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Sommario

L’elaborazione di segnali di parlato è un ambito di ricerca di grande interesse
oggigiorno. Questo è dovuto alle sue eccezionali applicazioni, volte a migliorare la
qualità di molti dispositivi. I metodi di separazione di segnali di tipo parlato sono
impiegati in sistemi di elaborazione del parlato. In applicazioni reali, i metodi di
separazione devono far fronte alla mancanza di informazioni a priori sul numero
di sorgenti e sulla loro posizione nella scena acustica. Questo problema è noto in
letteratura come Blind Source Separation (BSS). Noi proponiamo un approccio
al BSS basato su una rappresentazione plenacustica. Questo approccio codifica
l’informazione della funzione plenacustica, campionata in diversi punti, in una
struttura dati definita come ray-space image. Campionare la funzione plenacustica
significa stimare gli pseudospettri in svariati punti lungo la Observation Window.
Ciò può essere realizzato utilizzando un Uniform Linear Array (ULA) di microfoni
suddiviso in sotto array. Al fine di ottenere un sistema reattivo, è stato sviluppato
un algoritmo efficiente per calcolare gli pseudospettri a ogni sotto array. L’algoritmo
permette di precalcolare una matrice di trasformazione per ottenere gli pseudospettri
con una sola moltiplicazione di matrici. Partendo dagli pseudospettri, la wideband
ray-space image è composta combinando i corrispettivi pseudospettri. Una defezione
di accuratezza è stata riscontrata quando gli spettri su più frequenze sono calcolati
per i segnali di parlato a causa della distribuzione energetica del segnale e dei
limiti di risoluzione dell’ULA. Proponiamo un nuovo e accurato algoritmo, basato
sul contenuto frequenziale dei segnali di parlato, che è anche robusto agli errori
di aliasing spaziale. La ray-space image ottenuta permette di rappresentare come
linee i soggetti parlanti. Di conseguenza, metodi di pattern analysis possono essere
impiegati per individuare queste linee e stimare la posizione delle rispettive sorgenti
nella scena acustica. In questo modo il BSS viene trasformato in un problema
informed. L’approccio plenacustico, usato in precedenza, viene quindi applicato per
realizzare la separazione. I filtri di beamforming Linearly Constrained Minimum
Variance (LCMV) sono implementati per ciascun sotto array, per ottenere stime
multiple da diversi punti di vista. L’approccio multi vista è essenziale al fine di
ottenere risultati soddisfacenti di separazione del parlato, quando i soggetti parlanti
sono allineati rispetto a un microfono dell’array. Infatti, i filtri LCMV garantiscono
le migliori prestazioni in termini di soppressione delle sorgenti interferenti, ma
presentano anche l’inconveniente di fallire nella separazione quando la loro differenza
angolare è irrisoria. Quindi, l’infattibilità della separazione delle sorgenti in caso
di sovrapposizione delle stesse è compensata dagli apporti degli altri sotto array,
dai quali le sorgenti sono viste con una differenza angolare maggiore. Inoltre, la
conoscenza dell’esatta posizione, nei limiti dell’errore di stima, permette di ricostruire
i segnali stimati come se fossero stati acquisiti da un microfono virtuale posto vicino
al soggetto parlante. I risultati ottenuti dalle simulazioni hanno confermato la
validità del metodo proposto in caso di sovrapposizione delle sorgenti e in caso
di differenze angolari elevate. Notiamo che le prestazioni misurate con metriche
oggettive sono state confermante da Mean Opinion Score raccolti durante sessioni di
test percettivi. I risultati ottenuti dimostrano che l’approccio plenacustico supera il
metodo LCMV in prestazioni nella maggior parte dei casi sottoposti. In conclusione,
risultati promettenti sono stati ottenuti in ambienti reali riverberanti.
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Abstract

Speech processing is a main interest in the research scenario nowadays. This is due
to its several outstanding applications, aimed at increasing the quality of many every
day devices. Among the different applications, that of speech separation is crucial for
enabling many services. Often in real world applications, speech separation methods
have to cope with the lack of a priori information on the number of speakers and
their positions in the sound scene. This challenging separation problem is known as
Blind Source Separation (BSS) in the literature. Our work proposes an approach to
BSS based on a plenacoustic representation. This approach encodes the plenacoustic
function information, sampled in several points, in a data structure defined in the
literature as ray-space image. The ray space image consists in a measurement of
the directional components of the sound field in several points along an Observation
Window. This can be easily done by using a Uniform Linear Array (ULA) of
microphones subdivided into smaller sub-arrays. In order to achieve responsiveness
of the system, a fast algorithm to measure the directional components of the sound
field at each sub-array has been devised. The algorithm exploits the fact that the
directional components of the sound field at each sub-array can be estimated through
a precomputed linear transformation of the acquired signals. Starting from the
directional components at each sub-array, a wideband ray-space image is obtained.
An accuracy issue emerges when the wideband pseudospectra are calculated for
speech signals because of speech energy distribution, and resolution limits of the
ULA. We propose an accurate algorithm, based on the peculiar frequency content of
speech signals, which is also robust to spatial aliasing errors. The ray-space image
obtained permits to intuitively visualize the active speakers in the sound scene as
lines. Consequently, well-known pattern analysis methods are employed to detect
these lines and estimate the position of the related sources in the sound scene. This
way the blind source separation is turned into an informed problem. The plenacoustic
approach adopted to localize speakers is then applied to perform speech separation.
Accordingly, Linearly Constrained Minimum Variance (LCMV) beamforming filters
are implemented at each sub-array to extract multiple estimations, from different
points of view, of the speech signals. The multiple-view approach is essential to
obtain satisfactory speech separation results when speakers are aligned with respect
to one microphone of the array. In fact, LCMV filters provide the best performances
in terms of interference rejection, but present also the important drawback of failing
in separating sources when their angular displacement is too small. Thus, the
unfeasible separation of sources in case of source overlap is compensated by the
other sub-array contributions, from which a larger angular displacement is attained.
Furthermore, the knowledge of the exact position, up to an estimation error, allows
to back-propagate the estimated signals. The final speech signal emulates a virtual
microphone placed near the speaker. Results obtained with simulation sessions have
confirmed the validity of the proposed method in case of source overlap and large
angular displacements. Interestingly enough, the separation performances measured
with objective metrics have been confirmed by Mean Opinion Scores collected with
a campaign of perceptive tests. The results achieved also show that the plenacoustic
approach outperforms the LCMV method in the majority of the situations. Finally,
promising results have been obtained in real world reverberant environments.
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Chapter 1

Introduction

An increasing interest in speech processing techniques has been experienced in the
last few years. Researchers and companies are striving to make smart systems
capable of interacting with humans in a totally different way to the ones seen so
far. It is through the improvement of these interactive aspects that a higher level of
quality and experience can be achieved. In such a scenario, a plethora of possible
applications have been devised. For example, automatic speech recognition [4], smart
home solutions [5], teleconferencing and hands-free communication [6] and hearing
aids [7] are a part of our every day interaction with speech processing technologies.
These applications rely on speech separation techniques to process, hence to attenuate
or enhance, a single or multiple speech signals coming from different directions to
obtain an estimate of each single speech signal from a mixture. A particularly
challenging scenario to resolve speech separation is when no information is assumed
both on the number of speech sources acting in the sound scene, and on their
positions. In addition, if sources are not static but move freely in space interacting
with the surrounding environment, the speech separation task is even more complex.
This problem takes the name of blind source separation in the literature [8].
This thesis provides an approach to blind source separation using an array of
microphones. Array processing is a well-known technique in signal processing [9]
that finds numerous applications from sound field acquisition and analysis [2] to
its processing, by attenuating or enhancing sound waves coming from a specific
direction, i.e. spatial filtering [10]. In this work, we show how the two fields are
strictly tied up to achieve satisfactory speech separation results. By employing
a single extended Uniform Linear Array (ULA), we are able to capture a sound
field and extract important parameters as a first step, then, as a second step, these
parameters are used to perform spatial filtering and extract speech signals singularly
from the mixture acquired at microphones. Essential sound field parameters can
be estimated thanks to the plenacoustic approach suggested in [2], on which our
proposed source separation method relies.
The main idea behind a plenacoustic approach to sound field analysis is to measure
the Plenacoustic Function [11] in several points in space. The plenacoustic function
mathematically describes the acoustic radiance in every direction through every
point in space. If we want to measure the plenacoustic function in a single point, we
can do so by centering a microphone array in that location, and estimating through
spatial filtering the acoustic radiance along all the look directions (pseudospectrum)
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[12]. The spatial filtering technique of beamforming [13] is employed for this purpose
and allows us to point a beam in space and to acquire acoustic energy irradiated
from a specific Direction Of Arrival (DOA), while attenuating all the others. A
device of this sort is called "acoustic camera". A natural extension of this concept
would be that of a "plenacoustic camera", intended as a theoretical device that
acquires the plenacoustic function over a spatially continuous "Observation Window"
(OW) facing the acoustic scene. We are interested in implementing a device that
captures the plenacoustic function over an OW based on an array of microphones.
One rather straightforward way of doing so is to think of this device as an array of
acoustic cameras that sample the OW. This can be easily obtained by subdividing a
microphone array into smaller sub-arrays. The sampling operation in space, given by
the inter-microphone distance, introduces a degradation on the information acquired
called spatial aliasing. The greater the distance between microphones the greater the
spatial aliasing introduced. Then, each sub array provides only an approximation
of the acoustic radiance of the sound field from its point of view. What we would
like to achieve is a smart parametrization of this different information acquired at
sub-arrays in order to visualize the sound scene in an intuitive way.
In [2] Markovic et al. proposed a parametrization that permits to visualize as lines in
an image, i.e. the ray-space image, the acoustic rays emitted by audio sources. The
method was conceived to work with every kind of audio signal, not considering the
specific distribution of frequency content of speech signals and the spatial aliasing
error that might affect the resultant ray-space image. Since we are focusing on
speech processing, we designed a wideband image reconstruction method more
robust to spatial aliasing, and consistent to speech energy distribution in frequency.
This method is aimed at estimating a precise wideband pseudospectrum image,
starting from its several narrowband components that span the whole frequency
range. Speech signals are composed by harmonic vowels, where most of the energy
resides, and noise-like consonants, perceptually significant but with content at high
frequencies that might be affected by spatial aliasing. In addition, low frequencies
DOAs are coarsely estimated, due to their long wavelengths, while high frequencies
provide a detailed information on DOAs. We need a method which considers this
structure and properly weights the narrowband components of the pseudospectrum
to produce its wideband equivalent. To this intent, we resorted the spectral flatness
measure [14], which indicates whether the frequency signal resembles a white noise
(flat frequency content) or a harmonic sound (spiky frequency content), to discern
which frequencies consider the most in the computation of the wideband image.
Spectral flatness is used jointly with the sum of energy content at each frequency, to
maintain energy ratios as much unaltered as possible. Furthermore, a fast algorithm
to calculate the image is desirable in order to have a responsive characterization of
the time varying sound scene. In this work, we also propose a first implementation
of a fast ray-space image computation that might open opportunities for further
work to achieve real time performances.
The characteristic mapping of audio sources into lines of the ray-space image enables
easy linear pattern analysis [15] to detect these lines and estimate the position of
the correlated source. This way, we obtain precious information about the number
of active speakers in the sound scene and their position in space. Given that we can
compute the ray-space image adaptively in time, by framing the signals in short
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time windows, we are able to track speakers movements. The aforementioned blind
source separation problem has just been turned into an informed one. Since we now
know sources positions and our plenacoustic camera is based on beamforming, it is
natural to employ spatial filtering technique of beamforming once again to point
a beam towards one of the speakers and to attenuate all the rest. A well-known
beamforming method called Linearly Constrained Minimum Variance (LCMV) [16],
allows us to constrain the filter output to present some predefined desired responses
for signals coming form specific DOAs. A resolution problem emerges when two
speakers draw close together, destabilizing the system that tries to attenuate, and
at the same time, to enhance two different sources arriving from the same direction.
This flaw has been resolved through diagonal loading [17]. A spatially white noise
can be thought as a decorrelated random signal coming from every direction. On
one hand, the outcome of this operation is a less effective spatial filtering, on the
other hand, filters are more robust to instabilities.
Once we know the number of speakers, their position, and our system is robust
to instabilities, we can proceed with performing speech separation recalling the
plenacoustic approach. To this end, we perform beamforming at each sub-array to
extract the relative estimation of the speaker signal. A particularly useful situation
in which this multiview approach proves its validity is when speakers, free to move
in the scene in front of the array, lie in front of each other, occluding themselves with
respect to one microphone of the array. In fact, the standard beamforming-based
approach calculates the different sources DOAs with respect to the array center. If
two or more speakers lie on the line that connects the array center with themselves,
the system considers those speakers as one unique speech source, hampering DOA-
based separation of beamforming. With our method, instead, if a sub-array fails to
separate speaker signals because of an overlapping situation, the other sub-arrays
come into help, providing their contribution acquired from a different position,
in which sources are seen under different angles. Thus, we are able to perform
speech separation independently to angular displacement of speakers by simply
weighting sub-array contributions according to the difference of DOA. Furthermore,
the estimation of source positions allows us to process the acquired signals in order
to back-propagate them. The perceptive result obtained is a virtual microphone that
can be placed at any point around the speaker. Indeed, in the simplest case in which
the surrounding environment is not taken into account, sound waves propagation
consist in a simple attenuation dependent on the distance ranged. Then, sound
waves at microphones are just a delayed and attenuated version of the sound waves
produced at the speaker position. Knowing the speaker position permits to invert
this process and simulate the waves as if they were acquired in a single desired point.
Source separation issues get more intertwined if the environment in which speakers
move is considered. Walls, floors and other objects in the scene under analysis reflect
the sound waves produced by speakers, making rejection of undesired sources harder.
If we could tighten up our beamforming system to augment the precision of acquisition
towards a specific direction, we would be able to reject most of the acoustic energy
coming from other directions hence guaranteeing a satisfactory degree of separation.
A beamforming method based on this consideration has been built in [3], and it
has been utilized in our system, when we tested it against reverberations. Indeed,
a campaign of simulations and experiments in a semi-anechoic and a reverberant
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room has been conducted to validate our proposed method. In addition, it has
been pointed out in the literature [18], [19], that objective measures employed in
simulations do not always reflect speech features at a higher level of abstraction.
This is due to the coarse relationship between objective measures and the auditory
system. Therefore, an assessment of separation algorithms by means of perceptive
tests is usually required to validate and compare a method with others. In light of
this, we conducted a campaign of perceptive tests that found a correspondence with
the objective results calculated on the extracted signals, after separation processing,
as in [20].
The manuscript is organized as follows. In Chapter 2 we provide an overview on
the theoretical background of the signal processing techniques employed in this
thesis. Once acquainted with the processing tools needed, we proceed in Chapter
3, with a detailed description of the plenacoustic approach, on which our method
relies. We show how to calculate the ray-space image in a fast and robust way that
appropriately manages aliasing errors and peculiar energy distribution of speech
formants. Then, in Chapter 4 we focus on the speech separation filters to be employed
for separating speech signals, relying on the information drawn from the ray-space
image. In addition, we show how to merge the sub-array signals to virtualize a
microphone at any point in space. Finally, in Chapter 5 we corroborate the method
proposed with properly designed simulation results. The simulations are aimed at
endorsing the quality of the method and the robustness on the localization error,
angular displacement, and source overlap in several situations. The method proposed
showed satisfactory results mirrored in the perceptive test and real-world scenario
performances.
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Chapter 2

Theoretical Background

In this chapter, we introduce the reader to spatial filtering concept, beamforming
techniques, plenacoustic function and how they are applied to source separation
problems, which is the final goal of this work of thesis. Although source separation
has been performed with different approaches, we propose a new method based on
the plenacoustic function and its representation in the "ray space". The main idea
behind the plenacoustic approach is to have a responsive and intuitive representation
of the sound field that permits to easily assess important parameters. Thus, the
ray-space image allows us to perform source localization, tracking and extraction of
other sound field parameters that are fundamental for powerful location-informed
source separation filters. Both source separation filters and the ray-space image
acquisition processes rely on beamforming techniques. Beamforming is a spatial
filtering method which exploits the information conveyed by an array of sensors.
We will discuss how beamforming methods are employed in the source separation
field, providing also a thorough state-of-the-art review to picture the overall research
carried out so far. In particular, Linearly Constrained Minimum Variance (LCMV)
and Minimum Variance Distortionless Response (MVDR) beamforming techniques
will be analyzed in depth, pointing out their weaknesses and strengths in different
situations of ambient noise and source to interference parameters. We will pay
particular attention on the LCMV, that is the beamforming technique used in our
approach, since, in its theoretical formulation, gives the best results in terms of
separation of sources. However, its performances decrease when ambient noise is
preponderant or at least comparable with the target sources to be separated.
The whole method developed in this work of thesis is described in Chapters 3 and 4
but its insights and concepts refer to the theoretical background defined here.
The Chapter is organized as follows. In Section 2.1 we present the basics of
spatial filtering (or array processing) on which our method relies. In Section 2.1.2
conventional methods of beamforming are presented. In Section 2.2 we will show how
these methods are employed in source separation problems highlighting their behavior
and limitations. In Section 2.3 a representation of the plenacoustic function, namely
the ray-space image, is described stating what advantages brings to our problem.
One important application of the ray-space image is the source localization, which
is carried out by means of linear pattern analysis, thanks to its clever representation
of acoustic rays as lines. Source localization is discussed in 2.4.



6 2. Theoretical Background

2.1 Spatial filtering

The methods and techniques for source separation that will be discussed later in
Section 2.2 and Chapter 4, rely on spatial filtering. Although, there are studies to
enhance signals over noise in single sensor signal processing literature, performances
are not comparable with those obtained with spatial filtering for source separation
problems. The reason is that a single sensor does not exploit spatial information
given by the presence of redundant sensors. Spatial filtering or array signal processing
is a specialized branch of signal processing that focuses on information conveyed by
propagating waves. By cleverly combining sensors outputs, spatial filtering could
address different tasks, such as enhancing the Signal to Noise Ratio (SNR) beyond
that of a single sensor’s output; as well as characterizing the field by determining
the number of sources, their locations and the waveforms they are emitting; and
also tracking the sources as they move in space [9]. Although spatial filtering can be
applied in several fields, we will restrict our work to audio signals, and specifically
to speech signals, without losing generality.
As mentioned, each sensor samples the sound field giving as output a signal ym(n)
where n is the time index in samples and m = 1, . . . ,M withM equal to the number
of sensors, is the index of the sensors within the array. Each wave varies in time and
space accordingly to the direction of propagation. The direction of propagation of
a wave can be estimated using an array of microphones by exploiting the different
time of arrivals of the wave at each sensor. In Section 2.1.2, we discuss a technique
called beamforming which builds upon this concept.
One possible application of array processing is estimating how energy is distributed
over space, or spatial spectral estimation from a frequency domain point of view
[12]. An array of sensors samples the field at different locations gathering the energy
over a finite area, called aperture. Let us now define a first model for the output
signal of the receiving sensor array. This model will be then expanded as some
hypothesis will be dropped to work under different scenarios. As a first assumption,
we consider the sources to be situated in the far field of the array, i.e. the wavefront
may be considered planar at the sensor positions with respect to the array length,
without introducing sensible errors. This assumption computationally simplifies
the model, because the only parameter that characterizes the source locations is
the so-called angle of arrival, or Direction Of Arrival (DOA). However, the method
proposed in this thesis works both with the far-field and near-field assumptions,
hence, we will show both models and their differences. Furthermore, we assume
that both the sources and the sensors in the array are in the same 2D plane and
that the sources are point emitters. In addition, it is assumed that the propagation
medium is homogeneous (i.e., not dispersive) so that the waves arriving at the array
can be considered to be planar. It is also assumed that the number of sources L
is known. Finally, it is assumed that the sensors in the array can be modeled as
linear (time–invariant) systems; and that their transfer characteristics are ideal, i.e.
microphones’ transfer function is equal to 1 at each frequency bin and omnidirectional,
i.e. the microphones capture waves coming from every direction equally. Finally, let
us assume that microphones locations are known. Under these assumptions an array
is called "calibrated".
The source in Figure 2.1 generates a wave field that travels through space and is
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Figure 2.1. Model of sound propagation at the array, under far-field assumption

sampled, in both space and time, by the array. It is not restrictive to think the
model with just one source, since once it is obtained for one source, the superposition
principle guarantees its validity for multiple sources. As shown in Figure 2.1, we
define a model for a Uniform Linear Array (ULA), i.e. its sensors are deployed with
the same distance along a line. Among all the possible array configurations we analyze
the ULA case because it is the one adopted in Chapter 3, and 4. Hence, supposing
that a single waveform in an anechoic environment (no reverberations) is captured
by the array, let s(n) denote the value of the signal waveform as measured at some
reference point, at discrete time n. It is customary to take one of the microphones
as reference point. The physical signals received by the array are discrete time
waveforms. Hence n is a discrete variable which takes values n = 1, .., N , unless
otherwise stated. Let τm denote the time needed for the wave to travel from the
reference point to sensor m (m = 1, . . . ,M). Then the output of sensor m can be
written as

ym(n) = s(n− τm) + em(n) (2.1)

where em is an additive noise. The noise may enter in equation (2.1) either as
“thermal noise” generated by the sensor’s circuitry, as “random background radiation”
impinging on the array, or in other ways. In (2.1), the “input” signal s(n), as well
as the delay τm, are unknown and the source location enters in (2.1) through τm.
Hence, the source location problem is basically one of time-delay estimation. It is not
true in the near-field case, where a source location is determined by its coordinates
in space, thus, τm have to be assessed at each microphone depending on the relative
distance. Going back to the far-field case, equation (2.1) can be reformulated in the
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frequency domain by using the Fourier Transform, so to have s(ω) and em(ω) to
be the frequency counterparts of s(n) and em(n) respectively, with ω denoting the
angular frequency. Then we can write

ym(ω) = s(ω)e−iωτm + em(ω). (2.2)

Assuming the signal s(ω) to be narrowband we can write the Array Transfer Vector
(or Array Steering Vector) with fixed ω, so we can ignore its dependency to frequency,

a(θ) = [1 e−iωτ2 . . . e−iωτM−1 ]T , (2.3)

and the overall model, which is a generalization with L sources,

y(n) = [a(θ1) . . .a(θL)]

 s1(n)
...

sL(n)

+ e(n) , As(n) + e(n) (2.4)

where θl represents the DOA of the lth source and sl(n) is the lth source signal.
Also, we call

x(n) = As(n), (2.5)
which represents the noiseless signal at microphones. Herein, we assumed the signal
s(n) to be narrowband to derive our model, this does not represent a burdensome lim-
itation since we can reconduct a wideband signal to its frequency domain components
by using the Discrete Fourier Transform (DFT). We call ωk one of this components
or frequency bins, then we can consider the signal at each bin as narrowband. The
planar wave assumption will now be considered, as τm depends only on θ. Let d be
the inter-microphones distance, then

τm = (M − 1)d sin(θ)
c

for θ ∈ [−90◦, 90◦], (2.6)

where c is the propagation velocity of the impinging waveform inserting (2.6) into
(2.3) gives

a(θ) =
[
1 e−iωd sin(θ)/c . . . e−i(M−1)ωd sin(θ)/c

]T
. (2.7)

The restriction of θ to lie in the interval [−90◦, 90◦] is a limitation in ULAs configu-
rations. In fact, two emitting sources positioned at symmetric locations with respect
to the array line lead to identical delays τm, hence sources cannot be distinguished
from each other.
Since we may consider the ULA as performing a uniform spatial sampling of the
wavefield along a line, d, i.e. the spatial sampling period, should be smaller than
half of the signal wavelength. If the condition is met, the wavelength taken in
consideration is perfectly sampled avoiding ambiguities in DOA estimation. This is
utterly analogous with the Shannon sampling theorem in the time-frequency domain.
Let λ denote the signal wavelength

λ = c/f, f = ω/2π (2.8)

being f the temporal frequency of the signal. The spatial frequency is then defined
as

ωs = 2πfs = ωk
d sin(θ)

c
, (2.9)
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where k = 1, . . . ,K is the frequency bin. Finally (2.7) can be rewritten as a
Vandermonde vector

a(θ) =
[
1 e−iωs . . . e−i(M−1)ωs

]T
. (2.10)

In the ULA case (2.10) is uniquely defined, i.e. there is no "spatial aliasing", if
ωs ≤ π. This condition is equivalent to | fs |≤ 1

2 ⇔ d | sin(θ) |≤ λ
2 . In the worst

case | sin(θ) |= 1 and the aliasing condition becomes

d ≤ λ

2 . (2.11)

Let us expand the array transfer vector showing now the frequency dependency, in
order to be suitable for wideband scenarios,

a(θ, ω) =
[
1 e−iωd sin(θ)/c . . . e−i(M−1)ωd sin(θ)/c

]T
(2.12)

Then, the processing is carried out on each frequency bin, in the time or frequency
domain. Space, time and frequency are the three dimensions considered in the design
of spatial filters.

2.1.1 Temporal filter analogy

As previously stated, one of the tasks spatial filtering accomplishes is the es-
timation of sources waveforms exploiting spatial information. This can be done
by focusing on a target source at a specific DOA and finds its equivalence in the
time-frequency domain as focusing on a single, or a class of frequencies (notch
filters, lowpass filters etc.). As Linear filtering allows us to separate frequencies, a
spatio-temporal filtering is needed to separate signals according to their directions
of propagations and their frequency content. Temporal FIR filter is defined by the
relation

yF (n) =
M−1∑
m=0

hms(n−m) , h ∗ y(n) (2.13)

where hm are the filter weights, s(n) is the input signal and h = [h0 . . . hM−1]∗
,y(n) = [s(n) . . . s(n−M + 1)]T . Considering a(ω) = [1 e−iω . . . e−i(M−1)ω] we can
rewrite the filter in time in a similar form as the spatial filter

yF (n) = [h∗a(ω)] s(n) (2.14)

by selecting proper values of h as described in the filter design theory one can
attenuate or enhance the power of yF (n) at frequency ω. The same holds true in
the spatial case

yF (n) = [h∗a(θ)] s(n). (2.15)

By selecting appropriate values of h we can enhance or attenuate signals coming
from a given direction θ. This is the main idea behind spatial filtering and the
so-called techniques of beamforming.
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2.1.2 Beamforming

Early spatial filters were conceived to attenuate or enhance signals impinging on
the array from a specific direction. The response of beamforming to waves impinging
in the array from different DOAs takes the name of beampattern and is defined as

B(θ, ω) =| h(θ, ω)Ha(θ, ω) |2 (2.16)

where ( · )H is the Hermitian of h(θ, ω). Different filter designs of h(θ, ω) are available
for beamforming depending on how the problem is modeled, and which assumptions
are considered. For sake of completeness we will discuss the most important methods,
pointing out in which situations are more suitable and why they are used in our
work or not.
First of all, we might categorize beamforming methods in data-independent, statisti-
cally optimal, parametric, and adaptive [13]. As the name suggests, data-independent
beamformers do not depend on the input signal(s) data, and the beampattern is
fixed when the DOA is fixed. These beamformers are the simplest in their theoretical
formulation and in their computation. In fact, no estimation of second order statis-
tics is required, which is instead needed in the statistically optimal beamformers
to assess the optimal array response. When the statistics of the array data are
not known and cannot be estimated, adaptive algorithms are typically employed
to determine the filter weights. Two adaptation strategies may be chosen, block
adaptation, where statistics are estimated from a temporal block of array data and
used in an optimum weight equation, and continuous adaptation, where the weights
are adjusted as the data is sampled, so that the resulting weight vector sequence
converges to the optimum solution. When the number of sensors increases up to
fifty or more, convergence time and computational load might be an issue. Partially
adaptive beamformers reduce the adaptive algorithm computational load at the
expense of a loss in statistical optimality.

2.1.3 Statistically optimal beamforming

Several algorithms have been devised that follow the statistically optimal weights
approach. Several different least-squares solution can be found depending on how
the problem is stated.
Let us start with a simple least-squares solution on the desired beampattern. Con-
sidering B(θ, ω)d as the desired response of our filter, we seek a solution B(θ, ω)
which approximates the desired response. It can be carried out by means of min-
imization problems as in FIR filter formulations. Let us state the problem as a
L2 norm minimization in L points (θl, ωl) with 1 ≤ l ≤ L if L > M we obtain an
overdetermined least-square problem

min
h
| AHh−Bd |2 (2.17)

where we dropped the dependency on θ and ω for conciseness, and Bd(θ, ω) =
[Bd(θ1, ω1) . . .Bd(θL, ωL)]H , provided that AAH is invertible, the solution to (2.17)
is

h = (AAH)−1ABd (2.18)



2.1 Spatial filtering 11

The white noise gain of a beamformer is defined as the output power due to unit
variance white noise at the sensors. White noise gain is therefore computed as the
squared norm of the weight vector, hHh. If the white noise gain is large, then the
accuracy by which h approximates the desired response is a questionable point, as
the beamformer output will have a poor SNR due to white noise contributions. The
matrix A is ill-conditioned when the numerical dimension of the space spanned by
the a(θl, ωl),1 ≤ l ≤ L is less than M . If A is ill-conditioned, then h can have a
very large norm, which is an undesirable feature. A solution to this problem is the
so-called diagonal loading [17].
Let us know define the filter output variance as the expected value of the squared
absolute output values E{| yF (n) |2} = hHΦyh, where E[ · ] is the expected value
operator and Φy is the covariance matrix of microphone signals y(n) defined as

Φy = E
[
y(n)yH(n)

]
. (2.19)

Another different solution can be found if a minimization on the output variance
of the solution is sought. One of the most important methods is called Linearly
Constrained Minimum Variance (LCMV) beamforming [16]. The main idea behind
this method is to constrain the response of the beamformer so that signals from the
directions of interest are filtered with specified gain and phase, while the output
variance is minimized. Use of linear constraints is a very general approach that
permits extensive control over the adapted response of the beamformer. The weights
are chosen to minimize output variance and honoring the constraints. Thus, by
linearly constraining the filter to satisfy hHa(θl, w) = g, where g is a complex
constant, we ensure that any signal from angle θl and frequency ω is passed to the
output with response g. The LCMV problem is then written as

min
h

hHΦyh subject to aH(θ, ω)h = g∗ (2.20)

whose solution is

h = g∗
Φ−1
y a(θ, ω)

aH(θ, ω)Φ−1
y a(θ, ω)

. (2.21)

Starting from (2.21), it is interesting to show how the other beamforming solutions
are derived. If we set g = 1, we impose a real constraint only on the look direction
which corresponds to passing undistorted the signal arriving from that direction. This
corresponds to the Minimum Variance Distortionless Response (MVDR) beamformer
[21].
The single constraint in the LCMV filter is easily generalized to multiple linear
constraints to add control over the beampattern as indicated in [16]. For example, it
might be useful to place a zero on a particular DOA because of an undesired source
coming from that direction. Then, we build a matrix called constraint matrix

C = [a(θ1, ω), . . . ,a(θP , ω)] , (2.22)

where P is the total number of constraints. Now, what we called g is a vector of
desired responses g which takes the name of response vector. Point constraints fix
the beamformer response to have a specific value at a specific DOA θ and frequency
ωk. The number of points at which response can be constrained is limited to M .



12 2. Theoretical Background

In fact, each linear constraint uses one degree of freedom in the weight vector, so
with L constraints there are only M −L degrees of freedom available for minimizing
variance [13]. If M constraints are used then there are no degrees of freedom left for
power minimization and a data independent beamformer is obtained. Thus, we have
a trade-off between variance minimization and beampattern control.
This kind of approach to beamforming is very versatile when dealing with source
separation problems. As we discuss in Section 2.2.1, by properly tuning the response
vector either optimal interference suppression, or higher noise suppression can be
achieved. Further, these kind of filters can be reduced to constrained delay and sum
beamformers that can be quickly calculated. In this case no second order estimation
is needed, which makes the system a bit less robust but faster. For these reasons,
statistically optimal filters are employed in our plenacoustic based source separation
method.

2.1.4 Data-independent Delay And Sum beamforming

If we consider the signal y(n) to be spatially white, i.e. sources’ signal arrives at
the array with equal power along DOAs, then Φy = I and g = 1 we can write the
minimization problem as

min
h

hHh subject to aH(θ, ω)h = 1, (2.23)

which assures the signal to be undistorted at the specific DOA θ. If a(θ, ω) is
specified as in (2.12) the solution to (2.23) reduces to the Delay And Sum (DAS)
beamformer equation

h = 1
M
·a(θ, ω). (2.24)

Intuitively, DAS beamformer aligns or equivalently adjust in phase signals at micro-
phones coming from a DOA; this corresponds to the "delay" step attained by filtering
by h. Then, the outputs of the single sensors are summed obtaining a summation in
phase for the signal coming from direction θ as shown in Figure 2.2, whilst the other
signals impinging on the array from other DOAs are summed destructively. Data
independent filters have the major advantage of being quickly computed in every
scenario of SNR, since they are independent from the signal data at hand. This
could represent also a major drawback since resolution decreases. However when an
efficient implementation is required, this kind of filter is the most suitable. For this
reason it is used in our method for plenacoustic image calculation.
Furthermore, if we consider a generic desired response g and Φy = I the minimiza-
tion problem assumes the form

min
h

hHh subject to aH(θ, ω)h = g∗, (2.25)

whose solution is
h = g∗

a(θ, ω)
aH(θ, ω)a(θ, ω) (2.26)

which can be considered a constrained Delay And Sum beamformer. This kind
of filter is a sort of hybrid between statistically optimal filter LCMV and data
independent filter DAS.
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Figure 2.2. Delay And Sum beamformer with multiple active speech sources, impinging
on the array from different DOAs

2.1.5 Parametric methods of beamforming

Another set of beamformers takes the name of parametric methods. Albeit
they can be comprised in the statistically optimal beamformers set, they need a
separate discussion because of the assumptions they make and the parameters these
algorithms need to estimate. In (2.4) we added a noise component e(n) which now we
assume to be spatially white with identical variance components, hence its covariance
matrix has the form E{e(n)e(n)∗} = σ2I. The signal covariance matrix is indicated
with P instead, and it is assumed to be nonsingular(signals are not coherent) and
uncorrelated with noise signals. Thus, the array output vector covariance matrix
can be decomposed as follows

Φy = AP A∗ + σ2I. (2.27)

It is also assumed that M > L so that rank(Φ) = M while rank(AP A∗) = L.
Consequently, we can determine L eigenvalues/eigenvectors associated with the
signal covariance matrix and otherM−L ones associated with the noise components.
Then, we can identify two sets of eigenvalues, their eigenvectors {s1, . . . , sL} and
{g1, . . . , gM−L} and their relative matrices S and G. It can be proved that

ΦyG = σ2G = AP A∗G + σ2G. (2.28)

The last equality holds because the columns of G belongs to the null space of A∗,
indicated as N (A∗). Since rank(A) = L, the dimension of N (A∗) is equal to M −L
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which is also the dimension of the range space of G,R(G). By definition, we have
S∗G = 0, then it leads to R(G) = N (S∗); hence, N (S∗) = N (A∗). Since R(S)
and R(A) are the orthogonal complements to N (S∗) and N (A∗), it follows that
R(A) = R(S). It can be shown that R(S) ⊂ R(A). The following key result is
obtained from (2.27).

a∗(θl, ω)GG∗a(θl, ω) = 0. (2.29)

The MUltiple SIgnal Classification (MUSIC) beamformer weights are so defined to
have peaks along the desired directions θl,

h = 1
a∗(θ, ω)ĜĜ∗a(θ, ω)

, (2.30)

where Ĝ is an approximation of G. An important computational complexity and
statistical accuracy trade-off should be considered when this method is applied. The
trade-off depends on the number of sensors employed; if M = L + 1 the MUSIC
method is called root MUSIC which provides the best performance in terms of speed
of calculus but also the least accuracy.
Parametric methods are not employed in the method we propose in Chapter 3 and 4
since they have high computational burden and also need noise and source signals
estimations, which are not always achievable.

2.2 Source separation
The term source separation refers to the practice of extracting specific target

sources from a mixture of signals captured from the sensors, and attenuating the
remaining signal contributions. Source separation is widely used in numerous fields,
from telecommunication systems, to speech enhancement and speech separation.
In audio processing, for example, real time speaker separation for simultaneous
translation, sampling of musical sounds for electronic music composition, or speech
enhancement within hearing aids are possible through source separation.
As it will further discussed in this Section, there are several methods to perform
source separation, one of these is through beamforming. Since the method we
propose in this thesis accomplishes source separation by means of beamforming,
we will discuss the state of the art of this research branch. However, it seems
important to give a general look to other methods in order understand our choice of
beamforming-based source separation.
Let us take a step back to observe the problem from a general point of view. The
signal processing literature classifies systems that acquire certain mixtures of signals
as under/over determined, instantaneous or convolutive and time varying or time
invariant. As stated in the previous Section the solution to the problem strongly
depends on the kind of problem to be addressed. As a first step, let us define a new
model which is more general than the one stated in (2.4) in Section 2.1, since it does
not assume the matrix A to be a simple delay between sensors. Thus, we drop the
single far-field source in an anechoic environment assumption we can write

ym(n) =
L∑
l=1

+∞∑
τ=−∞

aml(n− τ, τ)sl(n− τ), (2.31)



2.2 Source separation 15

where aml are the mixing filter weights, and sl(n) the signal sources. We can
rearrange (2.31) in a matrix form and add a noise component, in the same way we
did in (2.4),

y(n) = As(n) + e(n), (2.32)

where vector s(n) is a L× 1 containing the signals values at discrete time n and A
is a M ×L instantaneous mixing matrix containing the mixing filter weights. Matrix
A can also be seen as the collection of the impulse responses from sources sl(n),
l = 1, . . . , L to sensors m, m = 1, . . . ,M . Starting from (2.32), various approaches
have been devised to solve the problem. One of them is the beamforming approach
seen in the previous Section 2.1.2, which exploits the intrinsic spatial information
carried by the signals impinging upon the array. This approach works well with
instantaneous or slightly convolutive mixtures, because, theoretically, it may not
produce artifacts or signal distortions when signals arrive with a certain angle from
just one direct path. In the case of convolutive mixtures, channels estimations [22],
or some directivity trade-offs [3] are needed in order to extract the target signal
without any contributions from other sources. In fact in reverberant environments,
we can identify a direct path of the wave propagating from source sl(n) to sensor m
and several secondary paths tracked by sound waves that bounce against obstacles,
e.g. walls. The waves reflected by objects can be modeled as fictitious image
sources that emit the wave impinging on the object towards the reflection direction.
Considering all this factors the model and its solution increase in complexity. We
find in the literature techniques aimed at solving this problem. The main approaches
are, Beamforming-based Source Separation, which is the method adopted in this
thesis, Blind Source Separation (BSS) [8], which represents data in a statistical
domain, and time-frequency masking [23]. In the following paragraphs we examine
the beamforming-based source separation.

2.2.1 Beamforming-based source separation

Source separation through beamforming has been successfully employed in many
research works. A deep characterization of these methods is provided in the literature
with several assessments of their performances in several scenarios of anechoic or
reverberant environment with different ambient noise ratios. When source separation
is considered, the main parameters considered in a system are the distortions
introduced in the extracted signals as well as the attenuation of all the other
interfering sources or/and ambient noise that is highly likely to be present. In theory,
the LCMV beamformer can achieve perfect dereverberation and noise cancellation
when the acoustic transfer functions between all sources (including interferences)
and microphones are known [24].
Let us rewrite the model in the frequency domain with reference to (2.32). It is
useful to derive the frequency domain version of the model because separation filters
are usually computed in such domain. We can define frequency counterpart of the
model in (2.4) through DFT,

Y (ω) = A(ω)S(ω) + E(ω)
= X(ω) + E(ω).

(2.33)
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where

Y (ω) = [y1(ω) y2(ω) . . . yM (ω)]T ,
A(ω) = [a1(ω) a2(ω) . . . aM (ω)]T ,

am(ω) = [a1,m(ω) a2,m(ω) . . . aL,m(ω)]T ,
S(ω) = [s1(ω) s2(ω) . . . sL(ω)]T ,
E(ω) = [e1(ω) e2(ω) . . . eM (ω)]T ,
X(ω) = [x1(ω) x2(ω) . . . xM (ω)]T ,

xm(ω) = aTm(ω)S(ω).

Using the Fourier transform relationship , the covariance matrix, firstly defined in
(2.19), can be expressed as power spectral density (PSD) of the received signal at
the mth sensor

φym(ω) = φxm(ω) + φem(ω)
= aHm(ω)Λs(ω)am(ω) + φem(ω),

(2.34)

for m = 1, 2, ...,M , where φym(ω), φxm ,Λs(ω) = diag[φs1(ω), ..., φsL(ω)], and φem(ω)
are the PSDs of the mth sensor signal, the mth sensor reverberant signal, the
coherent signals, and the mth sensor noise signal, respectively. The beamforming is
then performed by applying a complex weight(real weights beamformers have been
conceived too [25]) to each sensor and summing across all sensors:

yF (ω) = hH(ω)Y (ω) = hH(ω) [X(ω) + E(ω)] , (2.35)

where yF (ω) is the beamformer output, h(ω) = [h1(ω) h2(ω)...hM (ω)]T is the
beamforming weight vector. The PSD of the beamformer output is

φyF = hH(ω)Φx(ω)h(ω) + hH(ω)Φe(ω)h(ω), (2.36)

where
Φx(ω) = E

[
X(ω)XH(ω)

]
= A(ω)Λs(ω)AH(ω). (2.37)

In (2.21) we defined the LCMV solution for filters h(ω), in this Section instead we
show how to set the L constraints g(ω) while the remaining degrees of freedom are
employed to minimize the contribution of the additive noise to the array output. It
should be noted that the LCMV filter is constructed using only spatial information
related to the undesired sources (given by A), i.e., we do not require the PSDs of
the undesired source signals. This makes the beamformer especially attractive in
a scenario where the undesired sources are highly non-stationary and their spatial
position is fixed or slowly time-varying. This is an essential characteristic of the
LCMV beamformer since the situation just described might correspond to the
scenario our system has to deal with. In fact, speech signals are non-stationary
signals and we do not assume speakers position to be fixed.
As previously stated, essential parameters to evaluate source separation methods
are the distortion on the desired source introduced by signal processing operations,
the interference and the noise suppression. We now discuss the state-of-the-art
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research for beamforming-based source separation, underlining these three aspects.
In addition, particular emphasis is given to MVDR and LCMV methods, since, as
previously stated, the most suitable beamformers for our system are the statistically
optimal ones.

2.2.2 Constraints definition for source separation filters

Let us first determine how to properly tune the constraint set of the LCMV
filter for source separation. A thorough study about the constraints matrix and
response vectors definition has been carried out in [26] to find out the trade-offs that
rule the LCMV beamforming performances. They derived a speech-distortion and
interference-rejection constraint beamformer that is able to trade-off between speech
distortion and interference-plus-noise reduction on the one hand, and undesired signal
and ambient noise reductions on the other hand. In general, the aforementioned
trade-offs can be realized by modifying the optimization problem in (2.20). In fact,
a controlled distortion of the desired speech signal, as received by the reference
microphone (for example the first microphone), can be defined by properly defining
the constraint sub-matrix Cd,Cu of the desired and undesired signals and their
related response. In order to control responses solely on the desired and undesired
signals, we can split matrix S(ω) in two in (2.33), each part regarding the desired
sources Sd(ω) or the undesired Su(ω). We proceed in the same way for matrix C(ω).
Now the constraints are defined as

hH(ω)Cd(ω) = α(ω). (2.38)

The parameter α(ω) is a complex number. The closer is the value of | α(ω) |2 to one,
the less the amplitude response of the desired signal is distorted. Intuitively, we force
the filter to have a real response equal to 1 at those desired directions corresponding
to the desired sources DOAs. Being α(ω) a complex number, the phase response has
to be considered as well. When the phase response of α(ω) is linear the desired signal
at the beamformer’s output is a delayed version of the desired signal as received by
the reference microphone. For other phase responses, unequal to zero, the desired
signal might contain audible distortions. The same idea can be applied in order to
trade-off between reduction of the undesired signal and ambient noise. Thus, we
have

hH(ω)Cu(ω) = β(ω) (2.39)

where β(ω) is a complex number. The closer the value of | β(ω) |2 is to zero, the
more the undesired signal is reduced. Putting these constraints together we obtain

CH(ω)h(ω) = g(ω), (2.40)

where
C(ω) = [ad(ω) au(ω)] , (2.41)

where ad(ω),au(ω) are the array transfer vectors of the desired and undesired sources.
The response vector is

g(ω) = [α(ω) β(ω)]H . (2.42)
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A parametrized beamformer can be conceived as done in [26],

hp(ω) = α(ω)hd(ω) + β(ω)hu(ω), (2.43)

where hd(ω) refers to the beamforming filters for the desired source(s) and hu(ω)
refers to the undesired source(s) (a detailed explanation on how to derive this
filters analytically can be found in [26]). Since the goal of LCMV filter, as originally
conceived in [16], is to pass the desired source undistorted and to completely attenuate
undesired/interference source, the LCMV filter is obtained from (2.43) by setting
α(ω) = 1 and β(ω) = 0. An estimate of the desired source ŝd is then obtained. The
MVDR, instead, is derived by setting α(ω) = 1, since we want the desired signal to
pass undistorted through the beamformer filter, and β(ω) so to maximize the Signal
to Interference plus Noise Ratio (SINR), so defined

SINR = hH(ω)Φd(ω)h(ω)
h(ω)H [Φu(ω) + Φe(ω)] h(ω) , (2.44)

where Φd and Φu are derived from (2.37) considering the source signals to be
classified as desired and undesired we can split the PSD at sensor m as follows

φym(ω) = φdm(ω) + φum(ω) + φem(ω). (2.45)

In fact, the MVDR filter does not have a constraint on the interference source but
only one on the desired source. The remaining degrees of freedom are employed to
minimize both noise and interference. It is demonstrated that independent distortion
and noise reduction control, as well as interference rejection, can be attained by
setting proper values of α(ω) and β(ω). Results in [26] in anechoic environment show
that MVDR maximizes the output SINR, and in case the power of the undesired
source is much larger than the power of ambient noise the performance of the LCMV
and MVDR are comparable in terms of noise reduction. Total interference rejection
can be achieved by LCMV filters, which generally attain better results in terms of
interference suppression.

2.2.3 Noise reduction and interference rejection performances

It is important to understand noise reduction capabilities of MVDR and LCMV
methods with respect to interference rejection, in order to motivate and deeply
understand the benefits our approach brings in in terms of interference rejection.
Two important studies about these two parameters can be found in [1] and [27]. The
behavior of the MVDR and LCMV are investigated in terms of output SNR and
Signal to Interference Ratio (SIR), which are two very common indices for speech
separation assessment. It is demonstrated in these two studies that LCMV filter
can achieve infinite interference suppression if the response vector presents a 0 along
the DOA of the interferer. By spending a degree of freedom for controlling the
beampattern we assure the system to completely attenuate signals from a specific
DOA. The MVDR method is showed to perform better in terms of SNR when
the source displacement ∆θ, intended as the DOA difference between desired and
undesired sources, decreases beyond 15◦. Physically, as the interference, whose
desired response is 0, moves towards the target source, whose desired response is 1,
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it becomes harder for the LCMV to satisfy two contradictory constraints. The result
is that the array gain is switched from zero to one for the undesired source. This
fact results in instabilities because of ill-conditioning of the constraint matrix C,
that translate into the appearance of sidelobes in the beampattern and displacement
of the maximum attenuation far from the interference. These sidelobes lead the
beamformers to capture or even enhance the white noise at sensors which spans
the whole space since it does not impinge on the microphones from a specific DOA.
A similar behavior is not encountered in MVDR filters since they have only one
constraint and they aim at minimizing the overall noise and interference contributions.
Thus, MVDR filter performances are almost not affected by sources displacement.
In general we have:

SNR[hMVDR(ω)] ≈ SNR[hLCMV (ω)]
SIR[hMVDR(ω)] ≤ SIR[hLCMV (ω)],

but if the noise power is comparable to interference power MVDR outperform LCMV
having

SNR[hMVDR(ω)] ≥ SNR[hLCMV (ω)]
SIR[hMVDR(ω)] ≈ SIR[hLCMV (ω)].

In Figure 2.3 noise suppression performances are depicted for MVDR filters (MVDR-
II filter consider the noise as spatially white) and LCMV. The global noise-suppression
factor is defined in [1] as the ratio of the PSD of the original noise (sensor noise and
undesired sources) at the reference microphone over the PSD of the residual noise
(the remaining noise after filtering). The displacement refers to the original position
p and the displaced position p̃ of the undesired source. The displacement of the
source is given by ∆ = ‖p− p̃‖.

2.2.4 Source separation in reverberant environment

In reverberant environments, it is found that the amount of speech distortion
obtained is higher than that one obtained in an anechoic environment and at the
same time interference rejection results are poorer. This is due to wave reflections
with the objects present in the environment. Attenuation of sources coming from the
DOA of the direct path is attained with beamforming, but there are no constraints
on the reflected undesired waves that might enter in the beam pointed towards the
desired source. Thus, when beamforming is applied in reverberant environments
some improvements to the system are required to accomplish robustness. The filters
that we use in our model, in reverberant scenarios, are LCMV-based as proposed in
[3]. The PSD defined in (2.34) can be modified to consider also the diffuse field. We
recall that the diffuse field is due to late reflections and does not present a specific
DOA, thus, it can be seen as a homogeneous mixture of late reflections. Hence we
decompose the PSD of the signals at microphones as

Φy(ω) =
L∑
l=1

Φl(ω) + Φd(ω) + Φe(ω), (2.46)

with
Φd(ω) = φd(ω)Γd(ω) (2.47)
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(a) Noise suppression with SNR = −10dB considering the
desired source as desired signal and the undesired signal as
noise.

(b) Noise suppression with SNR = 5dB considering the desired
source as desired signal and the undesired signal as noise.

Figure 2.3. Global noise-reduction factor as a function the noise source displacement for
two scenarios. Picture taken from [1].

Φe(ω) = φe(ω)I, (2.48)

where the subscript d stands for diffuse. Although for conciseness time dependency
n has been omitted in this formulation, the system is supposed to work in time
frames to be responsive to changes of the sound field. Therefore, all second-order
statistics refer to a time frame. The diffuse field is assumed to be spherically
isotropic hence the coherence matrix Γd(ω) has as elements γmi,mj = sinc(ωrmi,mj

c )
and rmi,mj = ‖dmj − dmi‖ is the distance between microphones. The proposed
informed spatial filter is obtained by minimizing the diffuse plus self-noise power
subject to a constraint set, similar to (2.20). Thus, we can define the minimization
problem as

min
h

hH(ω) [Φd(ω) + Φe(ω)] h(ω)

subject to hH(ω)a(θl, ω) = g,
(2.49)
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which corresponds to

min
h

hH(ω) [Ψ(ω)Γd(ω) + I] h(ω)

subject to hH(ω)a(θl, ω) = g,
(2.50)

where J(ω) = Ψ(ω)Γd(ω)+I and Ψ(ω) = φd(ω)
φe(ω) is the Diffuse to Noise Ratio (DNR).

The minimization problem is then defined as in (2.20), thus has a similar solution
to (2.21). It is important to note the beamformer so defined needs DOA estimates
at each time frame to be "informed" about how to shape its beampattern. Thus, it
leaves to other DOA estimation methods, like MUSIC or other beamforming methods
described in Section 2.1.2 the duty of this estimate. This approach particularly suites
our system because, in contrast to other methods that tries to estimates impulse
responses of the direct or secondary paths between sources and microphones, or
PSDs of target and undesired sources, we use a different approach that tries to
assess, adaptively in time, the sound field and thus the plenacoustic function. We
discuss the background theory in Section 2.3 and the method itself in Chapter 3.
The remaining pending issue is how to estimate DNR. A novel estimator is developed
in [3] which exhibits a sufficiently high temporal and spectral resolution to reduce
both reverberation and noise. To estimate Ψ(ω) Thiergart et al. propose to use an
additional spatial filter which cancels the L sources plane waves (it works with the
far field assumption) such that only diffuse sound is captured. The weights of this
spatial filter hΨ are found as in (2.26) by maximizing the white noise gain of the
array. Regarding the response vector, it is set to cancel all the sources in the sound
scene but pointing its beam along the DOA with the largest distance to all the other
source signals DOAs. With some mathematical rearrangements we obtain

Ψ(ω) = hHΨ Φy(ω)hΨ − φe(ω)hHΨ hΨ

φe(ω)hHΨ Γd(ω)hΨ
. (2.51)

Another important factor is the Directivity Index (DI) that represents the ratio of
the total sound power in an isotropic noise filled environment, incident on an array,
compared to the power actually received by the system after beamforming filtering.
The DI is written as

DI = 10 log10
φy
φyF

= 10 log10
1∫ π/2

0 B(θ, ω) cos(θ)dθ
. (2.52)

In [3] the authors show that a tradeoff between WNG and DI can be achieved.
This tradeoff holds in both the case of noise power higher and lower than diffuse
noise field. When noise power is higher than diffuse field power, and, viceversa,
maximum directivity is achieved. This means that when noise is predominant in
the sound scene, the beamformer tries to attenuate its output power with respect
to all DOAs. Conversely, when diffuse field power takes over, the beamformer tries
to maximize its directivity, in order to acquire the target source only along the
direct path, attenuating reflected waves that might arrive from close DOAs. In order
to obtain the estimated noise power required for the DNR, it is assumed that a
sufficient number of silent signal frames are available. The proposed DNR estimator
does not necessarily provide the lowest estimation variance in practice due to the
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chosen optimization criteria, but provides unbiased results.
An alternative formulation which turns the minimization problem of the aforemen-
tioned method into a MMSE problem has been proposed in [28]. The minimization
problem is equal to the one proposed in (2.17) and find its solution as seen in
(2.18). It is then demonstrated that as the filter weights can be represented as a
MVDR filter which is responsible for extracting the desired source undistorted, and
a single-channel MMSE filter accountable for noise and interference reduction. The
delicate point in the method just described is the PSDs estimation required to build
this MMSE filter. The performance of the method strictly depends on the goodness
of the estimations, which are not always disposable or accurate in every scenario.
In fact, not only noise PSD is requested but also source signals’ and undesired
signals’ PSDs. Under/Over estimation of these parameters leads to leakage errors,
therefore, distortion of desired sources and/or insufficient suppression of undesired
contributions.

2.3 Acquisition of the plenacoustic images
The Plenacoustic Function (PAF) [11] has been derived in order to understand

and capture the spatio-temporal acoustic sound field. The concept of PAF comes
from the plenoptic function introduced in [29], vastly used in computer vision and
computer graphics to model light rays and their propagation. The PAF describes
the acoustic radiance in every direction through every point in space. In the case
of 2D geometric domain, the PAF has the form f(x, y, θ, ω, n) with x, y indicating
the position in space; θ indicating the direction; ω indicating the frequency; and n
indicating time. In [11] has been conducted a thorough study on how to acquire
the PAF in a discretized way, both in the free field and in a reverberant room.
However, in that work the dependency on θ is not taken into account, resulting in
a omnidirectional function. As explained in Section 2.1 the best way to capture
signals both in time and in space is through an array of sensors disposed in a certain
configuration. Using an array of sensors means placing an Observation Window
(OW). In the 2D geometry ideal case, the OW is a line segment through which
the acoustic scene is ”observed”. In real applications this segment is sampled by a
finite array of microphones. As already stated, having a finite length array with a
certain distance between sensors implies sampling limitations both in time and in
space since spatial aliasing depends both on the inter-microphone spacing d, and on
signal frequency ω, as showed in equation (2.9). Hence, only in the theoretical case
a sound field can be totally acquired. In real cases, spatial frequency, as defined in
(2.9), and temporal frequency involve aliasing problems that have to be resolved by
satisfying the sampling theorems. Despite temporal frequency that may not be an
issue, because of bandlimited signals or devices, spatial frequency must be taken
into account to avoid aliasing and to understand the decay of the spatio-temporal
sound pressure field spectrum along the spatial and temporal frequency axes. Now,
being aware of the limitations in sampling a sound field, a quick and intuitive way
for acquiring and visualize, hence analyze, the sound field is desirable. This is
further justified by the cumbersome task of assessing a sound pressure field, generally
done by gathering measurements and combining the related constraints, through
a specifically developed process for the problem at hand. Moreover, we want to
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restore the dependency on direction θ of the PAF, since we need estimates of DOAs
of acoustic rays.
A solution to this problem was found by Markovic et al. in [2]. The authors found
a way to measure the PAF by means of beamforming techniques. The authors
implemented a device that captures the plenacoustic function over an OW based on
an array of microphones. One rather straightforward way of doing so is to think of
this device as an array of acoustic cameras that sample the OW. The unavoidable
compactness of these cameras, however, causes one such device to exhibit severe
resolution limitations. This means that this system cannot represent the direct
acoustic counterpart of a plenoptic camera. However, in [2] a novel parameterization
has been introduced for the domain of the plenacoustic function (ray space), which
conveniently displays (as an image) all the elements of the acoustic scene in such a
way to facilitate its analysis despite this loss of resolution. The resulting image will
be here referred to as “ray-space” image, and the device for capturing it, we will
call “ray-space” or “soundfield” camera. With this new parameterization, acoustic
primitives such as sources and reflectors, are mapped onto rectilinear features/regions
of the ray-space image, which greatly simplifies acoustic scene analysis algorithms.
In fact, this allows us to approach space-time processing problems with pattern
analysis tools, which are readily available in the rich literature of computer vision
and multidimensional signal processing.
The plenacoustic function in [2] is thought in the 2D case as f(x, y, θ, ω, n). In
particular, they are interested in the dependency on space (x, y) and direction θ,
therefore, by simplifying the notation we drop both ω and n. Under the hypothesis
of validity of geometrical acoustics, expressing the soundfield as a function of the
spatial/directional parameters x, y and θ, corresponds to adopting a representation
based on acoustic rays.
Let us show how a compact and simple parameterization for the rays on an OW could
be defined. As we are interested in defining a soundfield camera, the parameterization
will be “one-sided”, as it will cover only the rays that cross the OW in just one of the
two possible directions. The invariance of the acoustic radiance along the direction
of rays, allows us to establish an equivalence between rays and oriented lines that
cross that window in the same direction. We therefore need a rule for implicitly and
uniquely specifying the orientation of a line given the line parameters. Placing the
observation window on the y axis between y = −q0 and y = q0, a relation between
rays and lines can be found by writing the line equation

y = mtx+ q, (2.53)

where | mt |<∞ is the angular coefficient for lines not parallel to the y axis. This
line has two possible directions: one pointing towards the y axis from the positive
half-space x > 0, and one from the opposite half-space. Conventionally, the line
orientation is set towards the y axis for the x positive half-space. This allows to
identify an equivalence between rays and lines, which is why the authors refer to
the (mt, q) space as the "ray-space". If the space P of all possible parameters (mt, q)
covers the rays that point towards the y axis from the positive half-space, the subset
of such rays that only "illuminate" the OW lies within the region V = {(mt, q) ∈ P :
−q0 ≤ q ≤ q0}, which it is called "visibility region" of the OW. Given an acoustic
primitive (a source, a reflector, etc.), we are interested in finding which of the "visible"
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Figure 2.4. ROI Rx of the point x, and related regions of visibility that this ROI defines
on V. Picture taken from [2].

rays (those in V) are coming from points of that primitive, in order to assess "what"
of the radiance produced by that primitive could be picked up by the soundfield
camera. This region of the ray space, referred to as the Region Of Interest (ROI) of
the primitive, is closely related to the concept of visibility region.
In order to have a better idea of what a ray-space image is expected to look like in
our case, let us begin with characterizing the ROIs of point sources. A point-like
source positioned at p = [x, y]T with x > 0, can be equivalently thought of as the set
of all the lines that pass through it. These lines identify only those rays that depart
from the source and point towards the y axis. The region of the ray space describing
the parameters of such lines is called the dual Ip of the point and is represented by
the line q = −xmt + y. The ROI of p is the set of lines that pass through both p
and the OW:

Rp = V ∩ Ip = {r = [mt, q]T ∈ V : q = −xmt + y}, (2.54)

where r is a ray in the ray space, and R is the ROI of p. As shown in Figure 2.4
Rp divides V in the two regions V+

p and V−p . Rays in V+
p reach the OW after going

around p in a clockwise fashion; while rays in V−p fall on the OW after going around
p counterclockwise. A similar definition can be given for the two half-spaces P+

p and
P−p that Ip divides the parameter space into. Multiple sources can be managed as
well, thanks to the superposition principle, as depicted in 2.5.
In order to derive the ray-space image, let us start from the classical parametrization
f(x, y, θ) of the PAF and map it onto the ray space P. This mapping is defined
by x = 0 (the OW is on the y axis); θ = arctan (mt),−π/2 < θ < π/2; and q = y.
The resulting ray-space image is therefore pr(mt, q) = f(0, q, arctan (mt)). This
image carries information on both magnitude and phase of the acoustic radiance,
therefore it is generally complex-valued. The images we need in this work of thesis
are power images, such as P r(mt, q) =| pr(mt, q) |2, since we do not need the phase
information but just the power distribution. The plenacoustic function in ROI Rp

can be determined using the radiance beampattern Bp(θ, ω) of the source p, which
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Figure 2.5. The sources pA and pB in the geometric domain (a) and the corresponding
ROIs (b), which generate an overlap. Picture taken from [2].

is the distribution of acoustic radiance produced by the source, as a function of the
angle θ = arctan (mt) and frequency ω. The invariance of the acoustic radiance
along the ray allows us to write

prp(mt, q) =
{

Bp(arctan (mt)), (m, q) ∈ Rp

0, elsewhere
. (2.55)

The image so calculated is idealized, i.e. no issues of limited resolution or aliasing
phenomena. We notice in Figure 2.4 as the spatial extension of the OW increases,
so does the thickness of the strip V. An infinitely wide OW in fact, could ideally
capture the plenacoustic function over the whole ray space Pr.
Let us now discuss the real case when the camera is not idealized. In principle, just
like in the optical domain, the soundfield camera can be thought of as an array
of acoustic cameras, placed on a grid that samples the OW. If the acoustic scene
is not static, we need to resort to a one-shot acquisition procedure based on a
spatially extended microphone array. We discuss the ULA microphone configuration
partitioned into smaller sub-arrays, since it is the one adopted in our work. One
line of the ray-space image is obtained by applying beamforming to each sub-array
and then mapping the output onto the ray space. For each location of the array, the
angular distribution of the acoustic power is estimated through the computation of
a pseudospectrum [12]. The pseudospectrum is the output power of a beamforming
which points in every direction, and it shows peaks in the DOAs of the sources. We
recall that this method works in the near-field hypothesis for sub-arrays but in the
far field when considering the whole array. Under this condition each sub-array is
able to consistently determine the directions of arrival of the sources. Thus, different
sub-arrays observe the sources under different angles (i.e., from different positions).
Consider the simple setup in Figure 2.6. The acoustic source is located in pl, and
the microphone array is located on the y axis between y = q0 and y = −q0. The mth
microphone in particular is in m = [0, q0 − 2q0(m− 1)/(M − 1)]T . Let us consider
a sub-array centered in mi(the microphone in mi is the reference sensor of the
sub-array). The sensors in the sub-array are located at mi = i− W−1

2 , . . . , i+ W−1
2 ,
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Figure 2.6. Implementation of a soundfield camera using ULA. Picture taken from [2].

where W is the odd number of microphones of the sub-array. Then we can define a
beamformer at each sub-array and at each frequency ω as showed in Section 2.1.2.
A wideband version of the pseudospectrum is obtained as

P i(θ) = ΠK
k=1hHi (θ, ωk)y(ωk), i = W + 1

2 , . . . ,M − W + 1
2 , (2.56)

i being the index of the sub-array. Then we must map the pseudospectra onto the
ray space. We recall that the pseudospectrum P i(θ) measures the power distribution
of rays passing through the location i of the ith microphone. An acoustic ray passing
through this point at an angle θ has parameters

mt = tan(θ)

qi = q0 − 2q0
i− 1
M − 1 ,

(2.57)

therefore we can write

P̃ r(mt, qi) = P i(arctan (mt)), (2.58)

where i = (W + 1)/2, . . . ,M − (W + 1)/2. The scanlines q = qi are the dashed ones
in Figure 2.6. The real ray-space image P̃ r(mt, qi) that we obtain will differ from
what we would obtain with an ideal camera for a twofold reason: it is sampled along
q (due to limited number of sub-arrays); and it is blurred along mt (due to limited
number of sensors in each sub-array), Figure 2.7.
Starting from (2.56), in our work, we find a method to perform wideband image
reconstruction that is robust to spatial aliasing artifacts and to the peculiar energy
distribution of speech signals. Moreover, we wish a fast way to calculate the ray-space
image so to perform frame analysis in a reasonable time. However, having the sound
pressure field depicted in the ray-space image permits to draw from it, by means
of linear pattern analysis, important information as source location in space. In
fact exploiting the powerful Hough transformation [15] on the ray-space image one
can go back to the source point location in the (x, y) space. Further, knowing the
location of sources in space and other useful information drawn from the ray-space
image, gives a huge hint for building source separation filters.
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Figure 2.7. Ray-space Image for two angularly displaced sources. Speech sources are
placed at distance 1 [m] impinging on the array center with DOAs 30◦ and −30◦. The
array has M = 24 and W = 7.

2.4 Source localization

Once the ray-space representation of the plenacoustic function is acquired we can
exploit the information that it carries to source localization purposes. One of the
biggest advantages it carries is that sources are represented by linear patterns across
DOAs which can be easily clustered together. In fact, we can find local maxima
at each row qi of the ray-space image, see Figure 2.7, i.e. at each sub-array DOA
estimation, and assign them to sources, trying to eliminate spurious peaks using
the Hough transform [15]. The Hough transform, in fact, detects collinear local
maxima and finds the parameters of the related lines, which are related to the source
location. A sufficient accuracy on sources estimation would require a prohibitively
large grid of the Hough map which leads also to bigger computational complexities.
The Hough transform is here used only to find a first approximation of the source
locations, which allows us to assign the peaks to the corresponding sources. Better
estimates of the source locations can then be obtained through linear regression over
measurements of the same source. Thus, we first obtain approximate coordinates
(xl, yl) of the L sources pl, l = 1, . . . , L and determine the set Il of indices that
identify the ray-space image rows where the source considered is visible. Then, we
define the set of source l associated maxima in each row

Ll =
{

(mti , qi) : |mtixl−yl+qi|√
1+m2

t

< ε, i ∈ Il
}

(2.59)

where ε is a properly tuned threshold. The number of sources can be estimated
through Hough transform, by simply setting a threshold on the number of associated
maxima to l, considering also the number of lines present in the ray-space image.
The system is then suitable for blind source localization, or, if the number of sources
is known in advance localization of those sources can be performed. Now, we show
how to apply least-squares technique to refine location estimates. Let us consider an
acoustic source in pl = [xl, yl]T , from (2.53) we know that all rays departing from pl
must satisfy the constraint mtxl − yl + q = 0, which can be rewritten as wTpl = −q,
where w = [mt,−1]T . For each set of maxima Ll we can therefore define the system
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of equations 
wi1pl = −qi1
...
wiN(l)pl = −qiN(l)

(2.60)

where the subscripts i1, . . . , iN(l) are the indices in Il. Equation (2.60) can be written
in the matrix form as

W pl = q, (2.61)

where W = [wi1 . . .wiN(l) ]T and q = [−qi1 . . . − qiN(l) ]T . We find pl using least-
squares, i.e.,

p̂l =
(
W TW

)−1
W Tq. (2.62)

The localization procedure is repeated for all the sets Ll. As we can see, source
localization and, in particular, the problem of disambiguating measurements and
matching them with sources is here turned into a pattern analysis problem per-
formed on an image. The fact that the patterns are rectilinear, turns the localization
algorithm into that of solving a system of linear equations, which is quite a desirable
feature. Furthermore, it showed in [2] that for ULA configuration a limit on DOA
such that −π/3 ≤ θ ≤ π/3 is imposed for localization purposes. This is due to
resolution limitations on mt. A major outcome of this approach is the solution of
localization in case of mutual occlusion of sources with respect to the array reference
microphone. In fact, it has been until now an important limitation of the single
array methods.

2.5 Conclusions
In this chapter we introduced the reader to the spatial filtering field providing a

model adopted throughout this manuscript and explaining how it is employed in
the sound field acquisition. Besides, sensor arrays allow to estimate many spatio-
temporal information, e.g. source demixing, acoustic transfer functions, and to
perform noise reduction and source separation through beamforming.
For these reasons, we described beamforming method in depth. We tried to give a
complete and, at the same time profound, glance at the state-of-the-art of beamform-
ing methods, underlining their performances in various ideal and real scenarios. We
showed how to design the optimal beampattern for the problem at hand by means
of several beamforming techniques such as DAS, LCMV, MVDR, GSC, MMSE. All
these methods have been discussed showing the minimization problems they solve
and their model assumptions.
In addition, we showed how beamforming is tightly linked to source separation and
sound field acquisition, because of its spatio-temporal nature. In fact, beamforming
is employed in many state-of-the-art source separation methods. We focused on
this problem, in line with a rising interest, both in research and in commercial
applications, bestowed to speech processing and separation. Giving a particular
focus on the two most used methods, namely MVDR and LCMV, we showed their
behavior in several circumstances, with particular attention to their interference
rejection and noise suppression performances. Although, LCMV achieve better
interference rejection, an important lack of robustness emerged with the LCMV
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method when the angular displacement of the sources is diminished down to or less
than 15◦. This weakness is reflected both in SNR and in SIR, two common metrics
to evaluate source separation tasks. This gap is not fulfilled neither from MVDR,
even though in this case performs better, nor from other state of the art methods.
In this thesis we aim at resolving this issue by approaching the problem from a
plenacoustic stand point.
Using the plenacoustic function representation in the ray-space, we are able to
represent in a intuitive way point sources acting in the sound scene. However,
when dealing with speech sources the method presented in equation (2.56) lacks
of accuracy, since it does not take into account neither the energy distribution of
speech sources, nor the possible aliasing errors that might affect the pseudospectrum.
Moreover, in order to perform source separation adaptively at each time frame, we
need a smart algorithm to avoid burdensome computations at each sub-array. In
Chapter 3 we show a way to solve these problems.
Once gained the ray-space image, in a fast and accurate way, we can easily perform
linear pattern analysis, given that point sources are represented as lines in the ray
space, to obtain an estimate of source locations. Source location estimation allows
us to turn the blind speech separation into an informed speech separation problem,
thus, allowing us to point filter beams towards the desired source. Then, knowing
(x, y) coordinates of speech sources, enables us to reconstruct the targeted speech
signal at any position in space by means of a appropriate sub-array signals fusion,
as explained in 4. In addition, we are able to perform source separation even when
angular displacement of sources diminishes beyond 15◦ thanks to the multiview
plenacoustic approach.
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Chapter 3

Efficient and Accurate
computation of the Plenacoustic
Image

Acquisition of a sound field is an essential step in order to study sound behavior in an
enclosure or free field. If the sound energy distribution is totally known, theoretically
signal processing techniques would allow to process the field both on the analysis side
and on the rendering side perfectly. Due to physical limits we saw in the preceding
Chapter 2 in Section 2.3 that just an acquisition approximation is achievable through
microphone array processing. The coarseness of this approximation is heavily affected
by physical characteristics of the device used to capture and analyze the sound field.
We showed in Chapter 2 that a suitable candidate for this task is array processing with
microphones. In order to acquire an adequate approximation, particular attention
must be paid when waveforms in the field are wideband, which impose a large
observation window to process low frequency waves and a close spatial sampling for
a complete and precise (without aliasing artifacts) acquisition. This is due to the
spatial frequency concept introduced in Section 2.1. If resolution limits are taken
into account, microphone array methods represent a valid, versatile and efficient
option for capturing sound fields and process them. This is especially true because,
generally, the same task is done by gathering measurements and combining the
related constraints, through a specifically developed process for the problem at hand.
Specifically, we seek an efficient and accurate calculus of the sound field mapped
onto the ray space. It allows us to apply linear pattern analysis to extract essential
information on the field itself, like acoustic primitives positions, in a reasonable time.
Thus, our work represents a first step towards a possible real time implementation
of a sound field analysis for tracking purposes. No restrictions are imposed on
the sources behavior, which can move in space in front of the observation window,
and still be resolved in a block-adaptive way (via time frames). The information
gained at this step is essential for other successive applications like, as we will see in
Chapter 4, source separation. A time adaptive characterization of the sound field
is essential in beamforming-based source separation techniques. In fact, through
plenacoustic image analysis we propose a possible approach to transform a blind
source separation into an informed beamforming separation problem. Hence, we
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Figure 3.1. Efficient computation of the plenacoustic image and sources localization block
diagram.

ward off from often needed acoustic paths transfer functions estimation or second
order statistics of desired and undesired sources that are not always available and
often make the system rigid for the estimation conditions they require.
We will focus on the 2D case with special attention to the ULA configuration.
This will grant optimal calculus performances, as we designed a specific ULA
configuration fast algorithm to compute ray-space images and because among the
possible configurations the ULA utilizes the less number of sensors, and consequently
it manages less amount of data, to uniformly sample space. On the other hand, ULA
lacks of optimal spatial resolution. For example a quincunx configuration would
guarantee better resolution. However, we compensate to breaches of the spatial
sampling theorem by performing an accurate frequency weighted mean to calculate
the plenacoustic image. Basing our discussion on the models we described in the
preceding Chapter, we follow our dissertation in the following way: in Section 3.1 we
will discuss the efficient acquisition of a plenacoustic image. We will also describe
in Section 3.1.1 how to build a robust plenacoustic image in the ray space when
wideband speech signals are processed with all the related issues. Successively, we
apply localization methods discussed in 2.4 on the accurately calculated ray-space
image to extract as much accurate estimation on sources positions.

3.1 Efficient computation of the plenacoustic image

The goal of the methodology we are going to describe consists in achieving a rapid
characterization of the sound field of interest, in order to allow adaptive localization
of sources in time. A block diagram of the system we are going to discuss in this
Section is represented in Figure 3.1. As we affirmed in Section 2.3 a valid method is
proposed in [2]. This method relies on the beamforming technique calculated by an
acoustic camera (i.e. a sub-array of microphones) which samples the observation
window. Such device is called plenacoustic camera. Then, a plenacoustic camera
consists of multiple acoustic cameras with different array centers. The various
acoustic cameras composed by W (odd) microphones are disposed along the overall
linear array comprising M microphones, as described in Section 2.3. In order to have
a sufficient spatial sampling frequency it is better to fix a certain overlap between
acoustic cameras. We can take as reference microphone either the first sensor, or
better, the central sensor of the array for symmetry reasons. In both cases the
number of sampling points is equal to M −W + 1. This further sampling on the
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observation window allows to construct both an intuitive representation of the sound
field in the ray space, localization of sources, and consequently to obtain meaningful
improvements in the source separation problem. We see that if the overall array
extends in the range y ∈ [q0,−q0], the q axis in the ray-space image is sampled at
the same points qi = q0 − 2q0

i−1
M−1 . We indicate with i the sub-array indices.

As we previously mentioned, we seek a responsive computation of the ray-space
image to extract sources location esteem. We aim at a fast computation because we
want to track and separate sources even in dynamic scenarios where speakers move
in space. In order to track possible moving sources, we perform a time windowing
operation on signals acquired by microphones. In Figure 3.1 we indicate microphone
signals frame in frequency domain as x

(f)
i . Since our system works in signal frames,

and for notational simplicity, we ignore the frame index just defined in successive
mathematical derivations. Next, we discuss how to calculate the beamforming
filter hi(θ, ω) at each acoustic camera and the pseudospectrum P i(θ) that measures
the power distribution of rays passing through the location of the ith microphone.
Hence, we exploit different points of view corresponding to the acoustic camera
centers to assess acoustic rays distribution, this way avoiding being restricted to
just one sampling point in space. As we have illustrated in Section 2.1.2 there
are several ways to determine a beamforming filter. Among the data-independent
we derived the DAS beamformer, a well-known simple and fast method. Due to
its data-independent nature, it can be computed independently from the signal
data to be processed. In addition, given that we want to direct a beam at each
direction in the visibility region of the observation window, we can precompute a
matrix H containing all beamformer filters for the acoustic camera. This matrix
is fixed and each row has a Vandermonde form, if the first microphone at each
sub-array is taken as reference. If we take a closer look at H matrix we see that each
column forms a basis function in the spatial domain, according to DOAs. Completely
alike to Fourier Transform, that calculates frequency components of a time domain
signal, we compute spatial components of a frequency domain signal, opening to fast
implementation possibilities like it has been done for the time-frequency domain
with the well-known Fast Fourier Transform.
In Section 2.1 we defined the array model we are going to use now to derive the
transformation matrix H . Considering that we are working on sub-arrays composed
by a small number of microphones, usually between 3 and 7, thus, the sub-array
extent is not reduced, we can assume a far-field scenario. Consequently, we can
define matrix A(ω) as in (2.33) for a sub-array, considering its reference microphone.
Then, we consider a(θ, ω) as in (2.7). Then we consider DAS filter as determined
in (2.24), where the number of microphones is W . Since we want to point a beam
at each direction, we consider θj with −π

2 ≤ j ≤ π
2 . For simplicity, we derive the

transformation matrix for the ith sub-array, but in accordance with (2.35), we can
write with a little abuse of notation

yi(ω) =

 yi(ω)
...

yi+W−1(ω)

 = A(ω)S(ω) + E(ω), (3.1)

Notice that for notation conciseness and to better visualize the Vandermonde
structure of matrix H, we are taking as reference the first microphone of each
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sub-array. Thus, we can write

P i(θ, ω) =


hH(θ1, ω)yi(ω)
hH(θ2, ω)yi(ω)

...
hH(θJ , ω)yi(ω)

 =


hH(θ1, ω)
hH(θ2, ω)

...
hH(θJ , ω)

yi(ω) (3.2)

Hence, we define:

H(θ, ω) =


hH(θ1, ω)
hH(θ2, ω)

...
hH(θJ , ω)

 =


1 ejωd sin(θ1)/c . . . ejωd sin(θ1)(W−1)/c

...
... . . . ...

1 ejωd sin(θJ )/c . . . ejωd sin(θJ )(W−1)/c

 , (3.3)

where j is the imaginary unit. We recall that yi(ω) refers to a frame of microphone
signals in the frequency domain. It is also important to note that in order to obtain
a uniform spacing between bases in equation (3.3), we have to choose the directions
of arrival θ for which sin(θ) is uniform. Keeping in mind that we want to calculate
the plenacoustic image in a efficient way, we can rearrange microphone signals in a
matrix that has as columns the ith sub-array microphone signals at frequency ω.
Proceeding in this manner, we obtain

P (θ, ω) =


P T

1 (θ, ω)
...

P T
M−W+1(θ, ω)

 =
(
H(θ, ω)

[
y1(ω) . . . yM−W+1(ω)

] )T
. (3.4)

If we take the density of the spectral energy, | P (θ, ω) |2, so to discard the phase
information, we obtain all the pseudospectra for frequency bin ω, obtained with
just one matrix multiplication. Hence, we have to calculate (JW )× (M −W − 1)
multiplications and J × (M −W + 1)× (W − 1) additions. Phase information is not
required at this step because we just need energy distribution across DOAs in order
to understand how source waves impinge on the sub-array at each frequency bin ω,
as depicted in Figure 3.2. In fact, the output of filtering operation between signals
at microphones and DAS beamformer previously defined, exhibit peaks at directions
θ corresponding to the direction of arrival of sources, as showed in Figure 2.2.

3.1.1 Wideband image reconstruction

The pseudospectrum represents the energy distribution of the sound field with
respect to DOAs and frequency [12]. In order to move towards a compact and
intuitive representation of the sound field, i.e. the ray-space image, we need to
perform a merging operation on frequencies. It means reducing a wideband DOA
estimation problem into a frequency independent problem. From the wideband infor-
mation, we want to extract precise DOAs values at which acoustic rays arrive at the
sub-array. The method must be robust with respect to aliasing errors, which occurs
at frequencies beyond the spatial limit, and it must maintain energy ratios between
sources to better characterize the sound field. Once we gained this information we
proceed to map it onto the (mt, q) space, namely the ray space as we showed in
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9th sub-array. Speech sources placed at 30◦ and −30◦ with respect to the array center
and the array has M = 24 and W = 7.

Section 2.3.
We term the procedure of reducing frequency dimension as wideband image recon-
struction. This procedure is important when signals are wideband (speech signals
in our case) and a unique and precise estimation of DOAs is required. We need to
calculate the frequency-dependent pseudospectrum before extrapolating frequency
independent DOAs, because each frequency carries different information and energy
contribution. In fact, it can be seen in Figure 3.2 that most of the energy is carried
at low frequencies by the pseudospectrum, presenting large and smeared peaks, while
precise peaks are exposed at high frequencies. This operation has been carried out in
the literature [2], by means of different average methods. In [30] the authors propose
to use a geometric times harmonic mean across frequencies in comparison with
other averaging methods like geometric mean adopted in [2], harmonic mean and
arithmetic mean. It can be easily seen, from the results proposed in [30], that the
width of the main lobe of the geometric times harmonic mean is much narrower than
those of the other methods and has no noticeable side-lobe structure. The other two
methods, i.e. harmonic mean and arithmetic mean, on the other hand, do exhibit
small side-lobe structures. Since the geometric mean is based upon the product
operation, the lower frequencies eliminate any side-lobes, while the higher frequencies
narrow the beamwidth and hence give better resolution. However, using these rather
simple averaging methods does not always fit to the problem under analysis. The
necessity of treating frequencies equally, might be required because of resolution
issues and different values of SNR at each frequency. In fact, averaging effectiveness
decreases when the SNR at each frequency bin varies, since the DOA estimate
at some frequencies may be affected by large errors, and the final frequency data
combination may be inaccurate. In [31] the authors underline this issue, proposing
an averaging method called Normalized Arithmetic Mean. It aims at mitigating the
effect of incorrect response power estimation due to the variations of the SNR at each
frequency. The goal is to obtain a power pseudospectrum in which each frequency
gives the same contribution to the final result. This is achieved by implementing a
normalization on power pseudospectrum values across DOAs and at each frequency
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bin. Thus, the power values are restricted to be in the range [0, 1]. In fact, a generic
high-value element P (θj , ω) affected by an estimation error, has a larger impact
on arithmetic mean than on geometric mean, due to the natural logarithm in the
latter. On the other hand, a correctly estimated low-value element has a marginal
impact on arithmetic mean, while it provides a substantial negative contribution to
geometric mean, which is null if P (θj , ω) = 0. Normalized arithmetic mean has the
advantage of balancing the contribution of the two cases, thus increasing in general
the robustness of the fusion in terms of peaks detection, when the values of the
power response span different numerical ranges.
Such method cannot be applied in our case for many reasons. First of all, we are
working with speech signals that exhibit a peculiar behavior in frequency due to
speech formants. Hence, rather than flattening all the contributions in the range
[0, 1] we compress data values in a wider range applying a properly tuned power law
transformation

Pc(θl, ωk) = P (θl, ωk)γ . (3.5)
Tuning of γ can be done according to the variance of P (θ, ω). The different energy
contributions at different frequencies are so taken into account to maintain energy
ratios between the two sources almost unaltered and still be robust to SNR variations
as previously described. Furthermore, we need to properly consider information at
high frequencies. DOAs are accurately resolved at high frequencies, in contrast with
low frequencies where high energy fundamentals formants are present, but coarse
spatial resolution is achievable. This is due to the limited extension of the sub-
array. In the ideal case, where no spatial aliasing is present in the pseudospectrum
acquisition, no additional formulation would be required, but since we are working
with a microphone array with a fixed distance d between sensors, aliasing is a concern
that might alter DOAs estimation. Now, we introduce two frequency weighting
methods employed in our DOA estimation. The first weight is called Inverse Spectral
Flatness which is based on the Spectral Flatness (SF), firstly introduced in [14]. SF
measure is employed in several applications of audio signal processing, from voice
activity detection [32], to linear prediction analysis of speech [14]. It measures the
"whiteness" of signals, knowing that a Gaussian-distributed, temporally white signal
evinces a flat spectrum. The SF measure is defined as the geometric mean over the
arithmetic mean, which applied in our case to power pseudospectrum values:

F(ωk) =
(ΠJ

j=1Pc(θj , ωk))1/J

1
J

∑
j Pc(θj , ωk)

, −π2 ≤ θ ≤
π

2 (3.6)

where P (θj , ωk) is the power pseudospectrum at DOA j and frequency ωk. Since
our goal is to assign low weights to unresolved low frequencies we apply the inverse
of the measure previously defined, so to have F−1(ω) ≈ 0 if the DOA estimation is
not resolved at that frequency bin and F−1(ω) ≈ 1 if the DOA estimation shows
many peaks resembling a white noise. The weights so applied have the drawback
of enhancing those high frequencies beyond the spatial aliasing limit, presenting
spurious peak leaking at greatest DOAs. Being aware of this issue, we consider also
the norm values of frequency bins, so defined

‖P (θ, ωk)‖1 =
J∑
j=1

P (θj , ωk). (3.7)
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placed at distance 1 [m] impinging on the array center with DOAs 30◦ and −30◦. The
array has M = 24 and W = 7.

This measure will give us high values if that frequency carries high energy information
with it, e.g. it is a formant or one of the harmonics of the voiced frame of the
signal, whereas it will assume low values for high frequencies without great energy
content, where aliasing errors resides. By multiplying the two weights together with
the power pseudospectrum, we obtain a frequency-wise weighted pseudospectrum,
where, intuitively, the frequency bins that show both an important energy content
and well defined peaks are enhanced. Conversely, all the bins that do not show both
characteristics are mitigated. Then, we define the weighted pseudospectrum as

Psf(θj , ωk) = Pc(θj , ωk) · F(ωk)−1 (3.8)

Psfn(θj , ωk) = Psf(θj , ωk) · ‖Psf(θ, ωk)‖. (3.9)

The wideband DOA values estimation can now be reduced to a unique frequency
independent estimation. Hence, we apply a geometric per harmonic mean as proposed
in [30] to the weighted pseudospectrum, obtaining in this way the DOA values
estimation for a sub-array of our system,

P i(θ) = (ΠK
k=1Psfn(θj , ωk))1/K · (K)∑K

k=1
1

Psfn(θj ,ωk)
. (3.10)

The image so computed presents sharper and more precise peaks with respect to
previous methods which leads to a more accurate, consistent and robust information
that can be extracted from the plenacoustic function representation. The ray-
space plenacoustic image is then formed by each sub-array contribution P i(θ) and
shows the acoustic rays distribution impinging on the array with a certain angular
coefficientmt and intercept q. Once the ray-space image is calculated, source location
estimation can be carried out. Details of how to calculate such estimation have been
given in Section 2.4. The location in space of the sources acting in the sound scene is
of paramount importance to inform source separation LCMV filters. It is important
to remark the localization technique we adopt does not need a priori information
on the number of sources acting in the sound scene. Hence, the main advantage
of computing a plenacoustic image for source separation purposes is that a blind
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source separation problem can be turned into an informed problem. In fact, knowing
the position of speakers at each time frame, which is usually approximately 0.02[s],
gives us a precious spatial information to direct our separation filters adaptively in
time. Furthermore, we can easily calculate acoustic rays distribution according to
DOAs in order to determine the angular displacement of sources from the sub-array
point of view (i.e. the sub-array center). This parameter will be used to coherently
merge sub-array separated signal versions. We will discuss this particular weighting
method in Chapter 4.

3.2 Conclusions
The key for a good source separation is knowing sources position in time. We

showed in this Chapter how to achieve this knowledge adopting a time frame based
computation of the ray-space image. A transformation matrix has been defined to
quickly calculate wideband pseudospectra at each sub-array. Then, we showed how to
reduce pseudospectrum frequency dependency to obtain acoustic rays distribution at
each sub-array. We proposed a new method to perform this operation. Our method
has been developed to be more robust to spatial aliasing errors than previously
proposed works, to better maintain energy ratios between sources in ray-space
representation. Finally, it provides more precise estimation of rays distribution along
DOAs which compose each row of the ray-space image. Thus, ray-space image is
formed by combining sub-array results. Thanks to this soundfield representation,
we are able to easily assess sources position. As seen in Section 2.4, localization
procedure is robust to sources overlapping disposition with respect to the OW. This
allows us to consistently inform our LCMV separation filters.
In addition, we can intuitively see on the ray-space image sources disposition in
space and calculate their acoustic ray direction difference. This parameter is derived
in details in the next Chapter since it plays an essential role in our source separation
method. It permits to coherently weight the separated signals estimation given
by sub-arrays. The goal of this operation is to enhance those signals provided by
sub-arrays from which sources are seen with a larger angular displacement. In fact,
the array extension allows to have many sub-arrays with centers located at different
positions along the OW which permits a multiview approach to source separation. In
Chapter 4 speech separation is discussed, showing how source separation is possible
with a single microphone array even in source overlap situations.
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Chapter 4

Robust Speech Separation
based on the Plenacoustic
Image

Source separation problem has gained much interest lately, due to its numerous
possible applications. Various approaches to solve the problem have been proposed
and many possible ways have been explored which brought to significant results.
Nevertheless, modeling the problem mathematically is not straightforward, especially
when several sources interact with each other and with the environment. Reflections,
ambient noise, tracking, occlusions and other related issues must be taken into
account. In order to have a flexible system, we devised a system robust to all
the problems mentioned. In fact, it is robust to reverberant environments where
reflections of sound waves might affect the system performances; it is robust to
ambient noise since it maximizes the white noise gain of separation filters in situations
of high ambient noise; it is capable of tracking sources positions adaptively in time,
thanks to the information provided by the plenacoustic function representation in
the ray space, computed in Chapter 3. Finally, it resolves sources mutual occlusion
with respect to the OW thanks to the plenacoustic approach to source separation.
The latter issue is of particular interest in this Chapter explaining how such result
is achievable with just one extended microphone array. Sources overlap/occlusion
problem has recently been resolved in literature with distributed arrays. The
drawback of this method is that it requires to deploy in space more than one array
of sensors, placed in specific positions, in order to acquire signals having different
DOAs in any possible source position configuration.
Herein, we propose a method to achieve satisfactory speech separation results in
any case of sources disposition in space with just one extended ULA. Intuitively,
we are able to place a virtual microphone close to each speaker, even though we
use just one microphone array relatively distant from the speaker itself. We discuss
our plenacoustic-image-based approach which relies on the plenacoustic camera that
samples the observation window and performs source separation at each sampling
point. A single sampling point of the OW could be seen as a ”point of view” through
which the sound scene is observed. Then separation operation is done by LCMV
filters at each ”point of view”. We know from Section 2.2.2 that LCMV beamforming
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Figure 4.1. Block diagram of speech separation based on plenacoustic image

method needs constraints to be defined in order to extract the desired source(s) and
attenuate the interferer(s). Once gained an estimate of sources position, as we saw in
Chapter 3, and 2, we are able to inform our plenacoustic camera at each sub-array,
thus, to properly set the constraints of each sub-array LCMV filter. It has been
shown in Section 2.2.3 that LCMV filters suffers of instabilities and exhibit poor
separation performance when the angular displacement of the desired and undesired
sources, with respect to the sub-array center, is small. For this reason, we need
to appropriately weight and merge sub-array reconstructed signals. A definitive
evaluation of speech signal is therefore obtained and it represents an approximation
the speech signal as if it was picked up at speaker’s position.
Finally, in order to gain robustness against every possible real scenario, separation
filters have been designed to work both in anechoic conditions and in reverberant
environments.
In Chapter 5, we evaluate the performance of our speech separation method in terms
of accuracy of separation.

4.1 Informed and robust speech separation filters

A consistent and time responsive estimate of the source location is a desired
feature to perform source separation. Indeed, knowing speakers position in time, so
their movements in space, allows us to set our separation spatial filters appropriately.
As described in Section 3.1.1, a block-adaptive processing is adopted in our method.
This technique permits to exploit time-variant parameters extracted at the previous
processing step in Chapter 3. One of these parameters is the number of active
speakers at each time frame. It has been shown how this number L can be drawn
from ray-space image analysis. Thoroughly alike to ray-space image computation
algorithm, we proceed in separating sources with a plenacoustic methodology, thus
considering the plenacoustic camera and the sub-arrays that compose it. In Figure
4.1 a block diagram of the algorithm adopted for source separation is presented.
Let us consider a scenario in which L speakers are present in a time frame, whose
position has been estimated p̂l = [xl, yl],l = 1, . . . , L. The number of speakers is
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influent in terms of estimation accuracy, because, as we stated in 2.1.2 and 2.2.1, we
need to have L < W where W is the number of sensors our sub-array is made up
to attain acceptable estimation results and avoiding ill conditioning of constraint
matrix. We can adaptively modify the number W of sensors in each sub-array to
satisfy this condition. The ray-space image is a precious resource at this stage, since
we can easily estimate the number of active speakers from the number of lines, thus,
the number of linear patterns showed in the image. By augmenting W we reduce
the OW and consequently the precision on localization, since the Hough transform
grid is reduced as well. Another important outcome of increasing the number W is

Figure 4.2. The sources pA and pB in the geometric domain (a) and the corresponding
ROIs (b), which generate an overlap. Picture taken from [2].

that the near-field assumption imposed at sub-arrays might not be verified anymore.
This situation is showed in Figure 4.3. Once again the ray-space image comes in
help and allows for fast and intuitive assessments of the sound field scenario. In
fact, when two sources are in overlap with respect to a sub-array center, a peculiar
disposition of rays is experienced as shown in Figure 4.2.
Next, let us assume the sensor numberW has been properly tuned for the scenario at
the frame under analysis, we proceed in specifying the separation filters. As already
mentioned, we choose to comply with the LCMV design. This choice has a twofold
reason: LCMV attains superior interference rejection among statistically optimal
filters [27], it is flexible to data-independent (2.26) and robust data-dependent
implementations (2.50) for reverberant environments. An important issue in LCMV
filters is the constraint set C and response vector g definition as seen in Section
2.2.2. If we consider to constrain the direct path from the speaker l to the sensors of
the sub-array i, m = [i− W−1

2 , . . . , i+ W+1
2 ], matrix C l,i will assume the form

C l,i(θ, ω) = [a(θ, ω)l,1 ... a(θ, ω)l,W ] , (4.1)

where al,i(θ, ω) has the form of a(θ, ω) that has been specified in (2.12) where the
first microphone of the array was taken as reference. Nevertheless, its form can be
easily derived also in the case when the central microphone is taken as reference.
The constraint matrix specified in (4.1) has to be determined for each speaker
l = 1, . . . , L. Then, we consider a(θ, ω)l,i as the array transfer vector for the ith
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Figure 4.3. Angular displacement at different sub-array centers considering an ULA
configuration with M = 8 and W = 3.

sub-array, for the source l, that has a DOA equal to θl. We recall that the DOAs θl
with l = 1, . . . , L of the speech sources have been estimated from the ray-space image
analysis as described in Chapter 3. Then the response vector is set according to the
desired source that we want to extract. In fact, our method focuses its separation
filters on one speaker at a time, aiming at extracting from the mixture acquired at
microphones, one desired speaker and attenuating all the others. The practice of
setting the separation filters constraint matrix and its response vector, according
to a previous estimation of sources position, is called ”informing” separation filters.
Repeating the whole procedure described for all the speakers acting in the sound
scene at each time frame enables us to obtain an estimation for each speech source.
Consequently, we set the response vector

gl = [0 . . . 1 . . . 0]T . (4.2)

The value 1 is placed at index l corresponding to the lth desired source whereas
all the other sources are set to 0. We fix this desired responses because we aim
at extracting undistorted the desired speech source meanwhile maximizing the
interference rejection rather than the interference plus noise attenuation. However, if
a high value of noise is experienced at microphone signals, a data-dependent LCMV
filter can be employed as in (2.21) so to use the remaining W −L degrees of freedom
to reduce noise power. Then, our separation filters for sub-array i and speech source
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Figure 4.4. Sub-array beampatterns of LCMV separation filters targeting speech source at
[1.03, 0.6].

l, would become

hl,i(ωk) = Φyi(ωk)−1C l,i(θ, ωk)
CH
l,i(θ, ωk)Φ−1

yi
(ωk)C l,i(θ, ωk)

gl. (4.3)
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Otherwise, it is convenient to use a fast data independent filter similarly to equation
(2.26),

hl,i(ωk) = C l,i(θ, ωk)
CH
l,i(θ, ωk)C l,i(θ, ωk)

gl. (4.4)

Particular attention should be paid to matrices inversions in both cases. Diagonal
loading application should be considered in order to avoid instability of these filters.
Instability is due to spatial aliasing experienced at frequencies higher than the spatial
limit. If diagonal loading is not applied to matrix inversions, performances of the
filters may rapidly degrade for increasing DOAs, as discussed in Section 2.1. An
example of the beampattern obtained with this method is presented in Figure 4.4.
Another LCMV separation filter design was presented in Section 2.2.4 in equation
(2.50). That problem finds a similar solution to (4.3), specifically

hl,i(ωk) = J(ωk)−1C l,i(θ, ωk)
CH
l,i(θ, ωk)J−1(ωk)C l,i(θ, ωk)

gl. (4.5)

The latter extracts the target source as the other LCMV filters but it also tries

Figure 4.5. DI and WNG of the spatial filters h, DAS, SD. For hd, the minimum WNG
was set to −12 dB to make the spatial filter robust against the microphone self-noise.
Picture taken from [3].

to minimize the DNR, achieving better performances in reverberant environments.
This is due to the behavior of the filter (4.5) which combines the benefits of two
beamformer filters, DAS (2.24) and Super-Directive beamformer (SD) [33]. The first
one tries to minimize the spatially white noise, while the latter tries to minimize the
diffuse sound power at the filter’s output. We recall that J(ω) = Ψ(ω)Γd(ω) + I



4.2 Fusion of signals extracted at sub-arrays 45

and Ψ(ω) = φd(ω)
φe(ω) . Thus, when the DNR Ψ(ω) assumes high values, i.e. speakers

are active, the directivity index (DI), defined in (2.52), is maximized; vice versa, the
during silent parts, a maximum WNG is provided leading to a minimal self-noise
amplification, i.e., high robustness. In Figure 4.5 this peculiar behavior is shown,
where dashed lines represent filter’s behavior during silence and solid lines during
speech activity.
Filtering the microphone signals, with the most suitable filter hl,i(ω) for the problem
at hand, at ith sub-array to extract one of the speech sources l is then performed as
depicted in Figure 4.1 with the following notation:

ŝ
(f)
l,i (ωk) = hHl,i(ωk)y

(f)
i (ωk),

with

hl,i(ωk) =
[
hi−W−1

2
(ωk), . . . , hi+ W +1

2
(ωk)

]T
,

y
(f)
i (ωk) =

[
yi−W−1

2
(ωk), . . . , yi+ W +1

2
(ωk)

]T
,

(4.6)

where ŝ(f)
l,i (ωk) is the estimation of targeted lth speech source at frequency ωk, and

hl,i(ωk) contains the filter weights of the separation filter for frequency bin ωk.
The equivalent operation can be performed in the time domain by convolving each
sub-array sensor filter with each sub-array microphone signal and then summing
contributions together. This operation is done at each sub-array, producing as
output W different versions of the same time frame of the separated speech signal.

4.2 Fusion of signals extracted at sub-arrays
As it can be drawn from Figure 4.1, each sub-array filters microphone signals

trying to extract the targeted source from the mixture. Since we want as final output
of the system a single estimation of the targeted speech source, we need to devise a
method to combine the W different versions produced at sub-arrays. Two goals are
followed at this processing block: we wish we could place a virtual microphone close
to the targeted speaker, and we wish we could do it for every speakers location.
As a first step, we resolve the first issue by determining a filter w̃(ω) that aims at
inverting the direct path of the wave propagation, from source l to sensor m, to
compensate its attenuated and delayed version acquired at sensors. In fact, the
direct path of a wave could be modeled as an attenuation of amplitude of the wave
as it propagates in space. The signal acquired by microphones would then be an
attenuated and delayed version of the original speech signal. Thus, we exploit the
Green function [34] defined as follows,

wl,m(ω) = 1
4πrl,m

e−jωτl,m , (4.7)

where rl,m is the distance between speaker l and sensor m and τl,m corresponds to
the time delay that it requires to the wave emitted by the lth speaker to arrive at
sensor m. Once wl,m(ω) has been defined we can easily find a filter w̃l,m(ω) for
which it holds

wl,m(ω) · w̃l,m(ω) = 1. (4.8)
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front of the array center at 0.5 [m] and 1.8 [m]. The microphone array is composed by
M = 24 and W = 7.

Next, we cope with the second issue. The main idea behind the weights we are going
to determine relies on the fact that, conversely to classic spatial filtering approaches,
we have several points of view at our disposal each capturing the sound field. It
might happen that sources are disposed in such a way that one source hides the other
with respect to some of these points of view, as showed in Figure 4.3. We showed
in Section 2.2.3 that LCMV separation filters of those sub-arrays (whose array
center corresponds to a point of view of the sound field) for which sources are in an
overlapping situation have poor performances. Then, we want to attenuate, or even
discard, those contributions coming from these sub-arrays and enhance those ones
for which separation filters provide satisfactory results. In order to coherently weight
every contribution coming from each sub-array, we resort the ray-space image (i.e.
the plenacoustic function representation in the ray space). It clearly shows overlap
situations as lines intersections. In fact, sources lines arrive with the same DOA
at OW sampling point qi while they have different DOAs at other sampling points
qi′ 6= qi. The result is a line intersection in the ray-space image, showed in Figure 4.6.
It can be seen that an intersection in the ray-space image corresponds to a ∆mti = 0
at ith sub-array, where ∆mti = m

t
′
i
−m

t
′′
i
, (m

t
′
i
∈ Ll′ ,i,mt

′′
i
) ∈ Ll′′ ,i, mt

′
i
6= m

t
′′
i

and l′ 6= l
′′ . The set Ll,i has been defined in Section 2.4 and it represents the set of

maximum values for a row i of the ray-space image for source l. Thus, we take the
index value m

t
′
i
of the line corresponding to source l′ and we calculate the difference,

i.e. ∆mti , with the index m
t
′′
i
of the line corresponding to another source l′′ . Then,

this measure is easily employed to weight sub-array contributions. Let us consider
the two sources case, then the weight vector is

z =
[
∆mt1 , . . . ,∆mtM−W +1

]
, (4.9)

where ∆mti = mtu −mtv , (mtu ,mtv ) ∈ Li, u 6= v. In the general case where L
speakers are active in the scene we obtain a weight matrix

Z = [z1, . . . , zL−1]T . (4.10)
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Then, we obtain the lth speaker estimation as a weighted average with respect to
weight zl

ŝ
(f)
l (ωk) =

∑M−W+1
i=1 w̃l,i(ωk)ŝ

(f)
l,i (ωk)Zl,i∑M−W+1

i=1 Zl,i
. (4.11)

Finally, framed signals of the lth speech source in time ŝ(f)
l (n) must be combined to

obtain the entire signal. A well-known method to perform this operation in signal
processing is the overlap and add [35]. It consists in summing together successive
time frames of the processed signal with a certain overlap. The overlap rate must
be chosen in accordance with the kind of window applied on the original source
signal in order to have a perfect reconstruction. Usually Hanning windows with 50%
overlap are employed in speech signal processing. The final output of this overlap
and add, and thus of the whole system is ŝl(n) that represents an approximation of
the entire speech signal of one of the speakers acting in the sound scene.

4.3 Conclusions
Turning a blind source separation, i.e. no a priori knowledge is assumed on the

position and the number of sources present in the scene, into an informed separation
problem is an important achievement for separation efficiency. Even more appealing
is knowing the exact source location in time. One outcome of locating sources in
time is the possibility of virtualizing a microphone to be adaptively placed anywhere
in space. If a device of this sort is applied to speech separation then it would be
possible to track speakers acting in the sound scene and pick up their voice singularly.
We built a robust and efficient system capable of doing what described.
In Chapter 3 we showed how to efficiently represent a sound field with ray-space
images, on which localization can be easily applied by means of linear pattern
analysis. Then we based our speech separation algorithm on the knowledge acquired
by ray-space image analysis. Herein, we showed how to exploit a plenacoustic camera
to perform informed speech separation in anechoic and reverberant environments.
A major achievement, attained by using a plenacoustic camera, is the capability of
separating speech sources whatever position they assume in space in front of the
camera. Such result has never been achieved using only one ULA. In fact, for low
values of angular displacement of sources spatial filtering fails in the attempt to
separate sources. We overcome this limitation through the ray-space image that
shows the ray distribution of sources with respect to the sub-arrays composing the
plenacoustic camera. Then, we can weight sub-array contributions to consistently
succeed in source separation. In addition, knowing the position of sources, up to an
estimation error, allows us to define a filter to invert the direct path of sources wave
propagation and recover the signal as it was emitted at speakers positions.
In Chapter 5 we evaluate performances and robustness of our method. We take
as reference standard metrics to evaluate speech separation methods and test our
system to estimation errors, angular displacement of sources and different sources
overlap situations. In order to validate simulative results, we also test our method
with real data acquired in real semi-anechoic and reverberant environments. Finally,
we show a campaign of perceptive tests on people to explore the relation of our
objective results with people opinion.
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Chapter 5

Results

Speech separation has been resolved in this thesis with a new method based on
the plenacoustic representation in the ray-space. The advantages this approach
brings are numerous. First of all, we have discussed as source localization can
be performed on the ray-space image by applying linear pattern analysis. The
more the location estimation is accurate the more the overall performances of the
separation system increase. The reason for this peculiar behavior resides in the
spatial filtering techniques we adopted. In fact, source separation by spatial filtering
requires estimates of DOAs of sources, thus, the more accurate are the DOAs
the better we inform our speech separation filters. As presented in Section 2.2.1,
attenuation of undesired sources can be achieved by constraining the output of
the separation filter to have a specified response along certain DOAs. It was also
shown, in the aforementioned Section, that LCMV filtering method outperforms
all the other spatial filters in terms of interference rejection but fails when angular
displacement of sources diminishes beneath a limit. In Chapter 4 we illustrated as
the method we propose overcomes this limit by exploiting the plenacoustic camera
advantages and the information extracted from the ray-space image. Herein, several
simulations have been carried out to confirm the outstanding behavior of our method
in sources overlap situations. Furthermore, a characterization of the system to
angular displacement of speech sources is provided to show that our system is not
significantly affected by source angular displacement. Both simulation campaigns
showed impressive results demonstrating the quality of the system and the validity
of the remarkable approach it embraces.
In order to validate results obtained with simulations, real data has been acquired
in different reverberant environments. In particular our method has been tested
in semi-anechoic and reverberant scenarios. The outstanding simulation results
have been confirmed by experimental data in semi-anechoic environments whereas
comparable results have been obtained in a highly reverberant environment.
The results we extracted have been given in terms of Source to Interference Ratio
(SIR) and Source to Distortion Ratio (SDR), which are two metrics of a set of metrics
proposed by [20] based on energy ratios. We decided to used SIR and SDR because
are the most significant in our application.
However, it has been established in the literature [18] that objective metrics do not
always reflect accurately perceptive evaluation of quality, intelligibility and other
speech related characteristics, well known in speech enhancement [36] and speech
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separation [20]. For this reason, we conducted a perceptive test evaluation campaign
on 27 individuals. A relationship between objective metrics and objective Mean
Opinion Score (MOS) has been traced, validating once again our approach to source
separation with respect to classic techniques based on beamforming.

5.1 Evaluation metrics

Evaluation of separated speech signals is not a trivial topic. Several studies
and evaluation campaigns have been carried out to determine the best metrics for
speech separation. Often these metrics differ from classic signal processing metrics
as the well-known SNR because of the different nature of the problem. A simple
signal noise ratio is not enough to model all the different possible distortions that
might affect a speech signal during its processing. In addition, we would like to
have a measure of the separation degree attained, i.e. a measure that considers
the interference rejection, since our goal is achieving an adequate speech separation
result.
Vincent et al. [20] proposed a set of metrics to evaluate audio blind source separation
algorithms. The authors compared the metrics they conceived with state-of-the-art
measures demonstrating that these metrics better represent both objective distortion
and interference phenomena, as well as subjective opinions on speech assessment.
The key result resides in the way metrics are derived.
First of all, a set S of allowed distortions on the estimated signals has to be specified.
Allowed distortions do depend on the application the system is aimed at. In our case,
we consider a time-invariant gain as conceded distortion, which is the most common
distortion and the less annoying for the listener. Time-invariant gain distortion just
tweaks the amplitude of the waveform constantly in time but phase or frequency
content remains unaltered. In order to model the main distortion phenomena in
speech separation, different performance measures are computed for each estimated
source ŝl by comparing it to a given true source sl. The computation of the criteria
involves two successive steps. In a first step, ŝl is decomposed as

ŝl = starget + einterf + enoise + eartif, (5.1)

where starget = f(sl) is a version of sl modified by an allowed distortion f ∈ S, and
where einterf , enoise and eartif are, respectively, the interferences, noise, and artifacts
error terms. These four terms should represent the part of ŝl perceived as coming
from the desired source sl, from other undesired sources sl′ with l

′ 6= l, from sensor
noises em, and from other causes (like forbidden distortions of the source and/or
”burbling” artifacts).
In the second step energy ratios are computed to evaluate the relative amount of each
of these four terms on the whole signal duration. The aforementioned decomposition
is obtained by means of orthogonal projections on the subspaces spanned by original
and estimated signals. Let us denote Π{s1, . . . , sL} the orthogonal projector onto
the subspaces spanned by vectors s1, . . . , sL. The projector is a T × T matrix where
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T is the length of these vectors. Three orthogonal projectors defined as

Qsl
:= Π{sl}

Qs := Π{(sl′ )1≤l′≤L}
Qs,e := Π{(sl′ )1≤l′≤L, (em)1≤m≤M},

(5.2)

then ŝl is decomposed in four terms

starget := Qsl
ŝl

einterf := Qsŝl −Qsl
ŝl

enoise := Qs,eŝl −Qsŝl

eartif := ŝl −Qs,eŝl.

(5.3)

The computation of starget is straightforward since it involves only a simple inner
product: starget = 〈ŝl, sl〉sl/‖sj‖2. The computation of einterf is a bit more complex. If
the sources are mutually orthogonal, then einterf =

∑
l′ 6=l〈ŝl, sj′ 〉sl′/‖sl′‖

2. Otherwise,
if we use a vector u of coefficients such that Qsŝl =

∑L
l′=1 ul′sl′ = uHs where

u means the complex conjugate of u and ( · )H the Hermitian operator. Then,
c = D−1

ss [〈ŝl, s1〉, . . . , 〈ŝl, sL〉]H , where Dss is the Gram matrix of the sources
defined by (Dss)ll′ = 〈sl, sl′ 〉. The computation of Qs,e proceeds in a similar fashion;
however, most of the time noise signals can be assumed to be mutually orthogonal
and orthogonal to each source, so that Qs,eŝl ≈ Qsŝl +

∑M
m=1〈ŝl, em〉em/‖em‖2.

Next, referring to the decomposition of ŝl in (5.2) and (5.3), the energy ratios
expressed in decibels are defined to provide a numerical measure to speech separation
quality. Firstly, we define the source-to-distortion ratio

SDR = 10 log10
‖starget‖2

‖einterf + enoise + eartif‖2
, (5.4)

the source-to-interferences ratio

SIR = 10 log10
‖starget‖2

‖einterf‖2
, (5.5)

the sources-to-noise ratio

SNR = 10 log10
‖starget + einterf‖2

‖enoise‖2
, (5.6)

and the source-to-artifacts ratio

SAR = 10 log10
‖starget + einterf + enoise‖2

‖eartif‖2
. (5.7)

The four measures are inspired by the usual definition of the SNR, with some
modifications. For instance, the definition of the SNR involving the term starget +
einterf at the numerator aims at making it independent of the SIR. Indeed, consider
the case of an instantaneous mixture of two source, i.e. sources are linearly combined
(see Section 2.2), where ŝ1 = εs1 +s2 +enoise with ‖εs1‖ � ‖s2‖, ‖enoise‖ ≈ ‖εs1‖ and
ε an arbitrary coefficient. Then ŝ1 is perceived as dominated by the interfering signal,
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with the noise energy making an insignificant contribution. This is consistent with
SIR ≈ −∞ and SNR ≈ +∞ using the definitions given before (5.4)-(5.7). An SNR
defined by 10 log10(‖starget‖2/‖enoise‖2) would give SNR ≈ 0 instead. Similarly, the
SAR is independent of the SIR and the SNR since the numerator in (5.7) includes
the interferences and noise terms as well.
The measures so defined are applied throughout our simulations and experiments
sessions as objective measures. In Section 5.3.2 we will also explore the relationship
between these objective measures and the subjective rates that 27 individuals gave
to separated signals in perceptive test session.

5.2 Simulation setup
In order to assess the validity of our method, as well as its robustness against

parameter estimation errors and particular challenging speech sources dispositions,
we designed specific simulation sessions. A sound scene is simulated in every session
using MATLAB-r2014b software. The 2D sound scene is composed by an ULA
of M = 16 omnidirectional microphones disposed along the y axis with center on
the origin. The number of microphones M is fixed for all simulations, whereas the
number of microphones forming the sub-arrays, W (odd) with central microphone as
reference sensor, is W = 7 in Section 5.2.1 and in Section 5.2.2 and W = 5 in Section
5.2.3. This is due to the fact that a larger OW, i.e. an higher number of sub-arrays
comprised in the overall array, is advantageous in situations of source overlap. We
recall that our method works in time frames of signals and a overlapping positioning
of sources can be easily identified on the ray-space image, thus, the number W of
microphones can be modified accordingly. The distance between microphones in
the array is fixed, d = 0.06[m], thus, giving a total array length of 0.90 [m]. Also,
aliasing errors are experienced for frequencies higher than 2.858 [kHz]. In fact, from
Section 2.1 we know that the condition d < λ/2 must hold to avoid spatial aliasing,
consequently, with some mathematical rearrangements f < c

2d (we indicate frequency
values with f) to totally avoid spatial aliasing. The sound propagation speed c
has been approximated to be constant in dry(0% humidity) air (approximately a
homogeneous medium), then c = 331.3[m/s]

√
(1 + temp/273.15[K]), where temp

is the temperature expressed in celsius degrees (◦C) and the value 331.3 represent
sound speed at 0◦. In our case, temp = 20 because it approximates common scenarios
temperature.
Directions of arrival are taken such that −71.56◦ ≤ θ ≤ 71.56◦ and tan(θ) is uni-
formly sampled in order to have a uniform axis mt in the ray space. A uniform
axis mt is advisable for sources localization and visualization purposes. In fact,
linear regression and least-squares minimization to find a precise estimate of source
locations work in linear domain (see Section 2.4).
Regarding the speech signals utilized in simulations, we used two sources a fe-
male and a male speech source taken from the dataset ”EBU SQAM” https :
//tech.ebu.ch/publications/sqamcd. These two speech sources have been recorded
with sampling frequency Fs = 44100 [Hz] in an anechoic environment. We needed
speech sources in anechoic environment since the simulations try to characterize and
validate the system behavior in ideal conditions. Since we perform signal processing
also in the frequency domain, we want to avoid temporal aliasing performing DFT in
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K = 1024 points with −Fs/2 ≤ fk ≤ Fs/2 and ωk = 2πfk. Then, in order to avoid
frequencies, either seriously affected by spatial aliasing errors, or with wavelength,
λ, too large with respect to the array length, a bandpass filter is applied to signals
before being processed. The cut-off frequencies of this filter are set to 500 [Hz] and
5000 [Hz], which is a reasonable choice since it manages to process most of the
formants in a female and male speech, hence, without deteriorating too much the
intelligibility of voice.
Further, we take time frames of 1024 samples which corresponds to approximately
0.023 [s] of the speech signal. Speech signals in such time frame can be considered
quasi-stationary to obtain coherent estimations of second order statistics. Time
frames are obtained by applying an Hanning window with 50% overlap, which grants
perfect reconstruction after processing, when signals are singularly overlapped and
added together.
We simulated propagation of waves between speakers and sensors by modeling the
direct path between them. Thus, a simple filter to delay and attenuate signals has
been implemented, according to Green’s function (4.7). Then, ray-space image has
been calculated as described in 3. Regarding speech separation filters we employed
the constrained DAS showed in (4.4), giving that no sensor noise is injected in
the system and no reverberations are modeled. A properly tuned diagonal loading
[17], is applied to matrix CH(θ, ω)C(θ, ω) because it might present an unstable
behavior when the aforementioned matrix is inverted, as in (4.4). This instability is
due to ill conditioning of the matrix CH(θ, ω)C(θ, ω) that is experienced when it
is not full rank, thus, when any row is obtained as linear combination of another.
This phenomenon is manifested when vectors a(θ, ω)l,a(θ, ω)l′ with l 6= l

′ have the
same DOA θ, which implies the two vectors to be equal. The same phenomenon
might manifest also in the opposite situation, when the two DOAs are different, but,
because of infringements on the spatial sampling they are mis-interpreted as equal
or approximately equal.

5.2.1 Impact of source localization error on separation accuracy

As stated in Chapter 3 and in Chapter 4, no a priori knowledge on the number of
sources and on their position is assumed. This kind of approach to source separation
is called blind source separation. Then, performances of blind source separation
methods to speech separation are affected by errors on source position estimation.
This is especially true in our case, where we apply informed beamforming filters to
perform separation. As we discussed in Section 4.1, we steer filter beams along the
DOA of the desired source while we try to completely reject the undesired speech
source. Inevitably, errors on DOA estimation leads to imperfect speech separation.
Hence, it seems important to evaluate the impact of localization errors on the speech
separation performances.
In order to evaluate the relation between localization errors and performance degra-
dation, we designed a simulation session with a sufficient statistical relevance. In
fact, we know that speech separation performances depend on the direction along
which the error is verified, because both relative DOA and sources position, that
may lead to overlap, is affected. Thus, we injected 50 realizations of a controlled



54 5. Results

Gaussian noise on the estimated source location with random direction. We executed
25 simulation sessions with different noise variance σ2. Specifically variance has
been uniformly increased in V = 25 points in the range [0, 0.0544], so to have
3σV = 0.6997, where σ represents the standard deviation. The reason for that
maximum value on three times the standard deviation is that we wanted to fully
characterize the behavior of our system on source position estimation. In fact, an
error of r = ‖pl − p̂l‖2 = 0.6997, where pl is the real position of the lth source and
p̂l is its estimation, represents half the distance between real position of sources.
Since two errors with the same variance are injected on the estimated positions, it
approximately leads to overlap situations for some realizations. Therefore, sources
in our simulations are placed at pA = [0.7071, 07071],pB = [0.7071,−0.7071] which
corresponds to an angle of 45◦ from the array center.
Finally, SDR and SIR are computed at the end of each simulation over the whole
separated and source signals with an injected error equal to one realization value for
a Gaussian noise with a certain variance σ2

v . The procedure has been repeated for
each realization, 50 in total, for each variance step, 25 in total. We consider only
the SDR and SIR since they represent the two most important measures, among
those defined in Section 5.1, for what concerns separation degree of speech sources
and quality of the extracted signal.
In Figure 5.1a, we show the sound scene adopted, while in Figure 5.1b and 5.1c
the SDR and SIR values with respect to the 25 standard deviations of the error
on source localization (the standard deviation is calculated over 50 realizations of
Gaussian noise with a certain variance). Source A refers to the female speech signal
placed at pA, while source B refers to the male speech signal placed at pB. In Figure
5.2, a statistical analysis of the results obtained at each simulation for each error
variance. The blue boxes represent the SDR or SIR values among the 25th and
the 75th percentile, the red line indicates the median, the dashed line all the other
values but outliers which are indicated with red crosses. As expected the boxes are
progressively increasing, since the error variance is augmented at each session. We
also note that the SIR values are more sensible to localization error, given the higher
presence of outlier with respect to SDR.
As depicted in Figure 5.1, localization error do affect SDR and SIR final results. We
can see that both curves decrease as the standard deviation error increases. This
is due to the fact that we employ a beamforming method for separating sources,
in particular the LCMV method which imposes desired responses on the DOA of
the target source and the interferer. Thus, if the DOAs does not correspond to real
DOAs of sources the LCMV fails in achieving satisfactory results.
Furthermore, we note that the initial bias between the two sources is due to the
different total energy that the two signals carry (the energy ratio of source A over
source B is equal to −7.11[dB]). This energy imbalance is reflected also in overall
performances of the system which more easily rejects source A with respect to source
B. In addition, source B is a male voice that has most of its energy towards low
frequencies. Low frequencies are less directive than high frequencies because of the
greater wavelengths λ they have. Thus, errors on the estimation of DOA of the
undesired source with an important content of energy in low frequencies leads to
energy leakage of the undesired source in the filtering operation output. This is
validated by beampattern shapes of the filters we derived in Section 4.1. In Figure
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Figure 5.1. SDR and SIR metrics for two speech sources with increasing error on the
estimated position of sources.
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5.4 two examples of filter beampatterns exhibit a sharp notch along the estimated
DOA of the undesired source while the near DOAs are barely attenuated (about
10 [dB]), leading to poor rejection if the undesired source DOA is not correctly
estimated. For this reason, SIR parameter has the peculiar behavior shown in Figure
5.1c. Beyond a certain standard deviation error σ ≈ 0.08[m], SIR parameter for
source B could be considered stable at value the SIRB ≈ 20[dB]. Regarding source
A, SIR parameter curve reduces its steepness gradually and can be considered stable
beyond σ ≈ 0.15.
SDR metrics, instead, constantly decrease as the standard deviation increases, as
shown in Figure 5.1b. The reason for this trend is found in the definition of SDR in
equation (5.4). SDR metric considers also spurious artifacts that appears when the
estimated DOAs are almost identical.

5.2.2 Separation accuracy for angularly separated sources

Source separation based on beamforming techniques, and especially LCMV
method, does not show an equivalent behavior for every angular displacement
∆θ = θA − θB between sources (see Section 2.2.3 and Section 4.1). Furthermore, in
case that the spatial sampling condition, in (2.11), is not respected, instabilities of
the separation filters for large angular displacements are experienced. We solved
this problem with a properly tuned diagonal loading.
Herein, we show the results in terms of SDR and SIR we obtained from simulations of
speech separation with sources placed with 25 uniformly spaced angular displacements
∆θ. Speech sources have been placed at pA = [1, 0.2679] and at pB = [1,−0.2679]
so to have a initial ∆θ with respect to the array center of 30◦. Then, the speech
sources have been progressively shifted in opposite directions along the axis x = 1,
until they achieved a ∆θ = 120◦ with respect to the array center.
In Figure 5.3 we show the behavior of the system in terms of SDR and SIR with
respect to ∆θ. As expected, the more the angular displacement increases the
better the sources are separated, achieving high results both in SDR and in SIR.
Preventing the system from instabilities, we have made it robust to significant
angular displacements. In addition, resultant metrics show a crescent trend due to
the reduced effects of sidelobes in the beampattern as the difference in the DOAs of
the desired and interferer sources increases.
Four examples of filters beampatterns are shown in Figure 5.4 in which we consider
source A at p1 as the desired source. Figure 5.4a and 5.4b show the beampatterns of
the first sub-array at fk = 600[Hz] and fk = 2000[Hz], when sources are positioned
with ∆θ = 30◦, Figure 5.4c and 5.4d show the same sub-array beampatterns for the
case of ∆θ = 90◦. The beampatterns exhibit a blunt peak towards the desired DOA,
whereas the undesired DOA is attenuated with a precise notch. If the undesired is
close to the desired source, the notch is placed in correspondence of a main sidelobe,
which could cause energy leakage, due to precision limitation of the frequency bin
and thus on the filter length (our filters are defined in the frequency domain). When
the sources are angularly spaced enough, the undesired DOA is far from the main
lobe and the area near it is approximately attenuated as well.
Furthermore, we see that the filters better attenuate low frequencies when the sources
are positioned with large ∆θ. This characteristic behavior could be reconducted to
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the fact that the more the angular displacement increases the higher is the diagonal
loading injected in the constraint matrix at high frequencies to contrast the higher ill
conditioning due to spatial aliasing. In accordance to the spatial frequency definition
in equation (2.9), the more the signal frequency increases beyond the spatial aliasing
condition the more is the mis-interpretation of the DOA. The outcome is a coarser
interferer rejection. We recall that source B is a male voice and it contains most of
its energy in the low frequencies, while source A is a female voice which contains
most of its energy in the high frequencies. If we analyze Figure 5.4, we can see that
high frequencies are better rejected when sources have lower ∆θ, while the opposite
behavior is experienced when ∆θ is large. However, we can also notice that the
curves are almost stable with a difference of initial and final value of SDR and SIR
of about 4 [dB] for source A, and 2 [dB] of SDR for source B. Consequently, we can
consider the separation performance almost independent to angular displacement.
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Figure 5.2. Statistical analysis of SDR and SIR metrics computed on sources A and B
using the proposed method. The red bar indicated the median, the blue box comprise the
all the values between the 25th and the 75th percentile, the black dashed line indicates
the other values but the outliers which are indicated with red crosses.
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Figure 5.3. SDR and SIR metrics with respect to ∆θ.
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Figure 5.4. Beampatterns of separation filters for two different angular displacements ∆θ
of sources



5.2 Simulation setup 61

5.2.3 Separation accuracy for overlapped sources

One of the greatest advantages that our method of separation brings is a satis-
factory separation also in case of source aligned with the array center. In order to
validate this quality of the system, we conducted a simulation session. The same
setup configuration described in Section 5.2 is employed in these simulations with the
only difference that W = 5. We set W = 5 because we have seen in Section 4.1 that
smaller sub-arrays in situations of source overlap grant better results. Initially, the
two sources (female source A and male source B) are positioned in front of the array
with position pA = [0.5, 0] and pB = [1, 0] as shown in Figure 5.5a, subsequently,
source B is moved away along the positive sense of the x axis in 15 uniformly spaced
points. The final placement of source B is at pB = [2, 0] as depicted in Figure 5.5b.
In the same fashion of previous simulations, we present SDR and SIR metrics for
the different source positioning.
An important improvement in regards of SDR of approximately 9 dB for source A,
and 4 dB for source B, is shown if the source distance is increased up to approxi-
mately 1 meter, Figure 5.5c. This result can be reconducted to the fact that when
the sources are too close to each other, as in the initial configuration, the difference
of DOAs ∆θ between them with respect to sub-array centers is too small, even for
the most external sub-arrays. Due to its higher energy content and different spectral
density, source B overwhelms source A.
The same considerations made in Section 5.2.1 and 5.2.2 regarding the beampattern
behavior of separation filters can be made also in this case. Artifacts are introduced
by the filtering operation when low values of ∆θ are assumed, therefore decreasing
the SDR. When source B is moved further away from the array, the energy imbalance
is diminished because of natural propagation attenuation, until we end up with
the opposite situation. Since ∆θ with respect to the most external sub-arrays does
not change sensibly (it assumes values in the range [13.2, 20.6][deg]), the reason
for the changes in SDR has to be reconducted to the different distances of the two
sources with respect to the array. Furthermore, we can approximately identify a
lower threshold of ∆θ = 15.8◦ in correspondence of a distance between sources of
0.7[m]. If this threshold is exceeded a substantial deterioration of performances
is experienced, as showed in Figure 5.5c and 5.5d. Recalling that we had already
defined a threshold of ∆θ = 15◦ in Section 2.2.3, taken from the study by Souden et
al. [27], we find a confirmation of that value in our work.
However, the two trends are quite similar in terms of SDR and they achieve satisfac-
tory results of about 7 and 10 dB when sources have maximum distance. Of course,
a more extended array would lead to even better results.
Results showed in Figure 5.5d, concerning SIR parameter, represent a slightly differ-
ent behavior for source B respect to distance, whereas a tremendous improvement is
experienced for source A. In fact, source A which is fixed in front of the array at
pA = [0.5, 0] gains 30 dB of SIR when source B is at the maximum distance value
(1.5[m]). This fact can be reconducted to the important difference of distances of
sources with respect to the microphone array.
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Figure 5.5. SDR and SIR metrics with respect to the distance between the two speech
sources.
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5.3 Perceptive Tests

An evaluation task on speech separation algorithms should always take into
account perceptive tests to thoroughly assess differences and improvements among
different possible methods. The reason is that objective metrics based on energy
ratios, as SDR and SIR, do not always have a direct counterpart in perceptive metrics
such as intelligibility. In fact, metrics can be arranged on an axis of abstraction,
from those that measure the most concrete, literal properties of signals, through
to those concerned with much higher-level, derived properties in the information
extracted from the signals.
The energy-based measures requires that the system being measured reconstructs
actual waveforms corresponding to individual sources in a mixture, and that the pre-
mixture waveforms of those sources (the "ideal" outputs) are available. Depending
on the application, pre-mixture waveforms are not always available representing a
possible limitation of these measures. Another limit is that distortions such as fixed
phase/time delays or nonuniform gains across frequency which can have only a small
effect on the perceived quality of a reconstructed sound, can have a large negative
effect on SDR. The common unit of measurement, energy, has in general only an
indirect relationship to perceived quality. The same amount of energy will have a
widely-varying impact on perceived quality depending on where and how it is placed
in time-frequency; this is particularly significant in the case of speech, where most
of the energy is below 500 Hz, yet very little intelligibility is lost when this energy is
filtered out.
Although there have been some attempts to replace formal listening test (PEAQ,
PESQ), there is no substitute for formal listening tests in which subjects rate the
perceived quality of various algorithms applied to the same material. For these
reasons we designed a perceptive test campaign to explore and understand the
relationships between objective measurements of speech separation and to compare
our results with a classic approach (i.e. one extended ULA with no sub-arrays) of
speech separation based on the LCMV design.

5.3.1 Setup

As a first step, we identified six different sound scene configurations on which
simulate speech separation algorithms and then gather people evaluation on the
extracted signals. These sound scenes are depicted in Figure 5.6. The choice of
the sound scene has been made to be somewhat balanced: on one side there are
three configurations (Sessions 1-2-6) for which the proposed method outperforms
the classic LCMV approach, on the other side, there are other three configurations
(Sessions 3-4-5) for which the proposed method and the LCMV classic approach
have similar results. Detailed specifications of the sound scenes are summarized in
table 5.1. For these sound scenes, we conducted simulations with the setup described
in Section 5.2 with W = 7 to obtain SIR metric values.
The obtained values are then compared with Mean Opinion Score (MOS) [37], i.e.,
the values on a predefined scale (0-5) that subjects assign to their opinion of the
performance of the speech separation system used to extract the estimated speech
sources A and B. In order to collect MOS data with a statistical relevance, listening
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(a) Sound scene session 1.
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(b) Sound scene session 2.
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(c) Sound scene session 3.
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(d) Sound scene session 4.
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(e) Sound scene session 5.
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(f) Sound scene session 6.

Figure 5.6. Simulation sound scenes for perceptive tests.

tests have been conducted on 27 candidates. The chosen candidates have been
randomly selected in order to avoid an evaluation bias due to a specific cultural
background, or age. A simple graphical interface to conduct the listening tests
has been designed in which the audio signals of the six sessions, as the sessions
themselves, are randomly proposed to the listener to receive an evaluation score.
An example of the graphical interface is depicted in Figure 5.7. The same listening
hardware, i.e. headphones AKG k171 MkII, have been provided to the candidates
and the listening volume has been kept unchanged throughout all the tests. Finally,
the tests took place in the semi-anechoic room located in the Sound and Music
Computing Laboratory, Como Campus, Politecnico di Milano, to have a controlled
environment without external noises that might affect the final results.
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Table 5.1. Simulation setup for perceptive tests.

Session Sources Position ∆θ

1 pA = [0.6, 0.0],pB = [2.0, 0.0] 0◦
2 pA = [0.6, 0.0],pB = [1.2, 0.0] 0◦
3 pA = [0.9, 0.2],pB = [0.9,−0.2] 30◦
4 pA = [0.9, 0.9],pB = [0.9,−0.9] 90◦
5 pA = [0.9, 0.5],pB = [0.9,−0.5] 60◦
6 pA = [0.7, 0.0],pB = [1.2, 0.3] 15◦

Figure 5.7. Graphical User Interface of the listening tests.

5.3.2 Perceptive tests results

The results obtained with perceptive tests are in general exposed to a high
variance due to the subjective nature of the evaluation and to the random choice of
the candidates. Discarding subjects whose response exhibits an offset with respect to
the average greater than three times the standard deviation of the scores assigned to
a specific track of a specific session, is a solution to the aforementioned problem and
more significant mean values are obtained as consequence. The statistical results
obtained after this regularization are shown in Figure 5.8. In general, the scores
assigned to each audio track do not vary significantly, making the results reliable.
At a first glance, we can see that the proposed method performs better than
the LCMV method, especially in sessions 1-2-6, which exhibit overlap situations of
sources in front of the array. The LCMV performances in those cases are significantly
unsatisfactory, while the method proposed achieves SIR values of approximately 22
dB, 12 dB and 20 dB for source A, and 14 dB, 9 dB, 20dB for source B, as depicted
in Figure 5.9. Interestingly enough, similar trends are mirrored in the MOSs in
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Figure 5.8. Statistical analysis of the subjective scores assigned to sources A and B using
the proposed method and the LCMV method. The red bar indicated the median, the
blue box comprise the all the values between the 25th and the 75th percentile, the black
dashed line indicates the other values but the outliers which are indicated with red
crosses.

Figure 5.9c and 5.9d. Source A shows an almost equal MOS of approximately 3.5
for each session, which is a satisfactory result since it means source positioning does
not perceptively affect separation performances on source A. Regarding source B,
both SIR values and MOSs attain lower values than source A in sessions 1-2 but
performs better in 3-4-5. This is in accordance to the results showed in Figure
5.3d, where source B attains higher values for angularly separated sources, and in
source overlap situations in front of the array center, Figure 5.5d, where SIR of
source B is never more than 15 dB. In addition, SIR results both for source A and
B are higher for session 1 than for session 2, where the speech sources are closer
to each other, as reflected in Figure 5.5d. However, MOS values do not show this
difference, possibly because there is no significant perceivable difference between the
two extracted signals obtained with the proposed method. The reason for this result
is that sources, also in the initial positions, do not significantly overstep the distance



5.3 Perceptive Tests 67

limit between sources defined in Section 5.2.3.
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(a) SIR values extracted for source A
with the proposed method and with the
LCMV.
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(b) SIR values extracted for source B
with the proposed method and with the
LCMV.
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Figure 5.9. Comparison between SIR values computed on the extracted signals obtained
with the proposed method and the LCMV and MOS.
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5.4 Experimental setup

In order to meaningfully corroborate the results obtained with simulations, we
conducted two experiments, one in a semi-anechoic room with dimensions 4.6×4.3×
2.6[m] and T60 ≈ 50[ms], the other in a reverberant environment (room dimensions
≈ 5 × 6 × 3, the room is not acoustically treated). Two speakers EMPIRE M2
mounted on a support at approximately 1.5[m] from the ground have been used
to reproduce the speech signals mentioned in Section 5.2. The sources have been
located at pA = [1, 0.5][m] and pB = [1,−0.5][m], and the array of microphones
along the y axis extending from y = 0.45[m] to y = −0.45[m]. We used an array of
M = 16 STM32 MEMS microphones with SNR = 63[dB] with an STM32F407 low
power high performance 32-bit microcontroller to control acquisitions. The sampling
frequency has been set to 16000 [Hz], thus the time frame length for signal processing
to 512 samples which corresponds to 0.032[s]. The number of microphones in each
sub-array has been set to W = 7. The remaining parameters have been kept equal
to those described in Section 5.2.
Regarding the second experiment, performed in a reverberant environment, we
assumed available a time of 4[s] of silent signal to estimate the noise power φe needed
to compute the speech separation filters, equation (4.5). We assumed also that noise
is stationary throughout the duration of the experiment.

(a) Spectrogram of source A. (b) Spectrogram of source B.

(c) Spectrogram of extracted source A. (d) Spectrogram of extracted source B.

Figure 5.10. Spectrograms of extracted and original source signals.
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5.4.1 Separation accuracy for angularly separated sources in semi-
anechoic environment

In order to evaluate the results obtained in this experiment, we show the wave-
forms of the original and extracted signals to understand their time behavior, Figure
5.11. A characterization also in the time-frequency domain is also helpful to easily
realize if frequency distortions occurred at any time frame. For this reason, we
provide in Figure 5.10 the spectrograms of source and extracted signals. The spec-
trogram represent the frequency content of the signal at each time frame. In Figure
5.11 we can notice that a perfect separation has not been achieved, since interferer
contributions and noise are visible in the silent frames of the extracted signal in
comparison to the original source signal. However, the two different waveforms are
still well discernible meaning that a good grade of separation has been achieved.
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(a) Waveform source A.
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(b) Waveform source B.
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(c) Waveform extracted source A.
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(d) Waveform extracted source B.

Figure 5.11. Extracted and source signal waveforms.

Some differences can be recognized also in Figure 5.10, where we show the first
five seconds of the signal in the time axis for visualization purposes and frequencies
between 500 and 4000 [Hz] in the frequency axis because not much frequency content
of the signals is present at higher frequencies. This is due to the bandpass filter
(cut-off frequencies 500 and 5000) applied to the acquired signals, moreover, we have
to consider the frequency response of the microphones and the sampling frequency
equal to 16000 [Hz]. An example of dissimilarity, concerning the spectrogram of the
extracted and source signal, is at 2.5 [s] where it is evident that the frequency content
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has been roughly approximated. Nonetheless, the spectrograms are comparable in
almost every time-frequency point, confirming that a satisfactory separation has
been achieved.

5.4.2 Separation accuracy for angularly separated sources in rever-
berant environment

The results of the experiments conducted in a reverberant room, illustrated
in Figure 5.12, show that speech separation has still been achieved, even though
with coarser results. This is due to the reverberations present in the experimental
environment. Reverberations are present in an ambient because of reflections of
sound waves in any surface and they can be categorized in early reflections and late
reflections. We consider early reflections the first orders of wave reflections, while late
reflections the high reflection orders, which produce the diffuse field. Early reflections
affect the performance of our method the most, since they can be modeled as image
sources, i.e. fictitious sources that emit a sound wave with the same direction of the
reflected wave. In addition, being early reflections the less attenuated, they might
preponderantly enter in the beam pointed towards a speech source.
However, if we analyze Figure 5.12, frequency content at each frame is still well
recognizable, especially for low frequencies which contain the most significant amount
of energy. Intelligibility is heavily correlated with accuracy on high frequencies
estimation which are still recognizable in our results. In Figure 5.13 we show the
waveforms of the two source signals and the extracted signals. These results validate
what stated earlier also in the time domain.
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(a) Spectrogram of source A. (b) Spectrogram of source B.

(c) Spectrogram of extracted source A. (d) Spectrogram of extracted source B.

Figure 5.12. Spectrograms of source and extracted signals in reverberant environment.
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(a) Waveform of source A.
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(b) Waveform of source B.
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(c) Waveform of extracted source A.
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(d) Waveform of extracted source B.

Figure 5.13. Waveform of source and extracted signals in reverberant environment.
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5.5 Conclusions
A thorough simulation validation of the proposed method of speech separation

has been provided in this Chapter. In particular, we have demonstrated that the
angular displacement of speech sources relatively affects our system. Thus speech
separation does produce satisfactory results in almost every case, given that the
distance between the two sources does not assume values lower than a certain
threshold. We identified this distance threshold to be approximately 0.7 [m] with the
configuration adopted during simulations. In addition, we showed that satisfactory
separation results are achieved also with source positioned in overlap with respect
to a sub-array center. Interestingly enough, our method outperforms the LCMV
method in this situations achieving higher SIR and SDR results, which are the
two objective metrics taken into account in this work. The first one indicates the
separation degree of the sources, the other indicates the distortion introduced during
the processing step. However, it is known in the literature that such metrics based
on energy ratios does not always represent the subjective opinions of human beings.
A campaign of perceptive tests has been conducted for this reason. The results
obtained further validated the simulative results, showing a correlation between
SIR values and MOS assigned to the audio tracks proposed to the listening tests
candidates.
Since our method is also based on source localization to inform source separation
filters, it seemed important to track the behavior of the system when a source
localization error is injected in the source position estimation. We found out that
SIR decreases quite fast, diminishing its values of approximately 10 [dB] if the
error on the position estimation has a standard deviation value of 0.1. However,
SIR values are seen to be almost stable for standard deviation values higher than
0.1, suggesting that after a certain threshold the localization error does not affect
performances significantly, despite the SDR values keep decreasing as the standard
deviation increase.
Finally, we tested our method also in real scenarios: a semi-anechoic and a reverberant
room. We obtained satisfactory results for the semi-anechoic scenario, in line with
simulation results. The waveforms of the speech signals are still well distinguishable
and also the frequency content is almost unchanged. A slightly inferior result
have been achieved in the reverberant room. Even though the environment was
highly challenging (the room has no acoustic treatments) the results obtained are
satisfactory. Thanks to the reverberations-robust filter employed in this case the
waveforms as well as the frequency contents of the signals have not been deteriorated
too much, keeping a sufficient grade of separation.
In line with the results obtained, we provided a method to turn a blind source
separation into an informed separation problem also in reverberant environment,
solving the source overlap problem encountered in the literature of speech separation
using a single extended ULA.
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Chapter 6

Conclusions and Future Work

In this thesis, we addressed the problem of blind source separation, providing
a new approach based on a plenacoustic representation of the sound field. The
plenacoustic representation adopted maps the plenacoustic function, sampled in
several points by means of sub-array beamforming, into the ray-space image. We
saw that sampling the plenacoustic function in one point means computing the
pseudospectrum in that point. To this end, a fast data-independent transformation
matrix that brings properly rearranged microphone signals into pseudospectra, can
be precomputed. Then, a robust wideband image reconstruction that builds upon
speech frequency structure can be calculated to obtain the ray-space image. This
representation displays acoustic primitives (sources, reflectors etc.) as lines allowing
us to employ linear pattern analysis methods to detect these lines and estimate the
position of the related sources. Therefore, the advantage that this approach brings is
a fast and robust computation of the ray-space representation of the sound field and
its parameters, as source positions and source angular displacements. This extracted
information turns the blind source separation into an informed problem on which
beamforming method can be employed again. By directing an LCMV beamformer
from each sub-array to enhance the desired signal and reject the undesired ones, we
are able to estimate a separated version of each speech source for each sub-array.
The greatest advantage of this multiview approach is that higher separation perfor-
mances can be achieved when sources overlap with respect to a microphone of the
array. This is true because the angular displacement of sources affects the separation
performances. Thus, by properly weighting each sub-array contribution with respect
to the angular displacement, we can always maximize the separation performances,
exploiting the sub-arrays at which sources appear maximally angularly separated.
Another consequence of localization is that we can back-propagate the speech signals
extracted.
A simulation session has been designed to explore the performance attainable with a
certain sound scene setup in case of source overlap with respect to the array center.
The two sources have been positioned at an initial minimum distance, then, the
furthest source has been moved away along the line connecting the array center
with the sources. Interestingly enough, a distance limit has been identified, beyond
that the performances, measured as SDR and SIR, rapidly decrease. Otherwise,
separation results are satisfactory, showing SIR values over 10 [dB] for the rear
source and 20 [dB] for the front one. The rapid decrease of performances has to be
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reconducted to a minimum angular displacement required by the LCMV filter to
grant adequate separation results. The same performances cannot be attained with
a speech separation LCMV method because sources are always seen with angular
displacement value equal to zero.
The satisfactory speech separation results obtained, when sources overlap with
respect to the array center, have been confirmed by the MOSs collected with a
perceptive test campaign. We proposed a listening test to 27 people that rated
both the performances of our approach and those obtained with a classic LCMV
method in terms of separation degree. The results acquired clearly show that the
plenacoustic approach for source separation with an ULA configuration outperforms
the LCMV method and resolves the source overlap problem.
In addition, a simulation session has been designed to test the robustness of our
method against angular displacement. Two speech sources have been initially po-
sitioned in front of the array with a minimum angular displacement, then, they
have been progressively moved away, in opposite directions, to increase their angular
displacement. The results proved the robustness against large angular displacements,
where spatial aliasing affects the separation filters the most. This issue has been
resolved with an appropriately tuned diagonal loading applied to the LCVM filters
computed at each sub-array. Indeed, SDR values are almost stable at approximately
13 [dB], whereas, SIR values are approximately 20 [dB] for source A and 28 [dB] for
source B.
The performances obtained applying our approach, in a situation of angularly dis-
placed sources in real semi-anechoic and reverberant environments, have been tested
as well. Promising results have been obtained by comparing the spectrograms calcu-
lated in both situations, confirming the goodness of the approach also in reverberant
real world scenarios.
In our work we did not consider the possibility to map reflectors into the ray-space
image, as proposed in [2], which provides useful information that can be exploited
for speech separation purposes. In fact, knowing the position of reflectors can help
with the choice of appropriate constraints and desired responses for the LCMV filter
to attenuate undesired reflected sound waves. Another possible improvement of the
system would consist in a precise localization algorithm that does not produce errors
greater than 0.15[m] to guarantee always satisfactory results and an acceptable qual-
ity of experience in a real world scenario. Furthermore, when the minimum angular
displacement, required by the LCMV filter, is exceeded at sub-arrays, an MVDR
filter could be used to replace them and assure higher performances. Although higher
SIR values are not guaranteed, the MVDR filter reduces interference plus noise
better than the LCMV in these cases, thus, it could boost up SDR performances. An
outstanding result would be represented by a real time implementation of the whole
system, which is feasible because of the relatively fast beamforming technique. This
approach is in contrast to what has been done in the literature, where blind source sep-
aration has always been addressed with computationally complex statistical methods.
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