
Politecnico di Milano
Scuola di Ingegneria Industriale e dell'Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Robotic mobile manipulation
in a completely unknown environment

Relatore: Prof. Paolo Rocco
Correlatore: Ing. Giovanni Massimo Buizza Avanzini

Tesi di Laurea Magistrale di:
Roberto Ancona, matricola 798599

Anno Accademico 2013-2014

To my family

Contents
Acknowledgements..iv
Abstract..vi
Estratto in lingua italiana..viii
Chapter 1 - An introduction to mobile manipulation..1

1.1 Overview..1
1.2 Objectives of the thesis..8
1.3 Achieved results...8
1.4 Structure of the thesis..9

Chapter 2 - Kinematics of KUKA youBot mobile manipulator..........................10
2.1 Forward kinematics..11
2.2 Redundancy parameters...13
2.3 Inverse Kinematics..19
2.4 Conditions for the existence of a solution...23

Chapter 3 – Redundancy Resolution..26
3.1 Arm extension redundancy..26
3.2 Elbow redundancy...31
3.3 Vertical posture redundancy..31
3.4 Arm-base displacement redundancy..33

Chapter 4 – Navigation and obstacle avoidance...36
4.1 Control of omnidirectional mobile platforms..37
4.2 Obstacle avoidance based on potential field..38

Chapter 5 – Grasp synthesis...45
5.1 Related works..45

5.1.1 Model based grasp synthesis..45
5.1.2 Recognition based grasp synthesis...46
5.1.3 On-line based grasp synthesis..47

5.2 Point Cloud Acquisition...49
5.3 Data pre-processing...51

5.3.1 Density filter..51
5.3.2 Uniformity filter...52
5.3.3 Surface normals...53

5.4 Grasp generation..54
5.4.1 Locally approximated algorithm..55
5.4.2 Exact algorithm..59

5.5 Grasp selection...61
5.5.1 Feasibility...62
5.5.2 Stability..63
5.5.3 Robot motion...64
5.5.4 Global performance index..65

Chapter 6 - Pick and place operations with KUKA youBot................................66
6.1 System architecture..67
6.2 Task Planner...68
6.3 Point cloud and grasping registration..69

6.4 Placing algorithm...72
6.5 Software architecture...76

Chapter 7 - Experimental results...78
7.1 Internal motions...78
7.2 Manipulability optimization..81
7.3 Vertical end-effector configuration redundancy..82
7.4 Navigation..85
7.5 Grasp synthesis..87
7.6 Pick and place operations with the real KUKA youBot....................................91

Conclusions and future works...94
Appendix A – KUKA youBot hardware specification...96

A.1 Arm technical data..96
A.2 Base technical data..98
A.3 Denavit-Hartemberg parameters...99

Appendix B – JyouBot interface...100
Appendix C – Automatic calibration of the depth camera relative frame
position..103
Appendix D – Torque control of KUKA youBot arm...105

i

List of Figures
1.1 Efficiency and flexibility relation in industrial and service robotics..............2
1.2 Mobile manipulator subsystems...2
1.3 Examples of recent mobile manipulators...3
1.4 Industrial network architecture...4
1.5 Example of symbolic state space for manipulation of three blocks...............6
1.6 Example of 3D Navigation and Manipulation of unknown objects with
PR2 robot...7
2.1 KUKA youBot mobile manipulator..11
2.2 KUKA youBot state variables..12
2.3 The four configurations of an anthropomorphic arm compatible with a
given wrist position...14
2.4 Internal motion induced by ρ1redundnacy parameter..................................16
2.5 Internal motion induced by ρ2 redundancy parameter.................................17
2.6 Elbow up or down configurations induced by parameter ρ3.......................18
2.7 Task redundancy induced by parameter ρ4..18
2.8 Geometric meaning of redundancy parameter ρ4..19
2.9 End-effector reference frame with respect to the world absolute frame.....20
2.10 Link 2, 3 and 4 of the KUKA youBot manipulator..21
2.11 Rotational displacement of the last link...23
3.1 Behaviour of U(q) as function of ρ2 for a vertical configuration..................30
3.2 Behaviour of U(q) as function of ρ2 for a lateral configuration....................31
3.3 Redundancy resolution for parameter ρ4..32
3.4 Redundancy resolution of parameter ρ1 used in cluttered environment.. .33
3.5 Redundancy resolution of parameter ρ1 used in visual sensory system....34
4.1 An attractive and repulsive component define a potential function............38
4.2 Common examples of potential field local minimum....................................39
4.3 Integration of repulsive and rotational potential fields.................................39
4.4 Fixed and variable directions of rotation...41
4.5 Clockwise and counter-clockwise zones..41
4.6 Clustering on the sensor perceptions...42
4.7 KUKA youBot maximum encumbrance..43
4.8 Penalization of the repulsive virtual force...44
5.1 Example of point cloud acquisition from a depth camera............................49
5.2 Example of density filter application..52
5.3 Example of surface normals estimation...53
5.4 Example of smoothing operation on the surface normals.............................54
5.5 Gripper and grasp pose parameters...54

ii

5.6 Approximation of the gripper structure with planes.....................................56
5.7 Phases of the local approximated algorithm...57
5.8 Gripper structure reconstructed with cuboids..59
6.1 System architecture...67
6.2 Example of point cloud registration...70
6.3 Relation between point clouds and homogeneous transformations............72
6.4 3D and 2D point clouds considered for the placing problem.......................72
6.5 Examples of convex and concave hulls...73
6.6 Example of optimal placing problem...74
6.7 Software architecture..76
7.1 End-effector positional error during internal motion (position control).....79
7.2 End-effector positional error during internal motion (velocity control).....79
7.3 End-effector positional error during internal motion while following a
linear Cartesian trajectory (position control)...80
7.4 End-effector positional error during internal motion while following a
linear Cartesian trajectory (velocity control)...80
7.5 Behaviour of objective function U(q) and chosen values of redundancy
parameter ρ2 during a pick and place task..81
7.6 Behaviour of objective function U(q) and chosen values of redundancy
parameter ρ2 during a pick and place task. (Heat map)......................................82
7.7 Mobile base position and orientation while following a Cartesian end-
effector trajectory with a fixed vertical configuration of the end-effector.........83
7.8 Mobile base position and orientation during a pick and place operation.. 84
7.9 Mobile base position and orientation during another pick and place
operation...85
7.10 Mobile base movements during navigation in a cluttered environment in
VRep simulation environment...86
7.11 Navigation experiment with the real KUKA youBot...................................86
7.12 Colour filter calibration tool...92
7.13 Pick and place experiment with the real KUKA youBot.............................93
7.14 Object used for manipulation experiments on the real robot.....................93
A.1 KUKA youBot Arm specification...96
A.2 KUKA youBot Arm specification...97
A.3 KUKA youBot Base specification...98
A.4 KUKA youBot Base specification...98
B.1 Class diagram of JyouBot interface...100
C.1 Camera reference frame and parameters used for the calibration............103

iii

Acknowledgements
I wish to thank my advisor, prof. Paolo Rocco, for the professionalism and the
precious guidance he demonstrated during the development of my thesis.
Professor Rocco gave me the opportunity of working for a long time in the
MEchatronics and Robotics Laboratory for Innovation, an experience that I
think will be very valuable in my future professional career.

A special and sincere thanks goes to Giovanni Buizza Avanzini, for reviewing
my work and for all the interesting ideas and thoughts, regarding mobile
manipulation and robotics in general, he shared with me. His precise support
was always available, even when he was many kilometres away from Milan.

Thanks to my colleagues Diego, Lorenzo and all the other guys I have met at
the automation laboratory of the Politecnico di Milano, working with them
has been truly funny and pleasant.

Thanks to Paolo and Vespe, the third musketeer is deeply grateful to them for
always sticking around.

Thanks to Roberto, Stefano and Francesca, my lifetime friends.

I own much of what I am to my family, no words can express the gratitude I
feel for their unconditional love, support and understanding.

Finally, I wish to thank Michele, because he, more then anyone, knows
everything about il mio robottino.

iv

v

Abstract

Thanks to the high number of degrees of freedom and to the ability to
freely navigate in the environment, mobile manipulators exhibit
a virtually unlimited reachable workspace, while also presenting a
remarkable level of dexterity, namely the capability of performing
manipulation tasks. These features make mobile manipulators particularly
suited to carry out autonomous task in an unknown and dynamic
environment.
Within this scenario, a framework to execute autonomous pick and place
operations in a completely unknown environment has been developed in
this work, exploiting a KUKA youBot mobile manipulator as experimental
platform. Both the environment and information such as shape, position
and dimension of the objects to be manipulated are a-priori unknown to
the robot. All the necessary data are then acquired on-line through a depth
camera and several proximity sensors. A grasp synthesis process has been
introduced to compute optimal grasping configurations on the fly, based
on data acquired by an Xtion Pro Live depth sensor. Optimization of the
whole robot manipulability, with the purpose of increasing the
coordination between base and arm, and minimization of the mobile
platform motions are obtained by exploiting the redundancy of the KUKA
youBot mobile manipulator. A technique based on rotational potential
fields has also been adopted to allow the robot to navigate autonomously
without colliding with the environment. Both simulated and experimental
validations of the proposed approach demonstrate the effectiveness and
reliability of our implementation in dealing with manipulation tasks in
unknown environments.

vi

vii

Estratto in lingua italiana

Al giorno d'oggi viene fatto ampio uso di sistemi robotici in ambito
industriale per eseguire operazioni pericolose, ripetitive e pesanti.
L'introduzione di robot nel contesto manifatturiero, infatti, consente di
migliorare la qualità dei prodotti, le condizioni di lavoro, e porta ad un uso
ottimizzato delle risorse. Le linee di produzione delle attuali industrie,
tuttavia, sono dotate di manipolatori fissi e dedicati, che risultano poco
flessibili, poiché ripetono meccanicamente le stesse operazioni per tutta la
durata del processo di produzione. Recentemente, l'inadeguatezza di questi
manipolatori sta diventando sempre più evidente alla luce della
globalizzazione dei mercati e della sempre crescente domanda di
diversificazione di prodotto, che richiede uno spostamento dal paradigma di
produzione di massa al paradigma di produzione personalizzata. Le correnti
tecnologie dell’automazione rendono difficile e costoso scalare la produzione
e la varietà dei prodotti in base alla volatilità del mercato. Inoltre, a causa di
questa ridotta flessibilità, il mercato fatica a trovare concrete soluzioni
commerciali nell'ambito della robotica di servizio, nel cui contesto i robot
devono assistere gli esseri umani nell'ambiente domestico e lavorativo.
Per superare queste problematiche, le future tecnologie dovranno consentire
ai sistemi robotici di operare in ambienti sconosciuti e dinamici, cooperare
con gli esseri umani e, più in generale, costituire dei sistemi general purpose in
grado di eseguire una gran varietà di compiti e funzionalità. La
manipolazione mobile costituisce una valida alternativa per raggiungere
questi obbiettivi sia nella robotica industriale, sia nella robotica di servizio. I
manipolatori mobili sono robot costituiti da uno o più bracci robotici montati
su una piattaforma mobile. La composizione di capacità locomotive e
manipolative assicura a questi robot un maggior livello di destrezza e uno
spazio di lavoro raggiungibile virtualmente illimitato. Per queste ragioni, i
manipolatori mobili, confrontati coi tradizionali manipolatori fissi, risultano
più adatti a svolgere una ampia varietà di compiti nei più svariati ambienti.
La navigazione è una attività fondamentale per i robot mobili, che devono
essere in grado di muoversi in modo sicuro da una posizione all'altra
dell'ambiente, evitando possibili collisioni con ostacoli presenti in esso. In un
contesto industriale, i manipolatori mobili devono spostarsi autonomamente
tra le diverse stazioni di lavoro che formano la linea di produzione, evitando
collisioni con altri robot fissi o mobili, macchine e operatori umani. I robot,

viii

quindi, devono essere provvisti di una strategia di navigazione, che,
basandosi sulle percezioni sensoriali acquisite in tempo reale, permetta loro di
muoversi all'interno di ambienti dinamici e sconosciuti.
I manipolatori mobili, inoltre, devono interagire con gli oggetti presenti nello
spazio di lavoro per eseguire operazioni di manipolazione e assemblaggio.
Attualmente, nel campo della robotica industriale, ogni singola operazione
viene accuratamente programmata da operatori umani e poi viene eseguita
dai robot, che meccanicamente la ripetono. Un procedimento più adatto ad
eseguire operazioni di manipolazione in modo autonomo sarebbe specificare
solamente lo stato finale desiderato degli oggetti, e lasciare al robot il compito
di pianificare la corretta sequenza di operazioni necessaria per completare
l'incarico assegnato. Per sviluppare questo tipo di approccio, i robot devono
essere in grado di interagire autonomamente con una grande varietà di
oggetti, decidendo il modo migliore per afferrarli e riposizionarli in una nuova
allocazione stabile. La tematica del grasping, ovvero come il robot debba
afferrare un certo oggetto, è particolarmente critica se eseguita in modo
autonomo. Infatti il robot, basandosi su un modello virtuale degli oggetti,
deve pianificare e poi eseguire delle pose di grasping che permettano una
presa sicura e stabile, nonostante queste cambino notevolmente da oggetto a
oggetto.
Abilità di navigazione e manipolazione simili sono necessarie nel contesto
della robotica di servizio, dove ai manipolatori mobili è richiesto di assistere
esseri umani, non necessariamente esperti nel campo ICT, all'interno di
ambienti e situazioni di tutti i giorni. Rispetto agli spazi di lavoro industriali,
la navigazione autonoma di robot all'interno di case o uffici è ancora più
complessa, in quanto essi costituiscono ambienti caotici, pieni di ostacoli e
caratterizzati da passaggi stretti. Anche la manipolazione di oggetti risulta più
critica nell'ambito della robotica di servizio, dove il robot deve essere in grado
di eseguire svariate operazioni interagendo con oggetti completamente
sconosciuti. Infatti, a differenza dalle situazioni industriali, in cui un modello
completo ed accurato degli oggetti da manipolare è dato a priori, nella
robotica di servizio questi modelli devono essere ricostruiti in tempo reale dal
sottosistema sensoriale del robot, costituito da telecamere e sensori di
profondità. Strategie euristiche devono poi essere usate per pianificare e
controllare l'operazione di manipolazione, basandosi sul modello grezzo
ricostruito in precedenza.
Una ulteriore tematica caratteristica riguardante la manipolazione mobile
consiste nella risoluzione della ridondanza cinematica. Una ridondanza
cinematica si manifesta quando il numero totale di gradi di libertà di un
sistema meccanico supera quello strettamente necessario per eseguire una

ix

certa operazione. Poiché i manipolatori mobili aggiungono ai gradi di libertà
del braccio robotico i gradi di libertà della base mobile, di norma costituiscono
dei robot ridondanti. La ridondanza permette al robot di eseguire la stessa
operazione in infiniti modi diversi: scegliere tra questi una modalità che
ottimizzi un voluto comportamento, è un problema importante da considerare
per sfruttare al meglio le notevoli possibilità offerte dalla manipolazione
mobile. Opportune tecniche di ridondanza possono essere utilizzate, ad
esempio, per mantenere i valori di giunto all'interno dei loro vincoli fisici,
mantenere il robot in una configurazione dove possiede una buona capacità di
eseguire compiti di manipolazione, evitare collisioni con ostacoli o
minimizzare il consumo di energia.

L'obiettivo principale di questa tesi consiste nello studiare come un robot
mobile, dotato di una braccio robotico, possa eseguire compiti di
manipolazione in un ambiente completamente sconosciuto. Si è prefissato di
analizzare come la ridondanza, caratteristica comune dei manipolatori mobili,
possa essere usata per migliorare la coordinazione tra braccio robotico e
piattaforma mobile, e come possa essere sfruttata per supportare e ottimizzare
le operazioni di manipolazione in generale. E' stato individuato, inoltre, il
requisito di sviluppare una tecnica di navigazione che consenta al robot di
muoversi in sicurezza evitando collisioni con l'ambiente circostante. Infine, è
stato definito l'obiettivo di studiare come un manipolatore mobile possa essere
adoperato, nel contesto della robotica industriale e di servizio, per afferrare
oggetti con forma e allocazione non nota a priori.

In questo lavoro è stato sviluppato un sistema di manipolazione mobile che
permette di eseguire in modo autonomo operazioni di pick-and-place
utilizzando la piattaforma di ricerca costituita dal robot KUKA youBot. KUKA
youBot è un robot composto da una base mobile omnidirezionale e da un
manipolatore seriale a cinque assi, per un totale di otto gradi di libertà
complessivi. La descrizione della ridondanza del robot è stata introdotta a
livello cinematico, tramite la definizione di un insieme di parametri di
ridondanza. Questi parametri, che descrivono il significato fisico dei gradi
libertà ridondanti, possono essere arbitrariamente assegnati lasciando
invariata la configurazione dell'end-effector del robot. La ridondanza del
robot è stata utilizzata per ottimizzare la manipolabilità dell'intero
manipolatore mobile, con l'intento di migliorare il coordinamento tra base e
braccio. Inoltre, la ridondanza è stata utilizzata per minimizzare i movimenti
della base mobile, mantenere i giunti all'interno dei loro limiti fisici e per
tenere un certo obiettivo all'interno del campo visivo del sensore video

x

utilizzato. Per conferire al robot la capacità di navigare autonomamente, è
stata sviluppata una strategia di controllo reattiva basandosi sul concetto di
campi virtuali di forza rotazionali, che consentono al robot di aggirare gli
ostacoli percepiti, invece che semplicemente essere respinto da essi. In questo
modo è stato possibile superare il problema di minimo locale, caratteristico
delle strategie di navigazione basate su campi di forza virtuali. Un insieme di
sensori di prossimità montati attorno alla base mobile del robot, o un singolo
dispositivo video di profondità sono stati usati indifferentemente per
acquisire i dati necessari alla navigazione. Infine, è stato realizzato un robusto
ed efficiente processo di sintesi di pose di grasping con l'intento di eseguire
operazioni di manipolazione in un ambiente completamente sconosciuto,
dove le informazioni riguardanti forma, dimensione, posizione e
orientamento degli oggetti da afferrare non sono fornite in anticipo al robot. Il
processo di sintesi del grasping sviluppato, utilizzando il sensore di
profondità ASUS Xtion Live Pro, ricostruisce un modello virtuale degli oggetti
presenti nell'ambiente e procede poi alla generazione di configurazioni di
grasping ammissibili. Criteri euristici sono stati adottati per valutare la
stabilità delle varie configurazioni, in modo da selezionare ed eseguire quelle
che dimostrano maggior garanzia di successo. Grazie al framework realizzato,
il robot KUKA youBot è in grado di esplorare autonomamente l'ambiente,
riscostruire il modello virtuale degli oggetti da manipolare, pianificare ed
eseguire correttamente le operazioni di pick-and-place.

La struttura della tesi è organizzata come segue: il Capitolo 1 introduce
tematiche e motivazioni legate alla manipolazione mobile, nel Capitolo 2
viene introdotta la cinematica del robot KUKA youBot; possibili strategie di
risoluzione della ridondanza cinematica vengono proposte nel Capitolo 3; la
strategia di navigazione basata su campi di forza virtuale è presentata nel
Capitolo 4; il processo sviluppato di sintesi del grasping viene illustrato nel
Capitolo 5; nel Capitolo 6 vengono proposti alcuni dettagli implementativi
riguardanti il sistema autonomo di pick-and-place realizzato; nel Capitolo 7
vengono presentati i risultati sperimentali ottenuti.

xi

 Chapter 1 - An introduction to mobile manipulation Pag. 1

Chapter 1 - An introduction to mobile manipulation

Chapter 1

An introduction to mobile manipulation

“Why do plants not have brains?
The answer is actually quite simple: they don’t have to move.”

Lewis Wolpert

1.1 Overview
Nowadays robots are widely used in industry to perform dangerous, dull and
heavy tasks. Indeed, robot-based manufacturing increases product quality,
improves work conditions, and leads to an optimized use of resources.
However, the common production lines of today industries are equipped with
fixed and dedicated manipulators, which result rather inflexible, as they
repeat continuously the same task during all the production lifetime. In recent
years, the inflexibility and inadequacy of industrial robotics has become more
and more evident due to globalization of markets, trade instability, e-
commerce and explosion of product variety, which leads to a shift in
paradigm from mass production to customized production. The current
automation practices, make it difficult, time consuming, and costly to change
the type of products manufactured and to scale the production up and down
in response to market volatility [1].
Moreover, the lack of flexibility causes the robotics market to struggle in
finding concrete commercial solutions in the area of service robotics, where
robotic systems should be devoted to assist humans in home-care and health-
care fields. As shown in Figure 1.1, the future industrial robotics should
maintain its efficiency to guarantee big production volumes, while enjoying a
larger degree of flexibility to deal with product variety. Service robotics,
instead, can afford to have less efficient performance, but must be able to
execute a great variety of tasks and operations.

 Chapter 1 - An introduction to mobile manipulation Pag. 2

Figure 1.1 Efficiency and flexibility relation in industrial and service robotics.

In order to achieve these objectives, the future robotics technologies should
autonomously operate in unknown and dynamic environments, cooperate
with humans and be part of general purposes systems, capable of executing
great variety of tasks. Mobile manipulation has been indicated [2] [3] [4] [5] as a
convincing concept to achieve these objectives both in industrial and service
robotics. Mobile manipulators are composed of one or more robotic arms
mounted on a mobile platform. Indeed, the composition of locomotion a
manipulation abilities ensures an increased level of dexterity and a
virtually unlimited reachable workspace to mobile manipulators. Compared
to traditional industrial robots, mobile manipulators are thus more suitable to
adapt to changing environments and perform a wide variety of
manufacturing tasks.

Figure 1.2 Mobile manipulator subsystems.

Efficiency

Flexibility

Product volume

Present
Industrial Robotics

Service
Robotics

Future
Industrial Robotics

Tooling system

Robotic Arm Mobile Platform

Vision system

 Chapter 1 - An introduction to mobile manipulation Pag. 3

Besides the robotic arm and the mobile platform, an autonomous mobile
manipulator is usually equipped with a vision subsystem, which is composed
by a set of sensor devices necessary to perceive the environment state, and a
tooling subsystem, whose role is to provide the right actuation instruments to
interact with the environment [6] (See Figure 1.2). The most common mobile
manipulators, developed in the recent years, are reported in Figure 1.3.

Little Helper (2009)
Department of production

Alborg, Denmark

Justin (2009)
German Aerospace Center

Wessling, Germany

KUKA omniRob (2009)
KUKA laboratories GmbH

Augsburg, Germany

PR2 (2010)
Willow Garage

Menlo Park, California

KUKA youBot (2011)
KUKA laboratories GmbH

Augsburg, Germany

Care-O-Bot (2015)
Fraunhofer-Gesellschaft

Germany

Figure 1.3 Examples of recent mobile manipulators.

As described in [3], to achieve a real improvement in the overall productivity,
the introduction of mobile manipulators in the industrial field should satisfy
logistic, assistive and service requirements. Logistic requirements cover the
process of transporting parts between different workstations and storages,
that compose the production line, and the process of loading components,

 Chapter 1 - An introduction to mobile manipulation Pag. 4

several or one at time, into feeders and machines. Currently, logistics tasks are
carried out by humans and represent a critical and expensive process in the
production line. Through mobile manipulation, the logistic field can be fully
automated, as it has been done, for example, by the well known Amazon
company, which has adopted mobile robots to perform autonomous
warehouse inventory movements [7]. Assistive tasks cover the processes of
loading/unloading materials into machinery for processing, pre-assembling
of components, observing and comparing parts to identify and correct
defects. Finally, service tasks should assist the production process by
maintaining, repairing, overhauling and cleaning the different workstations.
To perform these kind of operations, mobile robots must be perfectly inserted
in the ICT system of the company. Through a wireless access point, mobile
robots should be connected within the industry network, so that they can
communicate with the other information technologies, as the production
control and diagnostic system, the Enterprise Resource Planning, the
Warehouse Management Systems, as well as with human operators (see
Figure 1.4).

Figure 1.4 Industrial network architecture.

In order to fulfil these requirements, navigation and manipulation abilities for
mobile manipulators should be developed. Navigation is a fundamental
activity for mobile robots, that should be able to safely move from one
position of the environment to another one, while avoiding collisions with the

Network

Wireless access point

Mobile manipulators
Operators

Laptop

Fixed manipulators Workstations

Servers and
Databases

Operation center

 Chapter 1 - An introduction to mobile manipulation Pag. 5

objects possibly disposed in it. In an industrial context, mobile manipulators
should navigate from one workstation to another one, while avoiding
collision with other robots, machines and human operators. Thus, robots
must be provided with a navigation strategy that, based on the visual
perceptions provided by cameras and proximity sensors, allows them to move
safely inside unknown and dynamic environments. To cope with these issues,
often navigation is divided in local and global navigation [8]. Global
navigation, using a map of the environment a-priori known or reconstructed
during the motion of the robot, searches for a valid path to reach a desired
position. Local navigation, instead, has the purpose of guiding the robot and
avoiding collisions with obstacles, based on the perceptions acquired by the
vision system in real-time. In this way it is possible to face environment
changes, unforeseen by the global navigation.
Mobile manipulators, furthermore, must interact with the environment to
perform manipulation tasks, as grasping objects and changing their
arrangement in the workspace, assembling parts, opening and closing doors.
Nowadays, in the field of industrial robotics, every action composing a
manipulation task is first carefully programmed by human operators and
then executed by robots, that mechanically repeat it. A behaviour more
suitable for autonomous mobile manipulators, would be for the human
operators to specify only the final desired configuration of the objects the
should be manipulated or assembled and leave to the robot the duty of
planning the correct sequence of operations necessary to carry out the
manipulation task. Following this perspective, the robot controller should be
composed by a cognitive layer and a motion layer. The cognitive layer, using
artificial intelligence techniques [9], should recreate an abstract and symbolic
representation of the environment, useful to plan a sequence of actions, that
leads to the desired goal configuration of the objects (Figure 1.5). The motion
layer, instead, controls the actual motions of the robot by generating the
necessary trajectories to accomplish the abstract actions, described by the
cognitive layer. To develop this kind of approach, it necessary for the robot to
interact autonomously with a great variety of objects, for example it should be
able to decide the best way to grasp a certain object starting from its 3D
virtual model, and choose how to rearrange it in a new stable position.
Moreover, especially for assembly tasks, it is necessary for the robot to interact

 Chapter 1 - An introduction to mobile manipulation Pag. 6

with the objects in a compliant way, as in the well known case of the peg in
hole insertion [10]. Thus, torque and force control strategies should be
considered for a better interaction between the robot and the environment.

Figure 1.5 Example of symbolic state space for manipulation of three blocks.

Similar navigation and manipulation abilities are needed by service robotics,
where mobile manipulators are required to assist human beings, not
necessary experts in the robotics or ICT fields, inside everyday environments.
Compared to industrial workspace, the autonomous navigation of robots
inside houses or offices is even more complex, because they constitute very
cluttered and dynamic environments. To guarantee correct and secure
motions in these particular environments, a 3D navigation strategy [2] must
take into account the whole structure of both the environment and the robot
itself to plan collisions free paths (see Figure 1.6). Also manipulation is more
critical in the case of service robotics, where robots must execute
manipulation tasks on a great variety of completely unknown objects. Indeed,
differently from industrial situations, where an accurate and complete model

 Chapter 1 - An introduction to mobile manipulation Pag. 7

of the objects to be manipulated is given, in service robotics these models
must be reconstructed on the fly by the visual subsystem of the robot.
Heuristic strategies, then, should be used to plan and control the
manipulation task, based on the reconstructed rough model of the objects (see
again Figure 1.6).

3D Navigation Manipulation of unknown objects

Figure 1.6 Example of 3D Navigation and Manipulation of unknown objects with PR2
robot.

Furthermore, a typical issue regarding mobile manipulation is redundancy
resolution. A kinematic redundancy occurs when the total degrees of freedom
of a robotics system exceed those strictly required to execute a certain task. As
mobile manipulators add the degrees of freedom of their mobile base to those
of the robotic arm, often they become redundant robot. Since it is widely
recognized that a general task consists of following an end-effector Cartesian
trajectory using six degrees of freedoms (three for position and three for
orientation), a robot with seven or more degree of freedom is considered as
the typical example of inherently redundant manipulator. Redundancy allows
the robot to execute the same task in infinite different ways. Choosing among
all these possibilities an optimal modality to perform a certain operation, is
then a critical issue to exploit the wide capabilities of mobile manipulation.
The main idea of redundancy resolution is to use the exceeding degrees of
freedom to obtain secondary desired behaviours, while the robot executes in a
completely consistent way its primary task. Redundancy resolution, for
example, can be used to keep the joints values away from their physical limits,

 Chapter 1 - An introduction to mobile manipulation Pag. 8

maintain the robot in a configuration where it has a good ability to perform
manipulation tasks, avoid obstacles, minimize the energy consumption or
support the visual subsystem of the robot.

1.2 Objectives of the thesis
The main objective of this thesis is to study how a mobile robot, equipped
with a robotic arm, can execute manipulation tasks in a completely unknown
environment. This work, in particular, has the objective of analysing how the
redundancy, typical of mobile manipulators, can be used to improve the
coordination between mobile base and robotic arm, and how it can be
exploited to support and optimize manipulation tasks in general.
Furthermore another goal is to develop a navigation technique, which would
allow the robot to safely move in the environment while avoiding obstacles.
A final objective is to study how a mobile manipulator can be used, in the
context of both industrial and service robotics, to grasp objects, whose shape
and position are a-priori unknown.

1.3 Achieved results
In this work, a mobile manipulation framework, composed of control
techniques and algorithms, has been developed to perform pick and place
operations with the KUKA youBot robotics research platform [11]. KUKA
youBot is a robot composed of an omnidirectional mobile platform and a five
axis serial manipulator, for a total of eight overall degrees of freedom. The
redundancy description of the robot has been introduced at a kinematic level
with the definition of a set of redundancy parameters. These redundancy
parameters, which describe the physical meaning of the exceeding degrees of
freedom of the robot, can be arbitrary set without altering the end-effector
configuration. The redundancy of the system has been exploited optimizing
the manipulability of the whole mobile manipulator so that configurations of
the robot that are more suitable for manipulation tasks are preferred and the
coordination between mobile platform and robotic arm results improved.
Furthermore redundancy has been utilized to keep the joint values of the
manipulator inside their physical limits, to minimize the mobile base
movements and to keep some goal object inside the field of view of the vision
subsystem.

 Chapter 1 - An introduction to mobile manipulation Pag. 9

In order to confer the robot the ability to correctly navigate in the
environment, a reactive local control strategy has been proposed, based on
the concept of virtual rotational fields, which have the purpose of guiding the
robot around the obstacles instead of simply being repulsed by them. In this
way the classical local minima problem, characteristic of the potential field
navigation technique, has been solved. A set of proximity sensors mounted
around the platform or a single depth camera can be equivalently used as a
sensory system to acquire the environment information necessary for the
navigation of the robot.
Finally an effective and efficient grasp synthesis process has been developed
with the purpose of performing manipulation operations in a completely
unknown environment, where the information regarding shape, dimension,
position and orientation of the objects are not given a-priori to the robot.
Thanks to the realized framework, KUKA youBot is able to autonomously
explore the environment, reconstruct the model of the objects through a
depth camera device, plan and correctly execute pick and place operations.
Simulated and experimental validations demonstrate the effectiveness and
reliability of our implementation in dealing with manipulation tasks in
unknown environments.

1.4 Structure of the thesis
The thesis is organized as follows: the kinematics of the KUKA youBot robot
is presented in Chapter 2; possible redundancy resolution strategies are
discussed in Chapter 3; in Chapter 4 the developed navigation technique
based on rotational potential is illustrated; the realized grasp synthesis
process is presented in Chapter 5; implementation details regarding the
autonomous pick-and-place framework are illustrated in Chapter 6;
experimental results are reported in Chapter 7.

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 10

Chapter 2 - Kinematics of KUKA youBot mobile manipulator

Chapter 2

Kinematics of KUKA youBot mobile
manipulator
In this work, a mobile manipulator is considered as a system composed of a
robotic arm mounted on a mobile base. Often these two components are
considered as separate elements and not as a whole system. In this scenario
first the mobile base is used only with navigation purposes, e.g. to approach a
certain object, and then the robotic arm performs the manipulation task as if it
was fixed to the ground. This approach does not take into account the whole
capabilities of the system, as not all its degrees of freedom are used
simultaneously. A more efficient way to accomplish a manipulation task is for
the base and the arm to simultaneously cooperate. Considering the synergies
between the mobile base and the manipulator is a better way to tackle the
problem of mobile manipulation to exploit the high level of dexterity it offers.
For this reasons the kinematic model of a mobile manipulator must describe
the characteristic of both the base and the arm in a comprehensive way.
Moreover mobile manipulators, due to their high number of DOFs, are often
redundant system. Thus, introducing a description of their redundancy at
kinematics level can be an efficient measure to exploit the specific geometric
characteristics of a certain robot.

In this chapter a kinematic model of the KUKA youBot mobile manipulator
will be presented. First the forward kinematics will be introduced, then the
specific redundancy parameters of the robot and their geometric meaning will
be explained, making it possible to define a closed form inverse kinematics
algorithm. Finally a condition of existence for the inverse kinematics solution
and the ranges of existences of the redundancy parameters will be discussed.

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 11

2.1 Forward kinematics
The state of a mobile manipulator can be expressed in a general form as:

q=[qb

qa] (2.1)

where subscript b is assigned to the base variables qb=[XbY bZbαbβbγb]
T ,

that represent position and orientation of the mobile base, while subscript
a denotes the arm joint position variables qa=[q1 q2... qn]

T of a
manipulator with n degrees of freedom. In particular, the variables Xb ,
Y b and Zb define the absolute position of the mobile base centre of mass,

while αb , βb and γb are respectively the raw, pitch and yaw angles that
determine the base orientation.

Figure 2.1 KUKA youBot mobile manipulator.

The KUKA youBot (Figure 2.1) is a robot composed of an omnidirectional
mobile platform and a five axis serial manipulator. For a complete hardware
specification of the robot refer to Appendix A.
Since the mobile platform is capable only of planar movement and only the
case of a single robotic arm mounted on the base is considered, the state of
KUKA youBot will be defined as

qb=[Xb Y b θb]
T (2.2)

qa=[q1 q2 q3 q4 q5]
T

(2.3)

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 12

where θb is the planar absolute orientation of the mobile platform (see
Figure 2.2).

Figure 2.2 KUKA youBot state variables

Forward kinematics is the basic mathematical tool for finding the Cartesian
position and orientation of the robot end-effector knowing its state variables.
Direct kinematics for a mobile manipulator can be expressed in a general
form through the following homogeneous transformation matrix:

KF (q)=T bT dT a (2.4)

where T b is the homogeneous transformation matrix from the absolute
frame to the mobile base frame, T d is a constant transformation matrix that
denotes the displacement between the platform frame and the arm base
frame, T a is the homogeneous transformation matrix from the arm base
frame to the end-effector frame, depending on the manipulator kinematics
chain configuration. For the particular case of the KUKA youBot robot the
previous kinematics terms assume the form:

q1

q2

q3

q4

q5

x

y

X b

Y b

θb

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 13

T b=[
cos (θb) −sin(θb) 0 Xb

sin (θb) cos (θb) 0 Y b

0 0 1 0
0 0 0 1

] (2.5)

T d=[
1 0 0 xd
0 1 0 0
0 0 1 zd
0 0 0 1

] (2.6)

T a=A1
0
(q1)A2

1
(q2)A3

2
(q3)A4

3
(q4)A5

4
(q5) (2.7)

where

A i
i−1
(q i)=[

cqi
−sqi

cαi
sqi

sαi
ai cθi

sqi
cqi

cα i
−cqi

sα i
a i sqi

0 sαi
cα i

d i

0 0 0 1
] (2.8)

follows the standard Denavit-Hartenberg convention [12].

2.2 Redundancy parameters
A kinematic redundancy [13] occurs when the total DOFs of a robotics
systems exceed those strictly required to execute a certain task. Therefore
robots are not inherently redundant, rather there are tasks with respect to
which they may become redundant. Since it is widely recognized that a
general task consists of following an end-effector Cartesian trajectory using
six degrees of freedoms (three for position and three for orientation), a robot
with seven or more degree of freedom is considered as the typical example of
inherently redundant manipulator. However even robot with fewer degrees of
freedom may become kinematically redundant for specific tasks, presenting

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 14

task redundant behaviour. Redundancy can even be noticed in particular cases
when there are more then one suitable joints configurations for reach a given
end-effector pose, as for example in the well know case of high or low elbow
in an anthropomorphic arm manipulator (figure 2.3).

Figure 2.3 The four configurations of an anthropomorphic arm compatible with a given
wrist position.

Image taken from B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo: “Robotics - Modelling,
planning and control”, Springer, 2009, p. 99.

Redundancy is a key feature for manipulation actions. In fact, additional
degrees of freedom besides those strictly required to execute a certain end-
effector task can be utilized to avoid singularities, joint limits, workspace
obstacles, but also to minimize joint torque, energy or, in general, optimize
suitable performance indexes.
Redundancy has a strong connection with the inverse kinematics problem
that can be summarized as finding the joints values that place the end-effector
in a given Cartesian position and orientation:

q : kF(q)=x (2.9)

where kF : ℜn → ℜm represents the forward kinematics function that maps
the n joint variables into the desired end-effector pose
x=[xe ye ze αe βe γe] , composed by the position variables xe , ye , ze

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 15

and the Tait-Bryan angles αe , βe , γe that define the end-effector
orientations. The dimensional number m corresponds to the number of
degrees of freedom necessary to accomplish a certain Cartesian task, and
generally is equal to six.
In case of redundant robot, since the condition n > m is always verified, the
inverse kinematics problem is underconstrained, therefore a Redundancy
Resolution strategy to fully constrain the problem must be defined.
Redundancy resolution is a well known issue in control engineering and
many different strategies have been proposed over the years, for example
Extended Jacobian, Projected Gradient, Reduced Gradient [14]. These techniques
are based on the assumption that a closed form inverse kinematics is not
available due to the difficulty of solving such analytical problem for
redundant manipulator, so first-order differential kinematics [15] is taken in
consideration as the main mathematical tool for control strategies. These
methods provide a good level of abstraction as they possess the property of
being general and robot independent.
Another way to approach redundancy resolution is to study the specific
geometry and kinematics of a robot and extract the redundancy parameters
that provide a physical meaning to the exceeding degrees of freedom.
Although this method is not robot independent as the others, it offers the
possibility to exploit the redundancy of the system in a much more efficient
way, because each redundancy parameter can be used to optimize a specific
behavior. Moreover the expensive computations needed for differential
kinematics are not necessary with this method. The Redundancy parameters
are used to describe the robot internal motion, namely a particular variation
of the joint values that does not entail a variation of the end-effector position
and orientation.
Let ρ=[ρ1 ρ2 ... ρr]

T be a vector of redundancy parameters with dimension
r = n−m . The fully constrained inverse kinematics problem can now be

formulated as:

k I(x ,ρ)=q (2.10)

where k I : ℜ
m+r

→ ℜ
n is an inverse kinematics function that computes the

joints values needed to assume a goal pose x with redundancy parameters
ρ .

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 16

The KUKA youBot robot possesses eight overall degrees of freedom, three
provided by the mobile base and five by the arm, hence it can be classified as
an inherently redundant mobile manipulator. A set of redundancy
parameters and the relative closed form inverse kinematics has been
proposed for KUKA youBot in [16], where two redundancy parameters, ρ1

and ρ2 , are introduced for fully constrain the two exceeding degree of
freedom, while parameter ρ3 discriminates the high or low elbow
configurations of the arm. In the following section the redundancy
parameters of KUKA youBot will be presented in detail, as well as their
physical meaning and their relation with the state variables.

The redundancy parameter ρ1 denotes the angular displacement between
the mobile platform and the manipulator. The redundancy can be described
as the ability of the base to perform a rotation around the first axis of the
manipulator leaving the arm fixed in its position (Figure 2.4). Furthermore
parameter ρ1 can be expressed as a function of the state variables through
the simple relation:

ρ1=q1 . (2.11)

From the previous equation it can be easily seen that parameter ρ1 is
subjected to the joint limit of the first axis of the manipulator: q1

min
<ρ1<q1

max .

Figure 2.4 Internal motion induced by ρ1 redundancy parameter.

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 17

Parameter ρ2 models the extension of the youBot arm. Given an end-effector
pose, in fact, the whole mobile manipulator can be more or less outstretched,
placing the platform at different distances from the end-effector goal pose
(Figure 2.5). Parameter ρ2 relation with the state variables is given by:

ρ2=a2 sin(q2)+a2 sin(q2+q3)+d5sin (q2+q3+q4) (2.12)

where a2 , a3 and d5 are the Denavit-Hartenberg parameters
characteristic of the manipulator geometry (see Appendix A). The range of
existence of parameter ρ2 depends on the desired pose of the end effector
and thus it will be discussed in detail in section 2.4 after the inverse
kinematics algorithm.

Figure 2.5 Internal motion induced by ρ2 redundancy parameter.

Parameter ρ3 denotes the two possible configurations, high or low elbow,
that emerge from the arm inverse kinematics resolution (Figure 2.6).

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 18

Figure 2.6 Elbow up or down configurations induced by parameter ρ3 .

Besides the three redundancy parameters presented in [16], an additional
parameter ρ4 is introduced in this work. This parameters is exploited to
solve the redundancy situation depicted in Figure 2.7, where the end-effector
rotational axis is parallel to the vertical axis z , and that will be referred to
as “vertical configuration redundancy”.

In particular, redundancy parameter ρ4 defines the absolute orientation of
the robotics arm, which can be arbitrarily set for any vertical configuration of
the end-effector, because the last joint of the manipulator can be used to
compensate the rotational displacement of the whole robot (Figure 2.7).

Figure 2.7 Task redundancy induced by parameter ρ4 .

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 19

The introduction of parameter ρ4 is particularly important, because vertical
configurations are the most intuitive ones to be used with this kind of robot
for pick and place operations.
Parameter ρ4 can be expressed as function of the robot state variables
through the following relation:

ρ4=q1+θb . (2.13)

Figure 2.8 Geometric meaning of redundancy parameter ρ4 .

2.3 Inverse Kinematics
As stated before, inverse kinematics consists in the fundamental process of
finding the joints values that grant a desired end-effector pose.
A general analytical algorithm to accomplish such a task does not exist,
therefore inverse kinematics must be derived for each robot through a
geometric and algebraic specific inspection. In the following section a
geometric procedure to retrieve the inverse kinematics for KUKA youBot will
be presented.

In [16] the authors first resolve the inverse kinematics for the arm according to
redundancy parameter ρ2 and ρ3 , then compute the correspondent
configuration of the mobile platform taking in consideration ρ1 . The
algorithm proposed in this work follows this methodology, although the task
redundancy described through ρ4 is introduced at kinematics level and

θ

q1 ρ4

x

y

b

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 20

greater attention is given to the conditions of solution existence and the
redundancy parameters admissible ranges.

The objective of the youbot inverse kinematics algorithm is to find that
particular joint configuration q=[Xb Y b θb q1 q2 q3 q4 q5]

T that realises the six
dimensional goal pose of the end-effector Xg=[xg y g z g αg βg γg]

T when
redundancy parameters ρ=[ρ1 ρ2 ρ3 ρ4]

T are specified.
First the end-effector reference frame is extracted from the goal Tait-Bryan
angles (Figure 2.9).

Ze=[
ze1

ze2

ze3

]=[
sin(βg)

−cos (βg)sin (αg)

cos(αg)∗cos (βg)
] (2.14)

X e=[
xe1

xe2

xe3

]=[
cos(βg)cos(γb)

cos(αg)∗sin(γg)+cos(γg)∗sin(αg)∗sin (βg)

sin(αg)∗sin (γg)−cos(αg)∗cos(γg)∗sin (βg)
] (2.15)

Figure 2.9 End-effector reference frame with respect to the world absolute frame.
Image taken from [16].

Z g

X g

Y g

Endeffector

Z e

Y e

X e

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 21

The vertical inclination β of the end-effector can be expressed as:

β=atan 2(ze3
,√ze1

2
+ze2

2
) (2.16)

The absolute planar orientation of the end-effector θ0 results as:

θ0=atan2(ze2
, ze1

) (2.17)

The absolute orientation of the whole youBot arm corresponds to θ0 when
the end-effector is not in a vertical configuration. When the vertical
configuration occurs, ρ4 is used to define θ0 , and so, in this work,
Equation (2.17) is modified as follows:

θ0={
ρ4

atan 2(ze2
, ze1

)
if Ze // [001]T

otherwise
(2.18)

At this point it is possible to solve the inverse kinematics for joints q2 , q3 and
q4 , as they represent a standard three link planar manipulator, which is

constrained to lay in the vertical plane identified by θ0 (Figure 2.10).

Figure 2.10 Link 2, 3 and 4 of the KUKA youBot manipulator. Image taken from [16].

ρ2

zg

zd+d1

a3

d5

a2

Z ' '

X ' '

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 22

The following relations hold:

Z ' '
=zg−zd−d1−d5sin (β) (2.19)

X ' '=ρ2−d5 cos (β) (2.20)

Values for the joints position, accounting for redundancy parameters ρ2

and ρ3 , are obtained through the procedure:

a) cos(θ3)=
(−Z ' '2

−X ' '2
+a2

2
+a3

2
)

(2a2a3)
(2.21)

b) sin(θ3)=sign(ρ3)√1−cos(θ3)
2 (2.22)

c) q3=atan2(sin(θ3) ,cos(θ3))−π (2.23)

d) k1=a2−a3cos (θ3) (2.24)

e) k2=a3 sin(θ3) (2.25)

f) q2=atan2(Z
' '
, X

' '
)+atan 2(k2 , k1)−

π
2 (2.26)

g) q4=β−q2−q3−
π
2 (2.27)

The rotational displacement θ5 of the last link, necessary to align the end-
effector with the desired pose (Figure 2.11), can be computed as:

h) E=[
e11 e12 e13 e14

e21 e22 e23 e24

e31 e32 e33 e34

e41 e42 e43 e44
]=A1

0
(θ0)A2

1
(q2)A3

2
(q3)A4

3
(q4) A5

4
(0) (2.28)

i) cos (θ5)=e11 xe1
+e21 xe2

+e31 xe3
(2.29)

j) sin(θ5)=e12 xe1
+e22 xe2

+e32 xe3
(2.30)

k) q5=atan2(sin(θ5) ,cos(θ5)) (2.31)

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 23

Figure 2.11 Rotational displacement of the last link. Image taken from [16].

As stated before the value of q1 corresponds to the rotational displacement
between base and manipulator, hence:

l) q1=ρ1 . (2.32)

As the configuration of the manipulator has been completely determined, the
position and orientation of the mobile platform, considering the redundancy
of parameter ρ1 , can be easily derived:

θb=θ0−ρ1 (2.33)
Xb=xg−e14−xd cos (θb) (2.34)
Y b= yg−e24−xd sin (θb) (2.35)

2.4 Conditions for the existence of a solution
The existence of a solution for the inverse kinematics problem, as for every
nonlinear systems, is not always guaranteed. In the general case, a solution for
inverse kinematics exists if the desired end-effector pose lies in the dexterous
workspace, the volume of space which the robot end-effector can reach with
every orientation. Furthermore, in the particular case of this work, as the
kinematics has been constrained with redundancy parameters, the solution

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 24

existence depends even on the values of these parameters, which must lie in a
certain range defined by their physical meaning.
In this section a set of conditions to grant the existence of the inverse
kinematics solution for the KUKA youBot will be proposed.

In the case of a mobile manipulator, since the base is free to move in the
environment, the dexterous workspace has limitations only in the height of
the goal pose, that can not be too high.
A condition of existence for the KUKA youBot inverse kinematics can be
derived considering the relation:

−1<cos(θ3)<+1 (2.36)

that can be expanded through Equation (2.21) as:

−1<
(−Z ' '2

−X ' '2
+a2

2
+a3

2
)

(2a2a3)
<+1 . (2.37)

Solving for ρ2 , after some algebraic passages, the following relation can be
found:

t1−t2<(ρ2−t 3)
2<t 1+ t2 (2.38)

where t1=2a2a3 , t2=a2
2
+a3

2
−Z ' '2 and t3=d5 cos(β) .

From the previous inequality, it is possible to infer two important results: a
condition of membership to the dexterous workspace, and a range of
admissibility for parameter ρ2 .

Dexterous workspace condition:

t1+t 2>0 (2.39)

Arm extension range:

t3±√ t1−t 2<ρ2<t 3±√ t1+t 2 (2.40)

 Chapter 2 - Kinematics of KUKA youBot mobile manipulator Pag. 25

If both conditions are satisfied, a solution to the inverse kinematics problem
for the KUKA youBot is guaranteed to exist. As expected, the dexterous
workspace condition depends only on the height of the goal pose, and so
defines the maximum reachable height, given a certain end-effector vertical
orientation. The arm extension range defines the minimum and maximum
extension values that the arm can assume in a given end-effector
configuration. These conditions are very useful and must be taken into
consideration for the implementation of the inverse kinematics algorithm to
make it more robust. For example, if the height of the desired goal position is
outside the workspace, the dexterous workspace condition can be used to set
the robot end-effector near the workspace limits, so that as soon as the goal
becomes reachable the robot will be as close as possible to it.
These conditions will be resumed in this work in the chapter devoted to grasp
synthesis, as they will be used to identify unfeasible grasp configurations.

 Chapter 3 – Redundancy Resolution Pag. 26

Chapter 3 – Redundancy Resolution

Chapter 3

Redundancy Resolution
Redundant robots present more degrees of freedom than those strictly
required to accomplish a certain task. The main idea of redundancy
resolution is to use the exceeding degrees of freedom to obtain secondary
desired behaviours [13] [17], while the robot executes in a completely
consistent way its primary task. Hence the redundancy resolution problem
consists in designing optimization criteria, that allow to achieve some
subsidiary behaviours, as for example keeping the joints values away from
their physical limits, maintaining the robot in a configuration where it has a
good ability to perform manipulation tasks, avoiding obstacles or minimizing
the energy consumption.
Having defined the robot redundancy through a set of redundancy
parameters, which can be arbitrarily set without altering the primary task
execution, it is possible to account for these optimization criteria in a specific
way, namely each parameter can be utilized to achieve a particular behaviour
based on its physical meaning. In this work, an objective function has been
designed for every redundancy parameter considering a desired optimization
criterion. Each redundancy parameter value, necessary for the solution of the
inverse kinematics problem, is then chosen in order to maximize its respective
objective function. In this chapter, possible redundancy resolution strategies
for each redundancy parameter of KUKA youBot will be discussed.

3.1 Arm extension redundancy
The first objective of any redundancy resolution strategy must be to preserve
the robot primary task. For example, the ideal kinematics model introduced
in the previous chapter does not take into account the feasible range of the
joints variables, resulting in possibly not achievable solutions of the inverse
kinematics problem. The arm extension redundancy, described by parameter
ρ2 for KUKA youBot, can then be used to keep the manipulator joints away

 Chapter 3 – Redundancy Resolution Pag. 27

from their physical limits. For each joint of the KUKA youBot, the physical
limits can be expressed as:

∀ i : qi
min
<q i<qi

max , i=1. ..5 (3.1)

where q i
min and q i

max represent the lower and upper joint limits.
Given an arm joints variables vector qa , the distance from joints physical
limits can be defined by the objective function:

U l(qa)=1−max
1≤i≤5

2|qi
max
+qi

min

2
−qi|

|qi
max
−qi

min
|

(3.2)

Function U l increases with respect to the distance from the joints limits and
is positive only if all the joint variables are inside their range.
Exploiting the arm extension redundancy only to avoid the joint limits would
be too simplistic, as the constraint on the joint ranges is an objective quite easy
to achieve. For this reason, as suggested in [18], the arm extension
redundancy can be also used to maximize the robot manipulability. Given the
robot Jacobian

J (q)=
∂ x p

∂ q
(3.3)

where xp is the end-effector Cartesian state vector, composed by the
positional and orientation variables, the manipulability measure [19] can be
defined as:

Um(q)=√|J (q)J (q)
T
| . (3.4)

The manipulability is a measure of the ability of the robot to modify in any
direction the end-effector pose with respect to its current joint configuration.
Choosing the joint configuration that maximizes the manipulability for a

 Chapter 3 – Redundancy Resolution Pag. 28

desired end-effector pose would then allow easier possible modification of
the end-effector pose in the workspace.
In [18] the authors utilize a manipulability measure that takes into account
only the degrees of freedom of the manipulator, forcing the robot to take
configurations with a short extension of the arm, that often collides with the
mobile platform. To exploit the potentiality of mobile manipulation, a viable
solution is to consider the manipulability of the whole system. For this
reason the end-effector position of a mobile manipulator can be expressed in
a general way as:

pe=pb+Rb[pd+k Fa
(qa)] (3.5)

where pb is the position of the mobile base, Rb is a rotational matrix that
describes the orientation of the base with respect to the absolute reference
frame, pd is the displacement between the mobile base and the base of the
arm, kFa

(qa) is the arm forward kinematics. If the 3D base position and

orientation variables are decomposed in translational ones as
qb ,T=[Xb Y b Zb]

T and rotational ones as qb , R=[rb pb yb]
T , then pb

depends only on the translational component of qb and Rb only on the
rotational ones. At this point the Jacobian matrix of the whole mobile
manipulator, necessary for the manipulability measure computation, can be
defined as:

J (q)=
∂ pe

∂ q
=[∂ pe

∂ qb , T

∂ pe

∂ qb , R

∂ pe

∂ qa
]=[I ∂Rb

∂ qb ,R

[pd+kFa
(qa)] Rb J a(qa)] (3.6)

where I is the identity matrix, and J a(qa) is the Jacobian matrix of the
arm. The previous equation shows a simple and efficient way to compute the
whole mobile manipulator Jacobian starting from the variables of the base
and the arm as they were two decoupled systems. This structure could be
very useful because often the terms kFa

(qa) and J a(qa) are already

computed in many manipulator control schemes.

 Chapter 3 – Redundancy Resolution Pag. 29

The manipulability measure for the whole KUKA youBot mobile
manipulator, for example, can be derived in accordance with the previous
relations partitioning the state variables as qb ,T=[Xb Y b]

T , qb , R=[θb]
T ,

qa=[q1 q2 q3 q4 q5]
T . The end-effector position is then defined as

pe=[
Xb

Y b

0]+[
cos(θb) −sin(θb) 0
sin(θb) cos(θb) 0

0 0 1]([
xd

0
zd
]+k Fa

(qa)) (3.7)

and the terms composing the Jacobian matrix can be computed as

∂ pe

∂qb ,T

=[1 0
0 1
0 0] (3.8)

∂ pe

∂qb , R

=[
−sin(θb) −cos(θb) 0
cos (θb) −sin(θb) 0

0 0 1]([
xd
0
zd
]+kFa

(qa)) (3.9)

∂ pe

∂ qa

=[
cos (θb) −sin (θb) 0
sin (θb) cos (θb) 0

0 0 1] J a(qa) . (3.10)

The global objective function, accounting for the constraints on the joints
limits and the optimization of the manipulability measure, is composed as:

U (q)={ U l(qa)

Um(q)P (qa)

if U l(qa)<0
otherwise (3.11)

where P(qa) is a penalization factor [20] that considers the joint limits and
ensures the continuity of the objective function between its two cases. The
adopted penalization factor is equal to zero if the joints are near their limits
and to one otherwise, ant it is defined as

 Chapter 3 – Redundancy Resolution Pag. 30

P(qa)=1−exp(−k∏
i=1

5 (q i−qi
min
)(qi

max
−qi)

(q i
max
−qi

min
)

2) , (3.12)

where the positive parameter k is a scaling factor.

The optimization over the redundancy parameter ρ2 to maximize the
objective function U (q) can be executed through the well known gradient
ascent method [21]. This on-line technique allows to perform the
optimization, based on the robot current state: for each time instant the values
for ρ2 is determined as

ρ2
t+Δt=ρ2

t +γ
∂U (q)
∂ ρ2

(3.13)

where γ is a positive parameter used for tuning the speed and accuracy of
convergence of the gradient method. The current value of ρ2 can be
retrieved from the manipulator state qa through Equation (2.12).

The behavior of the objective U (q) as function of parameter ρ2 is shown in
Figure 3.1 and 3.2 for two end-effector configurations. The red lines determine
the intervals of ρ2 where U (q) is positive and so all the joint values are
inside their limits. Note that these feasible ranges are quite tight, especially in
lateral end-effector configurations, a situation that occurs when the end-
effector is parallel to the floor, as shown in Figure 3.2.

Figure 3.1 Behaviour of U (q) as function of ρ2 for a vertical configuration.

ρ2

U (q)

 Chapter 3 – Redundancy Resolution Pag. 31

Figure 3.2 Behaviour of U (q) as function of ρ2 for a lateral configuration.

3.2 Elbow redundancy
The redundancy parameter ρ3 determines the configuration of the elbow:
positive values of ρ3 imply the high elbow, while negative ones the low
elbow posture. To be precise this kind of situations, where the inverse
kinematics presents multiple but finite solutions, can not be classified as a
pure redundancy as the other ones, however it has been handled with the
parameter ρ3 because it is necessary for a complete definition of the KUKA
youBot inverse kinematics problem.
As the elbow down configuration causes in many common circumstances a
collision between the arm and the mobile platform or results in unfeasible
poses due to the physical limits of the joints, the elbow up configuration has
been preferred in this work.

3.3 Vertical posture redundancy
As introduced in the previous chapter, a vertical posture of the end-effector
causes a particular task redundancy described by parameter ρ4 , which
represents the absolute orientation of the arm. Parameter ρ4 can be
arbitrarily set for any vertical configuration of the end-effector and it is not
subject to any constraint. In fact, even if the last joint of the youBot arm
presents physical limits, any end-effector configuration has an equivalent one
rotated of 180 degrees around its principal axis, and so choosing between
these two possible configuration allows to easily overcome the problem of the
physical limits that affects the last joint of the arm.

ρ2

U (q)

 Chapter 3 – Redundancy Resolution Pag. 32

A typical objective of redundancy resolution is to minimize the overall robot
motion. In case of mobile manipulators, for example, it is a good practice to
reduce the movements of the mobile platform with the aim of minimizing the
error of the odometry system used for the localization of the robot. The task
redundancy expressed by parameter ρ4 can be used to achieve this
behavior: indeed if the arm absolute orientation is kept aligned with the goal
position during the approaching phase (Figure 3.3), the motion of the
platform will be minimized. For this purpose the redundancy resolution can
be solved imposing

ρ4=Arg (Pg−Pa) (3.14)

where Pg is the position of the goal pose and Pa is the current position of
the base of the arm. Expanding the previous equation, the following result
can be found:

ρ4=atan2(y g−(Y b+xd sin(θb)), xg−(Xb+xd cos(θb))) (3.15)

Pb Mobile base position Pa Arm base position Pg Goal position

Figure 3.3 Redundancy resolution for parameter ρ4 .

x

y

θb

Pb

Pa

Pg
ρ4

x

y

Pb

Pa

Pg

θb

ρ4

 Chapter 3 – Redundancy Resolution Pag. 33

3.4 Arm-base displacement redundancy
The last redundancy that has to be analyzed is the rotational displacement
between the base and the arm described by redundancy parameter ρ1 . As
shown in Equation (2.11), this redundancy parameter is equal to the value of
the first joint of the manipulator, therefore it has to be subjected to the
physical limits of that joint for preserving the consistency of the robot
primary task. As discussed before, the problem of satisfying the joint physical
limits is not particularly hard, and so a resolution strategy to better exploit the
redundancy of parameter ρ1 has to be found.
The first joint of the manipulator does not affect the manipulability of the
whole system; intuitively the first joint contributes only to lateral movements
of the and effector, which are already accomplished by the omnidirectional
mobile base, thus the manipulability measure can not be consider for the
redundancy resolution of parameter ρ1 .
An obstacle avoidance behavior, that allows the base and the arm to cooperate
with the purpose of assuming collision free configuration in a cluttered
environment, can be a good strategy to exploit this kind of redundancy for
mobile manipulator (Figure 3.4). For the particular case of KUKA youBot, due
to the small size of its robotics arm, this behavior can be applied only to very
particular situations, and thus it has not been pursued in this work.

Figure 3.4 Redundancy resolution of parameter ρ1 used in cluttered environment.

 Chapter 3 – Redundancy Resolution Pag. 34

The arm-base displacement may also be used for navigation purposes.
Navigation consists in the fundamental task for a mobile robot to localize
itself and move in the environment from one position to another one. In this
perspective a sensory system to perceive the environment is necessary to
correctly retrieve information and plan the desired motion. Nowadays it is
very popular to use depth cameras, devices that provide RGB images as well
as accurate depth scansion, as sensory device to reconstruct the structure of
the environment. The integration of such vision devices in the robot control
system can be even more efficient if coupled with a dedicated redundancy
resolution strategy. For example, in the particular case of KUKA youBot two
depth camera devices can be adopted, one fixed on the mobile base and the
other one mounted on the manipulator end-effector. The camera fixed on the
platform has the purpose of tracking a certain goal object, that should be
grasped and manipulated, while the other one has the ability to freely move
and scan the environment as if it was a radar (Figure 3.5). The redundancy
induced by parameter ρ1 can then be used to keep the goal in the field of
view of the fixed camera, while free motion of the other camera is still
granted.

Figure 3.5 Redundancy resolution of parameter ρ1 used in visual sensory system.

If the goal object has coordinates xg and yg , then the constraint to keep
the goal in the field of view of the camera can be formulated as:

 Chapter 3 – Redundancy Resolution Pag. 35

|θb−atan 2(yg−Y b , x g−X b)|<
A
2 (3.16)

where A is the angular field of view of the camera. Despite this constraint
the camera mounted on the end-effector preserve the ability to freely scan the
arbitrary direction θ̂ , setting the value of redundancy parameter ρ1 as:

ρ1=θ̂−θb (3.17)

To give a brief application example, this technique could be used to develop a
particularly efficient SLAM system [22], that has the ability to acquire sensor
observation in the direction that minimize the error on the mapping and
localization measures. Another application based on this particular
redundancy resolution strategy may be the development of a visual odometry
system, that should assist the standard one based on the wheel actuation in
reconstructing the mobile base position.

 Chapter 4 – Navigation and obstacle avoidance Pag. 36

Chapter 4 – Navigation and obstacle avoidance

Chapter 4

Navigation and obstacle avoidance
Navigation is a fundamental activity for mobile robots, that should be able to
safely move from one position of the environment to another one, while
avoiding collisions with the objects possibly disposed in it. Navigation has
several objectives, as mapping the environment through some sensory system
to extract a useful representation of it, localizing the robot in the perceived
map and planning the necessary motion to reach the desired goal position.
From a computational point of view, reconstructing an exact representation of
the environment is a very complex task, as every possible configuration of the
robot in the environment must be taken into account to perform an accurate
motion planning. For this reason many navigation techniques [23] have been
proposed over the years, based on the assumption that a discretized way to
represent the environment is necessary to solve the motion planning problem.
For example, in the Cell decomposition approach the environment is
decomposed in a discrete grid of cells, then a value to every cell is assigned to
determine if it is navigable or contains some obstacles. At the end a search
algorithm like Dijkstra [24] or A* [25] is applied to retrieve a valid path to
reach the goal in the grid. The Sampled based methods randomly choose some
feasible robot configurations and then try to connect them by finding pairs of
those configurations that can be easily reached one from the other. In this way
a navigation roadmap can be constructed and queried to find obstacle free
paths. In the Potential field approaches, the robot motion is influenced by
virtual forces, that have an attractive nature toward the goal position and a
repulsive one from the obstacles. These virtual forces drive the robot toward
the goal keeping it away from the obstacles in a reactive way.
In this chapter, a navigation technique based on potential fields and the
necessary control strategy will be presented, focusing in particular on
omnidirectional mobile robots, as the KUKA youBot.

 Chapter 4 – Navigation and obstacle avoidance Pag. 37

4.1 Control of omnidirectional mobile platforms
Omnidirectional mobile robots are designed for 2D planar motions and are
capable of translations and rotations, without the non-holonomic constraints
typical of traditional wheeled robot. In a general form, the velocity control
signal for an omnidirectional mobile platform can be expressed as:

ub=[vx v y ω]
T (4.1)

where v x and v y are the translational velocity component and ω is the
angular velocity of the control signal. The vector ub corresponds to the
mobile robot velocity, expressed in the robot relative reference frame, that can
be controlled in each time instant to obtain the desired motion. If
q̂b=[X̂b Ŷ bd

θ̂bd
]
T is the desired state of the platform expressed as absolute

position and orientation, and qb=[Xb Y b θb]
T is the actual state of the robot,

then the absolute goal velocity v g can be defined as:

v g=
˙̂qb+K p(q̂b−qb) (4.2)

where ˙̂qb is the first time derivative of the desired state q̂b , and the
diagonal matrix K p represents the position gain. Therefore, to reach the
desired location under the hypothesis of an empty environment, the velocity
control signal can be expressed as

ub=R(qb)⋅v g (4.3)

where R(qb) is a rotational matrix that maps the absolute velocities to the
robot relative frame. However, a common objective for any navigation
strategy is to achieve an obstacle avoidance behavior based on the
environment perceived model. The environment model, in particular, can be
constructed using common proximity sensors or more complex devices like
laser scanners or depth cameras. In a complete general form the data acquired
by the sensor system are collected in SO , a set composed of the perceived
positions Pi , representing the absolute positions of the objects external

 Chapter 4 – Navigation and obstacle avoidance Pag. 38

surfaces in the environment. Therefore, the control action for the
omnidirectional mobile platform has been formulated as:

ub=R(qb)⋅Aoa(vg , SO) (4.4)

where Aoa(v g , SO) is the obstacle avoidance algorithm which modifies the
goal velocity v g in accordance with the sensor perceptions stored in SO so
to avoid collisions.

4.2 Obstacle avoidance based on potential field
In 1986, Khatib proposed a technique for motion planning based on potential
fields [26]; it does not explicitly construct a roadmap, but instead defines a
differentiable real-valued function U :ℝm

→ℝ , called a potential function,
that guides the motion of the moving robot. The potential is typically the
combination of an attractive component U att (qb) , which pulls the robot
toward the goal, and a repulsive component U rep(qb) , which pushes the
robot away from the obstacles, as shown in Figure 4.1 . The gradient of the
potential function defines a virtual force F=−∇U (qb) that should be
applied on the robot to achieve the desired motion. In this work, the virtual
force has been interpreted as the velocity vector that should be applied on the
robot to achieve the desired motion. Therefore, the velocity control signal can
be calculated in a general form as:

ub=R(qb)F . (4.5)

Attractive function Repulsive component Potential function.

Figure 4.1 An attractive and repulsive component define a potential function.
Image taken from B. Siciliano, O. Khatib: Handbook of robotics - Chapter 5 Motion Planning, Springer, 2008.

 Chapter 4 – Navigation and obstacle avoidance Pag. 39

However this technique does not always guarantee the robot to reach the
desired position, because the gradient descent method can reach only a local
minimum of the potential function, causing the robot to be stuck in some
intermediate position (Figure 4.2).

Figure 4.2 Common examples of potential field local minimum.
Image taken from B. Siciliano, O. Khatib: Handbook of robotics - Chapter 5 Motion Planning, Springer, 2008.

In this work a Rotational vector field [27] has been used to construct a local
minimum free potential function. The rotational field has the purpose of
guiding the robot around the obstacles instead of simply being repulsed by
them. In this way a correct navigation based on potential fields is possible
even in complex environment. Precisely, if the distance between the perceived
obstacle and the robot is below a certain threshold drep , the standard
repulsive potential field is applied to avoid a possible collision. When instead
the distance is between the thresholds drep and drot , the rotational field is
applied to circumnavigate the obstacle.

PG Goal position
PB Robot position
PM Obstacle centre of mass

Figure 4.3 Integration of repulsive and rotational potential fields.

x

y

PB

PG

PM

drot

drep

 Chapter 4 – Navigation and obstacle avoidance Pag. 40

The attractive virtual force has been designed to be equal to the goal velocity:

Fatt (qb , qb d
)=v g . (4.6)

Given an obstacle perception PO and the actual position of the robot PB ,
the repulsive virtual force has been designed to be proportional to the goal
velocity with outgoing direction from the obstacle:

Frep(qb , PO ,PG)=−
PO−PB

‖PO−PB‖
‖v g‖ . (4.7)

The same design criteria has been utilized for the rotational virtual force,
which is proportional to the goal velocity and has a direction that spins
around the obstacle:

Frot (qb, PO ,PG)=SR[−(Y B− yPO
)

X B−x PO
]

‖v g‖

‖PO−PB‖
. (4.8)

The parameter SR defines the force direction of rotation and has value +1

for counter-clockwise rotations and −1 for clockwise rotations. The
direction of rotation of the rotational field has a critical influence on the
outcome of the navigation strategy. Indeed it is not possible to decide a fixed
direction of rotation, because this could lead to the formation of local
minimum points in the potential function. The direction of rotation must be
decided in a specific way for every environment configuration (Figure 4.4) . In
this work the direction of rotation is decided according to the position of the
robot with respect to the obstacles and the goal position. The line joining the
center of mass of the obstacle with the goal position divides the environment
in two areas. Depending on the fact that the robot belongs to one or the other
area, the direction of rotation is defined. In the following figure, on the left it
is presented the case of fixed direction of rotation, which causes the formation
of a local minimum point in the potential function, where the virtual forces

 Chapter 4 – Navigation and obstacle avoidance Pag. 41

have opposite directions. On the right it is illustrated the correct situation
with variable direction of rotation.

Figure 4.4 Fixed and variable directions of rotation.

The direction of rotation and the corresponding distinction between the two
zones can by analytically obtained by the signed angle ϕ , defined by the
intersection of segments GM , which connects the goal position with
obstacle center of mass, and GB , which connects the goal position with the
robot base (Figure 4.5).

Figure 4.5 Clockwise and counter-clockwise zones.

G

Local Minimum

Fixed direction of rotation

G

Variable direction of rotation

PM

PG

PM

ϕ

Clockwise zone

Counter-clockwise zone

 Chapter 4 – Navigation and obstacle avoidance Pag. 42

The signed angle ϕ can be derived from the scalar and vector product of the
two segments as

ϕ=atan2(‖(PG−PM)×(PB−PM)‖,(PG−PM)⋅(PB−PM)) (4.9)

while the direction of rotation is equal to the opposite of the sign of the angle:

SR=−sign(ϕ) . (4.10)

The reader should note that for a correct implementation of the rotation field
it is necessary to define for every object in the environment its center of mass,
starting from the perceived positions Pi collected in SO . For this reason, a
clustering technique has been introduced to subdivide the sensor perceptions
Pi of SO in some partitions C j , so that every partition represents a

different obstacle of the environment (See Figure 4.6). Given the maximum
encumbrance of the robot dmax , every cluster C j is defined by the relation:

 C j={Pi∈S0 ,∃Pk∈C j∧Pk≠P i ,‖P i−Pk‖<dmax} . (4.11)

which asserts that, if the distance between two sensor perceptions is less then
dmax , these two perception belong to the same cluster C j . Instead if there

are no perceptions, whose distance from Pi is less then dmax , the
perception Pi is the only one belonging to cluster Ci .

Figure 4.6 Clustering on the sensor perceptions.

P1

P2

P3

P4

P5

P6 P7 P8 P9

C1

C2

 Chapter 4 – Navigation and obstacle avoidance Pag. 43

As illustrated in Figure 4.7, the maximum encumbrance dmax corresponds to
the maximum linear extension occupied by the robot mobile platform. In fact,
if two obstacle perceptions dist less then dmax , it means that the robot may
not be able to move between them, and so it is necessary to assign them to the
same cluster, which will represent a certain obstacle.

Figure 4.7 KUKA youBot maximum encumbrance.

The composition of the repulsive and rotational forces generated by the
obstacle perception PO has been obtained by the relation

Frep / rot (qb, PO ,PG)={
|cos (α)|Frep(qb , PO , PG)

Frot (qb ,PO , PG)

0

if ‖PO−PG‖<drep

if drep<‖PO−PG‖<drep

otherwise
(4.12)

where α is the angle between v g and Frep and can be computed as

α=
‖v g⋅Frep‖

‖vg‖‖Frep‖
. (4.13)

The term |cos (α)| penalizes the repulsive force in case of a transversal
motion of the robot with respect to the obstacle. Indeed if the robot is moving
next to an obstacle and not straight toward it, it is not necessary for the
repulsive virtual force to be excessively intense (see Figure 4.7).

dmax

 Chapter 4 – Navigation and obstacle avoidance Pag. 44

Figure 4.8 Penalization of the repulsive virtual force.

The overall virtual force to be applied on the robot considering all the sensor
perceptions of SO can be obtained by the weighted average of all the virtual
forces Frep / rot :

F=Aoa(vg , SO)=Fatt (qb)+
∑
i=1

|S0| 1
d i

Frep / rot (qb, P i)

∑
i=1

|S0|
1
d i

 (4.14)

where d i is the distance of perception Pi from the actual robot position.

An expedient to perform this kind of navigation in a dynamic environment
with moving obstacles is to avoid to permanently store the sensor perceptions
in SO , but instead toassign to each position Pi a time interval, after which
the observation is removed. In this way the set of sensor perception will
contain only the last updated observations and will be able to deal with
changes in the environment.

PB

PG

PM

α

Frep

v g

 Chapter 5 – Grasp synthesis Pag. 45

Chapter 5 – Grasp synthesis

Chapter 5

Grasp synthesis
The main objective of robotic manipulation is to move objects in the
workspace changing their position and orientation. To perform a
manipulation task, a robot establishes physical contact with objects in the
environment (typically through its gripper) and subsequently moves these
objects by exerting forces and moments. One of the most critical aspects of
manipulation is to decide how to grasp an object ensuring a firm contact
between the robot gripper and the object surface. The process of deciding the
correct way to grasp an object will be addressed in this work as Grasp
synthesis. In this chapter an overview of existing grasping techniques will be
presented, as well as a new method to perform grasp synthesis in a
completely unknown environment, where shape, dimension and position of
the objects to be manipulated is unknown to the robot. Particular attention is
given to implementation issues of this grasping technique on mobile
manipulators such as KUKA youBot.

5.1 Related works
Over the years many grasping strategies have been proposed to cope with
different issues such as complexity of the object to be manipulated, structure
and articulation of the gripper mechanism, complete or partial knowledge of
the environment and type of available sensor devices. The different
approaches can be subdivided into three different categories: Model based,
Recognition based and On-line based grasp synthesis.

5.1.1 Model based grasp synthesis
The grasping strategies of this category are based on the assumption that a
complete and detailed model of the object to be manipulated, as for example a
CAD 3D model, is available. The a priori knowledge of the object model
allows to perform very precise geometric and dynamic analysis and find

 Chapter 5 – Grasp synthesis Pag. 46

optimal grasp poses. A popular tool available is “GraspIt!” [28][29], a very
complete simulator specialized in grasp synthesis and analysis. The synthesis
process of “GraspIt!” proceeds decomposing the model of the object in its
primitive shapes, so that the approach directions, vectors perpendicular to the
surfaces of the object, can be easily calculated. Then the gripper is positioned
along these approach directions and the closure of its fingers around the
object is simulated. To define the grasp pose, an optimized algorithm for
collision and contact detection is used in order to determine the contact
points between object and gripper. The simulator also offers the possibility to
analise the grasp poses to check if the force and form closure properties [30]
are satisfied. More in detail the analysis method implemented in “GraspIt!”
searches for the maximum force disturbance applicable on the object such
that the object does not change the position imposed by the gripper clutch
[31]. The technique adopted by “GraspIt!” is often applied in case of
articulated grippers with many degrees of freedom, as the grasping pose is
defined starting from the gripper geometry, which is adapted to the object
shape. Instead, in case of more simple grippers (as the parallel jaws
mechanism with only one degree of freedom for opening and closing the two
fingers), it is more convenient to construct the grasping pose starting from the
object shape, as discussed in [32], where the concepts of local and global
accessibility are introduced. Through local accessibility it is possible to identify
on the object model pairs of faces, that can be utilized as grasping contact
points. Global accessibility is used to select the grasping poses that can be
realized in accordance with the robot kinematics and the obstacles located in
the workspace.
The model based grasp synthesis is commonly adopted in industrial robotics,
as the assumption of a complete knowledge of the environment and the
possibility to have the detailed object models is consistent with the current
industrial practices. Obviously this technique can not be applied to the case of
an unknown environment, where the integration of a sensor system is
indispensable to reconstruct the model of the objects that have to be grasped.

5.1.2 Recognition based grasp synthesis
The recognition based strategies store some object models and the
corresponding grasping poses, precomputed with one of the model based

 Chapter 5 – Grasp synthesis Pag. 47

approaches, in a knowledge base constructed with a semi-automated process.
In this way the grasp synthesis can be set as to a recognition problem, where
an object in the environment should be put in relation with one of the models
stored in the knowledge base, starting from some visual perception of the real
object. In [33] the authors, after having realized a database of object models
and grasp poses using “GraspIt!”, perform the object recognition through the
Scale Invariant Feature Transform algorithm. Furthermore the database can be
manually updated with semantic informations, as for example points of the
objects that are preferred as grasping regions or points that should not be
touched. In [34] a similar approach is presented, where a Nearest Neighbour
Algorithm is used for the object recognition, and the knowledge base is
automatically updated after each grasping execution to keep track of the
grasping poses that result more stable. Recognition based techniques are the
most common ones, because they require a quite modest implementation
effort, as some knowledge bases of object models and many recognition
framework are freely available. These techniques, however, have evident
limitations as they cannot plan grasping poses for objects not stored in the
knowledge base, or in the worst case they could perform a wrong recognition,
obtaining grasping poses that will fail at execution time.

5.1.3 On-line based grasp synthesis
On-line based techniques do not require the knowledge of the object models
or a set of precomputed grasp poses, as the object models are reconstructed in
real time only considering the sensors visual perception and the grasp
synthesis is executed on the fly. The reconstruction of the object models is a
critical phase of this methodology, because the information acquired through
visual sensors is raw, partial and disturbed by noise. Hence designing efficient
heuristics criteria is necessary to extract a semantic information from the raw
data. In [35] SFM – Structure From Motion is used to acquire the raw data,
which are elaborated with a Voxeling technique to reconstruct the surfaces and
the volumes of the objects. From the generated surfaces, the grasping poses
are calculated disposing the fingers of the gripper in a parallel direction to the
object surfaces. Then some criteria to select the best grasping pose are
introduced: the extension of the contact area between gripper and object,
momentum balance, manipulability and robot motions. In [36] the authors

 Chapter 5 – Grasp synthesis Pag. 48

perform the model reconstruction with the Superquadrics approximation and
then “GraspIt!” is used for the grasp poses generation and evaluation. In [37]
a manipulator has been controlled with the purpose of empting a box full of
objects. The models reconstruction is obtained through the Height
Accumulated Features, which identifies the different object based on their
height, and then a Cell decomposition algorithm selects the grasp pose that
should be executed. In [38] the data acquisition is based on Point Clouds, and
the model reconstruction and the grasp synthesis are performed in a
continuous and simultaneous way. Moreover the robot motion is controlled in
order to achieve an optimization on the grasp pose evaluation.

A particular methodology has been adopted in [39], where the authors
integrate the grasp synthesis with a visual servoing technique. In this way is
possible to guarantee a more robust grasp execution, that could cope with
disturbances or with a dynamic environment, as in the case of moving objects.
Another peculiar strategy is presented in [40], where the grasp synthesis is
performed simultaneously with the motion planning phase. More in details
the configurations obtained during the execution of the RRT – Rapidly Random
Trees algorithm are also evaluated to verify if they are compatible with the
geometry of the objects that have to be grasped.

In this work a new on-line technique for grasp synthesis has been developed.
The complete synthesis process is composed of four different stages executed
in sequence: Point Cloud Acquisition, Data Pre-processing, Grasp Generation,
Grasp Selection. In the first phase, Point Cloud Acquisition, the outline of the
target object is extracted from the image perceived through a visual sensor to
acquire the model of the object as a point cloud. Then a pre-processing over
the perceived data is necessary to remove the disturbance, to uniformly
distribute the points on the object and to generate the surface normal vectors.
During the grasp generation phase, the grasp poses compatible with both the
geometry of the gripper and the object are calculated. Finally, the grasp pose
that turns out to be more stable according to a heuristic evaluation is selected
for execution. In this chapter the proposed grasp synthesis method will be
discussed in details in the context of mobile manipulation, and in particular
with reference to the KUKA youBot experimental platform.

 Chapter 5 – Grasp synthesis Pag. 49

5.2 Point Cloud Acquisition
An increasingly common practice in robotics is to adopt depth cameras,
particular devices that work simultaneously as common RGB cameras and
also as proximity sensors. These devices allow to acquire a so-called Point
Cloud, a set of three-dimensional points that represent the external surface of
the objects in the image frame. Point clouds are useful to acquire positions,
shapes and dimensions of the object viewed by the camera and to reconstruct
the state of the environment.

Figure 5.1 Example of point cloud acquisition from a depth camera.

A fundamental issue, that should be faced during the data acquisition, is how
to identify the point cloud of a specific object and how to separate it from all
the acquired points. For this purpose the built in RGB camera is used to
acquire images, on which the classical computer vision techniques for
features recognition are applied. In this work, objects are identified through
their colour, hence the assumption is made that the colour of the objects that
have be manipulated is known. This assumption on the objects colour is not at
all restrictive, as the developed grasp synthesis process is based only on the
acquired point cloud, and so any recognition or segmentation technique to
identify the objects outline can be adopted instead of the colour-based one.
The data acquired from a depth camera can be expressed through the
following matrices:
- I rgb : a matrix of dimension K×J containing the RGB colour information
for each pixel of the acquired image.

 Chapter 5 – Grasp synthesis Pag. 50

- I d : a matrix of dimension K×J that assigns to each pixel its position in
the environment, expressed in the camera reference frame.
Below a simple segmentation algorithm to retrieve the point cloud Ƥ of an
object, given its colour Crgb , will be presented. The points that do not
belong to the target object are stored in the point cloud Ƥobst , and they will
be used in the grasp selection stage to reject grasp configurations that result in
collision with other objects.

Data Acquisition Algorithm
Input:

Irgb - RGB image matrix.

I d - Depth image matrix.

T c - Homogeneous transformation from the absolute frame to the camera
relative frame.

Crgb - Object colour.

Output:

Ƥ - Point Cloud of the target object expressed in absolute coordinates.

Ƥobst - Point Cloud containing all the points that do not belong to the target
object expressed in absolute coordinates.

1. For k=1:1 :K

2. For j=1 :1 :J

3. If I rgb(k , j) is close to C rgb

4. p=T c⋅I d(k , j)

5. Add p to Ƥ

6. else

7. Add p to Ƥobst

8. end

9. end

10. end

 Chapter 5 – Grasp synthesis Pag. 51

The color filtering, which has been introduced in the previous algorithm at
step 3, can be realized by checking if the Red, Green and Blue values of a
certain pixel are contained between an upper and lower threshold. The same
color filtering strategy based on thresholds may be also applied on Hue,
Saturation and Lightness values, which can by analytically derived from the
RGB ones.

5.3 Data pre-processing
The point cloud, acquired from the depth camera and then outlined with the
chosen segmentation technique, is still too raw and needs to be further
elaborated before it can be used for the grasp generation stage. In particular,
during the pre-processing stage, a density filter should be applied to remove
some points that do not actually belong to the target object. The redundancy
represented by too dense regions of the model is then removed through a
uniformity filter, and finally the surface normal vectors are calculated for each
point in the point of Ƥ to obtain a model richer of semantic information.

5.3.1 Density filter
Because of the uncertainty of the depth sensor, often some points of the point
cloud, corresponding to the edges of the target object in the RGB image, do
not actually belong to object model. For this reason, a density filter should be
applied on the point cloud to remove regions with a low local density [41].
Let pi be the i-th point of the point cloud Ƥ and N i(K) the neighbour
set, defined as the set of K points closest to pi . Then the local density of
point pi is expressed as:

d i(K)=
1

|N i(K)|
∑

p j∈N i (K)

‖pi−p j‖ . (5.1)

where the operator ‖.‖ corresponds to the Euclidean norm of a vector.

Given the average point cloud local density

d AVG(K)=
1
∣Ƥ∣∑i=1

∣Ƥ∣

d i(K) (5.2)

 Chapter 5 – Grasp synthesis Pag. 52

and the corresponding standard deviation

dSTD (K)=√∑i=1

∣Ƥ∣

(d i(K)−d AVG(K))
2

∣Ƥ∣
,

(5.3)

the density filter is defined as

Fd(Ƥ ,K)={pi∈Ƥ , d i(K) > d AVG(K)−3dSTD (K)} . (5.4)

The density filter has the effect of removing from the point cloud isolated
points, e.g. those points whose local density is very low compared to the
average of the acquired model.

Figure 5.2 Example of density filter application.

5.3.2 Uniformity filter
In order to generate more precise surface normals and to remove the
redundancy of information possibly included in the model, it is convenient to
equally distribute the points on the surface of the point cloud. The uniformity
filter indeed has the purpose of removing points that are too close to each
other. Moreover this kind of filtering allows to obtain more efficient grasp
selection end generation algorithm, as the redundancy of the model is
removed and the overall points to be examined are few. The uniformity filter
is defined as

 Chapter 5 – Grasp synthesis Pag. 53

Fu(Ƥ , dmin)={pi∈Ƥ ,∄ p j∈Ƥ ,‖p j−pi‖ < dmin} (5.5)

where dmin is the maximum admissible distance between two points.

5.3.3 Surface normals
For each point pi of the point cloud Ƥ a normal vector to the surface of
the object is calculated by finding the plane that best interpolates the points of
neighbor set N i(K) . Multiple linear regression is used as the basic
mathematical tool to solve the plane estimation problem. Given the multiple
linear regression model yk=β0+β1 x1, k+β2 x2, k with x1,k=x pk

, x2,k= y pk
and

yk=z pk
, using the well known Least Square resolution formula [42], the

surface normal vector in pi is obtained as:

ni=
[β1,β2, 1]

√1+β1
2
+β2

2
. (5.6)

Figure 5.3 Example of surface normals estimation.

Furthermore it is possible to perform a smoothing operation on the surface
normals to make them more regular where the surface of the object has a
discontinuity, as for example near edges and corners. The smoothed surface
normals can be calculated as:

~ni(K)=
1

|N i(K)|
∑
k=1

|N i(K)|

nk . (5.7)

 Chapter 5 – Grasp synthesis Pag. 54

Figure 5.4 Example of smoothing operation on the surface normals.

5.4 Grasp generation
A grasping configuration should be derived considering the geometry of both
the target object and the gripper itself. In this work only grippers with a
single pair of parallel jaws, as the one mounted on KUKA youBot, are treated.
The geometry of this kind of grippers can be described by four parameters
L1, L2 ,L3 and L4 , that define the sizes of the two jaws as illustrated in

Figure 5.5 . In a general formulation a grasp pose G can be defined as

G=< pG , sG ,aG ,l1 > (5.8)

where pG is the centered grasping position, aG is the approach direction
vector, sG is the sliding direction vector and l1 is the gripper opening
dimension (see Figure 5.5).

Figure 5.5 Gripper and grasp pose parameters.

L1

L2

L3

L4

 Chapter 5 – Grasp synthesis Pag. 55

In order to take into account the contact position between gripper and target
object, in the grasp generation algorithm a more convenient notation of the
grasp pose is adopted (see again Figure 5.5).:

Ĝ=< pg , sg , ag ,l1 > (5.9)

where pg is the contact position of the left jaws, sg is the sliding direction
vector and ag is the approach opposite direction vector. The two notation

are equivalent and are related by the simple equations: pG=pg−
l1

2
s g ,

aG=−ag , sG=sg .

The objective of the grasp generation stage is to find those gripper
configurations that maintain its two fingers aligned with the object faces.
Indeed, as proved in [43], keeping the gripper fingers parallel to the object
faces guarantees for these simple kind of grippers the force closure property,
namely the ability of a grasp configuration to resist any motion of the hold
object, thanks to the contact forces that the gripper applies on it. As a point
cloud is a simple collections of points, it has not an intrinsic definition of faces
and surfaces, which should be reconstructed by the grasp generation
algorithms. Two grasp generation algorithms have been developed in this
work, the first one approximates the gripper structure with planes to find the
contact points with the object, while the second one exactly reconstructs the
object geometry. Both algorithms can generate grasping postures for objects
with any shape, however the approximated one is very efficient and can be
applied even to incomplete models of the objects, while the exact algorithm
needs a complete and dense object model, but can generate very precise and
stable grasp.

5.4.1 Locally approximated algorithm
This algorithm approximates the structure of the gripper with three plane
arranged as in Figure 5.6 and searches for configuration of the gripper that
keeps the parallelism between its fingers and faces of the object, while
avoiding collisions with it in the neighborhood of the gripper structure.

 Chapter 5 – Grasp synthesis Pag. 56

Figure 5.6 Approximation of the gripper structure with planes.

The function CheckLocalPlane(p ,n , Ƥ , d) has been introduced to verify if all
the points of the point cloud Ƥ in the neighborhood of p with dimension
d are behind the plane passing for p with norm n⃗ .

CheckLocalPlane(p ,n ,Ƥ , d)={ truefalse
if ∀ p i∈Ƥ ,‖p−p i‖<d⇒ pin− pn<0

otherwise
(5.10)

In order to completely explore all the possible grasp configurations, the
algorithm is broken down into two phases. In the first phase the planes that
approximate the gripper fingers are kept perpendicular to the norms ni of
each point pi of the point cloud Ƥ , while in the second phase
configuration where the gripper palm is perpendicular to the surface normals
are considered (see Figure 5.7).

L2

2

L1

2

 Chapter 5 – Grasp synthesis Pag. 57

Phase I Phase II

Figure 5.7 Phases of the local approximated algorithm.

The grasp generation algorithm pseudo-code is reported in the following
table.

Locally approximated grasp generation algorithm
Input:
- Points pi of point cloud Ƥ with the respective surface normals ni .
- Gripper parameters L1, L2 .

Output:
- List of all the admissible grasp pose Ĝ .

1. For each pi∈Ƥ (Phase I)

2. pg=p i

3. sg=ni

4. If CheckLocalPlane(pg , s g , Ƥ ,
L2

2
)

5. For each ag ⊥ sg

6. For l1=Lmin :Lstep :L1

 Chapter 5 – Grasp synthesis Pag. 58

7.

If
CheckLocalPlane(pg−l1 s g ,−sg ,Ƥ ,

L2

2
)∧

CheckLocalPlane(pg−
l1

2
sg+L2 ag ,ag , Ƥ ,

L1

2
)

8. Add Ĝ=< pg , sg , ag ,l1 > to output list.

9. End

10. End

11. End

12. End

13. End

14. For each pi∈Ƥ (Phase II)

15. ag=ni

16. If CheckLocalPlane(p i ,ag ,Ƥ ,
L1

2
)

17. For each sg ⊥ag

18. For l1=Lmin :Lstep :L1

19.
pg=p i−L2 ag+

l1

2
s g

pg '=p i−L2 ag−
l1

2
sg

20.

If
CheckLocalPlane(pg−

L2

2
ag , sg , Ƥ ,

L2

2
)∧

CheckLocalPlane(pg '−
L2

2
ag ,−sg ,Ƥ ,

L2

2
)

21. Add Ĝ=< pg , sg , ag ,l1 > to output list

22. End

23. End

24. End

25. End

26. End

 Chapter 5 – Grasp synthesis Pag. 59

5.4.2 Exact algorithm
The exact algorithm reconstructs the structure of the gripper with three
cuboids, parallelepipedal regions of the space, as shown in Figure 5.8 . The
grasp configurations are searched, as in the approximated algorithm, by
keeping the fingers of the gripper parallel to the object faces, and discarding
those configuration that result in collision with the points of the object point
cloud.

Figure 5.8 Gripper structure reconstructed with cuboids.

Let the cuboid C=⟨ pC ,n1, d1 ,n2, d2,n3 , d3⟩ be the portion of the space
delimited by the six planes listed in the following table.

Plane Point Norm

#1 pC+d1n1 n1

#2 pC−d1n1 −n1

#3 pC+d2 n2 n2

#4 pC−d2n2 −n2

#5 pC+d3 n3 n3

#6 pC−d3 n3 −n3

 Chapter 5 – Grasp synthesis Pag. 60

The function CheckCuboid (C ,Ƥ) checks if every point pi of point cloud
Ƥ is outside the cuboid C .

CheckCuboid (C ,Ƥ)={true if ∄ p i∈Ƥ , p i∈C
false otherwise

(5.11)

Exact grasp generation algorithm
Input:
- Points pi of point cloud Ƥ with the respective surface normals ni .
- Gripper parameters L1, L2 ,L3, L4 .

Output:
- List of all the admissible grasp poses Ĝ .

1. For each pi∈Ƥ (Phase I)

2. pg=p i

3. sg=ni

4. For each ag ⊥ sg

5.
C1=< pg+

L4

2
sg , sg ,

L4

2
,ag ,

L2

2
, sg×ag ,

L3

2
>

6. If CheckCuboid (C1,Ƥ)

7. For l1=Lmin :Lstep :L1

8.
C2=< pg−

3 L4+2l1
2

sg , s g ,
L4

2
, ag ,

L2

2
, sg×ag ,

L3

2
>

9.
C3=< pg+

L4+l1

2
sg+

L2+ L4

2
ag , sg ,

L4+l1

2
,ag ,

L4

2
, sg×ag ,

L3

2
>

10. If CheckCuboid (C2,Ƥ)∧CheckCuboid (C 3,Ƥ)

11. Add Ĝ=< pg−
L2

2
a g , sg ,ag , l1 > to output list

12. End

13. End

14. End

 Chapter 5 – Grasp synthesis Pag. 61

15. End

16. End

17. For each pi∈Ƥ (Phase II)

18. ag=ni

19. For each sg ⊥ag

20. For l1=Lmin :Lstep :L1

21.
pg=p i+

l1+2 L4

2
sg−

L2+2 L4

2
ag

22.
C1=< pg+

L4

2
sg , sg ,

L4

2
,ag ,

L2

2
, sg×ag ,

L3

2
>

23.
C2=< pg−

3 L4+2l1

2
sg , s g ,

L4

2
, ag ,

L2

2
, sg×ag ,

L3

2
>

24.
C3=< pg+

L4+l1

2
sg+

L2+ L4

2
ag , sg ,

L4+l1

2
,ag ,

L4

2
, sg×ag ,

L3

2
>

25. If CheckCuboid (C1,Ƥ)∧CheckCuboid (C2,Ƥ)
∧CheckCuboid (C3, Ƥ)

26. Add Ĝ=< pg−
L2

2
a g , sg ,ag , l1 > to output list

27. End

28. End

29. End

30. End

5.5 Grasp selection
Among all the generated grasp poses, it is necessary to select the one that best
guarantees a successful grasping execution. To this end, some performance
indexes has been proposed in [35][44] to evaluate each grasping
configuration. Three different categories of metrics have been considered in
this work: Feasibility, Stability and Robot Motion. The feasibility indexes are
used to discard those grasp configurations that the robot kinematics can not
accomplish or which result in collisions with other objects disposed in the

 Chapter 5 – Grasp synthesis Pag. 62

workspace. Stability indexes evaluate the grasp poses preferring those that
guarantee a firm grasp, resistant to external disturbances or wrenches that
can act on the object. Robot motions metrics prefer grasp postures that require
less movement of the mobile platform for mobile manipulators, or joints
displacement in case of standard manipulators. Finally a global performance
index should be designed to include all the proposed metrics in a unique
comprehensive measure. The grasp pose that obtains the best evaluation by
the global performance index is the one chosen for execution. All the different
designed metrics, that compose the global performance index, will be
presented here in detail.

5.5.1 Feasibility
For each grasp pose G generated by the grasp synthesis algorithm it is
necessary to check if it is contained in the reachable dexterous workspace of
the robot. For the KUKA youBot robot, for example, the dexterous workspace
condition expressed by Equation (2.38) should be used to verify whether the
robot can reach the considered grasp position. In order to verify if a grasp
pose with position pG and approach direction aG is reachable, the
following relation can be derived from the dexterous workspace conditions:

(a2+a3)
2
−(z p⃗G

−zd−d1−d5sin (atan2(z aG
,√xa G

2
+ yaG

2
)))

2
>0 . (5.12)

Furthermore, also grasp configurations that result in collision with other
objects disposed in the environment should be discarded. To this end, the
point cloud Ƥobst , containing all the points acquired by the depth camera
that do not belong to the target object, must be taken into account for a
collision detection. For example each link of the robot and the structure of the
base can be modeled with an adequate cuboid and then the CheckCuboid

function itself can be used for collision detection.
Note that the feasibility indexes do not directly evaluate the grasping poses,
but reject not achievable ones.

 Chapter 5 – Grasp synthesis Pag. 63

5.5.2 Stability
Without a complete dynamic model of the object, it is not possible to evaluate
the stability of the generated grasp poses with the traditional force closure
method. Hence some heuristics should be introduced to estimate how firm a
grasp configuration is. For instance the distance of the grasping position from
the centroid of the objects can be adopted to evaluate the overall gravity
balance imposed by the gripper posture. Obviously the closer to the centroid
the grasping is executed, the more it will result stable.

If pCOM=
1
|Ƥ|∑i=1

|Ƥ|

pi is the centroid of point cloud Ƥ , then the heuristic

index to be used to evaluate the stability of the grasping pose G can be
expressed as:

SCOM (G)=
1

‖pG−pCOM‖
. (5.13)

Given that the perceived point cloud is often an incomplete model of the real
object, and that some of its regions may be more dense then others, a better
estimation of the object center of mass can be expressed as

pECOM=[xmax+xmin

2
,
ymax+ ymin

2
,
zmax+zmin

2]
T

(5.14)

where xmax , xmin , ymax , ymin , zmax , zmin are the maximum and
minimum values of the Cartesian coordinates of all the points of the object
point cloud in the world frame. The respective heuristic index can be
formulated as

S ECOM (G)=
1

‖pG−pECOM‖
. (5.15)

 Chapter 5 – Grasp synthesis Pag. 64

Another heuristic to evaluate the stability of a certain grasp posture consists
in estimating the extension of the contact area between the gripper fingers

and the object faces. To this end let C f 1=⟨ pG+
L2

2
aG ,aG ,

L2

2
, sG ,

L4

2
+ϵ ,aG×sG ,

L3

2
⟩

and C f 2=⟨ pG+
L2

2
aG−l1 sG ,aG ,

L2

2
, sG ,

L4

2
+ϵ ,aG×sG ,

L3

2
⟩ be the cuboids which

correspond to the fingers of the gripper slightly extended by the positive
parameter ϵ in the sliding direction with respect to the considered grasp
pose G=< pG , sG ,aG ,l1 > . The set of all the points contained in C f 1 and
C f 2 is expressed as

Pcontact (G ,Ƥ)={pi∈Ƥ , p i∈C f 1∨pi∈C f 2} (5.16)

and then the respective heuristic index can be formulated as:

SCONTACT (G ,Ƥ)=|Pcontact(G, Ƥ)| . (5.17)

5.5.3 Robot motion
Choosing a grasp configuration that requires the minimum movement of the
robot is a necessary measure to optimize the energy consumption and reduce
the execution time of the grasping task. Furthermore, in case of mobile
manipulators, an odometry system is often used to keep track of the robot
position. Hence minimizing the movement of the mobile base is a good
strategy to reduce the odometry error, which increases over time during the
robot motion. The robot configuration qG , needed to execute the grasping
pose G=< pG , sG ,aG ,l1 > , can be computed using the closed form inverse
kinematics algorithm presented in Chapter 2. In particular the following
relations hold: pG=[xg yg zg]

T , Ze=aG , X e=aG×sG .

Given the present robot state qnow and the chosen grasp configuration qG ,
an index measure to evaluate the robot motions can be expressed as:

SRM (G)=
1

‖qnow−qG‖
. (5.18)

 Chapter 5 – Grasp synthesis Pag. 65

5.5.4 Global performance index
The global performance index, adopted during the experimental testings on
KUKA youBot robot, to evaluate a grasping pose G for an object with point
cloud Ƥ has been designed as

S (G ,Ƥ)=W (G)⋅SCONTACT (G ,Ƥ)⋅SECOM (G) (5.19)

where W (G) is a penalization factor that prefers vertical configurations of
the robot end-effector and it is defined as

W (G)={2 if aG ∥[0,0,1]T

1 otherwise
. (5.20)

Indeed, in case of a KUKA youBot mobile manipulator, vertical configurations
of the end-effector allow to take advantage of the particular task redundancy
expressed by ρ4 . As discussed in chapter 3, dedicated to redundancy
resolution, this particular situation can be exploited so that the mobile base
movements are minimized. Hence, vertical grasping configurations have been
preferred exploiting the penalization factor W (G) .

 Pick and place operations with KUKA youBot Pag. 66

Pick and place operations with KUKA youBot

Chapter 6

Pick and place operations

with KUKA youBot
Pick and place operations are a typical example of robotic manipulation,
where a certain object is rearranged in a desired location of the workspace.
Mobile manipulators, with their capability to move around the environment,
have no workspace limitations and can then be used for complex pick and
place operations, both in service and industrial robotics. For example, they
can be used to sort the objects disposed in a disordered room or to perform
inventory movement in a warehouse. All the topics discussed in the previous
chapters, like redundancy resolution, navigation and grasp synthesis, have
been put together to develop a pick and place framework on a KUKA youBot
mobile manipulator. The pick and place operations consist in localizing the
object to be manipulated, picking it up and moving it in a desired position.
Both the environment and the information regarding shape, position and
dimension of the objects that should be manipulated are unknown to the
robot. For this reason, a depth camera has been mounted on the robot
platform and it is used to acquire the necessary visual information for
navigation and grasp synthesis. The desired task is described in an abstract
way, providing to the robot only the colour of the object that should be
grasped, and the colour of the surface where the object has to be released.
Thanks to the developed framework, the robot is able to autonomously
explore the environment, reconstruct the model of the objects, plan and
execute the grasping and placing operations.
In this chapter, the architecture of the developed system as well as some
implementation issues will be presented.

 Pick and place operations with KUKA youBot Pag. 67

6.1 System architecture

Figure 6.1 System architecture.

The architecture of the developed system is presented in the block diagram
in Figure 6.1. The abstract description of the desired pick and place operation,
containing the objects colour information, is provided to the Task Planner
block, which has the purpose of generating a control structure in the SFC –
Sequential Function Chart [45] formalism. This particular automaton,
considering also the sensor visual perceptions, coordinates and supervises the
overall system, decomposing the pick and place operation in all the sub-task
necessary to perform the desired operation. Every sub-task is interpreted by
the Motion planner, which generates the necessary trajectories in the
Cartesian space or directly in the joint space. In case of Cartesian trajectories,
the closed form inverse kinematics algorithm discussed in Chapter 2 is used
to obtain the corresponding joint values. The Base Control, besides providing
the velocity set points necessary for controlling the mobile platform, realizes
the obstacle avoidance strategy based on rotational potential fields, in
accordance with the data acquired by the proximity sensors, as discussed in
Chapter 4. Finally the Redundancy Resolution block resolves the redundancy
based on the robot actual state, optimizing the whole robot manipulability
and minimizing the movements of the platform, as presented in Chapter 3.

Motion
Planner

Inverse
Kinematics

Xd

qd

qd

Reference type

qd

Base
Control

+
Obstacle

Avoidance

qb d

qa d

ub YouBot
u

Redundancy
Resolution

q

ρ

Proximity
Sensors

Task
Planner

Video
Sensor

SFC

 Pick and place operations with KUKA youBot Pag. 68

6.2 Task Planner
The high-level control executed by the Task Planner has been designed
following the Sequential Function Chart formalism. The complete diagram
will be here presented in detail.

START

1

Goal object find

Calibrate Vision sensor

Move arm away from sensor

is system initialized?

Explore the Environment

2

Track the object

Go near the object

3

Object Lost
Robot is near object

Move around the object

Reconstruct object model

Object Lost

4

Object model reconstructed

Grasp synthesis

Valid grasp find

Grasp not find

5 Motion planning

Path findPath not find

6 Execute grasping

Grasp executed
Grasp failed

7 Explore the Environment

Target place find

8

Robot is near target place
Target place lost

9

Track target place

Go near target place

Model Reconstructed

Move around the target place

Reconstruct the target place model

Target place lost

10 Best place configuration search

11 Motion planning

12 Execute placing operation

END

START. The manipulator is
positioned in a configuration that
does not obstruct the depth camera.
The depth camera is calibrated to
localize the requested colour.

STEP 1. The mobile platform
executes a rotation around its axis so
that the vision sensor can visualize
the surrounding environment.

STEP 2. After localizing the object,
the robot moves toward it. The
camera continuously tracks the
object so that the robot can follow it
in case of movement.

STEP 3. The robot executes a rotation
around the target object, allowing the
depth camera to acquire its point
cloud model from various angles.

STEP 4. The grasp synthesis is
performed in order to decide how to
grasp the object.

STEP 5. The necessary trajectories to
execute the grasping task are
planned.

STEP 6. The grasping task is
executed.

 Pick and place operations with KUKA youBot Pag. 69

START

1

Goal object find

Calibrate Vision sensor

Move arm away from sensor

is system initialized?

Explore the Environment

2

Track the object

Go near the object

3

Object Lost
Robot is near object

Move around the object

Reconstruct object model

Object Lost

4

Object model reconstructed

Grasp synthesis

Valid grasp find

Grasp not find

5 Motion planning

Path findPath not find

6 Execute grasping

Grasp executed
Grasp failed

7 Explore the Environment

Target place find

8

Robot is near target place
Target place lost

9

Track target place

Go near target place

Model Reconstructed

Move around the target place

Reconstruct the target place model

Target place lost

10 Best place configuration search

11 Motion planning

12 Execute placing operation

END

STEP 7. The robot performs a
rotation around its axis to explore
the environment and localize the
release surface.

STEP 8. The robot moves toward the
target release surface, while the
camera keeps tracking it.

STEP 9. The robot executes a rotation
around the release surface, allowing
the depth camera to reconstruct its
point cloud model from various
angles.

STEP 10. The best way to place the
object on the surface, maximising the
contact area between the objects, is
calculated.

STEP 11. The necessary trajectories
to execute the placing task are
planned.

STEP 12. The placing task is
executed.

6.3 Point cloud and grasping registration
The grasp synthesis process, described in Chapter 5, allows to determine a
grasping configuration to pick up a certain object, starting from the data
acquired by the depth camera device. Suppose that the point cloud of the
object that has to be grasped has been acquired at time tG and that the pick
up task has been executed at time tE , after the robot has performed the
necessary base motion to reach the object. In the elapsed time between tG
and tE , the robot localization is subject to the mechanical odometry based
on the wheels actuation, causing the chosen grasp pose G=< pG , sG ,aG ,l1 >

to be affected by the same positional error of the odometry system.

 Pick and place operations with KUKA youBot Pag. 70

Furthermore, the object could move during the motion of the mobile
platform, leaving the chosen grasp pose completely inconsistent. In order to
face this situations, during the time interval δ t=tE−tG , the grasp pose
should be updated according to the depth camera perceptions.
The process of finding the frame transformation between two point clouds
observation of the same feature by different point of views is called Point
Cloud Registration [46]. More precisely, given two point clouds ƤA and ƤB

of the same feature, but acquired from different points of view, the point
cloud registration technique allows to find the homogeneous transformation
matrix T B

A , that, applied on the points of ƤB , best matches the points of
ƤA (see Figure 6.2).

Bunny Object Unregistered point clouds Registered point clouds

Figure 6.2 Example of point cloud registration.

Iterative Closest Point – ICP [47] is one of the most used algorithms for point
cloud registration. In this algorithm, one point cloud, the reference, is kept
fixed, while the other one, the source, is transformed to best match the
reference. The algorithm iteratively revises the transformation (combination
of translation and rotation) needed to minimize the distance from the source
to the reference point cloud. Essentially, the algorithm steps are:

1. For each point in the source point cloud, find the closest point in the
reference point cloud.

 Pick and place operations with KUKA youBot Pag. 71

2. Estimate the combination of rotation and translation using a mean
square error cost function that will best align each source point to its
match found in the previous step.

3. Transform the source points using the obtained transformation.
4. Iterate until the desired accuracy or the maximum number of iteration

is reached.

To apply this registration technique to the grasping case, let Ƥ0, Ƥ1, Ƥ2... Ƥn

be the point clouds of the object that should be grasped, acquired respectively
at time instants t 0, t 1, t 2... tn . The Iterative Closest Point can be used to find
the homogeneous transformations T i+1

i that execute the best matching
between two consecutive acquired point clouds :

Ƥi≈T i+1
i Ƥ i+ 1 . (6.1)

If the grasp pose G=< pG , sG ,aG ,l1 > chosen by the synthesis process is
reorganized in the grasp homogeneous matrix as

TG=[sG×aG sG aG pG

0 0 0 1] , (6.2)

the grasp matrix that should be considered at execution time in order to
restrict the odometry error and to account for possible movements of the
object, can be computed as

T E=Tn
n−1 ...T 2

1T 1
0TG=(∏

i=0

n

T n−i
n−1−i)TG , (6.3)

with t 0=tG and t n=tE (See Figure 6.3).

 Pick and place operations with KUKA youBot Pag. 72

Figure 6.3 Relation between point clouds and homogeneous transformations.

6.4 Placing algorithm
A typical issue, concerning pick and place operations, is to decide how the
grasped object should be arranged on the target place. In fact, configurations
that allow a stable placement of the object should be preferred, while
configurations that may cause the object to topple must be rejected. A placing
algorithm has been developed to choose stable placing configurations, based
on the hypothesis that the target place has a planar surface on its top.

Let ƤG be the point cloud of the grasped object acquired at the last time
instant before it has been picked up, and ƤT the point cloud of the target
place, i.e. an object on top of which the grasped object should be placed. The
bi-dimensional point cloud Ƥ̂T contains the x and y coordinates of the
points belonging to the top surface of the target object, extracted thresholding
on all the points heigh. Instead the bi-dimensional point cloud Ƥ̂G is
derived from ƤG considering only the x and y coordinates of all its
points (see Figure 6.4).

Grasped object and target place 3D Point clouds 2D Point clouds

Figure 6.4 3D and 2D point clouds considered for the placing problem

Ƥ i−1
Ƥ i

Ƥ i+1

t i−1 t i
t i+1

... ...

T i
i−1 T i+1

i

Grasped object

Target place

ƤT

ƤG

Ƥ̂T

Ƥ̂G

 Pick and place operations with KUKA youBot Pag. 73

The placing problem can be formulated as finding the planar rigid
transformation that, applied to the points of Ƥ̂G , places the maximum
number of them inside the hull of Ƥ̂T , a polygon that encircles all the
points of Ƥ̂T . To define the polygon that best approximates Ƥ̂T , the well
known concept of convex hull can be used, as well as more complex
approaches, as non convex hulls [48], that better approximate the boundary of
the object shape even in case of concave outlines (See Figure 6.5).

Convex hull Non convex hull

Figure 6.5 Examples of convex and concave hulls.

In order to formalize the placing problem, it is useful to introduce the
function

insidePolygon(p ,P)={10
if p inside P
otherwise (6.4)

which determines if a point p is inside the polygon P , and can be
implemented through the Ray Casting Algorithm [49].
To superimpose the two point clouds Ƥ̂T and Ƥ̂G , a roto-translation has
been adopted to rigidly transform the generic point p in p ' as

p '=[cos (θT) −sin(θT)
sin(θT) cos(θT)](p− p̂G)+[xTyT

]+ p̂T , (6.5)

where parameter θT expresses the transformation rotational angle,
parameters xT and yT are the transformation translational components,

 Pick and place operations with KUKA youBot Pag. 74

p̂G is the centroid of point cloud Ƥ̂G , p̂T is the centroid of point cloud
Ƥ̂T .

Initial configuration Optimal placing configuration

Figure 6.6 Example of optimal placing problem.

At this point, the placing optimization problem can be formalized as

argmax
θT , xT , yT

∑
p '∈ Ƥ̂ 'G

insidePolygon(p ' , Hull (Ƥ̂T)) (6.6)

where Ƥ̂ 'G is the set of all the points of Ƥ̂G transformed by the roto-
translation having parameters θT , xT and yT , while the term
Hull (Ƥ̂T) represents the polygon used to approximate the contour of Ƥ̂T .

The optimization problem has been solved in this work with a sample based
algorithm, which first searches for the rotation that best superimposes the two
point clouds, and then searches for the translational components of the
transformation. The placing algorithm pseudo-code will be presented here in
detail.

θT

[xT yT]
T

 Pick and place operations with KUKA youBot Pag. 75

Placing algorithm
Input:
- Grasping pose G=< pG , sG ,aG ,l1 > used to pick up the goal object.
- 2D point cloud Ƥ̂G of the grasped object.

- 2D point cloud Ƥ̂T of the target place top surface.
- Centroid p̂G of the grasped object.
- Centroid p̂T of the target place top surface.
- Number of translational samples Kmax .
- Number of rotational samples θmax .
- Height of the target surface zT .

Output:
- Optimal placing pose GT .

1. For θ=0 :
2π
θmax

:2π (Rotation)

2. f max=0

3.
Ƥ̂ 'G=[cos(θ) −sin (θ)

sin(θ) cos (θ)](Ƥ̂G− p̂G)+ p̂T

4. If ∑
p '∈ Ƥ̂ 'G

insidePolygon(p ' , Hull(Ƥ̂T)) > f max

5. θT=θ

6. f max=f

7. End

8. End

9. For k=0 :1:K max (Translation)

10. d rand=randomdirection

11. [xy]=[xTyT]+ϵ drand

12. Do

13. ok=true

14
 Ƥ̂ 'G=[cos(θT) −sin(θT)

sin(θT) cos(θT)](Ƥ̂G− p̂G)+[xy]+ p̂T

 Pick and place operations with KUKA youBot Pag. 76

15. If f > f max

16. xT=x
yT= y

17. f max=f

18. Else

19. ok=false

20. End

21. While ok

22. End

23.
R z(θT)=[

cos (θT) −sin(θT) 0
sin(θT) cos (θT) 0

0 0 1]
24. GT=<R z(θT)(pG− p̂G)+ p̂T+[xT , yT ,0]

T , R z(θT)sG ,R z(θT)aG ,l1 >

6.5 Software architecture
The software architecture of the developed framework has been designed so
as to make the system modular, reusable and maintainable (see Figure 6.7).

Figure 6.7 Software architecture.

MATLAB - Simulink

JyouBot (Java)

V-Rep Remote API
(Java-JNI)

 KUKA youBot API
(C++)

ROS Wrapper
(C++)

 Pick and place operations with KUKA youBot Pag. 77

The main software module, containing the application logic and all the
control algorithms presented throughout this work, has been implemented
within the well known MATLAB - Simulink graphical tool [50]. Then the
middleware layer JyouBot has been realized to expose a unique interface,
which defines the low level functions and services necessary to control the
robot actuation and to receive informations from the sensor devices, as the
motors encoders, the proximity sensors and the depth camera (see Appendix
B). The JyouBot interface allows to maintain the same implementation of the
application logic to control the whole framework in different situations, as for
example in different simulation environments or in the real case. Indeed, by
implementing a particular feature of the JyouBot interface, one can customize
the developed control system of the youBot robot to work in the desired
simulated or real environment with the available sensor devices. Three
different implementations of the JyouBot services have been realized. The first
one allows to perform simulations in the V-Rep environment [51] using the
remote API provided by the simulation framework itself. The already
available model of the KUKA youBot has been used for the simulation
experiments, as well as six virtual proximity sensors and a virtual depth
camera placed on the model of the robot platform. The second
implementation, which uses the standard KUKA youBot API [52], has been
developed to execute experimental testing directly on the real KUKA youBot
robot. Moreover, the common OpenNI library [53] has been adopted to
acquire the visual images from the ASUS Xtion device [54], which has been
used both to reconstruct the model of the objects to be manipulated and to
acquire the structure of the environment necessary for the robot navigation,
as if it was a proximity sensor. Finally the ROS wrapper [55] for the KUKA
youBot has been adopted in a third implementation to perform simulations in
the Gazebo [56] environment.

 Chapter 7 - Experimental results Pag. 78

Chapter 7 - Experimental results

Chapter 7

Experimental results
In this section some experimental results, concerning the thematics proposed
in the previous chapters, will be presented.

7.1 Internal motions
In order to evaluate the capability of the developed framework to correctly
control the motion of the redundant KUKA youBot, an experiment has been
conducted to observe the robot internal motions. Internal motions are a
typical feature of redundant manipulators, which can change their state and
move their mechanical structure without changing the end-effector position
and orientation. This behavior has been tested on the KUKA youBot by
observing the positional error of the end-effector with respect to a fixed
desired configuration, while the redundancy parameters ρ1 , ρ2 and ρ4

vary with time. During the experiment, the robot end-effector desired
configuration was set to X=[0 0 0.1 π 0 0]T , while the values of the
redundancy parameters were first varied one at a time, and then, at the end,
all together. The result of the experiments are shown in Figure 7.1, where the
evolution during time of the end-effector positional error and the varying
values of the redundancy parameter are illustrated. This experiment was
executed using the built-in joint position control of the KUKA youBot, while
the results shown in Figure 7.2 refer to the same experiment executed instead
with the built-in joint velocity control. As already demonstrated in [57], the
achieved results show that the position control can lead to a very accurate
positioning of the end-effector, but causes a slight undesired vibration of the
manipulator structure. The joint velocity control, instead, allows to follow a
desired end-effector trajectory in a smoother way, but it presents a major
positioning error with respect to the position control. The same experiments
regarding internal motions, with both the position and velocity control, were
repeated imposing to the end-effector to follow a linear Cartesian trajectory
X=[k1t 0 k2 t π 0 0]T with k1=0.1 and k2=0.01 (See Figure 7.3 and 7.4).

 Chapter 7 - Experimental results Pag. 79

Figure 7.1 End-effector positional error during internal motion (position control).

Figure 7.2 End-effector positional error during internal motion (velocity control).

 Chapter 7 - Experimental results Pag. 80

Figure 7.3 End-effector positional error during internal motion while following a
linear Cartesian trajectory (position control).

Figure 7.4 End-effector positional error during internal motion while following a
linear Cartesian trajectory (velocity control).

 Chapter 7 - Experimental results Pag. 81

These results show the ability of the developed controller to manage the eight
degree of freedom of the KUKA youBot robot, when both the Cartesian input
variables and the redundancy parameter vary with time. In fact, the end-
effector positional error, expressed in the figures as an euclidean norm, is
always less the 1 cm, when the position control is used, and is less then 2 cm,
when the velocity control is used instead.

7.2 Manipulability optimization
The arm extension redundancy, described by parameter ρ2 , has been used
to maximize the index U (q) with the double objective of both keeping the
joints of the manipulator away from their physical limits and maximizing the
manipulability index, as presented in Chapter 3. The optimization, executed
on-line during the manipulation tasks, actually succeeded in the objective of
choosing configurations of the mobile manipulator suitable for objects
manipulation. Figure 7.5 and 7.6 show the values achieved by the objective
function U (q) for each possible value of redundancy parameter ρ2 ,
during a pick and place operation. The black line indicates the actual values
of ρ2 selected during the task execution. It is possible to note that, after an
initially transient the optimization strategy succeeds in choosing values of
ρ2 that maximize the objective measure U (q) .

Figure 7.5 Behaviour of objective function U (q) and chosen values of redundancy
parameter ρ2 during a pick and place task.

 Chapter 7 - Experimental results Pag. 82

Figure 7.6 Behaviour of objective function U (q) and chosen values of redundancy
parameter ρ2 during a pick and place task. (Heat-map)

7.3 Vertical end-effector configuration redundancy
As described in Chapter 3, the redundancy parameter ρ4 has been
introduced to describe a task redundancy that occurs when the end-effector
of the KUKA youBot is in a vertical configuration. This redundancy has been
exploited to minimize the movements of the mobile base. To observe the
effectiveness of the developed redundancy resolution strategy, an experiment
was performed, where the youBot follows a Cartesian trajectory for one
minute always keeping a vertical posture of its end-effector. The experiment
was executed twice, in both cases with the same Cartesian trajectory. First the
behavior of the robot was tested when no redundancy resolution strategy is
actuated on parameter ρ4 , then the experiment was repeated considering
the developed redundancy resolution strategy. As shown in Figure 7.7, when
the redundancy resolution strategy has been considered, the mobile base
movements were reduced by 22,5 % compared to the other case (from 62.1 m
to 48.1 m) .

 Chapter 7 - Experimental results Pag. 83

No vertical end-effector redundancy resolution (Total mobile base movements: 62.1 m).

Vertical end-effector redundancy resolution (Total mobile base movements: 48.1 m).

Figure 7.7 Mobile base position and orientation while following a Cartesian end-
effector trajectory with a fixed vertical configuration of the end-effector.

 Chapter 7 - Experimental results Pag. 84

Then, the movements of the mobile base of the robot were observed during
some pick and place operations. The same pick and place task was repeated
both with and without the developed redundancy resolution strategy for the
end-effector configurations. As illustrated in Figures 7.8 and 7.9, even in this
case the mobile base movements are reduced when the task redundancy of
the robot is considered. Indeed, if no redundancy resolution strategy is
considered, the last joint of the youBot manipulator does not execute any
rotational compensation and the mobile base must perform an additional
movement to align the arm with the selected grasp configuration. In Figure
7.8 and 7.9 the object that has to be grasped is colored in green, while the
target place in blue.

No vertical end-effector redundancy resolution Vertical end-effector redundancy resolution

Figure 7.8 Mobile base position and orientation during a pick and place operation.

Target place
Target place

Goal object

Goal object

 Chapter 7 - Experimental results Pag. 85

No vertical end-effector redundancy resolution Vertical end-effector redundancy resolution

Figure 7.9 Mobile base position and orientation during another pick and place operation.

7.4 Navigation
The navigation technique based on rotational potential fields, introduced in
Chapter 4, has been tested in the VRep simulation environment using six
virtual proximity sensors mounted around the mobile base of the KUKA
youBot robot to perceive obstacles. As illustrated in Figure 7.10, the robot was
able to safely navigate in the environment while avoiding obstacles. As
expected, the introduction of rotational potential fields ensures the navigation
to be not affected by the problem of local minima in the potential function,
typical of standard potential field techniques. Indeed the robot was able to
navigate in a cluttered environment with many obstacles, whose position and
orientation are not known in advance. Also the case of obstacles with a
concave outline, which result more difficult to bypass by a reactive navigation
technique, was examined with positive results as shown in Figure 7.10 and in
the accompanying video [58].
Thanks to the modular architecture of the system, it has been possible to test
the developed navigation strategy also on the real KUKA youBot, in this case
using the ASUS Xtion device to perceive the environment structure, instead of
the proximity sensors used during the simulation experiments. Also in the
real case the youBot was able to correctly navigate in the laboratory, as shown
in Figure 7.11 and in the accompanying video [59].

Target place
Target place

Goal objectGoal object

 Chapter 7 - Experimental results Pag. 86

Trap shape obstacle Narrow passages in a cluttered environment

Figure 7.10 Mobile base movements during navigation in a cluttered environment in
VRep simulation environment.

Figure 7.11 Navigation experiment with the real KUKA youBot.

 Chapter 7 - Experimental results Pag. 87

7.5 Grasp synthesis
The grasp synthesis process, described in Chapter 5, has been initially tested
in the VRep simulation environment, where a virtual depth camera sensor
has been inserted in the model of the robot, fixed on its mobile platform. The
outcome of the grasp synthesis process has been analyzed during the
execution of various pick and place operations, where shape, position,
orientation and dimensions of the objects to be manipulated are a-priori
unknown to the robot. At the beginning, some objects with different shapes
were placed on the floor and the grasp synthesis process always correctly
selected a vertical grasping configuration, because lateral end-effector ones
are not achievable in this situation with the small KUKA youBot arm, as
shown in the following test cases. Such test cases report the real object in the
simulation environment with the corresponding point cloud model
reconstructed by the synthesis process and the selected grasp pose. The
execution time reported in the different test cases, which have been executed
on a common low cost laptop with an Intel Core I3 processor, includes all the
four stages of the grasp synthesis process described in Chapter 5: Point Cloud
Acquisition, Data Pre-processing, Grasp Generation, Grasp Selection.

Test case 1 – Small cube
Computation time: 0.295 s, Number of admissible generated grasp poses: 258.

 Chapter 7 - Experimental results Pag. 88

Test case 2 – Bar
Computation time: 1.04 s , Number of admissible generated grasp poses: 312.

Test case 3 – Concave object
Computation time: 1.39s, Number of admissible generated grasp poses: 417.

Test case 4 – Small sphere
Computation time: 0.17s, Number of admissible generated grasp poses: 646.

Afterwards, bigger objects as well as smaller ones placed on an elevated
surface were considered, as they could be grasped even with lateral
configuration of the end-effector. Also in this case the synthesis process

 Chapter 7 - Experimental results Pag. 89

correctly generated admissible grasp poses, as proved by the following test
cases.

Test case 5 – Concave big object
Computation time: 0.87s, Number of admissible generated grasp poses: 30.

Test case 6 – Cube on cube
Computation time: 0.485 s, Number of admissible generated grasp poses: 688.

Test case 7 – Cylinder on cube
Computation time: 0.84 s, Number of admissible generated grasp poses: 873.

 Chapter 7 - Experimental results Pag. 90

Finally, the case of particularly cluttered environment, where other obstacles
are positioned near the target object has been considered. The synthesis
process was able to identify grasping configurations that allow to execute the
grasping task avoiding collision with the close obstacles.

Test case 8 – Cube between obstacles
Computation time: 0.08 s, Number of admissible generated grasp poses: 19.

Test case 9 – Cube under a bench
Computation time: 0.15 s, Number of admissible generated grasp poses: 7.

Test case 10 – Cube on a shelf
Computation time: 0.088 s, Number of admissible generated grasp poses: 5.

 Chapter 7 - Experimental results Pag. 91

Test case 11 – Prism on a shelf
Computation time: 0.07s , Number of admissible generated grasp poses: 21.

In general, the pick and place framework proved to be particularly robust
during the simulations experiments, as every requested task was correctly
accomplished by the robot. As shown by the previous test cases and the in the
accompanying video [60], the grasp synthesis process is very effective and
produces stable and intuitive grasp postures, requiring less then a second of
computation time on average. The testing conducted on the grasp synthesis
algorithm in the simulation environment are generally valid even in the real
case, because they are based only on the point cloud model of the objects, and
the current available depth cameras are even more accurate than the virtual
sensors used in simulation.

7.6 Pick and place operations with the real KUKA youBot
The overall behavior of the robotic system was tested on a real KUKA youBot
mobile manipulator. The ASUS Xtion Live Pro device was mounted on the
robot platform and the common OpenNI library was adopted to acquire the
RGB images and the depth scansions. The data acquisition phase of the grasp
synthesis process was particularly critical, as the perceived color of the objects
is sensitive to the light of the laboratory that changes considerably with the
outside weather and with the time of the day. For this reason the OpenNI
library was used to develop a simple tool that allows to manually calibrate the
color filter in few seconds. The application allows to select the ranges of hue,
saturation and lightness and shows the filtering results on the acquired
images, making it possible to quickly select the color parameters of the
different objects to be manipulated (see Figure 7.12).

 Chapter 7 - Experimental results Pag. 92

Acquired image Filtered image

Figure 7.12 Colour filter calibration tool.

Furthermore, a method to automatically calibrate the position of the camera
with respect to the robot frame has been implemented based on a linear
regression applied to the floor observations (see Appendix C). With these
tools implemented, the pick and place operations were tested with
satisfactory results, as shown in Figure 7.13 and in the accompanying video
[59]. The robot was able to autonomously localize the objects, reconstruct
their point cloud model, correctly perform the grasp synthesis, plan and
execute the pick and place task. In some cases, the grasping execution failed,
mainly because of the standard youBot gripper that was used, that has a small
stroke and limited grasping forces.

 Chapter 7 - Experimental results Pag. 93

Figure 7.13 Pick and place experiment with the real KUKA youBot.

The pick and place framework was tested with positive results on a small
prism, on a concave object with few admissible grasp postures and on rubber
ball (see Figure 7.14).

Figure 7.14 Object used for manipulation experiments on the real robot.

 Conclusions and future works Pag. 94

Conclusions and future works

Conclusions and future works
The aim of this thesis was to develop control techniques and algorithms,
which would allow to perform robotic manipulation tasks in completely
unknown environment, exploiting the functional flexibility of mobile
manipulators.
An autonomous pick and place framework has been successfully designed
and implemented on a KUKA youBot research platform. Thanks to the
realized application, the robot is able to autonomously explore the
environment, reconstruct the model of the objects that should be grasped,
plan and correctly execute pick and place operations.
The benefit of introducing robot specific redundancy parameters has been
demonstrated, in this thesis, by showing that each exceeding degree of
freedom can be coupled with a specific desired behavior enforced by the
chosen redundancy resolution strategy. In this way, the redundancy of the
robot is not used to optimize a unique performance measure, but each degree
of redundancy accomplishes a specific behavior, based on what the robot
control designer thinks it can do best. The developed redundancy resolution
strategies allow the youBot robot to keep its joints inside their physical limits,
maximize the whole robot manipulability index, improve the coordination
between mobile base and arm, reduce the movements of the mobile platform,
keep a certain object inside the field of view of the vision subsystem.
Although not formally proven, the developed navigation technique based on
rotational potential field results to be local minima free in all the numerous
test cases taken in consideration, where the robot is correctly guided toward
its goal, while avoiding collisions with obstacles disposed inside the
environment.
The very interesting results, obtained by the original grasp synthesis process
realized in this work, show that on-the-fly grasping techniques can be robust
as common recognition-based ones, but turn out to be definitely more
computationally efficient and more suitable to deal with unknown objects and
environments.

 Conclusions and future works Pag. 95

In conclusion, the achieved results are quite satisfactory as all the indicated
objectives have been attained.

During the evolution of this work, many ideas for further researches and
possible applications have been taken into consideration, although there has
been no time to develop them in a concrete and complete way. Here some
possible guidelines for future work will be shortly presented.

Besides pick-and-place tasks, it would be very interesting to study how
mobile manipulator could perform autonomous assembly operations. As in
the well know case of peg in hole insertion, assembly tasks require more
advanced control techniques like force control, which takes into consideration
also the dynamic behavior of the robot. Torque control has been used in this
work to perform a compliant manual guidance of the youBot arm, as
described in Appendix D. Future researches could investigate how to obtain a
dynamic model of the whole mobile manipulator, considering also the effects
of the mobile platform, and use it to develop control strategies for assembly
operations.

A simple smart-phone application has been implemented to control the
youBot behavior with vocal commands. In order to improve human-robot
interaction aspects, further studies could be used to integrate mobile
manipulators with other devices as smart-phones, advanced vision devices,
Enterprise Resource Planning systems or Domotic environments.

 Appendix A – KUKA youBot hardware specification Pag. 96

Appendix A – KUKA youBot hardware specification

Appendix A

KUKA youBot hardware specification

A.1 Arm technical data

Figure A.1 KUKA youBot Arm specification

 Appendix A – KUKA youBot hardware specification Pag. 97

Figure A.2 KUKA youBot Arm specification

Lower limit Upper limit Speed

Axis 1 -169° +169° 90 °/s

Axis 2 -65° +90° 90 °/s

Axis 3 -151° +146° 90 °/s

Axis 4 -102° +102° 90 °/s

Axis 5 -167° +167° 90 °/s

Table A.1 KUKA youBot Axis specification

Gripper stroke 20 mm

Gripper range 70 mm

Motors 2 independent stepper motors

Table A.2 KUKA youBot Gripper specification

 Appendix A – KUKA youBot hardware specification Pag. 98

A.2 Base technical data

Figure A.3 KUKA youBot Base specification

Figure A.4 KUKA youBot Base specification

Omnidirectional Kinematics 4 KUKA omniWheel

Speed 0.8 m/s

Table A.3 KUKA youBot Base specification

 Appendix A – KUKA youBot hardware specification Pag. 99

A.3 Denavit-Hartemberg parameters

θ d a α

Link 1 q1 0.147 0.033 π /2

Link 2 q2 0 0.155 0

Link 3 q3 0 0.135 0

Link 4 q4 0 0 π /2

Link 5 q5 0.187 0 0

Table A.4 Denavit-Hartenberg parameters for KUKA youBot manipulator

xd 0.166 m
yd 0 m
zd 0.98 m

Table A.5 KUKA youBot manipulator base frame displacement from platform frame

 Appendix B – JyouBot Interface Pag. 100

Appendix B – JyouBot Interface

Appendix B

JyouBot interface
The JyouBot middleware layer, inside the context of the autonomous pick and
place framework presented in Chapter 6, has been developed in this thesis to
provide a unique Java interface, which defines the low level functions and
services necessary to control the robot actuation and to receive informations
from the sensory devices. The JyouBot interface allows to maintain the same
implementation of the framework application logic, while customized
implementations to support the adopted devices, in real or simulated
environment, are still possible. In this way, by implementing a particular
feature of the JyouBot interface, one can personalize the developed control
system of the youBot robot to work in the desired environment with the
available sensory devices. More in detail, the class JyouBot exposes the
methods that control the velocity of the youBot mobile base and the positions,
velocities and torques of the youBot arm joints. The same class can be used to
retrieve the joints positions from the motors encoders, and to access to the
odometry information that describe the position and orientation of the mobile
platform. The class GoalDetector defines the methods necessary to acquire the
point cloud of the objects that should be manipulated, based on their color.
The class ObstacleDetector defines the methods devoted to the acquisition of
the obstacles positions, necessary for the navigation of the robot. A class
diagram of the described interface is reported in Figure B.1.

Figure B.1 Class diagram of JyouBot interface.

 Appendix B – JyouBot Interface Pag. 101

A detailed list of the functionalities defined by the JyouBot interface can be
found in the following tables.

JyouBot interface method summary
Modifier and Type Method and Description

double[] getJointStates()
Get the actual values of arm and gripper joints.

double getJointStates(int joint)
Get the actual value of a specific joint.

double[] getOdometry()
Get the odometry data of the mobile base.

void setArmHomePosition()
Move the manipulator near the home position.

void setArmJointPosition(double[] values)
Set the joint position set-point of the manipulator joints.

void setArmJointPosition(int joint, double value)
Set the joint position set-point of a specific joint of the manipulator.

void setArmJointTorque(double[] values)
Set the joint torque set-point for the manipulator joints.

void setArmJointVelocity(double[] values)
Set the joint velocity set-point for the manipulator joints.

void setArmSafePosition()
Set the arm to a safe position.

void setBaseStop()
Stop any movements of the base.

void
setBaseVelocity(double xVel, double yVel,
double rotVel)
Set the velocity set-point of the mobile base.

void setGripperClosed()
Close the gripper.

void setGripperJointPosition(double[] values)
Set the position set-point of the gripper joints.

void setGripperOpen()
Open the gripper.

../../../../Desktop/com/robb19y/youbot/JyouBot.html#getJointStates()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setGripperOpen()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setGripperJointPosition(double[])
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setGripperClosed()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setBaseVelocity(double,%20double,%20double)
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setBaseStop()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setArmSafePosition()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setArmJointVelocity(double[])
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setArmJointTorque(double[])
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setArmJointPosition(int,%20double)
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setArmJointPosition(double[])
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setArmHomePosition()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#getOdometry()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#getJointStates(int)

 Appendix B – JyouBot Interface Pag. 102

GoalDetector interface method summary

Modifier and Type Method and Description

java.lang.Str
ing

getColor()
Get the colour of the object that should be detected.

com.robb19y.g
rasping.Point
CloudPreProce
ssing

ReadVisionSensor()
Returns the actual point cloud perception of the goal object.

void setColor(java.lang.String color)
Set the colour of the object that should be detected.

ObstacleDetector interface method summary

Modifier and Type Method and Description

java.util.Arr
ayList<double
[]>

getPosition()
Returns the position of the actual detected obstacles (expressed in
robot mobile frame).

../../../../Desktop/com/robb19y/youbot/sensors/ObstacleDetector.html#getPosition()
../../../../Desktop/com/robb19y/youbot/sensors/GoalDetector.html#setColor(java.lang.String)
../../../../Desktop/com/robb19y/youbot/sensors/GoalDetector.html#ReadVisionSensor()
../../../../Desktop/com/robb19y/youbot/sensors/GoalDetector.html#getColor()

 Appendix C – Automatic calibration of the depth camera relative frame position Pag. 103

Appendix C – Automatic calibration of the depth camera relative frame position

Appendix C

Automatic calibration of the depth camera
relative frame position

During the autonomous pick and place tasks, the depth camera is placed with
a fixed support above the mobile platform of the KUKA youBot at a certain
height zC with respect to the robot reference frame. Furthermore, the
camera is oriented toward the floor with angle βC to better look at the
objects that have to be manipulated (see Figure C.1). In this appendix an
automatic way to estimate the values of parameters zC and βC , starting
from the floor observation, is presented.

Figure C.1 Camera reference frame and parameters used for the calibration.

Camera
frame

youBot frame

Floor observations

z

y

z

x

zC

βC

 Appendix C – Automatic calibration of the depth camera relative frame position Pag. 104

Given a depth scansion of the floor with N pixel, each having position
pi=<xi , y i , z i > in the reference frame of the camera, linear regression can

be used to estimate the straight line that best match the y i and z i
coordinates of the points. Indeed, the angular coefficient m of that
regression line corresponds to the angle βC , which can be calculated as:

βC=atan(m) . (C.1)

Using the well known Least Square resolution formula [42], the angular
coefficient of the regression line can be derived as:

m=
∑
i=1

N

(z i− z̄)(y i− ȳ)

∑
i=1

N

(z i− z̄)2
(C.2)

with z̄=
1
N
∑
i=1

N

zi and ȳ=
1
N
∑
i=1

N

y i .

Parameter zC , instead, can be calculated considering the average of the floor
observations heights, after having aligned them with the floor horizontal line,
namely after a rotation of angle βC :

zC=−
1
N
∑
i=1

N

y icos (βC)−zi sin(βC) . (C.3)

 Appendix D – Torque control of KUKA youBot arm Pag. 105

Appendix D – Torque control of KUKA youBot arm

Appendix D

Torque control of KUKA youBot arm

In order to consider the dynamic behaviour of a robotic manipulator, torque
control can be used as an effective control strategy, as it allows to set directly
the torques and forces exerted by the joint motors. In fact, besides positions
and velocities of the joints, it is necessary to control the forces that they exert,
so that the whole manipulator structure can have different degrees of stiffness
and compliance. Stiffness can be defined as the capacity of a robot to keep
rigidly its position even when external forces are applied on it. Compliance,
instead, allows the manipulator to change its posture and to deform according
with external forces applied on it. In this work, torque control has been
adopted to perform manual guidance of the KUKA youBot arm. In this way it
is possible to set manually postures of the manipulator, without the effort of
programming them. Thanks to the developed torque control strategy, the
youBot arm maintains the postures manually assigned, but still it wont fall or
collapse due to the gravitational pull.
The parameters, necessary to define the dynamic model of the youBot arm,
are reported in the following table.

Mass [Kg]
Inertia Tensor Elements [Kg m2] Centre of mass

position [m]IXX IYY IZZ

Link 1 1.39 0.002952 0.006009 0.0058821 [-0.016, -0.0735, 0]

Link 2 1.318 0.003114 0.0005483 0.003163 [-0.077, 0, 0]

Link 3 0.821 0.0017276 0.0004196 0.0018468 [-0.067, 0, 0]

Link 4 0.769 0.006764 0.0010573 0.000661 [0, 0, 0.062]

Link 5 0.678 0.001934 0.001602 0.00689 [0, 0, -0.062]

Table D.1 KUKA youBot arm dynamic parameters

 Appendix D – Torque control of KUKA youBot arm Pag. 106

Given the dynamic parameters and the kinematic model of a manipulator,
Euler-Newton or Lagrangian formulation can be used to derive the manipulator
dynamic model [61]:

B(q) q̈+C (q , q̇) q̇+ g(q)=τ (D.1)

where the symbols q , q̇ , q̈ and τ denote n-dimensional vectors of joint
position, velocity, acceleration and torque variables, respectively, where n is
the number of degrees of motion freedom of the robot mechanism. B(q) is
an n×n symmetric, positive-definite matrix, and is called the joint-space
inertia matrix. C (q , q̇) is an n×n matrix such that C (q , q̇) q̇ is the vector
of Coriolis and centrifugal terms (collectively known as velocity product
terms); and g(q) is the vector of gravity terms.
Many control strategy, as for example Inverse Dynamics or Robust Control [62],
are available to consider the dynamic behaviour of a robotic manipulator
inside the robot controller. For the purpose of performing the manual
guidance on the youBot arm, it has been sufficient to adopt the simple control
law:

τ=g(q) (D.2)

which ensures to the robot the capacity to compensate the effects of the
gravitational pull and leaves the possibility to manually move all the links of
the manipulator in any desired position.

 Bibliography Pag. 107

Bibliography

Bibliography
[1] F. Jovane, Y. Koren, C. R. Boër: Present and Future of Flexible Automation:
Towards New Paradigms, CIRP ANNALS-MANUFACTURING
TECHNOLOGY, vol. 52/2, pp 543-560, 2003.
[2] S. Chitta, E.G. Jones, M. Ciocarlie, K. Hsiao: Mobile Manipulation in
Unstructured Environments: Perception, Planning, and Execution, Robotics &
Automation Magazine, IEEE (Volume:19 , Issue: 2) , 2012.
[3] S. Bøgh, M. Hvilshøj, M. Kristiansen, O. Madsen: Autonomous Industrial
Mobile Manipulation(AIMM): From Research to Industry, Proceedings of the
42nd International Symposium on Robotics, .
[4] S. Bogh, B. Schou, T. Ruehr, Y. Kogan Doemel, Andreas ; Brucker, Manuel,
C. Eberst, R. Tornese, C .Sprunk, G. D. Tipaldi, T. Hennessy: Integration and
Assessment of Multiple Mobile Manipulators in a Real-World Industrial
Production Facility, Proceedings of ISR/Robotik 2014; 41st International
Symposium on Robotics, 2014.
[5] H. I. Christensen, P. Case: Mobile Manipulation for Everyday
Environments, International Conference on Control, Automation and Systems
2008, 2008.
[6] M. Hvilshøj, S. Bøgh: "Little Helper" - An Autonomous Industrial Mobile
Manipulator Concept, International Journal of Advanced Robotic Systems,
2011.
[7] KIVA System: A Different kind of Material Handling Company &
Complete Warehouse Automation Solution,
http://www.kivasystems.com/about-us-the-kiva-approach/, 2014.
[8] L. C. Wang, L. S. Yong, M. H. Ang: Hybrid of Global Path Planning and
Local Navigation implemented on a Mobile Robot in Indoor Environment ,
Proceedings of the 2002 IEEE International Symposium on Intelligent Control,
2002.
[9] S. Russell, P. Norvig: Artificial Intelligence: A Modern Approach (3rd
Edition), Prentice Hall, 2009.
[10] O. Brock, J. Kuffner, J. Xiao: Handbook of Robotics - Chapter 26 Motion
for Manipulation Task, Springer, 2008.
[11] R. Bischoff, E. Prassler: KUKA youBot – a mobile manipulator for

 Pag. 108

research and education, IEEE International Conference on Robotics and
Automation (ICRA), 2011.
[12] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo: Robotics - Modelling,
Planning and Control, Springer, 2009.
[13] B. Siciliano, O. Khatib: Handbook of robotics, chapter 11 - Kinematically
Redundant Robot, Springer-Verlag, 2008.
[14] A. De Luca, G. Oriolo, P. R. Giordano: Kinematic modelling and
redundancy resolution for nonholonomic mobile manipulators, IEEE
International Conference on Robotics and Automation, 2006.
[15] B. Siciliano, O. Khatib: Handbook of robotics, chapter 1 - Kinematics,
Springer, 2008.
[16] S. Sharma,G. K. Kraetzschmar,C. Scheurer,R. Bischoff: Unified Closed
Form Inverse Kinematics for the KUKA youBot, ROBOTIK 2012, 2012.
[17] Huatao Zhang, Yunyi Jia and Ning Xi: Sensor-based Redundancy
Resolution for a Nonholonomic MobileManipulator, 2012 IEEE/RSJ
International Conference onIntelligent Robots and Systems, 2012.
[18] G. Buizza Avanzini, A. M. Zanchettin, P. Rocco: Reactive Constrained
Model Predictive Control for Redundant Mobile Manipulators, International
Conference on Intelligent Autonomous Systems, IAS 2014, 2014.
[19] B. Siciliano, L. Sciavicco, L. Villani,G. Oriolo: Robotics - Modelling,
Planning and Control -3.5.1 Redundant Manipulators, Springer, 2009.
[20] N. Vahrenkamp, T. Asfour, G. Metta, G. Sandini, R. Dillmann:
Manipulability Analysis, IEEE-RAS 12th International Conference on
Humanoid Robots, 2012.
[21] J. Nocedal, S. Wright: Numerical optimization - Chapter 3 Line Search
Methods, Springer, 1999.
[22] H. Durrant-Whyte, T. Bailey: Simultaneous Localisation and Mapping
(SLAM): Part I The Essential Algorithms, Robotics & Automation Magazine,
IEEE (Volume:13 , Issue: 2) , 2006.
[23] B. Siciliano, O. Khatib: Handbook of robotics - Chapter 5 Motion
Planning, Springer, 2008.
[24] Wikipedia: Dijkstra's algorithm, http://en.wikipedia.org/wiki/Dijkstra
%27s_algorithm, 2014.
[25] Wikipedia: A* search algorithm,
http://en.wikipedia.org/wiki/A*_search_algorithm, 2014.

 Pag. 109

[26] O. Khatib: Real-time obstacle avoidance for manipulators and mobile
robots, Robotics and Automation. Proceedings. 1985 IEEE International
Conference, 1986.
[27] T.Liddy , Tien-Fu Lu , P. Lozo, D. Harvey : Obstacle Avoidance Using
Complex Vector Fields, Proceedings of the 2008 Australasian Conference on
Robotics and Automation, 2008.
[28] A. T. Miller, P. K. Allen: GraspIt! A versatile simulator for robot grasping,
IEEE Robotics & Automation Magazine, 2004.
[29] A. T. Miller, S. Knoopt, H. I. Christensen, P. K. Allent: Automatic
GraspPlanning Using Shape Primitives, Proceedings of ICRA, 2003.
[30] Dan Ding, Yun-Hui Liu, Shuguo Wang: Computing 3-D Optimal Form-
Closure Grasps, Robotics and Automation, 2000. Proceedings. ICRA '00, 2000.
[31] C. Ferrari, J. Camy: Planning optimal grasps, Robotics and Automation,
1992. Proceedings., 1992.
[32] P. Violero, I. Mazon, M. Tayx: Automatic Planning of a Grasp for a "Pick
and Place" Action, 1990 IEEE International Conference on Robotics and
Automation, 1990. Proceedings, 1990.
[33] Zhixing Xue, A. Kasper, J. M. Zoellner, R.Dillmann: An Automatic
GraspPlanning System for Service Robots, International Conference on
Advanced Robotics, 2009. ICAR 2009, 2009.
[34] N. Curtis, Jing Xiao: fficient and Effective Grasping of Novel Objects
through Learning and Adapting a Knowledge Base, IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2008. IROS 2008, 2008.
[35] Kimitoshi Yamazaki, Masahiro Tomono, Takashi Tsubouchi, Shin’ichi
Yuta: A Grasp Planningfor Picking up an Unknown Object for a Mobile
Manipulator, Proceedings 2006 IEEE International Conference on Robotics
and Automation, 2006. ICRA 2006, 2006.
[36] C. Goldfeder, P. K. Allen, C. Lackner, R. Pelossof: rasp Planning
viaDecomposition Trees, IEEE International Conference on Robotics and
Automation, 2007.
[37] D. Fischinger, M. Vincze: Empty the Basket - A Shape Based Learning
Approach forGrasping Piles of Unknown Objects, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2012.
[38] B. Calli, W. Caarls, Q. Lei, M. Wisse, P. Jonker: SMAG: Simultaneous
Modeling and Grasping, Robotics Science and Systems (RSS), 2013.

 Pag. 110

[39] Farrokh Janabi-Sharifi: Automatic Grasp Planning for Visual-Servo
Controlled Robotic Manipulators, IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 1998.
[40] N. Vahrenkamp: Simultaneous Grasp and Motion Planning, IEEE
Robotics & Automation Magazine, 2012.
[41] Point Cloud Library: Removing outliers using a Statistical Outlier
Removal filter,
http://pointclouds.org/documentation/tutorials/statistical_outlier.php,
2012.
[42] S. M. Ross: Introductory Statistics - Chapter 12 Linear Regression,
Academic Press, 2010.
[43] V. D. Nguyen: Constructing stable grasps, IEEE International Conference
on Robotics and Automation. Proceedings., 1987.
[44] S. Chitta, E. G. Jones, M. Ciocarlie, K. Hsiao: Mobile Manipulation in
Unstructured Environments, IEEE Robotics & Automation Magazine
(Volume:19 , Issue: 2), 2012.
[45] Wikipedia: Sequential function chart, Sequential function chart (SFC),
2014.
[46] N. J. Mitra, N. Gelfand, H. Pottmann, L. Guibas: Registration of Point
Cloud Data from a Geometric Optimization Perspective, Eurographics
Symposium on Geometry Processing, 2004.
[47] A. V. Segal, D. Haehnel, S. Thrun: Generalized-ICP, Robotics: Science and
Systems, 2009.
[48] M. Duckham, L. Kulik, M. Worboys, A. Galton: Efficient generation of
simple polygons forcharacterizing the shape of a set of points inthe plane,
Pattern RecognitionVolume 41, Issue 10, October 2008, Pages 3224–3236, 2008.
[49] Wikipedia: Point in polygon,
http://en.wikipedia.org/wiki/Point_in_polygon, 2014.
[50] Mathworks: Simulink, simulation and Model-Based design,
www.mathworks.com/products/simulink/, 2014.
[51] Coppelia Robotics: V-Rep, Virtual robot experimental platform,
http://www.coppeliarobotics.com/, 2014.
[52] KUKA youBot developers: KUKA youBot API, http://www.youbot-
store.com/youbot-developers/software/libraries/kuka-youbot-api, 2014.
[53] Wikipedia: OpenNI, http://en.wikipedia.org/wiki/OpenNI, 2014.

 Pag. 111

[54] ASUS: Xtion PRO LIVE,
http://www.asus.com/Multimedia/Xtion_PRO_LIVE/, 2014.
[55] KUKA youBot developers: ROS Wrapper for KUKA youBot API,
http://www.youbot-store.com/youbot-
developers/software/frameworks/ros-wrapper-for-kuka-youbot-api, 2014.
[56] Gazebo: Robot simulation made easy, http://gazebosim.org/, 2014.
[57] Benjamin Keiser: Torque Control of a KUKA youBot Arm, Master Thesis
at Robotics and Perception Group University of Zurich, 2013.
[58] Roberto Ancona: Navigation and Redundnacy Resolution with KUKA
youBot (Simulation)., https://www.youtube.com/watch?v=z0gLybCeIqE,
2014.
[59] Roberto Ancona: Mobile Manipulation in a completely unknown
environment with KUKA youBot, https://www.youtube.com/watch?
v=j_5ABJsX_Po, 2014.
[60] Roberto Ancona: Mobile Manipulation with KUKA youBot (Simulation
environment) , https://www.youtube.com/watch?v=kO8cLKj3e_k, 2014.
[61] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo: Robotics: Modelling,
Planning and Control, Chapter 7 - Dynamics, Springer, 2008.
[62] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo: Robotics: Modelling,
Planning and Control, Chapter 8 - Motion control, Springer, 2008.

	Chapter 1 - An introduction to mobile manipulation
	Chapter 2 - Kinematics of KUKA youBot mobile manipulator
	Chapter 3 – Redundancy Resolution
	Chapter 4 – Navigation and obstacle avoidance
	Chapter 5 – Grasp synthesis
	Pick and place operations with KUKA youBot
	Chapter 7 - Experimental results
	Conclusions and future works
	Appendix A – KUKA youBot hardware specification
	Appendix B – JyouBot Interface
	Appendix C – Automatic calibration of the depth camera relative frame position
	Appendix D – Torque control of KUKA youBot arm
	Bibliography

