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Abstract

When writing code for a cloud computing software platform testing is a must.
Unit testing and integration testing can help the developer know if his/her
code will cause bugs in the overall system. However, cloud platforms are
very complex pieces of software, with many many “moving pieces”. There
are times when we will want to write code to change the system’s behavior
—for example, to include new Virtual Machine placement or consolidation
techniques. In these cases it is not enough to hunt for bugs. We need to know
how the new code will behave within the system as a whole. To do this we
need to be able to run complex simulations, and to collect and analyze the
obtained results. However, it is difficult for a developer –who is often provided
with limited amount of hardware resources– to experiment code in an entire
cloud system which needs tens of physical machines to be hosted. Virtualizing
the system is thus compulsory.

Our solution is aDock, a modular system that leverages Docker’s
lightweight virtualization techniques and OpenStack –our reference open-
source cloud computing software platform– to allow users to deploy extremely
lightweight cloud systems, to run simulations, to store the system’s output,
and to display it in real-time thanks to a friendly user interface.

As further contribution we developed a Virtual Machine Consolidation ser-
vice for OpenStack, and tested it with four different consolidation algorithms.
Virtual Machine Consolidation is one of the topics of primary importance in
nowadays cloud systems. Consolidation is supposed to be an intelligent and
efficient strategy for resource allocation, in order to make the most of available
hardware and, thus, save energy. Energy saving, in fact, has become an urgent
and important problem in data centers due to their growing energy greediness.

In order to evaluate our solution we used aDock to deploy an OpenStack
system, and to benchmark and compare the proposed consolidation algorithms.
Thanks to aDock we were able to deploy the system in a reasonable time —
even on our laptops. The simulation results demonstrated that the four con-
solidation algorithms brought various degrees of improvements to the system’s
resource allocation.





Sommario

Quando si scrive codice per una piattaforma software di cloud computing, il

testing è di primaria importanza. Lo sviluppatore può utilizzare i test di unità e

di integrazione per valutare la bontà del suo codice. Tuttavia, i software cloud

possono essere molto complessi. Talvolta, inoltre, lo sviluppatore vorrebbe

scrivere del codice che influenzi il comportamento dell’intero sistema e non

di un solo componente. In questi casi il semplice testing non è sufficiente: lo

sviluppatore ha bisogno di sapere come il nuovo codice si comporterà all’interno

del sistema. E’ quindi necessario eseguire simulazioni complesse ed analizzare

i risultati ottenuti. Tuttavia, può essere difficile per lo sviluppatore, spesso

sprovvisto di grandi quantità di risorse hardware, sperimentare codice in un

intero sistema cloud, il quale è solitamente ospitato da decine di macchine

fisiche. La virtualizzazione del sistema è quindi d’obbligo.

La nostra soluzione è aDock, un sistema modulare che sfrutta Docker per

le sue tecniche di “virtualizzazione leggera” e OpenStack come software open-

source di cloud computing di riferimento. aDock, in questo modo, consente

agli utenti di avviare sistemi cloud estremamente leggeri, eseguire simulazioni,

salvare i dati in uscita e mostrarli in tempo reale grazie ad un’interfaccia utente.

Come ulteriore contributo è stato sviluppato un servizio di consolidamento

di macchine virtuali per OpenStack testato con quattro diversi algoritmi di

consolidamento. Il consolidamento è, ad oggi, uno dei temi di primaria impor-

tanza nei sistemi cloud. Si tratta dello sviluppo di strategie per l’allocazione

delle risorse che garantiscano l’utilizzo ottimale dell’hardware disponibile ai

fini del risparmio energetico, problema sempre più rilevante nei data center,

data la loro incessante crescita.

Al fine di valutare la nostra soluzione abbiamo usato aDock per lanciare

un sistema OpenStack e confrontare gli algoritmi di consolidamento proposti.

Grazie ad aDock siamo stati in grado di avviare il sistema in un tempo ra-

gionevole, anche su computer portatili. I risultati delle simulazioni hanno

dimostrato che i quattro algoritmi di consolidamento portano ad un notevole

miglioramento nell’allocazione delle risorse del sistema.
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Chapter 1

Introduction

The rapid growth of cloud services –in the past years– has driven a steep

rise in the number of massively-scaled data centers. As a consequence energy

consumption of data centers has become an urgent and important problem, as

the power they need has reached the 1.3% of the world’s total in 2010[3]. This

is why an intelligent and efficient strategy for resource allocation is critical, to

try to make the most of the available hardware.

Within an Infrastructure as a Service (IaaS) one way to achieve this goal

is to try to minimize the number of running servers, while maintaining all the

requested virtual machines running and available. This is commonly done by

placing VMs intelligently on available servers. Exploiting this solution, it is

possible to ensure that the data center is “filled” in a consistent way, avoiding

under-allocated resources.

The problem with this solution is that it does not cover the cases in which

VMs are deallocated from the hosting hardware. In these cases, in fact, the

system could reach a state in which various –or all– the data center servers

are used inefficiently, leaving some of them under-utilized and consuming more

power because some of them may be potentially turned off.

To address this problem it is possible to periodically consolidate the arrange-

ment of VMs within the data center, migrating them from under-utilized

servers to servers which can host them; thanks to these migrations it might
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be possible to “empty” the under-utilized machines and take them into an

energy-saving power state, e.g., as a deep-sleep. As illustrated in the State of

the Art (see Chapter 3), during the past years VM consolidation has gained

more and more attention from the community, and a lot of algorithms and

techniques have been proposed to address it.

Despite it being a very interesting approach to power saving, we lack solid

VM Consolidation implementations, especially in non-proprietary IaaS; in fact,

most of the solutions from the state of the art are theoretical —without prac-

tical tests in real environments. Take OpenStack, for example. It is the most

important and used open-source IaaS solution, yet it doesn’t provide any offi-

cial implementation of the concept of VM consolidation.

In this thesis we decided to try to apply the concept of VM consolidation to

OpenStack, since it is the reference platform for IaaS in the open-source world

and it has a large and active community. More specifically, our goal was to

implement a new OpenStack module that would allow us to “plug-in” and test

a number of consolidation algorithms, and to see their impact on a real cloud

system. At the beginning, however, we faced the problem of how to run, test

and benchmark our code in an OpenStack environment. In order to deal with

aspects like Scheduling, Virtual Machine Placement, and Server Consolidation,

we needed a highly configurable system that would allow us to run simulations

and benchmarks to evaluate the soundness of our solutions. Unfortunately we

had limited server hardware, and could not construct a realistic testbed.

By looking at the state of the art we found that we were not alone; limited

hardware is indeed a common barrier to experimenting with cloud infrastruc-

ture. Although OpenStack can be used to create testbeds, it is not uncommon

in literature to find works that are plagued by unrealistic setups that use only

a handful of servers.

For these reasons we decided to shift the focus of our work from VM consol-

idation algorithms to the implementation of a set of tools that would enable

us to easily setup a cloud test environment. We needed a quick and easy way

2



to install and deploy code into a realistic experimentation environment, for

example, to test a new consolidation algorithm. Moreover the experimenta-

tion environment would have to be lightweight, in order to allow it to be used

with limited hardware resources (e.g., on a single developer workstation), and

highly configurable to meet the needs of different situations.

However, setting up a testbed is necessary but not sufficient. One must also

be able to create repeatable experiments that can be used to compare one’s

results to baseline or related approaches from the state of the art. We needed

a way to automatically simulate, in a repeatable way, the workload generated

from user applications that normally run on a cloud environment. Moreover we

realized that it would be very useful to show real-time data of the simulations

to analyze the behavior of the system in different configurations and analyze

and compare the data collected.

Our solution to these problems was to develop aDock, a suite of tools

for creating cloud infrastructure experimentation environments that are

lightweight, sandboxed, and configurable. Our goal is to provide developers,

sysadmins, and researchers a simple solution through which they can easily

access a fully functional cloud installation of OpenStack.

aDock is made up of four main components: FakeStack (see 4.3), Oscard

(see 4.4), Bifrost (see 4.5.1), and Polyphemus (see 4.5.2). FakeStack allows the

user to manage the deployed OpenStack system, making it possible to configure

and install one with the minimum effort. Oscard allows the user to configure

and run repeatable simulations through command-line tools, as well as to store

the experiments’ outputs on Bifrost, i.e., our simulation database. Finally,

Polyphemus allows the user to follow a simulation’s progress in real-time, and

to analyze relevant data such as the environment’s resource utilization.

FakeStack, Oscard, and Polyphemus take advantage of Docker (see section

3.3.4 for more details), an open platform that exploits Linux containers to

virtualize Operating Systems and Applications on a host; it allowed us to keep

the overall solution lightweight, as well as to keep deployment quick thanks to

3
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its low resource requirements, especially compared to more traditional Virtual

Machines.

As a further contribution we used aDock to create a Virtual Machine con-

solidation module for OpenStack. The module provides extension points that

make it easy to “plug-in” any consolidation algorithm we may want to test.

To do this the module provides an abstract view of the experimentation envi-

ronment and of its resource usage, allowing the more inexperienced developer

to test his/her algorithms without having to fully understand OpenStack’s

complex internal behavior.

In order to prove the soundness of our solution, we implemented four differ-

ent consolidation algorithms: Random, Genetic, Genetic “best”, and Holistic;

see 5.2 for more details. Using aDock, we were able to deploy a “1 + 5”

OpenStack system —that is one containing one controller node and 5 compute

nodes. The compute nodes are the ones that actually host virtual machines.

The controller node, instead, manages all of them.

This was achieved in a reasonable time on a laptop with very limited hardware

resources —without compromising its usage. On a moderate Server machine

we were even able to achieve a “1 + 42” configuration. All consolidation

algorithms brought a significant improvement to OpenStack’s resource usage.

In the bast case we were able to achieve a 14% increase in vCPU usage, a

20% increase in RAM usage, a 1.5% increase in disk usage, and a decrease of

about 30% active nodes. Both aDock and our Consolidator module open the

door to a lot of interesting future work. For what concerns aDock, Oscard

will continue to grow to become a more and more realistic solution for running

simulations. For example, we could exploit data from the state of the art to

extract more realistic ratios between user actions (e.g. creating vs destroying

Virtual Machines), user action density over time, and different application-

specific virtual machine workloads (e.g. web applications, compute intensive

tasks, etc.).

We would also like to make FakeStack more modular. Each OpenStack ser-

4



vice could be dockerized into a single container, thus, making FakeStack even

more flexible in terms of possible experimentation environment configurations.

Up until now, more OpenStack services run in a single Docker container, mak-

ing it harder to relize some specific OpenStack architectures. We are also

interested in providing “ready-to-go” compositions of containers, which would

make it even easier for the user to deploy an entire OpenStack system.

Regarding Virtual Machine consolidation in OpenStack, we believe our con-

solidator can provide a valid testbed for comparing approaches from literature

(see sections 3.2.3 and 3.2.4). In the future we might be inetersted in provid-

ing a detailed survey of existing approaches, and base it on our consolidator

module.

5





Chapter 2

OpenStack and DevStack

In this chapter we are going to present OpenStack and DevStack; we shall

provide a brief overview and focus on the components and aspects that most

concern the topics of our thesis to provide the reader with some key informa-

tions useful to the understanding of following chapters.

2.1 OpenStack

OpenStack is an open-source cloud computing software platform that provides

a complete IaaS solution for public and private clouds. Founded by Nasa1 and

Rackspace Cloud2 in 2010 OpenStack is now one of the biggest open-source

projects with more than twenty thousand people working on it and more than

twenty million code lines. It is a cloud operating system that controls large

pools of compute, storage, and networking resources throughout a datacenter

(with the possibility of controlling them trough a dashboard) and enabling

enterprises and service providers to offer on-demand computing resources.

One of its main strengths is its modularity, which provides the flexibility needed

to design different configurations for different cloud environments; its core

components are:

1www.nasa.gov (2015)
2www.rackspace.com (2015)

www.nasa.gov
www.rackspace.com
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Compute The service called Nova is the primary computing engine and it is

used to deploy and manage large numbers of Virtual Machines.

Storage The storage platform, divided in Object Storage (Swift) and Block

Storage (Cinder).

Network The service called Neutron offers Networking as a Service

Dashboard Horizon that is a dashboard provides users with a graphical user

interface to access, provision, and automate cloud-based resources.

Shared Services Other services, that makes it easier to manage the IaaS,

such as the Identity Service (Keystone), the Image Service (Glance),

Telemetry (Ceilometer), Orchestration (Heat) and others.

Figure 2.1: A “1 + N” OpenStack configuration

We have decided to focus on the creation of “1 + N” installations of Open-

Stack; these are composed of one Controller node and N Compute nodes with

legacy networking. Legacy networking refers to a basic solution in which we do

not deploy Neutron but we exploit nova-network , a Nova service described

in paragraph 2.1.1. The figure 2.1 on page 8 provides a high level view of all

the OpenStack services, both basic and optional, that have to be installed both

on the Controller and the Compute nodes to setup a “1 + N” configuration.
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2.1 OpenStack

The Controller node is responsible for globally managing the cloud operations.

It runs the user Identity service, the Virtual Machine Image service, the

management portion of the Compute service, and a Dashboard through which

the users can request the creation of new Virtual Machines. Optionally, the

node can run the management portions of the Block, Object, and Database

Storage services, and the Telemetry and Orchestration services. The Con-

troller node also runs a series of supporting services (i.e., the Database and

Message Broker services). Each of the N basic Compute nodes, on the other

hand, runs the Compute service and optionally the Telemetry service.

2.1.1 Nova

OpenStack Compute module, Nova, is the core of OpenStack; it takes care

of deploying and managing Virtual Machines, by placing them on physical

machines, letting them communicate, storing their informations on an SQL

database, and offering a set of HTTP managed APIs and a command-line

client. In the next paragraphs we will briefly describe the three Nova sub-

modules that are relevant for our work.

Nova-compute The nova-compute is the sub-module that takes care of

booting, resizing, live-migrating and destroying the Virtual Machines that are

running on the physical servers, and of letting them communicate with the

hypervisor.

Hereunder are reported four examples of the main commands (also accessible

through the Nova APIs) used to boot, resize, destroy and live-migrate Virtual

Machines:

• $ nova boot --flavor <flavor> --image <image>

• $ nova resize --flavor <vm> <flavor>

• $ nova delete <vm>

• $ nova live-migration <vm> <host>

9
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Nova-network Nova-network is the basic network management module

of OpenStack. It i included directly in Nova. Unlike Neutron, which can

virtualize and manage both layer 2 (logical) and layer 3 (network) of the OSI

network, nova-network only provides layer 3 virtualization and has some lim-

itations on the network topology.

However nova-network is still supported by OpenStack and in powerful

enough to support a “1 + N” configuration. It also streamlines the instal-

lation process as it avoids having to install another service (Neutron) and its

dependencies.

Nova-scheduler Nova uses the nova-scheduler service to determine

how to dispatch compute requests. It is used, for example, to determine on

which host a Virtual Machine should launch. The system administrator can

modify and configure the /etc/nova/nova.conf configuration file to adjust

the criteria under which the nova-scheduler will place the Virtual Machines.

The process of placing Virtual Machines on the most suitable host is divided in

a filtering step, in which a list of candidate hosts is generated, and a weighing

step in which the list is ordered according to the selected criteria and the best

host is chosen.

2.1.2 Fake Drivers

To deal with situations in which the compute nodes are not physical ma-

chines that will host real Virtual Machines, but they have to be “fake” in the

sense that they don’t host a real hypervisor, OpenStack offers a module called

nova.virt.fake that allows developers, that don’t have real hardware, to

test Nova code on compute nodes without a real hypervisor such as libvirt.

When exploiting this solution Virtual Machines, are mere python objects; in

such a way the Virtual Machines are not really spawned but simply stored

in the database. However FakeDriver mimics the correct behavior of a real

hypervisor, allowing one to test the rest of the Nova running flow.

10



2.2 DevStack

This module is not configurable and by default a FakeDriver offers 1000

VCUs, 800000 MB of RAM, and 600000 GB of Hard Disk.

2.2 DevStack

DevStack3 is a set of scripts and utilities to quickly deploy an OpenStack cloud

environment and it is freely available on GitHub4.

DevStack allows developers and system administrators to automate the process

of installing OpenStack on a server reducing it to a simple command for every

installation.

The services that are configured by default are Identity (Keystone), Object

Storage (Swift), Image Storage (Glance), Block Storage (Cinder), Compute

(Nova), Network (Nova), Dashboard (Horizon) and Orchestration (Heat). The

main script is stack.sh ; it does all the works, installing and configuring all

the services set by the user.

All the required configurations, such as the Git repositories to use, the ser-

vices to enable or the OS images to use, can be achieved overriding default

environment variables (found in stackrc ) through file local.conf . This is

achieved with a localrc section, as shown below:

[ [ l o c a l | l o c a l r c ] ]

ADMIN PASSWORD=s e c r e t e

DATABASE PASSWORD=$ADMIN PASSWORD

RABBIT PASSWORD=$ADMIN PASSWORD

SERVICE PASSWORD=$ADMIN PASSWORD

SERVICE TOKEN=a682f596−76f3−11e3−b3b2−e716f9080d50

# . . .

ENABLED SERVICES=n−cpu , n−api , n−net

# . . .

Listing 2.1: Sample of a local.conf

3More info at docs.openstack.org/developer/devstack
4github.com/openstack-dev/devstack
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The environment variable ENABLED SERVICES is used to define the service

to run: in listing 2.1 the Nova services to install, in a simple compute node

installation, are nova-compute, nova-api, nova-network. By running the

script tools/install prereqs.sh it is furthermore possible to install all the

dependencies required by the configured services.

Other useful scripts provided by DevStack are unstack.sh , that allows to

stop everything that was started by stack.sh , and clean.sh that tries to

remove all the traces left by the OpenStack installation performed by DevS-

tack.

12



Chapter 3

State of the Art

3.1 Introduction

As described in the Introduction (1) our thesis has two different topics. The

first is the development of a system to create cloud infrastructure experimenta-

tion environments for developers and researchers. The second is the implemen-

tation of an OpenStack module to allow one to test consolidation algorithms

to improve the resource allocation efficiency of the cloud infrastructure and,

as a result, its energy efficiency.

For that reason this chapter is divided into two sections in which we are going

to present the state of the arts of Cloud Test Environments and of Virtual

Machines Consolidation.

3.2 Virtual Machine consolidation

At its most basic essence, cloud computing can be seen as a means to provide

developers with computation, storage, and networking resources on-demand,

using virtualization techniques and the service abstraction [4]. The service

abstraction makes the cloud suitable for use in a wide variety of scenarios,

allowing software developers to create unique applications with very small

upfront investments, both in terms of capital outlays and in terms of required
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technical expertise. Thanks to Cloud Computing, Internet software services

have rightfully taken their place as important enablers in areas of great social

importance, such as ambient assisted living [5], education [6], social networking

[7], and mobile applications [8].

Managing a Cloud Infrastructure, however, presents many unique challenges.

For example, there has been a lot of focus in the last few years on Virtual

Machines Placement and Server Consolidation, given the role they play in

optimizing resource utilization and energy consumption [1], [9]. Virtual Ma-

chine (VM) Placement [10], [11] defines how a cloud installation decides on

which physical server to create a new virtual machine, when one is requested.

Server Consolidation techniques [12], [13], on the other hand, allow a cloud

provider to perform periodical run-time optimizations, for example through

the live migration of VMs. The goal is always to desist from having too many

under-utilized hardware resources given a specific workload, and to achieve

this without compromising the quality of service that is offered to the cloud’s

customers.

Dynamic consolidation of Virtual machines is enabled by live migration, that

is the capability to move a running Virtual Machine from one physical hosts

to another with no downtime and no disruptions for the user. Thanks to

dynamic Virtual Machine consolidation it is possible to minimize the number

of active hosts, and to remove Virtual Machines from hosts when they become

overloaded therefore avoiding performance degradation.

With regard to Virtual Machine Consolidation a lot of solutions, algorithms

and techniques have been proposed in literature [14], [12], [13]; we decided to

focus on four interesting papers described in sections 3.2.1, 3.2.2, 3.2.3 and

3.2.4. The section 3.2.5 is dedicated to the only attempt within the state of

the art to apply Virtual Machine consolidation in the OpenStack world.

14
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3.2.1 Genetic Algorithm

In the paper Toward Virtual Machine Packing Optimization Based on Genetic

Algorithm[15] the authors explain how they modeled the problem of Virtual

Machines consolidation as a bin packing problem and how they structured a

Genetic Algorithm to deal with it. A Genetic Algorithm is a heuristic algo-

rithm, i.e., a type of technique that is often used to address NP-hard problems

such as the bin packing problem. A GA is a kind of machine learning that

takes inspiration from the concept of evolution observed in biological environ-

ments, from which it borrows a lot of terms such as Chromosome, Mutation

or Population.

The paper in question defines the concepts of a Genetic Algorithm for the

Virtual Machine packing problem as follows:

Chromosome It represents a physical node, and in particular the list of

hosted virtual machines.

Crossover They use a One-Point Crossover that randomly cuts two chromo-

somes and mix them. They also implement a repair function to fix the

inconsistent children thus obtained.

Mutation They randomly exchange two positions between them.

Initial Population Generation They generate the initial population using

a Minimal Generation Gap method.

Objective Function The unspecified objective function is said to be de-

signed with parameters and weights in mind, such as SLA (Service level

agreement) violations, number of active nodes, and number of migrations

applied.

The experimentation environment and the simulation tests are not de-

scribed in a detailed way and there are no data results to prove the soundness of

the approach. Still, the idea of implementing a Genetic Algorithm to solve the

15
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consolidation problem is interesting, and possibly very efficient and useful; for

these reasons we decided to take inspiration from it and implement a Genetic

Algorithm, to be applied in an OpenStack test environment deployed with

aDock, as described in section 5.2.2.

3.2.2 Holistic Approach

The paper Energy Management in IaaS Clouds: A Holistic Approach published

during the IEEE Fifth International Conference on Cloud Computing in 2012

presents energy management algorithms and a holistic energy-aware Virtual

Machine management framework for private clouds called Snooze.

The system architecture described by the authors (see figure 3.2.2 on page 18)

is divided in three layers:

Physical layer It contains clusters of nodes; each is controlled by a Local

Controller (LCs).

• Local Controller - They enforce Virtual Machines and host manage-

ment commands coming from the GM (Group Manager, see below).

Moreover, they monitor VMs, detect overload/underload anomalous

situations and report them to the assigned GM.

Hierarchical layer It allows to scale the system and is composed of fault-

tolerant components: Group Managers (GMs) and a Group Leader (GL).

• Group Leader - One GL oversees the GMs, keeps aggregated GM

resource summary information, assigns LCs to GMs, and dispatches

VM submission requests to the GM.

• Group Managers - Each of them manages a subset of physical hosts;

they retrieve resource information and send commands, received by

the GL, to the LCs.

Client layer It provides the user interface and it is implemented by a prede-

fined number of replicated Entry Points (EPs).

16
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The system addresses the scheduling problem both at the GL level, where

VM to GM dispatching is done based on the GM resource summary information

in a round-robin way, and at the GM level where the real scheduling decisions

are made. In addition to the placement policies, which are applied when a new

VM is requested, the work also supports relocation policies, which are called

when overload or underload events arrive from LCs, and consolidation policies,

which are called periodically according to one interval that is specified by the

system administrator.

The paper proposes an algorithm for both overload and underload relocation

policy. They both take as input the overloaded/underloaded LC along with its

associated VMs and a list of LCs managed by the GM and output a Migration

Plan (MP) which specifies the new VM locations.

The algorithm proposed for the consolidation follows an all-or-nothing ap-

proach and attempts to move VMs from the least loaded LC to a non-empty

LC with enough spare capacity. LCs are first sorted in decreasing order based

on their estimated utilization. Afterwards, VMs from the least loaded LC are

sorted in decreasing order, placed on the LCs starting from the most loaded

one and added to the migration plan. If all VMs could be placed the algorithm

increments the number of released nodes and continues with the next LC. Oth-

erwise, all placed VMs are removed from the LC and MP and the procedure

is repeated with the next loaded LC. The algorithm terminates when it has

reached the most loaded LC and outputs the MP, number of used nodes, and

number of released nodes[1, p. 208].

In section 5.2.3 we describe how we implemented this algorithm in our system

and the result obtained with our configuration.

3.2.3 Game Theory Approach

The paper A Game Theory Approach to Fair and Efficient Resource Allocation

in Cloud Computing proposes a game theoretic resources allocation algorithm

that considers the fairness among users and the resources utilization for both

17
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Figure 3.1: The Snooze architecture [1]

[16].

The four main components of the proposed cloud resource management system

are:

CEM - Cloud Environment Monitor This component retrieves informa-

tion like host names and IP addresses about physical servers, and mon-

18



3.2 Virtual Machine consolidation

itors their statuses (starting, running, shutdown) and the consumption

of CPU, memory, and disk storage.

RC - Register Center Every physical server in cloud data center should

register its information to RC for connection and management.

IM - Infrastructure Manager It is responsible for deploying and manag-

ing the virtualized infrastructures, such as creating and releasing virtual

machines.

CC - Control Center It is the control center to provide the most appropri-

ate decision about resource allocating.

CEM monitors the statuses and resource consumptions for physical servers

registered in RC. Once a new physical server joins the cloud, information like

its MAC address and its IP address will be registered to RC. When a user sends

a service request to the cloud, the resource requirements this request will be

received by CC. CC makes an intelligent resource allocation decision based on

the information collected by CEM. The allocation decision is executed by IM

to manage the physical servers and place the virtual machines.[16, p. 3]

They experimented a FUGA (Fairness-Utilization tradeoff Game Algo-

rithm) on a server cluster composed of 8 nodes and compared it to the Hadoop1

fair scheduler 2. They showed that it is possible to achieve an optimal tradeoff

between fairness and efficiency compared with the evaluation of the Hadoop

scheduler.

3.2.4 Multi-agent Virtual Machine Management

The solution presented in the paper Multi-agent Virtual Machine Management

Using the Lightweight Coordination Calculus specifies the migration behav-

1A framework that allows for the distributed processing of large data sets across clusters
of computers using simple programming models. http://hadoop.apache.org

2“Fair scheduling is a method of assigning resources to jobs such that all jobs get, on
average, an equal share of resources over time.”, hadoop.apache.org/docs/r1.2.1/fair_
scheduler.html
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ior of Virtual Machines within, and between cloud environments. It uses a

Lightweight Coordination Calculus to provide an executable, declarative spec-

ification of an agent interaction model[17].

The proposed system is distributed between nodes; it doesn’t have a central

controller that could represent a single point of failure or a bottleneck. Agents

located on the physical machines negotiate VM transfer between themselves,

without referencing any centralized authority[17, p. 124].

The framework designed by the authors provides different types of interac-

tion models by which it is possible to implement a wide range of algorithms

and policies to support different situations.

3.2.5 Neat

OpenStack, at the state of the art, provides a comprehensive and efficient

Virtual Machines Placement system. As described in section 2.1.1, it is part

of the nova-scheduler module. However, with regard to Virtual Machines

Consolidation, OpenStack does not include any official solution or plans to

include it.

The only project that tried to bring Virtual Machine consolidation concepts

to OpenStack is Neat3. It is defined as a framework for dynamic and energy-

efficient consolidation of virtual machines in OpenStack clouds [2].

OpenStack Neat approaches the consolidation problem by splitting it in four

sub-problems [2, p. 3]:

• Deciding whether a host is underloaded. In this case all Virtual Machines

should be migrated from it, and the host should be switched to a low-

power mode.

• Deciding whether a host is overloaded. In this case some Virtual Ma-

chines should be migrated from it to an other active host or a host

should be reactivated to avoid violating the QoS requirements.

3github.com/beloglazov/openstack-neat
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• Selecting the Virtual Machines to migrate from an overloaded host.

• Placing the selected Virtual Machines on an other active host, or on a

reactivated one.

Figure 3.2.5 [2, p. 7] represents the architecture of OpenStack Neat: it is

mainly composed by a Global Manager installed on the Controller node, and

by a Local Manager and a Data Collector installed on every Compute node.

The Global Manager is responsible for making global management decisions

such as mapping Virtual Machine instances to hosts, and initiating Virtual

Machines live migrations; the Local Manager makes local decisions such as

deciding that the host is underloaded or overloaded and selecting Virtual

Machines to migrate to other hosts; lastly the Data Collector is responsible

for collecting Virtual Machines and hypervisors resource usage data and for

then storing the data locally and submitting it to the central database, which

can also be distributed.

One of the main characteristics of OpenStack Neat is that it is designed to

be distributed and external to OpenStack, in fact it acts independently of

the base OpenStack platform and applies Virtual Machines consolidation by

invoking OpenStack’s public APIs. For that reason it has to be installed

separately from OpenStack, following the limited instructions present on

the GitHub page of the project4 and can not take advantage of tools like

DevStack (see 2 on page 7) that automates the deploy and configuration of

an OpenStack installation.

3.3 Cloud test environments

When provisioning a cloud we need to be able to test different environment

configurations and algorithms, to analyze the behavior of new code that need

4github.com/beloglazov/openstack-neat
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Figure 3.2: The OpenStack Neat architecture [2]

to integrate with the environment, and to benchmark and collect data for re-

search and experimentations. Unfortunately it can be expensive and complex

to create and manage a cloud test environment in terms of time, resources and

22
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expertises, especially if the hardware resources like server machines or network

infrastructures are limited. Fully understanding and handling an OpenStack

installation is not easy, especially for non sysadmins like developers or re-

searchers; it has a high learning curve and often a lot of time is needed to

achieve the desired results.

There are some tools that reduce the impact of these complications are and

make the process of setting up a cloud infrastructure experimentation envi-

ronment easier and more manageable. The growing need of advanced system

management have made configuration management tools, such as Chef and

Puppet, have become increasingly mainstream. These tools provide domain-

specific declarative languages for writing complex system configurations, al-

lowing developers to specify concepts such as “what software packages need

to be installed”, “what services should be running on each hardware node”,

etc. More recently OpenStack has started collaborating both with Chef (see

section 3.3.2) and Puppet (see section 3.3.3) to create new means to configure

and deploy fully-functional OpenStack environments on bare-metal hardware,

as well as on Vagrant virtual machines. The combination of a system manage-

ment tool, like Chef or Puppet, and Vagrant can be used to setup a virtualized

experimentation environment. However, these are complex sysadmin tools that

require strong technical skills.

Below we present them and highlight their main features, as well as their

strengths and weaknesses with respect to the topic of our thesis.

3.3.1 Vagrant

Vagrant5 is a virtualization framework for creating, configuring and managing

development environments, written in Ruby. It is a wrapper around virtualiza-

tion software such as VirtualBox, KVM, VMware and could be used together

with configuration management tools such as Chef and Puppet. Thanks to

5www.vagrantup.com
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box = ’ t rus ty64 ’
u r l = ’ http :// f i l e s . vagrantup . com/ p r e c i s e 3 2 . box ’
hostname = ’ customtrustybox ’
domain = ’ example . com ’
ip = ’ 1 9 2 . 1 6 8 . 0 . 4 2 ’
ram = ’ 2048 ’

Vagrant : : Conf ig . run do | c o n f i g |
c o n f i g .vm. box = box
c o n f i g .vm. box ur l = u r l
c o n f i g .vm. host name = hostname + ’ . ’ + domain
c o n f i g .vm. network : hostonly , ip

c o n f i g .vm. customize [
’ modifyvm ’ , : id ,
’−−name ’ , hostname ,
’−−memory ’ , ram

]
end

Listing 3.1: Vagrantfile example

an online repository 6 it is possible to automatically download a Vagrant Box

and run it with a single command: vagrant up vagrant-box-name . It is

also possible to create and configure custom Vagrant Box by simply writing

a Vagrantfile : Provisioners in Vagrant allows one to automatically install

and configure software in a Vagrant Box as part of the vagrant up process.

Therefore it is easier to start with a base Vagrant Box, adapt it to your needs

and eventually share it with other developers who can reproduce the same

virtual development environment.

Vagrant is used together with configuration management software such as Chef

and Puppet to create repeatable and easy to setup development and test en-

vironments that rely on Virtual Machines.

3.3.2 Chef

Description Chef7 is a configuration management tool used to stream-

line the task of configuring and maintaining servers in a cloud environment.

6www.vagrantcloud.com
7www.chef.io
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It can be integrated with cloud-based platforms such as Rackspace, Amazon

EC2, Google Cloud Platform, OpenStack and others. It is written in Ruby

and Erlang and uses a domain-specific language (DSL)8 for writing config-

uration files called recipes. Recipes are used to define the state of certain

resources9, and everything that is required to configure the different parts of

the system. They state what software should be installed (together with any

required dependencies), services that should be run or files that should be

written. Given a recipe Chef ensures that all the software is installed in the

right order and that each resource state is reached, eventually correcting those

resources in a undesired state; recipes can be collected into cookbooks to be

more maintainable and powerful. In addition Chef offers a centralized hub,

called Chef Supermarket10; it collects a large number of cookbooks from the

community that are freely downloadable.

A base installation of Chef comprises three main components: a chef-server

that orchestrates all the Chef processes, multiple chef-clients found on all

the servers, and the user workstation that communicates with the Chef Server

to launch commands.

To simplify communication with the chef-server Chef provides a command-

line tool called Knife that helps users manage nodes, cookbooks and recipes.

Chef and OpenStack Chef and OpenStack can be combined and used

together in different ways, many of which have a different goal compared to our

thesis. It is possible, in fact, to deploy and manage a production OpenStack

installation running on multiple servers and supervised by a Chef Server (using

the subcommand knife openstack ) to control the OpenStack APIs through

Chef and to instantiate new physical servers with a chef-client or turn some

off ( knife openstack server create / delete ). In this situation you can

achieve a “1 + N” OpenStack configuration. In this case the OpenStack ser-

8A programming language specialized to a particular application domain.
9A resource state is a combination of installed software, running services, and configura-

tions.
10supermarket.chef.io
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machine ’ c o n t r o l l e r ’ do
add machine opt ions v a g r a n t c o n f i g : c o n t r o l l e r c o n f i g
r o l e ’ a l l i n o n e−compute ’
r o l e ’ os−image−upload ’

che f env i ronment ’ vagrant−aio−nova ’
f i l e ( ’ / e t c / che f / op en s t a c k da ta ba g s e c r e t ’ ,

”#{F i l e . dirname ( FILE )}/ . che f / e nc ry p t e d d a t a b ag s e c r e t ” )
converge true

Listing 3.2: Recipe to run an “All-in-One” configuration (aio-nova.rb)

vices are predefined and you cannot configure an ad hoc configuration. It is

also possible to have an “All-in-One” configuration, where all the OpenStack

services are installed on a single node.

These configurations can be achieved with the help of Vagrant that will cover

all the steps to install OpenStack on a virtual machine and configure all its ser-

vices (excluded Block Storage, Object Storage, Metering, and Orchestration).

Within the OpenStack chef-repo11 there is a recipe to configure a VirtualBox

virtual machine that will host and All-in-One installation. Here is a part of it:

Of course it is possible to setup a “1 + N” configuration using different

Vagrantfiles to create and configure one VM for the Controller and N VMs

for the Compute nodes. However it is unlikely to succeed in running a lot of

VMs on the same host, especially if they contain a fully functional OpenStack

installation, since a Virtual Machine typically requires a significant amount of

resources to operate.

Pros and Cons Chef is a very powerful tool to create, manage and

configure cloud environments, and it offers a lot of functionalities to structure

the desired architecture. In combination with Vagrant can also be used to

setup test environments for development or research purposes.

However, with regard to this last aspect, it has several limitations:

• Performance: because VMs are very resource greedy it is very difficult to

achieve a “1 + N” configuration for development or research purpose on

11https://github.com/stackforge/openstack-chef-repo
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a single machine. On the other hand the “All-in-One Compute” solution

that allows a full OpenStack installation on a single Virtual Machine is

very simplistic and doesn’t represent a real environment setting.

• Lack of customization: at the state of the art all of the described solutions

install both the Controller node and the Compute node with a predefined

set of installed services (in practice all the OpenStack service excluded

Object Storage, Metering, and Orchestration are installed) so it is not

possible to setup the environment with more or less services or new ones.

In our case, in fact, we need to be able to decide which OpenStack services

to install (for example we don’t install OpenStack Network as a Service

module, Neutron ), as well as to implement a new one and install it (see

chapter 5 regarding our Consolidator service).

3.3.3 Puppet

Description Similarly to Chef (described in section 3.3.2) Puppet12 is

a configuration management system that allows you to define the state of a

cloud infrastructure, which it will then automatically enforce.

Puppet uses a declarative model where one defines the resource states; its

manifest files are written in a Ruby-like DSL. Configuration files are enclosed

in modules, self-contained bundles of code and data that are easy to share and

reuse. There are a large amount of them on the Puppet Forge13 repository.

Puppet is structured in a master-slave architecture: the master serves the

manifests and the files, and the clients polls the master at specific intervals

of time to get their configurations so that the master never pushes nothing to

them.

Puppet and OpenStack As seen for Chef, Puppet can be very useful

when dealing with OpenStack installation and maintenance. To configure and

12www.puppetlabs.com
13forge.puppetlabs.com
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node ’ c o n t r o l . loca ldomain ’ {
i n c lude : : openstack : : r o l e : : c o n t r o l l e r

}

Listing 3.3: Portion of a manifest file for a controller node

node ’ s t o rage . loca ldomain ’ {
i n c lude : : openstack : : r o l e : : s t o rage

}

node ’ network . loca ldomain ’ {
i n c lude : : openstack : : r o l e : : network

}

node /compute [0−9]+. loca ldomain / {
i n c lude : : openstack : : r o l e : : compute

}

Listing 3.4: Portion of a manifest file for a compute node

deploy an OpenStack infrastructure with the help of Puppet one can download

appropriate modules from Puppet Forge; this simplifies most of the operations

such as OpenStack instances provisioning, configuration management and oth-

ers. The module is puppetlabs-openstack 14; using this module it is possible

to deploy both a multi-node and an all-in-one installation. Compared to Chef,

Puppet is a bit more flexible because it allows you to control more details about

the OpenStack services that are to be installed on every node; for example,

you can use the following instructions in the Puppet’s manifest file of a node

to achieve different results. In listing 3.3 we show a portion of a manifest file

for a controller node, while in listing 3.4 we show it for a compute node.

Obviously, it is possible to configure multiple nodes to run in multiple Vir-

tual Machines that are configured and launched with Vagrant and deploy the

various OpenStack components with puppetlabs-openstack . This solution,

is clearly difficult to achieve on a machine with a limited amount of resources;

however also on a more powerful server machine this solution it is slightly

feasible and scalable.

14github.com/puppetlabs/puppetlabs-openstack
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Pros and Cons Puppet is an extremely powerful and mature tools for

automated cloud infrastructure deploying: it streamlines the entire process

and automates every step of the software delivery process.

However from our point of view we are more interested in knowing how it

behaves when a single developer or a researcher needs to deploy a cloud infras-

tructure on a single machine with limited amounts of resources (a development

workstation for example) and he/she has little sysadmin skills. With regard

to this aspect Puppet used with Vagrant has some key limitations:

• Performance: A single Virtual Machine generally need a remarkable

amount of resources, especially to host an OpenStack installation; for

this reason it is very unlikely that one will be able to run on a single

machine the number of Virtual Machines needed to deploy a realistic

multi-node installation of OpenStack. Once again “all-in-one” solution

is not sufficiently realistic, especially when testing algorithms or portions

of code that involve multiple nodes.

3.3.4 Docker

Docker15 is an open platform for developers and sysadmins to build, ship,

and run distributed applications. Its core is the Docker Engine: it exploits

Linux containers to virtualize a guest Operating System on a host avoiding

the considerable amount of resources necessary to run Virtual Machines.

The main difference between the Docker solution and Virtual Machines solu-

tion lie in the way in which the hypervisor and the Docker Engine manage

the guest Operating System. A Virtual Machine, as shown in figure 3.3.4 on

page 30, hosts a complete Operating System including application, dependency

libraries, and, more important, the kernel; the Docker Engine, on the other

hand, runs as an isolated process in userspace on the host operating system

and allows all the guest containers to share the kernel. Thus, it enjoys the re-

source isolation and allocation benefits of Virtual Machines, but is much more

15www.docker.com
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portable and efficient; for our goals this aspect allows us to run at the same

time a larger number of containers compared to what we are able to achieve

with Virtual Machines and also to ship pre-built images of our modules.

To configure and build a container image you have to write a Dockerfile, that

is a text document containing all the commands which you would have nor-

mally executed manually in order to take the container to the desired state,

and then call $ sudo docker build . from the directory containing the file.

The command $ sudo docker run will finally launch the container.

Docker offers an online platform called Docker Hub16 where you can upload

both Dockerfile and pre-built container images to streamline the sharing pro-

cess.

Figure 3.3: Hypervisor and Docker Engine

3.3.5 Dockenstack

One of the first attempts to create a cloud test environment based on Open-

Stack and Docker is Dockenstack17. It is an independent and not actively

supported project, but is a good starting point to show the potential derived

16hub.docker.com
17github.com/ewindisch/dockenstack
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from using Docker.

The project is basically composed of a Dockerfile and a bunch of scripts that

will setup and configure an OpenStack installation using DevStack in a Docker

container.

A pre-built image is available on Docker Hub, so with the command

docker run -privileged -t -i ewindisch/dockenstack Docker will au-

tomatically download and run the container.

This made it a good solution for beginners wanting to learn OpenStack, but

inadequate for advanced experiments, such as experiments regarding Virtual

Machine placement and server consolidation algorithms.
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Chapter 4

aDock

4.1 Our Solution, aDock

The lack of a uniform and standardized test environment for cloud systems

brought us to develop aDock.

aDock is a suite of tools that lets the final user deploy a complete OpenStack

system; run simulations against it; collect output data and view results on a

friendly user interface.

We chose OpenStack as our reference cloud computing software platform, be-

cause it is open-source and because it is continuously evolving to keep up with

the latest cloud standards.

Our intended users are OpenStack developers who need to run their code in a

fully functional environment, and researchers who want to try their algorithms

(e.g. about virtual machine placement or consolidation) on a complete cloud

system to test out their behavior.

4.2 Requirements

In this section, we will identify both the functional and non-functional re-

quirements for aDock. Functional requirements (see subsection 4.2.1) lead us

to define the general architecture of the system proposed, aDock, which we
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show in figure 4.2.2 (see subsection 4.2.2). Non-functional requirements lead

us to precise choices in technologies used to develop the system (see subsection

4.2.3).

4.2.1 Functional Requirements

FR1 aDock should provide tools to deploy a complete environment.

A user should be able to start and update OpenStack’s nodes with a single

command and to decide which services will be installed and started on each

node and their internal configuration using a configuration file.

FR2 aDock should provide a tool to run simulations.

If the user puts his/her code into OpenStack he/she probably will need to run

simulations and examine how the new piece of code behaviors in interacting

within the rest of the system. Simulations should be configurable according to

the user needs and repeatable.

FR3 aDock should persistently store the simulations’ output.

Once a simulation has been run, it could be interesting to store its outputs

in terms of generic metrics about the system, such as the average number of

compute nodes active during the simulation, the average number of virtual

CPUs used, and so on.

FR4 aDock should provide a user interface.

Simulation results should be displayed to the user in a friendly manner, using

charts to give the user a glimpse of the current situation. Data representation

should also be given in real-time.

4.2.2 aDock Modules

We decided to divide aDock into different components. Each component satis-

fies one or more requirements (see subsection 4.2.1). We give here a high-level

34



4.2 Requirements

description of each aDock’s module and how it satisfies some of the require-

ments given.

FakeStack (see section 4.3) is the aDock module which provides the user

with the tools specified in requirement 1. FakeStack provides the concept of

“node” which, in its depth, is an Ubuntu based Docker container, shipped with

OpenStack services dependencies. Starting a node is as easy as $ run node .

A node can be configured by means of a simple configuration file. Nodes

are of two types, controllers and computes. Controller nodes are different

from compute ones because they are shipped with MySQL and RabbitMQ

installations.

Oscard (see section 4.4) is the simulation tool that satisfies requirement 1

and 2. Oscard is the aDock module which takes care of running repeatable

and configurable simulations against an OpenStack system and to store outputs

persistently. This module, by default, stores the aggregates of a simulation into

a Firebase1 backend. In our case, the backend is called Bifrost (see section 4.5).

Although Firebase provides an interactive user interface, data is displayed

as JSON and is, therefore, not easily understandable and browseable. Polyphe-

mus (see section 4.5) is the aDock module that takes care of displaying real-

time simulation results in a friendly manner satisfying requirement 4.

aDock is a modular system where each component is configurable and has a

precise purpose. FakeStack is employed to start nodes; Oscard runs simulations

and collects aggregates on Bifrost; Polyphemus is the eye on the data that

shows the user the obtained results. In figure 4.2.2 we highlight the general

architecture of aDock.

1https://www.firebase.com/
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Figure 4.1: aDock’s high level architecture

4.2.3 Non-Functional Requirements

aDock also has very strong non-functional requirements, to give a suitable

testing environment to our stakeholders. In general we take leverage of Docker

and DevStack and use their biggest strength. Docker gives us i) high speeds

in running containers, ii) sandboxing by construction, and iii) makes aDock

cross-platform. DevStack gives us great flexibility and configurability for what

concerns OpenStack services.
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NFR1 Users should be able to choose which OpenStack’s code version is

running.

Before booting the entire system the user should be able to choose if he/she

wants to run OpenStack code from a precise code repository which is, in gen-

eral, the better way to version and share code amongst developers. Speaking

in Git2 terms, a user could choose to run the most up to date code (which may

be buggy) and so get the code from branch master , or maybe get a much

more stable OpenStack version and get the code from branch stable/juno .

The most interesting fact (and this is the scenario we have in our mind) is

that the user could choose to fork an OpenStack service and see his/her code

running nodes.

Solution All of this is achievable thanks to DevStack, which installs

OpenStack services by cloning repositories from GitHub and running

python setup.py install . By default, DevStack clones official OpenStack

repositories from branch master , but it is possible to specify different

repository URLs and branches for each of the OpenStack services by means

of local.conf files.

NFR2 aDock should be lightweight.

Users often need to test algorithms that, by design, target the management

and/or optimization of tens of physical servers. Since we can assume that not

everyone will have that amount of resources, we believe that aDock should be

as light-weight as possible. It should be possible to run aDock on limited hard-

ware, potentially even on one’s personal laptop. It is under this assumption

that sandboxing becomes important; indeed, the experimentation environment

should not have any sort of repercussions on the user’s machine; we want the

user to be able to build and tear down the environment with no consequences.

2http://git-scm.com/
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Solution Docker is a virtualization system which relies on Docker con-

tainers which are much more lightweight than virtual machines34. Docker gives

us, by construction, speed and lightness.

NFR3 The experimentation environment should be highly configurable.

Our primary goal with aDock is to provide a fast and easy way to create the

experimentation environment. We believe that building a system which allows

users to design the overall architecture of the cloud system is out of scope of

this thesis, mainly because of the intrinsic high complexity and vastness of

OpenStack’s system itself. Up to now, as a proof of concept, we will focus on

“1 + N” architecture, with 1 controller node and N compute nodes.

Solution The possibility to configure the system still remains in config-

uring OpenStack services in terms of their internal behavior. This is achieved,

again, thanks to DevStack, which allows us to configure all aspects of Open-

Stack through its local.conf file. Each service can be configured in each

of DevStack’s installation phases. Each service, during installation, passes

through local, pre-install, install, post-config, extra phases5. Configuring

a service is as simple as adding few lines to local.conf file as shown in listing

4.1 on page 39.

NFR4 aDock should allow users to run repeatable simulations.

It is of paramount importance that users be able to compare their results with

baseline approaches, as well as with related work from the state of the art.

aDock should make it easy to compare an experiment’s results with those of

others on the same simulations.

3From Docker: “Containers boot 1000x faster than virtual machines; their disk and
memory footprint are also much lower; and they work on virtually all current platforms”
(see https://www.docker.com/company/careers/?gh_jid=47837).

4http://devops.com/blogs/devops-toolbox/docker-vs-vms/
5http://docs.openstack.org/developer/devstack/configuration.html#

local-conf

38

https://www.docker.com/company/careers/?gh_jid=47837
http://devops.com/blogs/devops-toolbox/docker-vs-vms/
http://docs.openstack.org/developer/devstack/configuration.html#local-conf
http://docs.openstack.org/developer/devstack/configuration.html#local-conf


4.3 FakeStack

1 . . . # DevStack c o n f i g u r a t i o n s
2
3 [ [ post−c o n f i g | \$NOVA−CONF] ]
4 [DEFAULT]
5 verbose=True
6 l o g d i r=/var / log /my−nova−l o g d i r
7
8 # SCHEDULER
9 compute s chedu l e r d r i ve r=nova . s chedu l e r . MyMagicScheduler

10 # VIRT DRIVER
11 compute dr iver=nova . v i r t . f ake . MyAmazingFakeDriver

Listing 4.1: Adding per-service configuration to DevStack’s local.conf file

Solution Oscard will take into account repeatability both giving the pos-

sibility to run the same simulation, at the same time, on multiple hosts, both

using pseudo-randomization (see section 4.4).

4.3 FakeStack

FakeStack6 is the aDock module that allows the user to manage nodes, the

building blocks of an OpenStack system. Nodes are of two types: controllers

and computes7. Both of them are Ubuntu-based Docker containers shipped

with pre-installed software that satisfies most8 of OpenStack’s services depen-

dencies. Both controller and compute nodes are configurable by means of

simple configuration files 4.3.3.

FakeStack provides a set of scripts to handle node startup, service updating

on live nodes and other features 4.3.2.

6https://github.com/affear/fakestack
7In FakeStack, compute nodes, by default, are equipped with

nova.virt.fake.Fakedriver . Thus, FakeStack compute nodes don’t host a real
hypervisor such as Libvirt. Virtual machines, in FakeStack, are mere python objects.
This fact, doesn’t influence user’s choices. A user, in fact, can equip FakeStack’s compute
nodes with nova.virt.libvirt.driver.LibvirtDriver as long as he/she satisfies its
dependencies (this brings to editing Dockerfile and rebuild node’s image).

8main services as Nova, Keystone, Glance are actually supported.
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4.3.1 Nodes

As already anticipated in requirement 4.2.3, we will focus on “1 + N” archi-

tectures. This architecture is characterized by 1 controller node that handles

N compute nodes.

The main difference between a controller and a compute node is that the former

contains a database (in our case, MySQL) and a message broker (in our case,

RabbitMQ); both are compulsory for OpenStack’s controller nodes.

To understand how FakeStack really works, it is useful to examine its in-

ternal structure:

Figure 4.2: FakeStack’s file structure

As we can see in figure 4.3.1, nodes have two separated Dockerfiles (which

makes them two different Docker containers), but they share a set of scripts

(contained in the shared folder):

cmd.sh This is the script that will be run when the container starts

( docker run ). In algorithm 1 we explain its behavior in terms of

pseudo-code.
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Algorithm 1 cmd.sh behavior

if node is controller then
set last IP in Docker bridge . assign static IP address to controller

end if
ping 8.8.8.8 . Check internet connection
if node is controller then

start mysql
start rabbitmq-server

end if
./stack.sh . real OpenStack installation (using DevStack)
/bin/bash . let the user work on the container

reinstall service.sh This script allows the user to update a service on this

node specifing its name (e.g. nova, glance and so on)

update quotas.sh This script allows the user to enlarge quotas for the ten-

ant9 in use (in our case admin) to a very big amount. Its usage is justified

by the fact that the user will probably spawn hundreds or thousands of

virtual machines on his/her OpenStack nodes, and that, normally, stan-

dard quotas will prevent him from doing so. Enlarging quotas is an easy

and fast way to allow the user to not worry about how many virtual

machines he owns.

Once a node has been built, all of the shared scripts are copied to the file-

system of the node.

When building a container, in fact, we specify in Dockerfile which files have

to be copied into container’s file system. The files specified are copied at

build-time and subsequent changes on user’s file system will not result in a

modification at container’s file system. Data Volume10 is a feature of Docker’s

that allows modifications on files to be immediately applied to container’s file

system. local.conf file is a Data Volume, thus it is “bound” to the node’s

file-system, in order to avoid rebuilding at each modification.

9Quotas are limits on how much CPU, memory and disk space the tenant can use. Tenant
is an OpenStack concept similar to Linux groups.

10https://docs.docker.com/userguide/dockervolumes/#data-volumes
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When a node is started, cmd.sh will run, which in turn will run DevStack’s

stack.sh (see section 2.2). At that point OpenStack’s installation starts.

4.3.2 Scripts

Once a user enters FakeStack’s root directory he/she has to perform

source fakerc . Executing this command all of the scripts contained in the

scripts directory become available in PATH. The prefix ftools is added to

avoid conflicts in names.

Scripts for running and updating nodes leverage Linux screens11. Screens is a

powerful tool to run detached shells from within another shell. This feature

gives lots of advantages both in terms of ease of use and in running long

running jobs via SSH.

All of aDock processing is confined into two different screens, running and

updating. Thanks to this, the user will not have to open lots of shells, but

focus on using only one; keeping it clean from computation and reattaching

to aDock screens when needed. If the user wants to run a long running task

(e.g. a very long simulation or lots of different, small simulations) on a remote

server via SSH, he will not need to keep the SSH session open and wait for

simulations to end; the screen session, in fact, will stay open (and so the

processes within it, running) independently from the SSH connection.

We now list and describe the scripts contained in the scripts directory.

createbr Input: bridge name. Creates a bridge with CIDR 42.42.0.0/24; it

takes the name passed as first argument by the user. This bridge is

intended to be used by Docker, setting the option -b <bridge name>

into /etc/default/docker. Run this script before starting the sys-

tem or editing the IP configuration in cmd.sh. In fact, cmd.sh will

set the controller’s IP to the last IP available in that precise network

(42.42.255.254). After running this script, Docker service has to be

restarted.
11http://linux.die.net/man/1/screen
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destroyall Stops and destroys all OpenStack nodes.

runctrl Runs one controller node on a new window in screen running.

runcmps Input: N. Starts N compute nodes concurrently12. A new window

(cmps) in screen running is created asking for operation confirmation.

Once the opration is confirmed, nodes are started and a new window

(samplecmp), attached to one of the compute nodes, is opened to show

the user a sample node behavior and progress in OpenStack installation.

screenbyname Input: screen name. Reattachs to the screen named as given

by the user, if it exists.

updateall Input: service name. Updates the service given by the user on

all OpenStack nodes. All of the processing is performed into screen

updating.

We will now list and describe the scripts “sourced” by fakerc (ftools

convention is always maintained).

runcmp Alias for ftools runcmps 1 .

build Input: ctrl or cmp. This script builds the node; regenerating it from a

pure Ubuntu image. It is necessary to run this script only in case some

of the files (apart from local.conf) have been modified.

attach Input: container ID. Attaches to a Docker container. Alias for

docker attach <container id> .

4.3.3 Configuration

Fakestack leverages the powerful configurable options of DevStack. Modifying

local.conf files before starting a node, it is possible to change the enabled

services (see listing 4.2) and their internal configuration (see listing 4.3).

12They are started as Docker daemons ( -d option in Docker).
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. . . # Other c o n f i g u r a t i o n opt ions

# Enables :
# − Nova Compute
# − Nova API
# − Nova Network
ENABLED SERVICES=n−cpu , n−api , n−net

. . . # Other c o n f i g u r a t i o n opt ions

Listing 4.2: Choose OpenStack’s enabled services

. . . # Other c o n f i g u r a t i o n opt ions

[ [ post−c o n f i g |$NOVA CONF ] ]
[DEFAULT]
compute dr iver=nova . v i r t . f ake . MyFakeDriver

. . . # Other c o n f i g u r a t i o n opt ions

Listing 4.3: Internal configuration of Nova

Every service is configurable in each of its installation phases, which are, for

DevStack, local, pre-install, install, post-config, extra13. Configuring it

is as simple as adding a [[ <phase> | <config-file-name> ]] line (e.g.

[[post-config|$GLANCE CONF]] ) to local.conf file and add configuration

options below.

Most important, it is possible to choose a different Git repository and

Git branch for each of OpenStack’s services enabled (see listing 4.4).

DevStack, in fact, install services cloning those repositories and running

python setup.py install 14.

Thanks to this important piece of configuration, a user can fork an OpenStack

project; develop its code and use its new forked repository URL in DevStack’s

configuration.

In listing 4.5 we show a possible complete example of local.conf file for a

compute node.

13For more information see http://docs.openstack.org/developer/devstack/

configuration.html#local-conf
14It is the standard way to install PyPI packages. More information can be found at

https://wiki.python.org/moin/CheeseShopTutorial
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. . . # Other c o n f i g u r a t i o n opt ions

NOVA REPO=https : // github . com/me/nova . g i t
NOVA BRANCH=my−branch

. . . # Other c o n f i g u r a t i o n opt ions

Listing 4.4: Change repository URL

1 [ [ l o c a l | l o c a l r c ] ]
2 FLAT INTERFACE=eth0
3 MULTI HOST=1
4 LOGFILE=/opt / stack / l o g s / s tack . sh . l og
5 SCREEN LOGDIR=$DEST/ l o g s / s c r e en
6
7 NOVA REPO=https : // github . com/me/nova . g i t
8 NOVA BRANCH=my−branch
9

10 DATABASE TYPE=mysql
11
12 ADMIN PASSWORD=pwstack
13 MYSQL PASSWORD=pwstack
14 RABBIT PASSWORD=pwstack
15 SERVICE PASSWORD=pwstack
16 SERVICE TOKEN=tokenstack
17
18 SERVICE HOST=c o n t r o l l e r
19 MYSQL HOST=c o n t r o l l e r
20 RABBIT HOST=c o n t r o l l e r
21
22 NOVA VNC ENABLED=False
23 VIRT DRIVER=fake
24
25 ENABLED SERVICES=n−cpu , n−api , n−net
26
27 [ [ post−c o n f i g |$NOVA CONF ] ]
28 [DEFAULT]
29 compute dr iver=nova . v i r t . f ake . MyFakeDriver

Listing 4.5: Complete local.conf example for compute node
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4.3.4 Example

In this section we provide an example on how to use FakeStack in a pseudo-

code fashion.

Procedure 2 is comprehensive of real bash commands, aDock’s commands and

standard input to handle Linux screens. It refers to a user that wants to launch

a “1 + 5” architecture from scratch. In this case we suppose that the user will

start a “vanilla” OpenStack version, and so he/she doesn’t need to modify any

configuration files.

Algorithm 2 Launching a “1 + 5” architecture with aDock

git clone https://github.com/affear/fakestack

cd fakestack

source fakerc . all aDock commands are now available
ftools createbr docbr . “docbr” is the name of the new bridge
sudo nano /etc/default/docker . adding -b docbr option to Docker’s
configuration
sudo service docker restart

ftools runctrl

. waiting for controller to finish installation
ftools runcmps 5
screen -R . attaching to the only screen active (running). Window is
ctrl

CTRL+A N . window is now cmps

enter y to confirm that a controller node is up and we want to start compute
nodes

. wait for compute nodes to finish
CTRL+A P for two times . ctrl window
source openrc admin admin

nova service-list . 5 compute nodes should be shown
nova boot --image cirros --flavor 1 samplevm . Spawns a new
virtual machine
. . .
. . . . enjoy your OpenStack environment
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4.4 Oscard

Oscard15 is the aDock module that takes care of running simulations against

one or more OpenStack systems and collecting their data outputs. Oscard has

two main components, a server and a client (see 4.4.2). The two components

don’t need to be used on the same machine. This is why Oscard’s dockerized

version only runs the server part and waits for requests from the client.

The client part is the one that defines simulation running behavior. The

user is supposed to use the client to actually start simulations by means of an

executable file ( $ ./bin/run sim ).

The server part is the Proxy, it literally waits for client requests and for-

wards them to OpenStack’s controller node and stores simulation’s outputs

into Bifrost (see section 4.5.1).

Oscard is completely configurable from the oscard.conf file.

4.4.1 Modules

Oscard is composed of few modules (see figure 4.4.1); in this section we will

explain in detail what each of them is up to.

15https://github.com/affear/oscard
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Figure 4.3: Oscard’s file structure

oscard.sim.api This module contains the APIs to interact with OpenStack’s

Nova. It contains two classes, NovaAPI and FakeAPI . NovaAPI

provides the methods necessary to perform basic operations on Nova

using OpenStack’s official python clients: keystoneclient.v2 0 and

novaclient.v1 1 .

• init : resets APIs random seed. If the option random seed has

been modified in oscard.conf, the new seed will be reloaded as

well.

• architecture : Returns the system’s architecture in terms of com-

pute nodes and their resources (vCPUs, memory and disk).

• active services : Returns active service and their number. For

instance, if there are 10 compute nodes, it is very common to have

10 nova-compute services up. In this case, only one nova-compute

service with count 10 will be returned.

• snapshot : Returns a snapshot of the system. The snapshot con-

tains data about each compute node in use (a node which is host-
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ing virtual machines), such as resources in use, and aggregate data

about all active nodes (averages of resources usage).

• create : Spawns an instance of random flavor and returns its ID.

• resize : Resizes a random active instance to a random flavor (dif-

ferent from its actual one) and returns its ID.

• destroy : Deletes a random instance.

FakeAPI class, mimics NovaAPI ’s behavior but it doesn’t involve an

OpenStack controller. It was developed only for testing purpose.

oscard.sim.collector This module exposes the BifrostAPI class; this API

gives a way to interact with the Firebase backend for data storage. An

instance of BifrostAPI is obtained in the oscard.sim.run module,

and is used to store the data obtained during the simulation.

oscard.sim.proxy This module contains the API to communicate with the

proxy ( ProxyAPI ). The class basically mirrors the methods contained

in oscard.sim.api.NovaAPI . A NovaAPI object is obtained when the

module is started, to which calls are delegated. It is this module that, if

run from module main , starts a WSGI server (powered by Bottle16)

and waits for GET and POST requests.

oscard.randomizer This module is a wrapper for python’s random mod-

ule. It provides get randomizer function which returns a new

random.Random object initialized with the same seed as specified in

oscard.conf.

4.4.2 Oscard Internals

In this section we will describe how Oscard internal works, and how it can

be configured. We will also clarify how we use pseudo-randomness within

simulations.
16http://bottlepy.org/docs/dev/index.html
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Each randomized decision in Oscard is taken using a randomizer obtained

through oscard.randomizer.get randomizer . Each time we get a random-

izer, it is initialized with a seed taken from a configuration file17 or, in case

one is not specified, directly from Bifrost’s last simulation ID (The seed used

is equivalent to the simulation ID that the user wants to execute). It is for

this reason that every randomized decision can be repeated simply setting the

seed in the configuration file.

Every simulation is composed of a precise number of commands18 run in

sequence. Each command is executed at a precise step which is a discrete

instant in time. Currently available commands are create, resize, destroy and

NOP. The first three commands are clear in their intent; the last one, i.e. the

NOP command, is a “no operation” command. It is meant to make simulations

more realistic in the sense that, in reality, it is impossible that at each time

instant the system is asked to perform a CRD19 operation. NOP operation

simulates the fact that the system could be idle (in term of requests from users)

in some moments. “No operation”s allow us to change operation density along

time.

At each step, Oscard chooses a command at random and executes it. Com-

mands can have different weights20 that influence their probability to be cho-

sen. Each command is executed when and only when the command before has

been completed (either successfully or not); thus, the state of the machine that

is interested in the operation, can be one of ACTIVE or ERROR21. Because of

this reason, and because Oscard is single-threaded, we can say that Oscard’s

simulations are run serially. This fact is important, because in conjunction

with pseudo-randomness, it ensures simulation repeatability. Repeatability is

ensured for what concerns Oscard itself. It could be, in fact, that the same

17In oscard.conf: random seed
18In oscard.conf: no t
19Create Resize Destroy
20In oscard.conf: <command-name> w
21Two of possible instance states in OpenStack. See http://docs.openstack.org/

developer/nova/devref/vmstates.html.
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simulation brings to different results not because of Oscard’s decisions, but

because of OpenStack’s internal behavior. Simulation repeatability has to be

interpreted inside Oscard; thus, commands executed in two simulations with

the same seed will be equal and equally executed. However, we cannot state

that their execution will bring OpenStack to the very same internal status.

It could be, for example, that the same create operation ends successfully or

not. This fact has to be attributed to OpenStack and not to Oscard itself.

OpenStack, in fact, is a very vast system and we are not supposed to control

its behavior directly from Oscard. In other words, we can ensure, as Guidelines

for Evaluating and Expressing the Uncertainty of NIST Measurement Results

states, to meet repeatability conditions: “the same experimental tools”; “the

same observer”; “the same measuring instrument, used under the same con-

ditions”; “the same location”; “repetition over a short period of time” and

the “same objectives”. We cannot guarantee that the experiment (i.e. the

simulation) is repeatable in its strictly scientific meaning22.

As already said, Oscard is composed of two parts, the server and the client

one. Oscard’s proxy (the server part) can be run both as a Docker container or

running ./bin/run proxy from a shell23. Oscard, as FakeStack, has a source

file called oscardrc. Once the user runs source oscardrc , run oscard

script is available in PATH, this script can be used to start Oscard’s container.

Oscard is highly configurable, but it is important to note that each option

has a default value (see https://github.com/affear/oscard/blob/master/

oscard.sample.conf). Some options are relevant only for server, others for

client and some for both. We list their meaning and split them between the

two Oscard components to better understand them.

The server part can be configured in terms of:

• proxy port: sets the port on which Oscard’s proxy will listen on.

22http://en.wikipedia.org/wiki/Repeatability
23Dockerized version is recommended, because it allows the user not to install all Oscard’s

dependencies before running
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• os username, os tenant, os password: access credentials for the user

used in OpenStack.

• fake: if set to True , FakeAPI will be used.

• ctrl host: the IP of the docker container running controller node.

• fb backend: it’s the Firebase backend URL.

• random seed: the seed that NovaAPI will use to choose random in-

stances and random flavors. Set this parameter to the ID of the simula-

tion that needs to be run.

The client part can be configured in terms of:

• fb backend: as above.

• random seed: as above.

• no t: the number of steps for the simulation.

• create w, resize w, delete w, nop w: weights for commands.

• proxy hosts: the URLs for the proxies on which the simulation will be

run concurrently (e.g. host1.example.com:3000,host2.example.com:80).

Oscard, in fact, can run the same simulation concurrently on more than

one host (if real-time comparisons are needed).

Figure 4.4.2 shows Oscard functioning. In particular it reports a sequence

diagram that illustrates the workflow of a create operation.
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Figure 4.4: Workflow for a create operation

4.5 Other Components

The last two components of aDock take care of its backend database and view.

These two roles are covered respectively by Bifrost and Polyphemus.
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4.5.1 Bifrost

Bifrost24 is the name for the Firebase application that we use to store simula-

tion data output. Firebase uses a non-relational JSON database. The whole

aDock database is thus a JSON structure that is exportable in a .json file.

Firebase provides a JavaScript and a python SDK and it natively supports real-

time notifications on data change (only for JavaScript SDK). We decided to

use this backend type because of its SDKs; for the portability of .json format;

for the advantages of dealing with a non-relational database when data is very

mutable (especially while developing); because performance is not needed in

our case and because of its reliability being a cloud service. It is important to

say that Firebase, by design, offers support for concurrent calls25. However,

we interact with Firebase’s APIs (in Oscard’s BifrostAPI ) using a python

library which doesn’t support them26. This is the reason why our simulations

cannot run concurrently; i.e. the same simulation can run concurrently on

more hosts (no problem, Oscard supports it), but two different simulations

cannot run concurrently (on different hosts).

Firebase offers a dashboard (see figure 4.5.1) that is updated in real-time

and allows the user to perform CRUD27 operations on data.

24https://bifrost.firebaseio.com/
25https://www.firebase.com/docs/web/guide/saving-data.html#

section-transactions
26http://ozgur.github.io/python-firebase/
27Create Read Update Delete
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Figure 4.5: Firebase Dashboard

4.5.2 Polyphemus

Polyphems28 is the Polymer29-powered view of aDock. It can be run in a

Docker container or not30. Its aim is to show data to the user in a friendly

way. Polyphemus shows each simulation snapshot in terms of overall average

resource usage31 (through line charts) and percentages of resource usage32 for

each compute node (through bar charts). A tool-bar representing data aggre-

gates33 for each host is always visible on the top. It shows charts for each of

the hosts on which the current simulation is running, giving the possibility

to intuitively make comparisons. Moreover it includes more information such

28https://github.com/affear/polyphemus
29https://www.polymer-project.org/0.5/
30Dockerized version is recommended, because it allows the user not to install all Polyphe-

mus’ dependencies such as NodeJS before running
31The average of the percentage of vCPUs, memory and disk used calculated on all active

compute nodes (nodes that are hosting at least one instance).
32The percentage of vCPUs, memory and disk.
33The average of all averages of resource usage calculated on the number of simulation

steps executed.
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as the architecture of each OpenStack system running on each host; active

services and simulation progress.

Every information displayed by Polyphemus is updated in real-time. In

figure 4.5.2, we provide a sample screen shot of Polyphemus.

Figure 4.6: Screenshot of Polyphemus

4.6 aDock’s Architecture

aDock is a modular system, where each component is run in its dockerized

version34. In figure 4.6, a sample aDock architecture is shown.

The simulation is started from a normal laptop using Oscard. The Oscard

client contacts Oscard proxies on each of the hosts (specified in proxy hosts)

using the exposed endpoints, each endpoint identifies a different command to

be executed. For each host, Oscard proxy uses NovaAPI to “send” the com-

mand to controller node (whose IP is specified in ctrl host). For each host,

and at each step, the proxy collects data from the controller using NovaAPI

34Apart from Bifrost.
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methods and stores them into Bifrost using BifrostAPI . Data is available

and can be consulted connecting to Polyphemus35 using a web browser on

user’s laptop.

Figure 4.7: aDock architecture

35Polyphemus container can be started everywhere, not only on one of the hosts.
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Chapter 5

Nova Consolidator

OpenStack already performs virtual machine placement. This is accomplished

thanks to its nova-scheduler service. Once a virtual machine is created

(or, in certain cases, resized or live migrated) the scheduler decides which

of the available compute nodes can host1 the virtual machine (this phase is

called filtering) and then selects the best2 among them (this phase is called

weighting).

OpenStack, on the other hand, does not perform virtual machine consoli-

dation. Each of the operations on virtual machines are issued by the user that

owns them (or by Heat for him/her).

Virtual machine consolidation is a technique by which virtual machines

locations on hosts are changed to achieve a better resource utilization in the

whole system. Thus, virtual machines are periodically migrated to other hosts

if some policy determines that its place is wrong in that precise moment. The

policy adopted is determined by the consolidation algorithm that is used.

To add virtual machine consolidation to OpenStack we added

a service to Nova called nova-consolidator. The new service

is implemented in module nova.consolidator which provides a

nova.consolidator.base.BaseConsolidator class which can be extended

1The policies by which a node can host or not a virtual machine are defined by the precise
filter which scheduler has been equipped with.

2Again, it depends on which weighter is used.
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to write custom consolidators (see section 5.1). We also developed some

consolidation algorithms, both custom and taken from the state of the art

(see section 5.2).

5.1 Consolidator Base

Almost every service in OpenStack has three main components: the command3

(its function main will be executed at service startup4); the manager 5, which

contains the service’s real logic and the RPC6 API 7, which is used by Open-

Stack services to communicate8.

The command basically instantiates a nova.service.Service object

with the name “nova-consolidator”. The service, in turn, instantiates

a nova.consolidator.manager.ConsolidatorManager object; and starts

its RPC server and its periodic tasks. As we can see in listing 5.19,

ConsolidatorManager exposes one periodic task which is represented by

the consolidate method. Its period is defined in /etc/nova/nova.conf

file (which can be edited using DevStack. See 4.3.3), under the option

consolidation interval. In the configuration file one must also specify the

consolidator class to be used by the manager. When the manager is created

it creates the specified consolidator class object and periodically calls the

method consolidate . The consolidate method delegates consolidation to

the consolidator object, from which it obtains the migrations to be performed.

Keep in mind that the consolidator could decide not to return any migration in

3In our case, nova.cmd.consolidator .
4When DevStack runs python setup.py install , PyPI generates an executable file

placed at /usr/local/bin called nova-consolidator (see note 14). It is necessary to make
DevStack aware of the new service created to make it install and start it. As a result we
had to fork DevStack repository and edit the function start nova rest in /lib/nova (see
https://github.com/affear/devstack/blob/n-cons/lib/nova).

5In our case, nova.consolidator.manager .
6Remote Procedure Call
7In our case, nova.consolidator.rpcapi
8https://github.com/affear/nova/tree/n-cons/nova/consolidator
9The code has been properly cut to fit the page and the reader needs.
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1 class Consol idatorManager ( manager . Manager ) :
2
3 def i n i t ( s e l f , ∗ args , ∗∗kwargs ) :
4 s e l f . compute api = compute api . API ( )
5 s e l f . c o n s o l i d a t o r = i m p o r t u t i l s .\
6 i m p o r t c l a s s (CONF. c o n s o l i d a t o r c l a s s ) ( )
7 # l i n e s sk ipped
8
9 @per i od i c ta sk .\

10 p e r i o d i c t a s k ( spac ing=CONF. c o n s o l i d a t i o n i n t e r v a l )
11 def c o n s o l i d a t e ( s e l f , c tx t ) :
12 migrat ions = s e l f . c o n s o l i d a t o r . c o n s o l i d a t e ( c tx t )
13 for m in migrat ions :
14 s e l f . d o l i v e m i g r a t e ( ctxt , m)
15
16 def d o l i v e m i g r a t e ( s e l f , ctxt , migrat ion ) :
17 in s t ance = migrat ion . i n s t anc e
18 host name = migrat ion . host . host
19 # excep t i on ca t ch ing sk ipped
20 s e l f . compute api . l i v e m i g r a t e (
21 ctxt , ins tance ,
22 False , False , host name
23 )

Listing 5.1: Code for nova.consolidator.manager.ConsolidatorManager

case they would not improve system status. Once the migrations are obtained,

they are applied using nova-compute’s API.

The consolidator class is, by default, nova.consolidator.base.BaseConsolidator

(see listing 5.29), which does nothing but define a base class to extend with

real consolidation algorithms. Its get migrations method, in fact, returns

an empty list of migrations.

consolidate method obtains a snapshot of the system (see subsection

5.1.1 for snapshot object details) and passes it to the get migrations

method. get migrations will implement the desired consolidation algorithm.

Eventually, a transitive closure on migrations is applied10 and the migrations

are returned to the manager.

10If instance I is moved first to host A and then to host B; instance I is only moved to
host B.
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1 class BaseConso l idator ( object ) :
2
3 class Migrat ion ( object ) :
4 def i n i t ( s e l f , in s tance , host ) :
5 super ( BaseConso l idator . Migration , s e l f ) . i n i t ( )
6 s e l f . i n s t ance = in s t ance
7 s e l f . host = host
8
9 # t r a n s i t i v e c l o s u r e method

10 # implementat ion sk ipped
11
12 def c o n s o l i d a t e ( s e l f , c tx t ) :
13 snapshot = Snapshot ( c tx t )
14 migs = s e l f . g e t m i g r a t i o n s ( snapshot )
15 return s e l f . t r a n s i t i v e c l o s u r e ( migs )
16
17 def g e t m i g r a t i o n s ( s e l f , snapshot ) :
18 return [ ]

Listing 5.2: Code for nova.consolidator.base.BaseConsolidator

5.1.1 Objects

We thought that it was not a good idea to ask the user to learn and under-

stand OpenStack’s complex database APIs. Due to this fact, we developed

nova.consolidator.objects , a module that defines the abstraction of sys-

tem snapshots used in method get migrations . The module provides the

class nova.consolidator.objects.Snapshot . A Snapshot object offers

attributes to access all information about the system, such as the currently ac-

tive nodes, and the currently active instances (also per node). The Snapshot

is renewed at each consolidation cycle. Attributes are lazily obtained on their

first call; subsequent invocations won’t refresh snapshot’s state. The Snapshot

is, thus, entirely cached: when an instance or a compute node is asked and

returned, it will not be queried again on OpenStack’s database. Its status will

always be frozen at the moment the first query has been performed. To refresh

a Snapshot it is necessary to create a new Snapshot object.

In detail, a Snapshot object offers all instances ( instances attribute);

running instances ( instances running attribute); both those instances
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that are migratable and those that are not11 ( instances migrable and

instances not migrable attributes, respectively) and active nodes ( nodes

attribute). Instances are nova.objects.instance.Instance 12 objects;

nodes are wrappers for nova.objects.compute node.ComputeNode 13 ob-

jects, which add the possibility to get all, running, intances that are migratable

and not, per compute node.

In any case, the developer does not instantiate Snapshot objects: this

is up to consolidate method, which already instantiates and passes the

current system snapshot to method get migrations . get migrations is

therefore the only method that needs to be overridden by the user in a custom

consolidator class.

In listing 5.3 we provide an example of using a Snapshot in a python

script.

5.2 Algorithms

In this section, we explain the consolidation algorithms that we

implemented in our nova-consolidator. Each of the proposed

algorithms is run inside a consolidator class that inherits from

nova.consolidator.base.BaseConsolidator .

5.2.1 Random Algorithm

The first algorithm we implemented is a random one14. This algorithm was

implemented for testing purposes and to see if randomization could bring im-

11According to us, an instance is migratable when its state is ACTIVE and its power state
is RUNNING.

12https://github.com/openstack/nova/blob/master/nova/objects/instance.py
13https://github.com/openstack/nova/blob/master/nova/objects/compute_node.

py
14https://github.com/affear/nova/blob/n-cons/nova/consolidator/base.py
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1 from nova import con f i g , ob j e c t s , context
2 from nova . c o n s o l i d a t o r . o b j e c t s import Snapshot
3
4 # In i t opera t i ons
5 c o n f i g . p a r s e a r g s ( ’ ’ )
6 o b j e c t s . r e g i s t e r a l l ( )
7 c tx t = context . get admin context ( )
8
9 # Using the Snapshot

10 s = Snapshot ( c tx t )
11 nodes = snapshot . nodes # a l l compute nodes
12 node = nodes [ 0 ] # the f i r s t node
13 i n s t a n c e s = node . i n s t a n c e s # a l l i n s t ance s on t ha t node ( l i s t )
14 print node . vcpu
15 print node . id
16 print i n s t a n c e s [ 0 ] . f l a v o r
17 # ‘node ‘ has a l l a t t r i b u t e s as
18 # nova . o b j e c t s . compute node . ComputeNode has ,
19 # as we l l as ‘ i n s t ance s [ 0 ] ‘ has a l l a t t r i b u t e s as
20 # nova . o b j e c t s . in s tance . Ins tance has .
21
22 nodes new = snapshot . nodes
23 # nodes are not r e f r e s h ed because they are cached !
24 a s s e r t nodes == nodes new # eva l u a t e s to True

Listing 5.3: An example of using a Snapshot object

provement in resource optimization, given that virtual machines are never

moved in OpenStack15.

The algorithm needs to be configured with a percentage of instances to

migrate to other compute nodes. Instances are randomly chosen from hosts’

migratable instances and their destinations are randomly chosen among re-

maining hosts. Choices dp not take into account host suitability. The algo-

rithm doesn’t rely on the fact that migrations will be applied. If a migration

fails, due to resource usage problems, it is not a problem.

The random algorithm is highlighted in in listing 5.49.

15Except for when a user decides to, or on a resize call. When a virtual machine is resized
to a flavor which is too big for the current host, it is migrated to a suitable one.
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1 def g e t m i g r a t i o n s ( s e l f , snapshot ) :
2 nodes = snapshot . nodes
3 no nodes = len ( nodes )
4 mig ra t i on percentage = f loat (CONF. c o n s o l i d a t o r . m ig ra t i on percentage ) / 100
5 n o i n s t = len ( snapshot . i n s t a n c e s m i g r a b l e )
6 n o i n s t m i g r a t e = int ( n o i n s t ∗ migra t i on percentage )
7
8 # i f no in s t m i g ra t e == 0
9 # or no nodes < 2 , then

10 # return empty l i s t .
11 # Cannot migrate .
12
13 migs = [ ]
14 while n o i n s t m i g r a t e > 0 :
15 nodes cpy = l i s t ( nodes ) # copy nodes l i s t
16
17 from host = choose hos t ( nodes cpy )
18 # choose hos t code i s sk ipped .
19 # The chosen node i s randomly chosen
20 # tak ing in to account t ha t i t has to hos t
21 # at l e a s t one ins tance .
22
23 i n s t o n h o s t = from host . i n s t a n c e s m i g r a b l e
24 n o i n s t o n h o s t = len ( i n s t o n h o s t )
25
26 top bound = min( no in s t on ho s t , n o i n s t m i g r a t e )
27 n = random . rand int (1 , top bound )
28 n o i n s t m i g r a t e −= n
29
30 i n s t a n c e s = random . sample ( i n s t o n h o s t , n )
31 nodes cpy . remove ( f rom host ) # do not choose same hos t
32 t o h o s t = random . cho i c e ( nodes cpy )
33 for i in i n s t a n c e s :
34 migs . append ( s e l f . Migrat ion ( i , t o h o s t ) )
35
36 return migs

Listing 5.4: Code for random algorithm
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5.2.2 Genetic Algorithm

The idea to use a genetic algorithm to solve virtual machine consolidation

problem is taken from the state of the art (see section 3.2.1), although we

heavily revisited it16.

Our genetic algorithm uses a list as chromosome structure. Each element

of the list (a gene) is considered to be a migratable instance, and its value is

the hostname of the compute node that will host the instance. At first, we

developed the algorithm as a “standard” genetic algorithm. So, it provided a

crossover step. A child generated by crossover is considered unhealthy when

it violates system constraints (instances on a node exceed its vCPU, memory

or disk capacity). After some simulations we realized that 100% of the chil-

dren generated were unhealthy. Suddenly, we realized that the probability of

generating a healthy child was close to zero because of the tightness of system

constraints. Thus, the crossover step became useless and we decided to turn

it into a massive mutation. In the crossover we would chose17 two chromo-

somes, the father and the mother, and cross them18; now we only choose one

chromosome and massively19 mutate it.

The algorithm is configurable in all of its aspects:

prob mutation (Defaults to 0.8) The probability to apply mutation on a

chromosome.

mutation perc (Defaults to 10) The percentage of genes to be mutated in a

chromosome, once mutation is decided to be applied.

selection algorithm

(Defaults to nova.consolidator.ga.functions.RouletteSelection )

The selection algorithm used. The selection algorithm plays its

16https://github.com/affear/nova/tree/n-cons/nova/consolidator/ga
17Chromosome are chosen among the whole population using a specific selection algorithm.
18We performed a single point crossover. See http://en.wikipedia.org/wiki/

Crossover_%28genetic_algorithm%29#One-point_crossover.
19We change the value of a high percentage of its genes.
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role when it’s time to decide which chromosomes to cross (in

our case, mutate) to generate a new child to add to the popu-

lation (an implementation of tournament selection is provided in

nova.consolidator.ga.functions.TournamentSelection ).

fitness function

(Defaults to nova.consolidator.ga.functions.NoNodesFitnessFunction )

The Fitness function establishes how much the chromosome fits the

desired solution (see listing 5.5 for NoNodesFitnessFunction imple-

mentation).

population size (Defaults to 500) The size of the population.

epoch limit (Defaults to 100) The number of epochs after which the algo-

rithm stops.

elitism perc (Defaults to 0) The percentage of chromosomes that will pass

to the next epoch. The number N of elite chromosomes is determined

from this option and the population size. At each step the best N

chromosomes (according to the fitness function used) will pass to the

next epoch.

There is another option which is best (defaults to False). After running

some simulations, we discovered that most of the epochs run without improving

the fitness of the best chromosome, meaning we spent a lot of time generating

useless children. To overcome this problem we revisited the mutation. When

we apply mutation we change a gene’s value and maintain the chromosomes’

validities. Changing a gene’s value means moving an instance to another com-

pute node. The other compute node, normally, is chosen randomly among

suitable nodes20. When best is set to True, the other compute node is no

longer chosen randomly; instead we choose the best node21 among the suitable

20Nodes that, hosting the machine, will not exceed their capacity in terms of vCPUs,
memory and disk.

21The most busy compute node.
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1 class NoNodesFitnessFunction ( Fi tnessFunct ion ) :
2 # The h i gher the l e s s nodes are used :
3 # − no nodes = 1: f i t n e s s = 1
4 # − no nodes −> i n f i n i t e : f i t n e s s −> 0
5
6 def get ( s e l f , chromosome ) :
7 return f loat (1 ) / len ( set ( chromosome ) )

Listing 5.5: Code for NoNodesFitnessFunction

compute nodes. With this change in mutation logic, it turns out that the best

chromosome generated in the very first epoch will almost never be exceeded

by another one. Thus, this variant, truncates to number of epochs to 1. The

“best” variant is something vaguely similar to a genetic algorithm because

there is no evolution except from the selection logic and the mutation.

In algorithm 3 we provide a high-level pseudo-code for our genetic algo-

rithm.

Algorithm 3 Pseudo-code for our genetic algorithm

population = population size random generated valid chromosomes
epoch count = 0

procedure new chromosome . Returns a new chromosome
Select a chromosome from population using selection algorithm

Mutate the chromosome with probability mutation prob

Return the chromosome obtained
end procedure

procedure next . Returns next population
Take the elite from current population (elitism perc)
Add it to new population
while new population is not as big as population size do

Add to new population the result of new chromosome procedure
end while

end procedure

while epoch count is less than epoch limit do
population = next()
Increment epoch count

end while

return population
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5.2.3 Holistic Algorithm

We also provide a holistic algorithm22 taken from the state of the art (see

section 3.2.2).

The algorithm takes the least loaded compute node and tries to move all

its instances to the most loaded node that can host them. The algorithm tries

to move instances from the biggest to the smallest (in terms of resource usage).

When finished with the least loaded node, the algorithm examines the second

least loaded node and so on, until all nodes are examined.

In algorithm 4 we provide the pseudo-code for the holistic algorithm.

Algorithm 4 Pseudo-code for holistic algorithm

nodes = nodes from given snapshot
no nodes = number of nodes given in snapshot
new state = mappings (instance: node)

for all node in nodes do
node = least loaded node

if node has no instances then
continue

end if

Sort node’s migratable instances from biggest to smallest

for all instance in node’s instances do
to node = most loaded node that can host instance
if to node doesn’t exist then

continue
end if
add mapping (instance: to node) to new state

end for
end for

return new state

22https://github.com/affear/nova/tree/n-cons/nova/consolidator/holistic
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Chapter 6

Evaluation

Due to the two-topic nature of this thesis we split this chapter into two sections.

Section 6.1 is about aDock system evaluation, while section 6.2 is about the

evaluation of the different consolidation algorithms implemented in OpenStack.

6.1 aDock

This section presents the results of the experiments we carried out to evalu-

ate aDock’s capability to create fully functional experimentation environments

based on OpenStack, and its scalability.

The first experiments we show were performed on a Dell PowerEdge T320

server1. This is not a high-end server, and can be bought nowadays for less

then one thousand euros.

In the experiment we created an aDock environment with 1 controller con-

tainer and 1 compute container. We then progressively increased the number

of compute containers to identify how many could be run at the same time.

Keep in mind that each container was actively running OpenStack code. The

maximum number of compute nodes that can be run in a two-node architecture

with legacy networking, before the controller becomes a management bottle-

1Intel Xeon E5-2430 2.20GHz, 15M Cache, Ubuntu 14.04LTS 3.13.0-32-generic X86 64.
16GB of RAM and SWAP. No SSD equipped.
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neck, is 20 2. Therefore, we wanted to see whether we could reach this threshold

on a single machine, and to what extent we could surpass it. Table 6.1 shows

the results of our experiments.

Config AvgTime [sec] AvgCPU [%] AvgMem [%] AvgSwap [%]
clean 588 0.16 1.875 0
1 + 0 188 2.295 30.956 0
1 + 1 185 2.707 38.076 0
1 + 6 182 5.616 65.979 0
1 + 12 189 5.478 98.847 0.038
1 + 22 191 5.54 98.869 0.257
1 + 42 214 7.59 98.978 21.865

Table 6.1: aDock’s performance on a PowerEdge T320 server.

As we can see we succeeded in reaching “1 + 20” architecture and overcome

it to “1 + 42”. We think this is a great result, because it could possibly

allow the user to try different architectures with less compute nodes and more

controller nodes. Although, up to now, aDock doesn’t support architectures

with more than one controller node by default.

On of our aims is to understand if a user can use aDock on his/her laptop

without owning a server. So, we tried to deploy an aDock environment on

two different laptops. We left Google Chrome3 (our favorite web browser) and

Sublime Text4 (our favorite text editor) running, because we assumed that a

user is developing and browsing while using aDock platform5.

Our goal was to deploy a “1 + 5” configuration (one controller node and

five compute nodes), which we think it is a configuration which satisfies most

of testing use cases. The test took place with the same form of the server one,

except from the fact that we stopped at “1 + 5” architecture goal. In table

6.2 we show the results of the experiment conducted on a Samsung SERIES 5

2https://docs.chef.io/openstack_architecture.html#

openstack-chef-single-controller-n-compute
3https://www.google.it/chrome/browser/desktop/
4http://www.sublimetext.com/
5Keep in mind that this fact impacts considerably the test. Google Chrome, for example,

increases resource usage so much, that Google itself provides ways to lower it (see https:

//support.google.com/chrome/answer/6152583?hl=en).
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ULTRA6, while in table 6.3 we show results on an Apple MacBook Pro (Early

2011)7.

Config AvgTime [sec] AvgCPU [%] AvgMem [%] AvgSwap [%]
clean 1736 12.34 52.052 7.779
1 + 0 898 12.495 95.954 9.809
1 + 1 923 12.77 96.909 19.235
1 + 2 934 13.14 96.528 29.861
1 + 3 976 13.52 96.048 38.053
1 + 4 1104 13.79 96.453 43.665
1 + 5 — 14.02 96.325 51.496

Table 6.2: aDock’s performance on a Samsung SERIES 5 ULTRA.

Config AvgTime [sec] AvgCPU [%] AvgMem [%] AvgSwap [MB]
clean 466 3.05 93.63 55.5
1 + 0 242 9.76 99.38 93.8
1 + 1 255 12.78 99.75 93.8
1 + 2 255 14.94 99.75 93.8
1 + 3 257 15.91 99.75 93.8
1 + 4 288 16.79 99.75 93.8
1 + 5 — 18.01 99.75 93.8

Table 6.3: aDock’s performance on a Apple MacBook Pro (Early 2011).

We succeeded in deploying a “1 + 5” configuration on both laptops, main-

taining a usable environment. With the term “usable”, we mean that the user

can still work on his/her text editor, web browser and aDock itself, and so

he/she can go on developing, browsing and run simulations with Oscard with

a reasonable response time from his/her laptop. For each step we recorded

CPU usage, RAM usage, SWAP usage and the required time to run the next

aDock node in that state (AvgSwap is expressed in MB for MacBook Pro,

because Mac Os dynamically allocates SWAP space and, so, it is not possible

to give a percentage of usage.).

6Intel Core i5 1.6 GHz, Linux Mint 3.13.0-24-generic XFCE, 4GB of RAM and SWAP.
No SSD equipped.

7Intel Core i5 2.3 GHz, Mac Os X Yosemite, 8GB of RAM, SWAP is dynamically allo-
cated. SSD equipped.
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In the case of Samsung, we can see that there is little dependence among

CPU usage, startup time and number of containers. RAM usage and SWAP

are strictly correlated, instead. Once RAM usage reaches around 96 percent,

SWAP memory starts to be used, resulting in growing percentages of SWAP

usage. Thanks to this data, we understand that running a containers is mostly

a memory intensive task.

In the case of MacBook, we see CPU usage grow significantly and RAM

and SWAP stay almost unchanged during all the steps of the test. Our opinion

is that Mac OS is too opaque to the user to understand what is happening to

the memory.

It is not surprising to see that MacBook is almost 4 times faster than

Samsung and very close to PowerEdge T320 in starting nodes. The MacBook,

in fact, is equipped with an SSD hard-drive and Docker stores containers and

the images they come from to disk. Moreover SWAP memory is allocated on

the disk itself and, when aDock comes to use that, SSD makes the difference.

If we sum up boot times for the “1 + 5” configuration we obtain around 26

minutes for PowerEdge T3208; around 1 hour and 50 minutes for Samsung9 and

around 30 minutes for MacBook Pro10. We think these are reasonable timings

to deploy a private cloud system. We have to keep in mind that Samsung,

which resulted in a very high time of deploy, is a laptop which is not to be

considered as a default in these years. Its specifics, in fact, are beneath the

ones of normal laptops in sales into stores now.

Another important fact to keep in mind is that OpenStack installation

through DevStack is a network intensive task due to OpenStack’s repositories

cloning. All test were run with a connection of 100Mb/s download speed. Tim-

ings reported are dilated by the fact that compute nodes are started serially.

If they were started concurrently (as FakeStack gives the opportunity to do.

See sub-section 4.3.2.) timings would have been lower. Timings considered are

8Formula used: (588s + 188s ∗ 5)/60s.
9Formula used (1736s + 898s + 923s + 934s + 976s + 1104s)/3600.

10Formula used: (466s + 242s + 255s + 255s + 257s + 288s)/60s
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to be thought of as worst case scenarios.

6.2 Consolidators

This section presents the results of the experiments we carried out to evaluate

the goodness of the consolidation algorithm proposed in section 5.2.

We run the same 50 simulations11 for each of the different consolidators

on a “1 + 10” architecture deployed on a Dell PowerEdge T320 server (see

6.1, for server’s specifications.). Each simulation was composed of 150 steps

(no t=150) and started with an empty system (no running instance). Each of

the 10 compute nodes was equipped with 18 vCPUs, 24576 MB of RAM and

3072 GB of disk. Each simulation was configured with a NOP operation weight

of 20 (nop w=20); create operation weight of 4 (create w=4); destroy opera-

tion weight of 1 (delete w=1) and resize operation weight of 0 (resize w=0)12.

Every consolidator was configured with a consolidation interval of 10 seconds

(consolidation interval=10), which we think is unfeasible in a real cloud

system. However, we set it according to the time that Nova’s FakeDriver

requires us to create and destroy an instance. This time is much lower than

the time that would take LibvirtDriver to accomplish the same operation.

FakeDriver , in fact, only has to create an object and store it in the database.

LibvirtDriver , instead, spawns a real virtual machine. We chose the speci-

fied consolidation interval in order to to make consolidators heavily influence

simulation results: a simulation of 150 steps takes about 13 minutes to run,

thus executing an operation approximately every 5 seconds; so, we have that

the consolidator takes decisions about instance location approximately every

11We used the same 50 different seeds in Oscard for each group of simulations (for an
explanation of the role of random seeds in Oscard, see sub-section 4.4.2).

12We had to remove resize operations from the simulations due to a known bug (see
https://bugs.launchpad.net/nova/+bug/1430057) which involves Nova’s FakeDriver ,
live-migration and resize operation. The bug is tagged as “invalid” because “[. . . ] This
is just beyond scope of the current fake driver [. . . ]”. We think that the lack of resize
operations doesn’t compromise simulation results. It’s create and destroy operations that
are the real building blocks of a cloud system.
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2 operations executed on the system; in this way, consolidators act as soon as

possible to “repair” the system, highly influencing its status.

We report here configurations for each of the consolidator used (for a ref-

erence of the options see 5.2).

Vanilla No configuration required.

Random migration percentage=20

Genetic Algorithm

• prob mutation=0.8

• mutation perc=10

• selection algorithm=

nova.consolidator.ga.functions.RouletteSelection

• fitness function=

nova.consolidator.ga.functions.NoNodesFitnessFunction

• elitism perc=20

• population size=500

• epoch limit=100

Genetic Algorithm (“best” variant)

• prob mutation=0.8

• mutation perc=10

• best=True

Holistic Algorithm No configuration required.

Results are shown in table 6.413.

13Results are truncated at the third decimal digit.
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Cons vCPUs
[%]

RAM
[%]

Disk
[%]

BusyCmps BusyCmpsSD DsTime
[%]

vanilla 22.918 34.638 2.505 7.753 2.905 0
random 26.861 40.247 2.937 6.617 2.499 8.306

ga 31.413 46.759 3.440 5.367 2.560 9.186
ga best 37.217 54.638 4.038 4.864 2.370 10.573
holistic 30.598 45.811 3.371 6.143 2.356 8.826

Table 6.4: Results of 50 simulations run on each type of consolidator.

The first column is for the consolidator used; the second, third and fourth

column for the percentage of vCPUs, RAM and disk used respectively14; the

fifth column is for the number of compute nodes active (out of 10); the sixth

for the standard deviation of the active nodes and, eventually, the seventh for

maximum downscale time15.

First five columns are clear in their intent, while we explain the role of the

last two ones.

BusyCmpsSD is the standard deviation of the number of active compute

nodes. We report it to compare how stable consolidators are in maintaining

the configuration obtained. Keep in mind that it makes sense only to compare

this results among consolidators given that they were subject to the same

simulations; the number by itself doesn’t say anything about the consolidator

itself, because the number of active compute nodes oscillates due to create

operations too.

DsTime is the maximum downscale time. We calculate it examining each

step of a simulation. If the number of active compute nodes decreases from a

step to another, then a downscale window is started. The window is consid-

ered closed once the number of active compute nodes increases. The window

is not activated if the decreasing is caused by a destroy operation. Given that

destroy operation effect id discarded, downscale can only be caused by the

14Ratios are calculated only on nodes that have a vCPUs usage greater than 0 (almost
the same as saying, “nodes that host at least one instance”).

15All of the values shown are an average on the 50 simulations of the interested consol-
idator.
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consolidator’s effect. DsTime is the average on all simulation of the maximum

downscale window detected in ratio with the total number of steps (in our case,

150). This means that, if we obtain a DsTime of 10, the considered consolida-

tor succeeded in getting a downscale for, at maximum, the 10 percent of the

steps in a simulation, and so, “15” steps. “Vanilla” configuration, obviously,

gets a DsTime of 0.

With the weights on operations described above we obtained a mean num-

ber of create operations of 26.8; 5.84 destroy operation and 117.36 NOP op-

erations.

All of the consolidators brought to an improvement in all metrics examined

compared to “vanilla” configuration. The number of active compute nodes

decreased, while resource usage increased significantly. The standard deviation

of the number of compute nodes decreased, meaning that consolidators succeed

in making the system more stable. Maximum downscale time, as already said,

increased considerably.

If we compare consolidators among them, then “ga best” configuration is

the one which gives best results on almost all metrics. It is a bit surprising

to discover that it gives much better results than standard “ga” configura-

tion. Standard “ga”, in fact, is based on evolution as a standard genetic

algorithm suggests. “Best” variant is not a genetic algorithm indeed. The

core of the algorithm itself is only based on the randomness of the generation

of chromosomes and on influencing mutation turning it into a non-random

one. Chromosomes to be mutated are chosen according to roulette selection

and genes to be mutated are chosen as a random sample of chromosome’s

genes, both in the standard algorithm and in “best” variant. It is surprising

that, discarding evolution in its entirety, it is enough to move an instance

chosen at random to the busiest feasible node (see subsection 5.2.2), instead

that to a random one to bring to such a high improvement (about 5 percent

on vCPUs usage; about 8 percent on RAM usage and about 1 node active

less). Another surprising fact is the comparison between “best” variant and
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holistic algorithm. While the first seems to act almost randomly, the second

seems to perform very sensed actions and calculations (see subsection 5.2.3);

however, the holistic algorithm is very far from the improvement given by

“best” variant of the genetic algorithm (it is even worse than standard genetic

algorithm). It is surprising that even random algorithm brings to such a big

improvement with respect to “vanilla” configuration (about 4 percent on vC-

PUs usage; about 6 percent on RAM usage and about 1 node active less). It

could be that “vanilla” OpenStack, with all its default configurations, is so bad

at virtual machine placement that there is no way to make the situation worse.

In OpenStack, by default, once an instance has to be placed (on creation, for

example) the service nova-scheduler is invoked. The scheduler returns a list

of nodes that can host the instance based on policies which can be configured

and customized by the administrator of the system. Given that the scheduler

returns a list of possible hosts, a node has to be chosen. The host is chosen

according to its weight. Weighers are configurable and customizable in turn,

but, by default, their behavior is to prefer spread against stacking16. This

behavior is totally in contrast with virtual machine consolidation.

Another consideration about standard genetic algorithm is a non-functional

one: algorithm performance. Genetic algorithms have always to deal with

performance problems. This is especially the case given that our code is writ-

ten in python. Genetic algorithm was implemented avoiding object oriented

programming and preferring built-in data structures such as lists, dictionaries

and tuples; preferring built-in functions (such as map , reduce , filter and

zip ) and list, dictionary and tuple comprehensions to for loops. Even if

this decisions give a speed-up to genetic algorithm performance, the algorithm

is slow, with an average of 5 seconds run even when it is the case of about

20 instances in the system (the average of instances during each simulation).

The computational time could explode in case of hundreds of instances in

the system. This fact has to be kept in mind by the system administrator

16http://docs.openstack.org/developer/nova/devref/filter_scheduler.html
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when using this consolidator. “Best” variant is not effected so much by this

problem because of its limiting in epoch run (1 instead of 100 by standard

configuration).

“Best” variant of genetic algorithm is the best at standard metrics (vC-

PUs, RAM and disk usage and number of active compute nodes) and the one

that guarantees the highest maximum downscale time (about 10 percent), but

holistic algorithm is the most stable one (lowest number of active compute

nodes standard deviation) even if it is very very close to “best” variant (a

difference of 0.014 percent).
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Chapter 7

Conclusions and Future Work

Due to the two-topic nature of this thesis we split this chapter into two sec-

tions. Section 7.1 contains conclusions regarding the results obtained while

testing the aDock system (see section 6.1), and possible future work. Section

7.2 discusses conclusions regarding the results obtained from testing the con-

solidation algorithms (see section 6.2), as well as future work in the field of

Virtual Machine consolidation in OpenStack.

7.1 aDock

Tests conducted on our system confirmed our suppositions: it is possible for a

developer or researcher to develop OpenStack code on his/her laptop and use

aDock to run simulations against a fully-functional OpenStack system. The

results obtained show reasonable starting times for the entire architecture. We

can conclude that aDock is “lightweight”. However we think that a comparison

between aDock and one of the other options available in the state of the art (e.g.

Chef. See subsection 3.3.2) should be done. Direct comparison is necessary

to understand if aDock is really better then its “competitors” in terms of

startup times. Keep in mind that, by construction, Docker containers make

aDock more lightweight than an architecture that uses a hypervisor and virtual

machines (see paragraph 4.2.3).
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Future work on aDock will be vast. First of all FakeStack should become

a completely modular system. Docker developers strongly advocate small,

lightweight containers where each container has a single responsibility. This

is not the case in FakeStack, which gives a lot of responsibilities to a single

container. FakeStack nodes are “fat containers” that run a lot of different

processes. The controller node, for example, in its minimal configuration,

runs rabbitmq-server; mysql; keystone; glance-api; glance-registry;

nova-api; nova-cert; nova-conductor and nova-scheduler. This is in con-

trast with Docker’s philosophy and makes FakeStack less “flexible” than it

could be. The solution to this problem would be to make each OpenStack

service run in a separate container1. This change would make FakeStack much

more flexible and configurable by the user. To do this we envision providing a

templating language, one that would allow FakeStack to automatically deploy

an OpenStack architecture as described by a user. This is something that Chef

and Puppet already do (see subsections 3.3.2 and 3.3.3). With the adequate

support from the OpenStack community, FakeStack could become the equiv-

alent, but Docker-powered, of Chef-OpenStack and Puppet-OpenStack in the

OpenStack world.

Docker recently released tools for container orchestration2. Among these

we have Compose3, “a way of defining and running multi-container distributed

applications with Docker”. We think that this functionality fits perfectly with

what we envision for a more modular FakeStack. Compose allows the user to

create a docker-compose.yml file and start its newly defined system running

docker-compose up ; Compose will start and run the entire system determin-

ing the right order to start containers.

If we want to start a controller node, we could start it using Compose.

Listing 7.1 shows a possible docker-compose.yml file for a controller node as

a proof of concept4. The Keystone (key) container depends on the MySQL (db)

1There is already an attempt to this, https://hub.docker.com/u/cosmicq/.
2http://blog.docker.com/2015/02/orchestrating-docker-with-machine-swarm-and-compose/
3http://docs.docker.com/compose/
4Not all necessary services are listed. Ports are avoided. Images are supposed to be
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key :
image : f s−key
l i n k s :
− db
− rabb i t

por t s :
− . . .

volumes :
− . / keystone . conf

g−api :
image : f s−g−api
l i n k s :
− key

por t s :
− . . .

volumes :
− . / g lance . conf

n−api :
image : f s−n−api
l i n k s :
− key

por t s :
− . . .

volumes :
− . / nova . conf

db :
image : mysql

rabb i t :
image : r abb i t

Listing 7.1: Sample controller’s docker-compose.yml

and the RabbitMQ (rabbit) containers; while Glance API (g-api) and Nova

API (n-api) containers depend on key. All configuration files are specified

as volumes, to make it unnecessary to rebuild images if a modification in the

configuration happens.

We could also provide the user with built-in composed system, such as

“all-in-one” and “1 + N” architectures. We could also provide systems for

single OpenStack modules. “Nova” composition, for example, could include

containers for all of the Nova’s services, such as the scheduler, the API and so

available.
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on.

In this modular case, every image will map to a single OpenStack service.

The images we provide should fit the users’ needs, and allow one to specify

what OpenStack code to run (as already said in non-functional requirement 1.

See 4.2.3). This is why we think that we could still use DevStack to install the

single services. This choice would allow the user to choose the GitHub reposi-

tory URL and branch, and to configure the service itself (see subsection 4.3.3).

Regarding configuration, the user should still provide a main local.conf as

for DevStack; but we could provide a script which parses this file and generates

a different configuration file for each of the services configured. The output

files (e.g. keystone.conf and nova.conf) would contain global configurations

for DevStack itself, the specific service’s configuration (including its repository

URL and branch), and the ENABLED SERVICES. This option would be set by

the script to the particular service which will be run in the specific container.

The script considered should be run before container starting to obtain the

different configuration files.

OpenStack configuration is not “hot-reloaded” at every modification, but

requires container reboot. We could avoid rebooting (rebooting is heavier then

service restarting, which would imply a new DevStack installation) providing

scripts to restart services inside containers. This fact is not trivial, because ser-

vices could have dependencies among them and restarting could break service

startup and other related services.

Regarding Oscard, we would like to allow the user to run simulations with

more operations (e.g. live-migration). Currently we only support create, resize,

destroy and NOP operations.

Oscard could run more realistic simulations. We could get data from differ-

ent real cloud systems to understand how many operations are performed per

second, their proportions (e.g. create vs destroy operations), and their density

through time. Up until now, in fact, we only supposed that the operation

density is not homogeneous (introducing NOP operations) and we applied
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arbitrary proportions between operations.

We would also like to support aggregates of simulations. We would like to

be able to run a group of simulations and extract averages of the aggregates

that are stored in Bifrost. This was what we needed when we wanted to run

groups of 50 simulations, each block with a different consolidation algorithm.

To calculate the numbers in table 6.4 (see section 6.2), we wrote a python

script that extracted averages of aggregates from each group of simulations,

knowing the starting and ending simulation ID of each group. We suppose that

such a situation could happen often to users. Oscard should allow the user

to give an unique label to a group of simulations and automatically extract

the averages and standard deviations of the aggregates that Oscard already

calculates. Polyphemus would also need to be updated to display the new data

and somehow represent the concept of groups of simulations.

7.2 Virtual Machine Consolidation in Open-

Stack

Tests run on different consolidators confirmed our thoughts regarding Open-

Stack’s Virtual Machine consolidation. Consolidation brings high levels of

improvement for resource usage, with respect to “vanilla” OpenStack. The

best algorithm we found, in fact, brought a 14% increase in vCPUs usage, a

20% increase in RAM usage, a 1.5% increase in disk usage, and a 30% decrease

of active nodes (on 10 total nodes), with a maximum downscale time of about

10%.

In the future, we will extract standard power on and power off timings of

different servers from the state of the art and compare them with maximum

downscale times obtained. Maximum downscale time, in fact, is intended to

be compared with those timings, given that a node, when inactive, can be

powered off. If the time in which the node is inactive is too short, it could be a

useless turning it off, because the system could need it while this is happening.
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It could be that some algorithms do not allow one to power off servers, and

so, they give a “fake” improvement. Resource usage increases, but the system

cannot exploit this efficiency trait.

We also believe that more efficient consolidation algorithms could be im-

plemented in the future. The state of the art gives a lot of hints about this

(see section 3.2.3 and section 3.2.4).

During simulations instances where supposed to run at a maximum work-

load. It could be interesting to simulate different workloads on instances based

on the type of application they are supposed to run. We could extend Nova’s

fake module to comprise a DynamicWLInstance which simulates different

workloads given an application type. Workload simulation should be developed

starting from data taken from the state of the art.

Up until now our metrics have not involved the number of migrations per-

formed. Every live migration performed, in fact, has a cost in terms of energy

and time. In the future we will track the number of live migrations performed.

It could be that different algorithms bring to different numbers of live migration

and, thus, are preferable to others.

During the whole development we clashed with the current development

of nova.virt.fake.FakeDriver . It seems that fake module of Nova isn’t

evolving, as are other parts of OpenStack project. The Kilo version of Open-

Stack, in fact, is to be released soon and the community is highly focused

on it. However, we understood and used the power of the fake module,

and we want to fix its bugs and enhance it. During nova-consolidator ser-

vice development we also had to fix a bug in the live migration feature5, as

well as to extend it to accept resize operations (see section 6.2). We also

had to implement nova.virt.fake.MStandardFakeDriver which allows the

developer to start a compute node with multiples and sub-multiples of a

nova.virt.fake.StandardFakeDriver (12 vCPUs, 16384 MB of RAM and

2048 GB of disk) by means of configurations files (fake driver multiplier

5https://bugs.launchpad.net/nova/+bug/1426433
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option)6. This was necessary for us to simulate different architectures and limit

spawning instances. By default, in fact, FakeDriver offers a standard imple-

mentation with 1000 vCPUs, which is too big to reach system saturation (or

reasonable usage percentages) in short simulations and a SmallFakeDriver

(1 vCPU), which is too small to host more than one instance7. In the

near future we will open blueprints8 for both MStandardFakeDriver and

for DynamicWLInstance , to improve Nova’s “fake” implementation9. It

could be interesting to somehow simulate the nodes’ energy consumption in

FakeDriver . For now, it would be a nonsense to extract the nodes’ energy

consumption, given that our nodes are virtualized Docker containers.

In section 6.1 we already said that OpenStack, by default, prefers vir-

tual machine spreading over stacking. It would be interesting to set

ram weight multiplier to a negative value, to make weighers prefer stacking

over spreading10. In this way OpenStack would be much better at virtual

machine placement in a perspective of consolidation. We could start simula-

tions with a fixed value of instances, e.g. 30, and only perform destroy and

NOP operations, and compare different consolidators in this perspective. It

would be useful to see consolidators in action starting from an empty system,

and experiment their effect on create operations; however, if placement is per-

formed with a consolidation perspective, it is when instances are deleted that

consolidation makes the difference filling the “holes” that are left behind when

instances are deleted.

6https://github.com/affear/nova/blob/n-cons/nova/virt/fake.py
7https://github.com/openstack/nova/blob/master/nova/virt/fake.py
8https://wiki.openstack.org/wiki/Blueprints
9A blueprint for service nova-consolidator is currently available at https://

blueprints.launchpad.net/nova/+spec/nova-consolidator.
10http://docs.openstack.org/developer/nova/devref/filter scheduler.html#weights
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