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Abstract

The problem of optimally controlling a building equipped with energy storages is

considered and formulated in order to be naturally compatible with a predictive

control approach. The focus is restricted to thermal systems, since they are among

the most relevant and influential.

A general form to state the addressed problem is introduced and its complex-

ity (coarsely) quantified with respect to the intended applications. In particular,

a formal statement of the problem under analysis is presented, and the required

mathematical notation is established.

Our effort consists in trying to lighten the burden that is required to solve

the complex optimization problem considered. In this view, an approach, named

“Sporadic Model Predictive Control”, is presented. Thanks to this control tech-

nique, the optimization process should not be carried out at each sampling time,

but only when considered necessary. The proposed control scheme is analysed in

a view to outline its tuning.

A proof-of-concept case is addressed and solved, showing the capabilities of the

approach. A real numerical optimization system is in place and, specifically, the

application is carried on using the Modelica modelling language and the GenOpt

optimization tool. This allows to additionally demonstrate that the approach can

effectively bring engineering models into play also for control and management

purposes, thereby joining and streamlining the design and the operation phases of

a project. Finally, the use of Modelica models positions this thesis as a contribu-

tion to a long-term research that is being carried out on building energy efficiency.

The proposed approach, applied to an illustrative thermal system, has been proved

working.
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As a result, a method and a procedure are now available to use optimization

tools in conjunction with modeling and simulation environments. Therefore, the

addressed method and procedure allow the resolution of the presented optimization

problem, that, otherwise, could not have been solved in a reasonable computation

time.
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Sommario

In questa tesi si considera il problema di controllare in modo ottimale ed efficiente,

da un punto di vista energetico, un edificio dotato di accumuli di energia. In questo

studio ci si focalizza strettamente su sistemi termici, dal momento che sono tra i

più rilevanti e influenti, e il problema di controllo considerato viene formulato in

modo tale da essere compatibile con un approccio di tipo predittivo.

Si introduce una generica formalizzazione del problema in analisi e se ne quan-

tifica a grandi linee la complessità, in base alle possibili applicazioni a cui questo

si presta. In particolare, si forniscono tutte le notazioni matematiche necessarie

alla sua formulazione e utili per introdurre le possibili operazioni che il sistema

può compiere.

Il nostro intento principale consiste nel provare ad alleggerire il pesante carico

computazionale richiesto dalla risoluzione del problema di ottimizzazione consid-

erato che, in base al numero di vincoli a cui è sottoposto, può rivelarsi molto

complesso. In quest’ottica, si presenta un approccio da noi denominato “Spo-

radic Model Predictive Control”. Grazie a questa tecnica di controllo, il pro-

cesso di ottimizzazione non deve più essere risolto a ogni passo di campionamento

dell’orizzonte di predizione, ma solo quando considerato necessario. Lo schema di

controllo proposto viene quindi analizzato in modo da delinearne le sue principali

caratteristiche e la sua messa a punto.

Per validare le capacità dell’approccio proposto per la risoluzione del problema

in analisi, si definisce un esempio applicativo e lo si risolve in modo da mostrarne

il funzionamento. A questo fine viene messo a punto un sistema reale di ottimiz-

zazione numerica e, nello specifico, l’applicazione viene portata a termine usando

il linguaggio di modellazione Modelica e utilizzando GenOpt come strumento di

ottimizzazione. In questo modo si dimostra come l’approccio in esame può efficace-
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mente far entrare in gioco modelli di tipo ingegneristico anche per scopi di gestione

del controllo, unendo quindi e ottimizzando le fasi di design e di funzionamento di

un progetto. Inoltre, si sottolinea che l’utilizzo di modelli di tipo Modelica rende

questa tesi un contributo a una ricerca a lungo termine finalizzata al consegui-

mento di efficienza energetica negli edifici. L’approccio proposto, applicato a un

sistema termico esemplificativo, viene quindi validato per quanto riguarda il suo

effettivo funzionamento.

In conclusione, sono ora disponibili un metodo e una procedura che permettono

di usare strumenti di ottimizzazione calati nello scenario di ambienti di model-

lazione e simulazione. Pertanto, il metodo e la procedura considerati consentono

la risoluzione del problema di ottimizzazione presentato, il quale, altrimenti, non

sarebbe stato risolvibile in un tempo computazionale ragionevole.

12



Chapter 1

Introduction

The aim of this thesis consists in addressing a specific but very relevant problem

in the management of energy systems in buildings. In particular, we would like to

focus our attention on how to control in an optimal and computationally efficient

manner a system composed by buildings, with specific (but not exclusive) reference

to the case with energy storages.

Since the optimization problem could be very complex, also due to the presence

of constraints, in this work we specifically focus on proposing a way to lighten the

consequent computational effort. To this end, we first analize a typical optimiza-

tion problem concerning a thermal system equipped with energy storages, showing

how much such a thermal problem could be complex. Then we propose a control

strategy to be applied at our system and we formally analize it.

Now we present the structure of our work, focusing on the content of each

chapter.

• In Chapter 2 we introduce and discuss some background material concerning

the optimal management of energy storage systems in buildings and the

importance of an efficient energy use. From the proposed literature review,

three dominant research trends arise out. The first one concerns the maybe

most used control strategy for building systems (Model Predictive Control),

the second one is related to studies on demand side control and on techniques

like peak shaving, load shedding and load shifting, while the last one is

referred to an economic issue concerning dynamic energy tariffs and cost

function definitions for optimization problems. After this literary discussion,

in order to explain the purpose of this thesis, we locate our work inside the

13



14 CHAPTER 1. INTRODUCTION

context of the optimal control of energy systems.

• In Chapter 3 the problem of optimally controlling a building equipped with

energy storages is considered. A general form to state the addressed prob-

lem is introduced, and its complexity (coarsely) quantified with respect to

the intended applications. In particular, a formal statement of the problem

under analysis is presented, and the required mathematical notation is es-

tablished. Since we consider a heating problem, it is based on a thermal

model, formalized by a system of dynamic equations. Afterwards, we pro-

vide the model with convenient decision variables, in order to define some

operations on the system. The considered operations are related to storages

and loads management. They concern storage charging and discharging,

load partialization and shifting. Finally, in order to prove that the problem,

even if formulated in a general way, can be fitted in a solution framework,

we propose the problem formulation using the KKT-conditions method.

• In Chapter 4 an approach, named “Sporadic Model Predictive Control”,

is presented. This control technique is aimed at solving the complex opti-

mization problem considered, in such a way to reduce the computation time

required by the optimization process. Thanks to this approach, the opti-

mization process has not to be carried out at each sampling time, but only

when considered necessary. In order to decide when a new optimization is

required, some guidelines concerning the optimization retrigger criterion are

presented. The proposed control scheme is analysed in a view to outline its

tuning. The approach is later put to work by using a well assessed Model

Predictive Control strategy as the Optimization technique of the control

scheme proposed. The strategy used at this point was chosen simple enough

to allow for the required formal analysis, which would not be possible - and

even if possible, not so informative - with a real numeric optimiser in place.

• In Chapter 5 a proof-of-concept case is addressed and solved, showing the

capabilities of the approach. A real numerical optimization system is here

in place and, specifically, the application is carried on using the GenOpt

optimization tool. The proposed approach is applied to an illustrative ther-

mal system, in order to demonstrate its operation. Hence, we show that

the addressed method and procedure allow the resolution of the presented

optimization problem, that, otherwise, could not have been solved in a rea-

sonable computation time.
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• Chapter 6 concludes the thesis by drawing some conclusions and sketching

out future research.
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Chapter 2

Background and motivations

The initial aim of this chapter is to provide a sort of literature review about the

management of energy storage systems in buildings.

Afterward, considering the existing research trends, we would like to fill some gaps

related to aspects that have not been examined up to now. In particular, we want

to focus on the optimal control of a building equipped with energy storages.

2.1 Preliminaries

Efficient energy use, sometimes simply called energy efficiency, is the goal to re-

duce the amount of energy required to provide products and services. There are

many motivations to improve energy efficiency, since reducing energy use reduces

energy costs. This fact may result in a financial cost saving to consumers if the

energy savings offset any additional costs of implementing an energy efficient tech-

nology. Improving energy efficiency is a goal desired in a lot of sectors, like in

the appliances sector, in the building design, in industry and in the automotive

sector. In particular, energy efficiency has proved to be a cost-effective strategy

for building economies without necessarily increasing energy consumption. As a

result, the optimal control of a building for heating is relatively straightforward.

The need for control in buildings usually resides in the mechanical and elec-

trical systems that are installed to maintain a comfortable and safe indoor en-

vironment. A wide range of these systems can be found in buildings including

heating, ventilating, air-conditioning (HVAC), lighting, security, elevators, escala-

tors, fire detection and abatement. All these systems use energy and, in the case

of HVAC, energy is used to maintain temperature, humidity, and air quality at

17



18 CHAPTER 2. BACKGROUND AND MOTIVATIONS

levels in accordance with the building purpose. For this reason the building sector

is the largest energy consumer in the world. Therefore, it is economically, socially,

and environmentally significant to reduce the energy consumption of buildings.

Achieving substantial energy reduction in buildings may require rethinking the

whole processes of design, construction, and operation of a building.

In this work we will focus on the specific issue of the thermal problem aimed

at obtaining energy efficiency in buildings. Energy use and utility cost can be

reduced significantly by distributing thermal energy more efficiently and by more

closely meeting the needs of building occupants.

This thermal problem is very complex due to the overcoming of stricter re-

quirements. For example, the use of diversified energy sources involves systems

increasingly interacting. In particular, we focus on the rising role of the ther-

mal energy storages. Their optimal control results in a valuable energy efficiency

achievement. To this reason, in the following section, we are going to discuss the

importance of thermal energy storages.

2.2 The importance of energy storage

We start introducing the reader to the importance of energy storage and its control,

as strongly assessed in literature.

The development and implementation of different types of storage technologies,

each one used in a specific application field, has led to the emergence of storage as

a crucial element in the management of energy from renewable sources, allowing

energy to be released during peak hours when it is more valuable.

Thermal energy storage (TES) is considered one of the most important ad-

vanced energy technologies and increasing attention has recently been paid to the

utilization of this essential technique for thermal applications, ranging from heat-

ing to cooling, particularly in buildings. Several studies have revealed that TES

systems can be practically employeed in a wide range of industrial applications.

In this regard, they have a considerable high potential for more effective use of

thermal energy equipment and for facilitating large-scale energy substitutions from

the economic point of view. TES appears to be the only solution to correct the

mismatch between the supply and demand of energy, significantly contributing to

meet society’s needs for more efficient and environmentally benign energy use.

We can surely state that TES is a key component of any successful thermal

system in buildings and a good TES should allow minimum thermal energy losses,

leading to energy savings, while permitting the highest possible extraction effi-
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ciency of the stored thermal energy. Although TES is used in a huge variety of

applications, the benefits achieved by the systems fulfill the same purposes, as in-

creasing generation capacity (energy demand is seldom constant over time and the

excess generation available during low-demand periods can be used to charge a TES

in order to increase the effective generation capacity during high-demand periods),

shifting energy purchases to low cost periods (this is the demand-side application

of the previous purpose and allows energy consumers subject to time-of-day pric-

ing to shift energy purchases from high to low cost periods) and increasing system

reliability. It is important to highlight that the selection of a TES system depends

on a lot of critical factors as the storage period required, economic viability and

operating conditions, which in turn are influenced by several parameters.

Since substantial energy savings can be realized by TES, nowadays the devel-

opment of these systems is considered as an advanced energy technology; their use

has been attracting increasing interest in several thermal applications (active and

passive solar heating, water heating, cooling and air-conditioning) and they are

presently identified as the most economic storage technology for building heating,

cooling, and air-conditioning applications.

2.3 Background and literature review

In this section the state of the art in the context of energy optimization in building

systems is presented. Our research domain has been very flourishing and this

shows that there is a lot of interest in this issue. For example, at the time of

this writing, the scholar search with this key words “energy storage + building”

produces 105.000 hits, with “energy storage + building + optimization” produces

30.800 hits, with “energy system + control + building” produces 38.200 hits.

For the purposes of our work, three dominant research trends arise out of our

literature review. The first one is related to the Model Predictive Control (MPC),

the most used control strategy for building systems and storage management. The

second one concerns studies on demand side control and correlated techniques like

peak shaving, load shedding and load shifting. The last trend is referred to an

economic issue with respect to dynamic energy tariffs and cost function definitions

for optimization problems.

In the following paragraphs we analyze the presented trends on the basis of

papers coming from literature.
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2.3.1 Model Predictive Control

The Model Predictive Control is one of the most recent control strategy applied

to thermal systems in buildings. We underline that in the past different control

approaches were used. The control strategy was totally decentralized or, at most,

there was an integration only between local systems. As already stated, in our

work we analize the use of the MPC approach in buildings.

According to any generic process control problem, the objective of MPC is to

satisfy the output requirements in the most efficient way, hence with the least

amount of input (i.e. energy). Because energy is a cost, control in buildings, as in

most other applications, can be translated to an economic optimization problem:

the problem can be stated as the minimization of the integral of the energy usage

subject to constraints on the measured variables. To this end, the vast majority of

the considered papers focuses on the model predictive control method of thermal

energy storage in building systems. The main idea of predictive control is to use the

model of a plant to predict the future evolution of the system. At each sampling

time, starting at the current state, an open-loop optimal control problem is solved

over a finite horizon. The optimal command signal is applied to the process only

during the following sampling interval. At the next time step a new optimal

control problem, based on new measurements of the state, is solved over a shifted

horizon. Applications of MPC have become increasingly prevalent due to their

ability to handle the multivariable/nonlinear nature of the dynamics, constraints

and optimality in an integrated fashion.

In paper [14], to minimize energy consumption while satisfying the unknown

but bounded cooling demand of a campus building and operational constraints,

a Model Predictive Control (MPC) for the chillers operation is designed in order

to optimally store the thermal energy in a tank by using predictive knowledge of

building loads and weather conditions. The goal of finding the optimal control

sequence that satisfies the required cooling load and minimizes electricity usage

is achieved by solving the following optimization problem: the optimization cost

function J is given by the minimum of the energy consumption price over the

considered prediction horizon (24hours with a control sampling time of 1 hour).

The minimization problem is solved with respect to the control variables of the

model and the simulation results shown are very promising: the daily electricity

bill can be significantly reduced of 24.5%, compared to the current heuristic manual

control sequence.

Also the simulation results in paper [17] show how MPC control method is a

way to reduce energy costs in buildings. The economic objective function designed
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is intented to minimize the total electricity expense, seen as a combination of

energy and demand costs; this function is subject to the dynamic model constraints

and the temperature comfort constraints, in order to achieve the comfort level of

the building. This optimization procedure is repeated and a new program is solved

in subsequent time steps, when new measurement data are available.

In paper [16], in order to compare the different tariff schemes and investigate

the need for an additional storage device, the optimal building response is com-

puted by applying MPC. As in the previous works, the optimal control input to

the building is computed by solving an MPC problem that minimizes the cost of

electricity consumption.

The approach utilized in [4] is to apply dynamic optimization techniques to

computer simulations of buildings and their associated cooling systems for a range

of conditions in order to determine the maximum possible savings. In this paper

two different optimization problems are proposed. The first one is applied to the

system model and it is used to determine the minimum operating costs, assuming

that future ambient conditions and internal gain inputs are known. The true

optimal performance results provided a basis for identifying the potential savings

as compared with conventional control strategies. The optimal control of the

considered cooling system, that takes advantage of the thermal capacitance of

the building, involves minimizing an integral of operating costs over a day while

satisfying required constraints; the optimal solution is a trajectory of controls

throughout the specified optimization period. The other optimization problem

proposed tries to minimize the peak electrical demand over a day and so the

minimized cost function is the maximum total building electrical use for the day.

Results of this study show that, using optimal control, both energy costs and peak

electrical use can be significantly reduced through proper control of the intrinsic

thermal storage within building structures.

In paper [15] is highlighted as MPC is a control methodology that can nat-

urally and systematically be used to improve building thermal comfort, decrease

peak demand and reduce total energy costs. A simple example of a single thermal

mass model is considered and a MPC problem is formulated with the objective

of minimizing total heating and cooling energy consumption, minimizing the peak

power consumption and maintaining the building zones within a desired temper-

ature range despite predicted load changes. In this paper the Model Predictive

controller obtained is compared to a proportional controller designed to reject the

load without predictive information and it inputs zero power when the space tem-

perature is within the comfort range, otherwise it uses a proportional control law.
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Comparing model predictive and proportional control, it emerges that the two

controllers use the same energy for the same amount of constraint violation and

increased comfort violation corresponds to a lower energy use for both controllers.

In closed-loop simulation it comes to light that the peak power consumption is

reduced by 89% relative to the proportional controller when the MPC is used.

This behavior is obtained by taking advantage of the predictive knowledge of the

disturbance and using the space thermal storage.

Also paper [9] strongly deals with storage management using MPC control and,

in particular, taking into account the use of active and passive energy storages.

An active thermal storage is a system that requires an additional fluid loop to

charge and discharge the storage tank or to deliver cooling to the existing chilled

water loop. Instead, a passive thermal storage, like a building thermal capaci-

tance, requires no additional heat exchange fluid in addition to the conditioned air

stream. The main idea of this work is to evaluate the merits of combined optimal

control of both passive building thermal capacitance and active thermal energy

storage systems to minimize an objective function of choice including total energy

consumption, energy cost, occupant discomfort or a combination of these. In par-

ticular, a consecutive time block optimization (CTBO) is employed and it means

that the predictive optimal controller carries out an optimization over a predefined

planning horizon and the complete generated optimal strategy is executed. Then

an other proposed option is to use a closed-loop optimization (CLO), in which the

predictive optimal controller carries out an optimization over a predefined planning

horizon and only the first action of the generated optimal strategy is executed; at

the next time step the process is repeated. In the case of perfect forecasts, both

CLO and CTBO will produce identical results, while, when the future is subject

to uncertainty, CLO should exhibit superior performance. In paper [9] it is as-

sumed a perfect prediction and so CTBO is used. It is highlighted that there is a

casual relationship from the passive to the active storage, which requires to solve

firstly the passive storage and then the optimization of the active thermal stor-

age inventory on the basis of the previous outcomes. The final results show that

the combined use of active and passive thermal storages under optimal control

allows significant operating cost savings (18%) and electrical demand reduction.

The obtained results are much better than the promising savings potentials when

building operation has been optimized in buildings without storage.



2.3. BACKGROUND AND LITERATURE REVIEW 23

2.3.2 Demand Side Control and correlated techniques

Demand side management is the modification of consumer demand for energy

through various methods such as financial incentives. The goal of demand side

management is to encourage the consumer to use less energy during peak hours or

to move the time of energy use to off-peak times. The related technique, called load

shifting, consists of shaping the energy profile delivered to a building, exploiting

the possibility of storing energy for later use. Peak demand management does not

necessarily decrease total energy consumption, but could be expected to reduce

the need for investments in networks or power plants for meeting peak demands.

An example, on which we will focus in our thesis, is the use of energy storage units

to store energy during off-peak hours and discharge them during peak hours.

In this respect, the authors of paper [17] focus on the fact that in the United

States about 70% of electricity is consumed in commercial and residential buildings

and, to make it worse, the peak demands of building cooling or heating usually

occur around the same time period during the day. This situation make the elec-

tricity consumption at the peak time, known as demand, extremely high relative

to the average consumption level; the high peak demand dictates that the power

generation capacity has to be at least equal to the peak demand, or a blackout

would occur. If the peak demand can be reduced by properly making use of stor-

age capacity or managing the consumption pattern to be more friendly to the

power generation, the efficiency of existing power plants is improved. Therefore,

there is great interest to reduce the peak demand by shifting part of the peak

load away from the peak time, implementing storage systems, such as using the

building thermal capacity, while always keeping thermal comfort as the ultimate

goal. In conclusion, it is stated that a desirable demand response control strategy

should accomplish the following objectives simultaneously: optimize the trade-off

between the energy consumption and demand cost by taking advantage of the

time of use price difference, make use of the building thermal storage to store and

release cooling dynamically and handle real-time and predicted changes of load

disturbances, weather and price changes.

Also in the investigation of paper [16], shifting thermal loads like heating and

cooling in buildings is used in building control for shaping demand profiles, using

additional information in the form of dynamic electricity tariffs, if possible. As first

approach, the thermal capacity of a building alone is used for shifting electricity

demand; then an electric storage, in addition to the building’s thermal capacity, is

considered for the same purpose. As result, it is assessed that increasing thermal

or electric storage capacities markedly improves the building controller’s demand
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shifting capabilities and hence adds to the reduction of electricity demand during

peak load hours.

In paper [4] shifting cooling loads from daytime to nighttime is seen as an

oppurtunity to reduce peak electrical demands, take advantage of low nighttime

electrical rates, offset mechanical cooling with free cooling at night and enhance

equipment operation at more favorable part-load conditions. It is shown as the use

of a building’s thermal storage for load shifting can significantly reduce operational

costs, even though the total zone loads may increase.

Also in paper [15] load shifting, as well active storage mechanism, is seen as a

technique that allows strong performance improvement, using forecasted informa-

tion, if available.

2.3.3 Economic issues

This trend of research takes into account a fundamental aspect related to energy,

that is its integration with economic issues related to energy costs and tariffs.

As highlighted in paper [14], the development of highly efficient heating and

cooling systems is necessary to reduce the building energy consumption and this

goal is really important from both an environmental and an economical point of

view. The enhanced efficiency for a wide range of innovative heating and cooling

systems depends on the active storage of thermal energy, the theme we will later

analyze in our work. As further proof of the fact that the economic issue should

be strongly considered in all optimization problems concerning energy, the cost

function J used in paper [14] is given by the minimum of the energy consumption

price over the considered prediction horizon.

Also in paper [17] it is stated that, since energy is a cost, control in buildings

can be translated to an economic optimization problem which results in the mini-

mization of the integral of the energy cost subject to constraints on the measured

variables. It is highlighted how, employing control logic at a high enough level,

even an economic signal, like energy price, is measurable and this is an important

improvement over the current state of the art: the proposed control strategies in-

corporate economic optimization as well as setpoint regulation. It is stated that a

desirable demand response control strategy should necessarily accomplish the ob-

jective of optimizing the trade-off between the energy consumption and demand

cost by taking advantage of the time of use price difference. To this end, as al-

ready mentioned before, the economic objective function designed in paper [17] is

intented to minimize the total electricity expense, seen as a combination of energy

and demand costs; this function is subject to the dynamic model constraint and
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the temperature comfort constraint, in order to achieve the comfort level of the

building.

In paper [16] the results from a proof-of-concept study combining modern

building automation systems (BAS) with dynamic electricity tariffs are presented,

proposing the use of a BAS that optimizes, in a fully automated fashion, the elec-

tricity demand of a retail end-consumer, while managing a local battery unit and

respecting all comfort constraints on room temperature, illuminance and indoor

air quality. In this investigation it is clearly shown how additional information in

the form of dynamic electricity tariffs, a strong economic incentive, can be used

in building control for shaping demand profiles of retail end-consumer groups,

which consists in shifting thermal loads like heating and cooling in buildings. The

optimal building response is computed by applying Model Predictive Control, in

order not only to investigate the need for an additional storage device, but also

to compare the different tariff schemes considered; of course, the MPC problem

minimizes a function based on the cost of electricity consumption. In conclu-

sion, the authors highlight as the presented study shows that building automation

systems can effectively be combined with dynamic electricity tariffs for reducing

peak electricity demands; the result is an electric load demand profile that behaves

price-responsive within the given operation framework, which is set by constraints,

like room temperature bounds and others.

2.4 Conclusion and Motivations

Some common aspects clearly come to light from the few samples presented above

from a vast literature. We notice that the focus on the control strategies has

moved toward demand side control, causing a decentralization of the building con-

trol system. In the given scenario the energy storage is mainly seen as a subsystem

provided with its own control, it means there is a hierarchical intregration with

the Building Management System (BMS). The strong predominance of studies

concerning MPC problems has been carried out at a building control level (BMS),

while there is not much emphasis on the lower levels of the control system. In

particular, we notice a somehow reduced investigation effort concerning model pre-

dictive optimization aimed at the local control of storage components in buildings.

As final consideration, we highlight there is not a particular attention to possible

revolutionary technological changes in terms of materials and components.

Given the presented scenario, we can now introduce the aspects in which we

want to concentrate our efforts and studies. The aim of this work consists in
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trying to cover some visible lacks of the actual researches in the application of

energy storage systems in buildings. According to the literature review and the

relative gaps which could need to be filled, we would like to focus our attention

on a possible strategy to optimally structure and control an energy storage in a

building in a coordinated manner with respect to the overall management problem.

The importance of this study is due to the fact that a wrong sizing of the stor-

age or its unsuitable control could lead to serious energy problems as substantial

thermal losses, peak demands that can either not be fulfilled but with the necessity

of accessing “precious” energy sources, and consequently high costs.

Since the optimization problem could be very complex, and is surely made

more complex by storage, in this work we specifically focus on proposing a way

to lighten the computational effort of this problem. To this end we shall proceed

as follows. First we analize a typical optimization problem concerning a thermal

system equipped with energy storages. This discussion is mainly aimed at showing

how much such a thermal problem could be very complex. Then we propose a

control strategy to be applied at our system and we formally analize it in the

assumption of a Linear Time Invariant system. In this way an MPC strategy can

be applied.



Chapter 3

Problem statement and first

analysis

In this chapter, a general and formal statement of the problem under analysis is

presented, and the required mathematical notation is established.

The problem is formulated in order to be naturally compatible with a predic-

tive control approach. Focus is here restricted to thermal systems because they

are the most relevant and influential systems in a building. In comparison with

electric loads, the thermal ones are more significant: by optimizing the trend of the

building thermal components, the most of the optimization problem concerning

the energy system is solved. Furthermore, during their service life, thermal energy

storages are less subject to intrinsic variability than electric ones. Due to the pre-

vious motivations, and in order to keep the study complexity at a level compatible

with the scope of the thesis, hereafter we only deal with thermal energy systems.

3.1 System

We consider a system characterised by one or more buildings and composed by a

set of users, loads, energy storages, and external energy sources. To give the reader

an idea about the possible kinds of sources related to our problem, we mention gas

energy, electric energy, solar energy, and thermal energy transferred by a fluid. In

this work energy storages and their control play a key role, since they enhance the

system by providing the possibility of operations that, once defined and properly

managed, enhance the flexibility of the loads management. The possibilities offered

by a thermal storage will be discussed in the following sections, to highlight what

27
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a storage makes possible and what is not achievable without its presence.

In order to simplify the notation, we introduce some hypothesis, that can be

easily relaxed, without jeopardising the generality of our problem.

These are our hypothesis:

- we consider a heating problem, so we are interested in thermal energy. Deal-

ing with a heating problem, all powers involved have positive values; we

highlight as the same problem could be easily transformed in a cooling one

just by changing the powers sign;

- we consider one storage for each user;

- each user has only one HVAC (Heating Ventilating Air Conditioning) com-

ponent. In particular, we consider a heater.

3.1.1 Thermal Model

This problem is based on an energetic model. Since we consider a heating problem,

the model is a thermal one and can be represented by the scheme in Figure 3.1.

This scheme shows the possible power flows between the three detected subsys-

tems and coming from the external enviroment. Due to the fact that we deal with

a thermal model, each subsystem is characterized by its temperature and each

quantity has a thermal connotation.

Ta: ambient temperature

Th: HVAC component temperature

Ts: storage temperature

Pd: disturbance power (e.g. loads, room occupancy)

Pe: external power (e.g. solar radiation)

Te: external temperature

Pha: power from the HVAC component to the ambient

Plas
: loaded power from the ambient to the storage

Plhs
: loaded power from the HVAC component to the storage

Pusa
: unloaded power from the storage to the ambient

Push
: unloaded power from the storage to the HVAC component

Ps: power supplied to the storage from external energy sources

Ph: power supplied to the HVAC component from external energy sources
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Figure 3.1: Thermal Model.

The state vector of the system can be represented as follows:

x =


T
Ts


 =




Ta

Th

Ts


 , T =


Ta
Th




The thermal model to be used for the optimization problem can be formalized

by the following system of dynamic equations. Each equation clearly shows the

relationships between the system states and the other variables.





Ṫa = fa(Ta, Pha, Pe, Pd, Te, Plas , Pusa)

Ṫh = fh(Th, Ph, Pha, Plhs
, Push

)

Ṫs = fs(Ts, Ps, Plas , Pusa , Plhs
, Push

)

where the detailed aspect of functions fa, fh and fs depends basically on the



30 CHAPTER 3. PROBLEM STATEMENT AND FIRST ANALYSIS

chosen heat transfer correlations, which are highly inessential for the purpose of

this chapter.

3.1.2 Storage State of Charge

A generic model for the energy storage is given as the following equation:

Cs(i)SOC(i, k + 1) = αCs(i)SOC(i, k) + ηlPl(i, j, k)− ηuPu(i, k) (3.1)

where:

SOC(i, k) ∈ [0, 1]: State of Charge of the storage used by the i-th user at the

k-th stage

Cs(i): the i-th user’s storage capacity

Pl(i, j, k): loaded power to the storage, equal to the sum of Plas
and Plhs

Pu(i, k): unloaded power from the storage, equal to the sum of Pusa
and Push

α: coefficient referred to the storage internal losses

ηl: storage charging efficiency

ηu: storage discharging efficiency

The storage model allows to highlight the State of Charge, a variable that plays a

fundamental role in all the decisions concerning the storage use and control. The

coefficients appearing in this equation make the model more detailed. However,

since they increase the complexity of the problem, for the purpose of the study here

presented, they can be set to a fixed value without modifing the problem structure.

For example, we could consider an ideal case where α = 0 and ηl = ηu = 1.

3.2 Problem Structure

This section can be considered the heart of the chapter: we present the problem

statement to the reader. The formulation of this problem naturally induces to a

predictive control approach over a finite prediction horizon.

3.2.1 Cost Function

The cost function proposed in our problem, in a view to maintain a sufficient level

of generality, is an economic objective function. It mainly depends on the trend of

energy price and on the power consumption over the considered prediction horizon.
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J =

NL∑

h=1

NU∑

i=1

NS∑

j=1

N∑

k=1

c(i, j, k)P (h, i, j, k) (3.2)

where:

NL: number of loads

NU : number of users

NS : number of energy sources

N : prediction horizon

c(i, j, k): energy price for the i-th user of the j-th source at the k-th stage

P (h, i, j, k): power consumption of the h-th load of the i-th user from j-th source

at the k-th stage. It is equal to the sum of Ps and Ph

If we assume there are not different energy contract for each user, the previous

cost function formulation is simplified considering the same energy price for all the

users: c(j, k).

Furthermore, if we want to focus our attention on the peak electrical demand

over the entire prediction horizon, a possible extension of the presented cost func-

tion can be proposed as:

J =

NL∑

h=1

NU∑

i=1

NS∑

j=1

N∑

k=1

c(i, j, k, P (h, i, j, k))P (h, i, j, k) (3.3)

In this case the energy price directly depends on the amount of power consumption.

Many other variations could be thought of, apparently, but this would stray from

the scope of this work.

3.2.2 Control Inputs

The control inputs are the decision variables for the optimization problem. The

optimal trend of these unconstrained variables, coming from the optimization, will

be later used by the control action.

• Pl(i, j, k)

• Pu(i, k)

• Pha
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3.2.3 Problem Statement

The most general optimization problem that we consider in this thesis can be

stated as follows:

min
Pl,Pu,Pha

J s.t. (3.4)

Tamin
(i, k) ≤ Ta(i, k) ≤ Tamax

(i, k)

Pmin(i, j, k) ≤
NL∑

h=1

P (h, i, j, k) ≤ Pmax(i, j, k)

Thmin
(i, k) ≤ Th(i, k) ≤ Thmax

(i, k)

The first constraint is due to comfort requirements, as it keeps the ambient tem-

perature within a certain accetable range, according to the limits established by

standards like the ANSI/ASHRAE Standard 55 [1]. Similar constraints could be

introduced e.g. for humidity or some of the numerous comfort indices in the liter-

ature, but the matter would be conceptually the same. The other two constraints

are related to physical issues: one limits the power required to each source, the

other keeps the heater temperature within a feasible range as per its design and

admissible operating conditions.

In this work a single prediction horizon is considered, however the presented

optimization problem could be solved over several prediction horizons, in order

to identify the best achievable result. Over the selected prediction horizon, time

granularity is an essential ingredient to be carefully defined. During each step, all

variables are supposed to be constant and the step choice strongly influences the

possible operations realizable on the system.

3.3 Operations

In this section further decision variables will be added to our problem, in order

to define some operations on the system. The introduction of these additional

variables let the corresponding operations be part of the problem, without alter-

ing its structure. Later on, these decision variables will let us formulate further

constraints related to these operations and connected to the way the control can

act on the system. In other words, the considered operations can be seen as nego-

tiable contraints since can be viewed as prescribing of forbidding the system to do

something (at some time). It will be shown how the introduction of these decision

variables is useful to present the problem to the optimizer, since they stand for

possible actions to be applied to the system.
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Figure 3.2: Storage Charging and Discharging.

3.3.1 Storage Charging and Discharging

The most important operations related to the storage use are the charging and the

discharging ones. In Figure 3.2 the charging and discharging modes are clearly

outlined.

We formalize these operations by listing the following conditions related to the

charging and discharging modes:

SOCmin(i, k) ≤ SOC(i, k) ≤ SOCmax(i, k)

The values of SOCmin and SOCmax can be modified according to how much we

want to let the storage charge or discharge; for example, we could set SOCmin = 0

and SOCmax = 1 to allow a complete storage discharging and charging.

SOC(i, k) = SOCmin(i, k)⇒ Pu(i, k) = 0

SOC(i, k) = SOCmax(i, k)⇒ Pl(i, j, k) = 0

These conditions state that the system can not unload the storage if its SOC is

at the minimum value and, on the contrary, the storage can not be further loaded

if it is already charged at its maximum level.

Pu(i, k)Pl(i, j, k) = 0
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This constraint avoids the simultaneous charging and discharging of the storage.

Plas
(i, k)(Ta(i, k)− Ts(i, k)) ≥ 0

Plhs
(i, k)(Th(i, k)− Ts(i, k)) ≥ 0

Pusa(i, k)(Ts(i, k)− Ta(i, k)) ≥ 0

Push
(i, k)(Ts(i, k)− Th(i, k)) ≥ 0

In these last four conditions, since we consider a thermal problem, the energy state

of the storage is represented by a difference of temperatures. These constraints

determine the feasible thermal power flows during the charging and discharging

operations.

3.3.2 Load Partialization and Load Shifting

In this problem load demands could be distinguished between those that must be

fulfilled at a fixed time and those that, on the contrary, could be shifted in time

and positioned in the most suitable way for the purpose of optmization.

To this end, we assume all load demands known at the beginning of the opti-

mization period, except for the time scheduling of the shiftable ones. Demands

appearing during the prediction horizon are considered unforeseen disturbance for

the current optimization horizon, and taken into account in the subsequent one.

As shown in Figure 3.3, there are some loads, not involved in the decision block,

that directly affect the thermal model; while, other disturbance powers are related

to loads that can be shifted in time or partialised through the use of convenient

decision variables. The decision block is used to optimize a cost function that just

relies on the disturbance powers of the fixed loads.

Pd

DEC

Thermal
Model

P̃d

Figure 3.3: Load Partialization and Load Shifting.
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Load Partialization

We introduce γ(k) ∈ [0, 1] as the decision variable related to the parzialization

operation: to each negotiable load corresponds one of these variables. If γ(k) < 1

the considered disturbance power has been partialized by the optimizer in the pre-

diction horizon. We assume that the residual power demanded by a partialized

load will not be supplied in the corresponding optimization horizon, unless a fur-

ther demand occurs. The following equation clearly catches the load partialization

operation just discussed.

P̃d(h, i, j, k) = γ(k)Pd(h, i, j, k)

Load Shifting

Dealing with the shifting operation, the total power demanded by the negotiable

load, even if shifted in time, must be guaranteed. To this end, the following

equation must be satisfied:

N∑

k=1

P̃d(h, i, j, k) =

N∑

k=1

Pd(h, i, j, k)

We consider q as the decision variable that allows the optimizer to shift in time

the loads demanded by a disturbance power. Each negotiable load is associated to

a q variable that can assume values in the range [0, N −D], where D is the shifted

load duration. We assume that any shiftable load can not be fractioned and so it

must be shifted in time in its entirety. The operating principle of this operation

can be clearly shown by the following equation:

P̃d(h, i, j, k) = Pd(h, i, j, k − q)

3.4 KKT-conditions

Given the general optimization problem above and considering the various method-

ologies for its solution, we propose the problem formulation using the KKT-

conditions method. In this way it will be shown as a standard methodology, like

the KKT one, can be easily applied to our problem. It is so proved to the reader

that the problem, even if formulated in a general way as stated before, can be

fitted in a solution framework. Also, expressing the problem in one of the possible

forms that are suitable for its symbolic (if possible) or numerical solution, allows
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to immediately envisage how complex and computationally heavy that solution

can be, paving the way to the approach proposed in Chapter 4 and put to work

in the subsequent one.

According to the first step of KKT-method, the real function to be minimised

is written in the form:

f =

NL∑

h=1

NU∑

i=1

NS∑

j=1

N∑

k=1

c(i, j, k)P (h, i, j, k) (3.5)

Hereafter we state the problem constraints, following the KKT-condition pro-

cedure. These equality and inequality constraints can be classified in three main

groups, according to their origin and role in the optimization problem. The first

one is made up of physical constraints. The second one is related to the solution

feasibility: these constraints limit the set of admissible solutions to those that do

not violate them. The last group concerns control constraints principally related

to comfort issues.

Rearranging for convenience by constraint type instead of origin, we get:

• Equality constraints :

g1 : Pu(i, k)Pl(i, j, k) = 0

g2 : P̃d(h, i, j, k)− γ(k)Pd(h, i, j, k) = 0

g3 : P̃d(h, i, j, k)− Pd(h, i, j, k − q) = 0

g4 : Cs(i)SOC(i, k + 1)− αCs(i)SOC(i, k)− ηlPl(i, j, k) + ηuPu(i, k) = 0

• Inequality constraints :

h1 : Plas(i, k) ≥ 0

h2 : Plas,max(i, k)− Plas(i, k) ≥ 0

h3 : Plhs
(i, k) ≥ 0

h4 : Plhs,max
(i, k)− Plhs

(i, k) ≥ 0

h5 : P (h, i, j, k) ≥ 0

h6 : Pusa(i, k) ≥ 0

h7 : Pusa,max(i, k)− Pusa(i, k) ≥ 0

h8 : Push
(i, k) ≥ 0

h9 : Push,max
(i, k)− Push

(i, k) ≥ 0
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h10 : Ta(i, k)− Tamin
(i, k) ≥ 0

h11 : Tamax(i, k)− Ta(i, k) ≥ 0

h12 :
∑NL

k=1 P (h, i, j, k)− Pmin(i, j, k) ≥ 0

h13 : Pmax(i, j, k)−∑NL

k=1 P (h, i, j, k) ≥ 0

h14 : Th(i, k)− Thmin
(i, k) ≥ 0

h15 : Thmax
(i, k)− Th(i, k) ≥ 0

h16 : SOC(i, k)− SOCmin(i, k) ≥ 0

h17 : SOCmax(i, k)− SOC(i, k) ≥ 0

h18 : Plas
(i, k)(Ta(i, k)− Ts(i, k)) ≥ 0

h19 : Plhs
(i, k)(Th(i, k)− Ts(i, k)) ≥ 0

h20 : Pusa
(i, k)(Ts(i, k)− Ta(i, k)) ≥ 0

h21 : Push
(i, k)(Ts(i, k)− Th(i, k)) ≥ 0

According to the previous classification, we now briefly discuss the real meaning

of the constraints listed above.

First of all, we can look at the equality contraints group. The first one g1 is an

admissibility constraint, that do not allow to load and unload at the same time

the storage. The second and third ones g2, g3 are related to the partialization and

shifting operations, that we have already discussed in section 3.3.2. The last one

g4 is a physical constraint involving the balance of the storage SOC.

Now we concentrate on the inequality constraints group. The constraints h1, h3,

h5, h6, h8 are physical contraints that set the corresponding powers to positive

values. Also h2, h4, h7, h9 are physical constraints, but they limit the maximum

feasible value for the corresponding powers. In the matter of control constraints we

have h10, h11, that are related to comfort requirements of the ambient temperature.

Subsequently there are physical constraints h12, h13, that limit power consumption

in a fixed range. Also h14, h15 are physical constraints that limit the heater

temperature in a fixed range. In order to keep the state of charge of the storage in

a range, we introduce h16, h17, that are considered as physical constraints. Finally,

the physical constraints h18, h19 and h20, h21 are related to the storage charging

and discharging operation, based on the second law of thermodynamics.
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3.5 Conclusions

Based on the considerations reported so far, it can be quite straightforwardly con-

cluded that the problem illustrated in this chapter is very complex, since it is

stated - consistently with the addressed economic cost function - for a compound

system and not only for a particular subsystem.

Moreover, we highlight the idea of introducing decision variables to represent op-

erations that can be applied on the system. In particular, these variables are

associated to a large number of constraints, in order to guide the optimization

process. The optimal solution of the problem does not omit any kind of possible

energy transfer between the components of the system.

Furthermore, expressing our problem through the KKT equations, it is clear

how it can be formally stated and that it can be represented at a deep level of

detail, appropriate to the solution we want to get. However, it is also easy to

see that we are dealing with a very complex problem of dynamic optimization

and, even by expressing it through a different approach from the KKT one, used

here to highlight the mentioned complexity, its solution results very hard from a

computational point of view.

Taking into account this important aspect, in the next chapter our effort will

consist in trying to lighten the burden that will be required to solve this opti-

mization problem. In this view, we will present a way to avoid the computation

of the optimization problem under analysis at each sampling time of the predic-

tion horizon. In this way the optimization will be done only if strictly necessary

and, obviously, the computational effort required by the resolution of this complex

problem, could be strongly reduced.



Chapter 4

Sporadic Model Predictive

Control

The main idea of this chapter is to present a peculiar application of the Model

Predictive Control technique, the most used control strategy for building systems

and storage management, in order to solve a complex optimization problem, as

the one analyzed in the previous chapter.

We name our strategy Sporadic Model Predictive Control, since our aim is

that the optimization process should not be carried out at each sampling time,

but only when this is considered necessary, in the sense we are going to expose.

In this way, the computational time required by the optimization process could

be strongly reduced. To this end, our proposal is to proceed through a batch

MPC that is able to compute a vector of future control signals and outputs over a

finite predictive horizon length through the resolution of a complex optimization

problem. The vector of optimal command signals and outputs is applied to a

feedback loop where a regulator is ready to act in the way that will be explained

afterwards. Finally, we are going to discuss about the choice of the moment when

a new optimization process is needed.

4.1 The proposed Approach

In this analysis we consider a control system able to compute a vector of future

control signals and outputs over an assigned horizon length through the resolution

of a complex optimization problem, that could clearly be the one presented in

the previous chapter. We want to underline as this computation can be done

39
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not only by every Model Predictive Control system, but also by a generic optimal

control system and even by a simple model reference controller, that does not have

any kind of predictive connotation (although the interest of our approach clearly

emerges in the presence of a computationally heavy optimization).

The important assumption to be considered, as shown in the previous chapter,

is that this computation may indeed be really heavy, independently of the way we

choose to do it.

The traditional Model Predictive Control consists in using the model of a plant

to predict the future evolution of the system. At each sampling time, starting at

the current state, an open-loop optimal control problem is solved over a finite

horizon. The optimal command signal is applied to the process only during the

following sampling interval. At the next time step a new optimal control problem,

based on new measurements of the state, is solved over a shifted horizon.

Considering a system in nominal conditions and without unpredicted distur-

bances, our purpose is instead to apply the vector of optimal command signals not

only for the following time step, but for the entire prediction horizon. In this way

it is clear that we can strongly reduce the computation time required by the MPC

optimization. In our study we therefore consider the scheme in Figure 4.1.

In this scheme an optimization technique is used to calculate the vectors uopt

and ŷ, over a horizon of length Nopt. The former vector contains the optimal

values for future controls, the latter holds the corresponding trajectory of the

controlled variable. The element named H, since it can be viewed as a generalized

holder, has the role of acquiring the Nopt future controls and predicted outputs

and applying them in sequence, one at each control step, to the feedback loop

below. The controller Rd of this loop receives the forecast (optimal) controlled

variable as set point, and the optimal control signal as additive bias, summed to

its output uR to produce the control u applied to the process.

One can immediately notice that the role played by the regulator Rd is totally

irrelevant if the process under control is in nominal conditions and there are no

unforeseen disturbances, as in this case uopt causes the controlled system to output

ŷ, thus uR is zero. In the opposite case, Rd will conversely exert some action, with

the twofold role of counteracting the possible variations of the model nominal

conditions, and the presence of disturbances. In these cases the regulator effort

consists in forcing the output to follow in the best possible way the predicted

output coming from the optimization block; this prediction is the best we could

get with respect to the set point signal w. The regulator action, when nominal

conditions are lost and disturbances are not too “strong”, in a sense to be qualified,
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Figure 4.1: Introductory scheme for the proposed approach.

should prevent the optimization block from the recomputation of the optimization

problem at each step of the control horizon. Anyway, if the control signal uR

results too strong or the output y deviates too much from its reference ŷ, we

should consider the possibility to carry out the optimization again, in order to

obtain the new vectors of future controls and outputs.

As shown in Figure 4.1 by the decision block named “OPT trigger”, the

behavior of uR and y is supervised at each sampling time in order to decide when

a new optimization is needed. If a new optimization is required, a retrigger signal

alerts the optimization block, as shown by the dotted arrow.

In the light of what we have shown up to this point, our purpose in this

chapter, without considering the optimization problem itself and assuming the

model predictive controller as given, is to reduce the number of the necessary

optimization computations. In other words, and worth stressing for clarity, here

we are not concerned with the synthesis of the MPC, which therefore we take as

given. Our focus is conversely on the use of that MPC in the scheme of Figure 4.1,

for the reasons discussed so far. Hence, in order to apply the proposed approach,
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we need to analyze and discuss:

• the structure of regulator Rd, its role in the system, and how to tune it;

• how the scheme can decide when a new optimization should be done before

all the lastly computed Nopt controls are applied.

We underline that also the prediction horizon has an important role in this

study, since a new optimization is obviously required at its end. Anyway, we do

not concentrate on it, assuming that it has been already determined with some

literature technique when setting up the MPC.

4.1.1 Analysis of the proposed approach

In the light of the problem overview shown before, we now propose a possible

application of our idea, considering the scheme in Figure 4.1. In order to analyze

the control scheme, the Optimization block will be represented by a predictive

control structure. The predictive controller calculates the future control signals

and outputs over the settled prediction horizon. These signals feed the Holder

block H, whose fundamental role is to give them one by one, at each sampling

time, to the control scheme below. If the optimization has to be redone before the

end of the prediction horizon, it discards the residual signals and it is ready to

receive the new optimal ones.

We now study the scheme using for OPT a very simple predictive controller, so

that a formal analysis is straightforward. The same would not be true, apparently,

with a complex enough OPT to evidence the advantages of our approach. We

however conjecture that if the scheme works with the expected computational

advantages with a simple OPT (where it can be assessed), the same will happen

with a complex one.

Coming back to the main topic, assumed a Linear Time-Invariant System in

the Optimization block and solved the optimization problem, the result of the op-

timal predictive control can be described as a LTI system and so the optimization

block can be examined through the scheme in Figure 4.2. In this way the predic-

tions coming from a predictive controller, like for example a Generalized Minimum

Variance one, can be expressed as inputs of the transfer functions represented by

Rw and Ry. In particular, if the process is in nominal conditions and no distur-

bances occur, we can better rearrange the scheme as shown in Figure 4.3.
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Figure 4.2: The MPC expressed as two transfer functions (in the LTI case).
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Figure 4.3: Obtaining the inputs for H from the MPC.

The expression of the optimal control signals and the optimal predicted outputs

is:

Uopt =
Rw

(1−RyP̂ )
W

Ŷ = P̂Uopt

We underline how these signals can be expressed in function of Rw and Ry, inde-

pendently of the transfer functions nature and structure.
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On the basis of these formulations, we propose an analysis of the feedback

scheme, starting by the computation of the output y and the control signal uR.

Y =
RdP

(1 +RdP )
Ŷ +

P

(1 +RdP )
Uopt +

1

(1 +RdP )
D =

=
RdP

(1 +RdP )

RwP̂

(1−RyP̂ )
W +

P

(1 +RdP )

Rw

(1−RyP̂ )
W +

1

(1 +RdP )
D =

=
PRw(1 +RdP̂ )

(1 +RdP )(1−RyP̂ )
W +

1

(1 +RdP )
D

UR =
Rd

(1 +RdP )
Ŷ − RdP

(1 +RdP )
Uopt −

Rd
(1 +RdP )

D =

=
Rd

(1 +RdP )

RwP̂

(1−RyP̂ )
W − RdP

(1 +RdP )

Rw

(1−RyP̂ )
W − Rd

(1 +RdP )
D =

=
RdRw(P̂ − P )

(1 +RdP )(1−RyP̂ )
W − Rd

(1 +RdP )
D

The key factor of this problem formulation is that it does not rely on the kind

of predictive controller used for the optimization process. The only requirement

is that the chosen predictive technique can be described as a LTI system fed by a

setpoint and providing future controls and outputs, as illustrated in Figure 4.3.

From the expressions of y and uR we can analyze the behavior of the system,

focusing on some particularly relevant cases of study. First of all, we consider the

process in nominal conditions, i.e., P = P̂ :

Y =
P̂Rw

1−RyP̂
W +

1

1 +RdP̂
D =

= Ŷ +
1

(1 +RdP̂ )
D

︸ ︷︷ ︸
∆Y

UR =
RdRw(P̂ − P̂ )

(1 +RdP̂ )(1−RyP̂ )
W − Rd

(1 +RdP̂ )
D =

= − Rd

(1 +RdP̂ )
D

︸ ︷︷ ︸
∆UR

If no disturbances occur, it is clearly visible that the output perfectly follows

the optimal prediction and the control signal uR is zero, since no action of the

feedback regulator is required, as stressed above. Otherwise, in the presence of

a disturbance, the feedback action tries to reject it as showed by the term ∆UR,



4.1. THE PROPOSED APPROACH 45

while ∆Y shows a deviation of the output from the predicted one. The deviation

terms ∆UR and ∆Y can be calculated as functions of the chosen regulator Rd,

which is the only unknown element if we assume as known the nominal process P̂

and some characterisation (e.g. as a class of signals) of the disturbance d.

As further analysis, we underline that the structure of Rd can be related to

some requirements on the system response to a specified d, so that everything

comes to depend on them. For example, if we have a step disturbance and we

want to reject it in ν steps, we set Rd in order to obtain a zero ∆Y in ν steps and

so the only unknown parameter results ν itself.

In conclusion, if the system is in nominal conditions and if the predictive tech-

nique applied can be described through the transfer functions Rw and Ry, assum-

ing a certain disturbance d acting on the system, given some requirements on its

rejection by means of Rd, the trends of ∆UR and ∆Y are perfectly known, since

we can compute their Z-Transforms.

Now we release the hypothesis of being in nominal conditions as for the process,

i.e., we assume P 6= P̂ but still that no disturbances occur.

Y =
PRw(1 +RdP̂ )

(1 +RdP )(1−RyP̂ )
W

∆Y = Y − Ŷ =

=
PRw(1 +RdP̂ )

(1 +RdP )(1−RyP̂ )
W − RwP̂

(1−RyP̂ )
W =

=
PRw(1 +RdP̂ )− P̂Rw(1 +RdP )

(1 +RdP )(1 +RyP̂ )
W

UR =
RdRw(P̂ − P )

(1 +RdP )(1−RyP̂ )
W =

= ∆UR

In order to further analyse the previous formulation, we consider two standard

cases of the possible process variations with respect to its nominal state.

Considering an additive variation P = P̂ + ∆P we obtain:



46 CHAPTER 4. SPORADIC MODEL PREDICTIVE CONTROL

∆Y =
(P̂ + ∆P )Rw(1 +RdP̂ )− P̂Rw(1 +Rd(P̂ + ∆P ))

(1 +Rd(P̂ + ∆P ))(1−RyP̂ )
W =

=
P̂Rw + ∆PRw + P̂ 2RdRw + ∆PRwRdP̂ − P̂Rw − P̂ 2RwRd − P̂RwRd∆P

(1 +Rd(P̂ + ∆P ))(1−RyP̂ )
W =

=
∆PRw

(1 +Rd(P̂ + ∆P ))(1−RyP̂ )
W

∆UR =
RdRw(P̂ − P̂ −∆P )

(1 +Rd(P̂ + ∆P ))(1−RyP̂ )
W =

= − ∆PRdRw

(1 +Rd(P̂ + ∆P ))(1−RyP̂ )
W

Otherwise we can look at a multiplicative deviation P = P̂ (1 + ∆P ):

∆Y =
P̂ (1 + ∆P )Rw(1 +RdP̂ )− P̂Rw(1 +RdP̂ (1 + ∆P ))

(1 +RdP̂ (1 + ∆P ))(1−RyP̂ )
W =

=
P̂Rw + P̂∆PRw + P̂ 2RwRd + P̂ 2∆PRwRd − P̂Rw − P̂ 2RwRd − P̂ 2∆PRwRd

(1 +RdP̂ (1 + ∆P ))(1−RyP̂ )
W =

=
P̂∆PRw

(1 +RdP̂ (1 + ∆P ))(1−RyP̂ )
W

∆UR =
RdRw(P̂ − P̂ (1 + ∆P ))

(1 +RdP̂ (1 + ∆P ))(1−RyP̂ )
W =

=
RdRwP̂ −RdRwP̂ −RdRwP̂∆P

(1 +RdP̂ (1 + ∆P ))(1−RyP̂ )
W =

= − RdRwP̂∆P

(1 +RdP̂ (1 + ∆P ))(1−RyP̂ )
W

Analysing the obtained deviations of the output, i.e., ∆Y , and of the control signal

uR, i.e., ∆UR, we observe that, both in case of an additive and a multiplicative

process variation, the loop transfer functions are the terms RdP̂ and RyP̂ . In par-

ticular, the bigger is their modulus, the more the deviation terms are attenuated.

In other words, the deviation terms are strongly influenced by the structure of the

regulators Rd and Ry. In this regard, we highlight that Rd is the real regulator

of the final system provided with the real numerical optimizer, while Ry does not

really exist in the system since its role (that of producing uopt and ŷ) is in fact

played by the optimiser itself. For this reason the regulator Rd can be directly

tuned according to the behavior of the output of the system, while the tuning of
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Ry actually consists of specifying the optimisation problem and its solution policy

and thus requires further investigations. In particular, one can intuitively state

that the tuning of Ry has surely a correlation with the terms appearing in the op-

timization cost function. Hence, for example, the desired control action of Ry can

be get by conveniently balancing the control error penalization in the optimazion

cost function. However, there is here no doubt on the necessity and convenience

of an analysis that extends far beyond the scope of this work.

4.1.2 Regulator Synthesis

In this part we focus on the design of the feedback regulator Rd, and we outline a

synthesis method suitable for its role in the presented scheme. We first recall that

its action is mainly required for two reasons:

- to reject an unpredicted disturbance that occurs in the system under control;

- to constrast possible variations of the nominal process.

We underline that Rd should not be involved in the setpoint tracking, since

this is a task of the optimal control signal uopt coming from the MPC. In this

regard, we first consider a direct synthesis completely focused on the rejection

of a disturbance acting on the output signals. Therefore our aim is to minimize

the transfer function between the disturbance d and the output y, the so called

Sensitivity function S(z). In this way we reject the disturbance by imposing S(z)

equal to an opportune reference transfer function So(z). So, given the process

model, we find the regulator such that Y (z)
D(z) ' So(z).

We consider a process P (z) asymptotically stable, having a relative degree

νP > 0, and we define:

P (z) =
PN (z)

PD(z)
Rd(z) =

RN (z)

RD(z)
So(z) =

SoN (z)

SoD(z)
(4.1)

where PN (z), PD(z), RN (z), RD(z), SoN (z), SoD(z) are polynomials.

The transfer function S(z) has the following form:

S(z) =
1

1 +Rd(z)P (z)
=

RD(z)PD(z)

RN (z)PN (z) +RD(z)PD(z)

Imposing S(z) = So(z) we obtain the structure of Rd, as follows.

Rd(z) =
1

P (z)

(1− So(z))
So(z)

=
PD(z)

PN (z)

(SoD(z)− SoN (z))

SoN (z)
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Hence, in order to obtain a feasible regulator, we should consider the following

guidelines:

• the degree of SoD(z) (#SoD) should be the same of SoN (z) (#SoN ) otherwise

the relative degree of the term 1−So(z)
So(z) results negative and the regulator not

feasible, since the degree of 1
P (z) is surely negative;

• given νP and #SoD = #SoN , in the polynomial SoD(z) − SoN (z) the terms

having degree #SoN ,#S
o
N − 1, . . . ,#SoN − νP + 1 should be null.

In the following simulation results, the regulator considered is designed in the

way illustrated above.

However, in this section we want to show the usefulness of a second guideline

aimed at the regulator design. This is focused on the process variations with

respect to the nominal conditions. The main idea is to lighten the optimization

process not only by doing it sporadically, but also by reducing the complexity of

the model under control. In this regard, we suppose to have at our disposal models

of different complexity to do the optimization. Clearly, the simpler the model, the

lighter the optimization process, typically because there are less parameters and

some nonlinearities may not be considered. Since, reducing the order of the model,

we obviously release the hypothesis of being in nominal conditions, the regulator

Rd in such a situation will surely be required to act. Thus, the way the regulator

is tuned is aimed at deciding things like how many non nominalities it should hide

to the outer control layers through its action. If the regulator does not hide some

non nominalities, a new optimization process is required.

In order to give some guidelines for the regulator tuning, we need to examine

its control action in presence of a non nominality. Hence, we are going to analyze

how a process variation is reflected in a variation of the loop dynamic, depending

on the regulator structure. The most significant analyses are shown below.

We consider a system not affected by any disturbance, in order to focus only on

the process variations. In particular, we consider two possible kind of variations,

the additive and the multiplicative one.

1. Multiplicative process variation P = P̂ (1 + ∆P ).

- We consider the effect of a normalized process variation ∆P
P on the

normalized control action ∆U
U , where ∆U = U − Unom:

∆U

U
= −P RdP̂

1 +RdP̂

∆P

P
= −PF̂ ∆P

P
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Analysing the induced normalized perturbation of U , i.e., ∆U
U , we ob-

serve that it is given by the product of the normalized process variation,

the nominal Complementary Sensitivity function F̂ and the real process

P . P is the only non nominal contribution, however it is just a matter

of scale. The typical shape of the frequency response magnitude of the

Complementary Sensitivity function allows to state that the process

variations are filtered at high frequency, while at low frequency they

directly influence the control action. Hence, the action of the regulator

Rd depends on the frequency band related to the process variation.

- We consider the effect of a normalized process variation ∆P
P on the

normalized output signal ∆Y
Y , where ∆Y = Y − Ŷ :

∆Y

Y
= P̂

1

1 +RdP̂

∆P

P
= P̂ Ŝ

∆P

P

Analysing the induced normalized perturbation of Y , i.e., ∆Y
Y , we ob-

serve that it is given by the product of the normalized process vari-

ation, the nominal Sensitivity function Ŝ and the nominal process P̂ .

The typical shape of the frequency response magnitude of the Sensitiv-

ity function allows to state that low-frequency variations of the process

are hidden to the output for the filtering action of Ŝ, while the high-

frequency ones directly affect the normalized output index.

2. Additive process variation P = P̂ + ∆P .

- We consider the effect of a normalized process variation ∆P
P on the

normalized control action ∆U
U , where ∆U = U − Unom:

∆U

U
= −P Rd

1 +RdP̂

∆P

P
= −PQ̂ ∆P

P

Analysing the induced normalized perturbation of U , we observe that it

is given by the product of the normalized process variation, the nominal

Sensitivity function of the control Q̂ and the real process P . Since Q̂

represents the regulator at high frequency, this result is really useful if

we are interested in high-frequency response of the control action to a

process variation and if we use Q̂ to design the regulator.

- We consider the effect of a normalized process variation ∆P
P on the

normalized output signal ∆Y
Y :

∆Y

Y
=

1

1 +RdP̂

∆P

P
= Ŝ

∆P

P
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Analysing the induced normalized perturbation of Y , we observe that

it is given by the product of the normalized process variation and the

nominal Sensitivity function Ŝ. According to the typical shape of the

frequency response magnitude of the Sensitivity function, this allows to

state that low-frequency variations of the process are hidden to the out-

put for the filtering action of Ŝ, while the high-frequency ones directly

affect the normalized output index.

Based on these analyses, the synthesis of the regulator, following the second

approach, strongly influences the frequency response of our system through the

shaping of the Sensitivity functions. Hence, the Sensitivity functions should be

properly shaped by the regulator tuning.

On this point, we suggest a matter for a future reflection. We could think

to integrate the frequency shaping of the frequency responses analyzed before

into the model order reduction technique applied to the system. In particular,

this integration should be done before giving the reduced model to the MPC

optimizer. In this way, we could try to find the model order reduction technique

that is specifically aimed at the best functioning of our system. Even if this final

remark will no longer be discussed in our work, it can be of interest if we want

to reduce the model order to immediately lighten the computational effort of the

MPC optimizer.

4.1.3 Retrigger Criterion

Now, given the presented scenario, we present some guidelines concerning the

optimization retrigger criterion.

The retrigger consists in forcing the MPC to do a new optimization process in

order to calculate the new Nopt controls and outputs. The most general idea is

to evaluate in real-time a certain index to verify whether or not it exceeds a fixed

threshold. In this way we can monitor the behavior of the system in order to take

a decision about the need to do a new optimization process. The choice of the

threshold plays a fundamental role in this decision, because it influences the time

steps after which the optimization should be retaken.

Since our aim is to reduce the computation time of the optimization process, we

focus our attention on indices not too complex to calculate. For example, the index

could concern the deviation of the output y from its reference ŷ or the amount

of the control signal uR coming from the feedback regulator. Then, if the chosen

index exceeds the settled threshold, it is necessary to consider other aspects before
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retaking the optimization problem. For example, we can compare the value of the

cost function with the optimal one and, obviously, if it gets worse, the optimization

problem has to be redone. Alternatively, we could evaluate if some constraints risk

to be violated, or if the control signal gets too close to certain limits. From the

computational point of view, the calcutation of any possible indices should be far

easier than the computation of the optimization process. For example, considering

the process cost function as index, it is obvious that its computation is much lighter

than its minimization.

In our analysis the retrigger criterion to decide when a new optimization process

is needed consists in the two steps listed below. For the following discussion, we

need to preliminary define J(k) and Jopt(k), for which we mean, respectively, the

value of the cost function J and the value of the optimization cost function Jopt

computed at each time interval. The steps mentioned before are:

1. evaluation of the regulator control energy through a convenient index. If the

regulator action results too strong with respect to a fixed threshold, a new

optimization process should be probably considered.

2. evaluation of the behavior over time of the cost function J(k) in comparison

with the optimal one Jopt(k). If J(k) is getting worse than Jopt(k), a new

optimization should be done.

As already discussed, another interesting retrigger index could be referred to

the behaviour of the output y. In this case we should monitor the deviation of y

from its reference ŷ. This means that we are disposed to use more control action

in order to obtain a perfect behavior of y with respect to its reference. Otherwise,

monitoring the behavior of uR, as done in our work, we are more interested in

saving as much control energy as possible.

Retrigger Indices

In order to evaluate the regulator control energy, we use an integral index calcu-

tated as follows:

ΦuR
(k) =

√√√√
k∑

i=0

u2
R(i) k ∈ [0, Nopt] (4.2)

Imposing a threshold to the value of this index, we determine when to consider

the possibility of retaking the optimization. This threshold is chosen in accordance

with the features desired for the system. Of course, stricter is the threshold, bigger

is the number of times in which a new optimization is needed.
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To further analyze this topic, we propose to evaluate, through the Final-Value

Theorem, the response of the control variable uR to the disturbance d. We examine

two cases concerning two different kind of disturbance, the step and the impulse.

We suppose to have an asymptotically stable process P and a regulator Rd in the

form (1−k)+kz
z−1 , where k is an arbitrary constant.

1. we consider a step disturbance with area ρ.

lim
t→∞

uR(t) = lim
z→1

(z − 1)G(z)D(z) =

lim
z→1

(z − 1)

(
− Rd

1 +RdP

)(
ρ

z

z − 1

)
=

lim
z→1

(
− (1− k) + kz

z − 1 + (1− k + kz)P

)
ρz = − ρ

P

The response of the single control action uR to a step disturbance is constant.

Hence, the integral index considered above diverges. It follows that a new

optimization is surely needed, independently of the set threshold, if assuming

a very large prediction horizon Nopt.

2. we consider an impulse disturbance with area µ.

lim
t→∞

uR(t) = lim
z→1

(z − 1)G(z)D(z) =

lim
z→1

(z − 1)

(
− Rd

1 +RdP

)
µ =

lim
z→1

(z − 1)

(
− (1− k) + kz

z − 1 + (1− k + kz)P

)
µ = 0

The response of the single control action uR to an impulse disturbance is null.

This means that the proposed index does not diverge and so the decision

about retaking the optimization depends only on the chosen threshold.

After considering this integral index, we look at the cost function J(k). In

accordance to its behavior, we take the final decision about the need of a retrigger.

Applying an MPC strategy, we can compute the optimization cost function Jopt(k)

at each time step, in order to evaluate its behavior as compared to the one of

J(k). It is important to explain the meaning of J(k). Thinking of the result of the

optimization, the optimizer has found the optimal values of all the future controls

as for the minimization of the cost function J . Now if we apply those controls one

by one and compute the formula for J , only up to the current instant, we obtain

the behavior of J(k). If everything goes as the optimization expected, that signals

will reach the final optimal value at the end of the horizon Nopt. However, if we
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observe deviations of J(k) as a signal during the application of the control, we can

infer that something is not going in the same way the optimizer expected.

To evaluate the behavior of J(k) with respect to Jopt(k), we consider the following

normalized index.

Jnorm(k) =
J(k)

J(k) + Jopt(k)
(4.3)

A new optimization is needed if J(k) is getting worse than Jopt(k), on the basis

of desired achievements.

4.2 An application with the GMV controller

In this section we put our approach to work (under the simplificative hypotheses

outlined at the beginning of section 4.1.1 to motivate the analysis of this chapter)

by using a well assessed MPC technique in the Optimization block of the control

scheme proposed in Figure 4.1. In this way, we get the scheme proposed in Figure

4.4. This scheme is valid in between two executions of OPT . In particular, we use

the Generalized Minimum Variance control because, allowing a direct penalization

of the control in the optimization process, it seems to be the most suitable choice

in an energy-related scenario.

The GMV controller minimises a generalised minimum variance cost function

which includes the control variables, allowing to improve the stability of the closed-

loop control system by penalising large control actions. The GMV control focuses

on how to design a dynamic time-invariant controller that acts in feedback. This

controller is aimed at the minimization of the following quantity:

J = E[(P (z)y(t+ k) +Q(z)u(t)− yo(t))2] (4.4)

The terms P (z) and Q(z) play a key role in this cost function. They weigh the

output and the control action, allowing to constrain the considered control prob-

lem.

There are two main strategies used in the project of a GMV controller. It is

possible to design a Model Reference Control, settling Q(z) = 0 and leaving P (z)

arbitrary. Alternatively, a Penalized Control strategy can be adopted just setting

P (z) = 1, leaving Q(z) arbitrary. In our analisys we will consider this second

approach, since it allows us to directly penalize the control action, a fundamental

issue in an energy-related optimization problem.

We underline as the GMV control system can perfectly suit the rearranged

scheme proposed in Figure 4.2, because the optimal control variables and the
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predicted outputs supplied can be expressed as fuctions of the only setpoint signal.

In particular, the transfer functions Rw and Ry directly depend on the weights

P (z) and Q(z). Therefore all the formulations and considerations stated before in

the analisys of the proposed approach still hold good.

4.2.1 Example

We consider an ARMAX model in the form (4.5):

A(z)y(t) = B(z)u(t− k) + C(z)e(t) e(t) ∼WN(0, σ2) (4.5)

As said before, we apply to the process a GMV control in order to obtain the

optimal control vector uopt and the forecast outputs ŷ of the system. Using the

Penalized Control strategy, we set P (z) = 1 and Q(z) = λ (1−z−1)
1−λz−1 . The feedback

control scheme is fed by ŷ and uopt and, in particular, the control variables coming

from the GMV optimization process bias the ones computed by the regulator Rd.

A crucial point, in the implementation of the overall system, is the design of the

regulator Rd, whose details will be exposed in the following part.

w
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uopt

uR u

d

+
+

+
+

+

−

Rd

y
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z−kB(z)
1

A(z)

C(z)

e

+

+

Figure 4.4: The scheme of Figure 4.1 specialized to the GMV+ARMAX case (the

H block can be thought of as part of the GMV one).

Simulation Results - Sporadic GMV

At this point, to further analyze the proposed example, we show the main results

obtained through simulations.
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In the simulations we assume that the white noise variance is almost negligi-

ble, as in this context it just represents measurement noise. We first consider an

LTI asympotically stable system with a reference set point in the form of a ramp

followed by a step signal and affected by a step disturbance on the output. The

feedback regulator has been designed, following the guidelines shown before, in

order to reject this disturbance in two steps. As already highlighted, the control

action of the feedback regulator uR is not necessary if no disturbance occurs; the

overall control action of the scheme, u, is the one coming from the GMV controller

uopt, as shown in Figure 4.5.
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Figure 4.5: Control actions uR, uopt and u if no disturbance occurs in the system.
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In Figure 4.6 we illustrate the trend of the output y with respect to the set

point ŷ, the prediction coming from the GMV optimization.
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Figure 4.6: Output y and its set point ŷ if a step disturbance occurs in the system.

The result shows how the trend of the output perfectly follows the predicted

one, except for a peak related to the disturbance incoming. As designed, the

regulator rejects the undesired disturbance in about two steps.
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The control action uR is depicted in Figure 4.7 and it is clearly visible that its

work is directly aimed at the disturbance rejection.
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Figure 4.7: Control actions uR, uopt and u if a step disturbance occurs in the

system.

In order to better compare the trend of the outputs and of the control signals

in a nominal case with the ones simulated in presence of the disturbance, we show

the Figure 4.8.
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Figure 4.8: Comparison of the feedback control action uR and the output y in the

cases of the system with and without disturbance.

In nominal case the trend of the output perfectly follows the set point and

uR is nearly zero. Otherwise, if a disturbance occurs, the strong swinging control

action lets the output y follow its reference by rejecting the disturbance in two

steps.

In order to further examine the proposed example, now we consider the same

system affected by an impulse disturbance and with a simple step set point. We

have verified that all the previous considerations hold also in this case, except for

those about the disturbance rejection time. The regulator rejects the disturbance

in three steps causing a double peak in the output trend, as shown in Figure 4.9.
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Figure 4.9: Output y and its set point ŷ if an impulse disturbance occurs.

As for the control action uR, its behaviour is depicted in Figure 4.10 and we

can notice that, after the swing due to the disturbance incoming, uR tends to zero

as supposed.
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Figure 4.10: Control actions uR, uopt and u if an impulse disturbance occurs.
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Retrigger Indices

In this part we show the simulations concerning the index for the retrigger.

Figure 4.11 shows the integral index ΦuR
(k) (see Equation (4.2)) obtained in

the case of the system affected by a step disturbance d.
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Figure 4.11: ΦuR
(k) if a step disturbance occurs in the system.

We notice that it diverges, increasing more and more, as expected from the

considerations already discussed.

In Figure 4.12 it is illustrated the comparison between the cost functions J(k)

and Jopt(k), while in Figure 4.13 we can look at the normalized index Jnorm(k)

(see Equation (4.3)).
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Figure 4.12: Cost functions J(k) and Jopt(k) if a step disturbance occurs in the

system.
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Figure 4.13: Jnorm(k) if a step disturbance occurs in the system.
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These figures are fundamental to decide when a new optimization is needed.

As we can see, when the disturbance occurs at the fiftieth time step, J(k) increases

faster than Jopt(k) and then it keeps above Jopt(k) until the end of the prediction

horizon Nopt. Looking at Figure 4.13, this consideration is proved by the fact that

Jnorm(k) strongly outdistances the value 0.5, that represents a perfect equality of

J(k) and Jopt(k).

Now we consider the system affected by an impulse disturbance d. In Figure

4.14 we present the integral index ΦuR
(k) and we can notice that it strongly

increases when the disturbance occurs, but after a few time steps it goes to a

constant value, as expected.
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Figure 4.14: ΦuR
(k) if an impulse disturbance occurs in the system.
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Looking at Figures 4.15 and 4.16, we notice the difference between the two cost

functions, which increases from the moment of the disturbance incoming.
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Figure 4.15: Cost functions J(k) and Jopt(k) if an impulse disturbance occurs in

the system.
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Figure 4.16: Jnorm(k) if an impulse disturbance occurs in the system.
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Simulation Results with Retrigger - Sporadic GMV

In this part we show the simulation results obtained when a retrigger is needed in

our system. As already discussed, the retrigger consists in a new optimization pro-

cess that supplies new optimal control signals and outputs over the finite horizon

Nopt.

In this example, we suppose that the system under control is affected by two

step disturbances, at time t=50 and at time t=180. The control variable uR has

to reject them and so the integral index related to the control energy will surely

increase. As already discussed in the previous sections, we need to set a threshold

on the integral index ΦuR
(k) and on the normalized cost function Jnorm(k), in

order to evaluate whether or not a retrigger is needed.
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Figure 4.17: Output behavior when two retriggers are needed.

In the example used for the simulations, two retriggers are needed, as showed

by the arrows in Figures 4.17 and 4.18. For the first one we consider a threshold for

ΦuR
(k) equal to 3 and for Jnorm(k) equal to 0.55. When the threshold concerning

the control energy is exceeded, at time t=51, also the value of Jnorm(k) exceeds its

threshold. This means that a new optimization is needed. According to the same

criterion, a second retrigger is necessary at time t=182, since a new disturbance

has appeared in our system at time t=180. For the second retrigger we change

the threshold value for ΦuR
(k) by setting it equal to 20. In Figure 4.17 we can see

the system output and we can clearly notice the two peaks related to the presence

of the two step disturbances. The overall output of the system traverses three
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phases in time, denoted as y, y1, y2 and distinguished with different colours and

line styles. The first one, y, is the system output before the first retrigger time,

while y1 and y2 are the outputs obtained after the first and the second retrigger,

respectively. In Figure 4.17 is also shown the output predicted by the optimization

process. Since this one represents the feedback for the closed-loop system, we can

state that the output signals perfectly follows their reference, except for some

oscillations due to the disturbances occurance.

The control signals u and uR are shown in Figure 4.18.
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Figure 4.18: Control actions when two retriggers are needed.
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In the upper and lower part of Figure 4.18 we can see, respectively, the three

phases in time of the overall control variables u (u, u1, u2) and uR (uR, uR1, uR2),

the one coming from the feedback regulator Rd. These phases are distinguished

with different colours and line styles. The control signals u and uR are the ones

before the first retrigger time at t=51; u1 and uR1, u2 and uR2 are the control

variables required after the first and the second retrigger, respectively. We can

notice how the control action is strongly required when the two disturbances occur;

this is the reason why the two simulated retriggers are needed.

Simulation Results - Classic GMV

To quantify the control quality degradation incurred in by adopting our technique,

we now compare the previous results to those obtained by using the MPC in the

classical receding horizon setting (i.e., generalising for the purpose of this work,

performing the optimization at every control step). To this end, we propose a

comparison between the simulation result obtained applying our Sporadic GMV

techinque and the one obtained applying a classic GMV technique. In the latter

case, at each sampling time the control variable uopt applied to the system is the

first one of the control vector computed by the optimizer. This means that the

optimization is done at each sampling time of the control horizon Nopt.

We focus our attention on the output y. Its behavior is analyzed with respect

to its reference ŷ. In Figure 4.19 we can see the output obtained when a retrigger is

needed. According to the Sporadic GMV procedure, two optimizations are needed:

the first one at the beginning of the control horizon, the second one in order to

reject the disturbance occurred. The deviation of y from its reference ŷ is visible

only when the disturbances occur.

Now we compare this behavior of y to the one depicted in Figure 4.20, obtained

when a classic GMV procedure is applied to the system. In this second case Nopt

optimizations have been done. We want to highlight as the deviation of y from its

reference is around the same depicted in the other figure, except for the decreasing

pick related to the first disturbance. We can conclude that the computation time

spent for taking the all Nopt optimizations is not worth. Hence, the simulation

result obtained when the sporadic GMV is applied can be surely accepted.
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Figure 4.19: Output behavior when a retrigger is needed.
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Figure 4.20: Output behavior applying a classical GMV procedure.
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Chapter 5

Application

In this chapter we present an application of the approach proposed in Chapter 4, in

which the simplified setting with standard LTI predictive controllers is abandoned,

and a real numerical optimization system is in place. Specifically, the application

is carried on using the GenOpt optimization tool. The addressed problem falls in

the category defined by the general statement illustrated in Chapter 3, although

for a better interpretability a quite simple situation is considered, as this allows

to illustrate the required concepts and thus correctly serves the purpose of this

chapter in the overall organisation of the thesis.

5.1 GenOpt

In order to solve the optimization problem discussed in Chapter 3, we have chosen

to use the optimization program GenOpt.

Nowadays, the use of system simulation for analyzing complex engineering

problems is increasing. Usually, a lot of time is spent on specifying the problem

for a computer simulation. Once this has been done, the analyst seldom can

afford the time to optimize the design. One reason for this is the lengthy process

of varying the input data, running lots of simulations and comparing the various

results. However, in recent years, tools have become available to do automatic

optimization using search techniques that require little effort and time. Another

reason for the difficulty just mentioned, is that systems are often so complex

that determining the optimal design parameters is not feasible without using an

optimization algorithm. Optimization tools like GenOpt are being developed to

overcome these difficulties.

69
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From now on, for apparent reasons, we refrain from discussing optimization in

general, and we focus on the adopted tool.

Since one of the main application fields of GenOpt is the optimization of cost

functions that are evaluated by building simulation programs, it considers the

special characteristics of simulation problems in this area.

GenOpt is an optimization program for the minimization of a cost function that

is evaluated by an external simulation program, such as EnergyPlus, TRNSYS,

Dymola, IDA-ICE or DOE-2. It has been developed for optimization problems

where the cost function is computationally expensive and its derivatives are not

available or may not even exist. GenOpt can be coupled to any simulation pro-

gram that reads its input from text files and writes its output to text files. The

independent variables can be continuous (possibly with lower and upper bounds),

discrete, or both. Constraints on dependent variables can be implemented using

penalty or barrier functions.

GenOpt is written in Java, hence it is platform independent. The platform

independence and the general interface make GenOpt applicable to a wide range

of optimization problems.

GenOpt has a library with local and global one and multi-dimensional op-

timization algorithms, as well as algorithms for doing parametric runs. By us-

ing GenOpt’s algorithm interface, new optimization algorithms can be added to

GenOpt’s algorithm library without knowing the details of the program structure.

Hence, the user can select an appropriate optimization algorithm from a library or

implement a custom algorithm without having to recompile and understand the

whole optimization environment. This contributes in making GenOpt a widely

applicable program.

To perform the optimization, GenOpt automatically writes the input files for

the simulation program. The generated input files are based on input template

files, which are written for the simulation program in use. GenOpt then starts

the simulation program, checks for possible simulation errors, reads the value of

the function being minimized from the simulation result file and then determines

the new set of input parameters for the next run. The whole process is repeated

iteratively until a minimum of the function is found. During the optimization,

GenOpt’s graphical user interface displays intermediate results.

The optimization algorithm we chose for in our example is the Discrete Armijo

Gradient one. It is a gradient line search algorithm for multi-dimensional optimiza-

tion and it can be used to solve a problem where the cost function is continuously

differentiable. This algorithm approximates gradients by finite differences and
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uses the Armijo line search algorithm. It can be used for problems where the cost

function is evaluated by computer code that defines a continuously differentiable

function, but for which obtaining analytical expressions for the gradients is im-

practical or impossible. For all these reasons, this algorithm is well suited for the

problem according to the features of our model, which in the general case could

be of much larger size, but quite invariantly could be formulated so as to make it

devoid of discontinuites. These discontinuites could in fact mostly derive from the

dynamic equations concerning the thermal balance of the system and, tipically,

they are related to On/Off systems. If the used solver can efficiently handle stiff

systems, a viable solution is to smooth out these discontinuites by introducing

“fast”” state variables.

Hence, summarising the main features of GenOpt, we clearly get the reasons

why we have chosen it:

- it is very flexible since it is suitable for different simulation programs; in this

work we use Dymola;

- it is suited to different kind of problems since it offers a lot of optimization

algorithms and does not require any particular characteristic on the problem,

such as convexity;

- it is an open program and so it allows for a better dissemination of the

obtained results and their possible improvement.

The joint use of GenOpt and Dymola programs allows to use the models coming

from the engineering for control purposes. This means that, even if in this work

we have chosen a simple model, also a complex model of a building, like the ones

coming from engineering, could have easily been considered.

5.2 Problem Characterization

In this section we state the problem taken into account for this application. This

problem contains a subset of the components and features defined in Chapter 3.

In the problem setting we consider one user provided with one energy storage and

one heater, since we focus on a heating problem.

This problem is represented by a thermal model, shown by the scheme in Figure

5.1.
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Figure 5.1: Thermal Model considered for this application.

Ta: ambient temperature

Th: HVAC component temperature

Ts: storage temperature

Pd: disturbance power (e.g. loads, room occupancy)

Pe: external power (e.g. solar radiation)

Te: external temperature

Pha: power from the HVAC component to the ambient

Ps: power supplied to the storage from external energy sources

Ph: power supplied to the HVAC component from external energy sources

Pluas
: loaded or unloaded power between the ambient and the storage

Pluhs
: loaded or unloaded power between the HVAC component and the storage

We further specify the meaning of the loaded and unloaded powers. If Pluas

and Pluhs
are positive, they represent the loaded power from the ambient to the

storage and from the heater to the storage. On the contrary, if they are negative,

they are the unloaded power from the storage to the ambient and to the heater,
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respectively.

Now that the problem has been illustrated from a graphical point of view, we

further analyse it by using a mathematical notation. The thermal model used for

the optimization problem can be formalized by the following system of dynamic

equations. Each equation clearly shows the relationships between the system states

and the other variables:





Ṫa = fa(Ta, Pha, Pe, Pd, Te, Pluas)

Ṫh = fh(Th, Ph, Pha, Pluhs
)

Ṫs = fs(Ts, Ps, Pluas , Pluhs
)

where the detailed aspect of functions fa, fh and fs depends basically on the

chosen heat transfer correlations, which are highly inessential for the purpose of

this chapter.

Since this model is used for an optimization problem, as discussed in Chapter

3, we present the cost function that has to be minimized. The cost function is set

up in order to weigh the squared error of the ambient temperature with respect to

its reference and the cost represented by the powers coming from external sources,

i.e., Ph and Ps. The cost function J is therefore formulated as follows:

J =

∫ Nopt

t=0

µTa
(T̂a − Ta)2 + µPh

Ph + µPs
Ps dt

where:

- µTa weighs the squared error represented by the difference between the set

point T̂a and the state variable Ta;

- µPh
weighs the power required by the heater to an external energy source;

- µPs
weighs the power required by the storage to an external energy source;

- Nopt is the control horizon considered in this application. It has been set

equal to one day, i.e., 86400 seconds.

The weights listed above can be fixed in such a way to obtain the desired effect of

the control action acting on the system. In this application, in order to obtain the

ambient temperature as much as possible equal to its reference, we set µTa
three

times bigger than µPh
and µPs

.
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The aim of the optimization problem is to minimize the cost function J . To

this end, the considered optimization variables are the following ones:

- cPh
: a command variable defined in the interval [0, 1]. It allows to decide

the optimal value of the power required by the heater to external sources;

- cPs : a command variable defined in the interval [0, 1]. It allows to decide the

optimal value of the power required by the storage to external sources;

- cPluas
: a command variable defined in the interval [−1, 1]. It allows to decide

the optimal value of the power loaded or unloaded from the ambient to the

storage;

- cPluhs
: a command variable defined in the interval [−1, 1]. It allows to decide

the optimal value of the power loaded or unloaded from the heater to the

storage.

In accordance with the approach proposed in Chapter 4, we consider the control

scheme shown in Figure 5.2.

The vector cP of the command variables and the vector T̂ of the optimized

temperatures are:

cP =




cPh

cPs

cPluas

cPluhs




T̂ =




T̂a

T̂h

T̂s




In this scheme the role of the optimization is to calculate the vectors cP and

T̂ , over a horizon of length Nopt. We recall that the former vector contains the

optimal values for future control commands, the latter holds the corresponding

trajectory of the controlled variables. The element named H, since it can be

viewed as a generalized holder, has the role of acquiring the Nopt control commands

and predicted outputs and applying them in sequence, one at each control step,

to the feedback loop below. The controller R of this loop receives the optimal
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Figure 5.2: The scheme of Figure 4.1 specialized to this application (the optimiza-

tion retriggering mechanism discussed later on, is not shown to improve readabil-

ity).

temperature T̂a as set point, and the optimal control command cPh
as additive

bias, summed to its output uR to produce the control u applied to the process.

Control commands, not directly involved as set-points or control signals in the

feedback loop, are computed in the optimization process and fed directly to the

process under control.

We highlight that there could be numerous ways to set the feedback loop. In

this application, as clearly shown in the scheme, we focus on the control of the

ambient temperature Ta. The regulator R will act on the command variable cPh

that is related to the power required by the heater to an external source. This

source represents the most expensive energy source, whose consumption has to be

minimized.

According to what we stated about the retrigger criterion in section 4.1.3, in

order to decide when a new optimization is needed, we look at the normalized
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index Jnorm(t). This index is calculated as follows:

Jnorm(t) =
J(t)

J(t) + Jopt(t)
(5.1)

Imposing a threshold to the value of this index, we determine when to consider

the possibility of retaking the optimization. This threshold is chosen in accordance

with the features desired for the system. Of course, the stricter the threshold, the

bigger the number of the required optimization operations.

5.3 Simulation Results and brief discussion

In this section we show the results obtained by the simulation of the problem

characterized before.

The simulation results are obtained using Dymola (Dynamic Modeling Labora-

tory) [6], a commercial modeling and simulation environment based on Modelica.

The simulation environment plays a role of analysis and manipulation of the sym-

bolic and numerical equations of the model, in order to produce highly efficient

simulation code.

The control horizon Nopt considered for the simulation is an entire day, i.e.,

86400 seconds.

In Figure 5.3 we consider the output Ta with respect to its reference T̂a, the

result of the optimization process.

trigger 1

trigger 2

Figure 5.3: Ambient temperature during a day, when two triggers are needed.
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The controlled output traverses three phases in time, denoted as Ta, Ta1 , and

Ta2 and distinguished in Figure 5.3 with different colours and line styles. This

is due to the fact that the optimization process has been carried on three times.

The first time, related to the output Ta, has been computed at the beginning

of the control horizon. The second and the third ones, related to Ta1 and Ta2 ,

have been computed after the first and the second retriggers, respectively. Both

retriggers are caused by unforeseen disturbances on the output of the system. In

particular, we consider disturbances represented by unexpected variations of Pd,

the disturbance power (e.g. loads, room occupancy). Due to the presence of these

disturbances, in Figure 5.3 we can see that the output does not perfectly follow its

reference. In this respect, it should be remembered that in the cost function to be

minimized there is not only the error represented by the difference of the output

and its reference, but also the terms related to the cost of the energy supplied to

the system. This means that the reference T̂a could be better followed by Ta, but

not at a minimum cost, related to the power Ph and Ps supplied respectively to

the heater and the storage.

The retrigger instants are chosen according to the criterion already discussed

in the previous section. In order to better show when the retriggers are needed,

we provide in Figures 5.4 and 5.5 a detailed view of the normalised index Jnorm

(see Equation (5.1)) and the corresponding threshold.

trigger 1

Figure 5.4: Jnorm(t) before the first trigger.
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trigger 2

Figure 5.5: Jnorm(t) before the second trigger.

The two Figures just mentioned represent respectively the retrigger index

Jnorm(t), before the first and the second trigger. The arrows indicate when the

determined threshold on Jnorm has been trespassed, i.e., when a new trigger is

necessary. In particular, for the first trigger we have chosen a threshold on Jnorm

equal to 0.55411, that is overtaken at time t=39600 s. For the second one the

threshold has been fixed to 0.5345 and it is overtaken at time t=68400 s. The

overtaking of the threshold is due to the incoming disturbances that affect the

system. Concerning the meaning of Jnorm, we remind that the value of Jnorm

equal to 0.5, represents a perfect equality of the cost function J(t) and the opti-

mal cost function Jopt(t).

Contrary to what we have done in the previous chapter, in this section it would

make little (if any) sense to compare the previous result to the one obtained by

using the predictive control in the classical receding horizon setting, performing

the optimization at every control step as this would be practically infeasible for

computational burden reasons, even in a small case like this. As a matter of fact,

the optimization can not be done at each sampling time of the control horizon

Nopt. This is due to the fact that the optimization process carried on by the

program GenOpt lasts too much time. Moreover, we remember that this happens

even if the problem considered is very simple, with respect to the possible problems

that can be derived from the statement of Chapter 3. In this regard, we highlight

that, using an optimization tool, there is a default overhead time (concerning the

reading and writing of files, the simulation phase etc.) even if the problem is
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very simple. This fact highlights that our approach enables to solve this problem

without incurring in an excessive computation time. In order to quantify the

control quality degradation incurred in by adopting our technique, we now compare

the previous results to those obtained in the nominal case, when no disturbances

affect the system under control. Figure 5.6 shows the nominal output Ta with

respect to its reference T̂a. As expected, the nominal output perfectly follows the

set point. This result, as already discussed before, is the best we can get in this

proof of concept.
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Figure 5.6: Ambient temperature during a day in nominal conditions.

In conclusion, we can state that the reported proof of concept has been suc-

cessful. Applying our approach to an illustrative thermal system, we have proved

that it works. Hence, it allows the resolution of the optimization problem, that,

otherwise, could not have been solved. The thermal model considered in this ap-

plication can easily be get more complex, since the optimization program GenOpt

allows to analyze complex engineering problems.
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Chapter 6

Conclusions and Future

Perspectives

The problem of optimally controlling a building equipped with energy storages was

considered. The control problem was formulated in order to be naturally compat-

ible with a predictive control approach and the focus was restricted to thermal

systems, since they are the most relevant and influential systems in a building.

The considered system was characterised by one or more buildings and composed

by a set of users, loads, energy storages, and external energy sources.

A general form to state the addressed problem was introduced in Chapter 3,

and its complexity (coarsely) quantified with respect to the intended applications.

In particular, a formal statement of the problem under analysis was presented,

and the required mathematical notation was established. Since we considered a

heating problem, the addressed problem was based on a thermal model.

An approach, named “Sporadic Model Predictive Control”, was presented in

Chapter 4. This control technique is aimed at solving the complex optimization

problem considered, in such a way to reduce the computational time required

by the optimization process. Thanks to this approach, the optimization process

should not be carried out at each sampling time, but only when considered nec-

essary. The proposed control scheme was analysed in a view to outline its tuning.

The approach was later put to work by using a well assessed Model Predictive

Control strategy as the Optimization technique of the control scheme proposed.

81
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A proof-of-concept case was addressed and solved in Chapter 5, showing the

capabilities of the approach. A real numerical optimization system was in place

and, specifically, the application was carried on using the GenOpt optimization

tool. The proposed approach, applied to an illustrative thermal system, has been

proved working.

As a result, a method and a procedure are now available to use optimiza-

tion tools in conjuction with modeling and simulation environments, like Dymola.

Therefore, the addressed method and procedure allow the resolution of the pre-

sented optimization problem, that, otherwise, could not have been solved in a

reasonable computation time.

We would like to end our dissertation by spending a very few words on some

future perspectives that can derive from our work. Once the proposed approach

has been demonstrated viable, as we did here by a convenient proof of concept,

future research could be devoted to investigate optimization problems of higher

complexity. Since our analysis of the problem was aimed exclusively at the valida-

tion of our approach, an additional methodological analysis is in order to further

assess the property of the system. In particular, it would be interesting to create a

complete methodological assessment by, for example, providing a robustness and

sensitivity analysis of the approach or identifying its applicability limits. An other

idea would be to compute how many optimization executions can be saved using

our approach with respect to a classical predictive approach, based on the reced-

ing horizon technique. Finally, since the validation of our work has been carried

on only in simulation, we suggest its experimental assessment on some laboratory

apparatus.
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