicted at location si while the

second term is a penalty term, where E ∈ Rn×n is a symmetric sparse matrix

whose elements are

eij =

∫∫
∇Bi(u, v) ◦ ∇Bj(u, v) dudv

where ∇ is the divergence operator and ◦ is the vector scalar product.

The minimum value of (2.10) respect to β can be found by solving the sparse

linear system

(F TF + λE)β = F T z. (2.11)



36 2. Surface Reconstruction in the “Big Data” Scenario

Since the matrix (F TF + λE) is a big sparse matrix, an iterative solver has to be

preferred to a direct solver. Usually, the convergence rate of an iterative algorithm

depends on the initial guess of β. Here the MBA solution comes to help. In fact,

the output of the MBA algorithm is used as the initial starting point for solving

the sparse linear system in Equation (2.11) with an iterative method (Hjelle and

Daehlen 2005). The iterative methods used in this thesis is the conjugate gradient

method implemented in the Eigen library (Guennebaud et al. 2010). The LSBA

method is slow compared to the MBA algorithm, but usually produces better

surface reconstruction.

In order to chose the smoothing parameter λ a k-fold cross-validation procedure

with the RMSE as performance index is used. As suggested in Hjelle and Daehlen

(2005), λ is chosen between the multiples of

λd =

∥∥F TF
∥∥
F

‖E‖F
where ‖•‖F is the Frobenius matrix norm.

The least squares estimation of β should be written as (Ruppert, Wand, and

Carrol 2003)

β̂ =
(
F TF + λE

)−1
F Tz, (2.12)

while the variance covariance matrix of the vector estimate β̂l is given by:

Σβ̂ = σ2
(
F TF + λE

)−1
F TF

(
F TF + λE

)−1
. (2.13)

Eventually, the estimate of σ2 required in the last equation can be given by:

σ̂2 =
‖z − ẑ‖

n− tr
[
F
(
F TF + λE

)−1
F T
] (2.14)

or (approximately) by:

σ̂2 =
‖z − ẑ‖

n
(2.15)

if the dataframe is big.

Once all the parameters have been estimated, the prediction at any new loca-

tion point s0 can be computed as

E[ẑ(s0)] = fT (s0) β̂ (2.16)

and the corresponding prediction variance is given by:

Var [ẑ(s0)] = Var
[
fT (s0)β̂

]
= fT (s0)Σβ̂f(s0). (2.17)
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2.3 Least Square B-spline Approximation for Data

Fusion when Big Data are Available

The previous approach for surface reconstruction can be used in both the first and

the second stages of the data fusion approach. In this section, a fusion model using

LSBA is shown.

As in section 1.3 the LSBA algorithm is firstly applied to the Lo-Fi data at the

first stage. We can thus rewrite equation (2.9) using l as subindex to denote the

Lo-Fi data:

zl = F l βl + εl (2.18)

Then, the second stage of the hierarchical model is used to model the dis-

crepancy between the observed Hi-Fi points and the corresponding Lo-Fi data

predicted at the same location (using to the first-stage model). The model of the

second stage is thus given by:

z∆ = zh − ẑl = F∆β∆ + ε∆ (2.19)

where ẑl ∈ Rnh are the predictions computed using the first stage model in the

Hi-Fi locations and ε∆ ∈ Rnh is a vector of independent and identically distributed

normal random variables with 0 mean and variance equal to σ2
∆. These two vectors

are assumed independent.

The covariance of the fusion model can be computed as

Cov(zh) = Cov(ẑl) + Cov(ε∆). (2.20)

The vector β∆ of estimated coefficients can be computed using the LSBA

approach

β̂∆ =
(
F T

∆F∆ + λ∆E∆

)−1
F T

∆ (zh − ẑl) (2.21)

= Q∆zh −Q∆F l(Sh)Qlzl (2.22)

where Sh = [s1, s2, . . . , sh ]T is the matrix of Hi-Fi locations and hence F l(Sh) =

[f l(s1),f l(s2), . . . ,f l(snh)]T represents the matrix of f l(•) functions applied to

the Hi-Fi locations and

Q∆ =
(
F T

∆F∆ + λ∆E∆

)−1
F T

∆

Ql =
(
F T
l F l + λlEl

)−1
F T
l .
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The variance in Equation (2.20) can be estimated as

Cov(zh) = Cov(ẑl) + Cov(ε∆) =
(
σ2
l + σ2

∆

)
Inh , (2.23)

where the variance σ2
∆ can be estimated with Equation (2.14) or (2.15) while the

variance of the Lo-Fi data is assumed constant everywhere and thus estimated as

σ2
l =

1

|S|

∫
S

σ̂2
l (s) ds (2.24)

where σ̂2
l (s) is the predicted variance in the spatial location s = (u, v), S is the

surface domain and |S| is its area.

According to this model, the prediction at a new location s0 is given by:

ẑh(s0) =ẑl(s0) + ẑ∆(s0) = fTl (s0)β̂l + fT∆(s0)β̂∆

=fTl (s0)Qlzl + fT∆(s0)Q∆(zh − ẑl)
=
(
fTl (s0)− fT∆(s0)Q∆F l(Sh)

)
Qlzl + fT∆(s0)Q∆zh

(2.25)

The variance of the prediction in a new location s0 is computed by

Var[ẑh(s0)] =Var
[(
fTl (s0)− fT∆(s0)Q∆F l(Sh)

)
Qlzl + fT∆(s0)Q∆zh

]
=Var

[(
fTl (s0)− fT∆(s0)Q∆F l(Sh)

)
Qlzl

]
+ Var

(
fT∆(s0)Q∆zh

)
+ 2Cov

[
fT∆(s0)Q∆zh,

(
fTl (s0)− fT∆(s0)Q∆F l(Sh)

)
Qlzl

]
=σ2

l

(
fTl (s0)− fT∆(s0)Q∆F l(Sh)

)
QlQ

T
l

·
(
f l(s0)− F T

l (Sh)Q
T
∆f∆(s0)

)
+
(
σ2
l + σ2

∆

)
f∆(s0)TQ∆Q

T
∆f∆(s0)

+ 2σ2
l f∆(s0)TQ∆F l(Sh)QlQ

T
l

(
f l(s0)− F T

l (Sh)Q
T
∆f∆(s0)

)
(2.26)

where F l(Sh) is the Lo-Fi model matrix in the Hi-Fi points’ locations and

Cov
[
fT∆(s0)Q∆zh,

(
fTl (s0)− fT∆(s0)Q∆F l(Sh)

)
Qlzl

]
= fT∆(s0)Q∆Cov [F l(Sh)Qlzl + F∆β∆ + ε∆, zl]Q

T
l

·
(
f l(s0)− F T

l (Sh)Q
T
∆f∆(s0)

)
= σ2

l f∆(s0)TQ∆F l(Sh)QlQ
T
l

(
f l(s0)− F T

l (Sh)Q
T
∆f∆(s0)

)
because zl and ε∆ are independent.
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2.3.1 Test Case

The test case of section 1.4 is used to check also the results of the model based on

LSBA. The Lo-Fi data are simulated using the Matlab peaks function from

zl(s) = f(s) + bias(s) + εl, εl = N (0, 0.42)

while the Hi-Fi data are drawn from

zh(s) = f(s) + εh, ε∆ = N (0, 0.22)

where f(s) is the peaks function:

f(s) = 3(1− u)2 e−u
2−(v+1)2 − 10

(u
5
− u3 − v5

)
e−u

2−v2 − 1

3
e−(u+1)2−v2

and the bias term is set to

bias(s) =
u2

10
+
v2

10
.

Also in this case, competitor models considered are: i) ( and ii)) the Lo-Fi

(Hi-Fi) models that uses LSBA reconstruction using the Lo-Fi (Hi-Fi) data only;

iii) the addition model, which sums up all the Lo-Fi and Hi-Fi data and use a

single LSBA reconstruction as the data were provided by a single sensor; iv) the

LSBA data fusion model presented.

Surfaces reconstructed using the different models together with the correspond-

ing error maps are shown in Figure 2.4. As for the GP-based models, also LSBA-

based models present similar results. In particular, the Lo-Fi error map reflects

the systematic error (bias) of the Lo-Fi measurement system. The prediction of

the addition model in the flat zone, where there is the bigger bias, has a wave form

because the model try to approximate both the Lo-Fi and the Hi-Fi data. The

fusion model seems to be able to correct the Lo-Fi bias.

Also in this case, the simulation was repeated 10 times and the RMSE of each

model was computed. Figure 2.5 shows the 95% confidence interval on the RMSE

observed using the four possible models; once again the fusion model achieves the

better result also when LSBA is used instead of GP as reconstructing technique.
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(a) Lo-Fi model (b) Hi-Fi model

(c) Addition model (d) Fusion model

Figure 2.4: Predicted surfaces with error map

2.4 Case Study: Free Form Surface Reconstruc-

tion

In the free form case study of section 1.5, a total amount of 9635 Lo-Fi (SL) points

were available. Although the GP model was able to reconstruct the Lo-Fi surface

(at the first stage) using all these data, computation required about 1 hour. Just

to give a quick result, the same problem faced using the LSBA approach required

less than one second.
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Figure 2.5: Models’ RMSE

In order to show how LSBA data fusion can be applied in real case study, the

first step consists in applying the MBA algorithm, thus deciding the approximation

level q. As mentioned in section 2.1, a k-fold cross-validation technique can be

used to this aim. We used this approach considering 70% of the available points

as training set and the remaining points as test set. The k-fold cross validation

procedure was repeated 5 times. The average values of the RMSE computed on

these 5 runs are shown in Figure 2.6a, 2.6b and 2.6c, for the Lo-Fi, Hi-Fi and

fusion model, respectively.

(a) Lo-Fi (Structured light) (b) Hi-Fi (CMM)
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(c) Data Fusion

Figure 2.6: RMSE of the cross-validation method

According to Figure 2.6, the level 6 was selected set for the Lo-FI (SL) and

Hi-Fi (CMM) models, while a level 8 was selected for the fusion model.

The RMSE of the LSBA-based models are shown in Figure 2.7. The RMSE

have similar patterns observed when using the GP algorithm.

(a) Uniform sampling (b) Latin hypercube sampling

Figure 2.7: RMSE of the LSBA model with different sampling strategy

Examples of the LSBA-based error maps are shown in Figure 2.8. These plots

are based on a number of 100 Hi-Fi points acquired according to LH sampling.
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In this example the error maps of the models analyzed (Lo-Fi, Hi-Fi and fusion)

have the same behavior of those of GP models (see Figure 1.16). Also in this test

case the fusion model can efficiently corrects the Lo-Fi surface using the available

Hi-Fi data.

(a) Lo-Fi model (b) Hi-Fi model

(c) Fusion model

Figure 2.8: Prediction of the free form surface with error map of the three models

based on a LH sampling with 100 Hi-Fi points

In Table 2.1, computational times, in seconds, needed by the LSBA-based and

GP-based fusion approaches are shown. It is possible to observe that the mean
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estimation time for the GP approach is approximately 23 s; it is not possible see

an increasing trend when the number of Hi-Fi points increase because a lot of time

is spent for the computation of the Lo-Fi model predictions in the Hi-Fi locations.

The estimation time of the LSBA algorithm is about 0.16 s, almost 1
100

of the time

needed by the GP; also with this algorithm it is not possible to observe any trend.

nh
GP LSBA

Uniform

sampling

LH

sampling

Uniform

sampling

LH

sampling

25 22.26 21.98 0.18 0.17

36 22.78 21.65 0.17 0.16

49 22.13 22.41 0.17 0.16

64 23.06 22.91 0.15 0.16

81 21.69 22.88 0.15 0.16

100 22.93 22.84 0.15 0.16

121 21.63 22.13 0.14 0.16

144 22.80 22.66 0.14 0.15

169 24.07 22.77 0.14 0.15

196 23.80 22.75 0.24 0.14

225 23.29 25.28 0.21 0.15

289 24.81 25.13 0.19 0.14

324 23.66 26.38 0.18 0.14

361 23.68 27.28 0.18 0.14

400 25.88 28.04 0.16 0.14

Table 2.1: Time (s) of the GP and LSBA fusion models analyzed

The comparison of the RMSE values of the GP and the LSBA models are

shown in Figure 2.9. It is possible to observe that, if there are few Hi-Fi points,

the GP-based model can achieve better results. As the number of Hi-Fi points

increases to 100, the RMSE values of the LSBA-based and GP-based models are

comparable. It should also be noted that RMSE of the GP model depends on the

sampling plan used. On the contrary the performance of the LSBA models does

not depend on the sampling plan of the Hi-Fi points, i.e. the LSBA model is more
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robust with respect to the sampling plan.

Figure 2.9: Performance comparison between LSBA and GP models

2.5 Case study: Micro Surface Reconstruction

In this section the LSBA model is applied for the reconstruction of a free form

surface of the NPL Bento Box (NPL ). The point clouds were acquired with a

confocal microscope (Lo-Fi) and an atomic force microscope (AFM). The number

of acquired points were 198 916 and 106 276, respectively for the Lo-Fi and the Hi-

Fi devices. The aim of this section is to explore benefits provided by data fusion

in the context of big point clouds. The performance of the fusion model will be

computed as a function of the Hi-Fi data available. A brief overview of the two

measurement devices is firstly presented.

Confocal Microscope

Confocal microscope is an optical imaging technique that enables the reconstruc-

tion of three-dimensional structures from the obtained images. A simple configu-

ration of a confocal microscope is drawn in Figure 2.10.

A light source illuminates a pinhole object to the sample through the objective

lens to create a point illumination. The light is reflected back to the lens and there

is a second pinhole placed in front of the photo detector acting as spatial filter.
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Figure 2.10: Scheme of a confocal microscope device (Leach 2013)

The microscope vertically scans the surface within a certain range. A point which

is in focus position has higher intensity value on the detector. A fitting procedure

is applied in order to find the point with the highest intensity, which represents

the point on the measured surface.

Atomic Force Microscope

Atomic force microscope (AFM) is a very high-resolution type of contact-based

scanning microscope. The resolution of AFM is in the order of fractions of a nm.

The AFM consists of a cantilever with a probe at its end. This is used to scan the

specimen surface. The cantilever is typically silicon or silicon nitride with a tip

radius of curvature on the order of nm. When the tip is brought into proximity

of a sample surface, forces between the tip and the sample lead to a deflection of
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the cantilever according to Hooke’s law.

(a) AFM scheme (b) Cantilever and tip

Figure 2.11: Atomic force microscope

A typical AFM probe is a consumable measuring device with a sharp tip on

the free-swinging end of a cantilever that is protruding from a holder plate. The

dimensions of the cantilever are in the scale of µm, while the radius of the tip is

in the scale of few nm.

Samples viewed via AFM do not require any special treatment that would

change or damage the sample.

Although it has a very good vertical and lateral resolutions, some disadvantages

of the AFM are

• it can only acquire surface with a maximum height in the order of 10-20 µm

and a maximum scanning area of about 150× 150 µm;

• the scanning speed is very slow;

• there is the possibility of some artifacts, which could be induced by an un-

suitable tip or a poor operating environment.
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2.5.1 Numerical Results

The points acquired with the two devices are shown in Figure 2.12a and 2.12b,

respectively for the confocal microscope and the AFM. All the values are expressed

in µm. The discrepancy map between the point acquired point clouds is shown

in Figure 2.13; it is possible to observe that the correction that the fusion model

has to apply is not a simple polynomial function and that the error of the Lo-Fi

device is bigger on the boundary of the u-v domain.

(a) Confocal microscope point cloud (b) AFM point cloud

Figure 2.12: Available data

As in the previous section the following models were analyzed:

• Lo-Fi: model based only on the point cloud acquired with the confocal mi-

croscope;

• Hi-Fi: model based only on the point cloud acquired with the AFM;

• Fusion: fusion model based on both Lo-Fi and Hi-Fi point clouds.

The number of Hi-Fi points available was also considered as relevant factor.

Since the Hi-Fi points are acquired on a square matrix, decimation was performed

by taking a point each n in each direction. Since the sampling distance between
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the points in u and v directions was the same, the RMSE performance index was

computed just as a function of the AFM sampling distance. Again, the perfor-

mance comparison was based on the RMSE index. As in the previous test case,

all the Hi-Fi points that were not used for the reconstruction (because of decima-

tion), were used as test case (i.e., location were the predictions and real data are

compared to compute errors).

Figure 2.14 shows the RMSE of all the analyzed models.

Figure 2.13: Discrepancy map between the Hi-Fi and the Lo-Fi points

Figure 2.14: RMSE of the analyzed models
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It is possible to observe that the performance of the Hi-Fi and the fusion models

are comparable for all the values of the sampling distance. Both models achieve

better prediction performance than the Lo-Fi model, unless the sampling distance

between the Hi-Fi points is too large (i.e., Hi-Fi points are not enough to correct

locally the Lo-Fi bias).

The discrepancy map between the surfaces predicted with the Lo-Fi, Hi-Fi and

fusion models are shown in Figure 2.15a, 2.15b and 2.15c, respectively.

(a) Lo-Fi model (b) Hi-Fi model

(c) Fusion model

Figure 2.15: Error map of the surface reconstructed by competitor models



2.5 Case study: Micro Surface Reconstruction 51

The Hi-Fi and the fusion surfaces are estimated using a sampling distance

between the Hi-Fi points equal to 0.393 µm in each direction. The error map of

the Lo-Fi model shows that the the larger errors are located at the border of the

surface. The discrepancies of the Hi-Fi model are not located in a particular part

of the surface. The Hi-Fi model does not present any specific local concentration

of the errors. Eventually, the fusion model seems to be still influenced by the

problem at the borders.

Since the error on the border of the Lo-Fi model was large, the range of dis-

crepancies between the Lo-Fi and the Hi-Fi points was almost 75% of the total z

range. In order to investigate the prediction ability of the fusion model is situa-

tions were less severe Lo-FI bias occurs, points on the boundary were removed (i.e.,

“cropped”). The discrepancy map of the cropped data sets is plotted in Figure

2.16. In this scenario, there are still some discrepancies that must to be corrected,

but their magnitude is smaller if compared to the previous one.

Figure 2.16: Discrepancy map between the Hi-Fi and the Lo-Fi points after deleting

the border

The RMSE values of this second case are shown in Figure 2.17. It is possible

to observe that the behavior of the RMSE of the LSBA models are similar of those

observed for the free-form case study of section 2.4. The RMSE of the Lo-Fi model

are smaller compared to the previous scenario, while those of the Hi-Fi model are

comparable. The fusion model outperforms the others if the sampling distance
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between the Hi-Fi points is large, i.e. when there are few Hi-Fi points available.

Figure 2.17: RMSE of the analyzed models

The discrepancy maps of the analyzed models (considering a sampling distance

for the Hi-Fi data equal to 0.393 µm in each direction) are shown in Figure 2.18

It is possible to observe that the discrepancy maps of the Lo-Fi and Hi-Fi models

(Figure 2.18a and 2.18b) are very close to the discrepancy maps of the original

datasets (respectively Figure 2.15a and 2.15b). On the contrary, the discrepancy

map of the fusion model shows that the bias effect on the Lo-Fi border is removed

via data fusion.

In this section it has been shown that the fusion model depends on the goodness

of the Lo-Fi data, i.e. if the error of the Lo-Fi device is large compared to the z

range of the dataset, the fusion model can correct the Lo-Fi data, but it cannot

take full advantage of the information provided by them.
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(a) Lo-Fi model (b) Hi-Fi model

(c) Fusion model

Figure 2.18: Error map between the AFM point cloud and the reconstructed surface

by the analyzed models





Chapter 3

Modeling Uncertainty in Data

Fusion

In the fusion LSBA model described in chapter 2, it is assumed that the variance

of the predictions of the first stage (modeling the Lo-Fi data only) is constant

everywhere. This assumption holds when the size of the Lo-Fi point cloud is large

enough (i.e., the Lo-Fi data is a dense point cloud), when the Lo-Fi measurement

system has constant error and when there are no missing points in the Lo-Fi

dataset. In all the other cases, the variance of the predicted values ẑl’s that enter

in the data fusion model is not constant. The way in which this uncertainty

propagates in the data fusion model has to be studied and appropriately modeled.

In this chapter, the LSBA approach for data fusion is extended to handle the

heteroscedasticity (i.e., non constant variance) of the difference between the Hi-Fi

data and the Lo-Fi model. We will refer to a Weighted Least Square B-spline

Approximation (WLSBA) to denote the LSBA where possible (local) changes of

the variance are allowed and the fitting model is able to include this source of

variability. The traditional LSBA presented in the previous chapter will be referred

to simply as LSBA model, to emphasize that this model assumes constant variance

everywhere (as all the approaches based on traditional Least Squares).
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3.1 Weighted Least Squares B-spline Approxi-

mation for Handling Uncertainty Propaga-

tion

As in the previous chapters, it is assumed that the difference between the Hi-Fi

data zh(u, v) observed at location (u, v) and the corresponding value predicted

using the first-stage model ẑl(u, v) at the same location is given by

z∆(u, v) = zh(u, v)− ẑl(u, v). (3.1)

In this model, called the discrepancy model, the variance of the profile depends

on the location, (u, v), because the prediction variance of ẑl(u, v), i.e., the values

computed using the Lo-Fi model, depends by the location.

In order to include non constant variance in the LSBA fusion model (described

in section 2.2) a weighted approach has to be considered. A small weight should

be assigned to predictions with high variability (because they are less reliable). In

traditional Weighted Least Squares (WLS) models (Johnson and Wichern 2007)

the weight is equal to the inverse of the prediction variance at each location. We

will follow the same approach to move from the LSBA to a WLSBA method for

data fusion.

As described in Equation (2.19), Hi-Fi data can be modeled in the second-stage

or linkage model as a function of Lo-Fi prediction ẑl via LSBA:

zh = ẑl + F∆β∆ + ε∆. (3.2)

In the WLSBA, it is assumed that the variance of the discrepancies z∆ = zh−ẑl
is a multiple of the variance of ẑl, i.e., prediction variance computed via the first-

stage model (by fitting the Lo-Fi data only):

Cov(z∆) = Cov(ε∆) = Cov(zh − ẑl) = σ2
∆W

−1
∆ (3.3)

where

W∆ =


1

σ̂2
l (s1)

· · · 0
...

. . .
...

0 · · · 1
σ̂2
l (snh )

 .
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Under a WLS procedure, the estimator of β∆ is given by

β̂∆ =
(
F T

∆W∆F∆ + λ∆E∆

)−1
F T

∆W∆ (zh − ẑl) (3.4)

= Q∆zh −Q∆F l(Sh)Qlzl (3.5)

where

Q∆ =
(
F T

∆W∆F∆ + λ∆E∆

)−1
F T

∆W∆

Ql =
(
F T
l F l + λlEl

)−1
F T
l .

The prediction at a new location s0 can be thus computed using equation (2.25)

with the previous expression of Q∆ and Ql

ẑh(s0) =ẑl(s0) + ẑ∆(s0) =

=
(
fTl (s0)− fT∆(s0)Q∆F l(Sh)

)
Qlzl + fT∆(s0)Q∆zh

(3.6)

while the prediction variance can be derived as follows:

Var[ẑh(s0)] =Var
[(
fTl (s0)− fT∆(s0)Q∆F l(Sh)

)
Qlzl + fT∆(s0)Q∆zh

]
=Var

[(
fTl (s0)− fT∆(s0)Q∆F l(Sh)

)
Qlzl

]
+ Var

(
fT∆(s0)Q∆zh

)
+ 2Cov

[
fT∆(s0)Q∆zh,

(
fTl (s0)− fT∆(s0)Q∆F l(Sh)

)
Qlzl

]
=σ2

l

(
fTl (s0)− fT∆(s0)Q∆F l(Sh)

)
QlQ

T
l

·
(
f l(s0)− F T

l (Sh)Q
T
∆f∆(s0)

)
+ f∆(s0)TQ∆

(
W−1

∆ + σ2
∆W

−1
∆

)
QT

∆f∆(s0)

+ 2σ2
l f∆(s0)TQ∆F l(Sh)QlQ

T
l

(
f l(s0)− F T

l (Sh)Q
T
∆f∆(s0)

)
.

(3.7)

Eventually, the estimator of σ2
∆ is given by

σ̂2
∆ =

‖zh − ẑh‖

nh − tr
[
F∆

(
F T

∆W∆F∆ + λ∆E∆

)−1
F T

∆W∆

] (3.8)

or (in case of large Hi-Fi sample size) by the approximate expression:

σ̂2
∆ =

‖zh − ẑh‖
nh

. (3.9)

In order to show how the WLS approach works, a simple example is now shown.

Without loss of generality, we will initially play with profiles instead of surfaces



58 3. Modeling Uncertainty in Data Fusion

to simplify the graphical display. We will use both the traditional LSBA and the

WLSBA approaches to compute the RMSE, i.e., the mean reconstruction error.

We will then compute the difference between the two performance indexes:

dRMSE = RMSELSBA − RMSEWLSBA. (3.10)

This difference will be studied to understand if the WLSBA can effectively reduce

the reconstruction error.

In our example, the difference between the Hi-Fi data zh(u) and the corre-

sponding value predicted using the first-stage model ẑl(u) at the same location

has a non-constant variance, given by:

z∆(u) = zh(u)− ẑl(u) = u+ u2 + ε∆(u), ε∆(u) ∼ N
(
0, σ2(u)

)
. (3.11)

Assume that the discrepancies is available at 20 equally spaced locations, as

shown in Figure 3.1, where the standard deviation of prediction at any location

is also drawn. It is possible to observe that in the middle of the profile there are

points with larger values of the standard deviation. This increase of the prediction

uncertainty was assumed to model the possible lack of Lo-Fi points in that location.

Figure 3.1: Nominal profile of the discrepancy and corresponding standard deviation

assumed at each point

Starting from this model of the discrepancy, 100 profiles were simulated. Each

simulation consists of 20 data observed along the discrepancy profile. For each
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simulation, both the LSBA and the WLSBA were used to compute RMSE and the

corresponding difference was computed via equation 3.10. The boxplots of the 100

instances of dRMSE is shown in Figure 3.2a, together with a confidence interval on

the mean value of this difference.

Since the mean of the difference is significantly greater than zero, it is possi-

ble to conclude that the LSBA method determines a reconstruction error that is

significantly greater than the WLSBA one (3.2b).

(a) Boxplot of dRMSE (b) 95% confidence interval on the

mean of dRMSE

Figure 3.2: Boxplot and confidence interval on dRMSE (100 replicates)

3.2 An example of Surface Reconstruction via

WLSBA

In this section, it is shown how the uncertainty propagates in the data fusion

model. Once again, the Matlab peaks function is used as baseline model. In

particular, equation (1.24) is used to generate the Lo-Fi data

zl(s) = f(s) +
u2

10
+
v2

10
+ εl, εl = N (0, 0.42)

while the Hi-Fi data are generated according to equation (1.23), namely:

zh(s) = f(s) + εh, ε∆ = N (0, 0.22)
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where

f(s) = 3(1− u)2 e−u
2−(v+1)2 − 10

(u
5
− u3 − v5

)
e−u

2−v2 − 1

3
e−(u+1)2−v2 .

The domain of the simulated data correspond to [−3, 3] × [−3, 3], but it is

assumed that Lo-Fi points are acquired with a uniform grid with some missing

points in the middle of the domain (Figure 3.3 - left side). This missing data will

clearly reduce the reliability (i.e., increase the uncertainty) of predictions made at

the first-stage using the Lo-Fi data only. A data fusion model able to capture this

variable uncertainty is what we want in this case. The (u, v) locations of both the

Lo-Fi and Hi-Fi simulated points are shown in Figure 3.3.

(a) Lo-Fi data (b) Hi-Fi data

Figure 3.3: Lo-Fi and Hi-Fi data points

Once again, the competitor models are the (LSBA-based) approaches using

only the Lo-Fi data, only the Hi-Fi data or performing data fusion of the two

data sets. For the sake of simplicity, these three models will be referred to as

“Lo-Fi”, “Hi-Fi” and “LSBA” approach. A further model performing data fusion

via WLSBA will be used and referred to as “WLSBA” from now on.

In order to check how the variability of the prediction changes along the do-

main, the prediction variance for the Lo-Fi, Hi-Fi, LSBA and WLSBA models is

computed on a regular grid of 100× 100 points.
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To visually check the prediction performance, the error maps of the models

are firstly shown in Figure 3.4. The error map of the Lo-Fi model reflects the

(a) Lo-Fi model (b) Hi-Fi model

(c) LSBA model (d) WLSBA model

Figure 3.4: Reconstructed surfaces and error maps of the models

simulated bias, while the larger errors of the Hi-Fi model are mainly located on

the surface peaks and valleys (because of the low density of the Hi-Fi points, peaks

and valleys are “smoothed”). On the contrary, both the fusion models (LSBA and

WLSBA) outperform the others, and the error map of these models look very

similar. This means that the punctual predictions of the two data fusion models

are very similar.

The prediction variances of all the models are shown in Figure 3.5. The variance
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of the Lo-Fi model is larger at the center of the domain, because points are missing

in that location. The predicted variance of the Hi-Fi model has a chessboard effect

due the sampling plan (a grid). As a matter of fact, the prediction variance reduces

moving closer to the observed Hi-Fi points and increases when moving away from

them. The prediction variance of the LSBA model has a behavior similar to the

one computed using the Hi-Fi data only. This is due to the fact that the LSBA

model assumes constant variance and hence it is not able to model the variable

uncertainty that the test case is representing. Eventually the WLSBA approach

is able to represents the actual state of the prediction variance, which is ruled by

the Hi-Fi data at the center (where no Lo-Fi data are available) and mix Lo-Fi

and Hi-Fi uncertainties in the other locations. With this example it is shown how

Figure 3.5: Predicted variance of the models

the WLSBA approaches is able to capture how the uncertainty propagates from
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the Lo-Fi (first stage) to the linkage model.





Chapter 4

Statistical Process Control of

Regularly Structured Surfaces

In the previous chapters we focused on free-form surface reconstruction. In modern

manufacturing processes, there is a growing interest to textured surfaces, where the

regular pattern is required to enhance the functional performance of the surface.

In this chapter a Statistical Process Control (SPC, (Montgomery 2013)) proce-

dure is presented to check the stability of a laser texturing process on the workpiece

area.

4.1 Introduction

The aim of the SPC is the quick detection of an out-of-control state in order to

avoid the production of nonconforming items. A SPC tool commonly used to check

if a process is in control is the control chart (Montgomery 2013). The aims of the

control chart are:

• reduction of the process variability;

• process control over time;

• product or process parameters estimation.

An example of a control chart is shown in Figure 4.1, where a statistic of

interest is measured over time. There is a central line (CL) that is the estimated

65



66 4. Statistical Process Control of Regularly Structured Surfaces

mean value, and two horizontal lines that are the upper control limit (UCL) and

the lower control limit (LCL). These two limits are chosen such that the (1−α)%

of the items are between the limits if the process is in statistical control, where α

is the type I error of the hypothesis test. This value is usually equal to 0.0023 for

univariate control charts, when control limits are placed at 3 times the standard

deviation from the mean (CL). If the value of the plotted statistic falls outside the

limits, such as the red points in Figure 4.1, an alarm is issued. These points are

called out of controls.

Figure 4.1: Control chart example

In order to apply control charts, two different phases called Phase I and Phase

II have to be performed. In Phase I a statistical analysis is carried out to check if

the process is stable, i.e., the presence of trend, periodical pattern etc. is checked.

If the process is stable, the parameters of interest (mean, standard deviation) are

estimated and control limits are computed. If one point falls outside the control

limits and an assignable cause behind the out of control is found, the point is

removed from the set and Phase I is repeated. Otherwise, Phase I is concluded.

In Phase II, control charts are applied while the process is going on and any new

sample statistic is plotted on the control chart to see if it is out of control. Control

limits found in Phase I are thus simply used in Phase II.
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In order to judge control chart performance the Average Run Length (ARL)

is usually considered. ARL represents the mean value of the run lengths (RL),

where the RL is the number of samples checked before detecting an alarm. ARL

can be also computed also as

ARL =
1

1− β
where 1− β is the power of the hypothesis test behind the control chart; i.e. the

probability of detecting an out of control when it is effectively affecting the process.

A common plot to evaluate the performance of a control charts is the Operating

Characteristic (OC) curve; which represents the probability (β) of not detecting

an out of control as a function of the size of the process shift δ. An example of

the design of a X control chart for the mean and the corresponding OC curve is

drawn in Figure 4.2.

(a) X control chart (b) OOC curve

Figure 4.2: Control chart and OC curve example (Montgomery 2013)

Initially, in the 1920’s, control charts were designed for small sampling fre-

quency ad univariate characteristics. Later, multivariate control charts were intro-

duced in order to check multiple quality characteristics simultaneously (see (Alt

1985) and (Alt and Smith 1988)). With a multivariate control chart it is also

possible to detected out of control regarding the correlation between two or more

quality characteristics.

A recent field of interest is profile monitoring, where the aim is to detect if a

profile or pattern is stable over time. A brief overview of approaches for profile

monitoring can be found in (Noorossana, Saghei, and Amiri 2012) and (Woodall

et al. 2004). There are two macro-areas of profile monitoring analysis: parametric
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and nonparametric models. In parametric approaches a linear or non linear model

describes the signature of the profile, and a control chart is based on parameters

describing this signature. In nonparametric models a profile model is not assumed,

and the out of control is based on the discrepancy between the observed data and

the expected profile pattern.

The first profile monitoring procedures were based on parametric models to

describe simple patterns (e.g. linear trend (Kang and Albin 2000)). At this point

in time, both parametric and non parametric methods can be combined to rep-

resent complex patterns. As an example, Abdel-Salam, Birch, and Jensen (2010)

proposed a semiparametric model based on both parametric and nonparametric

methods to better describe all the feature of the profiles.

Moving form profile to surfaces monitoring, Colosimo, Mammarella, and Petrò

(2010) proposed a monitoring method for cylindrical surfaces as a generalization of

profile monitoring. The authors showed how a liner regression model with spatially

correlated errors can model lathe-turned cylindrical items. Recently, Colosimo

et al. (2014) proposed a shape monitoring approach based on GP to simplify the

need of model selection. In this section the approach proposed in Colosimo et al.

(2014) is followed to describe some feature parameters extracted from a regularly

structured surface.

4.2 Feature Parameters Extraction

Usually, optical 3D surface measurement devices measure the height of the surface,

z, in a specific location (u, v). This location refers to a matrix of pixels, so the

measured locations form a regular grid in the u-v plane. ISO-25178 (ISO 2013)

norm defines a procedure for features analysis. The step of the procedure are

(Leach 2013):

• identify the areal feature within the areal surface topography;

• extract the feature and evaluate its relevant geometric attributes;

• take the necessary actions based on the characterization requirements.

An example of segmentation in Leach (2013) is the identification of the groove

in the surface reported in Figure 4.3.
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Figure 4.3: Example of surface segmentation

Firstly, the surface is subdivided into subregions. In this process hills and dales

are found segmenting the surface in polygonal regions (see Figure 4.4).

Figure 4.4: Surface segmentation

After the segmentation, sometimes, there is a problem called over-segmentation.

As a matter of fact, the more the surface is irregular, the more the segmentation

algorithm gives a large number of regions. An operation called pruning is thus

needed to reduce the number of regions found. ISO-25178 norm defines criteria

based on:

• wolf pruning x%: pruning if the height of the feature is less than the x% of
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the parameter Sz (i.e. the range of the z values);

• area x%: pruning if the feature area is less than the x% of a defined area;

• volume x%: pruning if the feature volume is less than the x% of a defined

volume.

By applying the area and wolf pruning criteria, it is possible to reduce the number

of segmented regions (see Figure 4.5).

Figure 4.5: Surface segmentation with wolf pruning

After pruning, regions containing the feature of interest can be found. Once the

features have been extracted, it is possible to compute some relevant descriptors

such as the depth, the area and the volume of each extracted feature.

Figure 4.6: Extracted feature
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4.2.1 Watershed Segmentation

A method to initially divide the surface into subregions is the watershed segmen-

tation. Watershed segmentation is an image analysis technique that divides the

pixels of an image in regions with the same properties (Leach 2013). Watershed

transformation is described in Meyer (1994) where a surface with dales is flooded.

Each dale forms a basin, when the water reaches the maximum basin height a dam

wall is build, defining one or more regions. The phases of the flooding process are

shown in Figure 4.7.

Figure 4.7: Phases of the watershed algorithm (Salman 2006)

The advantages of the watershed algorithm are:

• boundaries of the regions are closed and connected regions;

• boundaries of the regions correspond to contours which appear in the image

as contours of objects;

• the union of all the regions is the whole surface or image.

4.3 Case Study: Dimpled Surface Feature Ex-

traction and Monitoring

Surface Laser Texturing (SLT) is a technique for enhancing tribological properties

of mechanical components (Etsion 2005). Surfaces of modern magnetic storage

devices are commonly textured and SLT is also considered as a means for improving

functional properties such as adhesion and stiction.

In this section a dimpled surface studied and developed within the project

St.i.m.a. (STrutture Ibride per la Meccanica e per l’Aerospazio, founded by Re-

gione Lombardia, Italy) is taken as reference. The aim of the research project was

analyzing and controlling the effectiveness of the laser-based dimpling project.
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In this research thesis, we will focus on approaches for monitoring the stability

of the SLT via GP based control chart. The textured surface was made of titanium

Ti64Al4V with the aim of maximizing the adhesion between different materials

(Maressa et al. 2014).

In order to design the GP-based control chart, the features of interest (i.e. the

dimples) were firstly identified. To this aim, the following steps were carried out:

1. data acquisition and pre-processing;

2. watershed segmentation;

3. dimple identification,

4. computation of the dimple geometry descriptors.

Since the surfaced manufactured was large, an area of 4 · 103 × 4 · 103 µm2 was

firstly processed. In this case, the acquisition time with the Alicona InfiniteFocus

microscope was too long, so a smaller part of the surface was acquired at different

locations. The characteristics of a generic item (portion of the surface) analyzed

are:

• an area of 1.5× 1.5mm2;

• regular grid of n = 10× 10 dimples;

• a nominal center to center distance of 150µm;

• a nominal depth of 4.5µm.

The main aim of this chapter is to propose a SPC procedure to detect outlying

features on the manufactured surface.

To this aim, 15 surface areas were randomly selected on the wide area of 4 ·
103 × 4 · 103 µm2 textured surface. Selected areas are shown in Figure 4.8 (left

side). Each area was then constituted by a set of 10×10 dimples (Figure 4.8, right

side). The aim of the SPC procedure is to detect if one or more of these examined

areas can be deemed out of control by modeling the 10 × 10 dimples’ geometry

observed on it.
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Figure 4.8: Textured surface and one of the subsample of interest

4.3.1 Data Acquisition and Pre-processing

An example of the acquired surface with the Alicona InfiniteFocus microscope is

shown in Figure 4.9a, while in Figure 4.9b the nominal texture pattern is shown.

(a) Example of a dimpled surface ac-

quired

(b) Nominal pattern of the texture

Figure 4.9: A dimple surface texture acquired and the corresponding nominal shape

Pre-processing consists of removing the form using a second degree polyno-

mial fitting and using a robust least squares plane as reference. Then, the second



74 4. Statistical Process Control of Regularly Structured Surfaces

pre-process step consists of reconstructing the surface using the MBA algorithm

described in section 2.1 to remove high frequency irregularities. Eventually deci-

mation of the point cloud and prediction on missing point locations (i.e. locations

where the measurement system was not able to acquire the height of the surface)

was performed. The reconstruction was needed to perform the segmentation step.

4.3.2 Watershed Segmentation

Surface segmentation was performed using the watershed segmentation function

implemented in Matlab. Regions resulting after applying this algorithm are re-

ported in Figure 4.9, where is clear that this algorithm produces a large number

of regions. Clearly, an over segmentation is achieved and need to be solved.

Figure 4.10: Watershed segmentation of the surface

4.3.3 Dimple Identification

In order to reduce the number of regions found, a threshold criterion was firstly

applied. All the regions where the minimum z depth was lower than −10−4 µm

were neglected. A plot of the resulting dimples’ regions is shown in Figure 4.11.

As clear from the figure, over segmentation is not completely solved yet.
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Figure 4.11: Centroids found after the first step

After this rough segmentation, the following steps were applied to eventually

find the dimples of the surface:

1. compute the centroids of all the identified regions (see Figure 4.9)

Cr = (uc,r, vc,r)
T , r = 1, 2, . . . , R;

2. compute the nominal position of the dimples centers, considering the regular

pattern used during the SLT process (see Figure 4.9b). Let Cnom
j , j =

1, 2, . . . , n represent these centers;

3. find the best alignment mapping the centroids computed at step 1 with

the centers’ positions computed at step 2 using the iterative closest points

algorithm (Pandzo et al. 2001);

4. for each nominal center Cnom
j choose the dimple region Cr which is closer

under an euclidean metric.

Dimple resulting by applying this 4-steps procedure are shown in Figure 4.12. As

clear, over segmentation was eventually solved.
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Figure 4.12: Selected dimples centroids (black) and their nominal references (red)

4.3.4 Selection of Dimple Descriptors

The reconstructed surface and the dimples found with the described procedure are

shown in Figure 4.13.

Figure 4.13: Example of reconstructed surface and segmented dimples

According to the functional requirements on dimples (i.e. to improve adhesion),

the relevant descriptors selected are:

• the dimple depth (or height)

hj = h (Cj) = min
p∈Pj

zp, j = 1, 2, . . . , n
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• the dimple area

Aj = A (Cj) , j = 1, 2, . . . , n.

4.4 Gaussian Process Control Chart for Regu-

larly Structured Surfaces

GP model described in section 1.3 can be used to design a multivariate Hotelling’s

T 2 control chart (Montgomery 2013) as described in (Colosimo et al. 2014). In

this thesis, this approach is used to monitor a surface feature (e.g. depth or area

of the features). Let Zi collects the descriptors of interest observed on the set of

locations S = {s1, s2, . . . , sn} in the i-th sample (i = 1, . . . ,m). As an example, Zi

can collect the areas of the n dimples observed on the i-th surface. It is assumed

that

Zi ∼ Nn(F iβ,Σi), i = 1, 2, . . . ,m (4.1)

where F i is the model matrix, β is the vector of regressors and Σi is the GP

covariance matrix, i.e. Σi = σ2
ηRη,i(ϑ) + σ2

ε In. Note that the subscript i is used

to highlight that possible difference between locations on different items may exist

because the location of the feature depends on the manufacturing process.

4.4.1 GP Control Chart Design

The goal of Phase I is the design of the control chart. Assuming m items (i.e.

structured surface) are available in Phase I. Following Colosimo et al. (2014),

the GP model parameters (Ψ̂i = (ϑ̂i, σ̂
2
η,i, σ̂

2
ε,i)) are computed for each i-th item

observed in Phase I. Eventually, the in-control process parameter is assumed equal

to the mean of these estimated vectors:

Ψ̂ =
1

m

m∑
i=1

Ψ̂i. (4.2)

Let ẑi represents predicted values of the surface descriptors on the i-th surface

(e.g., the predicted areas of dimples of i-th surface). Considering all the m Phase I

samples, the mean value of the surface descriptors in the region of interest is given
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by:

µ̂ẑ =
1

m

m∑
i=1

ẑi. (4.3)

This vector is used as reference to detect out of control states. In fact an item

where the observed descriptors will be very different from the mean value observed

in Phase I (µ̂ẑ) will be deemed out of control.

Similarly,

Σ̂ẑi =σ̂2
η R̂η,i + σ̂2

ε In − σ̂2
η R̂

T

η,iΣ̂ẑiR̂η,i

+
(
F T
i − F T

i Σ̂
−1

ẑi
Rη,i

)T (
F T
i Σ̂ẑiF i

)−1 (
F T
i − F T

i Σ̂
−1

ẑi
Rη,i

)
.

can be taken as reference to estimate the variance-covariance matrix. This matrix

represents the connection between the descriptors of interest as a function of the

spatial location.

In order to detect an out of control state, assume a new surface is examined

and the descriptors of interest are predicted at each location considering the GP

model estimated on Phase I. The T 2 statistic of the predicted descriptors can be

computed as

T 2
i = (ẑi − µ̂ẑ)

T Σ̂
−1

ẑi
(ẑi − µ̂ẑ) (4.4)

where µ̂ẑ is the mean of the predicted values (Equation 4.3).

Eventually, the upper control limit is given by

CL = χ2
n,1−α (4.5)

where α is the first type error of a false alarm probability.

In addition to the proposal by Colosimo et al. (2014), the T 2 control chart

based on the fitted value in Equation (4.4) is also augmented by a T 2 control chart

based on the model residuals

T 2
i = ε̂Ti Σ̂

+

ε̂i
ε̂i (4.6)

where ε̂ is the vector of residuals, given by

ε̂i = zi − ẑi =
(
In − σ2

ηRη,i Σ̂
−1

ẑi

)
(In − P i) zi (4.7)

with

P i = F i

(
F T
i Σ̂ẑiF i

)−1

F T
i Σ̂
−1

ẑi
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and Σ̂
+

ε̂i
is the Moore-Penrose pseudoinverse of the matrix Σ̂ε̂i . The pseudoinverse

must be computed because the rank of the matrix is n− p, where p is the number

of the columns of the matrix F i. Since the rank of the matrix Σε̂ is n − p the

control limit is given by

CL = χ2
n−p,1−α.

4.5 Performance Study of the SPC Procedure

In this section, performance of the SPC procedure proposed in section 4.4 are

evaluated on a real dimpled surface and used to design the control chart. To this

aim a first set of m = 15 subsurfaces was measured. Then, two out-of-control

surfaces were considered to test the ability of the proposed method. The first

out-of-control sample (Figure 4.14a) represents a blank titanium surface, where

it is assumed that the surface is not textured because of a problem occurred to

the laser process. The second out-of-control surface is shown in Figure 4.14b and

represents a surfaces with scratches.

(a) Blank item (b) Scratched surface

Figure 4.14: Out of control surfaces acquired

Figure 4.15 shown the boxplots of the 10 × 10 dimples descriptors on all the

acquired items. The black vertical line divides the in-control from the out-of-

control samples. It is possible to observe that out-of-control items present lower
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depths and lower (and more spread) areas compared with the in-control ones.

(a) Depth (b) Area

Figure 4.15: Boxplots of the computed features parameters of the acquired items

4.5.1 Univariate Control Chart

In order to represent the current practice, a simple alternative SPC procedure

was also tested. It consists of a simple univariate control chart monitoring the

mean and the variance of each descriptors on the specific area. In other words, the

stability of the mean depth (area) and the related variance observed on a set of n

dimples will be checked. Usually, X − S or X − S2 control charts are used in this

case (Montgomery 2013). Unfortunately, assumptions underneath these control

charts are not satisfied (mainly because of the correlation between the descriptors

within each regions). The approach proposed by (Alwan 1999) was thus used to

overcome this problem.

The mean of the dimple descriptors (depth or area) is given by

µi =
1

n

n∑
j=1

xi,j, ∀i = 1, 2, . . . ,m

where xi,j is the descriptor (either the depth or the area) of the j-th dimple of the

i-th item. Thanks to the central limit theorem, it can be assumed that:

µi ∼ N
(
µI , σ

2
I

)
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the control limits are then computed as

UCLI =µI + z1−α
2
· σI

CLI =µI

LCLI =µI − z1−α
2
· σI

where z1−α
2

is the 1− α
2

quantile of the standard normal probability distribution. In

order to compute the control limits of the I chart on the variance, a transformation

of the sample variance is firstly computed

s2∗
i =

(s2
i )
λ − 1

λ
, ∀i = 1, 2, . . . ,m

where λ = 0.5 and s2
i = 1

m−1

∑m
k=1 (xi,k − µi). Using this transformation, usually

the following assumption is satisfied (Alwan 1999)

s2∗
i ∼ N

(
µS2∗ , σ2

S2∗

)
.

The control limits of the variance control chart are

UCLS2∗ =µS2∗ + z1−α
2
· σS2∗

CLS2∗ =µS2∗

LCLS2∗ =µS2∗ − z1−α
2
· σS2∗ .

The α value of each chart is set to 0.0027, as for the T 2 charts.

Since parameters µI , σ
2
I , µS2∗ and σS2∗ are usually not known, a first set of m

samples is taken in Phase I and the corresponding parameters are estimated as

µI =
1

m

m∑
i=1

µi

σ2
I =

1

m− 1

m∑
i=1

(µi − µI)2

µS2∗ =
1

m

m∑
i=1

s2∗
i

σ2
S2∗ =

1

m− 1

m∑
i=1

(
s2∗
i − µS2∗

)2
.
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4.5.2 Performance on a Real Case Study

Control charts shown in Figure 4.16 to 4.19 presents both the in-control and the

out-of-control textured surfaces. It is possible to observe that both the multivariate

GP-based SPC procedure proposed and the simplest univariate control charts are

performing well. As a matter of fact, they are able to detect out-of-control states

using both the dimples depths and their areal descriptors.

(a) Depth T 2 control chart (b) Depth residual T 2 control chart

Figure 4.16: GP-based control charts on the dimple depth

(a) Mean control chart (b) Variance control chart

Figure 4.17: Univariate control charts on the dimple depth
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(a) Area T 2 control chart (b) Area residual T 2 control chart

Figure 4.18: GP-based control charts on the dimple area

(a) Mean control chart chart (b) Variance control chart

Figure 4.19: Univariate control charts on the dimple area

4.5.3 Performance on Simulated Case Studies

In order to compare the performance of the GP-based method with the one

achieved by a simple univariate control chart, a challenging scenario was intro-

duced. A spatially dependent out of focus of the laser was simulated. This out of

control state may depend on a bad fixturing of the surface. This out of focus was

simulated by adding the following linear shift to each dimple descriptor

ϕ = δ |uc|
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where δ is a know value and uc is the u coordinate of the dimple centroid.

Clearly δ is positive when the dimple depth is of interest, because, the dimple

depth reduces as the laser goes out of focus. An opposite behavior is expected for

the dimple area

A total of 103 out of control items were generated for each magnitude δ, and the

corresponding probability β of not detecting the out of control state was computed.

In this case, only the GP-based and the univariate procedures working on the mean

are used (thus neglecting the control charts on the (residual) variance).

Table 4.1 shows the performance of the β error when the dimple depth is of

interest. It is possible to observe that the GP-based procedure outperforms the

univariate competitor.

δ (×103) βGP βuniv

2.6 0.23 0.70

2.8 0.15 0.65

3.0 0.10 0.51

3.2 0.08 0.36

Table 4.1: β error (shift on the dimple depth)

Similarly, Table 4.2 shows results when dimple area is considered.

δ (×103) βGP βuniv

-0.6 0.28 0.69

-0.8 0.19 0.57

-1.0 0.08 0.37

-1.2 0.04 0.24

Table 4.2: β error (shift on the dimple area)
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Chapter 5

Process Optimization

The goal of this chapter is to use the prediction model presented in chapter 1 to

find the optimal value of a process response (z) as function of some controllable

factor (s).

An optimization system consists on finding the best solution to this process within

constraints (Biegler 2010). This task requires the following elements:

• objective function: it is a scalar quantitative performance measure that needs

to be minimized or maximized (z);

• predictive model: it describes the behavior of the system (GP model). For

the optimization problem this translates into a set of equations and con-

straints. These constraints comprise a feasible region that defines limits of

performance for the system.

• variables: they appear in the predictive model and must satisfy the con-

straints (s). This can usually be accomplished with multiple instances of

variable values, leading to a feasible region that is determined by a subspace

of these variables.

In order to optimize the output of a process, the response value, that depends on

a particular value of the controllable factors (or locations) s, can be computed

through two different approaches: experiments and simulation.

In experiments a set of scientific tests is run and the response of a process is

measured (see Figure 5.1a). The value of the response is a function of some non

87
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controllable, or not controlled, input parameters (i) and it is also a function of

some noise affecting the measurements or due to the natural variability of the

process.

If the response of the process is computed by simulation (see Figure 5.1b), the out-

put of the process is a function of some input parameters i and of the controllable

factors s, but since the simulation is an approximation of the physical process, the

output is biased because a simulation does not take into account all the degree of

freedom of a real process.

Process

s

noise

i zh

(a) Scheme of process analysis through

experiments

Simulation

FEM

s

bias

i zl

(b) Scheme of process analysis through

simulation

Figure 5.1: Scheme of process analysis

The linkage model described in section 1.4 to fuse multisensor metrology data can

be here used to merge the two types of data: the cheap (usually biased) simulations

with the precise (but expensive) physical experiments (see Figure 5.2).

Simulation

FEM

s

bias

Process

s

noise

i zl zh

Figure 5.2: Scheme of process analysis through a fusion approach

In this chapter it is shown how an appropriate data fusion, described in section

1.4, based on combining simulated (Lo-Fi) and experimental (Hi-Fi) data can

result in an efficient optimization procedure, which can significantly reduce the

simulation and calibration efforts.
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5.1 Process Optimization: Efficient Global Op-

timization Algorithm

In this work, optimization consists of finding the design point s such that the

expected value of the response function is maximized (or minimized). The expected

value of the response function in a new location s0 is computed via equation (1.20)

E[Zh(s0)|Zh = zh,Z l = zl] = ρ̂(s0) ẑl(s0) + δ̂0

+
(
σ̂2
δ r̂δ + σ̂0

)T
Σ̂
−1

∆

(
zh − P̂ ẑl − δ̂0 1nh

)
which shows prediction of the response function in any location using the data

fusion model. In the following, without loss of generality, it is assumed that the

response function has a unique global maximum (minimum).

A deterministic model (model without random term) is used to describe the

simulation results. It is combined with a model including a nugget effect (random

term) when simulated data are linked to experimental results. It is assumed that

the new points added in the optimization procedure to achieve the optimum are

simulated and hence not affected by noise. However, following the proposed model

strategy, any new Lo-Fi simulation will be “translated” into the corresponding

Hi-Fi data, thanks to the linkage model developed in the data fusion procedure

(Equation 1.20). The linkage model described in section 1.4 can be interpreted as

an off-line calibration step, where the Lo-Fi data are transformed to Hi-Fi data,

depending on the specific locations where the points are observed.

Optimization based on a kriging model is usually performed with the Efficient

Global Optimization (EGO) algorithm, originally proposed by Jones, Schonlau,

and Matthias Welch (1998). The EGO algorithm looks for the global maximum (or

minimum) of a generic deterministic function, using GP for computing predictions

at any new location. The algorithm was extended in order to take into account

also noisy functions in (Huang et al. 2006a) and in (Huang et al. 2006b).

The first step of the optimization algorithm consists of finding an initial guess

of the response surface, by selecting an initial number of 10 d points to roughly

estimate the underlying surface, where d is the dimension of the function domain.

After a first rough estimation of the function, the algorithm suggests adding a point

where a criterion, called the Expected Improvement (EI), proposed by Mockus,

Tiesis, and Zilinskas (1978), is maximized; this index represents the expected value
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of the improvement. Then, the algorithm is re-iterated until a stopping criterion

is satisfied (usually when the ratio between the EI at the j-th step and the initial

EI becomes 10−2).

The details of the EGO algorithm in the version suitable to optimize the two-

stage model is described below (see also (Huang et al. 2006a)).

At the j-th iteration of the algorithm, the current maximum is established as the

maximum value predicted via the fusion model (i.e., the model combining both

simulations and experimental data) in all the locations where simulations or real

data are available. Let ẑ
(j)
max(smax) represent this current maximum at the j-th

iteration

ẑ(j)
max(smax) = max

i
ẑh(si)

where si represents the set of all the observed locations, i.e. both Lo-Fi and Hi-Fi

data. A new variable Q(j)(s) is defined as the difference between the model ẑh(s)

predicted at a generic location s and the current maximum

Q(j)(s) = ẑh(s)− ẑ(j)
max(smax) ∼ N

(
µQ(j)(s), σ2

Q(j)(s)
)
. (5.1)

In order to compute the distribution of Q(j)(s) at any location s, a new location

s0 is considered. A bi-variate vector consisting of the model prediction at this new

location ẑh(s0) and the current maximum ẑ
(j)
max(smax) is built. This vector, since

it is the prediction with the GP model described in chapter 1, is approximately

distributed as a bi-variate normal[
ẑh(s0)

ẑ
(j)
max(smax)

]
≈ N2(µego,Σego) (5.2)

with

µego =P̂ S0 ẑl(S0) + δ̂0 12 +
(
σ̂2
η R̂δ

h,S0
+ Σ̂lSh,S0

)T
Σ̂
−1

∆

(
zh − P̂ ẑl − δ̂0 1nh

)
Σego =Σ̂∆S0

− Σ̂
T

∆Sh,S0
Σ̂
−1

∆ Σ̂∆Sh,S0
+

+

(
12 − Σ̂

T

∆Sh,S0
Σ̂
−1

∆ 1nh

)(
12 − Σ̂

T

∆Sh,S0
Σ̂
−1

∆ 1nh

)T
1TnhΣ̂

−1

∆ 1nh



5.1 Process Optimization: Efficient Global Optimization Algorithm 91

where S0 = [s0, smax]
T , Sh = [s1, s2, . . . , snh ]T is the matrix of Hi-Fi points,

RδSh,S0
is the correlation matrix between Sh and S0, ΣlSh,S0

is the covariance

matrix between ρ(Sh)ẑl(Sh) and ρ(S0)ẑl(S0), Σ∆S0
is the covariance matrix of S0

and Σ∆Sh,S0
is the covariance matrix between Sh and S0. Clearly, the distribution

of Q(j)(s) can be now computed starting from the aforementioned bi-variate vector,

by applying standard multivariate statistical theory (Johnson and Wichern 2007)

Q(j)(s) ≈ N
(
µQ(j)(s) = cTµego, σ

2
Q(j)(s) = cTΣegoc

)
(5.3)

where c = (1,−1)T . It is possible to observe that the mean and the variance of

the random variable in Equation (5.3) can be rewritten as

µQ(j)(s) =E [ẑh(s)]− E
[
ẑ(j)
max(smax)

]
σ2
Q(j)(s) =Var [ẑh(s)] + Var

[
ẑ(j)
max(smax)

]
− 2Cov

[
ẑh(s), ẑ(j)

max(smax)
]

The expected improvement can be thus written as a function of this new vari-

able Q(j)(s), representing the difference between the objective function and the

current optimum in a generic location, namely

EI(j)(s) =E(max{Q(j)(s), 0}) =

∫ +∞

0

q√
2πσ2

Q(j)(s)
exp

{
−1

2

(
q − µQ(j)(s)

)2

σ2
Q(j)(s)

}
dq

=σQ(j)(s) ϕ

(
µQ(j)(s)

σQ(j)(s)

)
+ µQ(j)(s) Φ

(
µQ(j)(s)

σQ(j)(s)

)
.

From the last equation is possible to observe that the EI(j)(s) is a weighted sum

of the mean and the standard deviation of the variable Q(j)(s). The algorithm

suggests to add a new point where the mean is high, which consists on an im-

provement of the current maximum, or where the standard deviation is high, i.e.

where the variability of prediction is high to make better forecast on that part of

the design space.

The optimization task of the function can be carried out using a Matlab global

optimization algorithm proposed by Zsolt et al. (2007). It is observed that the

EGO algorithm requires a new estimation of ẑh(s), ẑQ
(j)

max and µQ(j)(s) and σQ(j)(s)

at each step.
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5.1.1 Example of Optimization Performance with Artifi-

cially Generated Data

In this section the EGO procedure will be shown at work, with reference to the

example described in section 1.4. Without loss of generality, the number of con-

trollable parameters will be kept equal to two in order to be able to visualize the

data. The Lo-Fi data model is

zl = f(s) +
3

10
u2 +

3

10
v2

while the Hi-Fi data are generated from

zh = f(s) + εh, εh ∼ N (0, 0.5).

An initial design of 20 Lo-Fi points and 10 Hi-Fi points, selected according to a

max-min latin hypercube will be considered.

Figure 5.3 shows the surface predicted before (5.3a) and after (5.3b) the EGO

algorithm. As clear from the plot, the EGO algorithm concentrates simulations

at the neighborhood of the maximum value (in this example after 6 steps), thus

allowing for a better estimation of the true surface in that region.

(a) Before the EGO algorithm

In order to test the ability of the EGO approach to converge, the optimization

based on our two-stages model was repeated 10 times, starting from different

data set, generated randomly at each run. Table 5.1 summarizes results of these

simulations, showing the number of iterations required before convergence together

with the optimal value found and the difference between the true values of the
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(b) After the EGO algorithm

Figure 5.3: Surface estimation before and after the EGO algorithm

maximum coordinates (i.e., u = −0.009, v = 1.581 and z = 8.106, respectively)

and the values of the optimum found by the proposed method. As clear from the

table and from the figures above, the error is consistently low, if compared to the

range of the 3 variables.

Considering the sample of 10 replicates, statistical tests to reject the hypothesis

that the coordinates of the true computed optima are, on average, equal to the true

values were performed. As a final result, the null hypothesis cannot be rejected

for all the three coordinates, the p-values of the tests were 0.69, 0.66 and 0.97,

respectively for u, v and z.

5.2 Case Study: Design of an Anti-intrusion Side

bar for Vehicles

The modeling and optimization procedure described in section 5.1 is applied to

a real optimization problem: the design of an anti-intrusion side bar for vehicles,

made of an outer tubular steel case and a filling reinforcement made of aluminum

foam (Strano, Mussi, and Monno 2010). The filling of cases made of thin metal

sheets or tubes with a reinforcement made of cellular metals (or metal foams),

allows production of lightweight, high performance components, particularly suited

for flexural resistance in terms of amount of energy absorbed for a given maximum

load (Figure 5.4).
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# iterations

before convergence

optimal value and

difference with

true optimal u

optimal value and

difference with

true optimal v

optimal value and

difference with

true optimal z

4 -0.052 (-0.042) 1.569 (-0.012) 8.115 (0.009)

11 0.034 (0.043) 1.585 (0.004) 8.091 (-0.015)

6 -0.064 (-0.055) 1.569 (-0.012) 8.099 (-0.008)

5 -0.052 (-0.043) 1.572 (-0.009) 8.117 (0.011)

6 0.033 (0.043) 1.570 (-0.011) 8.097 (-0.010)

6 -0.001 (0.009) 1.595 (0.014) 8.113 (0.006)

4 -0.051 (-0.042) 1.572 (-0.010) 8.096 (-0.010)

5 -0.050 (-0.040) 1.568 (-0.014) 8.114 (0.008)

6 -0.051 (-0.042) 1.594 (0.013) 8.098 (-0.009)

6 0.030 (0.039) 1.565 (-0.017) 8.101 (-0.006)

Table 5.1: Number of iterations of 10 replicates required by the EGO algorithm and

value and difference of the optimum coordinates found with respect to the

coordinates of the true maximum value

In order to optimize the performance of the component in case of an accident,

several issues must be taken into account. These refer to a closed section with

a composite (bi-material) structural beam with initial length L, vertical average

dimension H, horizontal average size W , initial average cross section area S =

H · W , total occupied volume V = S · L, mass M and apparent density ρ =
V
M

. In lateral impact, the structure will undergo a flexural state of stress-strain.

Given a load P [kN ] - deflection δl [mm] diagram in bending of a foam filled bar,

up to any value of deflection δl, the load curve profile will exhibit a maximum

load value Pmax, an average load Pavg and an amount of absorbed energy per

volume Eabs = Pavg · δl. The crash force efficiency can be written as the ratio

between the mean load and the maximum load of a Force-Displacement curve

(Yuen and Nurick 2008): η = Pavg
Pmax

. A body with high efficiency will have a large

energy absorption, while limiting the maximum load Pmax (and the corresponding

acceleration) transmitted to the vehicle. A Specific Energy Absorption (SEA)

can be also defined, as the ratio between the absorbed energy and the total mass:

SEA = Eabs
M

. In a lateral crash, for any given tubular composite structure and
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(a) Stainless steel tube after 3

point bending, filled by an alu-

minum foam

(b) Longitudinal cross section

Figure 5.4: Steel tube

a given amount of incoming energy, it is important to achieve the competing

objectives:

• increase or maximize the energy absorption Eabs, given a maximum deflection

δlmax, while limiting the total mass M ; this is equal to maximizing the SEA

of the structure;

• increase or maximize the crash force efficiency η;

• minimize the intrusion into the vehicle δlmax.

This is a typical problem in engineering design, where simulations and/or exper-

imental data are required to empirically reconstruct the relationship between the

design variables and the response function thus allowing optimization. In this test

case, the design vector, s = (u, v)T , is made of two design variables. The first

variable, u, is a toughness indicator, related to the plastic material properties of

the outer steel skin. u represents the area under the flow stress curve, it measures

the fracture toughness of the skin material

u =
nn+1 ·K
n+ 1

MPa

where K and n are respectively the hardening coefficient and exponent of the flow

stress power law. The second variable v is a shape factor, related to its geometry

v =
J

W
mm3

where J is the moment of inertia of the tube cross section and W is the depth

of the specimen, in the direction of the movement of the punch, i.e. the lateral
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encumbrance of the structure. In v, J is divided by W because it is important to

keep the encumbrance under control, due to the limited space available inside the

car door.

Let s represent a design variable influencing the aforementioned indicators, a

synthetic objective function z can be built as

z(δlmax, s) =
SEA(δlmax, s) · η(δlmax, s)

δlmax
=

P 2
avg(δlmax, s)

Pmax(δlmax, s) ·M(s)
(5.4)

and measured in [kN
kg

]. In the present case, the maximum admissible intrusion was

set to δlmax = 48 mm for reasons related to design criteria of cars.

Both the design variables affect the response function z(δlmax, s). Unfortu-

nately, the way in which these two design variables affect the response is not

analytically known and has to be detected via simulation and/or experimental

data.

5.2.1 The Hi-Fi Data: Experimental Data

A total amount of 7 experimental conditions of anti-intrusion bar were analyzed,

for a total of 21 bending tests. An example of the layout of the experiments can

be found in Figure 5.5.

(a) Tube before the bending (b) Tube after the bending

Figure 5.5: Experiment

Table 5.2 shows all the experimental conditions tested and their geometrical

and dimensional specifications.
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Condition Material
Cross section

shape

Length or

diameter

[mm]

Thickness

[mm]

# of

tests

1 Fe 360 Square 20 2.0 3

2 Fe 360 Square 20 2.0 3

3 Fe 360 Round 27 2.5 3

4 DOCOL800DP Square 30 1.5 3

5 DOCOL800DP Square 30 1.5 3

6 DOCOL800DP Round 32 2.0 3

7 AISI 304 Round 25 1.5 3

Table 5.2: Experimental conditions

These tubes were filled with an aluminium foam, Al 6061. It was used a direct

filling foam of the tubes. In this way, the precursor is inserted in the tube and

the assembly and, once the two side-ends are closed, it is heated in the oven until

the foaming process is not finished. The Nabertherm LT 9/11 HA was used. The

density chosen for the foam was 0.56 kg
dm3 , the foaming time was between 5 and 13

minutes, according to the condition analyzed. The temperature of foaming was

750 ◦C for all the conditions. After the tubes filling, bending tests on three points

were conducted with a 100 kN press MTS Alliance RT/100, with an indenter

diameter of 20 mm and, above it, a load cell of 100 kN . The speed of the press

was 500 mm
min

and the stroke was set to 48 mm.

Clearly, each experimental test is both time- and money-consuming because of

the manufacturing process of foam filled tube (Strano, Mussi, and Monno 2010).

5.2.2 The Lo-Fi Data: Finite Element Method Model

Finite Element Method (FEM) simulations were run with ABAQUS software (Hi-

bbit, Karlsson, and Sorensen 2007). Four components were modeled to reproduce

a three points bending test: the tube, the foam, the indenter and the support

(Figure 5.6). Only a quarter of all assembly was analyzed in order to reduce the

simulation time.

Simulations of the three-point bending tests were run with an FEM model
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(a) Set up of the simulation (b) Tube after bending

Figure 5.6: FEM simulation

with explicit time integration scheme. The foam was modeled with 3D hexahedral

elements with a “Crushable Foam” isotropic material formulation. The tube was

modeled with shell elements with an elastic-plastic isotropic material formulation.

Contact between foam and tube was modeled with a penalty formulation and a

Coulomb coefficient of friction equal to 0.6. The number of elements changed

according to the simulated structure and the simulation time for each test ranges

between 4 and 8 CPU hours. Each simulation was therefore quite expensive from

a computational viewpoint. This is a typical situation in optimization problems

where large plastic deformations are involved, due to the strong nonlinearities of

the computational problem.

The common approach used in the scientific literature in this case is generally

based on the following steps:

1. running a limited number of experiments,

2. building the numerical model and iterating until a satisfactory calibration of

the simulation model is reached,

3. running the simulations required for modeling and optimization.

Calibration is often not described in scientific papers, and the final calibrated

model is generally presented, as in Zarei and Kroger (2008). Nevertheless, step

2 is always required, although not explicitly mentioned. The aim of this section

is to demonstrate how the fusion model can be used for merging steps 2 and 3,

reducing the total computational time. This is why the fusion model and the EGO

optimization method described in section 5.1 are applied in two different scenarios.
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In the first “calibrated” scenario, step 2 of the traditional three-step procedure

was applied, i.e., the simulation model was pre-calibrated. In particular, for each

investigated material (Fe 360, Docol 800DP, AISI 304) with experiments available

the K and n parameters of the tested materials were iteratively calibrated until the

mean mismatch between experimental and numerical results felt below a 10% error

threshold for the objective function z(48, s). In other words, the FEM simulations

were run again and again, changing K and n, until the error on z(48, s) was

acceptable. Data used for the three initial materials in both scenarios are given

in Table 5.4. In 1 out of 7 cases, no calibration was required, i.e. the error

was already at 10%. In the other 6 conditions, from 2 to 3 FEM runs were

required in order to calibrate the input variables, for a total of about 15 additional

computations. Calibrating the K and n values makes the u’s change accordingly,

i.e. the calibration has an effect on one of the two design variables. For additional

materials, for which no real test are available have been evaluated by FEM only,

the tensile test hardening values found using the CESTM software package were

used to compute K and n.

In Table 5.3 are shown the difference percentage between the simulations and

the experimental results.

Condition Experiment Simulation Difference %

1 23 000.60 26 476.72 15.11

2 27 327.71 29 091.88 6.46

3 34 344.88 34 310.00 −0.10

4 39 178.20 45 195.27 15.36

5 50 862.09 50 503.31 −0.71

6 37 474.71 38 209.45 1.96

7 32 827.03 26 789.46 −18.39

Table 5.3: Values of z(48, s) of both experiments and simulations and difference per-

centage after calibration

In the second “non-calibrated” scenario, no time was spent for calibrating

the simulation model, saving in this case all the aforementioned 15 runs, each

amounting to about 3 to 4 CPU hours with the workstation used in the study. All
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the materials, including the three materials with experimental values available,

were simply modeled considering the nominal K and n values, calculated by the

data given in CESTM.

Non calibrated Calibrated

All cross sections Round cross section Square section

K

[Mpa]
n

u

[Mpa]

K

[Mpa]
n

u

[Mpa]

K

[Mpa]
n

u

[Mpa]

Fe 360 603 0.20 73 603 0.20 73 530 0.26 77

DOCOL800DP 944 0.18 107 700 0.17 76 944 0.18 107

AISI 304 740 0.43 154 1133 0.43 235 - - -

Table 5.4: K and n values for both scenarios

5.2.3 Optimization

The optimization problem can be formalized as finding the s-value that maximizes

z(δlmax, s), within the range of the investigated values of s.

Since both simulations and experiments were expensive, any mathematical

technique aimed at reducing the number of design points required for optimization

would be highly appreciated in the field of design and manufacturing optimization

of metal foam based structures.

The method described above was applied to the crashworthiness optimization

of aluminum foam filled tubular structures presented in section 5.2. For both the

calibrated and non-calibrated scenarios, nh = 7 experimental design locations were

initially available. Every experimental combination, which is a tubular structure

with its shape (summarized by v) and outer material (summarized by u) was

replicated three times, for a total of nh× 3 = 21 experimental (Hi-Fi) couples of z

and s values. At these design locations, FEM simulations were performed for both

the scenarios, i.e., with calibrated K and n values and with non-calibrated material

data. Furthermore, nl = 13 additional design locations were added according to an

initial random, space filling design of computer simulations (Lo-Fi data). A total

of Ndes = nh+nl = 7+13 = 20 locations of z and s values were therefore originally
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available. The EGO algorithm embedded in the optimization routine suggested

Nego = 4 additional evaluation points in the non-calibrated (Table 5.5) scenario

and Nego = 5 additional points to be simulated in the calibrated one (Table 5.6).

During the optimization, every new location suggested by the EGO approach,

i.e. every new combination of u and v values, was “translated” into an actual

material and an actual shape. Considering that it is not realistically possible to

find an engineering material with exactly the u values suggested by the EGO, the

nearest available material option founded on the CESTM software package to be

used instead is considered. When more than one option was found by the CESTM

software, all the close materials were tested. Similarly, it was difficult to define

a real (i.e. potentially available on the market) tube cross section with the exact

shape suggested by the EGO: the closest approximations was thus considered. For

this reason, the actual number of design locations tested was larger than Ndes+Nego

for both scenarios: 27 instead of Ndes +Nego = 24 locations were used in the non-

calibrated scenario; 35 instead of Ndes + Nego = 25 locations were used in the

calibrated one.

Iteration u v

1 128.03 233.21

2 131.79 276.52

3 110.00 774.00

4 129.48 306.69

Table 5.5: Evolution of the EGO algorithm in the non-calibrated scenario

Iteration u v

1 198.00 774.00

2 141.46 556.25

3 102.33 786.53

4 113.52 768.36

5 114.15 780.72

Table 5.6: Evolution of the EGO algorithm in the calibrated scenario
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It is useful to further clarify the differences between the two scenarios, with

reference to Figure 5.7. In the design space, the variable u is a function of the ma-

terial parameters under calibration, K and n. As a consequence, in the calibrated

scenario, the experimental z values are placed in the design space at calibrated

locations along the u axis. In the non-calibrated scenario, the experimental z

values are still “reliable”, i.e. Hi-Fi, but they are located in the design space at

non-calibrated u locations.

(a) Design space for non-calibrated scenario

(b) Design space for calibrated scenario

Figure 5.7: Design spaces

The optimal values of the non-calibrated and the calibrated scenario for each

step of the EGO algorithm are reported in Table 5.7 and in Table 5.8, respectively.
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Iteration u v z

0 107.61 782.42 50 614.35

1 129.40 298.21 51 766.99

2 105.22 782.64 51 200.74

3 107.61 782.56 50 617.58

4 104.38 781.22 51 690.14

Table 5.7: Evolution of the optimum during the EGO steps in the non-calibrated sce-

nario

Iteration u v z

0 107.05 777.39 50 376.07

1 107.16 770.56 50 130.40

2 107.12 776.63 50 376.73

3 113.52 785.20 49 129.89

4 113.15 786.77 52 490.92

5 114.57 774.76 52 712.46

Table 5.8: Evolution of the optimum during the EGO steps in the calibrated scenario

The resulting interpolated surface and the optimal solution for both the sce-

narios are shown in Figures 5.8 and 5.9, respectively. The values of the optimum

found are not in a ascending order because during the steps of the algorithm there

is also a re-estimation of the response function z.
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Figure 5.8: Surface of the model for the non-calibrated scenario; optimal solution val-

ues are given in Table 5.7

Figure 5.9: Surface of the model for the calibrated scenario; optimal solution values

are given in Table 5.8

By comparing the mentioned figures, it is observed how the two optimal s-

values are very similar, i.e. both scenarios yield more or less the same optimal

solution. Furthermore, the estimated z(48, s) values are similar too, with a differ-

ence of only 0.1%. The expected error of the optimal value of z(48, s) is smaller

for the calibrated vs. the non-calibrated scenario (1764 vs. 5558 N
kg

), which is

not surprising, as the prediction yielded by the calibrated model is obviously more

accurate. Although the two scenarios yield the same optimal solution, the mod-

eled surfaces are not very similar in shape. This is mainly because the calibration
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affects the u values and range.





Conclusion and Future Research

The focus of the work was the reconstruction of response functions (namely a real

machined surface or the performance of a process as a function of the controllable

parameters) using a fusion model that links data coming from two different sources

of information.

We showed how a unifying framework can be used to solve very different re-

constructions problems. In particular we proposed:

1. an approach to deal with the “big data” problem (since non contact data

can arrive to some millions);

2. an approach to manage uncertainty propagation in the data fusion step;

3. an approach to combine surface modeling to quality control for regularly

structured surfaces;

4. an approach to combine FEM simulations and real experimental data to

optimize the performance of a manufacturing process.

Possible future improvements can be foreseen.

Firstly, the reconstruction of shapes from large dataset can be performed by

combining segmentation (to identify surface patches) to surface fitting via data

fusion. New approaches for data fusion of multi-patches surfaces have to be devel-

oped.

Secondly, appropriate sampling schemes for the reconstruction via data fusion

should be designed.

107





Appendices

109





Appendix A

Proof of GP fusion model

In this Section, the linkage model proposed by Qian et al. (2006) is extended to

take into account also the uncertainty of prediction of the Lo-Fi model.

The linkage model is reported in matrix form in Equation (1.15)

zh = P ẑl + δ01nh + δ + ε∆ (A.1)

If δ, ε∆ and ẑl are assumed to be independent, it is possible to show that the

distribution of zh is:

zh ∼ Nnh(P ẑl + δ01nh ,Σ∆) (A.2)

where:

Σ∆ = PΣ0P
T + σ2

δRδ + σ2
∆I (A.3)

where Σ0 is the prediction covariance matrix of the first stage model in Sh.

A.1 Prediction of new Point and its Propriety

The prediction value and the uncertainty interval of a new observations at location

s0 is now computed. As for the classic GP model, the starting point is the joint

distribution between zh and Zh(s0) = Z0:

(
zh

Z0

)
|zh, zh ∼Nnh+1

((
P ẑl + δ01nh

ρ(s0)ẑl(s0) + δ0

)
,

[
Σ∆ σ2

δrδ + σ0

σ2
δr

T
δ + σT0 σ2

δ + σ00ρ
2(s0) + σ2

∆

])
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where rδ = Corr(zh, Z0), σ00 = V ar[Ẑh(s0)] and σ0 is the vector whose i-th

component is σ0i = ρ(si) ρ(s0) · Cov(ẑhi , Z0).

The conditional distribution of the new prediction is:

Zh(s0)|zh, zl ∼N
(
ρ(s0) + δ0 +

(
σ2
δrδ + σ0

)T
Σ−1

∆ (zl − P ẑl − δ01nh ),

σ2
δ + σ00 ρ

2(s0) + σ2
εh
−
(
σ2
δrδ + σ0

)T
Σ−1

∆

(
σ2
δrδ + σ0

) )
Even in this case, since the real parameter values are unknown, we can substitute

them with their estimates (plug-in procedure).

Substituting δ̂0 from Equation (1.18) the prediction in a new location s0 can

be rewritten as

Ẑh(s0) =E(Zh(s0)|zh, zl) = ρ(s0)ẑl(s0) + δ̂0 +
(
σ2
δrδ + σ0

)T
Σ−1

∆

(
zl − P ẑl − δ̂01nh

)
=ρ(s0)ẑl +

[
1− (σ2

δrδ + σ0)TΣ−1
∆ 1nh

]
δ̂0 − (σ2

δrδ + σ0)TΣ−1
∆ P ẑl+

+
(
σ2
δrδ + σ0

)T
Σ−1

∆ zl

=

{
f̃
T

∆(s0)−
[
1−

(
σ2
δrδ + σ0

)T
Σ−1

∆ 1nh

] 1TnhΣ
−1
∆ F̃∆

1TnhΣ
−1
∆ 1nh

−
(
σ2
δrδ + σ0

)T ·
·Σ−1

∆ F̃∆

}
ρ+

{[
1−

(
σ2
δrδ + σ0

)T
Σ−1

∆ 1nh

] 1TnhΣ
−1
∆

1TnhΣ
−1
∆ 1nh

+

+
(
σ2
δrδ + σ0

)T
Σ−1

∆

}
zl

=f̃
T

∆(s0)ρ− aT∗P ẑl + aT∗ zl

with

aT∗ =
[
1−

(
σ2
δrδ + σ0

)T
Σ−1

∆ 1nh

] 1TnhΣ
−1
∆

1TnhΣ
−1
∆ 1nh

+
(
σ2
δrδ + σ0

)T
Σ−1

∆ (A.4)

and f̃∆(s0) = f∆(s0) ẑl(s0) and F̃∆ = [f∆(s1) ẑl(s1), . . . ,f∆(snh) ẑl(snh)]T .

The estimator has the form a0 + aT1 zl and since it is not possible to find a

closed-form expression for ρ̂, it is not the best linear unbiased prediction (BLUP)

(Santner, Williams, and Notz 2003), but, as we will see in a while, a∗ is the vector

which minimizes the Mean squared prediction error (MSPE) of Ẑh(s0).



A.1 Prediction of new Point and its Propriety 113

First of all, we look for the unbiased condition:

E
[
Ẑh(s0)

]
= E

[
f̃
T

∆(s0)ρ− aT∗P ẑl + aT∗ zl

]
=

E
[
f̃
T

∆(s0)ρ− aT∗P ẑl + aT∗P ẑl + aT∗ 1nh δ̂0 + δ + εh

]
=

= fT∆(s0)ρ+ aT∗ 1nhδ0 = E [Zh(s0)] = fT∆(s0)ρ+ δ0

=⇒ aT∗ 1nhδ0 = δ0 =⇒ aT∗ 1nh = 1 (A.5)

Then, starting from the definition we calculate the MSPE, or the so called

kriging variance

E
[
Ẑh(s0)− Zh(s0)

]2

= E
{[
f̃
T

∆(s0)ρ+ aT∗ δ + aT∗ 1nhδ0 − δ0︸ ︷︷ ︸
(A.5)

=0

+

− aT∗P ẑl + aT∗P ẑl + aT∗ ε∆ − fT∆(s0)ρ− δ(s0)− ε∆

]2}
= E

{[
f̃
T

∆(s0)ρ (ẑh(s0)− zl(s0))− aT∗P (ẑl − zh) + aT∗ δ + aT∗ ε∆+

− δ(s0)− ε∆

]2}
= E

{(
f̃
T

∆(s0)ρ
)2

(ẑh(s0)− zl(s0))2 + aT∗P (ẑl − zh) (ẑl − zh)T Pa∗+

+ aT∗ δδ
Ta∗ + aT∗ ε∆ε

T
∆a∗ + δ2(s0) + ε2

∆+

− 2f̃
T

∆(s0)ρ (ẑh(s0)− zl(s0)) (ẑl − zh)T Pa+ 2f̃
T

∆(s0)ρ (ẑh(s0)− zl(s0))a∗δ+

+ 2f̃
T

∆(s0)ρ (ẑh(s0)− zl(s0))aTε∆ − 2f̃
T

∆(s0)ρ (ẑh(s0)− zl(s0)) δ(s0)+

− 2f̃
T

∆(s0)ρ (ẑh(s0)− zl(s0)) ε∆ − 2aT∗P (ẑl − zh)aT∗ δ+

+ 2aT∗P (ẑl − zh) δ(s0)− 2aT∗P (ẑl − zh)aT∗ ε∆ + 2aT∗P (ẑl − zh) ε∆+

+ 2aT∗ δa
T
∗ ε∆ − 2aT∗ δδ(s0)− 2aT∗ δε∆ − 2aT∗ ε∆δ(s0)− 2aT∗ ε∆ε∆ − 2δ(s0)ε∆

}
=
(
f̃
T

∆(s0)ρ
)2

σ00 + aT∗PΣ0Pa∗ + σ2
δa

T
∗ rδa∗ + σ2

∆a
T
∗ a∗ + σ2

δ + σ2
∆ − 2aT∗σ0

− 2σ2
δa

T
∗ rδ



114 A. Proof of GP fusion model

=
(
f̃
T

∆(s0)ρ
)2

σ00 + σ2
δ + σ2

∆ + aT∗
(
PΣ0P + σ2

δrδ + σ2
∆Inh

)
a∗ − 2aT∗ (σ2

δrδ + σ0)

=
(
f̃
T

∆(s0)ρ
)2

σ00 + σ2
δ + σ2

∆ + aT∗Σ∆a∗ − 2aT∗ (σ2
δrδ + σ0).

The MSPE is asymptotically correct due to the fact that δ̂0 is a maximum likeli-

hood estimator.

Finally, we want to show that a∗ minimizes the MSPE of Ẑh(s0).

The function to be minimized is:

mina f(a) = mina a
TΣ∆a− 2aT

(
σ2
δrδ + σ0

)
subject to:

aT1nh = 1

where we have dropped the terms
(
fT∆(s0)ρ

)2
σ00, σ2

δ and σ2
∆, since they are con-

stant with respect to a.

This can be rewritten as an unconstrained minimization problem using the

Lagrange multiplier:

mina, λ L(a, λ) = mina, λ a
TΣ∆a− 2aT

(
σ2
δrδ + σ0

)
+ 2λ(aT1nh − 1)

taking derivatives with respect to a and λ and setting these to zero leads to

the system of equations

∂L(a, λ)

∂a
=2Σ∆a− 2(σ2

δrδ + σ0) + 2λ1nh

∂L(a, λ)

∂λ
=aT1nh − 1

The solutions turn out to be:

ā =

(
Σ−1

∆ −
Σ−1

∆ 1nh1
T
nh

Σ−1
∆

1TnhΣ
−1
∆ 1nh

)
(σ2

δrδ + σ0) +
Σ−1

∆ 1nh
1TnhΣ

−1
∆ 1nh

which is equal to the vector a∗ of Eq. (A.4) and, since the Hessian is positive

definite, MSPE attains its minimum at a∗.
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Guennebaud, Gaël, Benôıt Jacob, et al. 2010. Eigen v3.

http://eigen.tuxfamily.org.

Harville, D.A. 1977. “Maximum likelihood approaches to variance component

estimation and to related problems.” Journal of the American Statistical

Association 72:320–338.

Hibbit, Karlsson, and Sorensen. 2007. ABAQUS/Standard Analysis User’s Man-

ual. USA: Hibbit, Karlsson, Sorensen Inc.

Hjelle, Ø. 2001. “Approximation of Scattered Data with Multilevel B-splines.”

Technical Report, SINTEF.

Hjelle, Ø., and M. Daehlen. 2005. “Multilevel least squares approximation of

scattered data over binary triangulations.” Computing and Visualization in

Science 8:83–91.



Bibliography 117

Huang, D., T.T. Allen, W.I. Notz, and R.A. Miller. 2006a. “Sequential kriging

optimization using multiple-fidelity evaluations.” Structural and Multidisci-

plinary Optimization 32(5):369–382.

Huang, D., T.T. Allen, W.I. Notz, and N. Zheng. 2006b. “Global Optimization of

Stochastic Black-Box Systems via Sequential Kriging Meta-Models.” Journal

of Global Optimization 34:441–466.

Irwin, J.T. 2012. Structured Light Scanning Technology Gives 3D Engineering

Solutions Full Range of Tools for Increased Accuracy in 3D Scanning Service.

Isgro, F., F. Odone, and A. Verri. 2005. “An open system for 3d data acquisition

from multiple sensor.” Proceedings of the seventh international workshop on

Computer Architecture for Machine Perception (CAMP’05).

ISO. 2013. Geometrical product specifications (GPS) - Surface texture: areal.

Jiang, X., P.J. Scott, D.J. Whitehouse, and L. Blunt. 2007a. “Paradigm shifts in

surface metrology Part I. Historical philosophy.” Proc. R. Soc. A 463:2049–

2070.

. 2007b. “Paradigm shifts in surface metrology. Part II. The current shift.”

Proc. R. Soc. A 463:2071–2099.

Johnson, R.A., and D.W. Wichern. 2007. Applied Multivariate Statistical Anal-

ysis. Pearson International Edition.

Jones, D., D.R. Schonlau, and W.J. Matthias Welch. 1998. “Efficient global op-

timization of expensive black-box functions.” Journal of Global optimization

13:455–492.

Kang, L., and S.L. Albin. 2000. “On-Line Monitoring when the Process Yields a

Linear Profile.” Journal of Quality Technology 32:418–426.

Kennedy, M.C., and A. O’Hagan. 2000. “Predicting the output from a complex

compute code when fast approximations are available.” Biometrika 87 (1):

1–13.

. 2001. “Bayesian calibration of computer models.” J. R. Statist. Soc. 63

(3): 425–464.

Krige, D. G. 1951. “A statistical approach to some basic mine valuation problems



118 Bibliography

on the Witwatersrand.” J. of the Chem., Metal. and Mining Soc. of South

Africa 52:119–139.

Leach, R. 2013. Characterisation of Areal Surface Texture. Springer.

Lee, S., G. Wolberg, and S.Y. Shin. 1997. “Scattered Data Interpolation

with Multilevel B-Spline.” IEE Transactions on Visualization and Computer

Graphics 3:229–244.

Mardia, K.V., and R.J. Marshall. 1984. “Maximum likelihood estimation of

models for residual covariance in spatial regression.” Biometrika 71:135–146.

Maressa, P., L. Anodio, A. Bernasconi, A.G. Demir, and Previtali B. 2014. “Effect

of Surface Texture on the Adhesion Performance of Laser Treated Ti6Al4V

Alloy.” The Journal of Adhesion 91:518–537.

Meyer, F. 1994. “Topographic distance and watershed lines.” Signal Processing

38:113–125.

Mockus, J., V. Tiesis, and A. Zilinskas. 1978. “The application of Bayesian

methods for seeking the extremum.” Towards Global Optimization.

Montgomery, D.C. 2013. Introduction to statistical quality control. 7th. Hoboken,

NJ: Wiley.

Neuman, H.J., and R. Christoph. 2007. Chapter 7 of Coordinate Measuring

Machines and Systems, 125–151. CRC Press.

Noorossana, R.R., A. Saghei, and A. Amiri. 2012. Statistical Analysis of Profile

Monitoring. Wiley.

NPL.

Pandzo, H., S. Mahadevan, M. Bennamoun, and J.A. Williams. 2001. “A 3d ac-

quisition and modeling system.” IEEE international conference on Acoustics,

Speech and Signal Processing.

Park, C., J.Z. Huang, and Y. Ding. 2011. “Domain Decomposition Approach

for Fast Gaussian Process Regression of Large Spatial Data Sets.” Journal of

Machine Learning Research 12:1697–1728.
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