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Abstract

Autonomous close proximity operations are an arduous and attractive problem
in space mission design. In particular, the estimation of pose, motion and inertia
properties of an uncooperative object is a challenging task because of the lack
of available a priori information. In addition, good computational performance
is necessary for real applications. This thesis develops a method to estimate the
relative position, velocity, angular velocity, attitude and inertia properties of an
uncooperative space object using only stereo-vision measurements. The classical
Extended Kalman Filter (EKF) and an Iterated Extended Kalman Filter (IEKF)
are used and compared for the estimation procedure. The relative simplicity and low
computational cost of the proposed algorithm allow for an online implementation
for real applications. The developed algorithm is validated by numerical simulations
in MATLAB using different initial conditions and uncertainty levels. The goal of
the simulations is to verify the accuracy and robustness of the proposed estimation
algorithm. The obtained results show satisfactory convergence of estimation errors
for all the considered quantities. An analysis of the computational cost is addressed
to confirm the possibility of an onboard application. The obtained results, in several
simulations, outperform similar works present in literature. In addition, a video
processing procedure is presented to reconstruct the geometrical properties of a body
using cameras. This method has been experimentally validated at the ADAMUS
(ADvanced Autonomous MUItiple Spacecraft) Lab at the University of Florida.

Keywords: Pose and Inertia Estimation; Stereo-Vision; Autonomous Close Prox-

imity Operations; Video Processing.






Sommario

Lo sviluppo di missioni spaziali, implicanti operazioni di prossimita autonome,
e un problema complesso e affascinante. In particolare, la stima di posizione, as-
setto e dinamica relativa e della matrice di inerzia di un oggetto completamente
sconosciuto, ¢ un arduo compito a causa della mancanza di informazioni note a
priori. Inoltre, in un’applicazione reale, ’algoritmo utilizzato deve offrire buone
prestazioni computazionali. Questa tesi introduce un metodo per stimare posizione,
velocita, velocita angolare e assetto relativi di un oggetto spaziale non cooperativo
oltre a ricostruirne le proprieta di inerzia. Tutto questo, solamente tramite misure
collezionate grazie ad una coppia di camere in configurazione stereoscopica. La stima
¢ ottenuta utilizzando un Filtro di Kalman Esteso (EKF) e un Filtro di Kalman
Esteso e Iterato (IEKF). I risultati, con entrambi i metodi, sono successivamente
confrontati. La semplicita dell’algoritmo e il suo basso costo computazionale lo ren-
dono un ottimo candidato per un’applicazione reale. L’algoritmo ¢ stato validato con
simulazioni numeriche implementate in MATLAB volte a valutarne l'accuratezza.
Diverse condizioni iniziali e livelli di incertezza sono stati utilizzati. I risultati
ottenuti mostrano una buona convergenza dell’errore relativo di tutte le componenti
dello stato. Infine, un’analisi delle prestazioni computazionali ¢ presentata. Questa
& necessaria per ottenere un’ulteriore conferma del possibile utilizzo in applicazioni
reali. I risultati ottenuti, nella maggior parte delle simulazioni, sono migliori di quelli
presenti in simili lavori disponibili in letteratura. E’ infine proposto un metodo per la
ricostruzione delle proprieta geometriche e di massa tramite 1’elaborazione di video.
Questo metodo e stato validato tramite una campagna sperimentale all ADAMUS

(ADvanced Autonomous MUItiple Spacecraft) Lab presso la University of Florida.

Parole Chiave: Stima di posizione, assetto e dinamica relativa; Visione Stereo-

scopica; Operazioni di prossimita’ autonome; Elaborazione di Video.






Estratto in lingua italiana

Negli ultimi anni, 1'utilizzo di spacecraft autonomi sta diventando un aspetto
fondamentale nel progetto di missioni spaziali. Questo lavoro ¢ focalizzato sulla
possibilita di eseguire operazioni di prossimita in modo del tutto autonomo. In parti-
colare, 'obiettivo ¢ quello di implementare un algoritmo capace di stimare posizione,
velocita, assetto e proprieta di inerzia di un corpo completamente sconosciuto. Per
far cio, le uniche misure disponibili sono fornite da due camere poste in configu-
razione stereoscopica. Grazie ad esse ed ad un accurato modello della dinamica,
e possibile progettare un filtro robusto per la stima delle quantita desiderate. Il
processo di stima descritto, risulta essere un’operazione complessa e difficile per via
della mancanza di informazioni note a priori. Infatti, un oggetto spaziale sconosciuto
e non cooperativo non puo fornire nessuna informazione al satellite predisposto
per operazioni di prossimita. Inoltre, ¢ assunta la mancanza di punti caratteristici
sull’'oggetto esaminato come, per esempio, LED o retroriflettori. In questo modo, il
campo di applicazione del metodo implementato & notevolmente maggiore. Ad esem-
pio, detriti spaziali e asteroidi rientrano in questa categoria e molteplici applicazioni
possono essere considerate. In particolare, I'algoritmo proposto potrebbe essere
utilizzato su uno spacecraft autonomo per la rimozione di detriti spaziali o per
la navigazione attorno ad un asteroide. Applicazioni in campi differenti da quello
spaziale sono possibili. In pit, il presente lavoro propone anche un metodo per la
ricostruzione delle proprieta di inerzia dell’oggetto analizzato tramite solamente

informazioni video.

Modello Dinamico

Una descrizione accurata del moto relativo ¢ fondamentale in applicazioni spaziali
con piu di un oggetto. I metodi piu comuni modellano gli oggetti coinvolti come
puntiformi. Tuttavia, in operazioni di prossimita, questi metodi risultano non
essere sufficienti. Infatti, per descrivere in maniera appropriata il moto relativo e
necessario considerare i corpi come oggetti con sei gradi di liberta. In questo lavoro,

le dinamiche traslazionali e rotazionali sono considerate essere disaccoppiate. Un
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modello non lineare e utilizzato per descrivere la dinamica traslazionale per superare
le limitazioni derivanti dalle assunzioni necessarie per eseguire una linearizzazione
(equazioni di Clohessy-Wiltshire). Per descrivere la dinamica rotazionale, sono
utilizzate le classiche equazioni di Eulero. Grazie alla combinazione di questi due
modelli, & possibile descrivere in maniera appropriata il moto di un punto diverso

dal centro di massa.

Modello dell’Osservazione

Le informazioni disponibili sono ottenute grazie a due camere in configurazione
stereoscopica. Per descrivere il loro funzionamento, e utilizzata la teoria del foro
stenopeico. Con questo metodo, ¢ possibile esprimere le componenti di un punto in
3D come proiezioni su un piano 2D. In pitu, e possibile collezionare informazioni
sul flusso ottico. Da questo, possono essere estratte misure riguardanti velocita
traslazionale e angolare. Tutte queste misure sono immagazzinate per ogni istante
di tempo e usate come input nel processo di filtraggio. E importante sottolineare
come, e stato scelto di utilizzare delle camere per evitare sensori attivi come, ad
esempio, il LIDAR. In questo modo, il sensore passivo non interagisce in nessun
modo con 'ambiente esterno. Sensori utilizzanti laser, oltre ad essere inutilizzabili
in applicazioni con particolari tipi di materiali poco riflettenti, implicano 1'utilizzo
di molta potenza elettrica. Questo puo risultare svantaggioso in applicazioni reali.
Inoltre, una configurazione stereoscopica ¢ stata scelta in quanto, utilizzando
visione monoculare, non possono essere recuperate informazioni sulla profondita

dell’oggetto.

Metodo di Stima

Per il metodo di stima, un Filtro di Kalman Esteso (EKF) e un Filtro di Kalman
Esteso e Iterato (IEKF) sono confrontati. Entrambi sfruttano il modello della
dinamica e le misure disponibili per stimare posizione, velocita, velocita angolare,
assetto e proprieta di inerzia di un oggetto non cooperativo. L'TEKF risulta avere, in
questa applicazione, prestazioni leggerente migliori ed essere piu robusto. Differenti
simulazioni sono analizzate per testare la convergenza e 'affidabilita del metodo
proposto. In tutte le simulazioni, le componenti dello stato presentano una conver-
genza soddisfacente. La stima delle componenti di inerzia ¢ tuttavia influenzata
dalla velocita angolare dell’oggetto osservato. Infatti, risulta che con una bassa
velocita angolare, le componenti della matrice di inerzia non influenzano in maniera
significativa la stima dello stato e per questo, tendono a restare costanti nel processo

di filtraggio. Per migliorare le prestazioni, in questo caso, € necessario aggiungere



una pseudo misura per vincolare le componenti di inerzia. Tuttavia, questo implica
la conoscenza dell’accelerazione angolare dell’oggetto analizzato. Questa misura
puo essere ottenuta solamente integrando numericamente le informazioni disponi-
bili sulla velocita angolare relativa. Nel caso di elevata velocita angolare, I'inerzia
influenza in maniera rilevante la dinamica rotazionale dell’oggetto. In questo caso,
le componenti della matrice di inerzia convergono al valore esatto ma e presente
un leggero decadimento generale delle prestazioni di stima. E necessario specificare
che e assunto un moto senza alcun momento esterno. In questo caso, la matrice di
inerzia ha solamente due gradi di liberta osservabili. Quindi, e possibile stimare
solamente i rapporti delle componenti della matrice di inerzia. Per far cio, la matrice

di inerzia e parametrizzata in maniera opportuna.

Ricostruzione delle Proprieta di Inerzia

Come detto, in condizioni con un basso valore della velocita angolare, ¢ necessario
utilizzare metodi numerici per ottenere un valore approssimato dell’accelerazione
angolare. Per evitare di aggiungere rumore ed aumentare l'errore utilizzando questi
metodi, ¢ sviluppato un processo di ricostruzione delle proprieta di inerzia, uti-
lizzando dei video. Infatti, da un video ¢ possibile estrarre immagini, quindi una
nuvola di punti rappresentati l'oggetto analizzato e da questa ricostruirne una
mesh 3D. Assumendo densita costante, ¢ possibile ricostruire le proprieta di massa
dell’oggetto analizzato, conoscendone una geometria 3D approssimata. La cam-
pagna sperimentale condotta mostra come, con questo metodo, ¢ possibile stimare

le proprieta di inerzia di un oggetto dalla forma complessa con errori contenuti.






Contents

1 Introduction

1.1

1.2

1.3

2.1
2.2

2.3
24
2.5

3.1

Motivation

1.1.1 Uncooperative Object

1.1.2 Relative Dynamics and Inertia Matrix Estimation
1.1.3 Stereo-Vision

Literature Review

1.2.1 Autonomous Spacecraft Proximity Operation Missions
1.2.2 Relative Spacecraft Motion Estimation

1.2.3 Relative Spacecraft Dynamical Model

1.2.4 Vision Based Navigation

1.2.5 Thesis Contributions and Algorithm Overview
Thesis Outline

Dynamical Model

Coordinate Frames

Rigid Body Dynamics

2.2.1 Relative Translational Dynamics
2.2.2 Relative Rotational Dynamics
Clohessy-Wiltshire equations

Coupled Relative Spacecraft Motion Model
Results

2.5.1 Simplified Coupled Model

2.5.2 CW comparison

2.5.3 Computational Performance

Observation Model and Computer Vision

Stereoscopic Camera Model
3.1.1 Pinhole Camera Model
3.1.2 Optical Flow and Image Velocity

27

28
29
29
29
30
30
31
32
33
34
36

37

38
39
39
41
44
45
48
48
51
54

57

57
57
60



Contents 16

3.1.3 Disparity

3.2 Computer Vision Algorithm

4.1

5.1

5.2

6.1

6.2

6.3

7.1
7.2
7.3
7.4

3.2.1 Feature Extraction and Matching
3.2.2 Feature Tracking

Inertia Tensor Observability Analysis

Non-linear Observability Analysis
4.1.1 Lie Derivatives

4.1.2 Inertia Observability Algebraic Test

Estimation Methodology

Extended Kalman Filter
Iterated Extended Kalman Filter

Stereovision-Based State and Inertia Estimation

Mathematical Formulation
6.1.1 Assumptions and Notation
6.1.2 Process Model

6.1.3 Observation Model
6.1.4 Estimation Procedure
Inertia Ratios Estimation
6.2.1 Inertia Parametrization
6.2.2 Equality Constraint
Numerical Simulations

6.3.1 Case A

6.3.2 Case B

6.3.3 Case C

6.3.4 Case D

6.3.5 Case E

6.3.6 Case F

6.3.7 Computational Analysis

Inertia Matrix Reconstruction

From Video to Images

From Images to Point Cloud

From Point Cloud to 3D Mesh
From 3D Mesh to Inertia Properties

7.4.1 Inertia Parameters From Triangular Surface Mesh

61
63
63
65

71

72
72
73

7

7
82

85

85
85
86
88
89
90
91
94
96
99
110
120
120
124
129
134

137

138
138
139
140
140



7.4.2 Constant Density Assumption
7.5 Experimental Validation

7.5.1 Experimental Setup

7.5.2 Case A - Simple Shape

7.5.3 Case B - Complex Shape

Conclusions

8.1 Review of Contributions
8.2 Future Work

EKF Derivation

A1 Prediction

A.2 Filtering

Differentiation of noisy signal

B.1 Least Squares Polynomial Approximation
B.2 Tikhonov regularization
B.3 Tracking Differentiator

144
145
145
146
149

153
154
154
157
157
160
165

165
166
167






List of Figures

1.1 Orbital Express - Artistic Rendering
1.2 Georges Lemaitre ATV final approach
1.3 Algorithm Scheme

2.1 Leader - Target Reference Frames

2.2 Leader - Target graphical representation
2.3 Relative Position

2.4 Deviations

2.5 CW Relative Position

2.6 CW Zoom

2.7 CW Relative position for a docking case
2.8 Time variation with 1 feature point

2.9 Time variation with 3 feature points

2.10 Time variation with 6 feature points

3.1 RayDiagram

3.2 Pinhole Camera Model

3.3 Stereo Camera Configuration

3.4 Disparity Example

3.5 Surf Detected Points

3.6 MSER Detected Regions

3.7 FAST Detected Corners

3.8 Number of Detected Feature Points

3.9 Computational Time

5.1 EKF Scheme
5.2 TEKF Scheme

6.1 Relative Position Error
6.2 Relative Translational Velocity Error
6.3 Relative Angular Velocity Error

28
31
36

38
46
49
50
51
52
53
55
95
56

o8
o8
59
62
64
64
65
66
67

81
83

101
102
103



List of Figures

20

6.4 Relative Attitude Error

6.5 Inertia Ratio Error

6.6 Inertia Ratio Error

6.7 IEKF-EKF Differences

6.8 Relative Position Error

6.9 Relative Translational Velocity Error
6.10 Relative Angular Velocity Error

6.11 Relative Attitude Error

6.12 Inertia Ratio Error

6.13 Inertia Ratio Error

6.14 IEKF-EKF Differences

6.15 Relative Position Error

6.16 Relative Translational Velocity Error
6.17 Relative Angular Velocity Error

6.18 Relative Attitude Error

6.19 Inertia Ratio Error

6.20 Inertia Ratio Error

6.21 Relative Position Error

6.22 Relative Translational Velocity Error
6.23 Relative Angular Velocity Error

6.24 Relative Attitude Error

6.25 Inertia Ratio Error

6.26 Inertia Ratio Error

6.27 Inertia Ratio Error

6.28 Inertia Ratio Error

6.29 Relative Position Error

6.30 Relative Translational Velocity Error
6.31 Relative Angular Velocity Error

6.32 Relative Attitude Error

6.33 Inertia Ratio Error

6.34 Inertia Ratio Error

6.35 Inertia Ratio Error

6.36 Inertia Ratio Error

6.37 Computational Time

7.1 Sony HandiyCam HDR-CX110
7.2 3-DOF Simulator
7.3 High Pressure Tank

104
105
106
109
111
112
113
114
115
116
119
121
122
122
123
123
124
125
125
126
126
127
127
128
128
130
130
131
131
132
132
133
134
135

145
146
147



7.4 Tank Point Cloud

7.5 Tank 3D Mesh

7.6 3-DOF Simulator

7.7 3-DOF Simulator Point Cloud

7.8 3-DOF Simulator Mesh

7.9 3-DOF Simulator Mesh in MATLAB
7.103-DOF Simulator CAD Model

147
148
149
149
150
151
151






List of Tables

6.1 State Errors - Case A 107
6.2 State Errors - Case B 117
6.3 State Errors - Case C 120
6.4 State Errors - Case D 124
6.5 State Errors - Case E 129
6.6 State Errors - Case F 129

6.7 Computational Time 135






List of Algorithms






Chapter 1
Introduction

Over the past few decades, spacecraft autonomy has become a very important
aspect in space mission design. In this thesis, autonomous spacecraft proximity
operations are discussed with particular attention to the estimation of position
and orientation (pose), motion and inertia properties of an uncooperative object.
The precise pose and motion estimation of an unknown object, such as a Resident
Space Object (RSO) or an asteroid has many potential applications. In fact, it
allows autonomous inspection, monitoring and docking. However, dealing with an
uncooperative space body is a challenging problem because of the lack of available
information about the motion and the structure of the target. The interest of the
main space agencies, in these years, is focused on the gradual automation of the
space missions because of its large number of practical applications. For example,
in 2005, NASA sponsored the DART (Demonstration for Autonomous Rendezvous
Technology) [1] project to develop and demonstrate automated navigation and
rendezvous for a spacecraft. However, this mission failed with an unintentional
collision with the target satellite. DARPA, in 2007, launched the Orbital Express
mission [2] aimed at developing an approach for autonomous satellites servicing
in orbit; ESA developed automated systems too. The ATV (Automated Transfer
Vehicle) [3] to supply the ISS is one of the main examples and further studies
are carried on about new rendezvous sensors and algorithms. Moreover, relative
navigation between non-cooperative satellites can become a powerful tool in missions
involving objects that cannot provide effective cooperative information, such as

faulty or disabled satellite, space debris, hostile spacecraft, asteroids and so on.

In particular, the precise pose and motion estimation of an uncooperative object
has possible applications in the space debris removal field. Space debris includes all

man-made defunct objects, in Earth orbit or re-entering the atmosphere. The pose
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Figure 1.1. Orbital Express - Artistic Rendering

and the inertia matrix estimation is the first step to implement a system to recover
and remove elements harmful to operational and active satellites. Additionally, the
obtained algorithm can be installed on autonomous spacecraft for close-proximity
operations to asteroids or for rendezvous manoeuvres. This thesis focuses on the
problem of how to estimate the relative state and the inertia matrix of an unknown,
uncooperative space object using only stereoscopic measurements. This information
is provided by two cameras.
The methodology developed to solve this problem has many potential applications
in other fields (iceberg-relative navigation [4], biomedical applications [5], vision-
based unmanned aerial vehicle navigation [6], etc.). Current literature addresses
the problem of relative state estimation with respect to an uncooperative object,
assuming partial knowledge of the geometry or feature points of the target. In other
cases, multiple spacecraft or sensors with high power consumption are utilized to
compensate for the lack of information. None of these proposed algorithms has
been physically implemented in a real application, one main reason being their high
computational cost.

This chapter will review the current state of the art in spacecraft navigation and

provide an overview of the contributions and outline of this thesis.

1.1 Motivation

Pose, motion and inertia matrix estimation is only the first step to achieve the
goal of a complete autonomous system. In the future, smart satellites will operate
and make decisions autonomously. However, in order to realize this futuristic vision,

new methods for autonomous navigation and control are necessary. This work tries
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to take a step forward in this direction.

In particular, an algorithm for the estimation of the relative motion and shape of
a completely unknown and uncooperative object is developed. Very simple sensors
are assumed to be utilized. The only available information about the target is
provided by stereo images collected by two cameras in a stereo configuration. In

the following subsections, the motivation behind all these choices is addressed.

1.1.1 Uncooperative Object

The assumption of an uncooperative target has been carried out to have the possi-
bility to apply the obtained results to a wide number of applications. Uncooperative
objects have no target identifiers (such as optical feature points) and proximity
sensors. This makes the estimation more difficult and less accurate, but more
applicable to a vast range of in-space objects. With this assumption, it is possible to

expand the applicability of this work to asteroids and completely unknown objects.

1.1.2 Relative Dynamics and Inertia Matrix Estimation

Autonomous close proximity operations are impossible without an accurate
estimation of the relative dynamics. Knowledge of position, translational and
rotational velocity and attitude is the necessary starting point for close approach
and navigation around an unknown object.

In addition, the information about the inertia properties of a body is a crucial aspect
to perform landing or docking with the inspected object. However, the estimation
of the inertia matrix, in torque-free motion conditions, is a very difficult task and

one of the open points that this thesis will try to solve.

1.1.3 Stereo-Vision

To estimate the relative dynamics of this unknown object, it is necessary to
collect and interpret measurements. Specifically, this work assumes that only two
cameras can provide stereoscopic images. Other works present in literature use
different types of sensors. Several papers deal with the pose estimation using LIDAR
(Light Detection and Ranging) [7], [8], [9]. This sensor is a laser based 3-D scanning
system. LIDAR sends out an invisible laser light in all directions. These waves hit
the surrounding objects and rebound back towards the sensor. Range and range
rate can be estimated by measuring the time taken to transmit and receive the
signal. Using LIDAR implies to manage a large amount of data and to have a

large power consumption. For this reason, real-time missions can be hampered.
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Moreover, these instruments decrease their efficiency in applications with poor
reflectors, such as black, blue, violet objects or rounded surfaces and are sensitive
to the sunlight. All these problematic issues discourage the use of this particular
instrument for space proximity operations. Other authors used a single camera to
estimate the relative dynamics [10],[11],[12], [13]. Nonetheless, the monocular vision
cannot provide reliable depth information. This can be estimated but it tends to be
less robust and accurate than the same information obtained by stereoscopic vision
[14]. In addition, cameras are completely passive sensors. This means that they
do not interact with the target and avoid the classical problems of active sensors.
In fact, the signal, that active sensors send to the target, can be interfered by
other sources and this affects the final measurement. Using cameras this problem is

absent, since they simply read and interpret an input signal from the environment.

1.2 Literature Review

1.2.1 Autonomous Spacecraft Proximity Operation Missions

In last recent years, few on-orbit demonstrations of Autonomous Rendezvous and
Proximity Operations (ARPO) have been carried out, with both successful and not
fortunate results. Besides the mentioned DART, Orbital Express and ATV missions,
there have been different ARPO attempts in the history of space exploration. One
of the first mission was the Japanese Engineering Test Satellite 7 (ETS-7) [15] in
1998. This experiment was developed to demonstrate autonomous rendezvous and
docking. The ETS-7 consisted of two satellites (chaser and target). An on-orbit
capture was successfully proved using a vision-aided robotic manipulator. A few
years later, The United States Air Force (USAF) XSS-10 [16] and XSS-11 [17]
demonstrated on-orbit proximity operations without contact. XSS-11 in particular,
accomplished a visual-inertia inspection of a non-cooperative target. However, it
did not estimate the geometry or relative position, velocity, angular velocity and
attitude. The autonomous relative navigation and docking is still a hot subject.
In fact, NASA is developing a system for autonomous Asteroid Redirect Mission
(ARM) [18]. This mission will use a sensor suite used for docking, including a
visible camera, a long-wavelength infrared camera and a 3D lidar. This sensor
system has been used for Sensor Test for Orion Relative Navigation Risk Mitigation
(STORRM) experiment in 2011. A future test for this rendezvous sensor system will
be performed by Raven. This mission will demonstrate the possibility of real-time
relative navigation and autonomous rendezvous. Raven is slated to fly in 2016.

Although many missions have obtained great results from the autonomy point
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of view, none has still estimated the relative state of a completely unknown and

uncooperative space object.

Figure 1.2. Georges Lemaitre ATV final approach

1.2.2 Relative Spacecraft Motion Estimation

An accurate relative spacecraft motion estimation is becoming very important in
problems dealing with formation flying [19], [20] or docking [21]. In these two cases,
the target is usually known and it shares information with the chaser. This makes the
estimation easier than in the case of a completely unknown and uncooperative object.
In addition, this estimation usually relies on relative sensors such as differential
GPS receivers or light beacons. However, not much information is available in
applications involving unknown objects. RSO, space debris, asteroids and so on,
usually do not present any relative sensors. Dealing with these objects is typically
more arduous because of the poor or absent a priori information about the target
geometry or motion. No GPS measurements, no LEDs, no beacons and no motion
information are present in case of uncooperative space missions. One of the main
contribution in literature, addressing relative state estimation of an uncooperative
target is from Lichter [22], [23]. He solves the problem of estimating the relative
pose, motion and structure using a 3D vision sensor. This creates and processes

point clouds to reconstruct the geometric shape of the object. From this information,
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he is able to extract a rough measurement of the centroid and rotation matrix.
Then, two Kalman Filters (translation and rotation) are used to estimate the state
and inertia properties. However, using 3D sensor involves more power consumption,
computational cost and data to manage. In 2013, Segal and Gurfil presented a
solution of the state estimation of a non-cooperative spacecraft using an Iterated
Extended Kalman Filter (IEKF) [24], [25], [26]. Their approach is the baseline for
this thesis. They develop and utilize a translational-rotational coupled model to
describe the relative dynamics. Then, an IEKF is used to estimate the state. The
basic assumption is to have only stereoscopic measurements. However, they do not
estimate the inertia matrix, but they run N Kalman filters in parallel and, at the
end, they choose the best value for the inertia tensor according to a Maximum
A Posteriori (MAP) estimation. Thus, N filters must work simultaneously for an
interval of time ¢ to estimate the state. Then, all the estimated states are compared
and the selected inertia matrix is the one that provides better results in terms of
state error. This method clearly cannot be implemented on a real spacecraft because
of the large computational cost needed in problems without previous knowledge of
geometry information. A very interesting work is by Tweddle [27], [28]. Assuming a
stationary leader, he developed a method to estimate the state and structure of an
unknown object using a smoothing algorithm. Smoothing and Mapping (SAM) are
commonly used for simultaneous localization and mapping (SLAM) problems. This
method estimates the complete 'robot’ trajectory in time and not only the current
pose. The particular smoothing algorithm used by Tweddle is the Incremental
Smoothing Algorithm (iISAM) introduced by Kaess et al. [29], [30]. This method
performs fast incremental updates to compute a full map and trajectory of the
object at any time. However, this method does not handle properly trajectory
with loops and non-linear problems. This is an important aspect because the most
general equations describing the motion of two satellites are non-linear. For this
reason, he assumes a fixed leader and a very simple linearised dynamics. In our
work, a Kalman Filter has been selected as estimator for its better computational
performance. In fact, [31] clearly expresses how the smoothing algorithm is more
accurate but also less computationally efficient than the classical filters. Moreover,

filtering techniques work better under high uncertainties problems.

1.2.3 Relative Spacecraft Dynamical Model

The model of the relative dynamics between two or more spacecraft must be
correct and precise when dealing with proximity operations. This is the first step

to obtain accurate results. The first work trying to model the relative dynamics
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between two spacecraft was the one by Clohessy and Wiltshire (CW) [32]. This
model describes the relative translational motion between two objects that are
assumed to be on a circular orbit around a spherical Earth. Another assumption of
this model is that the target must be very close to the chaser. This is a linearised
model and it has been widely used for works dealing with formation flying of
multiple spacecraft and docking. A different model for elliptic reference orbits was
developed by Tschauner-Hempel [33]. In the last decade, orbital element differences
are used to describe relative motion [34], [35], [36], [37] also considering perturbed
motion [38], [39], [40]. Thus far, point-mass models are cited. However, in close
proximity applications, it is necessary to use models that describe the relative
motion of six-DOF spacecraft. In particular, the position of points different from
the centre of mass has to be taken into account. Pan and Kapila [41] were among
the first to consider the translational-rotational dynamical coupling between two
spacecraft. Nonetheless, very few models describing the relative motion between
6-DOF bodies are present in literature. One of these is the one presented by Segal
and Gurfil [42]. This model illustrates, in an accurate way, the completely coupled

translational-rotational motion of two 6-DOF spacecraft.

1.2.4 Vision Based Navigation

Computer vision is a vast and complex field that is used in many classical
application and recent innovative researches. Computer vision involves extraction,
analysis and comprehension of information deriving from images. This process
is somehow similar to what humans do. Vision, in human behaviour, is not only
recording light, but also an interpretation of the received input. Computer vision,
wants to imitate this human characteristic. Usually, the most common methods for
navigation and mapping in an unknown environment are Visual Odometry [43] and
Simultaneous Localization and Mapping [44]. Visual odometry takes its name from
the wheel odometry. In fact, as it is possible to estimate the motion of a vehicle
by integrating the number of turns of the wheels, in a similar way, the pose of
an object can be estimated through the variations in the collected images. This
method works tracking features correspondence between two subsequent images.
Simultaneous Localization and Mapping is a different estimation technique. This
method keeps track of a map of the environment, also when it is not needed, to
recover the complete path of an object. Therefore, Visual Odometry recovers the
path incrementally, analysing only the local trajectory; SLAM tries to ’close the
loop’, storing information about the past location of a point and matching it when

it is seen again. Although SLAM could be more accurate, Visual Odometry results
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to be more robust, simpler and less computationally expensive. This is one of the
reasons why the Visual Odometry has been widely used for real applications. In
particular, it has been used for the Mars Exploration Rovers (MER) [45]. MER’s
visual odometry system reconstructs the pose of the rover by tracking terrain feature
using two cameras. The estimation process is completed by a maximum likelihood
estimation methodology. In addition, different papers in literature address the pose
estimation using visual odometry technique [46]. Also SLAM approach has been
used for pose estimation in space applications [47], [48]. In addition, other fields
have used SLAM in similar problems. For example, there are papers involving
autonomous iceberg navigation [4], unmanned aerial vehicle (UAV) applications [6]

and also medical applications [5].

1.2.5 Thesis Contributions and Algorithm Overview

The goal of this work is to implement an algorithm suitable for real missions. It
has to provide an estimation of the relative state of an unknown object and it has
to be able to reconstruct its inertia properties. The only available measurements
are images provided by two cameras in a stereoscopic configuration. In addition,
in order to be suitable for real applications, the algorithm has to computationally
efficient. The first important aspect to take into account is that the observed object,
in our work, is unknown and uncooperative. Few works in the current literature [28],
[25] address this kind of problem. This is because, without any information about
the target object, the estimation of the relative quantities is more difficult and less
accurate. Many approaches assume to have partial information about the relative
state of the observed body. This allows a simpler solution of the estimation problem
but also a smaller range of possible applications. Another aspect to consider is the
modelling of the relative dynamics. In fact, it has to be accurate enough to properly
describe the relative motion between two objects in space but also simple and
computationally efficient. Our work uses a model that exploits the superposition of
the rotational and translational dynamics instead of a completely coupled model.
In this way, we are able to obtain good performance without adding complexity.
Moreover, we have decided to do not use a simple linear model due to the too
restricting involved assumptions. Another characteristic of our model is to rely
only on stereo images. This allows to collect less data with respect to 3D sensors.
Moreover, it guarantees computational efficiency and less power consumption with
respect to sensors using lasers. For all these reasons, two cameras are the ideal
candidates for a real implementation sensor. However, from the algorithm point

of view, this means to have less accurate measurement and the necessity to rely
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on computer vision algorithms. In this work, since no experimental validation is
performed, only a review of the available algorithms for feature extraction and
matching is presented. In addition, an observation model, to be used in the filter,
that exploits also the information about the optical flow is implemented. The most
important aspect that this thesis tries to solve is the inertia tensor estimation.
In the current literature, to the author’s knowledge, only Tweddle [28] solved
the problem to estimate the ratios of the inertia tensor, in torque free motion,
relying only on stereo-vision measurements. In fact, most of the works present in
literature try to solve the problem relying on 3D graphical reconstructions. These are
usually computationally expensive and not suitable for an online implementation.
Moreover, Tweddle’s work only considers a spinning satellite and a stationary
inspector spacecraft, using a very simple dynamical model. It also uses a smoothing
algorithm that does not offer good computational performance. In fact, using the
author’s words: "The results in this section do not illustrate a real time system, but
rather a system that is better suited to offine applications’. For this reason, this thesis
solves the problem of estimating the inertia tensor exploiting a simple Kalman filter
technique. Its extensive use in real time applications, allows for an efficient online
implementation. In fact, instead of introducing new, computationally expensive,
computer vision algorithm for only a partial relative state reconstruction, the idea
of this algorithm is to rely on robust and reliable estimation procedures. At the end,
this work also presents an offline 3D reconstruction of the geometrical properties
of the object only using video processing. This is done to demonstrate that it is
possible, using the data collected in the filtering process, to reconstruct, a posteriori,
the geometry of the inspected body. Summarizing, the presented algorithm wants
to estimate the complete relative state and the inertia properties of an unknown
and uncooperative body, using only the stereo-vision. This is done without assuming
any simplified dynamical model and trying to reduce the computational effort. To
the author’s knowledge, there are not actual works in literature dealing with this
problem at this complexity level. In addition, a method for the estimation of the
inertia tensor in torque free motion, therefore without assuming any capture of the
object or imposed torque, is developed. Thus, this work proposes a solution for an
open problem in the current literature. In addition, this thesis focuses its attention
on the computational efficiency of the algorithm, differently than previous works.
Concluding, in fig. 1.3 a general summary of the algorithm is presented. The most
relevant aspects to solve the problem are highlighted. The filtering procedure will

be analysed in the following chapters.



1.3 Thesis Outline 36

Leader Orbit and Relative
State Initialization

l

Images Extraction

L d
l ‘ Dynamical Model
Feature Points Detection . .
—_ Estimated Relative State
and Matching IEKF/EKF > . .
and Inertia Ratios
l # Observation Model ‘ == m e !

Approximation of the
Optical Flow

Figure 1.3. Algorithm Scheme

1.3 Thesis Outline

The first chapter of this thesis is the chapter 2. It provides a brief review of the
rigid body dynamics, describes the classical Clohessy-Wiltshire model and analyse
recent coupled models. In addition, the dynamical model selected for this thesis is
elucidated. Chapter 3 presents the observation and camera model of this work. It
describes how to extract relative information of the target from stereo images. A
review of computer vision algorithms is also presented. Chapter 4 provides a non-
linear observability analysis of the inertia tensor to prove that it is not completely
observable with no presence of external forces or torques. Chapter 5 introduces
the concepts of Extended Kalman Filter (EKF) and Iterated Extended Kalman
Filter, stressing the differences and the different formulations. Chapter 6 illustrates
the developed estimation algorithm underling the new contributions introduced by
this work. In chapter 7 a video processing procedure to recover inertia properties
is illustrated. Experimental results are presented. Chapter 8 concludes this thesis,
summarizing the contributions and the future work.

In appendix A the derivation of a discrete EKF is presented. Appendix B, instead,

briefly describes some numerical methods to differentiate noisy signals.



Chapter 2
Dynamical Model

The accurate description of the relative motion is a key point in space systems
involving more than one object. Correct modeling of relative translational and
rotational motion is essential for autonomous missions. In literature, a large number
of studies about point-mass models for relative spacecraft translational motion can
be found. The most famous and used model is the one presented by Clohessy and
Wiltshire [32]. Usually, these models are not sufficiently accurate when the faced
problem deals with multiple cooperative spacecraft.

The interest in spacecraft formation flying and autonomous close proximity
operation missions, motivated the research of a more accurate and complete relative
spacecraft motion model. However, models for 6-DOF spacecraft have gained
attention in literature only in recent years. In particular, Pan and Kapila [41],
first addressed the coupled translational and rotational dynamics of two spacecraft.
Nonetheless, in these models, the coupling is only induced by the gravity gradient.

In the last years, Segal and Gurfil [24] developed a model that takes into account
a kinematic coupling. This coupling is obtained describing the relative dynamics of
a point that is not the centre of mass (c.m.) of the spacecraft. They also show the
importance of this coupling in vision-based relative attitude and position control,
where arbitrary feature points on a target vehicle have to be tracked. However, this
model implies complicated equations and a formulation that is not convenient to
be used in a Kalman filter. For this reason, in this work, a simplified model is used
to take into account the coupling without introducing complexity.

The purpose of this chapter is to provide a holistic review of the background
material about rigid body dynamics, to briefly summarize the Clohessy-Wiltshire

equation, describe the Segal-Gurfil coupled model and the simplified one.
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2.1 Coordinate Frames

The location of a point in a three dimensional space must be specified with
respect to a reference system. An appropriate description of the used coordinate
systems is provided in this section. Two objects are considered: a leader L and a
target T. In this thesis, the leader is the inspecting spacecraft and the target is the
unknown, uncooperative object.

The standard Earth-centred, inertial, Cartesian right-hand reference frame is
indicated with the letter Z. L is the local-vertical, local-horizontal Euler-Hill (LVLH)
reference frame. It is fixed to the leader spacecraft’s c.m., the X unit vector directed
from the spacecraft radially outward, z normal to the leader orbital plane, and ¥y
completing the frame.

Then with 7, a Cartesian right-hand body-fixed reference frame attached to the
leader spacecraft’s c.m. is denoted.

Finally 7, a Cartesian right-hand body-fixed reference frame centred on the
target spacecraft’s c.m.. It is also assumed that this frame is coincident with the
principal axis of inertia.

In this work, the frames J and £ are assumed to be aligned. From now on, only
the letter £ is used to refer to both of them.

hﬁ{ Leader

Figure 2.1. Leader - Target Reference Frames
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2.2 Rigid Body Dynamics

In this section, both relative translational and rotational dynamics are analysed.
These are described by Newton’s Second Law and Euler’s Equation of Rotational

Motion. These laws are valid under the assumption of an inertial reference frame.

2.2.1 Relative Translational Dynamics

According to the Newton’s Second Law, under the assumptions of no external
or internal forces except gravity, spherical bodies, no tidal forces, attractor’s mass
much larger than the orbiting body’s mass, the equations of motion of the Keplerian

two-body problem can be written as:

.. r
where r = [z,y, 2|7 is the position vector in the Z frame, p is the Earth’s
gravitational constant and r = ||r||. This equation of motion can be written for

both leader and target, replacing r with ry and ry, the positions of the leader and

the target in the Z frame.

.. ry

— =0 2.2
ry + MTL?) (2.2)
.. rr

— =0 2.3
ry + MTTg (2.3)

Knowing the semi-major axes ay and ar, the eccentricities e;, and er and the
true anomalies ¥, and U7 of the leader and target orbit respectively, the expression

of the magnitudes of the position vectors are obtained:

aL(l — €L2) ) . aT(l - €T2> .

_ _ - 24
1+ epcosVp’ TT 1+ epcosty’ (2:4)

rL

Now, the relative position vector between the leader and the target can be defined

as p = rp — ry. Subtracting eq. (2.2) from eq. (2.3) yields:

_ Mrte) T (2.5)
o +pl e '

The relative acceleration can also be expressed as:
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& dp  dw
ﬁzditg+2wx£+%xp+wx(wxp) (2.6)

Considering the relative acceleration in the frame £, w is the angular velocity of

frame £ with respect to Z. Being, by assumption, w normal to the orbital plane,

leads to

w =[0,0,9,]" (2.7)

Knowing that

Pr = [ZL’, Y, Z]T (28)

substituting eqs. (2.5), (2.7) and (2.8) into eq. (2.6) the following equations are

obtained:
i — 20 — Oy —Px = -+ — 2.9
I T CE ST B (2.9)
+ 2000 + 0 — iy = — 2.10
Y g g LY [(rp + )24+ y2 + 22]% ( )
P pe (2.11)

[(rp + @)% + y2 + 22]2

U1, and 9, are the orbital angular velocity and acceleration of the leader and are

equal to

0y, = %(1 + e cos¥p)? (2.12)

aL3(1 — €L2)

gy, = 2Lt (2.13)

rr

This set of non-linear ordinary differential equations describes the relative transla-

tional dynamics between two objects in space.



2.2 Rigid Body Dynamics 41

2.2.2 Relative Rotational Dynamics

As for the translational dynamics, a model that describes the rotational motion
of the target relative to the leader is illustrated. First of all, the relative angular
velocity of the target with respect to the leader is defined as w = wr — wy, with
wr and wy, angular velocities of target and leader respectively. To parametrize the
relative attitude, it has been decided to use a rotation matrix D which performs
the transformation between the body fixed frame 7 relative to the target and
the body fixed frame L relative to the leader. The components of this matrix are
combinations of relative Euler parameters ¢y, ¢;, ¢, ¢5. These are four parameters
that describe a finite rotation about an arbitrary axis. They also form a quaternion
q = (@, @, & gs)7 where [q;, ¢, g3] is the vector part and ¢, is the scalar one.

Therefore, the matrix D is defined as

% — @ — ¢ + g’ 201 — 459) 2(q,45 + %&0)
D(Q) = 2((]1(]2 + (13‘]0> _Q12 + (122 - 932 + 902 2((]2(]3 - (th)
2(¢195 — %) 2(q5 + 01) 2= *+ g+ g

Note that all the components of the quaternion are relative components. The
symbol § has been avoided for sake of simplicity. In the next equations, a different
notation is introduced. The symbol a|" indicates that the quantity 'a’ is evaluated
in the N frame, on the other hand, (4)|y indicates the derivative of the quantity
‘b’ in the M frame.

Knowing the rotation matrix D, the relative angular velocity in both target and

leader frames can be calculated.

w|® = Dwp|” —wi|* (2.14)

It is also possible to describe the relative attitude kinematics. Using the quaternion

kinematic equations of motion:

4= 5@l (2.15)
with
-1 —q2 —G3
Qq) = g —493 Q2
qs G —q1

—q2 1 4o
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The following derivation can be obtained. It is first necessary to derive the relative

angular velocity in the inertial frame:

dw|  dwr dwr,
dt |, dt | dt |,
and using the rotation matrix D yields to:
dw £ B dwp dwr, “
dt |, dt |, dt |,
However, it is known that:
dw dw |* . "
— =— wp X w
dt |, dt g
and expressed in the £ frame is:
c c
dw dw C L
— =— wr|” X w
a|, | " x| |

Equating the eq. (2.19) with eq. (2.17):

dw|* dwr T dwr, £ -

— =D—| ——/—F| -—-w w

dt at |, dt |,

Multiplying by the inertia tensor of the leader:
c c
dw dwrp dwp, c
I,— I,D—| -—-I,—| -1 X
bt A P TR v X w

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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This can be rewritten using the differentiation of the angular velocity in the body

frames:

—ILi _ILCUL|£ xwﬁ (222)

At this point, the Euler’s equation for a rigid body is:

T
dLp dLj,
— = — + Lr=N 2.23
dt 7 dt wr > LT r ( )
dL dL, £
L L
) === 4+ L;=N 2.24
dt I dt WL XL L ( )

where Ly and Ly, are the total angular momentum of target and leader respectively
and N7 and N, the correspondent external torques on the body. Since Ly = I w;,

and Ly = Icwyr the following equations are obtained:

dwT

ITi + wr X IT(.UT = NT (225)
dt |,
d
ILﬂ + wjp, X ILwL = NL (226)
dt |,

Finally substituting eqgs. (2.25) and (2.26) into eq. (2.22) yields:

dw £
I,—| =I,DI;' [Ny —wrp|” x Ipwr|”] = Twp|® X wi|* — [N —wr|* x Iwp|]

dt |,
(2.27)

This final equation and eq. (2.15) describe the relative rotation dynamics and

kinematics.
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2.3 Clohessy-Wiltshire equations

The relative motion between two spacecraft is, in general, described by a set
of non linear equations. This model can be linearised under certain assumptions.
In fact, if the target’s orbit in the inertial space is slightly elliptic and inclined
with respect to the leader’s orbit, the motion of the target will appear very close
to the leader in a leader-fixed frame. In this case, the equations can be linearised
and the resulting motion may be solved in closed-form. The obtained linearised
equations of motion are called the Clohessy- Wiltshire equations or also the Euler-
Hill equations. To obtain the more general derivation of the CW equation, it is
necessary to start from eq. (2.2) and eq. (2.3), adding an external perturbation
force F to the leader motion. The resulting equation is eq. (2.5) plus the new force.
Under the aforementioned assumptions is possible to linearise this last equation
through a binomial series, neglecting higher order terms. Avoiding all the derivation,

the resulting equations of motion expressed in the leader reference frame are:

ry
2 T’L2

3 2
“[ er+p1+F (2.28)

Equation (2.28) represents the inertial relative acceleration between target and
leader spacecraft expressed in leader reference frame.

Moreover, expressing this equation in the inertial frame, yields:

& —2ny — 3nz = f, (2.29)
i+ 2ni = f, (2.30)
s4nPz=f, (2.31)

where n = \/g is the angular velocity of the reference orbit, which it has been
assumed to be nearly circular.

As already said, it is possible to obtain a closed form solution for the CW’s
equation. For the third expression, eq. (2.31), the solution is independent from the

first two. Taking the Laplace transform:

o(s) = Sz + %o 1.(s)
s24+n?2  s24n?

Hence, its expression in time domain, assuming f, to be an impulse function of

(2.32)
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strength f,, is simply:

z(t) = zp cos(nt) + iosin(nt) + j;’isin(nt) (2.33)

On the other hand, x and y equations, being coupled, have to be solved simultane-

ously:

tog — 2
) 2 _ 3,2 S0 o = 2t 4 (2.34)
—ZNs S — aon

52 2ns ]

SYo + Yo — 2nxo + f,

Assuming again f, and f, to be impulsive forces, solving and applying the in-

verse Laplace transform, the solution is:

x(t) = [to + fw]sm(int) - [33:0 + M] cos(nt) + z(yo + fy) 4z (2.35)

n n

and

sin(nt)

y(t) = [4(yo+f,)+6nx0) +i (To+fz) Cos(nt)—l—yo—z(x'o—i— f2)=3(Yo+ fy+2nzo)t
(2.36)
It is important, when using these equations, to remember that z(t) and z(t) have
to be small. However, the imposed assumption of close proximity of the bodies and
considering them as point masses, involves an intrinsic contradiction. In fact, if the
spacecraft are close one to each other then, they can no longer be treated as point
masses because the spacecraft shape and size affect the relative translation between
off-c.m. points. This means that using the linear Clohessy—Wiltshire model can lead

to considerable errors when applied to modelling of rendezvous and docking [42].

2.4 Coupled Relative Spacecraft Motion Model

In this section, the model presented by Segal and Gurfil is introduced. This
kinematically coupled relative spacecraft dynamics model better describes the
close proximity motion. In Gurfil-Segal model, the two spacecraft are not treated
like two point masses and, as already said, they have their own reference frame.

Since the space objects are not treated like point masses, feature points on the
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target object can be defined. The vision-based detection and tracking of the feature
points is addressed in the next chapters. Being Py’ a point on the target object
body, Pr" = [Pur', PyTi, P.7'] is defined as a vector directed from the origin of the
coordinate system 7 to the point Pr’. Pr’ is expressed in the £ frame. The next
step is to define the relative position vector between the c.m. of the leader and the

generic point 7 on the target.

Figure 2.2. Leader - Target graphical representation

By observing fig. 2.2, the following relationship holds:

where py is the distance between the centres of mass of the two objects. The first

and second derivatives consequently are:
pi = Po +w x Pp’ (2.38)

pi = Po+w xPr' +wx (wxPp) (2.39)

Considering pp and w in the £ frame and substituting eqgs. (2.37) to (2.39) into

egs. (2.9) to (2.11), the general description of the translational motion between any
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arbitrary points on the target and the leader c.m. in absence of perturbing forces

are obtained:

Ty — [wy(wxPyTi — WnyTi) + W (w, Por’ — Wy Por')] — wszTi + szyTi
=201 [ij — (. Por’ + woPor")] = Up(ysy — Pyr') — V(2 — Per') (2.40)
—/L(?”L-i-l'ij —PmTi) X

= : ; o T3
[(rp + zij — Pur')? + (yi5 — Pyr*)? + (215 — Por')?]?

Ui — [Wz(wszTi - WzPyTi) + Wm(wayTi - wnyTiﬂ — Py’ + o Por’
+2?9L[i‘ij - (wypzTi + wZPyTi)] + ?§L($z‘j - PwTi) - 19%(?% - PyTi) (2.41)
B —h(ysj — Pyr’)

- 3
2

[(rr + x5 — Pur®)? + (yi; — Pyr')? + (215 — Por')?]

Zz - [wm(szzTi - w:vaTi) + Wy(wszTi - szyTi)] - wxPyTi + wnyTi
iz — Pur) (2.42)
[(re + @5 — Pur')? + (yi5 — Pyr')? + (215 — Por')?]

Njw

As it is possible to see, the relative angular velocity vector w makes egs. (2.40)
to (2.42) and the rotational motion eqs. (2.15) and (2.27) coupled. Considering also
the equations of the orbital angular velocity and acceleration, the non-linear 6-DOF
model of the rigid-body relative spacecraft motion is given by the following set of
non linear coupled equations: eqs. (2.12), (2.13), (2.15), (2.27) and (2.40) to (2.42)

These equations describe in a more accurate way the motion between two space-
craft, but they also introduce complexity in the equations. In fact, considering N
feature points, egs. (2.40) to (2.42) must be integrated 2N times to obtain the

relative position of each point.

In order to avoid this complexity, the coupling effects can be simply described by
combining the rotational and translational contributions.

The dynamics of a feature point expressed in the leader frame L is:

PZT|L:PZT|T+w><PiT|£:w><PiT|L (2.43)

Knowing that the c.m. dynamics is described by egs. (2.10) to (2.12), the position

of a single feature point can be described as follows:
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pi = po+ Phl, (2.44)

In this way, for each time step, it is only necessary to integrate the position of

the c.m. and add the contribution due to the rotation of the feature points.

2.5 Results

In this section, similar results to [42] are proposed to show how it is possible to
describe the same behaviour with simpler equations. In fact, in [42], the described
coupled model is used. The presented results are, instead, obtained by using the
simplified coupled model. Please note that the simplified model is not coupled but
it describes a coupled behaviour. Hence, this model will be called simplified coupled
model. Different simulations are proposed to evaluate close proximity operations
and docking. In particular, the relative position is computed with both CW and

coupled model in different conditions.

2.5.1 Simplified Coupled Model

First of all, the relative trajectories of different feature points are obtained, numer-
ically integrating the set of non linear equations. A MATLAB code is implemented
and ode45 is used as integration method. In this simulation, the leader is orbiting

around the Earth in an orbit with the following parameters:

semi-major axis: ar, = 7136 km
eccentricity: ey = 0.05;

inclination: ¢ = 15°;

argument of the perigee: w = 340°;
RAAN: Q = 0°;

true anomaly: ¥ = 0°.

Furthermore, the initial conditions of the relative motions are:
relative position: p = [10, 150, 10] m ;
relative velocity: p = [0.01, —0.0226,0.01] m/s

relative quaternions: q = [0, 0,0, 1];

relative angular velocity: wy = [0.006,0.006,0.12] deg/s;

The feature points on target spacecraft can be chosen arbitrarily:
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e Py =10,0,0] m;
o P, =1[2,2,0/m;
o P, =[-2,-20] m;

It has been decided to select points far from the c.m. to better show the motion
differences arising from the coupled model.
In fig. 2.3 the trajectory in time of the three components of two different feature

points and the c.m. are evaluated. These are given by:

p10 = po + Pilc (2.45)

p20 = po + Pa. (2.46)
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Figure 2.3. Relative Position
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This result, clearly shows how there is a difference between the motion of the
c.m. and the motion of a general feature point on the object. This difference varies
according to the position of the point on the body of the target object. To better
understand the motion of these points, in fig. 2.4, the deviation in the relative
position of the feature points is shown. Ap; Aps are the differences between pg,
poo and the c.m.. From the graphs, the motion of the feature points appears to
have a harmonic behaviour, with frequency of oscillation determined by the relative

angular velocity.
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Figure 2.4. Deviations

With this model, a coupled behaviour, in terms of position, can be accurately
detailed with simple equations. These results clearly demonstrate how this simplified
coupled model describes the relative motion between two spacecraft in a different

way with respect to the classical point-mass models.
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2.5.2 CW comparison

It has been shown that the simplified coupled model can describe in a different,
more accurate, way the relative dynamics between two objects. This is achieved
taking into account also the motion of points different from the c.m.. In this section
a comparison between CW equations and the simplified coupled model is presented.
As first, the errors due to the assumptions of the CW are evaluated, then, it is
shown how, not considering different feature points, leads to significant errors in
case of docking applications.

As already said, one of the assumptions of the CW model is that the two objects
are one close to the other. With this hypothesis, it is possible to linearise the
equation of motion. This linearisation could lead to small errors in the description

of the relative motion. In fig. 2.5 curves corresponding to CW and coupled model
appear to be almost coincident.
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Figure 2.5. CW Relative Position

Zooming the two curves around 1000s, the error appears to be very small, in



2.5 Results 52

the order of centimetres, as shown in fig. 2.6. This means that the CW model can
describe well the motion of the center of mass, assuming circular orbit and close

objects.
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Figure 2.6. CW Zoom

However, it is not convenient to consider the two objects as point masses in
docking applications. In order to evaluate the different behaviours, a docking
simulation scenario is setted. Initial conditions about relative position and velocity
are selected to have null components of the position after almost 80 seconds. In
fig. 2.7 it is evident how the distance from the leader c.m. and a general point,
different from the target c.m., is decreasing to zero but with a time offset. For this

reason, the docking instant will depend on the position of the point.
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Concluding, the simplified coupled model describes the same behaviour of the
complex model developed by Segal and Gurfil. Moreover, it better describes the
relative motion of two spacecraft operating in close proximity with respect to the
classical, only translational models. It can be possible to use the CW equations to
compute the position of the c.m. and then add the rotational contribution. However,
in presence of elliptical orbits, the CW model leads to significant errors. For this

reason, the non-linear model has been chosen for this work.

2.5.3 Computational Performance

Computational performance is an important aspect to consider in online ap-
plications. As already said, the simplified coupled model has been chosen for its
simplicity and computational efficiency. Proving the computational efficiency of an
algorithm is not an easy task. In this section, the computational performance of
both coupled and simplified model is analysed. The two methods are implemented
in the same MATLAB script and the time for computing each algorithm is then
evaluated. To have a reliable result, the time of each method is computed for 50

simulations. Then, the percentage variation is evaluated as:

()

Vo = tcoupl - tsimpl (247>
tcoupl

where toup and tg,, are the computational times for the coupled and the
simplified model respectively. In this way, this quantity gives an idea on how fast
the simplified model is with respect to the coupled model.

This variation is also evaluated for three different numbers of tracked feature
points. In particular, the results are analysed for 1, 3 and 6 tracked feature points.

For one tracked point fig. 2.8, the difference is very small, as expected. The
simplified model shows slightly better computational performance.

Increasing the number of points, the benefits deriving from using the simplified
model should become significant. In fact, fig. 2.9 and fig. 2.10 show how, increasing
the number of feature points, the relative difference increases and therefore, the
simplified model results to be much faster than the completely coupled one.

The presented results justify the choice of the simplified coupled model in the
filtering process. In fact, it shows comparable performance to the, more complex,
coupled model and it outperforms the classical, only translational, dynamical models.
In addition, it offers good computational efficiency also increasing the number of
feature points. The simulations demonstrate how this method is faster than the
completely coupled one. For an online implementation, these considerations lead to

prefer the simplified coupled model. In fact, it offers a very accurate description of
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Figure 2.10. Time variation with 6 feature points
the relative motion without any strong assumption and any additional complexity.

Moreover, its good computational performance, also with a large number of feature

points, guarantees a possible online implementation.



Chapter 3

Observation Model and Computer

Vision

The purpose of this chapter is to describe the observation model that allows to
obtain information from the collected stereoscopic images. Moreover, this chapter
presents the basic computer vision algorithms to recover information from pictures
in real applications. Both computer vision algorithm and approximated model used
for numerical simulations are analysed. In fact, without any experimental data, it
is necessary to build a measurement model to approximate the actual information

provided by a real sensor.

3.1 Stereoscopic Camera Model

3.1.1 Pinhole Camera Model

To describe how camera works, it is first necessary to explain how lenses work.
They use refraction to produce images of objects. To better understand the image
formation, the Ray Diagrams are introduced. A Ray Diagram, helps to interpret the

path of the light through the lens. Figure 3.1 shows an example of Ray Diagram.
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A

Figure 3.1. RayDiagram

Looking at fig. 3.1 it is possible to understand how an image formed by a convex
lens is described by the lens equation:
1 1 1
7 + > = ? (3.1)
where Z is the distance of the object from the lens, z is the distance of the
image from the lens and f is the focal length that is the distance of the focus from
the lens. If the aperture of the lens decreases to zero, all rays are forced to go
through the optical flow centre. This is one of the most important assumptions
of the pinhole camera model. This is a model that mathematically describes the
relationship between the 3D coordinates of a generic point and the 2D coordinates
of its projection onto the image plane of the camera. As already said, it is assumed

that all light travels through an infinitely small hole and is projected onto an image

frame. Therefore, no lenses are used to focus light and distortion is not considered.

Z

X

image plane

principal axis f

camera
centre

Figure 3.2. Pinhole Camera Model

Looking at fig. 3.2, a derivation of how the coordinates of the point x = [u,v], in
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the image plane, depend on the coordinates of X = [X,Y,Z] is provided. Exploiting

a simple rule of similar triangles, the following expressions are obtained:

X
cu=rz
Y
cv=lz

In this thesis it is assumed to have two cameras forming a stereo rig.

Figure 3.3. Stereo Camera Configuration

In fig. 3.3 the configuration and the related camera frames are shown. The right
camera centre-of-projection Op is assumed to coincide with the centre of mass of the
leader spacecraft. The left camera centre-of-projection Oy, is shifted by a baseline
b along the x axis. The point Op is also the origin of the Cartesian right-hand
camera frame [X, Y, Z]. As already said, using the perspective projection model,
a points in a 3D frame is described in the 2D image plane. With this method all
the selected and tracked feature points are expressed in the 2D camera plane. For
the line-of-sight p; between a generic feature point and the leader centre of mass
(or the camera frame origin Og) holds p; = po + D(q) P;. Assuming to have a focal

length equal to 1, the following expressions are derived:
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For the right camera

up(i) = = 3.2
i) = 3:2)
Zi
vp(i) = — 3.3
i) = 2 33)
and for the left camera
ur(i) = (3.4)
Yi
Zi
vp(1) = — 3.5
1) = 2 3.5)

where p; = [z, y;, z;] in the camera frame. We can also define wg = [ug vg| and

Wi = [UL UL].

3.1.2 Optical Flow and Image Velocity

Further information can be recovered from the acquired images, exploiting the
optical flow. In this work, a general image sequence of 3D scenes is collected. It is
assumed that both camera and observed object are moving. Each tracked feature
point moves along a 3D path that can be projected onto the image plane as shown
before. This 2D path p(?f) = (u(t),v(t)) has an instantaneous direction given by
the velocity w; = dp/dt. Collecting the velocities of all the visible points, the 2D
motion field is reconstructed. The optical flow approximates the motion field from
the information of the time-varying image intensity. Without entering into the
details of the computation of the optical flow, knowing the approximated images
velocity, it is possible to relate this information to the translational and rotational
motion. In [49], [50], [51], [52] different formulations of the relation between the 3D
motion and the optical flow are derived. In particular, in [49], a simple equation to
describe this relation is formulated. Reviewing the physics of rigid-body motion
under perspective projection, an equation relating the 3D motion to image velocity

is derived. First, the velocity of any feature points can be written as

Pi=po+wxp; (3.6)

In the 2D plane, it is necessary to differentiate the egs. (3.2) to (3.5) to obtain
an expression of the image velocity in the 2D image plane for both right and left
camera wWg;, Wr;. Then, substituting these in eq. (3.6), we obtain an equation
connecting the images velocity to the relative translational and rotational velocity

between the camera and the observed object. This relationship is expressed by the
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following equations:

Yi w
and
: 1 Po
Yi w
with
1 0
A= { wl] (3.9)
0 1 Wo
and

B = (3.10)

-1 - w22 w1W2 w1

—wWi1W2 14 U)12 —’UJQ]

where w; and w, are the first and the second component of the vector w.
This is an approximation and, for real applications, the optical flow must be

recovered.

3.1.3 Disparity

The first main challenge in a stereoscopic system is to find the correspondence
between points in different images. In other words, it is necessary to determine the
different location of the same point in the left and right image plane respectively.

The resulting difference is called disparity and it is defined as:

di = Uy, — UR (311)

With disparity it is possible to reconstruct information about the depth. The
human brain does something similar, interpreting the difference in retinal position. In
stereo vision applications, this can be performed exploiting the so called triangulation.
Equation (3.11) shows how disparity and depth are inversely related. Considering the
disparity for each pixel, a disparity map is obtained. This map provides information
about the 3D coordinates of each point in the space from 2D images. In fig. 3.4
the disparity is computed using MATLAB. The left and right images, on top, are
overlapped in the bottom figure. The yellow arrows correspond to the differences of

the same detected feature points in the two images.
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Figure 3.4. Disparity Example
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3.2 Computer Vision Algorithm

In real applications, a way to extract information from images must be found. It
is necessary to analyse images and produce numerical information from the real
world. Computer vision completes this task. It started out in the 1960s and 1970s
and nowadays is widely used in many fields. In this section, few simple algorithms

are presented.

3.2.1 Feature Extraction and Matching

The first and very important aspect to take into account in computer vision is to
detect feature points and match them in images taken from different locations. In
our case, points have to be extracted from images taken by two cameras separated
by a baseline. Once the points are detected, it is necessary to match them between
the couple of images. First of all, there are many ways to detect feature points. In
this work, the MATLAB Computer Vision System Toolbox is used. It has different
embedded feature extraction functions. The most used is probably the Speeded
Up Robust Features (SURF) method proposed in 2006 by Bay [53]. The main
characteristic of this method is that is very fast with respect to previous detection
methods. Using author’s words: It approzimates or even outperforms previously
proposed schemes with respect to repeatability, distinctiveness, and robustness, yet
can be computed and compared much faster. This is achieved by relying on integral
images for image convolutions; by building on the strengths of the leading existing
detectors and descriptors (in casu, using a Hessian matriz-based measure for the
detector, and a distribution-based descriptor); and by simplifying these methods to
the essential.’

Another method, proposed by Rosten [54], is the Features from Accelerated
Segment Test (FAST) algorithm. It uses a different approach, detecting corners.
The main advantage is that this method has good computational efficiency and
outperforms other similar corner detector methods such as the one presented by
Harris-Stephens [55]. Finally, the Maximally Stable Extremal Regions (MSER)
method is considered. It was firstly presented by Matas at al [56]. This is a technique
for blob detection in images. It extracts a number of different regions that are
'stable connected component of some gray-level sets of the image’. In other words, it
collects regions that have same characteristics, fixing different thresholds. With the
MATLAB Computer Vision Toolbox, all these three methods can be used to detect
feature points. The sample image is a picture of the asteroid 243 IDA recorded by
the Galileo flyby. In fig. 3.5, fig. 3.6 and fig. 3.7 results using the three different

methods are presented.
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Figure 3.5. Surf Detected Points

Figure 3.6. MSER Detected Regions
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Figure 3.7. FAST Detected Corners

As it is possible to see, the SURF method has better results in terms of number
of feature points and these also better cover the object surface. Two aspects are
taken into account to evaluate the best detector. First, the number of extracted
features is considered, then, the computational time is taken into account. In fig. 3.8
and fig. 3.9 the results are shown. In this case, the SURF method has better results
in terms of number of detected feature points. FAST has comparable quantity of
detected points. Instead, MSER shows poor performance. MSER results to be the
worst detection method also for what concern computational time. FAST has the
better computational performance. Concluding, SURF and FAST offer the best

performance in terms of features extraction and computational cost.

3.2.2 Feature Tracking

Once detected, feature points must be tracked from one frame to the following
one. This is not an easy process and implies many challenges. For example, it is not
simple to autonomously understand which point can be tracked also because some
of them could change their appearance due to rotation or different light conditions.
For similar reason, points may appear and disappear in time. To efficiently track
the features, the Kanade-Lucas-Tomasi (KLT) [57], [58] method can be used. This
approach exploits the spatial intensity gradient of two different images to find a
good match, relying on Newton-Raphson iterations. This method allows a faster

computation reducing the number of possible matches. In this section, a brief
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explanation on how this algorithm works is provided. One of the main assumptions
of KLT is that the brightness is assumed constant. In this way, the points do
not change their appearance in time. Moreover, the motion between two following
frames is assumed to be small and spatial incoherence is not contemplated. This
means that each feature moves in the same way of the others. Going into the details
of the formulation, two functions f(z) and g(z) are defined. They give, as output,
the pixel value corresponding to the point vector z in two different images. The goal
of the method is to find, in a fast way, the vector h that minimizes the difference
between f(z + h) and g(z). In a general, multi dimensional case, the Euclidean

norm of the error has to be minimized:

E = Z flz+h) —g(z)]? (3.12)

where R is the region of interest. At this point, f can be linearly approximated

by:

Flz+h) =~ haf(;i@ (3.13)
The error minimization is then written as:
oF
—— = 14
o5 =0 (3.14)
S0,
0 af 2
5 Sl @)+ s — g(a)* =0 (3.15)
that can be also expressed like:
of
5 Of 9f 1
Y25 )+ h5E — gla)] =0 (3.16)
from eq. (3.16) the expression for h can be recovered:
ofT af\"(of\ "
v |22 g - 0] [ (3) (2 (3.17

The above formulation takes into account only a translational transformation
between two different frames. To consider also complex transformations, such as

rotation, scaling or shearing, a new ¢ can be defined.

g(x) = f(xA+h) (3.18)

The matrix A expresses the linear spatial transformation between the two func-



tions f(z) and g(z). In this case, the error to minimise is different:
= Y[fwA+h) - g(o)? (3.19)
R

Again, a linearisation can be performed considering AA and Ah as small increments:

of (x)
ox

F@(A+ AA) + (h+ Ah) =~ f(xA+h) + (zAA + Ah) (3.20)

Knowing the expression for the linearised f, the solution can be find, as before,
imposing the derivative of the error £ equal zero. This leads to a set of linear
equations.

This method has been improved in the following years. In [58] a method to
select only the ’traceable’ points is developed. In [59] an algorithm to discriminate
between good and bad features was implemented. In this work, the details of these
formulations are not presented. This chapter wants only to present the available
computer vision algorithms for the feature points extraction and matching, since
no experimental validation is provided. Different methods are analysed. SURF and
FAST show the best performance in terms of number of extracted features and
computational time. They are both suitable and already used in real applications.
The goal of this work is not to develop a more efficient computer vision algorithm.
In fact, relying on the available methods is sufficient to have a fast and robust image
processing. In addition, these methods have only to extract information about the
position of the feature points in time. This is an input for the filtering process that
has to provide the relative state estimation, exploiting the available measurements.
As already said, in our work, this step is approximated by using the previously

described observation model, since no real measurement are available.






Chapter 4

Inertia Tensor Observability

Analysis

In this chapter, a non linear observability analysis is performed to test the
observability of the inertia tensor in torque free motion. With a very easy example,
it is possible to demonstrate how the inertia tensor is observable only up to a scale
factor. In fact, redefining the inertia tensor I as rI, the rotational dynamics of the

body is not influenced. Recalling the Euler equation for a general rotating body

w=T""wxIw (4.1)

replacing I with rI, the following expression is derived

w = iI_lw x rIw (4.2)
then,
W= iTI_lw x Tw (4.3)
and finally
w=T""wxIw (4.4)

eq. (4.4) shows how the inertia matrix is observable up to a generic scale factor.
This is valid only in torque free motion assumptions.
With the observability analysis, the same result will be derived in a mathematical

way.
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4.1 Non-linear Observability Analysis

The observability is defined as the ability to infer the state of a system, given
a set of measurements (external output). The first to introduce the concept of
‘observability’” was Rudolf Emil Kélman in the early 1960s [60], [61], [62]. However,
he defined the observability only for linear systems. Ten years later, different au-
thors developed theories about the observability of nonlinear systems [63], [64],
[65]. However, the most used and known method to study the observability of
nonlinear systems was presented by Hermann and Krener in 1977 [66]. In this
work, this method is used to analyse the observability of the inertia tensor, as
already done by Tweddle [28]. Dealing with linear systems, the observability is
determined from the rank of the observability matrix or observability Gramian
matrix, depending if the system is time-invariant or time-varying. Thus, for linear
systems, the observability is a global property. On the other hand, for a nonlin-
ear system, the observability must be determined locally about a certain state.
Hermann and Krener introduced the concept of ’local weak observability’. Local
weak observability means that the states must be distinguishable only from their

neighbours. In other words, a generic nonlinear system is locally observable at xg if

I (z9) = x¢ being U every open neighbourhood of xy (note that I;(z) means that
all points are distinguishable from x as long as both trajectories lie entirely in U).

The same system is locally weakly observable at xg if exists an open neighbourhood

U of xg such that Iy,(xy) = x¢ for every open neighbourhood V of xg with V C U

Finally, a system is locally weakly observable if it is locally weakly observable at

every xg. Summarizing it in a scheme:

locally observable = observable

4 4

locally weakly observable == weakly observable

The main advantage of this approach with respect to the others is that it lends to
an algebraic test. In order to describe in a proper way this observability analysis

method, it is necessary to introduce other mathematical concepts.

4.1.1 Lie Derivatives

Lie derivatives are often used in fluid dynamics. This kind of derivative, evaluates
the change of a tensor field along the flow of another tensor field. Considering a

generic dynamical system >:

x = fo(r) + Y _fi(x)u (4.5)
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y = h(x) (16)

being x the state vector, y the vector of the observed outputs of the system and
u the vector of control inputs. The Lie derivative L¢h(x) of a function h(x) with
respect to f(x) is:

mezgﬁmﬁf (4.7)

and recursively for the higher-order terms derivatives L/ = L¢(Ly " h(x)).

4.1.2 Inertia Observability Algebraic Test

As already said, Hermann and Krener introduced an algebraic test to evaluate
the observability of a nonlinear system. Considering the previously defined system
>, the vector subspace ) can be defined. This is the smallest vector subspace
containing h; with j=1,...,n, closed with respect to Lie differentiation by f, and f;.
At this point, the observability matrix O can be defined. O is composed by the

gradients of the Lie derivatives of €
O =VQ (4.8)

Evaluating locally the rank of this matrix, an observability analysis is performed.
If O has full column rank at xg, then X satisfies the observability rank condition
at xo. This means that the system is locally weakly observable at xq. If O has full
column rank for all x, then ¥ is weakly observable and satisfies the observability
rank condition generally.

At this point, the Hermann and Krener test is applied to our problem. Let’s
consider the Euler’'s Equation of Rotational Motion for our target under the

assumption of torque free motion (we omit the label T for simplicity):

Lw, = (I, — I)wyw, (4.9)
Lw, = (I, — I))w,w, (4.10)
L, = (I, — I))wyw, (4.11)

Defining the state vector as:
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x = (4.12)

the dynamics of the system can be defined. The dynamics of the inertia com-
ponents is null because, under the assumption of rigid body, they are constant in

time.

(4.13)

Y= |wy (4.14)

This is because the observability of the inertia components has to be evalu-
ate knowing the evolution in time of the angular velocity w. At this point, the

observability matrix O can be computed. O has maximum rank when it is defined as

VL h
VIL/h

(4.15)

With a simple algorithm, it can be computed that the rank of the matrix O is five.
However the state vector has six components. This leads to the conclusion that
one of the six degrees of freedom is unobservable. Another important quantity to
evaluate is the null space of the matrix . This subspace is called unobservable
subspace. The states lying in this set will generate identically null input response.

In fact, the null space of a generic matrix A is defined as N such as:

Ay =0 (4.16)



where y € N

In our case:

null(O) = B (4.17)

Analysing this matrix, the last three terms are non null. This confirms that the
inertia matrix is observable only up to a scale factor. This result implies that, in
torque free motion condition, the relative dynamics can be propagated correctly

also without knowing the single components of the inertia matrix.






Chapter 5
Estimation Methodology

In this chapter, the selected estimation methods are analysed and compared. In
particular, the Extended Kalman Filter and the Iterated Extended Kalman Filter
are described. The differences between these two methods are underlined and the

motivation, justifying the final choice, is provided.

5.1 Extended Kalman Filter

The Kalman Filter was firstly developed by Rudolf E. Kalman in 1960’s [67].
However, a similar algorithm was developed by Thorvald Nicolai Thiele [68] and
Peter Swerling [69] many years before. Kalman proposed a recursive solution to the
discrete-data linear filtering problem. This set of mathematical equations provides a
solution to this kind of problem in a very computationally efficient way. This is one
of the reasons why it was used several times in real applications, such as the Apollo
navigation computer. It is erroneously thought that Kalman Filter only deals with
Gaussian uncertainties. The first Kalman’s paper, instead, referred to a generic
case and only later was demonstrated that in the Gaussian case, the Kalman Filter
provides an optimal solution. Another important characteristic of this filter is that it
supports estimations of past, present and future states. Moreover, it can also be used
in applications in which the dynamical model of the system is not well-known. In
the linear case, it is modelled on a Markov chain built on linear operators perturbed
by Gaussian noise. At each time step, the new state can be predicted using a linear
operator with noise and eventually a control input. Then, another linear operator,
generates the measurement output from the unknown state. Noise can be added
also to this output. Therefore, the Kalman Filter could be, in a certain sense,
analogous to an hidden Markov model. The only differences is that Kalman Filter

is applicable for continuous state variables. Knowing the system and measurement
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dynamics, the statistical information about the noises, measurements errors and
uncertainties in the dynamical model and the initial conditions of the state, the
filter is able to estimate the current value of the variables of interest. Another aspect
of the Kalman Filter is that it is a recursive process. This means that, especially in
practical implementations, it has not to store all the previous data but it always
processes new measurements. The Kalman Filter can, in this way, statistically
minimize the error of the state combining the actual available measurements and
the prior knowledge of the system. However, this approach involves some basic
assumptions. As already said, the classical Kalman Filter is used only with linear
system. Moreover, the noise is assumed to be white. This means that the noise
value is not correlated in time and that its power is equal for each frequency. This
would imply that the noise has infinite power and this is not applicable to any
real case. The reason why this assumption is still used is that any physical system
having a certain ’bandpass’ frequency can be driven by the wideband noise. This is
a noise having constant power within the system bandpass. This means that the real
wideband noise can be approximated with a white noise within a certain frequency
interval. The third assumption is that the noise has to be a Gaussian distribution.
This is justified by the fact that measurement noises are usually generated by
many different small sources. This is exactly the case when multiple independent
variables are added together. In these cases, the summed effect can be described as
a Gaussian probability density function. Of course, from the practical point of view,
both 'whiteness’ and 'Gaussianness’ assumptions imply using simpler mathematics
and therefore faster algorithm. Nonetheless, many real-world applications use non-
linear models for describing the system or the measurements. Linear models are
only a purposeful way to approximate and describe more complex systems. However,
developing an estimator on the basis of a wrong model is dangerous. In fact,
depending on the tuning, the filter can be affected much more by the output of the
internal model than by the input given by the real-world measurements. There are
different techniques that allow to deal with a non-linear system. Some compensation
techniques, such as pseudonoise or artificial bounds for the error covariance matrix
elements, help to describe in a proper way a non-linear system using an approximate
linear model. There are also other filtering techniques that use a better description
of the true system describing it as a non-linear model. These approaches are the
Linearised and the Extended Kalman Filter. These concepts are introduced by
Maybeck [70] in the early 1980’s. In this work, the analysed and used method is
the Extended Kalman Filter (EKF). The EKF is a way to overcome the problems
arising from the approximation of the system dynamics with a linear model. The

general idea is to use a non-linear description of the system model and linearise
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this model about the state estimation for each time step. In this way, as soon as a
new estimate is predicted, a linearised, more accurate state trajectory is available
in the estimation process. Remembering that the linearisation process involves the
assumption of small deviations from the reference trajectory, this can be ensured
by incorporating this updating of the reference trajectory in the estimation process.
Let’s assume that our process is governed by a non-linear stochastic differential

equation. This equation can be expressed in non-linear state-space as:
x = f(x)+w (5.1)

where x is the state vector, f(x) is a non-linear function describing the model,
depending on the state and w is a random zero-mean white noise. The related

power spectral density matrix is given by:
Q = E[ww’] (5.2)

In the same way, a measurement equation can be defined as a non-linear function

| z=h(x)+v (5.3)

and

R = E[vv'] (5.4)

with v being the measurement noise. The non-linear function h(x) relates the state
x to the measurement z. For systems in which the measurements are discrete, the

measurement equation can be written as:

VAR h(Xk) + Vi (55)

As already said, the system and the measurement equations are non-linear. This
implies that a first-order approximation has to be used in the continuous Riccati
equations for the systems dynamics matrix F' and the measurement matrix H
respectively. These two matrices are the Jacobian of partial derivatives of f and h

with respect to x:

of(x)
F="5 (5.6)
 Oh(x)
H= =" B (5.7)
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The fundamental matrix for the discrete Riccati equations is approximated by
the Taylor-series expansion for ef2* and can be expressed as:
F’A?  FPAP
®, = I+ FAt + o + al + ... (5.8)

where At is the sampling time. In general, the Taylor-series expansion is approxi-

mated with only the first two terms:

&), = I+ FAt (5.9)

It has been demonstrated that adding more terms to the series does not signifi-
cantly improve the performance of the filter[71]. In the following steps, the EKF

estimation procedure is summarized.

Assume to have the knowledge of the last state estimate x(k|k)
Linearize the system dynamics around x(k|k)

Apply the EKF prediction step to the linearized system dynamics to obtain x(k+1|k)
and P(k + 1|k)

Linearize the observation dynamics around x(k + 1|k)

Update the state applying the filtering cycle to the measurement model to obtain
x(k+1lk+1)and P(k+ 1|k +1)

The mathematical formulation is therefore derived. First of all, it is necessary to
update the state x and the covariance matrix P from the previous step £ to the

current time step k+1. This step is called prediction.

%(k + 1|k) = %(k|k) + /k )t (5.10)

P(k+ 1|k) = ®,P(k|k)®," + Q (5.11)

where @, is defined in eq. (5.9) and @ in eq. (5.2). Once obtained the predicted
state, the updated state can be recovered. This step is the updating or filtering

cycle.
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The filter gain K can be obtained and then the state and covariance matrix

updated:

K(k+1) = P(k+1|k)H" (k+1)[H(k+1D)P(k+1/k)H" (k+1)+R(E+1)]7" (5.12)

(k4 1k +1) = %(k + k) + K(k + ) [ype1 — hper Xk + 1]E))] (5.13)

P(k+1k+1) = I—K(k+ D)H(k + 1)]P(k + 1|k) (5.14)

With this step, the state and covariance matrix estimates are compared and
corrected with the measurement y,,. Figure 5.1 offers a complete picture of the

EKF mathematical formulation.
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|
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Figure 5.1. EKF Scheme

The EKF algorithm is presented:

It is important to underline that the estimation of the EKF is not optimal as the
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Algorithm 1 EKF
1: Initialization: X¢g = x¢, P = Py
2: for k=0,...,n do
3: State prediction: %(k + 1|k) = %(k|k) + [i! f(x(t))dt

4: Jacobian matrix of the process: F = %(xx)
T=Ep 41
5: Transition matrix: ®;, = I+ FAt
6: Covariance prediction: P(k + 1|k) = ®,P(k|k)®," + Q
7 Measurement prediction: h(x(k + 1|k))
8: Innovation evaluation: z(k + 1) = y(k + 1) — h(X(k + 1]k))
9: Jacobian matrix of the observation model: H = 8’5—(;‘)

T=Tk+1

10: Innovation covariance: S(k) = H(k + 1)P(k + 1|k)H" (k + 1) + R(k + 1)
11: Kalman Filter gain: K(k + 1) = P(k + 1|k)H” (k + 1)[S(k)]*

12: Updated state: X(k + 1|k + 1) = x(k + 1|k) + K(k + 1)[z(k + 1)]

13:  Updated covariance: P(k+ 1|k +1) = I - K(k+ 1)H(k + 1)|P(k + 1|k)

one provided by the linear Kalman Filter. Its implementation, in fact, is based on a
set of approximations. Another difference is that the filter gain and the covariance
matrix cannot be computed off-line. In fact, F, H, K and P are evaluated knowing
the last estimate of the reference state. In this way, the equations for propagating
and updating the estimation covariance matrix (5.11, 5.14) are coupled to the
state estimate expression. As already said, this makes impossible to pre-compute
the matrices P and K without the knowledge of the actual state estimates and
measurement values. Looking at eq. (5.12), another observation can be done. In
the expression of the Kalman filter gain, the Jacobian H is present. This term
allows to propagate or magnify only some relevant components of the information
contained in the collected measurement. In fact, in a simple case in which the
measurements do not have a direct correspondence with each component of the
state, the Jacobian H will magnify only the measurement components affecting the
state. For what concern the evaluation of the performance, the analysis of the a
priori covariance performance is not sufficient. In general, it is necessary to rely on
a Monte Carlo analysis. This approach is conducted to investigate the behaviour

and the performance of the filter.

5.2 Iterated Extended Kalman Filter

The presented Extended Kalman Filter, is a widely used, powerful estimation
method. As already said, it is used in applications with a behaviour described by

non-linear models. However, there are some real cases in which also the measurement
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equation can be highly non-linear. In the Maybech work [70], there is also a reference
to an [lterated Eztended Kalman Filter (IEKF). With this method, for each time
step, local iterations and re-linearisation are performed on the updated reference
state. In this way, at a fixed time k, the new state update is computed with the
eq. (5.13) and this value is used as a better state estimate for evaluating h and
computing the Jacobian H. Knowing the following value of h and H, the new
state update can be computed. This iterative process can be stopped when the
difference between two consecutive values of the state estimate is smaller than a
fixed tolerance or after a fixed number of iterations. Also in this case, a simple

scheme and the algorithm are presented.

Fy
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Figure 5.2. IEKF Scheme

The described algorithm outperforms the simple EKF re-computing, iteratively,
h and H to obtain a better state estimate X(k + 1|k + 1). This, of course, leads to
have better estimation also in the future steps. Despite the iterative cycle, the filter
maintains its simplicity and computational efficiency. In this thesis, both IEKF
and EKF are used and compared. The classical formulations are used because they
result to be robust and reliable. However, as described in the next chapter, new

tools are introduced to estimate the inertia tensor using a proper parametrization.
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Algorithm 2 TEKF

1: Initialization: Xg = x¢, P = Py
2: for k=0,...,n do

3:

4:

10:

11:

12:
13:

14:
15:

State prediction: %(k + 1|k) = %(k|k) + [FT f(x(t))dt

Jacobian matrix of the process: F = %ﬁ:‘)

=%k 11

Transition matrix: ®;, = I+ FAt
Covariance prediction: P(k + 1|k) = ®,P(k|k)®:." + Q
for j=1,...mdo
Measurement prediction: k7 (x(k + 1|k))
Innovation evaluation: z’(k + 1) = y(k + 1) — #/ (x(k + 1]k))

Oh(x)
ox

Jacobian matrix of the observation model: H/ =

T=T41
Innovation covariance: S(k)’ = H’(k + 1)P(k+1\k)HjT(k+ 1)+R(k+1)
Kalman Filter gain: K’ (k + 1) = P(k + 1|k)H" (k + 1)[S7 (k)]
Iterated state: /T (k + 1|k + 1) = %/ (k 4+ 1|k) + K/ (k + 1)[27 (k + 1)]

Updated state: x(k + 1|k + 1) = x(k + 1|k) + K(k + 1)[z(k + 1)]

Updated covariance: P(k+ 1|k +1) = I - K(k + 1)H(k + 1)|P(k + 1]k)




Chapter 6

Stereovision-Based State and

Inertia Estimation

This chapter deals with the estimation of relative position, velocity, angular
velocity, attitude and inertia ratios of a space object, without any a priori information.
As already specified, the inspector spacecraft is defined as leader and the unknown
object is the target. The only available data are provided by two cameras placed on
the leader. This problem is described by non-linear equations for the observation and
process model. For this reason, EKF and I[EKF are used. The purpose of this work
is to design a robust filtering algorithm, capable of dealing with real application
uncertainties. In addition, a new approach to estimate the inertia ratios is derived.
In fact, a pseudo-measurement equation is added to the observation model, to
constrain the inertia ratios. Hence, the idea is to use an approach that does not
need any geometrical knowledge of the object. This implies less data to handle
and better computational efficiency. In this chapter, a mathematical formulation of
the problem is presented. Dynamical and observation model are explained and the
approach to estimate the inertia ratios is introduced. Then, numerical studies and

their probabilistic results are shown.

6.1 Mathematical Formulation

6.1.1 Assumptions and Notation

First, the assumptions of this formulation are summarized. The spacecraft and the
space object are assumed to orbit around the Earth. A new leader/target notation
is introduced to better describe the faced problem. The leader is assumed to collect
and track N feature points on the target. In addition, from different frames in

time, it can recover information about the optical flow and therefore, about relative



6.1 Mathematical Formulation 86

angular and translational velocity. The reference frames are assumed to be the same
as the ones described in chapter 2 but, for clearness, they are here recalled.

The standard Earth-centred, inertial, Cartesian right-hand reference frame is
indicated with the letter Z. £ is the local-vertical, local-horizontal Euler—Hill (LVLH)
reference frame. It is fixed to the leader spacecraft’s centre of mass, the X unit
vector directed from the spacecraft radially outward, z normal to the leader orbital
plane, and y completing the frame.

It is assumed to be aligned with J, a Cartesian right-hand body-fixed reference
frame attached to the leader spacecraft’s centre of mass.

Finally 7, a Cartesian right-hand body-fixed reference frame centred in the target
spacecraft’s centre of mass. It is also assumed that this frame is coincident with
the principal axis of inertia.

The notation that is used in the formulation is now presented. The vector pg
is the vector connecting the leader centre of mass with the target centre of mass,
expressed in the leader frame. Analogously, p; can be defined as the position vector,
in the leader frame, between the leader centre of mass and the feature point P;.
Consequently, po and p; are the translational velocities of the target centre of mass
and of a generic feature point, expressed in L. The relative angular velocity is
expressed as w. This vector is the difference of the angular velocities of the leader

and target respectively, expressed in the leader frame:

w=wrlr—wilc (6.1)
The relative attitude is described using the rotation quaternion q = [qy, ¢, ¢, ¢3]*

where the first component is the scalar part and the other three are the vector one.

6.1.2 Process Model

Once the fundamental parameters are defined, the problem is formulated, starting
from the dynamical or process model. The classical formulation for the dynamical

model in a Kalman Filter dealing with non-linear equations is:
x = f(x) +w(t) (6.2)

where x is the state vector, f(x) is a non-linear function describing the process
and w is a random zero-mean white noise.

In our case, the state vector is defined as:

X = [pga pga wTa qu PiT]T (63)
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This is a 13 + 3N elements vector where N is the number of feature points. This
is the reason why it has been decided to use a simplified dynamics instead of the

completely coupled one. In that case, the resulting state vector is:

XCoup = [ng pgu p?7 p?u wTv qT7 PiT]T (64)

This is a 13 + 9N elements vector. In cases with a large number of features
points, this can lead to poor computational performance and additional complexity.

At this point the dynamical model can be reviewed. As already said, the relative
dynamics is described using a set of non-linear differential equations. Moreover, the
translational and rotational behaviour are decoupled. This set of equations is given
by egs. (2.9) to (2.13), (2.15) and (2.27).

The motion of the feature points can be defined as :

P;’L = P;|T+ w X P?F’L =wX PiT’[, (6.5)

This is expressed in leader frame. However, the dynamics of the feature points is
simpler if expressed in the target frame. In fact, due to the rigid body assumption,
a feature point cannot change its relative position with respect to the target centre

of mass. This leads to:

Pyl =0 (6.6)

Summarizing, the function f(x) is implemented as:

fi(x) = 24 (6.7)
fo(x) = x5 (6.8)
f3(x) = 6 (6.9)
— 9 g ; plre + 1) H
f4(X) = 2’[9L[E5 + 19Ll’2 + ’19%1'1 + [(TL n 331)2 n x22 n x32]% + ? (610)
f3(x) = =20 24 — Vpay + 72y — T (6.11)

[(re + 21)% + 2% + 1’32]%
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<) = — HTs . 6.12
f6( ) [(TL+[E1)2+ZE22+CL’3Q]§ ( )

f2(x)
fs(x)| = D(x)I7' [Nz —D(x,)" (x+wr) x1D(x,)" (xy+wr )] —wr xx,— 17 [N —wr | xI1x,]
fo(x)
(6.13)
fio(x)
Q;ES — L Qe )D(x,) (614
f13(X)
f14(X)
fis(x)| =0 (6.15)
fi6(x)

with x, = [937, Is, 939]7 Xqg = [3310, T11, T12, 3?13]-

6.1.3 Observation Model

The observation model has been already discussed in chapter 3. This paragraph
summarizes the main equations used in the observation model. As previously
explained, it is possible to extract information about the position of a generic
feature point in a 3D space and project it in the 2D image plane. Considering
the cameras configuration as in fig. 3.3, the perspective projection is computed as
described in egs. (3.2) to (3.5).

Another information that is possible to extract is related to the image velocity.
In fact, exploiting the expression of the optical flow, a relation, depending of p and
w, can be recovered. Equations (3.7) and (3.8) describe this relation.

The disparity can also be computed using eq. (3.11).

It is important to underline that, in reality, cameras collect images at a given
sampling frequency. Using two subsequent frames, the optical flow can be estimated
and the image velocity computed. However, in the presented observation model, it

is assumed that the information about the image velocity is recovered at each time
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step. In addition, a set of feature points is chosen and it is assumed that they are
always in the view of the cameras. Therefore, according to our assumptions, the
initial set of points is always traceable. At each time step, the discrete measurement
vector provided by the cameras is:

Z; = [Wpi, Wi, Wi, Wi, d;] (6.16)

Therefore, the observation equation is:

Z; = h(x)+ v(t) (6.17)

with v being a random zero-mean white noise and h(x) given by:

z;—b
Yi
i
h(x) = xT—b —a (6.18)
11Po
iA(wRJ B(sz)
- -l W
[ 11Po
- -l W

6.1.4 Estimation Procedure

The widely discussed EKF and ITEKF are used to estimate the state. Knowing
the process (6.2) and measurement (6.17) equations and using the algorithm 1 and
algorithm 2, the state, expressed by eq. (6.3), can be estimated. The EKF is a
very powerful tool and it has been extensively used in real time applications for its
computational efficiency and simplicity. However, the estimation accuracy depends
on many factors. First of all, initial conditions play a determinant role on the
convergence of a Kalman filter. These are usually random conditions, determined

by a probability density function that depends on the initial covariance matrix. The
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first value of the covariance matrix, must be chosen in a realistic way to take into
account the real possible uncertainties on the initial state. This can significantly
affect the convergence and performance of a filter if it is not robust enough. In
addition, the process and measurement covariance matrices must be tuned in a
proper way. This is particularly important dealing with EKF. In fact, with the
classical Kalman Filter, it is possible to have conditions in which both the process
Q and measurement R noise covariance matrices are constant. In addition, it is
not rare to find processes and measurements described by constant matrices F and
H. In this case, the error covariance P and the Kalman Filter gain K will stabilize
and remain constant. So, it is possible to pre-compute all the parameters running
the filter off-line. Dealing with non-linear processes and with variable noise, this
procedure is not applicable. For this reason, a good tuning of the matrices R and Q
must be done. Unfortunately, there is not a rule of thumb for tuning the covariance
matrices. This is a matter of experience, but simple considerations can be done. The
noise measurement covariance matrix R can be defined in a simple way, knowing

the accuracy of the sensor. In fact, by definition,
R = E[vv'] (6.19)

where v is the noise associated to the measurements. This is true in linear applica-
tions, when a real sensor is present. In theory, R could also be assessed performing
off-line sample tests on the measured signal. Therefore, it is usually chosen according
to the value of the imposed measurement noise v and to the value of the filter
innovation. Whereas, the tuning of Q is in general more difficult. With a good
tuning, acceptable performance can be obtained also using a simple and poor model
for the process. In this work, different simulations are performed to validate and

prove the robustness of the presented algorithm.

6.2 Inertia Ratios Estimation

In the previous section, an estimation procedure is discussed. However, for the
presented model, an a priori knowledge of the inertia matrix is necessary. This is
not a realistic assumption since we are dealing with a completely unknown and
uncooperative space object. To overcome this contradiction, an estimation of the
basic inertial properties is necessary. A torque free motion is assumed. Moreover,
no contact condition is imposed and therefore a known torque on the target object
cannot be applied. In torque-free motion conditions, the non observability of the

complete inertia matrix has been already discussed. Thus, two parameters are
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sufficient to represent the inertia matrix. With a parametrized inertia matrix, the
motion can be propagated in the correct way. However, no geometrical or mass
properties can be recovered. On the other hand, inertia components remain constant
in time, under rigid body assumption, and no direct measurements are available.
For this reason, a method to improve the filter accuracy and convergence has to be
developed. This chapter provides a description of the chosen inertia parametrization

and introduces an approach for the inertia components estimation.

6.2.1 Inertia Parametrization

It has been proved that, given an angular velocity trajectory w(t), the inertia
matrix has only two observable degrees of freedom. This leads to the conclusion
that the inertia should be re-expressed using only two parameters. In literature,
only few works deal with the inertia matrix parametrization. Different approaches

and formulations are used. Writing the Euler equations as:

Wy T Wy (6.20)
I —1I,
wy = WaW; (6.21)
]y
I, -1
W= = Y Wy, (6.22)

= 6.23
P T (6.23)
I—1,
Py =7 (6.24)
Yy
I —1
pe=—5— (6.25)

This is the formulation used by Aghili [72]. The first observation is that, with this
parametrization, the number of parameters is larger than the number of degrees of
freedom. For this reason, one of the three parameters can always be expressed by
a combination of the other two. In addition, from a physical point of view, these

parameters are subjected to the following constraint:
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Iz - I:B
Py = > 1 (6.27)
[y
I, —1
p. = Ty > 1 (6.28)

This is a strong constraint and it is not a reasonable formulation in applications
dealing with a Kalman Filter. In fact, the initial value of these parameters has
to be random, according to a Gaussian probability density function. Usually, this
kind of distribution does not have any kind of constraint and it has an infinite
physical domain. For these reasons, this formulation is not used in our work.
The paper by Lichter [23], discussed in the literature review, proposes a different
parametrization. He exploits the quaternion q = [qo, q1, g2, ¢3]7 to parametrize

the inertia components. In particular, defining three parameters as:

2 2(q1g3 + ¢2q0)
Z2| = 2 (q293 + q190) (6.29)
73| |0” — @’ - 0 - gs?

the inertia matrix can be expressed as a combination of 21, 2o, 23:

I, = |2| + || (6.30)
I, = |z | + |25 (6.31)

Also for this formulation, the four parameters used to parametrize the inertia
matrix are more than the two degrees of freedom. In addition, also if this formu-
lation does not have any explicit constraints, for certain quaternions, the matrix
components can assume values with no physical meaning. For example, the classical
unit quaternion q = [0 0 0 1]7 leads to a value of 0 for the z component of the
inertia matrix. Of course, a diagonal component of the inertia matrix equal to zero
has no physical sense. Another approach was introduced by Tweddle [28]. This

formulation introduces only two parameters:
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by = m(j) (6.33)

Yy

ky = In (?) (6.34)

This is the only formulation, so far, that relies on the minimum number of
parameters. Additionally, these two parameters can be properly assumed to be
Gaussian random variables. In fact, k; and ks do not have any additional constraints.
The inertia ratios have to be greater than zero and they can be each value up to
infinite. This is a consistent parametrization because the natural logarithm has the
same validity domain. After this short review of different parametrizations present
in literature, the obvious choice is the last one. In fact, this formulation seems to be
the most robust and consistent for our implementation. The only critical condition
is for ki and k5 extremely high. In fact, when the value of the two parameters tends
to infinite (the Gaussian distribution tends to zero), one of the inertia components
tends to an extremely small value. This is physically not acceptable but, it is also
clear that this condition is highly uncommon for a Gaussian distribution maximized
by k1 and ks equal to zero. Using this parametrization, the target inertia matrix

can be expressed as:

00 e 00
Ir=10 1 0/=]0 1 0 (6.35)
00 0 0 e

At this point, these two parameters must be estimated by the filter. Therefore, a

new augmented state can be defined as:

x=1[py, o, @', " P, ki, ko]” (6.36)

Also the dynamical model is different. In fact, the parametrized inertia matrix
will substitute the previous value of the target inertia matrix in the rotational

dynamics expression. Additionally, two equations for k; and ko are considered.

Ok,

Oky
il (6.38)

Equation (6.37) and (6.38) are valid under the assumption of rigid body motion
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and without considering any mass variation.

Considering conditions with low relative angular velocity, the filter will not
converge properly to the exact value of the inertia ratios. In order to improve
the convergence and the accuracy of the inertia ratios estimation, a novel concept
is introduced. An equality state constraint is used to improve the inertia ratios

estimation and convergence.

6.2.2 Equality Constraint

In this paragraph, a brief review of the current methods to introduce an equality
constraint in the Kalman Filter formulation is addressed. It has already said that
the EKF, in general, is not necessarily an optimal estimator. In same cases, a
constraint given by the physics or geometry of the problem can be known. In that
case, it can be reasonable to exploit this additional information to modify the
Kalman Filter. To achieve this goal, several approaches exist. Some of them are the
model reduction method, the pseudo measurement method, the estimate projection
method and the system projection method. The most used and reliable are the
first two. The model reduction method was introduced by Wen-Durrant [73]. This
approach tries to reduce the order of the system model parametrization. In this
way, a constraint filtering algorithm can be reduced to an unconstrained problem.
Moreover, the dimension of the obtained model is lower and this could result in better
computational results. However, this approach is not always applicable in cases
with non-linear system dynamics. In addition, the physical meaning associated
to the state can be lost. The pseudo measurement method, instead, exploits a
perfect measurement to include the equality constraint. Many papers deal with this
formulation in literature and [74], [75], [76] are only few examples in which this
method is discussed. Adding a pseudo measurement, consists in including eq. (6.39)

in the observation model.

I(x) =0 (6.39)

In this way, no real measurement is added. In fact, the output of this equation is
zero. However, in this way, a constraint on the state is automatically imposed. It
has to be noted that the measurement noise associated to the pseudo measurement
is zero. This means that also the associate covariance is singular. In this thesis, the
pseudo measurement method is used to estimate the inertia ratios. This approach
has been widely used in different fields (health analysis [77], economic systems [78],
biomedical systems [79], robotics [80]).

Going into the details of our formulation, the measurement model is augmented
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with an additional equation. This leads to:

Z;, = [WRi7 Wi, WRi, WLi, 0] (6-40)
and h(x) becomes:
i
zi—b
Yi
zi=b _ z
h(x) e (6.41)
11Po
- lw
[ 11Po
- lw
LUT -+ IT_I(QJT X ITU)T)

The last term of eq. (6.41) is the new pseudo measurement. It is the classical
Euler equation for the rotational dynamics of the target. A fundamental aspect to
take into account is that in the pseudo measurement equation, the target angular
acceleration is present. Information about this quantity have to be recovered from
the actual measurement. However, with knowledge of wy, w; and w, there is not
an analytical expression independent on I; to compute wy. This implies that the
angular acceleration of the target has to be measured. With the knowledge of the
optical flow, the value of w at each time step can be recovered. Then, a numerical
differentiation can be performed to find the relative angular acceleration. The
problem is that the measure of w is affected by noise, therefore, the numerical
differentiation will not be accurate. Dealing with derivative of a quantity affected
by errors is common in many scientific fields. For this reason, several methods
to compute numerical derivative of noisy data exist. In our work, since no real
measurements are available, the value of w is obtained by adding noise to the
quantity available from the real dynamical model. For completeness, some of the
differentiation methods are described in appendix B. Once the relative angular

acceleration is recovered, the target angular acceleration has to be computed.
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Knowing that, in the leader frame:

w :DQT—wL—wL X W (642)

the target angular acceleration can be easily computed as:

wr =D Mo+ wp + wp X W] (6.43)

The measurement on w has been introduced with the pseudo-measurement and
not as direct measurement, to directly correlate the angular acceleration to the
target inertia ratios. Moreover, since the numerical integration can amplify the
errors, in this way, an eventual poor measurement will only affect the inertia

components estimation and not the other quantities.

6.3 Numerical Simulations

In this section, an evaluation of the performance and robustness of the filter
is presented. Monte-Carlo simulations are performed for different values of the
initial error covariance and initial relative position. Each simulation is performed
considering a satellite and an object in low Earth orbits. In particular, the leader
orbit is known. It is assumed that the orbit of the leader has eccentricity e; = 0.05,
semi-major axis ar, = 7170 km, inclination i;, = 15 deg, argument of the perigee
w = 340 deg and right ascension of ascending node 2 = 0deg. According to our

parametrization, the leader inertia is

083 0 0
Ir=10 1 0 |kgm? (6.44)
0 0 1.083

In addition, two parallel cameras, in a stereo configuration and pointing in the
same direction are mounted on the leader spacecraft. The baseline between the
cameras is assumed equal to 1 m. Moreover, only five feature points are supposed
to be measured. This is an extreme case, in fact, more than five points are usually
visible and detectable. However, this condition may occur when the object is not
properly illuminated or if it is too bright. Additionally, considering only a small
number of points, the robustness and convergence of the filter are tested also with
poor available measurements. With few points to be tracked, the computational
efficiency of the algorithm is improved. The detected features are assumed to be
spread over the body of the target with a distance from the centre of mass in the

order of 1.5m. This can be varied according to the dimension of the target object.
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After defining the initial condition for the leader orbit, the state has to be

initialized. The initial state vector is:

XO:[p07 p07 w, qp, PTiy kl, kQ] (645)

This vector will be defined for each simulation. At this point, the filter parameters
have to be selected. In particular, the covariance matrices Q, R, P have to be
chosen. As already said, R represents the noise of the measurement and it can
be determined knowing the sensor accuracy. Q has to be selected to ensure the
convergence of the filter. Finally, the initial value of P, the error covariance matrix,
represents the uncertainties in the initial estimation of the state. In fact, the initial
value of the state for the filter is computed with the MATLAB function mvnrnd.
This function has as inputs the value of the mean and the corresponding covariance.
As output, it produces a random vector from a multivariate normal distribution,
having the selected mean and covariance. In our case, the mean is the real value of
the initial state and the covariance is the initial error covariance P.

For the initial random value and for each time step, the quaternion is normalized.
According to algorithm 2, after the initial condition initialization, the predicted
value of the state has to be computed using the dynamical model. Therefore,
equations from eq. (6.7) to eq. (6.15) are implemented in MATLAB. The function
ode45 is used to integrate the set of equations for each time step. Then, a centred
difference method is used to compute the Jacobian of the process model. With
this value, the transition matrix is computed and the new error covariance is
predicted. The transition matrix is computed using the MATLAB function expm
that computes the matrix exponential of a given matrix. At this point, a while
cycle is used to implement the iterative procedure of the Iterated Extended Kalman
Filter. A tolerance equal to 0.01 and a maximum number of iterations equal to 10
are used. For the observation model, the eq. (6.41) is solved and linearised with
the same approximate method. The noise of the measurements is modelled as a
zero-mean Gaussian with standard deviation of 107°. The munrnd function is used
to generate it. Finally, the filter innovation, innovation covariance and gain are
iteratively computed and state and covariance are updated. In our simulations, a
time step of 1 second is used and the total time of the simulation is 100 seconds.
The general scheme of the algorithm is presented in fig. 1.3. The computed errors

are defined as:

ep =/ (pe = p,)* + (py = p,)* + (p: = p.)? (6.46)

with e, being the error of the estimation of the centre of mass. In this notation,
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p denotes the estimated value of p.

In the same way the relative translational velocity error can be defined:

e =\ (pe = £,)* + (by = p,)* + (= — p.)? (6.47)

And the relative angular velocity error:

o = (W —w,)? + Wy — w,)? + (w: — w,)? (6.48)

For k; and ks the error is simply:

e = (k1 — ky)? (6.49)

er, = 1/ (ko — ky)? (6.50)

The attitude error is defined in a different way. In fact, quaternion can be considered
as a four-dimensional vector space. For this reason, the operations with quaternions

have a different form. Recalling the definition of the inverse of a quaternion:

4 q
T = gl (6.51)

where q* is the conjugate of q, the error quaternion is equal to:

q.=q®q " (6.52)

The symbol ® is defined as the product of two quaternions. Given two quaternions

q=qo+iq +Jjg + kas (6.53)

t =t + ity + jto + ki3 (6.54)
their product is equal to

r =71y +ir; + jro + krs (6.55)

with
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o = (toqo — t1q1 — t2ga — t3q3) (6.56)
1 = (toq1 +t1qo — tags + t3q2) (6.57)
Ty = (toqz + t1q3 + tago — t3q1) (6.58)
r3 = (togz — t1qa + taqa + t3qo) (6.59)

Finally, the attitude estimation error can be defined as:

eg = 2c08 " (qe,) (6.60)

where in out notation, ¢, is the scalar part of the error quaternion.
In the following examples, the performance of the filter is analysed. Several Monte
Carlo simulations are discussed with different initial values of covariance matrix

and initial conditions.

6.3.1 Case A

In the first case scenario, the filter is tested with the following initial conditions:

po = [10, 60, 10] m

po = [0.01, —0.0225, —0.01] m/s
wo = [—0.1, —0.1, 0.034] deg/s
q = [0, 0, 0, 1]

For this case, a small covariance matrix is used. Having small values for the
covariance matrix means to have small uncertainties on the initial state. This is,
in general, not true in real applications with unknown and uncooperative objects.
However, this assumption should guarantee better filter performance. The covariance

matrix P is given by:

5,2 0 0 0
0 oy 0 0
p_|0 0 o 00 (6.61)
0 0 52 0 0
0 0 op? 0
(0 0 0 0 o

with:

o,2=1[1, 1, 1]- 107 m?
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o2=1[1, 1, 1]- 107" m?/s?
o,2=[1, 1, 1]- 107" deg?/s*
o2=1[1,1,1,110°
op?=11, 1, 1]-107t m?

o2 =[1, 1]- 107!

For this case, 100 simulations are considered. The mean relative errors after 10
seconds are evaluated according to egs. (6.46) to (6.50) and (6.60). The results are
analysed using histograms. In a table are then summarized the maximum error
values for 100, 90, 70 and 50 percentiles. To evaluate the different performance of
the two filters, for each simulation, the error difference between IEKF and EKF is

computed as:

dif = epxr — €IEKF (6.62)

In this first case, the error trend for a single run, using the IEKF, is presented to

show the general convergence trend of the filter.
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The presented results show robust convergence in all the analysed simulations.
In particular, in fig. 6.1 the error relative to the position of the centre of mass is
between 0.2 and 0.35 m in most of the cases.

Very good results are obtained for the relative angular and translational velocity
in fig. 6.1 and fig. 6.3. This is probably connected to the fact that the optical flow
equation is exploited.

The relative attitude is always difficult to estimate in a proper way and with
good convergence. Figure 6.4 shows poor convergence of the relative angle error.
The error tends to remain close to the initial value.

The two inertia ratios have good convergence thanks to the imposed equality
constraint. Note that the results relative to the component of the state Pr* are not
reported. In fact, P does not represent any physical quantity of interest. In fact,
in a real application, we could be interested in the evaluation of p;. This quantity
depends not only on Pz’ but also on py and on the relative attitude.

All the obtained results present oscillations. This is due to different factors. In
fact, the IEKF tolerance and the maximum number of iterations can influence the
errors trend. In addition, the time step for the linearisation of both measurement
and process model plays a role. Of course, also the measurement and model noise
can affect the error behaviour.

In table 6.1 , the results are summarized.

Table 6.1. State Errors - Case A

Percentiles p[m| plm/s] wldeg/s] O[deg] ki[—] ka[-]
20 0.27 0.0063 0.0035 0.29 0.033 0.022
70 0.31 0.0067 0.0036 0.33 0.043 0.026
90 0.36  0.0079  0.0038 0.41 0.06  0.031
100 0.51 0.0092 0.0041 0.62 0.1 0.045

The results presented so far, are produced only with the IEKF. Histograms in
fig. 6.7, describe the relative error, as defined in eq. (6.62).
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The histograms fig. 6.7 show that, in this case, the difference between EKF and
IEKF is small. The EKF presents convergence in almost all the simulations with
results comparable to IEKF. Due to the non-linear measurement equation of k; and
ko, larger differences are present for these two parameters. It is possible to conclude
that, in this case and with this particular tuning, IEKF performs slightly better
than EKF.

6.3.2 Case B

In the second case scenario, the filter is tested with the same initial conditions of
the Case A:

po = [10, 60, 10] m

po = [0.01, —0.0225, —0.01] m/s
wo = [—0.1, —0.1, 0.034] deg/s
q = [0, 0, 0, 1]

Different values for the covariance matrix are used. The components of the
covariance matrix are assumed to be larger. This is done to represent a more
realistic situation. However, with larger initial uncertainties, the filter can diverge

more easily. Recalling eq. (6.61), the components of the covariance matrix P are:

o, =11, 1, 1] m?

o2 =11, 1, 1] m?/s?
0,2 =11, 1, 1] deg?/s*
o2=11,1,1,1] 107
op? =11, 1, 1] m?

012 - []-7 ]-]

These values better describe the uncertainties in a real application. The proba-

bilistic results for 100 runs are here presented.
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The presented results still show robust convergence in all the analysed simulations.
However, as expected, a small increase of the relative error of position, attitude
and inertia parameters is present. The obtained error values are summarized in the

following table for different percentiles.

Table 6.2. State Errors - Case B

Percentiles p[m| p[m/s] wldeg/s] 0[deg] ki[—] ka[-]
20 0.51 0.0062 0.0035 0.49 0.067 0.037
70 0.64 0.0067 0.0036 0.61 0.13  0.051
90 0.73  0.0073  0.0039 0.77 024  0.23
100 0.90 0.011 0.0043 0.87 0.53  0.23

Also for this case, the difference between the error given by IEKF and EKF
are compared. From fig. 6.14, the general trend shown in Case A, is confirmed.
The TEKF performs slightly better than the EKF. In addition, in this case, in few
simulations, a large difference is present. This means that the EKF is not stable as
the IEKF and it tends to diverge with particular initial conditions and covariance
values. The divergence is particularly large in the error of the inertia ratios. This
is due to the fact that the pseudo measurement equation is non-linear. Therefore,

consistently with the theory, the EKF poorly performs in this condition.
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6.3.3 Case C

In this third case, the initial conditions are the same of the previous cases:

po = [10, 60, 10] m

po = [0.01, —0.0225, —0.01] m/s
wo = [—0.1, —0.1, 0.034] deg/s
q, =10, 0, 0, 1]

High initial uncertainties are imposed on the position and translational velocity.

Recalling eq. (6.61), the components of the covariance matrix P are:

o, =11, 1, 1]-10 m?
o2 =11, 1, 1]- 10 m?/s?
0,2 =1, 1, 1] deg?/s*
o2=[1,1,1, 1107
op? =11, 1, 1] m?

012 = []—7 1]

In this case, the trend of the errors and the differences between EKF and IEKF

are similar to the previous cases. For this reason, only a summarizing error table is

presented.

Table 6.3. State Errors - Case C

Percentiles p[m| p[m/s] wldeg/s] 0[deg] ki[—] ko]
20 0.55 0.0078  0.0035 0.6 0.064 0.034
70 0.6 0.0084  0.0037 0.75 0.1 0.045
90 0.74 0.0095 0.0038 0.89 0.22  0.078
100 091 0.019 0.0039 0.97 0.7 0.19

Table 6.3 shows how the filter can handle, in proper way, high values of uncer-

tainties for position and translational velocity. Good convergence is shown in all

the simulations.

6.3.4 Case D

In this fourth case, the initial conditions are different, in particular, a closer

target is considered. So, the initial conditions are:

po=[2.7, 16.8, 2.5 m
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po = [0.01, —0.0225, —0.01] m/s
wo = [—0.1, —0.1, 0.034] deg/s
qO = [07 07 07 1]

And the components of the covariance matrix P are:

0,2 =11, 1, 1] m?

o2 =11, 1, 1] m?/s?
0,2 =1, 1, 1] deg?/s*
o2=[1, 1,1, 1]-107°
op? =[1, 1, 1] m?

0'[2 = [1, 1]

The results are very similar to what obtained before. Therefore, only histograms

are presented.
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This result shows how, changing the initial conditions on the relative position,
does not affect the filter convergence. For completeness, the table 6.4, with the

simulations result is proposed.
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Table 6.4. State Errors - Case D

Percentiles p[m] plm/s] wldeg/s] 0ldeg] ki[—] ko|-]

20 0.49 0.0039 0.0038 0.64 0.048 0.03
70 0.6 0.0042  0.0039 0.76 0.09  0.044
90 0.8 0.0052  0.004 0.88 0.22  0.077
100 0.96 0.0068 0.0044 1.1 0.48  0.27

6.3.5 Case E

In this case, it has been decided to remove the equality constraint. In this way, the
filter performance is evaluated without a precise knowledge of the inertia properties.

The initial conditions are the ones used for the Case B:

po = [10, 60, 10] m

po = [0.01, —0.0225, —0.01] m/s
wo = [—0.1, —0.1, 0.034] deg/s
q, =10, 0, 0, 1]

For the covariance matrix, a smaller value is assumed for the inertia ratios.

o2 =11, 1, 1] m?

o2 =11, 1, 1] m?/s?
0,2 =11, 1, 1] deg*/s*
o2=[1,1,1, 1107

op? =11, 1, 1] m?
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o 02 =1, 1]/2

With these assumptions, the following results are obtained.
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The filter is robust and converges in almost all the runs. For the position and
translational velocity error, the behaviour does not change. This is because the
translational dynamics is not affected by the rotational one. The angular velocity
and attitude has comparable results to the previous case. As already said, the filter
can properly operate also with dynamics that do not describe in the proper way the

process. Because of the measurements of the angular velocity, the behaviour, given
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by the wrong dynamical model, can be corrected. This is also possible because small
values for the angular velocity are considered. In fact, in this case, the inertia matrix
does not play a significant role in the rotational dynamics. From the presented
results, the inertia ratios errors seem to converge to zero. However, this is only due
to the fact that the initial covariance is small. In fact, looking at the trend of the
error in fig. 6.27 and fig. 6.28, it is clear how the error tends to be constant. This

means that the estimated inertia ratio remains constant and does not converge.
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Figure 6.27. Inertia Ratio Error
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Figure 6.28. Inertia Ratio Error

In table 6.5, error results are summarized.
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Table 6.5. State Errors - Case E

Percentiles p[m| p[m/s] wldeg/s] O[deg] ki[—] kao[-]
20 0.51 0.0081 0.0058 0.59 033  0.35
70 0.6 0.009 0.0059 0.74 0.6 0.55
90 0.77 0.011 0.0063 0.88 1.4 1.6
100 096 0.013 0.0069 1.2 3.2 2.6

6.3.6 Case F

So far, only small values for the relative angular velocity have been considered. In
this simulation, the performance of the filter without equality constraint is evaluated

in a case with larger initial relative angular velocity. In particular:

po = [10, 60, 10] m

po = [0.01, —0.0225, —0.01] m/s
wo = [—1, —1, 0.934] deg/s

q = [0, 0, 0, 1]

The value of wy is obtained increasing the value of wy. The covariance matrix is,

as before:

o, =11, 1, 1] m?

o2 =11, 1, 1] m?/s?
0,2 =11, 1, 1] deg?/s?
o2=1[1, 1,1, 1]-107°
op? =11, 1, 1] m?

o =11, 1]/2

In this case, the following results are obtained:

Table 6.6. State Errors - Case F

Percentiles p[m| p[m/s] wldeg/s| 0[deg] ki[—] ka[-]
20 0.53 0.01 0.012 1.8 0.035 0.021
70 0.64 0.013 0.013 2 0.043 0.024
90 0.76 0.017 0.014 2.2 0.069 0.032
100 0.94 0.02 0.016 2.5 0.15  0.043

These are very interesting results. The estimation of the relative position and

translational velocities is not affected by the change in the angular velocity since
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the translation and the rotation dynamics are decoupled. The relative angular
velocity and primarily the relative attitude are badly affected by this change. This
is understandable because, in this case, the time step used for the simulation can
be an issue for a good estimation of the state of a body, spinning with large angular
velocity. Moreover, in this case, the error in the estimation of the inertia matrix
affects more the dynamical model propagation. Therefore, the incorrect inertia ratios
lead to a decay in the estimation performance for angular velocity and attitude.
However, using a larger value for the target angular velocity implies better results
in the inertia ratios estimation also without the equality constraint imposed with
the pseudo measurement. Figure 6.35 and fig. 6.36 show the converging trend of

the inertia ratios:

ky

IEKF

0 10 20 30 40 50 60 70 80 90 100
Time [sec]

Figure 6.35. Inertia Ratio Error



6.3 Numerical Simulations 134

ks

0.35

IEKF

03 b

0.1

0.05

0 L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
Time [sec]

Figure 6.36. Inertia Ratio Error

This is justified by the fact that, with a larger angular velocity, the inertia matrix
affects in a stronger way the rotational dynamics of the body. Hence, the dynamical
model and the measurement equations of the angular velocity, force the inertia
ratios to converge to a ’consistent’ and exact value. This estimation can be obtained
only in torque free motion conditions, parametrizing the inertia matrix in a proper
way.

The presented results show how the algorithm, exploiting the equality constraint,
can always estimate with satisfactory accuracy the complete relative state and the
inertia components. Several simulations are presented to demonstrate the robustness
of the algorithm with different covariance matrix values and initial conditions. It
is also demonstrated how the inertia components, in the filtering process, can
converge without the equality constraint but only with a sufficiently high value for
the target angular velocity. In most of the cases, the presented algorithm shows
better results with respect to similar works. Moreover, it is able to estimate the
inertia components in a very efficient way. No previous work can do this with an

estimation procedure.

6.3.7 Computational Analysis

In this section, an evaluation of the algorithm performance is presented. In
this analysis, only the time of the filtering process is taken into account. In fact,
the information extracted from the images is assumed to be known and only the
observation model is used to process the available data. Hence, the time to extract

and track the feature points is not taken into account. The algorithm is written in



MATLAB and is not optimized for an online application. It is run on a customized
computer with an Intel Xeon E5-2609 2.5 Ghz 10Mb cache Ivy Bridge Processor
and 16Gb DDR3 SDRAM. An extensive analysis was performed, running 200
simulations. Each simulation computes the estimated state for 100 seconds using
the initial values and covariance matrix of the Case B. The computational time is

therefore measured. The histogram in fig. 6.37 shows the time of each simulations.
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Figure 6.37. Computational Time

The presented results are good for a non optimized code, running on MATLAB.
For a real application, a C++ implementation is preferable. In fact, in general, it
offers better computational performance than MATLAB [81]. In table 6.7, maximum,

average and minimum computational time are displayed.

Table 6.7. Computational Time

Time [s]
Maximum 8.5
Average 7.4
Minimum 6.89

Figure 6.37 shows good computational performance for the implemented algorithm.
As already said, this can only offer a rough idea of the computational time of the
filtering process. A more detailed analysis, considering also the image processing, is

necessary to have a realistic result.






Chapter 7
Inertia Matrix Reconstruction

In the previous chapter, the estimation process of the inertia ratios has been
shown. However, the inertia parameters, with small relative angular velocity, are
correctly recovered only if information about the angular acceleration of the target
is provided. This implies to numerically derive the available measures of the angular
velocity. They, as already said, are available from the optical flow. Numerical deriva-
tives of a quantity that is usually noisy, can introduce instabilities and produce
inaccurate results. In this chapter, on the other hand, a method to recover all the
inertia components is described, without relying on any numerical method. A video
and image process to recover mass properties is presented. This method is not
computationally efficient and, in our application, relies on free and not optimized
video/image processing software. The main idea is to collect a video or images of the
observed body. These should be taken from different points of view, to reconstruct
the whole body. From this set of images, a point cloud can be constructed according
to video processing algorithms. Once a point cloud is available, a triangulate mesh
can be built. The mesh gives us information about the geometry of the object.
At this point, an assumption has to be done. In fact, knowing the geometry, the
unknown density properties of the object do not allow a complete reconstruction of
the mass properties of the body. However, generalizing the problem, the density
can be assumed constant. This can be a very strong assumption but, many space
objects can be approximated as bodies with constant density. In addition, density
information is usually available. For example, often, for asteroids, the bulk density is
reconstructed. This, in fact, can be estimated considering grain density of common
meteorites or with different techniques. For space debris, the material of satellites
and therefore their density is, in general, known, analysing pre-launch information.
The next sections describe the reconstruction procedure, reviewing some basic

algorithms. In addition, an experimental validation is performed to demonstrate



the validity of this method also with complex geometries.

7.1 From Video to Images

The first step is to collect a video of the object. The most important aspect is to
observe the entire surface of the body. If a navigation algorithm is implemented,
the inspecting satellite can collect information from different points of view, in a
given trajectory around the unknown object. Otherwise, the video must be collected
exploiting the eventual rotation of the observed body. A video is nothing more than
a series of still pictures mounted together. The number of picture per unit time
of video is the frame rate. This must be setted in the correct way to improve the
computational efficiency. In fact, as already said, this method is not computationally
optimized and a large amount of data could be necessary to have good results.
Setting, in a proper way, the frame rate could allow to store only the necessary
amount of data. This is important in a real application. On the other hand, cameras
are cheaper, most reliable and requires less power with respect to conventional 3D

SEnsors.

7.2 From Images to Point Cloud

Once the set of images is available, this has to be processed and information has
to be extracted. The method is not very different from what has been presented
about stereovision algorithms. To obtain a point cloud from a series of images, it is
necessary to detect feature in each frame, to match these with the same feature
points seen in a different frame and to perform a bundle adjustment. The selected
free software to obtain a point cloud from a set of images is called VisualSFM
[82]. This is a software by Changchang Wu that performs a 3D reconstruction with
a structure from motion algorithm. In particular, it uses a SIFT (Scale-invariant
feature transform) [83] for the feature extraction and matching. This method works
collecting interesting points for a set of reference images. These points allow to built
a database that contains information about the possible detected feature points.
Every time a new feature is detected, it is compared to the features present in
the database to find a possible match based on Euclidian distance of their feature

vectors. From the matched features, also a subset of keypoints can be determined to



form a consistent cluster. This is done by implementing an Hough transform. The
cluster is finally subjected to a linear least square solution of the parameters of the
affine transformation, to verify the validity of the cluster. The affine transformation
is a transformation for which collinearity and ratios of distance are preserved. It
relates the motion of the model to the images. The visualSFM algorithm also
exploits a bundle adjustment. This is a process to minimize the projection error
selecting the proper 3D point positions and camera parameters. This is possible,
solving a non-linear least squares problem to minimize the re-projection error.
In particular, the bundle adjustment minimizes a cost function representing the
total re-projection error with respect to all 3D points and camera parameters. The
minimization is, in this software, performed with a Levenberg-Marquardt method.
Without entering in the details of the formulation, this software implements a
bundle adjustment that exploits the presence of multi-cores to perform a parallel
computation. In this way, the computation is faster. The output of the software are

a sparse point cloud and the position of the camera relative to each captured picture.

7.3 From Point Cloud to 3D Mesh

Having information of a sparse point cloud, a refined mesh can be computed. In
this work, the free software MeshLab [84] is used. It is an advanced program to create
and process a 3D mesh. It is developed by the italian ISTI-CNR research institute.
MeshLab allows the inspection, cleaning and rendering of a variety of 3D formats. It
is a new software but it is already widely used in the computer-vision research field.
In our work, this software is used to create a refined mesh of the object from the
known point cloud. This process is called surface reconstruction an it can be done
in different ways. Ball pivoting, Marching Cubes and Poisson’s Reconstruction are
the available algorithms in MeshLab. Our surface reconstruction is computed with
Poisson’s method. This is a powerful approach introduced by Kazhdan [85]. The
main idea is to compute a 3D indicator function y that is 0 outside the model and
1 inside. Knowing this, an appropriate isosurface from the reconstructed surface
can be extracted. To define the right indicator function, it is possible to exploit
an integral relationship between the points and the wanted function. In particular,
the normal of the points can be computed and, in this way, an information about
the ’orientation’ of the points is known. This oriented point samples can be viewed
as samples of a gradient of the indicator function. This gradient will be always
zero, except in the points close to the surface. Summarizing, the oriented points

will identify a vector field V. The indicator function X is identified as the scalar



function whose gradient best approximates the vector field V. From a mathematical

point of view, this is equivalent to solve

min,||Vx - V| (7.1)

Applying the divergence operator, this problem can be viewed as a standard

Poisson problem:

Ax=V-Vy=VV (7.2)

This means computing the scalar function xy whose Laplacian is equal to the
divergence of the vector field V.

Using this algorithm, MeshLab provides good results and the output is a refined
3D mesh. To compute geometrical properties, the 3D mesh surface must be closed
and manifold. Importing the point cloud obtained with VisualSFM, a 3D mesh can
be generated. This has to be refined to satisfy the surface constraints described

before. Finally, a 3D mesh in .obj format is obtained.

7.4 From 3D Mesh to Inertia Properties

The final step is to recover mass properties from the geometric information of the
body. In this work, a method to compute mass properties from a triangulate mesh
is used. The 3D mesh is imported in MATLAB, then an algorithm that exploits the
divergence theorem to compute the rigid body parameters, is used. In this section,

the main steps of this algorithm are presented.

7.4.1 Inertia Parameters From Triangular Surface Mesh

Assume () being a region of space occupied by a rigid body with density p.
p(x,y, z) is in general a scalar function depending on the position (z,y, z) that
describes the material density of the object in that precise point. A generalized

quantity can be introduced. It is called 3D moment and it is defined as:

Myp,qr () = /Qp(xayaz) zPytz" dQ (7.3)

Assuming to have a body with constant density, the expression is reduced to:

Mpar() = [ amyz" d2 (7.4)



Exploiting the divergence theorem, the integration domain can be changed. In

fact, knowing that:

/Q(ﬁ-ﬁ)dQ:fﬁ-ﬁds (7.5)

the 3D moment can be integrated on the surface enclosing 2. Comparing eq. (7.4)

to eq. (7.5), the following relation holds

=

V.- F =Pyt (7.6)

and from the definition of the Nabla operator

aF 1 an (9F3
D,q,T D,q,T p,qr P, 9T ?Z

Moreover, the surface S can be seen as the sum of N different small triangles T;

(the triangles corresponding to the 3D mesh). Therefore,

N N
My gr(S) = Z /T Fpgr-midS = Zmp,q,r(Ti) (7.8)
i—1 /T i=1

Since some information of the 3D mesh are the positions of vertices and faces,
this expression can be derived in baricentric coordinates. For simplicity, we avoid
this calculation. From the mesh, it is now possible to compute this general quantity
called 3D moment. From the knowledge of this value, all the main parameters can

be recovered. In fact, knowing that the volume occupied by the region 2 is given
by:

V= /Q ds) (7.9)

it can be computed utilizing the 3D moment formulation. In fact, from the definition
of 3D moment, it is automatically equal to
V = mM0,0,0 (710)

Where my is called zero moment. Knowing the volume, the position of the

centroid can be easily recovered.

dS)
Te = f}lﬂxdg (7.11)
_ Joyd® (7.12)

be =T
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And, in terms of the 3D moment:

mio,0

T, =
mo,0,0
~ Mop1,0
Ye = —
mo,0,0
mMo,0,1
Ze = ———
10,0,0

(7.13)

(7.14)

(7.15)

(7.16)

At this point, the product and moments of inertia of a rigid body in an arbitrary

frame are defined as:

I, = /Qy2 +2%dQ) = mo,2,0 + Mo0,2

Iy, = /9372 +22dQ = m2,0,0 + M0,0,2

I..= /QSB2 +y?dQ = m2,0,0 + 1M0,2,0
Iy =1, = /ny d€) = mq 1
I.=1,= /sz dQ) = mi,0,:1

Iyz - -[zy - _/sz dQ == mO,l,l

(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

However, by convention, the inertia tensor has to be defined with respect to a

frame that has its origin located in the object’s centroid. In this way, knowing the

coordinates in this frame (z/,y/, 2’), then:

=2+ .

Y=y 4y

(7.23)

(7.24)



z=2"+ 2z (7.25)

and the inertia moments and products with respect to this frame are expressed
by:

Liw. = Lz — (Y.* + 2.%) Moo (7.26)
Ly, = Ly — (22 4 2.°) Moo, (7.27)
L. =IL.— (2 + y) moop (7.28)
Loy, = Loy — TcYe Moo, (7.29)
Loze = Loz — Te2e Mo 0 (7.30)
Iy, = 1. — Yezemop,0 (7-31)

Finally substituting eqs. (7.14) to (7.16) and eqgs. (7.17) to (7.22) into egs. (7.26)
to (7.31), the final expression of the inertia tensor, function of the 3D moment is

found.

2 2
m.1,0 + M%,0,1

Loz, = Mo20 + Mooz — (7.32)
mMo,0,0
2 2
m-10,0 + M0,0,1
Ty, = Mo +mMop2 — (7.33)
mo,0,0
2 2
m=1,0,0 +1M%0,1,0
oo = Ma0,0 +Mo20 — (7.34)
m0,0,0
mM1,0,010,1,0
Loy, =m1n0 — ——— (7.35)
mo,0,0
mM1,0,0M0,0,1
Ip.y =mipr — ——— (7.36)
m0,0,0
mo,1,01M0,0,1
Iy, =mo1g — ———— (7.37)
m0,0,0

This demonstrates how it is possible to obtain inertia properties of a body, know-



ing its 3D mesh. As already said, this method is implemented in MATLAB and the

inertia properties are recovered.

7.4.2 Constant Density Assumption

In the previous formulation, constant density is assumed. In this section, an
analysis on the validity of this assumption is provided. In our work, we deal with
unknown space objects. Reducing the generality of this assumption, only asteroids
and space debris can be considered. For asteroids, their composition is not exactly
known and it usually varies with the dimension of the asteroid. They are, in fact,
considered as minor planets and the larger ones are usually planetoids. This means
that, in general, larger asteroids present an heavy metal core, a mantle and a
crust. It is understandable that in this case, the assumption of constant density
is not realistic. However, many asteroids, commonly the smaller ones, appear to
be aggregations of debris held together by gravity. In these cases, asteroids can be
seen as homogeneous solids with uniform composition. Therefore, constant density
assumption can be realistic. Moreover, different methods to estimate the density
of an asteroid exist. A brief review of the most important ones is here discussed.
A direct measurement of bulk density is possible knowing the values of the mass
and volume of the asteroid. However, information about mass and volume of an
asteroids is not easy to recover. In particular, to measure the mass of an asteroid, an
analysis of its gravitational field influence on other objects has to be done. This is
performed, studying the orbit defection during close encounters with other objects,
or with a spacecraft flyby, sending radio signal towards the asteroids and measuring
the Doppler shift to have information on its trajectory deflection. In addition, for
asteroids with satellites, their mass can be estimated analysing optical and radar
images to measure the satellite orbit. From this discussion, it is clear that, for small
bodies, the mass estimation can be very hard and lead to very imprecise results.
Volume estimation is usually done by knowing the diameter of the body. This can be
computed through measurement of the absolute magnitude, or with radiometry. The
volume estimation is, in general, available for a larger number of asteroids but it is
also less accurate. Therefore, the density accuracy, is mainly limited by the volume
measurement when a good mass estimate is present. In order to overcome the
problems in knowing the mass of smaller bodies, other indirect methods for density
estimation are available. In particular, from photometric observations of eclipses in
asteroids binary systems, some constraints are derived. They are dimensionless as

they represent ratios of physical quantities. From those parameters, estimation of the



density can be recovered. This data has been collected and different catalogues with
density information are available. For what concern space debris, more details about
geometry, mass, volume and consequently density are available. In fact, pre-launch
knowledge about material density of a satellite is accessible. For small size debris,
breakup experiments on ground can be performed and the composition of residuals
can be analysed. However, for large space debris, it is not always possible to assume
to have a body with constant density. Depending on the case, this method can
lead to considerable errors but it could be used as first approximation of the mass

properties of the body.

7.5 Experimental Validation

In this section, experiments are conducted to evaluate the efficiency of the video
processing method. Two different experiments are assessed, one with a body with a

simple geometry and another one using an object with a complex geometry.

7.5.1 Experimental Setup

A very simple experimental setup is used. The video are collected using a Sony
HandyCam HDR-CX110 as in fig. 7.1.

Figure 7.1. Sony HandiyCam HDR-CX110

It is an HD digital camcorder with a 3.1-mega pixels CMOS sensor. It has 35mm
Carl Zeiss Lens with 25x optical zoom. The HD video are collected in AVCHD



format with frame size per pixels equal to 1920x1080. The objects that are used as
samples are a 3 degrees of freedom simulator with two air bearings fig. 7.2 and a

high pressure tank fig. 7.3

Figure 7.2. 3-DOF Simulator

The video is taken moving the camera in circle around the fixed object. A video
capture lasts almost 15-20 seconds. Then, from 100 to 150 frames are extracted,
depending on the video length. These images are imported in VisualSFM, the
point cloud is generated according to the algorithms already discussed. Then, with
MeshLab and MATLAB, the mass properties can be recovered. The computer used
for the video processing is a customized one, running Windows 8. It mounts an Intel
Xeon E5-2609 2.5 Ghz 10Mb cache Ivy Bridge Processor, 16Gb DDR3 SDRAM
and a PNY Quadro K620 2Gb Video Card.

7.5.2 Case A - Simple Shape

The first experimental validation is performed taking a video of an object with a
simple shape. In particular, an high pressure tank (fig. 7.3) is used. It has a simple
cylindrical geometry with a small gauge and valves. These elements could influence
the accuracy of the mesh. From the video, frames are extracted and processed with
VisualSFM to create a point cloud. The result is shown in fig. 7.4.

From the obtained point cloud, a 3D mesh is created with MeshLab. The result
obtained from a Poisson’s reconstruction is then exported in MATLAB (fig. 7.5).



Figure 7.3. High Pressure Tank

Figure 7.4. Tank Point Cloud
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Figure 7.5. Tank 3D Mesh

The result is not perfect but it reproduces, in an acceptable way, the mass
distribution of the body. In MATLAB, the mass properties are then computed.
Assuming a constant density of 125, the matrix of inertia expressed in principal

axis is:

67.31 0 0
I=| 0 7951 0 |kgem? (7.38)
0 0 2757

The 'real’ value is computed using a CAD model of the tank. In SolidWorks, the
inertia tensor is computed, assuming the same constant density of 1-%5. The result

is:

85.3 0 0
Isw=1]0 8534 0 |kgem® (7.39)
0 0  26.67

The errors for the single components are:

er,, =10.5% (7.40)
er,, = 7.3% (7.41)
er,. = 3.4% (7.42)

These results demonstrate that it is possible to estimate in a quite accurate way

the inertia properties of a body using visual reconstruction.



7.5.3 Case B - Complex Shape

In this second experiment, a video of the 3-DOF simulator is processed. Figure 7.6
shows how complex is the shape of this object. In particular, the tanks are fixed with
a perforated structure supported by four thin rods. It is very difficult to detect and

model, in an accurate way, these elements and the wires present on the structure.

[—

Figure 7.6. 3-DOF Simulator

As already said, the first step is to extract frames from the video. Figure 7.6 is

one of them. Using VisualSFM, a point cloud like the one in fig. 7.7 is generated.

Figure 7.7. 3-DOF Simulator Point Cloud

From fig. 7.7, it is possible to see how the real shape of the object is not clearly

represented. In the bottom part, all the elements are not precisely reconstructed. In



the upper part, only the two tank regulators are clearly detectable. After processing
this point cloud with MeshLab, generating a mesh and refining it, the result is

much more accurate.

Figure 7.8. 3-DOF Simulator Mesh

Figure 7.8 shows a 3D mesh object with texture. This is a very good result,
considering how poor was the initial point cloud. The base is still rough and all
the details of the air bearings are lost. However, the average result is more than
acceptable.

At this point, the matrix of inertia of this refined mesh has to be computed. The
imported mesh in MATLAB appears like fig. 7.9

Using the previously described algorithm, the following results are obtained.

Assuming a constant density of 1-%;, the computed inertia matrix of the body is:

79549 0 0
I=| 0 8507 0 |kgem? (7.43)
0 0 978.07

In order to compare this result with a ’real’ value of the inertia matrix, the
SolidWorks model of the 3-DOF Simulator is considered.
For simplicity, the wires are not reproduced in the model. Solid Works computation

of the inertia matrix, imposing the same constant density equal to of 125, is:
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Figure 7.9. 3-DOF Simulator Mesh in MATLAB

Figure 7.10. 3-DOF Simulator CAD Model



675.65 0 0
Isw=1| 0 787 0 |kgem? (7.44)
0 0 819.33

Considering the error for the single components, the results are:

er.. = 17.7% (7.45)
er,, = 8.7% (7.46)
er.. = 19.3% (7.47)

However, as already shown, in torque free motion, the ratios are sufficient to
propagate the motion. For this reason, an evaluation of the error on the ratios is
performed.

In this case, the relative errors are:

er,, =8.1% (7.48)

er. = 9.6% (7.49)

These results show how it is possible to obtain good inertia properties estimation
only with camera measurements. However, this method is highly dependent on
light conditions and observability of the body. This could be a key factor in space

applications because, not always, favourable conditions are present.



Chapter 8
Conclusions

The main goal of this work was to develop an estimation procedure for the relative
dynamics, capable to outperform the current methods present in the literature.
Moreover, the algorithm should estimate the inertia parameters without relying on
any 3D reconstruction procedure. In this way, the classical computational problems
related to the image processing could be avoided. This thesis has proposed a new
algorithm for estimating the pose, motion and inertia properties of an unknown,
uncooperative space object. An IEKF and an EKF are used to estimate the relative
state, exploiting the measurements collected by two cameras installed on the leader
spacecraft. These sensors are selected since they are passive, highly reliable and
have a low power consumption. On the other hand, the Extended and Iterated
Extended Kalman filtering procedure have been chosen to guarantee simplicity and
velocity but also accuracy and robustness. The IEKF appears to be more reliable
with respect to its not iterated version. For this reason and also because it does not
add any additional complexity, it is preferred to the EKF. An equality constraint is
introduced to estimate the inertia properties of an object rotating with low angular
velocity. It is included in the filtering procedure exploiting a pseudo-measurement
equation, added to the observation model. However, this constraint can introduce
numerical errors. For this reason, it has been demonstrated how, without this
pseudo-measurement constraint, also the inertia ratios estimation converges with
good results for certain values of the target angular velocity. In addition, it has
been shown how the inertia properties can be reconstructed with a video processing
procedure. In fact, the geometrical properties of a body can be reconstructed
collecting multiple frames in time. In this way, imposing constant density, the
mass properties of the observed object can be reconstructed. Several numerical
simulations are assessed to test the filter in different conditions and with different

covariance values. The obtained results show good convergence and robustness



and outperform similar works available in the literature. Moreover, a preliminary
computational analysis has been proposed. Simplicity and good computational
performance are guaranteed. For the video processing procedure, experimental
results are provided. The developed method allows good estimation of the inertia
components of objects with both simple and complex shape. In this way, it has
been demonstrated how this procedure allows for an offline approximation of the

inertia matrix.

8.1 Review of Contributions

This work introduces some research contributions that are summarized in this

section.

The presented algorithm estimates relative translational and rotational dynamics,
attitude and inertia properties assuming to use only stereo-vision. In the literature,
no previous works estimate all these quantities without simplifying the relative

dynamics or relying on different, more sophisticated sensors.

Good results are obtained with different initial conditions. In particular, with a
proper parametrization and adding a pseudo measurement constraint, the ratios
of the inertia tensor components can be estimated also with a low target angular

velocity.

The pseudo measurement constraint needs the knowledge of the angular acceleration
of the target object. This is obtained by a numerical differentiation. This procedure
can introduce large errors. In order to avoid this, a video processing procedure
is presented and experimentally validated. Good results are obtained also with

complex shape objects.

8.2 Future Work

The next step of this work is the experimental implementation of the presented
algorithm. This has to be optimized and eventually implemented with C/C++ to
improve its computational performance. Moreover, an efficient computer vision
algorithm has to be developed in order to extract useful information from the
images in real applications. In our work, no perturbations are considered. A future
step is to introduce orbital perturbations in the dynamical model. Another aspect

that can be improved is the filtering process. EKF and IEKF perform linearisation



that can affect the convergence and the performance of the filter. For this reason,
an Unscented Kalman Filter (UKF) can be used. It uses an unscented transform
to select sigma points around the desired mean. These points are then propagated
without any linearisation and the covariance and the mean can be computed. Using
this kind of filter could lead to better performance. The video processing procedure
was implemented using free available software. For a real application, different
tools has to be exploited or an ad hoc algorithm has to be developed. At the
end, for an on-orbit implementation, many different aspects have to be taken
into account. In particular, the lighting conditions can affect the computer vision
algorithm and therefore the extracted measurements. Also the relative distance
plays an important role in this sense. An evaluation on how the distance affects
the estimation has to be done. In fact, this method could not be used for very far
or very close objects. Concluding, this work shows how it is possible to estimate
relative quantities in an autonomous way using only stereo-vision measurements.
However, for a real application, in order to have a reliable system for every faced
conditions, using additional sensors could result in a significant improvement of the

estimation results.






Appendix A

EKF Derivation

This chapter presents the formal derivation of a discrete EKF. The procedure is

divided in two steps, prediction and filtering.

A.1 Prediction

Supposing to have a Gaussian probability density function
plar|Y1*) ~ N (2 —ne®, V') = N (xy — 2(k[k), P(k[k)) (A1)

with 7% and V" being respectively the mean and the covariance matrix of the
probability density function p.

Knowing the non-linear system discrete dynamics,

Ty = fr(@n) + wy (A.2)

and applying the Bayes law [86], the conditional probability function p of xj44

given Y;* can be expressed as:

P |V2") :/ P |ze)p(ae Y1 ") day (A.3)

and can also be written as:

paialVi) = [ pu (e = filw)planVi)da, (A4)

with
1

e%(xchrl*fk(mk))TQk71($k+1*fk(zk)) (A5)
(2m) 2 [det Q]

Py, (xk+1 - fn(xk» =

N



Because of x; has a non-linear form, the probability density function is not
Gaussian. At this point, the function fy(x3) can be linearised around the mean ng,

neglecting higher order terms. Introducing the Jacobian of the function as:

Af (zx)

F. = A.6
nr
the linearised form of f is:
felwr) = fre®) + Filyglox —ne"] (A7)
defining a variable s, as:
sk = fr(nF") = Filnene"] (A.8)
the new linearised expression for the system dynamics is:
Tl = Fk|'f]ka + wg + Sg (Ag)

Equation eq. (A.9) represents a linear system, with s, being a term depending
on previous value of the state estimate with null conditional expected value.
Substituting eq. (A.7) in eq. (A.4), the probability density function can be

re-written as:

Pz V1) = / Py (Trr1 — Filyprr — s1)p (x| Y1 F)day, (A.10)

and knowing eq. (A.1),

p(rp|V2F) = / N (@pi1 — Frlypr — sk Q)N (2|15, V") day, (A.11)

At this point, a change of variable can be introduced.

It is also possible to evaluate the mean and the covariance of the vector ry:

Elq] = F.E[x] = Finge® (A.13)

Elgrqr"] = FeVe' BT (A.14)

Considering the probability density function expressed as eq. (A.5) and the



introduced quantities, the following expression can be derived:

1 1 Ty, —1
N (20 — k7 Vik) — _ . e 2@k=nr)" VP~ (zk—1F) A.15
= V) = o T den Vil (A19)

multiplying by Fj. and its inverse and manipulating the expression, yields:

1 1 T 1
N T — k’ Viek) = _ e~z (Fkar—Finr)" Fi Vi B~ (Fray—Finr) A.16
( Uia F ) (27r)§[det VF]% ( )

and again:

e*%(Fkxk*FkﬂF)TFk Vi Fy =N (Fozr—Fenr)

1
N (z—np", Ve*) = det F; . .
(e, Vir) = det B et o v LT

(A.17)

So it is possible to recover the following expression:

N (g — np®, Vi¥) = det BN (Fray, — Fyne® F Ve FLY) (A.18)

Once the eq. (A.18) is known, this expression can be substituted in eq. (A.11) to

obtain:

Pz |Vi¥) = /_oo N (@p1 — Fyag — s, Q)N (B, — Fi, Ve B d(Fray) (A.19)

and from the previous equation,

plzrn|Yi") = / N (@1 — sy Qi) * N (zg, — Fine” F Ve BT (A.20)

The symbol * represents the convolution of two functions.

The final value of the probability density function therefore is:

p(re1 V%) = M@ — Fxne® — s, Qr + Fi. Ve FLT) (A.21)

n

This probability function has mean 7z" and covariance Vp". Then, with the

linearisation of the dynamics around the mean 7" the p(xk+1|Y1k ) at the new step

k+1 k+1

is obtained. This probability density function has mean np"" and covariance Vp

These two values are respectively:

np" = fu(ne®) (A.22)



and

VP = Qi+ F Vi R (A.23)

These values are the predicted state estimated and the associated covariance
obtained by the EKF prediction step:

2k + 1)k) = nptt (A.24)
P(k +1|k) = VpH (A.25)
or also
2k +1k) = ful@(k]k)) (A.26)
P(k+1|k) = Qi + F), P(k|k)F},” (A.27)

A.2 Filtering

For the filtering step, the measurements at time instant £+1 have to be used to up-
date the probability density function p(z;.1|Y1") and therefore obtain p(zj,|Y1*™)

The Bayes law can be again recalled:

k
ety = PO e p (Vi) (A.28)

Y,
p(Tra V1 (V)

from the knowledge of the measurement equation

Yer1 = Pier1 (Tag1) + Uk (A.29)

the probability density function of y;.; conditioned on the state xp,; is:

1
(27) % [det Ry1]2

03 W1 =i (@rg1) " Rier ™ (k1 — b1 (2641)) (A.30)

P(Yrt1|(Tr11)) =

as already done for the dynamical model, it is possible to define the Jacobian of

the measurement equation and perform a linearisation.

H, = (k1) (A.31)
8xk+1 np



Linearising hjy1(zp,1) around np**t and ignoring high order terms yields:

P (Trg1) = bt (0p") + Hilop (201 — np" ] (A.32)

therefore, the linearised observation equation is:

Ye+1 = Hp1Zegr + U1 + T (A.33)

with 7.1 being

Pher = b (np"*Y) — Hypanp™™! (A.34)

The equation eq. (A.33) may be considered a linear equation and therefore, it is

possible to compute the related probability density function p(ygi1|(zx41)) as:

P(Yrs1](@h41)) = Nk — o1 — Hip1 g5 R (A.35)

Using a similar transformation to what done for the prediction cycle, the proba-

bility density function can be expressed as:

pyp1|V1¥) = det RN (Hyp 1751 — Hepnp™ ' Hed Ve Fron ") (A.36)

Multiplying eq. (A.35) and eq. (A.36), the following expression is obtained:

Pk | (@r41)) PYrsa Y1) ~ N (Hyga 21 — 1, V) (A.37)

with p and V being the mean and the covariance matrix. Their expression is:

p=H Vo Hy T (H Ve ™ Hg D 4 Ryt =71 + Ynsd] (A.38)
+ Ryt (Hyp1 V" Hyd U + Ri) ™ Hyamp™ ™

V = Hy VPP Hy T (Hy VM Hyd '+ Risn) ™ Ri (A.39)

Recalling the expression of r1 in eq. (A.34) and substituting it in eq. (A.39),

the following expression for u is derived:

p=Hy VpF Hy T (H VPR Hd ' + Rid) 7 H=hies 0P + Hyamp"™ ™ + 2504
+ Ryp1 (Hy VM Hy ™ + Rk+1>_1Hk+l77Pk+l
(A.40)



that can also be written as:

= Hy Ve +(He V™ Hi " (Hie il VP Hie "4+ Ricd) ™ [ykn—hiesn (0™ )]
(A.41)

It is also known that:
N (@1 — p1, V1) = det Hp ) N (Hpp1@p41 — 1, V) (A.42)

comparing eq. (A.42) with eq. (A.37), the following expression for y; is obtained:

g = 0" AV T Hy T (Hy Ve i T+ Ric) ™ s =l (np™41)] (AL43)

Therefore it is possible to conclude that:

77Fk+1 = UPkH + VPk+1Hk+1T(Hk+1VPk+1Hk+1T + Rk+1)71[yk+1 - hk+1(77pk+l)]
(A.44)

and for the covariance matrix:

V = Hpp Ve Hy o © (A.45)

k+1

this has to be solved relative to Vg and therefore:

Het Vo " Hy ' = Hy o Ve " Hy " Ris ™ Hid Vo W Hid T + Hy Ve T Hy 1y *
(A.46)

or also,
VFk+1 _ Vpk-l—l[[ + Hk+1TRk+1Hk+1VPk+1]_1 <A47)

Recalling the lemma of the inversion of the matrices, the following expression
can be derived:
Vel tt = VR — vt iy TRy Hy VM T Hyod ' Hy o VPP (A.48)

So, in conclusion, having information of the measurements y;,; and linearising

the observation model around the mean np*™! = #(k + 1|k), the result is a Gaussian



probability density function p(zp4q|Y1*™) with mean 7" and covariance matrix
V"1 At the end, exploiting the derived equations, the EKF is summarized.
First of all, the non-linear equations for the system and the observation model

can be written in a linear form:
z(k+1) = F(k)x(k) + wg + sy (A.49)
y(k + 1) = H(k + Dalk+ 1) + vess + i (A.50)
The prediction is given by:
2k + 1|k) = fu(2(k|k)) (A.51)

P(k+1|k) = F(k)P(k|k)F (k)" + Q(k) (A.52)

And the update consequently is:

K(k+1) = P(k+1|k)HT (k+1)[H(k+1)P(k+1|k)H" (k+1)+ R(k+1)]"" (A.53)

2k +1k+1) = 2(k + 1|k) + K(k + Dlyesr — hosr (2(k + 1|k))] (A.54)

Pk+ 1k +1) =Pk +1]k) — P(k+ 1k)H" (k + 1)[H(k + 1)P(k + 1|k)H" (k + 1)+
R(k+ )] "H(k+1)P(k+1)
(A.55)

Equation (A.55) can also be written as:

Plk+ 1k +1) = [I — K(k+ ) H(k+ 1)]P(k + 1|k) (A.56)






Appendix B

Differentiation of noisy signal

In this appendix, a brief survey of differentiation methods is presented. In
particular, approaches that handle noisy data and signals are described. These
methods are used with a set of data. In an online implementation, the sampled
data set could be determined by a shifting windows that takes only the last N
values of the signal that have to be differentiated. The general problem is to find an
approximation of the derivative of a generic smooth function ¢ in the interval (a,b),
knowing data points belonging to this function in the same interval. In particular, an
approximation of the function ¢ has to be determined. This approximated function
f can be differentiated to obtain a value d that approximates the derivative of the
original function g¢.

From the mathematical point of view, the data set can be seen as:

yi = g(x;) +v; (B.1)

where v; is the noise contaminating the function g. The fitting function f can be
seen as a random variable and therefore, the mean squared error can be defined at

each point as:

ex = El(g(w:) — f(:))’] (B.2)

Many different methods are developed to solve this problem. In this appendix,
only few of them are presented.

B.1 Least Squares Polynomial Approximation

This method consists in fitting the set of data with a sequence of polynomials

f and solve a least square problem. For these polynomials, a value of the order



o has to be selected. It is the smallest value for which the residual norm is lower
than a fixed tolerance. The approximated value d is therefore the derivative of the

function f.

B.2 Tikhonov regularization

This method introduces a regularization term in the formulation of the least
square problem. This term improves the conditioning of the ill-posed problem. In
particular, the value g(a) (where a is the left bound of the domain of interest)
is known and the function g is described in the Sobolev space H**!(a,b). The

approximated problem is:

Ad = / d(t) dt (B.3)

From the knowledge of d, the function f can be easily computed as the integral
of the function d.

The system can be also represented in a discrete way:

Ad=9 (B.4)

where ¢ is the difference between y and g(a).
The problem in eq. (B.4) is ill-conditioned and therefore, a regularization factor
is added.

E(d) = ||Ad - §I]* + of|D d||* (B.5)

The regularization factor is composed by a nonnegative parameter o and from
the differential operator D. Depending on the order, various expressions of the

differential operator are possible. The general solution to this problem is:

(A'A+ aD!'D)d = A% (B.6)

Many others numerical approaches exist. They exploit splines, convolutions and
other methods to approximate the derivative. In this work, only the most famous

and reliable numerical methods are presented.



B.3 Tracking Differentiator

Another different approach was proposed by Han [87]. He introduced the concept
of tracking-differentiator. This is a tool that allows to filter a noisy signal and to
compute its derivative. It outperforms numerical differentiation methods in many
online applications.

The basic idea is to describe a system that, given a reference noisy signal y(t),
provides two signals y; and y, such that y,(t) = y(t) and ya(t) = y(¢)

This is equivalent to solve the system:

() = ya(?)
Ya(t) = f(y(1), y2(1))

If this system satisfies lim; oo (y1(f) y2(t)) = 0, then for any bounded function

(B.7)

v(t) and any constant 7" > 0, the solution of the system in eq. (B.8),

U1(t) = ya(t)

(B.8)
ia(t) = R () — o(t), 2
satisfies
Jim [l (6) = o(e)ldt = 0 (B9)

This system represents a nonlinear tracking differentiator. One of the feasible

systems is represented by the following expression:

U1 = Y2

Vo = —Rsat(y; — v+ 7?’22'1%2‘, )

(B.10)

With R and ¢ being two tuning factors, respectively velocity and filtering factor.

Additionally, sat is a nonlinear saturation function expressed by:

sgn(A), |A| >0
sat(A, o) = (B.11)
5 1Al <o
As already said, R and ¢ can be properly tuned in order to achieve certain
performance. In particular, with a large value of ¢ the noise tends to decrease. Large

value of R, instead, implies faster transition and tracking.
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