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Sommario 

Contesto e obiettivi dello studio: la risonanza magnetica funzionale a riposo (in 

condizione di “resting state”) e la trattografia, che si basa su neuroimmagini pesate in 

diffusione, sono tecniche consolidate di risonanza magnetica (RM) per indagare 

rispettivamente la connettività funzionale (CF) e la connettività strutturale (CS) del 

cervello (van de Heuvel et al,. 2009). Lo studio combinato di CF e CS sta acquisendo 

crescente interesse all'interno della comunità scientifica, sia nel campo della ricerca di base 

sia nella pratica clinica, in quanto consente di integrare le informazioni relative alla materia 

grigia e alla materia bianca. Infatti, è stato dimostrato che il cervello si organizza in reti, il 

cui corretto funzionamento dipende da una perfetta sinergia tra le aree corticali e i fasci di 

materia bianca (Cabral et al., 2014). Di conseguenza, lo studio combinato di queste 

strutture può consentire di capire meglio il funzionamento del cervello, non solo in 

condizioni normali ma anche in presenza di patologie neurologiche o psichiatriche. Lo 

scopo di questo lavoro era studiare, in un gruppo di soggetti sani, la correlazione tra CF e 

CS all'interno della Default Mode Network (DMN), della Left Lateral Network (LLN) e 

della Right Lateral Network (RLN). 

 

Panoramica sul metodo: questo studio si basa su due consolidati approcci relativi 

all'analisi separata di CF e CS, che, per nostra conoscenza, non sono stati integrati in 

questo modo in precedenza. Le resting state networks (RSNs) sono state estratte a livello 

di gruppo mediante l'analisi delle componenti indipendenti, metodo comunemente usato 

per effettuare tale procedura. Utilizzando un approccio innovativo, alcune di esse sono 

state divise in cluster, i quali costituiscono i nodi delle reti considerate. L'entità della 

correlazione tra CF e CS per le diverse coppie di nodi, è stata valutata sia a livello del 

singolo soggetto che a livello di gruppo. 

In merito alla CF, i segnali di ciascun soggetto sono stati estratti dai dati di RM funzionale 

a riposo con il metodo della dual regression, sulla base dei cluster ottenuti a livello di 

gruppo. L'entità del legame di CF è stata quindi calcolata mediante il coefficiente di 

correlazione di Pearson. 
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I dati di CS sono stati ricavati dalle immagini pesate in diffusione che forniscono 

informazioni sulla/e direzione/i locale/i delle fibre di sostanza bianca. Le connessioni 

strutturali sono state ottenute utilizzando i cluster come regioni di interesse per la 

trattografia probabilistica. In generale, la trattografia guidata da risonanza magnetica 

funzionale ricostruisce fibre virtuali che collegano aree di materia grigia, le quali in molti 

casi sono definite a partire dall'attivazione a seguito dell'esecuzione di un compito o di un 

evento, mentre nel nostro caso sono state individuate a partire dalle RSNs. L'approccio 

probabilistico permette di superare i limiti dell'approccio deterministico, che si ferma in 

corrispondenza di regioni che presentano una struttura delle fibre più complessa rispetto al 

tradizionale modello unidirezionale. 

 

Metodo: Questo studio è stato condotto presso il laboratorio di risonanza magnetica della 

Fondazione Don Carlo Gnocchi Onlus, IRCCS Santa Maria Nascente di Milano, 

utilizzando uno scanner da 1.5 Tesla (Siemens Magnetom Avanto, Erlangen, Germania). 

Le immagini di risonanza magnetica funzionale in resting state e le immagini pesate in 

diffusione sono state acquisite su venti soggetti sani e destrimani (età media = 45,70 ± 

11,53 anni, 9 maschi). Un soggetto è stato tuttavia escluso dalle successive analisi a causa 

della scarsa qualità delle rispettive immagini pesate in diffusione. Dopo avere effettuato 

una prima elaborazione dei dati grezzi, sono state estratte le mappe spaziali delle RSN. 

Esse sono state ottenute mediante un'analisi delle componenti indipendenti effettuata sui 

dati del gruppo, secondo il metodo proposto da Dipasquale et al. (2015) e impostando a 30 

l'ordine del modello. La DMN, la RLN e la LLN sono state individuate e, successivamente, 

divise in sotto-reti, le quali sono state definite sulla base della loro separazione anatomica. 

All'interno di ogni RSN considerata, la CF è stata valutata per ciascun soggetto, calcolando 

tra tutte le possibili coppie di sotto-reti il coefficiente di correlazione di Pearson, 

trasformato poi in un indice di intensità z. I valori ottenuti sono stati organizzati in matrici 

di CF. Mediando i valori dei singoli soggetti, è stata costruita una matrice di CF di gruppo. 

Le coppie di sotto-reti utilizzate nelle analisi di CF sono state successivamente considerate 

anche come regioni seed e target per effettuare le analisi di trattografia probabilistica su 

ciascun soggetto. In particolare, per ogni coppia di sotto-reti, sono stati ottenuti due tratti 

diversi, a seconda di quale delle due regioni corticali fosse definita come seed o come 

target. In seguito, questi due tratti sono stati normalizzati e moltiplicati al fine di ottenere 
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un unico tratto "simmetrico" che connettesse strutturalmente le due regioni di interesse. Per 

ogni tratto "simmetrico" ricostruito è stato adottato come indice di CS il numero di voxel 

sopra soglia (0.02) (Khalsa et al., 2014). I valori ottenuti sono stati quindi schematizzati in 

matrici di CS. Una media dei valori relativi ai singoli soggetti ha consentito di costruire 

una matrice di CS di gruppo per ogni RSN considerata. Al fine di valutare la consistenza 

statistica dei tratti individuati, sono state create delle mappe probabilistiche di gruppo per 

ciascun fascio. Esse sono state ottenute mediando le immagini binarizzate dei tratti relativi 

ai singoli soggetti e sogliando quindi, con tre diversi valori (20%, 40%, 60%). Per ogni 

coppia di sotto-reti, è stata calcolata l'intensità media sul tratto appartenente alle mappe 

probabilistiche. Tale intensità è stata adottata come indice di robustezza statistica e i valori 

ottenuti sono stati raccolti in matrici. Infine, per valutare il rapporto esistente tra reti 

strutturali e reti funzionali, gli indici di CF e di CS sono stati correlati tra di loro, sia a 

livello del singolo soggetto che a livello del gruppo, mediante il coefficiente di 

correlazione di Pearson. 

 

 

Figura 1 Schema riassuntivo del metodo 



SOMMARIO 

16 

 

Risultati: All'interno di ciascuna RSN considerata, sono stati osservati elevati valori di CF 

e tutte le coppie di sotto-reti sono risultate essere strutturalmente collegate da un tratto o un 

insieme di tratti. Inoltre, la maggior parte dei fasci individuati (4 su 18) si sono rivelati 

statisticamente robusti. Combinando i valori di CF e CS ottenuti, a livello del singolo 

soggetto, abbiamo osservato che 11 soggetti presentavano una correlazione statisticamente 

significativa tra CF e CS, soprattutto all'interno della LLN e della RLN. Questo risultato è 

stato confermato dall'analisi a livello di gruppo, la quale ha evidenziato una forte 

correlazione tra CF e CS, soprattutto nella LLN e nella RLN (Fig. 2, pannello b e c). 

All'interno della DMN, invece, sono stati ottenuti alti valori di CF e di CS separatamente 

ma non è stata osservata alcuna correlazione tra di esse (Fig. 2, pannello a). 

 

 

Figura 2 Relazione tra connettività funzionale e strutturale di gruppo all'interno della DMN (pannello a, in 

blu), della RLN (pannello b, in rosso) e della LLN (pannello c, in verde). 

 

Discussione e Conclusione: 

Questi risultati suggeriscono che la LLN e la RLN sono reti altamente funzione-specifiche 

e, dunque, i collegamenti strutturali diretti tra le loro sotto-reti riflettono pienamente la 

comunicazione funzionale esistente tra di esse. All'interno della DMN, invece, l'assenza di 
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correlazione tra CF e CS può essere giustificata dalla presenza di percorsi aggiuntivi e fibre 

collaterali che collegano le sue sotto-reti. Questo risultato è coerente con la natura 

associativa e integrativa di questa rete. In conclusione, in questo studio abbiamo proposto 

un approccio per correlare CF e CS, utile per indagare il problema della connettività 

cerebrale nel suo complesso. I nostri risultati suggeriscono che un'alta CS riflette un forte 

livello di comunicazione all'interno della rete ma che un'alta CF tra diverse regioni corticali 

non implica necessariamente un legame strutturale diretto tra di esse. 
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Summary 

Background and purpose: resting state functional MRI (rsfMRI) and tractography, 

derived from diffusion weighted imaging (DWI), are well-established modalities to 

investigate respectively functional connectivity (FC) and structural connectivity (SC) (van 

de Heuvel et al., 2009). The combined study of brain FC and SC is gaining increasing 

interest both in neuroscience and clinical practice since it discloses integrated information 

about gray matter (GM) and white matter (WM). Indeed, the existence of brain networks, 

whose correct activity depends on a perfect synergy between cortical areas and WM 

bundles, was proved (Cabral et al., 2014). Hence studying these networks as a whole may 

lead to better understand brain functionality not only in normal condition but also in 

pathological ones. The aim of this work was exploring the correlation between FC and SC 

in the default mode network (DMN), left lateral network (LLN) and right lateral network 

(RLN) within a healthy subject sample. 

 

Method overview: this study is based on two well-established approaches to FC and SC 

separated analysis, which are integrated in this way for the first time to our knowledge. 

Resting state networks (RSNs) were extracted at group level trough the classic blind-

source separation method of spatial independent component analysis (ICA). By a novel 

approach, some of them were split into localized clusters, which represent the nodes of the 

addressed network. The strength of FC and SC correlation for the pairs of nodes was 

analyzed both, at single and group level.  

As to FC, single-subject rsfMRI signals were extracted through the dual regression 

method, based on the group clusters. FC link strength was hence individually derived by 

Pearson‟s correlation coefficient. 

SC data were extracted from diffusion weighted imaging (DWI) which provides 

information about the local direction (or directions) of white matter (WM) fibers. 

Structural links were obtained using the clusters as seed/target ROIs for rsfMRI-guided 

probabilistic tractography. fMRI-guided tractography, in general, reconstructs virtual 

connections between gray matter (GM) ROIs, which in many cases are defined by the 

fMRI activation while in our case were set as the resting state network clusters. The 

probabilistic approach permits to overcome the limitations of the deterministic one, which 
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is stopped by regions that present a more complex fiber structure than a unidirectional 

mainstream. 

 

Methods: the study was conducted in the MR Lab, IRCCS S. M. Nascente, Fondazione 

Don Carlo Gnocchi Onlus, Milano, using a 1.5 Tesla Siemens Magnetom Avanto 

(Erlangen,Germany) MRI scanner. Resting state fMRI and DWI data were acquired from 

twenty healthy right-handed voluntary subjects (mean age = 45.70 ± 11.53 years, 9 males) 

but one subject was excluded due to its DWI data low quality. After data processing 

performed according to Dipasquale et al. (2015), the RSN extraction was performed with 

group-ICA (model order = 30). DMN, RLN and LLN were selected and then divided into 

sub-networks defined as anatomically separated clusters. Within each RSN, single subject 

FC values were calculated with Pearson correlation coefficient (transformed in z-value) 

between all possible cluster pairs and stored in FC matrices. By averaging these values 

across subjects, a group FC matrix was obtained for each RSN. The pairs of clusters 

selected for the FC analysis were also used as seed and target regions in single subject 

probabilistic tractography. In details, for each pair of sub-networks two tracts were 

obtained by setting one cluster as seed and the other as target region and viceversa. 

Afterwards, these two tracts were normalized and then multiplied in order to obtain a 

"symmetric" single tract connecting the two regions of interest (ROIs). For each 

reconstructed "symmetric" tract the number of voxels above-threshold (0.02) was adopted 

as SC index (Khalsa et al., 2014) and stored in SC matrices. Averaging these values across 

subjects, a group SC matrix was obtained for each RSN. In order to evaluate tract 

consistency, group probabilistic maps were created for each bundle by averaging binarized 

tract images across subjects and thresholding them at three different values: 20%, 40%, 

60%. For each pairs of ROIs, the mean intensity calculated on tract probabilistic maps was 

adopted as robustness index and stored in SC consistency matrices. Finally, in order to 

probe functional and structural networks relationship, FC and SC indexes were correlated 

by Pearson coefficient both at single and group level. 
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Figure 3 Method pipeline. 

 

Results: within each considered RSN, high values of FC were observed and all the pairs of 

sub-networks were found to be structurally connected by a tract or an ensemble of tracts. 

The majority of the identified bundles (4 of 18) were statistically robust across subjects. 

Combining FC and SC results, at single level we observed that 11 subjects presented a 

statistically significant FC-SC correlation especially in LLN and in RLN. This was 

corroborate by the group level analysis that showed a high FC-SC correlation mainly in the 

LLN and RLN (Fig 4, panel b and c). The DMN, instead, revealed high values of FC and 

SC separately but no correlation was found between them (Fig 4,panel a). 
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Figure 4 Relationship between structural and functional group connectivity within DMN (panel a, in blue), 

RLN (panel b, in red) and LLN (panel c, in green). 

 

Discussion and Conclusion: our results suggest that LLN and RLN are highly function-

specific networks since direct structural links between their clusters reflect the functional 

communication existing between them. Within DMN, instead, the absence of correlation 

between FC and SC can be explained by additional and collateral fiber pathways which 

link DMN sub-networks. This result is consistent with the associative and integrative 

nature of DMN. 

In conclusion, in this study we proposed a useful approach to correlate FC and SC to 

deeply investigate the brain connectivity issue in its entirety. Our results suggest that a 

high SC reflects a strong communication level within RSNs but a high FC between 

different cortical regions does not imply a direct structural link.  
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Chapter 1 

Introduction 

 

The brain is the most complex human organ and probably one of the most complicated 

systems in nature. It is a highly efficient integrative system, as it combines multiple 

information from different body districts and external environment. This information is 

very rapidly carried through the white matter (WM) from one region of gray matter (GM) 

to another. In the last decades, the evidences of the existence of neuronal networks and the 

increase of knowledge about brain area specialization, have led the scientific community to 

consider the issue of brain connectivity as a topic of great relevance. In 1993 Zeki had 

already highlighted the striking capability of the visual system to integrate features 

processed in particular brain areas, referring to it as „the binding problem‟. The integrative 

nature he observed in this particular system has now become a paradigm for the whole 

brain.  

In this fashion, the brain connectivity studies aim at deeply exploring the intricate 

communication among regions which are strongly interconnected (Sporns et al., 2004; van 

den Heuvel et al., 2010). According to the kind of connection, the brain connectivity may 

be anatomical/structural (i.e., anatomical links, such as synapses or fibre pathways) or 
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functional (i.e., the functional dependencies between cortical regions) (Cabral et al., 2014). 

Furthermore, we can refer to brain connectivity at different levels: between single neurons 

(Hellwig et al., 2000; Thomas et al., 1984; Dickson et al.; 1974; Michalski et al., 1983), 

between neuronal population (K Sameshima et al., 1999; Boahen et al., 2000; Hofer et al., 

2011) or between anatomically segregated regions (Rubinov et al., 2010; Sporns et al., 

2002; Van Den Heuvel et al., 2009; Van Den Heuvel et al., 2010; Deco et al., 2013; 

Greicius et al., 2009; Greicius et al., 2013).  

In this framework, methods for studying both functional connectivity (FC) and structural 

connectivity (SC) have experienced huge, almost parallel, developments in the last few 

years. Nevertheless, in order to address the connectivity issue comprehensively, the fusion 

of these two approaches in a multimodal methodology appears necessary by now. Several 

technical limitations are stumbling blocks to these combined approach, such as the limited 

knowledge of WM to GM interface. The empirical investigation of the correlation between 

FC and SC, indeed, implies the a priori assumption of GM and WM contiguity. Therefore, 

although progresses have been made in the evaluation of FC and SC separately 

(Dipasquale et al., 2015; Laganà et al., 2012; Caffini et al., 2014), the relationship between 

functional and structural physiological synergies is not well understood yet. In this context, 

magnetic resonance imaging (MRI) studies are particularly prone to the in-vivo 

investigation of both the functional and structural aspects of brain connectivity. In 

particular, this work took advantage of different MRI techniques in order to address both 

FC and SC problem by means of inherently statistical methods (i.e., resting state functional 

MRI and probabilistic tractography respectively), which will be touched on hereunder and 

discussed at length in the following chapters.  

Regarding FC, there are two different brain MRI techniques which highlight the 

activations of cortical regions. The first one, the functional MRI (fMRI), yields to the 

identification of cortical region elicited by a specific task (e.g., verbal fluency, attention, 

hand motion, finger tapping, etc.) (Phelps et al., 1997; Bush et al.,1999; Tanaka et al., 

2002; Desmond et al., 1997). The second one, the resting state fMRI (rsfMRI), allows, 

instead, to explore the correlation between spatially distant cortical regions in rest 

conditions. Such technique revealed functional networks that slowly activate and 

deactivate spontaneously, pointing out the existence of underlying network dynamics 

defined by specific spatial, temporal and spectral characteristics (Cabral et al., 2014). 

http://scholar.google.it/citations?user=YM-r3VkAAAAJ&hl=it&oi=sra
http://scholar.google.it/citations?user=WuOsGfsAAAAJ&hl=it&oi=sra
http://scholar.google.it/citations?user=gzPWwdIAAAAJ&hl=it&oi=sra
http://scholar.google.it/citations?user=Iw6tb_cAAAAJ&hl=it&oi=sra
http://scholar.google.it/citations?user=Iw6tb_cAAAAJ&hl=it&oi=sra
http://scholar.google.it/citations?user=xMh3uN8AAAAJ&hl=it&oi=sra
http://scholar.google.it/citations?user=QG_39SEAAAAJ&hl=it&oi=sra
http://scholar.google.it/citations?user=QG_39SEAAAAJ&hl=it&oi=sra
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These networks are defined as resting-state networks (RSNs) and consist of anatomically 

separated, but functionally linked brain regions that show a high level of ongoing 

functional connectivity during rest (van den Heuvel et al., 2010). 

RSNs were observed for the first time by Biswal and colleagues (1995) while they were 

performing fMRI studies with a finger tapping task. They discovered that sensory-motor 

area exhibited correlated activations during the motor task, but also during the rest phase. 

Hence, as Seneca said in 65 BC., "the fact that the body is lying down is no reason for 

supposing that the mind is at peace. Rest is far from restful". Indeed, at rest, brain shows 

slow spatio-temporally organized fluctuations of neuronal activity. Probably these 

fluctuations play an important role in keeping the system active, improving its 

performances and increasing the reaction time if an unexpected stimulus is provided 

(Xiong et al, 2008). Biswal's surprising results were re-examined and, interestingly, it was 

discovered that the majority of the RSNs actually represent known functional networks 

(Biswal et al., 1995; Cordes et al., 2000; De Luca et al., 2006, Damoiseaux et al., 2006; 

Fox et al., 2005). Furthermore it was found that the RSNs overlap those regions that are 

known to share a common function (e.g., primary motor regions, primary visual regions, 

parietal and frontal lobes involved in attention processing) (van den Heuvel et al., 2010). 

For this reason they were appointed as 'task positive RSNs'. Examples of task positive 

RSNs are the sensory-motor network (SMN) , the primary visual network (PVN), the two 

lateralized networks consisting of superior parietal and superior frontal regions (LLN and 

RLN) (van den Heuvel et al., 2010) and the salience network (Di et al., 2014). Among the 

identified RSNs, the default mode network (DMN), consisting of posterior cingulated 

cortex, medial frontal and inferior parietal regions, is considered of particular interest. In 

fact, differently from the others, DMN clusters are more functionally connected at rest than 

while performing a task (Greicius et al. 2003), leading to define it as 'task-negative RSN'.  

Once established that fMRI and rsfMRI truly reflect the ongoing communication between 

cortical regions, we need to consider also the structural connections which support the 

functional activity. This role is played by WM fibers which are commonly studied by 

means of tractography, derived from diffusion weighted imaging (DWI). Specifically, it 

allows to virtually reconstruct WM fiber bundles, making feasible in-vivo and non-invasive 

structural connectivity study (Basser et al, 2000; Melhem et al., 2002; Catani et al., 2008). 

First tractographic investigations were conducted in the late „90s (Makris et al., 1997), 

http://scholar.google.it/citations?user=VPqrCdQAAAAJ&hl=it&oi=sra
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taking advantage of the water diffusion laws (i.e., Brownian motion) applied to brain 

micro-structures. The water diffusion, indeed, is hindered by anisotropic structures such as 

WM bundles which constrain the water molecules to move along them. In this fashion, 

following the water molecules represents an indirect way to follow the fibers and then to 

virtually reconstruct the WM bundles. This technique stood for a real revolution in brain 

studies since WM had never been identified by any direct in-vivo inspection but 

exclusively by post-mortem brain dissections. In the last years, different fiber tracking 

algorithms were developed. According to the way they connect the voxel-to-voxel 

information, we can refer to deterministic or probabilistic approaches (Jones, 2008). 

Specifically, deterministic approach is more intuitive than the probabilistic one. Indeed, 

given a seed point, deterministic algorithms reconstruct the fibers that pass through it, 

following the principal direction/s defined in each voxel. On the other hand, probabilistic 

tractography generates a large number of pathways defining a probability map in a 

confidence range in which the fibers can run starting from the chosen seed (Behrens et al., 

2003). However, independently from the algorithm, tractography allows nowadays a 

worthwhile estimation of the brain structural connectivity pattern. 

Back to the issue of brain connectivity, it appears evident, now, the strong correlation 

between functional and structural data and the reason for the numerous attempts to 

integrate them. Combined FC and SC studies, indeed, have revealed that functional RSN 

structure often reflects underlying structural linked networks (Honey et al., 2007; 

Hagmann et al., 2008; Damoiseaux et al., 2009; Greicius et al., 2009; Honey et al., 2009; 

van den Heuvel et al., 2009; van den Heuvel et al., 2010). However, beware the 

straightforwardness of this relationship!!! SC is considered a good predictor of FC (Honey 

et al., 2009), but a higher FC does not necessarily imply a higher SC, as shown by studies 

that reported the absence of direct anatomical connection between areas that reveal high 

functional correlation (Koch et al., 2002). Furthermore, recent studies (Krienen and 

Buckner, 2009; O‟Reilly et al., 2010; Buckner et al., 2011; Lu et al., 2011) suggest that the 

connectivity within or between RSNs may also be addressed by polysynaptic anatomical 

cerebro-cerebellar circuits pathways, namely there would be more than one pathway to link 

two distant region of the cortex. 

All the considerations above have been the premises of innovative and ambitious projects 

such as the Human Connectome Project (HCP) (Elam et al., 2014; Van Essen et al., 2012; 

http://en.wikipedia.org/w/index.php?title=Brain_tracts&action=edit&redlink=1
http://en.wikipedia.org/wiki/Post-mortem
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Smith et al., 2013; Setsompop et al, 2013) and Human Brain Project (HBP) (Huerta et al., 

1993; Koslow et al., 1997; Shepherd et al., 1998), whose challenging aim consists in the 

mapping of the whole brain functionality within the next ten years. In particular, the HCP 

appears extremely interesting and revolutionary since it has made high quality data 

available for the entire scientific community in order to promote brain connectivity studies 

with a multimodal approach (i.e., with images acquired with different techniques, such as 

rsfMRI, fMRI, DWI, etc.). The integration of complementary information, indeed, would 

allow to fill gaps that each modality alone leaves due to its intrinsic technical limitations. 

For this reason, the multimodal approach has been extended also to non-MRI techniques 

such as the EEG and MEG , whose data were combined with rsfMRI data (Brookes et al., 

2011; de Munck et al., 2007; de Pasquale et al., 2010; Difrancesco et al., 2008; Feige et al., 

2005; Goncalves et al., 2006; Hipp et al., 2012; Laufs et al., 2003; Liu et al., 2010; 

Moosmann et al., 2003; Nikouline et al.,2001) in order to investigate the brain from 

different points of view and at different organization levels.  

Finally, the relevance of combined functional and structural connectivity studies is 

underlined by clinical investigation. Particularly in neurological disorders and psychiatric 

diseases, such as Alzheimer Disease (AD), Amyotrophic Lateral Sclerosis (ASL), 

Parkinson Disease (PD), Mild Cognitive Impairment (MCI), multiple sclerosis (MS), 

depression, schizophrenia, autism, it has been proved that the alteration of human functions 

(i.e., memory, language, attention, etc.) may be revealed both by functional and structural 

methodologies, since often there is the simultaneous involvement of WM structures and 

GM regions (Binnewijzend et al., 2012; Damoiseaux et al., 2012; Greicius et al., 2004; 

Zhou et al., 2010; Mohammadi, B. et al, 2009, Tedeschi,et al, 2012; Luo et al, 2014; Kwak 

et al, 2010; Rombouts et al., 2005; Bonavita et al., 2011; Faivre et al., 2012; Schoonheim 

et al., 2013; Greicius et al.,2007; Liu et al., 2008; Whitfield-Gabrieli et al., 2009; Bluhm 

etal., 2007; Garrity et al., 2007; Cornew et al., 2012; Cherkassky et al., 2006; Kennedy et 

al., 2006; Lai et al., 2010; Weng et al., 2010). Therefore, understanding the intrinsic and 

complex mechanisms leading to these alterations might yield to the definition of potential 

clinical biomarkers and innovative pharmacologic or rehabilitative treatments. 

This work was developed considering the wide background illustrated above. The aim of 

our study was to analyze FC and SC within three resting state network of interest: DMN, 

LLN and RLN. We focused on these three networks due to their particular neurological 

http://scholar.google.it/citations?user=bYDAyV4AAAAJ&hl=it&oi=sra
http://scholar.google.it/citations?user=zxelaYsAAAAJ&hl=it&oi=sra
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interest. As previously mentioned, DMN is highly involved in brain activity at rest. 

Moreover, it is the most consistently observable network, in any age and also during the 

sleep. On the other hand, LLN and RLN, overlap to brain areas that underlie multiple 

cognitive paradigms, including memory, language and perception (Pievani et al., 2014). On 

a group of healthy subjects we acquired rsfMRI and DWI data in order to establish if there 

was correlation between FC and SC within the above-mentioned RSNs. Specifically, FC 

was probed by assessing the correlation between rsfMRI time series associated to their 

respective clusters while SC was evaluated by means of probabilistic tractography. The 

pipeline of the performed analysis is reported in figure 1.1. A detailed explanation of each 

step will be provided in the chapter 3. 

In conclusion, our multimodal approach tries to answer some basic questions: is there a 

correspondence between functional and structural connectivity within the examined resting 

state networks? may this correspondence (or absence of correspondence) give information 

about the link of different brain structures in normality? if no correspondence is found, are 

we dealing with pathologies? 

Answering these questions is just a little tile in brain nature deep understanding. However, 

as Sir James Jeans said, "sciences usually advances by a succession of small steps". The 

entire scientific community hopes that our brain, this wonderful Goldberg machine, will be 

able to understand how it is organized and how it works itself, just doing what it does best: 

being activated and, through a complex reaction chain, thinking. 
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Figure 1.1 Pipeline of the performed study. Healthy subjects' rsfMRI and DWI data were preprocessed. 

Functional and structural connectivity analysis were performed both at a single-subject level and at group 

level. A comparison between functional connectivity and structural connectivity results was carried out. 

rsfMRI = resting state functional magnetic resonance imaging; DWI = diffusion weighted imaging; ICA = 

Independent Component Analysis; DMN = Default Mode Network; RLN = Right Lateral Network; LLN = 

Left Lateral Network; FC = Functional Connectivity; SC = Structural Connectivity. 
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Chapter 2 

Theoretical Aspects 

In this chapter we illustrate the theoretical aspects of the magnetic resonance imaging 

(MRI) techniques used for this study. 

First of all, theoretical details about the MRI acquisition sequences used for both, 

functional and structural images, are provided (par. 2.1).  

Then, the basic principles and processing of functional magnetic resonance imaging 

(fMRI) and diffusion weighted imaging (DWI) are described (pars. 2.2 and 2.3). Finally, 

the combination of functional information provided by fMRI and structural information 

supplied by DWI is discussed in „fMRI-guided tractography‟ section (par. 2.4). 
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2.1. Image acquisition: Echo Planar Imaging (EPI) 

The most common MRI sequence used for both, functional magnetic resonance imaging 

(fMRI) and diffusion weighted imaging (DWI) acquisitions is the echo planar imaging 

(EPI). It is based on a gradient echo sequence and it allows to explore the k-space, slice per 

slice, within a single shot (figure 2.1). 

 

Figure 2.1 EPI sequence on the left and its trajectory drawn in the k-space on the right. 

RF=radiofrequency pulse; Gx,Gy,Gz = gradient pulses respectively in x, y, z directions. 

 

After slice selection, performed by Gz gradient, Gx and Gy gradients set the start position 

in k-space to point in A. Then, the radio frequency (RF) inversion pulse (angle equal to 

180°) flips the starting sampling point A into B (Fig 2.1). Afterwards, by means of Gx, 

frequency encoding is performed and an entire k-space line is sampled during the echo 

phase. Finally, a phase encoding gradient pulse called blip is applied for moving to the 

following line.  

If compared to other MRI sequences, EPI sequence is characterized by high temporal 

resolution, since a slice is acquired in just 100 ms. As a counterpart it has low spatial 

resolution (with respect to anatomical MRI images). Despite of this, the EPI sequence 

provides T2*-weighted contrast and its high temporal resolution allows to reduce 

movement artifacts. For these reasons, it is the most used sequence for fMRI and DWI. 

 2.2. rsfMRI: Basic Principles  

In an fMRI study subjects are maintained in controlled mental states which are defined by 

a precise experimental design. For example, in the common block design fMRI, a baseline 

control state is alternated with an active state which is called „task‟ (Petersen et al.,2000). 
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During a rsfMRI exam, instead, the subject is required to relax and lay down with closed 

eyes (Fig 2.2). 

 

Figure 2.2 Comparison between resting state fMRI and block design fMRI experimental design (Van den 

Heuvel et al., 2010) 

rsfMRI is particularly interesting since structured neurophysiological network are revealed 

even if the person lying in the scanner has not been asked to do anything more cognitively 

demanding than simply to rest (Salvador et al., 2005). This observation suggests that some 

anatomically separated brain regions work together during rest and form functional 

networks, characterized by a high level of ongoing strongly correlated spontaneous 

neuronal activity.  

2.2.1. BOLD contrast imaging  

Magnetic resonance image contrast depends on the acquisition sequence of the image, 

since with a careful choice of radio frequencies and gradient pulse timing, it is possible to 

distinguish different tissue characteristics (Matthews et al., 2004). 

Blood Oxygenation Level Dependent (BOLD) contrast is the basic principle on which 

rsfMRI is based. It allows the metabolic modifications of brain activity to be highlighted. 

Oxygenated (oxy) hemoglobin is a diamagnetic molecule, while deoxygenated (deoxy) 

hemoglobin is paramagnetic. Therefore, the presence of deoxyhemoglobin, which is 

prevalent in venous capillaries and venules, alters the local susceptibility to the MR 

magnetic field, introducing field inhomogeneities within and around blood vessels 

(Logothetis et al., 2004). An increase in neural brain activity causes an increase in cerebral 

blood flow. The higher metabolic consumption results in an incremented oxygen 

consumption rate. However, differently from what could be expected, oxyhemoglobin 

increased rate, due to augmented brain blood flow, is higher than the oxygen consumption. 
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Hence the local deoxyhemoglobin concentration decreases. An higher neural brain activity 

reduces magnetic field local distortions and local MR signal increases slightly, modulated 

through changes in T2*-weighted images, since the T2* time constant of signal decay is 

shortened by magnetic field inhomogeneity at microscopic scale. The consequent small 

signal increase due to activation is the BOLD signal (Buxton et al., 2004) and a schematic 

representation of the mechanism on which is based is shown in figure 2.3. 

 

Figure 2.3 BOLD signal mechanism. 

Temporal evolution of BOLD signal is delayed in respect with the neuronal activity due to 

the hemodynamic time lag in responding to the need of oxygen increase (Glover, 1999). 

BOLD signal time course is known as hemodynamic response function (HRF) (Fig 2.4). 

 

Figure 2.4 Hemodynamic response function to an impulsive stimulus (a) and to a step stimulus (b).  
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As it can be seen in figure 2.4, changes in BOLD signal with respect to its baseline are 

quite small (0.5%-3%). Moreover, this signal typically exhibits a temporal dynamics. The 

initial dip, lasting 1-2 seconds before the standard BOLD increase, is due to a transient 

augmentation of deoxyhemoglobin. After the plateau phase, a post-stimulus undershoot of 

the BOLD signal is observable for 30 seconds or more (Buxton, 2004).  

BOLD signal is characterized by a poor signal-to-noise ratio, therefore employing 

statistical data analysis is necessary in order to extract the signals of interest (Beckmann, 

2012). Moreover, in rsfMRI no external temporal reference is given, so the standard signal 

enhancement through linear regression of the stimulus or similar approaches is not 

feasible. Therefore, a blind source analysis of the data-set statistical structure, both spatial 

and temporal is needed. To achieve this goal, in this work we adopted the independent 

component analysis (ICA) approach, which will be described in details in the next 

paragraph. 

2.2.2. RSNs Identification by ICA approach 

Group rsfMRI studies have reported the existence of functionally linked sub-networks 

during rest, the resting state networks (RSNs), which consist of anatomically separated but 

functionally linked brain regions that show a high level of ongoing functional connectivity 

during rest (van den Heuvel et al., 2010). RSNs, though, are not directly identifiable from 

acquired rsfMRI data. Image preprocessing is necessary in order to highlight functional 

information of interest. Several methods to process rsfMRI have been proposed but they all 

can be roughly divided in „seed methods‟ and „data-driven methods‟. The former examine 

the correlation between resting state time courses of a particular brain region (seed) and 

time series of all the other regions. The latter, such as PCA or ICA, enable to examine the 

whole brain connectivity without the need of a priori information (van den Heuvel et al., 

2010). Specifically, ICA is a data-driven method that allows studying the intrinsic structure 

of the data. It is a particular implementation of the blind source separation (BSS) problem, 

namely the recovering of the signal components without using information about the 

source signals and their mixing process. The goal of ICA is expressing a set of 

uncorrelated variables as linear combinations of statistically independent components 

(Beckmann, 2012). ICA approach attempts to discover hidden underlying signals and 

statistically independent sources only from the measured observation that are unknown 
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linear mixtures of unobserved sources. ICA has been successfully applied for separating 

statistically independent BOLD components, associated with both, task-related and 

spontaneous resting state activity within neuronal networks (Abou-Elseoud et al., 2010) 

but it is particularly suitable for rsfMRI data (Beckmann, 2012). First of all, while 

principal component analysis (PCA) can identify activation patterns that are uncorrelated 

in both space and time, ICA can identify events that are independent in either time or space 

(Petersen et al., 2000). Moreover, ICA has an essential advantage over hypothesis-driven 

techniques (e.g., GLM) since it allows to differentiate functional brain signals from various 

sources of noise without any a priori knowledge about the signal origin (Abou-Elseoud et 

al., 2010). 

ICA decomposes a two dimensional matrix (time × voxels) into a set of time courses and 

associated spatial maps, which jointly describe the temporal and spatial characteristics of 

underlying signals (Beckmann et al., 2005). 

Formally, the problem set by ICA can be expressed as follows: 

 y = 𝐅 z   (Eq. 2.1) 

where 𝑦  is the vector of observed random variables, 𝑧  is the vector of the independent 

latent variables (the “independent components”), and F is an unknown constant matrix, 

called mixing matrix (Comon, 1994). Hence, the problem is to estimate both the mixing 

matrix F and the realizations of the latent variables zi using observations of y  alone. This 

problem is solved by iteratively optimizing F matrix, minimizing the mutual information 

of zi (Correa et al., 2007). Two different ICA approaches can be performed to solve 

component and mixing matrix estimation: spatial ICA and temporal ICA. The former 

attempts to find spatially independent components with associated time course. The latter, 

aims at finding temporally independent time courses with associated spatial maps (Fig 2.5). 
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Figure 2.5 Matrix representation of the spatial ICA (a) and temporal ICA (b) approaches. 

 

 

Spatial ICA, which has become the standard approach in neuroimaging (Dipasquale et al., 

2015) and thus adopted in this work, can be extended to a probabilistic ICA model (pICA), 

which is implemented in many software packages (e.g., MELODIC, FSL toolbox used in 

this study) (Beckmann, 2012). This extension is performed by assuming that the p-

dimensional vectors of observations (time series in the case of rsfMRI data) are generated 

form a set of q (< p) statistically independent non-Gaussian sources (spatial maps) via a 

linear and instantaneous mixing process corrupted by additive Gaussian noise η(t): 

 y i = 𝐅 z i + η i  (Eq. 2.2) 

where 𝑧 𝑖  denotes the non-Gaussian source signals contained in the data and 𝜂 𝑖  denoted 

Gaussian noise η i ~ G(0, σ
2
Σi). Solving the BSS problem requires to find a linear 

transformation matrix W such that 

z = 𝐖 y                                                        (Eq. 2.3) 
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is a good approximation to the actual source signals z (Beckmann et al., 2005). 

pICA estimates independent components from the data as shown in figure 2.6 and as 

explained hereunder. 

 

Figure 2.6 Schematic of the probabilistic ICA model (Beckmann et al., 2004). 

 

First of all, original data are demeaned and normalized in order to have the same noise 

variance across space. Since variance normalization requires the knowledge of the signal 

but we don‟t have any a priori information about it, normalization and probabilistic PCA 

(PPCA) are iteratively performed to split the total data space into initial noise and signal 

sub-spaces. In this case, PPCA is implemented for the model order estimation, the noise is 

used to reiterate and refine the normalization steps and the independent component maps 

are estimated from the preprocessed data. Then, the estimated component maps are 

transformed to voxel-wise Z-statistics maps by dividing raw component maps with the 

standard deviation of the residuals obtained from the probabilistic PCA. Finally, these 

maps are thresholded in order to identify voxels that are significantly modulated by the 

component time courses. The threshold choice is based on the histogram of the 

components (Beckmann, 2012). 
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2.3. DWI: basic principles  

The diffusion is a physical process that involves fluid molecules, which follow Brownian 

motion. Specifically for the water molecules, if they move in a solution without 

constraints, they diffuse isotropically and their random motion is influenced only by 

diffusion coefficient, namely by their molecular weight, intermolecular interaction (i.e., 

viscosity) and temperature (Beaulieu, 2002). 

Diffusion weighted magnetic resonance imaging (DWI) takes advantage of this physical 

process in order to study tissue microstructure (Jones, 2008). The underlying cellular 

structure, indeed, affects the overall mobility of diffusing molecules by providing 

numerous barriers and by creating various compartments (e.g., intracellular and 

extracellular space, neurons, glial cells, axons, etc), which hinder diffusion and define 

preferential directions for the motion (Beaulieu, 2002). In particular, since neuron axons 

are highly straight structures, DWI is suitable for white matter (WM) studies, especially 

when any change in cellular structures alters the water molecules displacement per unit 

time (Jones, 2008). Hence, DWI allows an indirect observation of the water molecule 

diffusion by encoding this information in signal changes (Stejskal and Tanner, 1995). The 

diffusion weighting is obtained by means of an additional bipolar gradient pulse. If spins 

phases, which are voxel dependent, are set, and then diffusion occurs, protons shuffling 

among neighboring voxels causes a loss of signal coherence and thus a reduction in signal 

amplitude (Fig. 2.7). Echo time (TE) must be long enough to let the diffusion occur. 
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Figure 2.7 Diffusion weighted sequence by bipolar gradient pulse and EPI. If diffusion occurs, water 

molecules move to neighboring voxels and signal coherence is lost. In this case, recorded signal amplitude 

(in red) is lower than signal recorded when diffusion doesn't occur (superimposed in green).  

Signal amplitude reduction is described by the following equation: 

S

S0
=  e−γ2 G2 δ2  ∆−

δ

3
  ADC =  e−b ADC                       (Eq. 2.4) 

where S is the diffusion weighted signal, S0 is signal obtained when diffusion doesn't occur 

(T2-weighted image), γ is gradient echo duration, G is gradient pulse amplitude, Δ is 
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diffusion time, δ is gyromagnetic ratio, b represents the diffusion sensibility level and ADC 

is the apparent diffusion coefficient. ADC is a coefficient that replaces the diffusivity 

coefficient in biological tissues diffusion phenomenon description, since it considers also 

the effect of water molecules interactions with cellular structures. ADC is directionally 

dependent (Jones, 2008). In isotropic tissues, the water molecules move equally in all 

directions and ADC is a single constant. In non-isotropic tissues, instead, ADC reflects 

tissue microstructure due to the diffusion directions. Therefore, in the voxels containing 

non-homogeneous biological microstructures, different signals are recorded for different 

gradient directions. Hence, it is important to acquire brain volumes using various gradient 

directions (six, at least) in order to obtain many ADC maps and to avoid information loss.  

2.3.1.DTI-based tractography 

It should be clear now that, when dealing with biological tissues with oriented structures 

like WM, we cannot describe water molecular behavior with a single ADC coefficient per 

voxel. Therefore, diffusion characterization requires a tensor in every voxel which fully 

describes the molecular mobility along each direction and correlation between these 

directions (Fig 2.8) (Le Bihan et al, 2001). Diffusion imaging is then replaced with 

diffusion tensor imaging (DTI). 

 

Figure 2.8 Diffusion imaging (upper panel) and diffusion tensor imaging (lower panel). (Basser, 1995) 
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Diffusion tensor is a 3×3 symmetric matrix which models the local diffusion as a 3D 

Gaussian distribution (Behrens et al, 2003). Displacement profile is thus represented by an 

ellipsoidal envelope (Fig 2.9), whose principal axes are given by the tensor eigenvectors 

(Jones, 2008). 

 

Figure 2.9 Diffusion ellipsoid. Principal axes are given by eigenvectors and their respective eigenvalues λ1, 

λ2, λ3 (Mori et Tournier, 2014). 

The three eigenvalues and the associated eigenvectors define tensor shape and orientation 

(Behrens et al, 2003), hence two invariant diffusion indices are derived from these 

parameters: mean diffusivity (MD) and fractional anisotropy (FA).  

MD =
λ1+λ2+λ3

3
                                              (Eq. 2.5) 

FA =  
3

2

 λ1−MD  2+ λ2−MD  2+ λ3−MD  2

λ1
2+λ2

2+λ3
2                               (Eq. 2.6) 

where λ1, λ2 and λ3 are tensor eigenvalues. 

The most useful application of DTI acquisition is tractography, which allows to reconstruct 

the trajectories of WM bundles by piecing together discrete estimates (i.e., voxel-based) of 

the underlying continuous fiber orientation field (Jones, 2008). According to the method 

used for fiber reconstruction, tracking algorithms are defined as deterministic or 

probabilistic approaches. DTI-based tractography uses deterministic tracking algorithms, 
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since streamlines generation is sharply based on the local maximum eigenvector direction. 

The main assumption underlying the single-tensor deterministic tractography, is that in 

each voxel the principal eigenvector is parallel to the dominant fiber orientation (Jones, 

2008). Therefore, virtual fibers are reconstructed starting from a seed-point and moving 

forward following the principal direction defined by the eigenvector associated to the 

higher eigenvalue. Stopping criteria are needed to reduce sensitivity to noise and partial 

volume effects: for DTI data, FA threshold (usually 0.2-0.5) and local curvature threshold 

(commonly 45°) are introduced (Behrens et al., 2003). An example of DTI-based tracking 

and associated stopping criteria is shown in figure 2.10.  

 

Figure 2.10 Stopping criteria in deterministic single tensor DTI-based tractography. The image represents a 

FA map in gray scale from white (i.e., FA=1) to black (i.e., FA=0). In each voxel the principal direction is 

represented by black lines. The yellow spot represents the seed point and the yellow line is the streamline 

tracked starting from the seed point. Green boxes highlight the path followed while red boxes show the points 

where stopping criteria occur. 

The main limitation of DTI is the impossibility to recognize bending, branching, crossing 

and kissing fibers (Fig 2.11). Tensor model is unsuitable to describe fiber orientation when 

there is more than one fiber population within a voxel because each voxel is described by a 
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single tensor (Jones,2008). In these cases, since the tensor represents the average voxel 

structure, FA values decrease, leading to an incomplete fiber characteristic delineation.  

 

Figure 2.11 a) Kissing fibers. b) Crossing fibers. c) Branching fibers. 

In the context of the deterministic algorithms, more complex models than the single tensor 

one, allow to detect multiple principal fiber direction in each voxel, basing on the 

exploration of an increased number of directions. Multi-tensor model, spherical 

deconvolution, q-ball analysis, HARDI, etc are examples of the techniques which adopt 

this approach. Another way to address the problem is adopting a completely different 

methodology, namely defining a multi-compartmental model and using probabilistic 

algorithms. In the next paragraph, the latter approach will be described. 

2.3.2. Probabilistic tractography 

Several techniques (Lazar and Alexander, 2005; Tournier et al, 2004; Tuch et al, 2004) 

have been proposed to describe local diffusion within an image voxel without imposing the 

Gaussian constraint, commonly used in tensor model approaches (Beherens et al, 2007). 

Indeed, there is an uncertainty in diffusion parameters estimation which is caused not only 

by noise and artifacts but also by the incomplete modeling of diffusion signal (Beherens et 

al, 2003). This uncertainty is not uniform throughout the brain (Jones, 2003). Dense WM 

areas, characterized by a single principal fiber direction, present low uncertainty and the 

diffusion single tensor model is complex enough to estimate diffusion parameters. On the 

other hand, low anisotropy areas, or rather, voxels in which fibers cross, kiss or branch into 

gray matter, are characterized by high uncertainty in fiber detection. 

This problem can be addressed by increasing the model complexity. A possible solution is 

defining a partial volume model which fits in each voxel a distribution of fiber orientations 
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H(θ,φ), where θ, φ represents fiber direction in spherical polar coordinates (Behrens et al., 

2003). This model assumes that each voxel may be divided in sub-voxels and that each 

sub-voxel can be described by a simple two-compartment partial volume model. The first 

compartment models diffusion phenomenon in the fiber directions (anisotropic 

compartment) while the second one models the isotropic diffusion of free water (Behrens 

et al., 2003). Therefore, signal related to each sub-voxel can be described as follows: 

μi = S0 ( (1-f) exp(-bid) + f exp(-bidri
T
RAR

T
ri) )                     (Eq. 2.7) 

where d is diffusivity, bi and ri are the b-value and gradient direction associated with the i
th

 

acquisition, f and RAR
T 

are the fraction of signal contributed by the fiber direction (θ, φ), A 

is defined as: 

 
1 0 0
0 0 0
0 0 0

                                                   (Eq. 2.8) 

and R rotates A to (θ, φ) (Behrens et al., 2003). The first part of Eq. 2.7 represents the 

signal due to the isotropic compartment while the second one refers to the anisotropic 

compartment.  

Thus, the MR signal from each voxel at each gradient direction may be express as the sum 

of its sub-voxels signals: 

μtot =  μjj ∈subvoxels                                             (Eq. 2.9) 

If we consider the set of principal directions (θ, φ) instead of the single sub-voxels, 

previous equation is equivalent to: 

𝜇𝑖
𝑆0

=  1 − f exp −bid + 𝑓  H(θ,φ)exp(−bidriTRΘΦARΘΦTri sin(θ)dθdφ )
𝜋

0

2𝜋

0

 

(Eq. 2.10) 

where 𝜇𝑖 is the signal associated to the i
th

 acquisition and H(θ,φ) is the distribution of 

fibers within the voxel (Behrens et al., 2003). 
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Probabilistic diffusion tractography is a tractographic reconstruction technique, which is 

based on this partial volume model. In fact, local probability density functions (pdfs), 

obtained from the simple partial volume model, are used to infer on a model of global 

connectivity with the aim of maximizing the chances of complex fiber structure to be 

represented by principal direction uncertainty (Behrens et al., 2003). 

The main difference between various probabilistic algorithms is the mechanism by which 

samples are drawn from the inherent distribution of fibers orientations (Jones, 2008), such 

as Bayesian methods (Behrens et al., 2003) and bootstrapping methodologies (Jones and 

Pierpaoli, 2005; Lazar and Alexander, 2005). Specifically, in Bayesian approaches the pdf 

is appointed as “posterior distribution on the parameters given the data” and expresses as: 

𝑃(ω|Y, M) =
P ω Y,M P(ω|M)

P(Y|M)
                               (Eq. 2.11) 

where ω is the set of parameters, Y is the data and M is the model. The computation of 

P(ω|Y,M) is often analytically impossible. A numerical solution to this problem consists in 

drawing samples from P(ω|Y,M) (Behrens et al., 2003). Generally, Markov Chain 

Montecarlo (MCMC) is the used sampling technique.  

Regardless from the sampling technique, probabilistic tractography final result always 

represents a probabilistic map, which defines the confidence interval of the location of the 

most probable single connection between seed and target regions (Jones, 2008). In fact, 

tracking does not progress just along the most likely principal diffusion direction. Since a 

high number of possible (θ,φ) is available for each voxel, every tracking step evaluates all 

the possible connection between voxels considering numerous different diffusion 

directions (Lilja et al, 2013). Therefore, streamlines become samples from the connectivity 

distribution and, after drawing a large number of independent samples, we are able to 

compute the probability of the dominant streamline. The value of each voxel of the final 

probabilistic map identifies the number of streamlines that passes through it (Behrens et 

al.,2007).  

Probabilistic tracking termination criteria tend to be slightly different from deterministic 

algorithm ones (Jones, 2008). Since probabilistic algorithms are not dependent on a unique 
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principal diffusion direction, it is not necessary to include FA threshold as termination 

criteria (Jones, 2008). For the same reason, the bending angle threshold is less restrictive 

too, generally around 80° (Behrens et al.,2003).  

One of the main advantages of probabilistic tractography is a high ability in detecting 

bending, crossing and kissing fibers, not only due to less restrictive stopping criteria but 

also because the partial volume model allows to detect more than one fiber in each voxels 

(Jones, 2008) (figure 2.12).  

 

Figure 2.12 Crossing fiber modelling by multi-fiber probabilistic tractography. a) Axial close up of crossing 

fibre bundles with dominant fibre orientation in red and the second one in blue. Shown directions are the 

mean vectors of the posterior distribution samples. b) Tracking the cortico-spinal tract from the internal 

capsule to the primary motor cortex with single fibre (left) and multi-fibre (right) tractography (Behrens et 

al,. 2007). 
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Further, probabilistic tractography is quite robust to noise since wrong paths are classified 

with low probability (Behrens et al.,2003). As counterpart, it may lead to false positive 

streamline detection. In order to reduce them, it is necessary to select an appropriate 

threshold, below which connections are discarded as unlikely (Lilja et al, 2014). Other 

drawbacks of probabilistic tractography are the less intuitive result interpretation than DTI-

based tractography and a strong dependence on the seed dimensions. 

2.4. fMRI-guided and rsfMRI-guided tractography 

fMRI provides a detailed information about the spatial location of the functionally active 

cortical areas (Kim et al.,2005). Conversely, tractography is a powerful in vivo and non-

invasive tool for exploring WM structure and investigating the brain anatomical features. 

Hence, combining these techniques in a specific brain circuitry may yield to obtain a 

further insight into the correlation between the structural connections and the functional 

responses. One of these combination approaches is fMRI-guided tractography. 

fMRI-guided tractography consists in using functional activation areas as regions of 

interest (ROIs) in tractography. Therefore, anatomical landmarks commonly used for fiber 

selection are replaced by functional landmarks, which are the spatial patterns of the fMRI 

response (Preti et al., 2012). Before defining them as seed regions in tractography, ROIs 

are generally dilated in order to reach WM from the GM activated areas. 

 

 

Figure 2.13 Functional tract derived from fMRI activation sites during a finger-tapping task (on the right). 

The whole subject tract is represented on the left (Bernier et al., 2014). 

This multimodal approach allows not only to improve neurophysiologic knowledge about 

functional and structural connectivity relationship, but also to clinically investigate 
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neurodegenerative pathologies or brain lesions effects, since the activated cortical area, 

which are adopted as ROIs for tractography, are altered in brain disorders. Indeed, fMRI-

guided tractography allows overcoming a critical aspect of tracking, namely the definition 

of an appropriate seed region, since anatomical landmarks are prone to large inter-subject 

anatomical variations (Staempfli et al., 2008). Moreover, by using fMRI activation areas as 

seed regions we can avoid the operator-dependence of seed ROI delineation. 

Recently, due to the increasing interest in studies about the relationship between functional 

connectivity (FC) and structural connectivity (SC), also rsfMRI activated areas have been 

used to drive fiber tracking (figure 2.14) (Damoiseaux et al., 2009; Greicius et al., 2009). 

We refer to this technique as rsfMRI-guided tractography.  

 

 

Figure 2.14 Results of rsfMRI-guided tractography run using DMN areas as regions of interest (Greicius et 

al., 2008). 

 

This method allows to evaluate FC and SC between exactly the same ROIs, thus, in the 

same conditions. It is possible then comparing and integrating FC and SC results to address 

connectivity issue with a complete multimodal approach. 

2.5. Conclusion 

In conclusion, the present work aim at combining the above illustrated methods: the 

clusters of voxels identified within RSNs, previously extracted by ICA, are used as ROIs in 

rsfMRI-guided tractography based on the probabilistic approach. Since these clusters can 

be seen as nodes of both functional and anatomical networks, this method intends to 

compare the two basic types of connectivity both at single and group level.
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Chapter 3 

Materials and Methods 

In this chapter the procedures adopted for the image acquisition and processing are 

presented in detail. Data analysis was performed in the Magnetic Resonance Lababoratory 

of Don Carlo Gnocchi Foundation, IRCCS “Santa Maria Nascente” in Milan.  

In the first part an overview on the image acquisition protocol is presented (par. 3.1). 

The second section (par. 3.2) deals with the description of resting state functional magnetic 

resonance imaging (rsfMRI) data preprocessing, which included cleaning, identification of 

resting state networks (RSNs) and their subdivision in clusters, based on anatomical 

information. Further, functional connectivity estimation within these sub-networks is 

described. 

To follow (par. 3.2), diffusion weighted imaging (DWI) data processing is presented, 

highlighting all the performed steps (i.e., eddy current correction, B-matrix rotation, 

diffusion parameters estimation, probabilistic tracking). Afterwards, structural connectivity 

problem and tracts probabilistic maps construction are addressed. 

Further on, a novel methodological approach to correlate functional and structural brain 

connectivity is presented (par 3.4). 
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3.1. Subjects and data acquisition  

3.1.1. Subjects and ethic statement 

Twenty healthy right-handed voluntary subjects were recruited for this study. Age between 

29 and 66 years was defined as inclusion criteria, in order to focus the study on a middle-

aged sample. Movement artifacts and image corruption were considered as exclusion 

criteria. Therefore, all subject images were visually checked before starting the 

preprocessing procedure. All subjects that did not meet every defined criteria were 

excluded from the analysis. 

Written informed consent was obtained from all participants according to the ethical 

principles of the Helsinki Declaration. The study was approved by the Don Gnocchi 

Foundation Ethics Committee. Resting state fMRI, DWI and MPRAGE data were acquired 

on a 1.5 Tesla scanner (Siemens Magnetom Avanto, Erlangen, Germany). During the 

resting state recordings, the subjects were instructed to relax and keep their eyes closed 

without falling asleep. All subjects were scanned in a single session without changing their 

position. 

3.1.2. Image acquisition 

Resting state images were acquired during a period of 8 min using a gradient echo planar 

T2* sequence (TR = 2500 ms, TE = 20 ms, voxel size = 3.125 × 3.125 × 2.5 mm
3
,  

matrix size = 64 × 64, FOV = 200 mm x 200 mm, number of axial slices = 39, number of 

volumes = 190). 

In the same scanning session, a set consisting of 30-weighted diffusion scans  

(b-value=1000 s/mm
2
) and one non-weighted scan (b-value = 0 s/mm

2
) were acquired with 

a diffusion weighted pulsed-gradient spin-echo planar sequence (TR = 6700 ms, 

TE = 99 ms, voxel size = 1.9 x 1.9 x 2.5 mm
3
, matrix size = 128×128, 

FOV = 240 mm × 240 mm). 

In addition, 3D T1-weighted Magnetization Prepared Rapid Acquisition Gradient Echo 

(MPRAGE) (TR = 1900 ms, TE = 3.37 ms, TI = 1100 ms, flip angle = 15◦,  

resolution= 1 mm × 1 mm× 1 mm, matrix size = 192 × 256, FOV = 192 mm x 256 mm, 

number of axial slices = 176) was acquired as anatomical reference. 
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3.2. rsfMRI: image processing and functional 

connectivity 

3.2.1. rsfMRI data preprocessing 

rsfMRI data preprocessing was performed with different FSL 3.0 packages. MELODIC 

(Multivariate Exploratory Linear Optimized Decomposition into Independent Component) 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) was used to decompose multiple 4D 

dataset into different spatial and temporal components (Beckmann and Smith, 2004). FIX 

(FMRIB's ICA-based Xnoiseifier) was adopted for the signal classification, namely for 

separating actual signal and noise component. FLIRT (FMRIB's Linear Image Registration 

Tool) and FNIRT (FMRIB's non-Linear Image Registration Tool) were finally used for the 

image registration in the Montreal Neurological Institute (MNI) standard space.  

 

MELODIC preprocessing : 

 Motion correction, performed with MCFLIRT (Jenkinson et al., 2002).  

In rsfMRI, motion correction is a very awkward issue because the slightest head 

movement during a scan may bring the same voxel of two contiguous volumes not 

to correspond to the same physical point. In addition, the magnitude of the signal 

changes caused by head movements may result greater than the blood oxygenation 

level dependent (BOLD) activation response. Therefore, standard processing 

consists in estimating motion parameters and realigning the raw data. MCFLIRT is 

an intra-modal motion correction tool, designed for fMRI time series and based on 

optimization and registration techniques realized by FLIRT (Jenkinson et al., 

2001). FLIRT is a fully automated robust and accurate tool for linear (affine) 

intra/inter-modal brain image registration in spaces different from the native ones. 

 Brain extraction, performed with BET (Smith, 2002). 

BET deletes non-brain tissue from an image of the whole head. 

 Spatial smoothing, performed with a 5 mm full width at half maximum (FWHM) 

Gaussian kernel. Spatial smoothing was used to reduce the random noise and 

improve the signal-to-noise ratio. A 5 mm FWHM was chosen as compromise 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
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between the increase of sensitivity to detect true activations and the functional 

image spatial resolution reduction.  

 High-pass temporal filtering, performed with cut off frequency equal to 0.01 Hz. 

RSNs functional connectivity originates from signals which fluctuate not only at a 

frequency around 0.1 Hz but also at higher frequencies linked to underlying 

broadband neuronal processes (Niazy et al., 2011; Smith et al., 2012). In this study 

a high-pass temporal filter was used instead of a band pass filter, in order to 

improve the signal to noise ratio without cutting parts of the actual signals. An 

example of raw data and preprocessed images is shown in figure 3.1. 

 

Figure 3.1 (a) Raw rsfMRI image; (b) preprocessed rsfMRI image. 

 Single-subject spatial ICA, performed with automatic model order estimation. 

The input data were reshaped as a 2D time×space matrix. MELODIC decomposes 

this matrix into pairs of time courses and spatial maps, one for each component. 

Hence, the original data are assumed to be the product between the matrix of the 

time courses and the spatial maps associated to the estimated components (Fig. 

3.2). 

 

Figure 3.2 Matrix representation of single subject spatial ICA 
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FIX preprocessing 

The components individuated by MELODIC (Beckmann and Smith, 2004) are both actual 

signal and noise components. Using FIX (Griffanti et al., 2014) we automatically 

addressed the discrimination between noisy and “good” ones on the basis of a training 

dataset of hand-labeled components. FIX removed the contribution of artifactual 

components and returned de-noised data.  

 

FLIRT-FNIRT preprocessing 

Filtered and de-noised rsfMRI images need to be registered to a standard space in order to 

allow single subject comparison and group analysis. Registration was performed in two 

steps:  

 data registration to their respective high-resolution structural brain images (T1-3D) 

using FLIRT linear registration (Jenkinson et al., 2001). The structural brain images 

were generated from T1-weighted MPRAGE data by means of the fsl_anat function 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat). The obtained brain images were 

visually checked slice by slice and manually corrected if necessary; 

 registration to the MNI152 standard space (2x2x2 mm
3
 resolution) using FNIRT 

non linear transformation (Andersson et al., 2010). The MNI152 standard space is a 

T1-weighted average structural image derived from 152 subjects, created by the 

Montreal Neurological Institute.  

An example of data before and after registration is shown in figure 3.3. 

 

Figure 3.3 (a) Filtered rsfMRI data; (b) filtered rsfMRI data registered to MNI space. 
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3.2.2. rfMRI data processing  

Group-ICA and cluster identification 

Using MELODIC, the group-ICA was performed to look for common spatial patterns 

across subjects. First of all, space×time matrices are temporally concatenated across 

subjects obtaining a unique matrix. Concatenation approach is particularly useful when the 

signals of interest are not expected to have similar time courses in all subject datasets 

(Filippini et al., 2009; Beckmann et al., 2009). Then, the group-ICA decomposes this 

unique matrix into independent components (Fig. 3.4).  

 

 

Figure 3.4 Matrix representation of temporal concatenation group-ICA (Beckmann et al., 2009). 

 

The number of components (i.e., dimensionality) in which decomposing the signal was set 

to 30, since this allowed to better identify the RSNs of interest.  

Each component was manually classified in order to select the default mode network 

(DMN), left lateral network (LLN) and right lateral network (RLN), subsequently split in 

sub-networks as described below: 

 RSN images binarization; 

 image labelling, using cluster function (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster) 

to associate different intensities to blobs anatomically separated;  

 clusters thresholding, to remove spurious signal components; 

  RSN original image masking with the created clusters, to split them in their sub-

networks. 

The identified clusters were considered to be relevant since they correspond to DMN, RLN 

and LLN clusters in a well-estabilished template (Smith et al., 2009). These sub-networks 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster
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were used as regions of interest (ROIs) for the next analysis concerning both, functional 

and structural connectivity. 

Dual regression 

Dual regression was performed with dual regression function 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression) to generate a subject-specific spatial 

maps from the set of spatial maps obtained with group-ICA (Filippini et al., 2009; 

Beckmann et al., 2009). Specifically, group ICA spatial maps were used as spatial 

regressors in general linear model (GLM) (Fig. 3.5) to calculate the set of subject-specific 

time series by a last square criterion. These data were stored in a text file (one for each 

subject) where the n-th column represented the temporal dynamic associated to the n-th 

component in the GLM input data.  

All the good ICs were used as spatial regressors in GLM. The reason why we included all 

the good ICs in the estimation of the time courses associated to the cluster of interest was 

to not introduce a bias in the estimation. In fact, if we had used only the clusters of interest 

as regressors, we would have forced the model to attribute to these clusters more signal 

than the actual one. 

 

 

Figure 3.5 Dual regression: time courses extraction (Beckmann et al., 2009). 

3.2.3. Functional connectivity  

The functional connectivity (FC) among the identified clusters was calculated as 

correlation (i.e., Pearson full correlation coefficient „r’) by means of FSLnets tool provided 

in FSL package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). For each subject, FSLNets 

estimates the correlation between the time series associated to the group ICA sub-networks 

of interest. Single subject correlation data were stored in matrices called FC matrices. 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression
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Averaging single subject FC matrices, a group FC matrix for each RSN was obtained (Fig. 

3.6).  

 

 

Figure 3.6 Group FC matrices calculation from single-subject FC matrices. FC is expressed as r. N = number 

of subjects. 

 

Functional connectivity index could be expressed either as Pearson correlation coefficient 

(r ∈ [-1,+1]) or transformed into z-scores (z ∈ [0,∞)). The relationship between r and z is: 

 z = 
1

2
 ln 

1+𝑟

1−𝑟
   (Eq. 3.1) 

In this study z-scores was chosen as FC index in order to improve normality through the 

Fisher z-transform (Fisher, 1921) and to make this index suitable for statistical 

comparisons. Hence, z-score functional connectivity matrices were generated from the 

respective full correlation matrices. Functional connectivity matrices (both expressed 

through full correlation and z-score) were represented as images in order to visually 

highlight the highest values. 

 

3.3. DWI: image processing and structural connectivity  

3.3.1 DWI Data Preprocessing 

Eddy current correction and B-matrix rotation 

Firstly, DWI data were corrected for gradient coil eddy current distortions. This is a 

fundamental step to avoid stretches and shears in the diffusion weighted images by means 

of an affine registration to a reference volume (b = 0). The distortions are different 

depending on the gradient directions. Secondly, the B-matrix was reoriented by realigning 
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the diffusion weighted images to correctly preserve the orientation information (Leemans 

et al., 2009). 

 

Bayesian estimation of diffusion parameters obtained using sampling techniques  

The estimation of diffusion parameters (θ,Φ) (i.e., the principal diffusion direction in 

spherical polar coordinates) and the anisotropic volume fraction was performed with 

bayesian estimation of diffusion parameters obtained by „bedpostx‟ (FMRIB's Diffusion 

Toolbox - FDT v2.0) tool provided in FSL package (Behrens et al, 2003).  

Regarding the parameter estimate, bayesian approach is completely different from the 

deterministic criterion used in DTI techniques. Specifically, the deterministic approach 

looks for the set of parameters that best fit the data, while the bayesian method associates a 

probability density function (pdf) to the parameters (par 2.3.2).  

In this study two fibers per voxel were modeled to allow crossing fibers detection. Each 

fiber was weighted by a unitary multiplicative factor so that none of the two directions was 

supposed to be more probable that the other one. The number of the iterations to be 

performed before starting sampling was set to 1000. This default value was estimated to be 

high enough for convergence. BedpostX returned 4D volumes representing the samples 

from the distribution on the principal diffusion direction in spherical polar co-ordinates 

(θ,Φ) and the samples from the distribution on anisotropic volume fraction. These 4D 

volumes are the data needed to run probabilistic tractography. 

3.3.2. Probabilistic tractography 

Probabilistic tractography was performed with „probtrackX‟ (FMRIB's Diffusion Toolbox 

- FDT v2.0) tool provided in FSL package (Behrens et al, 2007). The computation of the 

connection probability existing between a seed A and a target B given the data Y is: 

 P (Ǝ ROI A →ROI B | Y) (Eq. 3.2) 

First of all a „placeholder‟ is defined (i.e., z) to take into account the tracking progression. 

Placing z in A, a random sample (θ,Φ) is selected from  

 P (θ,Φ| Y) (Eq. 3.3) 

http://fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/fdt/fdt_images/fdt_spherical_polars.gif
http://fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/fdt/fdt_images/fdt_spherical_polars.gif
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and z is moved for a distance s (i.e., step length) along (θ,Φ) direction. These steps have to 

be repeated until a stopping criterion is met. By drawing many of such streamlines, the 

spatial pdf of  

 P (Ǝ ROI A →ROI B | Y) (Eq. 3.4) 

is built for all possible targets (Behrens et al., 2003). Then, imposing a specific target B, 

streamlines that do not connect A to B are excluded. The final tract is obtained by 

performing the summation of all the non-rejected streamlines, namely by counting in each 

voxel the number of non-excluded streamlines that run through it. A graphical 

representation of this procedure is illustrated in figure 3.7. 

In this study, pairs of DMN, LLN and RLN clusters individuated as previously described 

in 3.2.2 were used as ROIs for running probabilistic tractography.  

ProbtrackX was set to model 5000 samples within each voxel. Curvature threshold was set 

to 0.2, corresponding to a minimum angle of approximately ±80 degrees. The iterative 

algorithm step length was set to 0.5 mm and 2000 steps maximum were allowed, 

corresponding to a distance of 1 m (Behrens et al., 2007). Obtained tracks were registered 

at first to high-resolution structural brain images (gained as explained in paragraph 3.2.1. 

in 'Image co-registration' section), then to MNI152 standard space (2x2x2 mm
3
 resolution). 
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Figure 3.7 ProbtrackX processing scheme when point A is set as seed and B is set as target. All the 

streamlines running through A are found with a probabilistic approach. Then, among these, streamlines that 

do not run through B are rejected. 

3.3.3 Tract processing  

In this study, we aimed at probing the structural connections between pairs of clusters (i.e., 

ROIs) belonging to DMN, RLN and LLN with probabilistic tractography. Differently from 

the classical fMRI-guided tractography approach that uses deterministic algorithms, the 
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rsfMRI-guided tractography with probabilistic technique does not require a dilation of the 

ROIs in order to bridge the gap between GM and WM..  

In probabilistic tractography, defining a cluster as seed region is not the same of setting it 

as target . Hence, a novel processing of the tract was implemented in order to solve this 

problem. Imposing A as seed and B as target, the reconstructed tract differs from the tract 

obtained setting B as seed and A as target, highlighting an asymmetry in defining seed and 

target regions. This happens due to the intrinsic nature of probabilistic tractography. As 

explained in figure 3.7, at first, all streamlines running through the seed are generated 

using a Bayesian approach, starting the tracking from the seed location. Then, the 

identified streamlines that do not run through the target are rejected. Hence, not 

surprisingly, tracts generated in the two opposite ways do not exactly correspond. For this 

reason, considering all the generic possible pairs of ROIs within each selected RSN, tracts 

were generated setting A as seed and B as target and viceversa. The steps accomplished to 

reconstruct the bundles and to overcome the tract symmetry limitation are hereunder 

described: 

 tract from ROI A (seed) to ROI B (target) was normalized to its maximum 

intensity. This value represents the total number of tracked probabilistic 

streamlines. After normalization, voxels intensities represent the probability of 

being part of the tract that run from ROI A and passed through ROI B; similarly, 

tract from ROI B (seed) to ROI A (target) was normalized to the maximum 

intensity of the track; 

 the normalized tract going from ROI A to ROI B was multiplied by the normalized 

tract running from ROI B to ROI A. The resulted tract (we will refer to it as 

"symmetric" track), has non-zero voxels only where both the original tracts were 

not null; 

 the symmetric tract was thresholded to remove false positive streamlines. In this 

study, we adopted the 15% of the maximum intensity of the original tract according 

to Khalsa and collegues (2014). Since our final tract was the product of two distinct 

tracts we multiplied the threshold values (i.e., 0.15×0.15=0.02). * 

A graphical representation of this procedure is shown in figure 3.8. 
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Figure 3.8 Tract processing scheme. Original tracks are normalized and multiplied in order to obtain a 

symmetric track. Then, the symmetric tract is thresholded. 

 

*Since there is no standard procedure described in the literature about thresholding, we could 

make two different methodological choices. The first one consisted in accomplishing the 

thresholding before the product of the tracts. The second one, instead, lied in multiplying the tracts 

and then thresholding the final result. Note that the latter approach is less restrictive than the 

former. Consider as example a voxel whose intensity is above threshold in the tract that runs from A 

to B and that is, instead, under threshold in the tract that runs from B to A. Using the first approach 

the voxel will be rejected since its intensity will be equal to zero. In this case the voxel will be hence 

classified as a false positive. On the other hand, if we adopt the second approach, the same voxel 

will not have necessarily an intensity value lower than the applied threshold and so, it will not 

necessarily be classified as false positive and then rejected.  
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All the obtained tracks for each subjects were visualized both in FSLview 

(http://fsl.fmrib.ox.ac.uk/fsl/fslview) and in Trackvis (http://trackvis.org) in order to 

identify the anatomical WM fibers to which the virtual tracks refer. 

3.3.4. Structural connectivity  

After tracts processing, we addressed the issue of defining a SC index. In this work we 

decided to use the number of voxels above threshold (0.02), since it is the most common 

SC index adopted in previous studies (Khalsa et al.,2014, Lilja et al., 2014). For each pair 

of ROIs, group SC was evaluated as the average on single-subject SC indexes. These 

values were stored in matrices called group SC matrices displayed as images in order to 

visually compare them with the FC matrices. 

3.3.5. Group probabilistic map construction  

In order to validate the SC results, we created group probabilistic maps of the "symmetric" 

tracts by averaging them across the subjects. The voxel values of each map state the 

number of subjects which presents the specific tract. The maps were thresholded at 20%, 

40% and 60% to highlight the most robust results of the tract processing. Finally, we 

computed the mean intensities on each group probabilistic map and stored them in matrices 

called SC consistency matrices. 

3.4. Functional connectivity and structural connectivity 

comparison 

The index used to express functional connectivity was correlation (z-score) between cluster 

time series. On the other hand, structural connectivity was expressed by the number of 

voxels above a threshold fixed at 0.02. 

Functional connectivity (FC) and structural connectivity (SC) comparison was performed 

at two different levels (figure 3.9): 

 considering each couple of clusters, across subjects;  

 considering each subject, across connections. 
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The first comparative approach consisted in averaging functional and structural 

connectivity indexes across subjects. Then, correlation between mean FC and mean SC 

was evaluated.  

The second approach consisted in estimating the correlation between single subject FC and 

SC indexes for each subject .  

 

 

 

Figure 3.9 Comparative approaches scheme: across subjects (orange) and across connections (blue). The 

former approach implies to consider the same pair of cluster  among all the subjects belonging to the sample. 

The latter approach implies to consider all the couple of sub-network in a single subject.   
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Chapter 4 

Results 

In this chapter we report at first the characteristics of the sample recruited for this study 

(par. 4.1).  

Resting state fMRI (rsfMRI) analysis results are then presented, starting from the group 

independent component analysis (ICA) and resting state network (RSN) clustering 

procedure outcome (par. 4.2.1). Next, the functional connectivity (FC) issue is addressed 

(par. 4.2.2).  

In parallel, diffusion weighted imaging (DWI) analysis results are illustrated, leading off 

with probabilistic tractography (par 4.3.1). Then structural connectivity (SC) investigation 

results are reported, followed by (par. 4.3.2) the outcomes of the consistency study 

accomplished through the tract group probabilistic maps (par. 4.3.3).  

Afterwards, FC and SC comparison results are shown (par. 4.4).  
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4.1. Subjects and data acquisition  

Twenty healthy right-handed voluntary subjects (mean age = 45.70 ± 11.53 years, 9 males) 

were recruited for this study. However, only nineteen subjects (mean age = 45.53 ± 11.82 

years, 9 males) were considered in this work analysis since one subject was excluded due 

to the low quality of its DWI images. 

 

4.2. rsfMRI: image processing and functional 

connectivity results 

4.2.1. rsfMRI data processing results  

Setting group-ICA dimensionality at 30, we identified the components (ICs) and, among 

them, we discriminated nineteen “good” ICs from noise. Then, for our connectivity study, 

we selected IC1, IC5 and IC9, corresponding respectively to Default Mode resting state 

Network (DMN), Right Lateral resting state Network (RLN) and Left Lateral resting state 

Network (LLN) (red boxes in fig. 4.1).  

The clusters obtained from DMN, RLN and LLN splitting are displayed in figure 4.2, 

while their anatomical features are reported in table 4.1. Note that even if RLN and LLN 

are symmetric networks, the identified clusters are not the same. In RLN the right 

cingulated gyrus was classified as a single cluster, while in the other hemisphere the same 

region was classified in LLN1 together with right parietal cortex. Furthermore, the 

temporal lobe, which was recognized as a single sub-network in LLN, was anatomically 

connected with parietal cortex activated area in RLN. 

The identified sub-networks were used as ROIs for both the following FC and SC analysis. 

Specifically, they were considered as group template for the extraction of the single subject 

time courses (i.e., the first step of the dual regression process), which are the input data for 

the FC analysis described in the next paragraph. The same ROIs were also used as 

seed/target regions for probabilistic tractography and SC analysis, as described later. 
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Figure 4.1 “Good” group-ICA components. The RSNs of interest are highlighted in red boxes. IC1 

corresponds to Default Mode Network, IC5 to Right Lateral Network and IC9 to Left Lateral Network. IC = 

Independent component. 
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Figure 4.2 Clusters obtained from DMN, RLN and LLN. DMN = Default Mode Network ; RLN = Right 

Lateral Network; LLN = Left Lateral Network. 
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Table 4.1 Clusters features referred to MNI standard space (resolution = 2x2x2 mm
3
). DMN = Default Mode 

Network; RLN = Right Lateral Network; LLN = Left Lateral Network. 
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4.2.2. Functional connectivity analyses results 

FC analyses were performed within DMN, RLN and LLN, considering each possible pairs 

of clusters (i.e., 18, 6 for each RSN of interest).  

For each subject, functional connectivity was calculated as full correlation (Pearson 

correlation coefficient) between the time series associated to the considered sub-networks. 

Then, the correlation values were transformed in z-score and stored in matrices which were 

represented as images in order to visually highlight the highest correlation values. Values 

on the diagonal of the matrices were forced to zero. An example of these subject-specific 

FC matrices, expressed as Pearson correlation coefficient, is shown below (Fig. 4.3). 

 

Figure 4.3 Subject-specific functional connectivity matrices expressed as Pearson correlation coefficient. In 

the first line, matrices referring to a single-subject data are shown. Different colors represent different 

Pearson correlation coefficient values. Color scale is reported on the right. In the second line, a schematic 

representation of the RSNs associated to the matrices is illustrated: from left to right, DMN, RLN and LLN 

axial views and LLN coronal view are shown. Red numbered spots represent the identified clusters 

considered in the matrices above. DMN = Default Mode Network; RLN = Right Lateral Network; LLN = 

Left Lateral Network; R = Right; L = Left. 

The group FC matrices computed by the average of the single subject Pearson correlation 

coefficients are shown in figure 4.4. In this paragraph, functional connectivity matrices are 

reported with their values expressed as Pearson correlation coefficient since correlation 

allows a more intuitive interpretation compared to z scores, conversely addressed in our 

statistics. 
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Figure 4.4 Group functional connectivity matrices expresses as full correlation (Pearson correlation 

coefficient). Panel (a) refers to DMN, panel (b) refers to RLN and panel (c) refers to LLN. In each panel, on 

top, it is shown the group FC matrix associated to the underlying RSN. Color scale is reported on the right. 

Red numbered spots represent the identified clusters considered in the matrices. DMN = Default Mode 

Network; RLN = Right Lateral Network; LLN = Left Lateral Network; R = Right; L = Left. 
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Each pair of clusters obtained from DMN showed high functional correlations (values 

between 0.460 and 0.564). In this network the FC maximum value was observed between 

DMN2 (corresponding to medial prefrontal cortex) and DMN3 (corresponding to posterior 

cingulate cortex).  

Within the RLN the highest FC index was registered between RLN3 (corresponding to right 

frontal cortex) and RLN4 (corresponding to right parietal cortex). The other RLN pairs of 

clusters showed functional connectivity values significantly lower (p-value=0.009) than the 

maximum value registered in this network. 

Within LLN the maximum correlation value was obtained between LLN2 (corresponding 

to left frontal cortex) and LLN3 (corresponding to left parietal cortex). Also LLN3 and 

LLN4 (corresponding to left temporal cortex) and LLN2 and LLN4 presented significant FC 

values. 

4.3. DWI: image processing and structural connectivity 

results 

4.3.1. Probabilistic tractography and tract processing results 

SC analysis was performed by means of probabilistic tractography. The clusters pairs 

identified in DMN, RLN and LLN were used as ROIs (seed and target, symmetrically 

combined) to extract the WM fiber bundles which linked each pair.  

Processed tracts were visualized both in FSLview (http://fsl.fmrib.ox.ac.uk/fsl/fslview) and 

Trackvis (http://trackvis.org) in order to be anatomically located. Since the tracts were 

reconstructed with a probabilistic approach, some of them could not be associated to just 

one well-recognizable anatomical fasciculus but, instead, to an ensemble of bundles, as 

shown in tables 4.2 (DMN), 4.3 (RLN), 4.4 (LLN) for a single subject case. However, the 

reported results are valid for all the subjects included in this study. 
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Seed ↔ Target Track visualization in FSLview 
Track visualization  

in Trackvis 

Anatomical 

fasciculus 

DMN1 ↔ DMN2 

  

Left SLF,  

left IFOF 

left ILF 

DMN1 ↔ DMN3 

  

Left SLF,  

left ILF, 

splenium CC 

 

DMN1 ↔ DMN4 

  

CC splenium 

DMN2 ↔ DMN3 

  

Cingoli 

DMN2 ↔ DMN4 

  

Right SLF, 

right IFOF 

right ILF 

DMN3 ↔ DMN4 

  

Right SLF, 

right ILF, 

splenium CC 

 

Table 4.2 Processed tracts (i.e., “symmetric” tracts thresholded at 0.02) obtained between DMN clusters in a 

single subject. DMN = Default Mode Network; SLF = superior longitudinal fasciculus; ILF = inferior 

longitudinal fasciculus; IFOF = inferior frontal-occipital fasciculus; ILF = inferior longitudinal fasciculus; 

CC = corpus callosum. 
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Seed ↔ Target Track visualization in FSLview 
Track visualization  

in Trackvis 

Anatomical 

fasciculus 

RLN1 ↔ RLN2 

  

Right cingolum 

RLN1 ↔ RLN3 

  

CC genu, 

 right ATR 

RLN1 ↔ RLN4 

  

Right cingolum, 

CC 

RLN2 ↔ RLN3 

  

Right IFOF, 

 right ATR,  

 right uncinate, 

right cingolum 

RLN2 ↔ RLN4 

  

CC splemnium 

RLN3 ↔ RLN4 

  

Right SLF 

Table 4.3 Processed tracts (i.e., “symmetric” tracts thresholded at 0.02) obtained between RLN clusters in a 

single subject. RLN = Right Lateral Network; CC = corpus callosum; ATR = anterior thalamic radiation; IFOF = 

Inferior frontal occipital fasciculus; SLF = superior longitudinal fasciculus. 
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Seed ↔ Target Track visualization in FSLview 
Track visualization  

in Trackvis 

Anatomical 

fasciculus 

LLN1 ↔ LLN2 

  

 CC genu,  

left ATR,  

left ACR 

LLN1 ↔ LLN3 

  

Left cingolum,  

CC 

LLN1 ↔ LLN4 

  

Left SLF, 

CC genu, 

left ACR, 

left ATR 

LLN2 ↔ LLN3 

  

Left SLF 

LLN2 ↔ LLN4 

  

Left SLF,  

left ILF,  

left IFOF 

LLN3 ↔ LLN4 

  

Left SLF 

Table 4.4 Processed tracts (i.e., “symmetric” tracts thresholded at 0.02) obtained between LLN clusters in a 

single subject. LLN = Left Lateral Network; CC = corpus callosum; ATR = anterior thalamic radiation; ACR = 

Anterior Corona Radiata; IFOF = Inferior frontal occipital fasciculus; ILF = Inferior lateral fasciculus; SLF = superior 

longitudinal fasciculus. 
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4.3.2. Structural connectivity analysis results 

For each subject, SC was evaluated using as index the number of voxel above threshold 

(0.02) belonging to each reconstructed tract within the same RSN. Averaging the SC 

indexes across subjects, conversely to FC analysis, group SC was obtained and group SC 

matrices where created in order to visually highlight the most relevant results (Fig. 4.5). 

Within all the considered RSNs, structural connections were found and the connection 

degree was variable across the couples of clusters. 

In DMN, the strongest link was found between DMN1 (corresponding to left lateral parietal 

cortex) and DMN2 (corresponding to medial prefrontal cortex).  

In RLN, high structural indexes were observed between RLN3 (corresponding to right 

frontal cortex) and RLN4 (corresponding to right parietal cortex) and between RLN2 

(corresponding to right cingulated gyrus) and RLN3. The link found between RLN3 and 

RLN4 was the strongest observed among the three considered RSNs. 

In LLN, the highest structural connectivity index was observed between LLN2 

(corresponding to left frontal cortex) and LLN3 (corresponding to left parietal cortex).  
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Figure 4.5 Group SC matrices expresses as number of voxel above threshold (0.02). Panel (a) refers to 

DMN, panel (b) refers to RLN and panel (c) refers to LLN. In each panel, on top, it is shown the group SC 

matrix associated to the underlying RSN. Color scale is reported on the right. Red numbered spots represent 

the identified clusters considered in the matrices. DMN = Default Mode Network; RLN = Right Lateral 

Network; LLN = Left Lateral Network; R = Right; L = Left. 
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4.3.3. Group probabilistic map results 

Group probabilistic maps were thresholded at 20%, 40% and 60%. Those obtained 

thresholding at 20% were the less restrictive. Tracts belonging to these maps were easily 

detectable. The higher thresholds, 60% in particular, made tracts thinner, sometimes even 

null. An example of differences existing between different maps of the same tract is shown 

in figure 4.6.  

 

Figure 4.6 Sagittal and axial view (respectively first and second line) of the tract connecting DMN2 and 

DMN3 thresholded at 20%, 40% and 60%.  

The mean intensity of the group probabilistic maps was used as cluster to cluster SC 

consistency index and stored in group SC matrices (Fig. 4.7). For every pairs of ROIs, this 

index represents how many subjects present the tract in each specific voxel. Therefore, it is 

an index of tract robustness across subjects.  
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Figure 4.7 SC consistency group matrices calculated from group probabilistic maps thresholded at 20%, 40% 

and 60% and their respective clusters (from top to bottom). Color scale is reported on the right. Red 

numbered spots represent the identified clusters considered in the matrices. DMN = Default Mode Network; 

RLN = Right Lateral Network; LLN = Left Lateral Network; R = Right; L = Left. 

 

Matrices associated to group probabilistic maps thresholded to 20% show not null 

structural connectivity indexes between all the couples of sub-networks. However, with 

higher threshold, some links between ROIs are lost. In group probabilistic maps 

thresholded at 40%, SC between LLN1 (corresponding to left superior frontal gyrus) and 

LLN4 (corresponding to left temporal cortex) is not detected. In group probabilistic maps 

thresholded at 60%, also DMN1 (corresponding to left lateral parietal cortex) and DMN4 

(corresponding to right lateral parietal cortex), DMN2 (corresponding to medial prefrontal 

cortex) and DMN4, RLN1 (corresponding to right superior frontal gyrus) and RLN4 
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(corresponding to right parietal and temporal cortex) are not indicated as linked, 

highlighting a great inter-subject variability. The sub-networks that did not lost their 

connections in the maps thresholded at 60% are very robust and characterized by a low 

inter-subject variability. 

4.4. Functional connectivity and structural connectivity 

comparison results 

Functional and structural connectivity comparison was performed by computing the 

correlation between the z-score as FC index and the number of voxels above threshold 

(0.02) as SC one. The comparison was performed both across subjects and across the pairs 

of clusters (Figure 3.9). 

4.4.1 Across subject comparison 

The first approach consisted in analyzing the relationship between FC and SC across 

subjects. Functional and structural indexes values (mean ± standard deviation) are reported 

in tables 4.5 (DMN), 4.6 (RLN), 4.7 (LLN) and illustrated in figure 4.8 (matrices 

represented as images) and 4.9 (box and whiskers plots). 

The strongest across subject correlations between FC and SC can be observed within LLN: 

high values of SC correspond to high values of FC. Moreover, within this network a 

similar trend is observed in FC and SC index values across the pairs of clusters (see the red 

line in figure 4.9, third line). Also RLN shows a good correlation level between FC and 

SC, even if less strong than the one in LLN. Within RLN, both the highest value of FC and 

SC index are found between RLN3 (corresponding to right frontal cortex) and RLN4 

(corresponding to right parietal and temporal cortex). DMN, instead, does not show an 

evident correlation between FC and SC. Correlation (Pearson correlation coefficient) 

between FC and SC index series within each RSN of interest are reported in figure 4.10. 
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Table 4.5 FC and SC across subjects comparison within DMN. FC is expressed as z-score (mean ± standard 

deviation), while SC is expressed as number of voxel above threshold (0.02) (mean ± standard deviation)  
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Table 4.6 FC and SC across subjects comparison within RLN. FC is expressed as z-score (mean ± standard 

deviation), while SC is expressed as number of voxel above threshold (0.02) (mean ± standard deviation).  
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Table 4.7 FC and SC across subjects comparison within LLN. FC is expressed as z-score (mean ± standard 

deviation), while SC is expressed as number of voxel above threshold (0.02) (mean ± standard deviation). 
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Figure 4.8 DMN, RLN, LLN functional and structural connectivity group matrices comparison. FC is 

expresses as z-score while SC is expressed as number of voxels above threshold (0.02). Color scale is 

reported on the right. Red numbered spots represent the identified clusters considered in the matrices. DMN 

= Default Mode Network; RLN = Right Lateral Network; LLN = Left Lateral Network; R = Right; L = Left. 
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Figure 4.9 DMN, RLN, LLN group FC (on the left, in green) and SC (on the right, in blue) comparison 

represented in box and whiskers plots. The first line refer to DMN, the second line to RLN and the third line 

to LLN. On the right, a schematic representation of the RSNs to which the box and whiskers are associated is 

illustrated: from top to bottom, DMN, RLN, LLN axial views and LLN coronal view are shown.. Red 

numbered spots represent the identified clusters considered in the plots. Boxes represent median, first quartile 

(q1) and third quartile (q3) values. Whiskers are defined by q1-1.5*IQR (interquartile range) and q3+1.5*IQR. 

Spots beyond the region defined by the whickers represent outliers. The red line superimposed in each box-

plot links the mean values evaluated for every pair of ROIs. FC = Functional Connectivity; SC = Structural 

Connectivity; DMN = Default Mode Network; RLN = Right Lateral Network; LLN = Left Lateral Network. 
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Figure 4.10 Relationship between structural and functional group connectivity within DMN (panel a, in 

blue), RLN (panel b, in red) and LLN (panel c, in green). FC is expressed as z-score while SC is expressed as 

the number of voxel above threshold (0.02). Mean FC and SC values calculated across subjects are 

considered. Pearson correlation coefficient and associated p-values are reported. The respective linear trend 

line is superimposed. On the right, a representation of the considered RSN is shown. FC = Fuctional 

Connectivity; SC = Structural Connectivity; DMN = Default Mode Network; RLN = Right Lateral Network; 

LLN = Left Lateral Network. 
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4.4.2 Across connections comparison 

For each subject, the correlation between FC (expressed as z-score) and SC was analyzed 

considering all the pairs of clusters. Seventeen out of nineteen subjects showed a positive 

correlation. In particular, eleven subjects presented a significant correlation (p-value < 

0.05) between FC and SC (panel „a‟, Fig. 4.11) while the remaining six subjects showed a 

positive but not significant correlation. However, this six subjects showed an evident 

positive correlation within two of the three components, namely LLN and RLN (panel „b‟, 

Fig 4.11, on the left) . Only two subjects, instead, did not showed neither a global nor a 

component-specific correlation between FC and SC ( panel „c‟, Fig. 4.11). 
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Figure 4.11 SC and FC correlation at single-subject level. Panel a) refers to a representative subject of the 

group that showed a significant positive correlation. Panel b) refers to a representative subject of the group 

that showed a positive but not-significant correlation. Panel c) refers to a representative subject of the group 

that didn't show a positive correlation. The number of subjects belonging to the associated group is reported. 

In each panel, on the left, scatterplots related to all RSNs of interest are reported with the respective linear 

trend superimposed; on the right, the same scatterplots are illustrated by highlighting data belonging to DMN 

(blue points), RLN (red points) and LLN (green points). Their specific linear trend is superimposed (blue line 

for DMN, red line for RLN, green line for LLN). DMN = Default Mode Network; RLN = Right Lateral 

Network; LLN = Left Lateral Network. 
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Chapter 5 

Discussion and Conclusion 

 

Main results 

Our study aimed at analyzing functional connectivity (FC) and structural connectivity (SC) 

relationships within specific resting state networks (RSNs).To reach this goal, three RSNs 

were identified: the default mode network (DMN), the right lateral network (RLN) and the 

left lateral network (LLN). RLN and LLN enclose the same anatomical regions, 

respectively in the right and in the left hemisphere, and together they are known as fronto-

parietal network. 

The DMN was considered since it was the first to be discovered and its clinical relevance 

is well-established in neurological and psychiatric disorders (e.g. autism, Alzheimer's 

disease, schizophrenia) (Buckner, 2008). The DMN is involved in human cognition core 

processes such as the integration of cognitive and emotional processing (Greicius et al., 

2003), the monitoring of the world around us (Gusnard at al., 2001) and the mind-

wandering (Mason et al., 2007). The fronto-parietal network, instead, is involved in 

working memory (Rottschy et al., 2012; Smith and Jonides, 1998), episodic retrieval (e.g., 

Buckner and Wheeler, 2001; Guerin and Miller, 2011; Vilberg and Rugg, 2008), mental 
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imagery (Daselaar et al., 2010; Kosslyn and Thompson, 2003; Zvyagintsev et al., 2013) 

attentional control (Mesulam et al., 1990) and language comprehension (Zhu et al.,2014). 

Specifically, RLN and LLN are involved in different functions, even though they 

correspond to the same anatomical areas in the two hemisphere, which are known to play 

different roles in cognitive processes. Hence, we expected to find slight differences 

between RLN and LLN functional and structural connectivity results. 

The selected RSNs were easily and satisfactorily extracted by group independent 

component analysis (ICA), showing spatial patterns comparable to the literature templates 

(Smith et al., 2009; van den Heuvel et al., 2010). Moreover, examining FC within each 

considered RSN, high values of connectivity were observed, especially at group level. In 

this work, FC within the RSNs was investigated adopting a novel approach in the sub-

network definition, namely a clustering procedure based on the anatomical separation of 

the clusters of which the network consist. This approach differs from the widespread sub-

network identification technique through high dimensionality ICA (model order > 30) 

whose outcome highly depends on the sample size (Dipasquale et al., 2015). Identifying 

the RSN clusters, taking advantage of their anatomical segregation, allows their easy 

identification even when a dataset of small dimension is considered. The obtained FC high 

values are not surprising since ICA, adopted to identify RSNs, extracts spatially 

independent components from the rsfMRI signal and, thus, it allows to map brain areas that 

are consistently activated together (Beckmann, 2012). Hence, if some cortical regions are 

not strongly functionally connected, ICA classifies them into different networks. 

Nevertheless, obtained FC values were not uniform within each considered RSNs, 

highlighting the interest in investigating the connectivity between their sub-networks. 

Regarding this exploration, our results showed that DMN presented remarkable FC index 

values between all the clusters of which it consists (Fig.4.4, panel a). This outcome 

suggests that DMN is a highly integrative network, in agreement with Greicius and 

colleagues (2003). Furthermore, in both RLN and LLN, the FC highest values were 

detected between frontal cortex and parietal cortex (Fig.4.4, panels b and c). As we 

expected, RLN and LLN FC patterns were not exactly symmetric. This asymmetry may be 

justified by the differences between the two hemispheres in the data-driven sub-network 

identification, probably due to the well-known asymmetry between left and right 

hemisphere functional roles. Indeed, right fronto-parietal regions underlie visuospatial 

javascript:void(0);
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orienting attention (Rushworth et al., 2007; Shulman et al., 2010; Rossi et al., 2014), while 

left fronto-parietal areas are dominant in language comprehension and involuntary 

orienting, namely attention in relation to limb movements (Rushworth et al., 2007; Rossi et 

al., 2014; Zhu et al.,2014). 

The obtained high FC results made SC study particularly challenging. In fact, evident 

simultaneous activation of anatomically separated regions doesn't necessarily imply a 

direct structural connection between them. To test SC within the considered RSNs, the 

identified sub-networks were adopted as regions of interest (ROIs) in probabilistic 

tractography. To the best of our knowledge, this approach was adopted only in one 

previous work (Khalsa et al., 2013). Khalsa and colleagues investigated SC with 

probabilistic tractography exclusively within DMN, imposing posterior cingulate cortex as 

seed region and adopting medial prefrontal cortex, right inferior parietal cortex and left 

inferior parietal cortex as target regions. In our study we adopted a similar approach, even 

though some methodological modifications were performed. Instead of setting one cluster 

as seed and all the other ones as targets, we implemented a novel tract processing in order 

to make the SC symmetric, namely independent from the definition of a cortical area as 

seed or target region. We decided to process the original tracts as described in paragraph 

3.3.3, even if this implied to alter tract intensity values, which represent the probability of 

the voxels to be part of the bundle that links the seed and the target areas. This 

methodological choice is in agreement with the literature, which does not use the track 

intensity in SC evaluation. Furthermore, we investigated connectivity not only within 

DMN but also within RLN and LLN. 

The first remarkable result dealing with SC was that a direct structural connection was 

found between all the considered sub-networks (Fig. 4.5). In particular, high SC values 

were found either when a unique robust tract connected the considered ROIs (e.g. DMN2-

DMN3 connected by cingoli, LLN2-LLN3 and RLN3-RLN4 connected respectively by left 

and right SLF) or when an ensemble of tracts was involved (e.g. RLN2-RLN3 connection). 

Low SC values, instead, have to be ascribed to ROI tiny dimensions. It is intuitive inferring 

that, since fiber tracking imposes the seed and target regions as waypoints, if a ROI is 

small, the reconstructed virtual tract will be thin, even if the associated bundle is 

anatomically thick. This would explain why RLN1 and LLN1seemed to be not strongly 

linked to the other sub-networks belonging to the same RSN, even if remarkable tracts 
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were involved. Interestingly, high level of SC were strongly consistent across subjects. 

Indeed, considering the SC consistency matrices created from group probabilistic maps 

(Fig. 4.7), we could state that the majority of the identified virtual tracts were robust since 

in probabilistic maps thresholded at 60%,the connections were lost only in 4 out of 18 

cluster pairs. These few inconsistent tracts were either thin tracts (such RLN1 - RLN4 and 

LLN1-LLN4 connections) or ensemble of tracts (DMN2-DMN4 connection), hence, their 

inconsistency can be justified. The tract linking DMN1 and DMN4 was classified as 

inconsistent too, even if the splenium was involved. This result can be supported by the 

high inter-subject variability in bundles that connect the two hemisphere, which is 

especially evident in fascicle terminal parts (Veenith et al., 2013).  

The most interesting results were obtained combining FC and SC, adopting, thus, a 

multimodal approach. This integration was performed by correlating the two connectivity 

indexes. DMN did not exhibit a correlation between FC and SC, even though it presented 

high FC and SC values separately, while RLN and, mainly, LLN showed a correspondence 

between FC and SC trends. This results were obtained both at single and at group level. 

Particularly, at single level, seventeen out of nineteen subjects globally showed a positive 

correlation between FC and SC while two subjects only did not presented a correlation 

between them (Fig. 4.11). The FC and SC correlation was statistically significant (p<0.05) 

for eleven subjects, while it was marginally significant for six subjects. In details, this 

group of six subjects presented no correlation between the two index value only within 

DMN. The absence of a positive correlation in this RSN contrasted the positive correlation 

trend observed in the fronto-parietal network affecting, thus, global FC-SC correlation 

significance. These results suggest that LLN and RLN are highly function-specific 

networks and, hence, direct structural links between their clusters reflect the functional 

communication existing between them. DMN, instead, is a more associative and 

integrative network. Since it underlies to many different basic functions, DMN sub-

networks are highly connected through many different pathways, both direct and indirect. 

Therefore, FC is not completely explained by structural links detected by tractography, 

since other fascicles connecting DMN clusters exist (Krienen and Buckner, 2009; O‟Reilly 

et al., 2010; Buckner et al., 2011; Lu et al., 2011). Indeed, graph studies proved that DMN 

consists of prominent brain hubs that are not only interconnected, but also linked to 

specific sub-cortical regions, passing through the cortical midline and, thus, defining dense 
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lower degree networks (van den Heuvel et al., 2011). One possible explanation for the 

existence of both, direct and indirect communication between these anatomical segregated 

regions and thus, for connectivity at different levels, might be a possible tendency of the 

brain to provide a certain level of resilience to its core (van den Heuvel et al., 2011). 

In conclusion, our study results proved that SC is a good predictor of FC but, high FC does 

not necessarily imply high SC. Therefore, in addition to direct connections (that can be 

identified by tractography), different pathways (e.g. polysynaptic circuits) probably exist 

and sub-networks communication maybe supported by some other cortical regions which 

act like mediators. 

 

Applications 

The study of brain connectivity as proposed in this work is extremely interesting both in 

neuroscience field and clinical practice. Several studies have suggested a link between an 

efficient organization of the brain network and cerebral higher level functions (e.g. 

cognition, movement coordination, perception, stimulus integration, consciousness, 

working memory) (Sporns et al., 2004; Edelman et al., 1978). Furthermore, many 

neurological disorders such as neurodegenerative diseases (e.g. Alzheimer's disease, 

Parkinson's disease, Huntington‟s disease, multiple sclerosis), psychiatric (e.g. 

schizophrenia, depression) and neurodevelopment disorders (e.g. autism) show altered 

functional and/or structural networks (Guye et al., 2010; Pievani et al., 2014).  

Focusing on the neurodegenerative diseases, it is interesting to point out that their 

symptoms occur long after the actual onset of the brain damages, namely the loss of 

neurons and synapses. In the phase known as prodromal, although the symptoms are not 

evident yet, the features of neural networks are altered (Chase, 2014; Unschuld et al., 

2012). One of the possible explanations of this phenomenon could be the brain plasticity 

(Cramer et al., 2011). Indeed, the brain has the extraordinary ability to reorganize its 

structure in order to compensate as much as possible for damaged areas and interrupted 

paths. Several studies proved that specific stimuli can lead to a positive plasticity feedback. 

For instance, Maguire and colleagues (2006) have reported that, in London, taxi drivers 

show a greater hippocampal volume with respect to bus drivers, due to the fact that the 

former have to choose among many alternative routes while the latter always drive the 

same itinerary. Also Diamond (2001), conducting a study on rats, demonstrated that brain 

http://en.wikipedia.org/wiki/Synapse
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microarchitecture is powerfully shaped by experiences: rats living in enriched 

environmental conditions showed an increase cortical thickness, leading to a memory 

improvement and augmented learning ability. In this clinical context, FC and SC analysis 

may be useful to assess the efficacy of a rehabilitation treatment as neurological 

rehabilitation perform a brain training and takes advantage of the brain plasticity to prevent 

the worsening of symptoms, allowing to preserve, at least partially, the patient cognitive 

abilities (Cramer et al., 2011). 

Interestingly, FC and SC combined study may be particularly useful also in pathologies 

which apparently do not alter the brain architecture but that show evident differences from 

normality when the connectivity is explored, such as autism spectrum disorders (ASD), 

attention-deficit/hyperactivity disorder (ADHD) and schizophrenia. Focusing on autism, 

the literature reports contradictory findings, highlighting that still little is known about this 

pathology common among children. Even if an altered connectivity is ascertained in 

children affected by autism, both overconnectivity and underconnectivity was observed 

(Kitzbichler et al., 2015). Moreover, in autistic children RSN sub-networks that included 

the frontal cortex were found more likely to be abnormal and to develop abnormally 

(Kitzbichler et al., 2015). A recent study proved also that in these children relevant parts of 

the corpus callosum, through which many of the bilaterally activated cortical areas 

communicate, are smaller than normality (Travers, 2015). The methodological approach 

used in our study may allow to better investigate this pathology characteristics and origins. 

Wang and colleagues (2009) have reported a shift of brain topology toward regular 

networks in children with ADHD, which derives from an increased local efficiency 

combined with a decreasing tendency in global efficiency. Regarding schizophrenia, recent 

studies performed with graph analysis showed a deterioration of the hierachical network 

organizationin in addition to functional and structural “dysconnectivity” (Guye et al., 

2010). 

In conclusion, considering this broad framework, the importance of adopting a multimodal 

approach in exploring neurological and psychiatric disorders should appear evident. The 

high complexity of human brain requires, indeed, an approach as wide as possible in its 

disorder investigations, since considering only an aspect of the pathology would be 

restrictive. 
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Methodological limitations and possible future developments  

In this study some technical and methodological limitations were encountered.  

As regard with rsfMRI analysis, the principal limitation is that the RSN identification is 

highly determined by the dataset quality, consistency and dimension. However, ICA 

outcome dependence on the dataset has the advantage of introducing no a priori constraint 

in the analysis. 

Regarding probabilistic tractography, instead, the main limitation is the SC dependency on 

seed and target definition, as two different tract, and consequently two different SC values, 

can be obtained between two ROIs. Since we aimed at correlating SC with FC, which it is 

independent from seed and target definition, we introduced a novel tract processing 

procedure to obtain a single SC index, as described in paragraph 3.3.3. Another 

probabilistic tractography weak point is the threshold selection since a gold standard has 

not been identified yet. By now, when probabilistic tractography is performed, threshold 

can be defined in two different ways: either attempting different threshold values and then 

choosing the one considered the best for the current application (Lilja et al., 2014), or 

choosing it on the basis of previous works. However, both these approaches actually do not 

guarantee the correct threshold selection. In this work, threshold was set on the basis of 

previous literature studies (Khalsa et al., 2014). A further limitation is represented by the 

adopted SC index. Indeed, the number of voxel above threshold is not statistically robust 

because of two reasons: firstly, SC values depends on the adopted threshold which, as 

explained above, is defined in an arbitrary way and secondly, this index represents the tract 

volume expressed in voxels. Therefore, if we consider two bundles of equal thickness, one 

connecting two distant ROIs and the other one linking two near ROIs, it stands to reason 

that the former will present higher SC index than the other one, even though, the 

connection is equally strong. The implemented tract processing lead to another limitation. 

Indeed, multiplying the two tracts obtained adopting A as seed region and B as target 

region and viceversa, the intensity values in each voxel of the resulted tract do not 

represent exactly a probability value anymore. Therefore, “symmetric” tract intensities are 

not comparable between each other. As positive counterpart, this tract processing made the 

tract more robust to false positive detection. 

In future works, some improvements concerning the adopted method and the data quality 

could be performed. First of all, more robust MR acquisitions could be made using a 
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3-Tesla scanner, thus providing higher quality data. Moreover, enlarging the sample should 

be recommended in order to obtain more statistically robust results, especially in RSNs 

identification. These improvements are very important, especially if we aim at using a 

healthy subject group as a control sample to compare normality with pathological 

conditions.  

Another useful future development may be the construction of a probabilistic atlas of the 

tracts involved in DMN, RLN and LLN internal connections ,starting from the constructed 

group probabilistic maps. When an atlas is constructed, its validation is extremely crucial. 

Hence, a healthy right-handed subject group, different from the one used to construct the 

atlas, should be considered. This atlas would be useful especially to explore pathology 

effects on structural connectivity. 

The study could be also deepened by integrating the adopted techniques (ICA for FC 

analysis and probabilistic tractography for SC analysis) with different methodological 

approaches. By way of example, FC could be also analyzed with graph theory and SC 

could be explored using spherical deconvolution, based on a deterministic tractography 

algorithm. It would be interesting to compare the FC and SC results obtained with different 

methodological approaches.  

Finally, further insight into connectivity could be gained through the integration of MRI 

data with EEG and MEG studies, in order to draw a broader framework in this wide 

problem. 

 

Conclusions 

The aim of this work was exploring the relationship between FC and SC in three important 

RSNs: DMN, LLN and RLN within a healthy subject sample. This goal was reached 

adopting a multimodal approach which combined rsfMRI and probabilistic tractography. 

Interesting results were obtained, since FC and SC were found to be highly correlated in 

LLN and RLN while in DMN no correlation was observed between them, proving that 

high FC does not necessarily implies high SC. These results suggest the existence of many 

pathways which connect different cortical areas. Furthermore they highlight that LLN and 

RLN are highly function specific networks while DMN is a more associative one.  

The proposed method investigates the brain connectivity issue with a novel approach, 

which may be promising in typical and atypical condition understanding. 
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