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Abstract

The main technique for the identi�cation of breast cancer is mammography, ie the identi-
�cation of areas with a high concentration by X-rays emitted to the a�ected area. Optical
spectroscopy is a possible innovation in this �eld, in fact, it would enable people to �nd
tumors non-invasively, using visible and near infrared radiations.
This approach is based on the estimation of concentrations of the main constituents of the
breast tissue, these concentrations can also be used to build a classi�er to identify malignant
tumors and benign tumors.
Meantime you can proceed to the identi�cation of components that can be considered dan-
gerous, or signi�cant risk factors for the preventive diagnosis of breast cancer. In recent
work, the topic of breast density has already been studied, proving that a higher density
implies a strong increase in the probability of contracting breast cancer. It was also noted
that a relationship item exists between collagen and density.
It can therefore be interesting to see if there are indeed di�erences between these two risk
factors or whether they can be considered substantially similar in the preventive analysis
of breast tissue.
These are precisely the issues addressed in this work, in which we tried to get answers aim-
ing to the quality and meaningfulness of the classi�ers in the �rst case, and to the de�nition
of possible compatibility or incompatibility of the two risk factors in the second case.

keywords: collagen, density , optical mammography , boosting methods, random forest ,
malignant and benign tumours, classification.





Sommario

La tecnica più utilizzata per l'identi�cazione di tumori al seno è la mammogra�a, che
consiste nell'identi�cazione delle aree con concentrazione estremamente elevata mediante
l'emissione di raggi X nell'area interessata. La spettroscopia ottica può essere una possibile
innovazione in questo campo, infatti permetterebbe l'identi�cazione di tumori in modo non
invasivo usando radiazioni nel campo del visibile e quasi infrarosse.
L'intero approccio è basato sulla stima delle concentrazioni dei principali costituenti del
tessuto mammario, le quali sono successivamente utilizzate per costruire un adeguato clas-
si�catore per identi�care tumori maligni e benigni.
Allo stesso tempo è fondamentale cercare di identi�care quali costituenti possono essere
considerati pericolosi in termini di diagnosi preventiva: studi attuali mostrano che i sogget-
ti con alta densità mammaria hanno una maggiore probabilità di contrarre tumore al seno.
Inoltre è stata identi�cata una forte relazione tra densità mammaria e concentrazione di
collagene.
La naturale conseguenza è quindi la valutazione dell'impatto del collagene nella quanti-
�cazione del rischio di contrarre un tumore; è molto interessante anche veri�care se tale
costituente permette di avere un maggiore potere predittivo rispetto alle informazioni for-
nite dalla densità mammaria.
Questi sono esattamente i temi trattati in questo lavoro, nel quale ci si è concentrati sul-
le performance e sulla signi�catività dei classi�catori per quanto riguarda la prima parte,
mentre per quanto concerne la seconda parte è stata data molta attenzione alle possibili
compatibilità dei due fattori di rischio prima citati (collagene e densità).

keywords: collagene, densit à,mammografia ottica, boosting methods, random forest ,
tumori maligni e benigni , classificazione.
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Chapter 1

Introduction

Breast cancer is a leading cause of death in women and a major health burden worldwide;
an early diagnosis is a key element in order to grow up the percentage of survival.
Breast density has been recognized as a strong risk factor for breast cancer: high density
involves a four to six times higher risk as compared to low density. Breast density describes
the relative amount of glandular and connettive tissue present in the breast. Currently it's
assessed with radiological appearance of breast tissue (mammographic density), but it's
easy to understand that a tool for non-invasive estimation would allow an early identi�ca-
tion of high-risk women.
A response to this need could be found in the optical techniques because they could provide
structural information on breast tissue in a non-invasive way. These techniques have been
successfully applied to the characterization of breast tissue [15]. In e�ect, in recent years,
di�use spectroscopy has opened the way to non-invasive optical characterization of biolog-
ical tissue and has fostered the development of several pre-clinical and clinical applications
like optical mammography.
Correlation between optically derived parameters and mammographic density was observed
in previous experiments [16]. Time-resolved transmittance data were collected at seven red
and near-infrared wavelengths using a portable clinical instrument for time-resolved optical
mammography. The instrument is presently applied in a clinical study approved by the
institutional review of the European Institute of Oncology.
The study has a twofold aim: the optical characterization of malignant and benign breast
lesions and the non-invasive assessment of breast density. For the second aim the study re-
ferred to the BI-RAD System (Breast Imaging and Reporting Data System) mammographic
density categories:

1. almost entirely fat;

2. scattered �brogranular densities;

4



CHAPTER 1. INTRODUCTION 5

3. heterogeneously dense;

4. extremely dense.

In [16] this categorization has been used to de�ne which factors are signi�cant in determining
the density of a subject, and these factors are:

� scattering parameters (amplitude and power);

� density of Collagen.

We must also consider that the BIRAD classi�cation is subjective and it is not the only
method of qualitative classi�cation based on mammography. The non-invasive assessment
of breast density with optically derived parameters is a possible solution to this problem.
The next step is the assessment of malignant and benign tumours based on the concen-
trations of the main components in tissue composition, and this is the goal of the current
work.
In the second part of the work an evaluation similar to that made for the density will be
made, trying to understand if the collagen can also be considered as a signi�cant risk factor
for the detection of breast cancer.

1.1 Time-resolved di�use optical spectroscopy

The portable clinical instrument for time-resolved optical mammography used to collect
data operates in transmittance geometry on the mildly compressed breast [17]. Time-
resolved transmittance data are collected at seven wavelengths in the range 635 to 1060 nm
(i.e., 635, 685, 785, 905, 930, 975, 1060 nm) using picosecond pulsed diode lasers as light
sources, and two photomultiplier tubes and PC boards for time-correlated single photon
counting to detect the time distribution of the transmitted pulses. Data are stored every
millimetre (Figure 1.1).
A single driver controls all the laser heads, and their output pulses are properly delayed

by means of graded index optical �bers, and combined into a single coupler. A lens pro-
duces a collimated beam that illuminates the breast (softly compressed between parallel
anti-re�ection plates) and a �ber bundle collects the output light on the opposite side of the
compression unit; the distal end of the bundle is bifurcated, and its two legs guide photons
respectively to a photomultiplier tube for the detection of VIS or NIR wavelengths. The
PC boards allow the acquisition of time-resolved transmittance curves at VIS and NIR
wavelengths.
Time-resolved spectral data are interpreted with a spectrally constrained global �tting
procedure to estimate tissue composition in term of water, lipid, collagen, oxy- and deoxy-
hemoglobin content, as well as scattering parameters: a (amplitude) and b (power).
The time-resolved spectral constraint analysis is based on a two step procedure [7]: in
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Figure 1.1: Instrument set-up: VIS visible (635, 680, 785nm); NIR near infrared (905, 930,
975, 1060nm); PMT photomultiplier tube; TCSPC time-correlated single photon counting

the �rst step optical parameters (µa and µ′s) are calculated, they are the absorption and
scattering parameters. To do calculations you can �t the time-resolved curves to an an-
alytical solution of the di�usion approximation to the transport equation for an in�nite
homogeneous slab with extrapolated boundary conditions, given by:

T
(
t;µa, µ

′
s

)
= 0.5

(
4π

3µ′s

)−3/2

t−5/2exp (−µaνt)×

×
+∞∑

n=−∞

[
z+
n exp

(
−3µ′s (z+

n )
2

4νt

)
− z−n exp

(
−3µ′s (z−n )

2

4νt

)] (1.1)

where

z+
n = (1− 2n) d− 4nze − z0

z−n = (1− 2n) d− (4n− 2) ze + z0

z0 = (9µ′s)
−1

ze = (2A/3µ′s)

where ν is the speed of light in the medium, d is the thickness of the sample and A
take into account the re�ections at the slab surface. The theoretical curve is convolved
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with instrumental response function and normalized to the area of the experimental curve.
Substantially the goal is to �nd the values of µa and µ

′
s that minimize the di�erence between

the theoretical curve and experimental data (Levenberg-Marquard algorithm) [12].
In the second step the absorption coe�cient µa is used with the Lambert-Beer law:

µa (λ) =
∑
i

ciεi (λ) (1.2)

where ci is the concentration of a constituent and εi (λ) is the extinction coe�cient of the
i-th constituent. So this law allows us to estimate tissue components concentration from
the knowledge of the extinction coe�cients εi (λ).
The choice of the value of λ depends on the technological availability and the absorption
spectrum of the constituents (Figure 1.2).
We can see that several wavelengths are chosen to be near a peak: this fact allows us to

Figure 1.2: Absorption spectrum of the main constituents

have a good idea about a particular constituent, while the lowest values of λ describe the
behaviour of hemoglobine and blood.

1.2 Data Collection

In the course of the analysis 4 di�erent datasets were used; for simplicity they have been
renamed as Dataset 1, Dataset 2, Dataset 3 and Dataset 4.
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The �rst three datasets refer to a single phase of data collection: a time-domain multiwave-
length (635 to 1060 nm) optical mammography was performed on 83 subjects (45 malignant
and 38 benign) and average breast tissue compositions were estimated.
The compression unit can be rotated by an angle up to 90°in both clock-wise and counter-
clock-wise direction, so that the images of both breast can be recorded in the cranio-caudal
(CC) as well as medio-lateral or oblique (OB) views [18]. For this reason 16 benign and 23
malignant subjects have double absorption (and consequently concentration) data.
For the �rst part of the analysis we consider every observation independent from the oth-
ers, although some of them are derived from the same subjects; obviously this is a strong
approximation due to the fact that both the measurement methods and the approximation
of concentrations are subject to errors and therefore lead to di�erent results for the same
subject.
Then taking into account these observations, for a �rst qualitative analysis, we have a total
of 122 observations.
In particular, you can brie�y describe the datasets as follows:

� Dataset 1 is composed by two parts, the �rst one collects the absorptions at the
di�erent wavelengths, the second one the di�erent concentrations (relating to the
constituents). In each of the two parts we have data relating to the damaged area of
the breast and healthy area. The concentrations were estimated in the way described
in Section 1.1 and the available variables are:

� reduced hemoglobin (HHb);

� oxidized hemoglobin (O2Hb);

� total hemoglobin (tHb);

� oxygenation (SO2);

� Lipid;

� Water;

� Collagen.

� Dataset 2 contains the di�erences between lesioned area and healthy are (delta) in
terms of both concentrations and absorptions (values are then calculated from Dataset
1).
The reason of the use of the delta is mainly based on the following observation:
values related to the speci�c type of tissue in the case of benign and malignant lesions
are a�ected by an error caused by the error on estimation of the shape and size
of the lesion that is given to various clinical data (histopathology, mammography,
ultrasound, depending on the cases and the type of lesion).
This error on the estimation of the shape/size of the lesion is the most likely cause of
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some negative values of concentrations. It's been made an attempt to �x the possible
errors of dimensions and in fact it could reduce the number of negative values, but
the choice of the regularization factor was arbitrary. Negative concentrations are
de�nitely wrong, but, once we have positive values, there is a whole wide range of
physiologically possible values and there is no way to �gure out what is the right value
in the case of any speci�c lesion.
This is why we have decided to use the delta.

� Dataset 3 is built in the following way: considering the Dataset 2, replacing the
observations with double angle for measurements (CC and OB) with the mean value
(both in terms of concentrations and absorptions).

During the work comparisons have been made between the results derived from the whole
dataset, Dataset 2, and results derived from transformed data, Dataset 3 (average value of
OB and CC views for every subject).
A �rst observation about the variables used is the following one:

� tHB = HHb+O2Hb;

� SO2 = O2Hb
HHb+O2Hb

= O2Hb
tHB .

The relations expressed are deterministic, then to make a reduction in the number of vari-
ables used we will avoid to use SO2 and tHb.
The �rst step of the analysis is mainly focused on the di�erences between Malignant and
Benign subjects' spectrums (both in the healthy and in the lesioned area) and on the iden-
ti�cation of the causes of those di�erences: to do this we use the Dataset 1. We will pay
attention to the di�erences of the covariance matrices (if any) and we will investigate which
are the di�erent correlation values in terms of absorption and concentration using Dataset
2 and 3.
The second step is mainly based on the search for a suitable classi�er in order to identify the
di�erences between subjects with malignant tumours and patients with benign tumours.
These are the contents of the Chapter 2 and Chapter 3.
The second part of the work is to identify a further signi�cant risk factor for the identi-
�cations of patients with early breast cancer. As already mentioned the �rst signi�cant
risk factor coincides with the density. High density signi�cantly increases the probability
of developing cancer.
The work shown in Chapter 4 is aimed at verifying whether the collagen can be identi�ed as
a signi�cant risk factor and if the two risk factors are somehow connected to each other (if
they can be considered as complementary factors to identify high probability of contracting
the disease or if they are somehow correlated)
Recent research has shown that there is a probable link between cancer risk and concen-
tration of collagen (in addition to the density of the breast as described above). For this
reason we've studied data related to 107 subjects; the variables are:
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� Density of the breast;

� Collagen;

� Age;

� Menopausal state;

� BMI.

All of this information constitute the Dataset 4 and the analysis is shown in Chapter
4. The software used for the whole analysis is R [24] and the packages used are listed in
Chapter 6.



Chapter 2

Di�erences in Variance and Mean

We can �nd the di�erences in covariance structure of data (Dataset 2) using the Multi-
variate Bartlett Test or a more stable method for non normal data (Levene's test), or
we can try to de�ne a di�erent variability of the two groups (Malignant and Benign) with
distance-based tests for homogeneity of multivariate dispersion.

2.1 Multivariate Bartlett Test

The univariate Bartlett Test was proposed in 1937 to test the homogeneity of variances
and it has been later extended to the multivariate case. The basic hypothesis for this test
is that the samples of size n1, n2, . . . , nk are randomly drawn from k multivariate normally
distributed populations [13].
The null hypothesis of equality of covariances matrices is given by

H0 : Σ1 = Σ2 (2.1)

Suppose p is the number of variables involved, so Σi is of size p × p. To perform the test
we calculate

M =
|S1|ν1/2|S2|ν2/2

|Spooled|νE/2
(2.2)

where

� νi = ni − 1;

� νE = n− k;

� Si is the covariance matrix of the ith sample;

11
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� Spooled is the pooled sample covariance matrix: Spooled = ν1S1+ν2S2
n−k ;

� n is the number of observations.

We refer to a chi-square approximation for the distribution of M using the statistic u which
is:

u = −2 (1− c) logM (2.3)

where

c =

[
1

ν1
+

1

ν2
−
(

1

ν1 + ν2

)][
2p2 + 3p− 1

6 (p+ 1) (k − 1)

]
. (2.4)

It can be proved that u is approximately distributed as χ2
[

1
2 (k − 1) p (p+ 1)

]
.

We reject H0 if

u > χ2
1−alpha

[
1
2 (k − 1) p (p+ 1)

]
.

For completeness, we note that there is a further approximated distribution of M (generally
underused): the F approximation.
For the F approximation, the statistic depends on two quantities, c1 and c1:

� c1 =
[

1
ν1

+ 1
ν2
−
(

1
ν1+ν2

)] [
2p2+3p−1

6(p+1)(k−1)

]
� c2 = (p−1)(p+2)

6(k−1)

[∑k
i=1

1
ν2i
−
(

1

(
∑k
i=1 νi)

2

)]
If c2 > c2

1, then
F = −2b1 logM (2.5)

If c2 < c2
1, then

F = − a2b2 logM

a1 (1 + 2b2 logM)
(2.6)

where

� a1 = 1
2 (k − 1) p (p+ 1)

� a2 = a1+2
|c2−c21|

� b1 = 1−c1−a1/a2
a1

� b2 = 1−c1−2/a2
a2

In both cases F is approximately distributed as F (a1, a2).
The meaning of the test is highly dependent on the normality assumption, that in our case
is not veri�ed (for Dataset 2). For this reason it is reasonable to use other tests that are
quite robust to departures from normality (Levene's Test).
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2.2 Levene's Test and Some Multivariate Analogues

In the univariate case, let xij be a set of j = 1, . . . , ni observations in each of i = 1, . . . , g
groups. Levene's test statistic is the ANOVA F-ratio comparing the g groups, calculated
on the absolute deviations zij = |xij − xi| from the group means xi.
For the multivariate case, let xij be the vector which denotes the jth observation of the ith
group in the multivariate space of p variables. Let ∆ (·, ·) denote the Euclidean distance
between two points, let ci be the centroid for group i. One multivariate analogue to Levene's
test is to perform the ANOVA on the Euclidean distances from individual points in a group
to their group centroid,

zcij = ∆ (xij , ci)

A p-value of the F-statistic (Fc) may be obtained either by using the traditional F-distribution
or by using a permutation procedure.
A most robust method is obtained by using the distances from individual points in a group
to their group median [5], the point that minimizes the sum of distances to points within
that group:

zmij = ∆ (xij ,mi)

A p-value of the F-statistic (Fm) could be obtained in the same way of the centroid
case.

2.3 Extension to any Dissimilarity using Principal Coordi-

nates

The approach shown before could be extended on any distance through the use of principal
coordinates. This type of analysis is helpful for us in order to have a graphical representation
of the sample (if we are interested in Euclidean distances) or to repeat the test of equal
covariance matrices (using a di�erent dissimilarity measure).
Let dll′ be the distance between the lth and l′th observations, to obtain principal coordinates
�rst we have to de�ne the matrix A, where all′ = −1

2dll′ .
Centering this matrix [11] we obtain:

G = [gll′ ] = [all′ − al· − a·l′ + a··] (2.7)

where

� al· is the mean for row l;

� a·l′ is the mean for column l′;
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� a·· is the overall mean of the values of A.

Spectral decomposition of G yields

G =
N∑
l=1

λlqlql
T (2.8)

where λ1 ≥ · · · ≥ λN are ordered eigenvalues of G and q1, · · · , qN are the corresponding
orthonormal eigenvectors. Principal coordinate axes are then obtained by scaling each axis
ql by the square root ot its corresponding eigenvalue, ul = (λl)

1/2 ql.
Matrix G may not be nonnegative de�nite, this is generally the case of a semimetric used
as distance function. If some eigenvalues are negative, the axes of matrix Q can be split
into two sets:

Q = [q1 · · · qr|qr+1, · · · qN ] (2.9)

such that λ1 ≥ · · · ≥ λr ≥ 0 and 0 > λr+1 ≥ · · · ≥ λN . For eigenvectors corresponding
to negative eigenvalues, we may scale by the square root of the absolute value of λl and
subsequently multiply by (−1)1/2, recognizing that these correspond to axes in imaginary

space, i.e. (−1)1/2 ul = (|λl|)1/2 ql . So we can consider two di�erent groups of principal
coordinate axes.
Thus, let

U =
[
U+|U−

]
(2.10)

be a N ×N matrix of principal coordinate axis, the row uij
+ gives the coordinates along

1, · · · , r real axes for jth observation in the ith group, and the row uij
− gives the coor-

dinates along r + 1, · · · , N imaginary axes. We can calculate a centroid for each group in
each of the real and imaginary spaces as c+

i and c−i . Then we can de�ne

zcij =
√

∆2
(
uij+, c+

i

)
−∆2

(
uij−, c

−
i

)
. (2.11)

Similarly, using spatial medians instead of centroids we can de�ne

zmij =
√

∆2
(
uij+,m+

i

)
−∆2

(
uij−,m

−
i

)
. (2.12)

The test for homogeneity of dispersion then simply consists of doing univariate one-way
ANOVA on the z's with or without the use of permutations. It's been demonstrated that
if D contains Euclidean distances between the original observations, then the distances
calculated with this method are unchanged [1].

2.4 Di�erences in mean for data with di�erent covariance

If there are di�erent covariance matrices, we can't apply the Hotelling test because the
hypothesis of equal covariance matrices is not satis�ed. We have to use the central limit
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theorem even if the sample size is not very large because every test on the mean that
approximates the Hotelling test assume the normality of the mean vectors.
This assumption is highly forced but necessary to use the approximation of the Hotelling
test: this is based on the quadratic form

T 2 =
(
X1 −X2

)′
Ω̃−1

(
X1 −X2

)
(2.13)

where Ω̃ is an estimate of the Cov
(
X1 −X2

)
= Σ1

n1
+ Σ2

n2
.

Using the unbiased estimator S̃i = Si
ni

for Σi
ni

we get the statistic

T 2
u =

(
X1 −X2

)′
S̃−1

(
X1 −X2

)
(2.14)

with S̃ = S̃1 + S̃2 It's possible to demonstrate that

T 2
u =

µp

µ− p+ 1
Fp,µ−p+1 (2.15)

where

µ = p+p2

1
n1−1

{
tr
[
(S̃1S̃−1)

2
]
+[tr(S̃1S̃−1)]

2
}

+ 1
n2−1

{
tr
[
(S̃2S̃−1)

2
]
+[tr(S̃2S̃−1)]

2
}

For a given observed value T 2
u0, the test rejects the null hypothesis of equal mean vectors

when

P
(

µp
µ−p+1Fp,µ−p+1 > T 2

u0

)
< α

2.5 Testing the di�erences in absorptions

The �rst step of the analysis is mainly focused on the di�erences between the spectra of
malignant and benign patients both in lesioned area and in healthy area. We use Dataset
1 to do this, and in particular the part of the data relating to absorption at the seven
wavelengths. As we can see observing the matplots in Figure 2.1 and Figure 2.2 (they
recreate the idea of the spectra) there's a strong di�erence in lesioned area (while the
healthy area is very similar).
For 5 patients with benign disease and 4 patients with malignant disease the lesioned

area's absorptions assume negative values (for at least one wavelength). Negative values
can't be considered reasonable, they could be due to technical errors, for this reason they
have been deleted from Dataset 1.
These subjects should not be considered even in the other studies, then observations relating
to these subjects have been removed even in Dataset 2 and Dataset 3.
We consider from now Dataset 2, containing the di�erences between lesioned and healthy
areas for every subject. Before starting to use the tests presented above, Mahalanobis
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Figure 2.1: Absorption spectra in healthy area for subjects with Benign and Malignant
disease, Dataset 1 has been used. The wavelengths are: 1 = 635nm, 2 = 685nm, 3 =
785nm, 4 = 905nm, 5 = 930nm, 6 = 975nm, 7 = 1060nm
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Figure 2.2: Absorption spectra in lesioned area for subjects with Benign and Malignant
disease, Dataset 1 has been used. The wavelengths are: 1 = 635nm, 2 = 685nm, 3 =
785nm, 4 = 905nm, 5 = 930nm, 6 = 975nm, 7 = 1060nm
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Figure 2.3: Mahalanobis distances from each point to the goup centroid

distances from centroids are calculated in order to �nd possible outliers (Figure 2.3).
For this reason others 1 subject with malignant disease and 2 subjects with benign disease
are deleted because they're considered outliers. Naturally the observations relating to these
subjects were also deleted in the Dataset 1 and Dataset 3.
With the remaining observations the hypothesis of equal covariance matrices and equal
means have been tested.
The basic hypothesis for the Multivariate Bartlett Test is the normality of the populations.
This hypothesis has been tested in our case for Malignant and Benign tumour subjects
(k = 2) with the Shapiro multivariate test, but the p-values was very low (≈ 10−10).
I want to remember that we are testing the data referred to the di�erences between healthy
and lesioned area for both the subjects' groups.
A �rst observation is that the hypothesis of normality isn't acceptable in this case, but we
have to note that the sample size is low and we're in the case of multivariate sample, so we
would need a really high sample size to apply the Shapiro test with reliable results. For this
reason the Bartlett Test has been used even if the assumption of normality is not satis�ed.
Naturally the results should be interpreted considering this fact.
The Multivariate Bartlett Test has given the following results:

� u = 149.9745;

� χ2
0.95 [28] = 41.33714;

� p− value = 3.08642e− 14.

The null hypothesis could be rejected because the p-value is really low.
The second test is then the Levene's Test, more robust than the Bartlett Test to departures
from normality:
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� Fc = 20.45;

� p− valuec = 1.57e− 05;

� Fm = 9.6235;

� p− valuem = 0.002452.

where Fc and p− valuec are referred to the test based on distances from centroids, Fm and
p− valuem are referred to the test based on distances from medians. Figure 2.4 shows the
boxplots with the euclidean distances from group centroids and group medians. This test

Figure 2.4: Euclidean distances from the individual points and the centroid/median

leads to the same conclusions of the Bartlett test.
To con�rm the results obtained, principal coordinates are used with the test presented
in section 2.3, euclidean distances are used just to obtain a graphical representation of
the data spatial distribution (Figure 2.5) because the F-values would be the same than in
the Levene's test (because of the invariance of distances after transformation), then other
distances (i.e. Manhattan distances) could be used to have a con�rmation of the results
obtained until now.
The Figures 2.6 and 2.7 are the representations of the method described before using

Manhattan distance.
The results for the principal coordinate method with Manhattan distances are as fol-

lows:

� Fc = 18.452;

� p− valuec = 3.823e− 05;

� Fm = 8.522;
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Figure 2.5: Principal coordinates ordination for the di�erences in absorption between sub-
jects with Malignant and Benign diseases using euclidean distances: the triangles represent
subjects with Malignant disease, the circles represent subjects with Benign disease. In this
graph and in all the following relating to the method in question, only the �rst two principal
coordinates (PCoA 1 and PCoA 2) will be reported for reasons of graphical intuition

Figure 2.6: Boxplots obtained with Manhattan distances from the group centroids/medians
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Figure 2.7: Principal coordinates ordination for the di�erences in absorption between sub-
jects with Malignant and Benign diseases using Manhattan distances: the triangles repre-
sent subjects with Malignant disease, the circles represent subjects with Benign disease.

� p− valuem = 0.004271.

The results obtained until now are a strong evidence in favour of a di�erence in covariance
matrices structure. This fact justi�es the use of the test described in section 2.4 for equality
of means; the results of the test are as follows:

�
µ−p+1
µp T 2

0 = 2.380886;

� F0.95,p,µ−p+1 = 2.056987;

� p− value = 0.02340946.

The easy consideration that results is that it is possible to say that there is a di�erence in
means between the two populations.

2.6 Testing the di�erences in concentrations

After analyzing the di�erences in absorption between the a�ected areas and healthy areas,
we focused on the di�erences in concentrations of the main constituents, checking if there
are di�erent behaviours for patients with benign and those with malignant tumours. Of
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course, some di�erences are expected because the concentrations are closely related to the
absorptions (where we checked di�erences both on mean values and covariance matrices).
We are using Dataset 2 without the observations previously deleted because of the anomaly
of measured absorption or consideration as outliers; but now we're interested in the part of
the data relating to concentrations.
In fact all the tests described above lead to obtain results similar to those previously ob-
tained:

� Multivariate Bartlett Test: with the same assumptions made in the case of the
absorption about the non-normality of the data (Shapiro tests' p-values were very
low) the results are:

� u = 95.3543;

� χ2
0.95 [15] = 24.99579;

� p− value = 3.745056e− 10.

The really low p-value is a strong evidence in favour of di�erence in variance structure
between subjects with Benign disease and Malignant disease.

� Levene's Test:

� Fc = 20.45;

� p− valuec = 1.57e− 05;

� Fm = 5.1771;

� p− valuem = 0.02486.

even in this case we've reported the results of this test both for distances from centroid
and distances from median. The values of F and p allow us to reject the null hypothesis
of equal variance.

� Principal Coordinates Analysis: this test was performed using both euclidean
and Manhattan measure; the meaning of the test is the same as in the previous case.
Figure 2.8 and Figure 2.9 show the principal coordinate ordinations with Euclidean
and Manhattan measures: it's possible to note that Malignant data have an higher
variability compared to the variability of subjects with Benign disease.
The results with Manhattan measure are:

� Fc = 12.274;

� p− valuec = 0.0006695;

� Fm = 6.5537;

� p− valuem = 0.01185.
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Figure 2.8: Euclidean distances from the individual points and the centroid/median

Figure 2.9: Principal coordinates ordination for the di�erences in absorption between sub-
jects with Malignant and Benign diseases using euclidean distances: the triangles represent
subjects with Malignant disease, the circles represent subjects with Benign disease.
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Figure 2.10: Principal coordinates ordination for the di�erences in absorption between sub-
jects with Malignant and Benign diseases using euclidean distances: the triangles represent
subjects with Malignant disease, the circles represent subjects with Benign disease.

� equality of mean vectors: previous tests allow us to con�rm the hypothesis of
heterogeneity of the data. For this reason it's possible to apply the test shown in
section 2.5. The results are as follows:

� µ−p+1
νp T 2

0 = 2.846808;

� F0.95,p,µ−p+1 = 2.262422;

� p− value = 0.01674482.

The conclusions of this tests are that it is possible to con�rm a di�erence in terms of mean
and variability for the two populations.
This consideration is fundamental to begin to investigate the most e�ective methods that
allow us to build a suitable classi�er.



Chapter 3

Classi�cation

In this chapter the problem of classi�cation is treated. The main idea is to �nd a good
logistic regression model to explain which factors a�ect particularly the probability of being
a subject with malignant tumour instead of a subject with a Benign one.
To do this, it's necessary to explore the correlations between the variables and then to �nd
a signi�cant subset of them. In the latest part of the chapter other classi�ers are used in
order to de�ne a variable importance rank: this is a possible help to decide which variables
to consider.
The pattern of action is the following one:

� try to build a classi�er based on the concentration of Dataset 2 (we want to use obser-
vations that reduce the interpersonal e�ect and bring down as much as possible the
e�ect of measurement errors, see section 1.2 for more explanations). Concentrations
have better physical meaning, for this reason they are preferred in the construction
of a classi�er instead of absorptions;

� Repeat the analysis with the part of Dataset 2 concerning absorptions data.

Given the di�erence tested previously on the variability of the two samples, an initial
attempt to classify was made based on PCA (Principal Components).

3.1 PCA

The PCA has been applied on Dataset 2 with the following results: considering the �rsts 3
components, a total of over 98% of variability is explained.
Figure 3.1 shows the boxplots of the scores on the original directions and on the directions
identi�ed by the Principal Component Analysis (PCA).

25
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Figure 3.1: Boxplot with original variables and PCA directions of the whole sample
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It's important to note that Collagen and Lipid are very meaningful for the whole variability
because they're present in the �rst two principal components directions (Figure 3.2).
The main cause of the di�erence in variability between benign and malignant tumours

Figure 3.2: Boxplot with original variables and PCA directions of Dataset 2

should be likely found in the variables involved in loadings of the 3 components.
As previously a�rmed, a logistic regression model was �tted with the scores along the PCA
directions, and a stepwise selection has been made (in particular a backward elimination
considering p-values of the coe�cients). The resulting model is then:

logit (pi) = α0 + α1 · [Comp.1]i + α2 · [Comp.4]i (3.1)

where [Comp.1]i and [Comp.4]i are the scores of the i-th observation on the directions 1
and 4. Surprisingly [Comp.2]i and [Comp.3]i were not signi�cant in this model.
The performance are as follows:

� Sensitivity=0.6666667;

� Speci�city=0.5531915;

� 1− TotalErrorRate = 0.6181818.

The performance are de�ned in the following way: calculate the predicted probability (ac-
cording to the �tted model) of being a subject with Malignant disease. If this probability
is more than 0.5, the subject is classi�ed as Malignant (subjects with p = 1 are considered
with malignant disease), otherwise he's classi�ed as Benign. Using these classi�cations you
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can calculate the performances of the classi�er.
A summary description of model 3.1 is now reported:

Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.387955 0.213357 1.818 0.0690.

Comp.1 -0.004292 0.001776 -2.417 0.0157*

Comp.4 -0.020035 0.011592 -1.728 0.0839.

---

Null deviance : 150.16 on 109 degrees of freedom

Residual deviance: 138.54 on 107 degrees of freedom

AIC: 144.54

It is important to underline that the �rst principal component is substantially identi�ed by
Collagen while the fourth component is identi�ed by Water and HBO2 (with loading with
same verse, that these two components have the same behaviour in the calculation of the
probability of being in the case of malignant tumour).
This approach has not lead to good performances. A similar attempt was done with ab-
sorption data but with similar results in terms of performance of classi�ers. It's important
to note that it's preferable to classify with optical derived parameters because they're more
physically meaningful. It was decided to try using more variables in an attempt to boost
the performance of a hypothetical classi�er.

3.2 Classi�cation with more variables

The next step is the attempt to classify with data contained in Dataset 2 using other
available variables for every subject in order to increase the power of the classi�er. The
most important available variables on the basis of the hypothetical relationship with the
type of tumour (at the level of general medical knowledge) are:

� age;

� weight;

� height;

� menopausal state;

� use of oral contraceptives (OC);

� number of children;

� recent or present use of hormone replacement therapy (HRT);
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� recent or present use of Tamoxifen (TAM).

Attention is paid in particular on age and menopausal state because a link between them
and constituents concentration has been veri�ed in previous studies (Figure 3.3). The

Figure 3.3: Boxplots with Lipid/Water/Collagen in pre- and post- menopausal state in
subjects available in previous studies. This studies take into account 74 subjects with
Benign and they've been subjected to optical spectroscopy in order to �t the concentrations
of the main constituents. The p-values shown are referred to the Wilcoxon-tests.

model (3.2) has been �tted considering only the concentrations, the age and the menopausal
state:

logit (pi) = α0 + α1 [HbO2]i + α2 [Water]i + α3 [Age]i (3.2)

where pi is the probability for the i-th subject to belong to the Malignant class.
The menopausal state wasn't signi�cant in this model (p-value very high) probably because
of the strong correlation with Age. Given that the age seems to have greater signi�cance
then it was decided to use this variable instead of menopausal state (substantially it's been
applied a backward selection in which the only excluded variable is the menopausal state).
The values of the coe�cients are reported below:
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Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.330783 1.403007 -4.512 6.41e-06***

HbO2 0.020636 0.008857 2.330 0.0198*

Water 0.017175 0.009076 1.892 0.0584.

Age 0.121003 0.027281 4.435 9.19e-06.

---

Null deviance : 144.52 on 105 degrees of freedom

Residual deviance: 105.95 on 102 degrees of freedom

AIC: 113.95

The performance of this model is very better than previous ones:

� Sensitivity= 0.852459;

� Speci�city= 0.8;

� 1− TotalErrorRate = 0.8301887.

It's important to note that the values of the coe�cients (αi) are positive, so we can argue
that probably the three factors considered in this model are risk factors in favour of the
malignancy of the tumour in a subject.
In order to �t a model with interaction, it's crucial to study the correlation matrix of
numerical ones (Figure 3.4).
It's possible to underline the following strong correlations:

Figure 3.4: Correlation matrix for the numerical variables

� HHb-Water and HbO2-Water: Figure 3.5 shows the plot of these correlated vari-
ables. The regression line of the �rst graphic is constituted by the intercept and slope
coe�cients shown below synthetically:

Coefficients: Estimate Std.Error t value Pr(>|t|)

(Intercept) 2.9600 1.54226 1.921 0.0527.

Water 0.25896 0.04119 6.288 8.99e-09 ***

---

The intercept and slope for the second graphic are:
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Coefficients: Estimate Std.Error t value Pr(>|t|)

(Intercept) 22.85877 3.10572 7.36 5.72e-11 ***

HbO2 -0.46269 0.08218 -5.63 1.72e-07 ***

---

Figure 3.5: Plot of Water vs. HHb and Water vs. HbO2 with regression lines

� HbO2-Collagen: Figure 3.6 shows the plot of these correlated variables. The inter-

Figure 3.6: Plot of Collagen vs. HbO2 with regression line

cept and slope for the graphic are:

Coefficients: Estimate Std.Error t value Pr(>|t|)

(Intercept) 71.5981 17.4283 4.108 8.28e-05 ***

HbO2 2.5134 0.4612 5.450 3.76e-07 ***

---

The next objective was to test whether other dichotomous variables could have a relation-
ship with the di�erentiation between benign and malignant tumours:

� present or recent use of hormone replacement therapy (HRT): the studies con-
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ducted in [6] assume that the incidence of breast cancer, all histologic types combined,
was increased by 60% to 85% in recent long-term users of HRT, whether estrogen alone
or estrogen plus progestin. Longer use of HRT (odds ratio [OR], 3.07 for 57 months or
more; 95% con�dence interval [CI], 1.55-6.06) and current use of combination therapy
(OR, 3.91; 95% CI, 2.05-7.44) were associated with increased risk of lobular breast
cancer. Long-term HRT use was associated with a 50% increase in nonlobular cancer
(OR, 1.52 for 57 months or more; 95% CI, 1.01-2.29).
Now what we have to check is the dependence between two dichotomous variables:
one that shows me the presence of a malignant tumour and one that shows me the
presence of HRT. For this reason it is useful to calculate the OR with its con�dence
interval.
The calculation of con�dence intervals uses the approach expressed by Woolf [22]:

IC (lnOR) =
[

ˆlnOR± zα/2
√
V ar (lnOR)

]
(3.3)

where:

� ˆlnOR = a·d
b·c

� V ar (lnOR) = 1
a + 1

b + 1
c + 1

d

� a=Benign subjects with use of HRT;

� b=Malignant subjects with use of HRT;

� c=Benign subjects without use of HRT;

� d=Malignant subjects without use of HRT.

In case of null values for a, b, c or d is possible to use the Gart approximation for the
variance and the logarithm of the OR:

� V ar (lnOR) = 1
a+0.5 + 1

b+0.5 + 1
c+0.5 + 1

d+0.5

� ˆlnOR = (a+0.5)·(d+0.5)
(b+0.5)·(c+0.5)

The estimated IC is then (considering α = 0.05)

IC (lnOR) = [−2.734248; 1.124546]

Also no relationship with constituents was found.

� Present or recent use of oral contraceptives (OC): most of the current knowledge
on the risk of breast cancer associated with the use of OC results from a collaborative
reanalysis of 54 epidemiological studies including a total of 53 297 cases of breast
cancer [23]. This re-analysis has shown that the use of estrogen-progestin OC, in
current users and those who have quit for 10 years or less from the suspension is
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associated with a small increased risk of breast cancer (relative risk, RR= 1.24). The
duration of use, therefore, as the dosage and formulation type seem to have little
e�ect on the risk.
The estimated IC for this variable (in relation to the presence of malignant or benign
tumour) is

IC (lnOR) = [0.05545144; 1.41887669] (3.4)

Also there was a signi�cant di�erence between the distributions of Collagen (expressed
in terms of the di�erence between healthy tissue and diseased) between subjects with
and subjects without taking OC (Figure 3.7).
The p-value of the relative t-test was < 0.001.

Figure 3.7: Values of Collagen in subjects with/without OC

� Use of tamoxifen: tamoxifen is a cancer medication taken orally, and belonging to
the family of selective estrogen receptor modulators. This medicine inhibits the e�ects
of estrogen, the female hormone and thus nullifying the e�ects of estrogen-receptor
binding to DNA. This is useful because, often, the cancer cells of the breast cancer
do bene�t from these hormones.
The estimated IC for this variable (in relation to the presence of malignant or benign
tumour) is

IC (lnOR) = [0.1399434; 5.0912428] (3.5)

But no relationship with constituents was found.

� familiarity: previous studies treated this topic [14]. Compared with women without
a family history of breast cancer, women who had an a�ected �rst-degree relative had
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a relative risk of 2.3; women with an a�ected second-degree relative had a relative
risk of 1.5; and women with both an a�ected mother and sister had a relative risk
of 14. The risk of breast cancer for a woman was higher if her �rst-degree relative
had unilateral rather than bilateral breast cancer or had breast cancer detected at a
younger rather than older age.
The estimated IC for this variable (in relation to the presence of malignant or benign
tumour) is

IC (lnOR) = [−0.1985094; 1.2956413] (3.6)

But a relationship is noted between this variable and lipids and water (Figure 3.8)
Both with a p-value < 0.1.

Figure 3.8: Plots of Lipid and Water with and without the familiarity factor
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Subsequently the contingency tables were analysed, and one relationship have been high-
lighted based on the con�dence intervals of the odds ratio:

� HRT-TAMOXIFEN: the con�dence interval of the logarithm of the OR is

IC (lnOR) = [−4.2760129;−0.5997883] (3.7)

Considering these statements, the next step is to �nd a model that considers all the variables
(including the BMI as a combination of Weight and height) and the interactions between
them. To do this we have exploited the VIFs as indices of collinearity during the work of
simpli�cation of the model and choice of the signi�cant variables.
One way to determine if there is multicollinearity is to calculate the so-called variance
in�ation factors (VIF). In fact, when there is multicollinearity, the estimated variance of
the j-th regression coe�cient can be written as:

ˆV ar (βj) =
S2

(n− 1)S2
j

1

1−R2
j

(3.8)

where

� S2 is the variance of the error;

� S2
j is the variance of xj ;

� R2
j is the coe�cient of determination calculated by the regression of xj over the other

variables.

The quantity

V IFj =
1

1−R2
j

(3.9)

is called in�ation factor of variance. The VIF are used as measures of multicollinearity,
because the square root of the VIF indicates how much the con�dence interval, built on
each of the regression coe�cients βj is larger compared to the situation of uncorrelated data.
In particular, therefore, the variables that are most suspects to cause the phenomenon of
multicollinearity are those that present the highest VIF. At the same time we call Tolerance
the following expression:

Tolerancej = 1−R2
j (3.10)

and its meaning is easily derivable from the previous de�nition.
With this consideration the several models were obtained: the model with the best perfor-
mances in terms of total error rate is the following one:

logit (pi) = α0 + α1 [Collagen]i + α2 [Age]i + α3 [Familiarity]i (3.11)

The performance of this model is:
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� Sensitivity= 0.8448276;

� Speci�city= 0.7317073;

� 1− TotalErrorRate = 0.79.

The summary of the logistic regression model is reported below:

Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.522609 1.496842 -4.358 1.32e-05 ***

Collagen 0.003892 0.001904 2.045 0.0409 *

Age 0.135838 0.030994 4.383 1.17e-05 ***

Familiarity -1.256729 0.616182 -2.040 0.0414 *

---

Null deviance : 136.058 on 98 degrees of freedom

Residual deviance: 93.863 on 96 degrees of freedom

AIC: 101.86

This is a particularly interesting model because it shows us that familiarity is an important
factor for the classi�cation but its meaning is the opposite of what we expected: the negative
sign indicates that familiarity implies a reduction in the likelihood of a malignant tumour
in favour of a benign one.
The positive sign of Collagen and Age was predictable because you can easily reconnect to
the model previously calculated; Age was already with a positive sign, while Collagen is
positively correlated with HbO2.
One last valid model was identi�ed using principal coordinates (also considering possible
interactions):

logit (pi) = α0 + α1 [Comp.1]i + α2 [Comp.4]i + α3 [Age]i + α4 [Familiarity]i (3.12)

The performance of this model is:

� Sensitivity= 0.8103448;

� Speci�city= 0.7804878;

� 1− TotalErrorRate = 0.8.

The summary of the logistic regression model is:
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Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.436505 1.542061 -4.174 2.99e-05 ***

Comp.1 -0.004287 0.001982 -2.163 0.0305 *

Comp.4 -0.024216 0.014000 -1.730 0.0837 .

Age 0.142012 0.031888 4.453 8.45e-06 ***

Familiarity -1.024660 0.614078 -1.669 0.0952 .

---

Null deviance : 136.058 on 99 degrees of freedom

Residual deviance: 90.539 on 95 degrees of freedom

AIC: 100.54

This model is really similar to the model 3.11, because the �rst component is substantially
the Collagen. The di�erence coincides with the fourth main component. The anomaly of
this model is the negative sign of the coe�cient on the �rst principal component, in fact,
as said before we would expect a positive sign. Probably this is due to the fact that the
directions are "contaminated" by the other optically derived variables, and this can result
in a change of the value of the coe�cient which in this case also leads to a change of sign.
In general, however, this model can be considered acceptable and meaningful even if in case
of equal performances, the models previously shown are preferable.

3.3 Further observations about classi�cation

After the previous considerations, it's important to verify the robustness of the classi�ers
described before and to treat the problem of double observations for some patients. For the
latter problem a solution has been proposed: the concentration values obtained at the two
angles are mediated so that we consider the average estimated concentration. It's important
to see the di�erences with previous results and look for possible reasons.
For this reason we've repeated the previous analysis with Dataset 3: PCA for constituent
concentrations and logistic regression. The results obtained trying to classify with PCA
directions wasn't good. The best model in terms of performances (Total Error Rate) was
again model (3.11), with similar values of coe�cients and performances. But a second
model was relevant:

logit (pi) = α0+α1 [HbO2]i+α2 [Age]i+α3 [Familiarity]i+α4 [HRT ]i+α5 [HbO2]i [Water]i
(3.13)

and the following summary shows the main descriptors of model 3.13 �tted to data:
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Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.162809 2.368992 -3.868 1.10e-04 ***

HbO2 0.024093 0.011460 2.102 0.0355 *

Age 0.191564 0.049586 3.863 1.12e-04 ***

Familiarity -1.523680 0.841273 -1.811 0.0701 .

HRT -2.721635 1.628698 -1.671 0.0947 .

HbO2:Water 0.000691 0.000357 -1.935 0.0530 .

---

Null deviance : 97.283 on 70 degrees of freedom

Residual deviance: 62.435 on 65 degrees of freedom

AIC: 74.435

The measured performances are:

� Sensitivity= 0.8;

� Speci�city= 0.8064516;

� 1− TotalErrorRate is about 0.8.

Also in this case the familiarity is a negative factor in relation to the probability of malig-
nant tumour.
The most obvious di�erence with the models studied above is the variable HRT (hormone
replacement therapy), which is signi�cant (with negative sign) in this model.
In general, however, we can say that there are no substantial di�erences between the results
obtained with Dataset 2 and Dataset 3 in terms of the signi�cance of the models obtained.
A useful alternative to the logistic regression models is to alter the �tting process itself so
that potential over�tting of a given model comes at a price. A penalty can be introduced
into the loss function to be optimized. In particular these methods are particularly useful
when there is high collinearity between the regressors. In part because this approach has
wide applicability, it is worth our attention now.

3.4 LASSO, Ridge and elastic net Regression

Suppose that we have data
(
xi, yi

)
, i = 1, 2, . . . , N , where xi = (xi1, . . . , xip)

T are the
predictor variables and yi are the response. As in the usual regression set-up, we assume
that the observations are independent. We assume now (without loss of generality) that
the xij are standardized so that

∑
i xij/N = 0 and

∑
i x

2
ij/N = 1.

Let β̂ the linear lasso estimate of the vector of the parameters, it is de�ned by [19]:
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β̂ = argmin

{∑N
i=1

(
yi − β0 −

∑
j βjxij

)2
}

subject to
∑

j |βj | ≤ t

Here t ≥ 0 is a tuning parameter that controls the amount of shrinkage that is applied to
the estimates.
The LASSO can be applied to various models. Consider any model indexed by a vector
parameter β, for which estimation is carried out by maximization of a function l (β); this
may be a log-likelihood function or some other measure of �t. To apply the LASSO, we
maximize l (β) under the constraint

∑
|βj | ≤ t. One of the possible application is then the

logistic regression, and for this reason we want to apply the LASSO to our previous model.
Instead Ridge regression penalizes the size of the regression coe�cients in L2-norm: specif-
ically, the ridge regression estimate β̂ is de�ned as the value of β that minimizes

∑
i

(
yi − xTi β

)2
+ λ

p∑
j=1

β2
j (3.14)

Applying the ridge regression penalty has the e�ect of shrinking the estimates toward zero,
it's been demonstrate that the bene�ts of ridge regression are most striking in the presence
of multicollinearity.

� ridge regression achieves its better prediction performance through a bias-variance
trade-o�. However it can't produce a parsimonious model because it always keeps all
the predictors for the model;

� for usual N>p situations, if there are high correlations between predictors, it has
been empirically observed that the predictions of the LASSO is dominated by ridge
regression.

For this reason it's usual to recur to the Elastic Net Problem [9]: we use the standardization
previously presented (for the LASSO) for solving the next problem:

min
(β0,β)

[
1

2N

N∑
i=1

(
yi − β0 − xTi β

)2
+ λPα (β)

]
(3.15)

where

Pα (β) = (1− α) 1
2 ||β||

2
l2

+ α||β||l1
=
∑p

j=1

[
1
2 (1− α)βj + α|βj |

]
is the elastic-net penalty. Pα is a compromise between the ridge regression penalty (α = 0)
and the LASSO penalty (α = 1). This penalty is particularly useful in the p >> N
situation, or any situation where there are many correlated predictor variables.
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A similar argument is made when you need to apply a logistic regression: in this case
denote by G the response variable, taking values in 0,1, here we �t the model by regularized
maximum (binomial) likelihood. Let p (xi) = Pr (G = 1|xi) be the probability for the i-th
observation at a particular value for the parameter (β0,β), it's possible to state that

� p (xi) = Pr (G = 1|xi) = 1
1+exp(−(β0+xTi β))

;

� 1− p (xi) = Pr (G = 0|xi) = 1
1+exp(β0+xTi β)

.

Alternatively it implies

� log
(

p
1−p

)
= β0 + xTβ

Then we maximize the penalized log-likelihood

� max(β0,β)

[
1
N

∑
{I (gi = 1) log p (xi) + I (gi = 0) log (1− p (xi))} − λPα (β)

]
Denoting yi = I (gi = 1), the logarithmic part of the penalized log-likelihood can be written
in the more explicit form

l (β0,β) =
1

N

∑
yi ·
(
β0 + xTi β

)
− log

(
1 + exp(β0+xTi β)

)
(3.16)

We form a quadratic approximation to the log-likelihood (Taylor expansion about current
estimates β̂0, β̂), which is

lQ (β0,β) = − 1

2N

N∑
i=1

wi
(
zi − β0 − xTi β

)2
+ C

(
β̂0, β̂

)2
(3.17)

where

� zi = β̂0 + xTi β + yi−p̂(xi)
p̂(xi)(1−p̂(xi))

� wi = p̂ (xi) (1− p̂ (xi))

The we use coordinate descendent [9] to solve the penalized weighted least-squares prob-
lem

min
(β0,β)

{−lQ (β0,β) + λPα (β)} (3.18)

This type of analysis has been applied on Dataset 2 and 3 di�erent values of α have been
used:

� α = 1 or LASSO regression;

� α = 0.5 or elastic net regression;

� α = 0 or ridge regression.
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The comparison of the results of these 3 analysis allows us to determine the most important
variable for the logistic regression model: in particular we pay attention to the �rst result,
the LASSO is a sort of variable selection algorithm.
It is natural to understand that with the decrease of λ, also the e�ect of the penalty
decreases getting closer to the least square regression. It's crucial to point out that in the
case of LASSO regression the decrease of λ causes an increase of variables whose coe�cient
becomes signi�cant (βi 6= 0). Now the partial results of the LASSO regression are used to
make a selection of signi�cant variables, in particular we use the �rst 8 coe�cients with
signi�cant value:

� HbO2;

� Collagen;

� Age;

� Familiarity;

� Oral Contraceptive;

� HRT;

� BMI;

� HHb*Water.

These variables have been used in a stepwise logistic regression model with backward selec-
tion based on the evaluation of collinearity between variables (with VIFs) and signi�cance
of the coe�cients (regression p-values). The result is the following model:

logit (pi) = α0 + α1 [HbO2]i + α2 [Age]i + α3 [HHb]i [Water]i (3.19)

Then we tried to improve the performances of this model (in terms of Total Error Rate) by
adding other variables that previously were signi�cant. The model found was:

logit (pi) = α0 + α1 [HbO2]i + α2 [Age]i + α3 [HHb]i [Water]i + α4 [Age]i [Familiarity]i
(3.20)

The summary of the logistic regression model (3.20) is reported below:
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Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.376137 1.776073 -4.716 2.40e-06 ***

HbO2 0.029665 0.011217 2.645 0.00818 **

Age 0.166732 0.035702 4.670 3.01e-06 ***

HHb:Water 0.001011 0.000405 2.494 0.0126 *

Age:Familiarity-0.022136 0.011940 -1.854 0.06375 .

---

Null deviance : 136.058 on 99 degrees of freedom

Residual deviance: 85.393 on 95 degrees of freedom

AIC: 95.393

The sensitivity was 0.8275862, the speci�city was 0.8095238 and 1−TotalErrorRate = 0.82.
The performances are in general similar to those of logistic regression models, but it is
preferred for convenience to use the previous models , in particular models (3.2), (3.11)
and (3.12), because they allow us to hypothesize in a very intuitive way which are the
signi�cant variables and their e�ect on the probability of having malignant disease or benign
disease.

3.5 Other methods

In addition to logistic regression, you can also use other types of classi�ers. In particular
the two classi�ers that are less susceptible to non-normality of the data are the Fisher
Linear Discriminant Analysis and CARTs.
The trees could be used in more developed classi�ers, the random forest and the AdaBoost
algorithms, in which the trees are basic classi�ers and they are used to built a more complex
model.

3.5.1 Fisher Linear Discriminant Analysis

Firstly we describe the Fisher Linear Discriminant Analysis: suppose two classes of obser-
vations have means µ0, µ1 and covariances Σ0 and Σ1.
Then the linear combination of features w ·x will have means w ·µi and covariances wTΣiw.
It can be shown that the maximum separation between the classes occurs when

w ∝ (Σ0 + Σ1)−1 (µ0 − µ1) (3.21)

Generally the data points to be discriminated are projected onto w, then the threshold that
best separates the data is chosen from analysis of the one-dimensional distribution.
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In our case the continuous variables have been selected (we are referring to Dataset 2 for
th whole sections 3.5)and the discriminant direction was:

Collagen 0.0304761917
HHb 0.0304761917
HbO2 0.0184723287
Lipid -0.0007622592
Water 0.0073178564
Age 0.1432901696
BMI -0.0463709823

Figure 3.9 shows the projections of the points on the discriminant direction.
The observations with projected values smaller than the reference value are classi�ed as

Figure 3.9: Projection of Malignant and Benign points on the discriminant direction

malignant, in the opposite case are classi�ed as benign. The sensitivity of this classi�er is
0.7586207 , the speci�city is 0.8571429 and 1− TotalErrorRate = 0.81.

3.5.2 CART

The second alternative method used were the prediction trees: these have two varieties,
regression trees and classi�cation trees [21].
We want to predict a response or class Y from inputs X1, X2, . . . , Xp. We do this by
growing a binary tree. At each internal node in the tree, we apply a test to one of the
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inputs. Depending on the outcome of the test, we go to either the left or the right sub-
branch of the tree. Eventually we come to a leaf node, where we make a prediction. There
are several advantages to this:

� Making predictions is fast (no complicated calculations);

� it's easy to understand which variables are important in making the prediction (look
at the tree);

� there are fast, reliable algorithms to learn these trees.

Algorithms for constructing decision trees usually work top-down, by choosing a variable
at each step that best splits the set of items. Di�erent algorithms use di�erent metrics
for measuring "best". These generally measure the homogeneity of the target variable
within the subsets, they are called impurity index. Chosen the index of impurity, split will
naturally be better de�ned as that, of all the possible, will generate the maximum decrease
of the index.
The most important indices are:

� Gini impurity: Gini impurity is a measure of how often a randomly chosen element
from the set would be incorrectly labeled if it were randomly labeled according to the
distribution of labels in the subset.

GINI = p− p2 (3.22)

where p is the probability of being a Malignant case. Figure 3.10 reports the equation
(3.22). In two-class problems the Gini index can also be interpreted as a kind of

Figure 3.10: Gini index value for the variation of p, where p = p(A|t)

variance of the node. In fact, if we interpret the node t as a sample of N (t) realizations
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of a Bernoulli process with mean and variance unknown and assign the value 1 for
class A and 0 to B, we have that the average of this process will coincide with p (A|t)
and the variance with p (A|t) (1− p (A|t)) = p (B|t) (1− p (B|t))
Split according to the Gini index means then divide into two parts the node looking
to minimize the average variance of child nodes.

� Information gain: information gain is based on the concept of entropy from infor-
mation theory:

INF = −p log p− (1− p) log (1− p) (3.23)

This method arises from an estimate of maximum likelihood data of the sample
reached the node t: each leaf is interpreted as the result of a binomial process, with
N(t) extractions, with parameters pA, pB to estimate and realizations [NA, NB].

P (nA (t) = NA (t) , nB (t) = NB (t)) =
N (t)!

NA (t)!NB (t)!
p
NA(t)
A p

NB(t)
B (3.24)

The maximum is:

P =

(
NA (t)

N (t)

)NA(t)(NB (t)

N (t)

)NB(t)

(3.25)

To make it more easy to handle it is usual to calculate the logarithm. To make it an
index of impurity just change the sign and make it independent from the size N(t) of
the node by dividing by N(t). It is obtained in this way an index of impurity whose
theoretical value coincides exactly with the de�nition of Entropy:

INF ≈ − log

(NA (t)

N (t)

)NA(t)

N(t)
(
NB (t)

N (t)

)NB(t)

N(t)

 (3.26)

INF = − log
[
p (A|t)p(A|t) p (B|t)p(B|t)

]
(3.27)

The function expressed in equation (3.27) is reported in Figure 3.11. This index is still
used, has performance similar to that of Gini and also generates trees very similar.
The latter, however, is usually preferred being more simple, computationally slightly
less expensive and numerically more stable.

The indices just described could be extended in the multi-case (with more than 2 classes).
It is easy to verify that these three indices verify properties that guarantee the quality of a
generic index of impurity denoted φ (p) [3]:

� φ (p) ≥ 0: the index is always positive or zero;

� minp φ (p) = φ (0) = φ (1): the index reaches its minimum in the case where the
population is totally pure, that is when there is only one class (the best condition for
classi�cation);
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Figure 3.11: Information gain for the variation of p, where p = p(A|t)

� maxp φ (p) = φ (1/2), the index reaches its maximum when the two classes are equally
divided (the worst condition for classi�cation);

� φ (p) = φ (1− p): the index is symmetrical with respect to the exchange of the
probabilities of the two classes;

� φ′′ (p) < 0: the index is a convex function. Please note that in general, when it
fails the convexity, even the non-growth is not guaranteed, so that the existence of
non-convex indices allows some splits that lead to an increase of the impurity.

Now we describe brie�y the problem of the optimal split at the nodes: we introduce the
probability of a single data of belonging to the one of the child nodes conditioned to the
membership at the node t.

� pL = p (tL|t) = p (tL) /p (t);

� pR = p (tR|t) = p (tR) /p (t).

We de�ne i (t) the impurity index of a node t, it's possible to de�ne the average impurity
of child nodes:

� i (tR, tL) = pLi (tL) + pRi (tR)

The decrease of impurity is then:

� ∆i (t, tR, tL) = i (t)− i (tL, tR)

At this point we will choose the split that minimizes the impurity of child nodes, or equiv-
alently, but more properly in view of the construction of the tree, one that will maximize
the decrease impurity.
We denote by:
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� N=number of observations;

� Nj=number of observations in j-th class;

� N (t)=number of data in the node;

� Nj (t)=number of data in the node belonging to the j-th class.

Initial estimates that may come to mind of p (j|t) and p (t) are obviously as follow:

� p (j|t) =
Nj(t)
N(t)

� p (t) = N(t)
N

These estimates are often used unwisely, in fact they are correct only when the distribution
of the population from which the data set to coincide with the distribution of the real
population. But this fact is not always true, so it is more correct to use estimates whose
correctness is independent veri�cation of this hypothesis or not:

� p (j|t) ≈
Nj(t)

Nj
p(j)∑

j

Nj(t)

Nj
p(j)

� p (t) ≈
∑

j
Nj(t)
Nj

p (j)

When the relative frequencies
Nj(t)
N within the sample re�ect well the probability p (j), i.e.

p (j) ≈ Nj
N the two estimates are coincident.

Obviously, in the absence of further information than that given to us by the data, the
hypothesis p (j) ≈ Nj

N is the most plausible and then what will be generally applied, and
this is our case: we couldn't have further informations about the probabilities of malignant
and benign tumours.
Now some of developed CARTs are reported, based on di�erent assumption.

Figure 3.12 and Figure 3.13 show the CARTs developed using all the variables and Gini/In-
formation impurity index.
Since the age seems to be a particularly important factor even with CART, naturally the
�rst split concerns precisely this variable. Figures 3.14 and 3.15 show the CARTs �tted
without the age: the idea is to �nd the other important variables that could a�ect the
classi�cation.
An important observation is about the BMI: this variable was not signi�cant in any model
built previously with logistic regression models, but now it is the variable considered in the
�rst split.
The second observation is more technical: the two types of impurity index lead to similar
CARTs, and in the second case even lead to the same results. The biggest problem with
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Figure 3.12: CART built considering all variables and Gini impurity

Figure 3.13: CART built considering all variables and Information gain
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Figure 3.14: CART built considering all variables less the age and Gini impurity

Figure 3.15: CART built considering all variables less the age and Information gain
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this type of classi�er consists in the performances, in fact, the global misclassi�cation error
is always below 30%. You may notice that the performance is much lower than the logistic
regression models, for this reason you can try to improve this type of classi�er with other
techniques, such as random forest method or Boosting classi�ers.

3.5.3 Random Forest

The forest structure is slightly di�erent between classi�cation and regression. Random
forests are an ensemble learning method for classi�cation (and regression) that operate by
constructing a multitude of decision trees at training time and outputting the class, that is
the mode or the average of the classes of individual trees.
The introduction of random forests proper was �rst made in a paper by Leo Breiman.[4]
This paper describes a method of building a forest of uncorrelated trees using a CART like
procedure, combined with randomized node optimization and bagging.
Given a standard training set D of size n, bagging generates m new training sets Di,each of
size n′, by sampling from D uniformly and with replacement. By sampling with replacement,
some observations may be repeated in each Di, this kind of sample is known as bootstrap
sample. The m models are �tted using the above m bootstrap samples and combined by
averaging the output. Each tree is grown to the largest extent possible, there is no pruning.
Then the training algorithm for random forests applies the general technique of bootstrap
aggregating, or bagging, to tree learners.
Given a training set, bagging repeatedly selects a random sample with replacement of the
training set and �ts trees to these samples, ie for every iteration:

� Sample, with replacement, n′ training examples;

� Train a decision or regression tree.

After training, predictions can be made by averaging the predictions from all the individual
regression trees or by taking the majority vote in the case of decision trees. The above
procedure describes the original bagging algorithm for trees. Random forests di�er in only
one way from this general scheme: they use a modi�ed tree learning algorithm that selects,
at each candidate split in the learning process, a random subset of the features. This process
is sometimes called "feature bagging".
In the original paper on random forests, it was shown that the forest error rate depends on
two things:

� The correlation between any two trees in the forest. Increasing the correlation in-
creases the forest error rate;

� The strength of each individual tree in the forest. A tree with a low error rate is a
strong classi�er. Increasing the strength of the individual trees decreases the forest
error rate.
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In addition, this paper combines several ingredients, which form the basis of the modern
practice of random forests, in particular:

� using out-of-bag error as an estimate of the generalization error. Assume a method
for constructing a classi�er from any training set. Put each case left out in the
construction of the k-th tree down the k-th tree to get a classi�cation. In this way,
a test set classi�cation is obtained for each case in about one-third of the trees. At
the end of the run, take j to be the class that got most of the votes every time case
an observation k was out of bagging. The proportion of times that j is not equal to
the true class of k averaged over all cases is the out of bag error estimate. This has
proven to be unbiased in many tests. The use of this out of bag error is the reason
because there is no need for cross-validation or a separate test set to get an unbiased
estimate of the test set error. It is estimated internally, during the run;

� measuring variable importance through permutation. In every tree grown in the
forest, put down the out of bag cases and count the number of votes cast for the
correct class. Now randomly permute the values of variable m in the out of bag cases
and put these cases down the tree. Subtract the number of votes for the correct class
in the variable-m-permuted out of bag data from the number of votes for the correct
class in the untouched out of bag data. The average of this number over all trees in
the forest is the raw importance score for variable m. If the number of variables is
very large, forests can be run once with all the variables, then run again using only
the most important variables from the �rst run.
Every time a split of a node is made on variable m, the Gini impurity criterion for
the two descendent nodes is less than the parent node. Adding up the Gini decreases
for each individual variable over all trees in the forest gives a fast variable importance
that is often very consistent with the permutation importance measure.

In our case it's been decided to use 500 trees for the random forest model, the number
of variables randomly sampled as candidates at each split is 4 (the suggestion is to use
about a third of the total available variables). The measured performances aren't very
high, because the sensitivity is 0.8448276 and the speci�city is 0.7380952. This method
is more complex than those used up to this point, but it does not lead to a substantial
increase of the performances.
We are very interested in the importance of the variables (Figure 3.16).
The most important variables are:

� Age;

� BMI;

� Collagen;

� HbO2;
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Figure 3.16: Variables Importance measured with random forest principle

� Water;

� HHb;

� Lipid.

The analysis is repeated with the most important variables, in order to improve the results
for the most signi�cant variables (for the random forest principles) and the results are
shown in Figure 3.17.
A new logistic regression model has been �tted using the most important variables with all
the possible interactions applying a backward variable selection and using the VIFs. The
result is the following model:

logit (pi) = α0 + α1 [Age]i + α2 [HbO2]i + α3 [Water]i + α1 [HbO2]i [Water]i (3.28)

The summary of model (3.28) is reported below:
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Figure 3.17: Variables Importance measured with random forest principle

Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.769485 1.693552 -4.588 4.48e-06 ***

HbO2 0.029256 0.010533 2.778 0.00548 **

Age 0.145910 0.032652 4.469 7.87e-06 ***

Water 0.019393 0.010449 1.856 0.06345 .

HbO2:Water -0.000484 0.000281 -1.721 0.08518 .

---

Null deviance : 136.058 on 99 degrees of freedom

Residual deviance: 90.926 on 95 degrees of freedom

AIC: 95.393

The sensitivity is 0.8448276, the speci�city is 0.7380952 and 1 − TotalErrorRate = 0.79,
then the performance is similar to the models until now described.

3.5.4 Boosting

Another classi�cation method recently developed is the boosting method. Boosting works
by sequentially applying a classi�cation algorithm to reweighted versions of the training
data and then taking a weighted majority vote for the classi�ers thus produced [10].
Boosting is a way of combining the performances of many weak classi�ers to produce a
powerful one. The most commonly used version of the AdaBoost procedure is the Discrete
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AdaBoost [8].
We de�ne F (x) =

∑M
m=1 cmfm (x) where each fm (x) is a classi�er producing values plus

or minus 1 and cm are constants; the corresponding prediction is sign (F (x)). The Ad-
aboost procedure trains the classi�ers fm (x) on weighted versions of the training sample,
giving higher weight to cases that are currently misclassi�ed. This is done for a sequence
of weighted samples, and then the �nal classi�er is de�ned to be a combination of the clas-
si�ers from each stage.
Much has been written about the success of AdaBoost in producing accurate classi�ers.
Many authors have explored the use of a tree-based classi�er for fm (x) and have demon-
strate that it consistently produces signi�cantly lower error rates than a single decision tree.
The algorithm could be described as reported in Algorithm 1.

Algorithm 1 Discrete AdaBoost

� Start with weights wi = 1/N ;
� Repeat for m = 1, 2, . . . ,M :

� Fit the classi�er fm (x) ∈ {−1, 1} using weights wi on the training data;
� Compute errm = Ew

[
1y 6=fm(x)

]
, cm = log ((1− errm) /errm);

� Set wi ← wiexp
[
cm1y 6=fm(xi)

]
and renormalize so that

∑
iwi = 1.

� Output the classi�er sign
[∑M

m=1 cmfm (x)
]
.

Ew represent expectation over the data with weights w = (w1, w2, . . . , wN ). At each iter-
ation, the algorithm increases the weights of the observations misclassi�ed by fm (x) by a
factor that depends on the weighted error.
This method has been subjected to a random sampling strategy at each iteration (bagging)
like in the random forest method. This solution allows us to �nd an alternative to cross
validation using only 50% of the entire sample for each iteration. For this reason the results
are subject to stochasticity.
Of course, this percentage is very high but avoids to build a classi�er extremely adherent
to the reference sample. Also given that the average results (repeating several times the
algorithm) are quite similar, with no signi�cant variations, it was decided to use that per-
centage of the sample out of bag.
Then the algorithm was applied 20 times and the average performances are as follow: sen-
sitivity of about 0.9 and speci�city of about 0.86. As we can see the performances are very
better than in the other cases because this classi�er is more complex. The problem of this
method is that the application of this classi�er is particularly di�cult in the medical �eld
and it is extremely unintuitive.
For this reason (like with the random forest algorithm) a variables importance rank based
on Gini impurity has been calculated (Figure 3.18).
A generalization of Discrete AdaBoost is the Real AdaBoost, in which the weak learner

returns a class probability estimate pm (x) = P̂w (y = 1|x) ∈ [0, 1]. The base classi�er in
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Figure 3.18: Average Variables Importance measured with Discrete AdaBoost method

Dscrete AdaBoost produces a classi�cation rule fm (x) : D → {−1, 1}, where D is the
domain of the predictive features x. The weak learner for the generalized AdaBoost pro-
duces a mapping fm (x)D → R; the sign of fm (x) gives the classi�cation, and |fm (x) |
a measure of the "con�dence" in the prediction. The contribution to the �nal classi�er is
half the logit-transform of this probability estimate. In this paper the AdaBoost is used in
the special case where the weak learner is a decision tree. The real AdaBoost algorithm is
reported in Algorithm 2.
The performances are: sensitivity of about 0.93 and speci�city of about 0.87. Like in the

Algorithm 2 Real AdaBoost

� Start with weights wi = 1/N ;
� Repeat for m = 1, 2, . . . ,M :

� Fit the classi�er to obtain a class probability estimate pm (x) = P̂w (y = 1|x) ∈
[0, 1], using weights wi;

� Set fm(x)← 1
2 log pm(x)/(1− pm(x));

� Set wi ← wiexp [−yifm (xi)] and renormalize so that
∑

iwi = 1.

� Output the classi�er sign
[∑M

m=1 fm (x)
]
.

previous case it's possible to apply a bagging strategy to add stochasticity to the procedure.
The variables importance is reported in Figure 3.19.
A latest algorithm belonging to Boosting methods is the so-called Gentle AdaBoost (Al-

gorithm 3).
The main di�erence between Gentle and Real AdaBoost algorithm is how it uses its esti-
mates of the weighted class probabilities to update the functions.
The average performances of the Gentle AdaBoost are: sensitivity of about 0.93 and speci-
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Figure 3.19: Average Variables Importance measured with Real AdaBoost method

Algorithm 3 Gentle AdaBoost

� Start with weights wi = 1/N , F (x) = 0;
� Repeat for m = 1, 2, . . . ,M :

� Fit the regression function fm (x) by weighted least-squares of yi to xi with
weights wi;

� Update F (x)← F (x) + fm (x);
� Update wi ← wiexp [−yifm (xi)] and renormalize.

� Output the classi�er sign
[∑M

m=1 fm (x)
]
.
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Figure 3.20: Average Variables Importance measured with Real Gentle method

�city of about 0.88.
It's possible to demonstrate that the AdaBoost algorithms (Discrete and Real) can be inter-
preted as stagewise estimation procedures for �tting an additive logistic regression model.
This type of regression models are characterized by the following idea: the classi�er is a
weighted sum of simpler classi�ers.
For a two-class problem, an additive logistic model has the form

log
P (y = 1|x)

1− P (y = 1|x)
=

M∑
m=1

fm(x) (3.29)

The monotone logit transformation on the left guarantees that for any values of F (x) =∑M
m=1 fm(x) ∈ R, the probability estimates lie in [0, 1].

These models optimize an exponential criterion which to second order is equivalent to the
binomial log-likelihood criterion.
Consider minimizing the criterion

J (F ) = E
(
e−yF (x)

)
(3.30)

for estimation of F (x). Here E represent expectation; depending on the context, this may
be a population expectation or a sample average. Ew indicates the weighted expectation.
It's possible to show that E

(
e−yF (x)

)
is minimized at

F (x) =
1

2
log

P (y = 1|x)

P (y = −1|x)
(3.31)
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Hence:

� P (y = 1|x) = eF (x)

e−F (x)+eF (x)

� P (y = −1|x) = e−F (x)

e−F (x)+eF (x)

The usual logistic transform does not have the factor 1/2. By multiplying the numerator
and denominator by eF (x), we get the usual logistic model

p (x) =
e2F (x)

1 + e2F (x)
(3.32)

Hence the usual logistic model and the new model are equivalent up to a factor 2.
The following results are demonstrated in [8]:

� The Discrete AdaBoost algorithm builds an additive logistic regression model via
Newton-like updates for minimizing E

(
e−yF (x)

)
� The Real AdaBoost algorithm �ts an additive logistic regression model by stagewise

and approximate approximate optimization of E
(
e−yF (x)

)
.

These results show that both Discrete and Real AdaBoost can be motivated as iterative algo-
rithms for optimizing the exponential criterion. The Gentle AdaBoost optimizes E

(
e−yF (x)

)
by Newton stepping.
A further observation is about the di�erent outputs of random forests and Boosting: the
age is the most important variable for the �rst method, but it seems to be not very impor-
tant for the second ones. This fact allow us to �t a classi�er giving importance to optical
derived parameters, that is our goal.

3.6 Classi�cation with absorptions

In this section the results of the analysis and classi�cation related to absorption are brie�y
reported.
The data belong to Dataset 2, in particular to the part of data referred to absorptions.
The way to act is substantially parallel to that used for concentrations, �rstly the PCA
directions has been used trying to �nd the directions that maximizes the di�erences in
variability. The results weren't good in terms of performances, so we focused on logistic
regression models considering all the available variables and possible interactions.
The correlation matrix is reported (Figure 3.21):
It's possible to note that several variables are strictly correlated (Figure 3.22).
In a second step dichotomous variables were analyzed in a similar manner to the case of

concentrations, in particular it is estimated the con�dence interval for the logarithm of the
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Figure 3.21: Correlation matrix with all the numerical variables

OR and any links with the di�erent wavelengths were studied.
The signi�cant correlations are now reported:

� HRT: A correlation between presence or recent use of HRT with absorption at 975nm
was found (p-value≈0.01);

� OC: A correlation between OC with absorptions at 905nm,930nm,975nm,1060nm was
found (p-value<0.02).

A new model has been found developing the latest considerations; like in the previous
sections, the backward variable selection has been applied and the resulting model is:

logit (pi) = α0 + α1 [x905]i [OC]i + α2 [x1060]i [OC]i + α3 [Age]i + α4 [x905]i (3.33)

The summary is as follows:

Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.25679 1.60465 -4.522 6.12e-06 ***

x905 7.20375 3.50130 2.057 0.0396 *

Age 0.13631 0.03027 4.503 6.69e-06 ***

x905:OC -31.43713 16.71910 -1.880 0.0601 .

OC:x1060 63.42972 28.59415 2.218 0.0265 *

---

Null deviance : 134.309 on 99 degrees of freedom

Residual deviance: 84.817 on 95 degrees of freedom

AIC: 94.817

The sensitivity is 0.8448276, the speci�city is 0.7317073 and 1− TotalErrorRate = 0.79.
Like with concentrations, the strong correlations between variable have been treated with
log-penalized methods (LASSO and Ridge regression). In particular LASSO regression
was really helpful in order to do variable selection. Now the partial results of the LASSO
regression are used to make a selection of signi�cant variables (the value of λ was chosen
in a way that a certain number of coe�cients has assumed non-zero value), we use the �rst
9 signi�cant coe�cients (taking care of the interaction):
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Figure 3.22: Plots of the most correlated variables. The regression
lines have the following equation: 1)x635=1.378549268*x685+0.008603848;
2)x635=1.43618502 *x785+0.03518893; 3)x685=1.12245321*x785+0.01359344;
4)x785=0.83477683*x905+0.01108264; 5)x785=0.80429741*x1060+0.02444635;
6)x905=0.9783806*x1060+0.0151546; 7)x930=0.922694102*x905-0.005661969;
8)x930=1.0509828822*x1060-0.0001805148.
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� x785;

� Age;

� Familiarity;

� HRT;

� BMI;

� TAMOXIFENE;

� OC*x905;

� OC*x1060;

� x1060*x785.

These variables have been used in a logistic regression model and a backward variable
selection based on collinearity between variables has been made (mainly using the VIFs),
the result is the following model:

logit (pi) = α0 + α1 [x785]i + α2 [Age]i + α3 [OC]i [x905]i + α4 [x1060]i [OC]i (3.34)

The summary of model (3.34) is now reported:

Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.47384 1.62987 -4.586 4.53e-06 ***

x785 8.96508 3.90185 2.298 0.0216 *

Age 0.13794 0.03042 4.535 5.76e-06 ***

x905:OC -29.40037 15.93792 -1.845 0.0651 .

OC:x1060 62.44036 28.10551 2.222 0.0263 *

---

Null deviance : 134.309 on 99 degrees of freedom

Residual deviance: 83.256 on 95 degrees of freedom

AIC: 93.256

The performances are: sensitivity is 0.8474576, speci�city is 0.775 and 1−TotalErrorRate =
0.81.
Fisher discriminant analysis and CARTs haven't lead to good results, for this reasons they
haven't been reported.
The random forest algorithm was useful to try to create a ranking of the most signi�cant
variables (Figure 3.23). The technical characteristics are similar to the case of concentra-
tions: the number of iterations is equal to 500 and the number of random chosen variables
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for each split is 5 (approximately a third of the whole variables).
The most important variables are:

Figure 3.23: Variables Importance measured with random forest principle

� Age;

� x975;

� BMI;

� x685;

� x1060.

As usually the random forest importance measure has been calculated for the reduced
model the take into account the most important variables (Figure 3.24). Performing a
logistic regression on the variables reported in Figure 3.24 with all the possible interactions
and applying a backward selection, we obtained the following model:

logit (pi) = α0 + α1 [Age]i + α2 [Age]i [x685]i (3.35)

The summary of model (3.25) is reported below:
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Figure 3.24: Variables Importance of reduced model measured with random forest principle

Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.70077 1.45791 -4.596 4.30e-06 ***

Age:x685 0.18752 0.07448 2.518 0.0118 *

Age 0.12750 0.02831 4.503 6.69e-06 ***

---

Null deviance : 134.309 on 99 degrees of freedom

Residual deviance: 93.177 on 97 degrees of freedom

AIC: 99.177

The sensitivity is 0.8103448, the speci�city is 0.7804878, 1− TotalErrorrate = 0.7979798.
As far as AdaBoost methods are concerned, we can provide the following average impor-
tance rankings (Figures 3.25, 3.26, 3.27):

The performances are similar to those relating to concentrations: for the Discrete Ad-
aBoost the average measured sensitivity is 0.88, the speci�city is 0.90; for the Real AdaBoost
the sensitivity is 0.86 and the speci�city is 0.90; for the Gentle AdaBoost the sensitivity is
0.88 and the speci�city is 0.90.
It is important to note that even in this case we have similar behaviours to the case of
concentrations: age appears to be a key variable for classi�cation in the case of logistic re-
gression models and in the case of random forests, while loses importance for the methods
of Boosting. Con�rming this similar behaviour, in contrast to what one can imagine, the
loss of importance of age also leads in this case to an improvement in the performance of
the classi�er.
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Figure 3.25: Average Variables Importance measured with Discrete AdaBoost method

Figure 3.26: Average Variables Importance measured with Real AdaBoost method
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Figure 3.27: Average Variables Importance measured with Gentle AdaBoost method

3.7 Summary of classi�cation

The most important logistic regression models developed in chapter 3 using concentrations
are:

� logit (pi) = α0 + α1 [Collagen]i + α2 [Age]i + α3 [Age]i [Familiarity]i

� logit (pi) = α0 + α1 [Collagen]i + α2 [Age]i + α3 [Familiarity]i

� logit (pi) = α0 + α1 [Comp.1]i + α2 [Comp.4]i + α3 [Age]i + α4 [Familiarity]i

� logit (pi) = α0+α1 [HbO2]i+α2 [Age]i+α3 [HHb]i [Water]i+α4 [Age]i [Familiarity]i

� logit (pi) = α0 + α1 [Age]i + α2 [HbO2]i + α3 [Water]i + α1 [HbO2]i [Water]i

The performances aren't very high, because in every case the sensitivity is less than 0.85
and the speci�city is less than 0.8.
In the other hand we can classify with absorption data, the most important logistic regres-
sion models found were:

� logit (pi) = α0 + α1 [x905]i [OC]i + α2 [x1060]i [OC]i + α3 [Age]i + α4 [x905]i

� logit (pi) = α0 + α1 [x785]i + α2 [Age]i + α3 [OC]i [x905]i + α4 [x1060]i

� logit (pi) = α0 + α1 [age]i + α2 [Age]i [x685]i



CHAPTER 3. CLASSIFICATION 66

Even in this case the performances aren't very high, and the values of sensitivity and speci-
�city are almost comparable with those of the logistic regression models calculated with
concentrations.
You can improve the performance of the classi�ers using the boosting methods, but these
methods are more complex and less intuitable than logistic regression models.
A big pro in favour of these methods are the lack of importance of the variable Age, that
allows us to built a classi�er mainly based on spectrally derived variables.
Since the results using the concentrations and absorptions are similar, it is preferable to use
a classi�er constructed with concentrations as such magnitudes have greater applicability
and physical meaning.



Chapter 4

Direct estimate of risk associated

with collagen

The second aim of the work is to try to identify a further signi�cant risk factor for the
identi�cations of patients with early breast cancer. As already mentioned in the introduc-
tion the �rst signi�cant risk factor coincides with the density. High density signi�cantly
increases the probability of developing cancer.
The work shown in this chapter is aimed at verifying whether the collagen can be identi-
�ed as a signi�cant risk factor and if the two risk factors are somehow connected to each
other (if they can be considered as complementary factors to identify high probability of
contracting the disease or if they are somehow correlated)
Recent research has shown that there is a probable link between cancer risk and concen-
tration of collagen (in addition to the density of the breast as described above). For this
reason we've studied data related to 107 subjects (Dataset 4): the available variables for
every subject are

� Density of the breast;

� Collagen;

� Age;

� Menopausal state;

� BMI.

The breast tissue is substantially constituted by:

� glandular tissue, stoma, epithelial tissue, representing the dense area, which appears
white in the pictures, because it corresponds to the material that attenuates x-rays;

67
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� adipose tissue, which appears dark (translucent) in the images, it �attens little x-rays.

The mammographic density is a percentage value because it is de�ned as the ratio between
the area of "dense" and the total area in the images.

4.1 Di�erences in terms of mean and variability

As occurred previously in the case of the classi�cation between benign and malignant tu-
mours, the �rst step is intended to detect any di�erences between the two classes, which in
this case are those of healthy subjects and diseased subjects. A possible di�erence in terms
of variability can also be useful to explain the di�erences between these two populations.
For this reason we've applied the tests previously described:

� Bartlett Test;

� Levene's Test;

� Analysis based on principal coordinate.

The plot of Collagen vs. Density doesn't allow us to see any sort of di�erence or classi�cation
criterion (Figure 4.1).
The multivariate Bartlett test has been used after having tested the hypothesis of normality

Figure 4.1: Collagen vs. Density

with the Shapiro Test (we refuses the null hypothesis of normality because the p-value was
very low). The summary of the Bartlett test is:
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� u = 21.33989;

� χ2
0.95 [15] = 24.99579;

� p− value = 0.1263166.

This test is in fact testifying that it's not possible to refuse the null hypothesis of equal
variances (but on the contrary there seems to be evidence that the null hypothesis is true
because the p-value is very high).
The second test is the Levene's test:

� Fc = 1.543;

� p− valuec = 0.217;

� Fm = 1.2411;

� p− valuem = 0.2678.

The conclusion of this test is analogue to what we've told about the Bartlett test because
the p-values are high. Figures 4.2 and 4.3 report the Euclidean distances from centroid/-

Figure 4.2: Euclidean distances from the centroid

median.
The representation with principal coordinate allows (Figure 4.4) us to note that the two
populations have similar variability.
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Figure 4.3: Euclidean distances from the median

Figure 4.4: Principal coordinates ordination for Diseased and Healthy subjects: the trian-
gles represent Diseased subjects, the circles represent Healthy subjects. The measure used
is the Euclidean measure.
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The last proof for equality of variability is the Tukey test for the distances from centroid.
Tukey's test, also known as the Tukey range test, Tukey method, Tukey's honest signi�-
cance test, Tukey's HSD (honest signi�cant di�erence) test, or the Tukey-Kramer method,
is a single-step multiple comparison procedure and statistical test. In our case we have only
one comparison because the classes are only 2.
The Tukey method uses the studentized range distribution. The studentized range com-
puted from a list x1, . . . , xn is

qn,ν =
max[x1 . . . , xn]−min[x1, . . . , xn]

s
(4.1)

where

s2 =
1

n− 1

n∑
i=1

(xi − x̄) (4.2)

The critical value of q is based on three factors:

� α, the probability of rejecting a true null hypothesis;

� n, the number of observations;

� ν, the degrees of freedom used to estimate the sample variance.

Suppose that we take a sample of size n from each of k populations with the same normal
distribution, let ȳmin be the smallest of the sample means and let ȳmax be the largest of
the sample means. Suppose S2 is the pooled sample variance from these samples. Then
the following random variable has a Studentized range distribution:

q = ȳmax−ȳmin
S
√

2/n

The Tukey con�dence limits for all pairwise comparisons with con�dence coe�cient of at
least 1− α are:

ȳi − ȳj ±
qα;k;N−k√

2
σ̂ε
√

1
ni

+ 1
nj

where ni and nj are the sizes of groups i and j respectively, σ̂ε is the standard deviation of
the entire design, not just that of the two groups being compared.
Now we report the Tukey con�dence intervals for the distances from centroid with euclidean
distances. The value 0 is internal to the Tukey interval (Figure 4.5), so we can con�rm the
previous statement about the impossibility to reject the null hypothesis of equal variability
with α = 0.05.
The results of these tests allow us to perform the Hotelling test for the equality of the mean
vectors.
The null hypothesis is:

H0 : µX = µY
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Figure 4.5: Tukey con�dence intervals for the distances from centroid with euclidean dis-
tances

The Two sample Hotelling's T-square test statistic is:

T 2 =
(
X̄ − Ȳ

)T [
S

(
1

nx
+

1

ny

)]−1 (
X̄ − Ȳ

)
(4.3)

where S is the pooled sample covariance matrix of X and Y, namely

S =
(nx − 1)SX + (ny − 1)SY

(nx − 1) + (ny − 1)
(4.4)

where SX is the covariance matrix of the sample for X, X̄ is the mean of the sample and
nx the number of elements in X; SY is the covariance matrix of the sample for Y, Ȳ is the
mean of the sample and ny the number of elements in Y.
For nx and ny su�ciently large,

T 2 ∼ χ2 (k) (4.5)

where k is the number of variables considered.
In our case the results are as follow:

� T 2
0 = 0.7105255;

� χ2
0.95 (5) = 11.0705;

� p− value = 0.982386.
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It is possible to synthesize the output of tests carried out so far by saying that it is not
possible to say that there is a substantial di�erence in mean and variability of the data
concerning healthy subjects and data relating to individuals with cancer.
Moreover exploratory analysis of the correlation matrix of the numeric variables hasn't
shown any strong correlation (Figure 4.6).

Figure 4.6: Correlation matrix of the numeric variables

4.2 Classi�cation and evaluation of risk correlated to Colla-

gen

Despite previous considerations, we tried to verify the degree of incidence of the main
variables related to the probability of being a sick person. To do this we have �tted several
logistic regression models considering all the variables. The only interaction considered is
that between BMI and Collagen (Figure 4.7).
The idel model was the following one:

logit (pi) = α0 + α1[age]i + α2[Density]i + α3[Menopause]i (4.6)

The values of the coe�cients of model (4.6) are reported below:

Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.618042 1.326848 -1.973 0.0485 *

Age 0.066367 0.027688 2.397 0.0165 *

Density 0.022467 0.008498 2.644 0.0082 **

Menopause -1.190623 0.564995 -2.107 0.0351 *

---

Null deviance : 148.25 on 106 degrees of freedom

Residual deviance: 135.17 on 103 degrees of freedom

AIC: 143.17

The performances are not very good: the sensitivity is 0.7272727, the speci�city is 0.5384615
and 1− TotalErrorRate = 0.635514.
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Figure 4.7: Plot of Collagen vs. BMI. The regression line has the following equation:
Collagen=-5.816763*BMI+213.396344

But now we are interested in to understand if the collagen is a risk factor in addition to
the density.
To do this, we have �tted two models:

� logit(pi) = α0 + α1[Collagen]i;

� logit(pi) = α0 + α1[Density]i.

and the probability of being sick were predicted by previous models (pc,i for the �rst model
and pd,i for the second one). We can see these probabilities plotted in Figure 4.8.
From the �tted models it's possible to con�rm that both the variables are signi�cant

(p-value<0.1) and it's obvious to say that if they were risk factors in agreement to each
others, they should provide probabilities that lie on the bisector line. From Figure 4.8 is
possible to say that it's not the case.
Like suggested in [2], it's possible to see the lack of agreement between two measurements
with the plot shown in Figure 4.9.
Provided di�erences within d± 2s would not be statistically important, we should refer to
these "limits of agreement":

� d+ 2s = 0.22

� d+ 2s = −0.21

Thus, the observations with di�erences less than 0.22 and higher than -0.21 would be con-
sidered acceptable. This is unacceptable because these di�erences are signi�cantly relevant
to the calculation of the probability of a patient to be a person with high risk of developing
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Figure 4.8: Plot of pc,i vs. pd,i, the reference line is the bisector line.

Figure 4.9: Plot of average probability vs. di�erence
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cancer or not. This lack of agreement could not be obvious from Figure 4.8.
The same argument can be applied to models that also consider other variables (models 4.7
and 4.8):

logit(pi) = α0 + α1[Collagen]i + α2[Age]i + α3[Menopause]i + α4[BMI]i (4.7)

logit(pi) = α0 + α1[Density]i + α2[Age]i + α3[Menopause]i + α4[BMI]i (4.8)

As already described before we can consider the graphs of Figure 4.10.
You can come to the same conclusions drawn from the models analyzed before.

Figure 4.10: Plot pc,i vs. pd,i and probability vs. di�erence

In general, so it is possible to state that these methods suggest that there could be a
di�erence between the two risk factors used.
With these considerations is thus possible to try to identify which are the real di�erences
of subjects classi�ed by the two variables in question as healthy / sick.
So we tried to classify according to collagen and density (using also Age, BMI, Menopausal
state) using models (4.7) and (4.8), resulting in three possible classes of evaluation:

� subjects classi�ed as sick according to both methods (therefore with high values of
collagen and density);

� subjects classi�ed sick for only one of the parameters used before;

� subjects classi�ed as healthy according to both methods.

The results are as it follows (over the 107 subjects af the sample):

� 34 subjects are considered sick for both the methods, 22 of them are really cancer
subjects, the other 12 are healthy (64.7% rightly classi�ed);
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� 20 subjects are classi�ed sick for classi�cation with density and healthy for the clas-
si�cation with collagen: 13 of them are sick and 7 are healthy;

� 17 subjects are classi�ed sick for classi�cation with density and healthy for the clas-
si�cation with collagen: 9 of them are sick and 8 are healthy;

� 36 subjects are considered sane for both the methods, 11 of them are really cancer
subjects, the other 25 are healthy (69.4% rightly classi�ed).

The summaries of the 2 models are now reported:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.47808 2.28495 -1.960 0.0500 .

Age 0.04920 0.02518 1.954 0.0508 .

Collagen 0.01105 0.00684 1.616 0.1062

Menopause -1.22282 0.56414 -2.168 0.0302 *

BMI 0.07568 0.07015 1.079 0.2807

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 148.25 on 106 degrees of freedom

Residual deviance: 139.85 on 102 degrees of freedom

AIC: 149.85

And for the second model:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.008828 2.272334 -2.644 0.00819 **

Age 0.065802 0.027755 2.371 0.01775 *

Density 0.026425 0.009199 2.872 0.00407 **

Menopause -1.370301 0.585808 -2.339 0.01933 *

BMI 0.092190 0.069225 1.332 0.18294

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 148.25 on 106 degrees of freedom

Residual deviance: 133.35 on 102 degrees of freedom

AIC: 143.35
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As already predictable from what we saw in the correlation matrix, we can say that there
are di�erences in Age and BMI in groups previously created: they both decrease in average
passing from observations classi�ed always as healthy as those classi�ed di�erently by the
two risk factors, and the same can be said �nally passing the observations always classi�ed
as diseased.
You can build a classi�er in the following way: it ranks as sick when at least one of the two
basic classi�ers ranks as sick and ranks as healthy in the other case. The performance of
this classi�er are the following: the sensitivity is 0.8 and the speci�city is 0.48.

What we can say is that empirically seems to be a di�erence in the characteristics of the
two predictive risk factors. The answer to the original problem placed at the beginning of
the chapter can be summarized as follows: both variables in question are singly signi�cant
in establishing a degree of risk of having a breast cancer or not, but there are di�erences
in relation to the prediction made by such variables. Density appears to be a stronger risk
factor than the collagen (from what emerges from the logistic regression models), but also
the collagen is a correction factor which often helps to rank exactly certain subjects.
Other studies have been done trying to consider other transformations of variables, such
as standardization of collagen and density compared to the value predicted by a linear
regression model built in reference to the age of the patients, in particular we considered
the following models in which the parameters are calculated only with the training set
constituted by healthy subjects:

� [Collagene]i = α0 + α1[Age]i

� [Density]i = β0 + β1[Age]i

and then

� [Collagenestd]i = α0+α1[Age]i−[Collagene]i
[Collagene]i

� [Densitystd]i = β0+β1[Age]i−[Density]i
[Density]i

These new variables allow us to consider the anomaly of the data compared to the hypo-
thetical behaviour of an healthy subject.
It's important to note that the use of these variables has not led to good results, starting
from the signi�cance of variables in the simple models reported below:

� logit(pi) = α0 + α1[Collagenstd]i

� logit(pi) = α0 + α1[Densitystd]i

In fact it can be seen from the summary that standardised collagen is not meaningful in
relation to the probability of being a sick person:
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Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.1092 0.1990 0.549 0.583

Collagen_std -0.5460 0.4180 -1.306 0.192

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 148.25 on 106 degrees of freedom

Residual deviance: 146.50 on 105 degrees of freedom

AIC: 150.5

And the second summary is:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.1911 0.2034 0.940 0.3474

vtd -0.3776 0.1658 -2.277 0.0228 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 148.25 on 106 degrees of freedom

Residual deviance: 141.11 on 105 degrees of freedom

AIC: 145.11

Taking into account these considerations and the fact that no logistic regression model has
led to better performance than the model (4.6), it's been decided not to consider further as
credible these transformations of the variables in question.
A natural consequence of these results is the search to improve the performance of the
classi�er. The idea is to use the Boosting methods in such a way to have a ranking of the
variables.
In particular these methods have been used with the following technical indications:

� The number of iteration is 50 for every classi�er;

� the percentage of observation left out of bag is 50% for every iteration;

� The variables ranking is built based on the average result of 20 classi�ers.

The variables rankings are reported in Figure 4.11, Figure 4.12 and Figure 4.13.
The average performances are:
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Figure 4.11: Average variable ranking with Discrete AdaBoost method.

Figure 4.12: Average variable ranking with Real AdaBoost method.
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Figure 4.13: Average variable ranking with Gentle AdaBoost method.

� Discrete Adaboost: sensitivity of 0.70, speci�city of 0.75 and 1− TotalErrorRate =
0.72.

� Real Adaboost: sensitivity of 0.72, speci�city of 0.74 and 1−TotalErrorRate = 0.73.

� Discrete Adaboost: sensitivity of 0.70, speci�city of 0.75 and 1− TotalErrorRate =
0.72.

As we can see, also in this case the performances are not very high. The most important
things for our work is the ranking of the variables: in every single case the collagen is less
"important" than the density; it con�rms what we've seen with logistic regression models.
The last further con�rmation of what said up to this point is what comes from the analysis
of the proportions of healthy and sick subjects with values at the extremes of collagen: if you
do not notice any di�erence between the proportions of diseased patients with extremely
high value of collagen and diseased patients with extremely low value of collagen, then we
have a further proof of the fact that collagen can not be considered a good indicator of the
risk of developing cancer.
For this reason we have compared the proportion of diseased patients relative to patients
in the �rst 20% of the ordered values of collagen with the same proportion in the last 20%
of patients. The results are reported below:

Healthy Diseased

High Collagen 10 11
Low Collagen 11 10
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The 95% con�dence interval for the logarithm of the OR is:

IC[ln(OR)] = (−1.1748539; 0.8109668) (4.9)

This testi�es the impossibility to reject the hypothesis of independence of the two categorical
variables (high/low collagen and presence/absence of disease), or in other words you can
not identify signi�cant di�erences between proportions with high and low collagen.
The same work has been done with density. The results are as follows:

Healthy Diseased

High Density 7 14
Low Density 14 7

The 95% con�dence interval for the logarithm of the OR is:

IC[ln(OR)] = (0.2722328; 2.3647497) (4.10)

This con�rms the results already obtained in previous studies: you can note di�erent pro-
portions of diseased subjects in parts of the population placed at the ends of the density
distribution (in contrast to what happened with collagen). This is a further example that
the density can be considered actually a risk factor that increases the probability of having
the disease because his presence at extremely high values implies an e�ective increase in
the probability of being a sick person. This statement can not be made for collagen because
there is no evidence based on the results obtained.
Then it can be concluded by saying that there is probably a di�erence between collagen
and density in terms of power of explanation of the probability of being a sick subject, but
the density is a better risk factor in terms of signi�cance in every classi�er (both in logistic
regression models and in Boosting methods). In particular as you can see from the model
(4.6) the use of density as a risk factor makes collagen not signi�cant.



Chapter 5

Conclusions

The work was mainly divided in 2 parts: the �rst one is on �nding adequate logistic
regression models that could adequately classify observations with malignant or benign
tumours. To do this, through several considerations, di�erent models have been �tted.
The most important logistic regression models developed in chapter 3 are reported in section
3.7, they have been �tted using Dataset 2.
The performances aren't very high, because in every case the sensitivity is less than 0.85
and the speci�city is less than 0.8.
Based on these models, it is not possible to identify a unique model but of course we can
draw some considerations:

� Age is the most important variable in this context: the p-values are very low in every
�tted model, so there is a strong evidence in favour of the hypothesis of signi�cant
coe�cient;

� Collagen is a signi�cant factor in the classi�cation of malignant and benign tumours.
High values of delta-Collagen are an indication of increased risk of having a malignant
tumour. To achieve this you need to consider that HbO2 and collagen are closely
related (positively), then surely we can come to similar considerations for these two
variables;

� Familiarity is a variable with di�erent behaviour from what would be expected intu-
itively. In fact, there is strong evidence to suggest that familiarity is a factor that
would lead to a reduction of the probability of contracting a malignant tumour;

� It is probable, but less obvious in the light of the results obtained, that the Water is
a signi�cant variable that increases the likelihood of contracting a malignant tumour.
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In the other hand we can classify with absorption data, the most important logistic regres-
sion models found are reported in section 3.7.
Even in this case the performances aren't very high, and the values of sensitivity and speci-
�city are almost comparable with those of the logistic regression models calculated with
concentrations.
One of the main problems of these models is the fact that it is di�cult to reach consid-
erations as we have just done with models built with the concentrations. This is because
of the high number of correlated variables and the greater di�culty in giving a physical
intuitable meaning to these variables.
You can improve the performance of the logistic regression models (in particular for con-
centrations) using the Boosting methods, even if these methods are less intuitable than
logistic regression models.
A big pro in favour of these methods are the lack of importance of the variable Age, that
allows us to built a classi�er mainly based on spectrally derived variables.
Since the results using the concentrations and absorptions are similar, it is preferable to
use a classi�er constructed with concentrations because they have greater applicability and
physical meaning.
The second aim of this work was about the evaluation of collagen as a risk factor in favour
of the presence or absence of tumours in certain individuals. It's possible to con�rm this
presumption although it is not possible to say that collagen is a fundamental variable and
determining the classi�cation of such subjects.
In any case we can consider the collagen as a factor that increases the likelihood of having
a breast cancer, as well as it had been previously con�rmed this hypothesis also for the
density. However, as suggested by the last part of the work, it is possible to say that the
two risk factors are not closely related, and thus can be considered as two di�erent elements
that may allow to de�ne a probability of having a breast cancer.
The Boosting methods have been used also in this study: they helped us to understand the
importance of the variables. The results in terms of signi�cance of the variables are very
similar to those related to logistic regression models: the collagen seems to be less important
when compared to the density (weakly signi�cant in the purpose of the classi�cation).



Chapter 6

Codes

6.1 Packages

The whole analysis has been conducted with R. The main packages used are reported
below:

� car:John Fox and Sanford Weisberg (2011). An R Companion to Applied Regression,
Second Edition. Thousand Oaks CA: Sage.
URL: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

� vegan:Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter
R. Minchin, R. B. O'Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens
and Helene Wagner (2013). vegan: Community Ecology Package. R package version
2.0-10. http://CRAN.R-project.org/package=vegan

� glmnet: Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). Regularization
Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical
Software, 33(1), 1-22. URL http://www.jstatsoft.org/v33/i01/.

� mvpart: rpart by Terry M Therneau, Beth Atkinson. R port of rpart by Brian Ripley
<ripley@stats.ox.ac.uk>. Some routines from vegan � Jari Oksanen <jari.oksanen@oulu.�>
Extensions and adaptations of rpart to mvpart by Glenn De'ath. (2014). mvpart:
Multivariate partitioning.
R package version 1.6-2. http://CRAN.R-project.org/package=mvpart

� MASS:Venables, W. N.; Ripley, B. D. (2002) Modern Applied Statistics with S.
Fourth Edition. Springer, New York. ISBN 0-387-95457-0

� lasso2:Justin Lokhorst, Bill Venables, Berwin Turlach; port to R and tests etc: Mar-
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tin Maechler (2014). lasso2: L1 constrained estimation aka `lasso'. R package version
1.2-19. http://CRAN.R-project.org/package=lasso2

� rgl: Daniel Adler, Duncan Murdoch and others (2014). rgl: 3D visualization device
system (OpenGL). R package version 0.95.1157.
http://CRAN.R-project.org/package=rgl

� randomForest:A. Liaw and M. Wiener (2002). Classi�cation and Regression by
randomForest. R News 2(3), 18�22.

� rpart:Terry Therneau, Beth Atkinson and Brian Ripley (2013). rpart: Recursive
Partitioning. R package version 4.1-3. http://CRAN.R-project.org/package=rpart

� ada:Mark Culp, Kjell Johnson and George Michailidis (2012). ada: ada: an R package
for stochastic boosting.
R package version 2.0-3. http://CRAN.R-project.org/package=ada

� adabag:Esteban Alfaro, Matias Gamez, Noelia Garcia (2013). adabag: An R Package
for Classi�cation with Boosting and Bagging. Journal of Statistical Software, 54(2),
1-35. URL http://www.jstatsoft.org/v54/i02/.

� caTools:Jarek Tuszynski (2014). caTools: Tools: moving window statistics, GIF,
Base64, ROC AUC, etc.. R package version 1.17.1.
http://CRAN.R-project.org/package=caTools

6.2 Codes

In this section some codes used in the analyzes have been reported. The packages used for
a particular item are reported.

� Multivariate Bartlett Test:

a l f a <− 0 .05
p <− ncol ( paz ) #number o f v a r i a b l e s
n <− nrow( paz ) #number o f p a t i e n t s
k <− 2 #number o f groups
pame <− rep (0 , k )
nu <− as . vector ( table ( group ) )
mat <− mat1 <− array (dim=c (p , p , k ) )
for ( i in 1 : k ) {
mat [ , , i ]=((nu [ i ]−1)/nu [ i ] ) *cov ( paz [ group==i −1 , ] )
mat1 [ , , i ]=(nu [ i ]−1)*cov ( paz [ group==i −1 , ] ) }
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Sp <− apply (mat1 , 1 : 2 ,sum)/ (n−k ) #poo led var iance matrix
c <− 1−(2*p^2+3*p−1)/(6*p−6)*

(1/ (nu[1]−1)+1/ (nu[2]−1)−1/ (n−k ) )
t e s t <− c* ( ( n−k )*log ( det (Sp))−(nu [1 ]−1)*

log ( det (cov ( paz [ group==0 ,]) ))−(nu [2 ]−1)*
log ( det (cov ( paz [ group==1 ,]) ) ) )

df <− 0 .5*p* (p+1)* (k−1) #degrees o f freedom
va l <− qchisq(1− a l f a , df )
t e s t>va l
pvalue <− 1−pchisq ( t e s t , va l )

� Levene's Test:

cm <− colMeans ( deltaM [ , 1 : 5 ] ) #malignant mean
cs <− colMeans ( deltaB [ , 1 : 5 ] ) #benign mean
zm <− rep (0 , 63 )
zs <− rep (0 , 47 )
for ( i in 1 : 63 )

{ d i f f <− deltaM [ i , 1 : 5 ] − cm
zm[ i ] <− sqrt (sum( d i f f ^2))
}

for ( i in 1 : 47 )
{ d i f f <− deltaB [ i , 1 : 5 ] − cs
zs [ i ] <− sqrt (sum( d i f f ^2))
}

#one way anova
z <− c (zm, zs )
f i t <− aov ( z ~ group )
f i t
summary( f i t )
boxplot (zm, zs , main="Eucl idean  d i s t an c e s  from cen t r o i d " ,

names=c ( "Malignant" , "Benign" ) )

� Principal coordinates method: (vegan)

d i s <− vegd i s t ( paz , method="manhattan" )
d i s
group <− factor (c ( rep ( 1 , 63 ) , rep ( 2 , 4 7 ) ) ,

labels = c ( "Malignant" , "Benign" ) )

mod <− be tad i spe r ( d is , group , type=" cen t ro i d " )
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mod
summary(mod)

## Perform t e s t
anova(mod)
## Permutation t e s t f o r F
permutest (mod , pa i rw i s e = TRUE)

## Tukey ' s Honest S i g n i f i c a n t D i f f e r enc e s
(mod .HSD <− TukeyHSD(mod) )
plot (mod .HSD)

## Plot the groups and d i s t an c e s to c en t r o i d s on the
## f i r s t two PCoA axes
plot (mod)
boxplot (mod)

� LASSO, Ridge and elastic net regression:(glmnet)

r l a s<−glmnet (x , y , family = "binomial " ,
alpha = 1 , lambda .min = 1e−4)

r r i d<−glmnet (x , y , family = "binomial " ,
alpha = 0 , lambda .min = 1e−4)

r ene t<−glmnet (x , y , family = "binomial " ,
alpha = . 5 , lambda .min = 1e−4)

summary( r l a s )
plot ( r l a s , xvar="lambda" )
plot ( r r id , xvar="lambda" )
plot ( renet , xvar="lambda" )
nsteps <− 20
b1 <− coef ( r l a s )[−1 , 1 : ns teps ]
w <− nonzeroCoef ( b1 )
b1 <− as .matrix ( b1 [w, ] )

b2 <− coef ( r r i d )[−1 , 1 : ns teps ]
w <− nonzeroCoef ( b2 )
b2 <− as .matrix ( b2 [w, ] )

b3 <− coef ( r ene t )[−1 , 1 : ns teps ]
w <− nonzeroCoef ( b3 )
b3 <− as .matrix ( b3 [w, ] )
yl im <− range ( b1 , b2 , b3 )
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matplot ( t ( b1 ) , type = "o" , pch = 19 , col = "blue " ,
xlab = "Step" , ylab = " Co e f f i c i e n t s " ,

yl im = c ( −0 .6 ,0 . 1 ) , l t y = 1)
t i t l e ( "Lasso " )
abline (h = 0 , l t y = 2)

matplot ( t ( b3 ) , type = "o" , pch = 19 , col = "blue " ,
xlab = "Step" , ylab = " Co e f f i c i e n t s " ,

yl im = ylim , l t y = 1)
t i t l e ( " E l a s t i c  Net" )

matplot ( t ( b2 ) , type = "o" , pch = 19 , col = "blue " ,
xlab = "Step" , ylab = " Co e f f i c i e n t s " ,

yl im = ylim , l t y = 1)
t i t l e ( "Ridge Regres s ion " )

� Fisher Discriminant Analysis:

n1 <− nrow( san i ) ; n1
n2 <− nrow( malat i ) ; n2

p <− ncol ( san i ) ; p
g <− 2
n <− n1+n2 ; n

#W
S . san i <− var ( san i )
S . malat i <− var ( malat i )
W.2 gr <− ( ( n1−1)*S . san i+(n2−1)*S . malat i )/ (n−2)
W.2 gr

#B
mean . s an i <− colMeans ( san i )
mean . malat i <− colMeans ( malat i )

B. 2 gr <− ( ( n1*n2/n)* (mean . sani−mean . malat i )%*%
t (mean . sani−mean . malat i ) )
B. 2 gr

#d i r e c t i o n t ha t maximizes the d i f f e r e n c e based on
mean va lue s
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a . 2 gr <− solve (W.2 gr )%*%(mean . sani−mean . malat i )
paz . 2 gr <− as .matrix ( d e l t a r i d )
Y. 2 gr <− paz . 2 gr%*%a . 2 gr
dim(Y. 2 gr )

−1*a . 2 gr
Y. 2 gr ;

#new coord ina t e s
Y.2 gr . s an i <− mean . s an i%*%a . 2 gr
Y. 2 gr . malat i <− mean . malat i%*%a . 2 gr

pto . sep <− (Y. 2 gr . s an i+Y.2 gr . malat i )/ 2 ; pto . sep

#performance
Sp . prev <− i f e l s e (Y. 2 gr>(c ( rep ( pto . sep , n ) ) ) , 0 , 1 )
gruppi<−matrix (NA,nrow=100 ,ncol=1)
gruppi [ , 1 ]<−c ( rep ( 1 , 58 ) , rep ( 0 , 42 ) )
a l l o c <− as . data . frame (cbind (Y. 2 gr , gruppi , Sp . prev ) )
table ( a l l o c $V2 , a l l o c $V3)
c o l o r . p o s i t i o n <− i f e l s e ( gruppi == ' 1 ' , ' red ' , ' green ' )
plot (Y. 2 gr , col=co l o r . p o s i t i o n )
abline (h=pto . sep )

� Random Forest:(randomForest)

f i t <− randomForest ( group~HHb+HbO2+Lipid+Water
+Col lagen+age+f am i l i a r i t y+OC+HRT+ch i l d r en+TAM+BMI,
type=" c l a s s i f i c a t i o n " ,data=de l t a t o t )

f i t
print ( f i t ) # view r e s u l t s
importance ( f i t ) # importance o f each p r e d i c t o r
varImpPlot ( f i t )
pred<− f i t $pred i c t ed
summary( pred )

#performance
gruppipred<−NULL
for ( i in 1 : 100 )
{
i f ( pred [ i ] <0.5) gruppipred [ i ]=0
else gruppipred [ i ]=1
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}
gruppipred
gruppipred<−as .matrix ( gruppipred )
dimnames( gruppipred ) [ [ 1 ] ]<−dimnames( d e l t a t o t ) [ [ 1 ] ]
ms<−cbind ( as . double ( d e l t a t o t [ , 6 ] ) , gruppipred , rep ( 0 , 100 ) )
ms
for ( i in 1 : 100 )
{
i f (ms [ i ,1]==ms [ i , 2 ] ) ms [ i ,3 ]=1
}
ms
mc<−sum(ms [ 1 : 5 8 , 3 ] ) ;
hc<−sum(ms [ 5 9 : 1 0 0 , 3 ] ) ;
sum(ms [ , 3 ] ) /100

� AdaBoost methods: (ada) the Discrete AdaBoost application is reported.

vars<−rep (0 , 12 )
t1<−proc . time ( )
for ( i in 1 : 20 )
{
rm( gen1 )
gen1<−ada ( group~Water+HHb+HbO2+Col lagen+BMI+age

+Lip id+f am i l i a r i t y+OC+HRT+TAM+chi ld ren ,
data=de l t a to t , type=" d i s c r e t e " )

vec1<−varp lo t ( gen1 , plot . i t=FALSE, type=" s c o r e s " ,
max. var . show=12)

vars<−vars+as .numeric ( vec1 [ order (names( vec1 ) ) ] ) /20
cat ( " i=" , i , " time=" , (proc . time()− t1 )/60 , "\n" )
}
a1<−sort (names( vec1 ) )
a2<−order ( vars , d e c r ea s ing=TRUE)
dotchart ( vars [ a2 ] [ 1 2 : 1 ] , a1 [ a2 ] [ 1 2 : 1 ] , main=

"Average Var iab le  Imp . " )
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Penso sia fondamentale sottolineare che questo lavoro non sarebbe mai stato lo stesso se
non avessi conosciuto tutte quelle persone che ho avuto modo di conoscere e apprezzare
in questi anni: Chiara penso sia stata fondamentale soprattutto negli ultimi anni, il suo
carattere stupendo mi insegnato cosa vuol dire l'ottimismo nella vita; Luca è il compagno
di risate e avventure che è diventato nel tempo un mio riferimento; Alessandra mi ha sa-
puto aiutare sempre, con i modi e le parole di chi sa sempre cosa dire al momento giusto;
Riccardo è stato il mio riferimento in Collegio e fuori, ho sempre seguito alla lettera ogni
suo consiglio e lo reputo una persona estremamente disponibile e di cuore; Federico, Nina,
Marco e Francesca per la spensieratezza, ho condiviso con loro gran parte del mio percorso
e non avrei potuto fare a meno di loro; Alberto e Sirio per i momenti di studio passati
insieme a sopportarci a vicenda; con Paola e Valentina ho avuto meno opportunità per
conoscerci, ma le sento parte di questo meraviglioso gruppo e quindi meritano sicuramente
di essere nominate.

Naturalmente anche la realtà del mio paesino mi ha permesso di raggiungere questo obbiet-
tivo, senza i miei amici sarebbe stato tutto più di�cile, per questo motivo vorrei ringraziarli
uno ad uno.

Per ultima, ma solo perchè la reputo più importante di tutto, voglio ringraziare la mia
famiglia. Penso che 'supporto' e '�ducia' siano le due parole che meglio descrivono come
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mi sono sentito in questi 5 anni: sapere di avere qualcuno che mi aiuta nel miglior modo
possibile, dandomi tutte le possibilità di questo mondo senza mai mettermi vincoli e per-
mettendomi ogni opportunità di scelta basandosi esclusivamente su una estrema �ducia nei
miei confronti è la prova più grande di come loro stessi credano in me e vogliano per me
solo il meglio. Parlo dei miei genitori, e per questo non vorrei mai deluderli.
Stesse parole valgono per Filippo: un ragazzo dalle potenzialità indescrivibili che è in grado
di trascinare chiunque gli stia intorno, me compreso. Io ho la fortuna di averlo come
fratello.


