
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica
Dipartimento di Elettronica Informazione e Bioingegneria

Programming Abstractions
for Nano-drone Teams

Relatore: Prof. Luca Mottola
Correlatore: Mikhail Afanasov

Tesi di Laurea di:
Manuel Belgioioso, matricola 804149
Alberto Cardellini, matricola 818246

Anno Accademico 2014-2015





Alle nostre famiglie.

III



IV



Abstract

Drone-teams programming is rapidly expanding since it allows to automatically
perform a lot of useful tasks. Existing systems are able to manage a group of drones
and dispatching them in the environment. All these systems deal with outdoor
applications, where medium/big sized drones collaboratively perform tasks making
use of the Global Positioning System (GPS) to navigate in the space. We want to
deal with the indoor context, and no one of the existing system is fully suitable
for it. Indeed, the indoor context implies applications with different requirements
compared to the outdoor ones: there is need for a small number of drones(5/10),
each one performing a different action independently from the others, while in
the outdoor environment generally there is need for a large number of drones to
perform the same action. To address this problem, we propose the concept of
Trip, that is nothing but a movement of a drone from a point A to a point B at
the end of which an action (picture,measurement etc.) can be performed. No one
of the existing programming systems provides the concept of Trip. Furthermore
the second important goal is to make the system autonomous in the choice of
the drone to allocate for each Trip. This means that the user does not need to
take this important decision. We propose the Pluto programming framework as
a solution to these problems. It consists of two main components: the Graphical
Editor and the Main Application. With the former a programmer can build an
application by simply connecting functional blocks. Each block implements a
precise functionality, for example there is one that chooses the drones to assign
to each sensing task, one that manages the priority of the sensing tasks etc. Then,
through the "Generate code" command, the Pluto Graphical Editor generates the
source code of the second main component, the Pluto Main Application. The
final user uses this generated Pluto Main Application to define and execute the
sensing tasks. The key strength of our programming framework is its scalable
architecture, in which the central brain is independent from the particular navigation

V



API, which means that the system manages the dispatching of drones and their
failures independently of the specific navigation algorithm. We evaluated the Pluto
programming framework by proposing its use to real testers and asking them for
a feedback. Moreover we measured its software and hardware performance and
also tried to implement some existing applications with it. After the evaluation we
noticed that, even if with some limits, Pluto could really simplify the developing of
drone-teams applications.

VI



Sommario

La programmazione di team di droni è in rapida espansione, in quanto permette
di eseguire in maniera automatica un gran numero di azioni utili. I sistemi esistenti
sono in grado di gestire un gruppo di droni e farli navigare nell’ambiente. Tutti
questi sistemi trattano applicazioni outdoor, nelle quali droni di dimensione medio
/ grande collaborano insieme per svolgere varie azioni, utilizzando il sistema di po-
sizionamento globale (GPS) per navigare nello spazio. Il nostro obbiettivo è quello
di affrontare il contesto indoor, e nessuno dei sistemi esistenti è completamente
adatto per esso. Infatti, il contesto indoor implica lo sviluppo di applicazioni con
requisiti differenti rispetto a quello outdoor: c’è bisogno di un piccolo numero di
droni (5/10), ciascuno che esegua un’azione diversa, indipendentemente da tutti gli
altri, mentre in ambiente outdoor generalmente c’è bisogno di un gran numero di
droni che eseguano la stessa azione. Per risolvere questo problema proponiamo
il concetto di Trip, che non è altro che un movimento di un drone da un punto A
ad un punto B al termine del quale viene eseguita un’azione (scatto di una foto,
misurazione di una grandezza fisica ecc.). Nessuno dei modelli di programmazione
esistenti fornisce il concetto di Trip. Inoltre, il secondo obiettivo importante è
quello di rendere il sistema autonomo nella scelta del drone da assegnare ad ogni
Trip. Ciò significa che l’utente non deve prendere questa importante decisione.
Per rispondere a tutti questi problemi, abbiamo sviluppato il framework di pro-
grammazione Pluto. Pluto ha due componenti principali: il Graphical Editor e la
Main Application. Con il primo, un programmatore può costruire un’applicazione
semplicemente collegando dei blocchi funzionali. Ogni blocco implementa una
funzionalità precisa, per esempio ce n’è uno che sceglie i droni da assegnare a
ciascun Trip, un altro che gestisce la priorità dei Trip ecc. Quindi, grazie alla
funzionalità di generazione del codice, il Pluto Graphical Editor genera il codice
sorgente del secondo componente principale, la Pluto Main Application. L’utente
finale utilizza questa Main Application per definire ed eseguire i compiti nell’am-

VII



biente. Il punto di forza del nostro framework è la sua architettura scalabile che
lo rende indipendente dalle API di navigazione utilizzate. Ciò significa che il
sistema è capace di gestire l’invio dei droni e i loro fallimenti indipendentemente
dall’algoritmo di navigazione specifico. Abbiamo testato l’utilizzo del framework
di programmazione Pluto, proponendone l’uso a dei tester reali e chiedendo loro
un feedback. Inoltre abbiamo misurato le prestazioni software e hardware ed
abbiamo cercato di implementare con esso alcune applicazioni realmente esistenti.
Grazie alla fase di valutazione, abbiamo notato che, anche se è caratterizzato da
alcuni limiti, Pluto risulta uno strumento utile al fine di semplificare lo sviluppo di
applicazioni per team di droni.

VIII



Acknowledgements

It is a pleasure to thank those who made this thesis possible with advices, critics
and observations.
We would like to thank our supervisor Prof. Luca Mottola and our mentor Mikhail
Afanasov: without their help and support, this thesis would not have been possible.

We would like to thank Prof. Thiemo Voigt, who kindly let us developing part
of this work at SICS Swedish ICT and all the colleagues who have greeted and
helped us during the three months in Sweden, in particular Simon Duquennoy,
Liam McNamara, Joel Höglund and Niklas Wirström.

We owe our deepest gratitude to our families and friends for the continuous support
during these years at university.

Finally, we would like to thank one with the other for having lived together this
experience.

IX



X



Contents

Abstract V

Sommario VII

Acknowledgements IX

1 Introduction 1
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the art 7
2.1 Drone-level approach . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Swarm-level approach . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Robot Operating System . . . . . . . . . . . . . . . . . . 10
2.2.2 Karma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Proto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Team-level approach . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Data-flow programming . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Business Process Modeling Notation . . . . . . . . . . . 17
2.4.2 Node-RED . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Indoor applications using autonomous drones 21
3.1 Motivating scenario . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Drone programming . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Implementation challenges . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Indoor localization . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Drones and Objects size limitation . . . . . . . . . . . . . 27

XI



4 Programming with Pluto 29
4.1 Programming model . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Functional blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Pluto Graphical Editor . . . . . . . . . . . . . . . . . . . 42
4.3.2 Pluto Main Application . . . . . . . . . . . . . . . . . . . 44

4.4 Navigation System . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.1 Solution without Trip entity . . . . . . . . . . . . . . . . 47
4.5.2 Solution without the DroneAllocator and MissionModifier 48

5 Implementation 51
5.1 Object-oriented approach . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Graphical editor . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Code generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Runtime Management . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Prototype drone . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Evaluation 63
6.1 Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.1 Basic applications . . . . . . . . . . . . . . . . . . . . . 64
6.1.2 Alfalfa Crop Monitoring and Pollination . . . . . . . . . . 69
6.1.3 Aerial mapping of archaeological sites . . . . . . . . . . . 77
6.1.4 PM10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.5 PURSUE . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.1 Proposed exercises . . . . . . . . . . . . . . . . . . . . . 85
6.2.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . 91
6.2.3 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.4 User Survey . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.1 Software Metrics . . . . . . . . . . . . . . . . . . . . . . 99
6.3.2 Resources Consumption . . . . . . . . . . . . . . . . . . 99
6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

XII



7 Conclusions and future works 107
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Pluto limits and future works . . . . . . . . . . . . . . . . . . . . 109

Bibliography 111

A User survey 113

B User survey answers 121

XIII



XIV



List of Figures

2.1 The iRobot Create . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 ROS communication layer functioning . . . . . . . . . . . . . . . 11
2.3 The basic schema of Karma . . . . . . . . . . . . . . . . . . . . . 12
2.4 The amorphous medium abstraction . . . . . . . . . . . . . . . . 13
2.5 Proto: problem decomposition . . . . . . . . . . . . . . . . . . . 14
2.6 Voltron APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Example of a BPMN diagram . . . . . . . . . . . . . . . . . . . . 17
2.8 Example of a nodeRED application . . . . . . . . . . . . . . . . 18

3.1 The basic functioning of the Drugs distribution application . . . . 22

4.1 Relationship among model entities . . . . . . . . . . . . . . . . . 30
4.2 The MissionModifier block . . . . . . . . . . . . . . . . . . . . . 38
4.3 An example Pluto application . . . . . . . . . . . . . . . . . . . . 41
4.4 Working with the Pluto framework . . . . . . . . . . . . . . . . . 42
4.5 Pluto Graphical Editor interface . . . . . . . . . . . . . . . . . . 43
4.6 Mission Page interface . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 Trips Page interface . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8 Monitor Page interface . . . . . . . . . . . . . . . . . . . . . . . 46
4.9 Solution without the Trip concept . . . . . . . . . . . . . . . . . 48
4.10 Solution without the MissionModifier block . . . . . . . . . . . . 49

5.1 Pluto architecture representation . . . . . . . . . . . . . . . . . . 51
5.2 MVC design applied to the Main Application . . . . . . . . . . . 52
5.3 Graphical entities in the editor . . . . . . . . . . . . . . . . . . . 54
5.4 Observer design pattern example . . . . . . . . . . . . . . . . . . 55
5.5 Example of thread concurrency . . . . . . . . . . . . . . . . . . . 57
5.6 Trips Page structure . . . . . . . . . . . . . . . . . . . . . . . . . 59

XV



5.7 The Crazyflie Nano-Quadcopter . . . . . . . . . . . . . . . . . . 60

6.1 The basic graph pattern of OF, DD and WIF applications . . . . . 65
6.2 The basic functioning of the Object-finder application . . . . . . . 66
6.3 The basic functioning of the Warehouse item-finder application . . 67
6.4 Pluto graph for the Alfalfa Crop Monitoring and Pollination ap-

plication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5 The circular area to monitor . . . . . . . . . . . . . . . . . . . . 74
6.6 Sequence diagram of a starting mission . . . . . . . . . . . . . . 74
6.7 Sequence diagram of the mission execution flow . . . . . . . . . . 75
6.8 Sequence diagram of the trip execution flow . . . . . . . . . . . . 76
6.9 Sequence diagram of the mission ending flow . . . . . . . . . . . 76
6.10 The archaeological site on the map . . . . . . . . . . . . . . . . . 80
6.11 The area to sample on the map . . . . . . . . . . . . . . . . . . . 83
6.12 Solution of the first step . . . . . . . . . . . . . . . . . . . . . . . 87
6.13 Solution of the second step with Priority Manager . . . . . . . . . 88
6.14 Solution of the second step with Clock block . . . . . . . . . . . 89
6.15 Solution of the third step . . . . . . . . . . . . . . . . . . . . . . 90
6.16 Fist step of exercise 1 results . . . . . . . . . . . . . . . . . . . . 94
6.17 Second step of exercise 1 results . . . . . . . . . . . . . . . . . . 94
6.18 Third step of exercise 1 results . . . . . . . . . . . . . . . . . . . 95
6.19 Editor functioning results . . . . . . . . . . . . . . . . . . . . . . 95
6.20 First step of exercise 2 results . . . . . . . . . . . . . . . . . . . . 96
6.21 Second step of exercise 2 results . . . . . . . . . . . . . . . . . . 96
6.22 Third step of exercise 2 results . . . . . . . . . . . . . . . . . . . 97
6.23 VisualVM interface . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.24 Very Complex Diagram Example . . . . . . . . . . . . . . . . . . 100
6.25 Resources consumption of the Graphical Editor . . . . . . . . . . 102
6.26 Evaluation results of Main Application with fixed missions and trips103
6.27 Evaluation results of Main Application with fixed missions and

drones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.28 Evaluation results of Main Application with fixed trips and drones 104

XVI



Chapter 1

Introduction

Autonomous drones are performing a revolution in the field of mobile sensing:
various type of drones are used to perform a great number of applications, since
they can carry rich sensor payloads, such as cameras and instruments. Often there
is a simple abstraction which allows drones navigation: they can be controlled
through mobile devices or by setting waypoints from a desktop application. The
great deal with drones is that they can extend the capabilities of traditional sensing
systems while simultaneously reducing cost.

Many drones programming systems have been developed in the recent years,
performing a wide range of different functionality, but they are all suitable for
outdoor contexts. We aim to create a new programming model for the collaboration
of nano-drones, in order to extend the support for the developers who want to
create new applications in indoor contexts.

The indoor context implies applications with different requirements compared
to the outdoor ones: there is need for a small number of drones(5/10), each one
performing a different action independently from the others, while in the outdoor
environment generally there is need for a large number of drones to perform the
same action. We address this problem with the concept of Trip, that is nothing but
a movement of a drone from a point A to a point B at the end of which an action
(picture, measurement etc.) is performed. Existing frameworks do not allow the
developer to deal with the concept of Trip. We also want to make our framework
autonomous while choosing which drone has to physically carry out the Trip.

1



From a technological point of view, GPS cannot be used in indoor contexts.
Furthermore, the indoor context implies moving in small areas which are usually
full of people and obstacles, so the drones have to be small, in order to avoid crashes
with both human and environmental obstacles. Size limitations result in other
problems such as the low battery duration and the maximum transportable weight.
So, we need to give a contribution to the actual state of the art in order to derive a
new programming system crossing all the previous requirements. Our programming
framework has an architecture in which the central brain is independent from the
particular navigation API, which means that the system manages the dispatching
of drones and their failures independently of the specific navigation algorithm.

1.1 Contribution

Imagine a medical context where the nurses’ duty is to deliver, every day at the
same hour, the patients’ daily medicines. A drone could achieve this task flying
room by room and leaving the pills to the relative patient’s desk. It would be way
better if a group of drones could manage these tasks simultaneously. This scenario
is described in Section 3.1.

In order to create an application able to carry out this task, a developer could
program each drone individually, making use of a specific API to command them,
and taking care of the complex duty of managing the coordination between them.
Our goal is to build a more clever programming framework, where a central brain
manages the dispatching of the drones simultaneously and expresses how the
drones should behave to accomplish these tasks, managing also the failures due
to crashes of the drones and batteries getting empty. This mechanism is done in a
programmer transparent manner, so that he does not need to manage the drones’
dispatching. Chapter 2 illustrates in details the possible ways to achieve this goal:
instead of using a Drone Oriented approach, the developer could use either a
Swam Oriented or a Team Level approach. There are several available frameworks
such as Karma[1] and Voltron[2], but no one of them is fully suitable for indoor
applications.

2



As already said, we deal with the indoor context, that implies applications with
different requirements compared to the outdoor ones: there is need for a small
number of drones(5/10), each one performing a different action independently
from the others, while in the outdoor environment generally there is need for a
large number of drones to perform the same action. We formalize this problem
with the concept of Trip. No other framework allows the user to define the idea of
a Trip as a movement from point A to point B to accomplish an action. Another
fundamental feature of our framework is that the central brain takes care of the
important decision to choose which drone to assign to a given Trip, facilitating the
work of the programmer in the development of his application. As said, the system
manages the failed trips in the same way. For example, when a drone crashes,
the system chooses a new drone to complete the interrupted Trip, without any
intervention of the programmer or the final user.

We wanted to facilitate as much as possible the work of the programmer, so
we decided to create the Graphical Editor. Thanks to this editor, the programmer
can develop its application by drawing functional blocks and then connecting them.
Each block represents a feature: there is a block that assigns a Drone to a Trip,
one that sends the drones to the target location, etc. The developer can connect
the blocks needed according to the requirements of the specific application. From
the drawn graph, the editor generates the source code of the Main Application
mentioned before. This source code is dependent on the graph and adds to the
Main Application all the features expressed by the chosen blocks.

In order to define the sensing tasks, we developed the Pluto Main Application,
that is the final user interface. It allows the final user to choose the actions to
perform and where they must be performed, by simply dragging and dropping the
actions on a map. An Action could be the taking of a photo, a measurement of
some parameters or a custom task expressed by the developer.

Finally we evaluated the Pluto framework under different points of view. First
of all, we chose some already existing applications and tried to develop them
from scratch with Pluto. Then we evaluated the framework usability, proposing
some exercises to real testers and asking them for a feedback through a survey.
Finally we focused our attention on the software and hardware metrics such as the

3



code complexity and the CPU consumption. We defined some metrics to evaluate
both the users’ exercises and the software and hardware metrics. After a detailed
analysis of both the quantitative results and the answers to the user survey, the
results convinced us about Pluto capability to simplify the duties of a developer in
implementing a drone application.

1.2 Outline

In this Chapter, we have given the general context and the general goals of the
work together with a brief description of our work.

In Chapter 2 there is a description of the actual state of the art in the context
of our work. In Sections 2.1, 2.2 and 2.3 we describe the three main existing
approaches for drone programming, the "Swarm-level","Drone-level" and "Team-
level" respectively, also proposing existing examples for each one of them. We
show that no one of these approaches is suitable for our requirements, since we
need the concepts of Mission and Trip. A Mission is a list of sensing tasks to
be performed sequentially and a Trip represents the sensing task itself. Then, in
Section 2.4, we describe the dataflow programming method, that we adopted for
the Pluto Graphical Editor, providing two existing examples of it. Also in this case,
we show that we need a different approach, since we need to use only a group of
basic components for our work, while the existing solutions are too general and
include a lot of complex components.

Chapter 3 is focused on the problems stemming from the indoor context and on
the requirements deriving from it. In Section 3.1, we show a motivating example
application, in order to better explain the requirements and problems deriving from
our work. In Section 3.2 we show the programming problems deriving from using
a Team-level approach for our system, also proposing the solutions to fix them.
Finally, in Section 3.3 we show the technological limitations affecting our system,
such as the indoor localization and nano-drone batteries problems.

Chapter 4 presents our solution for the research problems described in Chapter
3, the Pluto programming framework. In Section 4.1 we present our programming
model: we show the entities of our model and the relationships between them.

4



In Section 4.2 we describe in details the functionality of the available blocks of
the Pluto Graphical Editor, that are the basic elements that the programmer can
connect to graphically build an application. In Section 4.3 we describe in details
the two components of the Pluto framework: the Graphical Editor, that is used by
the programmer to graphically build an application and the Main Application, that
is used by the final user to define the sensing tasks to be performed. In Section 4.4
we describe the navigation system, that is the conjunction point between the Main
Application and the drones team. The last Section of the Chapter, the 4.5, describes
all the steps performed to arrive to the final system, showing all the previously
implemented solutions which, once refined, brought us to the development of the
Pluto programming framework.

Chapter 5 shows how the designed choices have been implemented technically,
describing all the software and tools used for the development of Pluto program-
ming framework. In Section 5.1 we motivate the choice of an Object-Oriented
programming model for the Pluto framework. In Section 5.2 we describe the GEF
framework, which we used to implement the Pluto Graphical Editor. In Section
5.3 we show the code generation process that creates a Java application from the
graph built with the Pluto Graphical Editor. In Section 5.4 we describe the runtime
features of Pluto: the parallel architecture and the management of all the needed
threads. In Section 5.5 we describe the SWING tool, which we used to develop
the Pluto Main Application. Finally, in Section 5.6 we describe the Crazyflie
nano-quadcopter, which we used for our example prototype.

Chapter 6 starts with an analysis on the applicability of the Pluto framework.
In Section 6.1 we describe four already existing applications and three case study,
and we discuss whether they can be developed or not with Pluto. In Section 6.2
we propose two exercises to real testers, in order to test "on the field" the effective
usability of Pluto: the first one deals with the Graphical Editor, the second one with
the Main Application. Then we propose a third exercise, in which we ask the users
to directly use the API of the Crazyflie nano-quadcopter, shown in section 5.6, to
make it move from a point A to a point B. We also propose a survey to the users
and then present the result in a graphical way, in order to have opinions on the
framework and possibly to improve it with the suggestions of the testers. In Section
6.3 we measure the software and hardware consumption metrics required by Pluto,

5



in order to evaluate the effective impact of Pluto on an ordinary computing machine.

Finally, Chapter 7 draws the conclusion and recaps the results obtained, also
showing the possibilities for future works to extend our programming model.

6



Chapter 2

State of the art

In the last years, the drone technology is expanding rapidly;especially the
aerial drones, which are often used as toys controlled by joystick or to make aerial
videos through mounted cameras. There exist also aquatic and terrestrial drones,
which can be used for many applications. For example, through aquatic drones
the submarine network infrastructure[3] could be managed more efficiently, and
through terrestrial drones some emergency situations, like fires, can be managed
without involving human life.

Basically, the mobile sensing through drones represents a technological revolu-
tion, opening the way for many applications which could not have been developed
with the traditional technologies. Actually, there are a lot of fields where this
new technology could be applied, improving performance and reducing costs: for
example surveillance applications, instructing drones to fly over an area monitoring
people, or an application in a domestic context, for example instructing drones to
find a lost object or to perform some kind of actions, like bringing some objects to
the final user.

In the following Section we present three main approaches for programming
drones , providing existing examples for each one of them:

• Drone-level approach, described in Section 2.1

• Swarm-level approach, described in Section 2.2

• Team-level approach, described in Section 2.3

The former is focused on the programming of an every single drone, while
the second implies basic rules to execute for the whole swarm of drones. The

7



third approach is the most modern work. It creates a middle-ground between
drone and swarm approaches, by providing a flexibility in expressing sophisticated
collaborative tasks without addressing to a single drone.

After presenting the three main approaches for programming drones, we show
some examples of data-flow

2.1 Drone-level approach

In the Drone-level approach, the programmer must manage the single drone,
taking care of giving a list of instructions that the drone will perform sequentially.
This approach may be suitable for applications where there is a single drone per-
forming some actions, like searching for a lost object and bringing it back to the
user.But scaling the application to a number of drones makes programmer to deal
with concurrency and parallelism. Moreover, battery and crashes/failures should
be managed manually for every drone. Finally, timing constraints and a dynamic
load balance drastically increase the complexity of the programming. For these
reasons drone-level approach is not suitable for a large number of drones.

A concrete example of the application of the Drone-level approach is the so
called Robot Create(fig. 2.1), a hobbyist robot manufactured by iRobot[4] that was
introduced in 2007 and based on their Roomba vacuum cleaning platform. The
iRobot Create is explicitly designed for robotics development and improves the ex-
perience beyond simply hacking the Roomba. Since the built-in serial port supports
the transmission of sensor data and can receive actuation commands, any embed-
ded computer that supports serial communication can be used as the control system.

To control the Create, the developer should send a sequence of commands
through the serial interface. Each command starts with a one-byte opcode and
some of them must be followed by data bytes. For example to control the wheel
actuators the developer should send a command like this:

[137] [Velocity high byte] [Velocity low byte] [Radius high byte] [Radius low
byte]

It takes four data bytes, interpreted as two 16-bit signed values using two’s

8



complement. The first two bytes specify the average velocity of the drive wheels
in millimeters per second (mm/s), with the high byte being sent first. The next two
bytes specify the radius in millimeters at which Create will turn.

Figure 2.1: The iRobot Create

A number of robot interface server / simulators support the iRobot Create. Most
notably, the Player Project has long included a device interface for the Roomba,
and developed a Create interface in Player 2.1. The Universal Real-time Behavior
Interface (URBI) environment also contains a Create interface. This robot is de-
signed for a single execution of a single task without being connected with other
robots. Moreover, the design does not imply the collaboration with other robots.

2.2 Swarm-level approach

The Swarm-level approach[5] is more suitable for applications where a number
of drones are supposed to perform the same actions. Indeed the programmer can
give a set of basic rules that each drone in the swarm can follow. It is important to
underline that, in swarm-level approach, there is no possibility to have a shared
state between drones; each drone execute the actions specified by the programmer
on his own local state. It enables the scaling of the approach, but it’s not suitable
for applications that require the drones to explicitly coordinate. For example, the
swarm-level approach could be applied in an application where many drones take
objects at different locations and bring them to the final user, without considering

9



any time or space coordination between them; each drone will simply bring the
object back to the user when found. There are several existing applications using
the swarm-level approach, but we decided to describe three of them: the Robot
Operating System (ROS)[6], which provides a Publish/Subscribe coordination
layer for decentralized computations, as shown in Section 2.2.1; Karma[1], which
lets programmers specify modes of operation for the swarm, such as “Monitor”
or “Pollinate”(as shown in Section 2.2.2); and Proto[7], which lets programmers
specify actions in space and time(as shown in Section 2.2.3).

2.2.1 Robot Operating System

ROS[6] is not an operating system in the traditional sense, indeed it provides a
layer for communication between many, possibly heterogeneous, operating systems
connected in a cluster.

The whole functioning of ROS, shown in fig.2.2, is based on Nodes, which
are software modules performing computations; the whole system is composed by
many nodes exchanging messages, according to the Publish-Subscribe model: a
node can send messages publishing them on a particular Topic, and nodes which
are interested in a particular topic simply subscribe to it; publishers and subscribers
don’t know each others’ existence. The publish-subscribe topic based communica-
tion model is very flexible, but is not suitable for synchronous exchanges, because
of its broadcast functioning; for this reasons ROS provides also Services, which
are composed by a name and two messages, one for the request and one for the
response.

10



Figure 2.2: ROS communication layer functioning

2.2.2 Karma

Karma[1] is a resource management system for drones swarms based on the
so called hive-drone model; the hive-drone model is a feature that moves the
coordination complexity of the application to a centralized computer: the hive
is the base station where drones can land, if they are not busy, and charge their
batteries; the hive also takes care of dispatching the drones in order to perform
the actions specified by the programmer to accomplish the swarm objectives; the
programmer specifies the desired swarm behaviour through a programming model
which allows him not to deal with a coordination between drones.

The Karma[1] runtime at the hive is composed by functional blocks, as shown
in fig. 2.3:

• Controller: is the overall manager of the runtime and invokes the other
modules when needed; when a user submits an application to the Karma
system, the hive Controller determines the set of active processes, and
invokes the Scheduler to allocate the available drones to them.

• Scheduler: is periodically invoked by the Controller to allocate drones to
each active process.

• Dispatcher: is responsible for tracking the status of the drones; it programs

11



the drones with the allocated behavior prior to a sortie, tracks the size of the
swarm, and notifies the Controller when a drone returns to the hive and is
ready for redeployment.

• Datastore: when drones return to the hive, they transfer the data they collec-
ted to the Datastore.

Figure 2.3: The basic schema of Karma

12



2.2.3 Proto

The amorphous medium abstraction[8] is derived from the observation that
in many spatial computing applications, we are not interested in the particular
devices that make up our network, but rather in the space through which they are
distributed; indeed, for example, the only things that matter for a sensor network
are the values that it senses, not the particular devices it’s composed of. The
amorphous medium[8] takes this concept to the extreme: indeed it is defined as
a spatial area with a computational device at every point, as shown in fig.2.4:
Information propagates through this medium at a maximum velocity. Each device
is associated with a neighborhood of nearby devices, and knows the "state" of every
device in its neighborhood, i.e. the most recent information that can have arrived
from its neighbors.

Figure 2.4: The amorphous medium abstraction

The Proto[7] language uses the amorphous medium abstraction[8] to divide the
spatial programming problem in three sub-problems, as shown in fig. 2.5:

• global descriptions of programs as functional operations on fields of values

• compilation from global to local execution on an amorphous medium

• discrete approximation of an amorphous medium by a real network

13



Figure 2.5: Proto: problem decomposition

To apply Proto[7] language to mobile devices, such as drones in a swarm, the
amorphous medium[8] must be extended with the concept of density; indeed for the
vast majority of mobile applications, it is important to distribute drones depending
on what is happening in the environment, for example one may want to send more
drones in an area where something is happening; so it must be possible to distribute
drones heterogeneously in the space. Adding the concept of density, Proto can
express a lot of applications using the swarm-level approach. For example, a
swarm of lightweight scout robots might search a disaster area and coordinate
with a team of more capable rescue robots that can aid victims, or a swarm of
aerial vehicles might team with firefighters to survey and manage wildfires and
toxic spills, or a group of autonomous underwater vehicles might survey their
environment and autonomously task portions of the swarm to concentrate data
gathering on particular interesting phenomena.

14



2.3 Team-level approach

In this Section we describe the team-level programming approach[2], which
allows the user to express a list of sensing tasks to be performed by the system,
without dealing with the management of the single drone and with complex pro-
gramming tasks such as concurrent programming and parallel execution; the user
can also require a layer of coordination, defining constraints in space and time
for the tasks’ execution, and the system will follow these constraints choosing
the actions for each drone at run-time, in order to collaboratively accomplish all
the tasks. This run-time drones management makes the whole system scalable,
since one can add as many drones as he wants, and also fault tolerant, because
it can easily manage crashes or exceptions. So, the main advantage of using the
team-level approach is that the user can simply specify a list of tasks to be per-
formed,together with constraints in space and time for the execution, not caring
about the dispatching and coordination of the drones; this is also a limitation,
because one cannot develop applications which require explicit communication
between drones. So, the team-level approach is most suitable for applications
involving tasks that could be also performed by a single drone, but require a large
number of drones to be completed faster and/or to operate in a big area.

A concrete example of team-level approach application is Voltron[2], a system
containing a set of programming constructs to explore the notion of team-level
drone programming. Voltron’s[2] basic functioning includes:

• the so-called abstract drone, which makes the application scalable, allowing
to add drones without changing the code

• spatial semantics, which allow the drones to execute parallel tasks at different
locations

• the possibility to dinamically re-schedule drones operations in case of crashes
or failures

• the possibility to define time constraints for the tasks

Voltron[2] exposes an API, as shown in fig.2.6, that programmers can use to
task the drones without individual addressing; since the abstract drone is the only
entry point to the system’s functionality, an application’s code can remain unaltered

15



no matter how many real devices are deployed.

Figure 2.6: Voltron APIs

The team-level approach represents a middle-ground between the drone-level
and swarm-level approaches, and it also solves many problems. Unlike the drone-
level approach, there is no need to address the single drone and, unlike the swarm-
level approach, there can be a "global state" and also time and space constraints can
be defined; as already said, the team-level approach’s main limitation is that there
is no possibility to perform tasks which require explicit communication between
drones, such as passing an object between them.

2.4 Data-flow programming

Dataflow Programming is a useful programming paradigm that allows a de-
veloper to represent the execution model of his application through a directed graph.
The flow of the data processed during the execution streams between all nodes.
Each node is a functional block that accept data as input, manages it performing its
tasks and then drive it forward to the next block.
The final dataflow application is nothing but a composition of these active blocks
with at least one initial and one ending blocks, connected by directed arrows. A
block is connected to another when it has a dependency on the result of the manip-
ulation of the data from that block. Values are propagated after they are processed
from all the dependent blocks triggering their execution.

16



This paradigm present some limits of expression. The main one is that each
implementation of this paradigm is specific for the context where it is used. This
means that there are no general frameworks that can be used in more than one
context. This is why we created our own dataflow editor, shown in Section 4.3.1.

2.4.1 Business Process Modeling Notation

Business Process Modeling Notation (BPMN) is an example of the power of
the dataflow programming paradigm. Its primary goal is to help business users
providing a readily understandable notation, filling the gap between the business
process design and the final process implementation.

BPMN defines a diagram that contains graphical models of the business pro-
cess operations. A Business Process Model, is nothing but a graph where nodes
represent graphical models representing the operations, and edges are the flow
controls that define their order of performance. An example is shown in figure 2.7.

Figure 2.7: Example of a BPMN diagram

17



There are different kinds of elements in a diagram:

• Flow Objects: they can be Events (circles), Activities (rounded rectangles)
or a Gateway (diamonds)

• Connecting Objects: they can represent a Sequence Flow (solid line), a
Message (dashed line) or an Association (dotted lines)

• Swimlanes: they can be a Pool representing the Actor of the process, or a
Lane that is a sub-partition within a Pool

• Artifacts: they are useful to extend the basic notation adding new ways to
describes context based information

2.4.2 Node-RED

Node-RED is an example of the dataflow paradigm applied to the Internet
of Things world. It is a browser-based editor that let the developer wire together
different nodes with directed edges. Each node provides a different feature or a
different management of the input data. All features are web-based functionality,
such as receiving an HTTP request or a Javascript snippet. In this context, a
diagram represents the back-end of the web application and When the graph is
completed, the user can deploy it with a single-click in the runtime environment.
The light-weight runtime is built on Node.js, taking full advantage of its event-
driven, non-blocking model. This makes it ideal to run at the edge of the network
on low-cost hardware as well as in the cloud.

In figure 2.8 we show an example web application:

Figure 2.8: Example of a nodeRED application

18



The yellow node makes a GET request to the UK electric company website.
The response data follow the edges and pass through the orange node, which

lets the developer write its custom Javascript code inside it. In this case, the custom
code takes the payload data in input and put them on the third output, formatting
them in readable way. Through the first two outputs, the block sends only debug
strings that go to the green nodes. In the end the blue node will send a tweet
containing the data received as input.

In this Chapter we have described the actual state of the art in the field of drone
programming and dataflow programming. We needed to overcome the limits of the
actual state of the art by performing some modifications to the existing solutions,
which we show in Section 3.2.

19



20



Chapter 3

Indoor applications using
autonomous drones

In this Chapter we show all the problems we had to face in the development
of our programming framework. We first show a concrete application we wanted
to develop, and then the problems deriving from its development. No one of the
existing drone programming approaches, shown in Chapter 2, is fully suitable for
our problem. We chose a Team-level programming approach, described in Section
2.3, but we had to perform some modifications on it, as we explain in Section
3.2. There are also some technological limitations, such as the lack of a stable
indoor localization system and the short duration of nano-drones battery, which we
explain in Section 3.3.

3.1 Motivating scenario

In order to concretely show all the limitations and problems encountered in the
development of our system, we start this Chapter describing a concrete scenario. We
want to develop an application to assist elders to take their medicines, for example
in a hospital context. A team of nano-drones could help the nurses to deliver the
daily medicines to the patients at the right time of the day. A representation of the
behavior of the application, which we named Drugs Distribution(DD), is shown in
figure 3.1:

21



• the nurses prepare the little boxes with each patient’s daily medicine

• each drone, at the right time of the day, brings the box to its assigned patient

• after carrying out their action, the drones return to the start location

Figure 3.1: The basic functioning of the Drugs distribution application

The development of this application made us to face some problems, both in
the implementation of the system and in the technological lacks, which we describe
in the next two Sections.

3.2 Drone programming

Since the approaches for programming drones we described in chapter 2 are
designed in a way that is impossible to describe an application through the concepts
of Mission and Trip, we give our contribution to the state of the art creating a new
framework based on these entities. A Mission is nothing but a list of sensing tasks

22



to be performed sequentially in the environment. Each one of these sensing tasks
is a Trip, that is a movement from a point A to a point B to perform an Action.

Neither the Drone-level nor the swarm-level approaches, described in Sections
2.1 and 2.2 respectively, are suitable for our goal. The former because we do not
want the user to deal with the coding of each drone separately with an external API.
The latter because we want to avoid the complexity to create a communication
network protocol between drones and because it would be difficult to maintain
the status of the missions and trips entities among the swarm. Moreover we also
need to address time and space constraints, which cannot be expressed with this
approach.

The most suitable approach for our framework is the Team-level model, de-
scribed in Section 2.3, but we need to apply some modifications to it, in order to
make it suitable for our work. Using a Team level approach entails some problems:
the user can neither address individual drones nor express actions that involve dir-
ect interactions between drones, such as those required to pass an object between
them. This is the main limitation of the approach, but it does not directly affect
the development of our DD application, described in Section 3.1. So we have to
modify the Team-level approach in order to make each drone deliver the box of
medicine to its assigned patient, independently from the other drones. So we need
the concept of Trip. A Trip is nothing but a movement from a point A to a point
B in the environment to perform an action. In this way, we can tell each drone to
go to the precise location of its assigned patient, making the Trip of each Drone
independent from the others. The concept of Trip is a fundamental feature of our
model, and it is fully described in Section 4.1.

Another very important feature of our system is the transparent dispatching of
drones: the central brain takes care of assigning the drones to the sensing tasks to be
performed, managing also the drones failures, without involving the programmer.

Another problem of the Team-level approach is that, having a single brain
which manages all the application logic and the dispatching of drones, the system
get a single point of failure, so, if the central brain breaks then the whole system
crashes. This problem can be fixed or at least weakened by applying some depend-
able systems methods, improving reliability of the central brain, reducing its rate
of failure etc.

23



Even though team-level approach has his own limitations, other approaches
we discussed in Chapter 2 are less suitable. Indeed, the Drone-oriented approach,
described in Section 2.1, has the problem that the programmer has to manage
individually the drone’s movements and the interactions with other drones: he
must code a list of instructions and commands that the drone will perform se-
quentially. This can only be achieved with the exploiting of specific API of each
drones. In the case of multiple drones,the programmer should deal with difficult
programming tasks, like concurrency and parallelism, and it should also manage
the drone batteries discharge and their crashes/failures. Adding one or more drones
to the system could complicate a lot the programming task. The programmer
should also deal with timing constraints and he should balance the load between
drones in a dynamic way. Is clear that the drone-level approach is most suitable for
applications involving only a few drones.

On the other hand, the Swarm-level approach, described in Section 2.2, is
more suitable for applications where there’s need of a lot of drones performing the
same actions. Indeed the programmer can give a set of basic rules that each drone
should follow. It is important to underline that, in swarm-level approach, there is
no possibility to have a shared state between drones; each one execute the actions
specified by the programmer on his own local state. This means that this approach
is very easy to scale up adding new drones, but it’s not suitable for applications
that require the drones to explicitly coordinate.

Regarding the dataflow programming, we need a new framework that allows
the user to design the behavior of the central brain taking care of the missions
execution, from the beginning to the end. This modeling tool helps the developer to
add the features needed by the application simply drawing the proper nodes in the
dataflow graph. The BPMN and Node-RED dataflow models, described in Sections
2.4.1 and 2.4.2 respectively, are too general for our system, since they allow to
model almost every kind of project. They offer a great number of components, but
we only need basic components for our editor, like rectangles and arrows. So we
decided to develop our own dataflow model, offering only the functionality and
components needed for our programming framework. This part of the project is
fully described in Section 4.3.1.

24



3.3 Implementation challenges

The DD application, shown in Section 3.1, makes drone bring medicines to the
elders in an hospital, so in an indoor context. One big problem is that there is not
a stable localization method for the indoor environment. Besides of localization
problem, indoor context also leads to the limits of the size of the drone. As a result,
programmers constantly confront with a limited battery resource and a small weigh
the drone can carry out. These problems, as well as their possible solutions, are
described in the following Section.

3.3.1 Indoor localization

The main issue that all developers are facing, working on an indoor application
for drones, is that they are not able to use the Global Positioning System (GPS); it
cannot be used because of walls,roofs or ceilings. For this reason Indoor Position-
ing System(IPS) is widely applied for indoor localization. In this Section we will
give an overview of existing IPS methods.

An indoor positioning system is a solution to locate objects or people inside a
building using radio waves, magnetic fields, acoustic signals, or other information
collected from the sensors of mobile devices. The IPS methods rely on alternative
technologies, such as magnetic positioning and dead reckoning, to actively locate
mobile devices and provide ambient location for devices to get sensed.

Today many IPS methods have been developed and they can be divided in two
main categories: Non-radio technologies and Wireless technologies.

Non-radio technologies have been developed for localization without using
the existing wireless infrastructures, and they can provide very high accuracy.
Nevertheless, they also require expensive installations and costly equipment.

For example, Magnetic positioning[9] is based on the iron inside buildings that
create local variations in the Earth’s magnetic field. Modern smartphones can use
their magnetometers to sense these variations in order to map indoor locations.

With Inertial measurements[10] pedestrians can carry an inertial measurement
unit(IMU) by measuring steps indirectly or in a foot mounted approach, referring

25



to maps or additional sensors to constrain the sensor drift encountered with inertial
navigation.

Existing wireless infrastructures can be used for indoor localization; almost
every wireless technology is suitable, although they are not as precise as non-radio
technologies. Localization accuracy can be improved at the expense of new wire-
less infrastructure equipment and installation. WiFi signal strength measurements
are extremely noisy, so there is need to find a way to make more accurate systems
by using statistics to filter out the inaccurate input data. WiFi Positioning Systems
are sometimes used outdoors as a supplement to GPS on mobile devices, where
only few reflection phenomena could happen.

WPS[11] is based on measuring the intensity of the received signal(RSS) to-
gether with the technique of fingerprinting. In computer science, a fingerprinting
algorithm is a procedure that maps an arbitrarily large data item to a much shorter
bit string, its fingerprint, that uniquely identifies the original data for all practical
purposes just as human fingerprints uniquely identify people for practical purposes.
The accuracy of WPS improves with the increase of the number of positions entered
in the database. WPS is subjected to fluctuations in the signal, that can increase
errors and inaccuracies in the path of the user.

Bluetooth[12] cannot provide a precise location, since it’s based on the concept
of proximity, indeed it is considered an indoor proximity solution. However, by
linking micro-mapping and indoor mapping to Bluetooth and through the usage
of iBeacons, real existing solutions have been developed for providing large scale
indoor mapping.

It is important to underline that we made the choice to decouple the system
working logic from the Navigation System. The navigation system is the module
of our central brain that makes use of indoor localization API, providing to the
central brain a way to control the drones with accurate coordinates. In this way all
previously described technologies are suitable with our system, on condition that
the developer provides the proper API.

26



3.3.2 Drones and Objects size limitation

Indoor contexts imply small areas which are usually full of people and obstacles
hence, drones have to be small, in order to avoid crashes with both human and
environmental obstacles.

Size limitations result in many problems; the first is battery duration, which
can reach a maximum of 8 minutes, having a recharge time of about 20/30 minutes.
It limits the programmer in developing applications which require the drones to
perform their actions in this limited amount of time.

Another problem arising from size limitations is that the smaller the drone is
the less stable he is. Almost every kind of micro-drone has serious stability issues,
and a lot of research efforts goes in this direction. This problem is lowered by the
developing of programming libraries that could improve stability of the drones at
real-time, adjusting a set of parameters while the drone is flying.

Micro-drones are obviously more fragile than the big ones, so a crash with
humans or obstacles can definitely destroy the drone or make it seriously damaged.
This is the price to be paid for having little drones that can operate in small indoor
contexts.

Finally, the use of small drones means that only small objects can be taken, so
the applications developed with Pluto framework must take this into account. For
example, a pair of keys can be brought to a person, not a book nor a pair of shoes.

27



28



Chapter 4

Programming with Pluto

We already said our goal is to perform user-defined sensing tasks using nano-
drones, in an indoor context. We chose the Team Level approach, which we
described in Section 2.3, applying some modifications to it, to manage the sensing
tasks execution. As we have shown in Section 3.2, the Team-Level approach is
the most suitable approach for the kind of applications that can be developed with
our framework. The most important advantage of this approach is the reduced
complexity given to the final user, while expressing the sensing tasks. There is no
need to describe how the drones should execute them. These details are chosen by
the Ground Control Station whose duty is to assign the right drone to the related
task and check that each drone takes its mission to the end with a successful status.
In this chapter we describe the whole programming model of our system as a
solution for the problems shown in Chapter 3.

4.1 Programming model

Through our programming model, the user is able to specify a list of sensing
tasks that the drones can perform.
Each one of the sensing tasks is represented by the Trip entity, that is the virtual
representation of a physical movement of the drone from a source location to a
destination. The Trip always ends with an Action, that is the physical representation
of the task. For example the drone can bring an Item, take a photo or measure the
temperature in a specific location.

Then, we decided to create a container entity called Mission, that includes the

29



list of tasks that the drones have to perform. This means that each Mission contains
a list of trips.

It is important to underline that, inside each Mission entity, the trips are ex-
ecuted sequentially, one by one. The Mission entities, instead, are executed in
parallel.

So, to summarize, we identified the following entities:

• Mission: a list of trips (sensing tasks) to be performed sequentially.

• Trip: a Drone movement from a point A to a point B to perform an Action.

• Drone: the physical executor of the Trip and the Action.

• Action: the type of task to be performed by the Drone: "Take Photo", "Pick
Item", "Release Item", "Measure", etc.

• Item: the entity that represents the object carried by the Drone, only used in
case of "Pick Item" and "Release Item" Actions.

Figure 4.1: Relationship among model entities

30



Mission

As shown in figure 4.1, the Mission entity, in addition to the set of Trips,
contains other important attributes that describe the Mission itself:

• Name: the name given by the user while creating the mission

• Status: describes how the Mission is being executed. For example, it is set
to "RUNNING" while the drone is carrying out a Trip and to "FAILED"
when a Trip fails because of a crash of the related Drone

• Trips: the list of trips to be executed sequentially

• Completed Trips: the trips completed successfully

• Evaluator: the reference to the Evaluator entity. It is optional, and at the
end of this Section we give a brief description of it

• Repeat: states if the Mission must be repeated after its completion. It is
optional, and we explain it in the MissionRepeater description in Section 4.2

• Safe Time: contains the maximum amount of time within each trip inside
the Mission must be completed. It is optional, and we explain it in the
TimerMonitor description in Section 4.2

Trip

Regarding the Trip entity, it contains several parameters too and furthermore it
contains the references to the Drone and Action entities.

• Name: the name that identifies the Trip

• Status: describes how the Trip is being executed. For example, it is set to
"EXECUTING" while the drone is carrying out the Trip and to "FAILED"
when a crash happens to the drone that is executing this Trip

• Source Location: the starting point of the movement represented by the
Trip

• Target Location: the target point of the movement represented by the trip

31



• Delay: the amount of time that the Trip must wait before starting. It is
optional, and we explain it in the Clock description in Section 4.2

• Priority: states the priority level of the Trip. It is optional, and we explain it
in the PriorityManager description in Section 4.2

• Start Time: contains the timestamp of the moment in which the Drone
assigned to this Trip starts the flight.

• Item: the attribute representing the Item that the assigned Drone brings. It is
optional, based on the Action entity.

• Action: the Action reference that describe the task to accomplish after the
target location is reached.

• Drone: the Drone reference that represents the physical drone assigned to
the Trip.

Drone

Another important entity in the programming model is the Drone. It repres-
ents the physical drone that performs the assigned Trip. It has some important
parameters:

• ID: it is a unique ID to distinguish each Drone

• Status: states if the Drone is "FREE" and available for a trip or if it is
"BUSY" because it is flying.

• Shape Category: this parameter lets the system know if a drone is able to
accomplish certain Action or move certain kind of Items.

• Battery Level: contains the battery level of the Drone.

• Home Location: contains the coordinates of the home location.

• Current Location: contains the coordinates of the current location of the
Drone. The system uses this parameter to localize the drone, when needed.

32



Action

The Action entity describes the tasks that the drones must perform at the end
of their trips. We decided to create four basic actions whose names explain them-
selves: "Measure", "Take photo", "Pick item" and "Release Item". Moreover we
added a "Custom Action" feature, which enables the developer to define a personal
implementation of a new Action depending on the application requisites. The
developer can add this implementation after the code generation phase, explained
in Section 5.3, by adding his custom algorithm directly in the code.

Evaluator

In figure 4.1, inside the Mission object, there is a reference to the Evaluator
entity. The Evaluator is the entity whose duty is to evaluate the outcomes of the
actions performed inside a Mission.
This means that some trips can be completed successfully but the Action done at
the end can return a bad result. Therefore these actions should be repeated and so
the related trips. This feature is provided by the MissionEvaluator functional block,
described in Section 4.2.
We decided to decouple this mechanism from our system, so that the developer
is able to include its personal implementation of the evaluation algorithm in our
framework. In Section 5.3 we describe this process in a more detailed way.

4.2 Functional blocks

As already said in Section 3.2, we decided to create a new dataflow program-
ming framework that allows the user to design the behavior of the application while
taking care of the missions execution.

This framework consists of a modeling tool that allows the developer to add
the application’s requested features by drawing the proper nodes in an editor area.
Each diagram created with this tool is made up of many functional blocks, each
one including a particular logic. The user can select the blocks needed for his
particular application and connect them through simple connection elements. The

33



graphical editor is fully described in Section 4.3.1.

Here we provide a detailed description of each functional block available in the
editor:

Mission Creator block

Input: a list of Trips
Output: a Mission object

The Mission Creator block receives as an input the trips that the user wants
to be performed by the drones, then it creates a Mission container including all
these trips and returns that new Mission object. This block is the starting point of
each Pluto-developed application because it creates the Mission object that passes
through all the blocks of the graph.

Clock block

Input: a Mission object
Output: a Mission object

The Clock block checks the delay attribute (Figure 4.1) of the next Trip to be
executed in the Mission. If it is greater than zero, it makes the Trip waiting for that
amount of time, and finally returns the Mission Object. Delaying the execution of
the next Trip means stopping the Mission execution too, because, as said in Section
4.1, the trips are executed sequentially.
If the programmer puts the Clock block in the graph, the Main Application will
ask the user, during the Mission definition phase, the amount of time of the delay.
This block can be used in an application where the user wants to measure the
temperature in a location every 10 minutes. He has to set a delay of 10 minutes for
every Trip, so that they wait for that time before starting.
Usually, this block is put between the Mission Creator and the Drone Allocator
blocks, in order to wait for the delay time before allocating a Drone to the Trip.

34



Drone Allocator block

Input: a Mission object
Output: a Mission object

The Drone Allocator block allocates the proper Drone to the next Trip of the
Mission taken as input. It bases its choice on the availability of the drones and their
capability to perform the desired action.
This block can be implemented with different policies. Indeed, this choice is noth-
ing but an optimization problem and the developer can choose a custom algorithm.
We intentionally decoupled this problem from the system implementation, in a way
that it is possible for the developer to change the policy as he wishes.
This block is usually put before the Trip Launcher, because an assigned Drone is
essential for the Trip execution. For example it can be put between the Clock and
the Trip Launcher blocks in order to assign a Drone to the next Trip, after the delay
time has passed.

Trip Launcher block

Input: a Mission object
Output: a Mission object

The Trip Launcher block takes the next Trip to be performed from the Mission,
checks if it has an allocated Drone and then starts its execution. The assigned
Drone fly to the target location and execute the defined Action. Usually this block
is put right after the Drone Allocator, and is fundamental in order to start the
execution of the trips of the Mission.

Trip Monitor block

Input: a Mission object
Output: a Mission object

The Trip Monitor block continuously checks the status of the Trip that is
running in that moment. As said in Section 4.1, the system executes the trips

35



sequentially, so only one Trip at a time is executing and is monitored by this block.
We need to monitor the running trips because a flying Drone could crash or its
battery could become empty before the end of the Trip. In this way we guarantee
the correct completion of the Mission even if a failure happens.
Depending on whether the Trip is failed or completed, this block changes its status
parameter in the appropriate way. Of course, the Mission that contains that Trip
will change its status,accordingly. The Trip Monitor is put after the Trip Launcher
because it needs to monitor a Trip that already started its execution.

Mission Repeater block

Input: a Mission object

Output: a Mission object

This block takes as input only a completed Mission object.
So when a completed Mission arrive to the Mission Repeater, the block verifies if
the Repeat attribute (Figure 4.1) of the Mission is true. if so, this block moves the
list of the completed trips into the list of trips to be executed. Then resets the status
of the Mission itself and the status of all the trips to execute again.
This block can be useful if a Mission has to be repeated many times. For example,
in a surveillance application, it lets the drones monitor the neighborhood without
stopping when the Mission ends.
In order to emulate this behavior without the block, the user should create a new
identical Mission every time the previous one ends.
This block is usually put after the Trip Monitor and before the Drone Allocator,
because a Mission can be completed only after it pass through the Trip Monitor
and the trips’ status must be set to "WAITING" before the allocation of the drones.

Mission Evaluator block

Input: a Mission object

Output: a Mission object

The Mission Evaluator block, as the Mission Repeater, takes as input only a
completed Mission. Its task is to evaluate all the actions performed by the drones

36



at the end of their trips. Since the Mission arrives to this block only at the end
of its lifecycle, all the trips are already executed and all the actions are already
performed.
The evaluation consists in invoking the Evaluator entity, which is referenced inside
the Mission object (Figure 4.1).
If the evaluation returns a fail result, it means that some actions should be repeated
and the related trips too. The block finds these trips and put them in the list of
trips to execute. After that, it changes the status of the Mission, because it is not
completed anymore since it has still some trips to complete.
This block can be used in an application that needs to take many pictures of a
natural site to build a map. Therefore, the actions consist in taking photos at
different coordinates and the evaluation in trying to build the whole map of the site
stitching these photos together. If some photos are not good enough, the evaluation
returns a fail result and the related trips and actions are repeated again.
Usually this block is put after the Trip Monitor and before the Drone Allocator for
the same reasons explained in the description of the Mission Repeater block.

Mission Modifier block

Input: a Mission object

Output: a Mission object

The Mission Modifier block allows the programmer to express new features,
not yet implemented by the existing functional blocks. It allows the developer to
create a brand new block performing a specific feature.
This feature must be expressed with a code snippet that the developer can write
directly in the editor.
For example, imagine a programmer that needs a new feature that change some
parameters of the Mission after the assignment of the Drone, but before the first
Trip starts. He can insert the Mission Modifier block between the Drone Allocator
and the Trip Launcher blocks. Then he can open the window shown in figure 4.2
by clicking on the proper menu entry called "Write Custom Code".
Inside this window, the programmer can write the code that describes the features
requested by the new functional block. So, following the example, here he changes
the parameters of the Mission.

37



In the end, we strongly recommend to rename the Mission Modifier block with a
meaningful name that describes the new implemented feature.
This block can be put in every point of the Pluto Editor graph, depending on the
particular feature it provides. The inserted code is executed by the system when
the Mission object reach this block, following the graph flow.

Figure 4.2: The MissionModifier block

PriorityManager block

Input: a Mission object
Output: a Mission object

This block accepts as input only failed missions. It takes the first Trip in the
list and increments its priority. After that, it sends the same Mission object as an
output to the next blocks.
This block is useful in order to not stop the execution flow of a Mission in case
a Trip fails. Normally, without this feature, if the Trip Monitor finds out that the
monitored Trip has failed, it sets the Mission’s status to FAILED and stops the
execution flow.
Instead this block raises the priority of the failed Trip and changes the status of the
Mission to STANDBY, as if the failure is never happened.

38



Then, to restart the execution flow of the Mission, we need a connection from the
Priority Manager to the Drone Allocator.

Timer Monitor block

Input: a Mission object

Output: a Mission object

The Timer Monitor block adds a time constraint check to the Trip Monitor
supervision. It is useless to add the Timer Monitor without the Trip Monitor, indeed
they should be used in parallel.
This means that while the Trip Monitor monitors the Trip execution, the Timer
Monitor supervises the same Trip, ensuring that the execution time will not exceed
the amount of time set in the "Safe Time" Mission’s parameter (Figure 4.1).
As for the Trip Monitor, the developer should put the Timer Monitor after the Trip
Launcher. Therefore the Trip Launcher has two output connections, one that goes
to the Trip Monitor and the other one that goes to the Timer Monitor.
Adding this block in parallel to the Trip Monitor means cloning the Mission object
which goes into the two blocks at the same time. This is why we need the Gate
blocks described further.
There are several applications that could request the feature introduced by the
Timer Monitor. Indeed it can be used to consider a Trip failed if its execution
exceeds the Safe Time amount. For example we could consider a drone crashed if
the Trip takes more than 5 minutes to complete.

Gate FIFO block

Input: a Mission object

Output: a Mission object

The GateFIFO block is used when two or more blocks works in parallel, and
only one instance of the Mission entity must propagate. This block is put right after
these parallel blocks, for example when the developer inserts in the graph either
the Trip Monitor and the Timer Monitor in parallel. In this case the Mission object
is cloned and the two blocks receive the same Mission object. The GateFIFO block

39



propagates only the first Mission instance that arrives to it.
The GateFIFO usually has more than one incoming connections and it propagates
only the first Mission object arriving from them. This is why the FIFO acronym is
used, since the first Mission instance that arrive is the only one that propagates in
the graph.

Gate Funnel block

Input: a Mission object
Output: a Mission object

This block is similar to the GateFIFO, but its implementation logic is different.
It waits for the Mission instances coming from each incoming connection. Only
after all of them arrive it merges them in one single instance and propagates it. For
example, if before this block, there are 4 blocks in parallel, the propagation of the
Mission is activated only when all the 4 instances arrive.

In figure 4.3 we show an example application, which contains most of the
blocks described above. The pentagons represent the Mission object and the differ-
ent colors stand for the status of the Mission while passing through the graph. For
example, after the Mission Creator every Mission’s status is set to UNEXECUTED.
The Start and End blocks do not contain any logic, they simply represent the
beginning and the end of the Mission flow.

40



Figure 4.3: An example Pluto application

4.3 Toolchain

The Pluto programming framework consists of two main components:

• Pluto Graphical Editor.

• Pluto Main Application.

The former is used by the first actor of the Pluto life-cycle: a developer. The latter
is used by a final user whose duty is to insert the sensing tasks and to start their
execution. As shown in figure 4.4, the Pluto Graphical Editor lets the developer
create a scenario based on the Team Level approach, as we show in Section 4.3.1.
After that, the Pluto Main Application is generated according to the diagram
created in the previous step. The developer can create new features adding his own

41



code, so that the final user needs only to insert the sensing tasks and wait for their
accomplishment.

Figure 4.4: Working with the Pluto framework

4.3.1 Pluto Graphical Editor

We created a Graphical Editor in order to help the developer while designing
the final application. The provided tools can be used to link together different
functional blocks, each one with a predefined and implemented logic. When the
Editor starts, it shows three main sections: the Palette (letter A in figure 4.5) that
contains all the tools available to create a fully functional diagram. The Editor
space (letter B in figure 4.5) where the user can move, link and manage all the
created entities. Last but not least is the Outline (letter C in figure 4.5) with a
tree-view of the blocks created by the developer in the editor space.

The developer can choose among several types of pre-created blocks, each one
containing a certain logic, as explained in Section 4.2.
Creating a block in the editor space can be done simply with a drag and drop
gesture or clicking on the desired entity and then clicking on the chosen location in
the editor. Then the user can connect the blocks using the Connection tool in the
Palette.

42



Figure 4.5: Pluto Graphical Editor interface

The Connection is a directed arch that defines the direction of the execution flow
in the graph. This means that the Mission entity traveling among the functional
blocks can only move in the direction pointed out by the arrow.

Apart from the standard functionality, such as Undo, Save, and Load, the
Context Menu provides a command to generate the source-code of the Main Ap-
plication, based on the designed diagram. The Toolbar provides Undo/Redo, Delete,
and Magnify commands (letter D in in figure 4.5).

To better understand the Pluto Graphical Editor, it is worth to clarify the mean-
ing of creating a diagram: each block in the diagram is a black box which is
intended to manage a Mission entity. It takes a Mission as an input, works with it
and sends it out as an output. The connections among blocks represents the path
that the Mission entity follows in the graph. Each block can have multiple outgoing
and incoming connections.

In the editor area the developer creates a set of blocks linked together with a
set of connections. This drawing can be interpreted as the behavior of the Main
Application while managing the missions. For example, figure 4.5 represents the
diagram that can handle the example described in Section 3.1.
In this case the graph includes only the basic features: the creation of the Mission,

43



the Drone assignation, the trips starting and their monitoring. It is possible to add
other blocks in order to put more features in the application.

Besides its simplicity our editor is very flexible, since it provides the Mission
Modifier block whose implementation logic can be written directly in the Editor,
by right-clicking on the block and choosing the option "Write Custom Code", as
explained in Section 4.2.

4.3.2 Pluto Main Application

The Pluto Main Application is the final application that acts as a Ground Con-
trol Station, managing all the drones and the missions. In this Section we explain
how it works and how it can be used.
Everything starts in the Mission Page where the user can define the tasks that will
be carried out by the drones. After clicking to the "Add Mission" button the user is
asked to set a name for the Mission.

Figure 4.6: Mission Page interface

After that a Mission entity is created, but it does not contain any information
about the tasks to execute. To add this information the user has to double-click on

44



the mission in the main list, or click on the "Set Trips" button.
A new window will appear, as shown in figure 4.7, and the user can add new Trip
entities to the related Mission. As explained in Section 4.1, a Trip is nothing but
a movement from point A to point B in the environment. The trips are the basic
entities that constitute a single Mission. The single Trip contains information about
the Action to execute once point B is reached.
In order to add a new Trip the user can drag and drop the desired Action from the
upper list (letter A in figure 4.7) to the map displayed below (letter B in figure 4.7).
The added trips are shown on the right, in a proper list (letter C in figure 4.7).

Figure 4.7: Trips Page interface

So, after all the Trips are added to the Mission, the user can close the Trips
page and eventually create more Mission entities.

45



Finally he can pass to the Monitor Page with the corresponding button. The Mon-
itor Page, shown in figure 4.8, is the window where the user can obtain information
about the running missions, at run-time.
On the top, there is a table (letter A in figure 4.8) where each row is assigned to
a Mission. Each column displays the information about the current Trip that is
executing and the Drone assigned to that Trip.
Below the table there is a console (letter B in figure 4.7) where the log messages
are printed during the execution of each mission. In this way the user can obtain
run-time information about the status of the entire system.

Of course the "Start" button starts the execution of the created missions, while
the "Stop" button brings the user to a make a choice: "RTL" or "Land". The first is
the Return To Launch and it makes all the drones return to the home location. The
second option makes all the drones land in their current locations. After the stop
command, the missions status is preserved and the execution of the Mission can be
started again in the future.

Figure 4.8: Monitor Page interface

46



4.4 Navigation System

An important component of the Main Application is the Navigation System.
More precisely, it is the conjunction point between the Main Application and the
drones team.

This component makes use of the chosen localization API to obtain precise
coordinates for each Drone. This API depends on the technologies chosen to
localize the drones in the indoor context, described in Section 3.3.1.

We decided to decouple the implementation of the Navigation System from the
Main Application, so that the developer is free to choose the technology he prefers.
This result can be achieved by adding the chosen API in the Navigation System
component, without modifying other parts of the Main Application.
This choice derived from the conclusions obtained in Chapter 3, where we dis-
cussed about some possible ways to enable the indoor localization.
The Navigation System, as said, is the internal component that directly communic-
ates with the drones team. This means that besides the localization API, it makes
also use of specific drone libraries. In Section 5.6 we give a brief description
of the API of the drone we chose for our prototype applications, the Crazyflie
nano-quadcopter.

4.5 Design Choices

In this Section we describe our previously developed solutions, which we
refined many times in order to obtain the final working version of the Pluto pro-
gramming framework; this is done by using a top-down approach, starting from
the final implementation to the very first one.

4.5.1 Solution without Trip entity

In the version precedent to the final solution presented in Section 4.1, we did not
have a concept of Trip, and the Mission was the main concept the whole model was
based on. Figure 4.9 shows this in the particular case of the Timer feature, which
contains also a "Switch source-target" block. This block was in charge to make the

47



Drone perform also the return journey, from the destination to the home location.
This is done inside the same Trip entity, simply switching its sourceLocation and
targetLocation attributes. Later this block was eliminated, since we decided to
decouple the two journeys. It is sufficient to create a new Trip entity for the return
journey.

Figure 4.9: Solution without the Trip concept

After analyzing the model, we realized that we needed the concept of Trip,
because the final user must have control on the single Trip of a drone, in order to
decide which action the drone must perform, and to have an opportunity to control
the Trip attributes such as delay, stop, or delete, without deleting or stop the whole
Mission. With this solution it was not possible, because having only the entire
Mission to manage, the user cannot control the single Trip, and if he/she wants to
delete only a part of the Mission he cannot do so, and he/she is forced to delete
and build again the whole Mission.

4.5.2 Solution without the DroneAllocator and MissionModi-
fier

This solution made use of the "Drone Updater" block instead of the DroneAl-
locator. This block managed the assignment of a Drone to a Mission(there was

48



not the Trip concept yet), but only under certain conditions. Indeed the "Drone
Updater" was used only if the system had to assign another drone to a Mission,
for example because of a failure of the precedent assigned Drone. This happened
because the MissionCreator managed the first assignment of a Drone to the Mis-
sion, so we did not need the DroneUpdater for the first assignment of a Drone to
a Mission. Furthermore, there was not the MissionModifier block, but only the
PriorityManager case, shown in figure 4.10, so the programmer could not insert his
custom code in the application.

Figure 4.10: Solution without the MissionModifier block

We decided to create the DroneAllocator block because we needed to separate
the creation of a Mission Object from the assignment of a Drone to it. So, the
MissionCreator should only create a Mission entity and the DroneAllocator should
take care of the drones dispatching. In this way we could also remove the "Drone
Updater" block, because now we have a specific block which manage only the
assignment of drones, so there is no more need to distinguish between the first
assignment of a Drone to a Mission and the "special assignment" in case of a
failure. We also decided to create a MissionModifier block in which the user can
put his own code to customize the application.

49



50



Chapter 5

Implementation

In this chapter we show how we implemented the Pluto Framework, describing
the main elements of the project separately, in order to better understand their
behaviors. In figure 5.1, we show the final architecture scheme that includes all the
parts described in the following sections.

Figure 5.1: Pluto architecture representation

51



5.1 Object-oriented approach

We used the Java programming language to implement both the Graphical Ed-
itor and the Main Application. We made this choice because we are very familiar
with Java, since almost every academic project we implemented in these years
made use of this Object-Oriented programming language. The Object-Oriented
approach perfectly suits the Pluto model, since we have different independent
entities such as Drones,Missions and Trips that interact together in the execution
of tasks.

We decided to adopt a Model View Controller(MVC) approach. The central
component of MVC, the model, captures the behavior of the application in terms
of its problem domain, and it is independent from the user interface. The model
directly manages the data, logic and rules of the application. A view can be any
output representation of information, such as a chart or a diagram; multiple views
of the same information are possible. The third part, the controller, accepts input
and converts it to commands for the model or view.

Figure 5.2: MVC design applied to the Main Application

52



As shown in figure 5.2, the model part contains all the Java classes of the entit-
ies shown in Section 4.1. There is a class for the Mission, one for the Trip etc. The
controller part contains the Java classes of all the blocks of the Graphical Editor
shown in Section 4.2. The controller part also deals with the threads management
needed for the execution of both the missions and trips. The thread structure is
shown in Section 5.4. The view part contains the Java classes of the three pages of
the Main Application shown in Section 4.3.2.

5.2 Graphical editor

In order to create the Graphical Editor, described in Section 4.3.1, we decided
to use the GEF (Graphical Editing Framework) project. This framework is a Java
technology and it is part of the Eclipse framework developed by IBM.

It gives developers a full solution for the graphical modeling of a Java object
model, and it can be used in conjunction with other technologies such as EMF
(Eclipse Modeling Framework) or GMF (Graphical Modeling Framework), to
enable the creation of a complete graphical modeling suite. This means that the
Pluto Graphical Editor has been developed as an Eclipse Plugin, so the developer
has to install the Eclipse IDE in order to exploit the editor.

First of all, we created the Java classes of all the blocks. Each class contains
the code implementation of the corresponding block, since each block perform a
specific functionality. We defined each block as a rectangle figure, then we added
the connection entity in order to enable links between them. All these entities are
children of a main container class that represents the diagram itself that is simply
a container for the graph. Figure 5.3 shows these components: A is the diagram
entity, the container of the graph; B is the connection entity, through which the
user connects the blocks; C is the block entity.

53



Figure 5.3: Graphical entities in the editor

When the user creates a new block in the editor area, a relative block entity is
automatically created and added to the diagram container class. The same operation
stands for the connections creation.

After the user draws the desired graph he can choose to generate the final code
of the Main Application, through the apposite voice in the context menu. See
Section 5.3 for further details.

5.3 Code generation

Once the programmer has created the graph of the application through the
Pluto Graphical Editor, he can generate the code in order to make the Pluto Main
Application behavior coherent with the graph.

This can be done by right clicking on the graph and choosing the "Generate
code" command.

The main issue in the generation process was to understand how to generate the
code from a general diagram. Potentially, a developer could draw a very complex
graph with lot of blocks and connections between them. At first, we focused on
graph exploration methods, but we immediately noticed that they were too complex.

54



So, we decided to adopt a Publish-Subscribe design, making use of the Ob-
server pattern. This mechanism let us describe the execution flow of very complex
diagrams, besides the more simple ones.

The Observer pattern consists in the declaration of some elements as observers
and of other entities as observable. When an observable object change its status, it
sends a notification to all its observer entities. These observers react according to
the change of the observable object.

In Figure 5.4 there is a sequence diagram that describes how the observer
pattern works with a simple diagram with four blocks (A, B, C and D).
The "Observe" message in the sequence is the declaration of a block that wants
to observe another block. The "Notify" message represents the notification that
a block sends to its observers when it changes its status, or in this case when the
block ends the management of the Mission object.

Figure 5.4: Observer design pattern example

In our specific case, we made each declared block of the Graphical Editor both
Observer and Observable. This means that each block observes another block that
comes before it, but at the same time, it is observed by other blocks coming after it.

55



The change of status consists in the output of the Mission object. When a block
ends to perform its operations, it notifies all its observers passing them the Mission
entity.
For example, in figure 5.4 the A block observes the D one; the B and C blocks
observe the A and the D observes both the B and C.
So, for example, when the A block ends to modify the Mission object it sends it to
the B and C blocks at the same time, which are its observers.

The Editor includes a template model of the Main Application, in which almost
all the classes are ready to be executed.
However, this template contains several tags that the generation process replaces
with specific lines of code, depending on the drawn graph.
The generation process consists in the search for these tags inside the template
application. The tags are:

• <dec>: This tag is the placeholder for the code part where the generator
engine puts the declaration and the initialization of the entities represented
by each blocks.

• <exe>: This tag is the placeholder for the code part where the generation
process declares the Observer pattern. Here the system defines the observers
of each blocks depending on the connections present in the diagram.

• <tDelay>: This tag is the placeholder for a boolean attribute. If the diagram
includes the Clock block, this tag will be replaced with a "true" value in
order to make the Main Application to ask the user for a delay during the
Trip definition.

• <mRep>: This tag is the placeholder for a boolean attribute. If the diagram
includes the Mission Repeater block, this tag is replaced with a "true" value
in order to make the Main Application ask the user if he wants the Mission
to be repeated.

• <tSafe>: This tag is the placeholder for a boolean attribute. If the diagram
includes the Timer Monitor block, this tag is replaced with a "true" value in
order to make the Main Application ask the user for a maximum safe time
within each Trip must be completed, during the Mission creation phase.

56



• <tPrt>: This tag is the placeholder for a boolean attribute. If the diagram
includes the Priority Manager block, this tag is replaced with a "true" value
in order to make the Main Application ask the user for a priority value during
the Trip definition.

• <num>: This tag is a placeholder for an integer attribute. If the diagram
includes the GateFIFO or GateFunnel blocks, this tag is replaced by the
number of incoming connections of the related Gate block.

• <act>: This tag is not replaced by the generation process but we need it in
order to indicate the developer where to insert his Custom Action code.

• <eval>: This tag is not replaced by the generation process but we need
them in order to indicate the developer where to insert his custom Evaluator
algorithm.

5.4 Runtime Management

The Main Application manages the mission execution with a parallel program-
ming architecture, as shown in figure 5.5. Indeed when the user starts the execution,
the system launches each Mission in a new thread, in order to guarantee a reliable
parallel execution.

Figure 5.5: Example of thread concurrency

Then each mission starts its flow among the blocks, thanks to the Observer
design pattern, described in Section 5.3. When the mission enters in a new block,

57



the application launches a new thread, in order to run the Mission management
code of the block. We need this new thread because there is the possibility that two
or more parallel blocks have to manage the same Mission entity at the same time.

Therefore, when the mission reaches the "Trip Launcher" block, the system
starts the execution of the first Trip. Doing this, it creates a new thread, to manage
the trip execution till its end.

As said, each Mission and Trip created by the user have a respective thread
that deal with the execution of the entity from the beginning to the end. In this
way, the blocks that need to monitor these entities can observe the status of the
threads, in order to know if the Trip/Mission is still running or is already completed.

It is important to underline that we don’t have any synchronization problem
among the various threads. Indeed, there are no dependencies between missions,
since each one of them is executed independently from the others.
Inside each Mission entity the trips are executed sequentially: one trip can start its
execution only if the precedent trip in the list has been completed.
Given this independence between missions, the system could dispatch them in a
multiple machines cluster. In this way each Mission can run on a different environ-
ment, maximizing the performances and reducing the load of the single machine.

5.5 User interface

Swing is an advanced GUI toolkit. It has a rich set of widgets: from basic
widgets like buttons, labels, scrollbars to advanced like trees and tables. Swing
itself is written in Java and is part of JFC, Java Foundation Classes: it is a collection
of packages for creating full featured desktop applications.

We used the Swing framework to develop the view part of the MVC pattern
shown in Section 5.1, We needed to develop the three pages of the Pluto Main
Application, already described in Section 4.3.2, and we knew that Swing provides
all the components that we wanted to put in them. Indeed, since we used it for
the development of many academic projects, we noticed that it allows to build

58



graphical interface in a very fast and easy way.
As an illustrative example, figure 5.6 shows the structure of the Trips Page:

Figure 5.6: Trips Page structure

The Trips Page contains 7 components:

• Component A is a JList, a list of textual values, in this case the name of the
Actions

• Component B is a JImage, simply an image representing the Map

• Component C is a JList, a list of textual values, in this case the name of the
created trips

• Components D,E and F are JButton, rectangles that the user can click on

59



• Component G is a JTextArea, an area containing text, in this case the instruc-
tions on how to use this page

All these components are easily usable in Swing, we only needed to import
the already provided libraries. The structure of the other two pages of the
Pluto Main Application is very similar to these one, differing only for the
contained components.

5.6 Prototype drone

For the concrete actuation of the sensing tasks required by each application, we
chose the Crazyflie Nano-Quadcopter, shown in figure 5.7.

Figure 5.7: The Crazyflie Nano-Quadcopter

The Crazyflie is a tiny quadcopter often referred to as a nano-quad, built using
the PCB itself as the frame,developed solely by open source tools. The Crazyflie
specs are the following:

60



• Small and lightweight, around 19g and about 90mm motor to motor

• Flight time up to 7 minutes with standard 170mAh Li-Po battery

• Standard micro-USB connector for charging which takes 20min for the stock
170mAh Li-Po battery

• On-board low-energy radio@1mW based on the nRF24L01+ chip. Up to
80m range (environment dependent) when using the Crazyradio USB dongle

• Radio bootloader which enables wireless update of the firmware

• Powerful 32 bit MCU: STM32F103CB @ 72 MHz (128kb flash, 20kb RAM)

• 3-axis high-performance MEMs gyros with 3-axis accelerometer: Invensense
MPU-6050

• Available footprints to manually solder magnetometer HMC5883L/HMC5983
or/and barometer MS5611

• 4-layer low noise PCB design with separate voltage regulators for digital and
analog supply

We use a particular API that makes the drone move from a startingLocation to
a destination in the environment:

1 move(startingLocation, destination)

To concretely control the Crazyflie, there is a Python library which gives high
level functions and hides the details. The precedent API uses the following to send
the control commands to the Crazyflie:

1 send_setpoint(roll, pitch, yaw, thrust)

The arguments roll/pitch/yaw/trust is the new set-points that should be sent to
the copter. For example, to send a new control set-point:

1 roll = 0.0

2 pitch = 0.0

3 yawrate = 0

4 thrust = 0

5 crazyflie.commander.send_setpoint(roll, pitch, yawrate, thrust)

61



Changing the roll and pitch will make the quadcopter tilt to the sides and
thus change the direction that it’s moving in. Changing the yaw will make the
quadcopter spin. The thrust is used to control the altitude of the quadcopter.

By dynamically adjusting these four parameters we can make the Crazyflies
move to the locations specified by the user through the Pluto User Interface.

62



Chapter 6

Evaluation

In this Chapter we evaluate the Pluto programming framework. In Section 6.1
we describe four already existing applications and three case study; we also discuss
whether they can be developed or not with Pluto. In this way we understand the
expressive power of Pluto and the possible limits to overcome. In Section 6.2
we propose two exercises to real testers, in order to test concretely the effective
usability of Pluto: the first one deals with the Graphical Editor, described in Section
4.3.1, the second one with the Main Application, described in Section 4.3.2. Then
we ask the users to directly use the API of the Crazyflie nano-quadcopter, shown in
Section 5.6, to make it move from a point A to a point B. In this way, we are able
to highlight the advantages of using our framework instead of the Crazyflie API.
We also propose a survey to the users and then present the result in a graphical way,
in order to have opinions on the framework and possibly to improve it with the
suggestions of the testers. In Section 6.3 we measure the software and hardware
consumption metrics required by Pluto, in order to evaluate the effective impact of
Pluto on an ordinary computing machine.

6.1 Generality

We developed our programming framework thinking about indoor applica-
tions utilizing nano-drones. Actually, since we work at a sufficiently high level
of abstraction, because we can use an API which make the drones navigate in
the environment, the model can be extended to almost every kind of drone, aerial
terrestrial and aquatic.

63



So, we can say that the Pluto programming framework is "drone independent", and
this greatly extends its applicability, including also outdoor, aquatic and terrestrial
environments; it is in charge of the programmer to manage the interaction between
Pluto and the specific type of drone he wants to use for the particular application
he is developing.

Since we decided to use a Team-level approach (see 2.3), our model can be
used for developing applications where the user can give to the system a set of
actions to be performed; the dispatching of these actions is managed by the "central
brain", which takes care of assigning the drones to the action and to handle all
the exceptions (battery low, crashes etc.). So, the drones are only actuators that
perform an action, there is no communication between them, their behavior is
monitored and decided by the central brain.

Since drones cannot communicate between them, Pluto cannot be used for
applications where drones must perform some kind of action requiring explicit
communication or data exchange between them; the logic is managed by the central
brain, so communication between drones is always mediated by this component;
a drone can send data to the central brain, and this could send again that data to
another drone.
Hereinafter we analyzed some example applications, showing whether they can be
managed/developed with the Pluto programming framework or not.

6.1.1 Basic applications

In this Section we describe three applications we developed with the Pluto
programming framework. They are all represented by the basic Pluto graph of
figure 6.1:

64



Figure 6.1: The basic graph pattern of OF, DD and WIF applications

The graph represents the pattern on which all the three applications base their
behavior, but of course it assumes a different meaning for each one of them,
since each application needs different actions to be performed in the environment.
These different meanings are explained in the specific parts describing the three
applications, shown in the proceedings of this Section. The three applications are:

• Object-finder (OF)

• Warehouse item-finder (WIF)

• Drugs distribution (DD)

Object-finder (OF)

This application help users find various objects, like shoes, keys and books, in
a domestic environment. The user decides which item wants the drones to look for

65



and the area to be inspected, then the main system organizes the team of drones,
sending them to the specified locations. The drones fly to the assigned locations
and, if one of them finds the object it brings it back to the user. Figure 6.2 shows
the basic behavior of the OF application:

Figure 6.2: The basic functioning of the Object-finder application

The flow of figure 6.1 starts with the MissionCreator block, that creates a
Mission instance to propagate in the graph. As already explained, a Mission is
nothing but a list of sensing tasks to be performed sequentially. Each one of these
sensing tasks is a Trip. In this case the list of trips contained in the Mission entity
is the list of locations where the drones have to look for the lost object.

Then the DroneAllocator block takes care of assigning the right Drone to the
first Trip in the list, that is the first location where to look for the object.

Then the Mission entity arrives to the TripLauncher that simply starts the
execution of the first Trip and sets its status to RUNNING, sending the drone to
actively look for the lost object in that location.

The TripMonitor changes the status of the executing Trip depending on the
outcome of the Drone’s research: if the Drone manages to find the lost object, the
Trip status is set to COMPLETED, otherwise, for example if the Drone crashes,
the Trip status is set to FAILED.

After the first Trip, the Mission entity goes again to the DroneAllocator, in

66



order to execute also the other trips in the Mission, that is to say in order to send
drones in the other specified locations to look for the object.

Warehouse item-finder (WIF)

This application help users manage a warehouse, bringing them a list of needed
objects. The user creates a list of needed items and writes it on his laptop, then the
main system organizes the drones and simultaneously sends each one of them to
take one of the objects of the specified list. Finally the drones fly to the assigned
objects and bring them back to the user. Figure 6.3 shows the basic behavior of the
WIF application:

Figure 6.3: The basic functioning of the Warehouse item-finder application

As always, the flow starts with the MissionCreator block, that creates a Mission
instance to propagate in the graph. In this case, each Mission entity contains only a
Trip to execute: each Trip is associated to one of the objects that the drones have
to bring to the user. As already explained, the Mission entities are executed in

67



parallel, so in this case there is one Mission for each object to bring, since the
drones have to work simultaneously.

Then the DroneAllocator block takes care of assigning the right Drone to the
Trip of each Mission, that is the associated object to pick. Then the Mission
entities arrive to the TripLauncher, that simply starts the execution of each Trip
and sets their status to RUNNING, sending each drone to bring its associated object.

The TripMonitor changes the status of the executing trips depending on the
outcome of the drones research: if the Drone accomplishes to bring the object
to the user, the Trip status is set to COMPLETED, otherwise, for example if the
Drone crashes, the Trip status is set to FAILED. After each Trip is COMPLETED,
the execution of the flow ends and the Mission status is set to COMPLETED.

Drugs Distribution (DD)

The description of the behavior of this application is shown in Section 3.1.

The flow starts with the MissionCreator block, that creates a Mission instance
to propagate in the graph. In this case there are multiple Mission entities containing
multiple trips: in this way the drones bring the first group of medicine boxes
simultaneously to the patients and, after the boxes are delivered, a second group of
boxes can be delivered simultaneously to the other patients, and so on. Each Trip
is associated to one of the box to bring to the patients.

Then the DroneAllocator block takes care of assigning the right Drone to the
first Trip in the list of each Mission, managing the first group of boxes to bring to
the first group of patients.

Then the Mission entities arrive to the TripLauncher that simply starts the
execution of the first Trip of each Mission and sets their status to RUNNING,
sending the drones to bring the first group of boxes.

The TripMonitor changes the status of the executing trips depending on the
outcome of the drones actions: if the Drone accomplishes to bring the box to the
patient, the Trip status is set to COMPLETED, otherwise, for example if the Drone
crashes, the Trip status is set to FAILED. After the first group of trips, the Mission
entities go again to the DroneAllocator, in order to execute also the other trips and
deliver the remaining boxes.

68



Summary

We built the Pluto programming framework in order to address the problems
issued by the indoor context. We based the development of Pluto on the three
applications described above, which deal with houses, warehouses and hospitals
contexts.

Since we wanted to test the generality of our framework, we tried to extend
its use also to outdoor applications. In the next Sections we describe four outdoor
applications, developed with other programming systems, showing all the limits
and problems encountered by developing them with Pluto.

6.1.2 Alfalfa Crop Monitoring and Pollination

The Alfalfa Crop Monitoring and Pollination[13] is a typical example of swarm-
level approach application. Alfalfa is an important food crop for cattle and requires
an external pollinator (e.g. bees) to produce seeds. In recent years, colony collapse
disorder has devastated honeybee populations and jeopardized the cultivation of
important crops[14]. A swarm of drones can pollinate the alfalfa plants and also
monitor them for pests and diseases, trough visual spot checks.
So, the whole application provide three periodic actions: searching for pests,
searching for diseases, and looking for flowers in bloom. Each one of these actions
is achieved by taking pictures of the plants. The user may need to define time
constraints within the pollination action must be completed.
Thanks to the Take photo action, already implemented in Pluto, the drones are able
to perform the monitoring of leaves for pests, diseases and flowers in bloom.

The following Pluto Editor graph describes the behavior of the Alfalfa Crop
Monitoring and Pollination[13] application:

69



Figure 6.4: Pluto graph for the Alfalfa Crop Monitoring and Pollination application

The flow starts with the MissionCreator block, that creates a Mission instance
to propagate in the graph. In this case, the Mission contains the list of locations
where the drones have to take the pictures. Then the DroneAllocator block takes
care of assigning the right Drone to the next Trip in the list of trips to be executed
of each Mission entity, that is the first location where to take the picture. Then the
Mission entity arrives to the TripLauncher that simply starts the execution of the
first Trip and sets its status to RUNNING.

After the TripLauncher the Mission entity is doubled. One instance goes to
the TripMonitor block and the other one to the TimerMonitor. The TripMonitor
changes the status of the executing Trip depending on the outcome of the Drone’s
journey: if the Drone accomplishes to take the picture on its assigned location,
then the Trip status is set to COMPLETED, if the Drone crashes the Trip status is
set to FAILED. The time constraints, which are set by the user thanks to the timer
attribute of the Mission entity, are fulfilled thanks to the TimerMonitor block. This

70



block takes care of setting the Mission status to FAILED if one of its Trips is not
completed within the timer. For example, the user may want the drones to take the
pictures within 3 minutes. If one Drone takes more than 3 minutes to perform its
action, the TimerMonitor sets the Mission status to FAILED.

The GateFIFO block takes as input two Mission instances, one from the Trip
Monitor and the other one from the Timer Monitor. It takes care of propagating
only the first instance that arrives to it. For example, if the timer has expired then it
propagates the Timer Monitor instance, otherwise the Trip Monitor one.

After the GateFIFO block there is a bifurcation: if all the pictures inside the
Mission have been taken, the Mission is COMPLETED and it is sent to the Mis-
sionEvaluator block. Otherwise, some pictures must be taken again, that is to say
there are some trips of the Mission that must be executed again, so the Mission is
sent to the DroneAllocator block, which assigns new drones to these trips.

The MissionEvaluator block enables the evaluation of the photos taken by the
drones. If the pest and/or disease attributes are true, the system notifies the farmer
of the damaged location, adding a log line in the console of the Monitor Page of the
Pluto User Interface. If the bloom attribute is true, a new Trip will be created and a
new Drone, capable to perform the Pollinate action, will be sent to that location to
pollinate the flowers.

The Mission Repeater block takes care of continuously sending the drones to
monitor these locations. Regarding the "Pollination" task, it can be added thanks
to the custom action feature, through which the programmer can add to the model
a brand new Action, making use of a specific external API. The full explanation of
the functionality of each block can be found in Section 4.2.

Concerning the pictures evaluation to detect pests, diseases and flowers in
bloom, the developer has to add the custom code in the Evaluator class, using again
an external API. Each photo will have three associated parameters: the boolean
attributes pest, disease and bloom. These attributes are false by default and they
are set to true when the leaves are damaged, their color turns greenish-white or the
flowers are in bloom, respectively.

71



The following is the code of the Evaluator needed for the development of the
Alfalfa[13] application: "dataMap" is an hashmap that binds each Trip with the
picture taken. The Trip is the key, which represents the journey performed by the
drone, the Photo is the value, which is the picture taken by the drone once the Trip
has been completed. For each photo, if the pest or the disease attributes are true,
the system will signal to the farmer the location where the problem exists, through
the log function. If the bloom attribute is true, the plants at that location must be
pollinated: a new Trip entity is created, its Action is set to "Pollinate" and the target
location is set to the same location of the Drone that found the bloom. Finally the
Trip is added to the list of trips of the current mission. The Mission status is set to
STANDBY because there is at least a new inserted Trip to execute.

1 String result = null;

2

3 // Retrieve all entries of the map, it means we are iterating

4 // all the completed Trips that wrote their result in the Evaluator

5 for (Map.Entry<Trip, Object> entry : dataMap.entrySet()) {

6

7 // we need to consider only the Trips related to the current

8 // mission we are evaluating

9 if (missionToEvaluate.getCompletedTrips().contains(entry.getKey())) {

10

11 // retrieve the Photo related to the current Trip

12 Photo photo = (Photo) entry.getValue();

13

14 if (photo.hasPest() || photo.hasDisease())

15

16 return "WARNING: Pest/disease at location: "

17 + entry.getKey().getTargetLocation();

18

19 if (photo.hasBloom()) {

20

21 // create a new Trip to pollinate the flowers

22 Trip trip = new Trip();

23 trip.setName("PollinateTrip");

24

25 // Set the same target location

26 // of the Trip that has found the flowers

27 trip.setTargetLocation(entry.getKey().getTargetLocation());

28

29 // This action must be implemented by the developer

30 trip.setAction(Action.POLLINATE);

31

32 // the status WAITING means that this Trip

72



33 // is ready to be launched

34 trip.setStatus(Trip.WAITING);

35

36 // adding this Trip to the Trip list

37 // that contains all the Trips to be launched

38 missionToEvaluate.getTrips().add(trip);

39

40 // The status STANDBY means that the mission

41 // has some Trips to be executed

42 missionToEvaluate.setStatus(Mission.STANDBY);

43 }

44 }

45 }

46

47 // Result is a "success" because all the Photos of this

48 // mission have been evaluated

49 result = "Success";

50

51 return result;

To concretely choose the specific locations to monitor, the user is provided
with a map over which he can drag and drop the action Take photo. Inside the
Mission entity, these trips are performed sequentially, in general each one by a
different Drone, as already explained in Section 4.1. So, if the user wants to send
more than one drone simultaneously on the same location, he has to create more
than one Mission. Indeed missions are executed in parallel, so if the user wants to
simultaneously send 3 drones on the same location, he simply has to create three
missions. Then, since each Mission has its own Trips Page, he has to choose the
same locations on the maps of the three Trip pages.

To further clarify the development of the Alfalfa[13] application with Pluto, we
now show a real execution of the Alfalfa application in a concrete scenario: imagine
we want to simultaneously send three drones to monitor the plants distributed in a
circular area. So, we create three Mission entities, and, for each of them, we drag
and drop the action Take photo on the map of its Trip page, in order to create the
trips composing the circular area, as shown in figure 6.5. The figure 6.5 represents
the trips of one of the three Missions. Each one of the three missions has its own
map where the user distributes the trips to perform. Then, when the missions start,
the drones will take photos over these spots and, in case of bloom, new Trips will
be created to Pollinate the area.

73



Figure 6.5: The circular area to monitor

To describe in a detailed way the execution flow, we now show the sequence
diagrams of the Pluto Main Application behavior:

Figure 6.6: Sequence diagram of a starting mission

In figure 6.6 we show the first calls after the user clicks on the Start button in
the Monitor Page. The Main Application receives the start command from the user,
then activates the Engine entity. Now, a new Thread is created and started for each
missions. The status of the Missions are sent to the Pluto Main Application and

74



showed to the final user, through the log() function.

Figure 6.7: Sequence diagram of the mission execution flow

In figure 6.7 the Mission Execution is shown. The Mission Thread entity man-
ages the Mission flow through all the blocks and the execution of the logic inside
them. For example, the first two method calls belong to the Drone Allocator.
For each Trip a new Trip Thread instance is created, that will manage the parallel
execution of the trips. After that, the mission thread waits for the completion of
the started Trip, and then the Mission Status is set to STANDBY, since there are
other trips to be executed.
Finally, the completed Trip is removed from the list of trips to be executed and the
Drone status is set to FREE. Otherwise, if the launched Trips was the last one, the
Mission status would have been set to COMPLETED.

75



Figure 6.8: Sequence diagram of the trip execution flow

In figure 6.8 the Trip execution is shown. The Drone assigned to the Trip is
sent to the established location to take the pictures. After that, the resulting photo
is written into the Evaluator entity, where the specific algorithm of the application
will perform the evaluation, once the mission will be completed.

Figure 6.9: Sequence diagram of the mission ending flow

76



In figure 6.9 the final steps of the Mission execution are shown. The Evaluator
checks the pictures taken by the Drones, looking for pest, diseases or blooms. The
Trips are re-inserted in the execution list, their status is set to WAITING,and the
Mission status is set to STANDBY because of the MissionRepeater block. The
MissionRepeater takes care of executing again a Mission, and to do so the status of
the Mission must be STANDBY.

6.1.3 Aerial mapping of archaeological sites

This application allows archaeologists to survey ancient sites without involving
their direct presence on it. Many ortophotos of the site are taken, so that the
archaeologists can see the geometric layout of the site, without physically walking
near it, which could cause irreparable damages. An orthophoto is an aerial photo
that is geometrically-corrected so that distances between pixels are proportional to
true distances, such that the photo can be used as a map. Drones are sent to take a
series of ortophotos that then will be stitched together to derive a single ortophoto;
if the individual pictures do not have sufficient overlap, the resulting orthophoto
will show excessive aberrations, and, in that case, the drone is sent out again to take
more pictures. If the obtained ortophoto is not adequate, the archaeologists should
be able to send more drones on that particular area. The drones must perform
their actions in a limited amount of time, since if too much time pass between two
ortophotos, the scene may change.

Regarding the Pluto graph needed for this application, it is very similar to
the Alfalfa[13] application one, shown in figure 6.4. The only difference is the
absence of the MissionRepeater block, since this application does not need the
drones to repeat their tasks continuously. So, in the graph of the "Aerial mapping of
archaeological sites" application the MissionEvaluator block is directly connected
to the DroneAllocator.

The flow of the Mission entity on the graph is the same of the Alfalfa[13]
application, and is fully described in Section 6.1.2. In this case the MissionEvalu-
ator block analyzes the drones data at the end of the missions, allowing the Main
Application to decide if the photos are good enough or if more drones must be sent
out to take new pictures in these locations.

77



It is important to underline that, using the Pluto framework, it is not possible to
obtain the very same behavior of the original application. Indeed, two consecutive
photos must be taken within a time constraint. Since each photo is taken by the
Drone at the end of its assigned Trip, there should be a way to define a time
constraint between the execution of two trips. This cannot be fulfilled with Pluto,
since the TimerMonitor block deals with a time interval that starts when the drone
leaves the base station, ensuring that it will take the picture before the time interval
expires. So, there is no way to state a time constraint between two consecutive
photos with Pluto.

Concerning the code of the Evaluator block needed for the development of the
Aerial Mapping[15] application, as for the previous application, we can find each
photo taken during the missions in the "dataMap" parameter, that is an hashmap
that create a relation between a Trip and the photo taken through its Action. First
of all, the ortophotos are stitched together to obtain the final ortophoto, trough the
stitch function. If the final ortophoto shows excessive aberration, the ortophotos
composing it are analyzed and if they don’t have sufficient overlap, few new Trips
are created with the same target locations of the photos to be taken again. The
Mission status is set to STANDBY because there is at least a new inserted Trip to
execute.

It is important to underline that this application differs from the Alfalfa[13] one,
because the Evaluator algorithm acts in a different way: in Alfalfa[13] application
the algorithm takes care of analyzing the photos of a single Mission without
considering the others; now, instead, the evaluation needs to merge all the photos of
every missions to calculate the aberration. This is possible thanks to the centralized
data store of Pluto: each Drone sends its data to the central brain, that collects
them together and perform the computations on the data following the Evaluator
algorithm.

The following code snippet shows our implementation of the Evaluator al-
gorithm:

1 String result = null;

2 // The "stitch" method takes a collection of photos as input

3 // and return an Ortophoto object derived by a proper algorithm

78



4 // based on the passed photos

5 OrtoPhoto ortophoto = stitch(dataMap.values());

6

7 if(ortophoto.getAberration() > ABERRATION_THRESHOLD){

8

9 // Iteration on the photos that were used in the stitch method

10 // to generate the Ortophoto

11 for (Photo photo: ortophoto.getPhotoCollection()){

12

13 // if the overlap of the single photo is not enough

14 if (ortophoto.getOverlapOfGivenPhoto(photo) < OVERLAP_THRESHOLD){

15

16 // Loop on all the Trips of every missions

17 for (Map.Entry<Trip, Object> entry : dataMap.entrySet()) {

18

19 // take the Photo of the current iteration

20 Photo p = (Photo) entry.getValue();

21

22 // When we found the photo that has the low overlap

23 if(photo.equals(p)){

24

25 // create a new Trip that will take a new photo

26 // from the same location

27 Trip trip = new Trip();

28 trip.setName("NewTrip");

29 trip.setTargetLocation(entry.getKey().getTargetLocation());

30 trip.setAction(Action.TAKE_PHOTO);

31 trip.setStatus(Trip.WAITING);

32

33 // add this new trip to the list of trips to be executed

34 missionToEvaluate.getTrips().add(trip);

35

36 // set the mission status to STANDBY, since a new trip has been

created

37 missionToEvaluate.setStatus(Mission.STANDBY);

38 }

39 }

40 }

41 }

42 }

43

44 // All decisions were been chosen so we end the evaluation

45 result = "Success";

46 return result;

To send the drones to take pictures over the site locations, the user has to simply
create the Mission entities and add the trips in the Trips Page of each Mission.
In case the archaeologists want to send more drones on the locations where they
can’t obtain adequate ortophotos, they just have to add more Mission entities. For

79



example, if an archaeologist wants to send 3 drones simultaneously on a particular
location, he has to create 3 Mission entities. Then, in the Trips pages of each
Mission, he simply has to drag and drop the Take photo action on that particular
location.

In order to show the real runtime execution of the Aerial Mapping applica-
tion with Pluto, we now show a possible scenario: there are 7 drones and 1 big
archaeological site to monitor, and we want to send all the drones in that area at
the same time to take the ortophotos. As usual, the user has to create 7 Mission
entities. Then, in each Mission’s Trips Page, he has to drag and drop the action
Take photo on the locations forming the site, shown in figure 6.10. Once again, the
figure shows the map on the Trips Page of one of the seven missions.

Figure 6.10: The archaeological site on the map

The sequence diagrams related to this application are the same shown in Section
6.1.2. The only difference is that now the application does not require the repetition
of the missions. This leads the Main Application to end the execution flow when
the Mission reaches a successful evaluation.

80



6.1.4 PM10

The PM10[16] application is used to build 3D maps of pollution concentration
in the atmosphere. Initially, there is a predefined 3D grid over which drones are
sent to sample the quantity of pollution. So the drones build a spatial profile of
pollution concentration and compute gradients among the areas of higher concen-
tration. Finally the drones are sent along this gradients to sample the pollution
concentration, in order to improve the spatial profile representation. Any two
consecutive samples must be gathered within a given time bound, otherwise the
system will take care of speeding up the execution.

Regarding the Pluto graph needed for this application, it is very similar to
the Alfalfa[13] application one, shown in figure 6.4. The only difference is the
absence of the MissionRepeater block, since this application does not need the
drones to repeat their tasks continuously. So, in the graph of the "Aerial mapping of
archaeological sites" application the MissionEvaluator block is directly connected
to the DroneAllocator.

The flow of the Mission entity on the graph is the same of the Alfalfa[13]
application, and is fully described in Section 6.1.2. The data collected by the
drones are not photos anymore, but a pollutionQuantity value which indicates the
percentage of pollution in that area. In this case the Mission Evaluator block takes
care of confronting the pollutionQuantity variables and to compute the gradients
between areas of higher concentration. So new drones are sent along this gradients,
improving the spatial profile.

As for the Aerial Mapping application, shown in Section 6.1.3, Pluto cannot
fulfill the time constraint between two consecutive pollution samples. As already
explained, the timer of Pluto starts when the drone leaves the base station and
ensures that it will perform the action within that time interval, but there is no way
to constrain the time between two consecutive samples.

Below there is our implementation of a possible Evaluator algorithm:

1 String result = null;

2

3 // building a new map with only the trip-measure couples of the mission

81



4 // to evaluate

5 Map<Trip, Integer> missionMap = new Map<Trip, Integer>();

6 for (Map.Entry<Trip, Object> entry : dataMap.entrySet()) {

7 if (missionToEvaluate.getCompletedTrips().contains(entry.getKey())) {

8 missionMap.put(entry.getKey(), (Integer) entry.getValue());

9 }

10 }

11

12 // this method use the Trip location and the pollution measure to

13 // calculate

14 // the gradients and then return a list of String that indicates

15 // the positions of these gradients

16 List<String> gradientsPositions = calculateGradients(missionMap);

17

18 for (String position : gradientsPositions) {

19

20 // create a new Trip to calculate pollution at the gradient position

21 Trip trip = new Trip();

22 trip.setName("GradientTrip");

23 trip.setTargetLocation(position);

24 trip.setAction(Action.MEASURE);

25 trip.setStatus(Trip.WAITING);

26

27 // add this new trip to the list of trips to be executed

28 missionToEvaluate.getTrips().add(trip);

29 // set the mission status to STANDBY, since there are new trips to perform

30 missionToEvaluate.setStatus(Mission.STANDBY);

31

32 }

33

34 // set the result of the evaluation

35 result = "Success";

36 return result;

For the measurements of pollution quantity, the Measure action can be used.
The spatial grid must be manually built by the user, organizing the Trips of each
Mission on the map he is provided with.

Now we show the execution of the PM10 application with Pluto in a particular
scenario: we have 5 drones and we want to measure the pollution quantity in the
area shown in figure 6.11 using all of them. As usual, the user has to create 5
Missions and has to choose the locations of the area to sample through the map on
the Trips Page of each Mission. In this way, five drones will monitor simultaneously
the area to sample.

82



Figure 6.11: The area to sample on the map

As for the Aerial Mapping[15] application, the repetition of missions is not
required. So the sequence diagrams do not change and the reader can see them in
Sections 6.1.2 and 6.1.3.

6.1.5 PURSUE

The PURSUE application[17] is representative of surveillance applications. A
team of drones monitor an area and they have to follow moving objects which
pass through, taking a picture of each one of them when they enter in the camera
field. To do so, drones can operate in two distinct modes: when in "patrolling
mode" they simply inspect an area, while when an object is found they switch to
"pursuing mode" and start to follow the object. Since an object could move faster
than the drones, no drone can follow it constantly, the system must take care of
switching between the real drones in order to constantly follow the target. There
are time constraints to respect between the detection of a moving object and when
its picture is taken and, in case of violations, every tracked object with at least one
acquired picture is released from tracking, to regain the drone resources and lower
the acquisition latency for the next object.

83



The PURSUE application represents a limit for the Pluto programming frame-
work. Indeed, in our model, the drones perform their action only at the end of
their Trip, so it is not possible for them to actively take a picture in the very same
moment the moving object enters in the camera field. This problem can be lowered
by sending a great number of drones in the area to monitor, with strict time con-
straints on them, in order to obtain a lot of pictures of the monitored area. But in
this way, not only it is not sure to capture the moving object, but there would be a
lot of useless empty pictures. And, above all, there is still no way for the drones to
actively follow the moving objects.

We can conclude that the PURSUE application is too "dynamic" for the Pluto
programming framework, and this can be an hint for a future expansion of our
work.

84



6.2 Usability

To evaluate the concrete usability of the Pluto programming framework, we
decided to recruit some people and to make them test our framework, proposing
them two "exercises". We involved five testers, recruited both in the "Politecnico
di Milano" and "SICS Swedish ICT" environment, in order to guarantee a solid
development background and to avoid possible lack of programming knowledge.
We created one exercise based on the Graphical Editor and another one based on
the Main Application.

The first exercise is split in three levels, starting from a very basic version and
going through more difficult versions. Each version asks the user to add a new
functionality by using the available components in the Editor.
The second exercise, instead, asks the user to use the generated code from the
previous exercise to run the Pluto Main Application, then asks to create some
missions and, in the end, to run them.

The application we choose for the exercises is the Drugs Distribution, already
described in Section 3.1, because it’s very suitable for the type of evaluation we
want to perform. Indeed its basic version can be extended with many features,
for example using the Mission Modifier block (Section 4.2), and this is exactly
our purpose. After the execution of the exercises, we asked the users to leave a
feedback, proposing them a survey, built according to some metrics that we have
defined and that we describe in Section 6.2.4, while the results are shown in Section
6.2.5.

6.2.1 Proposed exercises

We gave to the testers a complete and sound explanation of the Pluto program-
ming framework, showing how the Graphical Editor works (shown in Section
4.3.1), giving them a description of the involved entities such as the Mission, the
Trip, the Drone and the Action (shown in Section 4.1) and the list of the functional
blocks (shown in Section 4.2), together with an explanation of the meaning and
functionality of each one of them.
The same explanations were given for the Pluto Main Application too (shown in
Section 4.3.2), of course showing them only a summary of its features because our

85



purpose was to evaluate the real usability.

First Exercise

The exercise proposes the development of the Drugs Distribution application,
introduced in Section 3.1, in three different versions, increasingly harder to imple-
ment:

• basic version: we ask the user to try to implement the Drugs Distribution
application without adding new features.

• medium version: we ask the user to make the system raise the priority of
the failed trips and then re-inserting them in the queue of next trips to be
launched. Moreover the system should deal with a possible delay on each
trip before allocating a drone to it.

• hard version: we ask the user to make the system check that each trip
concludes its execution before a maximum amount of time. This is the
feature introduced by the Timer Monitor functional block, but we wanted
the tester to exploit the Editor and to find a way to add this feature with the
Mission Modifier block.

To solve the first part of the exercise, the user has to create the graph shown
in figure 6.12, that represents the very basic pattern of most applications, since it
uses only the basic blocks. Once created the graph, the user has to right click on
the panel and choose the "Generate code" option to accomplish the first step of the
exercise. This should be an easy task to perform, but we think it could be useful,
because it makes the user confident with the features of the Pluto Graphical Editor,
such as the blocks creation and the code generation mechanism.

86



Figure 6.12: Solution of the first step

To solve the first part of the second step of the exercise, the user has to under-
stand that the functionality to add is already implemented by the Priority Manager
block, so the solution is to add this block to the graph in the right point. Since we
ask him to re-insert the failed trips in the queue of the trips to launch, he has to
put the Priority Manager between the Trip Monitor and the Drone Allocator, as in
figure 6.13.

87



Figure 6.13: Solution of the second step with Priority Manager

Then to add the Delay feature in the diagram the user needs to do the same
thing with the Clock block, that provides the feature to wait for an amount of
time, set in the delay attribute of a Trip. This block is taking as input the mission
provided by the Trip Monitor and the by the Mission Creator then, after the delay
time has passed, gives the mission to the DroneAllocator block, as shown in figure
6.14.

This is a useful step to compute, because the user learns how to use the connec-
tion element, that is a very important feature in the Pluto framework, and also the
Priority Manager and Clock blocks.

88



Figure 6.14: Solution of the second step with Clock block

For the third step, the user has to implement the feature of the Timer Monitor
block but making use of the Mission Modifier block. This is done in order to
evaluate the usability of this block, which gives the developer freedom to add new
custom features to the application.
So, he has to use the Mission Modifier block, through which he can insert his
custom code in the diagram flow. He should put it in parallel with the Trip Monitor
block, connecting it with a new arch outgoing from the Trip Launcher. This new
edge beside the one going to the Trip Monitor will clone the Mission object. So
after the two parallel blocks, the user should use one of the Gate blocks provided,
as shown in figure 6.15.

This is a very useful step to compute, because the user learns how to use Mis-
sion Modifier block, which is an important feature of the Pluto Editor, because it
allows the programmer to insert his custom code to characterize the application.

89



Figure 6.15: Solution of the third step

Second Exercise

The main purpose of this exercise is to underline possible issues in the code
generated with the Pluto Graphical Editor. We must be sure that all the functionality
described by the diagram are enabled in the generated code and that the missions
execution will run smooth as the user expects. Any lack in the user experience may
compromise the usability of the entire application, so it is important to evaluate the
User Interface too. In this way, we check if the visual disposition of the graphics
elements is appropriate. The first step asks every user to create and run the same
kind of missions, as described in the following list:

• Mission 1

Trip A -> Action: Take Photo

Trip B -> Action: Take Photo

Trip C -> Action: Take Photo

• Mission 2

Trip A -> Action: Measure

90



Trip B -> Action: Measure

• Mission 3

Trip A -> Action: Pick Item

Trip B -> Action: Release Item

Trip C -> Action: Take Photo

Trip D -> Action: Measure

The location in the map of the Trips was not important while testing, so the
tester could decide any places. In the second step the users were asked to open the
Monitor Page and to start the missions following their execution using the provided
table and the log console inside the page itself. The third step of the exercise
consists in calling back the Drone with an RTL (Return To Launch) command.

6.2.2 Evaluation metrics

To concretely evaluate the usability of the Pluto programming framework we
defined the following metrics, which we applied for both exercises:

1. Number of people who correctly solved the first part of the exercise

2. Number of people who correctly solved the first and second parts of the
exercise

3. Number of people who correctly solved the whole exercise

4. Mean time for the resolution of the first part of the exercise

5. Mean time for the resolution of the second part of the exercise

6. Mean time for the resolution of the third part of the exercise

7. Mean time for the resolution of the whole exercise

8. Number of people who solved the whole exercise, but in a wrong way

9. Number of people who could not solve the exercise at all

91



Through metrics 1,2 and 3 we can understand which parts of the exercises are
not clear for the user and/or too difficult to implement. Through metrics 4,5,6 and
7 we can understand, once the user has understood how to implement each feature,
how much it is difficult to solve each part of the exercises by measuring the time
required to solve each step. Through metrics 8 and 9, finally, we can understand
how easy is to confuse the specifications and how many people couldn’t solve any
step of the exercises.

6.2.3 Baseline

We want to demonstrate the effective usefulness of the Pluto programming
framework, so we decide to compare its features with the API of the Crazyflie
Nano-quadcopter, which was described in Section 5.6.

Actually, the crazyflie is the drone we chose to use for our applications case
study, and we want to demonstrate that, without Pluto and using only the Crazyflie
API would be more difficult to build the same kind of applications.

So we decide to propose another exercise to our users, but this time they can
use only the Crazyflie API and they have a limited amount of time.

The Crazyflie API is written in Python, so we address to people who knows
Python language features.

The exercise consists in make the drone moving from a point A to a point B on
a map, performing a single Trip.

It may seem easy, but it can can take a long time to fully understand and apply
the API in the correct way.

6.2.4 User Survey

Since we want to evaluate the usability of Pluto, we propose a survey to the
users, in order to understand how easy it is to use and which modifications should
be applied to improve the user experience.

We ask users to tell us how easy was the development of the various steps of
the exercises, and to provide us with a feedback on the usability of the editor and
the main application underlining any problems found. We also ask for suggestions
to improve the usability of Pluto. The survey can be found in the Appendix A.

92



Actually, this survey gives us very useful information about the Pluto frame-
work. We can understand how "usable" it is and which modifications should be
performed to improve the user’s experience, also thanks to the visualization of the
answers in a graphical way. Through the questions on the exercises development
we can understand how difficult it is to create, modify,customize and execute a
particular application, validating "on field" the use of the various blocks, especially
the Mission Modifier, and the usability of the user interface.

6.2.5 Results

Thanks to the combination of the answers to the user survey of Section 6.2.4
and the numeric data collected according to the metrics defined in Section 6.2.2, in
this Section we show the results of the Pluto evaluation. The metrics data are put
into the table 6.1.

Table 6.1: Results of the Metrics of Section 6.2.2

Metric 1 2 3 4 5 6 7 8 9
Exercise 1 5 5 5 10 mins 10 mins 20 mins 40 mins 0 0
Exercise 2 5 5 5 5 mins 5 mins 5 mins 15 mins 0 0

As shown in the table above, all the users completed the two proposed exercises.
Except for the third step of the first exercise, which required to use the Mission
Modifier block, the other steps took few minutes to get solved. This is a good
response on the usability of the framework.
Instead, the third step of the first exercise resulted harder than expected. From
the testers’ comments we understood that this difficulty derives from the lack of
knowledge about the way to manage the attributes of the trips and mission entities
in the code.
We realized that a complete reference of the entities and an example of use of them
is essential in order to simplify the developer duties.

The questions in the survey follow a pattern where, at first we ask for a difficulty
mark for each exercise’s step (from "easy" to "very hard" or "not solved") and then
we ask for a written comment or an advice about it.

93



Concerning the first exercise, the answers to the first two steps are quite similar.
The testers gave an "easy" or "normal" grade with few advices, as shown in figures
6.16 and 6.17.

Figure 6.16: Fist step of exercise 1 results

Figure 6.17: Second step of exercise 1 results

On the other hand, in the third step some testers gave an "hard" grade complain-
ing about the difficulty of dealing with the reset of a Trip or how to understand
when a Trip is expired, as shown in figure 6.18.

94



Figure 6.18: Third step of exercise 1 results

We also ask the testers to evaluate the general functioning of the editor, asking
them to leave a textual feedback to give us suggestions to improve its usability, as
shown in figure 6.19.

Figure 6.19: Editor functioning results

95



Regarding the Main Application exercise, all the steps were considered from
"very easy" to "normal", as shown in figures 6.20,6.21 and 6.22. The users also
gave us some suggestions which made us improve some features that appeared
tricky or not easily understandable.

Figure 6.20: First step of exercise 2 results

Figure 6.21: Second step of exercise 2 results

96



Figure 6.22: Third step of exercise 2 results

A complete description of the answers to the user survey can be found in the
Appendix B.

In the end, we focused the evaluation on the baseline described in Section 6.2.3.
We asked the testers to make use of the Crazyflie official API to develop a simple
script that makes a drone move from a source to a target location. All the testers
gave up during this exercise, because it required a good knowledge of the Python
language and because it would have taken too much time to complete it.
Basing on this result, we can say that the Pluto Main Application really simplifies
the duty of a user that needs to define the concept of Trip and Action inside an
application. Using our framework, it takes only 5 minutes to define a Mission and
execute it. Instead, in order to make the same thing using the Crazyflie official API,
the tester faced many problems since the beginning.

97



6.3 Performance evaluation

In order to strengthen the evaluation of Pluto, after the user study, described in
Section 6.2, we evaluated some quantitative metrics. These metrics are divided in
two main types: software metrics and resources consumption metrics. The former
let us know the complexity of our software. On the other hand, the latter are useful
to underline possible issues at run-time, such as thread deadlock or a too high
memory consumption.

Since our framework is composed by two main components (the Graphical
Editor and the Main Application) we decided to split this evaluation in two parts:
this means that each kind of evaluation was performed on the Pluto Graphical
Editor first and then on the Pluto Main Application. To help us in this procedure
we used a very useful tool called VisualVM, shown in figure 6.23.

Figure 6.23: VisualVM interface

It let the user have a global monitoring of the running Java application in his
local Java Virtual Machine, at run-time. Furthermore, it has a useful feature that
records the profiling of an application in a dump file so that the user can compare

98



different dump files concerning different application sessions. Finally, in the Result
Section 6.3.3, we describe the outcome of the tests for the Pluto Graphical Editor
and the Pluto Main Application separately.

6.3.1 Software Metrics

The software metrics let us understand the complexity of the software. We
decided to record this information for each component of the Pluto Framework,
because it allows us to understand how much expandable it is and how much effort
a different developer should spend to add new features in the future.

These parameters are:

• Total Lines Of Code (LOC)

• Number of attributes

• Average methods per class

• Number of classes

• Number of methods

6.3.2 Resources Consumption

The resources consumption metrics are those parameters measured at run-time,
during the execution of the software. With this evaluation we checked if the Pluto
framework generates any performance issues, because of a too high requirement of
resources.
Furthermore, due to the team level approach we have chosen, as said in Chapter
3, it is important to verify if critical issues happen during the normal execution
because the central brain introduce a single point of failure. It is essential to avoid
any bottleneck situations. These metrics are:

• CPU Load

• Memory Consumption

• Live Threads

99



The profiling of the application was done on a machine with these specifica-
tions:

• CPU: Intel i7 2640

• RAM: 4GB

• VGA: Nvidia GeForce 610M

• SSD: Kingston 120GB

• OS: Xubuntu 14.04

• Java: JDK 1.7

Concerning the Pluto Graphical Editor, we measured these parameters while
generating the source code of the Main Application from an increasingly more
complex drawing. We raised step by step two parameters: the number of blocks
and the number of connections. At first we fixed the former and we incremented
the latter by a step of 5, starting with one connection. Then we did the same
operation fixing the number of connections and raising the number of blocks by 5,
now starting with 2 blocks. A very complex graph used for the editor evaluation is
shown in figure 6.24.

Figure 6.24: Very Complex Diagram Example

Furthermore, we evaluated the same metrics concerning the Main Application.
We decided to focus this evaluation varying 3 important parameters: the number

100



of Mission, the number of Trips related to a single Mission and the number of
available Drones. We started fixing the number of missions and trips, while varying
the number of available drones. Then we fixed the number of missions and drones,
while varying the number of trips. In the end we fixed the number of trips and
drones, while varying the number of missions. In this way, we could evaluate the
performance of the Main Application in an accurate way. The results are shown in
the next Section 6.3.3.

6.3.3 Results

In this Section we show the results of the software and resources consump-
tion evaluation. First of all, we evaluated the software complexity of the Pluto
framework, according to some important software metrics. Table 6.2 proposes the
results.

Main Application Graphical Editor
Total lines of code 2132 5072
Number of classes 48 129
Number of attributes 104 141
Number of methods 197 569
Weighted methods per class 325 848

Table 6.2: The metrics concerning the two Pluto components

Thanks to these measures, we can make some considerations about the size
and the effort spent in developing the Pluto framework.
Concerning the Main Application, these values depend from the diagram genera-
tion process, because the amount of the generated surplus code does not exceed
the 2-3% of the total lines of code of the template Main Application. Indeed the
generation adds no more than 50 lines.
Instead, the Graphical Editor has a higher volume than the Main Application,
with all the measured values doubled. This can be explained by the fact that, to
develop the Editor, we based our code on the Eclispe GEF Framework. Most of the
classes inherit from other parent classes inside this framework, and we inherited its
complexity too.
The higher size explains also the time we spent to develop the Graphical Editor

101



and the time needed to add new features during the software revision steps. Indeed
we found the GEF framework a bit hard to maintain.

Now we present the results concerning the resources consumption of the two
Pluto framework.
Starting from the Graphical Editor evaluation, the diagrams in picture 6.25 de-
scribe the results of the resources consumption during the code generation process.
The left one represents the results while increasing the blocks amount with fixed
connections. The right one instead represents the results when the connections
number varies with a fixed number of blocks.

20 40 60 80 100
0

50

100

Blocks

Fixed 10 Connections

CPU

Mem(MB)

Threads

20 40 60 80 100
0

50

100

Connections

Fixed 15 Blocks

CPU

Mem(MB)

Threads

Figure 6.25: Resources consumption of the Graphical Editor

Inside each diagram there are three curves representing the three metrics we
measured: the CPU load (magenta), the memory consumption (blue) and the num-
ber of active threads (green).
The Graphical Editor does not load the CPU more than 10% while generating the
code, even in the case of complex diagrams. This can be explained by the fact that
the generated code is a little percentage inside the whole Main Application code.
The memory consumption is not stable but it waves between 40MB and 70MB. We
noticed that this fluctuation is independent from the Graphical Editor process, and
is due to the Operating System.
We realized that the Graphical Editor does not require an high amount of resources
during the generation of the Main Application template code.

102



Instead, The Main Application evaluation gave us different results, shown in
the following figures.

20 40 60 80 100
0

20

40

60

80

100

Drones

Fixed 10 Missions and 5 Trips

CPU

Mem(MB)

Threads

Figure 6.26: Evaluation results of Main Application with fixed missions and trips

The diagram of figure 6.26 describes the resources consumption of the Main
Application with a fixed number of missions and trips and a raising number of
drones. We created 10 missions with 5 trips each.
The CPU load is constantly over 95%: we suppose that this is caused by the
simulation environment we built in order to execute the tests. For example we
simulate the Drone flight and the Action execution by pausing the related thread
for two seconds. Our believe that this brought the system to require more resources
than in a normal situation.

The memory consumption value is even fewer than the one obtained in the test
of the Graphical Editor, and the fluctuation is less highlighted.

103



20 40 60 80 100
0

20

40

60

80

100

Trips

Fixed 10 Missions and 15 Drones

CPU

Mem(MB)

Threads

Figure 6.27: Evaluation results of Main Application with fixed missions and drones

The diagram 6.27 describes the resources consumption of the Main Application
with a fixed number of missions and drones while increasing the number of trips
for each mission. We created 10 missions and made available 15 drones.
The situation is almost the same of the previous test, represented in figure 6.26.

20 40 60 80 100
0

20

40

60

80

100

Missions

Fixed 5 Trips and 15 Drones

CPU

Mem(MB)

Threads

Figure 6.28: Evaluation results of Main Application with fixed trips and drones

104



The diagram 6.28 describes the resources consumption of the Main Application
with a fixed number of trips and drones and a raising number of missions. We
created 5 trips for each mission and made available 15 drones.
The evident difference from the previous diagrams is that the number of active
threads during the execution raises with the increase of the number of missions set
by the user.
This can be explained by the fact that each Mission is managed by a dedicated
thread. in this way if the user creates 100 missions at least 100 threads are created.
This behavior lets us think about the possibility to run each mission on a different
machine, in order to reduce the threads concurrency and reduce the CPU load.

105



106



Chapter 7

Conclusions and future works

In this final Chapter we recap the structure of the whole document and the
development phases of the Pluto programming framework. We also show the
limits of Pluto and the possible future works thanks to which these limits could be
overcome.

7.1 Conclusions

We have developed the Pluto programming framework, a system which al-
lows to build nano-drones applications for indoor contexts, simply by graphically
connecting blocks.

In this document we have fully described the development process of Pluto and
the context surrounding our work:

In Chapter 1 we have given the general context and the general goals of the
work together with a brief description of the Pluto development process.

In Chapter 2 we have described the three main existing approaches for drone
programming, also proposing existing examples for each one of them. We have
shown that no one of these approaches is suitable for our requirements, since we
needed the concepts of Mission and Trip. A Mission is a list of sensing tasks to
be performed sequentially and a Trip is a movement from a point A to a point B
in the environment to perform an Action. We have also described the dataflow
programming method, providing two existing examples of it. Also in this case, we

107



have shown that we needed a different approach, since we needed to use only a
group of basic features for our work, while the existing solutions were too general
and contained a lot of complex components.

Chapter 3 is focused on the problems stemming from the indoor context and on
the requirements deriving from it. Starting from a motivating example application,
in order to better explain the requirements and problems deriving from our work,
we have shown the implementation problems deriving from using a Team-level
approach for our system, also proposing the solutions to fix them. Finally we
have shown the technological limitations affecting our system, such as the indoor
localization and nano-drone batteries problems.

In Chapter 4 we have presented our solution for the research problems de-
scribed in Chapter 3, the Pluto programming framework. We have presented our
programming model, that is to say the main entities and the relationships between
them. We have described the functionality of the blocks of the Pluto Graphical
Editor, that are the basic elements that the programmer can connect to graphically
build an application. We also have described in details the two components of
the Pluto framework: the Graphical Editor, that is used by the programmer to
graphically build an application and the Main Application, that is used by the final
user to specify the sensing tasks to be performed. We have describe the navigation
system, that is the conjunction point between the Main Application and the drones
team. We finally have shown all the steps performed to arrive to the final system,
showing all the previously implemented solutions which, once refined, brought us
to the development of the Pluto programming framework.

In Chapter 5 we have shown how the designed choices have been implemented
technically, describing all the software and tools we used for the development of
Pluto programming framework. We have described: The GEF framework, which
we have used to implement the Pluto Graphical Editor. The code generation pro-
cess that creates a Java application from the graph built with the Pluto Graphical
Editor. The Object-Oriented programming model of the Pluto framework. The
runtime features of Pluto: the parallel architecture and the management of all the
needed threads. The SWING tool, which we have used to develop the Pluto Main
Application. The Crazyflie nano-quadcopter, which we have used to perform the

108



sensing tasks of our prototype applications.

In Chapter 6 we have described four already existing applications and three
case study, and we have discussed on whether they can be developed or not with
Pluto. We have proposed two exercises to real testers, in order to test "on the field"
the effective usability of Pluto: the first one deals with the Graphical Editor, the
second one with the Main Application. Then we have proposed a third exercise, in
which we ask the users to directly use the API of the Crazyflie nano-quadcopter,
shown in Section 5.6, to make it move from a point A to a point B. We have also
proposed a survey to the users, in order to have opinions on the framework and
possibly to improve it with the suggestions of the testers. We also have measured
the software and hardware consumption metrics required by Pluto, in order to
evaluate the effective impact of Pluto on an ordinary computing machine.

7.2 Pluto limits and future works

In this Section we show the limits of the Pluto programming framework.
There are two type of limits: the limits in the implementation can possibly be

overcome by modifying the source code and/or adding new features, or changing
the whole model of the system. The technological limits cannot be overcome in
the present, and only research and studies can find a way to improve or find new
technologies which would solve these problems.

The PURSUE application, described in Section 6.1.5, put in evidence the Pluto
main limitation: the immediate execution of actions in response to instantaneous
events.

As already explained in chapter 4, the Pluto system allows the drones to perform
their actions only at the end of the Trip, that is a movement from a point A to a
point B in the environment. For example, if the Drone has to take a picture in a
specific location, it flies from the ground station to that location and then it takes
the picture.

There is no way to actively perform actions reacting on events: so, as already
explained, this is the problem of the PURSUE application, which requires to
actively follow a moving object when it enters in the camera range.

This is an hint for the future expansion of Pluto, in order to manage also this
kind of applications.

109



As already explained in chapter 3, the actuation in indoor contexts is tricky
because of the localization problem. We showed some IPS methods, but still
they are not as efficient and standardized as GPS. They introduce latency in the
localization mechanism and their precision is lowered by physical obstacles, roofs
and ceilings.

In this direction, research and future studies will certainly find a better indoor
localization method, and Pluto will take advantage from it, since it has an archi-
tecture that is decoupled from the particular localization method. So, when this
new method will be implemented, it will be easily integrated with Pluto. This is
an important missing feature, since the actuation tasks performed by the drones
completely relies and depends on a localization base: in order to send a drone in a
specific location to take a picture there is need of a method that precisely indicates
that location.

Research and future studies will also find a way to improve the capacity of the
nano-drones batteries. Nowadays their duration is approximately of 7 minutes, with
a recharge time of 20 minutes. This is a great limitation, because the programmer
is forced to develop applications where the sensing tasks must be performed within
this limited amount of time.

Finding a solution to the limitation of the instantaneous actuation, together
with new technological discoveries that will improve the drones battery duration
and find a good and stable indoor localization method, can greatly enrich the Pluto
programming framework.

110



Bibliography

[1] Karthik Dantu and Bryan Kate and Jason Waterman and Peter Bailis and Matt
Welsh, “Programming Micro-Aerial Vehicle Swarms With Karma,” in SenSys
’11 Proceedings of the 9th ACM Conference on Embedded Networked Sensor
Systems. ACM, 2011, pp. 121–134.

[2] Luca Mottola and Mattia Moretta and Kamin Whitehouse and Carlo Ghezzi,
“Team-level Programming of Drone Sensor Network,” in SenSys ’14 Proceed-
ings of the 12th ACM Conference on Embedded Network Sensor Systems.
ACM, 2014, pp. 177–190.

[3] CNN.com, “Your personal 849 dollars underwater drone,” in goo.gl/m1JRuD.

[4] iRobot, “Create Programmable Robot,” in goo.gl/bJhrMR.

[5] M. Brambilla et al., “A review from the swarm engineering perspective,” in
Swarm Intelligence, 2013.

[6] Morgan Quigley and Brian Gerkey and Ken Conley and Josh Faust and Tully
Foote and Jeremy Leibs and Eric Berger and Rob Wheeler and Andrew Ng,
“ROS: an open-source Robot Operating System,” in ICRA Workshop on Open
Source Software, 2009.

[7] Jonathan Bachrach and Jacob Beal and James McLurkin, “Composable
continuous-space programs for robotic swarms,” in Neural Computing and
Applications. ACM, IEEE, 2010, pp. 825–847.

[8] Jacob Beal, “Programming an amorphous computational medium,” in Uncon-
ventional Programming Paradigms. Springer Berlin, 2005, pp. 97–97.

[9] Greg Sterling, “Magnetic positioning,” in Opus Research Report, 2014.

111



[10] Fan Li and Chunshui Zhao and Guanzhong Ding and Jian Gong and Chenxing
Liu and Feng Zhao, “A reliable and accurate indoor localization method
using phone inertial sensors ,” in UbiComp ’12 Proceedings of the 2012 ACM
Conference on Ubiquitous Computing. ACM New York, 2012, pp. 421–430.

[11] Frédéric Evennou and François Marx, “Advanced integration of WIFI and
inertial navigation systems for indoor mobile positioning,” in EURASIP
Journal on Applied Signal Processing. Hindawi Publishing Corp, Ne York,
2006, pp. 164–164.

[12] Silke Feldmann and Kyandoghere Kyamakya and Ana Zapater and Zighuo
Lue, “ An indoor Bluetooth-based positioning system: concept, Implementa-
tion and experimental evaluation ,” in International Conference on Wireless
Networks - ICWN, 2003, pp. 109–113.

[13] Keith S. Delaplane and Daniel F. Mayer, Crop Pollination by Bees. CABI
New York, 2000.

[14] E. Stokstad, “The Case of the Empty Hives,” in Science, 2007.

[15] F. Nex and F. Remondingl, “UAV for 3D mapping applications: A review,”
in Applied Geomatics. Springer, 2003.

[16] U.S. Environmental Protection Agencyl, “Air Pollutants,” in goo.gl/stvh8.

[17] J. Villasenorl, “Observations from above: Unmanned Aircraft Systems,” in
Harvard Journal of Law and Public Policy, 2012.

112



Appendix A

User survey

Editor functioning

Is the Pluto editor functioning clear?

• Yes

• No

Editor functioning evaluation

If not, please describe what features you think are not clear and why.

First step, exercise 1

How much difficult was solving the first step of the first exercise?

• very easy

• easy

• normal

• hard

• very hard

• not solved

113



First step evaluation, exercise 1

If you didn’t solve the first step, or you find it hard or very hard, please explain
why.

Second step, exercise 1

How much difficult was solving the second step of the first exercise?

• very easy

• easy

• normal

• hard

• very hard

• not solved

Second step evaluation, exercise 1

If you didn’t solve the second step, or you find it hard or very hard, please
explain why.

Third step, exercise 1

How much difficult was solving the Third step of the first exercise?

• very easy

• easy

• normal

• hard

• very hard

• not solved

114



Third step evaluation, exercise 1

If you didn’t solve the third step, or you find it hard or very hard, please explain
why.

Editor interface

Define the usability of the Pluto editor interface.

• easily usable

• normal

• hard to use

• obscure

Editor interface evaluation

If you answer is ’hard to use’ or ’obscure’, please explain what features are
tricky and why.

Code generation

Is the code generation step easy to perform?

• easy

• normal

• hard

Code generation evaluation

If you answer is ’hard’, please explain what is not clear to you and why.

Editor suggestions

115



Please write here any comment/suggestions to improve Pluto Editor.

User application functioning

Is the Pluto user application functioning clear?

• Yes

• No

User application functioning evaluation

If not, please explain what features you think are not clear.

First step, exercise 2

How much difficult was solving the first step of the second exercise?

• very easy

• easy

• normal

• hard

• very hard

• not solved

First step evaluation, exercise 2

If you didn’t solve the first step, or you find it hard or very hard, please explain
why.

Second step, exercise 2

How much difficult was solving the second step of the second exercise?

• very easy

116



• easy

• normal

• hard

• very hard

• not solved

Second step evaluation, exercise 2

If you didn’t solve the second step, or you find it hard or very hard, please
explain why.

Third step, exercise 2

How much difficult was solving the third step of the second exercise?

• very easy

• easy

• normal

• hard

• very hard

• not solved

Third step evaluation, exercise 2

If you didn’t solve the third step, or you find it hard or very hard, please explain
why.

Missions page

How much difficult was to use the Missions Page of the Pluto user application?

• very easy

117



• easy

• normal

• hard

• very hard

Missions page evaluation

If you find it hard or very hard, please explain why.

Trips page

How much difficult was to use the Trips Page of the Pluto user application?

• very easy

• easy

• normal

• hard

• very hard

Trips page evaluation

If you find it hard or very hard, please explain why.

Monitor page

How much difficult was to use the Monitor Page of the Pluto user application?

• very easy

• easy

• normal

• hard

118



• very hard

Monitor page evaluation

If you find it hard or very hard, please explain why.

User application suggestions

Please write here any comment/suggestions to improve Pluto user application.

119



120



Appendix B

User survey answers

List of figures

121



122



123



124



125


