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Abstract

This work deals with the problem of predicting readmissions in Heart Failure patients. The
aim is to highlight which factors may be helpful in the prediction process. The use of different
statistical methods allows to gain a multiple perspective. However, the real innovation of this
work lies in the comparison of two different countries. The available data, indeed, come from
administrative databases of Lombardia, an Italian region, and of England, a country of United
Kingdom. Each dataset contains in detail demographics, administrative and clinical informa-
tion, which constitute the history of the patient and, furthermore, the covariates. Using the
free available software R, we have implemented three different models: a Logistic Regression
for both first and second readmission within 30 days; Hurdle and Zero-Inflated models for
the total number of readmissions per patient within a year and, finally, two Multi-State mod-
els, that shape the process of admission-discharge-death. For each model chosen, we have
adjusted in the right way the structure of the dataset. From our analysis interesting results
come out: few common comorbidities increase the probability of readmission for Heart Failure
in both the dataset (renal, arrhythmia, pulmonarydz and hypertension), while others have
a different impact depending on the country (compdiabetes and pulmcirc are influential only
in Lombardia, while alcohol, tumor, dementia and pvd only in England). The procedures
are relevant in different way in both the countries, and they also are influenced by the timing
in which considering a readmission. About the implementation, we can assert that the use
of different models allows a good balance between computational costs and completeness in
describing the scenario, highlighting various features. Logistic regression and Hurdle/Zero-
inflated models, indeed, are easy to implement but they don’t have a wide perspective of the
clinical history of the patient. Multi-State models catch in the best way the process and the
impact of covariates on transitions, but present computational limitations.

KEYWORDS: Heart Failure, Predicting Readmissions, Hurdle and Zero-Inflated
models, Multi-State models, Comparison between Countries.

Sommario

Questo lavoro tratta il problema di predire le riospedalizzazioni di pazienti affetti da Scom-
penso Cardiaco. Lo scopo e’ cercare di evidenziare quali possano essere i fattori che aiutino nel
processo di previsione. L’utilizzo di diversi metodi statistici permette di affrontare il problema
da piu’ punti di vista. Tuttavia, la vera innovazione portata da questo lavoro risiede nella
comparazione di due differenti stati. I dati disponibili, infatti, provengono da database am-
ministrativi della Lombardia, una regione italiana, e dell’Inghilterra, una nazione del Regno
Unito. Ogni dataset contiene dettagliate informazioni di tipo demografico, amministrativo e
clinico, le quali costituiscono la storia clinica del paziente e, inoltre, le covariate di interesse.
Grazie all’uso del software R, sono stati implementati tre modelli differenti: un regressione lo-
gistica sia per la prima che per la seconda riospedalizzazione entro 30 giorni; i modelli Hurdle e
Zero-Inflated, che tengono conto del numero totale di riammissioni in un anno; infine, i modelli
Multi-Stato, che modellano l’intero processo di ammissione-dimissione-morte. La struttura del
dataset e’ stata di volta in volta adattata al modello scelto. Dalle analisi eseguite, emergono in-
teressanti risultati: alcune patologie accrescono la probabilita’ di riammissione per Scompenso
Cardiaco in entrambi i dataset (renal, arrhythmia, pulmonarydz and hypertension), mentre
altre diversificano il loro impatto a seconda del paese (compdiabetes e pulmcirc sono rilevanti
solo in Lombardia, mentre alcohol, tumor, dementia e pvd solo in Inghilterra). Le procedure
mediche, pur differentemente, in entrambi i paesi hanno un’importante impatto, che cambia
anche a seconda dell’orizzonte temporale considerato. Per quanto riguarda l’aspetto imple-
mentativo, possiamo asserire che l’uso di diversi modelli consente un buon bilanciamento tra
i costi computazionali e la completezza nella descrizione dello scenario. La regressione logis-
tica e i modelli di conteggio, ad esempio, sono facilmente implementabili, ma non consentono
una visione dettagliata della storia clinica del paziente. I modelli Multi-Stato, invece, sono
ottimi nel catturare l’intero processo e l’impatto delle covariate sulle singole transizioni, ma
presentano forti limitazioni computazionali, non consentendo di inserire tutte le covariate di
interesse come predittori.



Chapter 1

Introduction

Heart Failure (HF) is a chronic disease that occurs when the heart fails to pump
sufficiently to maintain blood flow at the right pressure for human needs. It may
be caused by many conditions that lead damage to the heart muscle: coronary
artery disease, high blood pressure, heart muscle weakness, heart rhythm dis-
turbance, damage with heart’s valves or a combination of all these.
Nowadays, Heart Failure is one of most common disease in our society, due to
many causes, for example ageing of population. To understand the relevance of
this disease, we just point out that Heart Failure is one of the most important
cause of hospitalisation in people over 65 (2014).
When dealing with patients affected by chronic disease (like Heart Failure), the
matter of predicting readmissions is a real challenge for hospitals, mainly for
two related reasons. The first one is concerned with the high costs of hospital-
ization, so, discovering the reasons of readmission may lead to improve hospital
care and, consequently, save money. Much more important could be the second
reason: to find which features in patients determine a higher incidence of read-
mission, in order to improve the therapies and to target interventions. This is
twice as useful, as for it takes benefits to patients and to hospitals as well.
Evaluating hospital readmissions and linked quantities for any kind of chronic
disease is one of the aims of the statistical research, thanks to the large amount
of data collected by hospitals. Several approaches have been applied to differ-
ent chronic pathologies (see, for example, Bartolomeo et al. (2008), Bottle et al.
(2014), Castaeda and Gerrits (2010), Postmus et al. (2012) or Ieva et al. (2015)
), because the underlying process is similar. That gives an idea of the interest
lifted up by this issue.
This thesis work focuses on the problem of predicting readmissions of patients
affected by a specific chronic disease: Heart Failure. We are going to apply
different statistical methods to model the process of readmissions of patients
affected by this common pathology. However, an important innovation is in-
troduced in this work, that differentiates it from all the previous analysis. The
new perspective given in this work is in fact the comparison between two dataset
collected by different countries. All the chosen methods will be symmetrically
applied to patients coming from Lombardia, an Italian region, and from Eng-
land, within the United Kingdom.
This two-step analysis is stimulating for many reasons. If we consider the ”longi-
tudinal” investigation along different models, we’re gaining a multiple perspec-
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CHAPTER 1. INTRODUCTION 2

tive of predicting readmissions. This is useful, because the standard approach in
facing this problem is to use logistic regression to predict a single readmission.
This approach, however, is incomplete, because patients with chronic diseases
can have multiple admissions and the length of stay is not considered in logistic
regression. Therefore we want to try other modelling approaches.
Even better, the comparison between different dataset is a tool to understand
strength and weakness of the correspondent Health Systems in facing Heart
Failure readmissions and to investigate the difference between the two popula-
tions as well.
So, the aims of this work are the following: (i) to find out what covariates are
good predictors for readmissions of Heart Failure patients, (ii) to compare these
outcomes between Lombardia and England, even detecting the basic differences
between the populations, (iii) to understand the strength and the weakness of
the models adopted, depending on the response of interest.
The structure of the work provides an initial overview of the dataset (Chapter
2), in order to interpret the features of both populations. In detail, we will
focus on anthropological and clinical (procedures and comorbidities) quantities
of interest, which are our predictors. A second step (Chapter 3) is a systematic
review of the statistical methods that will be applied and the adjustment of
the dataset to the models, depending on the response of interest. Our atten-
tion has been centred on three different models: Logistic regression, Counting
models (Hurdle and Zero-Inflated models) and Multi-State models. These tools
are described from the theory to the implementation, delineating the necessary
passages to reach the suitable structure of the dataset as input for the mod-
els. The main core of the work, however, will be the comparison of the results
between Lombardia and England dataset (Chapter 4): the different weight of
covariates on readmission process and similarities/dissimilarities in the process
of admission/discharge will be investigated. These results are further deepened
in the conclusive chapter of the work (Chapter 5).
All the statistical models (as well as plots and other useful tools) have been
implemented by using R software R Core Team (2014), a useful open source
statistical software.



Chapter 2

Background and
Motivations

In this chapter we present the datasets used for the analysis. They come from
two different contexts: the first one collects data from Lombardia, a region in
the northern part of Italy, the second one collects data from England, the biggest
country of the United Kingdom.
In this case study, we are handling a specific source of data, that now we ex-
plain. Our analysis, indeed, take advantage of data coming from administrative
databases. Administrative data refers to information collected primarily for
administrative (and not research) purposes. They play a central role in the
evaluation of health-care systems, due to their diffusion and low cost of infor-
mation. Although they are collected for administrative purposes, this kind of
data are increasingly approved by clinical epidemiologists, and they have al-
ready been used in several studies about HF readmissions yet (see, for example,
Philbin and DiSalvo (1999)).
At the beginning, we inspect the peculiarities of each dataset in their original
structure (Section 2.1 and Section 2.2). We will therefore give a first empirical
analysis that helps giving a general overview and a comparison of both the pop-
ulations (Section 2.3).

2.1 The Dataset from Lombardia

The first dataset used for this works comes from Lombardia, a region counting
9,955 million citizens.
Lombardia Health System is one of the most efficient in Italy, and its accuracy
allowed a collection of a complete dataset, that is going now to be illustrated.
The dataset in its original form is part of a bigger dataset of all the patients
admitted in a hospital of Lombardia in a period that runs from 1st January
2006 to 31st December 2012, for a total follow-up period of six years. This
dataset has been divided in different groups depending on different codification
of disease. Among these groups, we have analysed the patients coming from the
first group, which are the most likely patients admitted for Heart Failure.
The first structure counts 70, 236 observations of 53 significant variables. Each
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CHAPTER 2. BACKGROUND AND MOTIVATIONS 4

row is an admission into hospital for reasons related to heart-conditions, espe-
cially Congestive Heart Failure (99.89 % of the admissions), and an ID variable
keeps track of the identity of the patient, in order to know the total number of
patients (37, 565), and in order to record the variables of interest.
The important covariates recorded are related to anthropological, administra-
tive and clinical information. The demographic and outcome covariates are:
sex, age of admission, paediatric indicator ped ind (if at the beginning the pa-
tient is younger than 18 years old), indicator of death before the end of the
follow-up period (death ind) and indicator of death during the current hospi-
talization (death intraH ind).
The administrative covariates are related both to the admission schedules and
to the identification of the hospital. In the first case we obtain: the dates of
admission, discharge, exit from the follow-up, the period between the beginning
(or the end) of the admission and the previous (or the following) admission
or death. In the second case there are two different covariates: the first is an
indicator variable that indicates if the hospital is situated in Lombardia, the
second is a label that identifies the hospital. The number of hospitals recorded
in the dataset is 505, 202 of which are located in Lombardia and 303 in adja-
cent counties. It is interesting to note that the percentage of admissions in a
hospital not located in Lombardia is 2.1% meaning that, whereas the number
of recorded hospitals not located in Lombardia is high, the number of admis-
sions in this hospital is very low and not meaningful. Moreover, the number of
hospitals that have been overall visited less than 20 times for Heart Failure is
340. This is a high value and corresponds to the small percentage of hospitals
not situated in Lombardia that constitute the small percentage of admissions
outside Lombardia.
Clinical information is both related to medical procedures and to comorbidities.
We introduce them now, highlighting in brackets their name as covariates in our
models, coming from the relative ICD9 code.
A heart failure patient can be submitted to the following procedures : Coronary
Artery Bypass Graft (CABG), Percutaneous Transluminal Coronary Angio-
plasty (PTCA), Implantable Cardioverter Defibrillator (ICD); he can also be
recovered in Intensive Therapy (ti) or partly in Rehabilitation (riab), and he
can also be submitted to intervention in Heart Surgery (cardiochir).
Moreover, a series of comorbidities are checked in each admission: metas-
tasis (metastatic), congestive heart failure (chf), dementia (dementia), re-
nal pathology (renal), weight loss (wtloss), hemiplegia (hemiplegia), alco-
holism (alcohol), tumour (tumor), arrhythmia (arrhythmia), pulmonary dis-
ease (pulmonarydz), coagulopathy (coagulopathy), diabetes (compdiabetes),
anaemia (anemia), electrolytes in blood (electrolytes), liver disease (liver),
peripheral vascular disease (pvd), psychosis (psychosis), pulmonary circula-
tion disease(pulmcirc), HIV or aids (hivaids) and hypertension (hypertension).
Once a comorbidity appears in the clinical history of the patient, it stays until
the end of the follow-up period. The reason of this convention lies in the fact
that all these comorbidities are chronic and difficult to vanish.
All the values above are recorded at each admission, and as giving a picture of
the clinical history of the patient once recovered from Heart Failure.
All these significant informations have been arranged depending on the type of
model implemented, as described in the following chapter. In this section we
want to give some information on the dataset with the aid of graphs and plots,
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so as to describe the population that we are going to examine.

2.2 The Dataset from England

The dataset from UK is part of a bigger dataset that collects informations
from the NHS (National Health Service), specifically in England rather than
the whole United Kingdom.
One of the first differences is related to the dimensions of the available data,
because the geographical areas we are considering have different width. How-
ever, the problem that we are facing is the same, just on two different scales
and, fortunately, this is not a hurdle for our analysis. The original structure of
the dataset is close to the Lombardia one, with some exception related to some
covariates.
We have 1, 410, 215 observations, that means 20 times the Italian rows, and 48
covariates for each row. The total number of patients is 263, 775 (7 times the
number from Lombardia). These two informations are meaningful, because they
point out that the number of admission, on average, is higher for patients from
England than Lombardia. These data are collected from April 2006 to end July
2011. So, the follow-up period is of 5 years.
There are some differences with the Italian dataset, for example there are not
paediatric (easily inferable by age), Intensive Therapy and Rehabilitation in-
dicators, while there are three more administrative covariates: the first one is
EMERG, a flag indicating whether an admission is of emergency or not. This
covariate is fundamental as for it permits to distinguish between a planned ad-
mission and a not scheduled one. This information is substantial for our research
because, of course, there is no interest in predicting a readmission that we al-
ready know. When using the models described above, we want to predict the
admissions that are not scheduled or planned, thus the emergency one.
The other covariates not present in Lombardia dataset are: Cardiac Resynchro-
nization Therapy (crt), a specific treatment for heart failure, and Biventricular
Pacemaker pacing not crt, which is another medical care. In order to have a
homogeneous dataset, we have not considered these covariates (as it was samely
carried out with Italian covariates not present in England data).
In the English dataset, not all comorbidities are supposed to be chronic. For
instance, anaemia could be recorded in some admissions and then it could dis-
appear as reappearing again later; in that case, the comorbidities have been
treated in the same way of Lombardia case: once it enters in the clinical history
of the patient, it remains until the end.
In the English dataset, the number of hospitals is lower than in the Italian one:
the recorded number of hospitals is 348, and 78 of them have been visited less
than 20 times (so we can consider them as small hospitals).

2.3 A Common Preliminary Analysis

Before entering into the specific models that we have implemented, we are now
briefly giving an idea about both datasets. Specifically, we give some prelimi-
nary descriptive analysis of quantities that are not strictly predictors but that
can help to understand the populations.
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We start with a summarizing table presenting the percentage referred to the
anthropological features, the procedures and the comorbidities. We have kept
the original structure of the dataset, so most of the quantities are referred to all
rows, without manipulations done to suit the data to our future models.
Table 2.1 only presents some quantities related to anthropological characteris-
tics. We can see that the percentages related to the sex are quite similar, while
the English population is younger on average. In Figure 2.1 we can see the distri-

Lombardia dataset England dataset

Anthropological cov
Age (years) 77.29 (±11.19) 76.37 (±12.15)
Sex 47.67% Males 50.61% Males

Administrative cov
Number of admissions 2.09(±1.84) 6.13 (±9.75)
Death Indicator 58.23% 51.01%
Intra Hospital Death Indicator 9.37% 32.76%

(of the whole population) (of the whole population)
16.09% 64.22%

(of the dead patients) (of the dead patients)

Table 2.1: Percentage or Mean (SD) for original dataset

bution of the age at first admission in both cases. We can notice similarities and
dissimilarities too. The growing side (from early age to 84 years) is similar for
both the curves, while the decreasing side is quite different. Although it is steep
in both cases, the decreasing side behaves differently: in the England dataset
it is smooth, in the Lombardia dataset we have a local maximum around 90
years. A first reason could be the different amount of data. The second reason
lies in the not scheduled admissions of Lombardia dataset. Moreover, a small
but important part of patients are infant in both the dataset.

Another meaningful information is the In-Hospital Mortality rate. The In-
Hospital mortality rate is the number of patients dead during an admission
divided for the number of current admissions. We have grouped the death in-
side the hospital from the 10th admission in both cases, due to the sparsity of
data for higher admissions.
In addition, in the case of the English data we have plotted the In-Hospital
mortality rate in two cases: using all admissions without distinguishing the
emergency one, and, secondary, using only emergency admission. It is evident
(Figure 2.2) that, on average, the rate increases in the second case. The trend,
however, is similar: increasing until the 5th admission, and then monotonic de-
creasing is registered. That is curious, because we are expecting that when the
admissions become higher, the probability of survival should be lower (hence,
the rate of death inside the hospital should increase). But this is not the trend
in both cases (also emergency ones), probably related to the fact that the most
severely ill patients die early (with few admissions).

The case of the Italian dataset, as previously seen with the age at first ad-
mission, has a different behaviour (Figure 2.3). That could be related to the
lower quantity of data. The trend is positively linear until the 4th admission,
presenting then an increasing (yet more stormy) behaviour until the 9th admis-
sion, and, finally, it steeply decreases.
In both cases, the width of confidence intervals increases as much as the number
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Figure 2.1: Histogram of age at first admission in Lombardia (above) and in
England (below) dataset



CHAPTER 2. BACKGROUND AND MOTIVATIONS 8

Figure 2.2: In Hospital mortality rate and 95% Confidence Intervals of English
patients. All admissions (above), only emergency admissions (below).
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of admission becomes higher. That is what we expected, due to the decreasing
number of data available for high readmissions. Furthermore, it highlights the
difference between England and Lombardia dataset, because the the width of
Lombardia Confidence Intervals is higher than England data, which means a
less quantity of available data.
After having analysed the features related to administrative informations, we

Figure 2.3: In Hospital mortality rate and 95% Confidence Intervals of Lombar-
dia patients.

focus on the properties related to clinical knowledge. So, we watch over the
percentage related to comorbidities and procedures. That is because it is inter-
esting and helpful to understand the most frequent pathologies affecting Heart
Failure patients and the medical procedures carried out.
Our perspective, now, is much more focused on the problems of readmissions.
This is the reason being for the following tables and figures to refer to pa-
tients that did not die inside the hospital during their first admission. The
informations brought by those patients, indeed, are not useful in a predictive
perspective.
Table 2.2 shows the percentage of comorbidities referred to both populations.
As we can see, the observed percentages are different, but they share a similar
trend: high (low) values for comorbidities for the Lombardia dataset correspond
to high (low) values for the England dataset. That is important, as it tells us
that the diseases affecting patients are similar in both the countries, whereas
sometimes the effect is higher (lower) in a case rather than the other.
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The highest percentage are referred to the following disease: renal, arrhythmia,
pulmonarydz and hypertension. As expected, some of them are strictly related
to Heart Failure (arrhythmia and hypertension), being diseases that strain
the regular function of heart, facilitating its damage. The others (renal and
pulmonarydz) are not directly related but still determinant as well. Of course,
we can imagine that these covariates are going to impact our results.
Other comorbidities present a different behaviour depending on the dataset.
For example, the percentage of wtloss, alcohol, electrolytes and hypertension
are higher in England dataset than in Lombardia, otherwise compdiabetes and
arrhythmia are higher in Italian dataset. The reason can be found in the dif-
ferent cultural background, but may also be due to coding quality.
Similar is (less than 1%) the behaviour of metastatic, dementia, hemiplegia,
anemia, psychosis and pulmcirc. These covariates, moreover, have a low im-
pact on the whole dataset and we are expecting that they don’t affect our results
substantially.

This is not the only empirical analysis that we can do about comorbidities.

Lombardia dataset England dataset
Percentage Number of Patients Percentage Number of Patients

Metastatic 1.72 % 589 2.3 % 5,742
Dementia 5.08 % 1,738 6.45 % 16,093
Renal 21.81 % 7,453 32.33 % 80,572
Wtloss 0.45 % 154 2.82 % 7,033
Hemiplegia 2.58 % 882 2.35 % 5,866
Alcohol 0.26 % 89 3.53 % 8,802
Tumor 7.31 % 2,498 6.22 % 15,514
Arrhythmia 49.36% 16,857 59.72% 148,817
Pulmonarydz 24.90% 8,505 29.55% 73,624
Coagulopathy 0.71% 245 1.41 % 3,522
Compdiabetes 7.90% 2,699 5.87% 14,618
Anemia 8,88% 3,034 9.61% 23,950
Electrolytes 4.22% 1,444 16.38% 40,815
Liver 4.84% 1,653 2.74% 6,830
Pvd 12.31% 4,205 12.63% 31,479
Psychosis 0.69% 238 0.69% 1,744
Pulmcirc 4.82% 1,649 7.36% 18,352
Hypertension 44.91% 15,335 69.74% 173,759

Table 2.2: Comorbidities percentage referred to patients not dead inside the hos-
pital during the first admission. Lombardia dataset (34,146 patients), England
dataset (249,156 patients)

Figure 2.4 and Figure 2.5, for example, show the distribution of different disease
along the age of first admission. These graphs are simple yet important as well.
age, indeed, is a the first available information and knowing the distribution of
disease along age of admission could be a handy tool to understand the proba-
bility of readmission.
In Lombardia patients the comorbidity arrhtymia is one of the most frequent
disease at first admission, despite the age, and it often affects the 50% of the pop-
ulation as well as hypertension (not reported). The comorbidities pulmonarydz
and renal are less frequent, but they share a similar behaviour: a peak in the
early ages. That is probably because of different causes of the Heart Failure in
young people compared with elder ones, but it also may be due to the small
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number of young patients affected by Heart Failure, which can lead to a mis-
classification of the results.
English patients (Figure 2.5) behave in the same way as Lombardia ones. The
comorbidities that affect more the patients are arrhtymia and hypertension
(not reported), with a percentage around the 60%. As in Italian dataset, the
most relevant comorbidities also have a peak in the early ages. But the most
interesting disease is represented by alcohol, which is much more frequent in
youngest people and it is not a merely local peak, but a maximum. This kind of
phenomenon is not caught in the Italian data. The percentage referred to pro-
cedures are important as well. As we can see in Table 2.3, there is a difference
between the percentage of procedure in the two dataset. Indeed, Lombardia
patients are, on average, more exposed to medical procedures than English one.
In PTCA procedure, especially, the gap between the two datasets is much more
evident than in the other procedures. Analysing the impact of the procedures
may be interesting, because they may represent possible and easily available
predictors (a medical record is sufficient and precise).

Lombardia dataset England dataset
Percentage Number of Patients Percentage Number of Patients

ICD 4.82 % 1,647 2.32% 5,784
CABG 4.11 % 1,405 1.39% 3,486
PTCA 8.16 % 2,788 2.58% 6,439
SHOCK 2.78 % 951 0.31% 786

Table 2.3: Procedures percentage referred to patients discharged alive from the
first admission. Lombardia dataset (34,146 patients), England dataset (249,156
patients)
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Figure 2.4: Distribution of frequency of renal (above), pulmonarydz (mid-
dle) and arrhythmia (below) disease along age of first admission. Lombardia
dataset.
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Figure 2.5: Distribution of frequency of renal (above) and pulmonarydz (mid-
dle) and alcohol (below) disease along age of first admission. England dataset.



Chapter 3

Chosen Methods: Theory
and Implementation

The aims of our research, as mentioned in the introduction, are to compare dif-
ferent statistical methods and, thanks to this, to compare two different datasets.
In particular, we have chosen three models: Logistic regression, Counting mod-
els (Hurdle and Zero-Inflated models) and Multi-State Models. They go from a
simple (Logistic regression) to a complex one (Multi-State model) in terms of
theoretical features, outcomes as well as implementation. In Table 3.1, Table
3.2 and Table 3.3, we have given a general synthetic idea about what each model
provides and about the statistical bases underlying the implementation.

Since each model requires different inputs and provides different outputs,
we have to match the problem of readmissions of Heart Failure patients to the
models chosen in the right way.
Thus, this chapter explains why a model has been chosen, how it is related to
the response of interest (Heart Failure readmissions) and how it has been im-
plemented. For each method, the first step provided is a theoretical overview,
that gives a generic explanation of the statistical model. Then, we move to
the comprehension of the problem and the consequent choice of the response
variables and of the covariates. The last step will describe the implementation
of the model by using R software and the arrangement of the dataset to a suit-
able structure for R-functions, in order to lose the least quantity of information
in the adjustment. This latter work has taken long time to run, due to high
dimensions and calculations.
A common work has been done before the arrangements needed in each model.
In logistic regression and counting models, indeed, we have not considered all

Logistic Regression

Parameter of interest p
Regression Relationship log p

1−p
=β0+β1x1

Response variable Readmission within 30 days
Output OR/coefficients for each covariates
Goodness of fit Residuals, AIC, LogLikelyhood

Table 3.1: General description of Logistic regression

14
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Count Models (Hurdle/ZeroInflated Models)

Parameter of interest p(probability of readmission),
λ or θ(Poisson or NegBin parameters)

Regression Relationship log(µi)=xiβi+log(1 − f0(0;zi))-log(1 − fcount(0;zi))
µi=πi·0 + (1-πi)·exp(xiβi)

Response variable Total number of readmissions
Output OR/coefficients for each covariates
Goodness of fit Residuals,LogLikelyhood

Table 3.2: General description of Hurdle and Zero-Inflated models

Multi-State Models

Parameter of interest qrs(u) hazard rates

Equation qrs(u, z(t))=q
(0)
rs exp(βrsz(t))

Response variable Number of patients
in each state-transition

Output Hazard rates valuation, transition
probabilities,expected survival

mean sojourn time in each state
Goodness of fit LogLikelyhood

Table 3.3: General description of Multi-State models

the patients dead inside the hospital during the first admission, excluding them
from the entire analysis (14.693 patients from England, 3.420 patients from
Lombardia dataset). If this work is simple when dealing with Italian dataset
(there is no distinction between emergency admission and planned admission),
it becomes different when dealing with the UK dataset, because we have con-
sidered each situation differently depending on the model adopted.
Interesting results come out of the implementation of these models, such as an
understanding upon how they are linked together. Indeed, it will be appreciable
to observe that every model is somehow an evolution of the previous one. This
means that we can use the results gained from the simplest model just to go
straight to our objective when using more complex ones, in order to save time
and attempts. Moreover, all the models inspect similar or different parame-
ters in a different way, going more and more into depth towards a complete
interpretation.

3.1 Logistic Regression

3.1.1 Theoretical structure

Logistic regression, a particular case of general linear model, is the simplest
model used in this work and, after all, is one of the easiest models to implement.
At the basis of logistic regression there is the purpose of finding the parameter p
of a population sampled from Binomial distribution, which usually describes a
process of binary result, in which the probability of successful event is p and the
probability of failure is 1-p. Of course, the primary way to find this parameter
of interest is the Maximum Likelihood Method, in which p is approximated to
the total number of success on total number of attempts. Consequently, when
a series of covariates is given, the main interest is to find in which way the
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variables are influential on the process.
The regression method is based on the logit regression model described below:

log(
pi

1− pi
) = β0 + β1x1i + β2x2i + · · ·+ βnxni (3.1)

where pi is the probability of success for the subject i, βj (j: 1· · · N) are the
coefficients indicating how the covariates xji of the subject i are influential on
the logit ratio. The aim of Logistic regression is in fact to find out the leverage
βj of each covariate xj on the underlying probability of success. The p, instead,
is easily found thanks to the Maximum Likelihood Method, as mentioned above.

3.1.2 Adaptation to the problem

As mentioned above, Logistic regression is useful when we want to predict the
probability of success in a Binomial process. In our case, the event of interest
is the readmission in the hospital within a fixed period.
Through R software, logistic regression is easy to implement thanks to glm()

function, which needs the following input: a vector of binary variables (1 if the
event recorded is a success, 0 otherwise) and the corresponding list of covariates
related to the event. As output, we obtain several interesting quantities: the
estimate of the parameter of interest, the list of coefficients estimates and their
significance, the Odds Ratio for each coefficient and its Confidence Interval, the
goodness of fit (through LogLikelihood, AIC and Residual Standard Error). In
that way, we can obtain important information about our population coming
from a Binomial distribution: the estimate of the probability of success p, the
impact and the consistency of each factor on the response.
In our case, the response variable Yall is the indicator that takes value 1 when
a patient has been readmitted within 30 days from the previous discharge, 0
otherwise. The choice of 30 days as time limit for readmission is typical and
verified by literature (for example, see Bottle et al. (2014)).
In the case of Italian dataset, we have considered all re-admissions available in
the dataset, while in the UK dataset we have considered as valid the emergency
readmission within 30 days, because in both cases we are focusing on unplanned
readmissions.
In both implementations, the predictors are constituted by the anthropological,
administrative and clinical covariates described above (the ones in common).
The purpose of logistic regression, in that case, is finding out the probability
of readmission and the meaningful covariates that may influence its increase or
decrease, thanks to the Odds Ratio or the estimate of coefficients.
We have implemented two different logistic regression: the first includes only
the first readmission, while the second one considers only the second readmis-
sion. We have chosen this strategy because the covariates relations might change
during the progression of the patient’s Heart Failure. We therefore want to in-
vestigate which factors may be related to the progression of the disease and,
consequently, to multiple readmissions. In Table 3.4 a summary about the di-
mensions of the problem is given (depending on the different regression and on
the different dataset).
These different approaches have of course multiple effects: the dataset dimen-

sion lessens, the coefficients and the OR estimates change. This is related to
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Lombardia dataset England dataset
N. of patients N. and % of readm N. of patients N. and % of readm

within 30 days within 30 days

First readm. 34,146 2,205 (6.46%) 249,077 31,164 (12.51%)
Second readm. 15,412 1,186 (7,69%) 223,774 28.339 (12.66%)

Table 3.4: Dimension of the dataset and percentage of readmission within 30
days in Logistic regression. Lombardia and England dataset.

the phenomenon of readmissions: multiple admissions are in fact less frequent.
Furthermore, the distinction between first and second readmission may high-
light the difference between the consequences of a good/bad primary care from
the problems rose once the disease has become chronic.
Of course, in the case of Logistic regressions we have reorganized the dataset to
make it suitable for each implementation. For each admission, we have calcu-
lated the number of days until the next readmission, and we have create the Yall
indicator variable (1 if the following admission is within 30 days, 0 otherwise).
To each row we have associated the related covariates. Our aim is to find the
role of covariates at the moment of discharge that may help to predict a early
readmission.
In the Figure 3.1 we show how the dataset has been transformed. Before il-

Figure 3.1: Dataset for Logistic Regression: first readmission and second read-
mission.

lustrating the results, we have to show two important graphics useful for the
model we are going to implement. We observe that most of our covariates are
indicators. So, when getting the linear coefficients, the interpretation of the
values becomes very simple. In fact, the presence/absence of the covariate gives
directly a positive/negative contribution. When dealing with continuous covari-
ates, on the other hand, this interpretation is weaker. We should verify the
empirical trend of the readmission rate along the continuous covariates (it is
great if the behaviour is linear).
The only continuous variables that we are going to use are: age and LOS
(Length of Stay). In Figure 3.2 we can see the enlarged trend of the Readmis-
sion rate in both dataset. In the case of Lombardia we have scattered tails (in
early age and long LOS), while in the UK dataset this behaviour is less empha-
sized, but already visible. The reason could be connected to the lower quantity
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of data, especially in the extreme values. Despite this, we can imagine a linear
behaviour, much more evident when considering all the range from 0 to 1. In
this latter case, the linear trend is much more evident: quite constant for the
Lombardia dataset, decreasing for the England dataset. Now we can be ensured
that these two covariates may be predictors in the Logistic Regression model.
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Figure 3.2: Readmission Rates within 30 days along Age and LOS. Lombardia
(above) and England (below) dataset. Limits of Y axes: from 0 to 0.4.
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3.2 Hurdle and Zero-Inflated Models

Logistic regression forecasts success probability in a population sampled from a
Binomial distribution. Sometimes, instead, it could be interesting to analyse a
population that deals with counting response, such as the total number of events
in a determinate period of time. In the problem of readmissions of Heart Failure
patients, for example, it is useful to enlarge the perspective on the process and
to find out the factors that may influence multiple readmissions. Furthermore,
counting all readmissions is a better estimate than a single readmission of the
burden to both the patient and the economy. This is the reason being for us
why we need to introduce counting models to inference on readmissions of Heart
Failure patients. The second step of this work, indeed, is to determine the fac-
tors that bring patients to be repeatedly readmitted for Heart Failure.
Nevertheless, the usual models of regression for counting data suppose a Pois-
son distribution or, in the case of heavy tails provoked by higher dispersion, a
Negative-Binomial distribution. However, in particular circumstances, counting
data can present a high quantity of zeros that a traditional counting distribution
can’t fit with high precision. In problems concerning health and clinical data,
as in this case, this is a frequent issue, but fortunately there are several ways to
solve it (see, for example, Hu et al. (2011), Atkins et al. (March 2013) and Buu
et al. (2012)). Hurdle and Zero-Inflated models try to deal with this question,
as they differentiate the part associated with the zeros from the counting part.
This allows to have a not-misrepresented outcome.
Before specifying the main characteristics of the model, we can hazard an hy-
pothesis on the interpretation of Hurdle and Zero-Inflated models: they are a
natural evolution of the Logistic Regression of a counting process, especially for
the first readmission. We can say so, because Hurdle and Zero-Inflated include a
Binomial Process (counting part is like a successful event versus zero) but they
also give details on the counting part, specifying the different integer values.
In the subsections below, we will give the theoretical structure of Hurdle and
Zero-Inflated models and the consequent adaptation to the problem of readmis-
sions.

3.2.1 Theoretical structure

Hurdle and Zero-Inflated models deal with counting data with an ex excessive
number of zeros. However, they try to solve this problem differently. To clarify
the differences, we will now explain the main features, the equation and the
regression method to implement them.
Hurdle models are two-component models: a truncated count component, such
as Poisson, Geometric or Negative Binomial, is employed for positive counts,
whereas a hurdle component models zero vs. larger counts, for which a binomial
model is usually employed.
The Likelihood can be interpreted in this way: a count data model fcount(y;x,β),
which is left truncated at y=1, and a zero-hurdle model fzero(y;z,γ), which is
right censored at y=1:

fHurdle(y;x, z, β, γ) =

{
fzero(0; z, γ)
(1− fzero(0; z, γ)) · fcount(y;x, β)/(1− fcount(0;x, β)

(3.2)
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All the parameters of the model (β,γ and even θ if a Negative Binomial distri-
bution is used for counting part) are estimated by Maximum Likelyhood. The
implementation uses the mean of regression relationship as below:

log(µi) = xi>β + log(1− f0(0; zi))− log(1− fcount(0; zi)) (3.3)

Hurdle models have the opportunity to distinguish the covariates of the Hurdle
component (zi) from the ones of the counting component (xi). Of course, they
can also be the same.
Zero-Inflated models use a different approach to model the supposed distribu-
tion. They are two-component mixture models combining a point mass at zero
with a count distribution such as Poisson, Geometric or Negative Binomial.
Thus, there are two sources of zeros: zeros may come from both the point mass
and from the count component. For modelling the unobserved state (zero vs.
count), a binary model is used, potentially containing regressors.
The Likelihood can be written in the following way:

fZeroInflated = fzero(0; z, γ) · I0(y) + (1− fzero(0; z, γ)) · fcount(y;x, β) (3.4)

where the probability of observing a zero from fcount(0;x,β) is inflated by
fzero(0;z,γ).
The corresponding regression equation for the mean as follows:

µi = πi · 0 + (1− πi) · exp(xiβ) (3.5)

where πi corresponds to the estimate for fzero(0;z,γ).
In Zero-Inflated model, the covariates used for the estimation of the parameters
of interest (β,γ and θ in the case of Negative-Binomial distribution for count-
ing part) could be different for the Zero-Inflation part and for the counting part.

3.2.2 Adaptation to the problem

Logistic regression forecasts the probability of readmission within a fixed pe-
riod (30 days in our context), and discovers the most important covariates that
influence it. For hospital, as mentioned above, it could also be useful to find
out which covariates may influence the total number of readmission, in order to
supervise, provide for and plan a better coordination between hospital and pri-
mary care. For these reasons, we have considered this different class of models,
being it suitable for this purpose and helping to compare the results between
Lombardia and England datasets.
In order to give to R function the right input, we have adapted the dataset for
pursuing in the right way our purpose. In that case, indeed, each row must
represent the whole clinical history of the patient: the response variable Y is
the total number of readmission and the relative covariates are a summary of
the covariates recorded in each admission.
The real challenge to build this new structure is losing the minimum of infor-
mation when shrinking the dataset. A substantial precaution that we have used
has been considering only one year of follow-up since the patient enters the
study. The reason for this to be useful is that we don’t penalize the results from
patients arrived at the end of the study. Of course, we have to differentiate the
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Figure 3.3: Dataset for Hurdle and Zero-Inflated Models before (above) and
after (below) the shrinkage.

two datasets: in the case of the one of Lombardia, we have considered all the
admissions within a year since the first admission; in the English one, on the
other hand, we have considered the emergency readmissions within a year since
the first emergency admission. Moreover, we don’t extend our time-window for
a too long period, so we can stay close to the Logistic regression.
As sketched above, we are now going to explain how we have summarized the
covariates of interest in order to lose the minimum of information. Some co-
variates are easy to summarize: for example, sex is a constant variable, age has
been summarized in two different way, taking into account the age both of the
first admission and of the last admission (a mean of the age was senseless from
a clinical point of view). In each admission a set of medical procedures may
be done and recorded; in that case we have summarized this indicator variable
with the total number of taken procedures (one for each type). Comorbidities
has been treated in a different way; in fact, once a comorbidity appear in the
clinical history of the patient, it is reasonable that it stays since that moment.
So, in that case, we have summarized comorbidities with an indicator variable:
1 if the comorbidity is present almost once in the clinical history of the patient,
0 otherwise. Others covariates, like Length Of Stay (inside or outside the hos-
pital) in each admission have been summarized with the Total Length Of Stay
along the follow-up of the patient.
After the shrinkage, the length of the dataset has changed: 34,146 rows for
Lombardia dataset, 238,482 for the England dataset. We can see an extract in
Figure 3.3.

After the shrinkage, we can give to R the right input to complete our anal-
ysis. R software, indeed, provides two specific function to implement Hurdle
and Zero-Inflated models (hurdle() and zeroinfl()) in the pscl package (for
further details, see Zeileis et al. (2008)). Both functions take as input the
counting variable of response, the corresponding covariates, the family of the
counting part (Poisson,Negative Binomial or Geometric) and gives as output
the estimates of the regression coefficients, their significance, the estimates of
the parameters for the counting distribution and, of course, the values to evalu-
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ate the goodness of fit (Residuals, LogLikelihood). For further details and code,
see Chapter 5.
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3.3 Multi-State Models

Logistic regression and Hurdle and Zero-Inflated Models can forecast the prob-
ability of readmission, the main factors that can influence it and, also, can tell
about the total number of readmissions. But a limitation of these model is
the non-distinguishing the timing of different readmissions. Consequently, they
don’t distinguish the influence of each factor in a specific transition, because
they give an overall estimate. However the timing of transitions is a very pre-
cious information for an hospital.
Fortunately, a specific class of model like Multi-State Models can help to reach
this aim. Multi-State models are helpful to gain a wider view of the process of
readmissions of Heart failure patients. They much more complicated than the
previous ones but, on the other hand, much more complete.
Multi-state models are statistical tools, useful in describing a stochastic pro-
cess, in which a subject at any time occupies one of few possible states. These
models are frequent in medicine, especially in chronic diseases where the states
can describe the patients’ conditions (healthy, ill or dead) and where it is also
possible to observe the event time between different states.
This class of models is widely treated in literature; Hougaard (1999) has de-
scribed six special cases as standard structures: the mortality model (states:
dead or alive), the competing risks model (for multiple cause of death), the dis-
ability model (for irreversible disease), the bivariate model (for bivariate failure
times), recurrent events (suitable for describing reproductive life history of a
woman) and, lastly, the alternating model (for reversible disease). All these
models can be suitable for modelling different clinical scenarios, including our
problem related to readmissions of patients affected by chronic disease.
Furthermore, they can help much more in discovering the differences between
Lombardia and England datasets. We are gaining now, indeed, much more in-
formation about the process itself, about the role of comorbidities/procedures
on the transitions. This are features that can highlight similarities/dissimilari-
ties between the two countries considered.
As in the previous sections, in the following subsections we give an overview of
the underlying theoretical structure and of the adaptation to our issue, compre-
hensive of the implementation by R software.

3.3.1 Theoretical structure

Multi-State models are suitable when analysing stochastic processes, where a
subject can move among several state in subsequent times. In medicine, for
example, the available data are often panel data, meaning that the change of
state as well as the clinical information are collected in exact times. This data
collection is suitable for being enquired by Multi-State models. Dealing with
panel data brings consequence as follows: the state Si(t) of each individual
(a readmission, for example) i=1· · ·m is only known at a finite series of times
t=(ti1,· · · tini) and not continuously in time. Another important feature of panel
data is that they depend on Markov assumption that future evolution depends
on the current state and time, but not on the whole history. Multi-State models
are suitable for wider classes of stochastic process, not only for the need one of
panel data. However, in this theoretical overview, we focus on this particular
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scenario (panel data and Markov assumption ).
First of all, we have to suppose that an individual can move in a set of discrete
states 1,· · · ,R. We also consider the changes of state in continuous time (S(t)
is the state occupied at time t). The movement on the discrete state space is
governed by transition intensities qrs(t,z(t)), where r and s belong to the state
space 1,· · · ,R. The transition intensities may depend on time t and on a set of
individual and time-dependent variables z(t) as well. Each intensity represents
the instantaneous risk of moving from state r to state s (r 6= s):

qrs(t, z(t)) = lim
δt→0

P (S(t+ δt) = s|S(t) = r)/δt.

The transition intensities form a R×R matrix Q whose rows sum to zero (that
is, the diagonal entries are exactly qrr = -

∑
s6=r qrs).

Once we know the intensities, we gain the probability of transition under Markov
assumption, which are more handy to use:

Prs(u, t) = Pr(S(t) = s|S(u) = r)

where u≤t.
There is also another interesting extension of the classic Markov model, called
semi-Markov process, where the transition intensities do not depend on the
current time, but only on the duration in the current state. Of course, once
the transition intensities are known then all the quantities of interest can be
obtained: length of stay in a state, visiting frequencies and so on.
The last peculiarity of Multi-State models lies in the possibility of introducing
the role of covariates in the transition intensities. The effect of explanatory
variables on the rates of transition, indeed, is introduced by using a proportional
intensities model. Consequently, the intensity matrix Q(t,z(t)) depends also on
the covariate vector z(t). For each entry of Q(t,z(t)) , the transition intensity
for patient i at observation time t becomes:

qrs(zit) = q(0)rs exp(β
T
rszit)

3.3.2 Adaptation to the problem

Multi-State models are versatile and, on the other hand, simple to use. They
can be implemented in different way, depending on the kind of research that
we want to do and on the complexity. In this work, for example, we have tried
to implement two different models: a basic model and a more complicated one.
Now, we are going to describe the chosen models and the relative implementa-
tion.
The first fitted model is described in Figure 3.4. We consider only three possi-
ble states for the patient: alive inside the hospital (State 1), alive outside the
hospital (State 2) and dead (State 3). In this case we are not distinguishing be-
tween different readmission, we just consider each admission in hospital and the
relative discharge or death. The possible transitions are stated by the arrows in
Figure 3.4.

All the adaptations, of course, are made in order to give the right input to
R. Each admission has been considered an entrance in State 1, and the set of
related covariates (comorbidities and medical procedures) has been recorded. If
the patient is discharged alive, he passes in State 2 until the next readmission.
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Figure 3.4: Multistate Model with three states.

While the patient is alive outside the hospital, the set of related covariates is
set on the values of the previous admission. This is reasonable, because this
operation gives continuity to the clinical history of the patient and because we
can’t forget that, once a set of comorbidities is recorded, we can’t forget them
in the history of the patient. From one of these two states, a patient can go to
the absorbing state State 3, that represent the death.
Adapting the dataset for Multi-State models requests some necessary operation:
the transitions lasting zero days have been adjusted adding a small quantity
(like 0.5) that indicates that the length is less than one day; if length equal to
zero is left, it can cause problems to msm()function. For the England dataset,
moreover, we have considered only the emergency admissions. Differently from
Hurdle and Zero-Inflated models, we have not imposed a limit to the follow-up
period and we have included patients dead at first admission.
Of course, considering all patients and all possible transitions, the main con-
sequence ( for a computational evaluation ) is the lengthening of the dataset
(155,971 rows for Lombardia dataset and 1,659,717 rows for England dataset).
In Figure 3.5, an extract of the dataset before and after the adjustment.
A spontaneous evolution of the first model (Figure 3.4) is another one in which

the number of admission is specified and not generic (Figure 3.6). This is an
interesting evolution, because in that case each transition between different ad-
mission is specified, and it is not considered a general one. Furthermore, this
structure has been already tested, for example in the work done by Ieva et al.
(2015).
In order to have a parallelism with the Logistic regression, the Multi-State model
with more then three states will be structured differently. That is because we
are specifically interested in the first three admissions and the relative transition
from these states to death or to the discharge. A problem arises when dealing
with patients admitted more than three times. To solve this complication, we
have considered a fourth state that collects all the admission higher than the
third. The transition from the fourth state to death as been included as well.

So, the final structure considers the following states: first, second third ad-
mission (”1”, ”2” and ”3”); first, second and third discharge (”1a”, ”2a” and
”3a”), further admissions (”4”) and, at last, ”Death”. The allowed transitions
are shown in Figure 4.7. Of course, the transition between a discharge to a
further readmission is equivalent to the visit in the state ”Alive Outside the
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Figure 3.5: Dataset for Multi-State Models before (above) and after (below) the
adjustment.

Figure 3.6: Multi-State Model with specification of admissions/discharge.

hospital”.
Multi-State Models and the relative implementation by R have been widely
treated in literature, often connected with Competing Risks (see, for exam-
ple, Beyersmann et al. (2012)) or related to survival analysis (see, for example,
Willekens (2014)). These books deal with Multi-State models and their imple-
mentation thanks to multiple packages (survival(), mstate() and others).
In this work, due to our data, we have used the msm package, well explained
in useful manual edited Jackson (2014).
In msm package, we can analyse a set of panel data in order to enquire the
underlying law of the Markov process. Data are supplied as a series of observa-
tions, grouped by patient. This should be a dataframe with variables indicating
the observed state of the process and the time of the observation. If the data
come from more than one individual, then a subject identification variable must
also be supplied. It is really important that the observations from the same
subject must be adjacent in the dataset, and observations must be ordered by
time within subjects.
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In Chapter 5, the code for implementation is supplied. Furthermore, msm pack-
age provides a set of useful functions to describe features of Markov process:
intensity matrices, transition probability matrices, mean sojourn times, proba-
bility that each state is next, total length of stay, expected number of visits and
others.



Chapter 4

Analysis of the Results

In this chapter, we present the results collected by all our analysis. In each sub-
section we will give a systematic comparison between Lombardia and England
datasets, according to the chosen method. Moreover, a comparison between the
selected method will be provided. We start from the simplest model, Logistic
regression, and we conclude with Multi-State models, passing through Hurdle
and Zero-Inflated models.

4.1 Results of Logistic Regression

The implementation of logistic regression is interesting when comparing cross-
wise different results. We can compare the output of two different models (first
readmission, second readmission) on the same dataset. We can also compare
the result of the same model on different datasets. All models have been im-
plemented with the same covariates, because, otherwise, the comparison is hard
and misrepresented.
Our aim is trying to investigate, in addition to the impact of each covariate, if
there are comorbidities that mostly affect a specific readmission rather than a
following/previous one.
In the tables below (Table 4.1 and Table 4.2), we give the compared results of
logistic regressions implemented: first readmission and second readmission. As
we have specified in Chapter 3.1.2, the dimensions of the dataset are different,
but this is not the only reason that produces different results. Firstly, we watch
out the relevance of the coefficients and then we compare their influence (posi-
tive/negative) thanks to the odds ratio.
We start analysing each country separately, that means that we give a look to
Lombardia features and then to the England ones.
In the Lombardia dataset, the importance given to covariates decreases along
the models. In first readmission, indeed, we find out 9 meaningful variables,
while in second readmission only 5 covariates still remain. We expected this re-
sult because, of course, data available lessen from the first to the second model.
We can observe that the covariate renal is relevant in all models as well as the
age. There is an evident discrepancy between the leftover relevant comorbidi-
ties: in the first readmissions, coagulopathy, compdiabetes, liver and pulmcirc
are significant. That is no longer valid for second readmission model, where,

29
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apart form renal disease, the only good predictor for readmission seems to be
hemiplegia. That behaviour may highlight the different impact of comorbidities
along the progression of heart damaging. Procedures behave differently, because
they have a much more decisive impact: CABG, PTCA and SHOCK, indeed,
may influence the readmission 30 days since the first discharge, while SHOCK
and ICD are more incisive in the second readmission.
In the England dataset the trend of the results is different, because we can notice
that much more covariates are significant in both the regression models. In the
first model, we record 18 relevant variables (the double of Lombardia situation),
while in the second one we record 17 relevant covariates. This different behaviour
could be due to the gap of the amount of data, but this is only an hypothesis. In
the England dataset, some covariates are significant for both the models, while
other change their impact. Among comorbidities, renal, wtloss, hemiplegia,
alcohol, tumor, arrhythmia, pulmonarydz, pvd and hypertension still remain
in both models, as well as age, LOS, ICD, CABG and PTCA. Some of them
are important only in first readmission model (anemia and electrolytes), others
in second readmission model (psychosis and pulmcirc). In the England dataset,
as well as in the Lombardia one, the only covariate never relevant is hivaids.
The quantity of relevant covariates underline a dissimilarity among between the
two countries. Much more interesting, however, is the comparison of the weight
of each covariate on the response of interest (the readmission within 30 days).
That can clarify much more the similarities/dissimilarities between Lombardia
and England.
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Lombardia dataset England dataset
OR (CI) p-value OR (CI) p-value

sex (male) 1.14(1.04-1.26) 0.004(**) 0.99(0.96-1.01) 0.435
age 0.99(0.98-0.99) 0.001(**) 0.99(0.99-0.99) <0.001(***)
LOS 1.00(1.00-1.00) <0.001(***) 1.00(1.00-1.00) <0.001(***)

Procedures
ICD 0.83(0.57-1.20) 0.326 0.52(0.39-0.68) <0.001(***)
CABG 0.64(0.48-0.85) 0.002 (**) 1.84(1.40-2.48) <0.001(***)
PTCA 1.16(0.98-1.38) 0.076 (.) 3.19(2.84-3.59) <0.001(***)
SHOCK 1.41(0.96-2.08) 0.081 (.) 1.66(1.14-2.41) 0.007(**)

Comorbidities
Metastatic 1.04(0.69-1.57) 0.843 1.17(0.98-1.40) 0.083(.)
Dementia 1.02(0.80-1.30) 0.878 1.72(1.60-1.84) <0.001(***)
Renal 1.49(1.33-1.68) <0.001 (***) 1.33(1.28-1.39) <0.001(***)
Wtloss 0.66(0.24-1.82) 0.423 1.05(0.90-1.22) 0.540
Hemiplegia 1.14(0.86-1.52) 0.356 1.13(0.98-1.30) 0.087 (.)
Alcohol 0.57(0.18-1.82) 0.341 1.21(1.09-1.32) 0.003 (**)
Tumor 0.97(0.79-1.18) 0.736 1.16(1.05-1.29) 0.004 (**)
Arrhythmia 1.01(0.92-1.10) 0.867 1.15(1.12-1.18) <0.001(***)
Pulmonarydz 1.07(0.95-1.20) 0.240 1.15(1.11-1.19) <0.001(***)
Coagulopathy 1.58(0.92-2.72) 0.095 (.) 0.97(0.78-1.20) 0.778
Compdiabetes 1.37(1.16-1.62) <0.001 (***) 1.01(0.92-1.11) 0.804
Anemia 0.87(0.71-1.061) 0.166 1.07(0.99-1.16) 0.081(.)
Electrolytes 0.96(0.71-1.29) 0.767 1.37(1.29-1.46) <0.001(***)
Liver 0.77(0.59-0.98) 0.034 (*) 1.00(0.87-1.16) 0.952
Pvd 1.11(0.96-1.28) 0.147 1.12(1.05-1.19) 0.003(**)
Psychosis 1.17(0.66-2.07) 0.594 1.42(1.19-1.71) 0.556
Pulmcirc 1.60(1.25-2.05) <0.001 (***) 0.97(0.88-1.07) 0.656
Hivaids 0.82(0.11-6.28) 0.850 0.63(0.08-4.87) 0.645
Hypertension 1.00(0.91-1.10) 0.990 1.05(1.03-1.08) <0.001(***)

Table 4.1: Odds ratio from Logistic regression with first readmission. Lombardia
and England dataset.

The main tools for this purpose are the Odds Ratio and the relative Confidence
interval (on 95% level), because it gives an immediate idea of the impact of each
covariate on the probability of readmission. We start analysing the effect of the
procedures on the probability of readmission (see Figure 4.1). In the case of
the England dataset, interventions like CABG and PTCA, being invasive pro-
cedures, could be strongly associated to the readmission of a patient. We have
to underline, especially, the consequence of PTCA procedure at first admission.
It highly increases, indeed, the probability of readmission. On the other hand,
light procedure like ICD lessen the probability of readmission in all considered
cases. This is interesting, because it highlights the benefits brought by this
medical procedure.
In the Italian dataset all procedures behave differently, because they reduce or
don’t influence the probability of readmission. This is observable especially in
the first readmission. In this case, indeed, only CABG plays a determinant role,
reducing the probability of readmission after the first recovery. This effect is
different from the England one. In Italian dataset, moreover, the effect of pro-
cedures is much more evident in the second readmission: SHOCK and ICD,
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Lombardia dataset England dataset
OR (CI) p-value OR (CI) p-value

sex (male) 1.13(0.99-1.28) 0.053 (.) 0.99(0.97-1.02) 0.733
age 0.99(0.98-1.00) 0.039 (*) 0.99(0.99-1.00) <0.001(***)
LOS 1.00(0.99-1.01) 0.138 1.00(1.00-1.00) <0.001(***)

Procedures
ICD 0.65(0.45-0.92) 0.016(*) 0.64(0.52-0.80) <0.001(***)
CABG 0.76(0.44-1.32) 0.329 2.03(1.71-2.41) <0.001(***)
PTCA 0.97(0.70-1.34) 0.850 1.57(1.37-1.80) <0.001(***)
SHOCK 0.35(0.18-0.676) 0.002(**) 1.10(0.70-1.73) 0.676
Comorbidities
Metastatic 0.73(0.41-1.31) 0.291 1.29(1.13-1.47) 0.001 (**)
Dementia 0.77(0.49-1.08) 0.127 1.29(1.21-1.38) <0.001(***)
Renal 1.31(1.15-1.50) <0.001(***) 1.12(1.08-1.16) <0.001 (***)
Wtloss 0.41(0.99-1.68) 0.216 1.10(0.99-1.24) 0.083(.)
Hemiplegia 0.40(0.23-0.69) <0.001(***) 1.15(1.03-1.29) 0.012(*)
Alcohol 1.12(0.39-3.16) 0.832 1.18(1.08-1.29) 0.002(**)
Tumor 1.04(0.82-1.31) 0.756 1.14(1.05-1.23) 0.001(**)
Arrhythmia 0.97(0.86-1.10) 0.652 1.06(1.03-1.08) <0.001(***)
Pulmonarydz 1.05(0.91-1.21) 0.496 1.18(1.14-1.21) <0.001 (***)
Coagulopathy 0.82(0.38-1.76) 0.604 1.13(0.96-1.32) 0.140
Compdiabetes 1.05 (0.86-1.28) 0.654 1.03(0.96-1.11) 0.456
Anemia 0.94(0.77-1.16) 0.588 0.98(0.92-1.05) 0.582
Electrolytes 0.89(0.65-1.21) 0.463 1.03(0.98-1.08) 0.270
Liver 1.01(0.77-1.33) 0.931 0.99(0.87-1.11) 0.809
Pvd 1.09(0.92-1.29) 0.313 1.08(1.02-1.13) 0.0386(*)
Psychosis 0.76(0.33-1.73) 0.507 1.58(1.36-1.86) <0.001(***)
Pulmcirc 1.04(0.81-1.35) 0.741 0.90(0.83-0.97) 0.062 (*)
Hypertension 1.04(0.92-1.17) 0.573 1.06(1.03-1.09) <0.001(***)

Table 4.2: Odds ratio from Logistic regression with second readmission. Lom-
bardia and England dataset.

indeed, are inclined to lower the probability of a second readmission. This is
similar to the England dataset. The effect of the comorbidities is observed in
Figure 4.2 and Figure 4.3.
First of all, we can see that the presence of a comorbidity increases or keeps
constant the probability of readmission in quite all cases. This consideration
lets us say that the models are coherent with the reality (in fact, it is senseless
that the presence of a comorbidity decreases the probability of readmission).
We now analyse the odds ratio in detail.
Starting from Figure 4.2 and 4.3, it is remarkable the effect that each covariates

has on English results. The following comorbidities (dementia, renal, alcohol,
tumor, arrhythmia, pulmonarydz, pvd, psychosis and hypertension) have the
effect to increase the probability of readmission in both models. The comor-
bidities dementia, tumor, alcohol and psychosis have wider intervals than the
others, because these diseases are less common and, consequently, the margins of
errors increase. In the other cases, the estimates are very accurate. That is what
we expected, because arrhythmia and hypertension are comorbidity directly
related to Heart Failure, so they are good predictors for further readmissions.
Furthermore, jointly to renal and pulmonarydz, they also are very common co-
morbidities (if compared with alcohol or psychosis, see Table 2.2). Most of the
covariates that are not influential on the first readmission, keep constant their
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Figure 4.1: Odds Ratio and confidence intervals for the procedures of all Logistic
regression models. Lombardia (above) and England (below) dataset. First
readmission: red and blue. Second readmission: orange and light blue.
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Figure 4.2: Odds Ratio and confidence intervals for the comorbidities of all
models. Lombardia (above) and England (below) dataset. First readmission:
red and blue. Second readmission: orange and light blue.



CHAPTER 4. ANALYSIS OF THE RESULTS 35

effect in the second readmission too. So, wtloss, coagulopathy, compdiabetes,
anemia and liver are never determinant. On the other hand, we can see that
some covariates are differently influential: electrolutes, for example, is a good
predictor for a first readmission, while it becomes inconsequential in predicting
a second re-hospitalization. Good predictors for a second readmission but not
for a first one is metastatic.
The Italian dataset has a similar behaviour, but includes less significant vari-
ables. Of course, we have to take count of the lesser quantity of data. The renal
comorbidity is the only covariate that keeps its positive influence in both model.
Also in this case, the width of the confidence interval is small (if compared with
other quantities). The behaviour of the leftover covariates is quite similar. The
comorbidities compdiabetes, pulmcirc and pvd increase the probability of first
readmission, but they become less important in the other model. On the other
hand, liver seems to decrease the probability of first readmission, although it is
close to the value 1. The last interesting behaviour is recorded by hemiplegia,
which has a negative effect ion the probability of second readmission. Due to
the low bearing, we have to consider it as predictor with attention.
In Figure 4.4 we can see directly the effect of the covariates in both the dataset.

We have considered only the model with first readmission, because it will be use-
ful also for further models implemented, especially for Hurdle and Zero-Inflated
models. The first remarkable observation is the different width of confidence
intervals; that is due to the different amount of data as well as a difference
quality of data.
Apart from these kind of considerations, we now observe the compared effect of
comorbidities on the probability of first readmission within 30 days. The effect
of renal disease is relevant in both cases, but more incisive in Lombardia than
in England, because it increases the risk of readmission about of the 50% while
in the case of UK the effect of renal disease is around the 33%. That could be
due to the less information brought by Lombardia data, mainly in those disease
with low percentage. It is not unlikely that the renal disease includes the in-
formations of these disease.
Looking at the other covariates, we note that, apart for pvd, the behaviour of the
two dataset is quite discordant: those relevant comorbidities for the Lombar-
dia dataset ( compdiabetes or pulmcirc, which increase the probability of first
readmission of 37% and 60% respectively) are not important for the England
dataset, and vice versa. We can observe, indeed, that some comorbidities are
relevant for the England dataset and absolutely not for the Lombardia dataset:
dementia (impact of 60%), arrhythmia (impact of 16%), pulmonarydz (impact
of 15%), electrolytes (impact of 37%) and hypertension (impact of 5%).
Basically, the application of these first two models allows to say that the fac-
tors that help in predicting a readmission within 30 days are quite different for
the two countries. The only comorbidity in common between Lombardia and
England, indeed, is renal, which we can consider as a strong predictor. All the
other pathologies have a different impact in the short-term. That could be due
to the time frame chosen, to the endemic differences between Lombardia and
England and, above all, to the fact that in Lombardia there is just less power
to detect small effects. To verify these assertions, we proceed in implementing a
new model that give new perspective to the problem of predicting readmissions.
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Figure 4.3: Odds Ratio and confidence intervals for the comorbidities of all
models. Lombardia (above) and England (below) dataset. First readmission:
red and blue. Second readmission: orange and light blue.
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Figure 4.4: Odds Ratio and confidence intervals for Logistic Regression with all
rows. Lombardia (orange) and England (light blue) dataset. All covariates.
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4.2 Results of Hurdle and Zero-Inflated Models

Once we have examined the probability of first and second readmission, we have
implemented a different model. That is because we want to widen our perspec-
tive and to discover which covariates may be influential in predicting multiple
readmissions, and not just a specific one within a fixed short time.
As previous said, in this analysis the response is the total number of re-hospitalizations
per patient within a year since the first admission. That allows to widen the
time frame (from 30 days to one year), which is useful for longer-term predic-
tions. This is a second step that complete our overview on the prediction of
Heart Failure readmissions.
So, in the case of counting data, each row represents a patient and contains a
list of summarized quantities of interest (comorbidities and procedures).

We have implemented six different models just to choose the one that fits
better the data. So, before presenting the results related to comorbidities and
procedures, we give an overview of the data distribution and an estimate of the
significance of each model.
A first sight, of course, is given to the shape of readmissions. We can immedi-
ately notice (Figure 4.5) the large amount of zeros. This is the main reason that
supports the use of Hurdle and Zero-Inflated models to compare the results from
both the datasets. When dealing with counting data, in fact, the large amount
of zeros could twist the counting process. So, Hurdle and Zero-Inflated models
are a suitable way to remedy this problem and to have the right response.
Another different feature is the distribution of readmissions between Lombar-
dia and England. In the first case we have a high percentage of zeros and a
small quantity of readmissions (the highest number of readmission is 10); in the
latter case the peak in zero is smaller, the number of readmissions increases in
percentage and the tails become longer (the highest value is 25).

4.2.1 Models overview

We have implemented six different models in order to understand which is the
best one to fit the data. We proceed in that way because we just want to have
the best predictors for the number of readmissions within a year. After having
chosen the right one, we proceed with the comparison of the results.
A summary of the goodness of fit in terms of LogLikelihood and zero predicted
is given in Table 4.3. Those are the chosen tools to find the best model. As
we can see, the Hurdle models are the best in predicting the number of zeros,
in both dataset. The Poisson model drift towards underestimate of number of
zeros, while Negative Binomial and Zero-Inflated models overestimate it. This
is a first important feature that we have to consider.
The second one, of course, is the estimation of Maximum LogLikelihood. The
outputs given by R are symmetrical. In each model, in fact, the choice of Nega-
tive Binomial distribution for the counting part leads to better results in terms
of LogLikelihood, that means that the data are scattered or skewed. Meanwhile,
the Zero-Inflated models give a best estimation of LogLikelihood, if we compare
them with the relative Hurdle model.

Moreover, another difference lies in the computational costs: Hurdle models
require less iterations in BFGS (BroydenFletcherGoldfarbShanno) optimization
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Figure 4.5: Histogram of readmissions per patient within a year since the first
admission. Lombardia and England dataset.

(35 and 38 for Lombardia data, 36 and 43 for English data, Poisson and Nega-
tive Binomial respectively) than Zero-Inflated models (69 and 76 for Lombardia
data, 65 and 81 for England data, Poisson and Negative Binomial respectively).
The best choice is a compromise: of course, we can’t keep the models without
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Lombardia dataset Lombardia dataset
2×LogLike Zero Predicted Gap (obs - pred) 2×LogLike Zero Predicted Gap (obs - pred)

Poisson -54,010 25,473 -442 -655,839 82,529 -11,233
(-1.7%) (-11.9%)

Neg Bin -43,686 26,440 +525 -649,519 97,116 +3,351
(+2.0%) (+3.57%)

Hurdle -42,040 25,915 0 -644,440 93,763 +9
Poisson (+0.0001%)

Hurdle -41,820 25,915 0 -624,800 93,763 +9
Neg Bin (+0.0001%)

Zero Infl -39,200 26,366 +451 -637,000 99,882 +6,126
Poisson (+1.7%) (+6.52%)

Zero Infl -39,200 26368 +453 -625,400 102,832 +9,1265
Neg Bin (+1.7%) (+9,73%)

Table 4.3: Estimate of goodness of fit for all counting models (-2×LogLikelihood
and zeros predicted). Lombardia and England dataset.

zero-counting part (Poisson and Negative Binomial). On the other hand, we
privilege the zero-prediction and the computational costs over the LogLikeli-
hood estimation. That leads us to choose the Hurdle Negative Binomial in both
dataset. However, in graphs we also keep the Zero-Inflated Negative Binomial
model for a deeper analysis.

4.2.2 Outcomes of Chosen Counting Models

The same order adopted for Logistic regression is followed: we start examining
the significance of each variable, and then we give a look to the effects.
We report the coefficients and the p-values of Hurdle model with a Negative
Binomial counting distribution, because this is the model that we retain more
suitable to our data. It is also interesting to compare these coefficients with
the one of Logistic regression of first readmission, because the Zero-Hurdle part
corresponds to the event of non-readmission in Logistic regression (of course,
within a year instead of 30 days).
First of all, the Zero-Hurdle part is analysed: in UK dataset, all covariates
are relevant to explain the zero hurdle part, and that is mostly aligned with
the results of Logistic regression. Some predictor not meaningful in the short
term, becomes important in the long term (wtloss, coagulopathy, compdiabetes,
psychosis and pulmcirc)
In the Lombardia case, the major part of the main predictors is still the same
of Logistic regression, but we can record some dissimilarity: predictor like
metastatic, dementia, arrhythmia, pulmonarydz, anemia, electrolytes, hypertension
and ICD now become significant to predict another admission. That could be
due to the extension of the readmission time (one year instead of 30 days).
Other variables, instead, lose relevance, as coagulopathy and liver.
For the counting part, the comorbidities that impact on the number of readmis-
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sion are renal, hemiplegia, arrhythmia, pulmonarydz and hypertension, and
the most important procedures are ICD and CABG.
On the other hand, England dataset keeps quite all comorbidities and proce-
dures as predictors for the counting part, except for SHOCK and for hivaids,
which is never important in these analysis. A similar significance of coefficients
is observable in Zero-Inflated models, for both dataset.
After having found the significant covariates, we try to understand the impact fo
covariates on the probability of readmission and on the number of readmission
too.
In this analysis, of course, the major instruments still remain the confidence
intervals. For a complete overview, we have plotted also the results coming
from Zero-Inflated models with the Negative Binomial counting distribution.
We have to be careful especially in the interpretation of the Zero-Inflation and
Zero-Hurdle part. In fact, for the zero part we are using a logit model in
both cases, but with a substantial difference: in Hurdle model, p represents the
probability of overcoming the hurdle in zero (a successful event), while in Zero-
Inflation model p represents the probability of belonging to the zero-inflation.
The estimation of coefficients for the counting part is the same in both the mod-
els. This specification is necessary to understand the values of the Odds Ratio.
The first overview is given to the effect of comorbidities in Zero counting part
(Figure 7.2). At a first sight, it is interesting the symmetry in the England
dataset, where the comorbidities play an important role in augmenting the
probability of readmission. In fact, in the case of Hurdle models, all coefficients
of comorbidities are higher than 1 (so, the comorbidities affect positively the
probability of readmission). In Zero-Inflated model, instead, all coefficient are
significantly lower than 1 (so, if a patient is not affected by a comorbidity, the
probability of not being readmitted increases). Moreover, the modulus of Zero-
Inflation coefficients (not Odds ratio) is higher on average, if compared with
Hurdle coefficients. That probably causes the major number of zeros predicted.
In the case of Lombardia, we can observe the same behaviour in the signifi-
cant comorbidities (dementia, renal, arrhythmia, compdiabetes, pulmcirc and
hypertension) and a discordant effect only for hemiplegia.
Very important is the joined effect ofmetastatic, renal, arrhythmia and compdiabetes
in both dataset, because in Hurdle model they have the same impact on the
probability of readmission. This is an interesting similarity between Lombardia
and England.
Different is the compared effect of other covariates: dementia, anemia, electrolytes,
liver and hypertension are more relevant in UK than in Italy, while the ef-
fect of pulmcirc is the contrary. Among the comorbidities that mostly affect
Heart Failure patients (renal, arrhythmia, pulmonarydz and hypertension),
we can observe that renal and arrhythmia have a similar impact (increasing
the probability of readmission of 95% and 75% respectively). The comorbidities
pulmonarydz and hypertension, on the other hand, have a higher impact on
the England dataset (84% and 86%) than in the Lombardia one (38% and 32%).
Moreover, renal is the only predictor for the first readmission in short-term (30
days) and long-term (1 year), both for Lombardia and for England. In short
term it increases the probability of readmission of 49% (Lombardia) and 33%
(England); then, it highly rise its value. It is interesting noting that, in the
Lombardia dataset, some covariates change behaviour from the short-term to
the long-term. Some of them, especially, become meaningful predictors only
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when considering a longer forecast.
In the England dataset, instead, the predictors for the long-term first readmis-
sion are the same of short-term, plus others in addiction.

After the analysis of zero component, we go into details of counting com-
ponent. In this case, the longitudinal analysis (same dataset, different models)
is much more easier. We can immediately notice that the trend of Confidence
interval is similar for the counting part of Hurdle and Zero-Inflated model. The
Lombardia dataset has, on average, a wider length of the intervals in the Hurdle
model than in Zero-Inflated model, but this isn’t a substantial matter for our
analysis.
Also in this case, the covariates that mostly influence the number of read-
mission are renal, arrhythmia, pulmonarydz, hemiplegia and hypertension.
Arrhythmia and pulmonarydz condition both the dataset with a similar weight.
Renal and hypertension have a positive leverage in the counting part, but with
a substantial difference: in the first case, the mentioned disease is much more
relevant for Lombardia than for England (47% versus 17%); in the latter case
the impact is the opposite (11% versus 36%). On the other hand, Hemiplegia
has a completely opposite effect: it influence positively the counting part in
England, while in Lombardia the effect is negative.
We also give an overview of the implication of procedures on readmissions of
patients from the Table 4.4 and 4.5. Differently from the Logistic regression,
in the Lombardia dataset the probability of being readmitted more than once
in a year is strongly influenced by ICD, PTCA and SHOCK, and they still
influence further readmissions. CABG, instead, has the opposite effect for any
kind of readmission (this behaviour is consistent with logistic regression).
In the England dataset, instead, all procedures make a patient be readmitted
once at least. Once readmitted, further readmissions are influenced by ICD
and PTCA.
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Figure 4.6: Confidence intervals for Zero-Hurdle (Zero counting part in Hurdle
model) exponential coefficients (blue: England, red: Lombardia), and Zero-
Inflation (Zero inflation part in Zero-Inflated model) coefficients (light blue:
England, orange: Lombardia).
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Figure 4.7: Confidence intervals for comorbidities exponential coefficients in
counting part of Hurdle model (blue: England, red: Lombardia), and of Zero-
Inflation model (light blue: England, orange: Lombardia).
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Lombardia dataset England dataset
coefficient pval coefficient pval

Sex 1.10(1.04-1.18) 0.002(**) 1.02(1.00-1.04) 0.027(*)
Age 1.00(1.00-1.01) <0.001 (***) 0.99(0.99-0.99) <0.001(***)
LOS 1.06 (1.05-1.058) <0.001 (***) 1.05(1.05-1.05) <0.001(***)

Procedures
ICD 6.21(5.32-7.26) <0.001(***) 1.50(1.14-1.96) 0.00294(**)
CABG 0.29(0.24-0.34) <0.001(***) 2.48(1.00-6.14) 0.04871(*)
PTCA 1.40(1.26-1.57) <0.001(***) 4.04(3.52-4.64) <0.001(***)
SHOCK 2.52(2.05-3.10) <0.001(***) 2.39(1.74-3.28) <0.001(***)
Comorbidities
Metastatic 1.72(1.37-2.17) <0.001(***) 1.99(1.78-2.22) <0.001(***)
Dementia 1.32(1.14-1.52) <0.001(***) 2.31(2.18-2.44) <0.001(***)
Renal 1.92 (1.78-2.07) <0.001(***) 1.95 (1.90-2.02) <0.001(***)
Wtloss 0.62(0.37-1.05) 0.0867(.) 2.19(1.99-2.41) <0.001(***)
Hemiplegia 0.56(0.45-0.70) <0.001(***) 1.81(1.64-1.99) <0.001(***)
Alcohol 1.07(0.60-1.87) 0.785 1.39(1.30-1.49) <0.001(***)
Tumor 1.11(0.98-1.25) 0.0678(.) 2.07(1.95-2.20) <0.001(***)
Arrhythmia 1.73(1.63-1.83) <0.001(***) 1.78(1.44-1.81) <0.001(***)
Pulmonarydz 1.38(1.28-1.48) <0.001 (***) 1.84(1.80-1.89) <0.001(***)
Coagulopathy 1.16(0.80-1.69) 0.407 1.84(1.62-2.09) <0.001(***)
Compdiabetes 1.52(1.36-1.70) <0.001(***) 1.46(1.37-1.55) <0.001(***)
Anemia 1.36(1.22-1.52) <0.001(***) 1.54(1.46-1.61) <0.001(***)
Electrolytes 1.53(1.31-1.80) <0.001(***) 1.94(1.86-2.02) <0.001(***)
Liver 1.20(1.04-1.38) 0.006 1.72(1.57-2.11) <0.001(***)
Pvd 0.99(0.90-1.09) 0.869 1.76(1.69-1.84) <0.001(***)
Psychosis 0.91(0.61-1.34) 0.644 1.82(1.57-2.11) <0.001(***)
Pulmcirc 2.16(1.86-2.52) <0.001(***) 1.37(1.30-1.45) <0.001(***)
Hypertension 1.32(1.24-1.40) <0.001 (***) 1.86(1.82-1.89) <0.001(***)

Table 4.4: Zero coefficients for Hurdle model (binomial with logit link). Lom-
bardia and England dataset.
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Lombardia dataset England dataset
coefficient pval coefficient pval

Sex 1.02(0.95-1.13) 0.395 0.98(0.97-1.00) 0.105
Age 0.99(0.99-1.00) 0.128 0.98(0.98-0.98) <0.001(***)
LOS 1.02(1.01-1.02) <0.001(***) 1.01(1.01-1.01) <0.001(***)

Procedures
ICD 1.87(1.63-2.15) <0.001(***) 1.20(1.07-1.35) 0.001 (**)
CABG 0.59(0.49-0.71) <0.001(***) 0.97(0.74-1.27) 0.849
PTCA 1.12(0.98-1.27) 0.016(*) 1.38(1.31-1.46) <0.001(***)
SHOCK 1.07(0.88-1.29) 0.721 0.94(0.83-1.06) 0.324
Comorbidities
Metastatic 1.02(0.73-1.42) 0.873 1.13(1.08-1.19) <0.001(***)
Dementia 1.08(0.88-1.31) 0.433 1.25(1.22-1.29) <0.001(***)
Renal 1.47(1.34-1.61) <0.001(***) 1.17(1.15-1.19) <0.001(***)
Wtloss 0.75(0.42-1.33) 0.342 1.19(1.15-1.23) <0.001(***)
Hemiplegia 0.59(0.44-0.79) <0.001(***) 1.22(1.17-1.27) <0.001(***)
Alcohol 1.04(0.45-2.40) 0.911 1.20(1.15-1.24) <0.001(***)
Tumor 1.00(0.84-1.18) 0.998 1.25(1.21-1.29) <0.001(***)
Arrhythmia 1.26(1.16-1.37) <0.001(***) 1.21(1.19-1.23) <0.001(***)
Pulmonarydz 1.25(1.14-1.38) <0.001(***) 1.33(1.35-1.39) <0.001(***)
Coagulopathy 1.39(0.92-2.10) 0.115 1.22(1.16-1.29) <0.001(***)
Compdiabetes 1.10(0.96-1.25) 0.150 1.06(1.03-1.09) <0.001(***)
Anemia 1.06(0.93-1.21) 0.343 1.22(1.19-1.24) <0.001(***)
Electrolytes 1.14(0.95-1.38) 0.157 1.19(1.16-1.21) <0.001(***)
Liver 1.13(0.94-1.35) 0.176 1.14(1.09-1.18) <0.001(***)
Pvd 0.98(0.87-1.10) 0.824 1.20(1.18-1.23) <0.001(***)
Psychosis 1.06(0.65-1.73) 0.803 1.28(1.20-1.37) <0.001(***)
Pulmcirc 1.04(0.88-1.22) 0.616 1.09(1.07-1.12) <0.001(***)
Hypertension 1.11(1.02-1.21) 0.002(**) 1.36(1.34-1.38) <0.001(***)

Table 4.5: Counting coefficients for Hurdle model (Negative Binomial). Lom-
bardia and England dataset.
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4.3 Results of Multi-State Models

The last step of this thesis work is the hardest one, too. A new class of mod-
els has been implemented to discover other quantities of interest for the whole
process . Since now, the unique quantity of interest has been the influence of
covariates on probability of first/further readmissions of Heart Failure patients.
Only ”illness” state has been inspected, while the transitions to death or recov-
ery for this disease have never been considered (although important).
Multi-State models, instead, are suitable when we want to know the transition
rate (or related quantities like probability of transition, mean sojourn time, to-
tal length of stay) between different states (illness, recovery and death). This
development is due to a more complex interpretation of our data: now the clin-
ical history of each Heart Failure patient belongs to a Markov process. That
consideration allows the examination of the quantities mentioned above.
Moreover, a forward step is available: inspecting the impact individual(i) level

covariates zi on the transition rate between states (qrs(zi)=q
(0)
rs exp(βrszi)).

That means that Multi-State models are a useful integration of the previous
ones. Logistic regression and Hurdle/Zero-Inflated models, indeed, find out the
significant covariates and the related impact on the readmission. Multi-State
models go through this analysis and also explain their impact on the transitions,
giving a wider overview of Heart Failure disease.
As mentioned in Chapter 3.3.2, the implemented models are two. The first one
considers only three states: ”Alive Inside the hospital” (equivalent to a generic
admission for Heart Failure), ”Alive Outside the hospital” (equivalent to a live
discharge) and ”Death”. The second model, instead, is a development of the
previous one, because each admission/discharge is specified until the third ad-
mission.

4.3.1 Three states model

The ”Three states model” looks at the relation between admission-discharge-
death without considering the specific number of admission. This model goes
beyond Logistic regression and Counting models too, because now the covari-
ates play a role in the transition between admission-discharge, discharge-death
or admission-death, while before they were influential only in a subsequent ad-
mission within a fixed period.
Before analysing the effect of covariate, we inspect the first output of msm()

package: the transition intensity matrix. Transition intensity matrix is the
principal instrument to build all others quantity of interest. Instead of giving
our evaluations on its basis, we start from the probability of each state being
the next (instead of the transition intensity). As we can see in Table 4.6, in
English dataset the probability of readmission (”Alive OUT” to ”Alive IN”)
and discharge (”Alive IN” to ”Alive OUT”) are higher than in the Lombardia
dataset. In the Lombardia dataset, instead, the transition from ”Alive OUT”
to ”Death” as well as the death inside the hospital (”Alive IN” to ”Death”) are
higher than in the England dataset. Our process, of course, is continuous in the
time, that is why looking at the changes of probability of transition along the
time is interesting too.
As we can see in Figure 4.8, both in the short and in the long term, the prob-
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Lombardia dataset
Alive In Hospital Alive Out Hospital Death

Alive In Hospital 0 0.912 0.083
Alive Out Hospital 0.657 0 0.343

England dataset
Alive In Hospital Alive Out Hospital Death

Alive In Hospital 0 0.925 0.075
Alive Out Hospital 0.932 0 0.067

Table 4.6: Probability of each state being next, conditional to the change of
state. Multi-State model with three states. Lombardia and England dataset.

ability of readmission is higher for an English patient than for an Italian one.
Moreover, this transition is much more frequent in UK than in Italy.
Once a patient is admitted, it becomes interesting looking to the probability of
the following possible state. In Figure 4.9, the probability of transition from
”Alive inside the Hospital” to ”Death” or to ”Alive outside the Hospital” is
shown. As we can see, Lombardia patients are inclined to die instead of being
discharged alive in a long term (while it is the opposite for the England dataset);
in a short-run, moreover, this propensity is unchanged. As conclusion, Lombar-
dia patients are more likely to die inside the hospital than English ones, instead
of being discharged alive. Nevertheless, these transitions in English dataset are
faster than in the Lombardia one.
These feature didn’t come out from the previous models, that is why we have
reported it now.

Another interesting tool provided by msm() package is the appraisal of the
Mean Sojourn Time and of Total Length of Stay (referred to each patient). As
we can see in Table 4.7, the total length of stay as well as the Mean sojourn
time is lower for the England dataset than for Lombardia one. This information,
joint to the probability of transition, may be an handy and simple indicator to
evaluate the efficiency of hospitals. Of course, on the other hand, it should be
used in connection with other detailed material. On the other hand, we can
see that the Total Length of Stay alive in Hospital is higher in England than
in Italy, which means that English patients are more likely to be readmitted.
Furthermore, the Total Length of Stay Alive out of Hospital is still higher in
England than in Lombardia, which probably means that the death rates are
lower in England than in Lombardia.
Anyway, the most important analysis that we can do is related to the impact

Lombardia dataset England dataset

Mean Sojourn Time
Alive In Hospital (days) 13.96 10.64
Alive Out Hospital (days) 456.28 175.28
Total LOS
Alive In Hospital (days) 34.90 77.48
Alive Out Hospital (days) 1040.72 1180.83

Table 4.7: Mean Sojourn Time and Total Length of Stay. Multi-State model
with three states. Lombardia and England dataset.

of covariates on the transition rate, as done with the previous models. Once we
have gained the general trend of Admission-Discharge-Death of Heart Failure
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Figure 4.8: Trend of probability of readmission in Heart Failure patients. Lom-
bardia dataset (red) and England dataset(blue). From 0 to 4 years (left) and
from 0 to 2 months (right).

patients, indeed, it becomes interesting what may happen if a patient is affected
by a specific disease (so, the impact of a disease/procedure on a specific transi-
tion).
Table 4.8, Table 4.9 and Table 4.10 report the exponential hazard ratio of the
most interesting transitions (so: discharge, death inside the hospital and read-
mission).
First of all, we look at comorbidities impact. In Table 4.8, we can see the effect of
comorbidities in the transition from ”Alive Inside the Hospital” to ”Alive Out-
side the Hospital”. Metastatic, renal, hemiplegia, compdiabetes, electrolytes
and pulmcirc are coherent for both the dataset, because they are significant
and, in accordance with the common sense, they reduce the transition inten-
sity of discharge. The decreasing influence of comorbidities, moreover, is always
evident for those significant comorbidities in Italian dataset. In the England
dataset, some comorbidity as an opposite effect: alcohol, tumor, pulmonarydz,
coagulopathy, pvd and hypertension, indeed, have the effect of increasing the
transition intensity of discharge. Remarkable is the behaviour of hypertension
(always meaningful in previous analysis). In Italian dataset, hypertension is
not important, while in the England dataset it has the effect of increasing the
discharge rate. That behaviour may be due to the high prevalence.
Different is the effect of comorbidities on the death inside the hospital (Table
4.9). In that case the discrepancy between the two dataset is much more evi-
dent. Metastatic, dementia and renal are the only comorbidities with the same
significance and effect in both dataset (they, of course, increase the transition
rate). Compdiabetes and pulmcirc significantly decrease the transition rate,
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Figure 4.9: Trend of probability of death inside the hospital(left) and dis-
charge (right) in Heart Failure patients. Lombardia dataset (red) and England
dataset(blue). From 0 to 4 years (above) and from 0 to 2 months (below).
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while tumor, arrhythmia and electrolytes have a discordant effect: electrolytes
and tumor are higher than 1 in Lombardia dataset, while arrhythmia is lower.
For the England dataset the influence is the opposite.
The last transition that we consider is from ”Alive Outside the Hospital” to
Alive Inside the Hospital (Table 4.10), that is equal to a readmission (the first
state that a patient occupy, in fact, is his first admission). It is very interesting
that these results are a very similar to the ones found in the counting part of
Hurdle models. If we focus on English dataset, indeed, we can observe that all
comorbidities have a positive impact in increasing the transition intensity; the
weight of this growing effect is specular to the Odd Ratios found in Hurdle com-
ponent, but also in the Logistic regression of first readmission (see, for example,
alcohol, pulmonarydz or psychosis). We can say the same for the Lombardia
dataset, in which the most evidence parallelism is observable in the decreasing
effect of hemiplegia or in the highly increasing effect of renal and compdiabetes.
The last analysis is focused on the effect of procedures on the transition rates.
A first thing that we can notice is related to England the dataset. As we can
see, indeed, none procedure as an impact on the transitions that we are consid-
ering. This is important mainly when we consider the transition between ”Alive
Outside the Hospital” to ”Alive Inside the Hospital”, which is our readmission
in Logistic regression. In this case we can’t see the same parallelism recorded
for comorbidities. In the case of the Lombardia dataset, instead, we observe
that procedures always have an important impact in all transitions. We start
from Table 4.8: in the transition of discharge, CABG, PTCA and SHOCK
have a decreasing impact on the transition intensity, maybe due to their being
invasive. That is true especially for CABG and SHOCK, which take lower
values than PTCA.
As we have seen in the previous tables (Table 4.4 and Table 4.5), some co-
morbidities increase the chance of both one readmission and many readmis-
sions, in both the countries too. These comorbidities are renal, pulmonarydz,
arrhythmia, hemiplegia and hypertension. Four of these are the most frequent
in both the populations (renal, pulmonarydz, arrhythmia and hypertension),
while hemiplegia is not highly frequent, but keeps its relevance in both dataset.
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Lombardia dataset England dataset

Procedures
ICD 1.03 ( 0.98- 1.08) 1.00 (0.92-1.07)
CABG 0.29 ( 0.28- 0.31) * 0.99 (0.84-1.18)
PTCA 0.70( 0.68- 0.73) * 1.00 (0.95-1.04)
SHOCK 0.21 ( 0.19- 0.24) * 0.99 (0.93-1.07)
Comorbidities
Metastatic 0.80 (0.74-0.86) * 0.97(0.95-0.99) *
Dementia 0.93 (0.89-0.97) 0.84 (0.83-0.85) *
Renal 0.86 (0.84-0.87) * 0.78 (0.77-0.78) *
Wtloss 0.48 (0.42-0.55) * 1.02 (1.00-1.03)
Hemiplegia 0.59 (0.56-0.62) * 0.93 (0.91-0.94) *
Alcohol 1.00 (0.86-1.16) 1.22 (1.20-1.23) *
Tumor 0.94 (0.91-0.97) * 1.09(1.08-1.10) *
Arrhythmia 0.94 (0.93-0.96) * 0.86 (0.86-0.86) *
Pulmonarydz 0.90 (0.88-0.92) * 1.04 (1.04-1.05) *
Coagulopathy 0.82 (0.75-0.90) * 1.04 (1.02-1.06) *
Compdiabetes 0.94 (0.92-0.97) * 0.94 (0.93-0.95) *
Anemia 0.88 (0.86-0.91) * 1.00 (0.99-1.01)
Electrolytes 0.91 (0.88-0.95) * 0.90 (0.89-0.91) *
Liver 0.94 (0.91-0.98) * 0.98 (0.96-0.99)
Pvd 0.87 (0.84-0.89) * 1.08 (1.07-1.09) *
Psychosis 0.93 (0.85-1.03) 1.03 (1.00-1.05)
Pulmcirc 0.81 (0.79-0.85) * 0.95 (0.94-0.96) *
Hypertension 1.01 (1.00-1.03) 1.06 (1.06-1.07) *

Table 4.8: Exponential hazard rate: Alive Inside the Hospital to Alive Outside
the Hospital (live discharge).

Lombardia dataset England dataset

Procedures
ICD 0.34 (0.26- 0.44) * 0.99 (0.76-1.30)
CABG 0.24 (0.19-0.29) * 0.99 (0.55-1.80)
PTCA 0.31 (0.26-0.36) * 1.00 (0.86-1.16)
SHOCK 7.14 (6.67- 7.65) * 1.00 (0.78-1.28)
Comorbidities
Metastatic 2.51 (2.18-2.88) * 1.07 (0.99-1.15) *
Dementia 2.21 (2.02-2.43) * 1.04(1.00-1.07) *
Renal 1.24 (1.17-1.31) * 1.84 (1.81-1.87) *
Wtloss 1.11 (0.84-1.47) 0.75(0.71-0.79) *
Hemiplegia 0.93 (0.81-1.07) 0.76 (0.72-0.80) *
Alcohol 0.97 (0.57-1.63) 0.78 (0.74-0.82) *
Tumor 1.36 (1.24-1.48) * 0.85 (0.82-0.89) *
Arrhythmia 0.81 (0.77-0.85) * 1.41(1.38-1.43) *
Pulmonarydz 1.02 (0.96-1.08) 1.16 (1.14-1.18) *
Coagulopathy 1.03 (0.82-1.28) 0.84 (0.78-0.91) *
Compdiabetes 0.90 (0.82-0.99) * 0.77 (0.74-0.79) *
Anemia 0.87 (0.80-0.95) * 0.57 (0.55-0.58) *
Electrolytes 1.40(1.26-1.55) * 0.67 (0.66-0.69) *
Liver 0.90 (0.80-1.02) 0.89 (0.85-0.95) *
Pvd 0.99 (0.92-1.07) 0.64 (0.62-0.66) *
Psychosis 0.94 (0.68-1.29) 0.88 (0.80-0.98) *
Pulmcirc 0.82 (0.73-0.92) * 0.67 (0.65-0.70) *
Hypertension 0.72 (0.68-0.76) * 1.01 (0.99-1.03)

Table 4.9: Exponential hazard rate: Alive Inside the Hospital to Death (death
inside the hospital).
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Lombardia dataset England dataset

Procedures
ICD 1.25 (1.10-1.42) * 0.99 (0.92-1.08)
CABG 0.90 (0.83-0.98) * 0.99 (0.77-1.28)
PTCA 1.11 ( 1.05-1.17) * 0.99 (0.95-1.04)
SHOCK 1.12 (0.97- 1.29) 0.99 (0.91-1.09)
Comorbidities
Metastatic 1.23 (1.08-1.40) * 1.11 (1.08-1.13) *
Dementia 0.77 (0.72-0.82) * 1.19 (1.17-1.20) *
Renal 1.45 (1.42-1.49) * 1.29 (1.29-1.30) *
Wtloss 0.86 (0.69-1.06) 1.15 (1.13-1.17) *
Hemiplegia 0.86 (0.79-0.92) * 1.24 (1.22-1.26) *
Alcohol 0.91 (0.74-1.12) 1.27 (1.25-1.28) *
Tumor 1.00 (0.96-1.05) 1.13 (1.11-1.14) *
Arrhythmia 1.19 (1.16-1.22) * 1.17 (1.17-1.18) *
Pulmonarydz 1.22 (1.19-1.25) * 1.32 (1.31-1.32) *
Coagulopathy 1.57 (1.40-1.76) * 1.13 (1.11-1.15) *
Compdiabetes 1.33 (1.29-1.38) * 1.22 (1.21-1.24) *
Anemia 1.15 (1.11-1.19) * 1.16 (1.16-1.17) *
Electrolytes 1.10 (1.04-1.17) * 1.21 (1.21-1.22) *
Liver 1.02 (0.97-1.08) 1.18 (1.16-1.20) *
Pvd 1.04 (1.02-1.08) * 1.13 (1.12-1.13) *
Psychosis 0.95 (0.83-1.10) 1.49 (1.5-1.53) *
Pulmcirc 1.47 (1.40-1.54) * 1.15 (1.14-1.16) *
Hypertension 1.08 (1.05-1.10) * 1.18 (1.17-1.18) *

Table 4.10: Exponential hazard rate: Alive Outside the Hospital to Alive Inside
the Hospital (readmission).
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4.3.2 Multi-State Model with detailed admissions

After having inspected the easier model, we want to go deeper in the possibilities
that Multi-State model gives. That has brought to the decision of giving much
more importance to the specific transition between subsequent admissions (and
relative discharges), in order to have a complete overview that may integrate
the results collected by Logistic regression (first and second readmission) and
by Counting model for readmissions.
As previous done, we initially focus on the generalities of the process, just related
to probability of transition and similar quantities. Then, we will focus on the
contribute that the most important covariates may give to specific transitions.
As earlier explained in Chapter 3.3.2, the states that a patient can occupy are
the following: first, second and third admission and relative discharges, fourth
admission (that includes also further admissions) and, at last, death, which is
reachable from all the mentioned states (see Figure 3.6 to refresh the admitted
transitions).
We will follow the same outline of section 4.3.1, starting from the probability of
each state being the next. As we can see in Table 4.11, the two dataset present
similarities and dissimilarities as well. The main similarity is observable in the
probability of discharge for a Heart Failure patient: in both dataset, indeed,
the probability of being discharged alive or, consequentially, dying during the
admission is quite similar (around the 9 %). We have to note, however, that
in the case of English dataset the probability of death inside the hospital at
first admission is lower than in the following ones (this transition wasn’t consid-
ered in the previous models, but it doesn’t change our purpose). The principal
difference lies in the probability of readmission, because for Italian patients is
much likely to not be readmitted than for English patients. Nevertheless, this
behaviour is inclined to change along the readmissions, because as much the
number of hospitalization increases much more the readmission probability in-
creases. The trend for the England dataset, on the other hand, is the opposite
(but it is much less significant).
The last overview that we can give to the whole process is related to Mean So-
journ Time. We have not reported the Total Length of Stay because, differently
from the previous one, in this model we don’t have reverse transitions. As we
can see in Table 4.12, Italian admissions for Heart Failure, on average, last more
than the England one. On the other hand, the permanence alive outside the
hospital is higher. This behaviour may underline the inclination of not being
readmitted again (as mentioned above).

Of course, our main purpose is finding the role of each covariates on subse-
quent admissions. As done in the previous models, it would be better to put
all covariates of interest inside the model. Unfortunately, due to computational
reasons, that’s no longer possible to do. The problem lies in the complication of
the model and in the big amount of data. As much as the number of states (so,
parameters) increases, the algorithm can’t allocate a such big space of mem-
ory, especially if we want to consider covariates too. That can’t run the chosen
model.
To allow the program run, we have made a choice based on the previous results,
in order to give less covariates in input to the model. The maximum number
of covariates that we could put inside the model for the the England dataset is
4, while for the Lombardia dataset is 7. That is why we have decide to differ-
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Lombardia dataset
1adm 1disc 2adm 2disc 3adm 3disc 4adm Death

1adm 0 0.92 0 0 0 0 0 0.08
1disc 0 0 0.60 0 0 0 0 0.40
2adm 0 0 0 0.91 0 0 0 0.09
2disc 0 0 0 0 0.68 0 0 0.32
3adm 0 0 0 0 0 0.91 0 0.09
3disc 0 0 0 0 0 0 0.72 0.28
4adm 0 0 0 0 0 0 0 1

England dataset
1adm 1disc 2adm 2disc 3adm 3disc 4adm Death

1adm 0 0.98 0 0 0 0 0 0.02
1disc 0 0 0.94 0 0 0 0 0.06
2adm 0 0 0 0.90 0 0 0 0.10
2disc 0 0 0 0 0.93 0 0 0.07
3adm 0 0 0 0 0 0.90 0 0.10
3disc 0 0 0 0 0 0 0.92 0.08
4adm 0 0 0 0 0 0 0 1

Table 4.11: Probability of each state being next, conditional to the change of
state. Multi-State model with detailed admissions. Lombardia and England
dataset.

Lombardia dataset England dataset

1adm (days) 14.0 ± 0 10.5 ± 0
1disc (days) 591.2 ± 3.6 263.5 ± 0.5
2adm (days) 13.5 ± 0.1 10.9 ± 0
2disc (days) 395.1 ± 3.7 195.8 ± 0.5
3adm (days) 13.9 ± 0.1 11.1 ± 0
3disc (days) 298.4 ± 4.0 160.1 ± 0.4
4adm (days) 389.4 ± 7.9 303.2 ± 1.3

Table 4.12: Mean Sojourn Time of Multi-State model with detailed admissions.
Lombardia and England dataset.

entiate the procedure (4 for both datasets) from the comorbidities (19 for both
datasets). Among comorbidities, we have chosen thanks to a double criterion.
First of all, we have considered the ones that were most important both in Zero
and in counting part of Hurdle and Zero-Inflated models, in order to widen
our time perspective. Secondary, among these comorbidities, we have chose the
most frequent in Lombardia and England populations. The chosen pathologies
are as follows: renal, arrhythmia, pulmonarydz and hypertension. We have to
keep in mind that the following results may be affected by this choices, because
we are not considering the combined effect of all covariates.
We start considering the effect of the procedures. In Table 4.13 we can see the
effect of ICD and CABG, while in Table 4.14 we can see the effects of PTCA
and SHOCK. We will mainly focus on the effect on readmissions, which is the
most important transition for this research, but we will give a look to the other
transitions as well.
In the England dataset, in no one case the procedures have an impact in ex-
plaining the readmissions. The same behaviour is observable in the contribution
to death inside the hospital, except for SHOCK, which has an impact in ac-
celerating this process from the second readmissions onwards. The impact of
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procedures in the England dataset, moreover, is weakly visible in the transition
of discharge: PTCA and ICD seem to accelerate the transition of discharge,
while SHOCK and CABG have an opposite effect. This result wasn’t caught
in the previous Multi-State model.
In the Lombardia dataset, the procedures play a role to explain the transitions,
much more than in the England dataset. In readmission transitions, for example,
the impact of ICD and CABG is similar: they accelerate the first readmission,
but they influence oppositely further readmissions. PTCA and SHOCK, on
the other hand, are influential only in accelerating the first readmission and not
the following ones. These results seem to contrast the results found in Logistic
regression (especially with the models with first and and second readmissions),
but we have to keep in mind that in Logistic regression we were analysing the
probability of readmission within 30 days from the discharge, while in that case
we are not considering this time limit. This impact, however, is different also
in Multi-State model with three states.
When considering the death inside the hospital, the results are aligned with the
ones found in the first Multi-State model: ICD, CABG and PTCA reduce the
transition intensity, while SHOCK highly increases it. In quite all processes of
discharge, instead, the procedures are inclined to slow down the transition, as
expected by common sense. This range of inspecting the impact of covariates
on all transitions was previously impossible to gain.

We conclude our overview with the impact of comorbidities on transition

Lombardia dataset England dataset
ICD CABG ICD CABG

Discharge Alive
1adm to 1disc 0.70 (0.64-0.77) 0.31 (0.29-0.33) 0.87 (0.75-1.00) 0.61 (0.44-0.85)
2adm to 2disc 1.24 (1.15-1.35) 0.34 (0.30-0.39) 1.34 (1.15-1.56) 0.72 (0.50-1.03)
3adm to 3disc 1.43 (1.28-1.60) 0.28 (0.21-0.36) 1.16 (0.98-1.38) 0.86 (0.51-1.45)
Death In Hospital
1adm to Death 0.30 (0.19-0.48) 0.20 (0.16-0.25) 0.94 (0.32-2.80) 0.97 (0.12-7.63)
2adm to Death 0.37 (0.24-0.58) 0.34 (0.23-0.51) 0.88 (0.49-1.59) 0.91 (0.33-2.46)
3adm to Death 0.55 (0.31-0.97) 0.62 (0.38-1.02) 0.85 (0.48-1.53) 0.98 (0.23-4.12)
4adm to Death 0.53 (0.40-0.69) 0.92 (0.44-1.95) 0.95 (0.62-1.45) 0.95 (0.29-3.12)
Readmission
1disc to 2adm 1.27 (1.13-1.42) 1.11 (1.01-1.23) 1.05 (0.90-1.22) 1.00 (0.66-1.56)
2disc to 3adm 0.90 (0.80-1.00) 0.80 (0.64-0.99) 0.93 (0.78-1.10) 0.99 (0.61-1.62)
3disc to 4adm 0.74 (0.64-0.85) 0.73 (0.55-0.97) 0.99 (0.52-1.90) 1.01 (0.34-3.01)

Table 4.13: Exponential hazard rate of ICD and CABG. Lombardia and England
dataset.

intensities. As explained above, we have chosen the four comorbidities (renal,
arrhythmia, pulmonarydz and hypertension) depending on the output of Hur-
dle models and on the proportion of the pathology. As done with the procedures,
in Table 4.15 (Lombardia dataset) and in Table 4.16 (England dataset) we re-
port the Exponential Hazard Rates for all the transition considered.
We start from the readmissions: renal and pulmonarydz are very influential in
accelerating the transition in Lombardia and in England as well. Furthermore,
the effect of these covariates is similar. The trend seems to be decreasing in both
dataset for renal disease, while pulmonarydz keeps a constant influence (espe-
cially in the first and second readmission). The comorbidities arrhythmia and
hypertension, instead, haven’t an important impact on the transition intensities
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Lombardia dataset England dataset
PTCA SHOCK PTCA SHOCK

Discharge Alive
1adm to 1disc 0.72 (0.69-0.76) 0.27(0.24-0.30) 1.33 (1.25-1.42) 0.53 (0.45-0.62)
2adm to 2disc 0.75 (0.68-0.82) 0.16 (0.13-0.21) 1.07 (0.98-1.18) 0.44 (0.35-0.54)
3adm to 3disc 0.80 (0.70-0.92) 0.16 (0.11-0.23) 1.14 (1.01-1.27) 0.76 (0.61-0.95)
Death In Hospital
1adm to Death 0.28 (0.24-0.34) 7.25 (6.60-7.96) 1.17 (0.69-1.96) 1.17 (0.50-2.74)
2adm to Death 0.44 (0.31-0.63) 8.83 (7.70-10.13) 0.96 (0.72-1.28) 2.53 (1.93-3.32)
3adm to Death 0.61 (0.37-1.00) 8.26 (6.82-10.00) 1.00 (0.70-1.43) 1.87 (1.23-2.85)
4adm to Death 0.58(0.44-0.77) 4.31 (3.30-5.62) 1.05 (0.86-1.28) 1.71 (1.27-2.30)
Readmission
1disc to 2adm 1.24 (1.16-1.32) 1.28 (1.07-1.52) 1.05 (0.90-1.22) 1.03 (0.89-1.21)
2disc to 3adm 1.02 (0.90-1.15) 0.97 (0.68-1.39) 0.93 (0.78-1.10) 1.01 (0.82-1.24)
3disc to 4adm 1.14 (0.95-1.36) 0.89 (0.39-2.02) 0.99 (0.52-1.90) 1.23 (0.94-1.60)

Table 4.14: Exponential hazard rate of PTCA and SHOCK. Lombardia and
England dataset.

(except for arrhytmia in the England dataset for the first readmission). This
result is different from the first Multi-State model and from all previous models,
in which these latter covariates were significant for both the dataset. If we give
a look to the discharges, instead, we note that renal and arrhythmia are sig-
nificant in similar way, because the decrease the transition intensity among all
kind of that transition. In the Lombardia dataset, this behaviour is unchanged
for the leftover comorbidities (pulmonarydz and hypertension), while in En-
glish dataset pulmonarydz and hypertension invert their contribution. This
behaviour is exactly the same that we can see in the first Multi-State models
(with three states).
We conclude looking at the contribution of comorbidities to the Death Inside
the hospital. In the England dataset, a Heart Failure patient affected by renal,
pulmonarydz and arrhythmia diseases is inclined to die faster. That is true
for Lombardia patients too, but only if they are affected by renal disease. In-
teresting is the role of hypertension in the Lombardia dataset, because this
comorbidities decreases the transition intensity of Death Inside the hospital.

Lombardia dataset
renal arrhythmia pulmonarydz hypertension

Discharge Alive
1adm to 1disc 0.81 (0.79-0.84) 1.02(1.00-1.04) 0.91 (0.88-0.93) 0.96 (0.94-0.99)
2adm to 2disc 0.82 (0.79-0.85) 0.96 (0.92-0.99) 0.86 (0.83-0.89) 0.95 (0.92-0.99)
3adm to 3disc 0.80 (0.76-0.84) 0.91 (0.87-0.97) 0.89 (0.85-0.94) 0.98 (0.93-1.03)
Death In Hospital
1adm to Death 1.09 (0.99-1.20) 0.66 (0.61-0.71) 1.01 (0.93-1.11) 0.62 (0.58-0.68)
2adm to Death 1.23 (1.10-1.38) 0.98 (0.88-1.09) 0.86 (0.76-0.96) 0.70 (0.63-0.78)
3adm to Death 1.26 (1.08-1.47) 0.88 (0.75-1.03) 1.05 (0.90-1.23) 0.62 (0.53-0.72)
4adm to Death 1.13 (1.05-1.23) 1.12 (1.03-1.22) 1.06 (0.98-1.15) 0.96 (0.88-1.02)
Readmission
1disc to 2adm 1.23 (1.17-1.28) 0.98 (0.94-1.01) 1.08 (1.04-1.12) 1.03 (0.99-1.06)
2disc to 3adm 1.14 (1.08-1.20) 0.98 (0.94-1.03) 1.10 (1.05-1.15) 0.95 (0.91-1.00)
3disc to 4adm 1.17 (1.10-1.25) 1.04 (0.97-1.11) 1.16 (1.09-1.24) 0.96 (0.90-1.02)

Table 4.15: Exponential hazard rate of renal, arrhythmia, pulmonary disease
and hypertension. Lombardia dataset.
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England dataset
renal arrhythmia pulmonarydz hypertension

Discharge Alive
1adm to 1disc 0.73 (0.72-0.74) 0.85(0.84-0.86) 0.99 (0.98-1.00) 1.03 (1.02-1.04)
2adm to 2disc 0.73 (0.72-0.74) 0.85 (0.85-0.86) 1.01 (1.00-1.02) 1.05 (1.04-1.06)
3adm to 3disc 0.76 (0.75-0.77) 0.85 (0.84-0.86) 1.04 (1.02-1.05) 1.04 (1.03-1.05)
Death In Hospital
1adm to Death 2.24 (2.09-2.40) 1.81 (1.74-1.88) 1.33 (1.23-1.44) 1.28 (1.20-1.37)
2adm to Death 1.63 (1.58-1.68) 1.20 (1.16-1.23) 1.03 (0.99-1.06) 0.77 (0.75-0.79)
3adm to Death 1.55 (1.50-1.61) 1.19 (1.15-1.23) 1.03 (1.00-1.07) 0.78 (0.76-0.81)
4adm to Death 1.28 (1.25-1.30) 1.17 (1.15-1.19) 0.96 (0.94-0.98) 0.96 (0.94-0.98)
Readmission
1disc to 2adm 1.27 (1.25-1.28) 1.07 (1.06-1.08) 1.09 (1.08-1.10) 1.01 (1.00-1.02)
2disc to 3adm 1.16 (1.14-1.17) 1.01 (1.00-1.02) 1.10 (1.08-1.11) 1.00 (0.99-1.01)
3disc to 4adm 1.12 (1.10-1.13) 1.00 (0.99-1.01) 1.09 (1.07-1.10) 0.99 (0.98-1.01)

Table 4.16: Exponential hazard rate of renal, arrhythmia, pulmonary disease
and hypertension. England dataset.



Chapter 5

Conclusive Remarks

This work explores the problem of predicting the readmissions of Heart Failure
patients, comparing the results of two datasets: the first one from Lombardia
(and Italian region) and the second from England (a county within the United
Kingdom). This being main motivating reason of the project above described.
Heart Failure, indeed, is very common in our society and, being a chronic disease,
leads patients to be readmitted more than once. The challenge for researchers
and hospitals is to find out suitable predictors for further readmissions. The
reason lies in improving the hospital care (through the upgrade of therapies and
the targeting of interventions) and, consequentially, in saving money.
This purpose is pursued by using statistical methods, which have proven suit-
able tools for several reasons: they take advantage of already existing datasets
(for example, administrative database) and they easily adapt to the response
of interest, in order to find the enquired responses. The prediction of readmis-
sions is a topic strongly supported by literature. For example,Bartolomeo et al.
(2008) have enquired the problem of readmission in Chronic Obstructive Pul-
monary Disease (COPD); Bottle et al. (2014), Ieva et al. (2015), Philbin and
DiSalvo (1999) and Postmus et al. (2012) focused on the problem of readmission
of Heart Failure patients, using different statistical tools.
However, in this work we have introduced a new enriching point of view: the
comparison between different datasets. Many reasons justify this choice: to be-
gin with, we gain a stronger perspective on the problem of readmissions; more-
over, we contrast the phenomenon of Heart Failure in two countries and, finally,
we can compare the efficiency of the Health Systems in facing the problem of
readmissions. Highlighting similarities and dissimilarities is the motivating rea-
son that guides this work.
Furthermore, thanks to the statistical methods applied, this project gains a
wide perspective: in Logistic regression, our response variable is the readmis-
sion within 30 days from the discharge; in Hurdle an Zero-Inflated models our
response is the number of readmissions per patient in a year; in Multi-States
models we have analysed the process of admission-discharge-death itself, en-
quiring the transition intensities among different states. In all these models,
the aim was finding out the weight of covariates on the response of interest and
enquiring the process itself. Across models, therefore, a multiface insight of the
problem of Heart Failure readmissions is provided.
Let us now give a summary of the results across dataset and implemented mod-
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els.
The first basic comparison has been done between the features of populations,
which has highlighted a similarity in the distribution of age and in the pro-
portion of diseases. Indeed, the comorbidities with high percentage in England
dataset (renal, arrhythmia, pulmonarydz and hypertension) present similar
values in Lombardia dataset. Except for electrolytes (higher in England than
in Lombardia), the same parallelism is recorded for less frequent pathologies.
The main difference between Lombardia and England lies in the proportion of
procedures done: in Italian dataset they are always double than England one,
even if the percentage are not high.
The implementation of the models has disclosed the following features: renal is
the most important predictor in all models implemented and in both datasets
too. It substantially gives a positive contribution in readmissions both in short-
run (Logistic regression) and long-run (Hurdle and Zero-inflated models and
Multi-State models). This results is already confirmed by literature (see Post-
mus et al. (2012) and Bottle et al. (2014)).
The comorbidities arrhythmia, pulmonarydz and hypertension are important
as well in most models for both the datasets, especially when dealing with mod-
els that do not require a short time limit to consider a readmission (Counting
models and Multi-state models). Furthermore, these pathologies are the most
frequent in both populations. We can assert that a patient affected by these
pathologies are really more likely to be readmitted. Controlling these diseases
may decrease the risk of further Heart Failure and, consequently, of additional
readmissions, which may be a benefit both for patients and for hospitals. So,
this first outcome is important, for it points out an existing fil rouge in the
readmission of Heart Failure patients for both countries. The mentioned co-
morbidities, indeed, may represent ”universal” information, that can constitute
a common basis on which to add specific ”local” information.
The effect of some pathologies is different from Lombardia to England. In the
Lombardia dataset, for example, compdiabetes and pulmcirc are significant in
most models, while in England their effect is not significantly relevant. They
especially give a contribution to the first readmission both in short-run and
long-run, increasing significantly the probability of readmission.
In the England dataset, instead, the same behaviour is followed by alcohol,
tumor, dementia and pvd (which are not relevant for Lombardia population).
These comorbidities, indeed, are good predictors in explaining the short-term
and long-term readmissions.
These are the pathologies that mostly differentiate the Heart Failure population
of Lombardia from the one of England. Enquiring the causes that lead to this
different impact could be fascinating as well and stimulating for further explo-
rations.
Comorbidities are quantities associated to the health population (due to geo-
graphical or cultural reasons), and they are not directly linked to the efficiency
of hospitals in facing Heart Failure readmissions. The competence of hospitals,
however, may be analysed through other quantities: the impact of procedures
and the timing of admission-discharge-death. Of course, these analyses are not
absolute, but they help in gaining a former idea.
The impact of procedures is curious: in England dataset, for example, pro-
cedures have a high impact in the short-term readmissions (like in Logistic
regression) and in Counting models, while they lose relevance in all Multi-State
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models. For example, CABG, PTCA and SHCOK increase the probability of
readmission in a short term. In a longer perspective, this behaviour involves
also ICD, that was a decreasing factor in readmissions within 30 days. In
the Lombardia dataset, instead, the procedures are relevant also in the first
Multi-State model. The effect of CABG, differently from England, decreases
the probability of readmissions, while the others procedures are a risk factor for
further readmissions, samely as in the UK.
Multi-State models have also show up peculiarities of the trend of the process:
we can see that in England the inclination of being readmitted is higher than in
Lombardia, while in Italy the probability of dying inside the hospital is higher
and the Length of Stay, on average, is longer than in the UK. All these reflec-
tions ar valid in the short and in the long term.
We can assert that the use of different models really helps to gain a complete
view of the process, and this gives strength to our analysis. Logistic regression,
indeed, is simple to implement and allows to fix the time limit for a readmis-
sion, but it can’t take track of the clinical history of the patients. Hurdle and
Zero-Inflated models, instead, are able to supply to the said limit, because they
summarize the clinical history of Heart Failure patients, but, summarizing the
informations, we lose specific transitions and we shrink the time limits. Multi-
State models, in processes related to chronic disease, are really helpful, because
they can give much more information on transitions and on the impact of co-
morbidities in specific transitions. The only limitation lies in computational
reason, because the more the model become complex, the less are the covariates
that can be inserted (differently from the previous models, which are simpler).
A last limitation is due to the source of our data. This study, indeed, has taken
advantage of administrative data. As already known by literature (see Service
(2004) and Smith et al. (2004)) administrative data are useful and practical:
they do not require excessive costs to be collected, they are regularly updated,
they can provide historical informations); however, they present some limita-
tion: the information collected, for example, is restricted to data required for
administrative purpose, they may lack contextual background information, they
can contain missing data and so on. All these limitations can affect our results,
especially when facing medical purposes.
Further studies may be done to explore other aspects of the Heart Failure read-
missions, or to prevent the death inside the hospital due to this disease. More-
over, it could be interesting to extend this analysis to other countries as well.
An interesting comparison may be done on different countries of the European
Union, to highlight differences among the nations that share a similar cultural
background. The reason for it to be useful could be traced in a help to focus
on the differences of Health Systems. An analysis across countries belonging to
different continents, on the other hand, may highlight contrasting features of
populations.
Useful would be also to apply this fan of models to other chronic disease (for ex-
ample, to pulmonary disease, see Bartolomeo et al. (2008)). Another fascinating
aspect could be the introduction of other kind of covariates, maybe associated
to social or economical factors (for example, related to the social status) and
present in administrative data as well. Of course, several other improvements
to this work may be done, but our hope is to create a plot outline that could
unify different effective methods, already existing and useful for the readmission
of Heart Failure patients.



Chapter 6

Code

In this latter section, we report the main parts of R code, used to compute our
models. We have not written the codes related to the data adjustment, even if
they are a considerable part of the work. However, in Chapter 3 we’ve already
described the necessary passages.

Logistic Regression

Function that fits the a general linear model with logit link. The outcome
variable is an the indicator of readmission within 30 days, the covariates are the
anthropological and clinical variables.

load ( ” l o g i s t i c f i r s t . Rdata” )
attach ( l o g i s t i c f i r s t )

log f i r s t<−glm(Y a l l ˜age+sex+INTRAH days+ICD+CABG+PTCA+SHOCK
+metas ta t i c+dementia+r ena l+wt lo s s+hemip leg ia
+a l c o h o l+tumor+arrhythmia+pulmonarydz
+coagulopathy+compdiabetes+anemia+e l e c t r o l y t e s
+l i v e r+pvd+psycho s i s+pulmcirc+h i v a i d s
+hypertens ion , family=binomial ( l ink=” l o g i t ” ) )

summary( log f i r s t )

detach ( l o g i s t i c f i r s t )

Hurdle and Zero-Inflated Models

Functions that fits Counting models. We have reported the Hurdle model with
Poisson as counting part and Zero-Inflated model with Negative Binomial as
counting part. The outcome is the number of readmissions within a year since
the first admission, while the covariates are the summarized anthropological and
clinical variables.
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l ibrary ( p s c l )

h1<−hurdle (n readm ˜ sex+age f i r s t+INTRAH days+ICD+CABG
+PTCA+SHOCK+metas ta t i c+dementia+r ena l+wt lo s s
+hemip leg ia+a l c o h o l+tumor+arrhythmia
+pulmonarydz+coagulopathy+compdiabetes+anemia
+e l e c t r o l y t e s+l i v e r+pvd+psychos i s+pulmcirc
+hypertens ion , d i s t=’ po i s son ’ )

summary( h1 )

z2<−z e r o i n f l (n readm ˜ sex+age f i r s t+INTRAH days+ICD+CABG
+PTCA+SHOCK+metas ta t i c+ dementia+ r ena l+wt lo s s
+hemip leg ia+a l c o h o l+tumor+arrhythmia+pulmonarydz
+coagulopathy+compdiabetes+anemia+e l e c t r o l y t e s
+l i v e r+pvd+psycho s i s+pulmcirc+hypertens ion ,
d i s t=’ negbin ’ )

summary( z2 )

##### number o f z e r o s p r e d i c t e d

round(c ( ”Obs”=sum(n readm<1) ,
” Poisson ”=sum(dpois (0 , f i tted ( p1 i ) ) ) ,
”NB”=sum(dnbinom(0 ,mu=f i tted ( bn1i ) , s i z e=bn1i$ theta ) ) ,
” Hurdle Poisson ”=sum(predict ( h1i , type=”prob” ) [ , 1 ] ) ,
” Hurdle NB”=sum(predict ( h2i , type=”prob” ) [ , 1 ] ) ,
”ZI Poisson ”=sum(predict ( z1 i , type=”prob” ) [ , 1 ] ) ,
”ZI NB”=sum(predict ( z2 i , type=”prob” ) [ , 1 ] )

) )

Multi-State Models

Function that fits Multi-State models. Below, the first model: the outcome is
the transition between different states, depending on the transition times and
flagged by the identity of patients. Furthermore, the related functions to extract
quantities of interest.

l ibrary (msm)

### e m p i r i c a l s t a t e s t a b l e

s t a t e t a b l e .msm( mult i s ta te , ID paz , data=data )

### matrix o f t r a n s i t i o n s

matrix IOD<−rbind (c ( 0 , 1 , 1 ) , c ( 1 , 0 , 1 ) , c ( 0 , 0 , 0 ) )
rownames(matrix IOD)<−c ( ” Al ive In ” , ” Al ive Out” , ”Dead” )
colnames (matrix IOD)<−c ( ” Al ive In ” , ” Al ive Out” , ”Dead” )
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### FIRST mult i−s t a t e model ( p l a i n and with c o v a r i a t e s )

msm 1<−msm( s t a t e ˜ days , s u b j e c t=ID paz , data=data ,
qmatrix=matrix IOD, gen . i n i t s=TRUE,
death =3, exact t imes=TRUE, method=”BFGS” ,
control=l i s t ( f n s c a l e =400000))

msm 1

msm cov 1<−msm( s t a t e ˜ days , s u b j e c t=ID paz , data=data ,
c o v a r i a t e s= ˜ dementia+re na l+dementia
+wt lo s s+hemip leg ia+a l c o h o l+tumor+arrhythmia
+pulmonarydz+coagulopathy+compdiabetes
+anemia+e l e c t r o l y t e s+hypertens ion+pulmcirc ,
qmatrix= matrix IOD, gen . i n i t s=TRUE,
exact t imes=TRUE, method=”BFGS” ,
control=l i s t ( f n s c a l e =500000))

### hazard r a t i o

hazard .msm(msm cov 1)

### t r a n s i t i o n p r o b a b i l i t y matrix

p3<−pmatrix .msm(msm 1 , t=3, c i=”normal” )

### mean sojourn time

mean s o j time<−so journ .msm(msm 1)

### t o t a l l e n g h t o f s t a y

t o t a l l o s<−t o t l o s .msm(msm 1)

### expec ted f i r s t passage time
e f p t<−e f p t .msm(msm 1)

Below, the second Multi-State model implemented.

### SECOND mult i−s t a t e model ( p l a i n )

matrix IOD<−rbind (c ( 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 ) ,
c ( 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 ) ,
c ( 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ) ,
c ( 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 ) ,
c ( 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 ) ,
c ( 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 ) ,
c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) ,
c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) )
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rownames(matrix IOD)<−c ( ”1” , ”1a” , ”2” , ”2a” ,
”3” , ”3a” , ”4” , ”Death” )

colnames (matrix IOD)<−c ( ”1” , ”1a” , ”2” , ”2a” ,
”3” , ”3a” , ”4” , ”Death” )

msm 2<−msm(new s t a t e ˜ days , s u b j e c t=ID paz , data=data msm,
qmatrix=matrix IOD, gen . i n i t s=TRUE, method=”BFGS” ,
control=l i s t ( f n s c a l e =400000 , maxit =10000000) ,
exact t imes=TRUE)
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