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Abstract

Thanks to the high number of  degrees of freedom and to the ability to
freely  navigate  in  the  environment,  mobile  manipulators   exhibit
a virtually unlimited  reachable  workspace,  while  also presenting  a
remarkable  level  of  dexterity,  namely  the  capability  of  performing
manipulation tasks. These features make mobile manipulators particularly
suited to  carry  out autonomous  task  in  an  unknown and  dynamic
environment. 
Within this scenario, a framework to execute autonomous pick and place
operations in a completely unknown environment has been developed in
this work, exploiting a KUKA youBot mobile manipulator as experimental
platform. Both the environment and information such as shape, position
and dimension of the objects to be manipulated are a-priori unknown to
the robot. All the necessary data are then acquired on-line through a depth
camera and several proximity sensors. A grasp synthesis process has been
introduced to compute optimal grasping configurations on the fly, based
on data acquired by an Xtion Pro Live depth sensor. Optimization of the
whole  robot  manipulability,  with  the  purpose  of  increasing  the
coordination  between  base  and  arm,  and  minimization  of  the  mobile
platform motions are obtained by exploiting the redundancy of the KUKA
youBot  mobile  manipulator.  A  technique  based  on  rotational  potential
fields has also been adopted to allow the robot to navigate autonomously
without colliding with the environment. Both simulated and experimental
validations of  the proposed approach demonstrate the effectiveness and
reliability  of  our implementation in dealing with  manipulation tasks in
unknown environments. 
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Estratto in lingua italiana

Al  giorno  d'oggi  viene  fatto  ampio  uso  di  sistemi  robotici  in  ambito
industriale  per  eseguire  operazioni  pericolose,  ripetitive  e  pesanti.
L'introduzione  di  robot  nel  contesto  manifatturiero,  infatti,  consente  di
migliorare la qualità dei prodotti, le condizioni di lavoro, e porta ad un uso
ottimizzato  delle  risorse.  Le  linee  di  produzione  delle  attuali  industrie,
tuttavia,  sono  dotate  di  manipolatori  fissi  e  dedicati,  che  risultano  poco
flessibili,  poiché  ripetono  meccanicamente  le  stesse  operazioni  per  tutta  la
durata del processo di produzione. Recentemente, l'inadeguatezza di questi
manipolatori  sta  diventando  sempre  più  evidente  alla  luce  della
globalizzazione  dei  mercati  e  della  sempre  crescente  domanda  di
diversificazione di prodotto, che richiede uno spostamento dal paradigma di
produzione di massa al paradigma di produzione personalizzata. Le correnti
tecnologie dell’automazione rendono difficile e costoso scalare la produzione
e la varietà dei prodotti in base alla volatilità del mercato. Inoltre, a causa di
questa  ridotta  flessibilità,  il  mercato  fatica  a  trovare  concrete  soluzioni
commerciali  nell'ambito  della  robotica  di  servizio,  nel  cui  contesto  i  robot
devono assistere gli esseri umani nell'ambiente domestico e lavorativo. 
Per superare queste problematiche, le future tecnologie dovranno consentire
ai sistemi  robotici di operare in ambienti sconosciuti e dinamici, cooperare
con gli esseri umani e, più in generale, costituire dei sistemi general purpose in
grado  di  eseguire  una  gran  varietà  di  compiti  e  funzionalità.  La
manipolazione  mobile  costituisce  una  valida  alternativa  per  raggiungere
questi obbiettivi sia nella robotica industriale, sia nella robotica di servizio. I
manipolatori mobili sono robot costituiti da uno o più bracci robotici montati
su  una  piattaforma  mobile.  La  composizione  di  capacità  locomotive  e
manipolative assicura a questi  robot un maggior livello di destrezza e uno
spazio  di  lavoro raggiungibile  virtualmente  illimitato.  Per  queste ragioni,  i
manipolatori mobili, confrontati coi tradizionali manipolatori fissi, risultano
più adatti a svolgere una ampia varietà di compiti nei più svariati ambienti. 
La navigazione è una attività fondamentale per i  robot mobili,  che devono
essere  in  grado  di  muoversi  in  modo  sicuro  da  una  posizione  all'altra
dell'ambiente, evitando possibili collisioni con ostacoli presenti in esso.  In un
contesto industriale, i manipolatori mobili devono spostarsi autonomamente
tra le diverse stazioni di lavoro che formano la linea di produzione, evitando
collisioni con altri robot fissi o mobili, macchine e operatori umani. I robot,
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quindi,  devono  essere  provvisti  di  una  strategia  di  navigazione,  che,
basandosi sulle percezioni sensoriali acquisite in tempo reale, permetta loro di
muoversi all'interno di ambienti dinamici e sconosciuti.
I manipolatori mobili, inoltre, devono interagire con gli oggetti presenti nello
spazio di lavoro per eseguire operazioni di manipolazione e assemblaggio.
Attualmente,  nel  campo della  robotica  industriale,  ogni  singola operazione
viene accuratamente programmata da operatori umani e poi viene eseguita
dai robot, che meccanicamente la ripetono. Un procedimento più adatto ad
eseguire operazioni di manipolazione in modo autonomo sarebbe specificare
solamente lo stato finale desiderato degli oggetti, e lasciare al robot il compito
di  pianificare la corretta  sequenza di  operazioni  necessaria  per  completare
l'incarico assegnato. Per sviluppare questo tipo di approccio, i robot devono
essere  in  grado  di  interagire  autonomamente  con  una  grande  varietà  di
oggetti, decidendo il modo migliore per afferrarli e riposizionarli in una nuova
allocazione  stabile.  La  tematica  del  grasping,  ovvero  come  il  robot  debba
afferrare  un  certo  oggetto,  è  particolarmente  critica  se  eseguita  in  modo
autonomo.  Infatti  il  robot,  basandosi  su un modello  virtuale  degli  oggetti,
deve pianificare e poi  eseguire delle pose di  grasping che permettano una
presa sicura e stabile, nonostante queste cambino notevolmente da oggetto a
oggetto. 
Abilità  di  navigazione e  manipolazione simili  sono necessarie  nel  contesto
della robotica di servizio, dove ai manipolatori mobili è richiesto di assistere
esseri  umani,  non  necessariamente  esperti  nel  campo  ICT,  all'interno  di
ambienti e situazioni di tutti i giorni. Rispetto agli spazi di lavoro industriali,
la  navigazione autonoma di  robot  all'interno  di  case  o  uffici  è  ancora  più
complessa, in quanto essi  costituiscono ambienti caotici,  pieni  di ostacoli  e
caratterizzati da passaggi stretti. Anche la manipolazione di oggetti risulta più
critica nell'ambito della robotica di servizio, dove il robot deve essere in grado
di  eseguire  svariate  operazioni  interagendo  con  oggetti  completamente
sconosciuti. Infatti, a differenza dalle situazioni industriali, in cui un modello
completo  ed  accurato  degli  oggetti  da  manipolare  è  dato  a  priori,  nella
robotica di servizio questi modelli devono essere ricostruiti in tempo reale dal
sottosistema  sensoriale  del  robot,  costituito  da  telecamere  e  sensori  di
profondità.  Strategie  euristiche  devono  poi  essere  usate  per  pianificare  e
controllare  l'operazione  di  manipolazione,  basandosi  sul  modello  grezzo
ricostruito in precedenza. 
Una  ulteriore  tematica  caratteristica  riguardante  la  manipolazione  mobile
consiste  nella  risoluzione  della  ridondanza  cinematica.  Una  ridondanza
cinematica  si  manifesta  quando il  numero  totale  di  gradi  di  libertà  di  un
sistema  meccanico  supera  quello  strettamente  necessario  per  eseguire  una
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certa operazione. Poiché i manipolatori mobili aggiungono ai gradi di libertà
del braccio robotico i gradi di libertà della base mobile, di norma costituiscono
dei robot ridondanti. La ridondanza permette al robot di eseguire la stessa
operazione  in  infiniti  modi  diversi:  scegliere  tra  questi  una  modalità  che
ottimizzi un voluto comportamento, è un problema importante da considerare
per  sfruttare  al  meglio  le  notevoli  possibilità  offerte  dalla  manipolazione
mobile.  Opportune  tecniche  di  ridondanza  possono  essere  utilizzate,  ad
esempio,  per mantenere i  valori  di  giunto all'interno dei  loro vincoli  fisici,
mantenere il robot in una configurazione dove possiede una buona capacità di
eseguire  compiti  di  manipolazione,  evitare  collisioni  con  ostacoli  o
minimizzare il consumo di energia. 

L'obiettivo  principale  di  questa  tesi  consiste  nello  studiare  come un  robot
mobile,  dotato  di  una  braccio  robotico,  possa  eseguire  compiti  di
manipolazione in un ambiente completamente sconosciuto. Si è prefissato di
analizzare come la ridondanza, caratteristica comune dei manipolatori mobili,
possa  essere  usata  per  migliorare  la  coordinazione  tra  braccio  robotico  e
piattaforma mobile, e come possa essere sfruttata per supportare e ottimizzare
le  operazioni  di  manipolazione in  generale.  E'  stato  individuato,  inoltre,  il
requisito di sviluppare una tecnica di navigazione che consenta al robot di
muoversi in sicurezza evitando collisioni con l'ambiente circostante. Infine, è
stato definito l'obiettivo di studiare come un manipolatore mobile possa essere
adoperato, nel contesto della robotica industriale e di servizio, per afferrare
oggetti con forma e allocazione non nota a priori. 

In questo lavoro è stato sviluppato un sistema di manipolazione mobile che
permette  di  eseguire  in  modo  autonomo  operazioni  di  pick-and-place
utilizzando la piattaforma di ricerca costituita dal robot KUKA youBot. KUKA
youBot è un robot composto da una base mobile omnidirezionale e da un
manipolatore  seriale  a  cinque  assi,  per  un  totale  di  otto  gradi  di  libertà
complessivi.  La descrizione della  ridondanza del  robot è stata introdotta a
livello  cinematico,  tramite  la  definizione  di  un  insieme  di  parametri  di
ridondanza.  Questi  parametri,  che  descrivono il  significato  fisico  dei  gradi
libertà  ridondanti,  possono  essere  arbitrariamente  assegnati  lasciando
invariata  la  configurazione  dell'end-effector  del  robot.  La  ridondanza  del
robot  è  stata  utilizzata  per  ottimizzare  la  manipolabilità  dell'intero
manipolatore mobile, con l'intento di migliorare il coordinamento tra base e
braccio. Inoltre, la ridondanza è stata utilizzata per minimizzare i movimenti
della base mobile,  mantenere i  giunti  all'interno dei  loro  limiti  fisici  e  per
tenere  un  certo  obiettivo  all'interno  del  campo  visivo  del  sensore  video
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utilizzato.  Per  conferire  al  robot la  capacità  di  navigare autonomamente,  è
stata sviluppata una strategia di controllo reattiva basandosi sul concetto di
campi  virtuali  di  forza rotazionali,  che consentono al  robot di  aggirare gli
ostacoli percepiti, invece che semplicemente essere respinto da essi. In questo
modo è stato possibile superare il problema di minimo locale, caratteristico
delle strategie di navigazione basate su campi di forza virtuali. Un insieme di
sensori di prossimità montati attorno alla base mobile del robot, o un singolo
dispositivo  video  di  profondità  sono  stati   usati  indifferentemente  per
acquisire i dati necessari alla navigazione. Infine, è stato realizzato un robusto
ed efficiente processo di sintesi di pose di grasping con l'intento di eseguire
operazioni  di  manipolazione  in  un  ambiente  completamente  sconosciuto,
dove  le  informazioni  riguardanti  forma,  dimensione,  posizione  e
orientamento degli oggetti da afferrare non sono fornite in anticipo al robot. Il
processo  di  sintesi  del  grasping  sviluppato,  utilizzando  il  sensore  di
profondità ASUS Xtion Live Pro, ricostruisce un modello virtuale degli oggetti
presenti  nell'ambiente  e  procede  poi  alla  generazione  di  configurazioni  di
grasping  ammissibili.  Criteri  euristici  sono  stati  adottati  per  valutare  la
stabilità delle varie configurazioni, in modo da selezionare ed eseguire quelle
che dimostrano maggior garanzia di successo. Grazie al framework realizzato,
il  robot KUKA youBot è  in grado di  esplorare autonomamente l'ambiente,
riscostruire  il  modello  virtuale  degli  oggetti  da  manipolare,  pianificare  ed
eseguire correttamente le operazioni di pick-and-place. 

La  struttura  della  tesi  è  organizzata  come  segue:  il  Capitolo  1  introduce
tematiche  e  motivazioni  legate  alla  manipolazione  mobile,  nel  Capitolo  2
viene introdotta la cinematica del robot KUKA youBot; possibili strategie di
risoluzione della ridondanza cinematica vengono proposte nel Capitolo 3; la
strategia  di  navigazione basata su campi di  forza virtuale  è  presentata  nel
Capitolo 4; il processo sviluppato di sintesi del grasping viene illustrato nel
Capitolo 5;  nel  Capitolo 6 vengono proposti  alcuni  dettagli  implementativi
riguardanti il sistema autonomo di pick-and-place realizzato; nel Capitolo 7
vengono presentati i risultati sperimentali ottenuti. 
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Chapter 1 -  An introduction to mobile manipulation

Chapter 1

An introduction to mobile manipulation

“Why do plants not have brains? 
The answer is actually quite simple: they don’t have to move.”

Lewis Wolpert

1.1 Overview
Nowadays robots are widely used in industry to perform dangerous, dull and
heavy tasks.  Indeed,  robot-based manufacturing  increases  product  quality,
improves  work  conditions,  and  leads  to  an  optimized  use  of  resources.
However, the common production lines of today industries are equipped with
fixed  and  dedicated  manipulators,  which  result  rather  inflexible,  as  they
repeat continuously the same task during all the production lifetime. In recent
years, the inflexibility and inadequacy of industrial robotics has become more
and  more  evident  due  to  globalization  of  markets,  trade  instability,  e-
commerce  and  explosion  of  product  variety,  which  leads  to  a  shift  in
paradigm  from  mass  production  to  customized  production.  The  current
automation practices, make it difficult, time consuming, and costly  to change
the type of products manufactured and to scale the production up and down
in response to market volatility [1].
Moreover,  the  lack  of  flexibility  causes  the  robotics  market  to  struggle  in
finding concrete commercial solutions in the area of service robotics, where
robotic systems should be devoted to assist humans in home-care and health-
care  fields.  As  shown  in  Figure  1.1,  the  future  industrial  robotics  should
maintain its efficiency to guarantee big production volumes, while enjoying a
larger  degree  of  flexibility  to  deal  with  product  variety.  Service  robotics,
instead,  can afford to  have less efficient  performance,  but  must  be able  to
execute a great variety of tasks and operations. 
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Figure 1.1    Efficiency and flexibility relation in industrial and service robotics.

In order to achieve these objectives, the future robotics technologies should
autonomously  operate  in  unknown and dynamic  environments,  cooperate
with humans and be part of general purposes systems, capable of executing
great variety of tasks. Mobile manipulation has been indicated [2] [3] [4] [5] as a
convincing concept to achieve these objectives both in industrial and service
robotics.  Mobile  manipulators  are  composed of  one  or  more  robotic  arms
mounted  on  a  mobile  platform.  Indeed,  the  composition  of  locomotion  a
manipulation  abilities  ensures  an  increased  level  of  dexterity  and  a
virtually unlimited reachable workspace  to mobile manipulators. Compared
to traditional industrial robots, mobile manipulators are thus more suitable to
adapt  to  changing  environments  and  perform  a  wide  variety  of
manufacturing tasks. 

Figure 1.2     Mobile manipulator subsystems.

Efficiency

Flexibility

Product volume

Present
Industrial Robotics

Service
Robotics

Future
Industrial Robotics

Tooling system

Robotic Arm Mobile Platform

Vision system



 Chapter 1 -  An introduction to mobile manipulation Pag. 3 

Besides  the  robotic  arm and the  mobile  platform,  an  autonomous  mobile
manipulator is usually equipped with a vision subsystem, which is composed
by a set of sensor devices necessary to perceive the environment state, and a
tooling subsystem, whose role is to provide the right actuation instruments to
interact with the environment [6] (See Figure 1.2). The most common mobile
manipulators, developed in the recent years, are reported in Figure 1.3.

Little Helper (2009)
Department of production 

Alborg, Denmark

Justin (2009)
German Aerospace Center

Wessling, Germany

KUKA omniRob (2009)
KUKA laboratories GmbH

Augsburg, Germany

PR2 (2010)
Willow Garage

Menlo Park, California

KUKA youBot (2011)
KUKA laboratories GmbH

Augsburg, Germany

Care-O-Bot (2015)
Fraunhofer-Gesellschaft

Germany

Figure 1.3 Examples of recent mobile manipulators. 

As described in [3], to achieve a real improvement in the overall productivity,
the introduction of mobile manipulators in the industrial field should satisfy
logistic,  assistive and service requirements. Logistic requirements cover the
process  of  transporting  parts  between different  workstations  and storages,
that compose the production line, and the process of loading components,
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several or one at time, into feeders and machines. Currently, logistics tasks are
carried out by humans and represent a critical and expensive process in the
production line. Through mobile manipulation, the logistic field can be fully
automated,  as it  has been done,  for example,  by the well  known Amazon
company,  which  has  adopted  mobile  robots  to  perform  autonomous
warehouse inventory movements  [7]. Assistive tasks cover the processes of
loading/unloading materials into machinery for processing, pre-assembling
of  components,  observing  and  comparing  parts  to  identify  and  correct
defects.  Finally,  service  tasks  should  assist  the  production  process  by
maintaining, repairing, overhauling and cleaning the different workstations. 
To perform these kind of operations, mobile robots must be perfectly inserted
in the ICT system of the company. Through a wireless access point, mobile
robots should be connected within the industry network,  so that  they can
communicate  with  the  other  information  technologies,  as  the  production
control  and  diagnostic  system,  the  Enterprise  Resource  Planning,  the
Warehouse  Management  Systems,  as  well  as  with  human  operators  (see
Figure 1.4). 

Figure 1.4    Industrial network architecture.

In order to fulfil these requirements, navigation and manipulation abilities for
mobile  manipulators  should  be  developed.  Navigation  is  a  fundamental
activity  for  mobile  robots,  that  should  be  able  to  safely  move  from  one
position of the environment to another one, while avoiding collisions with the
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objects possibly disposed in it. In an industrial context, mobile manipulators
should  navigate  from  one  workstation  to  another  one,  while  avoiding
collision  with  other  robots,  machines  and  human  operators.  Thus,  robots
must  be  provided  with  a  navigation  strategy  that,  based  on  the  visual
perceptions provided by cameras and proximity sensors, allows them to move
safely inside unknown and dynamic environments. To cope with these issues,
often  navigation  is  divided  in  local and  global navigation  [8].  Global
navigation, using a map of the environment a-priori known or reconstructed
during the motion of the robot, searches for a valid path to reach a desired
position. Local navigation, instead, has the purpose of guiding the robot and
avoiding collisions with obstacles, based on the perceptions acquired by the
vision  system  in  real-time.  In  this  way  it  is  possible  to  face  environment
changes, unforeseen by the global navigation. 
Mobile  manipulators,  furthermore,  must  interact  with  the  environment  to
perform  manipulation  tasks,  as  grasping  objects  and  changing  their
arrangement in the workspace, assembling parts, opening and closing doors.
Nowadays,  in  the  field  of  industrial  robotics,  every  action  composing  a
manipulation  task  is  first  carefully  programmed by  human operators  and
then  executed  by  robots,  that  mechanically  repeat  it.  A  behaviour  more
suitable  for  autonomous  mobile  manipulators,  would  be  for  the  human
operators  to specify  only  the final  desired configuration of  the objects  the
should  be  manipulated  or  assembled  and  leave  to  the  robot  the  duty  of
planning  the  correct  sequence  of  operations  necessary  to  carry  out  the
manipulation task. Following this perspective, the robot controller should be
composed by a  cognitive layer and a  motion layer. The cognitive layer,  using
artificial intelligence techniques [9], should recreate an abstract and symbolic
representation of the environment, useful to plan a sequence of actions, that
leads to the desired goal configuration of the objects (Figure 1.5). The motion
layer,  instead,  controls  the  actual  motions  of  the  robot  by  generating  the
necessary  trajectories  to  accomplish  the  abstract  actions,  described  by  the
cognitive layer. To develop this kind of approach, it necessary for the robot to
interact autonomously with a great variety of objects, for example it should be
able to  decide the  best  way to  grasp a  certain  object  starting from its  3D
virtual  model,  and  choose  how  to  rearrange  it  in  a  new  stable  position.
Moreover, especially for assembly tasks, it is necessary for the robot to interact
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with the objects in a compliant way, as in the well known case of the peg in
hole  insertion  [10].  Thus,  torque  and  force  control  strategies  should  be
considered for a better interaction between the robot and the environment. 

Figure 1.5 Example of symbolic state space for manipulation of three blocks. 

Similar navigation and manipulation abilities are needed by service robotics,
where  mobile  manipulators  are  required  to  assist  human  beings,  not
necessary experts in the robotics or ICT fields, inside everyday environments.
Compared  to  industrial  workspace,  the  autonomous  navigation  of  robots
inside houses or offices is even more complex, because they constitute very
cluttered  and  dynamic  environments.  To  guarantee  correct  and  secure
motions in these particular environments, a 3D navigation strategy  [2] must
take into account the whole structure of both the environment and the robot
itself to plan collisions free paths (see Figure 1.6). Also manipulation is more
critical  in  the  case  of  service  robotics,  where  robots  must  execute
manipulation tasks on a great variety of completely unknown objects. Indeed,
differently from industrial situations, where an accurate and complete model
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of the objects  to be manipulated is given,  in service robotics these models
must  be  reconstructed  on  the  fly  by  the  visual  subsystem  of  the  robot.
Heuristic  strategies,  then,  should  be  used  to  plan  and  control  the
manipulation task, based on the reconstructed rough model of the objects (see
again Figure 1.6). 

3D Navigation Manipulation of unknown objects

Figure 1.6 Example of 3D Navigation and Manipulation of unknown objects with PR2 
robot.

Furthermore, a typical issue regarding mobile manipulation is redundancy
resolution. A kinematic redundancy occurs when the total degrees of freedom
of a robotics system exceed those strictly required to execute a certain task. As
mobile manipulators add the degrees of freedom of their mobile base to those
of the robotic  arm,  often they become redundant  robot.  Since it  is  widely
recognized that a general task consists of following an end-effector Cartesian
trajectory  using  six  degrees  of  freedoms (three  for  position  and three  for
orientation), a robot with seven or more degree of freedom is considered as
the typical example of inherently redundant manipulator. Redundancy allows
the robot to execute the same task in infinite different ways. Choosing among
all these possibilities an optimal modality to perform a certain operation, is
then a critical issue to exploit the wide capabilities of mobile manipulation.
The main idea of redundancy resolution is to use the exceeding degrees of
freedom to obtain secondary desired behaviours, while the robot executes in a
completely  consistent  way  its  primary  task.  Redundancy  resolution,  for
example, can be used to keep the joints values away from their physical limits,
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maintain the robot in a configuration where it has a good ability to perform
manipulation  tasks,  avoid  obstacles,  minimize  the  energy  consumption  or
support the visual subsystem of the robot. 

1.2 Objectives of the thesis
The main objective of this thesis is to study how a mobile robot, equipped
with a robotic arm, can execute manipulation tasks in a completely unknown
environment. This work, in particular, has the objective of analysing how the
redundancy,  typical  of  mobile  manipulators,  can  be  used  to  improve  the
coordination  between  mobile  base  and  robotic  arm,  and  how  it  can  be
exploited  to  support  and  optimize  manipulation  tasks  in  general.
Furthermore another goal is to develop a navigation technique, which would
allow the robot to safely move in the environment while avoiding obstacles. 
A final objective is to study how a mobile manipulator can be used, in the
context of both industrial and service robotics, to grasp objects, whose shape
and position are a-priori unknown. 

1.3 Achieved results
In  this  work,  a  mobile  manipulation  framework,  composed  of  control
techniques and algorithms,  has been developed to perform pick and place
operations  with the  KUKA youBot  robotics  research platform  [11].  KUKA
youBot is a robot composed of an omnidirectional mobile platform and a five
axis serial manipulator, for a total of eight overall degrees of freedom. The
redundancy description of the robot has been introduced at a kinematic level
with the  definition of  a  set  of  redundancy parameters.  These  redundancy
parameters, which describe the physical meaning of the exceeding degrees of
freedom of the robot, can be arbitrary set without altering the end-effector
configuration. The redundancy of the system has been exploited optimizing
the manipulability of the whole mobile manipulator so that configurations of
the robot that are more suitable for manipulation tasks are preferred and the
coordination  between  mobile  platform  and  robotic  arm  results  improved.
Furthermore redundancy has been utilized to keep the joint  values  of  the
manipulator  inside  their  physical  limits,  to  minimize  the  mobile  base
movements and to keep some goal object inside the field of view of the vision
subsystem. 
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In  order  to  confer  the  robot  the  ability  to  correctly  navigate  in  the
environment, a reactive local control strategy has been proposed, based on
the concept of virtual rotational fields, which have the purpose of guiding the
robot around the obstacles instead of simply being repulsed by them. In this
way the classical local minima problem, characteristic of the potential field
navigation technique, has been solved. A set of proximity sensors mounted
around the platform or a single depth camera can be equivalently used as a
sensory  system  to  acquire  the  environment  information  necessary  for  the
navigation of the robot.
Finally an effective and efficient grasp synthesis process has been developed
with  the  purpose  of  performing  manipulation  operations  in  a  completely
unknown environment, where the information regarding shape, dimension,
position and orientation of  the objects  are not  given a-priori  to  the robot.
Thanks to the realized framework,  KUKA youBot is  able to autonomously
explore  the  environment,  reconstruct  the  model  of  the  objects  through  a
depth camera device, plan and correctly execute pick and place operations.
Simulated and experimental  validations  demonstrate  the  effectiveness  and
reliability  of  our  implementation  in  dealing  with  manipulation  tasks  in
unknown environments. 

1.4 Structure of the thesis
The thesis is organized as follows: the kinematics of the KUKA youBot robot
is  presented  in  Chapter  2;  possible  redundancy  resolution  strategies  are
discussed  in  Chapter  3;  in  Chapter  4  the  developed  navigation  technique
based  on  rotational  potential  is  illustrated;  the  realized  grasp  synthesis
process  is   presented  in  Chapter  5;  implementation  details  regarding  the
autonomous  pick-and-place  framework  are  illustrated  in  Chapter  6;
experimental results are reported in Chapter 7.
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Chapter 2 - Kinematics of KUKA youBot mobile manipulator

Chapter 2

Kinematics of KUKA youBot mobile 
manipulator
In this work, a mobile manipulator is considered as a system composed of a
robotic  arm mounted  on  a  mobile  base.  Often  these  two components  are
considered as separate elements and not as a whole system. In this scenario
first the mobile base is used only with navigation purposes, e.g. to approach a
certain object, and then the robotic arm performs the manipulation task as if it
was fixed to the ground. This approach does not take into account the whole
capabilities  of  the  system,  as  not  all  its  degrees  of  freedom  are  used
simultaneously. A more efficient way to accomplish a manipulation task is for
the base and the arm to simultaneously cooperate. Considering the synergies
between the mobile base and the manipulator is a better way to tackle the
problem of mobile manipulation to exploit the high level of dexterity it offers.
For this reasons the kinematic model of a mobile manipulator must describe
the  characteristic  of  both  the  base  and the  arm  in  a  comprehensive  way.
Moreover mobile manipulators, due to their high number of DOFs, are often
redundant system.  Thus,  introducing a  description of  their  redundancy at
kinematics level can be an efficient measure to exploit the specific geometric
characteristics of a certain robot. 

In this chapter a kinematic model of the KUKA youBot mobile manipulator
will be presented. First the forward kinematics will be introduced, then the
specific redundancy parameters of the robot and their geometric meaning will
be explained, making it possible to define a closed form inverse kinematics
algorithm. Finally a condition of existence for the inverse kinematics solution
and the ranges of existences of the redundancy parameters will be discussed. 
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2.1 Forward kinematics
The state of a mobile manipulator can be expressed in a general form as:

q=[qb

qa] (2.1)

where subscript b is assigned to the base variables qb=[XbY bZbαbβbγb]
T ,

that represent position and orientation of the mobile base, while subscript
a denotes  the  arm  joint  position  variables qa=[q1 q2... qn]

T of  a
manipulator with n degrees of freedom.  In particular, the variables Xb ,
Y b and Zb define the absolute position of the mobile base centre of mass,

while αb , βb and γb are respectively the raw, pitch and yaw angles that
determine the base orientation. 

Figure 2.1 KUKA youBot mobile manipulator.

The KUKA youBot (Figure 2.1) is  a robot composed of an omnidirectional
mobile platform and a five axis serial manipulator. For a complete hardware
specification of the robot refer to Appendix A.
Since the mobile platform is capable only of planar movement and only the
case of a single robotic arm mounted on the base is considered, the state of
KUKA youBot will be defined as

qb=[Xb Y b θb]
T (2.2)

qa=[q1 q2 q3 q4 q5]
T

(2.3)
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where θb is  the  planar  absolute  orientation  of  the  mobile  platform  (see
Figure 2.2). 

Figure 2.2 KUKA youBot state variables

Forward kinematics is the basic mathematical tool for finding the Cartesian
position and orientation of the robot end-effector knowing its state variables.
Direct  kinematics  for  a  mobile  manipulator  can be expressed in a  general
form through the following homogeneous transformation matrix:

KF (q)=T bT dT a (2.4)

where T b is  the  homogeneous  transformation  matrix  from  the  absolute
frame to the mobile base frame, T d is a constant transformation matrix that
denotes  the  displacement  between  the  platform  frame  and  the  arm  base
frame, T a is  the  homogeneous  transformation  matrix  from the  arm  base
frame to the end-effector frame, depending on the manipulator kinematics
chain configuration. For the particular case of the KUKA youBot robot the
previous kinematics terms assume the form: 

q1

q2

q3

q4

q5

x

y

X b

Y b

θb
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T b=[
cos (θb) −sin(θb) 0 Xb

sin (θb) cos (θb) 0 Y b

0 0 1 0
0 0 0 1

] (2.5)

T d=[
1 0 0 xd
0 1 0 0
0 0 1 zd
0 0 0 1

] (2.6)

T a=A1
0
(q1)A2

1
(q2)A3

2
(q3)A4

3
(q4)A5

4
(q5) (2.7)

where 

A i
i−1
(q i)=[

cqi
−sqi

cαi
sqi

sαi
ai cθi

sqi
cqi

cα i
−cqi

sα i
a i sqi

0 sαi
cα i

d i

0 0 0 1
] (2.8)

follows the standard Denavit-Hartenberg convention [12]. 

2.2 Redundancy parameters
A  kinematic  redundancy  [13] occurs  when  the  total  DOFs  of  a  robotics
systems exceed those  strictly  required to  execute  a  certain  task.  Therefore
robots are not inherently redundant,  rather there are tasks with respect to
which  they  may  become  redundant.  Since  it  is  widely  recognized  that  a
general task consists of following an end-effector Cartesian trajectory using
six degrees of freedoms (three for position and three for orientation), a robot
with seven or more degree of freedom is considered as the typical example of
inherently redundant manipulator. However even robot with fewer degrees of
freedom may become kinematically redundant for specific tasks, presenting
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task redundant behaviour. Redundancy can even be noticed in particular cases
when there are more then one suitable joints configurations for reach a given
end-effector pose, as for example in the well know case of high or low elbow
in an anthropomorphic arm manipulator (figure 2.3). 

Figure 2.3 The four configurations of an anthropomorphic arm compatible with a given
wrist position. 

Image taken from B. Siciliano, L. Sciavicco, L. Villani,  G. Oriolo: “Robotics -  Modelling,
planning and control”, Springer, 2009, p. 99. 

Redundancy  is  a  key  feature  for  manipulation  actions.  In  fact, additional
degrees of freedom besides those strictly required to execute a certain end-
effector  task  can  be  utilized  to  avoid  singularities,  joint  limits,  workspace
obstacles, but also to minimize joint torque, energy or, in general, optimize
suitable performance indexes. 
Redundancy has a strong connection with the inverse kinematics  problem
that can be summarized as finding the joints values that place the end-effector
in a given Cartesian position and orientation:

q : kF(q)=x (2.9)

where kF : ℜn → ℜm represents the forward kinematics function that maps
the n joint  variables  into  the  desired  end-effector  pose
x=[ xe ye ze αe βe γe ] ,  composed by the position variables xe , ye , ze
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and  the  Tait-Bryan  angles αe , βe , γe that  define  the  end-effector
orientations.  The  dimensional  number m corresponds  to  the  number  of
degrees  of  freedom necessary  to  accomplish  a  certain  Cartesian  task,  and
generally is equal to six. 
In case of redundant robot, since the condition n > m is always verified,  the
inverse  kinematics  problem  is  underconstrained,  therefore  a  Redundancy
Resolution strategy to fully constrain the problem must be defined. 
Redundancy  resolution  is  a  well  known issue  in  control  engineering  and
many different  strategies  have been  proposed over  the  years,  for  example
Extended Jacobian,  Projected Gradient,  Reduced Gradient  [14]. These techniques
are based on the  assumption that  a  closed form inverse  kinematics  is  not
available  due  to  the  difficulty  of  solving  such  analytical  problem  for
redundant manipulator, so first-order differential kinematics  [15] is taken in
consideration  as  the  main  mathematical  tool  for  control  strategies.  These
methods provide a good level of abstraction as they possess the property of
being general and robot independent.  
Another  way  to  approach  redundancy  resolution  is  to  study  the  specific
geometry and kinematics of a robot and extract the redundancy parameters
that  provide  a  physical  meaning  to  the  exceeding  degrees  of  freedom.
Although this method is not robot independent as the others,  it  offers the
possibility to exploit the redundancy of the system in a much more efficient
way, because each redundancy parameter can be used to optimize a specific
behavior.  Moreover  the  expensive  computations  needed  for  differential
kinematics are not necessary with this method. The Redundancy parameters
are used to describe the robot internal motion, namely a particular variation
of the joint values that does not entail a variation of the end-effector position
and orientation.
Let ρ=[ρ1 ρ2 ... ρr ]

T be a vector of redundancy parameters with dimension
r = n−m .  The fully constrained inverse kinematics  problem can now be

formulated as:

k I(x ,ρ)=q (2.10)

where k I : ℜ
m+r

→ ℜ
n is  an inverse kinematics function that computes the

joints values needed to assume a goal pose x with redundancy parameters
ρ .
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The KUKA youBot robot possesses eight overall  degrees of freedom, three
provided by the mobile base and five by the arm, hence it can be classified as
an  inherently  redundant mobile  manipulator.  A  set  of  redundancy
parameters  and  the  relative  closed  form  inverse  kinematics  has  been
proposed for KUKA youBot in [16], where two redundancy parameters, ρ1

and ρ2 ,  are  introduced  for  fully  constrain  the  two  exceeding  degree  of
freedom,  while  parameter ρ3 discriminates  the  high  or  low  elbow
configurations  of  the  arm.  In  the  following  section  the  redundancy
parameters  of  KUKA youBot  will  be  presented  in  detail,  as  well  as  their
physical meaning and their relation with the state variables.

The redundancy parameter ρ1 denotes  the angular  displacement  between
the mobile platform and the manipulator. The redundancy can be described
as the ability of the base to perform a rotation around the first axis of the
manipulator leaving the arm fixed in its position (Figure 2.4). Furthermore
parameter ρ1 can be expressed as a function of the state variables through
the simple relation: 

ρ1=q1 . (2.11)

From  the  previous  equation  it  can  be  easily  seen  that  parameter ρ1 is
subjected to the joint limit of the first axis of the manipulator: q1

min
<ρ1<q1

max .

Figure 2.4 Internal motion induced by ρ1 redundancy parameter.
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Parameter ρ2 models the extension of the youBot arm. Given an end-effector
pose, in fact, the whole mobile manipulator can be more or less outstretched,
placing the platform at  different distances from the end-effector goal  pose
(Figure 2.5). Parameter ρ2 relation with the state variables is given by:

ρ2=a2 sin(q2)+a2 sin(q2+q3)+d5sin (q2+q3+q4) (2.12)

where a2 , a3 and d5 are  the  Denavit-Hartenberg  parameters
characteristic of the manipulator geometry (see Appendix A). The range of
existence of parameter ρ2 depends on the desired pose of the end effector
and  thus  it  will  be  discussed  in  detail  in  section  2.4 after  the  inverse
kinematics algorithm.

Figure 2.5  Internal motion induced by ρ2 redundancy parameter.

Parameter ρ3 denotes the two possible configurations, high or low elbow,
that emerge from the arm inverse kinematics resolution (Figure 2.6).
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Figure 2.6 Elbow up or down configurations induced by parameter ρ3 .

Besides  the  three  redundancy  parameters  presented  in  [16],  an  additional
parameter ρ4 is  introduced  in  this  work.  This  parameters  is  exploited  to
solve the redundancy situation depicted in Figure 2.7, where the end-effector
rotational axis is parallel to the vertical axis z , and that will be referred to
as “vertical configuration redundancy”. 

In particular, redundancy parameter ρ4 defines the absolute orientation of
the robotics arm, which can be arbitrarily set for any vertical configuration of
the  end-effector,  because  the  last  joint  of  the  manipulator  can  be  used  to
compensate the rotational displacement of the whole robot (Figure 2.7). 

Figure 2.7 Task redundancy induced by parameter ρ4 .
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The introduction of parameter ρ4 is particularly important, because vertical
configurations are the most intuitive ones to be used with this kind of robot
for pick and place operations. 
Parameter ρ4 can  be  expressed  as  function  of  the  robot  state  variables
through the following relation: 

ρ4=q1+θb . (2.13)

Figure 2.8 Geometric meaning of redundancy parameter ρ4 .

2.3 Inverse Kinematics
As stated before, inverse kinematics consists in the fundamental process of
finding the joints values that grant a desired end-effector pose. 
A  general  analytical  algorithm  to  accomplish  such  a  task  does  not  exist,
therefore  inverse  kinematics  must  be  derived  for  each  robot  through  a
geometric  and  algebraic  specific  inspection.  In  the  following  section  a
geometric procedure to retrieve the inverse kinematics for KUKA youBot will
be presented. 

In [16] the authors first resolve the inverse kinematics for the arm according to
redundancy  parameter ρ2 and ρ3 ,  then  compute  the  correspondent
configuration  of  the  mobile  platform  taking  in  consideration ρ1 .  The
algorithm proposed in this work follows this methodology, although the task
redundancy  described  through ρ4 is  introduced  at  kinematics  level  and

θ

q1 ρ4

x

y

b
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greater  attention  is  given  to  the  conditions  of  solution  existence  and  the
redundancy parameters admissible ranges. 

The  objective  of  the  youbot  inverse  kinematics  algorithm  is  to  find  that
particular joint configuration q=[Xb Y b θb q1 q2 q3 q4 q5]

T that realises the six
dimensional  goal  pose  of  the  end-effector Xg=[ xg y g z g αg βg γg]

T when
redundancy parameters ρ=[ ρ1 ρ2 ρ3 ρ4]

T are specified.
First the end-effector reference frame is extracted from the goal Tait-Bryan
angles (Figure 2.9).  

Ze=[
ze1

ze2

ze3

]=[
sin(βg)

−cos (βg)sin (αg)

cos(αg)∗cos (βg)
] (2.14)

X e=[
xe1

xe2

xe3

]=[
cos(βg)cos(γb)

cos(αg)∗sin(γg)+cos(γg)∗sin(αg)∗sin (βg)

sin(αg)∗sin (γg)−cos(αg)∗cos(γg)∗sin (βg)
] (2.15)

Figure 2.9 End-effector  reference  frame  with  respect  to  the  world  absolute  frame.
Image taken from [16].

Z g

X g

Y g

Endeffector

Z e

Y e

X e
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The vertical inclination β of the end-effector can be expressed as:

β=atan 2(ze3
,√ze1

2
+ze2

2
) (2.16)

The absolute planar orientation of the end-effector θ0 results as:

θ0=atan2(ze2
, ze1

) (2.17)

The absolute orientation of the whole youBot arm corresponds to θ0 when
the  end-effector  is  not  in  a  vertical  configuration.  When  the  vertical
configuration  occurs, ρ4 is  used  to  define θ0 ,  and  so,  in  this  work,
Equation (2.17) is modified as follows:

θ0={
ρ4

atan 2(ze2
, ze1

)
if Ze // [001]T

otherwise
(2.18)

At this point it is possible to solve the inverse kinematics for joints q2 , q3 and
q4 , as they represent a standard three link planar manipulator, which is

constrained to lay in the vertical plane identified by θ0 (Figure 2.10). 

Figure 2.10  Link 2, 3 and 4 of the KUKA youBot manipulator.  Image taken from [16].

ρ2
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zd+d1

a3

d5

a2
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The following relations hold:

Z ' '
=zg−zd−d1−d5sin (β) (2.19)

X ' '=ρ2−d5 cos (β) (2.20)

Values for the joints position, accounting for redundancy parameters  ρ2

and ρ3 , are obtained through the procedure:

a) cos(θ3)=
(−Z ' '2

−X ' '2
+a2

2
+a3

2
)

(2a2a3)
(2.21)

b) sin(θ3)=sign(ρ3)√1−cos(θ3)
2 (2.22)

c) q3=atan2(sin(θ3) ,cos(θ3))−π (2.23)

d) k1=a2−a3cos (θ3) (2.24)

e) k2=a3 sin(θ3) (2.25)

f) q2=atan2(Z
' '
, X

' '
)+atan 2(k2 , k1)−

π
2 (2.26)

g) q4=β−q2−q3−
π
2 (2.27)

The rotational displacement θ5 of the last link, necessary to align the end-
effector with the desired pose (Figure 2.11), can be computed as:

h) E=[
e11 e12 e13 e14

e21 e22 e23 e24

e31 e32 e33 e34

e41 e42 e43 e44
]=A1

0
(θ0)A2

1
(q2)A3

2
(q3)A4

3
(q4) A5

4
(0) (2.28)

i) cos (θ5)=e11 xe1
+e21 xe2

+e31 xe3
(2.29)

j) sin(θ5)=e12 xe1
+e22 xe2

+e32 xe3
(2.30)

k) q5=atan2(sin(θ5) ,cos(θ5)) (2.31)
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Figure 2.11  Rotational displacement of the last link.  Image taken from [16].

As stated before the value of q1 corresponds to the rotational displacement
between base and manipulator, hence:

l) q1=ρ1 . (2.32)

As the configuration of the manipulator has been completely determined, the
position and orientation of the mobile platform, considering the redundancy
of parameter ρ1 , can be easily derived:

θb=θ0−ρ1 (2.33)
Xb=xg−e14−xd cos (θb) (2.34)
Y b= yg−e24−xd sin (θb) (2.35)

2.4 Conditions for the existence of a solution
The existence of a solution for the inverse kinematics problem, as for every
nonlinear systems, is not always guaranteed. In the general case, a solution for
inverse kinematics exists if the desired end-effector pose lies in the dexterous
workspace, the volume of space which the robot end-effector can reach with
every  orientation.  Furthermore,  in  the  particular  case  of  this  work,  as  the
kinematics has been constrained with redundancy parameters,  the solution
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existence depends even on the values of these parameters, which must lie in a
certain range defined by their physical meaning.
In  this  section  a  set  of  conditions  to  grant  the  existence  of  the  inverse
kinematics solution for the KUKA youBot will be proposed. 

In the case of  a mobile manipulator,  since the base is free to move in the
environment,  the dexterous workspace has limitations only in the height of
the goal pose, that can not be too high.
A condition  of  existence  for  the  KUKA youBot  inverse  kinematics  can  be
derived considering the relation:

−1<cos(θ3)<+1 (2.36)

that can be expanded through Equation (2.21) as:

−1<
(−Z ' '2

−X ' '2
+a2

2
+a3

2
)

(2a2a3)
<+1 . (2.37)

Solving for ρ2 , after some algebraic passages, the following relation can be
found:

t1−t2<(ρ2−t 3)
2<t 1+ t2 (2.38)

where t1=2a2a3 , t2=a2
2
+a3

2
−Z ' '2  and t3=d5 cos(β ) .

From the previous inequality, it is possible to infer two important results: a
condition  of  membership  to  the  dexterous  workspace,  and  a  range  of
admissibility for parameter ρ2 .

Dexterous workspace condition:

t1+t 2>0 (2.39)

Arm extension range:

t3±√ t1−t 2<ρ2<t 3±√ t1+t 2 (2.40)
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If both conditions are satisfied, a solution to the inverse kinematics problem
for  the  KUKA  youBot  is  guaranteed  to  exist.  As  expected,  the  dexterous
workspace condition depends only on the height of  the goal  pose,  and so
defines the maximum reachable height, given a certain end-effector vertical
orientation. The arm extension range defines the minimum and maximum
extension  values  that  the  arm  can  assume  in  a  given  end-effector
configuration.  These  conditions  are  very  useful  and  must  be  taken  into
consideration for the implementation of the inverse kinematics algorithm to
make it more robust. For example, if the height of the desired goal position is
outside the workspace, the dexterous workspace condition can be used to set
the robot end-effector near the workspace limits, so that as soon as the goal
becomes reachable the robot will be as close as possible to it.
These conditions will be resumed in this work in the chapter devoted to grasp
synthesis, as they will be used to identify unfeasible grasp configurations.
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Chapter 3

Redundancy Resolution
Redundant  robots  present  more  degrees  of  freedom  than  those  strictly
required  to  accomplish  a  certain  task.  The  main  idea  of  redundancy
resolution is  to  use the exceeding degrees of freedom to obtain secondary
desired  behaviours   [13] [17],  while  the  robot  executes  in  a  completely
consistent way its primary task. Hence the redundancy resolution problem
consists  in  designing  optimization  criteria,  that  allow  to  achieve  some
subsidiary behaviours, as for example keeping the joints values away from
their physical limits, maintaining the robot in a configuration where it has a
good ability to perform manipulation tasks, avoiding obstacles or minimizing
the energy consumption.
Having  defined  the  robot  redundancy  through  a  set  of  redundancy
parameters,  which can be arbitrarily  set  without  altering the primary task
execution,  it is possible to account for these optimization criteria in a specific
way, namely each parameter can be utilized to achieve a particular behaviour
based on its physical meaning. In this work, an objective function has been
designed for every redundancy parameter considering a desired optimization
criterion. Each redundancy parameter value, necessary for the solution of the
inverse kinematics problem, is then chosen in order to maximize its respective
objective function. In this chapter, possible redundancy resolution strategies
for each redundancy parameter of KUKA youBot will be discussed.  

3.1 Arm extension redundancy
The first objective of any redundancy resolution strategy must be to preserve
the robot primary task. For example, the ideal kinematics model introduced
in the previous chapter does not take into account the feasible range of the
joints variables, resulting in possibly not achievable solutions of the inverse
kinematics problem. The arm extension redundancy, described by parameter
ρ2 for KUKA youBot, can then be used to keep the manipulator joints away
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from their physical limits. For each joint of the KUKA youBot, the physical
limits can be expressed as:

∀ i : qi
min
<q i<qi

max , i=1. ..5 (3.1)

where q i
min and q i

max represent the lower and upper joint limits.
Given an arm joints variables vector qa , the distance from joints physical
limits can be defined by the objective function: 

U l(qa)=1−max
1≤i≤5

2|qi
max
+qi

min

2
−qi|

|qi
max
−qi

min
|

(3.2)

 
Function U l increases with respect to the distance from the joints limits and
is positive only if all the joint variables are inside their range. 
Exploiting the arm extension redundancy only to avoid the joint limits would
be too simplistic, as the constraint on the joint ranges is an objective quite easy
to  achieve.  For  this  reason,  as  suggested  in  [18],  the  arm  extension
redundancy can be also used to maximize the robot manipulability. Given the
robot Jacobian

J (q)=
∂ x p

∂ q
(3.3)

where xp is  the  end-effector  Cartesian  state  vector,  composed  by  the
positional and orientation variables, the manipulability measure  [19] can be
defined as:

Um(q)=√|J (q)J (q )
T
| . (3.4)

The manipulability is a measure of the ability of the robot to modify in any
direction the end-effector pose with respect to its current joint configuration.
Choosing the joint  configuration that  maximizes  the  manipulability  for  a
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desired end-effector pose would then allow easier possible modification of
the end-effector pose in the workspace. 
In [18] the authors utilize a manipulability measure that takes into account
only the degrees of freedom of the manipulator,  forcing the robot to take
configurations with a short extension of the arm, that often collides with the
mobile platform. To exploit the potentiality of mobile manipulation, a viable
solution  is  to  consider  the  manipulability  of  the  whole  system.  For  this
reason the end-effector position of a mobile manipulator can be expressed in
a general way as:

pe=pb+Rb[ pd+k Fa
(qa)] (3.5)

where pb is the position of the mobile base, Rb is a rotational matrix that
describes the orientation of the base with respect to the absolute reference
frame, pd is the displacement between the mobile base and the base of the
arm,  kFa

(qa) is  the arm forward kinematics.  If  the 3D base position and

orientation  variables  are  decomposed  in  translational  ones  as
qb ,T=[ Xb Y b Zb]

T and  rotational  ones  as qb , R=[ rb pb yb]
T ,  then pb

depends only on the translational component of qb and  Rb only on the
rotational  ones.  At  this  point  the  Jacobian  matrix  of  the  whole  mobile
manipulator, necessary for the manipulability measure computation, can be
defined as:
 

J (q)=
∂ pe

∂ q
=[ ∂ pe

∂ qb , T

∂ pe

∂ qb , R

∂ pe

∂ qa
]=[I ∂Rb

∂ qb ,R

[ pd+kFa
(qa)] Rb J a(qa)] (3.6)

where I is  the  identity  matrix,  and J a(qa) is  the  Jacobian  matrix  of  the
arm. The previous equation shows a simple and efficient way to compute the
whole mobile manipulator Jacobian starting from the variables of the base
and the arm as they were two decoupled systems. This structure could be
very  useful  because  often  the  terms  kFa

(qa) and J a(qa) are  already

computed in many manipulator control schemes.
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The  manipulability  measure  for  the  whole  KUKA  youBot  mobile
manipulator,  for example,  can be derived in accordance with the previous
relations  partitioning  the  state  variables  as qb ,T=[ Xb Y b]

T , qb , R=[ θb]
T ,

qa=[q1 q2 q3 q4 q5]
T . The end-effector position is then defined as

pe=[
Xb

Y b

0 ]+[
cos(θb) −sin(θb) 0
sin(θb) cos(θb) 0

0 0 1]([
xd

0
zd
]+k Fa

(qa)) (3.7)

and the terms composing the Jacobian matrix can be computed as

∂ pe

∂qb ,T

=[1 0
0 1
0 0] (3.8)

∂ pe

∂qb , R

=[
−sin(θb) −cos(θb) 0
cos (θb) −sin(θb) 0

0 0 1]([
xd
0
zd
]+kFa

(qa)) (3.9)

∂ pe

∂ qa

=[
cos (θb) −sin (θb) 0
sin (θb) cos (θb) 0

0 0 1] J a(qa) . (3.10)

The  global  objective  function,  accounting  for  the  constraints  on  the  joints
limits and the optimization of the manipulability measure, is composed as:
 

U (q)={ U l(qa)

Um(q)P (qa)

if U l(qa)<0
otherwise (3.11)

where P(qa) is a penalization factor [20] that considers the joint limits and
ensures the continuity of the objective function between its two cases.  The
adopted penalization factor is equal to zero if the joints are near their limits
and to one otherwise, ant it is defined as
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P(qa)=1−exp(−k∏
i=1

5 (q i−qi
min
)(qi

max
−qi)

(q i
max
−qi

min
)

2 ) , (3.12)

where the positive parameter k is a scaling factor.

The  optimization  over  the  redundancy  parameter ρ2 to  maximize  the
objective function U (q) can be executed through the well known gradient
ascent  method  [21].  This  on-line  technique  allows  to  perform  the
optimization, based on the robot current state: for each time instant the values
for ρ2 is determined as

ρ2
t+Δt=ρ2

t +γ
∂U (q)
∂ ρ2

(3.13)

where γ is a positive parameter used for tuning the speed and accuracy of
convergence  of  the  gradient  method.  The  current  value  of  ρ2 can  be
retrieved from the manipulator state qa through Equation (2.12).

The behavior of the objective U (q) as function of parameter ρ2 is shown in
Figure 3.1 and 3.2 for two end-effector configurations. The red lines determine
the intervals of ρ2 where U (q) is positive and so all the joint values are
inside their limits. Note that these feasible ranges are quite tight, especially in
lateral  end-effector  configurations,  a  situation  that  occurs  when  the  end-
effector is parallel to the floor, as shown in Figure 3.2. 

Figure 3.1 Behaviour of U (q) as function of ρ2 for a vertical configuration.

ρ2

U (q)
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Figure 3.2 Behaviour of U (q) as function of ρ2 for a lateral configuration.

3.2 Elbow redundancy
The redundancy parameter ρ3 determines the configuration of the elbow:
positive  values  of ρ3 imply  the  high  elbow,  while  negative  ones  the  low
elbow  posture.  To  be  precise  this  kind  of  situations,  where  the  inverse
kinematics presents multiple but finite solutions, can not be classified as a
pure redundancy as the other ones, however it has been handled with the
parameter ρ3 because it is necessary for a complete definition of the KUKA
youBot inverse kinematics problem. 
As the elbow down configuration causes in many common circumstances a
collision between the arm and the mobile platform or results in unfeasible
poses due to the physical limits of the joints, the elbow up configuration has
been preferred in this work.

3.3 Vertical posture redundancy
As introduced in the previous chapter, a vertical posture of the end-effector
causes  a  particular  task  redundancy  described  by  parameter ρ4 ,  which
represents  the  absolute  orientation  of  the  arm.  Parameter ρ4 can  be
arbitrarily set for any vertical configuration of the end-effector and it is not
subject  to  any  constraint.  In  fact,  even  if  the  last  joint  of  the  youBot  arm
presents physical limits, any end-effector configuration has an equivalent one
rotated of  180 degrees around its  principal  axis,  and so choosing between
these two possible configuration allows to easily overcome the problem of the
physical limits that affects the last joint of the arm. 

ρ2

U (q)
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A typical objective of redundancy resolution is to minimize the overall robot
motion. In case of mobile manipulators, for example, it is a good practice to
reduce the movements of the mobile platform with the aim of minimizing the
error of the odometry system used for the localization of the robot. The task
redundancy  expressed  by  parameter ρ4 can  be  used  to  achieve  this
behavior: indeed if the arm absolute orientation is kept aligned with the goal
position  during  the  approaching  phase  (Figure  3.3),  the  motion  of  the
platform will be minimized. For this purpose the redundancy resolution can
be solved imposing

ρ4=Arg (Pg−Pa) (3.14)

where Pg is the position of the goal pose and Pa is the current position of
the base of the arm. Expanding the previous equation, the following result
can be found:

ρ4=atan2( y g−(Y b+xd sin(θb)), xg−(Xb+xd cos(θb))) (3.15)

Pb Mobile base position Pa Arm base position Pg Goal position

Figure 3.3 Redundancy resolution for parameter ρ4 .
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3.4 Arm-base displacement redundancy
The last redundancy that has to be analyzed is the rotational displacement
between the base and the arm described by redundancy parameter ρ1 . As
shown in Equation (2.11), this redundancy parameter is equal to the value of
the  first  joint  of  the  manipulator,  therefore  it  has  to  be  subjected  to  the
physical  limits  of  that  joint  for  preserving  the  consistency  of  the  robot
primary task. As discussed before, the problem of satisfying the joint physical
limits is not particularly hard, and so a resolution strategy to better exploit the
redundancy of parameter ρ1 has to be found.
The first joint of the manipulator does not affect  the manipulability of the
whole system; intuitively the first joint contributes only to lateral movements
of the and effector, which are already accomplished by the omnidirectional
mobile  base,  thus the manipulability  measure  can not  be consider  for  the
redundancy resolution of parameter ρ1 . 
An obstacle avoidance behavior, that allows the base and the arm to cooperate
with  the  purpose  of  assuming  collision  free  configuration  in  a  cluttered
environment, can be a good strategy to exploit this kind of redundancy for
mobile manipulator (Figure 3.4). For the particular case of KUKA youBot, due
to the small size of its robotics arm, this behavior can be applied only to very
particular situations, and thus it has not been pursued in this work.

Figure 3.4 Redundancy resolution of parameter ρ1 used in cluttered environment.
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The  arm-base  displacement  may  also  be  used  for  navigation  purposes.
Navigation consists  in the fundamental  task for a mobile robot to  localize
itself and move in the environment from one position to another one.  In this
perspective  a  sensory  system to  perceive  the  environment  is  necessary  to
correctly retrieve information and plan the desired motion. Nowadays it is
very popular to use depth cameras, devices that provide RGB images as well
as accurate depth scansion, as sensory device to reconstruct the structure of
the environment. The integration of such vision devices in the robot control
system can be even more efficient if coupled with a dedicated redundancy
resolution strategy. For example, in the particular case of KUKA youBot two
depth camera devices can be adopted, one fixed on the mobile base and the
other one mounted on the manipulator end-effector. The camera fixed on the
platform has the purpose of  tracking a certain goal  object,  that  should be
grasped and manipulated, while the other one has the ability to freely move
and scan the environment as if it was a radar (Figure 3.5). The redundancy
induced by parameter ρ1 can then be used to keep the goal in the field of
view  of  the  fixed  camera,  while  free  motion  of  the  other  camera  is  still
granted. 

Figure 3.5 Redundancy resolution of parameter ρ1 used in visual sensory system.

If the goal object has coordinates  xg and yg , then the constraint to keep
the goal in the field of view of the camera can be formulated as:
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|θb−atan 2( yg−Y b , x g−X b)|<
A
2 (3.16)

where A is the angular field of view of the camera. Despite this constraint
the camera mounted on the end-effector preserve the ability to freely scan the
arbitrary direction θ̂ , setting the value of redundancy parameter ρ1 as:

ρ1=θ̂−θb (3.17)

To give a brief application example, this technique could be used to develop a
particularly efficient SLAM system [22], that has the ability to acquire sensor
observation in  the  direction  that  minimize  the  error  on  the  mapping and
localization  measures.  Another  application  based  on  this  particular
redundancy resolution strategy may be the development of a visual odometry
system, that should assist the standard one based on the wheel actuation in
reconstructing the mobile base position. 
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Chapter 4

Navigation and obstacle avoidance
Navigation is a fundamental activity for mobile robots, that should be able to
safely  move  from  one  position  of  the  environment  to  another  one,  while
avoiding collisions with the objects possibly disposed in it.  Navigation has
several objectives, as mapping the environment through some sensory system
to extract a useful representation of it, localizing the robot in the perceived
map and planning the necessary motion to reach the desired goal position.
From a computational point of view, reconstructing an exact representation of
the environment is a very complex task, as every possible configuration of the
robot in the environment must be taken into account to perform an accurate
motion planning. For this reason many navigation techniques [23] have been
proposed over the years, based on the assumption that a discretized way to
represent the environment is necessary to solve the motion planning problem.
For  example,  in  the  Cell  decomposition approach  the  environment  is
decomposed in a discrete grid of cells, then a value to every cell is assigned to
determine if it is navigable or contains some obstacles. At the end a search
algorithm like  Dijkstra [24] or  A*  [25] is applied to retrieve a valid path to
reach the goal in the grid. The Sampled based methods randomly choose some
feasible robot configurations and then try to connect them by finding pairs of
those configurations that can be easily reached one from the other. In this way
a navigation roadmap can be constructed and queried to find obstacle free
paths.  In  the  Potential  field  approaches,  the  robot  motion  is  influenced  by
virtual forces, that have an attractive nature toward the goal position and a
repulsive one from the obstacles. These virtual forces drive the robot toward
the goal keeping it away from the obstacles in a reactive way. 
In  this  chapter,  a  navigation  technique  based  on  potential  fields  and  the
necessary  control  strategy  will  be  presented,  focusing  in  particular  on
omnidirectional mobile robots, as the KUKA youBot. 
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4.1 Control of omnidirectional mobile platforms
Omnidirectional mobile robots are designed for 2D planar motions and are
capable of translations and rotations, without the non-holonomic constraints
typical of traditional wheeled robot. In a general form, the velocity control
signal for an omnidirectional mobile platform can be expressed as:

ub=[vx v y ω]
T (4.1)

where v x and v y are the translational velocity component and ω is the
angular  velocity  of  the  control  signal.  The  vector ub corresponds  to  the
mobile robot velocity, expressed in the robot relative reference frame, that can
be  controlled  in  each  time  instant  to  obtain  the  desired  motion.  If
q̂b=[ X̂b Ŷ bd

θ̂bd
]
T is  the desired state  of  the platform expressed as absolute

position and orientation, and qb=[Xb Y b θb]
T is the actual state of the robot,

then the absolute goal velocity v g can be defined as:

v g=
˙̂qb+K p( q̂b−qb) (4.2)

where ˙̂qb is  the  first  time  derivative  of  the  desired  state q̂b ,  and  the
diagonal  matrix K p represents  the  position  gain.  Therefore,  to  reach  the
desired location under the hypothesis of an empty environment, the velocity
control signal can be expressed as 

ub=R(qb)⋅v g (4.3)

where R(qb) is a rotational matrix that maps the absolute velocities to the
robot  relative  frame.  However,  a  common  objective  for  any  navigation
strategy  is  to  achieve  an  obstacle  avoidance  behavior  based  on  the
environment perceived model. The environment model, in particular, can be
constructed using common proximity sensors or  more complex devices like
laser scanners or depth cameras. In a complete general form the data acquired
by the sensor system are collected in SO , a set composed of the perceived
positions Pi ,  representing  the  absolute  positions  of  the  objects  external
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surfaces  in  the  environment.  Therefore,  the  control  action  for  the
omnidirectional mobile platform has been formulated as:

ub=R(qb)⋅Aoa(vg , SO) (4.4)

where Aoa(v g , SO) is  the obstacle  avoidance algorithm which modifies  the
goal velocity v g in accordance with the sensor perceptions stored in SO so
to avoid collisions.

4.2 Obstacle avoidance based on potential field
In 1986, Khatib proposed a technique for motion planning based on potential
fields  [26]; it does not explicitly construct a roadmap, but instead defines a
differentiable real-valued function  U :ℝm

→ℝ ,  called a potential function,
that guides the motion of  the moving robot.  The potential is  typically the
combination  of  an  attractive  component U att (qb) ,  which  pulls  the  robot
toward the goal,  and a repulsive component  U rep(qb) ,  which pushes the
robot away from the obstacles, as shown in Figure 4.1 . The gradient of the
potential  function  defines  a  virtual  force F=−∇U (qb) that  should  be
applied on the robot to achieve the desired motion. In this work, the virtual
force has been interpreted as the velocity vector that should be applied on the
robot to achieve the desired motion. Therefore, the velocity control signal can
be calculated in a general form as:

ub=R(qb)F . (4.5)

Attractive  function Repulsive component Potential function.

Figure 4.1 An attractive and repulsive component define a potential function. 
Image taken from B. Siciliano, O. Khatib: Handbook of robotics - Chapter 5  Motion Planning, Springer, 2008.
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However this  technique does  not  always guarantee  the  robot  to  reach the
desired position, because the gradient descent method can reach only a local
minimum of the potential  function, causing the robot to be stuck in some
intermediate position (Figure 4.2). 

Figure 4.2 Common examples of potential field local minimum. 
Image taken from B. Siciliano, O. Khatib: Handbook of robotics - Chapter 5  Motion Planning, Springer, 2008.

In this work a  Rotational vector field  [27] has been used to construct a local
minimum  free  potential  function.  The  rotational  field  has  the  purpose  of
guiding the robot around the obstacles instead of simply being repulsed by
them. In this way a correct navigation based on potential fields is possible
even in complex environment. Precisely, if the distance between the perceived
obstacle  and  the  robot  is  below  a  certain  threshold drep ,  the  standard
repulsive potential field is applied to avoid a possible collision. When instead
the distance is between the thresholds drep and drot , the rotational field is
applied to circumnavigate the obstacle.

PG Goal position
PB Robot position
PM Obstacle centre of mass

Figure 4.3 Integration of repulsive and rotational potential fields. 
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The attractive virtual force has been designed to be equal to the goal velocity:

Fatt (qb , qb d
)=v g . (4.6)

Given an obstacle perception PO and the actual position of the robot PB ,
the repulsive virtual force has been designed to be proportional to the goal
velocity with outgoing direction from the obstacle:

Frep(qb , PO ,PG)=−
PO−PB

‖PO−PB‖
‖v g‖ . (4.7)

The same design criteria  has  been utilized for  the rotational  virtual  force,
which  is  proportional  to  the  goal  velocity  and  has  a  direction  that  spins
around the obstacle:

Frot (qb, PO ,PG)=SR[−(Y B− yPO
)

X B−x PO
]

‖v g‖

‖PO−PB‖
. (4.8)

The parameter SR defines the force direction of rotation and has value +1

for  counter-clockwise  rotations  and −1 for  clockwise  rotations.  The
direction  of  rotation  of  the  rotational  field  has  a  critical  influence  on  the
outcome of the navigation strategy. Indeed it is not possible to decide a fixed
direction  of  rotation,  because  this  could  lead  to  the  formation  of  local
minimum points in the potential function. The direction of rotation must be
decided in a specific way for every environment configuration (Figure 4.4) . In
this work the direction of rotation is decided according to the position of the
robot with respect to the obstacles and the goal position. The line joining the
center of mass of the obstacle with the goal position divides the environment
in two areas. Depending on the fact that the robot belongs to one or the other
area, the direction of rotation is defined. In the following figure, on the left it
is presented the case of fixed direction of rotation, which causes the formation
of a local minimum point in the potential function, where the virtual forces
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have opposite directions. On the right it  is  illustrated the correct  situation
with variable direction of rotation.  

Figure 4.4 Fixed and variable directions of rotation. 

The direction of rotation and the corresponding distinction between the two
zones can by analytically obtained by the signed angle ϕ , defined by the
intersection  of  segments GM ,  which  connects  the  goal  position  with
obstacle center of mass, and GB , which connects the goal position with the
robot base (Figure 4.5).

Figure 4.5 Clockwise and counter-clockwise zones.  
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The signed angle ϕ can be derived from the scalar and vector product of the
two segments as

ϕ=atan2(‖(PG−PM)×(PB−PM)‖,(PG−PM)⋅(PB−PM)) (4.9)

while the direction of rotation is equal to the opposite of the sign of the angle:

SR=−sign(ϕ) . (4.10)

The reader should note that for a correct implementation of the rotation field
it is necessary to define for every object in the environment its center of mass,
starting from the perceived positions Pi collected in SO . For this reason, a
clustering technique has been introduced to subdivide the sensor perceptions
Pi of SO in  some  partitions C j ,  so  that  every  partition  represents  a

different obstacle of the environment (See Figure 4.6). Given the maximum
encumbrance of the robot dmax , every cluster C j is defined by the relation:

 C j={Pi∈S0 ,∃Pk∈C j∧Pk≠P i ,‖P i−Pk‖<dmax} . (4.11)

which asserts that, if the distance between two sensor perceptions is less then
dmax , these two perception belong to the same cluster C j . Instead if there

are  no  perceptions,  whose  distance  from Pi is  less  then dmax ,  the
perception Pi is the only one belonging to cluster Ci . 

Figure 4.6 Clustering on the sensor perceptions.   
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As illustrated in Figure 4.7, the maximum encumbrance dmax corresponds to
the maximum linear extension occupied by the robot mobile platform. In fact,
if two obstacle perceptions dist less then dmax , it means that the robot may
not be able to move between them, and so it is necessary to assign them to the
same cluster, which will represent a certain obstacle. 

Figure 4.7 KUKA youBot maximum encumbrance.

The  composition  of  the  repulsive  and  rotational  forces  generated  by  the
obstacle perception PO  has been obtained by the relation

Frep / rot (qb, PO ,PG)={
|cos (α)|Frep(qb , PO , PG)

Frot (qb ,PO , PG)

0

if ‖PO−PG‖<drep

if drep<‖PO−PG‖<drep

otherwise
(4.12)

where α is the angle between v g and Frep  and can be computed as

α=
‖v g⋅Frep‖

‖vg‖‖Frep‖
. (4.13)

The  term |cos (α)| penalizes  the  repulsive  force  in  case  of  a  transversal
motion of the robot with respect to the obstacle. Indeed if the robot is moving
next  to  an  obstacle  and  not  straight  toward  it,  it  is  not  necessary  for  the
repulsive virtual force to be excessively intense (see Figure 4.7). 

dmax
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Figure 4.8 Penalization of the repulsive virtual force.

The overall virtual force to be applied on the robot considering all the sensor
perceptions of SO can be obtained by the weighted average of all the virtual
forces Frep / rot : 

F=Aoa(vg , SO)=Fatt (qb)+
∑
i=1

|S0| 1
d i

Frep / rot (qb, P i)

∑
i=1

|S0|
1
d i

 (4.14)

where d i is the distance of perception Pi from the actual robot position.

An expedient to perform this kind of navigation in a dynamic environment
with moving obstacles is to avoid to permanently store the sensor perceptions
in SO , but instead toassign to each position Pi a time interval, after which
the  observation  is  removed.  In  this  way the  set  of  sensor  perception  will
contain  only  the  last  updated  observations  and will  be  able  to  deal  with
changes in the environment. 

PB

PG

PM

α

Frep

v g
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Chapter 5 – Grasp synthesis

Chapter 5

Grasp synthesis
The  main  objective  of  robotic  manipulation  is  to  move  objects  in  the
workspace  changing  their  position  and  orientation.  To  perform  a
manipulation task,  a  robot  establishes  physical  contact  with  objects  in  the
environment (typically through its  gripper)  and subsequently moves these
objects by exerting forces and moments. One of the most critical aspects of
manipulation is  to  decide  how to  grasp an object  ensuring a  firm contact
between the robot gripper and the object surface. The process of deciding the
correct  way  to  grasp  an  object  will  be  addressed  in  this  work  as  Grasp
synthesis. In this chapter an overview of existing grasping techniques will be
presented,  as  well  as  a  new  method  to  perform  grasp  synthesis  in  a
completely unknown environment, where shape, dimension and position of
the objects to be manipulated is unknown to the robot. Particular attention is
given  to  implementation  issues  of  this  grasping  technique  on  mobile
manipulators such as KUKA youBot. 

5.1 Related works
Over the years many grasping strategies have been proposed to cope with
different issues such as complexity of the object to be manipulated, structure
and articulation of the gripper mechanism, complete or partial knowledge of
the  environment  and  type  of  available  sensor  devices.  The  different
approaches  can  be  subdivided  into  three  different  categories:  Model  based,
Recognition based and On-line based grasp synthesis. 

5.1.1 Model based grasp synthesis
The grasping strategies of this category are based on the assumption that a
complete and detailed model of the object to be manipulated, as for example a
CAD 3D model,  is  available.  The a  priori  knowledge  of  the  object  model
allows  to  perform  very  precise  geometric  and  dynamic  analysis  and  find
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optimal grasp poses.  A popular tool available is “GraspIt!”  [28][29],  a very
complete simulator specialized in grasp synthesis and analysis. The synthesis
process of “GraspIt!” proceeds decomposing the model of the object  in its
primitive shapes, so that the approach directions, vectors perpendicular to the
surfaces of the object, can be easily calculated. Then the gripper is positioned
along these  approach  directions  and the  closure  of  its  fingers  around the
object  is  simulated.  To  define  the  grasp  pose,  an  optimized  algorithm for
collision  and  contact  detection  is  used  in  order  to  determine  the  contact
points between object and gripper. The simulator also offers the possibility to
analise the grasp poses to check if the force and form closure properties [30]
are satisfied. More in detail the analysis method implemented in “GraspIt!”
searches for the maximum force disturbance applicable on the object  such
that the object does not change the position imposed by the gripper clutch
[31].  The  technique  adopted  by  “GraspIt!”  is  often  applied  in  case  of
articulated grippers with many degrees of freedom, as the grasping pose is
defined starting from the gripper geometry, which is adapted to the object
shape.  Instead,  in  case  of  more  simple  grippers  (as  the  parallel  jaws
mechanism with only one degree of freedom for opening and closing the two
fingers), it is more convenient to construct the grasping pose starting from the
object  shape,  as  discussed  in  [32],  where  the  concepts  of  local and  global
accessibility are introduced. Through local accessibility it is possible to identify
on the object model pairs of faces, that can be utilized as grasping contact
points. Global accessibility is used to select the grasping poses that can be
realized in accordance with the robot kinematics and the obstacles located in
the workspace. 
The model based grasp synthesis is commonly adopted in industrial robotics,
as  the  assumption  of  a  complete  knowledge  of  the  environment  and  the
possibility to have the detailed object models is consistent with the current
industrial practices. Obviously this technique can not be applied to the case of
an  unknown  environment,  where  the  integration  of  a  sensor  system  is
indispensable to reconstruct the model of the objects that have to be grasped. 

5.1.2 Recognition based grasp synthesis
The  recognition  based  strategies  store  some  object  models  and  the
corresponding grasping poses,  precomputed with one of  the model  based
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approaches, in a knowledge base constructed with a semi-automated process.
In this way the grasp synthesis can be set as to a recognition problem, where
an object in the environment should be put in relation with one of the models
stored in the knowledge base, starting from some visual perception of the real
object. In  [33] the authors, after having realized a database of object models
and grasp poses using “GraspIt!”, perform the object recognition through the
Scale Invariant Feature Transform algorithm. Furthermore the database can be
manually updated with semantic informations, as for example points of the
objects that are preferred as grasping regions or points that should not be
touched. In  [34] a similar approach is presented, where a  Nearest Neighbour
Algorithm is  used  for  the  object  recognition,  and  the  knowledge  base  is
automatically  updated  after  each  grasping  execution  to  keep  track  of  the
grasping poses that result more stable. Recognition based techniques are the
most  common ones,  because  they  require  a  quite  modest  implementation
effort,  as  some  knowledge  bases  of  object  models  and  many  recognition
framework  are  freely  available.  These  techniques,  however,  have  evident
limitations as they cannot plan grasping poses for objects not stored in the
knowledge base, or in the worst case they could perform a wrong recognition,
obtaining grasping poses that will fail at execution time. 

5.1.3 On-line based grasp synthesis
On-line based techniques do not require the knowledge of the object models
or a set of precomputed grasp poses, as the object models are reconstructed in
real  time  only  considering  the  sensors  visual  perception  and  the  grasp
synthesis is executed on the fly. The reconstruction of the object models is a
critical phase of this methodology, because the information acquired through
visual sensors is raw, partial and disturbed by noise. Hence designing efficient
heuristics criteria is necessary to extract a semantic information from the raw
data. In  [35] SFM – Structure From Motion is  used to acquire the raw data,
which are elaborated with a Voxeling technique to reconstruct the surfaces and
the volumes of the objects. From the generated surfaces, the grasping poses
are calculated disposing the fingers of the gripper in a parallel direction to the
object  surfaces.  Then  some  criteria  to  select  the  best  grasping  pose  are
introduced:  the  extension  of  the  contact  area  between  gripper  and object,
momentum balance, manipulability and robot motions. In  [36] the authors
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perform the model reconstruction with the Superquadrics approximation and
then “GraspIt!” is used for the grasp poses generation and evaluation. In [37]
a manipulator has been controlled with the purpose of empting a box full of
objects.  The  models  reconstruction  is  obtained  through  the  Height
Accumulated  Features,  which  identifies  the  different  object  based  on  their
height,  and then a  Cell  decomposition  algorithm selects  the grasp pose that
should be executed. In [38] the data acquisition is based on Point Clouds, and
the  model  reconstruction  and  the  grasp  synthesis  are  performed  in  a
continuous and simultaneous way. Moreover the robot motion is controlled in
order to achieve an optimization on the grasp pose evaluation. 

A  particular  methodology  has  been  adopted  in  [39],  where  the  authors
integrate the grasp synthesis with a visual servoing technique. In this way is
possible to guarantee a more robust grasp execution, that could cope with
disturbances or with a dynamic environment, as in the case of moving objects.
Another peculiar strategy is presented in  [40], where the grasp synthesis is
performed simultaneously with the motion planning phase. More in details
the configurations obtained during the execution of the RRT – Rapidly Random
Trees  algorithm are also evaluated to verify if they are compatible with the
geometry of the objects that have to be grasped. 

In this work a new on-line technique for grasp synthesis has been developed.
The complete synthesis process is composed of four different stages executed
in sequence: Point Cloud Acquisition, Data Pre-processing, Grasp Generation,
Grasp Selection. In the first phase, Point Cloud Acquisition, the outline of the
target object is extracted from the image perceived through a visual sensor to
acquire the model of the object as a point cloud. Then a pre-processing over
the  perceived  data  is  necessary  to  remove  the  disturbance,  to  uniformly
distribute the points on the object and to generate the surface normal vectors.
During the grasp generation phase, the grasp poses compatible with both the
geometry of the gripper and the object are calculated. Finally, the grasp pose
that turns out to be more stable according to a heuristic evaluation is selected
for execution. In this chapter the proposed grasp synthesis method will be
discussed in details in the context of mobile manipulation, and in particular
with reference to the KUKA youBot experimental platform.
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5.2 Point Cloud Acquisition 
An  increasingly  common  practice  in  robotics  is  to  adopt  depth  cameras,
particular devices that work simultaneously as common RGB cameras and
also as proximity sensors.  These devices allow to acquire a so-called  Point
Cloud, a set of three-dimensional points that represent the external surface of
the objects in the image frame. Point clouds are useful to acquire positions,
shapes and dimensions of the object viewed by the camera and to reconstruct
the state of the environment.

Figure 5.1 Example of point cloud acquisition from a depth camera.

A fundamental issue, that should be faced during the data acquisition, is how
to identify the point cloud of a specific object and how to separate it from all
the  acquired points.  For  this  purpose  the  built  in  RGB camera  is  used to
acquire  images,  on  which  the  classical  computer  vision  techniques  for
features recognition are applied. In this work, objects are identified through
their colour, hence the assumption is made that the colour of the objects that
have be manipulated is known. This assumption on the objects colour is not at
all restrictive, as the developed grasp synthesis process is based only on the
acquired point cloud, and so any recognition or segmentation technique to
identify the objects outline can be adopted instead of the colour-based one. 
The  data  acquired  from  a  depth  camera  can  be  expressed  through  the
following matrices:
- I rgb : a matrix of dimension K×J containing the RGB colour information
for each pixel of the acquired image.
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- I d : a matrix of dimension K×J that assigns to each pixel its position in
the environment, expressed in the camera reference frame.
Below a simple segmentation algorithm to retrieve the point cloud Ƥ of an
object,  given  its  colour Crgb ,  will  be  presented.  The  points  that  do  not
belong to the target object are stored in the point cloud Ƥobst , and they will
be used in the grasp selection stage to reject grasp configurations that result in
collision with other objects. 

Data Acquisition Algorithm
Input:

Irgb - RGB image matrix.

I d - Depth image matrix. 

T c - Homogeneous transformation from the absolute frame to the camera
relative frame.

Crgb - Object colour. 

Output:

Ƥ - Point Cloud of the target object expressed in absolute coordinates. 

Ƥobst - Point Cloud containing all the points that do not belong to the target
object expressed in absolute coordinates.

1. For k=1:1 :K

2. For j=1 :1 :J

3. If I rgb(k , j) is close to C rgb

4. p=T c⋅I d(k , j)

5. Add p to Ƥ                

6. else

7. Add p to Ƥobst

8. end

9. end

10. end
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The color filtering, which has been introduced in the previous algorithm at
step 3, can be realized by checking if the Red, Green and Blue values of a
certain pixel are contained between an upper and lower threshold. The same
color  filtering  strategy  based  on  thresholds  may  be  also  applied  on  Hue,
Saturation and Lightness values, which can by analytically derived from the
RGB ones.  

5.3 Data pre-processing
The point cloud, acquired from the depth camera and then outlined with the
chosen  segmentation  technique,  is  still  too  raw  and  needs  to  be  further
elaborated before it can be used for the grasp generation stage. In particular,
during the pre-processing stage, a density filter should be applied to remove
some points that do not actually belong to the target object. The redundancy
represented by too dense regions of the model is then removed through a
uniformity filter, and finally the surface normal vectors are calculated for each
point in the point of Ƥ to obtain a model richer of semantic information. 

5.3.1 Density filter
Because of the uncertainty of the depth sensor, often some points of the point
cloud, corresponding to the edges of the target object in the RGB image, do
not actually belong to object model. For this reason, a density filter should be
applied on the point cloud to remove regions with a low local density [41]. 
Let pi be the  i-th point of the point cloud  Ƥ and N i(K )  the  neighbour
set, defined as the set of K points closest to pi . Then the local density of
point pi is expressed as: 

d i(K )=
1

|N i(K )|
∑

p j∈N i (K)

‖pi−p j‖ . (5.1)

where the operator ‖.‖ corresponds to the Euclidean norm of a vector. 

Given the average point cloud local density 

d AVG(K )=
1
∣Ƥ∣∑i=1

∣Ƥ∣

d i(K) (5.2)



 Chapter 5 – Grasp synthesis Pag. 52 

and the corresponding standard deviation

dSTD (K )=√∑i=1

∣Ƥ∣

(d i(K )−d AVG(K ))
2

∣Ƥ∣
,

(5.3)

the density filter is defined as

Fd(Ƥ ,K )={pi∈Ƥ , d i(K ) > d AVG(K )−3dSTD (K)} . (5.4)

The density filter has the effect of removing from the point cloud isolated
points,  e.g.  those points  whose local  density is  very low compared to  the
average of the acquired model. 

Figure 5.2 Example of density filter application. 

5.3.2 Uniformity filter
In  order  to  generate  more  precise  surface  normals  and  to  remove  the
redundancy of information possibly included in the model, it is convenient to
equally distribute the points on the surface of the point cloud. The uniformity
filter indeed has the purpose of removing points that are too close to each
other.  Moreover this kind of filtering allows to obtain more efficient grasp
selection  end  generation  algorithm,  as  the  redundancy  of  the  model  is
removed and the overall points to be examined are few. The uniformity filter
is defined as
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Fu(Ƥ , dmin)={pi∈Ƥ ,∄ p j∈Ƥ ,‖p j−pi‖ < dmin} (5.5)

where dmin is the maximum admissible distance between two points.

5.3.3 Surface normals
For each point pi of the point cloud Ƥ a normal vector to the surface of
the object is calculated by finding the plane that best interpolates the points of
neighbor  set N i(K ) .  Multiple  linear  regression  is  used  as  the  basic
mathematical tool to solve the plane estimation problem. Given the multiple
linear  regression model yk=β0+β1 x1, k+β2 x2, k with x1,k=x pk

, x2,k= y pk
and

yk=z pk
,  using  the  well  known  Least  Square resolution  formula  [42],  the

surface normal vector in pi is obtained as: 

ni=
[β1,β2, 1]

√1+β1
2
+β2

2
. (5.6)

Figure 5.3 Example of surface normals estimation. 

Furthermore it is possible to perform a smoothing operation on the surface
normals to make them more regular where the surface of the object has a
discontinuity, as for example near edges and corners. The smoothed surface
normals can be calculated as:

~ni(K )=
1

|N i(K )|
∑
k=1

|N i(K )|

nk . (5.7)
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Figure 5.4 Example of smoothing operation on the surface normals. 

5.4 Grasp generation
A grasping configuration should be derived considering the geometry of both
the target  object  and the  gripper  itself.  In  this  work only  grippers  with a
single pair of parallel jaws, as the one mounted on KUKA youBot, are treated.
The geometry of this kind of grippers can be described by four parameters
L1, L2 ,L3 and L4 ,  that  define the sizes of the two jaws as illustrated in

Figure 5.5 . In a general formulation a grasp pose G can be defined as 

G=< pG , sG ,aG ,l1 > (5.8)

where pG is the centered grasping position, aG is the approach direction
vector, sG is  the  sliding  direction  vector  and  l1 is  the  gripper  opening
dimension (see Figure 5.5).

       

Figure 5.5 Gripper and grasp pose parameters. 
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L3

L4
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In order to take into account the contact position between gripper and target
object, in the grasp generation algorithm a more convenient notation of the
grasp pose is adopted (see again Figure 5.5).:  

Ĝ=< pg , sg , ag ,l1 > (5.9)

where pg is the contact position of the left jaws, sg is the sliding direction
vector and ag is the approach opposite direction vector.  The two notation

are  equivalent  and  are  related  by  the  simple  equations: pG=pg−
l1

2
s g ,

aG=−ag , sG=sg .

The  objective  of  the  grasp  generation  stage  is  to  find  those  gripper
configurations  that  maintain  its  two  fingers  aligned  with  the  object  faces.
Indeed, as proved in  [43], keeping the gripper fingers parallel to the object
faces guarantees for these simple kind of grippers the force closure property,
namely the ability of a grasp configuration to resist any motion of the hold
object, thanks to the contact forces that the gripper applies on it. As a point
cloud is a simple collections of points, it has not an intrinsic definition of faces
and  surfaces,  which  should  be  reconstructed  by  the  grasp  generation
algorithms.  Two grasp generation algorithms have been  developed in  this
work, the first one approximates the gripper structure with planes to find the
contact points with the object, while the second one exactly reconstructs the
object geometry. Both algorithms can generate grasping postures for objects
with any shape, however the approximated one is very efficient and can be
applied even to incomplete models of the objects, while the exact algorithm
needs a complete and dense object model, but can generate very precise and
stable grasp.

5.4.1 Locally approximated algorithm
This algorithm approximates the structure of the gripper with three plane
arranged as in Figure 5.6 and searches for configuration of the gripper that
keeps  the  parallelism  between  its  fingers  and  faces  of  the  object,  while
avoiding collisions with it in the neighborhood of the gripper structure. 
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Figure 5.6 Approximation of the gripper structure with planes.

The function CheckLocalPlane( p ,n , Ƥ , d ) has been introduced to verify if all
the points of the point cloud Ƥ in the neighborhood of p with dimension
d are behind the plane passing for p with norm n⃗ .

CheckLocalPlane( p ,n ,Ƥ , d)={ truefalse
if ∀ p i∈Ƥ ,‖p−p i‖<d⇒ pin− pn<0

otherwise
(5.10)

In  order  to  completely  explore  all  the  possible  grasp  configurations,  the
algorithm is broken down into two phases. In the first phase the planes that
approximate the gripper fingers are kept perpendicular to the norms ni of
each  point pi of  the  point  cloud Ƥ ,  while  in  the  second  phase
configuration where the gripper palm is perpendicular to the surface normals
are considered (see Figure 5.7). 

L2

2

L1

2
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Phase I Phase II

Figure 5.7 Phases of the local approximated algorithm.

The  grasp  generation  algorithm  pseudo-code  is  reported  in  the  following
table.

Locally approximated grasp generation algorithm
Input:
- Points pi of point cloud Ƥ with the respective surface normals ni .
- Gripper parameters L1, L2 .

Output:
- List of all the admissible grasp pose Ĝ .

1. For each pi∈Ƥ (Phase I)

2. pg=p i

3. sg=ni

4. If CheckLocalPlane( pg , s g , Ƥ ,
L2

2
)

5. For each ag ⊥ sg

6. For l1=Lmin :Lstep :L1
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7. 

If  
CheckLocalPlane( pg−l1 s g ,−sg ,Ƥ ,

L2

2
)∧

CheckLocalPlane( pg−
l1

2
sg+L2 ag ,ag , Ƥ ,

L1

2
)

8. Add Ĝ=< pg , sg , ag ,l1 > to output list.  

9. End

10. End

11. End

12. End

13. End

14. For each pi∈Ƥ (Phase II)

15. ag=ni

16. If CheckLocalPlane( p i ,ag ,Ƥ ,
L1

2
)

17. For each sg ⊥ag

18. For l1=Lmin :Lstep :L1

19.
pg=p i−L2 ag+

l1

2
s g

pg '=p i−L2 ag−
l1

2
sg

20.

If
CheckLocalPlane( pg−

L2

2
ag , sg , Ƥ ,

L2

2
)∧

CheckLocalPlane( pg '−
L2

2
ag ,−sg ,Ƥ ,

L2

2
)

21. Add Ĝ=< pg , sg , ag ,l1 > to output list

22. End

23. End

24. End

25. End

26. End
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5.4.2 Exact algorithm
The  exact  algorithm  reconstructs  the  structure  of  the  gripper  with  three
cuboids,  parallelepipedal regions of the space, as shown in Figure 5.8 . The
grasp  configurations  are  searched,  as  in  the  approximated  algorithm,  by
keeping the fingers of the gripper parallel to the object faces, and discarding
those configuration that result in collision with the points of the object point
cloud. 

       

Figure 5.8 Gripper structure reconstructed with cuboids.

Let  the  cuboid  C=⟨ pC ,n1, d1 ,n2, d2,n3 , d3⟩ be  the  portion  of  the  space
delimited by the six planes listed in the following table.

Plane Point Norm

#1 pC+d1n1 n1

#2 pC−d1n1 −n1

#3 pC+d2 n2 n2

#4 pC−d2n2 −n2

#5 pC+d3 n3 n3

#6 pC−d3 n3 −n3
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The  function CheckCuboid (C ,Ƥ ) checks  if  every  point pi of  point  cloud
Ƥ is outside the cuboid C .

CheckCuboid (C ,Ƥ)={true if ∄ p i∈Ƥ , p i∈C
false otherwise

(5.11)

Exact grasp generation algorithm
Input:
- Points pi of point cloud Ƥ with the respective surface normals ni .
- Gripper parameters L1, L2 ,L3, L4 .

Output:
- List of all the admissible grasp poses Ĝ .

1. For each pi∈Ƥ (Phase I)

2. pg=p i

3. sg=ni

4. For each ag ⊥ sg

5.
C1=< pg+

L4

2
sg , sg ,

L4

2
,ag ,

L2

2
, sg×ag ,

L3

2
>

6. If  CheckCuboid (C1,Ƥ )

7. For l1=Lmin :Lstep :L1

8. 
C2=< pg−

3 L4+2l1
2

sg , s g ,
L4

2
, ag ,

L2

2
, sg×ag ,

L3

2
>

9.
C3=< pg+

L4+l1

2
sg+

L2+ L4

2
ag , sg ,

L4+l1

2
,ag ,

L4

2
, sg×ag ,

L3

2
>

10.  If  CheckCuboid (C2,Ƥ )∧CheckCuboid (C 3,Ƥ )

11. Add Ĝ=< pg−
L2

2
a g , sg ,ag , l1 > to output list

12. End

13. End

14. End
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15. End

16. End

17. For each pi∈Ƥ (Phase II)

18. ag=ni

19. For each sg ⊥ag

20. For l1=Lmin :Lstep :L1

21.
pg=p i+

l1+2 L4

2
sg−

L2+2 L4

2
ag

22.
C1=< pg+

L4

2
sg , sg ,

L4

2
,ag ,

L2

2
, sg×ag ,

L3

2
>

23.
C2=< pg−

3 L4+2l1

2
sg , s g ,

L4

2
, ag ,

L2

2
, sg×ag ,

L3

2
>

24.
C3=< pg+

L4+l1

2
sg+

L2+ L4

2
ag , sg ,

L4+l1

2
,ag ,

L4

2
, sg×ag ,

L3

2
>

25.  If  CheckCuboid (C1,Ƥ )∧CheckCuboid (C2,Ƥ )
∧CheckCuboid (C3, Ƥ)

26. Add Ĝ=< pg−
L2

2
a g , sg ,ag , l1 > to output list

27. End

28. End

29. End

30. End

5.5 Grasp selection
Among all the generated grasp poses, it is necessary to select the one that best
guarantees a successful grasping execution. To this end, some performance
indexes  has  been  proposed  in  [35][44] to  evaluate  each  grasping
configuration. Three different categories of metrics have been considered in
this  work:  Feasibility,  Stability and  Robot  Motion.  The feasibility indexes are
used to discard those grasp configurations that the robot kinematics can not
accomplish or which result in collisions with other objects disposed in the
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workspace. Stability indexes evaluate the grasp poses preferring those that
guarantee a firm grasp, resistant to external disturbances or wrenches that
can act on the object. Robot motions metrics prefer grasp postures that require
less  movement  of  the  mobile  platform  for  mobile  manipulators,  or  joints
displacement in case of standard manipulators. Finally a global performance
index should be designed to include all  the proposed metrics  in a unique
comprehensive measure.  The grasp pose that obtains the best evaluation by
the global performance index is the one chosen for execution. All the different
designed  metrics,  that  compose  the  global  performance  index,  will  be
presented here in detail. 

5.5.1 Feasibility
For  each  grasp  pose G generated  by  the  grasp  synthesis  algorithm  it  is
necessary to check if it is contained in the reachable dexterous workspace of
the robot. For the KUKA youBot robot, for example, the dexterous workspace
condition expressed by Equation (2.38) should be used to verify whether the
robot can reach the considered grasp position. In order to verify if a grasp
pose  with  position pG and  approach  direction aG is  reachable,  the
following relation can be derived from the dexterous workspace conditions:

(a2+a3)
2
−(z p⃗G

−zd−d1−d5sin (atan2(z aG
,√xa G

2
+ yaG

2
)))

2
>0 . (5.12)

Furthermore,  also  grasp  configurations  that  result  in  collision  with  other
objects disposed in the environment should be discarded.  To this end, the
point cloud Ƥobst , containing all the points acquired by the depth camera
that  do  not  belong to  the  target  object,  must  be  taken into  account  for  a
collision detection. For example each link of the robot and the structure of the
base can be modeled with an adequate cuboid and then the CheckCuboid

function itself can be used for collision detection. 
Note that the feasibility indexes do not directly evaluate the grasping poses,
but reject not achievable ones. 
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5.5.2 Stability
Without a complete dynamic model of the object, it is not possible to evaluate
the stability of the generated grasp poses with the traditional force closure
method. Hence some heuristics should be introduced to estimate how firm a
grasp configuration is. For instance the distance of the grasping position from
the centroid  of  the  objects  can  be  adopted  to  evaluate  the  overall  gravity
balance imposed by the gripper posture. Obviously the closer to the centroid
the grasping is executed, the more it will result stable. 

If pCOM=
1
|Ƥ|∑i=1

|Ƥ|

pi is  the  centroid  of  point  cloud  Ƥ ,  then  the  heuristic

index  to  be  used to  evaluate  the  stability  of  the  grasping pose G can be
expressed as:

SCOM (G)=
1

‖pG−pCOM‖
. (5.13)

Given that the perceived point cloud is often an incomplete model of the real
object, and that some of its regions may be more dense then others, a better
estimation of the object center of mass can be expressed as 

pECOM=[ xmax+xmin

2
,
ymax+ ymin

2
,
zmax+zmin

2 ]
T

(5.14)

where xmax , xmin , ymax , ymin , zmax , zmin  are  the  maximum  and
minimum values of the Cartesian coordinates of all the points of the object
point  cloud  in  the  world  frame.  The  respective  heuristic  index  can  be
formulated as

S ECOM (G)=
1

‖pG−pECOM‖
. (5.15)
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Another heuristic to evaluate the stability of a certain grasp posture consists
in estimating the extension of the contact area between the gripper fingers

and the object faces. To this end let C f 1=⟨ pG+
L2

2
aG ,aG ,

L2

2
, sG ,

L4

2
+ϵ ,aG×sG ,

L3

2
⟩

and C f 2=⟨ pG+
L2

2
aG−l1 sG ,aG ,

L2

2
, sG ,

L4

2
+ϵ ,aG×sG ,

L3

2
⟩ be the cuboids which

correspond to  the  fingers  of  the  gripper  slightly  extended by  the  positive
parameter ϵ  in the sliding direction with respect to the considered grasp
pose G=< pG , sG ,aG ,l1 > .  The  set  of  all  the  points  contained in C f 1 and
C f 2 is expressed as

Pcontact (G ,Ƥ )={pi∈Ƥ , p i∈C f 1∨pi∈C f 2} (5.16)

and then the respective heuristic index can be formulated as:

SCONTACT (G ,Ƥ )=|Pcontact(G, Ƥ)| . (5.17)

5.5.3 Robot motion
Choosing a grasp configuration that requires the minimum movement of the
robot is a necessary measure to optimize the energy consumption and reduce
the  execution  time  of  the  grasping  task.  Furthermore,  in  case  of  mobile
manipulators, an odometry system is often used to keep track of the robot
position.  Hence  minimizing  the  movement  of  the  mobile  base  is  a  good
strategy to reduce the odometry error, which increases over time during the
robot motion.  The robot configuration qG , needed to execute the grasping
pose G=< pG , sG ,aG ,l1 > ,  can be computed using the closed form inverse
kinematics  algorithm  presented  in  Chapter  2.  In  particular  the  following
relations hold: pG=[ xg yg zg]

T , Ze=aG , X e=aG×sG . 

Given the present robot state qnow and the chosen grasp configuration qG ,
an index measure to evaluate the robot motions can be expressed as: 

SRM (G)=
1

‖qnow−qG‖
. (5.18)
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5.5.4 Global performance index
The global performance index, adopted during the experimental testings on
KUKA youBot robot, to evaluate a grasping pose G for an object with point
cloud Ƥ has been designed as

S (G ,Ƥ )=W (G)⋅SCONTACT (G ,Ƥ )⋅SECOM (G) (5.19)

where W (G) is a penalization factor that prefers vertical configurations of
the robot end-effector and it is defined as 

W (G)={2 if aG ∥[0,0,1]T

1 otherwise
. (5.20)

Indeed, in case of a KUKA youBot mobile manipulator, vertical configurations
of the end-effector allow to take advantage of the particular task redundancy
expressed  by ρ4 .  As  discussed  in  chapter  3,  dedicated  to  redundancy
resolution, this particular situation can be exploited so that the mobile base
movements are minimized. Hence, vertical grasping configurations have been
preferred exploiting the penalization factor W (G) .
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Pick and place operations with KUKA youBot

Chapter 6

Pick and place operations 

with KUKA youBot
Pick  and place  operations  are  a  typical  example  of  robotic  manipulation,
where a certain object is rearranged in a desired location of the workspace.
Mobile manipulators, with their capability to move around the environment,
have no workspace limitations and can then be used for complex pick and
place operations, both in service and industrial robotics. For example, they
can be used to sort the objects disposed in a disordered room or to perform
inventory movement in a warehouse. All the topics discussed in the previous
chapters,  like redundancy resolution,  navigation and grasp synthesis,  have
been put together to develop a pick and place framework on a KUKA youBot
mobile manipulator. The pick and place operations consist in localizing the
object to be manipulated, picking it up and moving it in a desired position.
Both  the  environment  and the  information  regarding  shape,  position  and
dimension of  the objects  that  should be manipulated are unknown to  the
robot.  For  this  reason,  a  depth  camera  has  been  mounted  on  the  robot
platform  and  it  is  used  to  acquire  the  necessary  visual  information  for
navigation and grasp synthesis. The desired task is described in an abstract
way,  providing  to  the  robot  only  the  colour  of  the  object  that  should  be
grasped, and the colour of the surface where the object has to be released.
Thanks  to  the  developed  framework,  the  robot  is  able  to  autonomously
explore  the  environment,  reconstruct  the  model  of  the  objects,  plan  and
execute the grasping and placing operations. 
In  this  chapter,  the  architecture  of  the  developed system as  well  as  some
implementation issues will be presented. 
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6.1 System architecture

Figure 6.1 System architecture. 

The architecture of the developed system is presented in the block diagram
in Figure 6.1. The abstract description of the desired pick and place operation,
containing the objects  colour information,  is  provided to the Task Planner
block, which has the purpose of generating a control structure in the  SFC –
Sequential  Function  Chart  [45] formalism.  This  particular  automaton,
considering also the sensor visual perceptions, coordinates and supervises the
overall system, decomposing the pick and place operation in all the sub-task
necessary to perform the desired operation. Every sub-task is interpreted by
the  Motion  planner,  which  generates  the  necessary  trajectories  in  the
Cartesian space or directly in the joint space. In case of Cartesian trajectories,
the closed form inverse kinematics algorithm discussed in Chapter 2 is used
to obtain the corresponding joint values. The Base Control, besides providing
the velocity set points necessary for controlling the mobile platform, realizes
the  obstacle  avoidance  strategy  based  on  rotational  potential  fields,  in
accordance with the data acquired by the proximity sensors, as discussed in
Chapter 4. Finally the Redundancy Resolution block resolves the redundancy
based on the robot actual state,  optimizing the whole robot manipulability
and minimizing the movements of the platform, as presented in Chapter 3.

Motion
Planner

Inverse
Kinematics

Xd

qd

qd

Reference type

qd

Base
Control

+
Obstacle

Avoidance

qb d

qa d

ub YouBot
u

Redundancy
Resolution

q

ρ

Proximity
Sensors

Task
Planner

Video
Sensor

SFC



 Pick and place operations with KUKA youBot Pag. 68 

6.2 Task Planner
The  high-level  control  executed  by  the  Task  Planner  has  been  designed
following the Sequential  Function Chart  formalism. The complete diagram
will be here presented in detail. 

START

1

Goal object find

Calibrate Vision sensor

Move arm away from sensor

is system initialized?

Explore the Environment

2

Track the object

Go near the object

3

Object Lost
Robot is near object

Move around the object

Reconstruct object model

Object Lost

4

Object model reconstructed

Grasp synthesis

Valid grasp find

Grasp not find

5 Motion planning

Path findPath not find

6 Execute grasping

Grasp executed
Grasp failed

7 Explore the Environment

Target place find

8

Robot is near target place
Target place lost

9

Track target place

Go near target place

Model Reconstructed

Move around the target place

Reconstruct the target place model

Target place lost

10 Best place configuration search

11 Motion planning

12 Execute placing operation

END

START.  The  manipulator  is
positioned  in  a  configuration  that
does not obstruct the depth camera.
The  depth  camera  is  calibrated  to
localize the requested colour. 

STEP  1.  The  mobile  platform
executes a rotation around its axis so
that  the  vision sensor  can  visualize
the surrounding environment. 

STEP 2.  After  localizing  the  object,
the  robot  moves  toward  it.  The
camera  continuously  tracks  the
object so that the robot can follow it
in case of movement. 

STEP 3. The robot executes a rotation
around the target object, allowing the
depth  camera  to  acquire  its  point
cloud model from various angles.

STEP  4. The  grasp  synthesis  is
performed in order to decide how to
grasp the object.

STEP 5.  The necessary trajectories to
execute  the  grasping  task  are
planned.

STEP  6. The  grasping  task  is
executed.
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START

1

Goal object find

Calibrate Vision sensor

Move arm away from sensor

is system initialized?

Explore the Environment

2

Track the object

Go near the object

3

Object Lost
Robot is near object

Move around the object

Reconstruct object model

Object Lost

4

Object model reconstructed

Grasp synthesis

Valid grasp find

Grasp not find

5 Motion planning

Path findPath not find

6 Execute grasping

Grasp executed
Grasp failed

7 Explore the Environment

Target place find

8

Robot is near target place
Target place lost

9

Track target place

Go near target place

Model Reconstructed

Move around the target place

Reconstruct the target place model

Target place lost

10 Best place configuration search

11 Motion planning

12 Execute placing operation

END

STEP  7.   The  robot  performs  a
rotation  around  its  axis  to  explore
the  environment  and  localize  the
release surface.

STEP 8. The robot moves toward the
target  release  surface,  while  the
camera keeps tracking it. 

STEP 9. The robot executes a rotation
around the release surface, allowing
the  depth  camera  to  reconstruct  its
point  cloud  model  from  various
angles.

STEP 10. The best way to place the
object on the surface, maximising the
contact  area  between the  objects,  is
calculated.

STEP  11. The  necessary  trajectories
to  execute  the  placing  task  are
planned.

STEP  12. The  placing  task  is
executed.

6.3 Point cloud and grasping registration
The grasp synthesis process, described in Chapter 5, allows to determine a
grasping  configuration  to  pick  up  a  certain  object,  starting  from the  data
acquired by the depth camera device.  Suppose that the point cloud of the
object that has to be grasped has been acquired at time tG and that the pick
up task has been executed at time tE ,  after the robot has performed the
necessary base motion to reach the object. In the elapsed time between tG
and tE , the robot localization is subject to the mechanical odometry based
on the wheels actuation, causing the chosen grasp pose G=< pG , sG ,aG ,l1 >

to  be  affected  by  the  same  positional  error  of  the  odometry  system.
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Furthermore,  the  object  could  move  during  the  motion  of  the  mobile
platform, leaving the chosen grasp pose completely inconsistent. In order to
face  this  situations,  during  the  time  interval δ t=tE−tG ,  the  grasp  pose
should be updated according to the depth camera perceptions. 
The process of finding the frame transformation between two point clouds
observation of the same feature by different point of views is called  Point
Cloud Registration [46]. More precisely, given two point clouds ƤA and ƤB

of the same feature,  but  acquired from different  points  of  view,  the point
cloud registration technique allows to find the homogeneous transformation
matrix T B

A , that, applied on the points of ƤB , best matches the points of
ƤA (see Figure 6.2).

Bunny Object Unregistered point clouds Registered point clouds

Figure 6.2 Example of point cloud registration.

Iterative Closest Point – ICP [47] is one of the most used algorithms for point
cloud registration. In this algorithm, one point cloud, the reference, is kept
fixed,  while  the  other  one,  the  source,  is  transformed  to  best  match  the
reference. The algorithm iteratively revises the transformation (combination
of translation and rotation) needed to minimize the distance from the source
to the reference point cloud. Essentially, the algorithm steps are:

1. For each point in the source point cloud, find the closest point in the 
reference point cloud. 
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2. Estimate the combination of rotation and translation using a mean 
square error cost function that will best align each source point to its 
match found in the previous step. 

3. Transform the source points using the obtained transformation. 
4. Iterate until the desired accuracy or the maximum number of iteration 

is reached. 

To apply this registration technique to the grasping case, let Ƥ0, Ƥ1, Ƥ2... Ƥn

be the point clouds of the object that should be grasped, acquired respectively
at time instants t 0, t 1, t 2... tn . The Iterative Closest Point can be used to find
the  homogeneous  transformations T i+1

i that  execute  the  best   matching
between two consecutive acquired point clouds : 

Ƥi≈T i+1
i Ƥ i+ 1 . (6.1)

If  the  grasp  pose G=< pG , sG ,aG ,l1 > chosen  by  the  synthesis  process  is
reorganized in the grasp homogeneous matrix as

TG=[sG×aG sG aG pG

0 0 0 1 ] , (6.2)

the  grasp  matrix  that  should be  considered  at  execution  time in  order  to
restrict  the  odometry error  and to  account  for  possible  movements  of  the
object, can be computed as

T E=Tn
n−1 ...T 2

1T 1
0TG=(∏

i=0

n

T n−i
n−1−i)TG , (6.3)

with t 0=tG and t n=tE (See Figure 6.3).
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Figure 6.3 Relation between point clouds and homogeneous transformations.

6.4 Placing algorithm
A typical issue, concerning pick and place operations, is to decide how the
grasped object should be arranged on the target place. In fact, configurations
that  allow  a  stable  placement  of  the  object  should  be  preferred,  while
configurations that may cause the object to topple must be rejected. A placing
algorithm has been developed to choose stable placing configurations, based
on the hypothesis that the target place has a planar surface on its top.

Let ƤG be the point cloud of the grasped object acquired at the last time
instant before it has been picked up, and ƤT the point cloud of the target
place, i.e. an object on top of which the grasped object should be placed. The
bi-dimensional point cloud Ƥ̂T contains the x and y coordinates of the
points belonging to the top surface of the target object, extracted thresholding
on  all  the  points  heigh.  Instead  the  bi-dimensional  point  cloud Ƥ̂G  is
derived  from ƤG considering  only  the x and y coordinates  of  all  its
points (see Figure 6.4). 

Grasped object and target place 3D Point clouds 2D Point clouds

Figure 6.4 3D and 2D point clouds considered for the placing problem

Ƥ i−1
Ƥ i

Ƥ i+1

t i−1 t i
t i+1

... ...

T i
i−1 T i+1

i

Grasped object

Target place

ƤT

ƤG

Ƥ̂T

Ƥ̂G
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The  placing  problem  can  be  formulated  as  finding  the  planar  rigid
transformation  that,  applied  to  the  points  of Ƥ̂G ,  places  the  maximum
number  of  them inside  the  hull  of Ƥ̂T ,  a  polygon  that  encircles  all  the
points of Ƥ̂T . To define the polygon that best approximates Ƥ̂T , the well
known  concept  of  convex  hull  can  be  used,  as  well  as  more  complex
approaches, as non convex hulls [48], that better approximate the boundary of
the object shape even in case of concave outlines (See Figure 6.5).

Convex hull Non convex hull

Figure 6.5 Examples of convex and concave hulls.

In  order  to  formalize  the  placing  problem,  it  is  useful  to  introduce  the
function

insidePolygon( p ,P)={10
if p inside P
otherwise (6.4)

which  determines  if  a  point p is  inside  the  polygon P ,  and  can  be
implemented through the Ray Casting Algorithm [49].
To superimpose the two point clouds Ƥ̂T and Ƥ̂G , a roto-translation has
been adopted to rigidly transform the generic point p in p ' as

p '=[cos (θT ) −sin(θT )
sin(θT ) cos(θT ) ]( p− p̂G)+[ xTyT

]+ p̂T , (6.5)

where  parameter θT expresses  the  transformation  rotational  angle,
parameters xT and yT are  the  transformation  translational  components,
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p̂G is the centroid of point cloud Ƥ̂G , p̂T is the centroid of point cloud
Ƥ̂T . 

Initial configuration Optimal placing configuration

Figure 6.6 Example of optimal placing problem.

At this point, the placing optimization problem can be formalized as

argmax
θT , xT , yT

∑
p '∈ Ƥ̂ 'G

insidePolygon( p ' , Hull ( Ƥ̂T )) (6.6)

where Ƥ̂ 'G is  the  set  of  all  the  points  of Ƥ̂G transformed  by  the  roto-
translation  having  parameters  θT ,  xT  and  yT ,  while  the  term
Hull ( Ƥ̂T) represents the polygon used to approximate the contour of Ƥ̂T .

The optimization problem has been solved in this work with a sample based
algorithm, which first searches for the rotation that best superimposes the two
point  clouds,  and  then  searches  for  the  translational  components  of  the
transformation. The placing algorithm pseudo-code will be presented here in
detail. 

θT

[ xT yT ]
T
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Placing algorithm
Input:
- Grasping pose G=< pG , sG ,aG ,l1 > used to pick up the goal object.
- 2D point cloud Ƥ̂G of the grasped object.

- 2D point cloud Ƥ̂T of the target place top surface.
- Centroid p̂G of the grasped object. 
- Centroid p̂T of the target place top surface.
- Number of translational samples Kmax .
- Number of rotational samples θmax .
- Height of the target surface zT .

Output:
- Optimal placing pose GT .

1. For  θ=0 :
2π
θmax

:2π (Rotation)

2. f max=0

3.
Ƥ̂ 'G=[cos(θ) −sin (θ)

sin(θ) cos (θ) ]( Ƥ̂G− p̂G)+ p̂T

4. If ∑
p '∈ Ƥ̂ 'G

insidePolygon( p ' , Hull( Ƥ̂T)) > f max

5. θT=θ

6. f max=f

7. End

8. End

9. For  k=0 :1:K max (Translation)

10. d rand=randomdirection         

11. [ xy ]=[ xTyT ]+ϵ drand

12. Do 

13. ok=true

14
 Ƥ̂ 'G=[cos(θT) −sin(θT )

sin(θT ) cos(θT) ]( Ƥ̂G− p̂G)+[ xy ]+ p̂T                    
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15.  If f > f max

16. xT=x
yT= y

17. f max=f

18. Else

19. ok=false

20. End

21. While ok

22. End

23.
R z(θT)=[

cos (θT) −sin(θT ) 0
sin(θT ) cos (θT ) 0

0 0 1]
24. GT=<R z(θT)( pG− p̂G)+ p̂T+[xT , yT ,0]

T , R z(θT )sG ,R z(θT)aG ,l1 >

6.5 Software architecture
The software architecture of the developed framework has been designed so
as to make the system modular, reusable and maintainable (see Figure 6.7). 

Figure 6.7 Software architecture. 

MATLAB - Simulink

JyouBot     (Java)

V-Rep Remote API
(Java-JNI)

 KUKA youBot API
(C++)

ROS Wrapper
(C++)
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The  main  software  module,  containing  the  application  logic  and  all  the
control algorithms presented throughout this work,  has been implemented
within  the  well  known  MATLAB  -  Simulink graphical  tool  [50].  Then  the
middleware  layer  JyouBot  has  been  realized  to  expose  a  unique  interface,
which defines the low level functions and services necessary to control the
robot actuation and to receive informations from the sensor devices, as the
motors encoders, the proximity sensors and the depth camera (see Appendix
B). The JyouBot interface allows to maintain the same implementation of the
application logic to control the whole framework in different situations, as for
example in different simulation environments or in the real case. Indeed, by
implementing a particular feature of the JyouBot interface, one can customize
the  developed control  system of  the  youBot  robot  to  work  in  the  desired
simulated  or  real  environment  with  the  available  sensor  devices.  Three
different implementations of the JyouBot services have been realized. The first
one allows to perform simulations in the V-Rep environment  [51] using the
remote  API  provided  by  the  simulation  framework  itself.  The  already
available  model  of  the  KUKA  youBot  has  been  used  for  the  simulation
experiments,  as  well  as  six  virtual  proximity  sensors  and  a  virtual  depth
camera  placed  on  the  model  of  the  robot  platform.  The  second
implementation, which uses the standard KUKA youBot API  [52], has been
developed to execute experimental testing directly on the real KUKA youBot
robot.  Moreover,  the  common  OpenNI  library  [53] has  been  adopted  to
acquire the visual images from the ASUS Xtion device  [54], which has been
used both to reconstruct the model of the objects to be manipulated and to
acquire the structure of the environment necessary for the robot navigation,
as if it was a proximity sensor. Finally the ROS wrapper  [55] for the KUKA
youBot has been adopted in a third implementation to perform simulations in
the Gazebo [56] environment. 
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Chapter 7 - Experimental results

Chapter 7

Experimental results
In this section some experimental results, concerning the thematics proposed
in the previous chapters, will be presented. 

7.1 Internal motions
In order to evaluate the capability of the developed framework to correctly
control the motion of the redundant KUKA youBot, an experiment has been
conducted  to  observe  the  robot  internal  motions.  Internal  motions  are  a
typical feature of redundant manipulators, which can change their state and
move their mechanical structure without changing the end-effector position
and  orientation.  This  behavior  has  been  tested  on  the  KUKA  youBot  by
observing  the  positional  error  of  the  end-effector  with  respect  to  a  fixed
desired configuration, while the redundancy parameters ρ1 , ρ2 and ρ4

vary  with  time.  During  the  experiment,  the  robot  end-effector  desired
configuration  was  set  to X=[0 0 0.1 π 0 0 ]T ,  while  the  values  of  the
redundancy parameters were first varied one at a time, and then, at the end,
all together. The result of the experiments are shown in Figure 7.1, where the
evolution during time of  the end-effector  positional  error  and the varying
values  of  the  redundancy  parameter  are  illustrated.  This  experiment  was
executed using the built-in joint position control of the KUKA youBot, while
the results shown in Figure 7.2 refer to the same experiment executed instead
with the built-in joint velocity control. As already demonstrated in  [57], the
achieved results show that the position control can lead to a very accurate
positioning of the end-effector, but causes a slight undesired vibration of the
manipulator structure. The joint velocity control, instead, allows to follow a
desired end-effector  trajectory  in  a  smoother  way,  but  it  presents  a  major
positioning error with respect to the position control. The same experiments
regarding internal motions, with both the position and velocity control, were
repeated imposing to the end-effector to follow a linear Cartesian trajectory
X=[k1t 0 k2 t π 0 0]T with k1=0.1 and k2=0.01 (See Figure 7.3 and 7.4).
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Figure 7.1 End-effector positional error during internal motion (position control).

Figure 7.2 End-effector positional error during internal motion (velocity control).
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Figure 7.3 End-effector  positional  error  during  internal  motion  while  following  a
linear Cartesian trajectory (position control).

Figure 7.4 End-effector  positional  error  during  internal  motion  while  following  a
linear Cartesian trajectory (velocity control).
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These results show the ability of the developed controller to manage the eight
degree of freedom of the KUKA youBot robot, when both the Cartesian input
variables  and the redundancy parameter  vary with time.  In  fact,  the end-
effector positional  error,  expressed in the figures as an euclidean norm, is
always less the 1 cm, when the position control is used, and is less then 2 cm,
when the velocity control is used instead. 

7.2 Manipulability optimization
The arm extension redundancy, described by parameter ρ2 , has been used
to maximize the index U (q) with the double objective of both keeping the
joints of the manipulator away from their physical limits and  maximizing the
manipulability index, as presented in Chapter 3. The optimization, executed
on-line during the manipulation tasks, actually succeeded in the objective of
choosing  configurations  of  the  mobile  manipulator  suitable  for  objects
manipulation. Figure 7.5 and 7.6 show the values achieved by the objective
function U (q) for  each  possible  value  of  redundancy  parameter ρ2 ,
during a pick and place operation. The black line indicates the actual values
of ρ2 selected during the task execution. It is possible to note that, after an
initially transient  the optimization strategy succeeds in  choosing values  of
ρ2 that maximize the objective measure U (q) .

Figure 7.5 Behaviour of objective function U (q) and chosen values of redundancy
parameter ρ2 during a pick and place task.
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Figure 7.6 Behaviour of objective function U (q) and chosen values of redundancy
parameter ρ2 during a pick and place task. (Heat-map)

7.3 Vertical end-effector configuration redundancy
As  described  in  Chapter  3,  the  redundancy  parameter ρ4 has  been
introduced to describe a task redundancy that occurs when the end-effector
of the KUKA youBot is in a vertical configuration. This redundancy has been
exploited to  minimize  the  movements  of  the  mobile  base.  To observe  the
effectiveness of the developed redundancy resolution strategy, an experiment
was  performed,  where  the  youBot  follows  a  Cartesian  trajectory  for  one
minute always keeping a vertical posture of its end-effector. The experiment
was executed twice, in both cases with the same Cartesian trajectory. First the
behavior of the robot was tested when no redundancy resolution strategy is
actuated on parameter ρ4 , then the experiment was repeated considering
the developed redundancy resolution strategy. As shown in Figure 7.7, when
the  redundancy  resolution  strategy  has  been  considered,  the  mobile  base
movements were reduced by 22,5 % compared to the other case (from 62.1 m
to 48.1 m) .  
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No vertical end-effector redundancy resolution (Total mobile base movements: 62.1 m).

Vertical end-effector redundancy resolution (Total mobile base movements: 48.1 m).

Figure 7.7 Mobile  base  position  and  orientation  while  following  a  Cartesian  end-
effector trajectory with a fixed vertical configuration of the end-effector.  



 Chapter 7 - Experimental results Pag. 84 

Then, the movements of the mobile base of the robot were observed during
some pick and place operations. The same pick and place task was repeated
both with and without the developed redundancy resolution strategy for the
end-effector configurations. As illustrated in Figures 7.8 and 7.9, even in this
case the mobile base movements are reduced when the task redundancy of
the  robot  is  considered.  Indeed,  if  no  redundancy  resolution  strategy  is
considered,  the  last  joint  of  the youBot  manipulator  does  not  execute any
rotational  compensation  and the  mobile  base  must  perform an  additional
movement to align the arm with the selected grasp configuration. In Figure
7.8 and 7.9 the object that has to be grasped is colored in green, while the
target place in blue. 

No vertical end-effector redundancy resolution Vertical end-effector redundancy resolution

Figure 7.8 Mobile base position and orientation during a pick and place operation. 

Target place
Target place

Goal object

Goal object
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No vertical end-effector redundancy resolution Vertical end-effector redundancy resolution

Figure 7.9 Mobile base position and orientation during another pick and place operation.

7.4 Navigation
The navigation technique based on rotational potential fields, introduced in
Chapter  4,  has been tested in the VRep simulation environment  using six
virtual  proximity  sensors  mounted  around the  mobile  base  of  the  KUKA
youBot robot to perceive obstacles. As illustrated in Figure 7.10, the robot was
able  to  safely  navigate  in  the  environment  while  avoiding  obstacles.  As
expected, the introduction of rotational potential fields ensures the navigation
to be not affected by the problem of local minima in the potential function,
typical of standard potential field techniques. Indeed the robot was able to
navigate in a cluttered environment with many obstacles, whose position and
orientation  are  not  known  in  advance.  Also  the  case  of  obstacles  with  a
concave outline, which result more difficult to bypass by a reactive navigation
technique, was examined with positive results as shown in Figure 7.10 and in
the accompanying video [58].
Thanks to the modular architecture of the system, it has been possible to test
the developed navigation strategy also on the real KUKA youBot, in this case
using the ASUS Xtion device to perceive the environment structure, instead of
the proximity sensors used during the simulation experiments. Also in the
real case the youBot was able to correctly navigate in the laboratory, as shown
in Figure 7.11 and in the accompanying video [59]. 

Target place
Target place

Goal objectGoal object



 Chapter 7 - Experimental results Pag. 86 

Trap shape obstacle Narrow passages in a cluttered environment

Figure 7.10 Mobile  base movements during navigation in a cluttered environment in
VRep simulation environment.

Figure 7.11 Navigation experiment with the real KUKA youBot.
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7.5 Grasp synthesis
The grasp synthesis process, described in Chapter 5, has been initially tested
in the VRep simulation environment,  where a virtual depth camera sensor
has been inserted in the model of the robot, fixed on its mobile platform. The
outcome  of  the  grasp  synthesis  process  has  been  analyzed  during  the
execution  of  various  pick  and  place  operations,  where  shape,  position,
orientation  and  dimensions  of  the  objects  to  be  manipulated  are  a-priori
unknown to the robot. At the beginning, some objects with different shapes
were placed on the floor and the grasp synthesis process always correctly
selected a vertical grasping configuration, because lateral end-effector ones
are not  achievable  in  this  situation with the small  KUKA youBot  arm,  as
shown in the following test cases. Such test cases report the real object in the
simulation  environment  with  the  corresponding  point  cloud  model
reconstructed  by  the  synthesis  process  and  the  selected  grasp  pose.  The
execution time reported in the different test cases, which have been executed
on a common low cost laptop with an Intel Core I3 processor, includes all the
four stages of the grasp synthesis process described in Chapter 5: Point Cloud
Acquisition, Data Pre-processing, Grasp Generation, Grasp Selection.

Test case 1 – Small cube
Computation time: 0.295 s, Number of admissible generated grasp poses: 258.
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Test case 2 – Bar
Computation time: 1.04 s , Number of admissible generated grasp poses: 312.

Test case 3 – Concave object
Computation time: 1.39s, Number of admissible generated grasp poses: 417.

Test case 4 – Small sphere
Computation time: 0.17s, Number of admissible generated grasp poses: 646.

Afterwards,  bigger  objects  as  well  as  smaller  ones  placed  on  an  elevated
surface  were  considered,  as  they  could  be  grasped  even  with  lateral
configuration  of  the  end-effector.  Also  in  this  case  the  synthesis  process
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correctly generated admissible grasp poses, as proved by the following test
cases. 

Test case 5 – Concave big object
Computation time: 0.87s, Number of admissible generated grasp poses: 30.

Test case 6 – Cube on cube
Computation time: 0.485 s, Number of admissible generated grasp poses: 688.

Test case 7 – Cylinder on cube
Computation time: 0.84 s, Number of admissible generated grasp poses: 873.
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Finally, the case of particularly cluttered environment, where other obstacles
are  positioned  near  the  target  object  has  been  considered.  The  synthesis
process was able to identify grasping configurations that allow to execute the
grasping task avoiding collision with the close obstacles.  

Test case 8 – Cube between obstacles
Computation time: 0.08 s, Number of admissible generated grasp poses: 19.

Test case 9 – Cube under a bench
Computation time: 0.15 s, Number of admissible generated grasp poses: 7.

Test case 10  – Cube on a shelf 
Computation time: 0.088 s, Number of admissible generated grasp poses: 5.
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Test case 11 – Prism on a shelf
Computation time: 0.07s , Number of admissible generated grasp poses: 21.

In  general,  the pick and place framework proved to  be particularly robust
during the simulations experiments,  as  every requested task was correctly
accomplished by the robot. As shown by the previous test cases and the in the
accompanying video  [60],  the grasp synthesis process is very effective and
produces stable and intuitive grasp postures, requiring less then a second of
computation time on average. The testing conducted on the grasp synthesis
algorithm in the simulation environment are generally valid even in the real
case, because they are based only on the point cloud model of the objects, and
the current available depth cameras are even more accurate than the virtual
sensors used in simulation. 

7.6 Pick and place operations with the real KUKA youBot
The overall behavior of the robotic system was tested on a real KUKA youBot
mobile manipulator. The ASUS Xtion Live Pro device was mounted on the
robot platform and the common OpenNI library was adopted to acquire the
RGB images and the depth scansions. The data acquisition phase of the grasp
synthesis process was particularly critical, as the perceived color of the objects
is sensitive to the light of the laboratory that changes considerably with the
outside weather and with the time of the day. For this reason the OpenNI
library was used to develop a simple tool that allows to manually calibrate the
color filter in few seconds. The application allows to select the ranges of hue,
saturation  and  lightness  and  shows  the  filtering  results  on  the  acquired
images,  making  it  possible  to  quickly  select  the  color  parameters  of  the
different objects to be manipulated (see Figure 7.12). 
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Acquired image Filtered image

Figure 7.12 Colour filter calibration tool. 

Furthermore, a method to automatically calibrate the position of the camera
with  respect  to  the  robot  frame has  been  implemented based on  a  linear
regression applied to the floor observations (see Appendix C).  With these
tools  implemented,  the  pick  and  place  operations  were  tested  with
satisfactory results, as shown in Figure 7.13 and in the accompanying video
[59].  The robot  was  able  to  autonomously  localize  the  objects,  reconstruct
their  point  cloud  model,  correctly  perform  the  grasp  synthesis,  plan  and
execute the pick and place task. In some cases, the grasping execution failed,
mainly because of the standard youBot gripper that was used, that has a small
stroke and limited grasping forces. 
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Figure 7.13 Pick and place experiment with the real KUKA youBot.

The pick and place framework was tested with positive results on a small
prism, on a concave object with few admissible grasp postures and on rubber
ball (see Figure 7.14).

Figure 7.14 Object used for manipulation experiments on the real robot. 
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Conclusions and future works
The aim of  this  thesis  was  to  develop control  techniques  and algorithms,
which  would  allow  to  perform  robotic  manipulation  tasks  in  completely
unknown  environment,  exploiting  the  functional  flexibility  of  mobile
manipulators. 
An autonomous pick and place framework has been successfully designed
and  implemented  on  a  KUKA  youBot  research  platform.  Thanks  to  the
realized  application,  the  robot  is  able  to  autonomously  explore  the
environment,  reconstruct  the model  of  the objects that  should be grasped,
plan and correctly execute pick and place operations. 
The benefit  of  introducing robot specific redundancy parameters  has been
demonstrated,  in  this  thesis,  by  showing  that  each  exceeding  degree  of
freedom can be  coupled with  a  specific  desired behavior  enforced by  the
chosen redundancy resolution strategy.  In this way, the redundancy of the
robot is not used to optimize a unique performance measure, but each degree
of  redundancy  accomplishes  a  specific  behavior,  based on  what  the  robot
control designer thinks it can do best. The developed redundancy resolution
strategies allow the youBot robot to keep its joints inside their physical limits,
maximize the whole robot manipulability  index,  improve the coordination
between mobile base and arm, reduce the movements of the mobile platform,
keep a certain object inside the field of view of the vision subsystem. 
Although not formally proven, the developed navigation technique based on
rotational potential field results to be local minima free in all the numerous
test cases taken in consideration, where the robot is correctly guided toward
its  goal,  while  avoiding  collisions  with  obstacles  disposed  inside  the
environment. 
The very interesting results, obtained by the original grasp synthesis process
realized in this work, show that on-the-fly grasping techniques can be robust
as  common  recognition-based  ones,  but  turn  out  to  be  definitely  more
computationally efficient and more suitable to deal with unknown objects and
environments. 



 Conclusions and future works Pag. 95 

In conclusion, the achieved results are quite satisfactory as all the indicated
objectives have been attained. 

During  the  evolution of  this  work,  many ideas  for  further  researches  and
possible applications have been taken into consideration, although there has
been no time to develop them in a concrete and complete way. Here some
possible guidelines for future work will be shortly presented. 

Besides  pick-and-place  tasks,  it  would  be  very  interesting  to  study  how
mobile manipulator could perform autonomous assembly operations. As in
the well  know case  of  peg  in  hole insertion,  assembly tasks  require  more
advanced control techniques like force control, which takes into consideration
also the dynamic behavior of the robot. Torque control has been used in this
work  to  perform  a  compliant  manual  guidance  of  the  youBot  arm,  as
described in Appendix D. Future researches could investigate how to obtain a
dynamic model of the whole mobile manipulator, considering also the effects
of the mobile platform, and use it to develop control strategies for assembly
operations. 

A  simple  smart-phone  application  has  been  implemented  to  control  the
youBot  behavior  with  vocal  commands.  In  order  to  improve human-robot
interaction  aspects,  further  studies  could  be  used  to  integrate  mobile
manipulators with other devices as smart-phones, advanced vision devices,
Enterprise Resource Planning systems or Domotic environments. 
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Appendix A

KUKA youBot hardware specification

A.1 Arm technical data

Figure A.1 KUKA youBot Arm specification
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Figure A.2 KUKA youBot Arm specification

Lower limit Upper  limit Speed

Axis 1 -169° +169° 90 °/s

Axis 2 -65° +90° 90 °/s

Axis 3 -151° +146° 90 °/s

Axis 4 -102° +102° 90 °/s

Axis 5 -167° +167° 90 °/s

Table A.1 KUKA youBot Axis specification

Gripper stroke 20 mm

Gripper range 70 mm

Motors 2 independent stepper motors

Table A.2 KUKA youBot Gripper specification
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A.2 Base technical data

Figure A.3 KUKA youBot Base specification

Figure A.4 KUKA youBot Base specification

Omnidirectional Kinematics 4 KUKA omniWheel

Speed 0.8 m/s

Table A.3 KUKA youBot Base specification
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A.3 Denavit-Hartemberg parameters

θ d a α

Link 1 q1 0.147 0.033 π /2

Link 2 q2 0 0.155 0

Link 3 q3 0 0.135 0

Link 4 q4 0 0 π /2

Link 5 q5 0.187 0 0

Table A.4 Denavit-Hartenberg parameters for KUKA youBot  manipulator

xd 0.166 m
yd 0 m
zd 0.98 m

Table A.5 KUKA youBot manipulator base frame displacement from platform frame
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Appendix B

JyouBot interface
The JyouBot middleware layer,  inside the context of the autonomous pick and
place framework presented in Chapter 6, has been developed in this thesis to
provide a unique Java interface,  which defines the low level functions and
services necessary to control the robot actuation and to receive informations
from the sensory devices.  The JyouBot interface allows to maintain the same
implementation  of  the  framework  application  logic,  while  customized
implementations  to  support  the  adopted  devices,  in  real  or  simulated
environment,  are  still  possible.  In  this  way,  by  implementing  a  particular
feature of the JyouBot interface,  one can personalize the developed control
system of  the  youBot  robot  to  work  in  the  desired environment  with  the
available  sensory  devices.  More  in  detail,  the  class JyouBot exposes  the
methods that control the velocity of the youBot mobile base and the positions,
velocities and torques of the youBot arm joints. The same class can be used to
retrieve the joints positions from the motors encoders, and to access to the
odometry information that describe the position and orientation of the mobile
platform. The class GoalDetector defines the methods necessary to acquire the
point cloud of the objects that should be manipulated, based on their color.
The class  ObstacleDetector  defines the methods devoted to the acquisition of
the  obstacles  positions,  necessary  for  the  navigation  of  the  robot.  A  class
diagram of the described interface is reported in Figure B.1. 

Figure B.1 Class diagram of JyouBot interface.
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A detailed list of the functionalities defined by the JyouBot interface can be
found in the following tables.

JyouBot interface method summary
Modifier and Type Method and Description

double[] getJointStates() 
Get the actual values of arm and gripper joints.

double getJointStates(int joint) 
Get the actual value of a specific joint.

double[] getOdometry() 
Get the odometry data of the mobile base.

void setArmHomePosition() 
Move the manipulator near the home position.

void setArmJointPosition(double[] values) 
Set the joint position set-point of the manipulator joints.

void setArmJointPosition(int joint, double value) 
Set the joint position set-point of a specific joint of the manipulator.

void setArmJointTorque(double[] values) 
Set the joint torque set-point for the manipulator joints.

void setArmJointVelocity(double[] values) 
Set the joint velocity set-point for the manipulator joints.

void setArmSafePosition() 
Set the arm to a safe position.

void setBaseStop() 
Stop any movements of the base.

void
setBaseVelocity(double xVel, double yVel, 
double rotVel) 
Set the velocity set-point of the mobile base.

void setGripperClosed() 
Close the gripper.

void setGripperJointPosition(double[] values) 
Set the position set-point of the gripper joints.

void setGripperOpen() 
Open the gripper.

../../../../Desktop/com/robb19y/youbot/JyouBot.html#getJointStates()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setGripperOpen()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setGripperJointPosition(double[])
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setGripperClosed()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setBaseVelocity(double,%20double,%20double)
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setBaseStop()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setArmSafePosition()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setArmJointVelocity(double[])
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setArmJointTorque(double[])
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setArmJointPosition(int,%20double)
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setArmJointPosition(double[])
../../../../Desktop/com/robb19y/youbot/JyouBot.html#setArmHomePosition()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#getOdometry()
../../../../Desktop/com/robb19y/youbot/JyouBot.html#getJointStates(int)
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GoalDetector interface method summary

Modifier and Type Method and Description

java.lang.Str
ing

getColor() 
Get the colour of the object that should be detected.

com.robb19y.g
rasping.Point
CloudPreProce
ssing

ReadVisionSensor() 
Returns the actual point cloud perception of the goal object.

void setColor(java.lang.String color) 
Set the colour of the object that should be detected.

ObstacleDetector interface method summary

Modifier and Type Method and Description

java.util.Arr
ayList<double
[]>

getPosition() 
Returns the position of the actual detected obstacles (expressed in 
robot mobile frame).

../../../../Desktop/com/robb19y/youbot/sensors/ObstacleDetector.html#getPosition()
../../../../Desktop/com/robb19y/youbot/sensors/GoalDetector.html#setColor(java.lang.String)
../../../../Desktop/com/robb19y/youbot/sensors/GoalDetector.html#ReadVisionSensor()
../../../../Desktop/com/robb19y/youbot/sensors/GoalDetector.html#getColor()
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Appendix C

Automatic calibration of the depth camera 
relative frame position

During the autonomous pick and place tasks, the depth camera is placed with
a fixed support above the mobile platform of the KUKA youBot at a certain
height zC with  respect  to  the  robot  reference  frame.  Furthermore,  the
camera  is  oriented  toward  the  floor  with  angle βC to  better  look  at  the
objects  that  have to  be  manipulated (see  Figure  C.1).  In  this  appendix an
automatic way to estimate the values of parameters zC and βC ,  starting
from the floor observation, is presented. 

Figure C.1    Camera reference frame and parameters used for the calibration.
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Given  a  depth  scansion  of  the  floor  with N pixel,  each  having  position
pi=<xi , y i , z i > in the reference frame of the camera, linear regression can

be  used  to  estimate  the  straight  line  that  best  match  the y i and z i
coordinates  of  the  points.  Indeed,  the  angular  coefficient m of  that
regression line corresponds to the angle βC , which can be calculated as:

βC=atan(m) . (C.1)

Using  the  well  known  Least  Square resolution  formula  [42],  the  angular
coefficient of the regression line can be derived as:

m=
∑
i=1

N

(z i− z̄)( y i− ȳ)

∑
i=1

N

(z i− z̄)2
(C.2)

with z̄=
1
N
∑
i=1

N

zi and ȳ=
1
N
∑
i=1

N

y i .

Parameter zC , instead, can be calculated considering the average of the floor
observations heights, after having aligned them with the floor horizontal line,
namely after a rotation of angle βC :

zC=−
1
N
∑
i=1

N

y icos (βC)−zi sin(βC) . (C.3)



 Appendix D – Torque control of KUKA youBot arm Pag. 105 

Appendix D – Torque control of KUKA youBot arm

Appendix D

Torque control of KUKA youBot arm

In order to consider the dynamic behaviour of a robotic manipulator, torque
control can be used as an effective control strategy, as it allows to set directly
the torques and forces exerted by the joint motors. In fact, besides positions
and velocities of the joints, it is necessary to control the forces that they exert,
so that the whole manipulator structure can have different degrees of stiffness
and compliance. Stiffness can be defined as the capacity of a robot to keep
rigidly its position even when external forces are applied on it. Compliance,
instead, allows the manipulator to change its posture and to deform according
with  external  forces  applied  on  it.  In  this  work,  torque  control  has  been
adopted to perform manual guidance of the KUKA youBot arm. In this way it
is possible to set manually postures of the manipulator, without the effort of
programming  them.  Thanks  to  the  developed  torque  control  strategy,  the
youBot arm maintains the postures manually assigned, but still it wont fall or
collapse due to the gravitational pull.  
The parameters, necessary to define the dynamic model of the youBot arm,
are reported in the following table. 

Mass [Kg]
Inertia Tensor Elements [Kg m2] Centre of mass

position [m]IXX IYY IZZ

Link 1 1.39 0.002952 0.006009 0.0058821 [-0.016, -0.0735, 0]

Link 2 1.318 0.003114 0.0005483 0.003163 [-0.077, 0, 0]

Link 3 0.821 0.0017276 0.0004196 0.0018468 [-0.067, 0, 0]

Link 4 0.769 0.006764 0.0010573 0.000661 [0, 0, 0.062]

Link 5 0.678 0.001934 0.001602 0.00689 [0, 0, -0.062]

Table D.1 KUKA youBot arm dynamic parameters
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Given the dynamic parameters and the kinematic model of a manipulator,
Euler-Newton or Lagrangian formulation can be used to derive the manipulator
dynamic model [61]: 

B(q) q̈+C (q , q̇) q̇+ g(q)=τ (D.1)

where  the  symbols q , q̇ , q̈ and τ denote  n-dimensional  vectors  of  joint
position, velocity, acceleration and torque variables, respectively, where n is
the number of degrees of motion freedom of the robot mechanism. B(q) is
an n×n symmetric,  positive-definite  matrix,  and  is  called  the  joint-space
inertia matrix. C (q , q̇) is an n×n matrix such that C (q , q̇) q̇ is the vector
of  Coriolis  and  centrifugal  terms  (collectively  known  as  velocity  product
terms); and g(q) is the vector of gravity terms.
Many control strategy, as for example Inverse Dynamics or Robust Control [62],
are  available  to  consider  the  dynamic  behaviour  of  a  robotic  manipulator
inside  the  robot  controller.  For  the  purpose  of  performing  the  manual
guidance on the youBot arm, it has been sufficient to adopt the simple control
law:

τ=g(q) (D.2)

which  ensures  to  the  robot  the  capacity  to  compensate  the  effects  of  the
gravitational pull and leaves the possibility to manually move all the links of
the manipulator in any desired position.
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