
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

SPF: Social Proximity Framework

A Middleware for Social Interactions

in Mobile Proximity Environments

Relatore: Prof. Sam Jesus GUINEA MONTALVO

Correlatore: Ing. Valerio PANZICA LA MANNA

Tesi di Laurea di:

Jacopo ALIPRANDI, matricola 799010

Dario ARCHETTI, matricola 798847

Anno Accademico 2013 - 2014

Ai nostri genitori

Abstract

The advent of Web 2.0 and social networking applications was a major

technological shift that changed the web from an internet of documents

to an internet of people, with a novel focus on user identity. Nowadays

we are facing another technological shift that regards the world of the

Internet of Things. Smart interconnected devices are changing our

lives, and turning conventional spaces into smart ones, where interac-

tions are supported by digital means. This change is fostered by the

development of new networking technologies that aim at supporting

device-to-device communication. The industry efforts, however, ne-

glect the social identity of users, which was a key enabler of the Web

2.0. As result, smart solutions that want to integrate the social dimen-

sions need to rely on external infrastructures and integrate different

social networking services.

We believe that, in the context of smart spaces, the social dimen-

sion and the physical proximity can be exploited to create new social

proximity services. This thesis presents the Social Proximity Frame-

work (SPF), a software solution for the creation of social smart spaces,

where social identity and proximity is taken into account to offer per-

sonalized services. The framework offers benefits both to users and

application developers. Users can enjoy richer services and personal-

ized content, along with means to control their personal information

contained in the framework. Developers can leverage the tools offered

by the framework to ease the development of their applications, and ex-

ploit the data of user profiles generated by different social applications.

SPF can also be adapted to multiple networking technologies thanks

to its abstract communication layer. Two technologies have been used

to study how SPF can benefit from emerging device-to-device commu-

nication protocols.

i

Sommario

L’avvento del Web 2.0 e delle applicazioni di social networking è stato

un notevole progresso tecnologico che ha trasformato il web da una rete

di documenti in una di persone, mettendo al centro l’utente e la sua

identità. Al giorno d’oggi stiamo assistendo ad un altro progresso tec-

nologico che riguarda il mondo dell’Internet of Things. L’introduzione

di dispositivi intelligenti interconnessi tra loro sta cambiando le nos-

tre vite, trasformando spazi convenzionali in spazi intelligenti, dove

le interazioni sono supportate da mezzi digitali. Questo cambiamento

è favorito dallo sviluppo di nuove tecnologie di rete, che puntano a

supportare la comunicazione diretta tra dispositivi. Le soluzioni in-

dustriali, tuttavia, trascurano l’identità sociale degli utenti, un fattore

fondamentale per il Web 2.0. Di conseguenza, applicazioni smart che

vogliono integrarsi con la dimensione sociale dell’utente devono affidarsi

su infrastrutture esterne e integrarsi con molteplici servizi di social net-

working.

Crediamo che, in un contesto di smart spaces, la dimensione sociale e

la prossimità fisica possono essere sfruttate per dare vita a nuovi servizi

di social proximity. Questa tesi presenta Social Proximity Framework

(SPF), un prodotto software per la creazione di social smart spaces

in cui l’identità dell’utente e la vicinanza fisica vengono sfruttate per

offrire servizi personalizzati agli utenti. Il framework offre benefici sia

agli utenti sia agli sviluppatori: gli utenti possono fruire di servizi più

ricchi e di contenuti personalizzati, insieme a modalità di gestione dei

dati personali inseriti nel framework. Gli sviluppatori possono invece

sfruttare gli strumenti offerti dal framework per semplificare lo sviluppo

delle loro applicazioni e accedere all’informazione contenuta nei profili

degli utenti, proveniente da molteplici applicazioni. SPF può essere

adattato a diverse tecnologie di rete grazie al suo middleware di comu-

nicazione astratto. In particolare, sono state utilizzate due tecnologie

di rete diverse per studiare come SPF possa trarre beneficio da tec-

nologie di comunicazione device-to-device emergenti.

ii

Ringraziamenti

Alla fine di questo lungo percorso ci sono molte persone che vogliamo

ringraziare: per il supporto durante lo svolgimento di questo lavoro di

tesi e più in generale per averci accompagnato in questi anni. Inevitabil-

mente dimenticheremo qualcuno. Grazie innanzitutto a Sam Guinea,

relatore di questa tesi, per l’immancabile supporto e fiducia che ha ri-

posto in noi. Grazie a Valerio Panzica La Manna per averci coinvolto e

aiutato in questo interessante progetto. Grazie al prof. Luciano Baresi

per la costante partecipazione e stima che ci ha dimostrato. Grazie a

Telecom Italia e allo SCube Joint Open Lab per averci accolto nel lab-

oratorio e fornito interessanti spunti di riflessione. Grazie agli amici,

universitari e non, per averci sopportato (non è un errore di battitura)

durante questo periodo di studio al Politecnico. Grazie infine ai nostri

genitori, a cui è dedicata questa tesi, per averci accompagnato in questi

25 anni.
Jacopo e Dario

Non posso non ringraziare i miei compagni di avventure Isaia, Andrea,

Roberto per il lavori svolti assieme e le lunghe chiaccherate. Grazie a

Chiara Cerletti per aver cercato i puntini sulle i di questo lavoro. E

infine, ma non per valore, Serena, Alberta, Martina e Micol perché

nonostante non ci si veda mai è sempre come essere a casa. Manca

solo Dario: grazie per avermi pazientemente sopportato!
Jacopo

Ringrazio Gaia, perché mi è vicina sempre, e mi sostiene e motiva

come solo lei sa fare. Ringrazio Chiara, compagna di progetti e di

studio, per avermi spinto a studiare anche quando la voglia mancava.

Ringrazio Jacopo, per avermi accompagnato in questo lavoro di tesi,

impegnativo ma gratificante.
Dario

iii

Contents

1 Introduction 1

2 State of the art 7

2.1 Proximity networking technologies 8

2.1.1 Wi-Fi Direct . 9

2.1.2 AllJoyn . 11

2.1.3 Intel CCF . 14

2.1.4 LTE Direct . 15

2.2 Web and social services integration 16

2.2.1 Activity Streams 18

2.2.2 OpenSocial . 19

2.2.3 SNeW . 21

2.3 Frameworks for proximity social interactions 22

2.3.1 MobiClique . 23

2.3.2 MobiSoc . 24

2.3.3 Mobisoft . 25

2.3.4 MyNet . 26

2.3.5 Samoa . 27

2.3.6 Yarta . 28

2.4 Conclusions . 30

3 Social Proximity Framework 32

3.1 Problem analysis . 33

3.1.1 Application Scenarios 34

3.1.2 Requirements 35

3.2 Tools for social proximity applications 37

3.2.1 User profiling 37

3.2.2 Services . 39

3.2.3 Search . 41

iv

3.2.4 Advertisement 42

3.2.5 Activities . 45

3.3 Infrastructure . 46

3.3.1 Management of SPF-enabled Applications . . . 47

3.3.2 Remote access control 49

3.3.3 Functions of a SPF Provider 49

4 System Architecture 52

4.1 Overview . 53

4.1.1 Local Application Interface 54

4.1.2 Middleware Interface 55

4.2 Internal components 56

4.2.1 Security . 57

4.2.2 Services . 60

4.2.3 Profile . 64

4.2.4 Search . 65

4.2.5 Advertising . 67

4.2.6 Activities . 70

4.3 Local Application Interface 71

4.4 Middleware . 73

4.4.1 AllJoyn . 73

4.4.2 Wi-Fi Direct . 75

5 Results and evaluation 79

5.1 Samples of applications 80

5.1.1 SPFChatDemo 80

5.1.2 SPFCouponing 81

5.2 Code quality . 85

5.3 Performance . 89

6 Conclusions and future works 92

A Guide to SPF Library 96

A.1 Introduction . 96

A.2 Overview . 96

A.3 SPFSearch API . 98

A.3.1 Defining a query 98

A.3.2 Starting a search 99

A.4 SPFProfile API . 100

v

A.4.1 Reading local profile 100

A.4.2 Writing local profile 101

A.4.3 Reading remote profile 101

A.5 SPFService API . 101

A.5.1 Defining a service 102

A.5.2 Registering a service 103

A.5.3 Executing a service 103

A.5.4 Supported data types 104

A.6 SPFNotification API 104

A.6.1 Triggers and actions 104

A.6.2 Registering triggers 106

A.7 SPFActivities . 107

A.7.1 Data structure 107

A.7.2 Verbs routing 108

B Guide to SPF Framework 110

B.1 Introduction . 110

B.2 Overview . 110

B.2.1 Initialization . 111

B.2.2 Configuring SPFService 111

B.2.3 Listening for SPF events 112

B.3 Security Monitor . 113

B.3.1 Application registry 113

B.3.2 Person registry 115

B.4 Search . 118

B.4.1 Performing a search 119

B.4.2 Interacting with remote instances 120

B.5 Profile . 121

B.5.1 Adding and removing personas 121

B.5.2 Reading and writing on the local profile 122

B.5.3 Assigning groups to fields 123

B.5.4 Reading from remote profiles 124

B.6 Services . 124

B.6.1 Listing the SPFServices of an application 125

B.6.2 Managing the routing of SPFActivities 125

B.7 Advertising and Notification 126

B.7.1 Advertising . 127

B.7.2 Triggers . 128

B.7.3 Notification . 129

vi

B.8 Implementation of a middleware 130

List of Figures 132

List of Tables 133

Listings 134

Bibliography 136

vii

Chapter 1

Introduction

In recent years the advent of Web 2.0 and social networking applica-

tions was one of the major technological shift that profoundly changed

our lives. This revolution was fostered by the spread of very popu-

lar applications that were able to attract millions of users, changing

the web from an internet of documents to an internet of people. Social

identity is commonly seen as a mean to enable communication between

people and to provide services tailored to the user needs, preferences,

and interests.

Nowadays we are facing another technological shift that regards

the world of the Internet of Things. The adoption of smartphones and

smart interconnected devices is changing the way in which we interact

with physical spaces, which become day by day smarter. This change

is fostered by the development of new networking technologies that

aim at supporting innovative scenarios, as well as solving the issues

that come from the particular nature of mobile devices. In mobile

proximity environments, device-to-device communication is seen as a

promising solution to overcome the need of external infrastructure. In

this field, the industry efforts have produced examples of connectivity

frameworks that aim to provide a higher level of abstraction over the

network technologies: the focus of these solutions is on the management

of the heterogeneity of transport protocols and operating systems.

Unfortunately, the social identity is often neglected and never taken

2

into account to create innovative services. As result, smart solutions

that want to integrate the social dimensions need to rely on external

infrastructures and face problems that arise from the integration of

different social networking services.

We think that even in smart spaces the social dimension and the

physical proximity, enabled by device-to device communication, can be

exploited to create new social proximity services. The aim of this the-

sis is to fill this gap by proposing the Social Proximity Framework

(SPF) as a software solution for the creation of social smart spaces,

where social identity and proximity is taken into account to offer per-

sonalized services and support real-life interactions with digital ones.

During the design of SPF we took as reference model the state of the

art regarding web social networking applications. The existing social

network sites available on the Internet are all based on centralized,

isolated systems, and usually each of them is run by a single company.

Users on one social network cannot interact with users on another social

network. As result, people will often have to sign up for an account

on multiple web sites to keep in touch with different groups of friends.

Here the term walled garden is used to denote such services that use

proprietary interfaces that prevent the social data from being shared

across the network, creating a wall around them [8].

In this field, several industrial works [9, 10, 15] aim at providing

a unified model for the integration of social networking services. The

contents of these works can be classified according to two main objec-

tives: the first is to provide a common interface for developers to build

application on the top of social networking services [9, 10]; the second

is to define an infrastructure to allow the federation between different

social networks[15].

When we tried to move these concepts from the web to the mobile

area, we realized that the personal nature of mobile devices and the

more complex scenarios enabled by smart spaces would have required

a different approach. While in the web users are seen as contents of a

social networking service, in the smart space the user has to be brought

into focus. This user-oriented approach allows the user to manage the

services he uses, according to the context and to privacy settings.

To understand the potentiality of the novel scenarios that device

3

to device communication offers, we analyzed some of the most recent

networking technologies as well as innovative solutions that will be

available in the near future.

Our main reference and first choice for the implementation of the

network layer was AllJoyn [5]. AllJoyn is an open source middleware

created by Qualcomm in 2011. It is a platform neutral solution that

aims to provide a comprehensive framework for deploying proximity-

based distributed applications on heterogeneous systems with mobile

elements. The technology offers the developers a classic distributed

object oriented system, which is enriched by features, like advertising

and discovery, that are typical of mobile-proximity contexts.

Unfortunately, the current implementations of AllJoyn supports

only standards Wi-Fi networks, so that there is the need of a fixed

Access Point (AP). On the other hand, Wi-Fi Direct provides a solu-

tion to this issue by assigning dynamically the role of AP, therefore it is

suitable for mobile and outdoor scenarios characterized by the absence

of a network infrastructure. Another promising solution in the field

of device-to-device communication is LTE Direct [7], which provides a

scalable service discovery over the LTE licensed spectrum.

When these networking technologies meet the social dimension,

there are two scenarios that show up as the most relevant. The first one

regards the possibility of social networking without requiring external

infrastructure. In this scenario users can discover new people in prox-

imity and interact with each other. Some existing examples of such

applications have started to emerge. Bizzabo1, based on AllJoyn, is an

event management platform that allows event organizers to maximize

attendee engagement with one-on-one mobile and proximal messaging.

FireChat2 is a mobile app that allows its users to chat without the need

of an internet connection.

The second scenario is the one related to targeted advertising, where

owner of shops, bar or restaurant can deliver local and targeted adver-

tisements on the basis of the interests and habits of their customer.

Even here the idea of using device-to-device communication technolo-

gies to improve customer experience is not new. Bluetooth LE beacons

are used as indoor positioning system and to add proximity awareness

to applications, but the integration of social data requires an external

1https://www.bizzabo.com
2https://opengarden.com/firechat

https://www.bizzabo.com
https://opengarden.com/firechat

4

infrastructure.

The idea of social smart space is obviously not limited to these two

application scenarios, nevertheless they are sufficiently detailed with

regard to the kind of interactions that should be supported. The anal-

ysis of these scenarios led us to outline a series of high-level functions

that should be provided by the framework. These constitute the build-

ing blocks available to developers to realize their own social proximity

applications.

The aim of SPF is to embrace the world of web social networks

and the opportunities enabled by device-to-device communication. The

SPF contributes to the creation of social smart spaces in different ways.

It facilitates, speeds up, and reduces the complexity of the development

of novel proximity-based services by abstracting reusable functionality.

The SPF provides well-defined interfaces to let devices (people) adver-

tise and share identities and exploit each other’s services. The SPF

facilitates the dynamic deployment of new services, and thus the con-

tinuous modification of existing spaces to take into account new par-

ticipants and needs. User-oriented applications, at the same time, can

exploit a clear, privacy-friendly solution that supports different profiles

and permissions based on habits, contexts, or place of use.

The result is a software solution where both users and developers

may find advantages. Users may benefit from richer services and per-

sonalized services along with means to control them. Developers can

leverage on the offered tools to ease the development of their appli-

cations and exploit the data of a social profile generated by different

social applications.

Conceived and implemented for Android device, SPF is a frame-

work built on the top of an abstract communication middleware that

provides an integrated view over the social dimension of the user. By

relying on the Android inter app communication framework, SPF al-

lows applications to define social proximity services, contribute to the

creation of the user profile and access communication functions, rein-

vented with a social flavor.

A software library mediates the access to the framework by offering

reusable components that are tied to the life-cycle of the operating

system components, and thus they are easier to manage than other

networking solutions. Moreover, the centralized solution allowed us to

define a more optimized use of the resources and to take charge, without

5

the intervention of the external application, of all those operations that

are required to advertise the service over the network and to keep it

active.

Two different versions of the communication middleware, based on

AllJoyn and Wi-Fi Direct, help explain the characteristics of the dif-

ferent components, and show how the SPF can benefit from emerging

device-to-device communication technologies.

The thesis is structured as follows:

• Chapter 2 discusses the state of the art of mobile device-to-device

technologies as well as some industry works that aim at integrat-

ing web application and social networks. A short review of mobile

social middleware from the academia helps to outline some of the

problems that have been already studied in this area.

• Chapter 3 describes the functionality of SPF. It starts with a

discussion about the scenarios and high level requirements, then

it continues with the definition of the building blocks for social

proximity applications and how these can be managed by the user.

• Chapter 4 describes the architecture of SPF. Here we discuss the

interfaces of SPF and its internal components. The chapter ends

with a description and a discussion about two implementation of

the networking layer based on AllJoyn and Wi-Fi Direct.

• Chapter 5 discusses the realizations and the evaluation of SPF. It

explains how the tools offered by the framework can be used to im-

plement the scenarios discussed in Chapter 3. Then it presents our

consideration about the improvement of SPF on the code quality

of applications. Finally an assessment on the performance and

limitations of the inter-process architecture concludes the chap-

ter.

• Chapter 6 discusses the final results of the SPF and outlines some

future works regarding emerging network technologies, the port-

ing on other operating systems, and features that can extend the

current implementation of SPF.

• Appendix A provides the guide to the API of SPF library that can

be used by developers to implement SPF-enabled applications.

6

• Appendix B provides the guide to the internal API of the frame-

work. It explains how SPF can be integrated in other solutions

and how to implement a different version of the communication

middleware.

A paper titled “SPF: A Middleware for Social Interaction in Mobile

Proximity Environments”, related to this thesis, has been accepted as

contribution to the 37th International Conference on Software Engi-

neering (ICSE 2015).

Chapter 2

State of the art

Interconnected devices are changing the way in which we interact with

physical spaces, that are becoming day by day smarter. This change

is fostered by the wide diffusion of Wi-Fi networks as well as several

emerging mobile technologies that enable seamless interactions between

devices. Unfortunately, when talking about smart spaces, the key en-

abler of the Web 2.0 is neglected: the social element. This is often seen

as an accidental information and is not exploited to create new social

proximity services.

This chapter describes the technologies and the theoretical back-

ground on which this thesis is based. The first section provides an

overview of the networking technologies and middleware for implement-

ing mobile proximity services. The second section discusses the social

networking models as they appear in the web, along with the industry

efforts to provide integration solutions across different services. The

third section presents several different works, developed in academic

contexts, that aim at enabling social interactions in mobile proxim-

ity environments. Finally, the fourth section introduces the problem

addressed in this thesis.

2.1. Proximity networking technologies 8

2.1 Proximity networking technologies

Recent years have seen the proliferation of smart devices from simple

wireless sensors to more advanced products like smartwatches or TVs.

Given their widespread adoption, smartphones became the natural con-

trollers of these smart objects.

When trying to connect these devices, the most standard approach

is based on centralized server solutions that leverage the existence of

local Wi-Fi networks. Despite this is a well-known and consolidated

approach, it suffers from limitations that comes from the need of inter-

net connectivity: it may not be applicable in outdoor scenarios where

connectivity is not available, it has high latency due to remote commu-

nications and may not fit the energy requirements of battery supplied

devices.

On the other hand, direct device to device communication presents

problems and design issues that arise from the heterogeneity of devices

and from the existence of several different technologies. These solu-

tions differentiate themselves by targeting various contexts of adoption

as well as requirements like energy efficiency, scalability, transmission

range and speed. This situation does not become clearer even if we re-

strict the area to the interaction between two smartphones. Here there

is the need to deal with different versions of operative systems, dif-

ferent hardware availability, and proprietary technologies that prevent

the spread of proximity based mobile applications.

Differently from what happens in web development, where myri-

ads of high level frameworks are available, mobile development lacks

middlewares that may provide a higher level of abstraction for imple-

menting services. Once selected the proper technology, a developer has

to deal with the complexities of the networking solution, which usu-

ally implies to design all the software layers from the socket-like API

provided by the operative system, to the business logic of the service.

This section presents an overview of the most recent networking

and middleware technologies for implementing proximity services, as

well as promising industry solutions that will be available in the near

future.

2.1. Proximity networking technologies 9

2.1.1 Wi-Fi Direct

Wi-Fi Direct, also named Wi-Fi P2P, is a technology defined by the

Wi-Fi Alliance[1] in 2010 that provides peer-to-peer communication

over Wi-Fi. For long Wi-Fi networks were limited to the basic model

of an Access Point (AP) creating the wireless network and devices con-

necting to it. Even if the IEEE 802.11 standard allows device to device

connectivity by means of the ad-hoc mode of operation, this is affected

by limitations in the requirements, e.g., lack of power saving support

and extended QoS capabilities. Another extension to the standard is

802.11z, namely Tunnel Direct Link Setup (TDLS), which enables de-

vice to device connectivity but requires the devices to be connected to

the same AP[2].

The major novelty of Wi-Fi Direct is that it works without the

need of a fixed Access Point, since the roles are dynamically assigned.

Moreover, it offers power saving support and provides higher speed and

range than the ones achievable with communication over Bluetooth.

As result, Wi-Fi Direct is suitable for battery powered devices and

applications that need to share data at high rate, without requiring an

internet connection.

In typical Wi-Fi networks, access points create and announce wire-

less networks, while clients scan and associate to them. To overcome

the need of a fixed AP, in Wi-Fi Direct these roles are specified as

dynamic, and hence devices have to negotiate who will take over the

AP-like functionalities. The device that takes the role of the AP is

called P2P Group Owner, and is in charge of providing a software ac-

cess point (soft AP) that the other devices, named P2P Clients, can

use to establish connections as in standard Wi-Fi networks. When a

P2P Group is created, the devices form a star-shaped network topology

where the assigned roles are fixed; therefore, in case of disconnection

by the P2P Group Owner, its role can not be transferred to another

P2P Device and the connections with all the other peers are closed.

The technology specifies different types of group formation tech-

niques; in this paragraph we first discuss the Standard procedure, where

P2P Devices have to discover each other and then negotiate which de-

vice should act as P2P Group Owner. In this case Wi-Fi Direct devices

start by performing traditional Wi-Fi scan to discover existent P2P

Groups; a P2P Group is announced by the P2P Group Owner through

beacons like a traditional AP. Then a discovery algorithm is executed,

2.1. Proximity networking technologies 10

Figure 2.1: Wi-Fi Direct P2P Group topology

allowing two P2P Devices to find each other by sending probe requests

and receiving probe responses. Once the two devices have found each

other, they can start the negotiation phase which consists in a three-

way handshake (GO Negotiation Request/Response/Confirmation). In

order to reach an agreement, the devices send a numerical parameter,

namely GO Intent value; the device that sends the highest value is

elected as group owner. In case of same GO Intent the owner is se-

lected randomly. At the end of this procedure they have agreed on

which device will play the role of P2P Group Owner.

There are other two types of group formation procedure that are

simplified version of the Standard technique, called Autonomous and

Persistent. In the Autonomous group formation there is no negotiation

phase: a device can decide to create a P2P Group autonomously and

therefore becomes the group owner, by selecting a transmission channel

and starting to beacon network information. In the Persistent case,

the network credentials and the P2P roles are persistently stored on

the devices, and thus they can be used to speed up subsequent re-

instantiation of the same group.

An important feature of Wi-Fi Direct is the ability to support ser-

vice discovery at the link layer. This allows two devices to decide

whether to connect or not prior to the group creation process. The

Service Discovery procedure is an optional frame exchange that can

be performed at any time between any discovered P2P Devices. It is

based on the Generic Advertisement Service (GAS) protocol defined in

IEEE 802.11u[3], that supports higher-layer advertisement protocols

employing a query/response mechanism such as Bonjour and UPnP.

Android operating system introduced Wi-Fi Direct support start-

2.1. Proximity networking technologies 11

ing from API Level 14[4]. The low level details of the technology is

completely transparent to the application developer who can access

the functionality through its dedicated API. This API supports the

advertising and discovery of P2P Devices as well as of the services they

offer. In the latter case, service advertising requires some additional

information: the name of the service, the type in the form of proto-

col. transportlayer, and an additional key-value map of strings called

records, which can contain additional information about the service.

Unfortunately, the size of these records cannot exceeds 512 bytes, thus

preventing the advertising of a relevant amount of information.

Once the devices or services are discovered, results are delivered

to the application by means of callbacks following an asynchronous

pattern. According to the received information, the application may

decide to start the negotiation process by means of a connect operation.

Before joining a group, the devices must be authenticated: usually this

happens through WPS. This procedure requires the acceptance of a

predefined system pop-up dialog, which is prompted to the user of the

designated P2P Group Owner device. Once the connection is estab-

lished the P2P Clients are notified with a callback about the P2P Group

Owner IP address that can be used to communicate with standard sock-

ets. Further changes about the Wi-Fi connection can be received with

a BroadcastReceiver, listening to proper system Intents.

2.1.2 AllJoyn

AllJoyn[5] is an open source middleware created by Qualcomm in 2011.

It is a platform neutral solution that aims to provide a comprehensive

framework for deploying proximity-based distributed applications on

heterogeneous systems with mobile elements. The technology offers

developers a classic distributed object oriented system, which is en-

riched by features, like advertising and discovery, that are typical of

mobile-proximity contexts. Moreover, it handles the complexities of

dealing with different network technologies by providing dynamic con-

figuration and abstracting out the details of the physical transports.

The basic abstraction of the AllJoyn system is the AllJoyn Bus or

Router. This component is in charge of moving the messages around

the distributed system: the goal is to allow two applications to com-

municate without dealing with the underlying mechanism. Communi-

cation can be local, when the two applications run on the same device,

2.1. Proximity networking technologies 12

or distributed. In the latter case, AllJoyn takes care of unifying the

two remote Bus segments according to the available physical trans-

ports. This is completely transparent to the users of the distributed

bus, as it appears as if it is local to the device. Figure 2.2 depicts the

AllJoyn Bus abstraction where pentagons represent the connections of

the applications that are attached to the bus.

Smartphone 1 Smartphone 2

(a) Alljoyn connects the bus segments

of different devices.

Smartphone 1 Smartphone 2

(b) The distributed bus appears as if it

is local to the devices.

Figure 2.2: Alljoyn distributed bus

There exist three different topologies with regard to the interaction

between the AllJoyn Router and applications:

• in the Bundled Router configuration, applications use their own

AllJoyn Router which is bundled within the app. Generally this

is the case of mobile OS like Android and iOS and desktop OS

like Mac OS X and Windows.

• in the Standalone Router configuration, multiple apps connect to

a same router which is hosted by an external background/service

process. This is common case of Linux systems where the Router

runs in an external daemon.

• finally, embedded device can leverage a thin version of the frame-

work where the Router is hosted on a remote device.

Figure 2.3 shows an example of these three different topologies. On the

left there is a smartphone with the bundled configuration, on the right

there is a desktop with a standalone router, while the two embedded

device are connected to their AllJoyn routers by means of a thin version

of the framework library.

Applications can connect to the AllJoyn router by means of a Bus

Attachment. This is a language specific component offered by the API

of the framework that represents the distributed bus. A bus attach-

ment can be used to register and advertise services as well as to dis-

cover remote ones. The bus assigns a temporary unique name to each

2.1. Proximity networking technologies 13

Figure 2.3: AllJoyn Router topologies

attachment; if the application needs to provide a service, it can ask

for a persistent name, called well-known name. Well-known names are

announced on the distributed bus and thus can by used by remote

applications for service discovery.

As AllJoyn is a distributed object oriented system, it allows appli-

cations to register remote objects, that take the name of bus objects,

whose methods can be invoked by remote clients. As classical in object-

oriented programming, bus objects may have methods and properties

that are known as bus methods and bus properties. Moreover, AllJoyn

introduces the concept of bus signal, which is an asynchronous notifi-

cation that can be broadcast to signal an event or a change in the state

of an object. To be remotely invoked, all the members of a bus object

must be declared in an interface which is used as contract to the exter-

nal world and for the marshalling and unmarshalling of parameters.

Bus objects are registered and reside within a bus attachment, mul-

tiple implementations of a same service can be addressed with different

object paths. Well-known name and object path are the keys used by

the framework to deliver and route messages: the first is used within

the AllJoyn Router while the latter identifies the communication end-

point within a bus attachment.

Clients can access the remote service through a remote method

2.1. Proximity networking technologies 14

invocation mechanism. Once they have found a well-known name of the

service they want to access, they can ask the bus attachment to open

a session with the remote provider. At this point, the AllJoyn Router

performs all the operations needed to establish a connection with the

remote peer. Finally, to invoke the remote method, the application has

to obtain from the bus attachment, a proxy object that implements the

interface of the service. This object, called proxy bus object is in charge

of marshalling the invocation request and delivering the message to the

local connection to the bus.

2.1.3 Intel CCF

Intel Common Connectivity Framework[6] is a proprietary middleware

developed by Intel, that aims at providing a cross-platform solution

for building peer to peer applications without dealing with the het-

erogeneity of networking technologies. As its aim is the same one of

AllJoyn, Intel CCF shares many features with the previously discussed

middleware, but differentiate itself by introducing social identity in the

discovery process and providing cloud services to support the creation

of P2P networks.

Differently from what happens in AllJoyn where the service dis-

covery is based on simple string identifiers (well-known names), Intel

CCF requires the setup of user identities before a service can be made

discoverable. This step consists in the specification of a user name,

an avatar and a device name. Once the communication channel is es-

tablished, the API provides a stream based communication, different

from the RPC model proposed by AllJoyn. Moreover, CCF supports

fail-over mechanisms that provide automatic re-connection even on dif-

ferent physical transports.

Intel CCF cloud functions deal mostly with networking issues such

as NAT and firewall traversal. Among these functions, the most in-

teresting for the development of social applications is the concept of

discovery nodes. A discovery node is a cloud component that applica-

tions can use to exchange discovery data by publishing and subscribing

to it. A node can represent different things such as a location, a group

of friends, and can be used in different contexts to filter and enrich the

standard discovery process.

At the moment of writing, CCF is in a beta phase and plans to

support Wi-Fi and LAN networks, as well as Bluetooth, Wi-Fi Direct

2.1. Proximity networking technologies 15

and cellular connections.

2.1.4 LTE Direct

LTE Direct[7] is an innovative device-to-device discovery technology

that utilizes the LTE licensed spectrum and is part of the Release 12

of the 3GPP standard. Its aim is to scale up from existing proximal

discovery technologies in a battery efficient and privacy sensitive man-

ner.

Existing approaches to proximal discovery provide valuable solu-

tions for very specific use cases but fail when trying to provide energy

efficient, scalable and always-on proximal discovery services. Location-

based approaches track the user location and use a centralized solution

to determine the proximity to a given area, e.g., geofencing. This ap-

proach is excellent for the unlimited range and the large install base,

but the battery consumption, caused by the periodic location tracking

and the network accesses, limits its efficiency when trying to provide

an always-on discovery service.

On the other hand, Bluetooth LE proximity beacons utilize device-

to-device discovery to advertise services to nearby users through a pre-

installed app. Proximity beacons are an energy efficient approach for

providing location awareness and geo-fencing but their use is limited

to specific scenarios. In fact, the beacons are able to broadcast in a

range of approximately 50 meters; moreover, they do not scale well

with regard to energy consumption. Wi-Fi Direct can offer a similar

solution, but even in this case the battery life limits the scalability of

the solution. This is primarily because these technologies operate in the

unlicensed spectrum and have to deal with uncontrolled interferences

coming from other devices.

LTE Direct is designed to overcome the limitations of the exist-

ing approaches in a battery efficient, scalable and interoperable way.

Mobile applications can use the technology to monitor application ser-

vices on other devices or broadcast their own services. LTE Direct

enabled devices can broadcast these information via beacons, that are

sent periodically leveraging the LTE network for timing and resource

allocation. These beacons, called Expressions are 128 bit identifiers

that can represent different things such as an identity, a service, an

interest or a location. The relevancy of Expressions is determined at

the device level and filtered at the physical layer. Therefore there is

2.2. Web and social services integration 16

no need for an applications to be active, but it is notified when LTE

Direct detects a match, according to a monitor previously set. Expres-

sions can be targeted to specific applications or public, in the latter

case a common language is provided to ensure interoperability. Mobile

applications can map their services to public Expressions by means

of a centralized Expression Name Server that contains a hierarchy of

interest categories.

2.2 Web and social services integration

The introduction of the Web 2.0 technologies has radically transformed

the World Wide Web into a social space, shifting the focus from docu-

ments to people: individuals were no more mere consumers of content,

but rather active publishers of information that other peers can interact

with. As discussed in [8], this technological shift, together with the hu-

man predisposition for interaction, has led to the blossoming of on-line

social networking services, providing real-time communication capa-

bilities. The most notable example is Facebook, a social networking

service founded in 2004 that counts 1.39 billions users as of December

31st, 20141.

Most of the social networking services available nowadays share a

common set of features that are familiar to their users. Here we pro-

vide a list of the most characteristic features of general purpose social

networks.

Identity Entities and resources are assigned an identifier, unique

within the system, thus enabling addressability. In this way they

can be referenced from other entities, within the social network

or from the outside, using a machine-processable address.

Profile Each user of a social network is assigned a profile, which

is a container of data describing various personal details: name,

profile picture, address, Users may restrict the access to their

personal detail to a subset of users.

Relationships Users can create links of various nature with other

users on the same social network; these relationships can be mu-

tual, e.g., “friendship”, and typically require both party to con-

firm the tie, or one-sided, e.g., “follower”. The profile of a user
1http://newsroom.fb.com/company-info/ (cited January 2015)

2.2. Web and social services integration 17

often displays his relationships, and the access to this piece of in-

formation can be restricted, similarly to the other profile details.

Search Users can search for other people specifying one ore more

personal details, including name, location, age or gender; some

services allow users to opt-out of the search service to be excluded

from search results. The search may also include other kind of

resources, like events and photos, depending on the type of social

network.

Content sharing Users share digital content on social networks to

make it available to their list of contacts. The submitted content

may be an original contribution, like a photo taken by the user,

or a content originally created by someone else; in this case the

original author is normally credited. Similarly to profile details,

users can restrict access to their shared content so that only a

subset of users can access it.

Activities One of the most characteristic feature of the social web

is the real-time sharing of activities, i.e., social actions between

users or between users and resources. Social networking services

support multiple types of activities: some are generic and widely

supported, like a status update or the upload of a photo, others

are more context-specific. The collection of all the activities per-

formed by a user is named the stream of that user. Generally,

social networks support follow-up actions, performed by users as

a response to an activity of another user: the most famous is the

“like”, used to express appreciation.

Groups Social networks may allow the creation of groups, i.e., sub-

sets of users that may share a common interest. Users can join or

leave existing groups, possibly upon the approval of the admin-

istrator, and share messages or content with the other members

of the group. The administrator may provide a profile for the

group, similar to that available for users, and create events or

other resources contextually to the group.

Private messages Users can send private text messages that can

be read only by the sender and by the receiver; some services

allow the creation of group conversations, where only members

2.2. Web and social services integration 18

can exchange messages. It may also be possible to send other

types of resources, like photos or files.

While the web as a network of people is becoming more and more

interconnected, most of the social networking services available on the

internet are designed as centralized, isolated systems with minimal in-

teroperability, if any. A new term, walled garden, has been coined to

denote a service in which its provider has control over content and

interactions, and restricts access to its convenience: normally, social

networking services allow data to be inserted straightforwardly, while

it can be accessed and manipulated only by means of proprietary in-

terfaces and data formats, both for humans and machines.

For the end user, this means that the interaction with users of other

services is difficult if not impossible, and that a new account is often re-

quired to start using a new service. This lack of common standards also

affects application developers, who need to implement service-specific

connectors, as each social network exposes a different interaction inter-

face. These drawbacks has fostered multiple attempts for the creation

of open standards to enable interoperability and federation among het-

erogeneous services.

In the following, we describe three examples of specification for

social interactions: Activity Streams, which defines a standard for the

description of user activities, OpenSocial, which provides a standard

interface for the development of applications interacting with social

services, and SNeW, which defines a standard architecture for a system

of interoperable and federated social networks.

2.2.1 Activity Streams

Activity Streams [9] is a specification that introduces a standard format

for describing social actions, performed by users in the context of a

social networking service. The adoption of a common standard enables

the interaction among different social networking services and provides

a ready to use model that avoids the development of an ad-hoc solution.

The basic element of the specification is the activity, which describes

an unique and identifiable, completed or potential social action, that

is performed by an actor over an object, in the context of a social

networking service. An example of activity is a status update on the

Facebook wall, as well as a particular achievement in a game. In case

2.2. Web and social services integration 19

of potential actions, the activity describes what the actor may do with

the object, while in case of completed actions the activity describes

what has been done. An Activity Stream is a collection of activities,

which may have some details in common; the Facebook wall and the

Twitter timeline of a user are examples of activity streams.

The aim of the specification is to provide a standard syntax, based

on the JSON format, that is rich enough to describe activities in a

human-friendly, yet machine-processable and extensible manner. Each

activity is characterized by a verb and a series of properties that define

the type of an activity and provide contextual information. In partic-

ular, in addition to an actor, a verb and an object, an activity may

feature a target, which is the recipient of the activity, a result, which

is a web resource created as a result of the activity, and participants,

one or more people that participated in the activity.

2.2.2 OpenSocial

The proliferation of social websites forced application developers to

choose which ones to write applications for. Moreover, each social web-

site provides its unique APIs, which are tied to the application context

of the platform and often does not follow any shared standard. As re-

sult, this limits the spread of new applications and increases the efforts

by the developers when integrating social services. OpenSocial[10] is a

set of standardized APIs for building social applications: its goal is to

provide a common interface that allows an application to run on any

OpenSocial enabled platform.

As described in [11], OpenSocial applications are based on the

gadget architecture developed by Google: a gadget is a XML docu-

ment containing HTML and Javascript code that is rendered by an

OpenSocial container and shown into the social network site. The

interaction between the gadget and the container allows the applica-

tion to access the social graph of the site. This communication is

based on Ajax requests that are standardized in the OpenSocial Gad-

get Specification[12]. In a similar way, OpenSocial Social API Server

Specification[13] defines the REST interface for publishing the social

network information. Figure 2.4 shows an example of architecture

where an OpenSocial Container implementation2 is used to extend an

existing social networking platform.

2A reference implementation is provided by the Apache Shinding project.

2.2. Web and social services integration 20

OpenSocial
Container

Existing Social
Networking Platform

People/Relationships

Activities/Notifications

HTML Container

Gadget

Other Social Data

Figure 2.4: OpenSocial Container architecture

The social graph information is designed to be interoperable and

independent from the application context of the social networking site.

The primary set of data is the one concerning people and their relation-

ships, that are defined respectively in opensocial.Person and openso-

cial.Group classes: the first contains all the properties that character-

ize the user profile, while the latter are collections of Person instances

that are used to tag or categorize other users. The Person class sup-

ports more than 50 fields that embrace standard contacts information

as well as more socially oriented data like interests, skills, and pref-

erences about music, movies or food. As social networking sites may

have very different contexts, from platforms based on a specific topic

to enterprise solutions, the majority of these profile fields is optional:

the specification requires only the presence of a unique identifier (id)

and a human readable name (displayName). More details can be found

in the OpenSocial Social Data Specifiction[14].

Besides the information about a user and its relationships, OpenSo-

cial standardizes also the common features that can be found in a so-

cial networking site. These include the support to the Activity Stream

specification, a dedicated API for private messaging and services for

the creation of albums and media contents. Moreover, OpenSocial

Containers ease the development of applications by providing a simple

persistence layer, which allows developers to store key-value pairs of

string for each application and user.

2.2. Web and social services integration 21

2.2.3 SNeW

The fragmentation of social networking services that we previously de-

scribed has encouraged attempts for the creation of open standards

to allow federation and interoperability among heterogeneous services.

SNeW [15] is a specification defined by the Open Mobile Alliance that

allows interoperability between social network clients and servers, and

federation among social services, so that users can easily communicate

with users on other social networking services and migrate their data,

when using a different service provider.

Various scenarios of user interactions supported by SNeW-enabled

social networks are described in [8]. In the first scenario, a standard-

compliant social network is interconnected with external, non standard-

compliant services, allowing users to leverage possibly different services

with a seamless interaction. In particular, a user posts a status update

using the standard compliant service; this update is propagated to all

external interconnected services. A friend of the user on an external

social network posts a comment to the status update, and the author

receives a notification on the standard compliant service.

A second scenario introduces the federation capabilities of standard-

compliant services by describing a common social interaction involving

three users, A, B and C. A takes a photo using his smartphone and posts

it on a social network, explicitly tagging B, who receives a notification.

C, who is a friend of B, posts a comment on the photo, and both A and

B receive a notification. The innovation brought by standard-compliant

social networks is that the three users can use possibly three different

services, and that each user only needs one account to use any of these

services.

The architecture of a standard compliant social network is shown in

picture 2.5. The two main components of the architecture are a SNeW

server, which acts as the service provider, and a SNeW client, which

is used by users to access the service. The communication interfaces

are standardized, thus a client can interact with servers of different

services. The standard also provides a set of interfaces allowing the

interaction with external applications, both client-side and server-side,

and with external, standard compliant social networking services. A

SNeW server also implements a gateway component, which enables the

interaction with external, non standard-compliant services, by means

of connectors that mediate the access to proprietary interfaces.

2.3. Frameworks for proximity social interactions 22

Figure 2.5: SNeW architecture overview

Among the several standards used to specify the interfaces between

the various components, OpenSocial is used to define the data format

and the interface to access social information.

2.3 Frameworks for proximity social interactions

The steady increase in the adoption of mobile devices, in particular

smartphones, has changed the way in which we interact with other

people. These devices are capable of accessing the Web by means

of cellular network or Wi-Fi, and their operative systems often allow

third-party developers to implement full-featured mobile applications

by means of SDKs provided for free by device makers. All these factors,

together with the new focus on social interactions, contributed to the

diffusion of social applications that foster real-life, casual interactions

between users in proximity, as described in [16].

As most of the social applications share a similar communication

layer, their development can be greatly simplified by middlewares that

provide a simpler communication interface tailored to the social con-

text. In this way, developers can focus their efforts on the implemen-

tation of user functionalities, without dealing with the complexities of

the networking details.

This section describes some notable examples of social proximity

2.3. Frameworks for proximity social interactions 23

middlewares, developed in academic contexts. These examples can be

divided into three categories:

• Middlewares that apply semantic techniques to extract social re-

lationships from available profile data.

• Middleware that aim at extending existing web social networks

into the mobile world.

• Middlewares that provide support for resource sharing.

2.3.1 MobiClique

MobiClique [17] is a mobile social networking middleware that allows

users to maintain and extend their connections in the virtual world

as they meet new people in the real world. It is designed to be an

extension of existing social networks services into the mobile world: in

fact, the set of existing relationship of a user is obtained from its user

profile on an external service during a bootstrap process.

In its prototype form, MobiClique does not embrace any standard

for the representation of the user profile, as the developers chose to rely

on a simple representation comprising a unique identifier, a user name,

a short description, a list of friends and of interest groups. However,

according to the developers, the profile representation can be easily

replaced with an existing standard, like OpenSocial. In the prototype,

the MobiClique profile is bootstrapped using the Facebook API to read

the value for each profile field. In particular, the list of friends is used

by the middleware to build a social graph, which is then enriched with

encountered MobiClique instances and their friendship relationships.

Each MobiClique instance executes a periodic loop composed of

three steps: neighborhood discovery, user identification and data ex-

change. When a new device is discovered in proximity, MobiClique

enters the identification phase, in which the two devices open a com-

munication channel to exchange profile information. Upon the first en-

counter, the profile is transmitted completely and stored persistently;

during subsequent contacts, the profile is transmitted again only if it

has changed since the last encounter. After the identification is com-

pleted, the devices can exchange application level messages which are

stored persistently on the devices if enough storage space is available.

Opportunistic exchanges combined with user mobility allow mes-

sage to travel from device to device over multiple hops, without any

2.3. Frameworks for proximity social interactions 24

infrastructure, until they reach their destination. Messages can be ad-

dressed either to a single user or to an interest group: messages directed

to a single instance are directly delivered if the destination is in prox-

imity, otherwise the middleware finds all the paths from the local user

to the destination on the social graph, and forwards the message to the

first user of each paths upon contact; group messages are flooded in

a similar way to all users within the group. All messages are charac-

terized by a Time To Live (TTL), after which they are automatically

deleted by the system.

The MobiClique prototype does not implement any privacy settings

and thus users cannot limit the visibility of their profile information,

which is a major drawback for the platform. Moreover, as the middle-

ware employs Bluetooth networking for communication, MobiClique

will incur in scalability and efficiency problems.

2.3.2 MobiSoc

MobiSoC [18] is a social computing middleware that improves the de-

velopment and deployment of mobile social applications by providing

developers with a series of capabilities: first, the platform provides a

mechanism to capture dynamic ties between users and between users

and places. Those ties are then modelled, validated, stored and made

available to a multitude of applications. Secondly, the platform pro-

vides a centralized infrastructure that enables the efficient and scalable

collection of user locations in real time. Lastly, data collected by the

centralized infrastructure is used to create a model of the global state

of the community, in order to identify emerging geo-social patterns.

MobiSoC focuses on capturing and managing the social state of

physical communities by analysing collected social data. The state of a

community is represented by a collection of user profiles, place profiles,

social relationships between users and associations among users and

places. This social information is continuously evolving as new people,

places, relationships and associations are created. Moreover, learning

algorithms can discover new relationships between entities by analysing

geo-social patterns; this information is used to improve user and places

profiles and to suggest new relationships to end-users.

MobiSoc is based on a centralized service that implements all the

data collection and learning capabilities, while mobile devices interacts

with the public API of this service by means of a thin mobile client.

2.3. Frameworks for proximity social interactions 25

This approach has multiple benefits: first, the most computation-

intensive part of the application is executed on the server, resulting

in a more energy efficient mobile application. Secondly, a centralized

entity allows to easily maintain a consistent view of the social state; in

a decentralized configuration, the social state would be split on mul-

tiple devices, thus limiting the data available to learning algorithms.

Lastly, a centralized storage mechanism allows a persistent storage of

profile data and a better access control management.

The choice for a centralized architecture, however, has some impor-

tant drawbacks that may prevent the platform from gaining popularity

among developers. In fact, the centralized entity is a single point of

failure for all mobile applications powered by MobiSoc, as they would

stop working during server downtimes or when a network connection

is not available.

2.3.3 Mobisoft

Mobisoft [19] is an agent-based proximity middleware that enables the

creation of peer-to-peer overlays on top of mobile ad-hoc networks. The

middleware focuses on the concept of Personal Area Network, as the

digital space around the user device that can be reached using a wire-

less communication technique; in particular, Mobisoft uses Bluetooth

for its proximity communication. When two personal spaces overlap,

users can virtually “see” each other, i.e., their mobile devices are able

to communicate and exchange information. With these assumptions,

there is no need for an explicit notion of space, as it is an inherent

network abstraction.

The introduction of software agents improves the autonomy of the

middleware by reducing the need of user intervention for common tasks.

In the Mobisoft middleware, agents are tasked with supporting the nat-

ural human behavior of information exchanging by searching for ade-

quate communication partners and interesting information within the

user’s Personal Area Network. Once a partner has been discovered,

involved agents automatically start information exchange by transmit-

ting semantically annotated messages; only this first step is transparent

to users to negotiate the best interaction time. Subsequently, users are

notified of the discovered communication partner and can decide to

take the further steps.

Each user within the Mobisoft middleware is characterized by a

2.3. Frameworks for proximity social interactions 26

profile, which is a collection of meta-data saved persistently using the

Resource Description Framework (RDF), together with the Friend Of

A Friend (FOAF) vocabulary; the data model consists of resources and

statements, which link together two resources using a predicate, in a

subject-verb-object configuration. This model allows the description of

common personal data of a user, and also the list of people he knows;

to describe the list of interests and preferences, custom elements have

been added to the standard FOAF vocabulary. Thanks to the adoption

of RDF, agents are able to semantically analyze the profile information

received from another user upon meeting to determine whether his pro-

file is relevant according to the information contained in the local user

profile. If the two profiles are semantically relevant, the middleware

notifies the user as previously described. Whenever a foreign agent

gains access to sensitive profile data, the user is notified and requested

for acknowledgment.

2.3.4 MyNet

MyNet [20] is a social networking platform that allows users to share

their personal resources, devices and services in real time over a secure

peer-to-peer network. The platform does not depend on a centralized

infrastructure and is designed to be usable also by users without tech-

nical expertise. The basic building block of MyNet is a device, defined

as a routable and authenticable overlay network endpoint, uniquely

identified by an Endpoint IDentifier (EID). A new device is integrated

into the platform by means of an imprinting process, which imprints

the owner identity, profile and secret (e.g., a PIN) onto the device. The

secret is used to authenticate the user, and can also be used to protect

a configurable set of platform functionalities.

The set of devices within the MyNet platform that belongs to the

same user is called Personal Device Cluster. After his identity has

been imprinted onto a device, the user can add it to its PDC by means

of a device introduction process that merges the new device with one

already in the cluster. The process requires authentication on both the

devices and is reversible.

Users can establish social relationships by linking together their

clusters by means of an people introduction process, which requires both

users’ approval and results in the addition of a new social contact to

their PDCs; once the relationship is established, users can share their

2.3. Frameworks for proximity social interactions 27

resources with he other at any time. During the linking phase, the

P2P layers of the involved instances exchange routing information and

the identifier of each instance to allow future communications. Users

may also create groups of users or devices for a fine-grained access

control; in particular, user groups can be used as the recipients of an

access control privilege, while device groups as targets. For ephemeral

sharing scenarios, MyNet provides Passlets, a metaphor for real words

“passes”, which can be used to grant temporary access to a resource

within the user’s PDC.

Each PDC can host one ore more user-accessible services, i.e., ser-

vices perceived by the user, like chat or picture-sharing; each user

service is implemented by one ore more elementary components gen-

erally transparent to the user, which run on one or more devices of

the user’s PDC. In particular, services can be divided into MyNet-

aware, which are services implemented using the public API of MyNet,

MyNet-enabled, legacy services for which explicit support has been

implemented into MyNet, and MyNet-transparent, legacy services of

which MyNet is unaware. Services can be used to implement a broad

set of capabilities, including file sharing: in the general case of resource

sharing services, MyNet delegates privacy management and access con-

trol to the service itself.

2.3.5 Samoa

Samoa [21] is a middleware developed at the University of Bologna

that supports the creation of semantic, context-aware and roaming

social networks. It provides a logical abstraction that groups together

users in physical proximity who share affinities and interests. Mobile

users can play three roles within the framework: manager, which is

the creator and owner of a social network; he is responsible of the

definition of its discovery scope and of the criteria that new members

should match; client, a user which is located within the discovery scope

of a social network and is eligible to become a member; member, a user

which is already affiliated with the social network. A single user may

play multiple roles at the same time in the context of different social

networks. The management of a social network is based on the concept

of space, which is the physical space within its discovery scope: the

manager is the centre of the place, while clients and members are users

whose distance from the centre is less then a given number of network

2.3. Frameworks for proximity social interactions 28

hops, defined as the place radius.

All Samoa entities, i.e., users and places, are described by a profile,

which is a set of meta-data grouped in different categories according

to their logical meaning. A place profile is characterized by an identi-

fication part (comprising its identifier, name, description. . .) and an

activity part, listing the social activities and interaction supported by

the place that users can share. A user profile, on the other hand, fea-

tures an identification part, comprising his personal details, together

with a preference part, describing the social activities he is interested

in. A third type of profile, the discovery profile, allows the manager to

define the preferences that a client must declare to be eligible to join

one of his social networks.

The Samoa framework supports two types of social networks: place

dependant, which only includes the members currently co-located with

the manager, and global, which comprises the whole set of place de-

pendant social networks created over time by the managers. Samoa

automatically defines place dependant social network leveraging two

semantic-matching algorithm. The first matches all the profiles of

clients in the discovery scope against the place profile: those users

whose profile contains preferences semantically related to the place’s

activities are eligible to become members. The second algorithm takes

as input the set of eligible clients and selects those with profile pref-

erences which are semantically related to the place’s discovery profile:

the profiles of new members are saved in the place-dependant social

network, thus incrementally building the global one.

Regarding user privacy, the Samoa middleware does not offer any

access control capability, and thus it is impossible for users to limit the

visibility of their profile information.

2.3.6 Yarta

Yarta [22] is a middleware platform that supports the development of

mobile social applications focused on the analysis of the social graph

of users. It allows applications to share and reuse their respective

knowledge by using an expressive and extensive model to represent

mobile social environments and their contextual interactions. The data

model of Yarta is based on the Resource Description Framework (RDF)

and uses a vocabulary inspired by Friend Of A Friend (FOAF); in

particular, the base model has been enriched with additional elements

2.3. Frameworks for proximity social interactions 29

to support the complete set of the functionalities of Yarta. Social data

is stored and managed by a knowledge base which offers a set of API

to access, update and remove social data. User applications are able

to retrieve data from the KB by means of high-level queries that hide

the internal RDF representation; queries may also be executed on the

KB of a remote user.

Data stored in the KB is organized in an uniform graph of social

information: the initial node is the local user, and additional nodes are

included when new relationships are discovered by means of social sen-

sors. These sensors are components provided by Yarta that are able to

populate the KB by automatically extracting social informations from

two categories of sources: the first category comprises all those sources

that natively support the concept of relationship, for example existing

social network services; for these sources, sensors can be implemented

using the external service’s API to import data into Yarta. The sec-

ond category includes sources that contain social information without

native support for relationships, like the call log on a mobile phone; for

this sources, sensors must employ inference algorithms to guess existing

social relationships from available data.

Yarta natively provides a flexible access control that can be finely

tuned by the user according to his social preferences. It employs se-

mantic policies represented using SPARQL, a query language for the

retrieval and manipulation of data stored using the RDF format. Poli-

cies are managed, evaluated and enforced by the Policy Manager, a

component decoupled from both the application logic and the KB man-

agement. The Policy Manager intercepts any read, add or remove op-

eration on elements of the KB and performs reasoning on the defined

policies and the context of the request to determine whether the action

should be permitted.

Yarta is implemented with a decentralized architecture and supports

multiple communication technologies by means of a multi-platform

communication layer that provides both synchronous and asynchronous

messaging, a data transfer mechanism and a network-agnostic naming

and discovery service that allows to detect Yarta instances in proximity.

2.4. Conclusions 30

2.4 Conclusions

Recent years have seen the birth of emerging technologies that prove

the interest of industry about device to device communication. This

enthusiasm is driven by the novel IoT scenarios and the widespread dif-

fusion of mobile devices equipped with more and more powerful capa-

bilities. In particular, the availability of powerful hardware and several

networking technologies enables the development of new sophisticated

services, changing the way in which we interact with the physical en-

vironments.

Most of these novel technologies focus on dealing with the hetero-

geneity and details of proximity networking, thus providing essential

tools to create proximity based applications. Some of them provide

even higher level of abstraction, like Alljoyn and its RMI model, that

speed up the development of such applications. However, none of these

fit properly the constraints that modern mobile application develop-

ment impose on the life-cycle of internal components. Thus, a developer

must handle and build from scratch the whole infrastructure needed to

manage the lifespan of published services; this includes: the manage-

ment of connections, multi-threading and synchronization issues, and

the complexity of implementing background components.

Existing solutions completely neglect the social element, which was

fundamental for the rise of the modern web. In fact when defining and

publishing proximity services, user identity is often seen as accidental,

thus resulting in a meaningless mash of device and service names. Still,

social aspects can provide additional value also in a proximity context,

by opening new interesting scenarios and allowing applications to offer

services that are tailored to their users.

In the academic world, multiple research teams have tried to develop

middlewares for social applications in proximity environments. These

social middlewares, built on top of proximity communication technolo-

gies (Bluetooth or Wi-Fi), provide social capabilities to support real-

life interactions among users, including semantic profile matching, re-

source sharing and notification of people in proximity. However, most

of these works lack of a thorough analysis of the differences between

web scenarios and those of mobile proximity environments, thus they

do not embrace all the novel opportunities offered by the mobile en-

vironment. As result, the capabilities of modern mobile devices are

under-evaluated and not fully exploited, and the proposed solutions

2.4. Conclusions 31

present limited applicability: a set of features that are borrowed from

already established web social networks, without providing the building

blocks for more general scenarios. For example, all these middlewares

lack facilities to allow developers to quickly implement custom inter-

actions, beyond those supported by default, although they are enabled

by modern networking solutions.

This thesis work wants to propose an infrastructure for the cre-

ation of novel social proximity services, by providing a framework that

unifies the capabilities of network technologies and the potentiality of

the social features. The final aim is the creation of an environment in

which the user identity is once again brought into focus and where dif-

ferent applications can coexist and integrate themselves with seamless

interaction and full control on behalf of the user.

Chapter 3

Social Proximity Framework

This chapter presents the Social Proximity Framework (SPF), topic of

this thesis. SPF is a software solution for the creation of social smart

spaces, where social identity is taken into account as a key enabler to

provide services more tailored to users and to enhance real interactions

between people with digital ones. SPF offers a thorough infrastructure

to handle the development and deployment of these social proximity

services.

Section 3.1 introduces the most significant application scenarios and

outlines some high-level requirements for SPF. Here we provide a defi-

nition of social proximity application and social smart space.

Section 3.2 presents the tools that SPF offers to developers for the

creation of social proximity applications. These tools include a shared

user profile, utilities to implement social proximity services, and two

different means for the discovery of remote users.

Section 3.3 discusses the global vision of the SPF infrastructure, in

particular describes how applications and personal data are managed

within the framework. The concept of SPF Provider is introduced as a

software module that provides a user interface to control personal data

and services held by the framework.

3.1. Problem analysis 33

3.1 Problem analysis

As discussed in Chapter 2, the emerging of several new technologies

in the field of the Internet of Things is changing the way in which

we interact with the environment and its objects. Device to device

communication is seen as a promising solution to avoid the need of

internet connectivity and to fit the requirements of battery-powered

mobile devices. In practice, actual applications of these new solutions

can be found in the proximal discovery of services and entities, as in

the case of Bluetooth LE beacons, and in the remote control of smart

objects.

What is missing in this scenario is the social identity of the user,

which is usually neglected or, if considered, is based on external infras-

tructures. This solution has limited applicability in different scenarios,

for example in absence of connectivity or in public environments where

there is the need to deal with heterogeneous devices and social ser-

vices. In these cases we think that a unified software layer and device-

to-device communication can help in building smart spaces that are

focused on the identity of their users and offer novel social proximity

services.

A social proximity application is not intended to be only a replica of

existing web-based social functions. Rather, its aim is to support daily

activity of a smart space and to offer services tailored to the users, on

the basis of interest, skills, and other information of their profile.

The union of different social proximity applications should create a

new kind of smart space with a social flavor, as usually happens almost

everywhere in the web. These novel social smart spaces offer means to

discover services, people, appliances and to support the communication

between them. The purpose of such a smart place is not to replace real

social interactions, but to encourage them through digital ones.

SPF is a software solution that aims at creating social smart spaces,

providing advantages for both developers and users. The framework

offers to the developers the advantage of ready to use facilities for the

implementation of social proximity interactions. Users and smart space

owners can use the framework to control their information and manage

the installed services.

The following section discusses in detail the concept of social prox-

imity application, providing some of the most meaningful application

scenarios.

3.1. Problem analysis 34

3.1.1 Application Scenarios

Social Network in Proximity

The Social Network in Proximity (SNiP) scenario aims at describing

how standard social networking functions can be adapted to a prox-

imity context. A recent trend for social networking applications is

utilizing proximal discovery for social matching: proximity is seen as

an important factor to determine the relevancy of a match. Device

to device communication can be exploited to avoid the need of GPS

location tracking and external infrastructure. A P2P architecture that

does not require a centralized solution, may help in providing the so-

cial functions of the SNiP even in environments where there is neither

Wi-Fi access nor internet connectivity.

Such functions are intended to stimulate real life interactions by

means of digital ones; this is especially true in large events, crowded

of people. In a career day, people advertise their skills and companies

discover interesting profiles. In a fair, customers interested in particular

brands or products can discovered their representatives. In a party,

people can meet new people on the basis of common interests. Each

user of this service has to:

• create a social profile;

• add a username and a profile picture;

• add interests (e.g., cinema, Japanese food, soccer);

• publish the social profile in the smart social space.

A user then can use the application to discover profiles according to

personalized queries. Once the interesting people are discovered, the

user can communicate with them by sharing messages and contents

as well as by means of different types of communication offered by

the application. Such interactions may resemble the ones that can be

found in social networking sites or even be specifically designed by the

application.

Targeted Advertising

This scenario describes the provisioning of tailored digital advertise-

ment, like discounts, promotions or special offers, to customers of shops,

3.1. Problem analysis 35

restaurants and bars in physical proximity. This service, deployed on

special devices physically placed in these shops, is able to interact with

customer devices that have a specific application installed.

Shop owners can configure the service by creating new coupons and

special offers for customers. The provision behavior of the service can

also be configured, for example to deliver a coupon when a user enters

the shop for the first time, or provide additional promotions to loyal

customers. On the other hand, the customer application allows users

to specify their interests in advertisements for specific topics. Once the

customer is in the proximity of a shop, the service reads the interest

list from his device and provides him advertisement that matches his

interests.

As an example, customers may leverage this application to declare

their interest in coupons and offers related to smartphones. Owners of

shops and pubs can set up the service to discover customers in prox-

imity interested in the products they sell, in order to perform targeted

marketing campaigns. Upon launch, the service performs multiple, pe-

riodic searches to discover enabled devices in proximity. Once a new

device is found, the service provides a coupon according to its config-

ured behavior; the user is notified of the new coupon by means of a

push notification received on his device.

The idea of proximity-based advertisement is not new. Recent so-

lutions, including iBeacons or other indoor positioning systems, have

been installed inside shops and restaurants to discover the presence

of customers within stores, and provide them advertising. However,

these solutions traditionally lack a built-in support for user profiling,

and thus require an external, ad-hoc infrastructure, and an internet

connection for intercommunication.

On the contrary, in this scenario coupons and special offers are

actively advertised to potential customers located in the proximity of

the shops. Moreover, the advertisements are tailored on user profiles,

thus improving the effectiveness of advertising, without depending on

internet access or an external infrastructure.

3.1.2 Requirements

On the basis of the scenarios previously described, we have identified

the following high-level requirements that a novel framework needs to

satisfy in order to support social interaction in proximity.

3.1. Problem analysis 36

1. Profile Management

The framework must enable the creation of a persistent and cen-

tralized social profile stored on the user’s device. Such profile

should contain an identifier for the user, unique within the SPF

environment, and allow the user to insert his personal details.

The profile should be accessible to local applications and remote

instances, according to the privacy preferences of the user. Local

applications may be allowed to both read and write data on the

profile, while remote applications may only read profile informa-

tion.

2. Advertising

The framework must enable users to advertise their profile to

other instances in proximity. Advertising should be performed in

accordance to the privacy settings defined by the user; in particu-

lar, the user may restrict the set of profile information advertised

to peers in proximity. The framework should also allow local ap-

plications to react to incoming profile advertisement.

3. Discovery

The framework must support profile discovery by instances in

proximity on behalf of local applications. The discovery process

should be based on a query mechanism to allow filtering profiles on

the basis of profile information. A local application that started a

search process should be notified when a new matching instance

is found. Discovery can either be fully peer-to-peer, or mediated

by a centralized device installed in the smart space.

4. Communication

The framework must provide high-level communication facilities

supporting the interaction between user applications in social

smart spaces. These facilities should hide the underlying commu-

nication protocols adopted by the framework, so that remote ap-

plications can communicate transparently, without dealing with

networking details. The framework should also provide special

support for well-known social activities, such as messages and

media-content posts.

5. Security

The framework must allow users to control how their resources

3.2. Tools for social proximity applications 37

and profile information are shared with local applications and

remote instances. In particular, the framework must provide a

facility to restrict the access to the profile information only to

allowed people and applications.

3.2 Tools for social proximity applications

This section describes the building blocks provided by SPF to ease

the development of mobile social applications. First, applications can

leverage on a shared user profile maintained by SPF, that comprises

both user-provided information and contributes from SPF-enabled ap-

plications installed on the user’s device. SPF also allows applications

to register and execute proximity services, which enable the implemen-

tation of ad-hoc interaction mechanisms among applications.

Another fundamental building block is proximity awareness: ap-

plications can discover other SPF instances in physical proximity by

means of search queries that can be configured according to applica-

tions needs. Reactive actions are also supported, as applications may

require to be notified of people in the proximity of the user. This is

based on profile advertisement and applications-defined rules, named

triggers.

Lastly, SPF introduces the concept of activities, a data structure to

represent social actions between users, and provides a series of facilities

whose aim is to ease the implementation and integration of well-known

social interactions.

3.2.1 User profiling

SPF allows users to create a persistent personal profile to represent

them in virtual social interactions mediated by the middleware. The

profile is managed by the framework on behalf of the user, and provides

access to local applications and remote users according to the user’s

privacy preferences.

The information contained in the user profile can be inserted either

directly by the user, or by external applications installed on the user’s

device. In particular, the content provided by external applications

contributes to the creation of a dynamic profile that is automatically

updated to best match the real details of a user. For example, a media

3.2. Tools for social proximity applications 38

player can contribute up-to-date information regarding the user’s music

tastes.

The user profile has a modular structure, organized into a collection

of profile fields and stored according to a key-value pattern; some of

the available fields are listed in Table 3.1. This information model is

inspired by the one of OpenSocial, and covers both personal informa-

tion and additional social data. The modularity of the structure allows

for new fields to be easily added.

Field name Field type Description

Identifier String Unique identifier for a user.

Display name String The name of this user, suitable for display to

other users.

Photo Binary A photo of this user.

Birthday Date The birthday of this user.

About me String A general statement about the user.

Emails String E-mail addresses for this user.

Location String The user’s place of residence.

Status String The user’s current network status

Gender String The gender of this user.

Interests String The user’s interests, hobbies or passions.

Table 3.1: Some of the profile fields supported by SPF

SPF also introduces a mean to diversify the profile information, so

that applications belonging to different domains are provided appro-

priate values for each profile field. This diversification capability goes

under the name of profile Personas : a Persona is a named container

that can hold a value for each profile field. A user can create multiple

personas, and assign them the most appropriate profile field values.

Each application that interacts with SPF is linked with a specific per-

sona, as discussed in Section 3.3.1, and can only access the field values

contained in it.

In this way, users can create multiple user profiles, each one tailored

to a specific context. For example, a user can create a “Business”

3.2. Tools for social proximity applications 39

persona to hold work-oriented details, and a “Personal” one to hold

informal details for friends and family. The business persona shows his

business email address and his work skills and interests; the personal

one, on the other hand, provides his personal email address, and his

favorite hobbies and brands as interests.

3.2.2 Services

The implementation of rich interactions between applications installed

on different devices is a complex and time-consuming task for appli-

cation developers. In fact, developers need to rely either on a net-

working technology for direct communication, with the burden of low

level details, or on an external cloud infrastructure, increasing costs

and development time.

As discussed in Chapter 2, a solution to this problem is a middle-

ware that provides high-level abstractions for device to device commu-

nication. These abstractions allow the developers to avoid both the

development of an external infrastructure and the intricacies of low

level networking details.

SPF tackles these issues by providing facilities that allow applica-

tions to define custom software functions called services. SPF enabled

applications can seamlessly execute services of external applications,

either installed on the local device or on a remote one.

The capabilities offered by a service are declared by means of an in-

terface that lists all the methods available for invocation; each method

is identified by a name, which must be unique within the service. Meth-

ods may accept input parameters, provided by applications upon in-

vocation, and a return value that is provided back when invocation is

concluded. The service interface also provides a set of meta-data de-

scribing the service, including its name and version. The business logic

that realizes the interface is provided by means of a service implemen-

tation, which contains the code to react to a service invocation.

SPF provides a Remote Method Invocation mechanism that enables

the remote execution of application services. The central part of this

mechanism is the Service Registry, which stores all the services that are

available for execution in a SPF instance. To make a service available

to others, an application first needs to register it in SPF, which stores

the service’s meta-data in the registry.

The invocation of a remote service happens transparently by means

3.2. Tools for social proximity applications 40

of a Service Stub, a component that exposes the same interface of a

service, hiding all the lower-level communication details. To obtain

the stub for a service, an application must first identify which service

wants to invoke by providing the identifier of the service to invoke, and

the SPF instance that is exposing it.

Service
Stub

Service
Implementation

Invoking application Provider application

SPF SPF

Request

Response

Figure 3.1: Invocation of a remote service

Once the stub is obtained, the application can invoke a method of

the service, as shown in Figure 3.1. To invoke a method, the applica-

tion has to provide the method name and the parameters, if required,

to the stub. The serialization and de-serialization of the parameters are

handled transparently by the invocation stub. When the stub receives

an invocation request, it creates a package containing the meta-data

required to identify the method to invoke, together with the serialized

parameters; then, SPF dispatches the package to the remote applica-

tion.

When SPF receives an invocation request, the service is looked up

in the Service Registry. If the service is found, the method implemen-

tation is retrieved and executed, providing the arguments if needed.

Once the service has been executed, a response is sent back to the

application that invoked the service; the response contains a status

to signal any error, and the serialized return value, according to the

method declaration.

3.2. Tools for social proximity applications 41

3.2.3 Search

The discovery of other people located in physical proximity with a user

is a core feature provided by social proximity middlewares, as discussed

in Chapter 2. SPF provides a flexible and configurable search service

that enables the discovery of other SPF instances that are reachable

by means of the underlying networking technology.

SPF supports a complete customization of the search process. In

particular, an application can restrict the set of discovery results by

means of a query that states a series of properties that results must

match. A search property can be of three types:

• Field value: states that a profile field must have a specific value.

For example, a query may require that the “gender” profile field

is set to “female”.

• Tag: specifies a values that must be contained at least in a profile

field. For example, the value “Android” can be contained in the

“interests” profile field, as well as in “skills”.

• Application: specifies the identifier of an application that must

be registered in SPF.

A query matches a person if all the specified query properties are

satisfied by the instance. For example, a query to discover all the

women related to a tag “Android” should specify “female” as value of

gender profile field, and “Android” as a tag.

Search queries are executed by means of a distributed mechanism

that delegates the query evaluation to remote instances. As shown

in figure 3.2, queries are broadcast to all reachable SPF instances by

means of search signals. Upon reception, queries are evaluated against

the user profile. The search signal also contains the identifier of the

application that requested the discovery process; if the application is

installed on the local device, SPF reads the profile value from the per-

sona that is assigned to that application, otherwise from the default

one.

If all the properties match, the query is fulfilled, and a search result

signal is sent back to the instance in discovery. The search result signal

contains also the basic information of the matching instance, such as

the user identifier and the name to be displayed. This information is

3.2. Tools for social proximity applications 42

Alice

Dave

SPF

Carl

SPF

Bob

SPF

SPF

NO MATCH NO M
ATCH

SEARCH S
IG

NAL SEARCH SIGNAL

S
E

A
R

C
H

 S
IG

N
A

L

R
E

S
P

O
N

S
E

 S
IG

N
A

L

Figure 3.2: Execution of a search request

provided to the application that started the discovery request to avoid

additional requests to retrieve this information.

To start a discovery process, an application must provide a query,

some configuration parameters and a callback to be notified of results.

The configuration enables applications to control the number of search

signals sent and the time interval between two subsequent signals. The

callback, on the other hand, allows SPF to dispatch search events to

the application that started the discovery process. In particular, the

application is notified of the availability of a new user that matches

the specified query, and when a previously notified user is no more

available. In this way, applications can progressively build a list of

people available in proximity. Applications are also notified of the

status of the search process, in particular when the search starts, when

it stops after all signals have been sent, and when an error occurs during

the search.

3.2.4 Advertisement

Besides the search feature previously discussed, SPF offers another

mechanism to discover remote instances. This functionality, called

3.2. Tools for social proximity applications 43

advertisement, allows devices to exchange profile data, without user

intervention.

In analogy with the presentation between two people in real life,

advertising is performed by exchanging profile information when two

or more devices become in proximity of each other. This profile infor-

mation comprises the values of a set of profile fields, and possibly the

list of installed applications. The user can configure this function by

selecting which fields to advertise, whether or not to include the list of

applications, and the persona from which these pieces of information

are retrieved. Moreover, it is possible to decide whether or not to turn

on this feature: once enabled, it is tied to the network resources of

the framework, meaning it works as long as SPF is active. This, along

with the control over the exchanged information, should ensure enough

privacy and adequacy to different contexts of use.

For example, a user may want to advertise business related infor-

mation while working, and turn off the feature when in his spare time.

Differently, a device situated in a shop may want to continuously ad-

vertise itself with the purpose of attracting interested costumers.

Application can react to received advertisement by defining triggers :

a trigger is a rule that specifies an action to perform when the received

advertisement satisfies a given condition. Conditions are specified by

means of search queries, as the one available for the search, while ac-

tions can be of two different types:

• the Send Message action delivers a textual notification to the

remote device that has activated the trigger;

• the Intent action notifies the application that has defined the

trigger about the remote instance.

Figure 3.3 describes how triggers are handled: upon the reception of an

advertisement, data are evaluated against all the registered triggers; in

the case that a match is found, the action associated with the trigger

is executed.

SPF allows developers to configure timing parameters that modify

the behavior of a trigger. In detail, it defines a sleep period, that is

the time interval during which subsequent activations of a trigger on

the same SPF instance are blocked. If triggers do not specify a sleep

period, they are automatically configured as one shot, meaning that

their actions can be executed only once for each remote user.

3.2. Tools for social proximity applications 44

Figure 3.3: Sequence diagram: trigger evaluation and action execution

In short, the triggers mechanism allows applications to define persis-

tent queries that are fully managed by the framework in a transparent

manner. This feature targets specific use cases where there is the need

to provide an always-on search. To obtain a similar behavior with the

standard search, a developer has to deal with its own background com-

ponents; instead with triggers there is a shared background component

that makes the development of such a function much easier. Moreover,

it offers the opportunity to optimize the use of resources, especially

when multiple applications have such similar behavior.

Triggers are a flexible solution, that well suits the targeted adver-

tising scenario discussed in Section 3.1.1. Here follow two concrete

examples of how triggers can be used in such scenario. We distinguish

two main actors: the first is the entity that wants to attract new po-

tential users by letting them discover its information, e.g, a shop; the

second is the user that is the object of the interaction. For simplicity,

we call these two actors respectively advertiser and customer.

In the first interaction pattern, customers advertise their own profile

3.2. Tools for social proximity applications 45

by means of SPF. An application installed on the advertiser device

can then define triggers for executing actions that are tailored to the

customer. These actions can include the sending of a simple message or

the execution of a proximity service defined by an application installed

on the customer’s device. The latter can be easily implemented through

an intent action provided by the SPF triggers.

The other pattern is the symmetrical counterpart of the first one.

Here the advertiser uses SPF to broadcast its profile information. Cus-

tomers’ applications can define triggers to notify the presence of an

interesting entity. To have a more concrete example, this kind of in-

teraction can be used in shopping centers where there are multiple

advertiser and a large number of customers.

3.2.5 Activities

Mobile social applications offer a set of well-known services that sup-

port social interactions among users. Often, the same service is offered

by multiple applications in a similar way; this is particularly evident

in the case of mobile chat applications, where multiple, widely-used

options are available. However, even if the provided capabilities are

similar, these applications are almost never inter-operable, thus the in-

teraction among users of different services is not possible. In this sce-

nario, any generic interaction, like a chat message, requires the sender

and the receiver to have installed the same application, as result this

is a limitation for the diffusion of new applications.

Even though SPF services enable the interaction among different

applications, they are not enough to solve this interoperability issue.

In fact, multiple similar interfaces can be defined to model the same

interaction, thus requiring the adoption of a standard. The same stan-

dard interface, though, can be exposed by multiple applications on the

same device, thus developer would still need to specify which applica-

tion they want to interact with.

To solve this problem, SPF introduces the concept of Activity, in-

spired from the ActivityStream [9] specification. An activity is an

inter-operable key-value data structure, containing standardized pieces

of information that characterize most of the common social interac-

tions. Each activity defines common attributes that identify the sub-

ject of the action, its target, a verb that specifies the type of action,

and other attributes that provide additional information, such as date

3.3. Infrastructure 46

and time. Besides these common data, an activity contains attributes

that constitute the content of the action they represent, for example

a status update may include a textual message or a picture, while a

check-in should include a location.

Activities can be created locally on the device or can be sent to

remote users when the action includes the participation of other people.

This is the case of writing a post on a friend’s wall or even sending a

chat message. All these interactions can be handled by the framework

without dealing with specific interfaces of SPF services.

SPF offers an activity routing mechanism based on the verb at-

tribute, that is the type of activity. SPF services may leverage this

feature by declaring themselves as activity consumer for certain verbs.

From the client point of view, sending an activity does not imply the

knowledge of any interface of application. The framework takes care of

dispatching the activity on the basis of its registered services. To give

a more concrete example, consider two different chat applications; if

they want to adopt the activity routing mechanism to implement the

exchange of textual messages, they only have to agree on the verb of the

activity and then extract contents and identity information from the

provided data structure. Moreover, when using activities, the frame-

work automatically adds some pieces of information, including the date,

the creation time, and details about the user identity such as his iden-

tifier and name, thus avoiding useless additional readings from the

profile.

In conclusion, SPF activities provide a facility that eases the in-

tegration of standard social interactions into social proximity appli-

cations. For example, integrating a chat functionality is as simple as

handling activities with the verb “chat”, by displaying incoming mes-

sages to the user and sending outgoing ones to remote users. Activities

are built upon services, but are not intended to replace them: in fact,

services are required to implement custom interactive behaviors, like

proximity-based games or applications that support the specific busi-

ness of a smart place.

3.3 Infrastructure

As described in the previous section, SPF allows users to store their per-

sonal information along with services registered on behalf of installed

3.3. Infrastructure 47

applications. These resources are then published and made available

to interested consumers, both remote users and locally installed appli-

cations.

The framework offers different ways for users to monitor the re-

sources and to control how such information is shared. These control

functions can be accessed by the user through a SPF provider, an ex-

ternal application that offers the interface to manage the framework

settings and data.

This section discusses how profile data, services and applications

are managed within the framework. First, we discuss how applications

register themselves in SPF: this is a delicate process in which the user is

made aware of the app intentions. Second we describe the access control

model that the framework adopts to manage the access of remote users.

Last, we provide an overview of the functions a user can access on the

framework to control and personalize his services.

3.3.1 Management of SPF-enabled Applications

SPF allows developers to create proximity-aware applications by means

of its public APIs. The functions offered by SPF include access to pro-

file information, search of people in the proximity, registration of exe-

cutable services and triggers. To prevent the abuse of these functions,

the framework focuses its attention on two main aspects:

• SPF notifies the user about applications that want to interact

with the framework and allows him to decide whether or not to

grant the authorization.

• SPF gives the user full control on the personal information that

is provided to applications.

These concerns are addressed by offering an authorization mechanism

inspired by the OAuth protocol, and by assigning a different persona

to each application in order to differentiate the provided information.

To access SPF functions, applications have to request a permission

for each component they want to use. Permissions are used to control

what applications can do and require the authorization of the user.

Examples are the permission to read from the user profile, the one to

register spf services, and to search for remote users. Table 3.2 shows

some of the permissions that can be requested by the applications.

3.3. Infrastructure 48

Permission Description

Read user profile Grants read access to the user profile.

Write user profile Grants write access to the user profile.

Read remote profile Allows the application to read the profile of

remote users.

Register services Allows the application to define custom prox-

imity services.

Execute remote services Authorizes the application to execute spf ser-

vices of remote users.

Search remote users Allows the application to access the search

functions of SPF.

Notification service Allows the application to define SPF triggers.

Define activities Allows the application to define a spf service

as an activity consumer.

Table 3.2: Some of the SPF permissions

The authorization process is completely transparent to the devel-

oper and starts when the application interacts with the framework for

the first time. The first step regards the authentication: each applica-

tion has to provide a unique identifier along with the list of permissions

to request. Then the framework validates the actual installation of the

app on the system and retrieves the data, such as icon and app name,

to be shown to the user. Once the user grants the permissions to access

SPF, the framework assigns a token that can be used in the subsequent

requests to the APIs.

From the user’s point of view, the authorization implies the accep-

tance of a pop-up with which he is made aware of the permissions that

will be granted to the app. The pop-up allows the user to select the

persona of the profile to be associated with the app and provides addi-

tional information in order to let him recognize the application which

is asking for the authorization.

3.3. Infrastructure 49

3.3.2 Remote access control

The main objective of SPF is to enable proximity based communication

with other people: this communication includes the access to personal

information of the profile and the execution of services. Such infor-

mation may not be intended to be shared with everybody at the same

level: what the user desires to share with other people depends on the

level of familiarity. Therefore, to allow full control on how the informa-

tion is shared, SPF offers a contact request mechanism that allows the

user to manage the access to his resources. This mechanism provides a

clearance model based on the concept of groups. Users can use groups

to categorize their contacts and restrict access to specific resources.

Due to the proximity nature of SPF, the process has been designed

to be as short as possible; it is based on a single message exchanged

by the two involved SPF instances. When a user wants to send a

contact request to someone, a dialog asks for confirmation and allows

the user to select the groups for the new contact. Then the local SPF

instance generates a token associated with the identifier of the receiver

and stores it in a table containing the list of contacts authorized to

access the user resources. This token is sent to the remote instance in

a contact message, together with some identifying information of the

sender, such as the profile picture and the name. Upon reception, the

information contained in the message, along with the token, is stored

by the remote instance that notifies the user about the pending contact

request.

The user can decide whether to accept the request or not, and select

the groups for the new contact. After a successful contact process, both

the parties hold the same token linked to the identifier of the other.

When two contacts interact with each other, the token is passed as

an argument of the remote call. The receiving party looks up the

token in the list of contacts and verifies the clearance of the required

information.

3.3.3 Functions of a SPF Provider

SPF Provider is the interface which allows users to control the frame-

work and its interaction with the external world. In particular, by

means of SPF Provider, users can review and modify the social infor-

mation available in the framework, and control how this data is made

3.3. Infrastructure 50

available to applications installed on the same device and remote in-

stances of SPF. Figure 3.4 shows the interactions between the user and

SPF by means of SPF provider and local applications. In the following,

we detail the main features available to users in SPF Provider.

SPF-Enabled
Applications

SPF Provider

SPF

USES

CONTROLS

Figure 3.4: Interaction between the user, applications and SPF

Differently from other mobile social frameworks, SPF Provider al-

lows users to directly control the information stored in their social

profile, discussed in section 3.2.1. In fact, since local applications may

be allowed to modify field values, the user should be able to preview

what is shared with others about him, so that any rogue piece of data

can be removed.

In order to limit the control of local applications on the user pro-

file, each application is assigned a profile persona during the approval

process previously described. This persona is used to determine the

value of a profile field that can be read and written by the application.

This also enables profile differentiation among applications of different

domains. By means of SPF provider, the user can control the list of

available profile personas, preview the field values contained in each of

them and modify these values.

The user can also restrict the access to his profile information from

remote instances by means of groups. For each profile field, the user

can select which groups are allowed to obtain the field value: when a

read request for a specific field is received, the framework returns the

field value only if the sender belongs to a group which has visibility on

the field. Groups can be managed by means of SPF Provider: the user

3.3. Infrastructure 51

can create new groups or remove existing ones, and assign each contact

to one or more groups.

Personas are employed in remote access control as well: in fact, each

read request, contains the identifier of the application that generated

it. In this way, if the remote application is installed on the local device,

the field value to return is obtained from the persona assigned to the

local instance of the application. If the application is not installed, a

default persona will be used.

The same level of control is available also on local applications,

as the user can review the list of applications previously allowed and

revoke access if needed; once the permission has been revoked, the

application is prevented from accessing the framework functions until

the access is granted again. For each allowed application, the user can

obtain the list of permissions required by the application, together with

its registered services.

The framework also allows the user to control the routing of SPF

Activities, discussed in section 3.2.5. In particular, SPF provider dis-

plays the list of activity verbs supported by local applications. For

each verb, the user can access the list of services that can consume it,

and select which one should be the default target for activities of that

verb. For example, a user that has installed several chat applications

may decide which one should receive incoming messages.

Chapter 4

System Architecture

Software and cathedrals are much the same

first we build them, then we pray.

Anonymous

This chapter presents the architecture of SPF, a framework that en-

ables the creation of social smart spaces, according to the requirements

described in chapter 3.

Section 4.1 provides a high level overview of the architecture of SPF

Provider, introducing the Core Layer, which implements the framework

functions, and the interfaces that enable the communication with ex-

ternal entities.

Section 4.2 describes the internal components that compose the

Core Layer, and how they cooperate in order to enable the framework

functions.

Section 4.3 describes the Local Application Interface, that enables

the communication between the SPF Core Layer and SPF-enabled ap-

plications mediated by the SPF Library.

Section 4.4 presents the Middleware Interface, which abstracts the

underlying networking technology used to communicate with other SPF

instances. Two implementations are then described, the first based on

the AllJoyn middleware, the second on WiFi Direct.

4.1. Overview 53

4.1 Overview

A SPF-enabled smart space is constituted by a series of devices running

SPF Provider and applications that offer proximity services. Figure

4.1 shows the runtime view of a smart space composed by two devices.

Each device runs an instance of SPF Provider, and two external appli-

cations that leverage on the framework to offer proximity services.

SPF Provider

Communication
Layer

SPF Core
LayerSPF Library

SPF-Enabled
Application

SPF Library

SPF-Enabled
ApplicationFrontend

SPF Provider

Communication
Layer

SPF Core
LayerSPF Library

SPF-Enabled
Application

SPF Library

SPF-Enabled
ApplicationFrontend

Device Device

Figure 4.1: Runtime View

The interaction between different applications, either installed on

the same device or on remote ones, is mediated by SPF, which manages

the network communication. The SPF Library offers a set of tools that

enables the interaction with the Provider. The aim of these tools is

easing the development of social proximity applications by providing

reusable components and hiding the communication details. Appendix

A presents the API of the library.

SPF Provider is the application that offers the framework functions.

It is structured on three layers. From bottom to top, the first is the

Communication Layer, which enables the communication with remote

SPF instances. This function is implemented by communication prim-

itives that are made available to the upper layer.

The second is the Core Layer, which contains the business logic

that realizes the functions described in the previous chapter. These

functions leverage on the capabilities offered by the Communication

Layer for the interaction with remote instances.

The third is the Frontend Layer, which allows the user to access

the framework functions contained in the Core layer by means of a

graphical user interface. In particular, the capabilities offered by this

layer have been discussed in section 3.3.3.

The Core Layer also exposes the entry point for the communication

with local applications. In order to interact with the Core layer, ap-

4.1. Overview 54

plications must integrate the SPF Library. This Library is a collection

of software tools that provide access to the SPF functions available to

apps, described in section 3.2.

A more detailed representation of the layered architecture of SPF

is provided in figure 4.2. The central component of the architecture is

the Core Layer which comprises a series of internal components. The

interaction with the functions of the Core Layer happens by means of

software interfaces that can be accessed by other components.

External
Application

SPF Library

SPF Core Layer

Middleware
Adapters

Network

Local A
pp Interface

Profile

M
id

dl
ew

ar
e

In
te

rfa
ce

Middleware
Interface

SPF Process

SPF-1

SPF-2

Networking
Middleware

App Process

People Management

Services Management

Search

Frontend

SPF-3

SPF Framework API

Figure 4.2: Architecture View

The frontend layer interacts with the core layer through an appli-

cation programming interface named SPF-3, which is specified in Ap-

pendix B. The interaction with the Communication Layer (depicted on

the right) and local applications (on the left) are mediated by software

interfaces described in the following subsections.

4.1.1 Local Application Interface

The interactions between the Core Layer and local applications happen

by means of the SPF-1 interface, shown in figure 4.2. This is a bi-

directional interface that allows both local applications and SPF to

interact with the other party. Given that each application is run in its

own process, this interface relies on the Inter-Process Communication

(IPC) facilities offered by the underlying operating system.

In the case of current implementation, the Android operating sys-

tem provides a set of tools for inter-process communication between

4.1. Overview 55

applications. One of the main tools is Android Services, general-

purpose software components that are used to perform operations in

the background without the user intervention. The life-cycle of Android

Services is managed automatically by the operating system, indepen-

dently from other application components. In particular, the operating

system can dispatch a message to a service even if the host application

is not running at the moment. The target service, in fact, is activated

when the request arrives, and deactivated as soon as it is no more

needed. Each Service is identified by a ComponentName, composed

by the package identifier of the application and its fully qualified class

name.

One of the mechanisms to connect to a service is binding. In order

to bind to a service, a component needs to know the service component

name. When an application component binds to a service, it obtains a

reference to an object called Binder that enables the inter-process invo-

cation of methods declared by the service. Therefore, the applications

involved in the communication must first agree on a shared program-

ming interface, defined by means of the Android Interface Definition

Language. Each AIDL interface defines the list of methods exposed by

a service that can be executed by other components. Once the inter-

face has been defined, the communication infrastructure that enables

the remote invocation is automatically generated.

Another way to implement IPC between applications is using In-

tents, abstract descriptions of an operation to be performed. Intents

can be dispatched to other application components or to the operating

system itself, according to a publish subscribe model.

The Android implementation of SPF leverages on these capabili-

ties to implement the interaction with local applications. Section 4.3

provides a detailed description of the SPF-1 interface and its imple-

mentation.

4.1.2 Middleware Interface

The SPF Core Layer relies on an abstract Communication Layer that

makes it independent from the actual networking technology used for

the layer implementation. The interface exposed by this layer, named

SPF-2, is shown in figure 4.2. This interface, as the one previously

described, is bi-directional: on one side, it allows the Core Layer to

control the middleware functions. On the other side, the interface

4.2. Internal components 56

enables the dispatch of events from the middleware to the upper layer.

A detailed description of the middleware interface, together with two

example implementations, are described in section 4.4.

The abstraction provided by the SPF-2 interface enables a middle-

ware-agnostic implementation of SPF, which benefits the portability

of the framework. In fact, SPF can be ported to run on top of ex-

isting communication technologies by implementing suitable adapters:

no changes to the infrastructure of the Core Layer are required. This

means that the framework can be easily adapted to contexts in which a

particular communication technology is required. For example, an im-

plementation on WiFi is tailored to infrastructure-based smart spaces,

while one based on WiFi Direct or Bluetooth is tailored to pure P2P

scenarios.

Since networking technologies evolve rapidly, this approach also

aims at easing the integration of novel technologies that will be avail-

able in the future, minimizing the impact on the rest of the infrastruc-

ture. Once SPF is ported to these technologies, it will leverage their

improved performance and capabilities.

4.2 Internal components

The SPF Core Layer comprises a series of components that implement

the framework capabilities. These software modules can be grouped

according to their functionality as follows:

Security : components that implement the access control to the re-

source of the framework.

Services : components that coordinate the registration and execution

of SPF Services.

Profile : components that store the profile information and provide

read and write capabilities.

Search : components that implement the discovery capabilities and

coordinate search processes.

Advertising : components that enable the advertising of a subset of

the user profile and the definition of triggers.

Activities : components that implement the dispatching of activities.

4.2. Internal components 57

4.2.1 Security

SPF implements access control mechanisms that gives the user full

control on how local applications and remote instances interact with

the framework. These mechanisms are implemented within the com-

munication interfaces that provide access to the SPF Core Layer. In

particular, the Local Application Interface (section 4.1.1) defines the

access control for applications, while the Middleware Interface (section

4.1.2) the one for remote instances. These two mechanisms are coor-

dinated by the Security Monitor, a component available in the Core

Layer.

The aim of application access control is to make the user aware

of new applications that interact with the framework, so that he can

directly authorize them. Moreover, for a specific application, the user

can control which SPF functions can be accessed and which subset

of the user resources can be accessed. This is obtained by means of

a token based identification system: upon each interaction with the

framework, an application needs to provide a token that enables SPF

to identify the source of the request. The identification token is unique

for each application, and is granted after the application undergoes a

registration process, shown in figure 4.3.

The registration process is transparent and asynchronous, and is

triggered automatically when an application performs his first interac-

tion with the framework, in order to obtain the identification token.

In the first step of the process, the library retrieves a series of details

about the application and includes them in an AppDescriptor. These

details include the application identifier, unique among all applications

on the device, and the set of permissions required by the application,

as discussed in section 3.3.1. Once the required information is avail-

able, the library dispatches a registration request to the Core Layer,

providing the descriptor.

When the Core Layer receives a registration request, it first validates

the information contained in the descriptor, checking if an application

with the provided identifier is actually installed on the device. Then,

it retrieves the name and the icon of the application that matches the

identifier: this information is displayed in a dialog presented to the

user, which also lists the permission required by the application. By

means of this dialog, the user an choose whether to grant or not access

4.2. Internal components 58

Local
 Application

Local
SPF

readProfile(fields)

SPF
Library

registerApplication
(appDescriptor)

token

User

displayDialog
(application)

Alt

First Interaction

review()

persona

register(appDescriptor, persona)

readProfile(token, fields)

getAppDescriptor()

saveToken(token)

Figure 4.3: Authorization of a local application

to the framework. The dialog also allows the user to select the profile

persona that the new application will be able to access.

If the registration request is approved, the details of the newly ap-

proved application are stored in the Security Monitor, which provides

an ApplicationRegistry for this purpose. For each application, the

registry stores the identifier, name, profile persona, and the list of per-

missions that have been granted. Then, the Security Monitor generates

an unique identification token, stored together with the other applica-

tion details. Once the registration is completed, the token is returned

to the library to be used for future interactions. Upon reception, the

library stores the identification token, and carries on the original in-

teraction that triggered the process. The next time an interaction is

required, the library will retrieve the stored token and use it directly,

4.2. Internal components 59

without triggering the registration process.

The user may also deny the access to an application: in this case,

the application is not registered, and an error notification is given back

instead of the token. When the notification is received, the library

notifies the application that the authorization was denied, and the

original interaction fails.

All the methods exposed by the Local Application Interface, except

for the one to start the registration process, require an identification

token. When the Core Layer receives a request, it looks up the applica-

tion details from the Security Monitor: if a record for the given token

exists, the Core Layer checks whether the application was granted the

permission for the requested interaction. If this is the case, the inter-

action is performed, and the result returned, otherwise the interaction

is blocked, and an error is returned.

The other access control mechanism is introduced as a mean to re-

strict the access of remote instances to local resources. As discussed

in the previous chapter, this mechanisms is built upon the concept of

Groups, collections of remote instances that can be granted access to

specific resources. The identification of remote instances is realized

by means of Contact Tokens, in a similar way to the application ac-

cess control: two SPF instances are “in contact” when they share the

same token. The token is exchange with a procedure that requires the

approval of both users.

The remote access control in manages by the Person Registry, a

component exposed by the Security Monitor. When the user sends a

contact request to another person, The Security Monitor generates a

unique token and stores it in the Person Registry, together with the

basic profile details of the remote instance (display name, identifier,

profile picture and the groups to which the instance is assigned). Then,

the token and the same personal details about the local user, obtained

from the profile, are packaged into a Contact Request, and sent to the

other instance through the middleware.

Incoming Contact Request are managed by the Security Monitor as

well. When a new request arrives, the profile details of the sender are

read from the request and displayed to the local user, which can accept

or deny the request. In case the request is accepted, the token and the

profile details are stored in the Person Registry, otherwise the request

4.2. Internal components 60

is discarded. The process does not include a response, as it is designed

to be as short as possible.

Once both the instances share the same Contact Token, it can be

used to access remote resources with privileged access. In case of profile

access, when the local instance dispatches a remote read request to

a remote instance, it includes the shared token. When the request

is received, the remote instance uses the token to lookup the groups

to which the remote instance is assigned. Once this piece of data

is available, the information is read from the profile, as described in

section 4.2.3. It is possible to dispatch read requests to an instance

that is not in the contact list. In this case, no token is included in the

request, and only the public profile fields will be accessible.

4.2.2 Services

The SPF Core Layer provides the infrastructure to enable the registra-

tion and execution of SPF Services. As described in section 3.2.2, SPF

Services are software components defined by local applications that are

published in proximity by SPF, so that other applications can invoke

them. The component of the Core Layer that manages and coordinates

the registration and execution of services is called ServiceRegistry,

and its architecture is shown in figure 4.4.

The functions of the ServiceRegistry include the registration and

deregistration of services, the invocation of registered SPF Service and

the dispatch of incoming SPF Activities (discussed in section 4.2.6).

These functions are implemented by means of the following three com-

ponents:

ServiceTable stores the information about registered services. This is

necessary to retrieve the information required to invoke a service

when a remote request arrives.

ActivityRouteTable stores the information about services that can

consume SPF Activities, and the default service for each activity

verb.

AppCommunicationAgent manages the connections to the local appli-

cations used to dispatch service invocations and activities. The

AppServiceProxy class abstracts the connections to the remote

components.

4.2. Internal components 61

it.polimi.spf.framework.services

SPFServiceRegistry

+registerService(descriptor:SPFServiceDescriptor)
+unregisterService(descriptor:SPFServiceDescriptor)
+dispatchInvocation(request:InvocationRequest)
+sendActivity(SPFActivity activity)
+getSupportedVerbs()
+deleteTrigger(trigger:SPFTrigger):boolean
+setDefaultConsumer(verb:String, id:ServiceIdentifier)
...

ServiceTable

- database:SQLiteDatabase

+registerService(descriptor:ServiceDescriptor)
+unregisterService(descriptor:ServiceDescriptor)
+getComponentNameForService(id:ServiceIdentifier)
+getServicesOfApplication(appIdentifier:String)
...

ActivityRouteTable

- database:SQLiteDatabase

+registerService(descriptor:ServiceDescriptor)
+unregisterService(descriptor:ServiceDescriptor)
+getSupportedVerbs()
+getDefaultServiceFor(activity:SPFActivity)
...

AppCommunicationAgent

- proxies:Map<String, AppServiceProxy>

+getProxy(componentName:String)
+shutdown()
+isShutdown()

AppServiceProxy

+isConnected()
+executeService(request:InvocationRequest)
+sendActivity(activity:SPFActivity)

0..*

Figure 4.4: Architecture of the SPF Service Registry

An application can define a SPF Service leveraging on the tools

offered by the SPF library. To define a service applications are re-

quired to provide a programming interface that defines the methods

available for execution. This interface should also be annotated to pro-

vide required meta-data about the service, including its name. Remote

applications that want to invoke methods of a service must know its

interface and provide it to SPF.

Once the interface has been defined, the application must provide an

implementation leveraging on SPFServiceEndpoint, a specialized An-

droid Service that realizes the application side of the remote invocation

mechanism. To define a service implementation, the application must

declare a concrete subclass of SPFServiceEndpoint that implements

the desired service interface. When the implementation is instantiated

by the operating system, the business logic in the endpoint detects

the implemented service interface and creates an index, containing the

references to all the concrete methods. During the execution of an

invocation request, the endpoint retrieves the method from the index

and, using the Java Reflection API, invokes the required method. To

dispatch incoming invocation requests, SPF Provider binds to the con-

4.2. Internal components 62

crete endpoint of the SPF Service. After the bound is complete, the

provider obtains a Binder that enables the inter-process dispatching of

the invocation request. Like standard Android Services, each subclass

of SPFServiceEndpoint is identified by a Component Name, required

during the binding process.

After the implementation and the interface have been defined, the

application can register the service in SPF by means of a registration

process. This process starts when the local application requires to

register a service providing its interface and implementation. Before

interacting with the Core Layer, the library checks the interface to ver-

ify that both the meta-data and declared methods are valid. If the

validation is successful, the registration request is dispatched to the

ServiceRegistry, which stores its information in the ServiceTable.

In particular, the table stores the name of the service and the identi-

fier of the app that registered it: this two pieces of data are used to

identify the service. The table also stores the Component Name of the

Service Endpoint that contains the implementation. Once the service

information is stored in the registry, the service is ready to be executed

by external applications.

Applications can execute remote services leveraging on the func-

tions of the SPF Library. The invocation of a service is enabled by

an InvocationStub, a proxy object that implements the same inter-

face as the remote service. This object permits the execution of remote

methods as if they were local, according to a remote method invocation

model. In this way, all the communication details are hidden, including

the inter-process communication with the core layer and the transmis-

sion of the request to the remote instance. To obtain an invocation

stub for a remote service, an application must select the instance that

is publishing the service, and provide the interface. Figure 4.5 shows

how an invocation request is dispatched to the corresponding SPFSer-

viceEndpoint.

When the stub receives a method call, it creates an Invocation-

Request containing the information needed for the remote execution.

This information includes the identifier of the application that pub-

lished the service, and the identifier of the service. If the method

signature defines input parameters, their values, supplied by the invok-

4.2. Internal components 63

Invocation
Stub

Remote
SPF

SPF Service
Endpoint

executeService
(request)

lookupService
(request)

invokeService
(request)

bind()

result

result

Local
SPF

dispatchRequest
(request)

result

execute(request)

Figure 4.5: Execution of a SPF Service

ing application, are serialized and added to the request. Once ready,

the request is delivered to the remote SPF instance. This delivery

consists of two steps: first, the request is dispatched to the local SPF

instance by means of the local application interface. Then, the request

is delivered to the remote instance through the middleware.

Upon reception, the SPF Core Layer dispatches incoming request

to the ServiceRegistry. This component first looks up the requested

service in the ServiceTable, in order to retrieve the component name

of the Service Endpoint. Once the component name is retrieved, the

registry obtains a proxy to communicate with the local application

from the AppCommunicationAgent. This component is in charge of

binding to the service endpoints of local applications, obtaining the

Binder needed to dispatch invocations. These binders are wrapped by

instances of the AppServiceProxy class, which enables a finer control

on the life-cycle of the binder. In particular, since the binding process

is asynchronous, the proxy is used as a serialization point where the

execution process is blocked until the Binder object is ready. Active

4.2. Internal components 64

proxies are maintained in a cache for a predefined time interval. If

the proxy is requested again before the timeout, it is retrieved from

the cache and the timeout is reset. Once the timeout expires, the

connection is closed and the proxy removed from the cache. Once the

Binder is obtained, the registry dispatches the request to the endpoint.

Once the request is received, the service endpoint looks up the

method to invoke from the method index using the name contained in

the request. If the method requires parameters, their values are deseri-

alized from the request payload, then the method is invoked. Once the

invocation is concluded, the endpoint creates an InvocationResponse

to be sent back to the application that performed the invocation. If the

method supports a return value, the result is serialized and included

in the payload of the response. Then, the response is sent back to the

sender of the request by means of the same two-step delivery mecha-

nism used to dispatch the request. The invocation response package

is also used to signal errors that may occur in any step of the invoca-

tion process. Errors may be generated either locally (e.g, the remote

instance is not found in proximity) or remotely (the service does not

exist, or an exception is thrown during the execution of the method).

4.2.3 Profile

The SPF Profile provides a persistent social profile accessible to local

applications and remote instances according to the visibility preference

set by the user. To restrict the access by remote instances, the user can

define group of contacts and allow only a subset of the groups to access

a profile field. The user can also diversify the information provided to

local applications by means of profile personas.

The user profile is managed by a component of the Core Layer called

Profile Manager, whose three main functions are storing the profile

data, providing available profile personas and maintaining the list of

profile field visibility.

The profile information is divided into profile fields, and each field

value is stored in a double key data structure, where the a key is the

field identifier, and the other is the persona. In this way, the data

structure can hold the profile information of all personas. The list of

available personas, on the other hand, is kept in a separate table. A

default persona is always available, but users can create new ones by

means of the front-end.

4.2. Internal components 65

The Profile Manager also stores the visibility of each profile field

to groups of contacts. When a remote instance requires to access the

values of a series of profile fields, the Profile Manager obtains the list of

fields visible to that instances, removes from the requested list of fields

those not visible, then return the visible values to the remote instance.

Remote read requests also contain the identifier of the application

that sent the request. In this way, if the application is installed on the

local device, the field values are obtained from its associated profile

persona, otherwise the default one is used.

4.2.4 Search

The Search functionality provided by SPF allows applications to dis-

cover nearby people according to queries. The visibility of instances

depends on the middleware used to communicate: for example, if a

middleware based on standard Wi-Fi is used, the search will discover

instances connected to the same Wi-Fi network.

To start a discovery process, an application must provide a query

object, a configuration and a callback. The query contains a set of

parameters that should be matched by remote instances that are dis-

covered by the process, as described in section 3.2.3. The search con-

figuration is used to control how search requests are sent through the

middleware. Finally, the callback contains the business logic defined

by the application to react to search events.

The instance discovery process is implemented in a distributed way

that delegates the evaluation of search queries to remote instances,

as shown in figure 4.6. The communication between instances hap-

pens through search signals sent through the middleware. The instance

in discovery sends multicast search signals to all reachable instances.

These signals contain the serialized query and details about the sender.

When an instance receives the search signal, the query is deserialized

and evaluated against the profile. If the query is matched, a search

result is sent back to the instance in discovery.

Ongoing discovery process are managed by the SPFSearchManager,

a component contained in the SPF Core Layer. The search Manager

keeps track of all active searches and of results dispatched to applica-

tions. In this way, when the middleware notifies that an instance is no

more reachable, the Search Manager can notify interested applications

4.2. Internal components 66

Local
 Application

Remote
SPF

startSearch
(query, config, callback)

evaluate
(query)

peopleFound

Local
SPF

registerQuery

sendSearchSignal(query)

resultSignal

searchStarted

Alt

matches

searchStopped

Figure 4.6: Execution of a search process

of the event. The dispatched results list is also used to notify each

result once to applications.

When an application starts a search, the Search Manager saves the

request in the list of active searches and generates a query ID, that is

used to associate search signals with the corresponding results. Then,

it notifies the application that the search has started, then begins the

dispatching of search signals. The number of signals and the time

interval between two subsequent ones are defined in the search config-

uration provided by the application. Once all signals have been sent,

the search is removed from the list of active searches, and the list of

results delivered for the concluded search is also cleared.

4.2. Internal components 67

The Search Manager is also in charge of handling incoming search

signals from remote instances. Once the query is de-serialized from

the signal payload, it is passed to the Search Responder, a component

that verifies whether the local instance matches the query or not. In

case of positive match, a result signal is sent back to the instance in

discovery. The search result signal includes the basic profile details

of the local instance (display name and identifier) obtained from the

Profile Manager.

The search process is asynchronous, and doesn’t block the applica-

tion that started it: the notifications of search events are dispatched

by the Search Manager using the callback provided by the applica-

tion. Since the Search Manager and the local application are hosted

in different processes, the dispatching of events requires inter-process

calls. However, the infrastructure to perform these calls is provided

transparently by the framework.

4.2.5 Advertising

SPFAdvertising allows users to advertise their own profile. This func-

tions can be configured from the front-end of the SPF Provider, which

offers a dedicated interface for the selection of profile contents that the

user wants to advertise. The list of installed applications can also be

included in the advertisement. Once enabled, the advertising is tied

to the life-cycle of the proximity middleware: when SPF is about to

setup the connections, it checks if the SPFAdvertising is active and,

if so, it requests the middleware to broadcast the advertisement. The

proximity middleware is in charge of broadcasting the information as

long as the advertising is stopped or network resources are released.

SPFTrigger is the abstraction that represents the rule that can be

used to react upon the receipt of an advertised profile. A trigger is made

up by two components: a query, as the one specified for the search, and

an action. Figure 4.7 show the structure of a trigger. There exist two

types of action that can be executed either on the local device or on

the remote ones:

• SPFActionIntent: broadcasts an Android Intent that can be re-

ceived from the application that registered the trigger. The Intent

action name is specified by the application.

• SPFActionSendMessage: sends a message to the remote instance

4.2. Internal components 68

SPFTrigger

<< abstract >>
SPFActionSPFQuery

SPFActionIntent SPFActionSendMessage

Figure 4.7: Structure of SPFTrigger

that has activated the trigger. SPF Provider will show a textual

message in an Android notification.

Each action inherits from SPFAction which is one of the property of

SPFTrigger; other actions can be added by creating a new subclass of

SPFAction and by providing an implementation of the action itself.

SPFNotificationManager is the component that keeps and coordi-

nates the objects that implement SPFNotification service. Figure 4.8

shows a class diagram of these components.

SPFTriggerTable is the class that offers the store procedures of the

database that holds triggers information.

SPFTriggerEngine is the component that executes the business logic

about triggers: compares the queries with the received adver-

tisements and in case of positive match signals the event to the

SPFActionPerformer interface.

SPFActionCache stores information about performed action; this is

necessary to avoid repeated action on a same target. This prop-

erty can be configured by setting the sleep period of a SPFTrig-

ger.

SPFActionPerformer is the interface that defines the method to per-

form SPFAction, its actual implementation (not shown in fig-

ure) is provided by SPFActionPerformerImpl class and held by

SPFNotificationManager.

4.2. Internal components 69

it.polimi.spf.framework.notification

SPFNotificationManager

- mHandler:SPFNotificationHandler

+onAdvertisementReceived(SPFAdvProfile)
+start()
+stop()
+isRunning()
+saveTrigger(trigger:SPFTrigger):long
+deleteTrigger(trigger:SPFTrigger):boolean
+listTrigger(appId:String):List<SPFTrigger>
...

SPFTriggerTable

- database:SQLiteDatabase

+saveTrigger(trigger:SPFTrigger):long
+deleteTrigger(trigger:SPFTrigger):boolean
+listTrigger(appId:String):List<SPFTrigger>
...

SPFActionCache

+triggerIsSleeping(targetId:String,trgId:long):boolean
+add(targetId:String,trigger:SPFTrigger)
+refresh(triggers:Iterable<SPFTrigger>)

SPFTriggerEngine

- triggers:List<SPFTrigger>

+lookForMatchingTrigger(SPFAdvProfile)
+put(SPFTrigger)
+remove(SPFTrigger)
+refresh(List<SPFTrigger>)

<<interface>>
SPFActionPerformer

+ perform(SPFAdvProfile,SPFTrigger)

Figure 4.8: Class diagram of the Notification package

Concurrency and synchronization issues are resolved by using a sin-

gle thread, managed by an Android Handler, to access the components

that holds the triggers logic. By means of this Handler thread all the

processing is parallelized with a queue of events that decouples the

components from the external ones.

SPFNotificationManager lifecycle is tied to the one of the proxim-

ity middleware: SPFActionCache, SPFTriggerEngine and the internal

handler thread are initialized and destroyed with start() and stop()

methods, accordingly to the state of the network resources. Before the

call to start() and after the one to stop(), only SPFTriggerTable is in

a legal state. This allows us to save resources when there is no need of

instantiating the other components, since the receipt of an advertise-

ment can happen only when the proximity middleware is in an active

state.

4.2. Internal components 70

4.2.6 Activities

As discussed in section 3.2.5, SPF supports Activities, inter-operable

data structure containing standardized information that can be used

by applications to communicate well-known social actions performed

by users. Activities are characterized by a verb that identifies the type

of social action described and is used to determine to which application

the activity will be dispatched.

Local
 Application

Remote
SPF

sendActivity
(activity, instance)

ack

Local
SPF

injectInformation
(activity)

dispatch(activity)

ack

Remote
Application

invokeConsumer
(activity)

bind()

ack

dispatch(activity)

getDefaultConsumer
(activity)

Figure 4.9: Dispatch of an activity

The dispatching of SPF Activities is implemented within the SPF

Service infrastructure, shown in figure 4.4. A SPF Service, in fact, can

be declared as a consumer of a series of activity verbs by means of

specific annotations. For each verb that can be consumed, a service

must declare a method to handle incoming activities dispatched by

SPF. This method is recognized by means of an annotation that states

which verb is supported by the method. The implementation, on the

other hand, is provided within the Service Endpoint of the service, as

with normal methods.

The details about services that can consume activities is stored in

the ActivityRouteTable. When a service is registered, the registry

4.3. Local Application Interface 71

checks whether it is declared as an activity consumer. In this case, the

service is added in the ActivityRouteTable, with an entry for each

supported verb. The Activity Route Table also lists the user-defined

default service for each verb; the user can access this configuration by

means of the front-end of SPF Provider.

The process to dispatch an activity, shown in figure 4.9, is similar to

the invocation of a remote service. First, an application needs to create

a new activity instance specifying the verb; further information can be

added, according to the type of activity. Once the activity has been

created, the application can dispatch it to a specific remote instance.

Before the activity is sent, the Core Layer automatically injects pieces

of information, including the display name and identifier of the sender

and the creation time. Then, the activity is serialized and sent to the

remote instance through the middleware.

Incoming activities are handled by the ServiceRegistry as well:

upon reception, the registry is deserializes the activity and looks up its

verb into the ActivityRouteTable to determine the default service.

Then, the registry obtains the ComponentName for the default service

from the Service Table, and obtains a proxy to the ServiceEndpoint

from the AppCommunicationAgent, similarly to the dispatching of an

invocation request. Once the proxy is available, the activity is dis-

patched to the endpoint, which looks up the method designed to handle

the activity, and invokes it.

Once the invocation is concluded, an acknowledgment message is

sent back to the source of the activity using an Invocation Response.

This response is also used to signal any error occurred during the dis-

patch of the activity.

4.3 Local Application Interface

As described in section 4.1.1, the communication between the Core

Layer and local applications happens by means of the Inter Process

Communication capabilities offered by the operating system. Android

provides these capabilities with Services, application components that

provide software interfaces to external applications to enable intercom-

munication.

In order to allow local applications to interact with the Core Layer,

SPF defines an Android service named SPFService, which exposes mul-

4.3. Local Application Interface 72

tiple interfaces allowing the interactions previously described. These

interfaces are:

SPFSecurityService : Provides the entry point for the registration of

external applications.

LocalProfileService : Provides access to the Profile API in order

to read and write field values on the local profile.

LocalServiceManager : Provides access to the Services API, allow-

ing to register and deregister services, and execute those of local

applications.

SPFNotificationService : Provides access to the Notification API

to define triggers.

SPFProximityService : Provides the capabilities to interact with re-

mote applications, including the search functions, execution of

remote services and read access to remote profiles.

Local applications can access these functions even if the SPF Provider

application is not running. In fact, once a local application requires

to bind to the SPFService, the operative system automatically boot-

straps the Provider’s application context and activates the functions

of the service. SPFService also manages the network resources of the

framework by instantiating them when needed.

The SPF Library provides a series of components, shown in figure

4.10, that facilitate the interaction with the functions provided by the

SPFService. These components wrap the stubs obtained from the op-

erating system to communicate with the interfaces of the SPFService,

also hiding the binding process needed to know the underlying proto-

cols of interaction with SPF.

All the components provided by the SPF Library share a common

superclass named SPFComponent. This class implements the process of

binding to the SPF Service, including the application registration, as

described in section 4.2.1. Once the registration process is concluded,

SPFComponent stores the access token in the AccessTokenManager,

so that it can be retrieved during future interactions. In this way,

components can provide a simpler interface to the SPFService, as there

is no need for applications to directly pass the access token.

4.4. Middleware 73

Library Components

SPF Search

Local Service
Registry +
Executor

SPF Remote
Service

Executor

Local Profile
Manager

SPF Remote
Profile

Search
API

Notification
API

Profile
API

Local

Remote

SPF
Notification

Services
API

Figure 4.10: Components provided by the SPF Library

4.4 Middleware

As discussed in the previous sections, SPF defines a set of interfaces

that allows the interaction with a generic networking middleware. In

detail, there are three main interfaces that allows to control the mid-

dleware, receive external events and request, and interact with remote

instances.

InboundProximityInterface defines the events that can be received

by SPF. These includes search signals, service invocation requests,

and profile remote readings.

ProximityMiddleware defines the commands that allows SPF to con-

trol the networking layer.

SPFRemoteInstance defines the remote calls that an instance of SPF

can execute.

A networking middleware for SPF has to use the first interface to com-

municate with SPF and provide an implementations of the last two

according the API discussed in appendix B. The following sections de-

scribe the architecture of two implementation based respectively on

AllJoyn and Wi-Fi Direct. An introduction about these technologies

can be found in chapter 2.

4.4.1 AllJoyn

AllJoyn is a distributed object-oriented middleware that provides a

high-level abstraction based on the concept of distributed bus. Remote

4.4. Middleware 74

objects has to published over the bus by means of bus attachments, that

are identified either by randomly assigned names or application defined

identifiers, called well-known names.

SPF uses AllJoyn to expose its remote methods and to discover re-

mote instances. Each remote instance advertise itself with a well-known

name, composed by the application package name and the user identi-

fier. Different instances of SPF can discover each other by listening to

the distributed bus for an advertisement of such a well-known name.

Once the instance is discovered, SPF may create a connection estab-

lishing an AllJoyn session. Then the communication follows standard

remote method invocation mechanisms.

Figure 4.11 shows the main components that allows SPF to interact

with AllJoyn, basically they are adapters over the API provided by the

middleware.

<<interface>>
ProximityMiddleware

+start()
+stop()
+sendSearchSignal(query)
+sendSearchResponse(resp)
+registerAdvertising(profile)

...

<<interface>>
SPFRemoteInstance

+executeService(request):response
+getProfileFields(fields):profileContainer
+sendNotification(message)
+sendContactRequest(cRequest)

<<interface>>
InboundProximityInterface

+onSearchSignalReceived()
+onSearchResultReceived()
+onAdvertisingSignalreceived()
+onInstanceFound(SPFRemoteInstance)
+onInstanceLost(id)
+executeService(request):response

...

Server
Bus attachment

Client
Bus attachment

AllJoyn Bus

AllJoynProximityMiddlewareAllJoynRemoteInterfaceImpl

<<interface>>
AllJoynRemoteInterface

AlljoynRemoteInstance

BusHandler

Figure 4.11: Class diagram of the AllJoyn adapters

The class that directly interacts with AllJoyn is the BusHandler.

This component handles the actions and the events that characterize

4.4. Middleware 75

the interaction between AllJoyn and SPF. The connection with the

AllJoyn Bus is made through two distinct bus attachments; the first,

called client bus attachment is used to discover and interact with re-

mote instances; the second, called server bus attachment, publishes and

advertises the remote object that represents the instance of SPF. These

two components, combined together, enable the peer-to-peer interac-

tions of SPF.

As shown in figure 4.11, the interfaces provided by SPF are used

to communicate with the upper layer of the system. AllJoynRemote-

Instance is an implementation of SPFRemoteInstance, it is a lazy

initialized proxy that mediates the access to the AllJoyn actual proxy

bus object1. Whenever AllJoyn detects the presence on the bus of

a remote instance, as well as its disappearance, the InboundProx-

imityInterface is notified with the methods onInstanceFound and

onInstanceLost with which a reference to an SPFRemoteInstance is

passed. This reference keeps all the information that can then be used

by SPF to create a connection.

As mentioned before, AllJoynRemoteInstance holds a reference to

a proxy bus object that provides an interface for the remote method

invocation. This interface is called AllJoynRemoteInterface and with

its implementation mediates the access to SPF through the Inbound-

ProximityInterface.

Generic middleware events like advertisements and search signals,

are not associated with a specific proxy bus object and thus they are

handled internally by the BusHandler. Their implementation is based

on AllJoyn signals, which are means to transmit information to all the

reachable devices interested in the type of signal.

4.4.2 Wi-Fi Direct

To show how SPF can benefit from emerging device-to-device network

technologies, we designed another implementation of the networking

layer that substitutes AllJoyn with Wi-Fi Direct. As described in sec-

tion 2.1.1, Wi-Fi Direct allows two or more devices to communicate

over Wi-Fi without the need of a central access point (AP). The role

of AP is assigned dynamically after a negotiation phase during which a

P2P Group is created and a Group Owner is elected. The P2P Group

1proxy bus object is the Alljoyn terminology to indicate the client side stub of a remote

object. See chapter 2 for details.

4.4. Middleware 76

Owner is responsible for providing the software access point to which

all the other member of the group may connect. The technology also

supports service discovery at the network layer; this allows two devices

to exchange information prior to the group creation process. Differently

from AllJoyn, Wi-Fi Direct API do not provide high-level abstractions:

the actual communication is still based on standard socket technology.

Unfortunately, we discovered that Wi-Fi Direct is not a good candi-

date for SPF. In particular, it made it hard to replicate the collabora-

tion between discovery and search that was so successful in the AllJoyn

implementation. Our first attempt was to implement the instance dis-

covery events and broadcast signals with the service discovery facilities

offered by the API of Wi-Fi Direct. In theory, this would have allowed

us to create P2P Groups only when needed, thus providing a more

scalable solution. In practice, some constraints of the Wi-Fi Direct

implementation prevent us from actually following this approach.

The first constraint regards the peer discovery that, in general, is

extremely slow, taking up to 60 seconds to provide an updated list

of nearby devices; this is caused by an internal constant defined at

the operative system level that limits the updates of the list of avail-

able peers. A second, and even more important constraint, is that the

service discovery API are designed for static content and thus it is un-

feasible to use them for implementing connection-less communication.

This would imply to register the information to advertise each time it

changes, but more important the other device has to restart periodi-

cally the discovery process, since there is no mechanism for notifying

remote devices about the change. These consideration led us to take a

different approach.

Our solution is based on the construction of an overlay network

driven by the Wi-Fi Direct P2P Group. We build a star topology

overlay whose root node is the P2P Group Owner, to which the other

members are connected through a socket connection. This solution al-

lows the system to easily detect the instances that joins the group and

thus are reachable from SPF. The Group Owner takes care of dispatch-

ing instance discovery messages to all the members of the group; these

events include the discovery as well the loss of a member within the

group, in the same way as happens with the discovery of well-known

names in AllJoyn. It allows us also to improve general messaging since

the Group Owner can simply route the messages to their intended des-

4.4. Middleware 77

tinations.

Since the communication is socket based, we need to implement a

middleware to offer a higher level of abstraction and communication

primitives that suit the requirements of SPF.

The naming of instances resemble the mechanism of AllJoyn based

on well-known names. An instance is identified by a name that contains

a prefix, in common between all the instances of SPF, and an identi-

fier which is unique for the specific instance. As previously discussed,

names are dispatched by the group owner through instance discovery

messages.

To allow communication between connected instances, the middle-

ware offers three communication primitives that replace AllJoyn signals

and the distributed object oriented model. In particular:

• sendBroadcastMessage is a primitive for sending broadcast mes-

sages; They are delivered to the group owner that dispatches the

messages to all the member of the group. Query signals and in-

stance discovery messages are handled with this primitive.

• sendMessage is a primitive for sending unicast messages.

• sendRequest is an RPC-friendly primitive that allows to send a

message and wait for its response. This is used to implement the

RMI mechanism that was offered by AllJoyn.

Figure 4.12 shows a class diagram representing the main compo-

nents of the middleware based on Wi-Fi Direct.

Due to the roles within a group are assigned dynamically, the design

takes into account this complexity by providing a hierarchy of compo-

nents that hides the different behaviors of the roles. GroupActor is the

abstract class that defines the interface in common to a group own-

ers and standard group members. It holds the logic that allows the

middleware to deliver messages to the application.

GroupClientActor and GroupOwnerActor inherit from the previous

abstract class and provide a concrete implementation regarding the

actual network connections. In particular GroupClientActor is the

class that implements the role of a standard group member, as such

its solely duty is to connect to the group owner and offer functions for

sending and receiving messages through its socket connections. Instead

the GroupOwnerActor class is more complex and adds an additional

layer over the socket connection for handling the specific functions of a

4.4. Middleware 78

WifiDirectMiddleware

+ sendMessage(msg)
+ sendBroadcastMessage(msg)
+ sendRequest(msg):WfdMessage
+ connect()
+ disconnect()

<<interface>>
WfdMiddlewareListener

+ onRequestMessage(msg):WfdMessage
+ onMessageReceived(msg)
+ oninstanceFound(identifier)
+ oninstanceLost(identifier)
+ onMiddlewareStop()

<<abstract>>
GroupActor

+ identifier

+ connect()
+ disconnect()
+ getIdentifier()
+ sendMessage(msg,targetId)
+ sendBroadcastMessage(msg)
+ sendRequestMessage(msg):WfdMessage
onResponseReceived(msg)
handle(msg)
deliverToApplication(msg)

<<interface>>
GroupActorListener

GroupClientActor

-mSocket:Socket

- establishConnection()
- enterReadLoop()
+sendMessage(msg)

GroupOwnerActor

-route(msg)
-sendBroadcastMessage(msg)
-sendUnicastMessage(msg)
+onClientConnected(id,client)
+onClientDisconected(id)
-signalInstanceLossToGroup()
-signalInstanceFoundToGroup()
-signalGroupToNewClient()

GOInternalClient

- mSocket:Socket

- waitForConnection()
- attachToGroupOwner()
- enterReadLoop()
+ sendMessage(msg)

0..1 0..*

Figure 4.12: Class diagram of the Wi-Fi Direct middleware

group owner, that include the group management as well as the routing

of messages within the group.

A GOInternalClient represents the server side connection of a

GroupClientActor. They are created by the GroupOwnerActor that

accepts the incoming connections and uses them to send messages and

to be notified of received ones. A GOInternalClient has to monitor

the connections and notify the group owner when a peer leaves the

network.

Finally, WifiDirectMiddleware class provides a coordination layer

that handles the discovery of peer, the creation of the P2P Group

and mediates the communication to the upper layer of the system. In

particular, this last function is made with a series of adapters whose aim

is to adapt the Wi-Fi Direct middleware interface to the ones required

by SPF. These components are not shown in figure since they resemble

the ones used for the AllJoyn implementation.

Chapter 5

Results and evaluation

Software is getting slower more rapidly than hardware becomes faster.

Wirth’s Law

This chapter discusses the experimental realizations and the evalua-

tion of this work. The first section presents two of the applications

we have developed using SPF. On the basis of the scenarios outlined

in Chapter 3, a thorough description of these applications helps to

understand how the functionality of SPF can be used to build social

proximity applications. The second section provides an assessment on

the code quality achievable by using SPF compared to other commu-

nication middleware. Here we compare four different configuration of

a social proximity application on the basis of code quality metrics and

architectural components. It helps to understand how a higher level

of abstraction can ease the development of proximity oriented appli-

cation. Finally, the third section analyzes the impact and limitations

of the inter-process architecture of SPF. To do this, we compare the

response time of a network transaction according to different commu-

nication means and payload sizes.

5.1. Samples of applications 80

5.1 Samples of applications

5.1.1 SPFChatDemo

SPFChatDemo is an Android application that enables proximity-based

social interactions, according to the SNiP scenario described in section

3.1.1. In particular, SPFChatDemo offers the following functions:

People discovery : The application enables the discovery of people

in proximity, displaying the list of found results. Users can also

specify a set of properties that the profile of results must match.

Once a new person is discovered, the app allows further social

interactions.

Profile Visualization : Users can view the profile of other people in

proximity.

Greeting : Users in proximity can exchange greets, instant interac-

tions that results in a toast notification displayed on the phone

of the target, if the app is in use, or in a system notification

otherwise.

Chat : A user can start a conversation in real time with a person

discovered in proximity by sending a new text message. Incoming

messages are notified by means of system notifications.

These functions have been implemented relying on the capabilities

offered by the SPF Framework. The first function, People Discovery,

is built upon the Search API. In particular, the application creates a

SPF query that matches all SPF instances that have SPFChatDemo

installed. The user can further customize this query by adding property

and tag parameters through the UI of the application. When the user

starts the discovery process, the application registers a search in SPF

providing the query, a fixed search configuration and a callback. This

callback is used to update the list of discovered instances visible to the

user: each entry displays the person’s name, and two buttons, one for

the greet interaction, and one to send a chat message. If no people has

been discovered once the process finishes, a message is displayed to the

user.

The user can display the profile of a person by clicking on its entry in

the list of discovered people. This features displays a predefined subset

5.1. Samples of applications 81

of the available profile fields: to view the full profile of a person, the

user can open it in the SPF Provider application. The values of profile

fields are obtained from the remote instance using the SPF Profile API.

Therefore, the visibility of field values depends on the clearance set by

the remote user, thus not all fields may be accessible.

The Greeting and Chat functions are built upon the Services API

using activities. In particular, SPFChatDemo uses the inter-operable

verbs greet and message to exchange greets and messages, respec-

tively. The consumption of these activities is implemented by Prox-

imityService, a SPF Service with two methods annotated as activity

consumers, one for greets, and one for messages.

The implementation of the service is defined by means of the Prox-

imityServiceImpl class. It features a pluggable strategy that enables

the customization of the business logic that handles incoming activities.

Incoming greets are directly dispatched to the currently selected strat-

egy, while chat messages are persisted in a database, then dispatched

to the strategy.

The default reaction strategy dispatches a system notification every

time a greet or chat message is received. In this way, if the application

is not running and SPF binds to the service implementation to deliver

an activity, the default strategy is used, thus resulting in a system noti-

fication. On the other hand, when the application is active, the default

strategies are overridden by components of the user interface, in order

to provide real-time updates. For example, the list of chat conversation

and the list of messages in a conversation are automatically updated

when a message is received.

5.1.2 SPFCouponing

SPFCouponing is a couple of Android applications that enable the

proximity-based distribution of digital coupons tailored to the social

profile of shop customers. These applications realize the Targeted Ad-

vertising scenario, described in section 3.1.1. These applications are

based on the concept of Coupon, which is a special offer for products of

a given category, gifted to a customer by a shop owner. Each coupon

features a title, a text message and a photo. To determine if a coupon

is tailored to a given customer, the Provider application matches the

public social profile with the product category of the coupon: if the

profile contains the category, then probably the customer is interested

5.1. Samples of applications 82

in related coupons. For example, if the profile of a user contains

the “Smartphones” term, then he probably is interested in receiving

coupons related to novel Android devices.

The first application, named SPFCouponingProvider, is targeted at

shop owners and provides the following functions:

• Coupon Configuration: Shop owners can configure the coupons

that are delivered to interested clients.

• Category Advertising: Shop owners can select which product

categories should be added to the social profile and thus adver-

tised to clients.

• Welcome message: Shop owners can configure a text message

that is delivered to all nearby customers upon the first visit.

The second application, named SPFCouponingClient, is targeted at

customers and interacts with SPFCouponingProvider to receive coupons

targeted to the user. The functions offered by this application are:

• Coupon browsing: Customers can browse the list of coupons

received from nearby shops.

• Category Selection: Customers can select which product cate-

gories they are interested in: in this way, they will receive a no-

tification every time a shop selling a favorite category is nearby.

Customers can also opt-in to receive coupons for each category

they select.

The interaction between the Provider and the Client applications

is implemented leveraging only on the capabilities offered by SPF; in

particular, the Notification, Services and Profile API are used.

Coupon Delivery

As previously described, digital coupons are created by shop owners

using the Provider application. When the owner defines a new coupon,

the application registers a new SPF trigger to react to customers inter-

ested in the coupon, as described in figure 5.1. The query of this trigger

matches SPF instances that have the client application installed, and

that contain the coupon category name as tag. The action specified

by the trigger is an IntentAction, whose intent activates the delivery

5.1. Samples of applications 83

of the coupon to the client application. Once the Trigger is registered,

the provider application stores the Coupon information, including the

coupon detail (title, text, photo and category) and the trigger ID, into

a database.

Customer
SPF

Shop Owner
SPF

Couponing Provider
Intent

Receiver

avertising

onAdvertising
(advertising)

handleIntent
(intent)

intent

deliverCoupon
(coupon)

deliverCoupon
(coupon)

Couponing Client

Service
Endpoint

deliverCoupon(coupon)

handleCoupon
(coupon)

Figure 5.1: Coupon delivery

The delivery of coupons to client applications is implemented by

an Android IntentReceiver, activated by the intents dispatched by SPF

when coupon triggers are fired. These intents contain the id of the trig-

ger that caused the intent: with this piece of information, the receiver

obtains the original coupon from the database. The actual delivery of

the coupon is implemented by means of an SPF service, called Coupon-

DeliveryService, which is exposed by client applications. Using the

identifier of the remote instance contained in the intent, the receiver

obtains a reference to the remote SPF instance and executes the service

method to deliver the coupon to the client.

The CouponingDeliveryService, exposed by Client applications, con-

5.1. Samples of applications 84

tains only one method, named deliverCoupon. The service implemen-

tation features a pluggable strategy approach, similar to the one of

SPFChatDemo. After received coupons are saved in a database, the

implementation delegates the reaction to a strategy that can be set

from other application components. When no external strategy is set,

the default one is executed, which causes a system notification to be

displayed to the user. External behaviors, on the other hand, are set

from GUI components to implement in-app reaction to new coupons.

In particular, if the user is currently browsing available coupons, the

list will update automatically.

Shop Notification

As previously described, the client application lets customers select

the product categories in which they are interested. After a category

is added, the user will receive notifications when a shop offering a

favorite category is nearby and, possibly, coupons for selected product

categories. Since the coupon delivery system is based on triggers, when

the user selects to receive coupons for a given category, the provider

application adds it to the interests field of the social profile.

The shop matching behavior is based on SPF triggers as well. When

the customer adds a new category to their favorites, the application

creates a new SPF trigger, whose query matches SPF instances that

have the provider application installed, and that contain the product

category as tag. Similarly to coupon delivery, the trigger specifies an

intent action whose intents activate an IntentReceiver. In this case,

the receiver is designed to dispatch system notifications when intents

are received. These notifications, once activated, display the social

profile of the shop.

Welcome Message

The welcome message function allows shop owners to define a message,

composed by a title and a body, that is dispatched to customers the

first time they are nearby the shop. The delivery of messages rely

on the SPF Notification API as well: when the welcome message is

activated, the Provider application registers a SPF trigger that matches

all instances with the Client application installed. The action of the

trigger is an ActionSendNotification that dispatches the welcome

5.2. Code quality 85

message to the remote instance within the SPF Provider application.

The trigger is configured as one-shot, so that it is fired only once for

each customer.

5.2 Code quality

One of the main objectives of SPF is easing the development of social

proximity applications. The complexities of the development of such

services arise from the intricacies of the underlying networking tech-

nologies and the absence of high level abstractions. Moreover, specific

constraints comes from the peculiar nature of mobile software compo-

nents, that add to the developer the burden of dealing with background

components, multi-threading and synchronization issues, as well as a

potentially complex management of resources. All these issues force

the developer to design the whole infrastructure, spending his efforts

in the engineering of the communication layers, rather than focusing

on the main functions of the application.

To understand and assess the effectiveness of SPF, we decided to

analyze the code-base of a proximity based chat implemented in four

different configuration that use or do not use the SPF. The first com-

parison we propose compares the Wi-Fi Direct chat, bundled in the

Android SDK samples, against the same application but with the net-

working layer substituted by SPF. The second analysis is between the

AllJoyn chat provided within the SDK and a SPF Chat sample.

To evaluate the code of the different applications we used Sonar-

Qube1, an open source platform to measure code quality. We focused

on two important metrics: the overall lines of code, and the cyclomatic

complexity, which counts the number of different paths in the source

code and provides a quantitative measure of the complexity of the code.

A high cyclomatic complexity is not an issue per se, as it depends on

the size of the program. However, it can be used to compare two ap-

plications that implement the same functionality, since a less complex

implementation is easier to debug and maintain.

1http://www.sonarqube.org/

5.2. Code quality 86

Wi-Fi Direct and SPF

The Wi-Fi Direct chat sample we considered is the one provided within

the Android SDK2. It is a simple app that allows two devices to ex-

change messages. When the app is launched, it uses the service discov-

ery capabilities of Wi-Fi Direct to provide a list of available peers. This

implies the local registration of the service and the start of a discovery

procedure. Once one of the user has selected a service, a Wi-Fi Direct

connection is performed.

According to the result of the negotiation, two different subclasses

of Thread are started. If the device is a group owner, it instantiates

a GroupOwnerSocketHandler that holds a pool of thread for incoming

socket connections. If the device is a standard peer, the ClientSock-

etHandler is used to establish a socket connection and then running

another thread to read from the socket. The component for writing

and reading from the socket is shared between the two cases and it is

called ChatManager. The decoupling between the IO threads and the

UI one is implemented with an Android Handler, that allows to deliver

messages in the main thread.

To substitute Wi-Fi Direct with SPF, we defined a simple SPF

service for the reception of textual messages and used the SPF Search

API to perform the discovery of peer in proximity.

Tables 5.1 and 5.2 shows respectively the data about the size of the

code and its cyclomatic complexity. As expected the introduction of

SPF and its higher level of abstraction, led to a considerable decrease

in the overall cyclomatic complexity and code-base size.

WfdChat WfdChat on SPF

Lines of Code 619 301

No of Files 8 5

No of Classes 12 9

No of Functions 32 32

Table 5.1: Wi-Fi Direct Chat code-base size

2samples/android-17/WiFiDirectServiceDiscovery

5.2. Code quality 87

Complexity WfdChat WfdChat on SPF

cc/function 3 1.6

cc/class 8.1 5.7

cc/file 12.1 10.2

cc total 97 51

Table 5.2: Wi-Fi Direct Chat cyclomatic complexity

AllJoyn and SPF

For the second analysis we considered the chat bundled in the Alljoyn

SDK as a sample. Since its logic structure is very tied to the capa-

bilities of the AllJoyn framework, we were not able to provide a such

precise comparison as in the Wi-Fi Direct case: in fact we compared

the AllJoyn demo app with an our application called SPFChat that

provides a similar functionality. Despite that, as we will discuss later,

it was still interesting to compare the SPF design with another similar

high-level framework.

AllJoynChat allows a group of devices to exchange messages be-

tween each other. A user may decide to create a channel, which repre-

sent a standard chat room. To create a channel the application register

and advertise a well-known name which is composed by a predefined

prefix and a suffix that depends on the name that the user assigned to

the channel. Remote clients may use the same application to search for

available channels and join a chat room. The concept of group is imple-

mented by means of multi-point sessions and bus signals. Each user of

the application has to register a bus object whose interface declares a

single bus signal that allows the broadcasting of textual messages. The

advertised well-known name is used as an endpoint to create multi-

point session. Once a user has joined a session, i.e., a channel, he can

receive and send bus signals that are delivered to all the users within

the established session. An Android foreground Service is used to keep

the connections opened and to hold the AllJoyn resources.

Differently from AllJoynChat, SPFChat does not allow the creation

of chat rooms, but offers a more usual interaction. Users of SPFChat

may discover other peers in proximity and start a conversation. As

for the Wi-Fi Direct case, we used SPF search and one SPF service to

5.2. Code quality 88

implement respectively the discovery and the chat function. Moreover,

conversations are stored persistently in a SQLite database.

Code size and cyclomatic complexity are shown respectively in ta-

bles 5.3 and 5.4.

AllJoynChat SPFChat

Lines of Code 1392 712

No of File 9 8

No of Classes 16 15

No of Functions 95 63

Table 5.3: SPFChat and AllJoynChat code-base size

Complexity AllJoynChat SPFChat

cc/function 2.3 1.9

cc/class 14.8 8.1

cc/file 26.2 15.3

cc total 236 122

Table 5.4: SPFChat and AllJoynChat code-base cyclomatic complexity

The major differences between the two application do not regard

the different complexities of the offered functions. In fact, the pro-

gramming model for group communication offered by AllJoyn is almost

the same of the one offered by spf services, except for the concept of

multi-point session. The real difference about AllJoynChat is inherent

in how resources are handled. These are mainly managed by the fore-

ground Android Service in a class called AllJoynService, that holds

a reference to the AllJoyn bus attachment along with the state of the

network. To allow the application to access the middleware, it offers a

complex multi-threading structure that handles operations and asyn-

chronous events. These characterize the life-cycle and the interactions

between the bus attachment and its application. On the other hand,

SPF takes care of all these problems by providing a simpler abstraction

that automatically handle the network resources and, more important,

5.3. Performance 89

is tied to the life-cycle of the Android components. As result, SPFChat

does not need a foreground service, since this feature is already sup-

ported by the SPF framework.

5.3 Performance

We then evaluated how the introduction of the SPF affected the perfor-

mance of the apps that rely on it. The experiments aimed at collecting

the response times of different implementations of the same service/app

that differ for the adopted communication layer.

More in detail, we created a ping service that sends requests and

waits for acknowledgments from the receiver. The different sizes of the

payload were obtained by providing a string obtained by concatenating

a varying number of characters. We collected the response times on two

Samsung Galaxy S4 smartphones: one acting as server and the other

one as client. The client phone was in charge of performing service

invocations, one after another, by varying the size of the payload. The

experiments considered five different configurations that differed in the

used communication middleware: SPF- AllJoyn, SPF-WiFi Direct, Al-

loyn alone, WiFi Direct alone, and a local-only implementation, that

is, a configuration that only used inter-process communications on the

same device without remote invocations.

Figure 5.2 shows the results of these experiments. If we compare

the response time of a local transaction with the one of a remote service

invocation, as expected, the impact of inter-process communication is

negligible with respect to the dimension of a network transaction. If

we analyze the results with and without the SPF, we discover that

the current implementations of the framework causes extra delays on

the response time of up to 50ms for the Wi-Fi Direct implementation

and up to 200ms for the AllJoyn implementation. Tool Traceview by

Android helped us understand that the delays are mainly due to the

serialization and deserialization of message contents. Most of the time

spent in an SPF invocation is spent on parsing the received message,

which is serialized as a JSON object. This is caused by the internal

garbage collection that depends on the implementation of the gson3

library that we have used for the serialization. The difference be-

tween the response times of the two configurations with the SPF is

3https://code.google.com/p/google-gson/

https://code.google.com/p/google-gson/

5.3. Performance 90

the following: the WiFi Direct- based implementation performs the

JSON serialization and deserialization within the middleware, while

the AllJoyn-based implementation does it on top of the middleware.

Based on the same ping service described above, we also performed

an additional experiment to evaluate how the framework is able to

handle concurrent remote invocations that are required especially in

scenarios where multiple user devices access at the same time the same

service: for example, one of those provided by a device associated with

a smart space, as discussed in the scenarios of chapter 3. In this case,

we found that the framework suffers scalability problems due to intrin-

sic limitations imposed by the Android IPC (Inter Process Commu-

nication) framework. Indeed, as described in the API reference doc-

umentation4, the arguments and return value of a remote procedure

call are stored in a buffer that has a limited fixed size of 1Mb; this

buffer is shared among all the transactions in progress for the process

handling the remote invocations. This means that even if an individ-

ual transaction has a moderate size, it may fail because of the load of

the system. The problem can be overcome by synchronizing remote

invocations through a queue. For the same reason, currently a single

remote invocation must have a payload that does not exceed the size

of the buffer imposed by Android.

To understand the impact of this limitation we analyzed the size

of social content exchanged in the web. The usual messages and pic-

tures used on the web and on traditional social networks do not suffer

this problem. Therefore is possible to exchange small profile picture

and even thumbnails to be shown in an activity feed. However the

problem occurs when the payload contains large amount of data, such

as high-resolution pictures or videos. As future work we will address

the performance overhead due to serialization and we will extend the

framework by providing dedicated APIs for large data transfers.

4http://developer.android.com/reference/android/os/

TransactionTooLargeException.html

http://developer.android.com/reference/android/os/TransactionTooLargeException.html
http://developer.android.com/reference/android/os/TransactionTooLargeException.html

5.3. Performance 91

(a) SPF and AllJoyn

(b) SPF and Wi-Fi Direct

Figure 5.2: Response time comparison with .95 confidence level

Chapter 6

Conclusions and future works

Computers are useless

they can only give you answers.

Pablo Picasso

Nowadays, the interest of industry for IoT scenarios is leading the ef-

forts towards the creation of novel technologies to enable the interac-

tion with smart objects and environments. Usually these technologies

neglect the social identity of the user, because they focus more on net-

working than on providing high-level frameworks. However, the social

element can still be exploited to create new services that are tailored to

the user and support novel interactions with the environment and its

elements. These concepts, presented in Chapter 3, can be synthesized

in the term social smart space. A social smart space is a physical space

where members, both humans and smart objects, can exploit services

provided by the others in a technology-mediated way. The social iden-

tity is then used to personalize the services and adapt the behavior of

the smart space according to the habits and the preferences of its users.

When trying to design such a system, the world of web services

and social networks became the natural reference model. The different

constraints imposed by the device to device communication, the prox-

imity scenario, and the more personal nature of mobile devices led us to

define a new infrastructure that could fit these particular requirements.

93

The Social Proximity Framework is the result of this work: a soft-

ware solution for the creation of social smart spaces where services are

tied to the user identity, providing means for novel types of interaction

without the need of an external infrastructure. The main features of

SPF can be summarized in three points:

• high-level abstractions over the networking layers, to ease the

development of social proximity applications;

• facilities for the development and integration of the most common

social functions;

• control on behalf of the user, that can manage data and services

hold within the framework.

Developers may access the framework by means of a dedicated software

library. Users may control and personalize the framework resources

through a SPF Provider application.

The Android inter-process communication framework allowed us

to design a centralized architecture where network resources and data

are shared between all the applications that use SPF. From the user

perspective, this integration between different apps is seamless. Even

the developer does not notice any issues when trying to access the

SPF, since all the communication is mediated and simplified by the

framework library.

SPF relies on an abstract communication layer that provides the

underlying networking functions. This allowed us to test the frame-

work against two different network infrastructures based respectively

on AllJoyn and Wi-Fi Direct. This has shown some problematics and

weaknesses of the model that could prevent the adoption of a different

technology. More in detail, these issues regard the discovery functions

and the scalability of SPF. In fact, according to the capabilities of the

network technology we may have different means to perform multicast

and connection-less communication. Among the emerging technologies,

the one that is the most promising for the SPF is LTE Direct, discussed

in Section 2.1.4. Since SPF shares with LTE Direct the same applica-

tion scenarios, it would be a good candidate as a model to shape social

proximity services and present them to the user in a coherent and com-

prehensible way. Another interesting approach is trying to overcome

the limitations we encountered with Wi-Fi Direct by means of other

94

technologies that could offer more flexible functions for implementing

the discovery; these can be Bluetooth or LTE Direct itself.

The second important future work regards the porting of the solu-

tion on different operating systems. The success of the Android im-

plementation is based on the underlying IPC infrastructure. Other

operating systems, like iOS, does not offer such a flexible solution. In

this case the whole architecture has to be redesigned according to the

available features.

The number of smart devices in the world is steadily increasing,

and so is the average number of devices per person. The recent intro-

duction of wearable smart devices has further increased the possible

interaction scenarios. Since SPF focuses on the user identity, it should

take into account multiple devices owned by a single user and present a

consistent interaction that is person-oriented and not device-oriented.

A possible approach would be the introduction of a synchronization

process that bootstraps a SPF instance on a new device using the data

from another device of the user. Each instance that belongs to the same

user may advertise the same digital identity, and a different device pro-

file. However, this approach requires a constant synchronization of the

information on different instances: a modification of profile field that

happens on a device should be propagated to all other synchronized

devices.

However, the synchronization among different devices is prone to

security risks and also clashes with the current infrastructure-less ar-

chitecture of SPF. Every modification made to the profile on a device

could be propagated with another device only when they can see each

other in proximity. Concurrent modifications are also more complex to

solve without a central coordinator. Thus, a possible extension to the

framework is the introduction of an external infrastructure that inte-

grates with the pure peer-to-peer nature of SPF. This infrastructure

would provide identity management function, thus coordinating mul-

tiple SPF instances on devices belonging to the same user. Also, the

profile information, and each change performed, could be synchronized

with the remote infrastructure.

Another possible future work is the introduction of semantic tech-

niques to improve the analysis of user profiles and their matching

95

against search and advertising queries. In particular, category-matching

algorithms would enable a more powerful profile discovery. Currently,

an application can discover nearby people interested in smartphones

only by means of a tag search for profiles containing a specific term,

e.g, smartphone. On the other hand, category-matching techniques

would link to smartphones those profiles that contain related terms,

like “Android”.

SPF may also be extended towards the world of the web social

networks. A first integration step can be a bootstrap process that

initializes the profile information of a new SPF instance using an ex-

isting on-line social network as source. In this way, the user experience

would benefit as setup time is reduced. However, this scenario requires

an internet connection and the development of multiple connectors to

interact with the public API of each supported service.

A further step in the integration with on-line social networks would

be the compliance with the SNeW specification, introduced in Section

2.2.3. In particular, SPF would take the role of SNeW client, allowing

the interaction with compatible social network. This would enable SPF

users to interact with people not only in direct proximity, but also with

those on supported social networks. This integration would also enable

the cross-device synchronization scenario previously described, without

the burden of a proprietary external infrastructure, as its functions are

implemented by existing social networks.

Appendix A

Guide to SPF Library

A.1 Introduction

This document is a guide for using the Social Proximity Framework

(SPF) to write Android applications. More concrete samples can be

found in the official repository of the project: http://github.com/

deib-polimi/SPF.

A.2 Overview

SPF Lib is made up by modular components that provide access to SPF

functions. Loading a component requires an asynchronous operation

during which a connection to the framework is established. Among

these components there is one of them which is fundamental for the

networking functions and it is called SPF. Once this component has been

loaded, the framework activates the proximity middleware and thus the

device becomes visible to remote users until SPF is released. Listing

A.1 shows how this component can be loaded and used to access the

framework proximity services. The other components follow a similar

pattern and are discussed in the following sections.

Listing A.1: Loading SPF connection.

1 SPF.load(context,new SPF.Callback(){
2 void onServiceReady(SPF spfConnection){
3 SPFSearch search = spf.getComponent(SPF.SEARCH);

4 //Do your work here...

5 //...and disconnect when finished

6 spf.disconnect();

7 }

http://github.com/deib-polimi/SPF
http://github.com/deib-polimi/SPF

A.2. Overview 97

8

9 void onDisconnect(){
10 //disconnection from the framework

11 //the connection is not valid anymore

12 }
13

14 void onError(SPFError err){
15 //handle errors here

16 }
17 });

External applications must ask for permissions according to the

services they want to use. Listing A.2 shows how to use the SPFPer-

missionManager class to declare the needed permissions. Declaration

must be performed before accessing the framework e.g. in your Appli-

cation class or in the onCreate method of your MainActivity.

Listing A.2: Declaring permissions.

1 SPFPermissionManager.requirePermission(

2 Permission.SEARCH SERVICE,

3 Permission.READ LOCAL PROFILE,

4 Permission.REGISTER SERVICES);

According to the SPF provider application you want access, you

should provide additional configuration settings by means of the SPFInfo

class. These parameters are used to create the android ComponentName

that identifies the Service which offers the access to SPF.

Listing A.3: Configuring SPFInfo.

1 SPFInfo.PACKAGE NAME = ”my.spf.frontend.app”;

2 SPFInfo.CLASS NAME = ”my.custom.spf.service.SPFService”;

The configuration is required only if you are not using the front-end

application provided with the framework. Follows a description of the

parameters to be set:

PACKAGE NAME The package name of the SPF provider appli-

cation. Use the one of the front end application, by default it is

set to spf official front-end i.e. it.polimi.spf.app.

A.3. SPFSearch API 98

CLASS NAME The class name of the service that offers SPF inter-

faces. By default it is set to it.polimi.spf.framework.local-

.SPFService, modify the constant according to the service regis-

tered in the front-end application.

A.3 SPFSearch API

This section describes how an application can discover remote instances

of SPF according to customizable queries. A search works by broad-

casting a query signal to remote devices in proximity; if it matches

their user profiles, a response is sent back along with some basic infor-

mation about the user. To access SPFSearch API, you must ask for

SEARCH SERVICE permission.

A.3.1 Defining a query

SPF Search requires the creation of a SPFQuery object, that can be

created with a builder defined in its class. A query can be configured

with different types of parameters:

Profile field value returns all the users that contain the value spec-

ified in the query for the given profile field.

Tag returns all the users that contain the specified word in any profile

fields.

App Identifier returns the users that installed the given application.

The app identifier is the application package name.

The query is satisfied if all the provided parameters are matched;

thus, if you want to search for all the women related to a tag “An-

droid”, you should specify “female” as value of gender profile field and

“android” as a tag. Providing an empty query returns all the instances

of SPF in proximity. Listing A.4 shows an example.

Listing A.4: Building a query

1 SPFQuery query = new SPFQuery.Builder()

2 .setAppIdentifier(”com.spf.demo.search”)

3 .setProfileField(ProfileField.GENDER,”female”)

4 .setTag(”android”)

5 .build();

A.3. SPFSearch API 99

A.3.2 Starting a search

Once you have created a query, you have to define a SearchDescrip-

tor, which allows configure the behavior of the search operation. In

detail, the SearchDescriptor is made up by the SPFQuery object and

two additional parameters: the number of signals to be sent, and the

time interval between them, the latter measured in milliseconds. Fi-

nally, you must acquire a connection to the SPF proximity service and

ask for SPFSearch. Listing A.5 provides an example.

Listing A.5: Starting a search

1 long interval = 5000; // 5 seconds

2 int numberOfSignals = 5;

3 SPFSearchDescriptor descriptor =

4 new SPFSearchDescriptor(interval, numberOfSignals, query);

5 SPFSearch search = spfConnection.getComponent(SPF.SEARCH);

6 search.startSearch(SEARCH TAG, descriptor, mSearchCallback);

The startSearch method requires two more parameters. The String

SEARCH TAG is simply a string that identifies the request and can be

used to control a running query; when you provide an identifier al-

ready owned by another running request, it is automatically stopped

by the framework. SPFSearchCallback contains the callbacks to be

executed when the framework delivers the results to your application:

onSearchStart notifies that the search has begun. This is the right

moment to show the user a progress bar.

onPersonFound is called when a search result is collected. It delivers

information about the discovered user in a SPFPerson object. The

method getBaseInfo() allows to retrieve the identifier and the

name of the user.

onPersonLost is called when a previously found user has been lost.

onSearchStop is called when the search operation has stopped and

no further result will be delivered.

onSearchError is called when an error occurs while executing the

search.

If you want to retrieve a stub of a spf instance whose identifier is

known, you should use the lookup method; if the remote instance is

A.4. SPFProfile API 100

reachable, it returns a SPFPerson object that can be used with other

SPF services.

A.4 SPFProfile API

SPF allows applications to read and write on a shared user profile.

To access these data you must load SPFLocalProfile, which requires

READ LOCAL PROFILE and WRITE LOCAL PROFILE permissions, accord-

ing to the needed use. Be aware that the two are independent, thus

if your application wants to read and write the profile, it must require

both the permissions.

A.4.1 Reading local profile

Once the component is loaded, you can read or write the profile spec-

ifying the values you want to access. The class ProfileField holds

the definitions of profile fields. Listing A.6 shows how a read operation

can be performed.

Listing A.6: Reading from local profile.

1 SPFLocalProfile.load(context, new SPFLocalProfile.Callback() {
2 public void onServiceReady(SPFLocalProfile spfLocalProfile) {
3 ProfileFieldContainer container = spfLocalProfile.getValueBulk(

4 ProfileField.IDENTIFIER,

5 ProfileField.DISPLAY NAME,

6 ProfileField.PHOTO,

7 ProfileField.BIRTHDAY);

8

9 String uid = container.getFieldValue(ProfileField.IDENTIFIER);

10 String name = container.getFieldValue(ProfileField.DISPLAY NAME);

11 Bitmap profilePic = container.getFieldValue(ProfileField.PHOTO);

12 Date birthday = container.getFieldValue(ProfileField.BIRTHDAY);

13 spfLocalProfile.disconnect();

14 }
15

16 public void onError(SPFError spfError) {...}
17

18 public void onDisconnect() {...}
19 });

A.5. SPFService API 101

A.4.2 Writing local profile

Writing profile fields works in a similar way. You have to use a Pro-

fileFieldContainer by creating a new one, or by reusing the one that

is returned as result of a read operation. Old values are overwritten by

the new ones contained in the data structure1.

Listing A.7: Writing a profile fields

1 ProfileFieldContainer container = new ProfileFieldContainer();

2 Date birthDate = new Date();

3 String[] emails = new String[]{”an.email@email.com”,”another@email.com”};
4 container.setFieldValue(ProfileField.BIRTHDAY, birthDate);

5 container.setFieldValue(ProfileField.EMAILS, emails);

6 spfLocalProfile.setValueBulk(container);

A.4.3 Reading remote profile

Application can read profiles of remote users; while the interface is

similar to the one of the local profile, accessing remote devices requires

the loading of the SPF component as described in section A.2. Listing

A.8 shows the three steps procedure needed to access a remote profile:

obtaining the SPFRemoteProfile component, creating a stub from a

SPFPerson instance2 and finally, asking for the desired profile fields.

Listing A.8: Reading a remote profile

1 SPFRemoteProfile remPr = spfConnection.getComponent(REMOTE PROFILE);

2 remPr.getProfileOf(spfPerson).getValueBulk(...);

A.5 SPFService API

This section describe and provides examples about SPF service API.

According to the intended use, your application should require the fol-

lowing permissions: REGISTER SERVICES, EXECUTE LOCAL SERVICES,

EXECUTE REMOTE SERVICES.
1ProfileFieldContainer keeps track of the modified values: only the modified fields

are actually written. Thus you can use this data structure as a model for profile editing

activities. For more details see the class documentation.
2SPFPerson instances can be obtained from a search or a lookup. See section A.3 for

details.

A.5. SPFService API 102

A.5.1 Defining a service

The @ServiceInterface annotation can be used on a standard Java

interface to define and configure a SPF Service. In the annotation you

must specify:

app The identifier of the application (i.e. its package name).

name The name of the service that you are defining.

description A textual description of the service to be shown to the

user. Should contain useful information to let the user recognize

the service.

version The version of the service.

Listing A.9: Defining a service interface.

1 package com.example.chat;

2 import it.polimi.spf.lib.services.ServiceInterface;

3

4 @ServiceInterface(

5 app = ”com.example.chat”,

6 name = ”SPFChatDemo Proximity”,

7 description = ”Service that allows users to communicate”,

8 version = ”0.1”,

9)

10 public interface ProximityService {
11

12 void sendMessage(String senderId, String message)

13 throws ServiceInvocationException;

14

15 void sendPoke(String senderId)

16 throws ServiceInvocationException;

17

18 }

Listing A.9 shows an example of how the annotation should be used.

To provide an implementation of the service you have to create a class

that extends SPFServiceEndpoint and implements the previously de-

fined interface. Pay attention to declare the ServiceInvocationEx-

ception in each remote method signature; the omission will prevent

to recover from errors and will cause a runtime exception when one of

these occurs.

A.5. SPFService API 103

A.5.2 Registering a service

Once the service interface and its implementation are defined, the ap-

plication needs to register the service. To do so, you must load SPF-

ServiceRegistry as shown in Listing A.10.

Listing A.10: Registering a service.

1 SPFServiceRegistry.load(context, new SPFServiceRegistry.Callback() {
2

3 public void onServiceReady(SPFServiceRegistry serviceRegistry) {
4 serviceRegistry.registerService(

5 ProximityService.class, ProximityServiceImpl.class);

6 serviceRegistry.disconnect();

7 }
8

9 public void onError(SPFError spfError) {...}
10

11 public void onDisconnect() {...}
12 });

Eventually, you have to register your subclass of SPFServiceEnd-

point3 in the manifest file of your application.

A.5.3 Executing a service

Executing a service is a two step operation that requires the creation

of a stub and the method invocation. SPFServiceExecutor is the

component that allows you to create the service stub given the instance

of SPFPerson referring to the remote user, the interface of the service

that you want to invoke, and eventually the class loader. Listing A.11

shows how the previously defined service can be executed.

Listing A.11: Executing a service.

1 SPFServiceExecutor executor = spf.getComponent(SPF.SERVICE EXECUTION);

2 try {
3 ProximityService myService = executor.createStub(

4 spfPerson, ProximityService.class, getClassLoader());

5 myservice.sendMessage(myIdentifier, message);

6 } catch (ServiceInvocationException e) {
7 Log.e(TAG, ”Cannot send message”, e);

8 }

3SPFServiceEndpoint is an abstract class that extends a common Android Service.

A.6. SPFNotification API 104

A.5.4 Supported data types

All primitive Java types are supported, along with collections and ar-

rays. Moreover, the library supports serialization and deserialization of

custom classes and their respective arrays, if they do not have circular

references. Limitations on the request size depends on the proximity

middleware in use4 and on the Android Binder buffer used for inter-

process communication5.

A.6 SPFNotification API

SPF allows users to advertise selected fields of their own profile. This

functionality can be configured from the framework front-end, and of-

fers a more efficient solution for long running searches that work in

background. The actual implementation depends on the networking

middleware in use, but basically it consists in broadcasting a set of

selected profile fields that is received by other SPF instances. External

applications may react to the reception of these information by defin-

ing triggers. To access notification services, applications must declare

NOTIFICATION SERVICES permission.

A.6.1 Triggers and actions

SPFTrigger is the abstraction that represents the “if. . . then. . . ” rule,

and can be used to react to the reception of an advertised profile. A

trigger is made up by two components: a query and an action. The

query is the same object defined in section A.3, and it allows to define

searches for specific profile fields as well as more general queries. There

exist two types of action that can be declared in a trigger:

SPFActionIntent broadcasts an Android Intent that can be received

from the application that registered the trigger; This SPFAction

requires an action name for the Intent and provides information

about the remote SPF instance that activated the trigger.

4E.g. on AllJoyn the limit size is 100Kb.
5It has a limited fixed size of 1Mb, shared by all the transactions in

progress for the process. More details can be found on Android documen-

tation following this link: http://developer.android.com/reference/android/os/

TransactionTooLargeException.html.

http://developer.android.com/reference/android/os/TransactionTooLargeException.html
http://developer.android.com/reference/android/os/TransactionTooLargeException.html

A.6. SPFNotification API 105

SPFActionMessage sends a message to the remote user that has acti-

vated the trigger. The framework front-end will notify the user

about the received message.

Moreover, applications can specify whether a trigger is to be acti-

vated multiple times by the same remote instance or not. In the first

case you should provide a sleepPeriod, a time interval in milliseconds

during which the trigger is not activated on a already targeted user.

Listing A.12 shows the creation of a trigger with a SPFActionIn-

tent to count and log all the encountered instances of SPF. Notice that

in this case no sleepPeriod is specified: in this way the intent is broad-

cast only once for each individual instance. Finally listing A.13 shows

the implementation of a BroadcastReceiver that uses the information

provided by the framework by mean of the Intent.

Listing A.12: Trigger for logging instances.

1 SPFQuery query = new SPFQuery.Builder().build();

2 SPFActionIntent action = new SPFActionIntent(”com.trigger.example.COUNTER”);

3 String name = ”People counter”;

4 SPFTrigger trigger = new SPFTrigger(name, query, action);

Listing A.13: BroadcastReceiver for logging instances.

1 public class PeopleCounter extends BroadcastReceiver{
2

3 public void onReceive(Context context, Intent intent) {
4 if (intent.getAction().equals(”com.trigger.example.COUNTER”){
5 String triggerName = intent

6 .getStringExtra(SPFActionIntent.ARG STRING TRIGGER NAME);

7 String targetId = intent

8 .getStringExtra(SPFActionIntent.ARG STRING TARGET);

9 String displayname = intent

10 .getStringExtra(SPFActionIntent.ARG STRING DISPLAY NAME);

11 Log.d(TAG, ”Found user: ” + displayName + ” id: ” + targetId);

12 }
13

14 }

Listing A.14 shows an example of a welcome message sent once in

a day. Here a sleepPeriod is set and a SPFActionMessage is used.

Listing A.14: Trigger for welcome messages.

A.6. SPFNotification API 106

1 SPFQuery query = new SPFQuery.Builder().build();

2 String object = ”Welcome”;

3 String message = ”Welcome in this beautiful Social Smart Space!”;

4 SPFActionMessage action = new SPFActionMessage(title,message);

5 SPFTrigger trigger = new SPFTrigger(name, query, action, DAY MILLIS);

A.6.2 Registering triggers

To access SPF notification services you have to load SPFNotification

component. Once you have obtained an instance of this object you can

call the methods that allows to register and modify the triggers.

saveTrigger(SPFTrigger trigger) registers the trigger given as pa-

rameter and assigns an id.

listTriggers() returns the list of trigger that have been registered

by the application.

getTrigger(long id) returns the trigger with the specified id

deleteTrigger(long id) deletes the trigger with the specified id

deleteAllTriggers() deletes all the triggers that have been regis-

tered by the application.

Listing A.15: Reading saved triggers.

1 SPFNotification.load(context,new SPFNotification.Callback(){
2

3 public void onServiceReady(SPFNotification spfNotification){
4 List<SPFTrigger> triggers = spfNotification.listTriggers();

5 ...

6 spfNotification.disconnect();

7 }
8

9 public void onDisconnect(){...}
10

11 public void onError(SPFError err){...}
12

13 });

A.7. SPFActivities 107

A.7 SPFActivities

SPFActivity is an interoperable key-value data container that de-

scribes a potential or completed social action. As discussed in the

next section it is designed to speed up the development of standard

services and to ease the integration of different applications.

A.7.1 Data structure

Each activity features a set of standard fields:

Verb a string that identifies the type of the social action

SenderIdentifier and SenderDisplayName : details about the user

who performed the activityÍ3
4

ReceiverIdentifier and ReceiverDisplayName : details about the

user target of the activity.

The personal details of the sender and the receiver are automati-

cally injected by the framework without the need of additional lookups;

activities may also contain a map of fields needed to describe the action.

Activities can be used as parameters in methods of service inter-

faces, removing the need of additional parameters to pass context in-

formation like the name of the sender of a chat message.

Listing A.16: Using an activity for a chat.

1 public void onMessageReceived(SPFActivity message) {
2 ChatStorage storage = ChatDemoApp.get().getChatStorage();

3 String senderId = message.get(SPFActivity.SENDER IDENTIFIER);

4 String senderName = message.get(SPFActivity.SENDER DISPLAY NAME);

5 Conversation c = storage.findConversationWith(senderId);

6 if (c == null) {
7 c = new Conversation();

8 c.setContactIdentifier(senderId);

9 c.setContactDisplayName(senderName);

10 storage.saveConversation(c);

11 }
12

13 Message m = new Message();

14 m.setSenderId(c.getContactIdentifier());

15 m.setText(message.get(ProximityService.MESSAGE TEXT));

16 m.setRead(false);

A.7. SPFActivities 108

17 storage.saveMessage(m, c);

18 }

A.7.2 Verbs routing

SPF implements an automatic routing service that dispatches activities

to applications according to verbs. To access this functionality, you

need to declare a service as a consumer of one or more activity verbs.

Since more than one service can be consumer of a given verb, the

user of SPF can select which of them is the default one by using the

framework front-end. Sending activities to external applications, both

local and remote, is possible through the method sendActivity of

SPFServiceExecutor class. Listing A.17 and A.18 shows respectively

the definition of a service and the invocation of a method based on the

verb routing mechanism.

Listing A.17: Defining a verb consumer.

1 @ServiceInterface(

2 app = ”it.polimi.spf.demo.chat”,

3 name = ”SPFChatDemo Proximity”,

4 description = ”Service that allows users to communicate”,

5 version = ”0.1”,

6 consumedVerbs = {
7 ProximityService.POKE VERB,

8 ProximityService.MESSAGE VERB }
9)

10 public interface ProximityService {
11

12 public static final String POKE VERB = ”poke”;

13 public static final String CHAT VERB = ”chat”;

14

15 @ActivityConsumer(verb = POKE VERB)

16 void onPokeReceived(SPFActivity poke);

17

18 @ActivityConsumer(verb = CHAT VERB)

19 void onMessageReceived(SPFActivity message);

20 }

Listing A.18: Sending an activity.

1 SPFActivity message = new SPFActivity(ProximityService.CHAT VERB);

A.7. SPFActivities 109

2 message.put(”text”, text);

3 //spfPerson is an instance of SPFPerson retrieved from a search or a lookup

4 spfPerson.sendActivity(spfConnection, message);

Appendix B

Guide to SPF Framework

B.1 Introduction

This document is a guide to the APIs of Social Proximity Framework

(SPF). The official repository of the project provides an example of

spf provider app and different middleware implementations. http:

//github.com/deib-polimi/SPF

B.2 Overview

The framework is composed by two main components: SPF, which of-

fers the access to all the functionalities provided by the framework,

and an Android service, SPFService, which enables local applications

to interact with these functionalities. The framework supports three

kinds of actors: SPF-enabled applications installed on the same device

(local applications), instances of the framework installed on other de-

vices in proximity(remote instances) and the SPF provider app which

is the topic of this guide.

Local applications can interact with the framework by means of SPFLib,

a library that provides a set of endpoints to interact with the frame-

work through IPC calls. On the other hand, remote instances can

communicate with the local one through a proximity middleware which

implements the transmission and reception of data through a commu-

nication channel. Two middlewares are provided with the framework:

one based on Alljoyn, an open source middleware that enables commu-

nication among connected devices, and one based on Wi-Fi Direct, a

Wi-Fi standard that enables devices to connect with each other with-

http://github.com/deib-polimi/SPF
http://github.com/deib-polimi/SPF

B.2. Overview 111

out requiring a wireless access point. The implementation of a new

middleware will be described in section B.8.

B.2.1 Initialization

The SPF class is implemented as a sigleton, whose instance can be

retrieved using SPF.get() method. However, before accessing an in-

stance, the framework must be initialized, or an exception will be

thrown. To initialize the framework, use the method SPFContext.ini-

tialize, passing as arguments an Android context that will be used

in the framework, and a middleware to enable communication with

remote instances. Listing B.1 shows how to initialize the framework.

Listing B.1: Initializing the framework

1

2 // Initializing with Alljoyn middleware

3 SPFContext.initialize(context, AlljoynProximityMiddleware.FACTORY);

4

5 // Initializing with Wi−Fi Direct middleware

6 // SPFContext.initialize(context, WFDMiddlewareAdapter.FACTORY);

7

8 // Now, we can obtain the SPF instance

9 SPF spf = SPF.get();

B.2.2 Configuring SPFService

The SPFService is active only when at least one local application is

bound to it: as soon as no there are no more active connections, the

service is terminated by the operative system. You can override this

behaviour by starting the service in foreground. When in foreground,

an Android service stays active in the background even if no application

is bound to it. To start SPFService in foreground, you need to invoke

the static method startForeground of the SPFService. Once the

service is in foreground, it will stay active also when all the activities

of your application are closed. To revert back to the default behaviour,

use the static method stopForeground. Listing B.2 shows how to

control the foreground status of SPFService.

Listing B.2: SPFService in foreground

1 // Start the foreground

B.2. Overview 112

2 SPFService.startForeground(context);

3

4 // Now the service is in foreground

5 // To revert back to the default behaviour

6 SPFService.stopForeground(context);

When a service is run in foreground, Android displays a notifica-

tion to make the user aware of it. You can customize the notification

displayed for SPFService by providing your Notification instance to

SPFContext using the method setServiceNotification. Listing B.3

shows how to customize the notification shown for SPFService.

Listing B.3: Customizing SPFService notification

1 // Create a pensing intent to resume an activity

2 // when the notification is tapped

3 Intent intent = new Intent(context, MainActivity.class);

4 PendingIntent pIntent = PendingIntent

5 .getActivity(context, 0, intent, PendingIntent.FLAG UPDATE CURRENT);

6

7 // Create the notification

8 Notification n = new Notification.Builder(context)

9 .setSmallIcon(R.drawable.ic launcher)

10 .setTicker(”spf is active”)

11 .setContentTitle(”SPF”)

12 .setContentText(”SPF is active.”)

13 .setContentIntent(pIntent)

14 .build();

15

16 // Set the notification in SPFContext

17 SPFContext.get().setServiceNotification(n);

B.2.3 Listening for SPF events

SPFContext implements an event dispatching mechanism that is used

by SPF components to dispatch events related to their functionalities.

You can register your own listener by invoking the method regis-

terEventListener providing your own implementation of the interface

SPFContext.OnEventListener. The only method required by this in-

terface is onEvent(int eventCode, Bundle payload), where event-

Code is the identifier of the event, while payload is a Bundle containing

B.3. Security Monitor 113

event-dependant data; the codes and the payload data will be described

in the next sections. Once you’re done listening for events, unregister

the listener with unregisterEventListener. Listing B.4 shows how

to initialize the framework.

Listing B.4: Registering an event listener

1 // Create a listener

2 SPFContext.OnEventListener listener = new SPFContext.OnEventListener() {
3 public void onEvent(int eventCode, Bundle payload) {
4 // Handle the event

5 }
6 };
7

8 // Register the listener

9 SPFContext.get().registerEventListener(listener);

10

11 // Unregister the listener

12 SPFContext.get().unregisterEventListener(listener);

B.3 Security Monitor

The SPFSecurityMonitor controls the interaction between the local

instance of SPF and external actors, which are SPF-enabled applica-

tions installed on the local device, and instances of SPF installed on

remote devices. In particular, the monitor is divided into two compo-

nents, the ApplicationRegistry, controlling the interaction with local

applications, and the PersonRegistry, controlling those with remote

instances.

B.3.1 Application registry

The ApplicationRegistry controls the interaction between the frame-

work and SPF-enabled applications installed on the same device, by

means of the interprocess communication capabilities offered by An-

droid. Upon the first interaction, SPF requires an external application

to register itself providing its AppDescriptor, which contains its label,

package name and the list of permission, i.e. the list of SPF features

it will utilize. Incoming requests are processed by a pluggable strat-

egy that, by default, discards all incoming requests. This behaviour

B.3. Security Monitor 114

can be customized by the SPF provider by implementing an AppReg-

istrationHandler and registering it in SPFContext with the method

setAppRegistrationHandler.

The AppRegistrationHandler interface only requires the implemen-

tation of the method handleRegistrationRequest, whose parameters

are:

• context: the Android context of the SPFService;

• descriptor: the AppDescriptor containing the details of the app

that should be reviewed;

• callback: the callback to notify of the result of the review. In

case of positive review, you should pass in the SPFPersona to be

assigned to the accepted app.

In case the request is accepted, you should also provide the SPF-

Persona that the newly approved application will be allowed to access.

Listing B.5 shows how to display a popup that lets the user review

incoming requests.

Listing B.5: Handling app registration requests

1 SPFContext.setAppRegistrationHandler(new AppRegistrationHandler {
2

3 public void handleRegistrationRequest(Context context,

4 AppDescriptor descriptor, final Callback callback) {
5

6 Dialog dialog = new AlertDialog.Builder(context)

7 .setPositiveButton(android.R.string.yes,

8 new AlertDialog.OnClickListener() {
9 public void onClick(DialogInterface dialog, int which) {

10 callback.onRequestAccepted(SPFPersona.DEFAULT);

11 }
12 }).setNegativeButton(android.R.string.no,

13 new AlertDialog.OnClickListener() {
14 public void onClick(DialogInterface dialog, int which) {
15 callback.onRequestRefused();

16 }
17 }).create();

18

19 // context is a service, thus to display a popup we need

20 // the android.permission.SYSTEM ALERT WINDOW permission.

21 dialog.getWindow()

22 .setType(WindowManager.LayoutParams.TYPE SYSTEM ALERT);

B.3. Security Monitor 115

23 dialog.show();

24 }
25 });

The list of authorized applications can be retrieved from Applica-

tionRegistry using the method getAvailableApplications which

returns a collection of AppAuth, encapsulating the details of an appli-

cation provided upon registration. The registry also allows to remove

a previously allowed application using unregisterApplication, pass-

ing in the identifier of the app to remove. Listing B.6 shows how to

manage the list of allowed applications.

Listing B.6: Managing the list of available applications

1 SPFApplicationRegistry registry = SPF.get().getApplicationRegistry();

2 List<AppAuth> apps = registry.getAvailableApplications();

3 for(AppAuth app : apps){
4 String appName = app.getAppName();

5 String appIdentifier = app.getAppIdentifier();

6 Permission[] permissions = app.getPermissions();

7 SPFPersona persona = app.getPersona();

8 }
9

10 // To remove an application

11 AppAuth app = registry.getAppAuthorizationByAppId(”com.example.chat”);

12 monitor.unregisterApplication(app);

B.3.2 Person registry

The PersonRegistry controls the interaction between the local SPF

instance and remote one, ensuring that only allowed instances can ac-

cess data stored in the profile. The clearance system works by dividing

remote instances into groups, that are used to control the access to

resources.

Sending a contact request

Before a remote instance can be added to a circle, you first need to add

it as a contact. When an instance is added as a contact, its details,

including the groups it belongs to, are saved in the PersonRegistry.

Then, a contact request containing a unique token is sent to the remote

B.3. Security Monitor 116

instance, where it is stored as a pending request: if the request is

accepted, the details of the sender, including the token, are saved in

the PersonRegistry, otherwise the token is discarded. When a SPF

instance performs a request to a remote one, it includes the token

shared by the two instances, if available, so that the recipient can

verify the identity of the sender and provide him access only to the

information he’s allowed to access.

A contact request can be sent to a remote instance by invoking the

method sendContactRequestTo, providing the following parameters:

• targetUID: the identifier of the instance the request should be

sent to. Section B.4.1 shows how to search for remote instances

and obtain their identifier;

• passphrase: a passphrase that will be used to encrypt the token.

The recipient of the request will need to input the same passphrase

to decrypt the token;

• displayName: The display name of the remote instance;

• profilePic: The picture of the remote instance;

• groups: The group the new contact should be placed in.

Upon reception, a request is saved in the PersonRegistry: the list

of available requests can be obtained by means of the method get-

PendingRequests, whose return type is a collection of PersonInfo, a

container encapsulating the basic details of a remote instance including

its identifier, display name and profile picture. A request can be con-

firmed using the method confirmRequest, providing the PersonInfo

of the remote instance, the passphrase used by the sender to encrypt

the token and the groups the new contact should be placed in; on the

other hand, a request can be discarded with deleteRequest. Listing

B.7 shows how to send, confirm and remove contact requests.

Listing B.7: Sending a contact request

1 PersonRegistry registry = SPF.get().getSecurityMonitor().getPersonRegistry();

2

3 // Sending a request

4 // person profile is the profile of the remote person

5 registry.sendContactRequestTo(

6 personProfile.getFieldValue(ProfileField.IDENTIFIER),

7 ”my complex passphrase”,

B.3. Security Monitor 117

8 personProfile.getFieldValue(ProfileField.DISPLAY NAME),

9 personProfile.getFieldValue(ProfileField.PHOTO),

10 Arrays.asList(”business”));

11

12 // Obtaining the list of requests

13 List<PersonInfo> requests = registry.getPendingRequests();

14

15 // Confirm a request

16 registry.confirmRequest(

17 requests.get(0),

18 ”my complex passphrase”,

19 Arrays.asList(”business”));

20

21 // Deleting a request

22 registry.deleteRequest(requests.get(0));

Upon reception of a contact request, an event is dispatched by SPF-

Context: the event code is SPFContext.EVENT CONTACT REQUEST RE-

CEIVED, while the payload contains no data.

Managing contacts

The PersonRegistry allows you to retrieve the list of contacts already

available using getAvailableContacts, which returns a collection of

PersonInfo, and remove an existing contact using deletePerson, pro-

viding the PersonInfo of the contact to delete. Listing B.8 shows how

to send, confirm and remove contact requests.

Listing B.8: Managing contacts

1 PersonRegistry registry = SPF.get().getSecurityMonitor().getPersonRegistry();

2

3 List<PersonInfo> contacts = registry.getAvailableContacts();

4 for (PersonInfo contact : contacts) {
5 String identifier = contact.getIdentifier();

6 String name = contact.getDisplayName();

7 }
8

9 registry.deletePerson(contacts.get(0));

B.4. Search 118

Managing groups

Finally, the registry allows you to manage the list of groups and the

assignment of instances. The method getGroups returns you the list of

available groups, while addGroup and removeGroup allows you to add

and remove a circle, respectively. To change the assignment of contacts

to groups, use addPersonToGroup to add andremovePersonFromGroup

to remove a contact to/from a group.Listing B.9 shows how to send,

confirm and remove contact requests.

Listing B.9: Managing groups

1 PersonRegistry registry = SPF.get().getSecurityMonitor().getPersonRegistry();

2

3 // Getting available groups

4 Collection<String> groups = registry.getGroups();

5

6 // Adding a group

7 registry.addGroup(”Colleagues”);

8

9 // Contact is a personInfo previously retrieved

10 registry.addPersonToGroup(contact, ”Colleagues”);

11 registry.removePersonFromGroup(contact, ”Colleagues”);

12

13 // Removing a group

14 registry.removeGroup(”Colleagues”);

B.4 Search

The SPFSearch API allows you to search for other instances of SPF in

proximity of the user device, by specifying a description of the search

to perform and a callback that will be notified when a search event

happens. The search is performed by means of signals sent through

the middleware to other instances of SPF; when a remote instances

receives the signal, it replies back with a search result signal that in-

cludes as payload the basic information of the remote instance.

The description of a search includes three parameters: the number of

search signals that will be sent to nearby devices, the time interval be-

tween two subsequent signals, and a search query, which is a collection

of parameters matched against remote instances. A parameter can be

of three types:

B.4. Search 119

Predicate a profile field of the should have a specific value (e.g display

name equals John Doe);

Tag specifies a word that should be contained in the profile;

Application specifies that the remote instances should have a specific

app installed.

The callback, on the other hand, allows you to be notified of events

related to your search so that you can react appropriately in your ap-

plication. Events supported by the search manager are:

• SearchStart: when the search is started by the framework;

• SearchStop: when the search is stopped, either because the re-

quested number of signal has been sent, or because the search

request has been cancelled;

• SearchError: when an error occurs during the search;

• SearchResultReceived: when a new instance matching the

query you provided has been found.

• SearchResultLost: when an instance previously found is no

more available.

When you are notified of a search result the frameowrk provides

you the unique identifier and the display name of the instance; the

identifier can then be used with other components of

B.4.1 Performing a search

The SPFSearchManager allows you to start and stop searches by means

of the two methods startSearch and stopSearch, respectively. The

startSearch method requires as parameter the package name of your

application, a SPFSearchDescriptor containing the configuration for

the new search, and SPFSearchCallback to dispatch search events;

the return value is the identifier for the newly started search, needed

to forcedly stop it with stopSearch, and which is also passed as the

first parameter in each method of the callback, to help you identify the

search which triggered the event. Be careful that the methods of the

callback are not called from the main thread, thus you can’t interact

with View objects directly.

Listing B.10 shows you how to search for people named John Doe.

B.4. Search 120

Listing B.10: Searching for John Doe

1 SPFSearchManager manager = SPF.get().getSearchManager();

2 SPFSearchCallback.Stub callback = new SPFSearchCallback.Stub() {
3 public void onSearchStart(String queryId) {
4 // The framework has started the search

5 }
6

7 public void onSearchStop(String queryId) {
8 // The search has ended

9 }
10

11 public void onSearchError(String queryId) {
12 // there was an error during the search

13 }
14

15 public void onSearchResultReceived(String queryId, String userId,

16 BaseInfo info) {
17 // A John Doe was found

18 }
19

20 public void onSearchResultLost(String queryId, String userIdentifier) {
21 // A John Doe is no more available

22 }
23 };
24

25 int signals = 10, interval = 10∗1000; // in milliseconds

26 SPFQuery query = new SPFQuery.Builder()

27 .setProfileField(ProfileField.DISPLAY NAME, ”John Doe”)

28 .build();

29 SPFSearchDescriptor descriptor =

30 new SPFSearchDescriptor(signals, interval, query);

31

32 // AppId is the package name of your app

33 String id = manager.startSearch(”appId”, descriptor, callback);

34

35 // In case you need to stop the search

36 manager.stopSearch(id);

B.4.2 Interacting with remote instances

Once you obtained the unique identifier of the instance you want to

interact with, you can look up its remote stub in the SPFPeopleM-

B.5. Profile 121

anager, where SPF stores the remote stubs of instances detected in

proximity. The connection to the remote instance is lazily initialized

when the stub is used for the first time. Remote stubs are instances of

the SPFRemoteInstance class which features methods to interact with

the remote instance, as shown in the next sections. Listing B.11 shows

you how to search for people named John Doe.

Listing B.11: Obtaining the stub for a remote instance

1 SPFPeopleManager manager = SPF.get().getPeopleManager();

2

3 //identifier is the unique id of a person found by means of a search.

4 SPFRemoteinstance instance = manager.getPerson(identifier);

5 if(instance == null){
6 // The person is not available

7 }
8

9 // Interact with the instance

B.5 Profile

SPF offers SPFProfileManager to read and write information on a

persistent user profile within a predefined set of fields. The support

for SPFPersona, allows to store a different field value for each persona.

Each profile field can also be assigned to a set of groups to control the

access from remote instances of SPF.

B.5.1 Adding and removing personas

SPFProfileManager offers a simple yet complete API to manage the

list of available SPFPersona. The method getAvailablePersonas al-

lows you to obtain the list of available personas, while addPersona and

removePersona respectively allows you to add and remove a persona,

as shown in listing B.12.

Listing B.12: Adding and removing personas.

1 SPFProfileManager profile = SPF.get().getProfileManager();

2

3 // Adding a persona

4 profile.addPersona(new SPFPersona(”Business”));

5

B.5. Profile 122

6 // Getting the list of available personas

7 List<SPFPersona> personas = profile.getAvailablePersonas();

8

9 //Removing a persona

10 SPFPersona persona = personas.get(0);

11 profile.removePersona(persona);

B.5.2 Reading and writing on the local profile

Each profile field is identified by an instance of the ProfileField, a

class that encapsulates both the identifier and the type of the field. The

SPFProfileManager supports only bulk operations to read and write

multiple fields at the same time: You can obtain a list of values by

calling getProfileFieldBulk passing in the array of ProfileField you

want to read, and the persona from which the values should be read.

The return value of this method is an instance of the ProfileField-

Container class, offering a getter and a setter method to interact with

the values: both these methods are generic depending on the type of

the ProfileField. Listing B.13 shows how to retrieve the values of

two fields from the profile.

Listing B.13: Reading from local profile.

1 SPFPersona persona = SPFPersona.DEFAULT;

2 SPFProfileManager profile = SPF.get().getProfileManager();

3 ProfileField<?>[] fields = {
4 ProfileField.DISPLAY NAME,

5 ProfileField.BIRTHDAY

6 };
7 ProfileFieldContainer values = manager.getProfileFieldBulk(persona, fields);

8

9 String name = values.getFieldValue(ProfileField.DISPLAY NAME);

10 Date birthday = values.getFieldValue(ProfileField.BIRTHDAY);

To modify the value of a field, simply call setFieldValue on the

container for each value you want to change, then call the method set-

ProfileFieldBulk to persist the changes. A container keeps track of

the changes: to know if a container has been modified, use the method

isModified. The status of a container does not reset automatically

after the changes are saved, you have to do it by invoking clearModi-

B.5. Profile 123

fied; it is possible to reause the same container for more writes. Listing

B.14 shows how to modify the value of the of a field.

Listing B.14: Writing to local profile

1 //values.isModified() returns false;

2 values.setFieldValue(ProfileField.DISPLAY NAME, ”John Doe”);

3 values.setFieldValue(ProfileField.BIRTHDAY, new Date());

4 manager.getProfileFieldBulk(persona, fields);

5 //values.isModified() returns true;

6

7 manager.setProfileFieldBulk(values, SPFPersona.DEFAULT);

8 //values.isModified() returns true;

9

10 values.clearModified();

11 //values.isModified() returns false;

B.5.3 Assigning groups to fields

For each field, you can obtain the list of allowed groups using the

method getGroupsOf and providing the SPFPersona, as the list is dif-

ferent for each persona; this method returns an Android Bundle with

an entry for each ProfileField, where the identifier of the field is the

key, while the list of groups is the value. To modify the list of cir-

cle, use the methods addGroupToField and removeGroupFromField,

providing the field, the group name and the persona for which should

be added. The procedure to get the list of all the groups created by

the user was shown in section B.3.2, while listing B.15 shows how to

manage a list of groups for a given field and a given persona.

Listing B.15: Groups management

1 SPFProfileManager manager = SPF.get().getProfileManager();

2 SPFPersona persona = SPFPersona.DEFAULT;

3

4 // Getting the groups of the field display name

5 Bundle groups = manager.getCirclesOf(mPersona);

6 List<String> nameGroups = groups.getStringArrayList(

7 ProfileField.DISPLAY NAME.getIdentifier());

8

9 // Adding a group

10 manager.addCircleToField(ProfileField.DISPLAY NAME,

11 ”My group”, persona);

B.6. Services 124

12

13 // Removing group

14 manager.removeCircleFromField(ProfileField.DISPLAY NAME,

15 ”My group”, persona);

B.5.4 Reading from remote profiles

In order to read profile data from a remote instance you need to ob-

tain its remote stub as shown in section B.4.2. The remote stub has

a method named getProfileBulk that behaves exaclty like its local

counterpart: it will return a ProfileFieldContainer holding the val-

ues of requested fields, given that you have the permission to access

them (see section B.3.2), otherwise the values will be null. Listing

B.16 shows you how to read the field display name and birthday from

a remote profile.

Listing B.16: Reading from a remote profile

1 ProfileField<?>[] fields = {
2 ProfileField.DISPLAY NAME,

3 ProfileField.BIRTHDAY

4 };
5

6 // instance is the stub of the remote instance

7 // appId is the ID of your app

8 ProfileFieldContainer fields = instance.getProfileBulk(fields, ”appID”);

9 String name = values.getFieldValue(ProfileField.DISPLAY NAME);

10 Date birthday = values.getFieldValue(ProfileField.BIRTHDAY);

B.6 Services

The Service API offered by SPF Framework allows you to retrieve

the list of SPFServices and SPFActivity verbs supported by installed

applications; it is also possible to set the default service to handle the

SPFActivities of a given verb. The registration of a new service directly

through the framework is not allowed.

B.6. Services 125

B.6.1 Listing the SPFServices of an application

Before you can obtain the list of services registered by an applica-

tion, you need to retrieve its packageIdentifier, as described in section

B.3.1. Then, obtain a reference to SPFServiceRegistry and invoke its

method getServicesOfApp passing as argument the packageIdentifier.

Listing B.17 shows how to retrieve the name of each service registered

by a given application.

Listing B.17: Obtaining the list of services of an app

1 SPFServiceRegistry registry = SPF.get().getSPFServiceRegistry();

2

3 // appId is the packageIdentifier of the target app

4 SPFServiceDescriptor[] services = registry.getServicesOfApp(appId);

5 for(SPFServiceDescriptor service : services){
6 Log.d(”Example”,”Service name: ” + service.getServiceName);

7 }

The details of a SPFService are encapsulated in the class SPFSer-

viceDescriptor, which offers the following getters:

• getServiceName: The name of the service;

• getDescription: A short description;

• getAppIdentifier: The identifier of the app which registered

the service;

• getVersion: The version of the service;

• getConsumedVerbs : The SPFActivity verbs supported by the

service.

B.6.2 Managing the routing of SPFActivities

The Service Registry allows you to obtain the set of verbs supported by

all installed applications and, for each verb, the SPF service currently

set as its default handler; this can be done by invoking the method

getSupportedVerbs whose return type is a collection of the class Ac-

tivityVerb, offering the following methods:

• getVerb: the verb;

B.7. Advertising and Notification 126

• getSupportingServices: the set of service supporting the verb

• getDefaultService: the service currently set as default for the

verb.

To change the default service for a verb, use the method setDe-

faultConsumerForVerb, passing in the verb and the ServiceIdenti-

fier of the new default consumer. Listing B.15 shows how to manage

the list of supported verbs.

Listing B.18: Managing the list of supported verbs label

1 SPFServiceRegistry registry = SPF.get().getSPFServiceRegistry();

2 Collection<ActivityVerb> supportedVerbs = registry.getSupportedVerbs();

3 for(ActivityVerb supportedVerb : supportedVerbs){
4 String verb = supportedVerb.getVerb();

5 Set<ServiceIdentifier> consumers = supportedVerb.getSupportingServices();

6 ServiceIdentifier def = supportedVerb.getDefaultService();

7 }
8

9 // Setting the first consumer as default

10 ActivityVerb first = supportedVerbs.get(0);

11 if(first != null && !first.getSupportingServices.isEmpty()){
12 registry.setDefaultConsumerForVerb(

13 first.getVerb(),

14 first.getSupportingServices().get(0)

15);

16 }

B.7 Advertising and Notification

The SPF Advertising API allows a SPF instance to notify nearby in-

stances of its presence by sending multicast signals, containing as pay-

load a subset of the user profile, called “advertised profile”. Using the

SPFAdvertisingManager you can check whether advertising is active,

turn it on/off, set which profile fields will be advertised and the persona

from which their values will be read.

The Notification Manager, on the other hand, allows you to define

SPFTriggers, reaction to incoming signals depending on the adver-

tised profile. A SPFTrigger is composed of two parts: a SPFQuery

that activates the trigger when a matching advertised profile is re-

B.7. Advertising and Notification 127

ceived, and a SPFAction that defines the behaviour of the SPFTrigger

once activated. Two types of actions are supported:

• Intent: SPF will send a broadcast intent locally on the device

that received the advertising.

• SendMessage: SPF will send a notification, consisting of a title

and a message, to the instance who broadcasted the advertising;

received notifications are stored by the notification manager.

B.7.1 Advertising

Using the API provided by SPFAdvertisingManager you can check

the state of advertising with isAdvertising and turn it on/off with

registerAdvertising and unregisterAdvertising respectively.

The advertised profile can be set up with addFieldToAdvertising

and removeFieldFromAdvertising to add/remove a field: both these

methods accept a ProfileField as parameter. The identifier of the

user is always included in the advertised profile.

You can set the SPFPersona used to advertise with setPersonaToAd-

vertise (section B.5.1 shows how to retrieve the list of available SPF-

Personas); if you don’t set a persona to advertise, the default one will

be used. An example of how you can set up the advertising is provided

in listing B.19. The framework can also advertise the list of installed

applications that are linked to the current advertised persona. To

manage this feature, use the method setApplicationAdvertising-

Enabled. You can check whether the framework is currently set to

advertise applications using the method isAdvertisingApplications

Listing B.19: Setting up advertisement

1 SPFAdvertisingManager manager = SPF.get().getAdvertisingManager();

2

3 // Add some profile fields to the advertised profile

4 manager.addFieldToAdvertising(ProfileField.DISPLAY NAME);

5 manager.addFieldToAdvertising(ProfileField.BIRTHDAY);

6 manager.addFieldToAdvertising(ProfileField.INTERESTS);

7

8 // Set the persona to advertise

9 // persona is the reference to the SPFPersona

10 // that should be advertised

11 manager.setPersonaToAdvertise(persona);

12

B.7. Advertising and Notification 128

13 // Start advertising

14 manager.registerAdvertising();

15

16 // From now on, SPF is avertising the profile

17 // To turn advertising off, use

18 manager.unregisterAdvertising();

When the advertising state changes, an event is dispatched by

SPFContext: the event code is SPFContext.EVENT ADVERTISING STA-

TE CHANGED, while the payload contains a boolean indicating the new

state, its key is SPFContext.EXTRA ACTIVE.

B.7.2 Triggers

Triggers are managed by the Notification Manager, whose API allows

you to list available triggers, as well as creating new ones and deleting

existing ones. To create a new Trigger, you need to create a new

instance of the SPFTrigger class. Its constructor requires the following

parameters:

• name: a simple name for the trigger;

• query: a SPFQuery that will be matched against incoming ad-

vertised profiles. See section B.4.1 on how to create a new query;

• action: a SPFAction describing the behaviour of the trigger on

incoming profiles in case the query matches. As said before, SPF

provides two implementation, SPFActionIntent, which will dis-

patch an android intent with a given action on the local device,

and SPFActionSendNotification, which will send a notification

to the instance advertising its profile.

• oneShot and sleepPeriod: these two parameters describe the

temporal behaviour of the trigger. If a triggger is oneshot it will

fire only once XXX. For a non oneshot trigger, the sleepPeriod

is the minimum interval of time between two consecutive activa-

tions.

Once a trigger object is created, you can save it in the SPFNotifi-

cationManager with the method saveTrigger which requires, besides

the trigger instance, the package name of your app. The list of triggers

B.7. Advertising and Notification 129

saved in the notification manager by a specific application can be ob-

tained with the method listTriggers; you can also delete all triggers

registered by a specific application with deleteAllTrigger, or delete

only one trigger with deleteTrigger. Listing B.20 shows how you can

manage the list of installed triggers and create new ones.

Listing B.20: Managing triggers

1 SPFNotificationManager manager = SPF.get().getNotificationManager();

2

3 // Get the list of triggered registered by the current app

4 List<SPFTrigger> triggers = manager.listTriggers(”my.app.package.name”);

5

6 // Create a new one−shot trigger

7 // that matches people named John Doe

8 // and sends them a message

9 SPFQuery query = new SPFQuery.Builder()

10 .setProfileField(ProfileField.DISPLAY NAME, ”John Doe”)

11 .build();

12 SPFAction action

13 = new SPFActionSendNotification(”Hi”, ”Hi John from my app”);

14 SPFTrigger trigger

15 = new SPFTrigger(”Greeting”, query, action, true);

16 manager.saveTrigger(trigger, ”my.app.package.name”);

17

18

19 // To remove the newly created trigger

20 manager.deleteTrigger(trigger.getId(), ”my.app.package.name”);

B.7.3 Notification

Notifications received from other SPF instances are stored in the No-

tification Manager, and can be retrieved with the method getAvail-

ableNotifications, whose return type is a collection of Notifica-

tionMessage; this class encapsulates all the details of the notification:

the id of the sender, its title and its message. A single notification can

be deleted using deleteNotification providing its ID, while you can

remove all notifications using deleteAllNotifications. Listing B.21

shows how you can manage the list of installed triggers and create new

ones.

Listing B.21: Managing notifications

B.8. Implementation of a middleware 130

1 SPFNotificationManager manager = SPF.get().getNotificationManager();

2

3 // Getting the number of notifications

4 int count = manager.getAvailableNotificationCount();

5

6 List<NotificationMessage> messages = manager.getAvailableNotifications();

7 for(NotificationMessage n : messages){
8 String senderId = n.getSenderId();

9 String title = n.getTitle();

10 String message = n.getMessage();

11 manager.deleteNotification(n.getId());

12 }
13

14 // To delete all notifications

15 manager.deleteAllNotifications();

Upon reception of a notification message, an event is dispatched by

SPFContext: the event code is SPFContext.EVENT NOTIFICATION MES-

SAGE RECEIVED, while the payload contains the received message with

key EXTRA NOTIFICATION MESSAGE.

B.8 Implementation of a middleware

A proximity middleware is a communication system that enables the

interaction between instances of SPF installed on different devices. A

proximity middleware should offer two main functionalities:

• Detecting nearby instances on the same middleware and notifying

them to the local SPF instance

• Supporting the interaction between two instances described in

previous sections.

The implementation of a proximity middleware is composed by

three interacting components:

• An implementation of the ProximityMiddleware interface, pro-

viding methods that enables SPF to control the behaviour of the

middleware and to send multicast signals to nearby instances;

• An implementation of the ProximityMiddleware.Factory inter-

face, that enables SPF to create a new instance of your middle-

ware implementation when needed.

B.8. Implementation of a middleware 131

• A concrete subclass of the SPFRemoteInstance abstract class,

providing methods to interact with a specific remote instance.

The factory class must implement the method createMiddleware,

which should return a new instance of your ProximityMiddleware.

The parameters provided you by SPF are:

• an Android context you can use in your middleware;

• an InboundProximityInterface to which you should dispatch

incoming requests from remote instances

• the identifier of your SPF instance, corresponding to the IDEN-

TIFIER profile field.

When your middleware detects a nearby instance of SPF, you should

notify the local instance using the method onRemoteInstanceFound of

the InboundProximityInterface; in the same way, you should notify

when an instance is lost using onRemoteInstanceLost. Both these

methods accept as parameter an instance of the SPFRemoteInstance

interface, providing SPF the methods it needs to interact with the

remote instances. These methods mirrors those of the InboundProx-

imityInterface, and you middleware should act as a bridge between

these endpoints: when a method of SPFRemoteInstance is invoked,

you should serialize the parameters in a format compatible with your

communication middleware, dispatch the invocation to the remote in-

stance, deserialize the parameters and invoke the corresponding method

on the InboundProximityInterface, then dispatching back the return

value in the same way.

When creating a ProximityMiddleware instance, you should im-

plement the following methods:

• connect, disconnect and isConnected are used to control the

state of the middleware.

• sendSearchSignal: dispatches a search signal to instances in

proximity.

• sendSearchResult: dispatches a search result signal to instances

in proximity.

• registerAdvertisement, unregisterAdvertisement and isAd-

vertising are used to control the state of advertisement.

List of Figures

2.1 Wi-Fi Direct P2P Group topology 10

2.2 Alljoyn distributed bus 12

2.3 AllJoyn Router topologies 13

2.4 OpenSocial Container architecture 20

2.5 SNeW architecture overview 22

3.1 Invocation of a remote service 40

3.2 Execution of a search request 42

3.3 Sequence diagram: trigger evaluation and action execution 44

3.4 Interaction between the user, applications and SPF . . 50

4.1 Runtime View . 53

4.2 Architecture View . 54

4.3 Authorization of a local application 58

4.4 Architecture of the SPF Service Registry 61

4.5 Execution of a SPF Service 63

4.6 Execution of a search process 66

4.7 Structure of SPFTrigger 68

4.8 Class diagram of the Notification package 69

4.9 Dispatch of an activity 70

4.10 Components provided by the SPF Library 73

4.11 Class diagram of the AllJoyn adapters 74

4.12 Class diagram of the Wi-Fi Direct middleware 78

5.1 Coupon delivery . 83

5.2 Response time comparison with .95 confidence level . . 91

132

List of Tables

3.1 Some of the profile fields supported by SPF 38

3.2 Some of the SPF permissions 48

5.1 Wi-Fi Direct Chat code-base size 86

5.2 Wi-Fi Direct Chat cyclomatic complexity 87

5.3 SPFChat and AllJoynChat code-base size 88

5.4 SPFChat and AllJoynChat code-base cyclomatic com-

plexity . 88

133

Listings

A.1 Loading SPF connection. 96

A.2 Declaring permissions. 97

A.3 Configuring SPFInfo. 97

A.4 Building a query . 98

A.5 Starting a search . 99

A.6 Reading from local profile. 100

A.7 Writing a profile fields 101

A.8 Reading a remote profile 101

A.9 Defining a service interface. 102

A.10 Registering a service. 103

A.11 Executing a service. 103

A.12 Trigger for logging instances. 105

A.13 BroadcastReceiver for logging instances. 105

A.14 Trigger for welcome messages. 105

A.15 Reading saved triggers. 106

A.16 Using an activity for a chat. 107

A.17 Defining a verb consumer. 108

A.18 Sending an activity. 108

B.1 Initializing the framework 111

B.2 SPFService in foreground 111

B.3 Customizing SPFService notification 112

B.4 Registering an event listener 113

B.5 Handling app registration requests 114

B.6 Managing the list of available applications 115

B.7 Sending a contact request 116

B.8 Managing contacts . 117

B.9 Managing groups . 118

B.10 Searching for John Doe 120

B.11 Obtaining the stub for a remote instance 121

134

LISTINGS 135

B.12 Adding and removing personas. 121

B.13 Reading from local profile. 122

B.14 Writing to local profile 123

B.15 Groups management 123

B.16 Reading from a remote profile 124

B.17 Obtaining the list of services of an app 125

B.18 Managing the list of supported verbs label 126

B.19 Setting up advertisement 127

B.20 Managing triggers . 129

B.21 Managing notifications 129

Bibliography

[1] WiFi-Alliance. Wi-fi peer-to-peer (p2p) technical specification

v1.2, 2010.

[2] Daniel Camps-Mur, Andres Garcia-Saavedra, and Pablo Serrano.

Device-to-device communications with wi-fi direct: overview and

experimentation. Wireless Communications, IEEE, 20(3), 2013.

[3] IEEE 802.11u. Wireless lan medium access control (mac) and

physical layer (phy) specifications: Amendment 9: Interworking

with external networks. pages 1–208, Feb 2011.

[4] Android Developers. Wi-fi peer-to-peer. URL: http:

//developer.android.com/guide/topics/connectivity/

wifip2p.html [cited Jan 2015].

[5] Allseen Alliance Inc. Alljoyn: A common language for internet of

things. URL: https://allseenalliance.org [cited Jan 2015].

[6] Intel common connectivity framework. URL: https://software.

intel.com/en-us/ccf [cited Jan 1015].

[7] Qualcomm Technologies Inc. Lte direct always-on device-to-device

proximal discovery, August 2014.

[8] Open Mobile Alliance. White paper on mobile social net-

work work item investigation. URL: http://technical.

openmobilealliance.org/document/OMA-WP-Mobile_Social_

Network-20110516-A.pdf [cited Jan 2015].

[9] Json activity streams 2.0. URL: https://tools.ietf.org/html/

draft-snell-activitystreams-09 [cited Jan 2015].

136

http://developer.android.com/guide/topics/connectivity/wifip2p.html
http://developer.android.com/guide/topics/connectivity/wifip2p.html
http://developer.android.com/guide/topics/connectivity/wifip2p.html
https://allseenalliance.org
https://software.intel.com/en-us/ccf
https://software.intel.com/en-us/ccf
http://technical.openmobilealliance.org/document/OMA-WP-Mobile_Social_Network-20110516-A.pdf
http://technical.openmobilealliance.org/document/OMA-WP-Mobile_Social_Network-20110516-A.pdf
http://technical.openmobilealliance.org/document/OMA-WP-Mobile_Social_Network-20110516-A.pdf
https://tools.ietf.org/html/draft-snell-activitystreams-09
https://tools.ietf.org/html/draft-snell-activitystreams-09

BIBLIOGRAPHY 137

[10] OpenSocial Specification 2.5.1. URL: http://opensocial.

github.io/spec/2.5.1/OpenSocial-Specification.xml [cited

Jan 2015].

[11] Matthias Häsel. Opensocial: An enabler for social applications on

the web. Commun. ACM, 54(1):139–144, January 2011.

[12] OpenSocial Social Gadget Specification 2.5.1, August 2013. URL:

http://opensocial.github.io/spec/2.5.1/Social-Gadget.

xml [cited Jan 2015].

[13] OpenSocial Social Server API Specification 2.5.1, August

2013. URL: http://opensocial.github.io/spec/2.5.1/

Social-API-Server.xml [cited Jan 2015].

[14] OpenSocial Social Data Specification 2.5.1, August 2013. URL:

http://opensocial.github.io/spec/2.5.1/Social-Data.xml

[cited Jan 2015].

[15] Open Mobile Alliance. Social Network Web Enabler, Au-

gust 2013. URL: http://technical.openmobilealliance.

org/Technical/technical-information/release-program/

current-releases/snew-v1-0 [cited Jan 2015].

[16] Ahmed Karam and Nader Mohamed. Middleware for mobile social

networks: A survey. In System Science (HICSS), 2012 45th Hawaii

International Conference on, pages 1482–1490. IEEE, 2012.

[17] Anna-Kaisa Pietiläinen, Earl Oliver, Jason LeBrun, George Vargh-

ese, and Christophe Diot. Mobiclique: middleware for mobile so-

cial networking. In Proceedings of the 2nd ACM workshop on On-

line social networks, pages 49–54. ACM, 2009.

[18] Ankur Gupta, Achir Kalra, Daniel Boston, and Cristian Borcea.

Mobisoc: a middleware for mobile social computing applications.

Mobile Networks and Applications, 14(1):35–52, 2009.

[19] Steffen Kern, Peter Braun, and Wilhelm Rossak. Mobisoft: an

agent-based middleware for social-mobile applications. In On the

Move to Meaningful Internet Systems 2006: OTM 2006 Work-

shops, pages 984–993. Springer, 2006.

http://opensocial.github.io/spec/2.5.1/OpenSocial-Specification.xml
http://opensocial.github.io/spec/2.5.1/OpenSocial-Specification.xml
http://opensocial.github.io/spec/2.5.1/Social-Gadget.xml
http://opensocial.github.io/spec/2.5.1/Social-Gadget.xml
http://opensocial.github.io/spec/2.5.1/Social-API-Server.xml
http://opensocial.github.io/spec/2.5.1/Social-API-Server.xml
http://opensocial.github.io/spec/2.5.1/Social-Data.xml
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/snew-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/snew-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/snew-v1-0

BIBLIOGRAPHY 138

[20] Dimitris N Kalofonos, Zoe Antoniou, Franklin D Reynolds, Max

Van-Kleek, Jacob Strauss, and Paul Wisner. Mynet: A platform

for secure p2p personal and social networking services. In Perva-

sive Computing and Communications, 2008. PerCom 2008. Sixth

Annual IEEE International Conference on, pages 135–146. IEEE,

2008.

[21] Dario Bottazzi, Rebecca Montanari, and Alessandra Toninelli.

Context-aware middleware for anytime, anywhere social networks.

Intelligent Systems, IEEE, 22(5):23–32, 2007.

[22] Alessandra Toninelli, Animesh Pathak, and Valérie Issarny. Yarta:

a middleware for managing mobile social ecosystems. In Advances

in Grid and Pervasive Computing, pages 209–220. Springer, 2011.

	Introduction
	State of the art
	Proximity networking technologies
	Wi-Fi Direct
	AllJoyn
	Intel CCF
	LTE Direct

	Web and social services integration
	Activity Streams
	OpenSocial
	SNeW

	Frameworks for proximity social interactions
	MobiClique
	MobiSoc
	Mobisoft
	MyNet
	Samoa
	Yarta

	Conclusions

	Social Proximity Framework
	Problem analysis
	Application Scenarios
	Requirements

	Tools for social proximity applications
	User profiling
	Services
	Search
	Advertisement
	Activities

	Infrastructure
	Management of SPF-enabled Applications
	Remote access control
	Functions of a SPF Provider

	System Architecture
	Overview
	Local Application Interface
	Middleware Interface

	Internal components
	Security
	Services
	Profile
	Search
	Advertising
	Activities

	Local Application Interface
	Middleware
	AllJoyn
	Wi-Fi Direct

	Results and evaluation
	Samples of applications
	SPFChatDemo
	SPFCouponing

	Code quality
	Performance

	Conclusions and future works
	Guide to SPF Library
	Introduction
	Overview
	SPFSearch API
	Defining a query
	Starting a search

	SPFProfile API
	Reading local profile
	Writing local profile
	Reading remote profile

	SPFService API
	Defining a service
	Registering a service
	Executing a service
	Supported data types

	SPFNotification API
	Triggers and actions
	Registering triggers

	SPFActivities
	Data structure
	Verbs routing

	Guide to SPF Framework
	Introduction
	Overview
	Initialization
	Configuring SPFService
	Listening for SPF events

	Security Monitor
	Application registry
	Person registry

	Search
	Performing a search
	Interacting with remote instances

	Profile
	Adding and removing personas
	Reading and writing on the local profile
	Assigning groups to fields
	Reading from remote profiles

	Services
	Listing the SPFServices of an application
	Managing the routing of SPFActivities

	Advertising and Notification
	Advertising
	Triggers
	Notification

	Implementation of a middleware

	List of Figures
	List of Tables
	Listings
	Bibliography

