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Abstract

In recent years, great changes has involved music from a social and a technological

point of view. The increase of the capacity of memory devices led an impressive

increase of the size of both personal and industrial music repositories. This process

brought the size of collections to a level where users get lost in their own music.

From here comes the need of new browsing systems to help the user in �nding

suitable musical content. However, mainstream music browsers did not change that

much and still rely only on lists of context-based metadata. This approach has many

issues, the most important is that no information about the audio content is available.

Music Information Retrieval (MIR) is the research �eld that deals with the retrieval

of useful information from music content. It can also be applied to music browsing

to provide a content-based music browsing experience.

The purpose of this thesis is to propose a new framework to build hybrid content-

based and context-based music browsers using a multidimensional space.

We developed AMBIF (Advanced Music Browsing Interactive Framework) using

Unreal Engine 4.7. It allows users to browse up to �ve song dimensions at the same

time in a mixed content-based and context-based space. Each song in this space is

represented by a spherical placeholder and its position and color depend on the song

descriptors that the user chose.

We proposed a music browser instance made with AMBIF that relies on content-

based high-level music descriptors to 33 users and we evaluated its usability. The

feedback was great and results are promising.





Sommario

Negli ultimi anni grandi cambiamenti hanno coinvolto la musica da un punto di

vista sociale e tecnologico. L'incremento della capacità di memoria dei dispositivi

elettronici ha portato ad un aumento della dimenisone di collezioni musicali private e

industriali. Questo processo ha portato le dimensioni delle collezioni musicali ad un

livello tale per cui gli utenti si sentono persi nella loro stessa musica. Da qui nasce la

necessità di un sistema di navigazione che aiuti gli utenti a trovare contenuto musicale

adatto a loro. Tuttavia i più popolari music browser non sono cambiati poi molto e

tuttora si basano su liste di metadati basati sul contesto. Questo approccio presenta

molti problemi, uno su tutti è che non è disponibile alcuna informazione sul contenuto

del �le audio. Music Information Retrieval (MIR) è il campo di ricerca che si occupa

di estrarre informazioni utili dal contenuto musicale. Può essere anche applicato alla

navigazione di una libreria musicale per fornire un'esperienza di navigazione basata

sul contenuto musicale.

Lo scopo di questa tesi è proporre un nuovo framework per costruire un sistema

di navigazione musicale in uno spazio multidimensionale secondo un approccio ibrido

basato su contenuto e contesto.

Abbiamo sviluppato AMBIF (Advanced Music Browsing Interactive Framework)

con l'utilizzo di Unreal Engine 4.7. Questo sistema permette di navigare �no a cinque

dimensioni di una canzone contemporaneamente in uno spazio basato su contenuto e

contesto. Ogni canzone nello spazio è rappresentata da un segnaposto sferico la cui

posizione e il cui colore dipendono dai descrittori della canzone che l'utene ha scelto.

Abbiamo proposto un'istanza di AMBIF basata su descrittori di alto livello del

contenuto musicale a 33 utenti e ne abbiamo valutato l'usabilità. Il riscontro è stato

decisamente positivo e i risultati promettenti.





Contents

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 About the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Reasons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Proposed solutions . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the art 5

2.1 State of the Art in Browsing Music Collections . . . . . . . . . . . . 5

2.1.1 Major browsers . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1.1 iTunes . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1.2 Spotify . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Other browsers and research projects . . . . . . . . . . . . . . 10

2.1.2.1 Nightingale . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2.2 Torch Music . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2.3 MusicRainbow . . . . . . . . . . . . . . . . . . . . . 12

2.1.2.4 MusicSun . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2.5 Liveplasma . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2.6 Music Timeline . . . . . . . . . . . . . . . . . . . . . 14

2.1.2.7 JANAS . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2.8 Musicovery . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2.9 MusicBox . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Game engine technology . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 What a game engine is . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Why a game engine . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2.1 Success stories . . . . . . . . . . . . . . . . . . . . . 18

2.2.2.2 Main Features . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Which game engine . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Theoretical background 21

3.1 Signal Processing Overview . . . . . . . . . . . . . . . . . . . . . . . 21

i



Contents

3.1.1 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1.1 Fourier Serie . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1.2 Fourier Transform (FT) . . . . . . . . . . . . . . . . 22

3.1.1.3 Discrete-Time Fourier Transform (DTFT) . . . . . . 22

3.1.1.4 Descrete Fourier Transform (DFT) . . . . . . . . . . 23

3.1.1.5 Discrete Cosine Transform (DCT) . . . . . . . . . . 23

3.1.2 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2.1 Power spectrum . . . . . . . . . . . . . . . . . . . . 23

3.1.2.2 Magnitude spectrum . . . . . . . . . . . . . . . . . . 24

3.1.3 Windowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Music Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Low-Level and Mid-Level Features . . . . . . . . . . . . . . . 26

3.2.1.1 Mel-Frequency Cepstrum Coe�cients . . . . . . . . 26

3.2.1.2 Zero Crossing Rate . . . . . . . . . . . . . . . . . . . 27

3.2.1.3 Spectral Centroid . . . . . . . . . . . . . . . . . . . 28

3.2.1.4 Spectral Spread . . . . . . . . . . . . . . . . . . . . 28

3.2.1.5 Spectral Skewness . . . . . . . . . . . . . . . . . . . 28

3.2.1.6 Spectral Flux . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1.7 Spectral Rollo� . . . . . . . . . . . . . . . . . . . . . 29

3.2.1.8 Spectral Flatness . . . . . . . . . . . . . . . . . . . . 30

3.2.1.9 Spectral Kurtosis . . . . . . . . . . . . . . . . . . . . 30

3.2.1.10 Spectral Inharmonicity . . . . . . . . . . . . . . . . 30

3.2.1.11 Spectral Slope . . . . . . . . . . . . . . . . . . . . . 31

3.2.1.12 Spectral Standard Deviation . . . . . . . . . . . . . 31

3.2.1.13 Spectral Irregularity . . . . . . . . . . . . . . . . . . 31

3.2.1.14 Spectral Smoothness . . . . . . . . . . . . . . . . . . 31

3.2.1.15 Chroma features . . . . . . . . . . . . . . . . . . . . 31

3.2.1.16 Tempo . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Machine learning overview . . . . . . . . . . . . . . . . . . . . 33

3.2.2.1 Regressor . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . 34

3.2.3 High-Level Features . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3.1 Emotional Descriptors . . . . . . . . . . . . . . . . . 36

3.2.3.2 Non-Emotional Descriptors . . . . . . . . . . . . . . 37

3.3 Music browsing: a survey . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Structure of the survey . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1.1 User's habits . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1.2 User's needs and preferences . . . . . . . . . . . . . 38

3.3.1.3 User's reaction to a new proposal . . . . . . . . . . . 38

3.3.2 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ii



Contents

3.3.2.1 User's habits . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2.2 User's needs and preferences . . . . . . . . . . . . . 40

3.3.2.3 User's reaction to a new proposal . . . . . . . . . . . 40

4 Methodology 43

4.1 Music Browsing Framework . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2.1 Data management . . . . . . . . . . . . . . . . . . . 44

4.1.2.2 Game Engine paradigm . . . . . . . . . . . . . . . . 46

4.1.2.3 Unreal Engine project structure . . . . . . . . . . . 47

4.1.3 Main implementation details . . . . . . . . . . . . . . . . . . 48

4.1.3.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.3.3 Map Elements . . . . . . . . . . . . . . . . . . . . . 51

4.1.3.4 Character . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.3.5 Music . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.3.6 HUD . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.3.7 GUI Widgets . . . . . . . . . . . . . . . . . . . . . . 52

4.1.4 How to create a music browser with AMBIF . . . . . . . . . . 53

4.1.5 Browsing experience . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Low-Level Features extraction . . . . . . . . . . . . . . . . . . 56

4.2.2 Hig-Level Features Regression . . . . . . . . . . . . . . . . . . 57

5 Experimental results 59

5.1 Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.2 Test phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Final survey structure . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.2 Other questions . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Results evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Usability factors . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1.1 E�ciency . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1.2 E�ectiveness . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1.3 Satisfaction . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1.4 Productivity . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1.5 Learnability . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1.6 Trustfulness . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1.7 Accessibility . . . . . . . . . . . . . . . . . . . . . . 65

iii



Contents

5.3.1.8 Universality . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1.9 Usefulness . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.2 Other questions . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.3 Open comments . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Conclusions 69

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Future development . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Reactiveness enhancement . . . . . . . . . . . . . . . . . . . . 70

6.2.1.1 Auto-update . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1.2 Smooth movement . . . . . . . . . . . . . . . . . . . 70

6.2.1.3 Audio management . . . . . . . . . . . . . . . . . . 70

6.2.2 Audio codecs . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.3 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.4 Playlist generation . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.5 Increase of the available dimensions . . . . . . . . . . . . . . . 71

6.2.6 Support for other kind of devices . . . . . . . . . . . . . . . . 72

Bibliography 77

iv



List of Figures

2.1 Nightingale smart playlist creation . . . . . . . . . . . . . . . . . . . 11

2.2 MusicSun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Google Music Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Musicovery.com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Musicbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Game engine development environment . . . . . . . . . . . . . . . . . 18

3.1 Power density spectrum of a continous-time periodic signal . . . . . 24

3.2 Windowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Windowing applied to a frame of audio signal . . . . . . . . . . . . . 25

3.4 MFCC for two songs . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Spectral Flux for two songs . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Spectral Inharmonicity for two songs . . . . . . . . . . . . . . . . . . 31

3.7 Chromagram for two songs . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Tempo for two songs . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Linear regressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.10 Supervised learning training and testing phases . . . . . . . . . . . . 35

3.11 Arti�cial neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.12 Circumplex Model of A�ect . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Project packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Simpli�ed class dependency diagram . . . . . . . . . . . . . . . . . . 49

4.3 AMBIF help board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 AMBIF mouse click . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 AMBIF song evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 AMBIF Dimension change . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 High-level features regression block diagram . . . . . . . . . . . . . . 58

v



List of Figures

vi



List of Tables

2.1 App development environment popularity . . . . . . . . . . . . . . . 19

2.2 Game engine comparison . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Low-level and mid-level feature considered in this work . . . . . . . . 26

3.2 High-Level Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Survey - question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Survey - question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Survey - question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Survey - question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Survey - question 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Survey - question 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Survey - question 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10 Survey - question 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.11 Survey - question 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.12 Survey - question 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Stored metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Runtime metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Usability factors and criteria . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Evaluation survey results: criteria . . . . . . . . . . . . . . . . . . . . 64

5.3 AMBIF usability factors . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 User habits quesitons . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



List of Tables

viii



Chapter 1

Introduction

1.1 Context

Digital audio is technology that encode audio signals in digital format. It can

be used to reproduce, store, manipulate, record, distribute sound. On the wave of

advances in digital technology during the 1970s, digital audio replaced analog audio

technology in most areas of sound engineering. Digital audio is based on the fact that

all audible-analog-audio signals can be encoded as digital signals without signi�cant

variation. The theory behind this idea dates back to the Fourier Transform, �rst

described in 1822 [2], and its derived transform functions. One of those, the Discrete-

Time Fourier Transform reduces a continuous signal to a discrete sequence of values

(samples) that can be interpolated to rebuild the original signal. This process ensure

that for each given signal there exist a digital approximation of the original analog

signal and this approximation can be indistinguishable or almost indistinguishable

to the human ear when sample frequency is su�ciently high (at least double of the

maximum audible frequency).

Comparing digital audio to analog audio it can be said that there are no disad-

vantages in term of quality of the music, but there are a lot of vantages in term of

dematerialization. This is the primary reason why digital replaced analog as main

format to edit, transfer and store music. The di�usion of the internet in the 1990s

and 2000s acted as main ampli�er of the di�usion of the digital audio format. Nowa-

days the digital audio is almost everywhere: cars, smartphones, personal computers,

ornaments, even wearable devices can play digital music. Reaching music content in

digital format is very easy.

As Bauman [3] described the concept of liquid society, we can nowadays use

the term liquid to describe music. From a sociological point of view, this means

that there is not a well-de�ned shape of what music is because it is in constant

change. Music structure is hard to de�ne, recent contamination of music are going

to destructure models hitherto known. New music genres and subgenres born every
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1. Introduction

day: some of them exist only in a few works, others become rapidly popular. Music

evolves quickly.

From a technological point of view, recent cloud technologies increased the level

of abstraction in content management. Once the concept of music was related to a

physical object (e.g. a vinyl disk, a musicassette, a CD-ROM), then it was related

to a �le stored in a computer or a portable device, now the age of data streams is

coming: a song is only a label on the screen and how music collections are organized

are no longer a matter of the user. Streaming music from a cloud repository to a

personal computer, from a content provider to a laptop or a smartphone, user have

no idea about where exactly the audio �le is, he just enjoys the music �owing to

his/her ears. This is another way to see liquid music: user get the audio, but he no

longer knows where it resides.

1.2 About the project

1.2.1 Reasons

For both society and music these are times of changes. Therefore, also the way

to listen to, look for and buy music is changed in recent years and it is still changing.

The increase of the capacity of memory devices led an impressive increase of the

size of both personal and industrial music repositories. This process brought the size

of collections to a level where users get lost in their own music. From here comes

the need of new browsing systems to help the user.

A good browsing system must �t di�erent kinds of music it is used with. It

should adapt to every known music genre but also to all those genres that will be

invented in the future. Music is a constant-evolving art and this is a fact that can't

be ignored.

The author of [4] states that music browsing and listening are activities with

unique and distinct characteristics that motivate the creation of domain speci�c

software and control interfaces. In a more general way it can be said that every user

has its own needs and preferences. A music browser should allow the end user to

personalize the software interface to make him more comfortable.

Although personalization is main aspect of browsing every good software must

be intuitive and ready to use by every possible user. This means that the default

interface has to be simple, clear and per se meaningful.

Therefore, a good music browser have to be:

� adaptive

� personal

� intuitive

2
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1.2.2 Proposed solutions

Science community and the market already dealt with this problem. Their solu-

tions make use of di�erent approaches: lists, metadata, semantic spaces.

The list-based approach is the elder and simplest way to display information

about music content. It is easy to implement, it can be used with every genre of

music and the average user is already used to browse a list. This approach is no more

suitable when content grows in size and the list becomes a wall of text. An average

user gets tired very quickly of a wall of text, he doesn't really look at the list and

rely on other auxiliary systems (for example a search engine). Here, the problem is

that there's no visual match between the text shown on the list and the content of

every list item. Furthermore, by looking at this kind of interface there is no way to

gain information about the content of the music.

Starting from these system, it is possible to add levels of abstraction. Humans

are used to describe music with speci�c terms. Using a context-based system, which

relies only on metadata, it is possible to assign several terms (tags) to every audio

�le and search for them. In this way it is possible to query a library using de�ned

tags. Tags can improve personalization, but it is still complex to de�ne meaningful

relations between tags. There is still no scienti�c correlation between tags and audio

content. It also has high management complexity and does not scale very well.

Moreover, this has a cost of O (N ∗ T ) where N is the number of audio �les and T

is the number of desired tags.

The main limitations of context-based systems are partially solved by the content-

based systems. It is possible to extract descriptive features directly from the audio

content; in this way it is possible to have a visual representation of the audio content

without relying on the context. There is no more need of manual tag management,

feature extraction can be automated. Content-based features can also be processed to

obtain a content-based classi�cation of music, an interesting overview about feature

extraction and feature processing can be found in [5]. This totally-di�erent approach

exploits semantic spaces to visualize content-based features on a map. Abstraction

level is increased: instead of describing music using terms, music is described using

concepts. The most popular map is the Valence-Arousal plan (VA plan) where each

song can be mapped as a point and each point on the map represents a di�erent

emotion. Whereas it is possible to automate content-feature extraction, it is also

possible to automate the match between audio �les and points. In this way it is

possible to provide to the user an immediate feedback about the content.

Unfortunately, content-based approach is not (yet) very popular because it intro-

duces a very-high-level of abstraction, which can confuse the average user. An hybrid

content-based and context-based approach was introduced to improve the quality of

these systems. Anyway, many mainstream music browser prefer to keep using a

3
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context-based approach because user experience proved they still work better.

1.2.3 Goal

Each one of the previously described approaches has its own point of strength

and point of weakness. The goal of this work is to describe a new hybrid system

that aims to exploit the advantages of both content-based and context-based systems

without their limitations.

In order to create such a hybrid system it is important to understand what a

user expects from a music browser. Di�erent people put di�erent level of attention

to di�erent aspects of music. Someone primarily focuses his/her own attention on

metadata like album title, artist name; someone else focuses on genre, others are

more interested in bpm and so on. The range of potential interesting aspects is

pretty large1, to cover all these possible needs is not easy and requires big e�ort

to maintain and a nontrivial visualization system. Though all these metadata are

available, it is a best practice to show only a few of them at the same time; the

reason lies in preserving clarity of the visualization. As an immediate consequence,

it often happens that interesting metadata are not used.

Although existing music browsing systems based on semantic spaces are not

widely appreciated, there is interest on the part of users to exploit visual spaces

when browsing music1.

The key of this project is personalization, to provide a framework for leaving

the end user creates his/her own personal music browser. This system makes use

of a hybrid approach. It provides both content-based and context-based support in

a multidimensional space. This project exploits a subset of all available descriptors

the user likes more by letting him chose which one to show and how. In this way the

semantic-visual space is brought closer to what the user has in his/her own mind.

1Stefano Cherubin. Music browsing, raccontami la tua esperienza e le tue impressioni in
merito alla navigazione di una raccolta di canzoni. https://it.surveymonkey.com/results/

SM-79SW6M87/, May 2014.
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Chapter 2

State of the art

2.1 State of the Art in Browsing Music Collections

Music browsing is a particular case of data visualization. Data visualization

depends on user behavior no less than how much it depends on data. Therefore, the

study of such a science is a matter of understanding humans as well as data and to

address the music browsing problem it is important to set the focus also on the user.

It is stated in [6] that how people perceive and classify music is strongly in�uenced

by social factors such as age, geographical location. Furthermore, several people and

companies around the world create di�erent music browsing services that organize

music many in di�erent ways because they serve for di�erent purposes and target

di�erent people. It is nearly impossible to have an overall view of all parameters that

in�uence music browsing. For this reason, there are not clear metrics to describe

performance of each music browser or music browsing technique. The behavior of

the user is the key to understand if he/she likes or not a way to visualize data and

metadata. Main classi�cations can be done by usage, target device and browsing

purpose. Therefore, we are going to discuss the state of the art in music browsing

with respect to these parameters.

There are a few main music browsers widely adopted on the market and a lot

of minor and research projects. It is meaningful to mention also research projects

because, though they are not (yet) widely adopted, they are interesting because they

explore new approaches and/or new interfaces. Therefore, in this chapter we are

going to analyze both major music browsers and research projects.

It is also worth to mention that browsing systems di�erentiate on the device.

Indeed, controls and interfaces are di�erent for any device. Browsing a music library

from a smartphone has not the same issues as browsing from a personal computer or

a tablet. Usually smartphone and tablet browsing applications are considered good

enough for their purpose when they implement a subset of the features contained

in some other desktop-reference systems. Other di�erent type of interaction are
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used with augmented reality (AR) or virtual reality (VR) devices. AR and VR

data visualization projects are ad hoc-designed solutions for every use case, artistic

installation [7]; out of some design installation [8, 9] this �eld is not yet widely

explored. The [10] goes deeper in detail about the issues data visualization has with

VR systems. AR and VR systems represent a possibility for the future of music

browsing systems, but, at the moment, their lack of popular devices makes them not

ready for a massive use for content browsing. In this thesis will be discussed desktop

music browsing systems, since they actually represent the most advanced state of

the art in this �eld.

There is also a di�erence between browsing a well-known personal music library

and browsing an online music store database. In the �rst case the user is most likely

looking for something to listen to in his/her own collection. This means that the

music collection to be browsed contains only music the user has chosen to import

in his/her own library; it is not a strong assumption to say the user likes all the

available tracks in the collection and he/she is just looking for tracks compatible

with his/her mood. In the case of online music stores there are two main scenarios:

the user may either be interested in identifying a speci�ed artist/album/track he/she

would like to purchase or he/she is interested in following suggestions to �nd new

content he/she may like. Nowadays users no longer cares about the size of his/her

own music collection and it is possible that he/she may need to discover or rediscover

content even inside his/her own music collection. However, content discovery and

recommendation is a topic that deserves more than a thesis by its own. Our work

can be applied to both systems for browsing a known music library and systems for

browsing an unknown music library.

Music browsing systems must adapt to the proper use case they have been in-

serted into. Bene�t and malus of each di�erent approach will be explored later in

this chapter. In order to contextualize the analysis, the discussion is grouped by

music browser instance.

2.1.1 Major browsers

2.1.1.1 iTunes

iTunes1 is the most popular software used to organize personal music libraries and

synchronize them with Apple portable devices. It also integrates browsing feature

with the intent of �nding known music to play or to buy. After experiencing di�erent

interfaces, this software currently o�ers a set of layouts through which can be browsed

the local music library. A text box is always available to allow querying by keywords

on text metadata. Each user can switch between di�erent layout at any time, even

when music is playing. Available layouts actually are:

1Apple Inc. iTunes. https://www.apple.com/itunes/.
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� Single list

� Wall of album covers

� List grouped by artist

� List grouped by composer

� List grouped by genre

In each of these layouts are always available the following metadata: Artist, Title,

Album Title, year, length, user rating. It is also possible to group tracks by Album

Title.

Single list Single list layout reserve all the available browsing area on the screen

for a single list of tracks. It allows to display a larger set of metadata than any other

layout available for this system. However, this layout is heavily defective: when the

number of tracks to list is higher than half screen, it becomes disturbing to the eye

and creates confusion to the user. The result is a wall of text. In addition, metadata

are based only on context and gives no information about the content.

Wall of Images The wall of album covers is one of the most popular layouts

and it can be found also on many other competitors. It is very simple and poor

of metadata, but it �ts very well on mobile devices. It groups all tracks with the

same Album Title and in place of all of them show only the album front cover. Users

recognize the album cover and can select the album by clicking anywhere on the

image. It represents a portable layout, i.e. a layout that can be used on di�erent

types of device.

iTunes, like many of its competitors, allows the user to complete the music col-

lection by retrieving missing album covers form a centralized database. Although

iTunes cover database is one of the most populated in the world, sometimes it hap-

pens that album covers are unavailable; the reasons may vary: album metadata may

contain typos, album may not be popular enough to be included in iTunes database,

etc. In these situations this layout become almost useless because it fails most of the

feedback that the user should receive from the browser.

Grouped Lists Grouped-list layouts leave on the left about one sixth of the size

of the screen for the top level list (list of artists, list of composers, list of genres)

and the rest of the view is used to display a list of tracks for the selected top level

aggregator. This kind of layout allows the user to see a hierarchic organization of

his/her own music library. Grouped-list layouts are the most common layouts that

can be found in music players and music browsers for personal computer and laptop
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devices. Several main competitors2,3 of this software use this kind of layout by

default to browse a personal music library.

Using aggregators may help in reducing the list size and restricting the context,

but this only lightens and does not remove the problems of the Single list layout.

Success and problems of this system The success of this browser dates back

to early 2000s when the Apple iPod became popular [11]. This music player device

requires iTunes as a mandatory software installed on every personal computer used

to synchronize music with. Year by year iPod became more and more popular and

Apple decided to invest on iTunes to keep their user base. In 2001 iTunes digital

jukebox managed up to 1,000 songs synchronized with portable device, two years

later this limit was 25 million and iTunes became also an online music store.

Apple made a great marketing campaign with their products and created a huge

song database, thanks to its online store; these reasons brought many users to adopt

and keep using iTunes.

Beyond this success, iTunes remains context-based music browser mainly based

on text lists. Unresolved problems in this music browser include:

� no information about content is available (e.g. there is no way to visualize

any emotional descriptors for each song);

� the visual feedback provided to the user is limited to simple text and (in come

cases) album images;

� user can only choose one of the presented layouts and no more personalization

is allowed.

2.1.1.2 Spotify

Spotify is a system for music streaming. It became very popular for streaming

digital-rights-management-restricted (DRM-restricted) music on mobile devices. A

web-based version of this service is also available4. It allows the user to search for

his-own-favorite music or browse the online library by

� Radio streams

� Categories

� Suggestions

� most populars

2Amazon.com. Amazon Music for PC and Mac. http://amazon.com/getamazonmusic.
3Microsoft. Windows Media Player. http://windows.microsoft.com/en-us/windows/

windows-media-player.
4Spotify AB. Spotify web player. https://play.spotify.com/.
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� latest releases

� liked by the user

� pro�le-based suggestions

Graphically, all of these options show an album cover or a wall of album covers.

Suggestions are based on di�erent recommendation systems and do not represent a

novel feature. However, it is interesting to analyze this system because it introduces

some interesting concepts in music browsing.

Radio stations This service de�nes as radio station a thematic-endless playlist.

This playlist is generated with tracks similar to a user-speci�ed tag, artist or song and

improved song by song by providing a positive (like) or negative (dislike) feedback to

each proposed tracks. The user can change radio station to stop the playlist and start

another one with another theme. It is basically a special case of recommendation

system that users like a lot. This is why this system can be classi�ed as a popular

browsing system.

Tag categories This service suggests a categorization based on moods and not

only on genres. According to Spotify music category is not a taxonomy, but it is

a tag classi�cation. These tags are indexed in a two or three levels hierarchical

structure, depending of each category; leaves of this structure are playlists. This

categorization allows the user to run a playlist built to match a daily-life activity

(such as workout, dinner, party) without caring about which industry-de�ned genre

is suitable for this activity.

Success and problems of this system This system represents a little improve-

ment in context-based systems. Categories and genres are no longer synonyms in the

music �eld. Users appreciate the possibility to browse and play music using a mood

or another abstract concept as a search key.

Although the DRM technology brings many limitations5, users seem to like this

system. The main reason is behind Spotify's recommendation systems and category-

based playlists features.

This user interface for this system has been designed for mobile devices and

�ts very well there. However, the web-based version is very similar to the mobile

application and although a desktop screen would allow it, Spotify does not show

more metadata than it shows on the mobile interface. This makes the web-based

version of this service seem very poor of information, indeed it is based on the Wall

of Images layout.

5for an extended discussion, see www.DefectiveByDesign.org
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Spotify make use of recommendation systems as the only personalization mecha-

nism in music browsing. Our project increases the user abilities to interact with the

system by bringing personalization to the visualization layer.

2.1.2 Other browsers and research projects

Although they do not represent the most popular approaches to music browsing,

from now the analysis continues describing projects which use interesting approaches.

Some of them doesn't even allow to browse a personal music collection, but they de-

serve a mention for the peculiarity of the methods of interaction or feedback provided.

2.1.2.1 Nightingale

Nightingale6 is a fork of the open source project Songbird. Songbird7 was a free

music player focused on fans communities; in 2013 it was shut down. Users de-

cided to fork this project and continue the development under the name Nightingale.

Nightingale is a music organizer based on Firefox web browser and designed as an

open source alternative to iTunes. It o�ers high extensibility: Firefox plugin system

is a well-known development paradigm and this allowed community developers to

easily add features to the main project.

Two layouts are available by default: single list and multi-�lter. In each one of

those layouts all available metadata can be displayed as text. Another interesting

feature of this software is the ability to perform complex queries on the music library

via a special playlist generation.

Multi-�lter This layout is similar to Grouped Lists, but it allows the user to group

by several levels of aggregation based on context-based metadata. By default the set

of �lter groups by genre, then by artist, then by album name. It is possible to add,

remove change grouping levels.

This layout represents one of the most-advanced-text-based views in the context-

based world. However, it is fully context-based and su�ers from all problems of this

approach: it is still complex to de�ne meaningful relations between tags, there is

still no scienti�c correlation between tags and audio content and it also has high

management complexity.

Like all the context-based systems, it has di�culties in dealing with missing data.

When the user applies a �lter on a given �eld and an element has no avilable metadata

for that �eld, that element will not be shown in results. Therefore �lter results may

be incomplete and it is a problem. In addition, each introduced-aggregation level is

a multiplier for problems caused by missing values in metadata.

6Nightingale Community. Nightingale web player. http://getnightingale.com.
7Pioneers of the Inevitable aka POTI Inc.. Songbird. http://getsongbird.net/.
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Let mt be the missing rate for the tag t, with 0 ≤ mt ≤ 1, de�ned as:

mt = 1− 1

S

S∑
i=1

si,t

where S id the number of songs in the music library, si,t = 0 if song i has a value

for t and si,t = 1 if not. The aggregation over T tags brings to a missing rate for the

�lter results m that is given by ther relation:

m = 1−
T∏
t=1

(1−mt)

which is higher than every mt with t ∈ T . Our project reduces this problem

by proving a di�erent missing values handling policy for each tag recognized by the

system.

Figure 2.1: Nightingale smart playlist creation

Complex queries This soft-

ware allows the user to create

a smart playlist with all the

tracks which satisfy a given con-

dition. Through the creation

interface the user can specify a

complex query using all avail-

able metadata. Nightingale

with this feature creates an ab-

straction layer upon a database

query.

It is the context-based brows-

ing approach brought to the

maximum level of expression

for text-based interfaces: songs

are browsed like element in

a database. Another similar-

open-source project (Quodli-

bet8) adds the possibility to use

regular expressions to query the

library and manage audio �les.

These examples can give and idea of what an advanced user would do with

context-based metadata. In a scalable project the design should allow to interact

with a superset of these data and perform queries on them.

8quodlibet. https://code.google.com/p/quodlibet/.
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2.1.2.2 Torch Music

Torch Music9 is an online music browser and music streaming service based on

Torch Web Browser, which is in turn based on Chromium web browser source code.

This service o�ers di�erent browsing options:

� Suggestions

� most populars

� liked by the user

� pro�le based suggestions

� Genre categories

� Radio streams

� Torch Music Map

Suggestions provides playlists based on recommendation systems, genre categories

allow to browse the online library by a rough classi�cation of musical genres, radio

streams are endless playlists inspired by the Radio stations concept described in

2.1.1.2. These options do not represent any novel feature and will not be discussed

any longer.

Torch Music Map Torch Music is an online service and could track the location

of users around the world. The Music Map feature shows who is listening what and

where. This is done by plotting tokens on a planisphere (Google Maps); every token

is a user and its position on the map is obtained by geolocalizing the IP address of

the user, clicking on the token allows to show details about which song that user is

currently listening.

The interesting part of this approach is the use of a bidimensional space. In

addition, the position of the point has a meaning: it is relate to the location where

someone is listening to that song.

2.1.2.3 MusicRainbow

MusicRainbow [12] is a simple interface for discovering artists. The whole brows-

ing interface is based on a rainbow circle. Inside the circle there are high-level genre

keywords; outside the circle more speci�c keywords are placed. Each ring of the

rainbow (and thus color) corresponds to one high-level term. The user can rotate

the rainbow via a knob to rotate labels. On the right side of the screen there is a

9Torch Media. Torch music. http://music.torchbrowser.com/.
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list of the available artists; the selected artist is highlighted and lies in the middle of

the right column.

This browsing interface allows to discover artists in the same way a radio can be

tuned. Rainbow colors are mapped to di�erent music genres however, which genres

corresponds to which color is a piece of information that is not given explicitly to

the user. There is no linear mapping between knob position and the circle position;

this feature helps the user to discover new artists located in a given area, but it also

makes di�cult to perform direct access to a known artist.

This project was a �rst attempt to use a simple interface to perform context-based

browsing using a non-textual interface.

2.1.2.4 MusicSun

MusicSun [13] is a graphical user interface for discovering artists. It is an evo-

lution of MusicRainbow. Artists are recommended based on one or more artists

selected by the user.

Figure 2.2: MusicSun. Elias Pampalk & Masataka
Goto

The interface shows a poorly-

drawn sun: a circle in the mid-

dle and a set of triangles as rays.

Inside the circle there are artists

provided by the user as seed for

a query. For each artist the sys-

tem retrieves a set of keywords

as descriptors. The most com-

mon descriptors of the user de-

�ned artists represent rays of

the sun. The triangular shape

of each ray encodes the follow-

ing information with respect to

the word it represents: if the

side of the triangle facing the

sun is longer, then the respective word describes the artists better; if the length

of the ray is longer, then there are more artists in the collection which can also

be described using the respective word. Once a ray is selected, it spins itself into

the rightmost position, indicating that it is currently being used to modify the rec-

ommendations. Recommendations are shown as a list in the right column. Minor

components of the interface such as little sliders and on/o� switches allows the user

to tune some weights of the recommendations.

With respect to MusicRainbow, authors make much less use of colors and started

to use more shapes to provide visual feedback to the user. It remains a browsing

interface speci�cally designed for authors discovery and it is not suitable for direct
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access to known artists. It is context-based system with a non-textual interface that

also allows minimal personalization via parameters tuning.

2.1.2.5 Liveplasma

Liveplasma10 is a music discovery tool that shows Amazon.com similarities; it is

useful to �nd relationship between artists and suggest to the user some new artist sim-

ilar to a given one. This similarity captures the preferences of the users by counting

the number of users that bought music from each artist; according to Amazon.com,

two artists are similar if a high number of users bought music from both of them.

Each artist is a node in a graph; node size depends on artist popularity, edges

represents the relationship users who bought album from this artist also bought. This

system allows the user browse a music library using a graph instead of lists. It is an

interesting method for discovering artists and several projects refer to this approach

to develop new browsing interfaces (e.g. Discovr Apps [14]).

The key of this project is simplicity. It makes use of a very simple graph to

display context-based metadata and connections between elements.

2.1.2.6 Music Timeline

Music Timeline11 is a Google Research project for music browsing based on

Google Play Music data. This project shows a timeline of music album and artist

from 1950 to nowadays grouped by genres and subgenres. It uses di�erent colors to

separate genres and di�erent shades of the same color to separate subgenres. Time-

line width is an area diagram normalized on the popularity of shown categories.

Under the timeline area, this system shows a wall of album covers of the genre (or

subgenre or artist) currently focused.

Figure 2.3: Music Timeline, Big Picture and Music Intelligence research groups at
Google.

This project is linked to Google Play store: users who �nd interesting music are

redirected to the online store where they can buy the album.

10Frederic Vavrille. Liveplasma discovery engine. http://www.liveplasma.com/.
11Google Research. Music timeline. https://music-timeline.appspot.com/.
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Music Timeline can show two dimensions (year and genre) on the same bidimen-

sional space. It is a great example of context-based browsing using a map to visualize

metadata. This system represents a considerable improvement from the visual feed-

back point of view. However, it still su�ers from the problems of context-based

systems and no personalization is allowed.

2.1.2.7 JANAS

Janas [15] is a semantic text-based music search engine. User types a query

describing some desired characteristic of the song. This system recognizes natural-

language-qualitative adjectives. The system then shows up a set of song which re�ects

the given semantic query.

This project allows to perform queries on a music library using a subset of (En-

glish) natural language. The systems can deal with both emotional descriptors

mapped to the Valence-Arousal plan and a set of non-emotional descriptors. It

accepts also adjectives quali�ers to modify the weight of the related concept.

Janas represents a bridge between text-based music browsers and content-based

music browsers. The interesting part of this project is that a user can query the

system using an old-school-text-based approach having in return a content-based

result. Its problem remains the textual approach in browsing query results.

2.1.2.8 Musicovery

Musicovery12 is a music discovery service that shows songs as elements in a 2D

map. The position on the map re�ects a similarity distance computed on the tracks.

Figure 2.4: Musicovery.com. Musicovery Com-
pany. Screenshot authorized by the Musicovery
Team

Musicovery uses the Valence-

Arousal plan [16] to plot songs;

each song is a point on this plan

and its color depends on the

music-genre classi�cation. This

service allows the user to de-

cide the desired degree of nov-

elty to show on the map: each

song has a popularity support

index. In order to �t di�erent

markets, this service has local-

ized versions with di�erent ele-

ment support.

This project introduces a content-based space for browsing songs. It exploits

12Vincent Castaignet and Frederic Vavrille. Musicovery. http://musicovery.com/. Musicovery
company.
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di�erent modi�ers of the elements on the map (color, scale) to render other context-

based metadata. Personalization is limited to a few parameters (localized version,

�lters on genre and popularity index).

2.1.2.9 MusicBox

MusicBox [17] is an application that visualizes a music collection by mapping

songs onto a bidimensional space. MusicBox assigns song locations by analyzing

many descriptive features of a song's sound. These features can be quantitative, such

as the proportion of high frequency sounds, or qualitative, such as characterizing a

song as "happy". MusicBox's organizational algorithm displays songs with similar

feature values closer together. MusicBox performs a dimension reduction by Principal

Component Analysis (PCA) [18] to map elements in a bidimensional space. This

means that there is no direct correlation between axes and features. User can only

select which features should be included or not in the PCA.

Figure 2.5: Musicbox. Anita Lillie, Media Laboratory, MIT, Cambridge, Mas-
sachusetts

Playlist by path This project allows the user to automatically create playlists

exploiting the similarity showed on map. MusicBox �nds a tour with the songs

nearest to a path and queue them in a new playlist by simply drawing that path on

the screen.

This approach allows to create a playlist directly from the on-screen bidimensional

representation of the library. Users appreciate this feature and this demonstrates
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that space-oriented music browsing can replace text-oriented music browsing in the

future.

About Self-Organizing Maps MusicBox uses a Self-Organizing Map (SOM) [19]

to display content-based and context-based metadata. In this way the user is able to

see a distance between elements based on most-signi�cant-available data. Browsing

personalization is possible, but it is still complex to achieve (PCA parameters can

be enabled or disabled).

SOM is not a recent approach. SOMs have already been used as a �xed map to

visualize songs in Islands of Music [20] and to browse clusters of songs in PlaySOM

[21, 22]. These projects were designed to discover some kinds of song similarity in

a large music collection. In these cases, the problem of the SOM approach is that

the concept of most-signi�cant data is provided by the software and not by the user:

the user may �nd not interesting what the software de�nes as relevant. In addition,

the use of a bidimensional space with mixed axes does not ensure an immediate

understanding of what these axes represent.

2.2 Game engine technology

2.2.1 What a game engine is

Videogame programmers built up year by year various tools to speed up their

work. Some of these tools were released for public use. A few big software houses

and some community of videogame developers decided to create collections of their

tools; this is how game development kits were born. Some of these development

kits grew so much that they could act as full development frameworks; with such

a framework it is possible do develop a videogame without using external software.

Following the needs of the videogame industry, game engines started to be designed

and developed as projects per se. These game engines became less and less speci�c:

in the past they were designed to develop an episode of a speci�c videogame title;

later they were generalized to develop an arbitrary title of the same game style; and

nowadays they can be used to develop games regardless of the game style. They are

also widely employed to build several types of non-game software.

A game engine is a complete development environment and allows programmers

and artists to design their project within the game engine and export the product

for several target platforms. A game engine creates an abstraction layer that allows

code portability through the cross-compilation of the project.
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Game 
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Other
Tools
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Operating System

Assets

Plugin

Figure 2.6: Game engine development environment

2.2.2 Why a game engine

2.2.2.1 Success stories

It is not so di�cult to �nd in literature success stories of researchers who exploited

a game engine to achieve important results. The authors of [23] use di�erent game

engines to produce virtual reconstructions of the same cave with three chambers.

In the archaeological �eld it is possible to visualize building of historical interest as

they were supposed to be thousands of years ago. A �rst review of the potential

of computer games technology was written in 2004 by Meister and Boss [24]; more

recent works achieve better results, as can be seen in [25, 26]. Authors of these

works [27, 28] shows that it is possible use GIS (Geographic Information System)

data to reconstruct and visualize a landscape in a game engine. Among the various-

non-gaming purposes where game engines are used, there is the area of simulators.

A few examples of simulators designed for model elaboration and veri�cation can be

found in [29] and [30].

2.2.2.2 Main Features

A game engine simplify the development process. It usually provides:

� Data preset:

� world components

� user interface API

� full-example projects

� Advanced development tool:

� object physics simulation
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2.2. Game engine technology

� output preview

� Product �exibility:

� modular development

� multiple input control management

� multi-platform export

This project was chosen to be developed within a game engine in order to achieve

a fancy result without an extraordinary e�ort. It also played an important role the

possibility to be easily extended with graphical and animation improvements without

changing the underlying structure.

2.2.3 Which game engine

In 2014 a survey13 over ten thousands of app developers asked which development

environment they use. Table 2.1 shows the most used tools with the percentage of

interviewed developers who strictly use or also use a development environment.

Table 2.1: App development environment
popularity

strictly also

Unity 29% 47%

Native code 29% 42%

Custom solution 9% 21%

Cocos2d 8% 19%

Adobe Air 6% 15%

Unreal Engine 3% 13%

The most common game engine is

Unity3D14. As second preference there

are developers who directly develop with

native code and without any kind of

framework nor game engine. Then,

comes developers who prefer to use their

own framework or game engine. Co-

cos2d15 is the next game engine in this

ranking. Not far from it, there come

Adobe Air16 and Unreal Engine17.

Cocos2d, as the name suggests, is de-

signed to render bidimensional projects.

3D support for Cocos2d was introduced recently and it is not yet well developed.

For the purpose of this project it was decided that the bidimensional restriction was

excessive and the analysis was not elaborated beyond this point. Adobe Air is only

a framework for code portability and should not be considered a game engine.

In addition to popular game engines found in table 2.1, another product men-

tioned in several works [23, 27, 29] was taken into account for a deeper analysis:

13Vision Mobile, Developer Economics, State of the Developer Nation Q3, 2014 http://www.

visionmobile.com/product/developer-economics-q3-2014/
14Unity 3D. http://unity3d.com/
15Cocos2d-x.org. http://www.cocos2d-x.org/
16Adobe Systems Incorporated. Adobe Air. http://www.adobe.com/products/air.html
17Epic Games Inc. Unreal Engine. https://www.unrealengine.com/
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CryEngine18. A brief analysis of all these products is summarized in table 2.2.

Table 2.2: Game engine comparison

price
source
code

development
platform

target
platform

Unity3D
version 4

free

(full version

75$/month

or 1500$)

not

provided

Windows

Mac OS

Mobile phone

Consoles

Portable Consoles

Windows

Mac OS

Linux

Unity Web player

Unreal Engine
version 4

free

(royalties 5%)
full access

Windows

Mac OS

Linux

Mobile phone

Consoles

Windows

Mac OS

Linux

HTML 5

Oculus Rift

CryEngine
version 3

9.90¿/month
not

provided
Windows

Mobile phone

Consoles

Windows

Mac OS

Linux

This project is not a videogame and it is possible that during the development

process or in the future will be required to interact with low-level engine features

and maybe modify the engine itself to adapt it to the project needs. Access to the

source code was found to be a very important point in favour of Unreal Engine

and since there are not great di�erences with other competitors, the decision was to

start the development with this game engine.

18Crytek GmbH. CryEngine. http://www.cryengine.com/
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Chapter 3

Theoretical background

Our system exploits a mixed content-based and context-based approach. The

content-based aspect of our project requires that a song to be represented by one or

more pieces of information extracted from its content. In order to do this, we need

to understand how content-based information can be extracted from an audio �le.

In this chapter the theoretical background needed to understand the project will

be introduced. First, it will be given an overview of Signal Processing, then it will

be discussed topics of Music Information Retrieval and related tools and methods.

Finally, in section 3.3 the discussion will focus on the results of a survey about habits

and desires of users in the �eld of music browsing.

3.1 Signal Processing Overview

In this section we brie�y introduce basics of digital signal processing. It is not

purpose of this thesis to provide a full discussion of this �eld. A deeper analisys can

be found in [31,32].

3.1.1 Fourier Analysis

Before starting the discussion of the fourier analysis it is useful to summarize

here some recurrent symbols:

s (t) continuous-signal function, it describes the evolution of a signal over time

sk discrete-signal function, it describes sample-by-sample the evolution of a signal

over time

S (f) continuous-frequency-domain representation of the signal s

Sk discrete-frequency-domain representation of the signal s
A0
2 = a0

2 average value of the signal

θn phase of the n-th component of the signal

An peak-to-peak amplitude value of the n-th component of the signal

cn n-th Fourier coe�cient
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• complex conjugate of •

3.1.1.1 Fourier Serie

The Fourier serie is one of the foundamentals of the signal processing �eld.

The Fourier serie SN expresses a periodic function f (x) of period P as sum of

N sin functions. Its mathematical formulation is

SN (x) =
A0

2
+

N∑
n=1

An · sin
(

2πnx

P
+ θn

)

It has been proved that limN→∞ SN (x) = f (x).

It is possible to apply trigonometric properties to rewrite the formulation as

SN (x) =
a0
2

+
N∑
n=1

(
an cos

2πnx

P
+ bn sin

2πnx

P

)

=
N∑

n=−N
cn · e

2πinx
P

cn =


An
2i e

iθn n > 0

a0
2 n = 0

cn n < 0

3.1.1.2 Fourier Transform (FT)

The Fourier transform provides a frequency-domain representation of a signal

described in the time domain. Given a signal s (t), the fourier transform of this

signal is de�ned as

S (f) =

ˆ +∞

−∞
s (t) · e−2πiftdt

3.1.1.3 Discrete-Time Fourier Transform (DTFT)

When it comes to analyze a discrete-time signal, here comes the need of a discrete

formulation of the Fourier transform. The Discrete-Time Fourier Transform provides

a frequency-domain representation of a discrete-time signal function s [n] originated

from an uniform sampling of a continous function s (t). Its mathematical formulation

is

S (f) =

∞∑
n=−∞

s [n] · e−2πifn

with n ∈ Z.
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3.1.1.4 Descrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT) provides a discrete-frequency representa-

tion of a discrete-time signal function. Unlike the DTFT, input and output of the

DFT are both �nite.

Given N samples of the discrete signal sk, the DFT is de�ned as

Sk =
N−1∑
n=0

sn · e−2πik
n
N

with k ∈ Z. The DFT converts a �nite number of equally spaced samples of a

function to a list of coe�cients of complex sinusoids. It is used to represents a

sampled function of time in the frequency domain.

3.1.1.5 Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) is a Fourier related transform. It is sim-

ilar to the DFT, but, unlike the DFT, DCT allows only real input data with even

symmetry [33].

Given N samples of the discrete signal sk, the DCT is de�ned as

Sk =
N−1∑
n=0

sn · cos

[(
n+

1

2

)
· kπ
N

]

with k ∈ [0;N − 1]. Using only cosine functions, the DCT has been found to

approximate with a lower number of coe�cients a typical input signal.

3.1.2 Spectral Analysis

3.1.2.1 Power spectrum

A periodic signal has in�nite energy, but it has a �nite average power, given from

the formulation

Ps =
1

Tp
·
ˆ
Tp

|s (t)|2 dt =
1

Tp
·
ˆ
Tp

s (t) · s (t) dt

where Tp is the period of the signal s (t) and s (t) is the complex-conjugate of s (t).

It is possible to take the Fourier serie decomposition (3.1.1.1) of s (t) and substitute
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it in the previous equation.

Ps =
1

Tp
·
ˆ
Tp
s (t) ·

∞∑
k=−∞

cke
−2πif0tdt

=
∞∑

k=−∞
ck

[
1

Tp
·
ˆ
Tp

s (t) e−2πif0tdt

]

=
∞∑

k=−∞
|ck|2

The diagram of |ck|2 over k · f0 is known as power density spectrum, or simply

power spectrum.

An example of power spectrum is shown in �gure 3.1.

|ck|2Power density spectrum

Frequency, f0 f0 2f0 3f0-3f0 -2f0 -f0

Figure 3.1: Power density spectrum of a continous-time periodic signal

3.1.2.2 Magnitude spectrum

In section 3.1.1.1 we de�ned Fourier coe�cients as complex numbers ck. We can

also write them in the form ck = |ck| eiθk . It is possible to plot {|ck|} and {∠θk}
over k · f0. Respectivly they are known as magnitude voltage spectrum, or simply

magnitude spectrum, and phase spectrum.

3.1.3 Windowing

Sometimes might want to capture the evolution over time of the spectrum of the

signal. In order to do this, what can be done is a frame decomposition of the signal:

spectral analysis is then applied segment-by-segment instead of to the whole signal.

Therefore, there is a need to analyze only a part of the signal. A window signal

(or window function) is a signal zero-valued outside a certain interval. Windowing

a signal s (t) means to multiply the signal to another window signal window (t). A
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3.1. Signal Processing Overview

special case of window signal is the rectangle de�ned as

rect (t) =


0 t < −a

1 −a ≤ t < a

0 t ≥ a

This signal allow to analyze the original signal s (t) only between −a and a. An

example of how windowing works is shown in �gure 3.2.

signal

window function

windowed signal

t

t

t

Figure 3.2: Windowing

However, a window function brings

side-e�ects in the spectral result because

of its own spectral component. This ef-

fect is known as Spectral leakage.

When it comes to apply windowing

to real-life problems, the most critical

point is that window functions dirty the

signal near their edges. In order to mit-

igate this e�ect, it is best-practice to

consider overlapping frames when per-

forming the decomposition. Further-

more, di�erent window functions were

proposed and a lot of research has been

done in this �eld. There is not a best window function that can always be applied

with optimal results. There are, instead, window functions that, depending on the

signal, can lead to better performance with respect to others. Most popular win-

dow functions are the rectangular window, Hann window (aka Hanning window),

Hamming window, Blackman windows.

In �gure 3.3 is shown an example of a frame taken from an audio signal 3.3a, the

Hann window function 3.3b and the resulted windowed signal 3.3c.
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(b) Hann window function
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(c) Windowed frame

Figure 3.3: Windowing applied to a frame of audio signal
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3.2 Music Information Retrieval

Music Information Retrieval (MIR) is a multidisciplinary research �eld. Its goal is

to extract meaningful information from music. In this �eld information are expressed

by descriptors. It is possible to recognize di�erent kinds of descriptors: low-level

features, mid-level and high-level features. Low-level features are those which are

directly connected to the audio signal, but they are meaningless for almost everyone

who has not studied MIR. On the other side, high-level features are those which carry

greater semantic importance for the public, but they are subjective and there is not a

direct connection with the audio signal. This di�erence is also known as semantic gap

between low-level features and high-level features. However, it is possible to de�ne

as mid-level features those features with an abstraction level between high-level and

low-level features.

3.2.1 Low-Level and Mid-Level Features

Low-Level Features (LLFs) are also known as audio features. This is because they

are objective and can be computed just applying a mathemathical transformation

to the digital-audio signal. Focusing on the aspect that a feature investigate in the

signal, it is possible to distinguish between spectral, temporal and rhythmic features.

In table 3.1 we summarize the LLFs and MLFs considered in this work. A more

detailed description will follow, most of them are de�ned in [34�36].

Table 3.1: Low-level and mid-level feature considered in this work

Low-level features

Spectral

MFCC, Spectral Centroid,
Spectral Spread, Spectral Skewness,

Spectral Kurtosis, Spectral Inharmonicity,
Spectral Flux, Spectral Rollo�, Spectral Slope,

Spectral Standard Deviation, Spectral Irregularity,
Spectral Smoothness, Spectral Flatness

Temporal Zero Crossing Rate

Mid-level feature

Rhythmic Tempo
Chroma Chromagram

3.2.1.1 Mel-Frequency Cepstrum Coe�cients

Mel-Frequency Cepstrum Coe�cients (MFCCs) are spectral LLFs designed for

speech recognition, but it is currently used in many aspects of MIR. MFCCs are
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3.2. Music Information Retrieval

based on the Mel-Frequency scale, a model for the frequency perception of the human

auditory system.

They are computed from a sort of nonlinear spectrum of a spectrum. More

precisely they are computed from a Discrete Cosine Transform (DCT) applied on a

reduced Power Spectrum. This reduced Power Spectrum is obtained from the log-

energy of the spectrum pass-band �ltered by a mel-�lter bank. The mathematical

formulation is:

ci =

Kc∑
k=1

{
log (Ek) · cos

[
i

(
k − 1

2

)
π

Kc

]}
with 1 ≤ i ≤ NC

where ci is the i − th MFCC component, Ek is the spectral energy measured in

the critical band of the i − th mel-�lter, Nc is the number of mel-�lters and Kc is

the number of cepstral coe�cients ci extracted from each frame.

MFCC for two songs is shown in �gure 3.4. It is possible to clearly recognize in

the lower part of the graph the famous intro with tolling of bells of 3.4b while in 3.4a

can be observed the di�erence between the depressive segments and aggressive ones.
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Figure 3.4: MFCC for two songs

3.2.1.2 Zero Crossing Rate

Zero Crossing Rate (ZCR) is, by de�nition, the normalized frequency at which

an audio signal s (n) crosses the value 0, i.e. changes from positive to negative or

viceversa.

Formalized, it is:

FZCR =
1

2

(
N−1∑
n=1

|sgn (s (n))− sgn (s (n− 1))|

)
Fs
N

where Fs is the sample rate and N the number of samples in s (n).
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3.2.1.3 Spectral Centroid

Spectral Centroid (SC) is the center of gravity of the magnitude spectrum. It

determines the point in the spectrum where most of the energy is concentrated.

Given a frame decomposition of the audio signal, Spectral Centroid is computed

as:

FSC =

∑K
k=1 f (k)Sl (k)∑K

k=1 Sl (k)

where Sl (k) is the Magnitude Spectrum at the l − th and the k − th frequency

bin, f (k) is the frequency corresponding to k− th bin and K is the total number of

frequency bins.

This feature is directly correlated with the dominant frequency of the signal. It

is usually associated with the perception of brightness and sharpeness of the sound.

A deeper analysis about sound sharpness and its relation with SC can be found

in [37].

3.2.1.4 Spectral Spread

Spectral Spread (SSP) measures the spectral shape. It is also called instantaneous

bandwidth and it is computed, according to [34], as the second central moment of

the log-frequency spectrum. It can mathematically be written as

FSSP =

√∑K
k=0 [f (k)− FSC ]2 · Sl (k)∑K

k=0 Sl (k)

where Sl (k) is the Magnitude Spectrum at the l − th and the k − th frequency

bin, f (k) is the frequency corresponding to k − th bin, K is the total number of

frequency bins and FSC is the Spectral Centroid computed as described in 3.2.1.3

for the given frame.

3.2.1.5 Spectral Skewness

Spectral Skewness (SSK) is the third moment of the distribution. It gives an

estimation on the symmetry of the magnitude spectrum values. A positive value of

Spectral Skewness represents an asymmetric concentration of the spectrum energy

on higher frequency bins, while negative coe�cients represent a distribution with a

higher concentration on lower frequency bins. The perfect symmetry corresponds to

the zero Spectral Skewness value. Its mathematical formulation is:

FSSK =

∑K
k=1 (Sl (k)− FSC)3

K · FSS

where Sl (k) is the Magnitude Spectrum at the l − th and the k − th frequency

bin, f (k) is the frequency corresponding to k − th bin, K is the total number of
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frequency bins, FSC is the Spectral Centroid at the l − th frame (3.2.1.3) and the

FSS is the Spectral Spread at the l− th frame (second moment of the distribution).

3.2.1.6 Spectral Flux

Spectral Flux (SF) measures how quickly the spectrum of a signal is changing. It

is computed from the distances between the amplitudes of the Magnitude Spectrum

between two consecutive frames. Using the Euclidean distance, the mathematical

formulation is:

FSF =
1

K

K∑
k=1

[log (|Sl (k) + δ|)− log (|Sl+1 (k) + δ|)]2

where Sl (k) is the Magnitude Spectrum at the l − th and the k − th frequency

bin, f (k) is the frequency corresponding to k− th bin and δ is a small parameter to

avoid log (0).

Spectral Flux for two songs is shown in �gure 3.5. A quick comparison between

those two plots and their scale on this feature axis allows to point out that Elvis's

song 3.5a has less than half FSF with respect to Placebo's one. Therefore, we can

say that 3.5b is more dynamic than Elvis's song.
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Figure 3.5: Spectral Flux for two songs

3.2.1.7 Spectral Rollo�

Spectral Rollo� that characterize the energy distribution of a signal. It is a sort

of percentile. It represents the lowest frequency FSR at which the value of the sum

of the power spectrum of lower frequencies untill FSR reaches a certain amount of

the total sum of the magnitude spectrum. Spectral Rollo� is formalized as:

FSR = min

{
fKroll |

Kroll∑
k=1

(Sl (k)) ≥ R ·
K∑
k=1

(Sl (k))

}
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where Sl (k) is the Magnitude Spectrum at the l−th and the k−th frequency bin,
f (k) is the frequency corresponding to k−th bin, K is the total number of frequency

bins, Kroll is the frequency bin index corresponding to the estimated rollo� frequency

fKroll and R is the frequency ratio. The frequency ratio is an arbitrary parameter,

in this work the value of R is set to 90%.

3.2.1.8 Spectral Flatness

Spectral Flatness (SFlat) is a measure useful to check how much a signal is noisy,

estimating the similarity between the magnitude spectrum of the signal frame and

the �at shape inside a reference frequency band. It is mathematically computed by

the ratio of the geometric mean of the power spectrum over the arithmetic mean of

the power spectrum:

FSF lat =

k

√∏K−1
k=1 Sl (k)∏K
k=1 Sl (k)

where Sl (k) is the Magnitude Spectrum at the l − th frame and the k − th

frequency bin, K is the total number of frequency bins.

3.2.1.9 Spectral Kurtosis

Spectral Kurtosis (SK) is a statistical parameter that attempts to capture the

evolution of the impulsiveness over frequencies.

It was initially exploited to detect transients in sonar signals, but it is also useful

to detect impulses in other signals. A more detailed discussion about this feature

and its applications is available in [38].

3.2.1.10 Spectral Inharmonicity

Spectral Inharmonicity is a features inversely proportional to the spectrum regu-

larity, more precisely it measures how much partial tones depart from the harmonic

serie (multiples of the fundamental frequency). Spectral inharmonicity is not related

to unpleasantness of a sound, but it is an intrinsic characteristic of some instruments

(e.g. string or percussion instruments have complex spectral inharmonicity).

This feature can be useful to detect voice intonation and the presence of some

kinds of instruments in a composition. A deeper analysis of this feature can be found

in [39].

Spectral Inharmonicity for two songs is shown in �gure 3.6. From these plot it

can be seen that Bon Jovi's �Livin On a Prayer� 3.6b has a value of Spectral Inhar-

monicity stable for the whole song while �So Emotional� by Christina Aguilera 3.6a

involves several vocalizations and the Spectral Inharmonicity re�ects these virtuosos.
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(a) Christina Aguilera - �So Emotional�

Temporal location of events (in s.)
0 50 100 150 200 250

c
o

e
ff

ic
ie

n
t 

v
a

lu
e

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Inharmonicity

(b) Bon Jovi - �Livin' On a Prayer�

Figure 3.6: Spectral Inharmonicity for two songs

3.2.1.11 Spectral Slope

Spectral Slope deals with the energy of the signal. It measures the decay of the

energy of the signal as the frequency increase. The trend of many signal to have less

energy at high frequencies is well-known and it depends on the source of the sound.

It is a timbre feature and it is useful for speech detection and voice intonation

recognition.

3.2.1.12 Spectral Standard Deviation

This is basically the standard deviation computed on all the digital samples of

the magnitude spectrum.

3.2.1.13 Spectral Irregularity

Spectral Irregularity (SpIrr) is a timbre feature that describes the relations be-

tween the intensities of adjacent harmonics. Higher is the SpIrr, lower is the similarity

between the intensity of adjacent harmonics. A deeper analysis can be found in [40].

This feature is useful to recognize the timbre of some musical instruments within

the spectral domain.

3.2.1.14 Spectral Smoothness

Spectral Smoothness captures the irregularity of the shape of the magnitude

spectrum. This is another feature that is useful to recognize musical instruments.

A deeper analysis can be found in [41].

3.2.1.15 Chroma features

Chroma features attemps to capture information about the musical notes from

the spectrum of the audio signal. The log-magnitude spectrum is mapped into a log-

frequency scale. Given the frequencies of each note in a twelve-tone scale, regardless
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od the original octaves, the histogram of notes that can be built is called chromagram.

Each bin in the chromagram represents a semitone.

Chromagram for two songs is shown in �gure 3.7.
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Figure 3.7: Chromagram for two songs

3.2.1.16 Tempo

Tempo is a mid-level feature that captures the speed of a given musical com-

position. A common measure for tempo is Beats-Per-Minutes (BPM), it indicates

how many beats must be played in a minute. An abstract de�nition of Beat is given

in [42] as

the temporal unit of a composition, as indicated by the (real or imag-

inary) up and down movements of a conductor's hand.

There exist di�erent approaches to compute this measure. Some simply �nd peaks

in the magnitude spectrum assigning a high/low label to samples; others methods

may apply a �lter before analyzing the signal. A simple two-state beat tracking

method is described in [43] while another more complex version that involves dynamic

programming is described in [44]. The tempo estimation method we considered is a

hybrid of these two, written by Matthew Davies and Christian Landone1.

An example of tempo for two songs is shown in �gure 3.8. We can identify two

di�erent evolution pattern: �Back In The Saddle� 3.8a is stable for half of the song

and than has some spikes; 3.8b shows a �oating phase as intro, then it keeps its

quite-low value until the end.

1Matthew Davies and Christian Landone, Tempo and Beat Tracker, QM Vamp Plugin set, Centre
of Digital Music at Queen Mary, University of London - http://vamp-plugins.org/plugin-doc/
qm-vamp-plugins.html#qm-tempotracker
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Figure 3.8: Tempo for two songs

3.2.2 Machine learning overview

In this section we will give an overview of machine learning methods. This thesis

does not mean to give an exhaustive explanation of the machine learning �eld and

will focus only on the topics needed to completely understand what we discuss later.

For a deeper analysis of this �eld, see [45�47].

Machine learning is a research �eld that deals with systems that are capable of

learning from the experience. A system is said to learn from experience E, with

respect to a class of tasks T and performance criteria P , if performance in a task in

T , measured with P , increase after E.

For the purpose of this thesis it will be considered as learning machine a system

where E is made of data and T is a prediction over the same kind of data given as

E.

Machine learning algorithms can be divided in unsupervised learning and super-

vised learning. Unsupervised learning algorithms take as input only data and without

any kind of feedback; their purpose is usually to discover pattern in the data. Su-

pervised learning algorithms are trained on labeled examples to generalize mapping

functions between input and output; the expected output is known in advance and

provided to the system for a given set of data and then the system is asked to predict

the output of future set of data.

In MIR supervised learning techniques are exploited to �ll the gap between low-

level and high-level descriptors.

3.2.2.1 Regressor

In supervised learning a regressor is de�ned as a function r (·) that, given a set

of input data (x̄i, yi) with i ∈ {1, . . . , N}, minimize the mean squared error (MSE)

between the predicted output r (x̄i) and the desired output yi.

Here it is possible to clearly identify the machine learning experience E = (x̄i, yi),

the task T that is predicting yi given x̄i and the performance measure P = min ε
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where

ε =
1

N

N∑
i=1

(r (x̄i)− yi)2

An example of linear regressor function that tries to �t a distribution is shown

in �gure 3.9.

A regressor is usually estimated by two steps: a training phase and a test phase.

During the training phase a subset of all available data (training set) are provided

to the system and a model is created. The performances of this model are then

validated using another subset of available data (called test set). The block diagram

in �gure 3.10 shows the relation between these phases.

Figure 3.9: Linear regressor

Testing After the testing phase, it is

important to evaluate the model ob-

tained in the training phase. In order

to compute a performance measure of a

model, it must be put into operation. A

test set is taken from the available data

(known input, known output). This test

set should be di�erent from the training

set to be a reliable measure.

It happens that a regressor that tries

to approximate too much input data

could memorize the data rather than

learning from them. This issue is known as the over�tting problem.

One of the techniques that can be exploited to recognize and avoid over�tting is

the k-fold cross validation. Using the k-fold cross validation, initial available data set

is randomly partitioned into k subsets. For each one of these k subset it is trained a

di�erent model using that subset as test set and all the other k−1 subsets as training

set. In the end, k error measures are available. These measures can be averaged to

obtain a single error measure.

3.2.2.2 Neural Networks

The model of a regressor we have previously de�ned is a very powerful tool, but

for complex problems it can be useful to perform a progressive model enhancement

via a multiple rounds of training and testing instead of a one-time training and

testing. This approach is known as multi-stage regression.

A neural network is a machine learning model that can be used for multi-stage

regression or classi�cation. We exploited this model to estimate the HLFs.

This model is based on the concept of arti�cial neuron; this component is com-

posed by a set of weighted input synapses (ai, wi), an activation value z and an
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Figure 3.10: Supervised learning training and testing phases

activation function g (·). The output o is given by:

o = g

(
N∑
i=0

wi · ai

)
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aN wN

og( )
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w0
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Figure 3.11: Arti�cial neuron

However, an arti�cial neuron, as above described, has many limitations. For

instance, an arti�cial neuron can't be trained to compute the XOR function. A more

complex model was elaborated, simply putting together many of these neurons.

Multi-layer perceptron A multi-layer perceptron is an arti�cial neural network,

i.e. a set of neurons connected according to a topology. In a multi-layer perceptron

it is possible to identify layers of neurons basing on the given topology; a layer is

composed by all the neurons at the same distance from the input data.

Input layer layer of neurons that directly receives as input the data to process.

Output layer layer of neurons that provides the output of the network.

Hidden layer(s) all neurons that are not part of the input layer nor the output

layer and produce intermediate values.

35



3. Theoretical background

A multi-layer perceptron can be trained to produce multiple outputs from the same

input. Therefore, it is possible to train multiple regressors using di�erent outputs of

the same perceptron.

3.2.3 High-Level Features

High-Level Features (HLFs) are descriptors that deals with the human perception

of music. All of these features describe common concepts of music, but they still are

subjective descriptors. Therefore, there is not a known direct correlation with the

audio signal nor a universally-accepted mathematical formulation to describe them.

HLFs of a song are usually manually annotated. The value of a HLF for a given

song is widely-accepted to be the average values given by a group of expert people.

It is always possible to extract LLFs from an audio �le, but it is not always

possible to have a group of experts available to manually annotate an audio �le.

Starting from the HLFs annotations available for a given set of audio �les, it is

possible to train a regressor to �nd an approximated relation between LLFs and a

HLF. This regressor can then be used to obtain HLFs from LLFs for any audio signal.

In the next few lines we are giving a brief widely-accepted description of each

HLF we are going to consider in our work. The value of each HLF is given by the

answer in the [0; 1] domain to the question asked next to each description.

3.2.3.1 Emotional Descriptors

Figure 3.12: Original Circumplex Model
of A�ect by Russell [1]

There are two main approaches to

model emotions. Emotion classi�cation

can be done by regression to emotion

categories which consider every possible

emotion as a di�erent label or with a di-

mensional approach that classi�es emo-

tions along axes. The latter is the most

common approach in music information

retrieval and many other �elds [48].

A consolidated model is the bidimen-

sional Circumplex Model of A�ect pro-

vided in 1980 by Russell [1]. Although

other models has been proposed, ex-

ploiting other dimensions, like Thayer's

energy-stress plan [49], the work of Rus-

sell is the most widely used in MIR. Therefore, our analysis was incentrated on the

Russell's model. It de�nes two orthogonal concepts, here summarized.
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Arousal Emotional activity quanti�er. It ranges from soothing, calm to exciting,

agitated. In �gure 3.12 it goes from 270° to 90°.

Valence Emotional pleasantness quanti�er. It ranges from highly negative to highly

positive. In �gure 3.12 it goes from 180° to 0°.

The original model is shown in �gure 3.12.

3.2.3.2 Non-Emotional Descriptors

Table 3.2: High-Level Features

Heavy Soft

Compact Void

Di�cult Listening Easy Listening

Dynamic Static

Roughness Armonic

Stuttering Flowing

Clear Dull

Not Groovy Groovy

Non-Emotional descriptors are those

HLFs that are not designed to capture

the emotion of a song. These features

describe other characteristics of the au-

dio. We exploited part of the work made

in [15] on human perception of couples

of adjectives in table 3.2. In that work,

users were asked to manually annotate

audio sample in a scale from 1 to 9

where 1 means that the adjective on the

left side best describes the sample and

9 means that the user found the right

adjective to properly describe the audio sample.

3.3 Music browsing: a survey

To address the music browsing problem it is important to set the focus on the

user. Users were interviewed and they were asked few questions about their habits

and their desires when they browse music. In this section, we introduce a survey

that we conducted before the development of our project.

3.3.1 Structure of the survey

The survey is designed into three sections. The �rst section contains �ve questions

and asks some personal information and something about their habits. The second

section asks two questions about the needs and desires of the users. The third

section investigates the interest of users on the aspects which project is focused on.

Each section is showed up in a di�erent web page to reduce the in�uence that the

proposed solutions could have on the previous questions. All questions are closed-

answers questions with, in some case, the ability to add an open feedback; here

follows a list of all question asked to users; available options and answers will be

discussed later in this chapter.
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3.3.1.1 User's habits

� How old are you?

� How familiar you are with

� computers

� tablets

� smartphones

� From which kind of device you listen to music?

� How do you organize your own music library?

� In which order you like to listen to music?

3.3.1.2 User's needs and preferences

� Would you like to browse your own music library in a map?

� How much do you believe it is useful / important

� to have the ability to visualize the emotional representation of a song

� to have the ability to visualize the speed of a song (BPM)

� to have the ability to visualize the evolution over the time of the above

characteristics

� the aspect of video e�ects when you listen to music

� the graphical interface when you chose what to listent to

3.3.1.3 User's reaction to a new proposal

� Imagine having the ability to view the songs as elements placed on a map. By

what criteria would you place them?

� Being able to view the songs on a plane or in a space instead of a list, what

would you prefer?

� With respect to the previous question, how you would like that the songs were

displayed on the map?

3.3.2 Answers

Result of this survey are available online2.

2https://it.surveymonkey.com/results/SM-NNC7RLP/
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Public reached This survey was spread across social networks to reach up to a

hundred of Italian people. The limit regarding the number of answers is imposed by

the platform exploited to organize the survey and harvest results. With this survey

we reached 95 people.

Percentage Results are normlized in percentage over the number of answers for

each question, but since most of the questions allow multiple answers, the sum of

the percentages can be higher than 100%.

3.3.2.1 User's habits

From table 3.3 and 3.4 it is possible to see that the public reaches is almost

composed by young people with very good knowledge of computers and average

familiarity with other kinds of device. Results shown in table 3.5 states that the

personal computer is the most-widely-used device for listening to music and the

traditional devices designed only to play music follows by many percentage points.

Although almost everyone use PC as device for listening to music, table 3.6 denotes

that there is no large trust in software when it comes to organize the music library.

Some of them probably chose to do not organize at all their music library, but there is

a good part of them that choose to organize the music library on their own; for those

people who use personal computer but does not use any software to manage their

music library, there is a need for better softwares. Results in table 3.7 shows that very

few people make use of tags other than album or artist name, the percentage of people

who relies (also) on automatically-generated playlists is less than one over �ve; there

is high trust in context-based descriptors and just a little use of recommendation

systems. Question 5 has also a �eld of free text to let users write other answers,

more then one person declare to choose what to listen to according to the mood.

Table 3.3: Survey - question 1

How old are
you?

< 18 18− 25 26− 35 35− 50 > 50

% 5.26 71.58 17.89 5.26 0

Table 3.4: Survey - question 2

How familiar you are with computers smartphones tablets

from 1 (none at all)
to 5 (expert)

3.55 3.11 2.46
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Table 3.5: Survey - question 3

From which kind of device you listen to music? %

Personal Computer 90.53
MP3 player 68.42
Smartphone 55.79
CD player / Stereo 43.16
Tablet 9.47
Interactive TV / Videogame Console 5.26
Other 11.58

Table 3.6: Survey - question 4

How do you organize your music library? %

Check artist, album tags are correct 64.13
Manage �les in subfolders 59.78
Use a software to manage the music library 23.91
Divide songs in playlists 19.57
Check genre tag is correct according to my opinion 15.22

3.3.2.2 User's needs and preferences

In question 6 it is asked to the users if they would appreciate a map instead of

list as browsing approach. The feedback is globally positive: more than two third of

interviewed people declare to appreciate the idea and would like to experiment. The

next question is more general and asks about the needs of the users. It is possible

to see in table 3.9 that although the average results are quite balances, there is high

variance among the answers. In particular, it is important to note that users globally

recognized as very important the graphical interface when they are choosing what

to listen to.

3.3.2.3 User's reaction to a new proposal

In this section is given a concrete proposal to users and it is asked them what

would they do with such a software. In table 3.10 context based data such as genre

and year are in high demand, but the content based proposal reach an important

percentage of preferences. In this environment the concept of playlist is not so in

demand as in a fully context-based environment. From open proposals has to be

noticed requests of the artist's hometown, personalization and to combine di�erent

criteria.

Question 9 asks if users would prefer a simple environment or a colorful and

enriched environment. Table 3.11 shows that they surely appreciate colors and de-

tails, but both the bidimension and the tridimensional solution are almost equally

in demand.
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Table 3.7: Survey - question 5

In which order you like to listen to music? %

One album at time 43.48
I search songs by artist, album tags 36.96
Random over the whole music library 34.78
Random over a part of the music library 25.00
I created one (or more) playlist for each task I usually do 17.39
I let automatically-generated playlists choose for me 7.61
I search songs by genre tag 7.61
I search songs by year tag 1.09

Table 3.8: Survey - question 6

Would you like to browse your own music library in a
map?

%

Yes, using a personal computer 62.11
Yes, using a smartphone 25.26
Yes, using a tablet 16.84
No, in any case I would prefer ordered lists 32.63

The last question investigates preferences concerning which kind of placeholder

is most suitable for a song. From the provided options, users choose the simplest

ones. Results in table 3.12 show that preferences for spheres and cubes are much

higher than all other options. Open proposals contain more than one demand for

customized placeholders.

It can be said that users strongly prefer simple placeholders and in an enriched

environment.
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Table 3.9: Survey - question 7

How much do you believe it
is useful / important

−2 −1 0 +1 +2 avg

to have the ability to visualize
the emotional representation of a
song

22.11% 13.68% 24.21% 28.42% 11.58% −0.06

to have the ability to visualize
the speed of a song (BPM)

17.89% 11.58% 31.58% 25.26% 13.68% +0.05

to have the ability to visualize
the evolution over the time of the
above characteristics

21.74% 7.61% 41.30% 22.83% 6.52% −0.15

the video e�ects when you listen
to music

29.47% 22.21% 25.26% 20.00% 3.16% −0.55

the graphical interface when you
choose what to listen to

16.84% 5.26% 30.53% 33.68% 13.68% +0.22

Table 3.10: Survey - question 8

Imagine having the ability to view the songs as elements
placed on a map. By what criteria would you place them?

%

Genre 76.92%
Mood associated to the song 43.96%
Year 25.27%
Custom playlists 18.68%
Speed (bpm) 17.58%

Table 3.11: Survey - question 9

Being able to view the songs on a plane or in a space
instead of a list, what would you prefer?

%

enriched 2D plan, with colored details 45.74
enriched 3D space, with colored details 39.36
monochromatic 2D plan, without details 7.45
monochromatic 3D space, without details 7.45

Table 3.12: Survey - question 10

With respect to the previous question, how you would
like that the songs were displayed on the map?

%

Spheres 44.94
Cubes 17.94
Little charachters 16.85
Face of a character 15.73
Little animals 4.49

42



Chapter 4

Methodology

We introduce here methods and techniques exploited in the development of this

project.

We propose here AMBIF. AMBIF stands for Advanced Music Browsing Inter-

active Framework. This project is a framework that give the chance to the user to

highly personalize his/her own music browser. In this chapter, we �rst introduce the

framework structure and details; after that, in section 4.2 we discuss the process to

obtain the music features that we use to represent music content.

4.1 Music Browsing Framework

In this section will be described our AMBIF project from its requirements,

through its design, to its implementation structure.

4.1.1 Requirements

In this project we wanted to develop a framework that allows each user to create

his/her own personalized music browser. Personalization is the key of this project.

Our system should be easy to personalize at runtime. This system should allow the

user to see every available descriptor, or a subset of them, for each audio �le and,

whenever it is available, their evolution over time.

It should also be designed as a framework and not a closed stand-alone project.

Therefore, extensibility is the second most important requirement for this frame-

work. In order to improve extensibility, open source technologies and open formats

are preferred in every design choice.

We discussed in chapter 1 the bene�ts and malus of content-based and context-

based browsing approaches. In chapter 2 we analyzed the state of the art and we

saw how all mainstream music browser exploit a context-based approach; we also dis-

cussed the problems that content-based browsing systems have. This system should
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exploit a hybrid content-based and context-based browsing approach keeping

the good parts of both systems.

We also wanted to meet the preferences and needs of the users. As described in

section 3.3, users prefer to browse a music library in an enriched environment.

Acording to these people, attractiveness should improve with a colorful interface.

Therefore, our system should be enriched with colorful details.

Finally, this system should also allow to reproduce an arbitrary audio �le from

the music library.

4.1.2 Design

In order to satisfy the previously described requirements, we decided to imple-

ment our system within a well-supported game engine. This choice will allow exten-

sibility and portability of our framework. Indeed, game engine are designed to deal

with modular software. Furthermore, they allow to develop a project within their

environment and export it for many supported platforms. A game engine can also

make easy to add amazing graphic e�ects. We discussed in the state of the art which

game engine are more suitable and we decided to exploit Unreal Engine.

In this section we are going to investigate di�erent aspects of the design process.

4.1.2.1 Data management

In this project we deal with audio �les and related metadata. The music library

composed by audio �les will be stored in the local hard drive. All song-related

metadata are stored in a separate �le.

We have already discussed the importance of dealing with both content-based

and context-based music descriptors. From a design and technological point of view,

it makes no longer sense to discriminate between them. Content-based descriptors

and context-based descriptors will be threaten in the same way. Furthermore, we are

going to use the term song dimension to refer a song descriptor without the need to

specify whether it is content-based or context-based. Discrimination can be done on

the type of song dimension, e.g. whether it should be a numerical or a string value,

but the origin of the song dimension itself does not make any di�erence.

Metadata information are split into di�erent tables to preserve clarity and im-

prove access performance. We predict a number of access reading these metadata

greater than the writing access because the writing operations (browser con�gura-

tion) will happen rarely while reading operations (metadata inspection) will happen

more than once per program execution. Therefore, for the principle of spatial lo-

cality, access to metadata stored in the hard drive will occur by metadata class to

facilitate metadata inspection. Headers of these tables are described in table 4.1.

During runtime it is most likely that access will occur element by element. In
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Table 4.1: Stored metadata

(a) SongMetadata

Field Description

ElementID Song unique identi�er
SongName Title of the song
FilePath Relative or absolute path to the audio �le
Artist Author
Length total playtime (seconds)

(b) DimensionList

Field Description

ID Dimension unique identi�er
FullName Dimension complete name
Description Text that shown to the user for this dimension
LowerBound Lower bound of the dimension domain
UpperBound Upper bound of the dimension domain
IsOrdinal Data type
Replace

MissingValues
Replace or do not replace missing values

DefaultValue Default value used when replacing missing values

(c) ViewList

Field Description

ViewID View unique identi�er
XDimension Dimension to be shown on x axis
YDimension Dimension to be shown on y axis
ZDimension Dimension to be shown on z axis

HueDimension Dimension to be shown as Color Hue
SatDimension Dimension to be shown as Color Saturation

(d) Properties

Field Description

ElementID Identi�er of the song
IdDimension Identi�er of the dimension

SummaryValue Average value to be shown for this property
{time, value}* Optional values to describe the evolution over time.

time represents the initial time (in seconds) of the segment
where this property has value value.
More than one segment accepted.
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order to improve the performance, some metadata are replicated in RAM with a

di�erent structure, according to the principle of spatial locality. Di�erences from the

previously described structures are summarized in table 4.2.

A deeper analysis of these tables is given in the Main implementation details

section 4.1.3.

Table 4.2: Runtime metadata

Field Description

ElementID Song unique identi�er
SongName Title of the song
FilePath Relative or absolute path to the audio �le
Artist Author
Length total playtime (seconds)

Properties List of properties
for each property there is a SummaryValue and

an hashmap of values indexed on the timestamp of segment
start

4.1.2.2 Game Engine paradigm

Developing a game with a game engine is like shooting a movie. There is one or

more cameras and there are actors to put into one or more scenes. Only one scene

at time can be active and usually no more than one camera is shown to the user.

A user in this system is represented by a subclass of actor, named character. With

an object-oriented programming language it is possible to make these actors interact

between them; communication between objects is usually event-based.

For the purpose of our project, we will use only one camera, one character and

many actors. The camera is �xed, attached to the character and therefore, its shot

depends on the character position and rotation. The character will determine the

movement of the user in the music library space.

All actors in the scene have visibility and interaction settings. It is possible

con�gure each actor to be visible or invisible and which types of component it should

interact with. Our character will be kept not visible and will interact only with other

special actors that will act as map boundaries.

In our project we are going to have other actors: main other actors are those who

concern the music library and those who contain the framework logic. Each element

of the music library will be represented by a visible actor in the scene. In order

to preserve the clarity of the interface, the framework logic will be implemented as

invisible custom-de�ned actors placed in the scene.

Unreal Engine (UE) allows actor de�nition and specialization with the C++

class hierarchy system. Component prototyping programming style is strongly en-
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couraged. UE provides also a visual-scripting language called Blueprint (BP); BP is

also an object-oriented language designed to facilitate creation and edits of proto-

types. Within UE it is possible to specialize a C++ class with a BP script. Although

BP scripts do not reach the performance of C++ code, they are very useful during

the development process because it is very easy to see the activation chain of the

events in the system. In addition, BP scripts can reference actor instances and con-

tent elements directly from the scene or the content browser in the Unreal Editor.

C++ is usually exploited for the core of the critical components and BP is most

suitable to manage actor references and connect events to their handlers.

Content management Unreal Engine, like many other game engine development

environments, discriminate between the artistic component and the programming

component of a project. The artistic component includes textures, 3D models, audio

components and it is managed through the Unreal Editor with import / export

API. The programming component is managed with an Integrated Development

Environment (e.g. MonoDevelop, Microsoft Visual Studio).

A game engine is optimized to build a self-contained package and every com-

ponent is expected to be available at compile time. There is no reason to support

dynamic content loading at runtime. Indeed, there is not any o�cial support for

this kind of operation. However, our project needs to load artistic and data content

(audio �les and metadata) at runtime. In section 4.1.3 will be discussed how we

addressed this issue.

4.1.2.3 Unreal Engine project structure

The source code of this project is split into di�erent packages. An overview of

the usage relation between them is shown in �gure 4.1.

Data 
Definitions Data

Map 
Elements HUD

Music WidgetsCustom 
Utils

Game 
Presets

AMBIF 
Logic

Figure 4.1: Project packages

A detailed analysis can be found in

4.1.3, here an overview of the available

packages follows.

In �gure 4.1 we marked with a black

contour the packages with data de�ni-

tions and custom utility functions.

These packages are used by almost all

other packages and will not be discussed

any longer. In the upper-right corner

we positioned the Game Presets: with

this term we meant to classify all those components that can be found in any project

developed with a game engine; they are usually presets auto-generated from the en-

gine and require very little customization. They are not located inside any package

and this is the reason there is not any contour around this term. In the middle of
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this schema there is the AMBIF Logic. Like the game presets, this part of the

framework is not located inside any package, but it is left with global scope. AMBIF

Logic contains some components needed to manage music browsing capabilities in

this project; these components need to interact with all other packages to coordinate

them. The rest of them are red-contoured to remark that they are packages. The

Data package manages internal data bu�ers and provides input and output API.

The Map Elements package is the package that contains and provides API to in-

teract with the song-placeholder elements on the map. TheMusic package provides

a basic music player able to load and play an audio �le from the local hard-drive.

This package does not contain any audio codec, it relies on the UE internal-audio

decoder that supports only OGG/Vorbis audio �les1. The HUD package contains

the Head-Up Display graphical user interface class(es). This is the standard tech-

nology that was originally used in UE until version 4.5 to implement the graphical

user interface; in this project we still exploit this system, but only to show tooltip

messages when the mouse comes over elements on the map. In the end, the widget

package contains adaptors to interact with the new widget technology we exploited

to implement the GUI.

4.1.3 Main implementation details

The source code is available online2. Here we describe the structure of the frame-

work class by class. We are going to discuss only the main classes; a simpli�ed class

dependency diagram is shown in �gure 4.2. In this class diagram we used di�erent

colors to discriminate di�erent class roles. Interfaces are colored with yellow, custom

de�ned actors are contoured in blue, standard C++ classes are green and special

game engine classes are violet. Data de�nitions are kept grey.

4.1.3.1 Logic

The AMBIF logic of the framework is composed by two main classes: Logic

Controller and Presentation Layer. The logic controller provides API to handle all

the framework events.

The Presesentation Layer is an actor that manages the logic of the visible elements

in the scene. It also de�nes and manages which are the Plottable Dimensions

available in the framework. A plottable dimension is a way to show render audio

metadata (song dimensions) in the scene. At the moment there are �ve plottable

dimensions:

Position X position of the song placeholder along the x axis.

1under Windows, Linux. Other target platforms may have di�erent default-supported-audio
encoding.

2Stefano Cherubin, ISPG - Image and Sound Processing Group, Politecnico di Milano, https:
//github.com/skeru/ambif
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Data 
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File Reader

Data 
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Widget 
Manager _i

Widget Manager 
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Music Player 
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Navigation 
System Proxy

Browser 
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Browser 
Controller _i

Figure 4.2: Simpli�ed class dependency diagram
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Position Y position of the song placeholder along the y axis.

Position Z position of the song placeholder along the z axis.

Color Hue hue parameter of the color of the song placeholder.

Color Saturation saturation parameter of the color of the song placeholder.

4.1.3.2 Data

The data package contains the Data Manager and some auxiliary classes. The

main purpose of the data manager is to keep a bu�er of available metadata and

to interact with the database system to keep its bu�er up-to-date. This actor also

provide API to allow the logic to query the database.

The database needs to be kept as much �exible as possible. We chose to im-

plement it with a simple set of plain-text-Coma-Separated-Values (CSV) �les. In

particular, there are four CSV �les that our framework wants to read. Their headers

are described in table 4.1.

Song Metadata table de�nes what is the content of the music library: each entry

in this �le represent a di�erent song of the library. Here are also de�ned all the

context-based metadata that will be available in the browser.

The Dimension List table contains the list of the song dimensions that are avail-

able for at least one song. Here are de�ned, for each song dimension, all the details

needed to manage this dimension. In particular, it should be noticed that there is a

�eld that speci�es whether this dimension provides ordinal data or not; we reserved

this �eld to specify what kind of data will be provided in this �eld. Our framework

provides support for ordinal values as numbers (integer, �xed-point and �oating-

point numbers). Although it is not fully tested feature, we also support nominal

genre values based on the Google Music Timeline3 genre and subgenre hierarchy.

For numerical and nominal values we specify which are the lower and the upper

bound of the domain of this song dimension. This will allow us to cast every value

from this domain to the proper plottable dimension domain. This cast function is

provided by the Caster utility class and allows to cast di�erent value types thanks

to C++ function templates. In addition, once the song dimension bounds are set,

this system allows to avoid problems with outlier values in metadata casting them

to the bounds and no beyond them.

The View List table is designed for future extensions and contains the list of

available view presets that could be loaded in the browser. As view we mean a

function that for each plottable dimension determines which of the available song

dimensions should be rendered on that plottable dimension.

3Google Research. Music timeline. https://music-timeline.appspot.com/.
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The Properties table contains all the available content-based metadata. Each

entry of this �le represents a song dimension description for a speci�ed song. Our

framework requires that for each entry there must be at least one summary value for

each song dimension; it is also possible to add, after the summary value, a list of one

or more< timestamp, value > tuples to specify that at the second timestamp a new

segment is identi�ed within the song and within that segment, this song dimension

should be considered value.

The dynamic load of these �les at runtime is provided by the Plain Text File

Reader utility class. Here lies the part of the code that allows to perform direct

access to the �le system to solve the game engine limitation issue. It also provides a

conversion to the appropriate data structures.

4.1.3.3 Map Elements

We de�ne as Map Element Actor a song placeholder positioned in the scene. In

our framework we derived a Blueprint script that speci�es some graphic parameters

for the placeholder, but it can be said that almost all the logic of this component

is de�ned in the C++ class. We need to spawn (i.e. to instantiate and put in the

scene) a di�erent actor for each song of the music library. This actor holds in its

internal state the song identi�er and parameters that express the song dimensions.

Every Map Element Actor checks whether it is interacting with other components

or not. This actor can detect whether the cursor is over it, there was a mouse click

on it or there is a collision with the character.

The Map Elements Manager references all the map element actors in the scene

and provides API to spawn and to access them. It also subscribes itself to listen

all the events detected from the song placeholders using a publish-subscribe model.

Periodically the framework logic harvests this information and decide how to deal

with these events.

4.1.3.4 Character

The Browser Character is a very complex class. This is a game engine preset

that is linked to user controls. We decided to link here also the navigation system.

Here are de�ned functions that allow the user to move across the space and change

the camera position and rotation.

We also provided an interface called Browser Controller_i to allow the Character

to be used only as a control system and we encapsulated this system in an easy-to-

reference actor named Navigation System Proxy. This proxy actor is directly used

by the graphical interface component that manage the zoom command.
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4.1.3.5 Music

This package contains the Music Player Actor that allows to play an audio �le.

This actor also provides a workaround to partially solve the dynamic content load

issue that we previously described. It can dynamically load an audio �le from the

hard-drive to the memory space of the browser. If the load has gone �ne, it can then

exploit the internal decoder to decode and play the audio �le. This is done through

the instantiation and management of a special component provided by Unreal Engine.

This actor provides the following API:

� Load �le from path

� Play

� Pause

� Stop

� Get playtime

This package still lacks of decoding capabilities to support multiple audio encoding

formats.

4.1.3.6 HUD

The Heads-up Display system represented the state of the art in creating user

interfaces with Unreal Engine until the end of 2014 when interface widgets were

introduced as presets. HUD has two main limitations: �rst, only one HUD class can

be active at time; second, the mouse events need to be manually detected.

For the purposes of this project we decided to use the HUD system to show

tooltip labeles when the cursor is found to be over a given song placeholder. This is

done in the Inspection HUD class: the logic controller provides the text to be shown

and this class simply converts it into a graphic element to draw on screen.

In this class are also de�ned API to show arbitrary GUI components, for possible

future uses.

4.1.3.7 GUI Widgets

Here there are the Graphical User Interface components. In this package we

coded two classes: one abstract class (named passive) for receiving update orders

from the logic controller and one class (named active) for translating events from

widgets to the logic controller API. The passive abstract class is extended via a

Blueprint script that implements all the events de�ned in this class.
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In order to avoid possible in�nite loops, we made every interface update com-

pletely passive; this means that an interface update will not trigger any other logic

controller API call.

The actual GUI is implemented through Blueprint interface widget scripts, but

all of those visual scripts refers to these C++ classes to interact with the framework

logic.

4.1.4 How to create a music browser with AMBIF

AMBIF is a music browsing framework, that means it is possible to instanti-

ate di�erent music browsers with using framework. There is a di�erence between

instanciating a music browser and personalizing a music browser. The personal-

ization aspect is discussed in section 4.1.5, here we are going to introduce browser

instanciation. This is also what we refer to when we say browser creation.

Once it has been understood the AMBIF data system, it is very easy to create a

music browser. It is simply needed to provide a consistent database to the framework.

The database is a set of plain-text-CSV �les and the structure was given previously

in this chapter. In particular, according to data speci�ed in the Dimension List

CSV table described in Stored metadata, our framework will provide to the user a

di�erent set of personalization options and therefore a di�erent music browser.

Furthermore, once it has been understood how the AMBIF logic and the map

element package work, it should be very easy to change the source code to implement

more plottable dimensions to add more personalization possibilities.

4.1.5 Browsing experience

The browsing experience is inspired by a third-person videogame. User is fully

concentrated on the space he/she is exploring. This space is represented by a �at

landscape world surrounded by a sky at sunset.

As the program run, the user is assisted with a board that described the user

commands, �gure 4.3.

The user can move around the space using the keyboard and rotate the camera

view using the mouse. The mouse over a song placeholder event will show a tooltip

description of the song, the mouse click on a song placeholder event will show its

details in the bottom panel, as shown in �gure 4.4.

The audio will start playing by clicking the Play button in the upper-right corner

of the screen. As the song starts, all other song placeholders will reduce their size
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Figure 4.3: AMBIF help board

Figure 4.4: AMBIF mouse click
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and fade their color to let the user identify the evolution of the song over the time.

An example of this phase is shown in �gure 4.5.

Figure 4.5: AMBIF song evolution

Personalization Given a music browser instance, it is possible to personalize the

browsing experience at runtime. In the upper-left corner of the screen can be shown a

Dimension Menu (hidden by default). Through this dimension menu, it is possible to

understand the meaning of the plottable dimensions. For each one of these plottable

dimensions, there is a drop-down menu that the user can change to select which

song dimension he/she prefers to render on that plottable dimension. An example is

shown in �gure 4.6.

This menu allows has also other personalization capabilities. We are going to

introduce some of them in the next few lines.

The user can choose to reduce the number of enabled plottable dimensions in the

browsing space. He/she can select Do Not Use This Dimension from the available

drop down menu for each plottable dimension. In this way, the user removes one

plottable dimension (and therefore one song dimension) from the browsing space.

A special case of dimension reduction is the 2D mode. When the user changes

to 2D mode, mouse controls change to re�ect a top-down view. Furthermore, the Z

axis dimension is removed from the browsing space. It is possible to change between

2D and 3D mode an unlimited number of times. It is also possible to do-not-use the

Z axis dimension within the 3D mode.

The user can also choose to strengthen one song dimension by choosing to plot

it on more than one plottable dimension. In this way he/she can browse the music

library receiving a greater feedback from that song dimension.
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Figure 4.6: AMBIF Dimension change

4.2 Feature extraction

In this section we discuss how we extracted audio descriptors we exploited for

this project. We worked on the MsLite dataset proposed in [50]. The MsLite dataset

contains 240 full-length songs, a �fteen seconds excerpt for each full-length song and

emotional descriptors annotations.

4.2.1 Low-Level Features extraction

LLFs were extracted using Vamp Plugins4 and sonic-annotator5. In particular,

we used two plugins libraries: Queen Mary6 and libxtract7. From those plugins we

chose a set of LLF to extract for each song. These feature are described in chapter

3 and here we report the respective plugin identi�ers.

� vamp-libxtract:mfcc:mfcc

� vamp-libxtract:spectral_centroid:spectral_centroid

� vamp-libxtract:spectral_skewness:spectral_skewness

� vamp-libxtract:spectral_kurtosis:spectral_kurtosis

� vamp-libxtract:spectral_inharmonicity:spectral_inharmonicity

4Vamp Plugins, Centre of Digital Music at Queen Mary, University of London - http://www.
vamp-plugins.org/

5http://www.vamp-plugins.org/sonic-annotator/
6QM Vamp Plugin set, Centre of Digital Music at Queen Mary, University of London - http:

//vamp-plugins.org/plugin-doc/qm-vamp-plugins.html
7https://code.soundsoftware.ac.uk/projects/vamp-libxtract-plugins
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4.2. Feature extraction

� vamp-libxtract:spectral_slope:spectral_slope

� vamp-libxtract:spectral_standard_deviation:spectral_standard_deviation

� vamp-libxtract:irregularity_k:irregularity_k

� vamp-libxtract:irregularity_j:irregularity_j

� vamp-libxtract:noisiness:noisiness

� vamp-libxtract:spread:spread

� vamp-libxtract:�atness:�atness

� vamp-libxtract:rollo�:rollo�

� vamp-libxtract:sharpness:sharpness

� vamp-libxtract:smoothness:smoothness

� vamp-libxtract:zcr:zcr

� qm-vamp-plugins:qm-chromagram:chromagram

� qm-vamp-plugins:qm-tempotracker:tempo

4.2.2 Hig-Level Features Regression

In order to obtain HLFs for the MsLite dataset we exploited a neural network

regression system. This kind of supervised machine learning system is described in

chapter 3. We built a training set using both emotional and non-emotional features.

The list of HLFs we want to obtain is shown in table 3.2.

For training purposes we considered the emotional descriptors (Arousal and Va-

lence) annotations provided by the MsLite dataset for the �fteen seconds excerpts

and the non-emotional descriptors for the same excerpts annotated for the JANAS

project [15]. Both emotional and non-emotional descriptors are annotated in the

[0; 1] domain.

We then used the model obtained in this way to annotate the full-length songs

in the dataset. With respect to the �gure 4.7, it is meaningful to point out that

the LLFs Extraction block provides low-level features annotations for each second

of the input audio �le both in case of MsLite excerpts and MsLite full-length songs.

Therefore, it is possible for the Predictor to provide estimated high-level features for

each second of the full-length songs.
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Figure 4.7: High-level features regression block diagram
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Chapter 5

Experimental results

In this chapter will be discussed the evaluation process of this system. Our

project is a music browsing framework. In order to evaluate our framework we cre-

ated a music browser software with this framework and we asked di�erent people to

evaluate it. In the Demo section describe the music browser we created for evaluation

purposes; in section 5.2 we discuss the evaluation method and results.

5.1 Demo

We created a music browser instance using AMBIF framework and we asked to

a set of testers to use it.

5.1.1 Preparation

We used the MsLite [50] dataset and we analyzed those audio �le to extract

the Low-Level and Mid-Level features in table 3.1. We did this for each audio �le,

for each second. With the regression method described in 4.2, we then obtained

High-Level Features for each song, for each second.

In order create a music browser instance, we created an entry in the Dimension

List �le (see table 4.1) for each HLF we considered.

We wanted to provide to our testers a clean visualization of the evolution over

time of each descriptor therefore, we decided to keep the update frequency under a

certain bound. Consequently, we increased the granularity of the segmentation; for

each audio �le we divided the song into segments of �ve seconds of length and we

took the average value of each descriptor within that segment. In order to smooth

this segmentation, segments are taken with 40% of overlap ratio (we start to compute

the average from the last two seconds of the previous segment) to reduce the error

at the boundaries of each segment.

These data were converted into AMBIF CSV format and loaded in the music

browser.
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5.1.2 Test phases

Each tester who took part of the test had to deal with the same situation.

Dear tester, I'm introducing you a novel music browser. Try it for a

couple of minutes without any kind of help.

This phase was meant to analyze how much AMBIF interface and approach is in-

tuitive and self-explanatory. After �ve minutes, we ensured that each tester learned

how to personalize the music browser by changing some dimensions of the browsing

space. They were �nally asked to complete a task within that editor.

Dear tester, please change the dimensions of the browser as you like them

more and then �nd in this music library a song that �ts well with your

current mood.

At the end of this task we asked each tester to �ll out an online survey.

5.2 Final survey structure

After the test phase we asked our testers to �ll out an online survey. In this

section will be described the survey structure. Survey results will be discussed in

section 5.3.

We chose a set of critera from the QUIM model [51] that we found meaningful

to analyze and we asked our testers to give us a feedback by rating their experience

with respect to those critera in a �ve-grade scale from -2 to +2. In this scale, the

lower bound means totally negative experience and the upper bound stands for very

positive experience.

5.2.1 Criteria

We here report the list of criteria and their description as they were exposed to

our testers.

Time Behavior capability to consume appropriate task time when performing its

function.

Resource utilization capability to consume appropriate amounts and types of re-

sources when the software performs its function.

Attractiveness Capability of the software product to be attractive to the user.

Likeability User's perceptions, feelings, and opinion of the product.

Flexibility Whether the user interface of the software of the product can be tailored

to suit users' personal preferences.
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Minimal action Capability of the software product to help users achieve their task

in a minimum number of steps.

Minimal memory load Whether a user is required to keep a minimal amount of

information in mind in order to achieve a speci�ed task.

Operability Amount of e�ort necessary to operate and control a software product.

User guidance Whether the user interface provides context-sensitive help and mean-

ingful feedback when error occur.

Consistency Degree of uniformity among elements of user interface and whether

they o�er meaningful metaphors to users.

Self-descriptiveness Capability of the software product to convey its purpose and

give clear user assistance in its operation.

Feedback Responsiveness of the software product to user inputs or events in a

meaningful way.

Accuracy Capability to provide correct results or e�ects.

Completeness Whether a user can complete a speci�ed task.

Fault tolerance Capability of the software product to maintain a speci�ed level

of performance in cases of software faults or of infringement of its speci�ed

interface.

Readability Ease with which visual content can be understood.

Controllability Whether users feel they are in control of the software product.

Navigability Whether the user can move around in the application in an e�cient

way.

Simplicity Whether extraneous elements are eliminated from the user interface

without signi�cant information loss.

Familiarity Whether the user interface o�ers recognizable elements and interaction

that can be understood by the user.

Load time How fast it responds to user inputs.

Appropriateness Whether visual metaphors in the user interface are meaningful.
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5.2.2 Other questions

In addition to these parameters, we asked our testers to rate their experience

with respect to their music browsing habits through these set of further questions:

1. How would you rate the usefulness to visualize evolution over time of the di-

mensions of a song?

2. Would you prefer a system like AMBIF instead of a list-based one?

We made available an optional text-�eld to let the testers provide a brief-text feed-

back.

5.3 Results evaluation

In this section we are going to discuss the experimental results obtained from our

tests.

Before going deeper in the result analysis, we need to de�ne evaluation metrics.

For the purpose of our project, we decided to evaluate the usability of the music

browser we instantiated with AMBIF and described the section 5.1.

Authors of [51] propose a set of usability factors for a software system and criteria

to describe them. Criteria are speci�c parameters that can be measured. Factors are

high-level descriptors of the usability of the system and summarize several criteria

within them.

We rely our evaluation on a subset of those criteria that we found meaningful

to analyze. In particular, we did not focus our evaluation analysis on criteria that

can not be applied to a music browser, e.g. privacy and safety of the users. We also

avoided to focus on resource utilization because we believe that this kind of measure

requires a targeted test that we chose to leave for future analysis. According to [51],

criteria contibute to de�ne factors as shown in the sparse matrix in table 5.1.

We computed for each considered factor a value as the average value of the criteria

it is a�ected by. It is possible to de�ne a contribution weigth for any criteria q and

usability factor m as hq,m = 0 if q does not contribute to m and hq,m = 1 if q

contributes to m. The usability value Um ∈ [−2; +2] for each usability factor m can

be written as

Um =

∑Q
q=1 vq · hq,m∑Q
q=1 hq,m

with Q number of available criteria, vq value that testers have given to critera q.

Results of the survey are available online1 and are summarized in table 5.2 and

5.4.

1https://it.surveymonkey.com/results/SM-Z8YW3867/
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Criteria Factors
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Time behaviour   
Attractiveness   

Likeability  
Flexibility      

Minimal action     
Minimal memory load       

Operability      
User guidance     
Consistency     

Self-descriptiveness     
Feedback     
Accuracy   

Completeness  
Fault tolerance   

Readability   
Controllability     
Navigability      
Simplicity    
Familiarity   
Load time     

Appropriateness     

Table 5.1: Usability factors and criteria

Usability criteria evaluation shows that testers gave us a very-high rating on Like-

ability, Attractiveness, Accuracy and Completeness. Therefore, we can say that our

testers like our system and they believe it provides complete and exact information

about the content. Although it is still positive, we have a low value on load time; this

is probably given by the fact that our tests were performed on an obsolete machine2.

We believe that further development can also enhance this criterion by exploiting

parallelization techniques.

From those values of criteria we then computed the usability factors, as previously

described in this section. As we can see from a quick overview of table 5.3, every

usability factor is above the avarage value of the scale and some of them, more than

others, are encouraging. In particular, the high Satisfaction value, together with a

considerable result in Learnability, gives us a reason to believe that our system worth

further developments.

2ASUS G73JH
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5.3.1 Usability factors

In this section we explain the meaning of each usability factor as described in [51]

and we discuss the values we have computed for them with respect to our project.

Usability criteria vq

Time behaviour +0.52

Attractiveness +1.09

Likeability +1.12

Flexibility +0.70

Minimal action +0.52

Minimal memory load +0.30

Operability +0.33

User guidance +0.33

Consistency +0.73

Self-descriptiveness +0.76

Feedback +0.33

Accuracy +1.00

Completeness +1.00

Fault tolerance +0.42

Readability +0.76

Controllability +0.76

Navigability +0.58

Simplicity +0.48

Familiarity +0.39

Load time +0.21

Appropriateness +0.76

Table 5.2: Criteria vq ∈ [−2; +2]
obtained from the evaluation survey

Values are shown in table 5.3.

5.3.1.1 E�ciency

E�ciency is de�ned as the capability

of the software to consume a reasonable

amount of resources with respect to the

achieved e�ectiveness in given context.

This factor, with respect to our

demo, is slightly positive. This result

means that our testers are happy to see

that it is possible to perform with the

given resources.

5.3.1.2 E�ectiveness

E�ectiveness is the capability of the

software to enable its users to achieve

a speci�ed task with accuracy and com-

pleteness.

Our testers led us to a high value

of e�ectiveness. Therefore, we can say

that our demo made with AMBIF was

able to provide an accurate and com-

plete content-based music browsing ex-

perience.

5.3.1.3 Satisfaction

This factor is purely subjective.

Here are summarized the opinions of

users about how they feel when using

the software.

Our testers provided a cheering feedback with a high values in the corresponding

questions in the survey. We are glad to say that our testers had a nice experience

with our demo.

5.3.1.4 Productivity
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Usability factors Um

E�ciency +0.349

E�ectiveness +0.723

Satisfaction +0.627

Productiviy +0.365

Learnability +0.501

Trustfulness +0.571

Accessibility +0.584

Universality +0.599

Usefulness +0.498

Table 5.3: AMBIF usability factors
Um ∈ [−2; +2]
computed as weighted average of criteria

Productivity captures the level of

e�ectiveness achieved with a given

amount of resources.

We asked our tester to complete just

one task with our system therefore, the

value we computed could be less reli-

able than values computed for other fac-

tors. However, considering results from

the survey, we can say that the experi-

ence of our testers with respect to this

factor is globally positive.

5.3.1.5 Learnability

Learnability is the ease with which

users can master the functionalities of

the software.

This factor also captures the feel that users have when discovering features of the

software. Our demo made with AMBIF provides a help board with basic-browsing

controls. The rest of the interface was kept minimal and our testers intuitively went

to discover their meaning. Their feedback is globally positive.

5.3.1.6 Trustfulness

This factor was originally designed to describe e-commerce systems. However,

it can be applied also to other kinds of software. We computed this factor to �nd

out whether our testers feel comfortable and would return using our music browser

rather than other systems. The result we got is encouraging.

5.3.1.7 Accessibility

Accessibility is the capability of a software to be used by people with some types

of disability. None of our testers had particular disability that compromised the use

of the software. Therefore, it can be said that this value is an estimation that should

be validated by targeted tests.

5.3.1.8 Universality

Universality is a factor that captures the capability of the software to be used

by users with di�erent cultural backgrounds. Our demo made with AMBIF was

appreciated by English-speaking people who did already know the meaning of the

song dimensions we proposed them while it was needed to explain the meaning of

these song dimensions to some other testers. We believe that this problem can be
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solved by building localized versions of the demo and it does not depend on the

framework itself. Indeed, the global feedback is one of the highest in the table.

5.3.1.9 Usefulness

Usefulness is de�ned as the capability of the software to enable users to solve real

problems in an acceptable way.

In our demo we asked our testers to solve a real problem by completing the task

we gave them (�nd a song that �ts well with your current mood). Most of our testers

found easy to achieve the given task and the value for this factor is positive, as we

did expect.

5.3.2 Other questions

In addition to the criteria and factors measurement, we asked our testers more

direct questions.

First, we wanted to know how interesting our testers have found the capability

of the software to show the evolution of the song dimensions over time.

Then, we asked whether they would use a system like those we introduced them

with our demo or they still prefer a list-based music browser.

Answers to both quesitons were graded in a scale of �ve integer values from −2

to +2. Results are shown in table 5.4.

Question average

How do you rate the usefulness of the capability to
visualize the evolution over time of the dimensions of a

song?

+0.61

Would you prefer a system like AMBIF instead of a
list-based one?

+0.42

Table 5.4: User habits quesitons

Results are positive and we are positivly surprised to see that the average tester

would like to use a music browser made with AMBIF.

5.3.3 Open comments

Comments leaved by our testers are globally cheering. There are some feature

requests and a few complaints.

Complaints concern the lack of textual information within the browsing space and

the low reactivity to operation like dimension change or the lack of some features.

We have deepened this problems and we propose some solutions in chapter 6.

Requested features are:
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Click-to-play testers suggested to play a song at �rst click in its placeholder and

not waiting a click on the Play button. Classi�ed as: important.

Labels for every ax and other plottable dimension, testers asked for a textual label

on the screen or some kind of legenda. Classi�ed as: intermediate.

Mixer some testers asked for a mixer to manage volumes inside the music browser.

Classi�ed as: low priority - possible extension.

First-Person a few testers asked to change the navigation system to re�ect a �rst-

person-browsing experience. This will be an interesting feature for some kinds

of device, like Virtual-Reality devices. However, we do not consider this feature

as an important improvement in the browsing experience. Classi�ed as: won't

�x.

Auto-update some testers asked to automatically apply a dimension change and

not waiting a click on the Apply button. Classi�ed as: important.

Smooth evolution some testers asked to smooth the animation of the evolution of

the dimensions of the song while the song is playing. Classi�ed as: intermediate.

Textures some testers asked to provide di�erent graphical textures for the system.

Classi�ed as: intermediate.
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Chapter 6

Conclusions

In this chapter we will review the work presented in this thesis and we will

introduce some possible evolutions of this system.

6.1 Conclusions

In this thesis we proposed a novel music browsing framework. We designed it to

be personal, interactive, �exible and attractive from a user point of view. It allows

users to browse up to �ve song dimensions (X axis, Y axis, Z axis, Color Hue, Color

Saturation) at the same time in a mixed content-based and context-based space.

Our work is de�ned in the music browsing �eld. It also involves aspects of music

information retrieval, data visualization and software engineering. We wanted to

address the problem of browsing a musical library where context-based metadata do

not provide enough information to allow a pro�cient content browsing. We studied

the concept of liquid music and we learned that it is not possible to statically model

the content of the music. Therefore, also the music browsing software should adapt

to the evolving structures and dimensions of music. We proposed a music browsing

framework because we believe that a music browsing software with a built-in model

of music could not be shaped to plenty satisfy all the possible preferences of users.

With this framework it is possible to personalize the music browsing experience by

leaving to users the decision of what song dimension is better to visualize and how.

We proposed a music browser instance made with AMBIF. We computed content-

based metadata considering time-variant high-level descriptors for the whole music

library, we asked to try it to 33 users and we evaluated its usability. The feedback

was great and results are promising. We consider this a starting point for further

development.
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6.2 Future development

In this section we are going to discuss some possible evolutions of the AMBIF

project as it was described in this thesis.

6.2.1 Reactiveness enhancement

Some of our testers asked for a more reactive interface and more controls to

manage the audio output. Here we discuss what can be done with little or more

e�ort.

6.2.1.1 Auto-update

Some of our testers suggested to decrease the number of click needed to perform

some actions.

In particular, they suggested letting the music play at the �rst click on its place-

holder. This feature can be easily implemented and will probably be present on all

future versions of our framework.

Another suggested feature was the auto-update of the browsing space on every

change of the dimension menu before clicking on the Apply button. This feature can

also be easily implemented and will probably be present on all future versions of our

framework.

6.2.1.2 Smooth movement

Some users asked to somehow hide the discontinuity caused by the movement of

the song placeholder every time a new segment is identi�ed for that song descriptor.

This feature can be easily implemented, but it requires a �ne analysis and related

tuning of the update granularity parameters to avoid accuracy and consistency loss

with short segments.

6.2.1.3 Audio management

There are various available presets for �ltering and managing audio streams with-

ing the Unreal Engine. It is possible to include some of them in AMBIF and let the

user apply them to songs from the library.

Future versions of AMBIF may include an equalizer and more audio management

options.

6.2.2 Audio codecs

We developed a music browsing framework that allows users to listen to songs

while they are browsing the music library. The capability to load and play an audio
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�le is a very important feature in this system. However, as we described in section 4.1,

technological limitations allowed us to dynamically load only audio �les encoded as

OGG/Vorbis. It is possible to extend the framework by adding decoding components

that will interact between AMBIF source code and the Unreal Engine audio system

code. This will allow to play also other audio �le formats.

6.2.3 Queries

Although our system allows an immersive third-person browsing experience, it

can be interesting to integrate in this framework a search engine.

This feature will allow users to apply �lters to reduce the number of the song

placeholders in the visible space for the sake of browsing clearness.

Possible extension in this direction have no limits. AMBIF provides a browsing

space, but what it is shown in this space can be whatever result from any kind of

query. It would be nice to integrate semantic queries, e.g. JANAS [15], as long as

context-based queries, e.g. Nightingale1, Quodlibet2.

6.2.4 Playlist generation

Our system allows users to browse a semantic multidimensional space keeping

a third-person perspective of the music library space. A possible extension can be

an input tracking system that allows users to de�ne an area or a path where lie

placeholders of the songs he/she is interested into.

This feature was already implemented in other systems mentioned in the state

of the art. However, none of them deals with space with more than two dimen-

sion. Indeed, they only work with bidimensional plans. Bringing this feature to a

multidimensional space will be an interesting challenge.

6.2.5 Increase of the available dimensions

AMBIF allows to browse a music library within an up-to-�ve dimensions space.

These dimensions are (position x, position y, position z, color hue, color saturation).

A few of our testers found not very intuitive color saturation or color hue space

dimensions. There are also other dimensions in that space that can be explored, e.g.

dimension of the placeholder, shape of the placeholder.

Our system can also relies on the power of one of the most advances videogame

engine, that is Unreal Engine. This means that graphical enhancemens can rely on

the underlying engine, with a large community support and free access to the source

code.

1Nightingale Community. Nightingale web player. http://getnightingale.com.
2quodlibet. https://code.google.com/p/quodlibet/.
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6. Conclusions

6.2.6 Support for other kind of devices

AMBIF is a framework developed within Unreal Engine and this allows our

project to be exported to di�erent kinds of devices. It is possible to tune the navi-

gation control system to allow an easy browsing with:

� Virtual Reality devices (Oculus Rift)

� HTML5

� Mobile phone
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