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“Earth is the cradle of humanity,
but one cannot live in a cradle forever.”

— Konstantin E. Tsiolkovsky





Abstract

One of the most important aspects when dealing with the dynamics
close to an irregularly-shaped body is the accurate description of the
force field in its surrounding. In particular, the determination of grav-
itational field and three-dimensional rotation motion is important to
propagate accurately a trajectory in the vicinity of this kind of celestial
bodies. This thesis discusses the analysis and the study of the dynamical
environment around irregular small Solar System’s objects, with particu-
lar attention to the representation of their gravitational influence and the
characterization of their complex non-principal axis rotational dynamics.
All the relevant perturbations are taken into account, including the third
body gravitational effect, the Solar Radiation Pressure, the YORP effect
and the internal dissipation of energy. Different characteristic shapes for
typical celestial bodies are considered: from the simple, almost spherical,
to shapes that are more complex. The irregularities in the geometry
represent one of the most important sources of disturbances for what
concern the dynamics of a particle in these surroundings, and therefore,
the techniques to accurately model uneven gravitational fields are care-
fully analysed. The enhanced model must be valid up to the surface
of the body and the fidelity of the results should be compatible with
a reasonable computational effort. The perturbed evolution of the ro-
tation state of these irregularly-shaped bodies is investigated, and the
developed model is coupled with the equations of motion describing the
orbital dynamics of a particle in their vicinity. All the relevant quantities
are numerically evaluated exploiting the same input data, in order to
maintain a uniform level of accuracy in the model. The simulations high-
light some insightful features of the resulting dynamical environment,
and despite they are applied on selected celestial objects, the presented
approach applies to any irregular small Solar System’s body.

Keywords: Irregularly-Shaped Celestial Body, Gravity Field Mod-
elling, Rotational Dynamics, Coupled Dynamics, Perturbations, Trajec-
tory Design.





Sommario

La dinamica attorno a un corpo celeste dalla forma irregolare può es-
sere descritta attraverso una descrizione accurata del campo di forze
nelle sue vicinanze. In particolare, la rappresentazione del campo gra-
vitazionale e del moto rotatorio nelle tre dimensioni è importante per
propagare accuratamente un’orbita intorno a questi oggetti del Sistema
Solare. Con questa tesi si vuole analizzare l’evoluzione dinamica nello
spazio circostante ai corpi celesti irregolari, dedicando un’attenzione
particolare al modello dell’attrazione gravitazionale e alle caratteristiche
della dinamica rotazionale attorno ad assi differenti da quelli principali
d’inerzia. Sono state considerate tutte le perturbazioni di principale
rilievo, come l’influenza gravitazionale esercitata da un terzo corpo, la
pressione di radiazione solare, l’effetto YORP e la dissipazione di energia
interna. Sono state utilizzate differenti geometrie caratteristiche di alcuni
corpi celesti: dalla più semplice, quasi sferica, a quelle più complesse. Le
irregolarità nella forma dell’attrattore principale generano i disturbi più
importanti per la corrispondente dinamica orbitale; pertanto, le tecniche
per rappresentare accuratamente i campi gravitazionali irregolari sono
studiate attentamente. Il modello ottenuto deve essere valido fino alla
superficie del corpo e la precisione dei risultati deve essere ottenuta con
un ragionevole sforzo di calcolo. È stata studiata l’evoluzione dello stato
di moto rotatorio, sotto l’effetto delle perturbazioni, per questi corpi
dalla geometria irregolare, e inoltre, sono state sviluppate le equazioni
del moto orbitale in prossimità degli stessi. La dinamica complessiva
considera l’accoppiamento tra la meccanica orbitale e quella rotazionale.
Tutte le quantità d’interesse sono state calcolate numericamente, usando
gli stessi dati iniziali, per avere uniformità tra i risultati. Le simulazioni
che sono state eseguite evidenziano delle caratteristiche interessanti per
il problema considerato, e nonostante siano stati analizzati degli sce-
nari specifici, questa ricerca si può applicare a qualsiasi corpo celeste
irregolare.

Parole Chiave: Corpo Celeste dalla Geometria Irregolare, Model-
lazione del Campo Gravitazionale, Dinamica Rotazionale, Dinamica
Accoppiata, Perturbazioni, Progettazione di Traiettorie.





Estratto in Lingua Italiana

I corpi celesti dalla forma irregolare sono sempre più studiati da parte
della comunità scientifica. Questi oggetti sono estremamente numero-
si e anche se determinano solamente una piccola frazione della massa
orbitante attorno al Sole, il loro studio è fondamentale per capire la for-
mazione e l’evoluzione del Sistema Solare, nonché l’origine degli oggetti
celesti più massivi. Infatti, asteroidi e comete rappresentano i frammenti
rimanenti del processo che ha formato i pianeti interni, compresa la
Terra. Inoltre, le molecole a base di carbonio e i composti volatili, che
sono stati fondamentali per la creazione della vita, potrebbero essere
arrivati sulla Terra, durante le prime fasi evolutive del Sistema Solare,
attraverso l’impatto di questi corpi celesti minori. Per di più, alcuni di
questi piccoli corpi del sistema solare sono catalogati come oggetti poten-
zialmente pericolosi, il che significa che la loro orbita potrebbe fare incontri
ravvicinati con la Terra, e gli stessi hanno una massa sufficientemente
elevata da provocare una grave devastazione in caso di urto. Di con-
seguenza, essi devono essere analizzati attentamente per capire la loro
composizione, struttura interna, dimensione e prevedere correttamente
le loro traiettorie future. In questo modo si hanno le informazioni per
elaborare una possibile strategia per proteggere la Terra dal rischio di
un’eventuale collisione cosmica.

Per tutte queste ragioni, negli ultimi anni, alcuni piccoli oggetti celesti
sono diventati l’obiettivo di diverse missioni spaziali. Questo perché
le classiche osservazioni terrestri hanno delle potenzialità limitate e
un’ottima comprensione di questi elementi è possibile solo attraverso
accurate analisi, effettuate con una sonda spaziale nelle loro vicinanze.
Tuttavia, la progettazione di una missione in prossimità di un asteroide
o una cometa crea ancora molte difficoltà per gli esperti di dinamica del
volo, a causa delle problematiche esistenti nel predire la traiettoria di un
corpo in queste circostanze.

I modelli gravitazionali classici, che sono correntemente usati in mec-
canica orbitale, non sono sufficientemente accurati nel predire il moto di
una particella attorno ad un corpo irregolare in moto rotatorio. In questi
casi, le traiettorie sono molto differenti da quelle Kepleriane e la dina-
mica risultante è molto perturbata. Infatti, le perturbazioni principali
che agiscono in questo contesto sono generate dalla forma irregolare del-
l’oggetto, dal suo complesso moto di rotazione, dalla radiazione solare
e dall’attrazione gravitazionale del Sole. L’effetto combinato di questi
aspetti caratterizza l’evoluzione orbitale in prossimità di un asteroide



o una cometa, la quale deve essere attentamente studiata durante la
pianificazione della missione e le fasi precedenti il volo.

Il Progetto di Tesi

Questa ricerca ha un triplice obiettivo che può essere raggiunto svilup-
pando tre temi separati. Il primo riguarda un ampio studio delle diverse
tecniche per rappresentare il campo gravitazionale di un oggetto dalla
geometria irregolare. Il secondo include un’attenta descrizione della sua
dinamica rotazionale, sotto l’effetto delle perturbazioni. Il terzo interessa
una completa caratterizzazione delle traiettorie nello spazio vicino alla
superficie del corpo irregolare.

Sono stati sviluppati diversi strumenti per condurre questa ricerca, e
i risultati ottenuti sono serviti allo scopo di avere una visione globale di
questo problema affascinante e attuale. Le conclusioni di questo studio
dovrebbero facilitare la comprensione delle dinamiche complesse e non
lineari di una particella in queste circostanze. In particolare, sono stati
ampiamente studiati i differenti modelli gravitazionali per descrivere
il campo di accelerazione generato da un corpo dalla forma arbitraria.
La precisione del modello è essenziale, e i risultati devono essere validi
fino alla superficie del corpo, senza limitazioni per le regioni in cui
l’analisi può essere applicata correttamente. Questo è particolarmente
importante per supportare alcune delle esigenze dell’attuale ricerca
nel campo dell’ingegneria spaziale. Inoltre, l’esame della dinamica
rotazionale di asteroidi e comete può anche essere considerata come
una parte separata di questo lavoro. Poiché, questo aspetto non è solo
utile per propagare precisamente il moto intorno a uno di questi corpi
celesti, ma è utile anche per comprendere la naturale evoluzione del
loro stato di moto rotatorio, e l’effetto delle perturbazioni sulla loro
dinamica. Le conclusioni ottenute possono essere applicate per aiutare
la comprensione di alcune delle attuali domande che le scienze planetarie
si pongono.

Pertanto, lo scopo di questa tesi è quello di fornire utili strumenti di
analisi per ottenere dei risultati interessanti, che possono essere utilizzati
per progettare una missione spaziale attorno a questa tipologia di corpi
celesti, o per comprendere le dinamiche naturali degli stessi.
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Modelli per il Campo Gravitazionale

Il campo gravitazionale generato da un corpo dalla forma irregolare è
stato modellato con due tecniche diverse, che derivano da una solida
formulazione analitica, ma richiedono uno sviluppo numerico per essere
praticamente implementate. Entrambe derivano da un principio sem-
plice ma efficace: conoscendo il potenziale gravitazionale generato da
un corpo geometricamente semplice, è possibile ottenere il potenziale di
qualsiasi oggetto che può essere rappresentato da un insieme di questi
componenti elementari. Vale a dire, ogni corpo continuo può essere di-
scretizzato da queste unità fondamentali, che sono la massa puntiforme
per l’approccio mascons, e il tetraedro con densità costante per la tecnica
a poliedro.

Le due tecniche per modellare il potenziale e l’attrazione gravitazio-
nale sono state ampiamente analizzate e confrontate. La finalità princi-
pale di questa sezione è quella di determinare il livello di accuratezza
dei diversi metodi di modellazione. Per eseguire questa analisi sono
state impiegate alcune geometrie di riferimento, reali e ideali. Il carico
computazionale è sempre stato monitorato in modo da individuare un
compromesso tra precisione e tempo di calcolo necessario per valutare
le quantità desiderate. È stata anche sviluppata la versione ottimizzata
dell’approccio mascons, e i risultati ottenuti sono stati confrontati in
seguito con quelli relativi alla versione standard della stessa tecnica di
modellazione.

Infine, le diverse tecniche sono state testate contemporaneamente
sulle diverse forme di riferimento, al fine di trovare il modello che
combina in maniera ottimale un buon livello di precisione con una
velocità computazionale ragionevole.

Dinamica Rotazionale

La dinamica rotazionale di un corpo dalla forma irregolare è stata ana-
lizzata con molta cura. Le più importanti coppie di perturbazione sono
state incluse nell’analisi, dopo un’accurata validazione degli algoritmi
usati per calcolare il loro contributo, che include l’influenza gravitaziona-
le esercitata da un terzo corpo, la pressione di radiazione solare, l’effetto
YORP e la dissipazione di energia interna.

È stata eseguita e discussa anche un’analisi di sensitività per valu-
tare la robustezza del modello alle incertezze nella descrizione delle
proprietà fisiche e dinamiche del corpo. L’intento è quello di capire
se un modello ad alta fedeltà può essere impiegato con profitto anche
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nello studio di corpi che sono stati osservati e descritti solo in manie-
ra preliminare. Questo può essere importante nelle fasi preliminari di
progettazione di una missione spaziale, quando l’obiettivo finale non è
stato ancora individuato definitivamente e la conoscenza dei dettagli è
solo approssimativa.

Lo studio è stato arricchito con l’applicazione dell’algoritmo svilup-
pato in alcuni casi di particolare interesse scientifico. Le simulazioni
ottenute sono state impiegate per evidenziare alcune caratteristiche in-
teressanti di questo problema. Lo scopo principale è quello di trovare
andamenti tipici per la naturale evoluzione dello stato di rotazione degli
oggetti selezionati.

Dinamica Complessiva Accoppiata

In questo lavoro sono state studiate anche le dinamiche esistenti nello
spazio attorno ad un corpo irregolare; analizzando come queste sono
influenzate dalla forma e dallo stato di rotazione dell’attrattore principa-
le. I risultati possono essere utilizzati per effettuare un’analisi dei moti
possibili attorno a un asteroide o una cometa. A tal fine, è stato svilup-
pato un modello per simulare la dinamica complessiva e accoppiata di
una particella attorno a un oggetto celeste irregolare in moto rotatorio e
perturbato.

I risultati sono stati costantemente monitorati mediante l’uso di quan-
tità fisiche di riferimento, e lo studio di alcune semplici condizioni iniziali
è stato portato avanti per verificare ed esaminare l’esistenza dei punti di
equilibrio e l’evoluzione delle superfici a velocità nulla (ZVS).

Il modello che include le perturbazioni è stato anche confrontato
con un modello più semplice, il quale tiene conto solamente del moto
rotatorio senza i disturbi esterni. In questo modo è stato possibile quan-
tificare la validità dei modelli più semplici, utili per portare avanti delle
analisi meno sofisticate, che possono essere utili per avere una veloce
comprensione preliminare del problema.

Lo scopo finale di tutta la ricerca è quello di avere uno strumento di
progettazione accurata che possa essere applicato per simulare i possibili
scenari di missione intorno a questi affascinanti corpi del Sistema Solare.

Conclusioni

La rappresentazione di questi scenari deve essere effettuata con un
equilibrio tra fedeltà dei risultati e tempo di calcolo necessario. Questo

xii



problema non ha un’unica soluzione, e la decisione finale dipende dalla
particolare applicazione. Per esempio, le fasi avanzate del progetto
di missione sono notevolmente esigenti in termini di precisione, ma
le operazioni in tempo reale, che devono essere gestite dal computer
di bordo di una sonda spaziale, richiedono solamente degli algoritmi
veloci e affidabili. Pertanto, in molti casi pratici, il modello che trova
questo compromesso ottimale, per come è stato definito e impiegato in
questo lavoro di ricerca, è estremamente utile. Gli algoritmi che sono
stati sviluppati fanno largo uso di tecniche di calcolo parallelo. Tuttavia,
il codice può essere ottimizzato ulteriormente, e infatti un grande aiuto
per la velocità computazionale arriva sfruttando un codice scritto in
maniera più semplice e leggera rispetto a Matlab; C e Fortran potrebbero
essere delle valide soluzioni.

Le tecniche di modellazione che sono state utilizzate per descrivere
il campo gravitazionale di un oggetto celeste irregolare hanno ovvia-
mente dei vantaggi e degli svantaggi. Permettono di avere una buona
rappresentazione del campo gravitazionale in tutto le regioni d’interesse,
compresa la superficie del corpo, non avendo problemi di convergenza.
Il livello di precisione ottenibile può essere facilmente regolato variando
il numero di elementi nella rappresentazione della forma, e di conse-
guenza, sono estremamente flessibili. Tuttavia, richiedono uno sforzo di
calcolo maggiore rispetto ad altri metodi.

Il moto rotatorio è estremamente influenzato dalla presenza delle
perturbazioni. L’effetto delle stesse è differente per ogni singolo caso, ma,
in generale, le perturbazioni dovute alla radiazione solare e l’influenza
gravitazionale del Sole sono i disturbi più rilevanti. L’effetto secolare
delle perturbazioni è abbastanza limitato, e le variazioni non periodiche
evolvono su una lunghissima scala temporale. Invece, le oscillazioni
periodiche del moto sono collegate con le dinamiche orbitali in prossi-
mità di questi corpi celesti, e il loro studio contribuisce ad aumentare
l’accuratezza del modello dinamico complessivo.

Le caratteristiche di queste dinamiche accoppiate sono subordinate
allo stato di moto rotatorio dell’attrattore principale. Un integrale del
moto esiste solo se la rotazione è uniforme attorno a un asse principale
d’inerzia; in questo caso le equazioni del moto sono tempo-invarianti,
nel sistema di riferimento rotante. La stabilità del moto deve essere
verificata per ciascun insieme di condizioni iniziali, anche se, in generale,
le orbite retrograde e le orbite risonanti sono particolarmente stabili. Le
traiettorie ottenute sono fortemente influenzate dallo stato di rotazio-
ne del primario, e di conseguenza, l’incertezza nella determinazione
dell’asse di rotazione deve essere la più piccola possibile.
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Questo settore di ricerca è molto attivo, e la comunità scientifica è
desiderosa di accrescere la comprensione di questi argomenti. Grazie ai
recenti progressi nel campo dell’ingegneria spaziale, le missioni inter-
planetarie attuali stanno svolgendo compiti incredibili e coinvolgenti.
Tuttavia, le missioni di domani saranno ancora più impegnative e com-
plesse. Questo non deve essere visto come un limite, dato che l’essere
umano non può rimanere confinato nella sua zona di comfort, ma deve
continuamente sfidare se stesso, esplorando e scoprendo nuovi mondi,
i quali includono anche asteroidi, comete, pianeti del Sistema Solare e
molto altro.
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Chapter 1

Introduction

Celestial bodies with irregular shapes are exposed to increasing interest
in the scientific community. They are extremely numerous in the Solar
System, and even if they comprise a tiny fraction of the mass orbiting
around the Sun, their study is fundamental to understand the formation
and the evolution of the Solar System, as well as the origin of the more
massive celestial objects. In fact, asteroids and comets represent fragments
and tiny pieces left over from the process that formed the inner planets,
including Earth. Moreover, carbon-based molecules and volatile materi-
als, which were fundamental to establish life, may have been carried to
Earth during the early life of the Solar System, through the impacts of
these minor celestial bodies.

In addition, some of these small Solar System’s bodies are catalogued
as potentially hazardous objects (PHO), meaning that their orbit could
make close approaches to the Earth and they are massive enough to
provoke a serious devastation in the event of impact. Consequently, they
have to be carefully analysed to understand their composition, structure,
size and future trajectories, in order to be able to devise an intelligent
strategy to protect the Earth from the risk of an eventual cosmic collision.

For all these reasons, in recent years, small irregular celestial ob-
jects have become the target of current and forthcoming space missions.
Indeed, the classic ground-based observations have restricted capaci-
ties and an excellent comprehension of these bodies is only possible by
means of close observations conducted with a space probe in their vicin-
ity. However, the design of a mission in close proximity of an asteroid
or a comet is still challenging for the flight dynamicists, because of the
existing difficulties in predicting the trajectory of a spacecraft in these
dynamical environments.
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Classic gravity models used in orbital mechanics are not accurate
enough to predict the motion of a particle around a rotating irregular
body. There, existing trajectories are remarkably non-Keplerian and the
dynamics of a spacecraft is affected by different perturbing components.
In fact, the primary perturbations acting in these circumstances are due
to the uneven shape of the object, its complex rotational motion, the solar
radiation and the gravitational influence of the Sun. The combined effect
of these aspects characterizes the orbital evolution about an asteroid or
a comet, and they must be carefully studied during pre-flight navigation
and mission planning.

1.1 Problem Definition

In this research work, the threefold focus is to extensively study the
different enhanced techniques to model the gravitational field of an
irregularly-shaped object; describe its perturbed rotational dynamics,
and characterize the dynamical environment close to its surface. Several
tools are developed and different analyses are carried out with the goal
to have a global and comprehensive perspective of this intriguing and
ongoing problem.

The outcomes of this study are supposed to allow a further step
towards the understanding of the dynamics of a particle in these compli-
cated and nonlinear environments. In particular, different gravity mod-
els to describe the irregular acceleration field generated by an arbitrarily-
shaped body are widely studied. The accuracy of the result is essential
and the model must be valid up to the surface of the body, without limi-
tations on the regions where the analysis can be correctly applied. This is
particularly appealing to support part of the present space engineering
needs.

Moreover, the investigation of the rotational motion of asteroids and
comets can be also considered as a separate part of the research. In fact,
this aspect is not only important to accurately propagate the motion
around a rotating irregular object, but it is also useful to understand the
natural evolution of the rotation state of these minor celestial bodies,
and the effect of the perturbations on their dynamics. The obtained
conclusions might be applied to help the solutions of some current
planetary science questions.

Therefore, the purpose of this thesis it to provide helpful analysis
tools and insightful results that can be used to design a space mission
around an irregularly-shaped body, or to comprehend and propagate the
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natural dynamics of these celestial objects. In particular, the objectives
of this work are:

• Study and compare the different techniques to model the gravi-
tational potential and attraction generated by an irregular body.
The main goal of this part is to determine the level of accuracy of
different enhanced modelling approaches, considering that also
the region in the proximity of the surface must be included in the
computational domain. The present analysis uses some reference
shapes, real and ideal, to perform this task. The computational
burden is always monitored in order to be able to find a trade-
off between precision and required time to evaluate the desired
quantities.

• Develop the optimized version of one of the most common tech-
niques to compute the gravitational attraction of a body with an
arbitrary shape. The obtained results are then compared with
those related to the standard version of the same modelling ap-
proach. The objective of this work is to increase the efficiency of
this method, which is very attractive in term of necessary compu-
tational speed.

• Investigate the rotational dynamics of an irregularly-shaped body.
Different perturbing torques are included in the analysis after an ac-
curate validation of the algorithms to evaluate their contributions.
The aim is to find typical trends in the natural evolution of the
rotation state of selected objects. The robustness of the model is as-
sessed through a sensitivity analysis of the inevitable uncertainties
in the available data.

• Analyse the dynamical environment around an irregular body, as
it is characterized by the shape and the rotation state of the main
attractor. The outcomes can be used to perform a preliminary
estimation of the possible dynamics around an asteroid or a comet.

• Implement the model to simulate the coupled dynamics of a parti-
cle around a rotating and perturbed irregular celestial object. The
ultimate scope is to have an accurate design tool that can be applied
to simulate possible mission scenarios around these fascinating
Solar System’s bodies.

3
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1.2 Historical Overview

Modern work on gravitational theories began with Galileo Galilei at
the end of the 16th century. In 1609, the German mathematician and as-
tronomer Johannes Kepler postulated that the motion of celestial bodies
evolves on conic orbits, as described in his laws of planetary motion.
However, the observations of Kepler were mathematically confirmed
only in 1687, when the English scientist Sir Isaac Newton published the
Principia Mathematica [35]. In this work, it is contained the first mathe-
matical model describing the interaction between two massive objects in
space.

After the formulation of Newton’s theory of gravitation, the scientific
community was interested in finding the complete description of motion
under the influence of more than two bodies. Nevertheless, if more
complex problems are considered, the general analytical description of
the motion is not available anymore.

Particular equilibrium solutions in the Three-Body problem were
found at the end of the 18th century by the Italian mathematician Giu-
seppe Lodovico Lagrangia and the Swiss physicist Leonhard Euler. The
former proved the existence of constrained analytical equilibrium so-
lutions in the general three-body Problem, while the latter introduced
for the first time the idea of a synodic, or rotating, coordinate frame to
formulate the Restricted Three Body problem.

In the following years, several mathematicians, physicists and as-
tronomers continued to develop analytical theories to study problems of
increasing complexity. Different techniques were developed to analyse
some peculiarities of the motion in an arbitrarily complicated gravita-
tional field, but a global analytical solution was never found.

In recent years, the advent of numerical computing techniques deter-
mined a great improvement in the investigation of almost any dynamical
system. As a consequence, also the study of the behaviour of an object
in the vicinity of an irregularly-shaped body is now possible. The de-
scription of this complex dynamical environment has many similarities
with the characterization of a n-body problem, because a generic irreg-
ular body can be always visualized as an ensemble of individual point
masses. Hence, the tools and the ideas developed in the study of the
n-body problems, such as the existence of equilibrium solutions, Zero
Velocity Surfaces and Poincarè maps, are useful also to analyse problems
involving an asteroid or a comet.

The complete investigation of the dynamics in the vicinity of an
arbitrarily-shaped celestial body requires models for the gravitational
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potential function associated with such a shape. Different techniques
emerged in the 1900’s with the remarkable development of the observa-
tion technologies, able to provide more accurate shape determinations
of real Solar System’s objects.

These modelling approaches are now available and they are sup-
ported by the increasing availability of computational resources. As a
matter of fact, real space missions to irregular bodies are becoming more
common, and the necessity to improve the knowledge of these complex
dynamical environments is still present.

1.3 Present Work

This thesis deals with the analysis of the orbital motion of a particle
around an irregularly-shaped body, coupled with the perturbed rota-
tional dynamics of the primary attractor. The resulting dynamical en-
vironment is extremely complex and the complete investigation can be
carried out only exploiting modern numerical methods.

The gravitational field of the irregular body is modelled with two
different techniques, which emerge from a solid analytical formulation,
but they require a numerical development to be practically implemented.
The coupled dynamical model of the orbital dynamics around the ro-
tating irregular body is derived in a primary-fixed reference frame to
facilitate the numerical investigation. The complete dynamics is de-
scribed by a system of first order scalar differential equations, which are
then numerically integrated.

The model is implemented maintaining a high fidelity of the results,
as requested to accurately propagate the dynamical state of an irregular
celestial body or to design a real space mission. Therefore, the general
validity of the study is reduced and all the conclusions refer to the
particular selected environment. However, in order to mitigate this issue,
the presented simulations are tuned to highlight some insightful global
features of the dynamics of a particle in the vicinity of an arbitrarily-
shaped body.

After this introductory chapter, the outline of the thesis continues
presenting the necessary general background to understand the concepts
that are described in this work. So, in chapter 2, the gravity models
are presented together with their theoretical formulation. Then, the
coupled dynamical model is defined and some useful features of the
problem are presented. In addition, the reference celestial bodies that are
employed in this research work are introduced in this chapter. Finally,
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the perturbative effects that influence the rotational dynamics of the
main attractor are illustrated.

Chapter 3 is focused on the enhanced gravity field models, computed
for all the reference celestial objects. Moreover, the comparison between
the different modelling techniques is entirely presented in this section,
together with the development of the optimized version of one of the
available methods. In the last part of the chapter, all the distinct tech-
niques are accurately tested on the reference shapes, in order to find
the model that combines a decent level of accuracy with a reasonable
computational speed.

Chapter 4 deals with the rotational dynamics of irregularly-shaped
bodies. The implementation of the model is described and the validation
of the algorithm is presented. Then, a sensitivity analysis is shown and
discussed evaluating the robustness of the model to the uncertainties
in the description of the physical and dynamical properties of the body.
The study is concluded with the application of the developed algorithm
to particular environments. The obtained simulations are illustrated and
exploited to highlight some interesting characteristics of this problem.

Chapter 5 analyses the dynamical environment in the vicinity of the
selected reference celestial objects. First of all, the implementation of the
whole coupled dynamical model is described. Then, an extended discus-
sion about some particular solutions is carried out, with the purpose to
delineate the features of the dynamical environments in the surround-
ings of these celestial bodies. Finally, the complete model is applied to
the selected environments, and the practical effect of the perturbations
on the dynamics of the particle is quantified.

The thesis comes to an end with a conclusions chapter, where all the
obtained results are summarized along with recommendations for future
research works.

6



Chapter 2

Background

In this chapter, the background knowledge needed to approach the
present research work is recalled. The dynamical environment existing
in the vicinity of an irregularly-shaped celestial body is considered, and
in particular, the different techniques used to represent the generated
gravitational field are described.

The equations of motion and the dynamics connected to this particu-
lar context are here presented and discussed. Moreover, some important
particular solutions are then shown to characterize the generic results
that can be obtained dealing with this topic.

Finally, some perturbative effects that could influence the overall
dynamical environment are defined.

2.1 Gravitational Field

The gravitational field represents the influence that a massive body ex-
tends into the surrounding space, producing a force on another massive
particle. The work done by this force upon the particle, which is in
motion between two points, is the same for any physically possible
path between these two points, thus the gravitational field is said to be
conservative.

From vector analysis, a necessary and sufficient condition that this
work be independent from the physical path taken by the particle is that
the force per unit mass, f , be the gradient of a scalar function of position:

f = ∇U(p), (2.1)

where U is called the gravitational potential [17]. ∇ represents the three-
dimensional gradient operator whose Cartesian form is î ∂

∂x
+ ĵ ∂

∂y
+ k̂ ∂

∂z
.
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The Newton’s law is the generally used gravitational model to de-
scribe the force field due to arbitrarily shaped bodies. It states that any
pair of particles attracts each other with a force that is directly propor-
tional to the product of their masses and inversely proportional to the
square of the distance between them. So, according to this law, the
gravitational potential due to a point mass m is:

U = G
m

r
, (2.2)

where G is the gravitational constant and r is the distance of the test
particle from the mass m.

The gravitational potential in free space satisfies Laplace’s equation:

∇2U = 0, (2.3)

where ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is the Laplace’s operator with its Cartesian

form. Laplace’s equation can be easily proved [50]: Gauss’s theorem of
divergence states that the integral of the divergence of a vector field over
a region of space is equivalent to the integral of the outward normal
component of the field over the surface enclosing that region. In any free
space volume there is no attracting matter, hence the Gauss’s theorem is
identically null and the divergence of the field is equal to zero,∇ · f = 0.
Using equation (2.1) and remembering the definition of the Laplace’s
operator,∇2 = ∇ · ∇, equation (2.3) is verified.

It is important to stress the fact that Newton’s law is valid for any
massive body, even though it is easier to be applied if the bodies can
be reduced to point masses. In common orbital mechanics applications,
this assumption is generally true, since spacecraft size and mass are
usually noticeably smaller than those of the other bodies in the model,
and therefore the point mass assumption can be easily justified. More-
over, to a first approximation, the mass distribution of larger celestial
bodies is usually spherically symmetric, and thus, they exert the same
gravitational attraction as if all their mass were concentrated at a point
at their centre [35]. For these reasons, they can be defined as centrobaric
bodies.

According to what has been said, the dynamics of an ordinary space-
craft and planet system is reasonably described exploiting the classical
Newton’s model, which also allows an analytical expression for the
gravity potential, equation (2.2). Nevertheless, in the Solar System, there
are plenty of bodies that cannot be defined as centrobaric and in this
work they are the focus of the analysis. In fact, when the dynamical
system involves one of these bodies, the point mass assumption is no

8
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longer valid and the Newton’s law must be extended in order to include
non-spherical shapes as well. In principle this operation is straightfor-
ward: any arbitrary body can be considered as a collection of differential
mass elements, and for that reason, the net force on an external point
mass is obtained integrating the inverse square law between any pair of
particles over the mass distribution representing the body.

In the same way, the gravitational potential could theoretically be
evaluated with an integral over the body mass:

U = G

∫∫∫
body

1

r
dm. (2.4)

However, this operation is not practical for applications: the real mass
distribution within the body is often not well known, poorly modelled,
or too complex to evaluate correctly equation (2.4). Therefore, other
gravitational modelling techniques are needed.

2.2 Gravity Models for Irregularly-Shaped
Bodies

Gravity models for irregularly-shaped bodies were developed in the
past to increase the model accuracy around the main bodies of the Solar
System, because none of the actual celestial bodies is exactly spherical,
and some of them can be defined at most as quasi-spherical. So, the
classical manner of representing arbitrary gravitational fields is by ex-
panding the gravitational potential into a harmonic series, represented in
a system of spherical coordinates. This technique perturbs the potential
of a sphere with an infinite sequence of terms converging to the correct
gravity field.

As will be clarified in the following, harmonic expansions have sev-
eral drawbacks when dealing with irregularly-shaped bodies, especially
when their shape departs substantially from the sphere. In these situ-
ations two other techniques are available and they both arise from a
simple but effective principle: knowing the gravity potential generated
by a simply-shaped elemental body it is possible to know the potential of
any body that can be represented by an ensemble of these smaller com-
ponents. Namely, these elementary units are the point mass for the mass
concentration, mascons, approach and the constant-density polyhedron
for the polyhedral approach.

9
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In all these cases, exact analytical gravity information for a single
whole body are not available and all these modelling techniques rely
on some assumptions. Furthermore, they usually generate an approx-
imation of the actual gravity field, and their accuracy depends on the
particular application, as will be discussed afterwards. In this work,
the gravitational models are developed for irregularly-shaped Solar
System’s smaller bodies, such as comets and asteroids.

2.2.1 Harmonic Series Expansion Approach

The harmonic expansion approach allows the evaluation of an arbitrary
gravitational field exploiting a specific set of spherical harmonics that
forms an orthogonal system, first introduced by Pierre Simon de Laplace
[23]. This is possible because the gravitational potential is a harmonic
function, being a solution of equation (2.3), and it can be expressed as:

U (r, θ, λ) = Gm
r

[
1 +

∞∑
n=2

n∑
m=0

(
Re

r

)n
Pnm sin θ (Cnm cosmλ+ Snm sinmλ)

]
, (2.5)

where r, θ and λ are, respectively, the distance, latitude and longitude
in a coordinate system whose origin is at the centre of mass of the body.
Re is the largest equatorial radius of the body, Pnm are the associate
Legendre’s polynomials, and Cnm and Snm are the coefficients of the
potential determined by the mass distribution within the body. These
coefficients can be obtained as integrals over the volume of the body, or
alternatively and practically, they can be estimated from radio tracking
data of space probes during a fly-by of the body.

The harmonic series expansion is guaranteed to converge to the cor-
rect gravity field outside of a circumscribing sphere, and as a series,
it can be truncated at any finite order according to the needed accu-
racy. Moreover, the computational resources to evaluate the series to
an acceptable order are not large and the computational time is short
enough.

Nevertheless, particularly when dealing with irregularly-shaped
bodies, the spherical harmonics approach has several drawbacks. First,
the field is always an approximation of the exact one due to the finite
truncation of the series expansion. In addition, the series is no longer
guaranteed to converge inside the circumscribing sphere, and actually
often diverges. Hence, this method is not applicable for analysis of parti-
cle dynamics close to the surface, unless burdensome procedures that
recompute the series at each radius of the body are applied. Obviously,

10



2.2. Gravity Models for Irregularly-Shaped Bodies
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Figure 2.1: Mascons Approach.

this disadvantage is not relevant in planetary applications, but it is both-
ersome when dealing with irregular bodies whose shape is completely
different from a sphere. Furthermore, this technique does not return any
information about whether a field point is outside or inside the body.

Anyway, this gravitational modelling approach is not employed in
this research work that deals with irregularly-shaped bodies without
limitations in the area close to the surface.

2.2.2 Mascons Approach

The mascons, mass concentrations, approach is surprisingly simple
from a conceptual point of view because it uses several point masses to
reproduce the body’s mass distribution, as in figure 2.1. Originally, it has
been developed to compute the gravity field of bodies with a remarkably
irregular shape. The results that can be obtained are influenced by
the number of the employed masses, and by the way in which they
are distributed inside the body. The mass of the total body is always
preserved and usually the volume is filled with point masses on an
evenly spaced grid, which will be referred to as gridded mascons approach
in this thesis.

This method is very simple to develop and the final result can be
easily obtained with a sum of all the contributions due to each point mass.
This technique does not diverge and converge to the true gravitational
field if an arbitrarily large number of masses is selected.

11
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Remembering the equation (2.2), the gravitational potential of the
whole body, making use of Nm mascons, is:

U = G

Nm∑
i=1

mi

ri
, (2.6)

where mi and ri are, respectively, the mass value and the distance from
each point mass. The computational resources that are needed to obtain
acceptable results are moderate and the computing time is still tolerable.

Nevertheless, this method has various flaws that overshadow its
simplicity. First, for a given computational effort, the mascons approach
is less accurate than a harmonic series expansion; in particular, this
method produce significant errors in the force computation, as will be
discussed. Moreover, also the mascons approach is not able to determine
if a field point is inside or outside the body.

If two point masses are employed, Nm = 2, the dynamics of a parti-
cle around the irregular object is governed by the rules of the circular
restricted three-body problem, whose characteristics are well known.

Obviously, for a fixed number of masses there is not a unique way
to distribute them inside the volume circumscribed by the body. In
the literature, [16, 46], the evenly spaced grid distribution is the most
common, but in this work, an optimization procedure is developed to
find the best allocation of the mascons within the body. This aspect
will be addressed afterwards, and this approach will be referred to as
optimized mascons approach.

2.2.3 Polyhedron Shape Approach

The polyhedron shape approach is based on the concept that any body
of arbitrary shape can be approximated with a polyhedron having a
variable number of faces. Then, exploiting the analytic form of the
gravitational potential due to a homogeneous polyhedron having trian-
gular faces [54], it is possible to evaluate the field generated by a very
irregularly-shaped body. In fact, the geometry of the polyhedron can be
extremely complex and the model can include concavities in the surface
of the body (e.g. craters), overhangs, interior voids, caves, and even
holes that extend all the way through the body (e.g. torus). Furthermore,
fine details can be included without affecting the entire model, since it is
not necessary to discretize the whole body at a constant resolution level.

The closed-form analytical expression of the exterior gravitational
influence of a constant-density polyhedron guarantees that the gravity
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field is exact for the given shape and density. The errors present in this
model are entirely reduced to the errors in the body shape determination
and in the chosen level of accuracy and discretization. However, the
polyhedron is still an approximation of the real geometry of the body,
but since most shape determinations have a limited resolution, this tech-
nique produces a field whose accuracy is consistent with the accuracy of
the shape determination [55].

The solution obtained with the polyhedron approach is valid and
exact at a distance from infinity up to the surface of the body. So, the
region of divergence does not exist and the accuracy of the result is the
same both for the potential and for the force. In addition, the analytical
solution allows the calculation of the Laplacian of the gravitational
potential without additional computational effort. This quantity can be
used to determine if a field point is outside or inside the body: if the
Laplacian vanishes, equation (2.3), the point is outside the body, in free
space; otherwise the point is inside the body, Poisson’s equation.

According to what has been said, this model is particularly valid and
attractive for evaluating the gravitational forces that affect the surface
dynamics or for analysing orbits and trajectories that exist close to the
body. This aspect is exceptionally valuable for mission involving land-
ings or operations in the close vicinity of an irregularly-shaped body
[7].

Notwithstanding all these positive features, this method is markedly
expensive in terms of the computational cost, as the entire surface must
be summed over to achieve one single force value, and certainly this cost
increases with the resolution of the shape discretization. With the current
computing power available the time needed to make such calculations is
still tolerable. This is especially true when parallel computing techniques
are employed, since they significantly improve the computational speed.

In this work, the polyhedron approach assumes a constant-density
model, and this is generally valid for many existing irregular bodies.
In spite of this, the polyhedral approach also allows the simulation of
density variations: they can be reproduced adding or subtracting small
polyhedra internal to whole polyhedron model. The total mass of the
body must be held constant, and this is made possible choosing the
proper average density, σ, to be used in the homogeneous polyhedron
analytical solution. In practice, being respectively σi and Vi the density
and the volume of the i-th internal small additional polyhedron, σ can
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Chapter 2. Background

be computed as:

σ =

M −
N∑
i=1

σiVi

V −
N∑
i=1

Vi

, (2.7)

where M is the total mass of the body and V the volume of the whole
body shape.

Polyhedron Gravitation

In this section, the closed-form expression for the gravitational influ-
ence due to a homogeneous polyhedron is derived. The potential and
acceleration components experienced by a unit mass can be expressed
in terms of polyhedron’s edges and vertex angles exploiting the Gauss
Divergence theorem and the Green’s theorem.

First of all, the real and complex shape of the body must be dis-
cretized using simple geometrical entities. In the polyhedral approach
the surface of the body is represented by means of planar faces meeting
along straight edges or at isolated points called vertices; this is the geo-
metrical shape that will be herein referred to as polyhedron. It is important
to note that the coordinates of the vertices are not sufficient to univocally
define the shape, but the connective topology must be provided to have
a fully and correctly described geometry.

The gravitational effect due to the whole body is then computed
summing the contribution from each discrete tetrahedral element, as
illustrated in figure 2.2.

In order to better explain this technique, it is worthwhile to recall
the problem formulation that is used in the classical two-body system.
Consider a unit mass particle P located at the field point (x, y, z), in
terms of an inertial reference frame with origin in O. Assume that P
is in motion under the attraction of another particle, Pm, with mass m
and position (ξ, η, ζ), with respect to the same inertial reference frame
in O. The position of the particle P is mathematically defined in terms
of a Cartesian coordinate system with unit vectors î, ĵ and k̂ such that
the position vector, p, is expressed as p = x̂i + ŷj + zk̂. The gravita-
tional attraction, f , experienced by P due to Pm can be expressed, with
equation (2.1), as the gradient of a potential function U .

The discussion can be easily extended to bodies that are not point
masses using equation (2.4). In this case, the dynamics of the unit point
mass P is influenced by the gravitational force due to each differential
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Field Point
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Single Tetrahedral Element

3D Body 

Figure 2.2: Polyhedron Shape Approach.

mass element Pm of the whole body B, as can be seen in figure 2.3. The
vector r, whose Cartesian form is r = ∆x̂i + ∆ŷj + ∆zk̂ with ∆x = ξ− x,
∆y = η − y and ∆z = ζ − z, locates the differential element Pm, with
mass dm, with respect to the field point where P is. Thus, r = ‖r‖ is the
distance from the field point to the differential mass element.

At this point, assuming a constant density, σ, throughout the body,
the potential can be expressed with an integral over the volume, V , of B.
In fact, in this case dm = σdV , and equation (2.4) can be rewritten as:

U = Gσ

∫∫∫
V

1

r
dV. (2.8)

Now, the Gauss’s theorem of divergence can be used, to manipulate
equation (2.8), knowing a vector function, w = w (ξ, η, ζ), such that:

∇ ·w =
1

r
. (2.9)

15



Chapter 2. Background

Figure 2.3: Point mass-Extended body problem formulation.

This theorem, already exploited and explained in section 2.1 to verify
equation (2.3), allows to write:∫∫∫

V

∇ ·w dV =

∫∫
S

n̂ ·w dS, (2.10)

where S is the surface of the volume V and n̂ is the surface normal. This
general relation is valid if the volume V is bounded and connected, its
surface S is piecewise smooth and orientable, and the vector w and its
derivative exist and are continuous throughout the volume and on its
surface [18].

The polyhedron models that are used in this work satisfy these re-
quirements, and in addition, the desired vector function that satisfies
equation (2.9) is:

w =
1

2
r̂ =

r

2r
. (2.11)
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Figure 2.4: Reference frame for each face f .

Hence, it is possible to write:

U = Gσ

∫∫∫
V

1

r
dV =

1

2
Gσ

∫∫∫
V

∇ · r̂ dV =
1

2
Gσ

∫∫
S

n̂ · r̂ dS. (2.12)

It is important to note that, if the field point P lies on or within the
body, r̂ is undefined where the field point coincides with the differential
elements. Thus, this expression is considered to be valid only when the
field point is exterior to the body.

Polyhedron Potential From now on, the 3D body B is a polyhedron
and each polygonal face, f , has its own Cartesian reference frame with
the origin at the field point, P . This coordinate system has unit vector
k̂ aligned with the outward-pointing face normal vector, n̂f . The other
directions, î and ĵ, are parallel to the face as in figure 2.4.
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The surface integral in equation (2.12) can be separated into a sum of
integrals, one per each face:

U =
1

2
Gσ

∑
f∈faces

∫∫
f

n̂f · r̂ dS =
1

2
Gσ

∑
f∈faces

∫∫
f

n̂f ·
(r

r

)
dS

=
1

2
Gσ

∑
f∈faces

n̂f · rf
∫∫

f

1

r
dS, (2.13)

where rf is the vector that extends from P to any point in the face plane.
Moreover, since the integration is performed on a planar surface the
quantity ∆z = n̂f · r is constant, and it is possible to replace r→ rf , with
the sole purpose to calculate ∆z by a dot product with n̂f .

The surface integral in equation (2.13) is the potential over a 2D
planar region, and even if that equation is dealing with the polygon f , it
is possible to derive a result for an arbitrary planar region, S. Indeed,
with some algebraic manipulations:

∫∫
S

1

r
dS =

∫∫
S

(
1

r
+

∆z2

r3

)
dS −

∫∫
S

∆z2

r3
dS

=

∫∫
S

(
r2 −∆x2

r3
+
r2 −∆y2

r3

)
dS −∆z

∫∫
S

∆z

r3
dS, (2.14)

where the equality r2 = ∆x2 + ∆y2 + ∆z2 has been used.
Invoking the Green’s theorem and defining a new quantity, ωf , which

will be discussed later, the potential of a planar region can be evaluated
as a line integral around the boundary C of the region S and another
term representing the entire planar surface:∫∫

S

1

r
dS =

∮
C

1

r
(∆xd∆y −∆yd∆x)− n̂f · rf ωf . (2.15)

The boundary C must be crossed counterclockwise according to n̂f and
the right-hand rule.

The quantity

ωf
def
=

∫∫
S

∆z

r3
dS, (2.16)

is the solid angle, with sign, subtended by S when it is viewed from the
field point, P . This fact can be proved considering a differential planar
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surface, dS, distant r from the field point P . With reference to figure 2.5,
dω is also the projected area of dS onto a unit sphere centred on P , and
it has normal direction represented by r̂. Hence, the area of dω, because
of the projection, is:

dω = r̂ · n̂f
dS

r2
=

r · n̂f
r3

dS =
∆z

r3
dS. (2.17)

If equation (2.17) is integrated over the entire planar region, S, equa-
tion (2.16) is verified. For evident geometrical reasons the value of ωf
cannot be greater than the area of a hemisphere, which is equal to 2π sr.
Furthermore, the sign of ωf is in accordance with ∆z: when r̂ points in
the same general direction as n̂f , ωf is positive, otherwise it is negative.
A more explicit form of this quantity will be presented subsequently.

At this point, equation (2.15) can be specialized for a planar face f of
a polyhedron, that is, a polygon. In fact, the line integral integral can be
written as a sum over polygon edges, e, and that equation becomes:∫∫

f

1

r
dS =

∑
e∈edges

∫
e

1

r
(∆xd∆y −∆yd∆x)− n̂f · rf ωf . (2.18)

Then, it is possible to define the normal vector to an edge of the
polygon. With reference to figure 2.6, n̂Be2 is the vector normal to the edge
e2, lies in the face plane, is orthogonal to both the edge direction, ŝ, and
the face normal vector, n̂B, and points outward. In addition, knowing
the coordinates of a generic fixed point, Ee, on the edge extension, the
ones of an arbitrary point along e can be expressed as:

(∆x, ∆y) = (∆xEe + s cosαe, ∆yEe + s sinαe). (2.19)

Thus, it is possible to evaluate the integral in equation (2.18) for a
typical edge e as:∫

e

1

r
(∆xd∆y −∆yd∆x)

=

∫
e

1

r
[(∆xEe + s cosαe) sinαe − (∆yEe + s sinαe) cosαe] ds

= (∆xEe sinαe −∆yEe cosαe)

∫
e

1

r
ds = n̂fe · rfe

∫
e

1

r
ds, (2.20)

where rfe = ∆xEe î + ∆yEe ĵ + ∆zEek̂ is the vector from the field point, P ,
to the fixed point Ee.
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Figure 2.5: Projection of a differential surface dS onto a unit sphere centred in
P . The spherical area dω has the same sign of ∆z.

It should also be noted that n̂fe · î = sinαe, n̂fe · ĵ = − cosαe and
n̂fe · k̂ = 0. Furthermore, the integral in the previous equation is the
potential of a 1D straight line. A new quantity, Lfe , can be defined to
indicate the potential of a generic edge e of face f :

Lfe
def
=

∫
e

1

r
ds. (2.21)

Preceding studies, [26, 54], proved that the aforementioned quantity
is expressed only in terms of the edge length, e, and of the distances, l1
and l2, from the field point P to the edge’s ends, in figure 2.6 EP1 and
EP2:

Lfe = ln
l1 + l2 + e

l1 + l2 − e
. (2.22)
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Figure 2.6: Edge e1 between faces A and B and edge e2 on face B.

Substituting these results valid for a polygon into the polyhedron
potential expression, equation (2.13), it is possible to write:

U =
1

2
Gσ

∑
f∈faces

n̂f · rf
∫∫

f

1

r
dS

=
1

2
Gσ

∑
f∈faces

( ∑
e∈edges

rf · n̂f n̂fe · rfe Lfe

)
− 1

2
Gσ

∑
f∈faces

rf · n̂f n̂f · rf ωf .

(2.23)

The above equation can be simplified making some considerations about
the involved quantities. First, for all the edges ei of a face f the substitu-
tion, rf → rfe , is valid because ∆z = rf · n̂f = rfe · n̂f . Then, considering
an edge in common with two faces, like e1 in figure 2.6, it is possible
to choose the same rfe for both faces, i.e. rAe1 = rBe1 = re1 . Moreover, the
integrals LAe1 and LBe1 are equals to Le1 for both A and B, because they
depend on quantities that are the same for given field point and edge.
The nested sums becomes a single summation over all the polyhedron
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edges, again with reference to figure 2.6:

∑
f∈faces

( ∑
e∈edges

rfe · n̂f n̂fe · rfe Lfe

)
= · · ·+ rAe1 · n̂An̂Ae1 · r

A
e1
LAe1 + · · ·+ rBe1 · n̂Bn̂Be1 · r

B
e1
LBe1 + . . .

= · · ·+ re1 ·
(
n̂An̂Ae1 + n̂Bn̂Be1

)
· re1 Le1 + . . .

= · · ·+ re1 · Ee1 · re1 Le1 + . . .

=
∑

e∈edges

re · Ee · re Le, (2.24)

where re is a vector from the field point to any point on the generic edge
e or its infinite extension, and

Ee
def
= n̂f1n̂

f1
e + n̂f2n̂

f2
e (2.25)

is a dyad associated with e and the two adjoining faces f1 and f2. This
dyad is expressed in matrix notation as the sum of two outer products,
i.e. n̂f1(n̂

f1
e )T + n̂f2(n̂

f2
e )T [17].

It is possible to define a dyad even for each face f in the polyhedron
shape:

Ff
def
= n̂f n̂f , (2.26)

which is the outer product of n̂f with itself.
Ff and Ee are 3 × 3 dyads, and it can be shown that they are both

symmetric [55]. Dyads are intrinsically convenient for the expression of
the final result; they represent the transformation from edge and face
frames to a common body frame, which allows the summation over all
the elemental gravitational potential contributions.

The previous results and definitions can be included in equation
(2.23), and the potential of a constant-density polyhedron can be ex-
pressed as:

U =
1

2
Gσ

∑
e∈edges

re · Ee · re Le −
1

2
Gσ

∑
f∈faces

rf · Ff · rf ωf . (2.27)

Polyhedron Attraction The attraction exerted by a 3D polyhedron in
the surrounding space can be derived differentiating the expression of
the potential in equation (2.27):

∇U =
1

2
Gσ∇

∑
e∈edges

re · Ee · re Le −
1

2
Gσ∇

∑
f∈faces

rf · Ff · rf ωf . (2.28)
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However, this expression can be simplified analysing the attraction
of a 2D polygon, which can be obtained from the definition of a general
planar region’s potential. In fact, differentiating equation (2.15) the result
is:

∇
∫∫
S

1

r
dS = −̂i

∮
C

1

r
d∆y + ĵ

∮
C

1

r
d∆x+ k̂ ωf , (2.29)

where the Green’s theorem has been used again. Now, if the planar
region is restricted to be a polygon, f , the boundary integrals can be
substituted with a sum of integrals along the edges:

∇
∫∫

f

1

r
dS =

∑
e∈edges

[
−̂i

∫
e

1

r
d∆y + ĵ

∫
e

1

r
d∆x

]
+ k̂ ωf

=
∑

e∈edges

[
−̂i sinαe

∫
e

1

r
ds+ ĵ cosαe

∫
e

1

r
ds

]
+ k̂ ωf

= −
∑

e∈edges

n̂feL
f
e + n̂fωf . (2.30)

The same result can also be obtained differentiating directly the poten-
tial of a single polyhedron’s face, as contained in equation (2.23), and
considering that∇r = −I3×3:

∇

( ∑
e∈edges

n̂fe · rfe Lfe − n̂f · rf ωf

)

= −
∑

e∈edges

n̂feL
f
e + n̂fωf +

[ ∑
e∈edges

n̂fe · r̂fe∇Lfe − n̂f · r̂f∇ωf

]
. (2.31)

Equation (2.30) and equation (2.31) represent the same quantity and
therefore the last two terms in the square brackets must vanish:∑

e∈edges

n̂fe · r̂fe∇Lfe = n̂f · r̂f∇ωf , (2.32)

which can be extended in the 3D case. Multiplying by rf · n̂f , summing
all over the polyhedral faces and expanding the nested sums as before,
equation (2.32) becomes:∑

e∈edges

re · Ee · re∇Le =
∑

f∈faces

rf · Ff · rf∇ωf . (2.33)
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At this point, using equation (2.33), the attraction of a 3D polyhedron
can be expressed, from equation (2.28), as:

∇U = −Gσ
∑

e∈edges

Ee · re Le +Gσ
∑

f∈faces

Ff · rf ωf . (2.34)

Gravity Gradient Matrix The symmetric gravity gradient matrix of
second partial derivatives can be calculated differentiating the previous
equation (2.34) and canceling terms, similarly to what has been done in
the previous paragraph:

∇ (∇U) = Gσ
∑

e∈edges

Ee Le −Gσ
∑

f∈faces

Ff ωf . (2.35)

Laplacian of the Potential The Laplacian∇2U can be computed as the
trace of the gravity gradient matrix, but it can also be easily derived
from equation (2.13):

∇2U =
1

2
Gσ

∑
f∈faces

∇2

∫∫
f

n̂f · r̂ dS

=
1

2
Gσ

∑
f∈faces

∇2

∫∫
f

k̂ ·
[̂
i
∆x

r
+ ĵ

∆y

r
+ k̂

∆z

r

]
dS

=
1

2
Gσ

∑
f∈faces

∫∫
f

∇2 ∆z

r
dS = Gσ

∑
f∈faces

∫∫
f

−∆z

r3
dS. (2.36)

Recalling equation (2.16) the Laplacian of U is:

∇2U = −Gσ
∑

f∈faces

ωf . (2.37)

Since all the previous quantities in equations (2.27), (2.34) and (2.35)
require the calculation of ωf , the Laplacian can be obtained at practically
no additional computational cost. In addition, as previously mentioned,
a dynamical simulation can use the Laplacian to determine whether a
point is inside or outside the body. Indeed, in agreement with equa-
tion (2.3), the sum over all ωf vanishes if the field point is outside the
polyhedron, and it is equals to 4π inside, satisfying the Poisson’s equa-
tion for gravity:

∇2U = −4πGσ. (2.38)
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In order to conclude the discussion about the polyhedron gravitation,
a simple way to compute ωf is presented. Similarly to the logarithmic
equation (2.22) that is used to calculate Le, the value of ωf can be easily
obtained from an expression valid for a triangular face f bounded by
vertices EPi, EPj , EPk as:

ωf = 2 arctan
ri · rj × rk

rirjrk + ri (rj · rk) + rj (rk · ri) + rk (ri · rj)
. (2.39)

All the previously defined techniques to model the gravitational
field generated by irregularly-shaped bodies are available and they
can be used with different levels of fidelity to compute approximated
values of the gravitational potential and acceleration in the vicinity of
these celestial objects. The most appropriate model depends on the
specific application, since each approach has advantages and drawbacks.
Nevertheless, they all require information on the actual shape and mass
distribution of the real body and for this reason, shape and mass models
are required.

2.3 Physical Model of the Body

The precise and complete physical model of irregularly-shaped bodies
is usually not available. The knowledge about topography of a typical
celestial object is often acquired by means of radar observations and
optical light curves measured from Earth, and only in few cases those
data are coming from a deep space mission that flew close to one of these
small bodies in the Solar System [6]. But, even in this latter case, the
physical model of the body is a reconstruction from indirect measure-
ments and so it is exact within a certain accuracy. However, the available
precision is generally acceptable for the majority of real applications,
and moreover, there is a large abundance of data available on several
bodies, even though they are only a tiny fraction of all the existing minor
space bodies.

The information about the mass and the mass distribution of these
celestial objects is sometimes more inaccurate with respect to the topo-
graphical data. The difficulty in determining minor bodies masses lies in
their small size and in the techniques that are usually employed to com-
pute mass values, based on perturbations of asteroids [20]. Frequently,
the total mass of a body is also computed from the shape volume and
from an assumed constant bulk density that is typical for the class of
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objects that is being considered [27]. These general values of density are
studied and listed in literature according to the average soil composition
and porosity of categories of analogous minor bodies.

The gravitational models that are presented in this research work are
all obtained with the mascons approach and the polyhedron approach.
These two techniques require only the shape model and one quantity
among total mass and bulk density to be correctly applied. In fact, know-
ing the geometry of a body it is possible to compute its volume, and
considering a homogeneous object, the values of density, mass and vol-
ume are easily related together. In addition, as will be explained in the
following, also the rotational inertia properties can be evaluated from
these data with a simple discretization process. Obviously, the absolute
values of the obtained results are influenced by the assumed values in
the physical properties of the body, although the general behaviours and
conclusions are somewhat independent from the arbitrary assumptions.
For this reason, the validity of this kind of analysis is beyond the avail-
ability of exact data and can be applied to the dynamical environment of
a generic celestial body, even if its physical properties are known only
with a large level of approximation.

2.3.1 Shape Models

The shape model of a celestial body represents its topographical charac-
teristics by means of certain model parameters. Usually the raw data
coming from an Astronomical Observatory or from a Deep Space Probe
must be elaborated, reduced and transformed in a topographic map,
representing the surface of the body, for the successive analyses. This
map is then transformed in a vertex model, consisting on a finite set of
point describing the geometry of the body, which is often derived from
the best-fit harmonic model of the topographic map: practically, it is just
a point discretization of the measured and processed surface of the body.

Then, all these single points must be converted in a topological entity
to have the complete and final shape representation. Therefore, a con-
nectivity list between the numbered vertices must be provided, indeed
without this element is not possible to univocally define the shape of the
body. The connectivity list is simply a list of the vertices that must be
connected together in a certain order to obtain the elemental constituent
of the whole shape model. In this case the polyhedron representation in
composed by several tetrahedra having one vertex in the centre of mass
of the body, hence, the connectivity list is a N × 3 matrix, where each
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row defines one of the N triangular faces of the polyhedron, and each
triangle is the base of a tetrahedron.

So, each shape model is initially defined only by its vertex list that
indicates the position of each of the Nv vertices with respect to a certain
reference frame. In general, their coordinates are expressed in a Cartesian
or in a Spherical reference system centred in the centre of mass of the
body. From the Nv × 3 vertex list the convex hull and the volume of the
body can be obtained; the former is the smallest convex set that contains
all the vertices in the Euclidean space, and can be used as the volume to
be filled with discrete point masses in the mascons approach.

At this point, the connectivity list can be computed performing a De-
launay triangulation in a 3D Euclidean space, or can be obtained through
a longitudinal and latitudinal connection pattern of the vertices [24].
In this work a Delaunay triangulation is used to obtain the final mesh
of the body, since it is more flexible, scalable and allows performing a
large variety of topological and geometric queries on the shape model.
This triangulation scheme has been deeply developed to improve the
meshing algorithms that are used in the finite element codes, and it tries
to find a three-dimensional triangulation such that no vertex is inside
the circumsphere of any triangle in the mesh.

The shape models that are here presented consist in a vertex list,
expressed in a 3D Cartesian reference with origin in the centre of mass
and aligned with the principal inertia axes of the uniform body. The
coordinate system is oriented in a way that the ẑ direction is the one
of the maximum inertia axis, while the x̂ is along the minimum inertia
axis and ŷ completes the right-hand reference frame. The connectivity
list define univocally the triangulation and it is used to obtain all the
quantities that are then necessary to fully describe the irregular body, e.g.
the Edge List, the Face Normal List, the Edge Normal List and so on.

The bodies that will be analysed in this thesis are: 67P Churyumov-
Gerasimenko (67P C-G) comet, 216 Kleopatra Main-Belt asteroid, 4179
Toutatis Apollo-Alinda asteroid, 433 Eros Amor asteroid and 1580 Betulia
Amor asteroid. These data are all coming from the Rosetta Mission1 of
ESA, from the Planetary Data System Asteroid and Dust Archive2 of
NASA and from the Asteroid Radar Research Group3 of JPL.

Analysing the 67P Churyumov-Gerasimenko model in figure 2.7, it
can be noted the accuracy of the surface representation, which is highly

1http://rosetta.esa.int
2http://sbn.psi.edu/pds
3http://echo.jpl.nasa.gov
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Figure 2.7: 67P Churyumov-Gerasimenko model.

detailed thanks to the images acquired by the OSIRIS camera on ESA’s
Rosetta spacecraft during the mission around the comet. Moreover,
now it is evident why the spherical models, and even the harmonic
expansion models, are not capable to correctly represent the field of a so
irregularly-shaped body.

The render of the 67P Churyumov-Gerasimenko comet has been
realized with the same topographical data that are used to create the
polyhedron shape model. In fact, the full triangulation from the raw
data, which has approximately 66000 faces, is rescaled in order to obtain
the polyhedron shape model that is used in this thesis to compute the
gravitational field generated by the body. The number of triangles used
to discretize the surface of the object is fully arbitrary and determines
the resolution of the polyhedron mesh. Clearly, this characteristic affects
directly the accuracy of the gravitational potential and consequently the
required computational time.

In figure 2.8, the polyhedron shape model of the comet is shown with
two different discretization resolutions; they are typically used in this
thesis and will be referred to as Lo-Fi polyhedron model, in figure 2.8a,
and Hi-Fi polyhedron model, in figure 2.8b. The order of magnitude
of the number of faces in the former is 103, while in the latter is 104.
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2.3. Physical Model of the Body

(a) Lo-Fi Polyhedron Discretization with ∼ 103 faces

(b) Hi-Fi Polyhedron Discretization with ∼ 104 faces

Figure 2.8: Polyhedron Shape Model for 67P Churyumov-Gerasimenko. (Shape
Data Credits: ESA, Rosetta, MPS for OSIRIS Team, MPS, UPD, LAM, IAA, SSO,
INTA, UPM, DASP, IDA [13].)

Since, the accuracy of the gravity potential depends on the resolution of
the mesh, the fidelity of the gravity field can be directly verified from
the accuracy of the approximated polyhedral shape. Thus, the Hi-Fi
model is assumed as the model of reality and will be used as a reference
to evaluate the accuracy of another model with a lower resolution.

In figure 2.9, the shape model of the asteroid 216 Kleopatra is shown
with a discretization resolution that is intermediate between the Hi-Fi
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Figure 2.9: Polyhedron Shape Model for 216 Kleopatra. (Shape Data Credits:
NASA, PDS, Arecibo Observatory, 2004 Ostro et al. [37].)

Figure 2.10: Polyhedron Shape Model for 4179 Toutatis. (Shape Data Credits:
NASA, PDS, Goldstone Solar System Radar, Arecibo Observatory, 1995 Hudson
et al. [21].)

and the Lo-Fi model. Similarly, respectively in figures 2.10 to 2.12, the
shape models of the asteroids 4179 Toutatis, 433 Eros and 1580 Betulia
are shown.

The majority of these models is obtained by means of ground obser-
vation and only the data for 433 Eros and 67P Churyumov-Gerasimenko
are coming from deep space fly-bys missions. However, in this thesis,
they are all assumed to have the same precision and they are employed
without distinction.

It is evident that these bodies are all different and they are used as a
reference for characteristic shapes of typical celestial objects. Namely, the
comet Churyumov-Gerasimenko is representative for two-masses bodies,
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2.3. Physical Model of the Body

Figure 2.11: Polyhedron Shape Model for 433 Eros. (Shape Data Credits: NASA,
Johns Hopkins APL, NEAR, Multi-Spectral Imager, 2002 Miller et al. [30].)

Figure 2.12: Polyhedron Shape Model for 1580 Betulia. (Shape Data Credits:
California Institute of Technology, JPL, 2007 Magri et al. [27].)

the asteroid Kleopatra for the so-called dog-bone shape, Toutatis and Eros
for elongated objects, and Betulia for quasi-spherical asteroids.

The polyhedral representation is extremely flexible and can be used
with any shape, but the approximation for non-convex geometries can be
somewhat challenging. Indeed, a part of the volume of a single shape el-
ement may include some mass beyond the physical volume of a concave
body, which is discretized with constant density tetrahedra having a
vertex in the centre of mass. Consequently, the meshing algorithm must
have a check to ensure that each tetrahedron in the shape discretization
is solid in terms of the physical volume of the body.

From a query on the shape model of the body, several physical quan-
tities can be obtained; they are important for the following steps and
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Table 2.1: Shape properties of reference irregular bodies.

V [km3] DE [km] DP [km]

67P C-G 25.11 4.49 2.16
216 Kleopatra 1.11× 106 214.52 52.42

4179 Toutatis 8.60 4.43 2.23
433 Eros 2.98× 103 31.65 11.33

1580 Betulia 83.25 6.29 4.12

for the complete description of the object. Some of them are listed in
table 2.1, including the body volume, V , and the diameters along the min-
imum and maximum inertia axes, respectively DE and DP . These values
allow a preliminary understanding of the characteristic dimensions of
the analysed bodies, which in this case have their linear dimensions in
the order of ∼ 100km to 102km.

2.3.2 Inertia Properties

The physical model of these bodies can be completed including the
information about the inertia properties. In this work, the total mass of
the objects is taken from the literature and then the density is derived
exploiting the volume obtained from the shape model. In table 2.2, the
masses of the considered celestial objects are shown with their respective
sources.

It is worth noting that these values have often large uncertainties,
and in the references different values for a single body can be found.
However, the validity of the analysis that is presented in this work is
independent from the available data, because, even if the computations
have been performed on selected bodies, the presented methods and
approach apply to any kind of irregular object. Hence, the study can
be performed again when a new and more refined physical model is
available.

Using the information available in tables 2.1 and 2.2 the density of
the uniform body can be easily calculated, and the obtained values are
reported in table 2.3. From this list, the physical differences between
asteroids and comets is evident, with a difference of an order of mag-
nitude between their densities. Obviously, this can be easily explained
considering the different origins and internal structures of the two kind
of celestial objects.
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2.3. Physical Model of the Body

Table 2.2: Mass of reference irregular bodies.

M [kg]

67P C-G [12] 1.00× 1013

216 Kleopatra [11] 4.64× 1018

4179 Toutatis [57] 5.00× 1013

433 Eros [30] 6.69× 1015

1580 Betulia [27] 1.63× 1014

Table 2.3: Density of reference irregular bodies.

σ [kg m−3]

67P C-G 398.24
216 Kleopatra 4180.18

4179 Toutatis 5813.95
433 Eros 2244.96

1580 Betulia 1957.95

Moreover, from the data contained in the shape model and from the
mass of the object, also the rotational inertia properties of the body can
be computed. In the present work, they are obtained directly from the
constant density shape model, as the moments of inertia with respect to
its principal axes x̂, ŷ and ẑ. In fact, the rotational inertia of a continuous
body with respect to a specified axis, α, is defined as:

Iα =

∫
M

r2
α dM, (2.40)

where rα is the position of the differential mass element dM with respect
to the axis α. This expression can be extended to a body that is composed
by an assembly of several discrete masses, converting the integral to a
summation.

So, the shape model of the body can be filled with Nm masses of
equal mass m = M

Nm
, and the principal moments of inertia are:

Ix = m

N∑
i=1

r2
xi
, Iy = m

N∑
i=1

r2
yi
, Iz = m

N∑
i=1

r2
zi
. (2.41)

where rxi , ryi , rzi are the distances of each mass m from the respective
principal axes. The resulting values are summarized in table 2.4, and
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Table 2.4: Principal Moments of Inertia of reference irregular bodies.

Ix [kg m2] Iy [kg m2] Iz [kg m2]

67P C-G 9.64× 1018 1.74× 1019 1.86× 1019

216 Kleopatra 3.05× 1027 2.08× 1028 2.10× 1028

4179 Toutatis 1.86× 1019 5.58× 1019 5.92× 1019

433 Eros 1.02× 1023 4.93× 1023 5.01× 1023

1580 Betulia 4.21× 1020 5.02× 1020 6.36× 1020

according to the shape model definition, x̂ and ẑ are correctly the mini-
mum and the maximum principal inertia axes, respectively. Furthermore,
these values agree with the shape of the object, considering, for example,
the almost axisymmetric Kleopatra or the quasi-spherical Betulia.

2.4 Dynamical Model

The dynamics of a particle around irregularly-shaped bodies is extremely
different from the familiar two-body problem, where the main attractor
is reduced to a point mass and analytical solutions exist. In that case,
the motion of a particle around a main body is fully described by conic
sections, i.e. circles, ellipses, hyperbolas and parabolas, according to
Kepler’s laws of planetary motion. However, when the main attractor
cannot be considered equivalent to a point mass, that is, the body is
not centrobaric, the equations of motion do not allow an analytical
solution and the resulting dynamics is a way more complex than the
Keplerian one. In this case, a numerical investigation is necessary, from
the computation of the gravitational attraction in any field point to the
propagation of the trajectory. In order to fully describe the environment
in the vicinity of one irregular body is necessary to take into account the
rotational dynamics of the main attractor itself, and therefore the orbital
evolution of a particle is coupled with the motion of the primary. This
characteristic leads to trajectories that are dependent from the spin state
of the central attractor. If this is uniformly rotating about a principal
inertia axis, one integral of motion can be found and thus, similarly to the
circular restricted three-body problem, surfaces bounding the motion of
the particle and equilibrium solutions exist. Nevertheless, these features
disappear if the rotational dynamics of the main body is more complex
and the angular velocity is varying in time.
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2.4.1 Model Definition

The presented dynamical model deals with two bodies: an irregularly-
shaped rigid central attractor and a massless particle. Namely, the less
massive body is sufficiently small with respect to the primary to be mod-
elled as a massless point, regardless of its shape. Some assumptions are
required to formulate the problem with a balance between a reasonable
level of complexity and an acceptable fidelity of the obtained results.

The assumptions related with the computation of the gravitational
field are described in the dedicated sections 2.2.2 and 2.2.3 and depend
on the technique, polyhedron or mascons, which is used to originate
the gravity model. Anyway, the major assumption in the gravitational
model is the constant density body, and given a certain resolution in
the asteroid or comet discretization, the use of an approximation of the
real gravity force in the equations of motion. It is worthwhile to point
out that even the Hi-Fi model does not allow the exact description of
gravitational field, both for the limits of the modelling techniques and
for the uncertainties in the available body physical characteristics; hence,
there is no possibility to have the exact representation of the dynamical
environment around irregularly-shaped bodies, even using numerical
analysis.

The first assumption contained in the dynamical model is related
with the orbital motion of the primary, in fact it is considered to be in a
circular and planar orbit around the Sun with radius equal to the semi-
major axis of the real orbit of the body. Consequently, the perturbations
are included only in the integration of the rotational motion of the main
attractor and these are limited to third body, Sun, gravitational effect,
Solar Radiation Pressure, YORP effect and internal dissipation of energy.
For what concern the comet 67P Churyumov-Gerasimenko the presence
of the coma, comet outgassing, is neglected; the model is valid, in this
case, only when the body is far from the Sun and the comet activity is
low.

Then, the model is developed in a rotating frame that is fixed with
respect to the irregular body, and accordingly, the rotational dynamics of
the primary is coupled with the orbital dynamic around the same body.
The use of this rotating frame facilitates the numerical investigation and
understanding of the motion of a particle in the dynamical environment
of the irregular asteroid or comet.

The particle is assumed to be massless and does not affect the motion
of the main body, defining a restricted two-body problem, where the
massless particle gives no contribution to the global gravitational force.
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The orbital dynamics is unperturbed and it is influenced only by the ir-
regular gravitational attraction and the rotational motion of the asteroid.
In practice, the perturbative effects are assumed to act only indirectly
on the motion of the particle through the effects on the attitude of the
primary.

2.4.2 Reference Frames Definition

The description of the dynamics around an irregular shape body can
be derived or in an inertial reference frame or in a rotating one. As
previously said, the rotating body-fixed coordinate system has several
advantages in spite of the necessity to add the fictitious forces proper
of the non-inertial reference frames. In fact, first of all, the body-fixed
frame avoid the rotation of the shape model to evaluate the gravitational
accelerations, which is computationally more expensive with respect to
the simple rotation of a coordinate system, since in that case the rotation
procedure should be applied at each integration step to any vertex of
the model. Hence, in the rotating frame the gravitational field is not
time dependent, and it can be computed only once in a region of interest
around the body. Moreover, if the body is in a uniform principal rotation
state, the time dependence is also eliminated from the dynamics, and the
equations of motion are time invariant. In general, this is note the case
for the real motion of celestial bodies under the effect of perturbations,
but if a simplified dynamical behaviour is considered, then the rotating
frame is even more convenient. Nevertheless, an inertial reference frame
must be defined, because it is needed to take easily into account the
presence of the Sun for the perturbative effects, and because it could be
interesting and more intuitive to see how the trajectories evolve in the
inertial space.

The most convenient choice for the body-fixed frame is obviously
the same coordinate system that is used for the shape model; in this
way, no transformation is necessary between the gravitational field and
the dynamical model. So the rotating frame, B, is a right-handed 3D
Cartesian reference with origin in the centre of mass of the body and basis
vectors x̂, ŷ and ẑ. They are aligned with the principal inertia directions
associated with the body, so that ẑ is aligned with the direction of the
maximum inertia axis. The triad is completed with x̂ and ŷ that are
parallel to the axes associated with the minimum and the intermediate
moments of inertia, respectively.
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Figure 2.13: Inertial, I , and Rotating Body-Fixed, B, Reference Frames.

The inertial reference frame, I , is centred in the centre of mass of the
main body and its basis vectors, x̂I , ŷI and ẑI , are aligned in order to
coincide with those of the rotating coordinate system at t = 0. The Sun
is rotating in this inertial frame that is fixed with respect to the centre of
the body. Obviously, this is an assumption and the reference system is
not really inertial, since it is moving with the celestial object in an orbit
around the Sun. However, the orbital dynamics of the asteroid or the
comet is not considered in this work, and the motion around the Sun
is only necessary to compute the perturbations involving the Sun-Body
direction. For this reason, the origin of I coincides with the centre of
mass of the irregular object, and the Sun is moving on a circular “path”
around the asteroid or the comet4. The motion of the Sun lies on the
xIyI−plane, and ẑI is aligned with the normal to the orbital plane. Both
the inertial and the body-fixed frames are illustrated in figure 2.13 at two
different instants in time.

The position vector that locates the massless particle P at the field
point (x, y, z) is p. It can be expressed in the body-fixed reference frame
as p = xx̂ + yŷ + zẑ. Obviously, this vector can also be expressed in the
inertial reference frame by means of a transformation between the two
coordinate systems.

In fact, any reference frame can be switched to another one with a
proper conversion process. To define the relative orientation of the two
frames at least three parameters are required and in this thesis the Euler
angles are used to express the rotation from the frame I to the frame B.

4Galileo, I am really sorry.
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It is convenient to use them since they are a minimal representation, i.e.
no redundant parameters are used, and they have an evident physical
interpretation: Euler angles represent a sequence of three elemental
rotations about the reference axes. The respective rotation matrices
can be combined, adopting the rule of consecutive rotations, into the
direction cosine matrix that allows transforming the representation of
a vector expressed in the inertial frame to the representation of the
same vector in the rotating body-fixed reference system. So, the formal
expression of a vector in B is obtained by multiplying a vector in I by
the direction cosine matrix A:

vB = AvI . (2.42)

The matrix A is orthogonal and therefore it can be said that:

A−1 = AT, (2.43)

and from equation (2.42), the inverse rotation is expressed as:

vI = A−1vB = ATvB = AIvB. (2.44)

If the position vector p is considered, equation (2.44) can be written
as:

pI = AIp. (2.45)

where pI is the position of the massless particle expressed in the inertial
reference frame. As a consequence, if the velocity and the acceleration
of the massless particle in the inertial frame are needed, equation (2.45)
has to be derived in time obtaining:

ṗI = ȦIp + AIṗ, (2.46)

and
p̈I = ÄIp + 2ȦIṗ + AIp̈, (2.47)

where the single dot represents time derivative and the double dot
represents second time derivative.

Equations (2.45) to (2.47) provide useful relations that relate the
rotating body-fixed frame with the inertial one.

2.4.3 Rotational Kinematics

The matrix A is obviously time-dependent since it is continuously chang-
ing as the rotational motion of the body evolves. For this reason, it is
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important to define how the rotational parameters change with time,
and it must be noted that kinematic equations of rotational motion are
not as simple as those related with translational motion.

The time dependence of the rotation matrix can be related to the
angular velocity of the primary expressed in the rotating body frame, ω,
having:

Ȧ = f (ω) = f (ωx, ωy, ωz) , (2.48)

where ωx, ωy and ωz are the components of the angular velocity, re-
spectively, around the x̂, ŷ and ẑ axes. The explicit expression of equa-
tion (2.48) can be derived, as in [28, 56], obtaining:

Ȧ = lim
∆t→0

A(t+ ∆t)−A(t)

∆t
= lim

∆t→0
−∆t [ω∧] A(t)

∆t
= − [ω∧] A(t), (2.49)

where [ω∧] is the skew symmetric cross product matrix, defined by:

[ω∧] =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (2.50)

Knowing ω, equation (2.49) can be integrated in order to compute A
at the next instant in time, but taking into account the numerical errors,
A is not guaranteed to stay orthogonal. For this reason, it necessary to
implement a numerical orthogonalization process that at each iteration
step enforces the orthogonality of the rotation matrix.

For sure the Euler angles could also be used to propagate the rota-
tional dynamics without the integration of the whole A matrix. There
are some advantages, since they have fewer parameters and fewer con-
straints, but some singular conditions, which must be avoided, exist,
and the entire integration process has to be carefully managed. On the
other hand, the integration of equation (2.49) is straightforward and very
simple to be implemented with the code that is developed in this work,
for this reason, the direction cosine matrix is here used for rotational
kinematics.

2.4.4 Equations of Motion

The equations of motion for the particle moving under the gravitational
attraction of an irregularly-shaped body are derived from Newton’s
second law of motion: the acceleration of a point in a force field is
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directly proportional to the vector sum of the forces in that point. This
can be computed as the gradient of the gravitational potential, according
to equation (2.1). The potential function is obtained with the enhanced
gravitational modelling techniques that are employed in this thesis, and
obviously, it depends on the specific approach that is adopted. However,
for the present purpose, U is the potential function independently from
the gravity model formulation.

Newton’s law is valid only in an inertial reference frame, and so it
can be expressed in the system I as:

p̈I = ∇U(pI , t), (2.51)

where the potential function is dependent on the position of the particle,
and it is also time dependent because the primary is in a rotational
motion with respect to I .

As explained in section 2.4.2, this time dependence can be eliminated
if equation (2.51) is written in the rotating body-fixed frame, B. In
order to correctly transform the previous equation, the basic kinematic
equations must be correctly applied to expand the inertial acceleration
in the rotating body-fixed frame, which is a non-inertial reference frame
and therefore exhibit fictitious accelerations.

The kinematic equations that relate the inertial with the rotating
frame can be expressed, applying the transport theorem, as:

vI = ṗI = ṗ + ω × p, (2.52)

and
aI = p̈I = p̈ + 2ω × ṗ + ω × (ω × p) + ω̇ × p, (2.53)

where ω is the angular velocity of the rotating body-fixed frame with
respect to the inertial one.

In equation (2.53), the fictitious accelerations typical of a rotating
reference system can be recognized, indeed the second term after the
equality sign is the Coriolis acceleration, the third is the centrifugal ac-
celeration and the last one is Euler acceleration. The first term after the
equality sign is obviously the acceleration of the particle as measured
in the rotating body-fixed frame. The centrifugal acceleration points al-
ways in the outward radial direction, the Coriolis acceleration is always
perpendicular to the velocity vector and the Euler acceleration might
be considered as a “tangential” acceleration due to a variation in the
angular velocity of the reference frame’s axes.
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Now, substituting equation (2.53) in equation (2.51), the equations of
motion of the particle, in the body-fixed coordinate system, is obtained
as:

p̈ + 2ω × ṗ + ω × (ω × p) + ω̇ × p = ∇U(p), (2.54)

where now U is time invariant, and can be specialized according to
the considered gravitational modelling technique. The gradient can
be evaluated and the respective expressions are reported here for the
convenience of the reader:

∇UPoly = −Gσ
∑

e∈edges

Ee · re Le +Gσ
∑

f∈faces

Ff · rf ωf , (2.55)

∇UMascons = −G
Nm∑
i=1

mi

r3
i

ri. (2.56)

All the quantities in the previous two equations have been defined in
the related sections 2.2.2 and 2.2.3.

The velocity and the acceleration of the particle can be expressed in
the rotating frame as:

ṗ = ẋx̂ + ẏŷ + żẑ, (2.57)

p̈ = ẍx̂ + ÿŷ + z̈ẑ. (2.58)

In this way, inserting equations (2.57) and (2.58) in the vector differential
equation (2.54), remembering that ∇U = [Ux, Uy, Uz], and carrying out
some algebraic manipulations, the Cartesian scalar equations can be
obtained. These are a system of three second order scalar differential
equations of motion that can be numerically integrated.

The quantities ω and ω̇ in equation (2.54) are connected with the
rotational dynamics of the main body and are related together by the
rigid body motion equations. These are obtained extending the Newton’s
law of motion for point particle to rigid body motion. In fact, it is possible
to write the fundamental Euler’s second law in an inertial reference as:

dhI
dt

= ḣI = mI , (2.59)

where hI is the angular momentum in I , and mI is the net external
perturbing torque with respect to the centre of mass in I . Anyhow, as
done before with the equations of motion of a particle moving under the
gravitational attraction of an irregularly-shaped body, it is possible to
transform the previous equation into the body-fixed frame. Using the
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correspondent of equation (2.52) for the angular momentum, and evalu-
ating the external perturbing torques in the rotating reference system,
equation (2.59) becomes:

ḣ + ω × h = m, (2.60)

which is expressed in B.
In the principal inertia reference frame the angular momentum can

be expressed as:
h = Iω = Ixωx + Iyωy + Izωz, (2.61)

since the inertia tensor, I, in principal inertia axes is:

I =

Ix 0 0
0 Iy 0
0 0 Iz

 , (2.62)

where Ix, Iy and Iz are the principal moments of inertia with respect
to the axes of the body-fixed principal reference frame. So, the equa-
tion (2.60) becomes:

Iω̇ + ω × Iω = m. (2.63)

Even in this case, recognizing that ω = [ωx, ωy, ωz] and m =
[mx,my,mz], it is possible to obtain the Cartesian scalar form of equa-
tion (2.60), for numerical integration, with few algebraic manipulations.
The result is composed by a set of three first order scalar differential
equations.

The complete dynamical and kinematic model is now completely
defined and it is important to note that the equations of motion are
coupled, and they must be solved together to correctly propagate the
evolution of the particle-main body system. Hence, the full model is
composed by a (3 × 3) first order matrix differential equation (2.49), a
(3 × 1) second order vector differential equation (2.54), and a (3 × 1)
first order vector differential equation (2.63). Then, in order to facilitate
the numerical investigation, a system of only first order differential
equations is preferred, and for this reason, the (3 × 1) second order
vector differential equation is reduced in two different (3× 1) first order
vector differential equations. Moreover, the integration of vector and
matrix equations is easier if they are expressed in a scalar form, which
in this case is composed by 18 different first order scalar differential
equations, expressed in the Cartesian body-fixed reference frame.
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The state vector of the whole model is:

V = [A11, A12, . . . , A33, ωx, ωy, ωz, x, y, z, ẋ, ẏ, ż]T, (2.64)

where A11, A12, . . . , A33 are the 9 components of the rotation matrix
A. The entire system of first order scalar differential equations can be
written as:

V̇ = f(V ). (2.65)

Here, f(V ), is the vector containing all the scalar differential equations.
To integrate the system, a set of 18 scalar initial conditions must be
provided, through a known state vector, V 0, evaluated at t = 0.

The set of differential equations is integrated using MATLAB R© and
a variable order method differential equations solver, with medium to
high order of accuracy. The problem is computational intensive because
several operations must be repeated at each step of integration, thus, to
reduce the time to run a simulation, the algorithms make an extensive
use of parallel computing techniques on multi-processor workstations.

2.4.5 Integral of Motion

The equations of motion of the particle can be further analysed consid-
ering possible conserved quantities, or integrals of motion. The scalar
quantity, J , can be defined as:

J
def
=

1

2
ṗ · ṗ− 1

2
(ω × p) · (ω × p)− U(p), (2.66)

where all the quantities have been previously defined. Then, taking
the time derivative of J with respect to the body-fixed frame, and re-
arranging the dot product of ṗ with equation (2.54), is possible to write:

J̇ = ω̇ · (vI × p) , (2.67)

where vI has been defined in equation (2.52). If the main body is in
uniform principal axis rotation, i.e. ω̇ = 0, then J is conserved and
will be referred to as Jacobi integral of motion. Hence, only if the body
is uniformly rotating an integral of motion exist, and as mentioned in
section 2.4.2, the equations of motion in B are fully time invariant.

Assuming, in the meanwhile, a uniformly principal axis rotating
asteroid or comet, J is constant for all the resultant motion of the particle,
and for a given set of initial conditions on particle position and velocity.
Different initial conditions can obviously lead to the same constant value
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of the Jacobi integral, and consequently it is convenient to define a Jacobi
constant, C, as:

C
def
= −J(p, ṗ), (2.68)

where the dependence of J from position and velocity of the particle in
the body-fixed frame has been explicitly declared. Under the current
assumptions of constant angular velocity, Ω = [Ωx,Ωy,Ωz], the Jacobi
constant expression can be derived from equation (2.66):

C = V (p)− T (ṗ) = U(p) +
1

2
(Ω× p) · (Ω× p)− 1

2
T (ṗ). (2.69)

In the previous equation, V (p) = V (x, y, z) is the pseudo-potential func-
tion:

V (x, y, z) = U(x, y, z) +
1

2
(Ω× [x, y, z]) · (Ω× [x, y, z]) , (2.70)

and T (ṗ) = T (ẋ, ẏ, ż) is the kinetic energy of the particle with respect to
the rotating main body:

T (ẋ, ẏ, ż) =
1

2

(
ẋ2 + ẏ2 + ż2

)
. (2.71)

It is worthwhile to note that the Jacobi constant is a function of the kinetic
energy and the pseudo-potential, and so it is an energy-like quantity, and
because of the opposite sign, if the energy increases the Jacobi constant
decreases.

Even in the simplest case of uniformly rotating body, the only inte-
gral of motion that exists, J , is not enough to have an analytical solu-
tion. However, it can offer interesting hints on the dynamical behaviour
around the principal body, which are useful for numerical investigation.
In fact, the Jacobi integral helps to illustrate and understand an impor-
tant concept that is related with the presented dynamical environment.

Considering equation (2.69), it can be re-arranged to highlight a rela-
tion between the kinetic energy of the particle and the Jacobi constant:

T (ṗ) = V (p)− C ≥ 0, (2.72)

where the inequality sign comes from the definition of kinetic energy
that must be non-negative in order to maintain a physical meaning. This
inequality suggests possible restrictions on the position of the particle,
since, for a givenC, the motion is bounded in a region where the position,
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p, allows V (p) to be greater than the Jacobi constant, C. Note that
V (p) ≥ 0 for any p, and so, if C < 0, there are no constraints on where
the particle may be found. On the contrary, if C > 0, the trajectories of
the particle can evolve only in certain portion of space.

The limit condition is generated by a zero relative velocity, and thus,
a zero kinetic energy, T (ṗ) = 0. In this case equation (2.72) becomes:

V (p) = C, (2.73)

and the infinite solutions of the previous describe a surface in three-
dimensional space, which constraints the possible motion of the particle.
When the constant of motion is varying in time, e.g. in a non-principal
rotation state of the main body, the three-dimensional surface evolves in
time accordingly. Therefore, when the Jacobi integral is not conserved,
the previous considerations are still valid, but they are limited to an
instantaneous authority, without uniformity through all the motion
propagation. These surfaces are denoted as the Zero Velocity Surfaces
(ZVS) and separate two distinct regions of space: the forbidden region,
when V (p) < C, and the admissible one, where V (p) > C and the
modulus of the velocity is real. The projection of a Zero Velocity Surface
on a plane is called Zero Velocity Curve (ZVC).

2.4.6 Equilibrium Solutions

Another useful concept to have some insights on the dynamical prop-
erties of the dynamics of a particle around an irregularly-shaped body
is the one related with the equilibrium solutions of the equations of
motion, i.e. points in the physical space where an object is subject to
zero velocity and zero acceleration. There, it remains at rest in time with
respect to the rotating frame. Since the equilibrium solutions require
that the particle has zero relative velocity, they are particular solutions
of the Zero Velocity Surfaces for certain values of the Jacobi Constant.

In this dynamical framework, the number of equilibrium solutions
is not pre-determined, and there is no analytical expression for their
locations. Hence, a numerical algorithm has been implemented to find
their positions, and it will be described afterwards. It is important
to remember that these equilibrium solutions exist in general only if
the Jacobi constant is conserved, while in the case of varying angular
velocity they can be only defined at each instant of time, and thus, no
real equilibrium position can be found in the physical space.
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In the case of ω = Ω, it can be easily proved that equation (2.54) can
be expressed as a function of the pseudo potential function V (p):

p̈ + 2Ω× ṗ = ∇V (p). (2.74)

Then, since the equilibrium condition implies p̈ = 0, and ṗ = 0, the
locations of the equilibrium points can be calculated by equating the
gradient of the pseudo-potential, V (p), to zero, that is:

∂V (p)

∂x
=
∂V (p)

∂y
=
∂V (p)

∂z
= 0. (2.75)

The equilibrium points represent the extrema of the pseudo-potential
function, where a balance between the forces in the rotating frame is
guaranteed.

2.4.7 Dynamical Properties

The simulations that are analysed in this thesis make use of different
set of data about the dynamical status of the considered Solar System’s
bodies.

These properties are used as initial conditions to propagate the dy-
namics of the particle-irregular body system, and they are grouped in
the state vector V 0, evaluated at t = 0. However, in this vector, some
of them are arbitrarily chosen: the initial conditions of the particle, x0,
y0, z0, ẋ0, ẏ0, ż0, and the initial Euler angles, φ0, θ0 and ψ0. The formers
are immediately used to compute the initial direction cosine matrix,
A0, between the inertial and the body-fixed reference frame, since its
components, A110 , A120 , . . . , A330 , are used in the initial state vector, V 0.
So, considering that the two reference systems are assumed to coincide
at the initial time, φ0, θ0 and ψ0 are all equal to zero and A0 is equal
to the 3 × 3 identity matrix, I3×3. The initial conditions of the particle
are selected in order to obtain insightful simulations, but there is no
particular reason, or relation with the real world, to justify the choice of
one particular set rather than another one.

On the contrary, the real dynamical properties of the main body are
used as initial conditions for ωx, ωy and ωz. Sometimes, these values are
modified with respect to the real one for particular reasons that will be
addressed in the relevant sections. Anyway, these numbers are often
just slightly perturbed with respect to the actual ones. The sources of
information are more or less the same that have been used to gather
the inertia and shape model properties. The available data about the
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Table 2.5: Rotational state of reference irregular bodies.

‖ω‖ [rad s−1] T2π [h]

67P C-G [12] 1.41× 10−4 12.40
216 Kleopatra [57] 3.24× 10−4 5.39

4179 Toutatis [41] 2.12× 10−5 82.33
433 Eros [30] 3.31× 10−4 5.27

1580 Betulia [27] 2.84× 10−4 6.14

magnitude of the angular velocity vector and the rotation period are
listed, with their respective sources, in table 2.5.

The information about the orientation of the spin vector is more
delicate, and sometimes, less accurate. Moreover, the rotational motion
of the object can determine the variation in time of the spin axis, and
therefore, an arbitrary choice is occasionally required for the data that
are employed as initial conditions in each single simulation. These will
be defined together with the presentation of the analysed situation. It
is worth noting that the spin axis of a real asteroid can undergo chaotic
variations due to the complex dynamical evolution of the bodies, and to
the perturbative effects [22]. Thus, the use of a specified initial condition
is not fundamental, since the actual rotation state could be different from
the one described in the used references.

To complete the description of the initial state of the dynamical model,
the position of the Sun must be specified in the inertial reference system.
The assumption is that the Sun at t = 0 is located along the negative
direction of the x̂I , in a way that the Sun-Body direction is initially
parallel to the xI−axis. The evolution of the position of the Sun, in the I
frame, has been already described in section 2.4.2, and now, the radii and
the periods of the assumed circular orbit are listed in table 2.6, according
to the JPL Solar System Dynamics data service5.

2.5 Perturbations

The model described in this thesis includes also the relevant perturba-
tions for the rotational dynamics of the analysed celestial bodies. It is
important to remember that these perturbative effects act only on the
rotational motion of the main body, according to the made assumptions,

5http://ssd.jpl.nasa.gov
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Table 2.6: Radius of the orbit of reference irregular bodies.

RS [km] RS [AU] TS [y]

67P C-G 5.18× 1011 3.46 6.45
216 Kleopatra 4.18× 1011 2.79 4.67

4179 Toutatis 3.78× 1011 2.53 4.02
433 Eros 2.18× 1011 1.46 1.76

1580 Betulia 3.29× 1011 2.20 3.26

and therefore, the dynamics of the particle is not directly influenced
by the external disturbing forces. Nevertheless, since the equations of
motion, (2.54) and (2.63), are coupled, the perturbations influence the
dynamical evolution of the massless particle through the effects related
with the rotational dynamics of the primary.

The perturbations that are relevant to the considered case, and that
will be presented hereafter are: the gravity gradient due to the presence
of a third body, the Sun, the Solar Radiation Pressure, the YORP effect
and the internal dissipation of energy. Their effects are computed at
each integration step, they are combined together and inserted in the
rotational dynamics equation through the term representing the external
perturbing torque, m, computed in the rotating body-fixed frame.

2.5.1 Third Body Gravitational Effect

The motion of the particle-irregular body system is evolving under the
gravitational influence of the Sun, which is a third external body with
respect to the focus of this analysis. The gravitational effect of the Sun is
not uniform, and since the main body is not symmetric, it is subject to a
gravity gradient torque.

To explain this concept it is fundamental to consider any differen-
tial mass element of the primary body that is under the gravitational
attraction of the Sun. Defining ρ as the distance of each differential mass
element, dM , with respect to the centre of mass of the body, it is possible
to express the differential torque as:

dmGG = −ρ× G dMMS

‖RS + ρ‖3 (RS + ρ) , (2.76)

where ρ is much smaller than the Sun-Body vector RS , and it can be
considered as a perturbation. The previous equations can be integrated
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all over the mass of the body, and ‖RS + ρ‖3 can be approximated with
a series expansion. After some manipulations, the torque due to the Sun
gravity gradient can be expressed as:

mGG =
3GMS

R5
S

∫
M

(ρ ·RS) (ρ×RS) dM. (2.77)

In order to evaluate the effect of the torque on the main body dynamics,
this has to be expressed in the body-fixed principal reference frame and
inserted in the Euler’s rotational equations. So, equation (2.77) becomes:

mGG =
3GMS

R3
S

∫
M

(y2
M − z2

M)c2c3

(z2
M − x2

M)c1c3

(x2
M − y2

M)c1c2

 dM

=
3GMS

R3
S

(Iz − Iy)c2c3

(Ix − Iz)c1c3

(Iy − Ix)c1c2

 , (2.78)

where c1, c2 and c3 are the direction cosines of the Sun-Body direction
in principal inertia axes, and xM , yM and zM are the coordinates of the
differential mass elements in the same reference.

Looking at equation (2.78), it is evident that if one principal inertia
axis is aligned with the Sun-Body direction, the torque is zero because
only one of the direction cosines is different from zero. Moreover, this
torque depends on the relative orientation of the body with respect to
the Sun and thus, if averaged over one full rotation of the asteroid or
comet on its axis, and over one full revolution as it orbits the Sun, the
contribution is null.

When the perturbative effect due to the presence of the Sun is com-
puted, the body is assumed infinitely rigid and no tidal deformation is
taken into account. Therefore, the shape of the asteroid or the comet is
preserved and the tidal torque is not considered.

2.5.2 Solar Radiation Pressure

The electromagnetic radiation emitted by the Sun interacts with the bod-
ies that are present in the Solar System. The radiation can interact with a
surface by reflection or absorption, and since it carries momentum and
energy, this interaction generates a pressure that perturbs the rotational
motion of a body in space.
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Table 2.7: Radiation Coefficients.

ca [−] cd [−] cs [−]

0.9 0.075 0.025

The average pressure due to radiation can be computed using:

PS =
FS
c
, (2.79)

where c = 299 792 458 m/s is the speed of light, and FS is the flux density
of solar radiation at the distance of the body from the Sun. It can be
computed with an inverse square law, knowing the flux of solar radiation
at a certain location in Space. For example, at the Sun-Earth distance,
FS = 1360 w/m2.

In order to evaluate the force acting on a surface, it is important to
model the interaction of the radiation with the body. In fact, the incident
radiation coming from the Sun can be absorbed, specularly reflected and
reflected with diffusion. The fraction of radiation associated with each
one of these interaction modes is expressed by a coefficient of absorption,
ca, diffuse reflection, cd, and specular reflection, cs. The coefficients must
sum to unity, ca + cd + cs = 1, and in this work they are assumed to have
the values reported in table 2.7, according to the data for typical celestial
bodies present in the JPL Solar System Dynamics data service.

The force that is generated by the solar radiation pressure interac-
tion can be computed for each triangular face of the polyhedron model,
and then the global force can be found summing all over the single
contributions. In this way, it is possible to use the expression for the
radiation pressure on a flat surface, no approximation is made in addi-
tion to the one of discretizing the real body with a polyhedron, and the
self-shadowing effect can be taken into account with simple geometrical
considerations.

For the i-th body planar surface of area Ai, the solar radiation force
can be expressed as:

fSRPi
= −AiPs

[
(1− cs)̂s + 2

(
cs cos(αi) +

1

3
cd

)
n̂i

]
cos(αi)Sh, (2.80)

where ŝ and n̂i are, respectively, the Body-Sun direction and the surface
normal direction in the body-fixed frame. The angle α is the angle be-
tween the Body-Sun and the normal to the surface directions, and cos(α)
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can only assume positive value since, if n̂i · ŝ is negative, the surface is
in shadow and is not illuminated by the Sun. This can be mathemati-
cally expressed with cos(αi)Sh = max(0, cos(αi)). The diffuse reflection
is assumed to be Lambertian, i.e. the intensity of the reflected light
in any direction is proportional to the cosine of the angle between the
reflection direction and the normal, determining a Lambertian scattering
coefficient of the surface, ideally equal to 2/3. The self-shadowing is
considered, and the algorithm to determine if a face is in the shadow of
another one will be described in section 4.1. Equation (2.80) is obtained
assuming that the absorbed radiation acts in the Body-Sun direction, the
specularly reflected radiation acts in the normal to the surface direction
and the diffuse radiation acts in both directions.

The whole solar radiation torque can be computed, for a N faces
polyhedron, as:

mSRP =
N∑
i=1

ρi × fSRPi
, (2.81)

where ρi is position of each triangular face’s centre with respect to the
centre of mass of the body.

2.5.3 YORP Effect

The Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect is related
with the thermal radiation emission from the surface of a body. It is
the rotational extension of the Yarkovsky effect, discovered by the civil
engineer Ivan Osipovich Yarkovsky (1844–1902) at the beginning of the
20th century. Yarkovsky noted that the diurnal heating of a rotating space
object would generate a tiny force that could lead to large secular effects
in its orbit.

In the YORP extension, this effect can produce torques that affect
the spin rate and spin axis orientation of small irregular celestial bodies.
The amount of torque acting on an object is small, since the amount
of momentum carried by photons is limited. Nevertheless, the YORP
torque is secular, so that after a long period the body’s rotation state
can be noticeably different. There are several analogies with the solar
radiation pressure and they are separately addressed because the YORP
effect deals with the radiation emitted by the body, while the solar
radiation pressure deals with the incoming radiation from the Sun, which
is absorbed or reflected. Obviously, the thermal balance of the body
couples these contributions, and therefore, their differences are more
formal than conceptual. As explained in the related references [4, 39],
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the body must have a certain amount of “windmill” asymmetry in its
shape to be influenced by the YORP effect.

In this model, it is assumed that the body surface is Lambertian,
i.e. the reaction force from photons departing from any given surface
elements is normal to it. In this way, the differential YORP force acts
on the normal to the surface direction, as the specularly reflected solar
radiation pressure. This characteristic determines the secularity of the
YORP torque. On the contrary, the radiation forces along the Body-Sun
direction, e.g. absorbed SRP, average to zero, because they depend on
the projection that the body presents to the Sun: these solar torques
cancel over one full rotation and one full revolution as the Sun sees the
projection in all directions.

The model that is used in this thesis assumes zero thermal conductiv-
ity for the surface of the body [8], which means that the thermal emission
occurs immediately after the incoming radiation has hit the surface. Sim-
ilarly to what has been done for the solar radiation pressure, the surface
of the body is discretized with the N polyhedral flat triangular faces and
the self-shadowing is taken into account.

With these assumptions, the torque due to the YORP effect can be
expressed as:

mY ORP =
2

3
(1− cr)PS

N∑
i=1

Ai(n̂1 × ρi) cos(αi)Sh, (2.82)

where cr = cd + cs is the albedo of the body, and all the other quantities
have been defined in the solar radiation pressure section 2.5.2. With the
values that are used in this work, the albedo of the body is ∼ 10%, which
is a reasonable value since the small Solar System objects tend to be very
dark.

2.5.4 Dissipation of Energy

Energy losses in an anelastic material occur when the internal stresses
are time-variant; hence, even freely rotating bodies in space lose energy
because internal stresses are associated with the accelerations caused by
nutation. As a consequence, internal dissipation of energy is associated
with non-principal rotation states, since in this case the rotational accel-
eration is time-varying in the body-fixed frame. In presence of internal
energy losses, the angular momentum vector of the body tends to align
with its maximum inertia axis, and even though this effect is extremely
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small, it can influence the rotational state of a small wobbling celestial
object, if a long time scale is taken into account.

This effect can be modelled with an additional perturbing torque
in the equations of motion. In the case of rotation axis closer to the
maximum inertia axis, the torque due to the dissipation of energy is
expressed as:

mD = ∓
σa2

eq

kQIz
‖h‖3 sin(γ)(b0 + b2 cos2(γ))h×

(
h× ẑ

‖h‖ sin(γ)

)
, (2.83)

where σ is the bulk density, aeq the averaged equatorial radius, k the
rigidity of the material, Q the quality factor, Iz is the maximum moment
of inertia and γ is the angle between the angular momentum vector, h,
and the maximum inertia direction, ẑ. The minus sign is for a rotation
axis closer to ẑ+ direction, while the plus is for ẑ−.

Similarly, for the rotation axis closer to the minimum inertia direction,
equation (2.83) becomes:

mD = ±
σa2

eq

kQIx
‖h‖3 sin(γ)(b0 + b2 cos2(γ))h×

(
h× x̂

‖h‖ sin(γ)

)
, (2.84)

where now γ is the angle between the angular momentum vector and
the minimum inertia direction x̂, with moment of inertia Ix. In this case,
the plus sign must be used when the rotation axis is closer to x̂+, and
the minus when it is closer to x̂−.

In both equations the coefficients b0 and b2 are known constants,
expressed by [53] as:

b0 =
325 + 760 υ2 + 608 υ4 + 320 υ6

7(1 + υ2)4 (13 + 20υ2) (15 + 10υ2 + 8υ4)
(2.85a)

b2 =
−325− 760 υ2 + 952 υ4 + 2820 υ6 + 2232 υ8 + 1120 υ10

7(1 + υ2)4 (13 + 20υ2) (15 + 10υ2 + 8υ4)
, (2.85b)

where υ is the geometric flattening of the spheroid. The value of the
physical parameter kQ is, according to [48], kQ = 5× 1011 kg m−1 s−2.

The dissipation of energy involves the angular momentum magni-
tude as an important parameter. Indeed, if h is small, the effect of the
dissipation is small, and there is a small perturbative effect. In general,
the energy loss phenomena is less important than the other perturbative
effects and thus, the non-principal axis state can be an asymptotic state,
even if this contribution is taken into account. On the contrary, with a
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large angular momentum, the dissipation of energy could dominate the
other perturbative effects.

At this point, all the considered perturbative phenomena have ben
defined, and it is possible to compute the net toque due to perturbations:

m = mGG + mSRP + mY ORP + mD. (2.86)

The previous can be inserted in equation (2.63) and the dynamical model
is thus completed.
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Gravity Field Models

An irregularly-shaped body influences the surrounding space according
to the same Newton’s law that is valid for any massive body. Notwith-
standing, its irregular shape is reflected in the generated gravitational
field, which is not spherically symmetric like the one produced by a cen-
trobaric body. This characteristic is probably the one that influences most
the dynamical environment in the vicinity of Solar System’s smaller bod-
ies, in fact, the orbits that exist in these situations are extremely different
from the Keplerian ones.

In this chapter the gravitational influence of the selected reference
celestial objects are discussed and analysed. Moreover, the different
enhanced modelling techniques are compared in order to illustrate and
examine their advantages and disadvantages. Furthermore, the opti-
mized version of the mascons approach is presented and compared with
the standard technique.

The gravitational field around an irregular shape body can be com-
puted with different levels of accuracy, according to the fidelity of the
modelling technique that is used. One of the main problems in evaluat-
ing the exact field is the required computational time, which could be
acceptable on the Earth with a multi-processor computer, but it is not
tolerable if the computations have to be performed with the on-board
computer of a space probe that is flying around an asteroid or a comet.
For this reason, it is necessary to study and analyse the so-called Lo-Fi
models, which are less accurate but they do not require a high compu-
tational burden. The results of the aforementioned investigation are
shown and discussed in this chapter.



Chapter 3. Gravity Field Models

3.1 Gravitational Influence of Selected Objects

The bodies that are analysed in this research work are representative of
different classes of shape for real celestial bodies. In particular, the comet
Churyumov-Gerasimenko is representative for bodies with two relevant
bulges, the asteroid Kleopatra for objects that have a dog-bone shape,
Toutatis and Eros represents those bodies that have one dimension longer
than the other two, and Betulia characterize the asteroids that are more
similar to a usual spherical shape. These characteristics are evident
also in the resulting gravitational field that is here computed with the
polyhedron or the mascons approach.

The field is computed in a 3D grid of 50× 50× 50 points along the
axes of the body-fixed reference frame. The dimensions of the analysed
space are relative to the selected body, indeed the grid is 5 times the
dimension of the body in each coordinate direction.

However, the visualization of the relevant quantities is more insight-
ful with a 2D projection onto one of the coordinate planes. For this
reason, the use of these projections is very frequent in this thesis, and
the associated plane will be specified from time to time.

3.1.1 67P Churyumov-Gerasimenko

The comet 67P Churyumov-Gerasimenko has an interesting shape com-
posed by two lobes: the large one has dimensions 4.10× 3.30× 1.80km
and the small 2.60× 2.30× 1.80km. This two-masses geometry is very
useful for the purposes of this work, since it can be compared with a
simplified two mascons model. This could be exploited to describe the
dynamics around the comet with the techniques typically available in
the restricted three-body problem.

The model available for this body is highly detailed thanks to the
European Space Agency’s Rosetta mission. In fact, the Rosetta mission
was launched on 2 March 2004, then rendezvoused and entered in a
close orbit with the comet on 10 September 2014. The cameras on-board
of this spacecraft captured several images from a reduced distance,
and consequently the available data are numerous and accurate. The
obtained shape model is surprisingly irregular, and according to the
first hypothesis, it could be the result of a contact binary formed by
low-speed accretion between two separate objects, or the consequence of
uneven erosion due to ice sublimating from its surface during previous
Sun flybys. This body has relatively small size and shows to have a low

56



3.1. Gravitational Influence of Selected Objects

x [m] ×10
4

-1 -0.5 0 0.5 1

y
 [

m
]

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

U
 [

J 
k
g

-1
]

0.05

0.1

0.15

0.2

0.25

0.3

(a) Gravitational Potential, U .

x [m] ×10
4

-1 -0.5 0 0.5 1

y
 [

m
]

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

||∇
U

 ||
 [

m
 s

-2
]

×10
-5

2

4

6

8

10

12

14

16

(b) Gravitational Attraction, ‖∇U‖.

Figure 3.1: 67P Churyumov-Gerasimenko Gravity Field with ∼ 104 faces Poly-
hedron Model.

density, ∼ 400 kg/m3, and a high level of porosity, ∼ 70− 80%; therefore,
a limited gravitational attraction is expected.

In figure 3.1, the potential and the gravitational attraction of the
comet 67P are shown. In these images the quantities are projected onto
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Figure 3.2: 67P Gravitational Attraction, ‖∇U‖, on xz−plane.

the xy−plane of the body-fixed reference frame. This 2D view has been
chosen because it shows the two characteristic bulges of the objects and it
is the most significant in this case. The first thing that can be noted is the
irregularities of the field close to the surface of the body, and obviously,
it reflects the actual shape of the object. Then, both the potential and
the gravitational attraction tend to be more regular as the field point
moves away from the main attractor. This is reasonable because, if the
distance from the body increases, its shape becomes negligible and the
field approaches the one generated by a point particle. However, in
figures 3.1a and 3.1b the field is still elongated at the borders of the grid.
The resulting elongation is correctly oriented, with the x axis that is
longer than the y one, in agreement with the shape of the body.

The gravitational acceleration, even close to the surface, is con-
firmed to be particularly low, with a maximum value equal to
amax = 1.74× 10−4 m s−2. In practice the attraction on the comet 67P
Churyumov-Gerasimenko is more than a hundred thousand times
weaker than on Earth.

The same plot can be repeated on different planes in order to under-
stand the field evolution, with a three-dimensional point of view. In fact,
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Figure 3.3: 67P Gravitational Attraction, ‖∇U‖, on yz−plane.
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Figure 3.4: 67P Gravitational Attraction, ‖∇U‖, on xy−planes.
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figures 3.2 to 3.4 show the gravitational attraction from different angles,
and the relative viewpoint is indicated in the captions of each figure. It
is interesting to note that, as seen from the yz−plane, the comet 67P has
a certain circular symmetry and this feature is obviously reflected in the
gravitational field, as can be observed in figure 3.3. Instead, in figure 3.2
the elongation of the body, and accordingly, of the gravitational field,
is significant, and the differences with the gravitational environment
generated by a centrobaric body are evident even at a great distance
from the comet.

All these plots share the already noted characteristic of the gravita-
tional field to be highly irregular close to the surface, and more regular
far from the object. This is a universal feature that characterizes the
gravity field of all the analysed body and hence, in general, of all the
existing objects. Having in mind this concept, any lower fidelity model
has higher errors close to the surface of the body, and becomes more
accurate farther from the asteroid or the comet. This aspect will be anal-
ysed in the following sections, but it is already reasonable to expect this
kind of result.

3.1.2 216 Kleopatra

The asteroid 216 Kleopatra, discovered at the end of 19th century, is a
main belt asteroid with relatively large dimensions: 217 × 94 × 81km.
According to [11], Kleopatra is a contact binary and the two lobes would
separate from each other, creating a true binary system, if it were spin-
ning faster. Its shape model has been obtained from ground observations,
but it is still quite detailed, showing clearly its characteristic dog-bone
shape.

First of all, from the xy−plane in figure 3.5, it can be noted that
Kleopatra generates a strong gravitational field with respect to 67P
Churyumov-Gerasimenko, and this is reasonable since its dimensions
are remarkably larger than the ones of the comet, and being an asteroid,
it has a higher bulk density. The maximum acceleration value at the
surface is amax = 0.0487m s−2, which is only ∼ 200 times smaller than
the value on Earth.

Then, even in this gravity field, some analogies with a two-masses
system exist; however, the high elongation is more relevant. Indeed, in
the case of Kleopatra, the field is still noticeably elongated at a very large
distance from the body. This feature helps to highlight an important
concept, which is related with the approximation of any gravitational
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Figure 3.5: 216 Kleopatra Gravity Field with∼ 5×103 faces Polyhedron Model.

field with the spherically symmetric one, if the point is far enough
from the attractor. In fact, as already mentioned before, as the distance
increases from the main body, all the irregularities become negligible
and the object can be approximated with a point particle. Nevertheless,
the elongation of a body is one feature that can be noticed even from
a great distance, for this reason, the elongated bodies tend to have a
field that is more different from the centrobaric one in a larger portion of
space. This aspect will be considered again, when the field of elongated
bodies will be approximated with a lower fidelity model.

3.1.3 4179 Toutatis

4179 Toutatis is a Mars-Earth crosser asteroid with a chaotic orbit gener-
ated by a resonance with Jupiter. It is classified as a potentially hazardous
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Figure 3.6: 4179 Toutatis Gravity Field with ∼ 5× 103 faces Polyhedron Model.

object, since it makes close approaches to the Earth. Its shape model is
quite detailed, because it has been obtained from ground observations
during the asteroid’s Earth flybys, and from images captured by the
Chinese unmanned lunar probe, Chang’e 2, which flew close to this ce-
lestial object in 2012. Toutatis dimensions are 4.75× 2.4× 1.95km and its
maximum gravitational attraction at the surface is amax = 0.00188m s−2,
i.e. ∼ 5000 times weaker than on the Earth. It can be noted that its di-
mensions are comparable to those of 67P, but its gravitational attraction
is significantly higher. This is reasonable because the density of Toutatis
is much higher than the one of the comet Churyumov-Gerasimenko.
In figure 3.6, the gravitational potential and attraction of Toutatis are
shown projected onto the xy−plane. From these images, the features
of an elongated object can be recognized, and similar considerations to
those for Kleopatra can be made. The large bulge that Toutatis has on
the negative side of the x−axis generates a gravitational attraction that
is quite large, if compared with the part of the body that is lying on the
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Figure 3.7: 433 Eros Gravity Field with ∼ 104 faces Polyhedron Model.

positive half of the same axis. This feature is positive for the stability
of orbits around that side of the asteroid, and it is interesting to design
missions around that celestial object, as will be highlighted with some
simulations in chapter 5.

3.1.4 433 Eros

433 Eros is a Mars crosser asteroid approximately 34.4× 11.2× 11.2km
in size that was discovered at the end of the 19th century. It is recognized
as a potential Earth impactor, and it is one of the most observed Solar
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System’s objects in its range of dimensions. It was accurately studied by
the APL-Nasa’s space probe, NEAR-Shoemekar, at beginning of the new
millennium. The mission was supposed to rendezvous with the asteroid,
orbit it several times and land on its surface. The mission was successful
and Eros was the first asteroid orbited by an Earth probe. Consequently,
the available shape model of this object is highly detailed, and also the
physical characteristics are well defined.

The obtained gravitational field is shown in figure 3.7 with a projec-
tion onto the xy−plane. The field of Eros shows features that are similar
to those of the previous bodies: the elongation is still evident quite far
from the surface of the body, the gravitational attraction is particularly
strong close to the main lobes of the body and it is pretty irregular in
vicinity of the surface. The maximum gravitational attraction at the
surface is amax = 0.00442m s−2, approximately 2000 times weaker than
on the Earth’s surface.

This is the only shape model, among the selected bodies, which is
not aligned with the principal inertia reference frame. Indeed, there is
a small deviation angle, around the ẑ axis, between the shape model
reference and the B reference that is used in this work. This is not a
problem for the present purposes, but the shape model will be rotated,
to be correctly used in the equations of motion.

3.1.5 1580 Betulia

The asteroid 1580 Betulia is an Amor asteroid that was discovered in the
mid of the 20th century. Its shape has been determined from light curves
obtained with ground observations. According to [27], it could be an
extinct comet nucleus, because of its unusually high orbital inclination
and its carbonaceous composition. Moreover, the derivation of its shape
model was quite interesting because of the uniqueness of its triple-
peaked light curve.

From the most recent data available, the field shown in figure 3.8 was
obtained. Betulia dimensions are 6.29× 6.59× 4.12km and its maximum
gravitational acceleration at the surface is amax = 0.00341m s−2, which is
∼ 3000 times lower than the Earth’s gravitational acceleration.

This asteroid is not completely spherical, since it has one flat side and
its polar diameter is lower than its equatorial one. However, compared to
the other bodies that are currently analysed, it can be used as a reference
for the class of the spherical asteroids. Indeed, its elongation is limited
in all the three main dimensions, and this is confirmed also from the
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Figure 3.8: 1580 Betulia Gravity Field with ∼ 5× 103 faces Polyhedron Model.

almost circular symmetry of the gravitational potential projected onto
the xy−plane, as shown in figure 3.8a. Furthermore, looking at the
same figure, the triple-peaked light curve can be explained considering
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the triangular deformation of Betulia along its equator; obviously, this
is reflected in the gravity field and determines some features of the
dynamical environment in the vicinity of this body.

3.2 Gravity Models Comparison

In the previous section the gravitational fields were all computed by
means of the polyhedron approach, and it is reasonable to wonder
what are the differences with the results obtained exploiting the other
modelling technique: the mascons approach.

Moreover, it is extremely interesting and important to understand
the validity and the accuracy of different methods. The importance of
this comparison can be easily explained having in mind that the absolute
best technique does not exist. In fact, each procedure can have positive
aspects and drawbacks, and it is more valuable to delineate the limits of
validity and the range of application of a method. In this way, the best
modelling approach, according to the current problem requirements,
can be selected. For example, the convergence problems of the spherical
harmonic expansion close to the surface of the irregular body restrict
the usage of this technique for the purposes of this thesis, and thus it is
not used in this work. Nevertheless, the analytical analyses that can be
carried out with the series expansion could be extremely useful for other
applications.

First, to have a preliminary and insightful overview on the differences
between the polyhedron and the mascons approach, their results can be
compared using geometries that are simpler than the real ones.

3.2.1 Sphere and Ellipsoid Analysis

The two gravitational modelling techniques are now compared on a
sphere and on two axially symmetric ellipsoids. The study of these
simple geometries allows focusing the analysis on the general differences
between the two different approaches, with the goal to define some
guidelines that are valid for all the particular real situations.

The sphere has radius equal to 10 m and its field is computed using
a ∼ 3000 faces polyhedron and ∼ 5000 mascons on an evenly spaced
grid. The overall mass of the spherical body is maintained as constant
between the two different techniques. The potential and the gravita-
tional attraction are evaluated in a 3D grid with 125000 points around the
central body, and then the relative error between the two techniques is
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Figure 3.9: 5000 Mascons and 3000 faces Polyhedron approach comparison on
a 10 m Sphere.

computed. The polyhedron model is assumed to be more accurate than
the mascons one, since its fidelity depends only on the shape approxima-
tion of the body. In this case, the sphere is very well reproduced with the
chosen number of faces, and therefore the polyhedron model is taken as
a reference to estimate the relative error of the mascons approach. As
example, the relative error on the gravitational potential is computed, in
percentage, as:

UError = 100×
∣∣∣∣UPoly − UMascons

UPoly

∣∣∣∣ , (3.1)

and in a similar manner the error on the attraction is available.
The result obtained, on the xy−plane, is reported in figure 3.9. As

a first remark, the error is high close to the surface and decreases at a
greater distance from the body. This can be explained considering than
the real solid body is replaced with a discrete number of point masses,
and close to the surface, this difference is more evident. Then, the lobed
shape of the error can be noted, and it can be explained assuming that the
point masses are represented as spheres that fill the volume of the body,
and that they touch without overlap. In this way, a cubic differential
volume of the real continuous body can be replaced with its inscribed
sphere, but each sphere occupies only 52% of the original volume of the
cube, and its density is twice the original. So, if the gravitational field
of a unit mass cube is compared with the field of a unit mass inscribed
sphere a lobed error pattern is obtained. Hence, the lobed shape of the
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error is the typical result for the mascons approach, and the obtained
pattern depends on the distribution of the point masses inside the body.

In figure 3.9a, the maximum error of the mascons approach is around
0.25%, while in figure 3.9b the error is one order of magnitude higher,
and its maximum value is approximately equal to 2%. This is another
general feature of the comparison of the mascons approach with the
polyhedron model; in fact, the acceleration field is normally less accurate
than the potential field. In the mascons approach, the source of the field
is a point mass, which is a singularity, and the differentiation process
enhance this problem. Thus, the mascons gravitational attraction has
a large error with respect to the potential, and the region in which the
error is still relevant extends well away from the body.

Obviously, the modelling error is proportional to the mascons resolu-
tion, and with a larger number of point masses, the error can be further
reduced. However, according to [55], the number of mascons needed
is inversely proportional to the cube of the size of each mascon. As a
consequence, to reduce the error of the mascons model of one order of
magnitude, the number of point masses has to be increased, in general,
of three orders of magnitude.

The same analysis can be repeated also with simple elongated bodies;
in this case two axially symmetric ellipsoids. These bodies are assumed
to have the same density and transversal dimensions of the sphere
presented before. So, the semi-axes along ŷ and ẑ are equal to 10 m.
The ellipsoids have been discretized with a ∼ 3000 faces polyhedron
and ∼ 5000 gridded mascons. The x̂ dimension characterizes the two
different cases with two different elongation levels: one ellipsoid has the
third semi-axis equal to 20 m, while the other has that semi-axis equal to
50 m. They will be referred to as 2/1/1 and 5/1/1 ellipsoids, respectively.
The relative errors between the mascons and the polyhedron attraction
are reported in figure 3.10.

Some considerations on these plots are the same to the ones discussed
before with the spherical case, showing that these features are related
with the mascons approach and are independent from the geometry of
the object that is being considered. Nevertheless, looking at the two
different ellipsoids, another important characteristic of this modelling
technique can be highlighted. The maximum error in figure 3.10a is in
the order of 3%, and in figure 3.10b is around 8%. For the spherical case,
it was ∼ 2%. This is not casual, and in general, the mascons approach
produces less accurate results when working with elongated bodies.
The spherical symmetry of the field generated by a point mass works
better with bodies that maintain this symmetry also in the mascons

68



3.2. Gravity Models Comparison

x [m]
-60 -40 -20 0 20 40 60

y
 [

m
]

-50

0

50

∇
U

E
r
r
o

r
  

[%
]

0

0.5

1

1.5

2

2.5

3

(a) Percent error on gravitational attraction, 2/1/1 ellipsoid.

x [m]
-100 -50 0 50 100

y
 [

m
]

-50

0

50

∇
U

E
r
r
o

r
  

[%
]

0

2

4

6

8

(b) Percent error on gravitational attraction, 5/1/1 ellipsoid.

Figure 3.10: 5000 Mascons and 3000 faces Polyhedron approach comparison on
20 m and 50 m ellipsoids.

distribution. With oblong geometries, several spherical fields must be
aligned to produce the elongated shape of the overall contribution; this
leads to a higher error on the longer side of the object. In fact, the error
close to the shortest side of the ellipsoid is lower than the one along the
x−axis, as can be seen from the small lobes on the left and the right side
of the body. The mascons approach is more suitable for computing the
field close to quasi-spherical and not elongated geometries.

The comparison between polyhedron and mascon approach can be
carried out also on the real geometries of the selected celestial bodies.
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Figure 3.11: ∼ 2500 mascons and∼ 104 faces polyhedron approach comparison
on 433 Eros.

As an example, the Eros case in reported in figure 3.11. Here, the error is
higher and less intuitive to understand, because of the several irregulari-
ties that are present on the real asteroid. However, some characteristics
that have been described before are still present and evident; this is in
general true for all the real geometries that can be analysed with this
method.

As a general remark for the gridded mascons approach, the shape
of the error is dependent from the number of point masses that are
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Figure 3.12: Percent error on gravitational potential and attraction of 15000
faces polyhedron on 67P with respect to the Hi-Fi polyhedron model.

used. This is because the distribution of mascons in a grid changes for
a different number of masses, and these different arrangements are not
determined by the shape of the body, but just from a simple subdivision
of the internal volume. In this way, some characteristics of the field
of the object can be accurately represented with a certain resolution of
the grid and not with a different one. So, even if the magnitude of the
inaccuracy normally decreases if the number of mascons is increased,
the shape of the error does not follow a well defined trend and the error
analysis should be performed from case to case.

All these aspects will be discussed in section 3.2.3. Now it is useful
to understand the influence of the number of faces on the results of the
polyhedron shape approach.

3.2.2 Polyhedron Shape Approach Analysis

The polyhedron shape approach gives results with an accuracy deter-
mined by the resolution of the shape discretization. For this reason,
different results of this modelling technique have been compared for
different number of faces of the polyhedron shape model. The Delaunay
triangulation, which is used in this thesis, allows rescaling the original
shape model and obtaining a new one with an arbitrary number of faces.
Obviously, the geometry of the body is slightly modified and the models
with a low number of polyhedra lose several surface details. Notwith-
standing, the scaling algorithm tries to preserve the overall shape and
volume of the body, and if a reasonably low number of faces is employed,
the model drops only the finer details on the surface of the object. In the
following analysis, the Hi-Fi polyhedron model, ∼ 2× 104 faces, is the
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Figure 3.13: Percent error on gravitational potential and attraction of 1000 faces
polyhedron on 67P with respect to the Hi-Fi polyhedron model.

reference to estimate the relative error of the different Lo-Fi models. The
strategy to perform the comparison is the same that has been presented
in section 3.2.1, and the only difference lies in the involved quantities.
Now, indeed, is not the mascons approach to be compared with the Hi-Fi
polyhedron model, but several Lo-Fi polyhedron models are compared
with a higher fidelity field obtained with the same technique.

In figure 3.12, the Hi-Fi model is compared with a very similar Lo-Fi
model composed by N = 15000 faces. While, in figure 3.13, the Lo-Fi
model has N = 1000 faces and the difference with the reference field is
more noticeable. As expected, the error is higher when a lower fidelity
model is used, and the gravitational attraction has a large error if com-
pared with the potential. However, in this case, the difference is not as
apparent as in the mascons case, since the polyhedron has not dimen-
sionless elements and the differentiation process operates on smooth
quantities. Even in this example, the error is higher close to the surface,
mainly because the details on the surface are different or not present
anymore when a lower number of faces is used.

At this point, in order to have a general trend of the error, as a
function of the number of employed faces, several Lo-Fi models are com-
pared with the Hi-Fi polyhedron model. Nevertheless, a more intuitive
understanding of the behaviour is possible if the error data are reduced
in a handy form.

The error data contained in the 3D grid around the body are statis-
tically analysed in order to obtain some quantities that can be easily
compared. In the present situation, involving different resolution poly-
hedron models, the mean and the maximum values of the error in the
field are evaluated and compared. They are sufficient to describe the
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Figure 3.14: Percent error on gravitational attraction of N faces polyhedron on
67P with respect to the Hi-Fi polyhedron model.

different instances, since the obtained results have approximately the
same variance and the error distribution is well defined using these
two parameters. Actually, only the mean of the error is necessary to
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-

Figure 3.15: Required computational time with N faces polyhedron model on
a 50× 50 2D grid, with parallel computing techniques on a quad-core 2.50 GHz
processor.

characterize the error field, but the maximum value is useful anyway
to know the bounds of the resulting accuracy. Figure 3.14 shows the
evolution of these two quantities for different values of N on the comet
67P Churyumov-Gerasimenko.

The trends in figure 3.14a and figure 3.14b are the result of a nonlinear
regression on the available data, the obtained best-fitting equations are
presented in the legend of the plots. These particular relations have not
general validity, since they are evaluated for a particular shape model.
However, these trends are obtained also for other shapes, and in general,
the mean of the error shows to approximately decrease with the inverse
of the square root of N . This result can be used to estimate the increase
in accuracy that can be obtained with a different number of faces with
respect to an already known error field.

The increase in accuracy is not for free, and the drawback is the
increase in the needed computational time. The threshold to define
a tolerable time depends on the particular application; therefore, the
optimal number of faces that balance a reasonable level of accuracy
with an acceptable computational time cannot be univocally defined
and the requirements must be stated from case to case. Anyway, the
time required to evaluate the different polyhedron fields is shown in
figure 3.15, and these values could be used as a reference for future works.
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(a) ∼ 500 point masses. (b) ∼ 2500 point masses.

Figure 3.16: Gridded mascons approach on 216 Kleopatra.

In this analysis, the gravitational potential and attraction are computed
using a MATLAB R© code that makes use of parallel computing techniques
on a quad-core 2.50 GHz processor. The code computes the field for a
given z value on a 50 × 50 2D grid, thus the time to compute these
quantities on a single field point is tC/2500. The obtained best-fitting
equations show, as expected, a linear relation between the different
values of N .

A similar analysis can be carried out for the gridded mascons ap-
proach, with the purpose to see how a different number of mascons
affect the result if compared with the Hi-Fi polyhedron model.

3.2.3 Mascons Approach Analys

The gridded mascons approach fill the volume with point masses ar-
ranged in a grid that is obviously dependent from the number of used
mascons, as can be seen in figure 3.16, for the asteroid 216 Kleopatra. In
addition, the standard gridded mascons use Nm point masses of equal
mass m = M/Nm. The resulting field is more accurate if a larger number
of mascons is used, but as already said, also the shape of the error is
dependent from Nm. A dissimilar distribution of masses can determine
a better or worse representation of the particular body, and if the object
is filled with a regular grid, the result can be particularly different even
if a similar number of mascons is used. That is because the gridded ap-
proach creates the evenly spaced grid along x̂, ŷ and ẑ regardless of the
actual shape of the body. This problem is notably relevant if Nm is low,
since, with few masses, adding or subtracting only one element can de-
termine a drastic change in the mass distribution, and as a consequence,
in the obtained field.
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Figure 3.17: Percent error on gravitational attraction with gridded mascons on
216 Kleopatra.

This concept is more clear looking at figure 3.17, where the errors
of the gravitational attraction are computed comparing two different
mascons models and the Hi-Fi polyhedron. The maximum error for the
∼ 2500 mascons, figure 3.17b, is obviously lower than the error for the
model containing ∼ 500 mascons, figure 3.17b, but there is no actual
relation between the two shapes and distributions of error. This can be a
problem, because there is not a deterministic evolution for the reduction
of the error and each case must be analysed to understand the level of
accuracy. For sure, the general rule to increase Nm in order to reduce
the error is globally valid, but a not negligible level of randomness is
still present. Moreover, it is reasonable to wonder if a better way to
distribute the Nm mascons exist. Hence, an optimized version of the
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mascons approach is developed and presented. Then, both the gridded
and the optimized mascons are compared together, as a function of the
number of used point masses.

3.3 Optimized Mascons Approach

The usual mascons approach fills the volume of the body distributing
the point masses in an evenly spaced grid, and assumes that all the
mascons have the same mass. This method can be reasonable if an
extremely large number of elements is used, but with few masses the
gridded distribution can be not effective, and the problem concerning
the erratic reduction of the error can be tedious for certain applications.
The developed optimized version of this modelling technique tries to
improve the performances of the mascons approach distributing the
point masses within the body according to certain optimization criteria.

The basic goal of the optimized mascons approach is to find a certain
distribution of point masses recreating the field of the Hi-Fi polyhedron
model, which in this work is assumed as the model of reality. It is worth-
while to point out that the desired optimum distribution of mass is not
the real mass distribution of the actual body, which is usually unknown.
Certainly, if the exact mass model were available, the optimum solution
would be the one closest to the reality, with the purpose to obtain the
most accurate gravitational field. Notwithstanding, the best model that
is available here is the constant density Hi-Fi polyhedron, and for this
reason, the optimization algorithm attempts to match the field generated
by this reference model.

The first element that has to be defined to run the optimization
process is the objective function. This is the function evaluated at each it-
eration step and it is needed to understand which is the best solution. In
fact, the optimal solution is the one that minimizes the objective function.
This aspect has to be accurately managed, since it determines the result
of the optimization process, and a not appropriate objective function
could lead the algorithm towards a wrong best solution. The aim of this
research work is to find a good representation of the gravity field around
an irregularly-shaped body to be used to describe the dynamics of a
particle in its vicinity. Therefore, the goal of the optimization problem
is to find the solution that minimizes the error in the gravitational con-
tribution inside the equations of motion: the gradient of the potential,
∇U .
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This optimization goal could be implemented in several ways, and for
sure, there were other meaningful possibilities to find the best solution.
For instance, the algorithm was also tested minimizing the error on the
potential, UError, but the results were not satisfactory for the gravitational
attraction. Then a combined objective function, involving both the
potential and its gradient, was analysed, but even in this case the results
were not as good as when only ∇UError is minimized. So, the best
solutions to be used in the dynamical model are obtained minimizing
the error on ∇U , which is anyway an upper bound for the error on the
gravitational potential, and thus, UError is guaranteed not to diverge.

The implementation of the minimization of ∇UError is another im-
portant aspect to consider, indeed the optimization problem can be
developed for a global quantity or a local one. In this work the mean of
the error on the whole 3D grid is the global quantity to be minimized.
This choice is supported from several tests using any possible estimator
of the error on the gravitational attraction, but the best results were
obtained using the mean value. As example, the minimization of the
maximum performs well locally, close to the surface of the body, but
in general, gives high errors and the obtained field accuracy is low. In
addition, a combined minimization, e.g mean and maximum value or
mean and variance, was tested, but the best global solutions is found
when the minimum mean of the error is found.

Hence, the optimization algorithm find the best mascons distribu-
tion that minimizes the mean of error on the gravitational attraction
computed on a 125000 points 3D grid surrounding the main irregular
body. The error is computed as a percent value with respect to the Hi-Fi
polyhedron model. The algorithm can move the mascons within the
volume of the body and the mass is not constrained to be the same for
each point mass. As long as the global mass of the body is maintained
constant and no point mass is outside the physical boundaries of the
celestial object, any position and any mass value for the single mascons
are allowed. Consequently, this is a constrained optimization problem
and it is implemented using a genetic algorithm. The genetic algorithm
is a valid algorithm since both the objective function and the constraints
are non-smooth, and there is no analytical and differentiable formulation
of the problem. The output of the optimization process is aNm×4 matrix
containing the position and the mass value of each mascons.
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3.3.1 Genetic Algorithm

The genetic algorithm is a method for solving both constrained and
unconstrained optimization problems that is based on natural selection,
the process that drives biological evolution [29]. The idea behind this
kind of evolutionary algorithms is probably due to Alan Turing, who
proposed the concept of a learning machine based on the principles of
evolution in 1950. All the practical implementations were developed in
the second half of the 20th century for several and different applications.

The genetic algorithm begins by generating an initial population com-
posed by a random set of individual solutions that satisfy the imposed
constraints. Then, at each step, the population is modified and the best
temporary solution is identified. As a result, over successive iterations,
the population evolves towards an optimal solution, because the genetic
algorithm selects different individuals from the i-th population to be
parents, and uses them to produce the children for the (i+ 1)-th gener-
ation. The genetic algorithm allows solving problems, like the present
one, which are not well suited for standard optimization algorithms.

The rules that are applied at each step to create the next generation
from the current population are: selection rules to select the individual
solutions, called parents, that contribute their genes to the population
at the next generation, crossover rules to combine two parents to form
children for the next generation, and mutation rules to apply random
changes to individual solutions to form children. This algorithm differs
from a classical optimization technique, because it works with an en-
semble of solutions, and not with a single point, but the main difference
is related with the large use of random number generators instead of
deterministic schemes.

The genetic algorithm creates three types of children for the next
generation: elite children representing a group of the best solutions that
survive to the next generation, crossover children created by combining
a pair of parents according to the crossover rules, and mutation children
created by introducing random changes to a single solution, as specified
by the mutation rules.

The constraints are enforced at each iteration step, and the individ-
uals that do not satisfy the constraint equations are suppressed and
eliminated from the next population; their genes are likely to disap-
pear and they become extinct. This process is carried out by means
of a penalty algorithm that finds feasible individuals among a certain
population.
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The algorithm converges to the optimum solution when the change
in the objective function is less than a certain tolerance between two
consecutive iterations.

3.3.2 Optimization Algorithm Definition

In this thesis, the algorithm is practically implemented using a dis-
cretized volume that is already constrained inside the body. The dis-
cretization of the domain of the possible solutions is negligible for prac-
tical applications, since there are more than ∼ 106 available positions
within the volume. Hence, the problem is an integer optimization prob-
lem, and the constraints are directly applied on the domain of the possi-
ble solution, i.e. all the individuals are feasible. The reason for this choice
is the computational speed, and this procedure has been proved to be
equivalent to a continuos standard genetic algorithm with constraints
enforced between two consecutive generations.

The algorithm tries to find a global optimal solution, and thus the
population diversity is as high as possible. The initial range to create
the first random generation is particularly wide and tries to include the
largest variety of genes. Moreover, the defined mutation and crossover
rules allow spanning as much as possible the domain of all the feasible
solutions. The tuning of the genetic algorithm parameters has been
performed on simple model where the optimum solution was known.
The robustness and the effectiveness of this procedure have been verified
computing the best solution for a single case several times. Then, the
consistence of this collection of optimal solutions is checked, and only if
it is confirmed the optimum mascons distribution is saved.

3.3.3 Optimization Results

This modelling technique has been applied with all the selected bodies,
but only two results are presented here. In figure 3.18, the optimized
mascons approach is employed on 4179 Toutatis and in figure 3.19 on
67P Churyumov-Gerasimenko.

These plots are representative for the main advantages of the opti-
mized mascons approach. In fact, as a first remark, the reduction of
the error follows a reasonable trend, and it is almost possible to pre-
dict the evolution of the error shape. Moreover, there is logic in the
distribution of the point masses inside the body and this determines, in
general, low errors with respect to the gridded mascons approach. As a
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(a) Optimum mascons, Nm = 2
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(b) Percent error on gravitational attrac-
tion, Nm = 2

(c) Optimum mascons, Nm = 500
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(e) Optimum mascons, Nm = 2500
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Figure 3.18: Optimized mascons approach on 4179 Toutatis.
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(a) Optimum mascons, Nm = 2
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(c) Optimum mascons, Nm = 500
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(e) Optimum mascons, Nm = 2500

x [m]

-6000 -4000 -2000 0 2000 4000 6000

y
 [

m
]

-6000

-4000

-2000

0

2000

4000

6000

0
.3

5
1
8
8

0
.7

0
3
7
6

0.35188

0.35188

0.70376

0.703760.35188

0
.3

5
1
8
8

0
.7

0
3
7
6

∇
U

E
r
r
o
r
  

[%
]

0

2

4

6

8

10

12

14

(f) Percent error on gravitational attrac-
tion, Nm = 2500

Figure 3.19: Optimized mascons approach on 67P.
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consequence, the 2 mascons model now produces acceptable results that
can be utilized for a preliminary study of the dynamical environment.
Obviously the level of the error is high, close to the surface in particular,
but this extremely simple model allow the usage of the circular restricted
three-body problem equations. This formulation has several advantaged,
since it is extensively studied and allows an insightful overview of the
environment in the vicinity of these celestial objects [14, 15].

The error clearly decreases for an increasing number of masses, but
in order to have a better understanding about the relation between the
number of mascons and the error, a statistical analysis, similar to the one
presented in section 3.2.2, is performed.

3.4 Mascons Models Comparison

The gridded and the optimized mascons approaches are here compared
exploiting the mean value of the error on the gravitational attraction
around the irregular body. This quantity is used to characterize the error
field, and in addition, it is the objective function in the optimization
problem to find the best mascons distribution. Therefore, this section
helps also to directly understand the improvement of the optimized
approach over the gridded one. Figure 3.20 shows the relation between
the mean value of the error and the number of point masses, Nm, on the
comet 67P Churyumov-Gerasimenko. It is worth remembering that the
computed relative error is with respect to the Hi-Fi polyhedron model.

A nonlinear regression is accomplished on the available data and the
obtained best-fitting equations are presented in the legend of the plot.
These relations are quite interesting since they both agree with the 3-to-1
order of magnitude rule, already described in section 3.2.1. However,
the optimized mascons results are very well represented by this trend,
while the gridded approach has the already mentioned component of
randomness. The 3-to-1 trend is generally followed also by the standard
approach but to completely know the level of accuracy each single case
must be analysed.

The good agreement of the optimized technique with this trend
means that the optimization process improves the performances of the
mascons approach up to its theoretical limit. Hence, to reduce the error
of the optimized mascons model of one order of magnitude, Nm has to
be increased by three orders of magnitude. In this way, the accuracy
of an optimized mascons model can be precisely estimated knowing
the accuracy of a certain reference field. Indeed, the particular fitting
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Figure 3.20: Percent error on gravitational attraction with Nm mascons on 67P.

equations shown in figure 3.20 are valid for the analysed case of the
comet 67P, but they can be easily scaled for another body once the error
for one Nm value is computed.

As already said, with few masses the gridded mascons is extremely
dependent from the exact number of employed masses, and furthermore,
the improvement due to the optimization process is remarkable. Conse-
quently, for low Nm the optimized approach is extremely valuable and
must be preferred to the standard modelling technique. On the other
hand, for numerous point masses this difference tends to be small, or
in practice, unreal. So, if Nm is large enough, the effort to optimize the
mass distribution is not worth. This is reasonable since, when many
masses are employed, the differences between distinct mass allocations
are very limited.

A large number of mascons requires a longer computational time.
Anyway, in this case, the needed time is always tolerable and there is no
practical necessity to find a balance between accuracy and computational
burden. In the current analysis, the gravitational potential and attraction
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Figure 3.21: Required computational time withNm mascons model on a 50×50
2D grid, with parallel computing techniques on a quad-core 2.50 GHz processor.

are computed using a MATLAB R© algorithm that makes use of parallel
computing techniques on a quad-core 2.50 GHz processor. The field is
computed for a given z value on a 50 × 50 2D grid, thus the time to
obtain these quantities on a single field point is tC/2500. Similarly to the
polyhedron approach, there is an obvious linear relation between Nm

and tC, which is shown in figure 3.21. These results could be used as a
reference for future studies.

3.5 Optimum Lo-Fi Model

The analysis of the different gravity field models can be concluded com-
paring the different modelling techniques on the shape of the selected
celestial bodies. In this way the optimum Lo-Fi model can be defined; it
has a low fidelity with respect to the assumed Hi-Fi model, but it allows
saving computational resources. For certain applications, this could be
a decisive feature, and therefore, the introduction of this concept is ex-
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tremely important. In practice, the optimum Lo-Fi model has an optimal
balance between level of accuracy and required computational effort.

This study is carried out comparing a polyhedron model with a
low number of faces, two gridded mascon models and their relative
optimized versions. Actually, also an additional 2 mascons model was
considered as a separate technique. However, its performances are poor
and it cannot be properly compared with the other Lo-Fi models. Its
range of applications is well delineated, but it is limited and out of the
targets of this research work. Hence, the obtained results with Nm = 2
are not presented here.

In figure 3.22, the obtained data are shown by means of two differ-
ent convenient statistical quantities and a useful bounding parameter.
In fact, the mean and the standard deviation define the error distribu-
tion, and the maximum establishes the limits of the model accuracy,
close to the surface of the body in particular. It is important to note
that the error is not guaranteed to be distributed according to a folded
normal distribution, and the actual probability density function is often
unknown. Nevertheless, the mean and the standard deviation can be
used to characterize the distribution of the error field independently
from this information.

As a first remark, the optimization process increases the perfor-
mances of the ∼ 500 mascons model, while the ∼ 2500 optimized mas-
cons is not better than the equivalent gridded model. This was already
pointed out in section 3.4, but is here confirmed for all the different
shape models. In addition, looking at the mean and maximum values in
figures 3.22a and 3.22b, the optimization algorithm works at its best with
the mean of the error, in agreement with the definition of the objective
function to be minimized. Furthermore, both gridded and optimized
mascons approaches produce good results for non-elongated bodies,
and are less effective with the oblong ones. Then, focusing on the mean
of the error, the mascons approach with a large Nm produces satisfactory
results, while the optimized version should be preferred if few masses
are employed.

The polyhedron model with 1000 faces has higher mean values of the
error, and this can be explained considering the slight shape alteration
produced by a coarse discretization of the body. However, the Lo-Fi
polyhedron approach performs dramatically better when the maximum
value of the error is considered, and this is due to the good results of
the polyhedron model in the vicinity of the surface of the body. On the
contrary, the mascons approach has several problems in representing
the gravitational attraction close to the singularities introduced by the
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Figure 3.23: Optimum Lo-Fi model: Required Computational Time on a 50×50
2D grid, with parallel computing techniques on a quad-core 2.50 GHz processor.

point masses. Accordingly, it produces high errors in proximity of the
body. In general, if the shape of the body is not particularly modified by
the scaling algorithm, the polyhedron approach with a reduced number
of faces is by far the best Lo-Fi model: the asteroid 1580 Betulia is an
example of this situation.

The standard deviation, in figure 3.22c, is a measure of the dispersion
of the error and it is consequently influenced by the maximum value in
the field, which can be considered as an outlier in the error distribution.
Hence, the behaviour of the standard deviation is similar to the one
in figure 3.22b, and the Lo-Fi polyhedron is the best performer in this
regard. The standard deviation is anyway not large; the errors are
concentrated close to the mean value and normally 90% of them is below
1%.

At this point, assuming that the shape of the body is fairly modified
by the scaling algorithm, the best Lo-Fi model is a combination of a
polyhedron model with few faces and an optimized mascons with a
small Nm, or in alternative, a gridded mascons with many point masses.
The first should be utilized close to the surface of the body and one of
the latter when the distance from the centre of mass is large enough.

In figure 3.23, the computational times required by the different en-
hanced modelling techniques are shown and compared. They are related
to MATLAB R© codes running in parallel on a quad-core 2.50 GHz pro-
cessor. As usual, the time to obtain the different gravitational quantities
on a single field point is tC/2500. These plots demonstrate the huge
difference between the polyhedron and the mascons approach in terms
of needed computational resources. However, the Lo-Fi polyhedron
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model requires a tolerable time, tC ' 0.10 s, to be evaluated on single
point. So, even if it is slower than the mascons approach, it is anyway
preferred when the field point is in proximity of the surface of the body

The results and conclusions obtained in this chapter are then used to
effectively and efficiently implement the dynamical model around an
irregularly-shaped body.
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Chapter 4

Rotational Dynamics of
Irregularly-Shaped Bodies

The rotational state of an irregular celestial body is important to com-
pletely describe the dynamical environment in its vicinity, because of the
coupling between its rotational motion and the associated close proxim-
ity orbital dynamics, which has been extensively described in section 2.4.
Moreover, the understanding of the spin-vector evolution of small ce-
lestial bodies could be applied to study the formation and the chaotic
events that created the Solar System. For instance, according to [25], the
rotation rates distribution of near-Earth asteroids is noticeably different
from the analogous distribution of Main Belt asteroids, in consequence
of an excesses of fast and slow rotators, which are not so conspicuous
in the distribution for the bodies in the Main Belt. Furthermore, the
accurate determination of the rotational state of Potentially Hazardous
asteroids could be exploited to accurately propagate their heliocentric
orbital path, with the result of being more precise in the impact risk
determination and related uncertainty containment. All these analyses
can be performed with a model that is able to describe and simulate the
rotational dynamics of an asteroid or a comet.

This model is presented in the current chapter, together with the
validation of the algorithms to propagate the dynamics and to compute
the external perturbations. In addition, some simulations are shown and
discussed, and a sensitivity analysis to evaluate the robustness of the
entire research work is considered.

At this point, it is worthwhile to note that the perturbative effect
are important in the framework of this thesis, since it deals with small
irregular bodies whose dynamics can be significantly perturbed by non-
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gravitational torques and gravitational phenomena generated by a third
body on short timescales.

4.1 Model Implementation

The developed dynamical model is based on the Euler’s rotation vecto-
rial equation (2.63). But, in order to facilitate the numerical integration, a
set of three scalar ordinary differential equations is written in the rotating
body-fixed reference frame, B, obtaining:

Ixω̇x + (Iz − Iy)ωyωz = mx (4.1a)

Iyω̇y + (Ix − Iz)ωxωz = my (4.1b)

Izω̇z + (Iy − Ix)ωxωy = mz, (4.1c)

where all the quantities are defined in chapter 2.
The initial conditions are specified in term of ω0 = [ω0x , ω0y , ω0z ].

The rotational kinematics is propagated at the same time using equa-
tion (2.49) with initial condition expressed by A0 equal to the identity
matrix, I3×3, since the inertial and the body-fixed reference frames are
assumed to coincide for t = 0.

Equations (4.1a) to (4.1c) are integrated with a variable order Adams-
Bashforth-Moulton PECE solver. This is a multistep solver and it nor-
mally needs the solutions at several preceding time points to compute
the solution at the current time step. The error tolerances are very strin-
gent and the accuracy of the integration procedure is always monitored
with some reference quantities.

At each iteration step of the differential equation solver the Sun-Body
direction is evaluated in the inertial frame, and then rotated in the body-
fixed coordinate system. Next, all the external perturbing torques are
computed knowing the orientation of the body in B, and their overall
contribution is represented by the vector m. This is substituted in the
set of equations (4.1), and the dynamics is propagated forward in time.

As already mentioned, the perturbations involving the interaction
with the surface of the body are computed exploiting the polyhedron
shape discretization. In this way, the only approximation that is made
is the one of discretizing the actual shape with a polyhedron, and the
obtained value is a good estimation of the real one. Moreover, the self-
shadowing phenomenon can be considered with a simple analysis of
the geometry of the problem. For this particular purpose, the Sun is
considered at an infinite distance from the body and dimensionless.
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(a) Sun-Body direction along x̂. (b) Sun-Body direction along −x̂.

Figure 4.1: Shadowing algorithm output. (The illuminated faces are pale brown,
the self-shadow faces are dark brown and the shadow faces are almost black.
The Sun-Body direction is indicated in the figure.)

As a consequence, the shadow, being generated by a point source, is
composed only by the umbra.

The shadowing algorithm begins detecting all the triangular faces
that are not directly facing the Sun: the shadow faces. These are directly
eliminated by the list of the possible self-shadowing region, and for
them the quantity cos(αi)Sh, defined in section 2.5.2, is equal to 0. Then
all the remaining faces are analysed; they are indicated as self-shadow
faces if the semi-infinite vector from the centre of the face, parallel to
the Body-Sun direction in the rotating frame, intersect the shape model.
This is made possible with a query on the Delaunay triangulation, which
is able to find the intersections between a vector and the mesh of a
body. cos(αi)Sh is equal to 0 also for the self-shadow faces. Only the
remaining illuminated faces are then used to compute the resulting solar
radiation pressure and YORP torques using equations (2.81) and (2.82).
This algorithm is executed at each integration step and it makes use of
parallel computing techniques improving the computational speed of
the whole model. An example of the shadowing algorithm output is
shown in figure 4.1.

The other two perturbative effects, third body gravitational effect and
dissipation of energy, depends from the inertia properties of the body.
These are constant quantities and their assumed values were presented
in section 2.3.2.

4.1.1 Dynamic Quantities

The results of the dynamical simulations are contained in a matrix com-
posed by the rotational state vector, V Rot(t) = [Ā(t),ω(t)]T, evaluated
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at each integration step. Here, Ā is a row vector containing all the 9
components of the rotation matrix, A. Thus, the time evolution of the
Euler angles, φ(t), θ(t) and ψ(t), and of the angular velocity, ωx(t), ωy(t)
and ωz(t), is immediately available. However, to have a better insight
on the rotational dynamics of irregularly-shaped bodies, some derived
dynamic quantities are introduced and described.

Angular momentum, h, and kinetic energy, T , are the first and the
simplest to be analysed. If there is no dissipation of energy and no
torque is applied these two quantities must be constant, and in the
inertial reference frame I , the angular momentum is a fixed vector. This
is extremely helpful, since it can be used to verify the accuracy of the
model in the torque-free motion, or to better understand the energy and
dynamic effect of the perturbations when they are applied. They can be
easily obtained from the angular velocity vector as:

h = Iω, (4.2)

and

T =
1

2
ωIω. (4.3)

The angular momentum vector can be easily evaluated in the inertial
frame by means of the rotation matrix, A.

Yet, two other quantities can defined: the obliquity δ and the dynamic
inertia ID. The former describes the direction of the angular momentum
vector in the inertial reference: it is the angle between the normal to the
orbital plane, ẑI , and the angular momentum, hI . The latter is another
constant of the unperturbed motion and it can be related with the non-
principal rotation mode of the body.

The obliquity δ can be obtained with simple geometrical considera-
tions on the angular momentum vector expressed in the inertial frame
and δ ∈ [0, π].

The dynamic inertia ID can be computed from equation (4.2) and
(4.3) as:

ID =
‖h‖2

2T
, (4.4)

it has the physical dimensions of a moment of inertia, and if the body
is in principal axis rotation state, the dynamic inertia is equal to the
related principal moment of inertia. ID is an important quantity because
it illustrates the actual rotational state of the body.
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x

ẑ
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Figure 4.2: Polhodes on Poinsot’s ellipsoid for a torque-free motion.

4.2 Model Validation

The reliability and the accuracy of the solutions obtained with the devel-
oped dynamical model is an important aspect that has to be assessed.
Several validation tests are here presented and compared with simple
and known results. Each perturbative contribution is taken into account
individually, and its results are computed using the dynamical model
that includes only the specific perturbation considered.

4.2.1 Torque-Free Motion

The first and simplest condition that can be simulated to verify the
accuracy of the whole dynamical model is the rotational motion with-
out external torques applied. In this case, the geometrical Poinsot’s
construction can be exploited to validate the equations of motion and in-
tegration algorithm. In addition, the angular momentum and the kinetic
energy must be constant and their values are monitored throughout the
integration process.
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Figure 4.3: Kinetic energy and angular momentum for a torque-free motion.

In figure 4.2, the Poinsot’s Ellipsoid is shown with some polhodes
related to different initial conditions for the angular velocity. In fact,
the polhode is the curve produced by the angular velocity vector on the
inertia ellipsoid, and in this case, the blue curves are for motion closer to
the minimum inertia axis, x̂, while the red ones are connected with the
dynamics in the vicinity of the maximum inertia axis, ẑ. Instead, when
the angular velocity is initially very close to the intermediate inertia
axis, ŷ, the black polhode is obtained. It is here confirmed the stable
rotation state in the region of the minimum and maximum inertia axes,
whereas a minor deviation from the y−axis would cause a dramatic
departure from the original condition. In figure 4.3, the magnitude of
the angular momentum and the kinetic energy are correctly constant for
a 250 d simulation without external perturbations. Obviously, also the
components of the angular momentum vector in the inertial reference
frame are constant.

The dynamical model is correctly working, but now all the perturba-
tive effects have to be validated, to prove the correctness of the whole
algorithm.

4.2.2 Third Body Gravitation

The third body gravitational effect is influenced by the relative orien-
tation of the irregular body with respect to the Sun. As already said,
this perturbation is null if one principal inertia axis is aligned with the
Sun-Body direction. Hence, to validate this perturbative contribution the
rotation of the body is controlled in order to have insightful results. For
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Figure 4.4: Validation of third body gravitational effect.

example, if the rotation period is equal to the revolution period of the ce-
lestial object around the Sun, and at the initial time, one principal inertia
axis is directed towards the Sun, the gravity gradient torque is always
equal to zero. This condition has been tested and the resulting torque
was practically null, with a numerical value below 1.50× 10−11 Nm for a
250 d simulation.

The torque due to the presence of the third body was also computed
and it was averaged over one full rotation of the comet 67P on its axis
and over one full revolution as it orbits the Sun. This was repeated for
different initial obliquity values, and in all these cases, the averaged
perturbing torque had a value below 1× 10−12 Nm, confirming what has
been said in section 2.5.1.

In figure 4.4, the rotational dynamics of 67P has been integrated
for one rotation period, starting with the minimum inertia axis aligned
towards the Sun. The spin axis is assumed to be aligned with the maxi-
mum inertia axis, and consequently, the body makes one full rotation
around ẑ, figure 4.4a. As expected, the gravity gradient torque acts only
on the spin axis and it is equal to zero for ψ = [0◦, 90◦, 180◦, 270◦, . . . ], i.e.
when a principal inertia axis is aligned with the Sun-Body direction.

4.2.3 Solar Radiation Pressure and YORP

The solar radiation pressure and the YORP effect are validated together,
since their effect can be compared. They can also be considered as two
different appearances of the same physical phenomenon due to the solar
irradiation. The YORP effect and the reflected solar radiation pressure
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Figure 4.5: Rubincam’s Wedges.

acts normally to the surface direction, while the absorbed radiation
generates a force in the Sun-Body direction. As a first assessment, these
torques can be applied on simple geometries as spheres and ellipsoids.

On the sphere, there is no radiative torque because the components
in the normal direction point to the centre of mass: they have no lever
arm. The components in the Sun-Body direction are symmetric: their
global contribution is equal to zero. In this case the algorithm produces
meaningful results with a torque always below 1× 10−16 Nm.

The ellipsoids were also employed to test the code, similarly to what
has been done to validate the third body gravitational effect. In one case,
the ellipsoid had its longest axis aligned with the Sun-Body direction for
one revolution period; the obtained torque was correctly equal to zero,
∼ 1× 10−15 Nm, for symmetry reasons. In another test, the rotational
dynamics of the axially symmetric ellipsoid has been integrated for
one rotation period around the z−axis. Even if the physical reason is
totally different, the result had the same trend of the analysis shown in
figure 4.4, which can be explained considering the symmetrical shape of
the ellipsoid.

The validation procedure was then continued exploiting the averaged
quantities over one full rotation and over one full revolution of the
body. The results are shown in figure 4.6 for the YORP effect and in
figure 4.7 for the solar radiation pressure. They are obtained evaluating
the perturbing torque for every 10◦ of rotation and revolution; these
values are then averaged and saved for different values of obliquity. Two
particular components of the torque, mz and mδ, are used to display
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Figure 4.6: Validation of YORP effect.

the outcomes. mz is the torque along the spin axis which changes the
rotation rate, while mδ acts to change the obliquity. For the current
analysis the spin axis is assumed to coincide with the axis of maximum
inertia, ẑ. The torques are normalized with respect to the maximum
moment of inertia, Iz.

The behaviour of the YORP effect is very similar for all the asteroids;
it is almost independently from the shape of the body. Moreover, all
the bodies are influenced by this perturbing torque similarly to the
Rubincam’s wedges, shown in figure 4.5. This simple but insightful shape
was introduced by David Rubincam to explain the radiative torques on
irregular celestial bodies. This object has the “windmill” asymmetry that
is needed in order to see the effect of the YORP torque; axisymmetric
figures are not influenced by this perturbation on a long period of time.

The component in the direction of the normal to the surface of the
solar radiation pressure obviously behaves like the YORP effect, but
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Figure 4.7: Validation of Solar Radiation Pressure effect for 433 Eros, (0◦− 90◦).

the component along the Sun-Body radius vector averages to zero, as
explained in section 2.5.3.

These results agree with the theoretical formulation of this phenome-
non, and hence, the algorithm is validated. However, it is interesting to
discuss a bit more in detail about all these conclusions.

The first thing that can be noted is the small contribution of these
perturbing torques, due to the small amount of momentum carried by
photons. In spite of that, the outcome must be considered coherently
with the astronomical time scales, and in this perspective, the body’s
rotation rate can be substantially perturbed by these radiative effects.
Certainly, the Rubincam’s wedges are the most influenced by the thermal
torques, because of their shape to enhance the contribution of these
perturbations. The value of the perturbing accelerations indicates the
amount “radiative-windmill” asymmetry of each shape.

Then, comparing figure 4.7a and figure 4.6b, the secular contribution
of the YORP is larger than the one of the solar pressure. The reason
is that the majority of the incident solar radiation is absorbed by the
celestial bodies, since they are usually dark. However, the absorbed
radiation has effect along ŝ; thus, it perturbs the body only with a non-
secular contribution. The emitted thermal photons are connected with
the incident absorbed energy, and as a consequence, the low albedo of
the actual celestial bodies determine the prevalence of the YORP effect
over the solar radiation pressure for long time scales.

It is worth noting that these torques are independent of the sense
of rotation and revolution of the celestial object. Furthermore, for all
the bodies mz is at its maximum when the obliquity is δ = 0, i.e. the
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body’s angular velocity is perpendicular to the orbital plane. Later, the
spinning torque decreases as δ increases, and for δ >∼ 55◦ the torque
becomes negative. Hence these objects spins up when the Sun lies in
the equator, but spins down when the Sun-Body direction tends to be
parallel to the rotation axis. mδ is positive between 0◦ and 90◦ and it is
null at the endpoints of this interval. Therefore, this radiative torque
tends to increase the rotational speed and the obliquity of the object;
then, when δ ' 55◦, it starts to slow it down. Consequently, irregular
celestial objects may be constantly speeding up and slowing down with
the YORP cycle, or tumbling.

When δ ∈ [90◦, 180◦], according to [39], mz is positive for δ <∼ 135◦,
but becomes negative and the body spins down for δ greater than 135◦.

4.2.4 Energy Loss

The dissipation of energy influences only non-principal rotation states,
which must be simulated to validate this contribution. The motion in
presence of this effect tends to the condition of minimum energy, with
the body rotating around the maximum inertia axis. Nevertheless, the
analysed torque is extremely small, and to perform the validation test, its
value has been arbitrarily multiplied by the constant value 1× 1018. This
assumption does not affect the meaning of the simulations but allows
running them in a reasonable time. The obtained results are shown in
figure 4.8.

These images prove the tremendously small contribution of the en-
ergy loss effect that, despite the arbitrary coefficient that is used in this
simulation, need more than 3000 years to completely damp the nuta-
tional motion. This value is compatible with the expression for the
nutational damping time in [48], which estimate a value in the order of
1× 103 y, taking into account the scaling constant currently employed.
In this simulation, the energy loss is remarkably slow because the an-
gular velocity is small. This perturbation have a stronger effect on
fast-spinning celestial objects, which have a real damping time in the
order of 1× 107 y.

In figure 4.8c, it is evident the dissipation of the nutational dynamics.
In fact, the motion begins where is the green dot and slowly tends to the
principal axis rotation state around ẑ, red dot in the plot. Moreover, the
Poinsot’s ellipsoid tangent to the polhode is evidently shrunk between
the initial and the final time of the simulation; this is representing the
decrease of the Kinetic energy, clearly shown in figure 4.8d. Also the

101



Chapter 4. Rotational Dynamics of Irregularly-Shaped Bodies

t [y]
0 1000 2000 3000 4000 5000 6000

ω
 [

ra
d

/s
]

×10
-6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ω
x

ω
y

ω
z

(a) Angular Velocity, ω.

t [y]
0 1000 2000 3000 4000 5000 6000

h
 [

k
g

 m
2
/s

]

×10
6

-8

-6

-4

-2

0

2

4

6

8

h
x

h
y

h
z

(b) Angular Momentum, h.

×10
-6

1

0.5

ω
y
 [rad/s]

0

-0.5

-110ω
x
 [rad/s]

5

0
×10

-7

-5

1

0.5

0

-0.5

-1

×10
-6

ω
z
 [

ra
d
/s

]

(c) Evolution of the Polhode.

t [y]
0 1000 2000 3000 4000 5000 6000

T
 [

J]

2.4

2.5

2.6

2.7

2.8

2.9

3

(d) Kinetic Energy, T .

Figure 4.8: Validation of dissipation of energy effect.

angular velocity and the angular momentum, evaluated in the body-
fixed frame B, display the correct behaviour of this perturbative effect.

When the pure spin state is reached the dissipation of energy does
not influence the motion anymore and the dynamics is stable. With these
results, the algorithm is validated.

The whole rotational dynamics model has been validated and the
accuracy of the simulations has been assessed. In addition, the values of
the dynamic quantities are always monitored to guarantee the fidelity of
the results.

4.3 Sensitivity Analysis

The physical interactions of a small irregular celestial object with the
environment are dependent on its shape and inertia properties, which
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must be as accurate as possible, in order to correctly simulate the real
dynamics. However, sometimes they are not available with the desired
level of uncertainty, and it is reasonable to wonder if the models can
still be used to study and understand the motion of these not well
known astronomical objects. For this reason, a sensitivity analysis has
been carried out, in such a way that the uncertainties in the input data
are correlated to the uncertainties in the output of the model and the
robustness of the model can be rationally estimated.

The study that is here presented is applied to uncertainties in the
mass determination, in the shape model and in the rotational state of
the selected celestial body. Basically, the real values that are used in
this thesis, reported in sections 2.3.2 and 2.4.7, are arbitrarily modified
according to the some tolerance intervals. Then, fixing all the other con-
ditions, different simulations are executed and compared. The dynamics
is integrated for one orbital period of the irregular object around the Sun
and the results are confronted exploiting simple and effective quantities,
like the dynamic inertia, ID, and the obliquity, δ.

Realistic values for typical uncertainty intervals are present in the
literature, even though a unique characterization does not exist. For
example, in [20], the inertia properties are usually determined within
5% and 40% of accuracy; here the mass is assumed to have a tolerance
of ±30%. For what concern the shape model, the typical error is about
10− 50%, according to [20, 36]; in the current analysis, the polyhedron
model is reshaped between an extremely Lo-Fi model, ∼ 250 faces,
and the Hi-Fi model, with a resulting uncertainty on the shape related
quantities of ± ∼ 15%. Finally, considering the rotational state, the
rotation period is commonly determined with a good accuracy, while
the orientation of the spin axis has often a tolerance of some degrees [1].
Hence, in this sensitivity analysis, the magnitude of the angular velocity
is maintained constant and the initial spin axis direction is allowed to
vary within ±5◦.

4.3.1 Uncertainty in Mass Determination

The sensitivity analysis on the mass of the body is shown in figure 4.9,
where the obliquity and the dynamic inertia are normalized with respect
to their respective values computed at t = 0. This is necessary since
each simulation has a different dynamic inertia, and the absolute results
would be difficult to compare. The object that is used in this study is the
asteroid 433 Eros.
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Figure 4.9: Sensitivity analysis with uncertainty on the mass value for 433 Eros.
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From these plots is evident that the uncertainties in mass determi-
nation do not significantly affect the propagation of the perturbed rota-
tional dynamics for an irregular celestial body. In fact, in all the different
simulations the motion remain very close to the real one, red line, and the
evolution of the represented quantities always follows the same trend.
This result makes sense, since the perturbative effects are identical for
all the tested mass values, and obviously, only the acceleration levels are
different. Accordingly, the behaviour of the heavier asteroids is opposite
to the one of the objects with a smaller mass, with the real case bounded
between the two opposite scenarios.

4.3.2 Uncertainty in Shape Determination

The sensitivity analysis for the different shapes is performed for 216
Kleopatra and the results for the relative values of the dynamic quantities
are shown in figure 4.10.

In this case, the differences between the different analysed resolutions
are larger than those in the previous section for the mass. Here, the
different shapes have different interactions with the perturbations, and
thus, the dynamical evolutions follow slightly separate trends. However,
this gap is not so wide and the propagation of the rotational motion
is robust enough with respect to the errors in the shape determination.
Clearly, the results are more similar to the Hi-Fi model, pale blue line, if a
large number of faces is employed, black thick curve. Nevertheless, even
the extremely Lo-Fi model, red thin curve, stays in the vicinity of the
general behaviour, proving that a rough estimation of the perturbative
effects can be accomplished with a coarse shape discretization.

It is worthwhile to point out that, in this analysis, only the pertur-
bation acting on the surface, e.g. YORP and solar radiation pressure,
are influenced by the shape model. This is true if the inertia properties
are assumed to remain unchanged between the different simulations,
but honestly, mass and moments of inertia are often derived from the
shape of the object, and a broad tolerance interval on the geometry could
determine a large uncertainty on the mass. So, it is probably that the
results presented in figures 4.9 and 4.10 should be considered together;
anyhow, the model is still able to produce acceptable results with the
errors on both shape and inertia.

This aspect is very important, because numerous minor celestial ob-
jects are still poorly described and the techniques to characterize a body
are far from being completely reliable, despite their performances have
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Figure 4.10: Sensitivity analysis with uncertainty on the shape model for 216
Kleopatra.
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improved in recent years. Consequently, it is possible to have a global
overview of the rotational dynamics for an asteroid or a comet using
only a preliminary estimation of its inertia and shape properties. For
certain practical applications, e.g. preliminary dynamics determination
and propagation, the error remains below a tolerability threshold and
the results can be effectively exploited.

4.3.3 Uncertainty in Rotational State Determination

The rotational state of the asteroid 4179 Toutatis is well known but vari-
able in time, since this body is in a complex non-principal rotation state
and the angle between the angular velocity vector and the minimum
inertia axis varies between 21.90◦ and 20.16◦. This sensitivity analysis is
applied to this object and can have a dual meaning. In fact, the uncer-
tainty in the direction of the spinning axis can be interpreted as: the pos-
sible error in the rotation state determination for a generic asteroid; the
possible dynamical evolution of Toutatis if a space probe rendezvouses
with it at a certain t = t̄, which is different from the scheduled time, and
thus, the mission must be correspondingly modified.

The outcomes are presented in figure 4.11, where the reference spin-
ning axis direction is 21◦ tilted with respect to x̂, corresponding to 40◦

of initial obliquity δ0. It is important to remember that the assumed
uncertainty value is ±5◦.

Comparing the effects on the propagation of the dynamics, the ones
due to the errors on the rotation axis direction are stronger than those
related with the inaccuracies on mass and shape determination. Never-
theless, the gap between the different simulations is still limited and the
trends of the analysed quantities are remarkably similar.

For t = 0 one principal axis is aligned with the Sun, i.e. there is no
gravity gradient torque, and the dissipation of energy can be neglected.
So, taking into account only the radiative perturbations, the examples
with a lower obliquity experiences a larger spin torque, mz, and their dy-
namics is faster; then their evolution is shifted on the left in figures 4.11a
and 4.11b.

Now, focusing on the initial behaviour of the obliquity, the different
simulations are very similar. The explanation is easy, considering that
δ0 ∼ 40◦ and remembering the averaged trend of mδ in figure 4.6. In fact,
around that obliquity value, the tilting torque has a stationary point and
the differences between the different cases are limited. However, as can

107



Chapter 4. Rotational Dynamics of Irregularly-Shaped Bodies

t [d]

0 200 400 600 800 1000

δ
/δ

0
 [

-]

0.97

0.98

0.99

1

1.01

1.02

1.03

δ
0
=45

o

δ
0
=44

o

δ
0
=42

o

δ
0
=40

o

δ
0
=38

o

δ
0
=36

o

δ
0
=35

o

(a) Obliquity, δ/δ0.

t [d]

0 200 400 600 800 1000

I D
/I

D
0

 [
-]

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

δ
0
=45

o

δ
0
=44

o

δ
0
=42

o

δ
0
=40

o

δ
0
=38

o

δ
0
=36

o

δ
0
=35

o

(b) Dynamic Inertia, ID/ID0
.

Figure 4.11: Sensitivity analysis with uncertainty on the rotational state for
4179 Toutatis.
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be understood examining figure 4.11a, for δ0 = 45, mδ is smaller than
the same torque component evaluated for δ0 = 38.

These are the only direct considerations that can be done on the direct
influence of the perturbations on the dynamics of the body because, as
soon as the motion evolves, all the perturbative effects act together, and
it is difficult to have additional conclusions.

In general, also in the case of uncertainties in the rotational state
determination, the model is robust enough, and the dynamic quantities
are bounded in the vicinity of the reference solution, without any chaotic
divergence. As already said, the errors are larger than those obtained
in the previous two sensitivity analyses, but they are still tolerable and
preliminary studies can be conducted with the necessary margins of
safety.

The conclusions and the results discussed in this section are only re-
lated with the particular conditions that have been considered. Notwith-
standing, they allow having a better overview on the rotational dynamics
of irregularly-shaped bodies and they provide some reference values
to assess the robustness of this dynamical model. Globally, with the
assumed values for the tolerance intervals and with the examined initial
conditions, the algorithm is reliable and produces acceptable results
even if the physical model of the body is not well known.

4.4 Magnitude of Perturbing Torques

The algorithm that propagate the rotational dynamics of the selected
bodies evaluates the perturbing external torques and use their values
in the equation of motion (4.1). These phenomena characterize the
rotational dynamics with their particular behaviour, yet the magnitude
of these torques is another important aspect that was not discussed. The
magnitudes of the different perturbation are listed in table 4.1 for the
reference irregular celestial objects. These values are obtained computing
the norm of the root mean squares of the torques components, evaluated
along one orbital period. The simulations are performed using the real
rotation state of the selected objects as initial condition.

The gravity gradient torque is the largest perturbative effect, but as
already said, it has not a secular effect. The periodic fluctuations in the
dynamics of the body are mainly due to this component. The dissipation
of energy is the least influencing term and its contribution is practi-
cally negligible in the short period. The big and fast spinning asteroids
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Table 4.1: Magnitude of perturbing torques.

(a) Third body gravitation and solar radiation pressure.

‖mGG‖ [N m] ‖mSRP‖ [N m]

67P C-G 7.87× 103 7.86× 102

216 Kleopatra 3.11× 1013 2.30× 107

4179 Toutatis 7.25× 104 3.90× 102

433 Eros 4.68× 109 5.62× 105

1580 Betulia 3.29× 105 3.12× 103

(b) YORP and dissipation of energy.

‖mY ORP‖ [N m] ‖mD‖ [N m]

67P C-G 5.06× 102 3.35× 10−2

216 Kleopatra 2.16× 107 7.44× 1012

4179 Toutatis 2.48× 102 2.20× 10−3

433 Eros 5.58× 105 2.26× 106

1580 Betulia 2.12× 103 8.44× 102

Kleopatra and Eros are the only exceptions to this last consideration. In
fact, the large inertia properties and the rotation state of these two bodies
determine a considerable torque due to the internal friction. In addition,
the two perturbations due to solar radiation affect mainly the rotation
rate of asteroids a few kilometers in diameter [4]. Therefore, Kleopatra
and Eros have a frictional torque that is some order of magnitudes larger
than the YORP and the solar radiation pressure effects.

The magnitude of the two radiative torques is comparable, since the
emitted and the incident radiations are connected by the thermal balance
of the body. The emitted energy is a fraction of the whole incident
flux, and consequently, the YORP produces a torque that is slightly
smaller than the one due to the solar radiation pressure. However, the
secular effect is principally related with the YORP effect, as explained in
section 4.2.3.

In figure 4.12, the evolution of the perturbing torques for one rotation
period of the asteroid 1580 Betulia is plotted. In this simulation the actual
rotational state of the asteroid is propagated; so, the angular velocity
is ‖ω‖ ' 2.84× 10−4 rad/s and it is almost aligned with the maximum
inertia axis. The rotation period is T2π ' 6 h and the root mean square
values presented in table 4.1 agree with these figures.
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Figure 4.12: Perturbing torques for 1580 Betulia.

The symmetry of the curves in figure 4.12a highlight the non-secularity
contribution of the gravity gradient effect. Moreover, as expected, the
larger component of this torque is around ẑ, since the spinning direction
is almost parallel to the maximum inertia axis. Even figure 4.12b shows
a pretty symmetric trend, considering that the majority of the incident
radiation acts in the Sun-Body direction and averages to zero. The contri-
bution of the dissipation of energy, figure 4.12d, is obviously the smallest
and the components act in a way to reduce the kinetic energy of the body
and to have the spinning axis as close as possible to the largest moment
of inertia direction. In figure 4.12c, the action of the YORP torque on
both the spinning and the obliquity direction is existing. This is common
because mδ is an inevitable accompaniment of mz, and even if δ = 0◦ or
δ = 90◦, the state is unstable and a small perturbation determines the
departure of the spinning axis from equilibrium.
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Figure 4.13: Polhodes for different initial conditions on 4179 Toutatis.

4.5 Applications to Selected Environments

The applications for the developed dynamical mode are plentiful and in
this thesis only some of them are presented, still they provide a useful
insight into the topic that is being analysed in this chapter.

4179 Toutatis Different initial conditions in the rotation state of 4179
Toutatis are simulated and the results presented in figures 4.13 and 4.14.
The initial obliquity is chosen arbitrarily, while the magnitude of the
angular velocity vector is assumed to be ‖ω‖ = 1× 10−6 rad/s. The
dynamics is propagated for one orbital period of the asteroid around the
Sun, tSim ' 1000 d. The trajectories of the angular velocity vector on the
Poinsot’s ellipsoid are not significantly different from the ones that could
be obtained simulating the unperturbed motion; the differences do exist,
but they are limited and periodic, especially if a short simulation period
is considered. The time scale to obtain evident secular variations is at
least in the order of 103 years.

Figure 4.14 allows to draw more interesting conclusions, focusing
only on four different values of initial obliquity: δ0 = [0◦, 10◦, 20◦, 30◦],
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Figure 4.14: Dynamic quantities for different initial conditions on 4179 Toutatis.

which are also represented with their relative polhodes in figure 4.13.
There, they correspond to the blue-toned curves, with δ0 = 0◦ relative to
the rotation of the body around the maximum inertia axis, ẑ. In this latter
case, the rotation of the body is highly stable and the fluctuations of δ
and ID are two orders of magnitude smaller than in the other examples.
There are periodic variations in the magnitude of the angular velocity,
which are revealed looking at the evolution of angular momentum and
kinetic energy, figures 4.14c and 4.14d. So, when the body is in principal
rotation state around the maximum inertia axis and the obliquity is equal
to 0◦, there are no perturbations able to significantly tilt the spinning
axis. In fact, in this case, the dissipation of energy is not present, the
gravity gradient produces periodic torques around the rotation axis and
the radiative effects have no secular δ−component, mδ.

In general, for this particular test, the dynamics with initial condition
δ0 = 30◦ is the most affected by the perturbative effects, even though
the relative variations of the dynamical quantities are still limited. The
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Figure 4.15: Dynamic quantities for 67P Churyumov-Gerasimenko, real dy-
namics.

frequency in the oscillations of the analysed quantities is related with
the rotation period of the asteroid, which in this case is ∼ 70 d. An-
other remarkable feature, which can observed in these results, is the
similar evolution of δ for δ0 = [10◦, 20◦, 30◦] in figure 4.14a. A possible
explanation for this is the small difference between the different values
of obliquity, determining a similar global influence of the perturbative
effect on the rotational dynamics of the asteroid. The frequency in this
last trend is comparable with the revolution period, but as expected, it
is not exactly the same, remembering that for δ 6= 0◦ the YORP and the
solar radiation pressure contributions have a not-null average.

67P Churyumov-Gerasimenko The real dynamical state of the comet
67 Churyumov-Gerasimenko has been simulated to have an idea of the
actual propagation of its motion. This object has a rotation period of
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∼ 12 d, corresponding to ‖ω‖ ' 1.40× 10−4 rad/s, and since no mul-
tiple periodicities are found in light curves, it is in a simple rotation
state around its axis of largest moment of inertia [32]. These data refer
to the present rotation state of the body, as measured in 2014 by the
European Space Agency’s Rosetta mission and they are different from
those acquired during the 2009 perihelion passage. This change in the
rotation rate of 67P was probably due to sublimation-induced torques,
which are not considered in this work, and thus, the present analysis is
valid when the object is far from the Sun and the comet activity is low
enough. The assumption to have the orbital motion in a circular orbit
with radius equal to 3.46 AU is compatible with this requirement. The
dynamics has been simulated for one orbital period of the comet around
the Sun, which is equal to ∼ 6.50 y or ∼ 2400 d. The results are shown in
figure 4.15 by means of the usual dynamic quantities.

In this case, the rotation state of the comet 67P is evidently in a stable
condition: the secular variation of the considered quantities, in the simu-
lated period, is extremely small. In addition, the periodic oscillations are
also limited and the rotation state can be practically considered constant
in time. This fact is not surprising, since the simulation tries to represent
the reality with a good level of accuracy, and certainly, the actual motion
of the comet is now dynamically stable. However, in the plots some
trends can be clearly detected: the increase in the kinetic energy and
angular momentum and the decrease of dynamic inertia. The reduction
in the dynamic inertia is representing the spinning axis that is slowly
departing from the maximum inertia axis, as can be similarly under-
stood from the increase in the oscillation of the obliquity. This means
that the nutation motion is becoming more important, because of the
perturbation that progressively tilts the rotation axis. In the meantime,
the kinetic energy and the angular momentum increase, and the only
compatible solution is determined by the increase in the magnitude of
the angular velocity. In order to explain this point, the secular effect
of the radiative perturbations should be considered. According to sec-
tion 4.2.3, the YORP and the solar radiation pressure spin-up the small
Solar System’s bodies for δ <∼ 55◦, and so, the angular velocity of 67P
correctly has a raising trend. The effect of the dissipation of energy is
negligible since the rotational dynamics of the body has a small nutation
component and a not sufficiently fast spinning rate. It is worth noting
that, in the real case, the orbital eccentricity of the comet is different from
zero, and in ∼ 6.50 y the object has one perihelion passage; there, this
model is not valid anymore, on account of the existence of an intense
comet activity.
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Figure 4.16: Angular velocity trajectories for 67P Churyumov-Gerasimenko,
assumed dynamics.

An interesting solution is obtained propagating the dynamics of
67P Churyumov-Gerasimenko for 100 years. In this example the initial
conditions for the rotational motion are arbitrarily assumed, with the
spinning axis inclined of 30◦ with respect to x̂ and a rotation period of
1 year. These values are totally unrealistic, but they are employed to
highlight the effect of the perturbations, because the rotational dynamics
is less stiff if the body has a slow spinning rate. So, since the evolution of
the dynamic quantities is completely fictional, it is better to have just an
overall discussion on the angular velocity trajectories in both the inertial
and the body-fixed reference frames. These are plotted in figure 4.16
using a single coordinate system, but it is important to remember that
they are computed in two different reference frames that coincide only
for t = 0. As expected, in this simulation the motion is particularly
affected by the perturbations and the secular variation is evident. In fact,
the polhode in the body-fixed frame, blue curve, is markedly different
from the one related with the torque-free motion. In spite of that, there
is not diverging chaotic component of the motion and the trajectory
is bounded in a region close to the initial conditions. The perturbative
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effects do not destabilize the rotational dynamics of the considered object.
This conclusion is globally valid, and the perturbations have always a
small impact on the motion of the system, and do not modify the stability
of the dynamics. The same trajectory of the angular velocity, evaluated
in the inertial space, is interesting to understand the relation between the
two systems of reference. Moreover, precession and nutation motions are
particularly clear in this perspective, showing the complex dynamical
evolution of a perturbed slow spinning body in non-principal rotation
state.

This chapter presented some important features of the rotational
dynamics of irregular celestial bodies, and it allowed gathering some
insightful results and conclusions that will be used, together with those
about the gravitational field models, to analyse the dynamics of a particle
in the vicinity of irregularly-shaped bodies.
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Chapter 5

Dynamics around
Irregularly-Shaped Bodies

The dynamics of a body in the vicinity of an irregular Solar System’s ob-
ject is an interesting research topic that has different applications. In fact,
the study of this dynamical environment can be employed in designing
a space mission around an asteroid or a comet, because the evolution of
the motion when the spacecraft is near the target is fundamental during
pre-flight navigation and mission planning.

The orbits about these objects are highly non-Keplerian due to the
irregular gravitational field, the complex rotation state and the pertur-
bations that exist in this scenario. However, this knowledge can also
be employed in the analysis of the unknown properties of these minor
space bodies, like the reaccretion and escape of ejecta from the surface
after impact, or the evolution of binary asteroid systems. Thus, the
outcomes of this research could be applied to solve space engineering
or celestial mechanics and planetary science problems, which in the last
years are becoming increasingly interesting for the scientific community.
Indeed, current space exploration goals for space agencies have missions
to asteroids or comets, with rendezvous and orbiting phase. One recent
example was the European Space Agency’s Rosetta mission that was the
first mission to rendezvous, orbit and land a probe on the surface of a
comet. Moreover, in the next future, the NASA’s Asteroid Redirect and
OSIRIS-REx missions, or the JAXA’s Hayabusa 2 spacecraft will have to
fly in proximity of asteroids. In all these situations, the trajectories are
very close to the irregular surface of the interested body, and as a con-
sequence, the dynamics tools must be capable to accurately propagate
orbits in these complex dynamical environments.
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In this chapter, the algorithm that has been used to propagate the
dynamics of a particle around irregularly-shaped bodies is presented.
All the aspects that were described in chapters 3 and 4 are now included
in the dynamical model to perform some different simulations that show
particular features of this problem. The model with perturbation is also
compared to a simpler model including only the torque-free rotational
motion of the irregular object. In addition, the existence of equilibrium
points for simple rotational state is discussed together with the evolution
of the Zero Velocity Surfaces.

It is worth remembering that the presented model consider a massless
particle, which does not affect the motion of the main body, and the
perturbative effects act only indirectly on the motion of the particle
through their action on the rotational state of the main body.

5.1 Model Implementation

The dynamical model is bases on a set of 18 different first order scalar
differential equations (2.65), which are expressed in the body-fixed ref-
erence frame, B. They derive from the vectorial form of the equations
of dynamics and kinematics, (2.49), (2.54) and (2.63) described in sec-
tion 2.4.4, and they are coupled by the terms due to the non-inertial
reference system. For numerical integration, they can be written as:

V̇ =



˙̄A
T

ω̇x
ω̇y
ω̇z
ẋ
ẏ
ż
ẍ
ÿ
z̈


= f(V ) =



f ˙̄A
(ω, Ā)T

fω̇x(ω, I,m)
fω̇y(ω, I,m)
fω̇z(ω, I,m)

ẋ
ẏ
ż

fẍ(p, ṗ,ω, ω̇,∇U)
fÿ(p, ṗ,ω, ω̇,∇U)
fz̈(p, ṗ,ω, ω̇,∇U)


, (5.1)

where f ˙̄A
represents the equations of rotational kinematics; fω̇x , fω̇y and

fω̇z the Euler’s rotation equations; fẍ, fÿ and fz̈ the equations of motion
of the particle, in the B system. The notation Ā symbolize a row vector
containing all the 9 components of the rotation matrix, A.

The initial conditions are contained in V 0 = [Ā0, ω0,p0, ṗ0]T, where
all the quantities are evaluated at t = 0.
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The system of coupled equations (5.1) is integrated with an explicit
Runge-Kutta solver. This is a single step solver, and in order to compute
the solution at t = tn, it needs only the solution at the immediately
preceding time point, t = tn−1. The tolerances in the error are stringent
and the accuracy of the integration procedure is always monitored with
some reference quantities.

At each integration step, the differential equation solver evaluates
the gravitational field in the current field point, and then it computes
the Sun-Body direction in the inertial frame, which is suddenly rotated
in the body-fixed coordinate system. All the external perturbing torques
are evaluated as described in chapter 4, and they are included in the
vector m. Next, all these quantities are substituted in equation (5.1) and
the coupled dynamics is propagated forward in time.

The algorithm verifies at each time step the Laplacian of the grav-
itational potential; if it is equal to 4π the field point is inside the body
and the integration is terminated, since the particle crashed on the main
attractor.

The discussion that has been carried out in chapter 3 is here used
to implement the most effective and efficient integration algorithm. In
fact the optimum Lo-Fi model is employed, and it is a combination of
a polyhedron model with and an optimized mascons. The former is
used in proximity of the surface and it is implemented with a number of
faces in the order of ∼ 103, while the latter is active when the field point
is far enough from the centre of mass of the main attractor and it has
Nm ' 500. In this way, according to the results of section 3.5, the error
on the gravitational attraction is guaranteed to be below 5% even on the
surface, with a mean value of ∼ 0.35± 0.05%. The switch between the
two different models happens at a distance of ∼ 7.5 averaged radii of
the body from the centre of mass; there the gap between the two models
is practically negligible, and thus, there is no sensible discontinuity in
the field.

The algorithm requires a tolerable computational time to operate,
and with a MATLAB R© code running in parallel on a quad-core 2.50
GHz processor, a simulation of 30 d needs approximately 24 hours to
complete. Usually the code was launched on a multi-core server, with
computational times in the order of few hours. The most consuming ac-
tivities are the evaluation of the gravitational field and the computation
of the surface disturbing torques, with the self-shadowing effect, at each
integration step. The speed of the algorithm could be improved reducing
access to these functions exploiting some interpolation techniques or
some further approximations. A huge boost in the computational speed
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could be obtained if the numerical integration is performed with algo-
rithms that are written in a simpler and lighter language than MATLAB R©,
such as C or Fortran.

5.1.1 Orbital Elements

The differential equation solver produces an output that is composed by
the state vector, V (t), computed at each integration step. Hence, the time
evolution of the kinematics and the dynamics of particle and main body
is described by the quantities contained in the matrix of state vectors:

D(t) = [V (t)T] =


V (0)T

V (t1)T

. . .
V (tn)T

. . .
V (tSim)T

 = [Ā(t),ω(t),p(t), ṗ(t)], (5.2)

where tSim is the simulation time.
From the data contained in D(t) the complete description of the

analysed motion can be immediately obtained. Notwithstanding, in
order to have an insightful overview on the dynamics of the particle, the
exploitation of the orbital elements can be extremely helpful.

The orbital elements are six parameters required to uniquely identify
a specific orbit in the three-dimensional space. The traditional orbital ele-
ments are the six Keplerian elements, after Johannes Kepler and his laws
of planetary motion, and they are generally used in classical two-body
systems, where a Keplerian motion is considered. In the mathemati-
cal approximation of the ideal two-body problem, these quantities are
constant in time, but in a real orbit, they are time-varying parameters.

In the current analysis, the orbit of the particle is highly non-Keplerian
because of the complex dynamical environment, and thus, the orbital
elements usually show large and irregular fluctuations in time. More-
over, the gravitational potential is different from the classical one, and
these parameters are here computed as if the asteroid or the comet were
a centrobaric body with the same mass M .

The orbital parameters are evaluated in the inertial space. They are
obtained from the state vector of the particle, V P (t) = [p(t), ṗ(t)]T, and
from the standard gravitational parameter, µ = GM . The state vector must
be expressed in the inertial reference frame, as V PI

. So, from V PI
(t) and
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µ it is possible to compute all the six Keplerian elements at each integra-
tion step. They are: semi-major axis a(t), eccentricity e(t), inclination i(t),
longitude of ascending node Λ(t), argument of periapsis λ(t), and true
anomaly ν(t). In order to simplify the computation, the reference plane
to define the orientation of the orbit in the three-dimensional space, is
assumed to be the orbital plane of the irregular object around the Sun.
As a consequence, the normal vector to the reference plane is ẑI . The
reference is normally defined as the plane orthogonal to the rotation axis
of the main attractor; however, this is not fixed in the inertial space and
the other option was chosen. The reference axis to define the longitude
of ascending node, Λ, is x̂I .

The analyses that are presented in this chapter make use only of three
Keplerian elements, since they are sufficient for the current purposes.
They are semi-major axis, eccentricity and inclination of the orbit. In fact,
they allow having an overview on shape and size of the trajectory and on
the change in the 3D orientation of the orbit. Furthermore, they provide
information that could be exploited to evaluate the approximated orbital
period and energy content of the motion.

In the classical two-body problem the semi-major axis is computed
as:

a =
‖pI × vI‖2

µ(1− e2)
, (5.3)

where the eccentricity e is available from:

e =
vI × (pI × vI)

µ
− pI
‖pI‖

, (5.4)

and
e = ‖e‖ . (5.5)

The inclination is the angle between the orbital momentum vector
and the normal vector to the reference plane, ẑI . So, it can be computed
as:

i = arccos

(
(pI × vI) · ẑI
‖pI × vI‖

)
. (5.6)

It is important to consider that in this research work only closed orbits
around the main attractor are considered. Therefore, the trajectory of the
particle is instantaneously on a circular or an elliptic osculating orbit. The
concept expressed by the word instantaneously is fundamental, because,
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having a non-Keplerian motion, equations (5.3), (5.4) and (5.6) are valid
only if evaluated at each instant of time with the made approximations.

The energy content of a Keplerian osculating orbit is expressed by
the specific mechanical energy:

ε = − µ

2a
, (5.7)

which depends only on the semi-major axis, a. For a closed orbit ε <
0 and the motion of the particle is bounded in a region close to the
primary. Yet, it is important to remember that the complexity of the
analysed environment creates other constraints for the dynamics of P ,
as discussed in section 2.4.5. The evaluation of this quantity is extremely
simple and it provides a general estimation of the energy content in the
particle dynamics. In addition, the Keplerian energy, ε, and the Jacobi
constant, C, can be related by an equation derived and expressed in [42],
which is used in the algorithm to check the validity of the integration
process.

In a similar way, an approximation of the orbital period of the particle,
TP , is computed, at each instant of time, exploiting the result of the
classical Keplerian dynamics:

TP = 2π

√
a3

µ
. (5.8)

Equation (5.8) can be used to adjust the simulation time, tSim, for
a given set of initial conditions, according to the approximated orbital
period at t = 0.

The complete derivation of these Keplerian relations can be found in
[2, 9, 10].

5.2 Zero Velocity Surfaces and Equilibrium
Points

The Jacobi integral of motion does not exist in general for the coupled
dynamics of a particle around a rotating irregular body. However, as
already explained in chapter 2, the integral of motion is conserved is if
the main body is in a uniform unperturbed principal axis rotation. In
this case, the Zero Velocity Surface is fixed, and thus, the equilibrium
points, which are particular solutions of the Zero Velocity Surface, are
fixed in space and time. Their analysis is useful, since if the motion of
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the primary body is more complex they could be always defined at each
instant of time. Moreover, they provide an interesting point of view of
the dynamical environment and it is worth knowing their position. Fur-
thermore, the evolution of the Zero Velocity Surface for different initial
conditions of the particle, or for different rotational state of the irregular
body, highlights the region of space where the motion of P is allowed.
This is extremely helpful to have a preliminary understanding of the
orbital dynamics, knowing only the initial conditions of the simulation.

The algorithm to locate the equilibrium solutions and the Zero Veloc-
ity Surfaces is based on the same optimum Lo-Fi model that has been
described in section 5.1. The surfaces satisfy the equation V (p) = C
and therefore, having available a 3D grid of V values around the main
body, they are just the collection of the loci where the previous equality
is satisfied. Instead, the computation of the position of the equilibrium
solutions is trickier. Basically, the algorithm has to find the points where
the gradient of V is equal to zero, but since no analytical expression of
this function is available, a numerical method has been implemented to
solve equation (2.75).

First, the pseudo-potential function is evaluated on a 3D grid of
points that is then subdivided in 27 sub-grids. The minimum value of V
in each sub-grid is detected and its position is provided as an initial guess
for the equation solver. Then, a Levenberg-Marquardt based algorithm is
started to find the zeros of the gradient of V ; this numerical method has
been chosen since it has the best performances among all the algorithms
available. All the found solutions are then verified, and only if they
satisfy some requirements they are listed as real equilibrium points.
An actual solution is saved if the flag returned by the equation solver
indicates the real convergence of the algorithm and if each component
of∇V (p) is below 10−8 m s−2.

The number of equilibrium points is not predetermined and they are
indicated by the symbol Ei, with i = 1, . . . , nE and they are sorted by
value of Jacobi constant. In a way that E1 is the equilibrium point with
the largest C value, or lowest energy level, and EnE

is the one with the
smallest Jacobi constant, or largest energy, i.e. C(E1) > C(E2) > · · · >
C(EnE

). It is important to note that the positions and the energy levels
of the equilibrium points depends on the particular gravitational model
that is employed; hence, the results that are shown in this chapter are ob-
tained with the already mentioned Lo-Fi model, under the assumptions
that have been presented before.
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Evolution of the Zero Velocity Surfaces All these concepts can be
easily explained visualizing the evolution of the Zero Velocity Surfaces.
This is shown in figures 5.1 and 5.2, both with a 3D view and with a
2D projection on the xy−plane for the asteroid 216 Kleopatra, which
is assumed to be in principal rotation state around the z−axis with
‖ω‖ ' 3.20× 10−4 rad/s. Therefore, in this case the integral of motion
exists and the Zero Velocity Surfaces are fixed in time, bounding the
motion of P in the same region of space for any t > 0, according to the
given C value.

Looking at figures 5.1a and 5.2a, when the energy is lower than
the one associated with the first equilibrium point E1, there are three
distinct regions: the inner region, between the surface of the body and
the interior surface; the middle region, between the two surfaces, and
the outer region outside the cylindrically-shaped Zero Velocity Surface.
The first and the latter are allowed for the motion of the particle, while
the space between the two surfaces is a forbidden region. Hence, for
this energy level P cannot approach the body from the outer region or
escape from its surface. If C is even higher than the one in figure 5.1a,
the inner region is inside the volume of the body and the particle cannot
fly close to the surface of the body: only the outer region is practically
allowed.

Increasing the energy, at C = C(E1), the surface intersects the first
equilibrium point, E1, and it opens in figures 5.1b and 5.2b. Similarly for
C = C(E2), figures 5.1c and 5.2c, the Zero Velocity Surface releases the
second equilibrium point. These gap in the surface are called gateways,
since they allow the motion between the inner and the outer regions.
In fact, in figure 5.2c, the forbidden region is divided in two separate
portions and the motion from the surface the body to the outer space is
now allowed, through both gateways at E1 and E2.

Then, for lower value of the Jacobi constant, the inner region expands
and intersects the third, and later, the fourth equilibrium point. In
figures 5.1d and 5.2d, the forbidden region is just a point at E3, while
in figures 5.1e and 5.2e it is only around the E4. At the end, when the
energy is high, C < C(E4), the Zero Velocity Surface does not intersect
the xy−plane anymore, but the bounds on the motion of the particle are
still present in the three-dimensional space. For high enough energy, the
limiting surfaces completely disappear and the dynamics of the particle
has no more constraints.

In table 5.1, the positions of the equilibrium points, expressed in
the body-fixed frame, with the relative Jacobi constants are reported. It
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(a) C > C(E1) (b) C = C(E1)

(c) C = C(E2) (d) C = C(E3)

(e) C = C(E4) (f) C < C(E4)

Figure 5.1: Evolution of the Zero Velocity Surfaces for 216 Kleopatra, 3D view.
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(a) C > C(E1) (b) C = C(E1)

(c) C = C(E2) (d) C = C(E3)

(e) C = C(E4) (f) C < C(E4)

Figure 5.2: Evolution of the Zero Velocity Surfaces for 216 Kleopatra, 2D view.
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Table 5.1: Equilibrium Solutions for 216 Kleopatra.

xE [m] yE [m] zE [m] C [m2 s−2]

E1 −1.6610× 105 5.6730× 103 5.9840× 102 3619.3866
E2 1.6560× 105 1.9480× 103 3.0230× 103 3614.6227
E3 −8.8240× 10−11 −1.3140× 105 9.2760× 10−10 3052.9487
E4 −4.7190× 10−10 1.3140× 105 1.3630× 10−10 3037.4288

should be noted that this values could be dissimilar if another gravita-
tional model or different data are employed.

The data in the table show that the equilibrium points are almost
symmetric with respect to the x and y axes and they practically lay on
the xy−plane. This can be explained considering the quasi-symmetry
of the asteroid Kleopatra and the assumed direction of the spinning
axis: the balance between the forces in the rotating frame is in the plane
orthogonal to the spinning direction. Moreover, in this case, the first two
equilibrium points have a remarkably similar energy level.

Influence of the Shape of the Body The results that have presented
in the previous section obviously depend on the particular dynamical
environment that is considered; in fact, any other non-spherical object
has different Zero Velocity Surfaces and equilibrium points, considering
that they are derived from the pseudo-potential function, which depends
on the geometry of the body.

In figure 5.3, the equilibrium points and the Zero Velocity Surfaces,
projected on the plane orthogonal to the spinning direction, are shown
for all the remaining bodies. The analysed rotational states are the real
ones, described in section 2.4.7.

First of all it should be noted that for Toutatis the spinning axis is
inclined 21◦ with respect to the x−axis, and thus, the plane that is shown
in figure 5.3d is not a reference plane. Then, from this point of view, the
shape of the object is fairly symmetric, and as a consequence, the Zero
Velocity Curves are nearly circular. The equilibrium points in this case
have particularly similar energy level. So, instead of actually distinct
equilibrium points, this dynamical environment has an equilibrium ring.
Basically, this is about the same equilibrium area that is present around a
centrobaric body like the Earth, which has the geostationary ring. In fact,
each geostationary satellite lies is on an equilibrium point if observed
in an Earth-fixed reference frame. The six equilibrium points of this
body are far from the central attractor, if compared with the other objects
in the same figure, and this is due to the slow spinning rate of the
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(a) 67P Churyumov-Gerasimenko. (b) 433 Eros.

(c) 1580 Betulia. (d) 4179 Toutatis.

Figure 5.3: Zero Velocity Curves on the plane orthogonal to the spinning
direction and Equilibrium Points. (The labels on the curves indicate the relative
C value in

[
m2 s−2

]
. The black dots are the equilibrium points.)

body. Moreover, 4179 Toutatis is in a complex rotational state and the
computed results refer only to an instantaneous condition, with ‖ω‖ '
2.10× 10−5 rad/s around the already mentioned non-principal inertia
axis.

In spite of the existence of an equilibrium ring, the algorithm con-
verges to six distinct equilibrium points, because the field is not perfectly
circular, and the irregularities in the shape guarantee the presence of
discrete equilibrium locations. In figure 5.3c, the results show a similar
behaviour to the one that has been described for Toutatis. In fact, 1580
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Betulia can be assumed as a quasi-spherical object. However, in this case
the smaller distance of the equilibrium ring to the surface of the body
produces a more irregular shape of the Zero Velocity Curves. Further-
more, the location of the five equilibrium points can be directly related
to the visible features of the shape of this asteroid.

The comet 67P and the asteroid 433 Eros, in figures 5.3a and 5.3b, are
characterized by a considerably irregular field. They have, respectively,
five and four equilibrium solutions, which are identified by different
energy levels. In the case of 433 Eros the evolution of the Zero Velocity
Curves is similar to the one of 216 Kleopatra, presented in figure 5.2. The
main difference between these two objects is the distant energy level,
C ∼ 50 for Eros and C ∼ 3000 for Kleopatra, due to the two dissimilar
mass values. Instead, the comet 67P has a slightly different dynamical
environment with an additional equilibrium location. In this case the
main bulge, on the left in figure 5.3a, modifies the shape of the Zero
Velocity Surfaces and generates a region of similar energy level around
itself. This area embraces E3, E4 and E5, and it is a rough approximation
of an equilibrium ring, due to the presence of the larger lobe of the
comet.

In table 5.2, the coordinates of the equilibrium points, with their
values of Jacobi constant, are listed for all the bodies represented in fig-
ure 5.3. These values are evaluated under the current set of assumptions,
employing the data that are presented in this thesis. They agree with the
preceding discussion and support the previous analysis on the evolution
of the Zero Velocity Surfaces.

The Zero Velocity Surfaces establish boundaries for the motion in the
vicinity of an irregularly-shaped body. They depend on the shape of the
object, but also on its rotational state.

Influence of the Spinning Rate The spinning rate of a body influences
the dynamical environment around itself; in fact, in the body-fixed frame
the fictitious forces are dependent also on the magnitude of the angular
velocity. The centrifugal acceleration, in the non-inertial reference frame,
is the only contribution that influences the shape of the Zero Velocity
Curves, and accordingly, the position of the equilibrium points: for ṗ = 0
the Coriolis acceleration is null. This effect has been already mentioned
with the asteroid 4179 Toutatis in figure 5.3d, whose equilibrium points
are at a great distance because of its slow rotation. This is completely
reasonable since, for a fast spinning attractor, the centrifugal acceleration
in B is larger, and it is balanced only if a particle is close enough to the
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Table 5.2: Equilibrium Solutions for the other reference bodies.

(a) 67P Churyumov-Gerasimenko.

xE [m] yE [m] zE [m] C [m2 s−2]

E1 3.6740× 103 8.5860× 101 9.6310× 101 0.3456
E2 1.2800× 103 3.0840× 103 3.3320× 101 0.3198
E3 −3.2260× 103 −7.7850× 102 9.4090× 101 0.3085
E4 −2.4390× 103 1.9670× 103 2.0570× 102 0.3022
E5 −6.2380× 102 −2.9270× 103 −5.4990× 101 0.2926

(b) 433 Eros.

xE [m] yE [m] zE [m] C [m2 s−2]

E1 −2.0100× 104 −1.9950× 102 −5.5190× 102 49.5066
E2 1.8200× 104 −6.2030× 103 3.8910× 101 48.3153
E3 3.1890× 103 1.4350× 104 1.9020× 101 39.6254
E4 −2.6560× 103 −1.3780× 104 −2.5590× 102 38.6950

(c) 1580 Betulia.

xE [m] yE [m] zE [m] C [m2 s−2]

E1 6.7510× 103 −2.0700× 103 −6.0880× 101 5.8723
E2 −6.8420× 103 −1.7140× 103 −1.0790× 102 5.8701
E3 2.1520× 103 6.6290× 103 7.4180× 101 5.8210
E4 −2.3330× 103 6.5620× 103 1.8590× 101 5.8201
E5 −3.7240× 101 −6.9010× 103 4.5210 5.7901

(d) 4179 Toutatis.

xE [m] yE [m] zE [m] C [m2 s−2]

E1 6.1560× 103 8.4870× 103 −1.6460× 104 0.2566
E2 6.1560× 103 −8.4870× 103 −1.6460× 104 0.2566
E3 3.0780× 103 1.7450× 104 −8.2320× 103 0.2564
E4 3.0780× 103 −1.7450× 104 −8.2320× 103 0.2564
E5 −6.1560× 103 8.4870× 103 1.6460× 104 0.2562
E6 −6.1560× 103 −8.4870× 103 1.6460× 104 0.2561
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Figure 5.4: Equilibrium points and spinning rate, for 67P Churyumov-
Gerasimenko.

surface, where the gravitational attraction is stronger. This concept has
been verified, and the results obtained for the comet 67P are shown in
figure 5.4.

Here, the positions of the equilibrium points agree with the expected
trend, and obviously, there is a change in the energy levels associated
with these locations. In fact, in the real motion ‖ω‖ ' 1.40× 10−4 rad/s,
the equilibrium points have an averageC of 0.31 m2 s−2, while, for ‖ω‖ '
1.10× 10−4 rad/s, C ∼ 0.27 m2 s−2, and for ‖ω‖ ' 2.00× 10−4 rad/s, C ∼
0.40 m2 s−2. This is reasonable because, for a given position, the Jacobi
constant increases with the magnitude of the angular velocity. Moreover,
closer to the surface the gravitational potential is larger, and according
to equation (2.69), C increases.

Influence of the Spinning Direction The direction of the rotation axis
is another feature that influences the shape of the Zero Velocity Surfaces
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and the position of the equilibrium points. As already noted with the
example of 4179 Toutatis, the balance between the forces in the rotating
frame is in the plane orthogonal to the spinning direction.

In the real world, the spinning direction of irregular celestial bodies
can undergo large oscillations, and it is reasonable to wonder how the
dynamical environment of a single object is modified for different orien-
tations of the rotation axis. In figure 5.5, three different spin directions
are simulated for the comet 67P; in all the case the magnitude of the an-
gular velocity is the real one. The spin directions coincide with the three
principal inertial direction, and when ẑ is considered, the conditions are
the same of figure 5.3a. The plotted Zero Velocity Surfaces correspond
to C = 0.35 m2 s−2 and the direction of the rotation axis is parallel to the
axis of the external cylindrical surface.

From this figure, it is evident that the dynamical environment is
dramatically modified by the direction of the rotation axis. In the ex-
treme case of the three orthogonal principal inertia axes, the number
of equilibrium points is different between the different simulation on
67P. Each case can be analysed, as the one in figure 5.5c in the previous
paragraph. The number and the position of the equilibrium solutions
depend on the shape that the body has orthogonally to the spin direc-
tion. It can be noted that in figure 5.5a the three equilibrium positions
are approximately distributed on an equilibrium ring, since, if 67P is
observed along x̂, its shape is approximately circular.

5.3 Applications to Selected Environments

The previous analyses are extremely useful to have some preliminary
insights on the dynamical environment of an irregularly-shaped body.
They provide dynamical information in simple situations, which can
be exploited to obtain the initial conditions to run some useful simula-
tions. In this work, the complete dynamical model is used; thus, there
is no integral of motion and the solutions are dependent from several
parameters and assumptions. The fidelity and accuracy of the model are
continuously tested and the results are considered to be exact under the
current set of hypotheses. However, the high fidelity of the simulations
does not allow drawing general conclusions, and all the obtained simu-
lations are only representative for the particular dynamical environment
that is considered.

Many approximated and linearized techniques are available in the
literature to study the general features of the dynamics around irregular
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(a) x̂ spinning direction.

(b) ŷ spinning direction.

(c) ẑ spinning direction.

Figure 5.5: Equilibrium points and spinning direction, for 67P Churyumov-
Gerasimenko. The blue dots are the equilibrium points.

135



Chapter 5. Dynamics around Irregularly-Shaped Bodies

celestial objects or binary systems. They allow obtaining general conclu-
sion on the global phenomena, but they lack of the required accuracy for
certain applications. Their results have been here exploited as reference
solutions for the validation of the model.

Approximated techniques are often able to find periodic solutions
close to the surface of an irregular body. Some references use very
simple approximations of the shape of the body to compute families
of periodic orbits, similarly to what is usually done in the framework
of the circular restricted three-body problem. Periodic trajectories exist
also when a complex dynamics is considered, but very often, a solution
loses its periodic properties if it is simulated with an enhanced model.
In real applications this is not a problem, because the real operations of
a space mission take always into account the necessity of station keeping.
In this regard, the outcomes of an accurate dynamical model can be
compared with the approximated results of a lower fidelity technique,
in order to evaluate the station keeping effort to achieve a particular and
well-behaved orbit.

In this work, the trajectories are computed starting with arbitrary ini-
tial conditions. These are obtained exploiting the results of the analysis
in section 5.2 and the information coming from an equivalent Keplerian
motion. They are propagated in time for an arbitrary amount of time
and their results are shown to highlight some particular and interest-
ing characteristic of these dynamical environments. As already said,
single simulations have no general validity, yet diverse features can be
highlighted to have a deeper understanding of this problem.

Typical Orbits An infinite number of orbits exist around an irregularly-
shaped object; each of them is identified by certain characteristics, such
as stability level or geometry. In the following four typologies of orbits
are reported. They are not representative of all the possible orbital
geometries, but they provide a wide overview of possible stable orbits
around irregular objects. In these simulations, the rotation axis of the
main attractor is initially aligned with one of the principal inertia axes.
The perturbative effects act on the coupled dynamics, and despite the
rotational dynamics remains very close to the uniform one, the asteroids
or the comet are in a non-principal rotation state.

In figures 5.6 and 5.7, two transversal spatial orbits are shown. They
are called transversal because the orbit in the inertial frame is perpen-
dicular to the equatorial plane. In the first kind, figure 5.6, the orbital
period is comparable with the rotation period of the main attractor and
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Figure 5.6: Transversal orbit of first kind around 1580 Betulia. Spinning direc-
tion at t = 0 aligned with ẑ.
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Figure 5.7: Transversal orbit of second kind around 67P Churyumov-
Gerasimenko. Spinning direction at t = 0 aligned with ẑ.

the orbit in the rotating body-fixed frame stays on one side of the main
body. This type of orbit can be exploited if the particle has to be always
on one side of the irregular object. In the other simulation, figure 5.7,
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Figure 5.8: Planar equatorial orbit around 1580 Betulia. Spinning direction at
t = 0 aligned with ẑ.
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Figure 5.9: Planar equatorial orbit, axial, around 433 Eros. Spinning direction
at t = 0 aligned with x̂.

the orbital period is different from the rotation period of the primary
and the trajectory evolves all around the comet. If the period of the
orbit is commensurable with the rotational period of the main body, the
spatial trajectory can be periodic and it is called resonant; this typology
of orbits has good stability properties. They are interesting for practical
applications since all the surface of the main object is covered from this
trajectory. Transversal orbits are a particular case of spatial orbit, whose
motion is the whole three-dimensional space.

In figures 5.8 and 5.9, two planar orbits are shown. These are trajec-
tories evolving in the equatorial plane of the main attractor, and can be
denoted as retrograde or prograde orbits, as defined by the direction of the
motion of a particle with respect to the direction of the rotation of the
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Figure 5.10: Transversal orbit around 67P Churyumov-Gerasimenko, tSim =
30 d. Spinning direction at t = 0 aligned with ẑ. Real rotation dynamics of the
comet.

body in inertial space. In this paragraph, both orbits are retrograde. The
planar orbits have a good stability level and they could be interesting
for practical applications because of their two-dimensional evolution.
The orbit in figure 5.9 is defined as axial since the body is elongated in
the direction orthogonal to the plane of motion. In this example, the real
spinning direction of the asteroid 433 Eros is not considered.

If these orbits are simulated for a longer period, the evolution is
obviously diverging, because of the complex perturbed dynamics that is
propagated. However, the good stability properties of these typical orbits
maintain the motion in proximity of the main body for an acceptable
period, and according to the requirements of the mission, the station
keeping could be avoided. In the case of the transversal orbit around
the comet 67P Churyumov-Gerasimenko, the simulations for a period
of 30 d is shown in figure 5.10. The initial conditions are the same of
figure 5.7.

Prograde and Retrograde Motion The analysis of the difference be-
tween the planar direct and retrograde motion is performed around the
asteroid Toutatis, which is in non-principal rotation state. In this case,
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Figure 5.11: Prograde quasi-axial orbit around 4179 Toutatis, tSim ∼ 5 d. Real
rotation dynamics of the asteroid.
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Figure 5.12: Retrograde quasi-axial orbit around 4179 Toutatis, tSim ∼ 5 d. Real
rotation dynamics of the asteroid.

the orbit is started with the initial conditions to generate a quasi-axial
trajectory and two simulations are run, reversing the direction of rotation
between the two different cases. In this way, a prograde and a retrograde
motions are obtained. The simulation time is tSim ∼ 5 d.
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Figure 5.13: Retrograde quasi-axial orbit around 4179 Toutatis, tSim = 30 d.
Real rotation dynamics of the asteroid.

The results are shown in figures 5.11 and 5.12 and it is immediately
evident how the stability of the retrograde motion is higher with respect
to the prograde one. This is a general conclusion for a planar motion
around an irregular object; hence, the axial orbits in these complex envi-
ronments are more interesting if retrograde with respect to the rotation
of the main attractor. In figure 5.13, the same motion is propagated for
30 d; the stability of the retrograde orbit is impressive. This is a perfect
solution for applications around this particular object in non-principal
rotation state. Obviously, this is not the only existing stable orbit around
Toutatis, and many more can be found with different initial conditions.
Exploiting a continuation algorithm, a family of orbits of the same kind
can be discovered; this is valid in general for any stable orbit around a
particular attractor.

The effect of the non-principal rotation state is evident looking at
the differences between the inertial and the rotating representations for
principal and non-principal rotators. To have a more clear view of this
concept, a transversal orbit around 4179 Toutatis is shown in figure 5.14.

Comparing the results for the tumbling asteroid with the ones for
the principal rotators, the effects of a complex rotational dynamics are
evident. Both the motions, in the rotating frame and in the inertial sys-
tem, show large out of plane variations of the orbit, which are due to
the complex interaction between the dynamics of the particle and the
rotational motion of the primary. In general, the non-principal rotation
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Figure 5.14: Transversal orbit around 4179 Toutatis, tSim ∼ 5 d. Real rotation
dynamics of the asteroid.

of the main attractor increases the complexity of the whole coupled
dynamics; thus, in these situations, the trajectories must be carefully de-
signed. For 4179 Toutatis this problem is reduced thanks to its elongated
and quasi-axisymmetric shape; furthermore, the large bulge on one side
of the body enhances the stability of orbits around that region of the
asteroid.

Influence of the Rotational State The influence of the rotational state
of the main attractor on the surrounding dynamics deserves additional
attention. Especially if the mission design process has to be performed
around a body, whose rotational state is not accurately known. In this
analysis, the motion of a particle is simulated around 433 Eros; the initial
orbit is of the axial type around the object that is rotating around its
minimum inertia axis. Then other simulations are run with the rotation
axis direction inclined with respect to the principal inertia axis; the step
in the inclination of the initial axis is of 5◦. The results are shown in
figure 5.15, and they are labelled with the angle between the initial
rotation axis of the simulation and the minimum inertia axis of the
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Figure 5.15: Influence of the rotational state on particle dynamics around 433
Eros, tSim ∼ 5 d. Arbitrary rotation dynamics of the asteroid.

asteroid. The perurbative effects are acting on the dynamics of the
system, which is propagated for tSim ∼ 5 d.

From this test, it can be argued that the accuracy in the determination
of the rotation axis of a celestial body is extremely important to propagate
the coupled dynamics in its vicinity. In this particular case, an error of
15◦ on the spin direction could determine a catastrophic epilogue for
a hypothetical space mission around Eros. In fact, in figure 5.15d the
particle crashes on the surface of the body in a short time. In general, a
small error on the rotational state of the main attractor determines large
uncertainties in the orbital dynamics, and if a mission design process
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Figure 5.16: Transversal orbit around 433 Eros, tSim = 30 d. Spinning direction
at t = 0 aligned with ẑ. Real rotation dynamics of the asteroid.

has to be carried out, a large station keeping action must be included in
the budgets of the system.

In the limits that the body is rotating around a different inertial
axis, the same initial conditions evolve in a completely different orbit
of another family. In figure 5.16, the real dynamics of the asteroid is
propagated with the same initial condition of figure 5.15. The resulting
orbit is a transversal spatial orbit with good stability properties; it is a
quasi-resonant orbit for this system and allows a full coverage of the
surface of the asteroid.

5.4 Effect of Perturbing Torques

At this point of the analysis, it is reasonable to wonder which is the
practical effect of the perturbations included in the rotational dynamics
of the primary. The goal is to estimate the accuracy of the unperturbed
model, together with the length of the timespan where the dynamics
without perturbation is reliable, and in a first approximation, can be
used in place of the full dynamical model. The best way to accomplish
this analysis is through the use of the orbital elements introduced in
section 5.1.1. In particular, the evolution of the osculating orbital param-
eters is computed, starting with the same initial conditions, both for the
perturbed and for the unperturbed model. Then, the difference between
the two simulations is evaluated and analysed.
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Figure 5.17: Influence of the perturbations on particle dynamics around 4179
Toutatis, tSim ∼ 30 d. Real rotation dynamics of the asteroid.

Here, the results obtained on 4179 Toutatis and 67P Churyumov-
Gerasimenko are shown and compared in figures 5.17 and 5.18. The
dynamics is propagated for a period of 30 d and the study is carried out
on the differences in the osculating semi-major axis, eccentricity and
inclination.

It must be noted that the irregular trend in figures 5.17b to 5.17d
and figures 5.18b to 5.18d is due to the extremely erratic evolution of
the osculating parameters. The complex dynamics of a particle around
an irregular celestial body is remarkably different from the classical
two-body problem and the osculating elements have large fluctuations
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Figure 5.18: Influence of the perturbations on particle dynamics around 67P
Churyumov-Gerasimenko, tSim ∼ 30 d. Real rotation dynamics of the comet.

in time, which are also reflected in the differences between the two
different simulations. However, the general progression is important for
the current analysis and it can be clearly outlined in the aforementioned
plots.

From the previous figures, it is evident that the perturbing torques on
the rotational dynamics of the main attractor have a small influence on
the dynamics of the particle P . However, their effect is not completely
negligible, especially if a long simulation time is taken into account. In
fact, the difference between the full model and the unperturbed one is
increasing in time; this particular trend has been detected in all the inves-
tigations that have been carried out for all the available environments.

146



5.4. Effect of Perturbing Torques

A tolerable level of accuracy depends on the particular application, but
in general, after 30− 50d the difference is noticeable and the perturbing
torques must be included in the model for such a long timespan. In
addition, the real perturbations act also directly on the orbital dynam-
ics of the particle and the actual error of the completely unperturbed
simulation is even larger.

The effect of the perturbations depends also on the particular en-
vironment that is considered. For instance, the simulation around the
comet 67P is more affected by the perturbations if compared with the
one about Toutatis. This can be explained considering the substantial
influence of the perturbing torques on the comet, because of its low
density with respect to the one of the asteroid. In this case, the extension
of the surfaces of the two objects is comparable, but they have dissimilar
inertia properties. Thus, they experience similar perturbing torque, but
they undergo different angular accelerations. Moreover, the simulated
orbital motion around the comet is less stable and evolves quite far from
the central attractor; therefore, the importance of the coupling terms
between the rotational dynamics and the orbital one is greater, and the
influence of the perturbations is more relevant.

Globally, the perturbations on the rotational dynamics of the main at-
tractor can be neglected for short mission with t < 10 d. Considering also
the disturbances that act directly on P the validity of the unperturbed
model is probably limited to some hours. Obviously, if the spacecraft is
supposed to fly far from the irregular object the tolerance on the admissi-
ble accuracy can be a bit more relaxed, since the risk of collision is lower.
So, the higher error in neglecting the perturbations far from the primary
is compensated by the reduced level of accuracy that is required.

The additional computational time that is needed to evaluate the
contribution of the perturbations is ∼ 75% of the time required to run
the simulation without perturbations. This greater computational effort
is mainly due to the surface torques that are computed on each face
of the polyhedron model, taking also into account the self-shadowing
effect. In this work, the same number of faces that is used to evaluate the
gravitational field is then used to compute the perturbing torques. The
speed performances of the algorithm can be increased if the gravitational
field and the perturbing contributions are evaluated at the same time
in a single loop, though in this case, the code is less flexible and the
accuracy levels cannot be singularly tuned.

In this chapter, some particular results have been shown and dis-
cussed. They depend on the specific dynamical environment and initial
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conditions; hence, they have no general validity. But, they also highlight
several insightful features of the dynamics of a particle in the vicinity
of an irregularly-shaped body. These can be used to have some prelim-
inary understanding about this class of problems, and to have some
reference results that can be always exploited as benchmarks for future
applications.
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Chapter 6

Conclusions

This thesis deals with the coupled dynamics of a particle around an
irregularly-shaped body. To describe the motion of this particle the eval-
uation of the gravity field generated by the main body is essential, and
in this research work, two different enhanced modelling techniques have
been exploited for this purpose: the mascons and polyhedral approach.
Moreover, a complete and accurate representation of the dynamical
environment in the vicinity of an asteroid or a comet is only possible
when their rotational dynamics is taken into account. Thus, a model to
understand the evolution of the rotation state of the irregular body has
been implemented, including the effect of the most influencing natural
perturbations. Both the gravitational and the rotational contributions
have been considered together to develop a model able to accurately
describe the orbital dynamics around a non-centrobaric body.

The resulting dynamical environment has been characterized by
means of simple particular solutions, such as the Zero Velocity Surfaces
or the equilibrium points. In addition, several specific initial condi-
tions have been propagated, and despite their circumscribed validity,
they spotlight some insightful and important traits of the dynamics of
a particle around one of these singular bodies. In fact, the existence
of planar and spatial orbits has been shown. The former have been
classified retrograde or planar, according to the direction of motion of
the particle with respect to the rotation axis of the primary; while, the
latter, generically resonant, if the ratio of their period with the rotational
period of the main body is a rational number. Furthermore, the stability
of these trajectories, the influence of the rotational state and the effect
of perturbing torques have been assessed, in a way to have a complete
overview of the problem and to test the accuracy of the model.
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In general, the description of these environments should be carried
out with a continuous balance between fidelity of results and required
computational time; there is not a unique possibility to solve this trade-
off, and the final decision depends on the particular application. For
instance, the advanced mission design process is greatly demanding
in terms of accuracy, but the real time operations to be managed by
the on-board computer of a space probe require fast and reliable algo-
rithms. Hence, in several practical circumstances, the optimum Lo-Fi
model, which has been defined and employed in this research work,
is extremely helpful. The developed algorithms make extensive use of
parallel computing techniques; however, the code can be optimized fur-
ther and a huge boost to the computational speed is possible exploiting
simple and light programming language, such as C or Fortran. In this
thesis, the entire structure of the different tools has been implemented
with MATLAB R©. The validity of each result has been continuously veri-
fied through direct visualization techniques and comparisons of simple
physical quantities.

6.1 Gravity Models

The employed enhanced modelling techniques to describe the gravita-
tional field of an irregular celestial object have their own advantages
and drawbacks. They do not have convergence problems, thus, they
allow having a decent representation of the gravitational field in all the
surrounding space, including the surface of the body. The level of achiev-
able precision can be easily tuned adjusting the number of discretizing
elements, and consequently, they are extremely flexible.

The polyhedron approach, especially if the representation of the
body is particularly accurate, produces superlative results, but it is
computationally expensive. The fidelity of the field is only limited by
the precision of the shape representation; moreover, the Laplacian of the
potential is immediately available to determine if a field point is outside
or inside the body. The required time to evaluate the field is linearly
increasing with the number of polyhedron’s faces, while the errors of the
model decrease with the square root of the same quantity. Having this
information, an acceptable level of accuracy and computational effort
can be established according to the current needs.

The mascons approach is markedly faster and produces good results
if the field point is far enough from the surface of the body. In general, it
produces poor results if it is applied to elongated bodies. The optimized
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version of this technique improves the performances of the standard
version up to its theoretical limit: the error decreases by one order of
magnitude for an increase of three orders of magnitude in the number of
mascons. However, over a certain number of point masses, the optimiza-
tion process is not effective anymore and the gridded mascons approach
is sufficient to have an acceptable result.

With the analysis, which has been conducted in this research work,
the most efficient and effective gravity model is a combination of both
approaches. The resulting optimum Lo-Fi technique uses a polyhedron
with a moderate number of faces to compute the field close to the surface
of the body, and the optimized mascons with a reasonable number of
masses when the distance from the centre of mass is large enough. The
switch between the two models happens at a distance where the gap
between the two techniques is extremely limited, in a way to maintain
the continuity of the field.

6.2 Rotational Dynamics

The understanding of the rotational dynamics of irregular celestial bod-
ies is essential to describe the dynamical environment in their vicinity.
Not only, the knowledge about the evolution of their rotation state can be
used to investigate the formation and the evolution of the Solar System,
or to accurately determine the risk of impact from potentially hazardous
objects with the Earth.

Obviously, the motion is extremely affected by the presence of the
perturbations. Their effect is different for each single case, but in general,
radiative torques and third body gravitation are the most disturbing
terms. However, only the radiation that acts in the direction normal
to the surface has a relevant secular contribution. Hence, the long-
term evolution of the rotational dynamics of an irregular celestial body
is mainly influenced by the YORP effect. Yet, since the non-periodic
influence of the perturbations is particularly small, the time scale of
these secular effects is exceptionally long and they can be neglected for
preliminary short-term simulations.

Nevertheless, all the perturbing torques determine fluctuations in the
rotation state of the analysed object. These short period variations are
connected with the orbital dynamics in the vicinity of these object and
their study contribute to increase the accuracy of the developed coupled
dynamical model.
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The perturbations have been meticulously modelled, exploiting the
polyhedron shape to evaluate the rotational inertia properties and to
accurately describe the interaction of radiations with the surface of the
body, taking into account shadows and self-shadowing phenomenon.

Per contra, the precision of the available data is not always guaran-
teed; therefore, a sensitivity analysis has been performed to ensure the
validity of the conclusions regardless of the fidelity to which the prop-
erties of the body are determined. The results show that the dynamical
model is robust enough, and within the typical range of uncertainty, the
simulations are sufficiently correct. The global evolution of the motion
is preserved, and it is reasonable to use the accurate dynamical model,
even though the physical and dynamical characteristics of the celestial
object are just a preliminary estimate.

6.3 Coupled Dynamics

The investigation about the motion of a particle near irregularly-shaped
bodies has been supported by the results gathered analysing the already
mentioned topics. Indeed, the study of the techniques to model the
gravitational field and the inspection of the rotational dynamics of a
minor celestial object are crucial to implement an accurate model to
simulate this peculiar dynamical environment.

The characteristics of these surroundings are subordinate to the ro-
tational state of the main attractor. If this body is in uniform rotation
state, an integral of the motion exists and the equations of motion, in
the body-fixed frame, are time invariant. Notwithstanding, this is not
true in all the situations, and in particular, it is not verified when the
dynamics is perturbed by external torques. In these conditions, the equi-
librium solutions and the Zero Velocity Surfaces are time-varying and
they can be used only for a preliminary understanding of the evolution
of the motion. The number of equilibrium solutions and the shape of the
bounding surfaces are determined by the geometry and the rotational
state of the primary, and each condition must be singularly analysed.

The stability of the motion has to be assessed for each set of initial
conditions; even though, in general, the retrograde planar and the reso-
nant orbits are notably stable. In addition, the trajectories of the particle
are highly shaped by the rotation state of the main attractor, and as a
consequence, the uncertainty in the determination of the direction of the
spinning axis must be as small as possible. An error of few degrees can
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determine a catastrophic epilogue for a space mission in the vicinity of
an asteroid or a comet.

Despite the perturbing torques have a limited effect on the dynamics
of the orbiting particle, their effect cannot be neglected, and in a long
simulation, the difference between the ideal and the perturbed motion is
not completely insignificant.

Finally, considering the inevitable uncertainties and approximations
in simulating the dynamics in these unique environments, the station
keeping must be carefully planned along the mission design process.
For this purpose, additional sensitivity analyses can be carried out with
the developed model, which can also be exploited to run accurate simu-
lations when the description of the mission scenarios is detailed enough.

6.4 Future Works

This research work deals with several ongoing problems in the field
of orbital dynamics, planetary sciences and space engineering. The
available literature is surprisingly wide, and this thesis is just a single
step further towards the study of this complex and broad, but fascinating,
topic. However, all the existing studies on this matter are quite recent,
and a lot of research work has yet to be done. The future works can
evolve in two different directions.

A part of the research can be directed towards the increase in the
accuracy of the model. In fact, the perturbative effects can be directly
added to the dynamics of the particle, and not only to the rotational
motion of the main attractor. Furthermore, the real orbital path of the
asteroid or the comet can be easily included in the whole dynamical
model, and even in this case, the perturbations can be considered. As
a possible last improvement in the fidelity of the model, the irregular
gravity field can be evaluated including the possible density variations
within the volume of the main attractor. Yet, this information must be
accessible, and therefore, this last point is subjected to the availability of
an accurate description of the mass distribution of the real body.

A different direction for future research works is related to the reduc-
tion of the fidelity of the model. As example, the gravity field can be
computed with a simple harmonic series expansion, including only the
first terms of the series, or with the exact field for a triaxial ellipsoid [40].
In this way, the accuracy of the results is lower, close to the surface of
the body in particular, but some general conclusions can be delineated.
Thus, the analysis is independent from the particular environment and
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some additional investigations can be performed, thanks to the reduced
computational burden. For instance, families of periodic orbits can be
computed and their stability evolution can be studied, or the dynamical
environment can be analysed by means of Poincarè maps. This dynam-
ical tool is extremely useful to understand the evolution of the region
of stability around the body and to perform useful bifurcation analyses,
but it is computationally expensive; so, a very low fidelity model allows
a reasonable elaboration time and do not restrict the analysis to a single
specific situation.

An additional application of this dynamical model is the one related
to the study of binary systems of asteroid. In this problem two non-
spherical objects are taken into account and their relative motion can be
studied, as well as the dynamics of a particle in the binary environment.
This argument is of great interest, either for future missions to binary
objects, or to anticipate the circumstance of encountering an undetected
secondary body during a mission initially planned around a single body.

A completely different problem, which is present in the context of
mission design, is the capability to compute transfers to get in the vicinity
of irregularly-shaped bodies. Here, it is important to note that the
gravitational field might be unknown before the close encounter; hence,
different sensitivity analyses are necessary in order to be ready to adjust
the planned trajectory when a precise model of the gravitational field is
available.

Finally, it must be remembered that the propagation of trajectories
around a rotating irregular celestial objects is computationally expen-
sive. Fortunately, the developed algorithm can be improved in several
aspects. The global structure is still prone to be boosted, using a lighter
and simpler programming language and removing some cumbersome
sections that were necessary to assess the validity of the code. Addition-
ally, the meshing algorithm can be enhanced including the possibility of
a non-uniform resolution of the polyhedron, in order to have a finer dis-
cretization only where it is needed. In this way, it is possible to decrease
the required computational time, while maintaining the same fidelity of
the model. The efficiency of the code can be further increased exploiting
not only the parallel computing techniques, but also the Graphic Process-
ing Unit (GPU) computation, in a way to use thousands of processors to
complete numerical operations.

This research area is extremely active, and the space community is
eager to increase the scientific understanding of these topics. Thanks to
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the recent progresses of the space mission objectives, the spacecraft of
today are performing incredible and engaging tasks across all the Solar
System, but the missions of tomorrow will be even more challenging and
intriguing. This should not be seen as a limitation, since the human being
cannot remain confined to his comfort zone, but he has to continually
challenge himself, exploring and discovering new worlds, which also
include asteroids, comets, planets orbiting around the Sun, the outer
space and beyond.
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Symbols and Notations

Symbol Description

G Gravitational constant
U Gravitational potential
V Pseudo-potential function
r Distance from a point mass
m Mass of a point mass
M Mass of the body
V Volume of the body
σ Density of the body
ω Angular velocity of the body
Ω Constant angular velocity of the body
I Inertia tensor
Ix Minimum inertia moment
Iy Intermediate inertia moment
Iz Maximum inertia moment
ID Dynamic inertia
δ Obliquity
rf Vector from the field point to any point in the polyhe-

dron’s face plane
re Vector from the field point to any point on a polyhedron’s

edge
ωf Solid angle subtended by a polyhedron’s face as viewed

from the field point
Le Potential of a polyhedron’s edge
Ff Dyad associated with a polyhedron’s face
Ee Dyad associated with an polyhedron’s edge
Nv Number of polyhedron’s vertices
N Number of polyhedron’s faces
Nm Number of mascons

Continued on next page.
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Continued from previous page.

Symbol Description

B Rotating body-fixed reference frame
I Inertial reference frame
I3×3 3× 3 identity matrix
φ First Euler angle
θ Second Euler angle
ψ Third Euler angle
V State Vector of the dynamical model
A Direction cosine matrix from I to B
P Field point
x̂ Minimum inertia direction
ŷ Intermediate inertia direction
ẑ Maximum inertia direction
ŝ Body-Sun direction
n̂ Surface normal direction
p Position vector in B
pI Position vector in I
ρ Distance from the centre of mass of the body
h Angular momentum vector in B
m External torque in B
mGG Third body gravitation torque
mSRP Solar radiation pressure torque
mY ORP YORP torque
mD Dissipation of internal energy torque
mz Torque to change the spin rate
mδ Torque to change the obliquity
J Jacobi integral
C Jacobi constant
T Kinetic energy
Ei i-th equilibrium point
ci i-th direction cosine
c Speed of light
ca Absorption coefficient
cd Diffuse reflection coefficient
cs Specular reflection coefficient
cr Albedo of the body
PS Pressure due to solar radiation

Continued on next page.
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Continued from previous page.

Symbol Description

FS Flux density of solar radiation
A Area of a polyhedron’s face
DE Diameter of the body along x̂
DP Diameter of the body along ẑ
aeq Averaged equatorial radius
υ Geometric flattening of the spheroid
α Angle between ŝ and n̂
k Rigidity of the material
Q Quality factor
γ Angle between h and x̂ or ẑ
µ Gravitational parameter
a Semi-major axis
e Eccentricity
i Inclination
ε Keplerian specific mechanical energy
RS Radius of the orbit of the body
T2π Rotation period of the body
TP Orbital period of the particle
TS Orbital period of the body
tSim Simulation time
tC Computational time
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