
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell'Informazione
Corso di Laurea Magistrale in INGEGNERIA MATEMATICA

Generalization of the PC algorithm

for non-linear and non-Gaussian data

and its application to biological data

Relatore: Prof. Anna Maria Paganoni

Co - Relatori: Prof. Lorenz Wernisch

Dott. Francesca Ieva

Tesi di Laurea Magistrale di:

Nina Ines Bertille Desgranges

matr. 799924

Anno Accademico 2013-2014

Abstract

This thesis arises in the context of �nding causal relationships among ob-
served data. It will mostly focus on data coming from biological measurement
of protein or gene expression. The PC is a widely used algorithm for learning
graphical models. The causal structures are created evaluating the depen-
dency or conditional dependency among the variables. Its output is either a
DAG or a class of DAGs. It has been developed for linear data with Gaussian
noise, which makes it less suitable when applied to biological data, which are
often far from having these features. In this thesis we develop methods (i)
to solve the problem of linearity/Gaussianity and (ii) to restrict the possible
outputs of the algorithm. In order to overcome the problem (i), we use con-
ditional dependency tests which characterize probabilistic independence: we
use quantities which are zero if and only if the data are independent and not
only uncorrelated. Two families of test are investigated: a non-parametric
kernel based test of conditional independence (kPC) and a test based on the
Brownian distance correlation (bPC). In the kPC, thanks to the kernel, the
data are implicitly embedded in a space where the data are more linear. In
the bPC the Brownian correlation measures the weighted distance between
fX,Y and fXfY . In order to solve problem (ii), we describe the data with
a weakly additive noise model and we use the residuals of the non-linear
regression to �nd more causal directions than with the PC algorithm. The
developed algorithms are tested on data on the data used in Sachs et al.
2005.

1

Sommario

Questa tesi si colloca nell'ambito di sviluppare algoritmi per la ricerca di
relazioni di causalità tra dati osservabili. Più precisamente, saranno presi in
considerazione dati quali espressione proteica o genomica. L'algoritmo PC
è un metodo tra i più usati per ricavare relazioni di dipendenza e rappre-
sentarle tramite gra�. Le connessioni tra i nodi presenti nei gra� sorgono
valutando relazioni di dipendenza o dipendenza condizionata tra variabili.
L'output dell' algoritmo può essere sia una classe di DAG, che un certo
DAG. Quest' algoritmo è stato sviluppato per dati che hanno come carat-
teristica l'essere lineari e avere rumore gaussiano; queste proprietà sono però
di�cili da trovare in dati provenienti dalla biologia. In questa tesi sviluppi-
amo metodi (i) per risolvere il problema della linearità/gaussianità e (ii) per
restringere il possibile output di PC. Per risolvere il problema (i) usiamo test
che caratterizzano l'indipendenza probabilistica in tutti i sensi: cerchiamo
quantità che siano zero se e solo se le variabili sono indipendenti. Vagliamo
due diverse famiglie di test: un test non parametrico basato sui kernel (kPC)
ed un altro che considera la distanza browniana (bPC). In kPC, grazie al ker-
nel, i dati vengono analizzati in un nuovo spazio, nel quale le relazioni sono
più lineari ed è quindi più semplice trovare dipendenze. In bPC, la corre-
lazione Browniana misura la distanza pesata tra fX,Y e fXfY . Per risolvere
il problema (ii), i dati vengono descritti con un weakly additive noise model
e i residui di una regressione (non-lineare) sono usati per trovare il maggior
numero possibile di direzioni di causalità. In�ne, per essere confrontati, gli
algoritmi sviluppati sono testati su dati usati in Sachs et al. 2005

2

Contents

1 INTRODUCTION 4

2 ALGORITHMS 6
2.1 Probabilistic graphical models 6
2.2 PC algorithm . 10
2.3 Kernel PC . 13

2.3.1 Kernel . 13
2.3.2 Test of Independence for kPC 15
2.3.3 Test of Conditional Independence for kPC 17

2.4 Brownian PC . 22
2.4.1 Brownian Distance Covariance 22
2.4.2 Test of Independence for bPC 24
2.4.3 Test of Conditional Independence for bPC 24

2.5 Examples with Simulated Data 26
2.5.1 Test of Independence 26
2.5.2 Test of Conditional Independence 28
2.5.3 Comparison with ROC curve 39

2.6 Generalization of Transitive phase 41
2.6.1 Additive Noise model 41
2.6.2 Weakly Additive Noise model 44

3 APPLICATION TO REAL DATA 48
3.1 Data Analysis . 48
3.2 Data simulation . 53
3.3 Performances in terms of finding dependencies . . . 56

3.3.1 Application to eight datasets 56
3.3.2 Application to one dataset 62

3.4 Performances in terms of discovering the direction

of the causal orientations 64

4 SUMMARY AND FUTURE WORK 69

5 APPENDIX 72

3

1 INTRODUCTION

Causality has always played an important role in our everyday life. Most of
the time, we do not even think about the underlying reasons that make us
behave in a speci�c way. When, for example, before going out we put on
our coat, many causal relationships are involved. We know it is cold outside,
which leads us to take our coat; once outdoors, wearing the coat will cause us
to feel warm. Many mathematicians, statisticians and philosophers have for
a long time been wondering about this topic. Among them is Sewall Weight,
who has always been interested in causality and genetics, and developed path
analysis (Wright 1918; Wright 1921; Wright 1934) in the 1920s. The ambition
of many scientists has been to �nd a link between the data which could be
collected, and the causal relationships that ought to be found. We can a�rm
that their goal can be achieved under certain conditions. As Judea Pearl
said in (Pearl 2000) "...causality has been mathematized". Moreover, many
researchers as Ste�en Lauritzen, Clark Glymour, Peter Spirtes (Probabilistic
reasoning in intelligent systems: networks of plausible inference; Spirtes,
Glymour, and Scheines 2000; Lauritzen 1996) are occupied in developing
new methods or expanding existing ones in oder to enlarge our knowledge.
In my small way, that is what I am about to do with this thesis. The scheme
developed by the pioneer of this doctrine when dealing with causality is the
following:

I. Collect the observations.

II. Build a causal knowledge.

III. Infer about the consequences of manipulating variables.

In this project, I will mainly investigate the �rst two points. In order to
analyze causal relationships, we will adopt graphs. Graphs facilitate the
representation of causal links and the description of joint probability distri-
butions. Along with the development of this theory, discovering causality
among phenomena has become increasingly important in many �elds. Just
to mention some, we have the biological sciences, epidemiology, arti�cial in-
telligence, social and behavioral sciences. In this project I will handle data

4

coming from biology. Biological data which can be measured, are data on
gene expression, gene activity and protein expression. Each of them is re-
garded as a variable. The aim of studying networks in biology is to �nd any
kind of connection among variables. The detection of causal links among
those kinds of data can be extremely useful. Thanks to some advanced
techniques it is possible to measure the state of a variable. Applying those
methods to detect causality, we can elucidate what the cause - e�ect rela-
tionships are. Starting from this, many conjectures about the healthiness of
a cell, a patient, a illness arise, and help medical research.

To go more in detail, this work will focus on developing some algorithms
to learn graphical models with non-Gaussian and non-linear data. We will
use a "PC-style" search combined with tests which characterize probabilistic
independence. To restrict the possible class of output, we will assume the
data generated by a weakly additive noise model. In order to implement
tests to discover whether the data are independent or not we rely on two
quantities:

1. Hilbert Schmidt independence criterion (HSIC)

2. Brownian distance

An algorithm which uses the HSIC has already been implemented in Tillman
2009, we will name it "kPC Permutation - Cluster". In this thesis we develop
two more ways to use the HSIC in independent test: "kPC Permutation -
Residuals" and "kPC Residuals". Furthermore, we investigate how the free
parameters, which have to be �xed when calculating HSIC, a�ect the output
of the test. We also develop the brand-new bPC, which independent test
relies on the Brownian distance. In order to compare the algorithms and
evaluate their performance we use in a �rst moment simulated data and
then real data of protein expression. The data are the one used in Sachs
et al. 2005.

The structure of the work is the following:

• in Chapter 2 the PC algorithm is described and the kPCs and bPC are
developed and analyzed with simulated data.

• in Chapter 3 the real data are illustrated and the PC, kPCs and bPC
are tested on these data.

• in Chapter 4 the conclusions are drawn and some ideas about possible
extension are illustrated.

All the developed algorithms have been implemented using the statistical
software R (R Core Team 2014).

5

2 ALGORITHMS

2.1 Probabilistic graphical models

A graph G is an ordered pair 〈V,E〉 where V is a set of vertices (or nodes)
and E is a set of edges (or arcs) (Spirtes, Glymour, and Scheines 2000). Two
vertices are adjacent if they are connected by an edge. An edge can be either
directed or undirected .

V1 V2

Figure 2.1: Directed edge.

V1 V2

Figure 2.2: Undirected edge.

In the case of directed edges (Figure 2.1), we say that V1 is a parent of V2
and V2 is a child of V1. In general, given a set of vertices V, we represent
the set of the children of V in the graph G as ChG(V), and the set of its
parents as PaG(V). The number of edges entering in the node V is called
indegree, the number of edges leaving V is the outdegree. The degree of an
edge V is the total number of edges adjacent to V . Considering a graph G
and a sequence of nodes {V1, . . . , Vn} ⊂ V, we say that in a directed path all
the edges are directed and are pointing from Vi to Vi+1 for i ∈ {1, . . . , n−1}.
In an undirected path the nodes Vi, Vi+1 are adjacent for i ∈ {1, . . . , n− 1}.
A path is said to be acyclic if it does not contains a vertex more than once,
otherwise it is cyclic. An ancestor of a vertex V is any vertex V1 such as
there is a directed path from V1 to V ; a descendant of a vertex V is any
vertex V2 such as there is a directed path from V to V2. We say that a graph
is directed if all its edges are directed, it is mixed if it has directed and undi-
rected edges and it is undirected if it has only undirected edges. A graph is
complete if all the nodes are linked to each other. A collider (V-structure)
is a triple 〈V1, V2, V3〉 ⊂ V such as {V1, V3} ∈ PaG(V2). The collider is said
to be immoral (unshielded collider) if there is no edge between V1 and V3 .
A chain is a triple 〈V1, V2, V3〉 ⊂ V such that V1 → V2 and V2 → V3. A fork
is a triple 〈V1, V2, V3〉 ⊂ V such that V2 → V1 and V2 → V3 as illustrated in
Figures 2.3-2.5.

6

V1

V2

V3

Figure 2.3: Unshielded collider.

V1

V2

V3

Figure 2.4: Chain.

V1

V2

V3

Figure 2.5: Fork.

In the next pages we will mostly focus on directed acyclic graphs (DAG),
which are directed graphs that contain no cyclic paths, and partially directed
acyclic graphs (PDAG), which are DAGs that contain undirected edges.
A DAG can be used to represent causal relationships between nodes. What
we need to investigate whether or not there is this relationship, is how to
link the concept of dependence and causality.
We start analyzing Figure 2.6 and assuming that rain and watering the gar-
den are the only causes of the mud in the garden. As we know, and as we can
see in the picture, both rain and watering the garden cause mud, but they
are not related. Furthermore, knowing that it has not rained, if we know
that there is mud in our garden, we can infer about the garden watering.
That means that in some way rain and garden watering are linked when we
know something about mud.
A concept which is fundamental for our purpose is the d-separability (di-
rected separation).

De�nition 1. Given a causal graph G = 〈V,E〉 if V1 and V2 ∈ V and Q
is a set of vertices in G that does not contain V1 and V2 then V1 and V2
are d-separated given Q in G if and only if there exist no undirected path U

between V1 and V2 such that

i. every collider on U is either in Q or else has a descendant in Q.

ii. no other vertex on U is in Q.

To explain this concept with simpler words, here is the procedure to follow
if we want to know whether V1 and V2 are d-separate given Q ∈ V\{V1, V2}

1. Find all the undirected paths from V1 to V2.

2. Check one by one all paths

• If not all the colliders or the descendants of colliders which are in
the path are also in Q the path is blocked.

Rain

Mud

Watering garden

Figure 2.6: Example causality.

7

• If at least one non-collider which is in the path is also in Q the
path is blocked.

3. If all the paths are blocked V1 to V2 are d-separated given Q.

According to that de�nition, vertices can have the property to be ON or
OFF in a certain path. If they let the information pass, they are ON (the
middle node in forks, and chains), otherwise they are OFF (the middle node
in colliders). Conditioning on a set of nodes, makes the status of those nodes
on which we are conditioning change. This explains why, when we know that
there is the mud, we can know whether someone has watered the garden or
not: the collider blocks the information between rain and garden watering
but, conditioning on it, the information can �ow. For example, looking at

X Y Z

V

W

Figure 2.7: Example d-separation.

Figure 2.7 we want to infer whether:

i. X is d-separated from V given Z: the only path between X and V
is X → Y → Z ← V . The vertex Y is ON and the vertex Z is OFF.
Conditioning on Z, we change its status so the �ow of information passes.
The two nodes are not d-separated.

ii. X is d-separated from W given Z: the only path between X and W is
X → Y → Z → W . Both vertices Y and Z are ON. Conditioning on
Z, we change its status so the �ow of information is blocked. The two
nodes are d-separated.

In a graphical model, the nodes of a graph are variables which are charac-
terized by a probability distribution. The structure of some graphs, such as
DAG, entails the conditional independent relationship among the variables.
Assuming that X and Y are two variables, fX and fY their density and fX,Y
their joint density, X and Y are independent if their joint density is equal
to the product between the density of X and the density of Y :

fX,Y = fXfY .

Generalizing this concept, X and Y are conditionally independent given a
set of variables Z if the joint density of X and Y given Z is equal to the
product between the density of X given Z and the density of Y given Z:

fX,Y |Z = fX|ZfY |Z.

8

For a graph G we then have its nodes V and the probability distribution
over the nodes P (V), and we will denote it as: 〈G, P 〉. A DAG G and
a probability distribution P (V) over the node V of G satisfy the Causal
Markov condition if and only if

∀X ∈ V, X⊥⊥[V \ (Desc(X) ∪ PaG(X))] | PaG(X).

We can write the joint density function satisfying the Markov condition over
the nodes V as:

f(V) =
∏
X∈V

f(X | PaG(X)).

The Markov condition states that to learn about an event we only need to
know its direct causes; knowing more about the undirect causes does not
add any more information. The graphs are Markov equivalent when they
imply the same independence relations de�ned by the Causal Markov prop-
erty. Markov equivalent graphs have the same skeleton and consist of the
same set of immoralities (Flesch and Lucas 2007). Two other interesting
properties of DAGs and P (V) are the Causal Minimality condition and the
Faithfulness. We say that 〈G, P 〉 satisfy the Minimality condition if and
only if for all proper subgraphs H of G with vertices V, 〈H, P 〉 do not sat-
isfy the Causal Markov condition. A probability distribution P (V) over a
DAG G is Faithful if and only if all the conditional independence relations
entailed by P arise from the Causal Markov condition applied to G. It might

X

Y

Z

Figure 2.8: Example Faithfulness.

happen that the Causal Markov property entails other types of conditional
independence, which could "erase" the dependence between variables that
are dependent according to the Markov property. This might be the case
when the quantitative causal e�ects between two variables are exactly the
opposite in two di�erent paths. Considering for example Figure 2.8: X and
Z are not d-separate given Y. If we calculate the Pearson partial correlation

ρXZ|Y =
ρXZ − ρXY ρY Z√
1− ρ2XY

√
1− ρ2Y Z

, it turns out that it is equal to zero when

ρXZ = ρXY ρZY . If this happens, the graph is unfaithful.
We can now �nd a link between the causal dependency (d-separation) and
the statistical dependency (fX,Y = fXfY). This is the key point that en-
ables us to use graphical models to represent the conditional independent
relationships among variables. The main result is:

9

Theorem 1. P(V) is faithful to DAG G with vertex set V if and only if for

all disjoint set of vertices X, Y and Z, X and Y are independent conditional

on Z if and only if X and Y are d-separated given Z

2.2 PC algorithm

In the literature there exist several algorithms used for learning graphical
models. They can work backwards: they start with a complete graph, and
they remove edges according to some rules. There exist also forward algo-
rithms: the starting point is a graph with no edges, and they keep going
on adding edges until all the necessary ones have been added. Moreover,
we can choose among di�erent criteria to check which graph best represents
the conditional independence among the variables. We can use score based
methods: they consider a score function and select the graph which mini-
mizes or maximizes that score. Typical score function are the BIC, AIC or
the posterior probability given the data(Pe'er et al. 2001). Another possibil-
ity is a constraint-based method: the absence or presence of edges is entailed
by the conditional independence among variables.
The PC (Spirtes, Glymour, and Scheines 2000) is an algorithm widely used
to discover causal structures. It is a constraint based method which uses a
structured backward search. Given input data, the output is either a class of
DAGs, described as a PDAG, or a DAG. In order to have as output a graph
or a class of graphs faithful to the population distribution, the following
assumptions must be ful�lled:

• The set of observed variables V is causally su�cient: every common
cause of any two or more variables either is in V or has the same value
for all units in the population.

• Every unit in the population has the same causal relation among vari-
ables.

• The distribution of the observed variables either is faithful to an acyclic
directed graph of the causal structure or linearly faithful to such a
graph.

• The statistical decisions required by the algorithm are correct for the
population.

The PC algorithm consists of 3 phases which are brie�y described in Algo-
rithm 1 - 2 - 3

Phase 1. Skeleton

Phase 2. Collider

Phase 3. Transitive

10

Algorithm 1 SKELETON phase

Input: data, α
Output: Gund : skeleton of the DAG & Sepset
1: Form the complete undirected graph Gund
2: d = 0
3: repeat
4: for each ordered pair of adjacent vertices X and Y in G do
5: if |adj (X,Gund)\Y |≥ d then
6: for each subset S ⊆ adj(X,Gund)\Y and |S |= d do
7: test X ⊥⊥ Y | S and calculate the p-value p of test 2.1
8: if p ≥ α then
9: remove the edge X − Y from Gund
10: record S in Sepset(X,Y)
11: break the for loop at line 6
12: end if
13: end for
14: end if
15: end for
16: d = d+ 1
17: until |adj (X,Gund)\Y |< d

As we can see in the skeleton phase (Algorithm 1), the input are the data
and a threshold α. Gund indicates an undirected graph while Adj (X,Gund)
indicates all the nodes adjacent to X in Gund . In this phase it is tested
whether each pair of variables is linked by an edge or not. The aim of the
test is to establish if two variables X and Y are independent or conditionally
independent given a subset of the remaining variables S. The test is the
following:

H0 : X ⊥⊥ Y |S against H1 : X 6⊥⊥ Y |S (2.1)

S may be the null set. The key points of this phase are that:

1. The algorithm does not perform the conditional interdependency test
given all the possible subsets. The tests that are performed are only
the ones where the conditioning set is a subset of the adjacent nodes
of one of the two tested variables.

2. The cardinality of the conditioning set increases step by step.

Furthermore, the algorithm keeps in memory the subset which causes the
separation of the two variables (called Sepset). Avoiding to test all the con-
ditioning subsets is computationally very e�cient. The output of this phase
is an undirected graph Gund and Sepset. In Phase 2 some edges are orien-
tated. The input is the undirected graph Gund and Sepset. This step is a
direct consequence that the unshielded colliders are the only triples in which

11

Algorithm 2 COLLIDER phase

Input: Gund and Sepset
Output: Gcoll
1: for each triple in Gund such as X and Y are adjacent, Y and Z are

adjacent, X and Z are not adjacent do
2: if Y 6∈ Sepset(X,Y) then
3: orient the triple X − Y − Z in this way X → Y ← Z in the graph

G
4: end if
5: end for

the nodes at the two ends are independent, but dependent conditionally on
the middle one. The output is a mixed graph Gcoll . Finally, in the last step,

Algorithm 3 TRANSITIVE phase

Input: Gcoll
Output: G
1: repeat
2: if X → Y and Y − Z and X and Z are no adjacent then
3: orient the triple in this way X → Y → Z in G
4: end if
5: if X − Y and there is a directed path from X to Y then
6: orient X → Y in G
7: end if
8: until until no more edges can be oriented

some others edges are orientated thanks to the transitive property. The in-
put is the graph Gcoll and the output is the �nal graph with more edges
oriented.
The main trend in augmenting α is to �nd more edges, because the thresh-
old to refuse independence becomes higher. As the variables are a�ected
with increasing noise, the PC algorithm has more di�culty in �nding the
underlying dependencies. When a graph is characterized by di�erent degree
of dependency, for example when in linear relationship the coe�cients have
di�erent orders of magnitude, it is possible that the algorithm is not able to
�nd all dependencies.
In order to analyze biological data, which are highly non-linear and may
not have Gaussian noise, this algorithm is not appropriate (Voortman and
Druzdel 2008). This is due to the fact that the test which is performed, the
gaussCItest in R (Kalisch 2012; Hauser 2012) is suitable for linear data
with Gaussian noise. The test consists of the following phases:

1. Compute the partial correlation r of the samples X and Y given S.

12

2. Calculate the z-Fisher transformation as

Z =
1

2

√
n− |S | −3 log

(1 + r

1− r

)
where n is the number of observations and |S | is the number of vari-
ables in the conditioning set.

3. Knowing that under the hypothesis X ⊥⊥ Y | S, Z ∼ N(0, 1), calculate
the corresponding p-value of the test.

Another issue which arises is the erasing of shielded collider. In real data,
unfortunately, not all the hypothesis which are necessary are ful�lled. This
can lead to have an edge that at the end of the Phase 2 is directed as↔ due
to the presence of colliders. The problem is that in the following step this
arrow is seen as an undirected arrow and may be redirected as → or as ←.
Finally the PC algorithm is not able to orient edges when some structures
as the one in Figure 2.9 are found. This is due to the fact that, whatever the

X

Y

Z

Figure 2.9: Example Triangle.

orientation of the arrows, the algorithm cannot di�erentiate among distribu-
tions of variables with edges orientated in one way or the other way around.
In the next two sections I will investigate how to solve the problem of non-
linearity and non Gaussianity in biological data. We will consider a de-
pendency test which takes into account non-linearity and non-Gaussianity.
Section 2.6 will analyze a possible way to discover more causal relationships.

2.3 Kernel PC

The �rst approach to overcome the problems with the PC is to use a kernel-
based non-parametric test for independence which can be generalized to a
conditional version. We analyze this method, not only because it is able to
recover non-linear features, but also because it will let us �nd an estimator
which characterizes independence.

2.3.1 Kernel

De�nitions and theorems for this sections are taken from (Shawe-Taylor and
Cristianini 2004; Tillman 2009; Gretton et al. 2005).
A kernel is a function k : X× X→ R such as ∀ x, z ∈ X satis�es

k(x, z) = 〈φ(x), φ(z)〉H

13

where X is the space of all the random variables, φ : X → H is a mapping
from X to a Hilbert feature spaceH. I will refer to this function as embedding
function, feature map or embedding map. The kernel measures the distance
between data after some transformations on the data have been applied. The
aim of using kernel functions is that, thanks to the feature map, the data are
embedded in a space where linear patterns can be found. Closely related to

Figure 2.10: Example of the embedding function φ.

the kernel function is the associated Gram matrix K, also known as kernel
matrix, with entries Ki,j = k(xi, xj). A symmetric matrix is positive semi-
de�nite if its eigenvalues are all non-negative. Gram matrices are always
positive semi-de�nite. A function satis�es the �nitely positive semi-de�nite
property if it is symmetric and the matrices formed by restriction to any
�nite subset of the space X are positive semi-de�nite. That means that
∀N ∈ N, ∀{x1, . . . , xN} ∈ X, ∀{α1, . . . , αN} ∈ RN

N∑
i=1

N∑
j=1

αiαjk(xi, xj) = αTKα ≥ 0.

Thanks to the Characterization theorem, we can a�rm that this property
characterizes kernel.

Theorem 2. Characterization TheoremA function k : X×X→ R which

is either continuous or has a �nite domain, can be decomposed into a feature

map φ into an Hilbert space H applied to both its arguments followed by the

evaluation of the inner product in H if and only if it satis�es the �nitely

positive semi-de�nite property.

Furthermore, given a function k which satis�es the �nitely semi-de�nite
positive property, k satis�es the following reproducing property:

φ(x) = 〈φ(·), k(x, ·)〉H ∀φ ∈ Hk, ∀x ∈ X.

14

We will refer to its corresponding feature spaceHk as its Reproducing Kernel
Hilbert Space (RKHS). It is important to point out that, assuming to have a
function which satis�es the �nitely semi-positive property, we can deal with
data in an embedded space that we do not need to explicitly know. We can
treat k(x, ·) as a feature map and, according to the reproducing property:

k(x, z) = 〈k(x, ·), k(z, ·)〉Hk
∀x, z ∈ X.

Thanks to the Moore Aronszajn theorem, we can show that all kernels which
are symmetric and positive de�nite are reproducing kernel and uniquely de-
�ne corresponding RKHS. In the next pages we will focus our attention on
symmetric positive de�nite kernels.
Given two separable RKHS spaces H and G and their orthonormal bases
ui and vj we consider the linear operator C : G → H. Provided the sum
converges, the Hilbert-Schmidt norm of C is:

‖ C ‖2HS=
∑
i,j

〈Cvj , ui〉2H.

A linear operator C : G → H is called Hilbert-Schmidt operator if its HS
norm exists and is denoted as HS(G,H). Assuming h ∈ H and g ∈ G, the
tensor product h⊗ g is de�ned as

(h⊗ g)f = h〈g, f〉G ∀f ∈ G.

We will �rst de�ne the independence test and then generalize it to a condi-
tional independence test.

2.3.2 Test of Independence for kPC

Assuming that we have two random variables X ∈ X and Y ∈ Y, let k(·, ·) : X× X → R
and l(·, ·) : Y × Y → R be symmetric reproducible kernels for HX and HY

(Gretton et al. 2005; Gretton et al. 2008). Assuming we have n samples, we
can de�ne the mean map, its empirical estimator and the cross covariance
operator CX,Y : HY → HX as follow:

µX = E[k(x, ·)] ∈ HX µ̂X =
1

n

n∑
i=1

k(xi, ·)

µY = E[l(y, ·)] ∈ HY µ̂Y =
1

n

n∑
i=1

l(yi, ·)

CX,Y = ([k(x, ·)− µX]⊗ [l(y, ·)− µY]) ∈ HS(HY,HX)

The HSIC is the Hilbert Schmidt squared norm of the cross covariance:

HX,Y =‖CX,Y ‖2HS .

15

The cross-covariance operator can be seen as a generalization of the cross co-
variance matrix when we deal with an in�nite dimensional feature spaces(Gretton
2014). To de�ne the empirical estimate, assuming we have n samples, let K
and L be the Gram matrices of k(·, ·) and l(·, ·). We are interested in the
centered Gram matrices K̃ and L̃, thus we de�ne H = In− 1

n1n1
T
n where In

is the identity matrix with n row and column and 1n is a vector full of ones
of length n. So K̃ = HKH, L̃ = HLH. The empirical estimate of HX,Y is:

ĤX,Y =
1

n2
tr(K̃L̃).

HX,Y = 0 if and only if X⊥⊥Y. It is very di�cult to reach exactly the value 0
when we are testing two variables, hence we need to test whether the variables
are independent or not. In the paper Gretton et al. 2008 are proposed two
di�erent ways to set the test H0 : x ⊥⊥ y against H1 : x 6⊥⊥ y

1. Permutation test

2. Gamma test

The desired output is a p-value to decide if the variables are independent or
not.

Permutation Test

This approach use a Monte Carlo resampling technique. It consists on the
following steps:

1. Calculate HX,Y .

2. Permute p times the ordering of Y obtaining {Y(1), . . . , Y(p)} and then
calculate the p di�erent values of HX,Y(i) , i ∈ {1, . . . , p}.

3. Determine under which p-value α the variables are independent calcu-
lating the mean value of how many times HX,Y ≥ HX,Y(i) .

This method works because we assume that permuting Y destroys, if there is,
the dependence between X and Y. If X and Y are independent HX,Y would
take values close to HX,Y(i) . This leads to a high α. On the other hand, if X
and Y are dependent, we would �nd a gap between HX,Y and HX,Y(i) which
lets us �nd a low p-value.

Gamma Test

In this approach we approximate the value of the asymptotic distribution
of the empirical estimate HSIC(X,Y) under the null hypothesis as a two-
parameters Gamma distribution. We then suppose that

nHSIC∼ Gamma(α, θ) ⇒ HSIC∼ Gamma(α, θn)

16

where α is the shape parameter and θ is the scale parameter.

α =
E[HSIC]2

V ar(HSIC)
, θ =

nV ar(HSIC)

E[HSIC]

To compute this distribution we use empirical estimations of the mean and
the variance under the null hypothesis. To �nd the p-value, we check to
which quantile HX,Y corresponds.

2.3.3 Test of Conditional Independence for kPC

Let X,Y,X,Y, k(·, ·), l(·, ·),HX ,HY , K̃, L̃ be as de�ned in 2.3.2. Suppose
we want to test X ⊥⊥ Y | Z where Z is a set of variables de�ned in the
space of the random variables Z. Let m(·, ·) : Z× Z→ R be the symmetric
reproducible kernel for HZ and M̃ be the centered Gram matrix for m. We
de�ne the extended variables Ẍ = (X,Z) and Ÿ = (Y,Z). The conditional
cross covariance is de�ned as:

CX,Y |Z = CẌZC
−1
ZZCZŸ .

Therefore, we de�ne a conditional version of the HSIC as

HX⊥⊥Y |Z =‖CX,Y |Z ‖2HS .

X and Y are conditionally dependent given Z if and only if HX⊥⊥Y |Z = 0
(Fukumizu et al. 2007). We can de�ne an empirical estimator of HX⊥⊥Y |Z as

ĤX⊥⊥Y |Z =
1
2
tr(K̃L̃−2K̃M̃(M̃+εIn)−2M̃L̃+K̃M̃(M̃+εIn)−2M̃L̃M̃(M̃+εIn)−2M̃)

where ε is a regularization parameter. The calculation of ĤX⊥⊥Y |Z is com-
putationally very expensive. In Tillman, Gretton, and Spirtes 2009 some
simpli�cations are introduced, assuming we have n samples:

1. Use an incomplete Cholesky decomposition for the kernel matrices
K,L,M .

K = PXGXG
T
XP

T
X where K ∈ n× n, PX ∈ n× n, GX ∈ n× h

In this way K̃ = HKH = HPXGXG
T
XP

T
XH (repeat the same pro-

cedure with L and M)

We have to �x the parameter h which we want to be much less than n.

2. Use a thin single value decomposition for HPXGX

HPXGX = UXSXVX where UX ∈ n× h, SX ∈ h× h, VX ∈ h× h

In this way K̃ = UXS
2
XU

T
X (repeat the same procedure with L and

M)

17

3. De�ne S̄Xi,i = S2
Xi,i

, S̄Y i,i = S2
Yi,i

, S̄Zi,i =
S2
Zi,i

S2
Zi,i

+ε

and ḠX = UX S̄XU
T
X , ḠY = UY S̄Y U

T
Y , ḠZ = UZ S̄ZU

T
Z

We have to �x the parameter ε "small enough"

Finally

ĤX⊥⊥Y |Z =
1

n2
tr(ḠXḠY − 2ḠXḠZḠY + ḠXḠZḠY ḠZ).

As in the non-conditional case, we need to calculate the p-value. Three
di�erent ways are investigated:

1. Permutation-Cluster test

2. Permutation-Residuals test

3. Residuals test

Permutation - Cluster Test

This method is similar to the permutation method of the non-conditional
test. The di�erence lies in the fact that we have to take into account the
conditioning set of variables. In order not to change the marginal distribution
of Y given Z we follow the following steps:

1. Calculate HX,Y |Z.

2. Cluster Z.

3. Permute p times the elements of Y which fall within the set induced
by the clustering of Z.

4. Calculate the p values of HX⊥⊥Y(i)|Z.

5. Determine under which p-value α the variables are independent calcu-
lating the mean value of how many times HX,Y |Z ≥ HX,Y(i)|Z .

With this method we have to �x the number of clusters η

Permutation - Residuals Test

Due to the large numbers of parameters to be �xed we introduce the next
method which instead of clustering the Z, permutes the residuals of a re-
gression. It consists on the following steps:

1. Calculate HX,Y |Z.

2. Regress Y on Z and calculate the residuals ry.

18

3. Permute p times the residuals ry obtaining {ry(1), . . . , ry(p)} and then

calculate Ŷi = f(Z) + ry(i), i ∈ {1, . . . , p}.

4. Calculate the p values of HX⊥⊥Ŷi|Z.

5. Determine under which p-value α the variables are independent calcu-
lating the mean value of how many times HX⊥⊥Y |Z ≥ HX,Ŷ(i)|Z

.

Residuals Test

With this method we test the residuals of the regression to check if the
variables are conditionally independent. The steps are:

1. Calculate HX,Y |Z.

2. Regress X on Z and calculate the residuals rx.

3. Regress Y on Z and calculate the residuals ry.

4. Test whether rx and ry are independent with HSIC. We can then use
the Permutation or the Gamma test.

Choosing a wrong regression method, we could �nd dependence when this is
not present. A simple example is the following: suppose we have the simple
graph shown in Figure 2.11.

X Y

Z

Figure 2.11: Example Residual test.

where
Z ∼ N(0, 1)

X = Z2 + U(−1,+1)

Y = Z2 + Gamma(1, 2).

We know that X ⊥⊥ Y | Z. We then expect to �nd that the residuals of
the regression are independent. If we had used a wrong regression method,
for example a linear one as shown in Figures 2.12 and 2.13, the residuals,
shown in Figures 2.14 and 2.15, would be dependent, which would lead us
to suppose that X 6⊥⊥ Y | Z. If we use an appropriate regression method,
this error is avoided. Figures 2.18 and 2.19 show the residuals which seem
independent.

19

●

●
●

● ●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●●

●● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●
●

● ●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3 4

0
5

10

●● ● ● ●
● ●

●● ●●●
●

● ● ●●● ● ● ●
●

●● ●● ● ●●
●●●●

●● ●● ● ● ●
●

●●●●
●● ●

● ● ● ●● ●●●●●
● ●● ●● ● ●●● ●●●● ● ●● ●● ●●●● ● ●● ●●● ●● ●

●
●●●● ● ● ●●●

●
● ● ● ●

●
●● ● ●●● ● ●

●
●●●● ●● ● ●

● ●●● ●
● ● ● ●●●●

●
● ● ●● ● ●

●● ●●● ● ●●●●
●

● ●● ●● ●● ● ●● ●●● ●●● ● ●
●

●●● ●●●● ● ●●● ● ●
●●● ● ● ●

●● ●●●
● ●

● ●
● ●●●

●●●
● ● ● ●●●●● ●● ● ● ●

● ● ● ●●●●
●

● ● ●● ●● ●●●● ●● ● ● ●
●

●● ● ● ●
● ●

●
●●● ●● ●● ●●● ●●●●●●● ● ● ●

● ● ●
● ●●●●● ●● ●● ● ●● ●●●● ●● ● ● ●● ●●

●

Z

X

Figure 2.12: In black are represented the

sample points, in red are shown the predicted

values using a linear regression to �t x given

z.

●

●

● ●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●●
●●●

● ●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

−3 −2 −1 0 1 2 3 4

0
5

10
15

●● ● ● ●
● ●

●● ●●●
●

● ● ●●● ● ● ●
●

●● ●● ● ●●
●●●●

●● ●● ● ● ●
● ●●●●

●● ●
● ● ● ●● ●●●●●

● ●● ●● ● ●●● ●●●● ● ●● ●● ●●●● ● ●● ●●● ●● ●
●

●●●● ● ● ●●●
●

● ● ● ●
●

●● ● ●●● ● ●
● ●●●● ●● ● ●

● ●●● ●
● ● ● ●●●●

●
● ● ●● ● ●●● ●●● ● ●●●●

●
● ●● ●● ●● ● ●● ●●● ●●● ● ●

●
●●● ●●●● ● ●●● ● ● ●●● ● ● ●●● ●●● ● ●

● ●
● ●●●

●●●● ● ● ●●●●● ●● ● ● ●
● ● ● ●●●●

●
● ● ●● ●● ●●●● ●● ● ● ●

●
●● ● ● ●

● ●
●

●●● ●● ●● ●●● ●●●●●●● ● ● ●
● ● ●● ●●●●● ●● ●● ● ●● ●●●● ●● ● ● ●● ●●

●

Z

Y

Figure 2.13: In black are represented the

sample points, in red are shown the predicted

values using a linear regression to �t y given

z.

RESIDUALS

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ● ●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●
●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3 4

0
5

10
R

es
id

ua
ls

 o
f X

Z

Figure 2.14: The residual of the linear regres-

sion.

RESIDUALS

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●●

●●●
● ●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

● ●

●
●

●
●

●

●

●
●

●

●

●

●

−3 −2 −1 0 1 2 3 4

0
5

10
R

es
id

ua
ls

 o
f Y

Z

Figure 2.15: The residual of the linear regres-

sion.

20

●

●
●

● ●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●●

●● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●
●

● ●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3 4

0
5

10

●

●

● ●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●● ●

●

●●
●

●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ● ●
● ●

●

●
●

●

●

●
●

●

●●
●

●

●

●

● ●
●

●

● ● ●
●

●

●● ●●●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●●

● ●●●
●●●

●

●

●

●

● ●
●

●

●●
●

●●

●●
●

●
● ●

●
●●●

●
●

●

●

●
●

●

●

●

●

Z

X

Figure 2.16: In black are represented the

sample points, in red are shown the predicted

values using a more appropriate regression to

�t x given z.

●

●

● ●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●●
●●●

● ●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

−3 −2 −1 0 1 2 3 4

0
5

10
15

●

●

●
●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●
●

●

●

● ●
●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●● ●

●

●● ●●●●

●

●

●

●

●

●

●●●
●

●

●
●

●●

●

●

●

● ●

●●

●

●

●

●

●

● ●
●

● ●

●

●

●
● ●

●
●

●

●

●

●

●●●● ●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

● ● ●● ●

●

●
●

●

●
●

●
●

●●
●

●

●

●
● ●

●

●

● ● ●●

●

●● ●●●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

● ●●●
●●●

●

●

●

●

● ●
●

●

●●
●

●●

●● ●
●

● ●
●

●●●●
●

●

●

●
●

●

●

●

●

Z

Y

Figure 2.17: In black are represented the

sample points, in red are shown the predicted

values using a more appropriate regression to

�t y given z.

RESIDUALS

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3 4

−
1.

0
0.

0
0.

5
1.

0
R

es
id

ua
ls

 o
f X

Z

Figure 2.18: The residual of a more appro-

priate regression.

RESIDUALS

●
●

●

●

●

● ●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

● ●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

−3 −2 −1 0 1 2 3 4

−
0.

5
0.

5
1.

5
2.

5
R

es
id

ua
ls

 o
f Y

Z

Figure 2.19: The residual of a more appro-

priate regression.

21

2.4 Brownian PC

The second idea to solve the problem of �nding non-linearity in biological
data is to use the Brownian distance correlation. The Brownian distance
correlation is a measure of the dependence between variables which may not
have the same dimension. This estimator characterizes independence.

From now on, we use the following notations: given a function g ∈ Rp+q
and a weighted function w(t, s), the ‖ · ‖2w-norm in the weighted L2 space of
the function on Rp+q is de�ned by

‖ g(t, s) ‖w=

∫
Rp+q

| g(t, s) |2 w(t, s)dt ds.

We also assume that | · |p denotes the Euclidean norm of a vector in Rp.

2.4.1 Brownian Distance Covariance

Let X ∈ Rp and Y ∈ Rq, fX , fY be the distribution of X and Y and
fX,Y their joint distribution. Assuming that the random variables X and Y
have �nite �rst moments, the Brownian distance covariance is de�ned as the
‖ · ‖w - norm of the distance between the product of the density of X and
Y and their joint distribution (Székely, Rizzo, Bakirov, et al. 2007; Székely,
Rizzo, et al. 2009):

ν2
(X,Y ;w) =‖ fX,Y (t, s)− fX(t)fY (s) ‖2w

=

∫
Rp+q

| fX,Y (t, s)− fX(t)fY (s) |2 w(t, s; ξ)dt ds.
(2.2)

w(t, s; ξ) is a weighted function such that the Brownian distance correlation
is scale invariant and positive for dependent variables. Assuming Γ(·) is the

complete Gamma function and C(d, ξ) =
2π

d
2 Γ(1− ξ

2)

ξ 2ξ Γ(ξ+d2)
, a possible choice

for w(t, s; ξ) is the following:

w(t, s; ξ) =
(
C(p, ξ)C(q, ξ) | t |ξ+pp |s |ξ+qq

)−1
, ξ ∈ (0, 2).

We will always use the simplest case ξ = 1 and thus the weighted function
w(t, s, 1). To abbreviate the notation we will refer to w(t, s; 1) as w(t, s) and
to ν(X,Y ;w) as ν(X,Y).
ν2(X,Y) = 0 if and only if X and Y are independent. We can also de�ne
the Brownian distance correlation R(X,Y):

R(X,Y) =


ν2(X,Y)√

ν2(X,X)ν2(Y, Y)
, ν2

(X,X)ν2
(Y, Y) > 0

0, ν2
(X,X)ν2

(Y, Y) = 0.

22

R(X,Y) ∈ [0, 1]. Given a set of n samples{(X1, Y1), . . . , (Xn, Yn)}, we des-
ignate:

akl =| Xk −Xl |p, āk· =
1

n

n∑
l=1

akl, ā·l =
1

n

n∑
k=1

akl

ā·· =
1

n2

n∑
k,l=1

ak,l Ak,l = ak,l − āk· − ā·l + ā·· .

Similarly, we de�ne
Bk,l = bk,l − b̄k· − b̄·l + b̄··

for the variable Y .
The empirical distance covariance is de�ned as

ν̂2
(X,Y) =

1

n2

n∑
k,l=1

AklBkl

Thanks to the followings two theorems we can state that limn→∞ ν̂(X,Y) = ν(X,Y)
almost surely.

Theorem 3. If (X,Y) = {(X1, Y1), . . . , (Xn, Yn)} is a sample from the joint

distribution of (X,Y), then

ν̂2
(X,Y) =‖ fnX,Y (t, s)− fnXfnY ‖2w

Where fnX(t) = 1
n

∑n
k=1 exp{i〈t,Xk〉}, fnY (s) = 1

n

∑n
k=1 exp{i〈s, Yk〉},

fnX,Y (t, s) = 1
n

∑n
k=1 exp{i〈t,Xk〉 + i〈s, Yk〉} are the empirical characteris-

tic functions.

Theorem 4. If E[X] <∞ and E[Y] <∞, then almost surely

lim
n→∞

ν̂(X,Y) = ν(X,Y)

The reason why the distance covariance is named Brownian is now elu-
cidated. The Brownian motion, known as Wiener process, is a real-valued
stochastic process {W (t), t ∈ Rd} with start in x if (Mörters and Peres 2010):

• W (0) = x.

• The process has independent increments, i.e. for all times
t1 < t2 < · · · < tn the increments W (tn)−W (tn−1),
W (tn−1)−W (tn−2), . . . ,W (t2)−W (t1) are independent.

• ∀ t > 0 and ∀ h > 0, the increments W (t + h) −W (t) are normally
distributed with expectation 0 and variance h.

23

• Almost surely, the function t 7→W (t) is continuous.

We consider two independent Brownian motions {W (s), s ∈ Rp}, {W ′(t), t ∈
Rq}, two random variables X ∈ Rp, Y ∈ Rq with �nite second moments and
the W -centered version of X:
XW = W (X)−

∫ +∞
−∞ W (s)dFX(s) = W (X)− E[W (X) |W]. The Brownian

covariance is de�ned as:

W 2(X,Y) = Cov2W (X,Y) = E[XWX
′
WYW ′Y ′W ′]

where the primed variables X ′ and Y ′ are and i.i.d. copy of the unprimed
X and Y . It turns out that, for arbitrary X ∈ Rp and Y ∈ Rq with �nite
second moments:

ν(X,Y) = W (X,Y).

2.4.2 Test of Independence for bPC

The independence test is already implemented by R in the energy package
(Rizzo and Szekely 2014) with the function dcov.test(). The test is im-
plemented as a permutation test. The output p-value is calculated as 1+m

1+p
wherem is the number of replicates which are greater than the observed value
of the statistic dCov(X,Y) and p is the total number of replicates (personal
communication of M.L.Rizzo)

2.4.3 Test of Conditional Independence for bPC

To generalize the test to a conditional version, we use the Residual test
explained in 2.3.3. The only di�erence is that when we test the residuals,
we use the Brownian independent test in 2.4.2.

24

We can brie�y summarize the possible tests in this way:

kPC

TEST of
DEPENDENCE

Permutation (kP)

Gamma (kG)

TEST of
CONDITIONAL
DEPENDENCE

Permutation
Cluster

Permutation
Residuals

Residuals

Permutation

Gamma

Figure 2.20: Tests in kPC.

bPC

TEST of
DEPENDENCE

Permutation (bP)

TEST of
CONDITIONAL
DEPENDENCE

Residuals Permutation

Figure 2.21: Tests in bPC.

25

2.5 Examples with Simulated Data

Before starting we have to �x three points:

1. The kernel to use in the kPCs .

2. The regression to use in the Residual method (kPCs and bPC) .

3. The clustering to use in kPC Permutation Clustering .

Regarding the point 1, we use a Gaussian kernel, which is a characteristic
kernel. The entries of the Gram matrix will be

k(xi, xj) = exp(−| xi − xj |
2
2

2σ
).

We have to �x the kernel width σ.
With regard to the point 2, we regress the variables with a Generalized
Additive Model (Hastie and Tibshirani 1986). It is a generalization of the
General Linear Model. If we are interested in regressing y on the set of vari-
ables xi, i ∈ {1, . . . , p}, with GAM we assume the process to be generated
by

y = f0 +

p∑
i=1

fi(xi) + ε

where fi are unspeci�ed non-parametric functions and ε is an arbitrary noise
function. To compute this regression with R I use the function gam() in the
library mgcv (Wood 2004; Wood 2011). For the point 3 we use a k-means
algorithm, implemented in R by the function kmean().

2.5.1 Test of Independence

We will �rst investigate how well the previous tests of independence work.
Figures 2.22-2.25 represent data simulated with non-linear dependences; Fig-
ure 2.26 illustrates an example of independence among variables. The num-
ber of observations is always three hundred. Table 2.1 shows the correspond-
ing p-values of the tests.

Figure 2.22: y = sin(x) +N(0, 0.25). Figure 2.23: y = sin(x) +N(0, 1).

26

Figure 2.24: y = sin(x) +N(0, 4). Figure 2.25: y =
√
x+N(0, 25).

Figure 2.26: y = N(0, 25) x = U(−2, 4).

Test Figure 2.22 Figure 2.23 Figure 2.24 Figure 2.25 Figure 2.26

kP 0 0 6.7e-04 0.24 0.54
kG 0 8.8e-16 9.5e-06 0.24 0.56
bP 9.99e-04 1.2e-03 1.2e-02 6.3e-3 0.35

Table 2.1: Dependence test. kP = kernel based test of dependence with
Permutation test. kG = kernel based test of dependence with Gamma test.
bP = Brownina test of dependence with Permutation test. All the p-values
are a mean of 10 di�erent repetitions of the test. The simulated sample size
is 300 for each function.

Figures 2.22 - 2.24 represent the same function with an increasing ad-
ditive noise. Notice that the p-value is increasing too but is always very
low. We can reject the independence. In general, as the noise increases,
it becomes more di�cult to detect causality. Figure 2.25 shows a pattern
which is hardly recognizable. We can see how the two kernel based tests
have di�culty in identifying it but the Brownian test succeeds. Finally, as
we would expect, the independence is found in Figure 2.26.

27

Figure 2.27: y = sin(x) +N(0, 4). Figure 2.28: y =
√
x+N(0, 25).

Figure 2.29: y = N(0, 25) x = U(−2, 4).

Figures 2.27-2.29 show the p-value (y-axis) of the data illustrated in
Figures 2.24-2.26 when σ = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}
(x-axis). We notice that the Permutation and the Gamma test always give
very similar results. We therefore always use the Gamma test since it is
computationally more e�cient. Moreover, we can see that when the data
are dependent (Fig 2.27-2.28), choosing a small σ leads to �nd independence.
This could be due to the fact that, since we use Gaussian kernel, the basis
function are too narrow to �nd dependence. We will focus our attention on
σ ∈ (0.1, 10) in order to analyze a big range of values that the p-value can
take.

2.5.2 Test of Conditional Independence

In this section we will investigate di�erent ways to detect conditional inde-
pendence, which characterize each algorithm. Table 2.2 shows which param-
eters have to be tuned for each algorithm, taking into account that we use

28

the Gamma test for the dependence test when using HSIC.

kPCs Permutation kPC
Residuals bPC

kPC Permutation
Cluster

kPC Permutation
Residuals

Permutation p # Permutation p # Permutation p

Kernel width σ Kernel width σ Kernel width σ

Regularization
parameter ε

Regularization
parameter ε

of column in ICD h # of column in ICD h

of clusters η

Table 2.2: Free parameters

X

Y

Z

V

W T

Figure 2.30: Graph.

Analyzing Figure 2.30 where:

X ∼ 1

2
Gamma(2, 3)

Y =
1

3
X2 + N(−2, 1)

Z ∼ N(4, 1)

V = 0.2Y + 0.05X3 + cos(Z) + U(−1,+1)

W = cos(Y + V) + N(2, 1)

T = U(−1,+1).

we illustrate how the regularization parameter ε and the number of columns
h in the ICD a�ect the p-value of the test in the kPC Permutation tests. For
this purpose the following tests are computed:

29

Test 1. X ⊥⊥ V | Y (they are dependent, we expect a low p-value).

Test 2. X ⊥⊥ Z | Y (they are independent, we expect a high p-value).

30

TEST 1: X ⊥⊥ V | Y

h=10
ε = 0.01 ε = 0.1 ε = 1 ε = 10

h=30
ε = 0.01 ε = 0.1 ε = 1 ε = 10

TEST 2: X ⊥⊥ Z | Y

h=10
ε = 0.01 ε = 0.1 ε = 1 ε = 10

h=30
ε = 0.01 ε = 0.1 ε = 1 ε = 10

Figure 2.31: In these 16 pictures the p-value(y-axis) is plotted when σ takes
the values 0.1, 1, 10. The �rst 8 refer to the test X ⊥⊥ V | Y (we should �nd
a small p-value), the latter 8 to the test X ⊥⊥ Z | Y (we should �nd a high
p-value). In each of the two blocks, looking at the plot: from left to right, ε
increases and from the top to the bottom, h increases. The sample data are
100.

31

When h is low (= 10), ε in�uences the value of the p-value more. Nev-
ertheless, for a low computational cost we should use a low h. In order
to compensate the loss of information, it would be better to use a high σ.
Looking at the smoothness of the curves, we �nd that the lower h we use,
the more instable the result is, because it takes values in a greater range.
We have to pay attention not to choose too high ε otherwise the e�ect of the
conditioning variables will be removed. As we can see in Table 2.2, when
using the kPC Permutation - Cluster and kPC Permutation-Residual tests,
lots of parameters must be �xed. The following example illustrates that
these algorithms have very similar performances. Additionally, the p-value
will be evaluate under di�erent signal to noise ratios (SNR). Given a the
relation Y = Xβ+ ε, where ε is the noise, the signal to noise ratio is de�ned
as

SNR =
var(Xβ)

var(ε)
.

We now consider the structures in Figures 2.32 - 2.34. The total amount
of data for each function is 200. To perform the kPC Permutations test we
�xed the parameters as follows: ε = 0.1, h = 10, perm = 150, η = 4. We
use on purpose three di�erent kinds of basis functions (Fourier, polynomial,
piecewise linear). We want to analyze whether the algorithms work better
with di�erent kind of functions.

The Figures 2.37, 2.38, 2.41, 2.42, 2.45, 2.46, 2.49, 2.50, 2.53, 2.54, 2.57,
2.58 represent the p-value when σ takes the values 0.1, 0.5, 1, 5, 10. Looking
at each pair of Figures 2.37-2.38, 2.41-2.42, 2.45-2.46, 2.49-2.50, 2.53-2.54,
2.57-2.58 we cannot see any relevant di�erences. We decide to always use the
kPC Permutation Residuals. Doing so, we do not have to �x the parameter
η. From these pictures it is also clear that we do not have any restriction
on σ. We can a�rm that, even when the noise increases, the algorithm
recognizes that there is (or not) an underlying function. We did not �nd
any set of functions characterized by a basis for which the algorithms were
working better or worse. Inspecting other examples as well, it turns out that
all the algorithms might be a�ected by the following errors. When a variable
has too much noise, a dependency might not be found, this can in�uence the
subsequent stage. Since the conditioning set is a subset of the adjacent node
of one of the two variables we are testing, this leads to test the variables
conditioning on not all the sets it should be and to miss the test where
two variables would be independent. It could also happen that two nodes
are found to be independent before the time due. This means that the two
tested nodes are independent given a set S, but the algorithm �nds them to
be independent given a subset of S. This could cause a misorientation on
the arrows. Furthermore, we have discovered that having variables with a
big amount of SNR is not always positive. Assume we have a chain structure
as in Figure 2.4 where both V2 and V3 have high SNR. If we want to test
V2 ⊥⊥ V3 | V1 we expect to �nd dependence. V1 and V2 describe "in the

32

X

Y

Z

Figure 2.32: Example chain - Fourier ba-

sis.

where:
X = U(−2,+2)

Y = sin(4X) + Normal

Z = cos(7Y) + 2 sin(Y) + Uniform.

X

Y Z

Figure 2.33: Example fork - polynomial

basis.

where:
X = U(−1,+1.5)

Y =
X2

6
+
X6

10
+ Normal

Z =
2X3

3
+X + Uniform.

XY

Z

Figure 2.34: Example collider - piecewise

constant basis.

where:
X = U(−1,+1)

Y = U(−1, 1)

Z =


0.2 + Normal , XY ∈ (−1

2
,
1

2
)

0.8 + Normal , XY > 1

0.45 + Normal XY < −1

Normal else.

33

SNR = 3

Figure 2.35: Referring to Figure 2.32,
it is the plot of X vs Y when SNR = 3.

Figure 2.36: Referring to Figure 2.32,
it is the plot of Y vs Z when SNR = 3.

TEST: X ⊥⊥ Z | Y

Figure 2.37: p-value of the kPC Per-
mutation Cluster test.

Figure 2.38: p-value of the kPC Per-
mutation Residual test.

SNR = 0.5

Figure 2.39: Referring to Figure 2.32,
it is the plot of X vs Y when
SNR = 0.5.

Figure 2.40: Referring to Figure
2.32, it is the plot of Y vs Z when
SNR = 0.5.

TEST: X ⊥⊥ Z | Y

Figure 2.41: p-value of the kPC Per-
mutation Cluster test.

Figure 2.42: p-value of the kPC Per-
mutation Residual test.

34

SNR = 2

Figure 2.43: Referring to Figure 2.33,
it is the plot of X vs Y when SNR = 2.

Figure 2.44: Referring to Figure 2.33,
it is the plot of X vs Z when SNR = 2.

TEST: Y ⊥⊥ Z | X

Figure 2.45: p-value of the kPC Per-
mutation Cluster test.

Figure 2.46: p-value of the kPC Per-
mutation Residual test.

SNR = 0.5

Figure 2.47: Referring to Figure 2.33,
it is the plot of X vs Y when
SNR = 0.5.

Figure 2.48: Referring to Figure
2.33, it is the plot of X vs Z when
SNR = 0.5.

TEST: Y ⊥⊥ Z | X

Figure 2.49: p-value of the kPC Per-
mutation Cluster test.

Figure 2.50: p-value of the kPC Per-
mutation Residual test.

35

SNR = 4

Figure 2.51: Referring to Figure 2.34,
it is the plot of X vs Z when SNR = 4.

Figure 2.52: Referring to Figure 2.34,
it is the plot of Y vs Z when SNR = 4.

TEST: X ⊥⊥ Y | Z

Figure 2.53: p-value of the kPC Per-
mutation Cluster test.

Figure 2.54: p-value of the kPC Per-
mutation Residual test.

SNR = 0.5

Figure 2.55: Referring to Figure
2.34, it is the plot of X vs Z when
SNR = 0.5.

Figure 2.56: Referring to Figure
2.34, it is the plot of Y vs Z when
SNR = 0.5.

TEST: X ⊥⊥ Y | Z

Figure 2.57: p-value of the kPC Per-
mutation Cluster test.

Figure 2.58: p-value of the kPC Per-
mutation Residual test.

36

same way" V3 since the relation is almost deterministic, hence the test turns
out to be seen as V2 ⊥⊥ V3 | V2 which gives independence. Nonetheless we
have to keep in mind that the noise is fundamental when we want to detect
causal relations, especially when we use residuals methods. As regards the
kPCs algorithms, we thought about testing dependence using the value of
the HSIC HXY but we could not identify any threshold to use as a bound to
decide whether there was dependence.
We have now restricted the possible algorithms to the following ones:

• kPC Permutation Residuals shortened from now on as kPC Permuta-
tion or kPC Permu - Resid

• kPC Residuals

• bPC

37

kPC

TEST of
DEPENDENCE

Gamma (kG)

TEST of
CONDITIONAL
DEPENDENCE

Permutation
Residuals

Residuals

Gamma

Figure 2.59: Selected tests in kPC.

bPC

TEST of
DEPENDENCE

Permutation (bP)

TEST of
CONDITIONAL
DEPENDENCE

Residuals Permutation

Figure 2.60: Selected tests in bPC.

38

2.5.3 Comparison with ROC curve

We now illustrate the kPC Permutation Residuals, kPC Residuals, bPC
algorithm in an example. To compare the three algorithms with the PC
algorithm, we use the ROC curve.
The ROC (Receiver Operating Characteristic) curve is a graphical tool for
diagnostic test evaluation. In our purpose it is used to compare the di�erent
algorithms. If we know how the data have been generated, so we know
the true underlying graphical model, and the output of the test x, for each
threshold α it is possible to count the number of:

• True Positives: # of edges which are in the true graph that the test x
�nds.

• False Positives (error type I): # of edges which are not in the true
graph that the test x �nds.

• False Negatives (error type II): # of edges which are in the true graph
that the test x does not �nd.

• True Negatives: # of edges which are not in the true graph that the
test x does not �nd.

These quantities can be represented in the Contingency Table as shown in
Table 2.3.

TRUE CONDITION

Positive Negative

TEST
OUTCOME

Positive
True
Positive TP

False
Positive FP

Negative
False
Negative FN

True
Negative TN

Table 2.3: Contingency table.

The sensitivity and speci�city are de�ned as

Sensitivity =
TP

TP + FN

Speci�city =
TN

TN + FP
.

They both take values between 0 and 1. The sensitivity evaluates the ability
of the test in identifying the correct dependencies. It is also called True
positive rate. The speci�city explains the ability of the test in not �nding
dependencies which do not exist. A perfect test would have both parameters

39

Figure 2.61: ROC curve.

X

Y Z

V

W

Figure 2.62: Example 5 variables.

where
X = N(0, 1)

Y = X2 + Gamma(2, 2)

Z = sin(2W) + dXe2 + U(−1, 1)

V = cos(Z) + 3 sin(Y) + U(0, 2)

W = U(−2, 5)

high, but this is almost impossible. In order to have Sensitivity = 1, we
should have an Error Type II = 0 which always means to refuse the inde-
pendence. But this would lead to have Speci�city = 0 because TN = 0. The
ROC curve (Figure 2.61) represents values of 1− Speci�city , known also as
False positive rate versus Sensitivity at di�erent α levels. The higher α is,
the more the independence will be refused and Sensitivity and 1−Speci�city
will be close to 1. The closer the curve is to the left and top edges, the better
is the test. A numerical estimator for the goodness of the ROC curve is the
AUC, Area Under the Curve.
If we consider the graph illustrated in Figure 2.62, the correct edges are

5 and the possible edges are 10 in total. Looking at the Figure 2.63, we
can see that the methods kPCs and bPC have high performances. This is
noticeable analyzing the AUC, which is always higher than 0.95. Moreover,
the kPC Permutation is able to reconstruct the true underlying graph when
α ∈ (0.44; 0.46).

40

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S

en
si

tiv
ity

1 − Specificity

AUC = 0.96 − bPC
AUC = 0.98 − kPC Residuals
AUC = 1 − kPC Perm. − Resid.
AUC = 0.92 − PC

Figure 2.63: ROC curve for kPC, bPC and PC algorithms.

Comparing the three algorithms with the PC, we notice that PC has
performances lower than the others. In order it succeeds in �nding the �ve
correct connections, it �rst �nds 4 wrong connections, as we can see by the
point in (0.8; 1).

2.6 Generalization of Transitive phase

We now focus on restricting the output class of possible DAGs which de-
scribe the causal relationship among the data. The non-linearity and non-
Gaussianity of the data are helpful features that lead us to discover more
causal orientations. This is due to the fact that non-linearity breaks the
symmetry among the observed variables and allows the identi�cation of the
causal directions.

2.6.1 Additive Noise model

When we de�ne the data with a generalized additive model, we suppose the
model be generated as follow (Hoyer et al. 2009):

Vi = f(PaG(Vi)) + εi, i ∈ {1, . . . , n}

41

where:

• G is the DAG we want to represent.

• Vi are the variables.

• f(·) is an arbitrary function (it could be non-linear).

• εi are the noise functions, which have an arbitrary density and are
jointly independent.

Assuming we have two variables X and Y which are dependent, we are
interested in discovering what is the direction of the causal relation. The
suggested approach is the following:

1. non-linearly regress X on Y : X = f(Y) + εY (backward model) and
calculate the residuals ε̂X .

2. non-linearly regress Y on X: Y = f(X) + εX (forward model) and
calculate the residuals ε̂Y .

3. test the dependence of X and ε̂Y .

4. test the dependence of Y and ε̂X .

If both tests in 3 and 4 �nd independence, we cannot infer the direction
by those data. If both �nd dependence this model is not good enough to
describe the data. Finally, if we �nd in one test dependence and in the
other independence, we orient the causal relation in the direction where the
independence is found. We consider this example where the function are
non-linear and the noise is not Gaussian. Figures 2.64 and 2.65 show the

X = εX

Y = X2 + εY

εX ∼ U(−1,+1)

εY ∼ U(−1,+1)

forward model Y = f(X) + εY and the backward model X = f(Y) + εX
with the predicted points of the regression. Analyzing the residuals of the
regression, see Figures 2.66 and 2.67, we notice that there is independence
in the �rst �gure but not in the second. This leads us to conclude that the
model Y = f(X) + εY is consistent with the data, which is correct.
On the other hand, if the data were linear and Gaussian, it would have been
impossible to detect the direction of the causal relationship. In both cases
we would have independence, as illustrated in the following example:

42

X = εX

Y = 3X + εY

εX ∼ N(0, 1)

εY ∼ N(0, 1)

In both forward and backward models, the residuals result be indepen-
dent and we cannot infer the direction of the edge.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

X

Y

Figure 2.64: In black are represented the

sample points, in red are shown the predicted

values.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Y

X

Figure 2.65: In black are represented the

sample points, in red are shown the predicted

values.

RESIDUALS

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

X

re
s_

Y

Figure 2.66: The residuals of the regression

y = f(x) + ε.

RESIDUALS

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Y

re
s_

X

Figure 2.67: The residuals of the regression

x = f(y) + ε.

43

−3 −2 −1 0 1 2

−
10

−
5

0
5

X

Y

Figure 2.68: In black are represented the

sample points, in red are shown the predicted

values.

−10 −5 0 5

−
3

−
2

−
1

0
1

2

Y

X

Figure 2.69: In black are represented the

sample points, in red are shown the predicted

values.

RESIDUALS

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2

X

re
s_

Y

Figure 2.70: The residuals of the regression

y = f(x) + ε.

RESIDUALS

−10 −5 0 5

−
0.

5
0.

0
0.

5

Y

re
s_

X

Figure 2.71: The residuals of the regression

x = f(y) + ε.

2.6.2 Weakly Additive Noise model

Even thought the previous procedure helps in �nding more causal directions
among variables comparing to the Transitive step of PC, it su�ers from two
problems (Tillman 2009):

• In some settings the additive noise model is invertible: X ⊥⊥ ε̂Y and
Y ⊥⊥ ε̂X . We cannot infer the direction of the causality.

• The additive noise model is not closed under the marginalization of
intermediary variables when f(·) is non-linear. When the model is
X → Y → Z but the variable Y in not measured the model is seen
as X → Z but it can happen that X 6⊥⊥ ε̂Z and Z 6⊥⊥ ε̂X . We cannot
infer the direction of the causality.

44

• It is mandatory that the noise is additive.

To overcome those problems, the weakly additive noise model is introduced
(Tillman, Gretton, and Spirtes 2009).

De�nition 2. φ = 〈Vi,PaG(Vi)〉 is a local additive noise model for a dis-

tribution P over the nodes V that is Markov to a DAG G = 〈V,E〉 if
Vi = f(PaG(Vi)) + εi is an additive noise model.

De�nition 3. A weakly additive noise model M = 〈G,Φ〉 for a distribution

P over V is a DAG G = 〈V,E〉 and a set φ of local additive noise models

such that:

1. P is Markov to G.

2. φ ∈ Φ if and only if φ is a local additive noise model for P contained

in G.

3. ∀〈Vi,PaG(Vi)〉, there does not exist a Vj ∈ PaG(Vi) and an arbitrary

directed graph G′ (not necessary related to P) such that Vi ∈ PaG′(Vj)
and 〈Vj ,PaG(Vj)〉 is a local additive noise model for P contained in

G′.

Assuming the data are generated by a weakly additive noise model means
that if the real underlying structure of the data is X → Y , there exists no
functional form such as the data can be represented as X = f(Y) + ε and
εX ⊥⊥ Y

De�nition 4. A weakly additive noise model M = 〈G,Φ〉 is distribution

equivalent to N = 〈G′,Φ′〉 if and only if

1. G and G′ are Markov equivalent.

2. φ ∈ Φ if and only if φ ∈ Φ′.

De�nition 5. A weakly additive noise partially directed acyclic graph (WAN-

PDAG) forM = 〈G,Φ〉 is a mixed graph H = 〈V,E〉 such that for {Vi, Vj} ⊆
V:

1. Vi → Vj is a directed edge in H if and only if Vi → Vj is a directed edge
in G and in all G′ such that N = 〈G′,Φ′〉 is distribution equivalent to

M.

2. Vi − Vj is an undirected edge in H if and only if Vi → Vj is a directed

edge in G and there exists a G′ and N = 〈G′,Φ′〉 distribution equivalent

to M such that Vi ← Vj is a directed edge in G′.

45

The following algorithm is used instead of the Transitive step in order to
�nd more orientations. It is a generalization of the Transitive step because,
in order to �nd the causal dependencies, it inspects the residuals of the
regressions and after it uses the Transitive step to collect more informations.
The underlying idea to learn more about causality is the generalization of the
two-variables case explicated in Section 2.6.1. It takes into account the fact
that we want to test the dependence of two variables, each of them connected,
directly or not, to other variables. In order to avoid the complications arising
with the additive noise model, the algorithm is structured such that the
output is a WAN-PDAG. De�ning UViG as the set of all nodes adjacent to Vi
by an undirect edge, the algorithm is the following:

Algorithm 4 GENERALIZED TRANSITIVE phase

Input: G
Output: G
1: s = 1
2: while maxVi∈V | U

Vi
G |≥ s do

3: for all Vi ∈ V such as | UViG |= s or | UViG |< s and UViG was updated
do

4: s′ = s
5: while s′ > 0 do
6: for all S ⊆ UViG such that | S |= s′ and ∀Sk ∈ S, orienting

Sk → Vi, does not create immorality do
7: non-parametrically regress Vi on PaViG ∪ S and compute the

residual ε̂iS
8: if ε̂iS ⊥⊥ S and 6 ∃Vj ∈ S and S′ ⊆ U

Vj
G such that regressing Vj

on Pa
Vj
G ∪S′∪Vi results in the residual ε̂jS∪Vi ⊥⊥ S′∪Vi then

9: ∀Sk ∈ S, orient Sk → Vi and ∀Ul ∈ UViG \S orient Vi → Ul
10: Apply the Transitive step
11: ∀Vm ∈ V update UVmG , set s′ = 1 and break
12: end if
13: end for
14: s′ = s′ − 1;
15: end while
16: end for
17: s = s+ 1;
18: end while

Using the Generalized transitive step there are less chances that an edge
oriented ↔ in the Collider step, is reoriented as → or ← in the last step.
This algorithm does not totally exclude the reorientation to happen. In order
to avoid this problem I will use a modi�ed Transitive step, which forbids to
modify double oriented edges. I will refer to it as Transitive step and always

46

use it.

47

3 APPLICATION TO REAL

DATA

In this chapter the three selected algorithms and the Generalization of the
transitive step will be applied (i) to a real dataset and (ii) to data simulated
from the real data. We use simulated data from the real one in order to have
a ground truth to use when comparing the algorithms The goal is to evaluate
if the found methods are suitable to depict highly non-linear patterns and
thus to compare bPC and kPCs with the PC algorithm.

3.1 Data Analysis

Proteins are signaling molecules which receive and send signals. The nature
of those signals can be chemical, mechanical and so on. In a healthy cell,
as a molecule receives a signal, it undergoes some responses and transforma-
tions, which might lead in their turn to triggering other modi�cations inside
of the cell. As a second protein is a�ected by internal changes, a pathway
can be detected, and so on until the end of the propagation. Pathways can
involve lots of proteins. Graphical models are used to describe those causal
protein-signaling networks; they investigate the �ow of information from one
protein to another.
The datasets which will be analyzed are the ones published by Sachs et al.
2005. There are eight experimental datasets. Each dataset reports the value
of eleven protein's levels expression. The measured proteins are RAF, MEK,
ERK (aka P44.42), PLCγ, PIP2, PIP3, PKC, AKT, PKA, JNK, P38. The
number of observations varies from one dataset to another, but it is always
around 700-900. Every dataset is characterized by the quantitative value
of the protein expression after a series of speci�c stimulatory cues or in-
hibitory interventions. Table 3.1 illustrates the interventions introduced for
each dataset.
The method used to capture the protein's levels expression is the Intracel-
lular Multicolor Flow Cytometry. It allows the quantitative measurement of
multiple proteins states and modi�cations in many thousands of individual

48

DATASET 1 General perturbation

DATASET 2 General perturbation

DATASET 3 Activation PKA

DATASET 4 Inhibition AKT

DATASET 5 Inhibition MEK1

DATASET 6 Activation PKC

DATASET 7 Inhibition PKC

DATASET 8 Inhibition PIP2

Table 3.1: Table of datasets: for each dataset is explained after which kind
of external perturbation the proteins have been measured.

cells. In the experiment performed to obtain the data we deal with, the �ow
cytometry technique is used to measure modi�cation states of proteins, such
as phosphorylation trough antibodies. A protein is phosphorylated when a
phosphate group PO3−

4 is added to it. The reasons why this technique is
adopted are:

• There are not any average among the population. The measurement
occur within every cell.

• Every cell represents an independent observation.

• The measurements occur in single cells: for each experiment thousands
of data are available.

Obviously there is also a problem, which is that by now there are only
about 80 antibodies compatible with this method. Scientist are faithful that
this number will increase. A situation which comes from this problem is
the following. PKC phosphorylates RAF at S497, S499, S259, but in the
experiment are only used antibodies which detect RAF S259. Hence, it can
happen that a dependency is not seen or that a pathway excludes a protein
because the phosphorylated protein is not detected.
In literature there exist many "well-know" pathways, which are illustrated
in Figure 3.1 and summarized in Figure 3.2 (green edges). There are also
other connections, which are cited in fewer books of biology. Those are:

• ERK → AKT

• PKC → PKA

• PKA → MEK

49

Figure 3.1: "Well known dependences" among variable which are reported in many books

of biology. The red proteins are the measured ones.

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.2: Summary of the the "well-known dependencies" (green) and
"known dependencies" (orange).

50

These are represented in Figure 3.2 with orange edges. In the following
pages I will refer to them as "known dependencies". As we notice, it will
be di�cult for the algorithms to �nd the ground truth to use to compare
with the outputs of the algorithms. First, because not all causal relation-
ships have been established. No one can guarantee us that in future other
dependences among those proteins will not be found. Secondly, the ground
truth as illustrated in Figure 3.1, is made by cyclic pathways, which are not
recognizable by the algorithms. We also notice that the direct relationships
the algorithms must �nd are not direct in nature, because not all the pro-
teins in Figure 3.1 have been recorded.
The analyzed data are the log-transformation of the raw data. For sake of
simplicity, we only show how one of the dataset looks like after the transfor-
mation. Figures 3.3 - 3.4 show the data in dataset 8. We observe that some
dependencies are clear and seems linear, as RAF-MEK. On the other hand,
others are less noticeable, such as RAF-PKC. This trend of �nding some
dependencies visible while others are not, is noticeable in all the 8 datasets.
Comparing the value of a single protein among each dataset, we �nd it to
be very di�erent from one dataset to another. This is understandable be-
cause in some dataset the variable is externally activated or modi�ed by the
phosphorylation of another molecule. But it can also happen that in other
datasets the protein is not a�ected by any interventions.

51

RAF MEK PLCG PIP2 PIP3 ERK AKT PKA PKC P38 JNK

0
2

4
6

8

Figure 3.3: Boxplot of the data in dataset 8 after the log - transformation.

RAF

0 2 4 0 2 4 6 0 2 4 4 6 8 0 2 4 6

0
2

4

0
2

4

MEK

PLCG

0
2

4

0
2

4
6

PIP2

PIP3

0
2

4
6

0
2

4

ERK

AKT

0
2

4
6

4
6

8

PKA

PKC

0
2

4
6

0
2

4
6

P38

0 2 4 0 2 4 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

0
2

4
6

JNK

Figure 3.4: Plot of the data in dataset 8 after the log - transformation.

52

3.2 Data simulation

In order to compare the e�ciency of the algorithms when the measurement
is a�ected by decreasing noise, we use data simulated from the original data.
The idea is to consider a certain network as the ground truth and to generate
data which satisfy the links in the ground truth. It is important to simulate
the relationships among variables as close as possible to the real ones. For
each dataset the simulation is di�erent, because it takes into account that a
certain protein has been externally modi�ed. If we consider dataset 8, the
inhibited protein is PIP2. PIP2 is externally modi�ed and we suppose it
cannot be perturbed by any protein in the network. We expect to simulate
a causal model as in Figure 3.5. The data generation starts from the nodes
which do not have parents: in this case, obviously PIP2 and also PKA. We
will refer to them as "starting nodes". The value of these variables is the same
as in the real dataset, because we cannot infer their values from other sources.
That causes that when the data will be generated with decreased noise, those
variables will not have reduced noise. The next step is to generate the nodes
for which their parents have either already been simulated or are starting
nodes. With respect to Figure 3.5 we simulate the values of the protein

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.5: Simulated graph when the protein PIP2 (orange box) is exter-
nally modi�ed. The proteins in circled boxes are the starting nodes.

expressions in this order:

53

I. PIP3 from PIP2

II. PLCγ from PIP3

III. PKC from PIP2 and PLCγ

IV. AKT from PIP3 and PKA

V. RAF from PKC and PKA

VI. MEK from RAF

VII. ERK from MEK and PKA

VIII. P38 from PKC and PKA

IX. JNK from PKC and PKA

The simulation is implemented as follow:

1. Regress the real value of the node Vi on its Parents PaVi with a Gen-
eralized Additive Model.

2. Calculate the vector ri of residuals of the regression, permute it ran-
domly obtaining r(i). If we want data with less noise, reduce the resid-

uals dividing them by k:
r(i)

k
.

3. Calculate the predicted values of the regression V̂i.

4. The simulated values of the variable Vi are:

V̂i +
r(i)

k
.

Figures 3.6 and 3.7 illustrate the values of the simulated dataset 8 with non-
decreased residuals. Comparing it with Figure 3.3 and 3.4 we cannot �nd
any large di�erences. This remark applies to all other simulated datasets
with non-reduced residuals. As we reduce the residuals, all but the starting
node variables take values in a narrower range. In the following pages we
will use simulated data with non-reduced residuals and residuals lowered by
a factor 3 and 10. We will refer to them as "simulated data - residuals/1",
"simulated data - residuals/3" and "simulated data - residuals/10".

54

RAF MEK PLCG PIP2 PIP3 ERK AKT PKA PKC P38 JNK

−
2

0
2

4
6

8

Figure 3.6: Boxplot of the Simulate dataset 8 - residuals/1.

RAF

1 3 5 0 2 4 6 0 2 4 6 4 6 8 1 3 5

0
2

4

1
3

5

MEK

PLCG

−
2

2
4

0
2

4
6

PIP2

PIP3

0
4

8

0
2

4
6

ERK

AKT

0
2

4
6

4
6

8

PKA

PKC

0
2

4
6

1
3

5

P38

0 2 4 −2 2 4 0 4 8 0 2 4 6 0 2 4 6 −1 2 4 6

−
1

2
4

6

JNK

Figure 3.7: Plot of the Simulate dataset 8 - residuals/1.

55

3.3 Performances in terms of finding depen-

dencies

3.3.1 Application to eight datasets

Grouping the 8 datasets

When applying the algorithms, we expect to reconstruct a skeleton as illus-
trated in Figure 3.8. We assume the ground truth to be formed by the "well
known dependencies".

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.8: The skeleton to which the output of the algorithms is compared.

In order to obtain an output graph as in Figure 3.8, we use the information
acquired from the 8 datasets. Only summarizing the results gained from each
dataset we can end up �nding the real underlying structure of the data. To
recover the skeleton of the graphical structure, we developed three methods,
which are now explained:

I. All edges.

II. Second = 1.

III. Ceil Floor.

The method I puts in the model all the edges that are found applying the
discovery algorithm to every datasets. The methods II and III rely on the
fact that in the �rst two datasets the measurements are performed after a

56

general perturbation, while in datasets 3 - 8 the perturbations are speci�c.
Both methods count how many datasets include each edge in the model.
We can display this summary as a graph where each edge is labeled with a
number that represents in how many datasets that edge has been included.
We refer to this graph as MA. We calculate the mean value of the number
of appearances of the edges. For every 8 datasets and a speci�ed algorithm
we obtain the mean value m̂. It is highly likely that this number is not an
integer. We de�ne f = bm̂c and c = dm̂e. The methods II and III include in
the �nal model all the edges of MA labeled with a number higher or equal
to c. We call this model M1. Considering now the datasets from 3 to 8, as
before, we calculate how many times an edge is included in the 6 graphs.
We then summarize the number of appearances of each edge with a graph
MB, as done with MA. Method II adds to M1 the edges that appear at least
once in MB. Method III puts in the �nal model the edges which appear at
least f − 1 times in MB. Those two methods are very similar to each other,
III is more restrictive than II when f > 2. The idea of these two ways of
inspecting datasets is that �rst of all we need to include in the �nal model
the edges which are very likely to play a central role in the causal relation.
We suppose these dependencies to be the ones which are the most present
in the 8 models. We then include in the model also dependencies which are
found only by a speci�c intervention on a protein. This explains why we also
add to the model edges which appear less often but help to elucidate causal
relationships.

Real data

Table 3.2 illustrates the performances of the algorithms kPCs, bPC and PC.
The free parameters have been �xed as follows:

• # of Permutations = 300 for kPC Permutation.

• # of Permutations = 500 for bPC.

• ε = 0.1 for kPC Permutation.

• h = 50 for kPC Permutation.

• σ = {1, 5, 9} for kPCs.

The output is analyzed at di�erent α thresholds.

57

REAL DATA

kPC Residuals kPC Permutation
bPC PC

σ = 1 σ = 5 σ = 9 σ = 1 σ = 5 σ = 9

α = 0.10

All edges
8(9) 9(10) 11(13) 8(10) 9(11) 10(11) 9(10) 11(13)
2(1) 3(2) 4(2) 3(1) 3(1) 3(2) 3(2) 6(4)

Second = 1
8(9) 9(10) 11(12) 8(9) 9(10) 10(11) 9(10) 11(12)
2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 3(2) 5(4)

Ceil Floor
6(7) 7(8) 8(9) 7(8) 8(9) 8(9) 8(9) 8(9)
2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1)

α = 0.15

All edges
9(10) 11(13) 11(13) 8(10) 9(11) 10(12) 11(12) 12(14)
2(1) 6(4) 7(5) 6(4) 7(5) 9(7) 3(2) 11(9)

Second = 1
9(10) 11(12) 11(12) 8(9) 9(10) 10(11) 11(12) 12(14)
2(1) 3(2) 4(3) 2(1) 4(3) 6(5) 2(1) 7(6)

Ceil Floor
7(8) 8(9) 8(9) 8(9) 8(9) 8(9) 8(9) 9(10)
2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1)

Table 3.2: Comparison among di�erent methods of grouping datasets at
di�erent thresholds α and with di�erent algorithms. The analyzed data are
the real ones after a log-transformation.

Fixed an algorithm, a threshold α and a method to group the 8 datasets,
every box is made of four numbers. The top ones represent the number
of correct edges found by the algorithm, the bottom ones the number of
wrong connections. The output of each algorithm has been compared with
Figure 3.8. The "well-known dependencies" are sixteen. The numbers in
brackets represent the output if we take into account that the edges "known
dependencies" and the ones that could arise from the fact we do not have
antibodies speci�c to RAF S497 S499 are correct.
Among the wrong edges, MEK - AKT and P38 - JNK are always found.
The former belongs to the list "known dependencies", the latter has been
found also by other statisticians (Eaton and Murphy 2007; Hyttinen, Eber-
hardt, and Hoyer 2010). Looking at the two kPC algorithms, we see that
augmenting σ and α always leads to �nding more correct edges. While the
increase of α also contributes to the detection of more wrong connections,
the increase of σ is more stable under this point of view. We observe that
the method Ceil Floor is very little a�ected by changing of σ and α. As
regards the bPC, we remark that it has higher performances with higher α.
In fact, when increasing α, only the number of correct edges increase.
Finally, comparing kPCs and bPC with PC, we notice that PC could �nd as
many edges as the other three previous algorithms. This always comes with
a discovery of more wrong edges. We can say without any doubt that on
average, PC always �nds more wrong edges, which makes this method more
useless.

58

RESIDUALS / 1

kPC Residuals kPC Permutation
bPC PC

σ = 1 σ = 5 σ = 9 σ = 1

α = 0.10

All edges
11 12 10 12 13 11
7 11 8 14 8 12

Second = 1
11 11 9 11 12 9
7 8 6 10 6 9

Ceil Floor
8 8 8 10 8 8
0 0 0 0 0 0

α = 0.15

All edges
13 12 12 13 12 11
11 13 10 13 11 14

Second = 1
12 11 11 11 11 10
9 10 7 9 8 10

Ceil Floor
8 8 8 10 8 8
2 1 1 2 1 3

Table 3.3: Comparison among di�erent methods to group datasets at di�er-
ent threshold α and with di�erent algorithms. The analyzed data are the
simulated data - residuals/1.

Simulated data

As in Table 3.2, Tables 3.3-3.5 represent the number of correct and wrong
connections with the free parameter �xed as previously. In this setting, we
do not have numbers in brackets because we exactly know how the data
have been generated. The way of simulating the data is the one described
in Chapter 3.2 and we consider the ground truth as the one illustrated in
Figure 3.8.

As before, the trend is that augmenting α makes the numbers of correct
and wrong edges increase. With those data, we notice that the number of
wrong edges is high comparing to Table 3.2. The Ceil Floor method works
very well in removing lots of them. As the noise decreases, all the algorithms
detect more correct and less wrong connections. Until �fteen edges up to
sixteen edges are found. An edge which is always among the missing edges is
PLCγ-PKC. We can guess that this is related to the fact that the simulations
are not perfect, because we do not have antibodies speci�c to RAF S497 -
S499. Otherwise, this could be because the algorithms are not good in de-
tecting the type of dependence between those two variables. Another reason
could be that PKC is much more in�uenced by PIP2 than by PLCγ. In fact,
in every dataset but one the SNR of PIP2 is higher than the SNR of PLCγ
(see Table 3.6). The Figure 3.9 represents PKC vs PLCγ in dataset 8 when
the residuals are reduced by a factor of ten. We see that the dependence is
very di�cult to notice. Furthermore, after choosing a method among kPCs

59

RESIDUALS / 3

kPC Residuals kPC Permutation
bPC PC

σ = 1 σ = 5 σ = 9 σ = 1

α = 0.10

All edges
14 14 14 15 14 13
5 6 7 4 3 8

Second = 1
14 13 13 15 14 12
5 6 7 4 2 7

Ceil Floor
10 9 11 9 9 10
0 1 1 0 0 2

α = 0.15

All edges
14 14 14 15 14 13
9 9 9 6 6 11

Second = 1
14 13 13 15 14 12
9 9 9 6 3 9

Ceil Floor
11 12 10 12 11 12
0 1 1 0 0 2

Table 3.4: Comparison among di�erent methods to group datasets at di�er-
ent threshold α and with di�erent algorithms. The analyzed data are the
simulated data - residuals/3.

RESIDUALS / 10

kPC Residuals kPC Permutation
bPC PC

σ = 1 σ = 5 σ = 9 σ = 1

α = 0.10

All edges
13 15 15 15 14 15
3 4 4 3 2 10

Second = 1
13 15 15 15 14 14
2 3 3 2 2 9

Ceil Floor
11 10 10 10 12 11
0 0 0 0 0 4

α = 0.15

All edges
15 15 15 15 15 16
5 7 7 5 4 11

Second = 1
15 15 15 15 15 15
3 5 5 2 3 10

Ceil Floor
12 12 12 10 12 11
0 0 0 0 0 5

Table 3.5: Comparison among di�erent methods to group datasets at di�er-
ent threshold α and with di�erent algorithms. The analyzed data are the
simulated data - residuals/10.

60

and bPC, an α, the outputs of each algorithm are very similar to each other.
Investigating the PC algorithm, we can observe that in residuals/1 and resid-
uals/3 it �nds causal structures with less correct and more wrong edges than
kPCs and bPC. When the residuals are ten times smaller, it succeeds in
�nding the 16 edges, but the big inconvenient is that also 11 wrong edges
are found. This, again, makes this algorithm less useful.

SNR in Simulated Data - Residuals/10

Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8

PLCγ 3.85 61.28 19.28 28.35 1.30 5.13 3.55 34.56
PIP2 27.84 125.36 33.52 0.14 17.38 61.00 25.02 NA

Table 3.6: SNR of the PLCγ and PIP2 in the 8 datasets with data: simulated
data - residuals/10.

Figure 3.9: PLCγ vs PKC in simulated dataset - residuals/10.

Conclusion

Comparing real and simulated data, as we observed previously, their plots
and boxplots are very similar. Despite these similarities, the outputs of the
algorithms are quite di�erent. When we compare data with the same amount
of noise, the performances in terms of correct edges are always better with
simulated data - residuals/1 than with real ones. This could be due to the
fact that when we generate the data, they are more structured and ordered
compared to the real ones. Hence, it is simpler to detect dependencies.
Furthermore, we also discovered that with the data generation more wrong
edges are found. This is because each dataset creates a graph which has

61

di�erent wrong edges than other datasets. When in All Edges all found con-
nections become part of the �nal model, more wrong ones are included. This
could be due to the fact that with raw data, the datasets are "dependent"
because the measurements have been taken in the same laboratory, with the
same tools, in the same moment. With simulated data, each dataset arises
as completely independent from any other.
Comparing the three di�erent ways of grouping datasets, we can a�rm that
All Edges is an unsuitable method, because including all edges in the �nal
model, it also includes lots of wrong ones. There is no "pre-selection" of
connections. The method Second=1 leads to more edges than Ceil Floor :
the selection is not strict enough. In fact, Second = 1 works better with
the real data where the number of wrong edges is low comparing to the
simulated data. With the simulated data the Ceil Floor method has higher
performances since more edges which appear few times in the eight models
are forbidden to enter in the �nal model.
Finally, we can assert that the PC is never as highly performing as kPCs and
bPC. This is due to the fact that its �nal causal model lacks of dependencies
or has plenty of wrong edges or both.

3.3.2 Application to one dataset

In order to compare the performances of the algorithms, we will use the ROC
curve. The used data are the simulated - residuals/1 from dataset 8. The
free parameters are �xed as in Table 3.2 and for kPC Permut - Resid and
kPC Residuals and σ=1. The output of the algorithms is compared with the
graph in Figure 3.5
Looking at Figure 3.10, we see that PC is always less e�cient than the other
discovery algorithms. In this particular setting, kPC Permut - Resid is the
best one. The algorithms kPCs and bPC always have an area under the
curve greater that 0.8, which outlines the good performances of these meth-
ods.
Figure 3.11 shows the di�erent ROC curves of kPC Residuals when σ varies.
We can conclude that there are not many di�erences. Moreover, the perfor-
mances are the same when σ = 5 and σ = 9.

62

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC = 0.838 − KPC Residuals
AUC = 0.885 − KPC Perm. Resid.
AUC = 0.845 − BPC
AUC = 0.793 − PC

1 − Specificity

S
en

si
tiv

ity

Figure 3.10: ROC curve to compare kPCs, bPC and PC algorithms. The
data are the simulated ones - residuals/1 from dataset 8.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

AUC = 0.838 − sigma=1
AUC = 0.818 − sigma=5
AUC = 0.818 − sigma=9

1 − Specificity

S
en

si
tiv

ity

Figure 3.11: ROC curve with simulated data - residuals/1. The used algo-
rithm is the kPC Residual with di�erent kernel widths σ.

63

3.4 Performances in terms of discovering the

direction of the causal orientations

We are now interested in �nding as much oriented edges as possible thanks
to the Generalized transitive step. For sake of simplicity, we will focus our
attention on one dataset only: dataset 8. The edges are orientated �rst in
the Collider step and then in the Transitive step. When the Generalized
transitive step will be used, in order to di�erentiate it from the algorithm
with the Transitive step, we will designate the algorithm adding to his name
'Complete', shortened as C. See Table 3.7.
Table 3.8 illustrates how many oriented edges are found. After having cho-
sen an algorithm, the kind of data to use and one of the two steps, every
box is made of two numbers. The top one represents the number of correct
orientations found, the bottom one the number of wrong orientations. The
last row describes the total number of found orientations. The parameters
which have to be �xed are the same used to do Table 3.2.
We remark that the Complete version of the algorithms always �nds more
causal directions.
Using the Generalized transitive step, it is possible to successfully orient all
the edges of the output graph when the Transitive step fails.
Figures 3.12 - 3.14 illustrate the output graph at the end of the three steps
when using the algorithm kPC Residuals C with simulated data - residual/1,
while Figure 3.15 shows which would have been the output using the Transi-
tive step. There is a huge di�erence between the two �nal outputs. The one
with the Generalized transitive step has four more directed edges and all the
edges have been orientated: all of them but one are one-side arrowed. The
double arrowed edge is AKT↔ PIP3, which has been orientated in this way
in the Collider step. Moreover, there is only one edge for which the causal
orientation is in the wrong direction.
It might happen that there is not enough information to infer the orienta-
tions in the Collider step. This would lead not to be able to detect any direct
causality in the Transitive step. Analyzing the residuals with the Generalized
transitive step we succeed in orienting edges. Figures 3.17 - 3.20 illustrate
the output graph at the end of the three steps when using the algorithms
kPC Permutation and kPC Permutation C with real data . The probabilistic

PHASE Algorithm x Algorithm x-C

I Skeleton step Skeleton step
II Collider step Collider step
III Transitive step Generalized transitive step

Table 3.7: Comparison between algorithm "standard"(left) and "Complete"
(right).

64

REAL DATA

kPC Resid kPC Resid - C kPC Perm kPC Perm - C bPC bPC - C

STEP II
0 0 0 0 0 0
0 0 0 0 0 0

STEP III
0 3 0 3 0 2
0 1 0 1 0 1

TOT
0 3 0 3 0 2
0 1 0 1 0 1

SIMULATED DATA - RESIDUALS/1

kPC Resid kPC Resid - C kPC Perm kPC Perm - C bPC bPC - C

STEP II
2 2 2 2 4 4
1 1 1 1 1 1

STEP III
0 4 0 4 0 2
0 0 0 0 0 0

TOT
2 6 2 6 4 6
1 1 1 1 1 1

Table 3.8: These table describe how many correct (top line) and wrong
(bottom line) oriented edges are found during the di�erent steps of the al-
gorithms.

model is made of 3 three-variables structures where each of the three nodes
is connected to each other plus by a two-variables structure. Because of this
setting, it is not possible to orient any edges, neither in the Collider step nor
in the Transitive step. With the Generalized transitive step we can di�er-
entiate among the oriented structures. The algorithm has worked as follow.
First, the orientation RAF → MEK has been found. Secondly, analyzing
AKT and its connected nodes PKA and ERK, the orientation PKA→ AKT
has been discovered. This caused the immediate orientation of AKT→ ERK.
Thanks to the Transitive step inside of the Generalized transitive step, PKA
→ ERK has been found. For sake of completeness Figures 3.22-3.25 illustrate
the output of the bPC and bPC-C with simulated - residuals/1 data. It is
straightforward to notice that here too all the edges that were not oriented
in Collider step have been oriented in the Generalized transitive step.
We can assert that the non-linearity of the data is very useful in �nding the
direction of the causal dependencies. This step works with great results not
only with the simulated dataset but also with the real data.

65

Skeleton phase

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.12

Collider phase

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.13

Generalized transitive phase

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.14

Transitive phase

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.15

Figure 3.16: The four graphs illustrate the output of the phases of kPC
Residuals and kPC Residuals - C with simulated - residuals/1 data. Green
undirected edges represent correct found edges. Yellow orientated edges rep-
resent correct orientations and red directed edges represent wrong - direction
orientations. Green double directed edges represent correct edges for which
we cannot infer any causal direction. For each phase the green arrowed edges
are the orientations found in the previous step while the non-green edges are
the orientations discovered in that phase.

66

Skeleton phase

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.17

Collider phase

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.18

Generalized transitive phase

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.19

Transitive phase

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.20

Figure 3.21: The four graphs illustrate the output of the phases of kPC
Permutation - Residuals and kPC Permutation - Residuals - C with real
data. Green undirected edges represent correct found edges. Yellow orien-
tated edges represent correct orientations and red directed edges represent
wrong - direction orientations. In every phase the non-green edges are the
orientations discovered in that phase.

67

Skeleton phase

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.22

Collider phase

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.23

Generalized transitive phase

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.24

Transitive phase

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Figure 3.25

Figure 3.26: The four graphs illustrate the output of the phases of bPC and
bPC - C with simulated - residuals/1 data. Green undirected edges represent
correct found edges. Yellow orientated edges represent correct orientations
and red directed edges represent wrong - direction orientations. Green double
directed edges represent correct edges for which we cannot infer any causal
direction. For each phase the green arrowed edges are the orientations found
in the previous step while the non-green edges are the orientations discovered
in that phase.

68

4 SUMMARY AND FUTURE

WORK

After investigating the methods kPC Residuals C, kPC Permutation C and
bPC C, we can assert that they are valuable tools to discover causal relation-
ships among non-linear and non-Gaussian data. Their usefulness lies in the
fact that they all characterize independence and extend the way of �nding
the directions of the causality.
Both kPCs algorithms rely on the characteristic kernel we choose to use.
The Gaussian kernel seems to be a very �exible tools since it enables us to
�nd independence in many di�erent data settings. The kPC already existed,
but only in the version kPC Permutation - Cluster C (Tillman, Gretton, and
Spirtes 2009).
The bPC C algorithm has been implemented and tested for the �rst time
here combining the PC and the Brownian distance correlation. First of all,
we notice that the distance correlation is a natural extension of the Pearson
correlation parameter (Székely, Rizzo, et al. 2009). Assuming we are dealing
with two random variables X and Y, it is highly likely that X and Y have
been generated by the random process of Brownian motion. Thanks to the
results in Chapter 2.4, we can a�rm that measuring the distance correlation
is the same as measuring the covariance of random vectors with respect to
the Wiener process.
The kPCs are in�uenced by the kernel width σ, which plays an important
role in determining the nature of the relation among variables. It is a di�-
cult parameter to set, and it is closely related to the distance there is from
one observation to the others. As in kPCs, the bPC too is a�ected by a
parameter: ξ ∈ (0, 2), which characterizes the type of distance we are in-
terested in when calculating ν2(X,Y ;w). All the three analyzed algorithms
have always given very similar output. We cannot �nd any strong evidence
against or in favor of one of them.
Regarding the computational e�ciency, bPC and kPC Residuals are much
quicker than kPC Permutation Residuals. This is due to the fact that in
this latter method, the calculation of the HSIC is quite expensive and must

69

be computed p times. The bPC, too, involves the number of permutations
p, but calculating the distance correlation is more rapid than measuring the
HSIC. As we can see in Figure 4.1, kPC Permut-Residuals can take up to
more than one hundred times longer to discover a DAG. We solved this prob-
lem parallelizing the algorithm during the permutation test. Assuming we
have p values of HSIC to estimate and k CPU, we make every CPU calculate
p
k values of HSIC. This won't reduce the computational time by a factor k
since we parallelized only part of the code, but it helps in speeding the al-
gorithm. Looking at Figure 4.2 we see that there are di�erences also among
kPC Residuals and bPC. The latter is faster then the former. As said before,
it is because the distance covariance is computationally easier to measure.
As we investigated in Chapter 3, the algorithms might not �nd all dependen-
cies. It could be useful to expand those algorithms including the detection of
latent variables. It is in fact very common not to be able to measure all the
variables which should enter in the model as we saw in the previous chapter.
Some dependencies could be missing because those algorithms are structured
in order to give a DAG as an output. It is in fact likely that biological net-
works include cycle. It would be interesting to extend our algorithms so that
they can discover cyclic pathways.
Finally, it could be compelling to inspect the e�ects of the manipulation: to
use the found dependencies to generate more knowledge about the function-
ing of a cell, which leads to learn more about a disease and have more tools
to treat it.

70

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0
10

00
12

00

bPC
kPC Residuals
kPC Perm − Resid

α

T
im

e
(s

ec
)

Figure 4.1: Time it takes to the algorithms to �nd the causal models with
di�erent thresholds α. The graph that should be discovered is the one in
Figure 2.62 which is made by �ve variables and �ve edges.

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

10
12

bPC
kPC Residuals

α

T
im

e
(s

ec
)

Figure 4.2: Zoom of Figure 4.1 to catch the di�erences among kPC residuals
and bPC.

71

5 APPENDIX

Here are reported the main function bPC() and the most important auxiliary
functions

• Skeleton()

• Collider()

• GenTransitive()

of the implemented algorithms. For sake of simplicity we only show the bPC
algorithm. The only di�erences between the bPC and the kPCs implementa-
tion lay in the independent and conditional indpendent tests implementation
in the Skeleton and GenTransitive functions:

• condIndepTestBr(x= data[,i], y= data[,ad[j]], z = data[, sub[1:N , k]],
p = p) in Skeleton()

• IndepTestBr(x = data[,i], y = data[, ad[j]], p = p) in Skeleton()

• indepResid_bpc(data = data, G = G, undiEdge = undiEdge, v =
nodeS[i], parent = parent, S = sub[,j], alpha = alpha, p = p) in
GenTransitive()

bPC<- function(data, # the available data
alpha, # level of the test
p) # number of permutation in dcov.test

it loads all the auxiliary functions needed
source(’Source_bPC.R’)
Source_bPC()

G Adjacent matrix with all the undirected edges
G_dir Adjacent matrix with ONLY the directed edges
G_ad Adjacent matrix directed and undirected edges
Adj_Mat Final adjacent matrix

72

SKELETON step

Sk = Skeleton(data, alpha, p)
sepset = Sk$sepset
G = Sk$G

COLLIDER step

Co = Collider(G, sepset)
G_dir = Co$G_dir
G_ad = Co$G_ad
Coll = Co$collider

GENERALIZED TRANSITIVE step

undiEdge = updateUE(G_ad, NULL, NULL)
s = 1

Adj_Mat = GenTransitive(data, G_ad, G_dir, undiEdge, s, alpha, p)

list(mat = Adjacency_Matrix, Coll = Coll, Gskel = G, Gcoll = G_ad)

###

Skeleton <- function(data, # the available data
alpha, # level of the test
p){ # num of permutation in dcov.test

n = ncol(data)
G = diag(x = -1, nrow = n, ncol = n)+1 # graph matrix with 0 on the diagonal

(complete graph)
sepset = list() # I create the separation set
for(i in 1:n)
{
sepset[[i]] = list()

}
check = hash() # I create an auxiliary tool to keep in memory

which tests have already been performed
for (N in 0:n) # for each N = dimension subset to be taken
{
if(N!=0)
{

73

G_old = G
for (i in 1:n) # for each node i
{
ad = adiac_D(G_old, i) # the adjacent node to vertex i (undirected edge)
n_ad = length(ad)
if((n_ad-1)>=N) # if the dimension of ad >= N
{
for (j in 1:n_ad) # for each node ad[j] adjacent to i
{
if(n_ad==2) # I consider all the subsets of ad\{ad[j]}

of dimension N
{
sub = c(ad[3-j]) # because combn(8, 1)

returns 1, 2, 3, 4, 5, 6, 7, 8
sub = as.matrix(sub)

}
else # I consider all the subsets of ad\{j} of dimension N
{
sub = combn(c(ad[-c(which(ad==ad[j]))]), N)

}
k = 1
while(k<=ncol(sub) && G[i, ad[j]]==1) #while there are subsets
to investigate for c.i. AND I still haven’t found a subset
for which i and adj[j] are c.i.

{
a = c(i, ad[j]) # procedure to keep in memory

which c.i. have been tested
a = sort(a)
a = paste(a, collapse="")
b = sort(sub[1:N, k])
b = paste(b, collapse="")
long = paste(a, b, sep=’x’)
if(is.numeric(check[[long]]) == F) # if I still haven’t tested

the dep of i and ad[j]
given sub[1:N , k]

{
TEST OF CONDITIONAL DEPENDENCE: H_0: i is indep to ad[j] given sub[1:N , k]
H_1: i and ad[j] are dependent given sub[1:N , k]
dep = condIndepTestBr(x= data[,i], y= data[,ad[j]],

z = data[, sub[1:N , k]], p = p)
if (dep > alpha) # if the pval > alpha,

I DON’T refuse H0
so i and adj[j] are c.i.

{

74

G[i, ad[j]] = 0 # I delete the connection betwwen i and ad[j]
G[ad[j], i] = 0
I record the separation set in sepset
sepset[[i]][[ad[j]]] = sub[1:N,k]
sepset[[ad[j]]][[i]] = sub[1:N,k]

}
k = k+1
check[[long]]=1
} # end if

} # end while
} # end for (j in 1:n_ad)

} # end if((n_ad-1)>=N)
} # end for (i in 1:n)

} # end if (N!=0)
else # when N==0
{
for (i in 1:n)
{
ad = adiac_D(G, i) # the adjacent node to vertex i (undirected edge)
n_ad = length(ad)
if((n_ad-1)>=N) # if the dimension of ad >= N
{
for (j in 1:n_ad) # for each node ad[j] adjacent to i
{
TEST OF DEPENDENCE: H_0: i and ad[j] are independent
H_1: i and ad[j] are dependent
dep = IndepTestBr(x = data[,i], y = data[, ad[j]], p = p)
if (dep > alpha) # if the pval > alpha,

I DON’T refuse H0
so i and adj[j] are indep.

{
G[i, ad[j]] = 0 # I delete the connection betwwen i and ad[j]
G[ad[j], i] = 0
sepset[[i]][[ad[j]]] = -1 # it’s a default value
sepset[[ad[j]]][[i]] = -1

}
}

}
}

}
}
Sk = list(sepset = sepset, G = G)
Sk

}

75

###

Collider <- function(G, # skeleton matrix
sepstep){ # separation set

n = ncol(G)
G_ad = matrix(data = 0, nrow = n, ncol = n)
coll = list()
l=1
for(i in 1:n) # for each node i
{
ad_i = adiac_D(G, i) # nodea adjacent to i
if(length(ad_i) > 1) # if node i has more than 1 neib
{
for(j in 1:(length(ad_i)-1)) # I take every node ad[j] adjacent to i
{
for(k in (j+1):length(ad_i))# and another one
{
if ad_i[j] and ad_i[k] are not adjacent
and i is not in sepstep[[ad_i[j]]][[ad_i[k]]]

if (G[ad_i[j], ad_i[k]]==0 && !(i\%in\%sepstep[[ad_i[j]]][[ad_i[k]]]))
{
G_ad[ad_i[j], i] = 2 # I create the collider NUMBER 2
G_ad[ad_i[k], i] = 2
coll[[l]] = c(ad_i[j], i, ad_i[k])
l = l+1

}
}

}
}

}
G_dir = G_ad # in G_dir there are only the directed edges
for(i in 1:(n-1)) # I construct the matrix G_ad with also the undirected edges
{
for(j in (i+1):n)
{
if(G[i, j]==1 && G_ad[i, j]==0 && G_ad[j, i]==0) # unuseful G[j, i]==1
{
G_ad[i, j] = 1
G_ad[j, i] = 1

}
}

}
Co = list(G_dir = G_dir, G_ad = G_ad, collider = coll)

76

}

###

GenTransitive <- function(data, # available data
G_ad, # adjacency matrix with all edges
G_dir, # adjacency matrix with only directed edges
undiEdge, # auxiliary tool
s,
alpha, # level of the test
p # number of permutations

){
G = G_ad
n = ncol(G)
numUndiEdge = undiEdge[[n+1]] # it keeps in memory the number

of undirected edges linked to each node
updated = undiEdge[[n+2]] # it keeps in memory in nodes updated

in the previous step
maxUndiEdge = max(numUndiEdge)
while(maxUndiEdge >= s)
{
nodeSa = which(numUndiEdge == s) # I consider only nodes that have

s undirected edge
and nodes that have less than s undirected edge
and have been updated in the previous step
nodeSb = which(numUndiEdge < s & numUndiEdge > 0 & updated ==1)
nodeS = c(nodeSa, nodeSb)
if(length(nodeS)>0)
{
for (i in 1:length(nodeS)) # for each nodes
{
undiEdge[[n+2]][nodeS[i]] = 0
vectUndEdgeUi = undiEdge[[nodeS[i]]] #vector containing the nodes

to which nodeS[i] is related
with undir edge

parent = adiac_S_Enter(G, nodeS[i]) # parents of nodeS[i]
t = s
while (t > 0)
{
if(t <= length(vectUndEdgeUi))
{
if(length(vectUndEdgeUi) == 1)
{
sub = vectUndEdgeUi

77

sub = t(as.matrix(sub)) # subset of the undir node
of cardinality t

}
else
{
sub = combn(vectUndEdgeUi, t) # subset of the undir node

of cardinality t
}
j = 1
while (j <= ncol(sub))
{
if linking nodeS[i]-sub[,j] does not create immorality
if(NOTImmor(G, nodeS[i], sub[,j]) == 1)
{

ir = indepResid_bpc(data = data, G = G, undiEdge = undiEdge, v = nodeS[i],
parent = parent, S = sub[,j], alpha = alpha, p = p)

if(ir == 1) # if all the independece assumption are fulfilled
{

I create the orientation induced by the found dependence relationships
compl = vectUndEdgeUi[-c(which(vectUndEdgeUi == sub[,j]))]
G[sub[,j], nodeS[i]] = 1
G[nodeS[i], sub[,j]] = 0
G_dir[sub[,j], nodeS[i]] = 1
G_dir[nodeS[i], sub[,j]] = 0
if(length(compl)>0)
{
G[compl, nodeS[i]] = 0
G[nodeS[i], compl] = 1
G_dir[compl, nodeS[i]] = 0
G_dir[nodeS[i], compl] = 1

}
aux = G_dir
FD = Final_Direction(G, G_dir) # I apply the transitive step
G = FD$G_ad
G_dir = FD$G_dir
diffFD = which(aux!=G_dir)
if(length(diffFD) > 0) # and update the final graph
{
upd = rep(0,n)
for(k in 1:length(diffFD))
{
upd[floor((diffFD[k]-1)/n) + 1] = 1
upd[(diffFD[k]-1)\%\%n +1] = 1

}

78

upd[vectUndEdgeUi] = 1
upd = which(upd==1)

}
else
{
upd = vectUndEdgeUi

}
undiEdge = updateUE(G, c(nodeS[i], upd), undiEdge[[n+2]])
t = 1

K = GenTransitive(data = data, G_ad = G, G_dir = G_dir, undiEdge = undiEdge,
s, alpha = alpha, p = p)
return(K)

} # end if(ir = 1)
} # end if(NOTImmor(G, nodeS[i], sub[,j]) == 1)
j = j+1

} # end while (j <= ncol(sub))
}
t = t-1

} # end while (t > 0)
} # end for(i in 1:length(nodeS))

} # end if(length(nodeS)>0)
s = s+1

}# end while(maxUndiEdge >= s)
G

}

79

List of Figures

2.1 Directed edge. 6
2.2 Undirected edge. 6
2.3 Unshielded collider. 7
2.4 Chain. 7
2.5 Fork. 7
2.6 Example causality. 7
2.7 Example d-separation. 8
2.8 Example Faithfulness. 9
2.9 Example Triangle. 13
2.10 Example of the embedding function φ. 14
2.11 Example Residual test. 19
2.12 In black are represented the sample points, in red are shown

the predicted values using a linear regression to �t x given z. . 20
2.13 In black are represented the sample points, in red are shown

the predicted values using a linear regression to �t y given z. . 20
2.14 The residual of the linear regression. 20
2.15 The residual of the linear regression. 20
2.16 In black are represented the sample points, in red are shown

the predicted values using a more appropriate regression to �t
x given z. 21

2.17 In black are represented the sample points, in red are shown
the predicted values using a more appropriate regression to �t
y given z. 21

2.18 The residual of a more appropriate regression. 21
2.19 The residual of a more appropriate regression. 21
2.20 Tests in kPC. 25
2.21 Tests in bPC. 25
2.22 y = sin(x) + N(0, 0.25). 26
2.23 y = sin(x) + N(0, 1). 26
2.24 y = sin(x) + N(0, 4). 27
2.25 y =

√
x+ N(0, 25). 27

2.26 y = N(0, 25) x = U(−2, 4). 27
2.27 y = sin(x) + N(0, 4). 28

80

2.28 y =
√
x+ N(0, 25). 28

2.29 y = N(0, 25) x = U(−2, 4). 28
2.30 Graph. 29
2.31 In these 16 pictures the p-value(y-axis) is plotted when σ takes

the values 0.1, 1, 10. The �rst 8 refer to the test X ⊥⊥ V | Y
(we should �nd a small p-value), the latter 8 to the test X ⊥
⊥ Z | Y (we should �nd a high p-value). In each of the two
blocks, looking at the plot: from left to right, ε increases and
from the top to the bottom, h increases. The sample data are
100. 31

2.32 Example chain - Fourier basis. 33
2.33 Example fork - polynomial basis. 33
2.34 Example collider - piecewise constant basis. 33
2.35 Referring to Figure 2.32, it is the plot of X vs Y when SNR = 3. 34
2.36 Referring to Figure 2.32, it is the plot of Y vs Z when SNR = 3. 34
2.37 p-value of the kPC Permutation Cluster test. 34
2.38 p-value of the kPC Permutation Residual test. 34
2.39 Referring to Figure 2.32, it is the plot of X vs Y when SNR = 0.5. 34
2.40 Referring to Figure 2.32, it is the plot of Y vs Z when SNR = 0.5. 34
2.41 p-value of the kPC Permutation Cluster test. 34
2.42 p-value of the kPC Permutation Residual test. 34
2.43 Referring to Figure 2.33, it is the plot of X vs Y when SNR = 2. 35
2.44 Referring to Figure 2.33, it is the plot of X vs Z when SNR = 2. 35
2.45 p-value of the kPC Permutation Cluster test. 35
2.46 p-value of the kPC Permutation Residual test. 35
2.47 Referring to Figure 2.33, it is the plot of X vs Y when SNR = 0.5. 35
2.48 Referring to Figure 2.33, it is the plot of X vs Z when SNR = 0.5. 35
2.49 p-value of the kPC Permutation Cluster test. 35
2.50 p-value of the kPC Permutation Residual test. 35
2.51 Referring to Figure 2.34, it is the plot of X vs Z when SNR = 4. 36
2.52 Referring to Figure 2.34, it is the plot of Y vs Z when SNR = 4. 36
2.53 p-value of the kPC Permutation Cluster test. 36
2.54 p-value of the kPC Permutation Residual test. 36
2.55 Referring to Figure 2.34, it is the plot of X vs Z when SNR = 0.5. 36
2.56 Referring to Figure 2.34, it is the plot of Y vs Z when SNR = 0.5. 36
2.57 p-value of the kPC Permutation Cluster test. 36
2.58 p-value of the kPC Permutation Residual test. 36
2.59 Selected tests in kPC. 38
2.60 Selected tests in bPC. 38
2.61 ROC curve. 40
2.62 Example 5 variables. 40
2.63 ROC curve for kPC, bPC and PC algorithms. 41
2.64 In black are represented the sample points, in red are shown

the predicted values. 43

81

2.65 In black are represented the sample points, in red are shown
the predicted values. 43

2.66 The residuals of the regression y = f(x) + ε. 43
2.67 The residuals of the regression x = f(y) + ε. 43
2.68 In black are represented the sample points, in red are shown

the predicted values. 44
2.69 In black are represented the sample points, in red are shown

the predicted values. 44
2.70 The residuals of the regression y = f(x) + ε. 44
2.71 The residuals of the regression x = f(y) + ε. 44

3.1 "Well known dependences" among variable which are reported
in many books of biology. The red proteins are the measured
ones. 50

3.2 Summary of the the "well-known dependencies" (green) and
"known dependencies" (orange). 50

3.3 Boxplot of the data in dataset 8 after the log - transformation. 52
3.4 Plot of the data in dataset 8 after the log - transformation. . 52
3.5 Simulated graph when the protein PIP2 (orange box) is exter-

nally modi�ed. The proteins in circled boxes are the starting
nodes. 53

3.6 Boxplot of the Simulate dataset 8 - residuals/1. 55
3.7 Plot of the Simulate dataset 8 - residuals/1. 55
3.8 The skeleton to which the output of the algorithms is compared. 56
3.9 PLCγ vs PKC in simulated dataset - residuals/10. 61
3.10 ROC curve to compare kPCs, bPC and PC algorithms. The

data are the simulated ones - residuals/1 from dataset 8. . . . 63
3.11 ROC curve with simulated data - residuals/1. The used algo-

rithm is the kPC Residual with di�erent kernel widths σ. . . 63
3.12 . 66
3.13 . 66
3.14 . 66
3.15 . 66
3.16 The four graphs illustrate the output of the phases of kPC

Residuals and kPC Residuals - C with simulated - residuals/1
data. Green undirected edges represent correct found edges.
Yellow orientated edges represent correct orientations and red
directed edges represent wrong - direction orientations. Green
double directed edges represent correct edges for which we
cannot infer any causal direction. For each phase the green
arrowed edges are the orientations found in the previous step
while the non-green edges are the orientations discovered in
that phase. 66

3.17 . 67

82

3.18 . 67
3.19 . 67
3.20 . 67
3.21 The four graphs illustrate the output of the phases of kPC

Permutation - Residuals and kPC Permutation - Residuals -
C with real data. Green undirected edges represent correct
found edges. Yellow orientated edges represent correct ori-
entations and red directed edges represent wrong - direction
orientations. In every phase the non-green edges are the ori-
entations discovered in that phase. 67

3.22 . 68
3.23 . 68
3.24 . 68
3.25 . 68
3.26 The four graphs illustrate the output of the phases of bPC and

bPC - C with simulated - residuals/1 data. Green undirected
edges represent correct found edges. Yellow orientated edges
represent correct orientations and red directed edges represent
wrong - direction orientations. Green double directed edges
represent correct edges for which we cannot infer any causal
direction. For each phase the green arrowed edges are the
orientations found in the previous step while the non-green
edges are the orientations discovered in that phase. 68

4.1 Time it takes to the algorithms to �nd the causal models with
di�erent thresholds α. The graph that should be discovered
is the one in Figure 2.62 which is made by �ve variables and
�ve edges. 71

4.2 Zoom of Figure 4.1 to catch the di�erences among kPC resid-
uals and bPC. 71

83

List of Tables

2.1 Dependence test. kP = kernel based test of dependence with
Permutation test. kG = kernel based test of dependence with
Gamma test. bP = Brownina test of dependence with Per-
mutation test. All the p-values are a mean of 10 di�erent
repetitions of the test. The simulated sample size is 300 for
each function. 27

2.2 Free parameters . 29
2.3 Contingency table. 39

3.1 Table of datasets: for each dataset is explained after which
kind of external perturbation the proteins have been measured. 49

3.2 Comparison among di�erent methods of grouping datasets at
di�erent thresholds α and with di�erent algorithms. The an-
alyzed data are the real ones after a log-transformation. . . . 58

3.3 Comparison among di�erent methods to group datasets at
di�erent threshold α and with di�erent algorithms. The ana-
lyzed data are the simulated data - residuals/1. 59

3.4 Comparison among di�erent methods to group datasets at
di�erent threshold α and with di�erent algorithms. The ana-
lyzed data are the simulated data - residuals/3. 60

3.5 Comparison among di�erent methods to group datasets at
di�erent threshold α and with di�erent algorithms. The ana-
lyzed data are the simulated data - residuals/10. 60

3.6 SNR of the PLCγ and PIP2 in the 8 datasets with data: sim-
ulated data - residuals/10. 61

3.7 Comparison between algorithm "standard"(left) and "Complete"
(right). 64

3.8 These table describe how many correct (top line) and wrong
(bottom line) oriented edges are found during the di�erent
steps of the algorithms. 65

84

List of Algorithms

1 SKELETON phase . 11
2 COLLIDER phase . 12
3 TRANSITIVE phase . 12
4 GENERALIZED TRANSITIVE phase 46

85

Bibliography

Eaton, Daniel and Kevin P Murphy (2007). �Exact Bayesian structure learn-
ing from uncertain interventions�. In: International Conference on Arti-

�cial Intelligence and Statistics, pp. 107�114.
Flesch, Ildikó and Peter JF Lucas (2007). �Markov equivalence in Bayesian

networks�. In: Advances in Probabilistic Graphical Models. Springer, pp. 3�
38.

Fukumizu, Kenji et al. (2007). �Kernel Measures of Conditional Depen-
dence.� In: NIPS. Vol. 20, pp. 489�496.

Gretton, Arthur (2014). �Notes on mean embeddings and covariance opera-
tors�. In: Lectures.

Gretton, Arthur et al. (2005). �Measuring statistical dependence with Hilbert-
Schmidt norms�. In: Algorithmic learning theory. Springer, pp. 63�77.

Gretton, Arthur et al. (2008). �A kernel statistical test of independence�. In:
NIPS20.

Hastie, Trevor and Robert Tibshirani (1986). �Generalized additive models�.
In: Statistical science, pp. 297�310.

Hauser Alain Buehlmann, Peter (2012). �Characterization and greedy learn-
ing of interventional Markov equivalence classes of directed acyclic graphs.�
In: Journal of Machine Learning Research 13, pp. 2409�2464. url: http:
//jmlr.org/papers/v13/hauser12a.html..

Hoyer, Patrik O et al. (2009). �Nonlinear causal discovery with additive noise
models�. In: Advances in neural information processing systems, pp. 689�
696.

Hyttinen, Antti, Frederick Eberhardt, and Patrik O Hoyer (2010). �Causal
discovery for linear cyclic models with latent variables�. In: on Probabilis-

tic Graphical Models, p. 153.
Kalisch Markus Maechler, Martin Colombo Diego Maathuis Marloes H. Buehlmann

Peter (2012). �Causal Inference Using Graphical Models with the R Pack-
age pcalg.� In: Journal of Statistical Software 47.11, pp. 1�26. url: http:
//www.jstatsoft.org/v47/i11/.

Lauritzen, Ste�en L (1996). Graphical models. Oxford University Press.
Mörters, Peter and Yuval Peres (2010). Brownian motion. Vol. 30. Cambridge

University Press.

86

http://jmlr.org/papers/v13/hauser12a.html.
http://jmlr.org/papers/v13/hauser12a.html.
http://www.jstatsoft.org/v47/i11/
http://www.jstatsoft.org/v47/i11/

Pearl, Judea. Probabilistic reasoning in intelligent systems: networks of plau-

sible inference.
� (2000). Causality: models, reasoning and inference. Vol. 29. Cambridge

Univ Press.
Pe'er, Dana et al. (2001). �Inferring subnetworks from perturbed expression

pro�les�. In: Bioinformatics 17.suppl 1, S215�S224.
R Core Team (2014). R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing. Vienna, Austria. url:
http://www.R-project.org/.

Rizzo, Maria L. and Gabor J. Szekely (2014). E-statistics. url: http://
cran.r-project.org/web/packages/energy/energy.pdf.

Sachs, Karen et al. (2005). �Causal protein-signaling networks derived from
multiparameter single-cell data�. In: Science 308.5721, pp. 523�529.

Shawe-Taylor, John and Nello Cristianini (2004). Kernel methods for pattern
analysis. Cambridge university press.

Spirtes, Peter, Clark N Glymour, and Richard Scheines (2000). Causation,
prediction, and search. Vol. 81. MIT press.

Székely, Gábor J, Maria L Rizzo, Nail K Bakirov, et al. (2007). �Measuring
and testing dependence by correlation of distances�. In: The Annals of

Statistics 35.6, pp. 2769�2794.
Székely, Gábor J, Maria L Rizzo, et al. (2009). �Brownian distance covari-

ance�. In: The annals of applied statistics 3.4, pp. 1236�1265.
Tillman, Robert E (2009). �Learning Directed Graphical Models from Non-

linear and Non-Gaussian Data�. In: Master thesis.
Tillman, Robert E., Arthur Gretton, and Peter Spirtes (2009). �Nonlinear

directed acyclic structure learning with weakly additive noise model�. In:
NIPS 22, Vancouver.

Voortman, Mark and Marek J. Druzdel (2008). �Intensitivity of constraint-
based causal discovery algorithms to violations of the assumption of mul-
tivariate normality�. In: FLAIRS.

Wood, S.N. (2004). �Stable and e�cient multiple smoothing parameter es-
timation for generalized additive models.� In: Journal of the American

Statistical Association. 99, pp. 673�686.
� (2011). �Fast stable restricted maximum likelihood and marginal likeli-

hood estimation of semiparametric generalized linear models.� In: Jour-
nal of the Royal Statistical Society. 73.1.

Wright, Sewall (1918). �On the nature of size factors�. In: Genetics 3.4,
p. 367.

� (1921). �Correlation and causation�. In: Journal of Agricultural Resarch
20.7.

� (1934). �The method of path coe�cients�. In: The Annals of Mathemat-

ical Statistics 5.3, pp. 161�215.

87

http://www.R-project.org/
http://cran.r-project.org/web/packages/energy/energy.pdf
http://cran.r-project.org/web/packages/energy/energy.pdf

Acknowledgment

I wish to thank the MRC Biostatistics Unit of Cambridge for accepting me

as a visiting student. In particular, I thank Sylvia Richardson and Lorenz

Wernisch who supported me during those six months and taught me how to

develop my project. This thesis could not have been accomplished without

them.

88

	INTRODUCTION
	ALGORITHMS
	Probabilistic graphical models
	PC algorithm
	Kernel PC
	Kernel
	Test of Independence for kPC
	Test of Conditional Independence for kPC

	Brownian PC
	Brownian Distance Covariance
	Test of Independence for bPC
	Test of Conditional Independence for bPC

	Examples with Simulated Data
	Test of Independence
	Test of Conditional Independence
	Comparison with ROC curve

	Generalization of Transitive phase
	Additive Noise model
	Weakly Additive Noise model

	APPLICATION TO REAL DATA
	Data Analysis
	Data simulation
	Performances in terms of finding dependencies
	Application to eight datasets
	Application to one dataset

	Performances in terms of discovering the direction of the causal orientations

	SUMMARY AND FUTURE WORK
	APPENDIX

