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Sommario

Negli ultimi decenni le aspettative di vita della popolazione si sono notevol-
mente allungate. Questo andamento, che non intende rallentare, ha portato
ad un vistoso incremento del numero di persone anziane facendo sorgere
alcune problematiche di natura socio-economica e assistenziale causate dal
naturale processo di invecchiamento dell’essere umano. La necessità, quindi,
è quella di garantire un soddisfacente livello di assistenza e benessere alle per-
sone anziane. L’attuale modello di assistenza non è adeguato per garantire
tale benessere ad un vasto numero di pazienti. Inoltre, molto spesso queste
soluzioni non sono accettate dall’anziano, che nella maggior parte dei casi pre-
ferirebbe continuare ad avere una vita indipendente nella propria abitazione,
evitando di dover subire cambiamenti radicali. Lo spostamento in case di ri-
poso comporta alti costi e in molti casi un declino nel benessere del paziente.
Sfruttando le potenzialità dell’Information and Communication Technology
è possibile ridurre i costi di assistenza e ritardare il trasferimento in case di
riposo, garantendo un adeguato livello di benessere. Per supportare e mi-
gliorare la vita indipendente di un anziano, un approccio molto utilizzato è
Ambient Assisted Living (AAL). Installando nell’abitazione dell’anziano una
serie di sensori, attuatori e interfacce di comunicazione, è possibile trasfor-
marla in una smart-home, senza richiedere particolari cambiamenti nello stile
di vita. Tale configurazione permette di raccogliere un enorme quantitativo
di dati, dando la possibilità di poter studiare ed analizzare le abitudini di
vita dell’anziano. Questo aspetto però, crea i presupposti per affrontare una
nuova sfida: estrarre informazioni significative dai dati. Una possibile solu-
zione a questo problema è la realizzazione di un framework di visualizzazione
focalizzato sulla presentazione di dati attraverso una serie di visualizzazioni,
che stimolino la percezione dell’utente (solitamente persone che si prendono
cura dell’anziano) e, anche attraverso dei meccanismi di interazione, per-
mettano di ottenere una corretta e significativa interpretazione dei dati, al
fine di poter garantire una adeguata assistenza sanitaria. In questo lavoro è
stato realizzato un framework di visualizzazione composto da due tipi di pre-
sentazioni: Layered Aggregate Radial Tree (LART) e Rich State Transition
Graph (RSTG). Seguendo le più diffuse teorie sulla visualizzazione e sulla
percezione visiva, le due visualizzazioni proposte hanno come obiettivo quel-
lo di mostrare in maniera chiara ed intuitiva i dati raccolti dai sensori in un
sistema AAL, favorendo l’esplorazione dei dati e l’estrazione di informazioni
rilevanti.
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Abstract

In the recent years, the expected lifespan has got longer with respect to the
previous decades. This trend has led to a considerable increase of the num-
ber of aged people involving socioeconomic and health-related complications
due to the ageing process. Therefore, preparation is needed to confront this
emerging challenge: the well-being of the aged people. Current healthcare
system has no enough resources in order to ensure a satisfactory assistance
level for a large number of elderly. Moreover, seniors often do not consider
these solutions acceptable, since one aspect of well-being is to enjoy an in-
dependent life in their own familiar environment avoiding radical changes.
Early institutionalization involves high costs and in many situations a decline
in the patient’s well-being. Exploiting the potentialities of Information and
Communication Technology could reduce care costs, delay the need for in-
stitutionalization, granting a satisfactory well-being level. Ambient Assisted
Living (AAL) aims at promoting and supporting an independent life for the
elderly people. It consists in the transformation of the older adult’s dwelling
into a smart environment by installing sensors, actuators, and interfacing
mechanisms, in order to monitor the resident’s life in an unobtrusive way.
In such a setting, a huge amount of data, from various sources, could be
collected, providing the opportunity to explore and analyze the daily life of
the resident. At the same time, having such amount of data introduces a new
challenge: the extraction of meaningful information in order to make sense
of it. A possible solution is the development of a visualization framework
focused on the presentation of data through visualizations that stimulate
the human perception and, with the help of interactive mechanisms, makes
possible to gain a correct and significative data interpretation, ensuring an
adequate healthcare. In this work a visualization framework that is composed
of two visualizations is proposed: Layered Aggregated Radial Tree (LART)
and Rich State Transition Graph (RSTG). Following the most prevailing
theories about visualization and human visual perception, the proposed vi-
sualizations aim to clearly and intuitively illustrate data gathered from an
AAL system, promoting data exploration and information seeking.
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Chapter 1

Introduction

1.1 Assistive Technology Group

The Assistive Technology Group (ATG) is a multi-disciplinary working group
of Politecnico di Milano, whose mission is to “Identify, forecast, implement,
promote and apply, innovative method and technology from ICT for the de-
velopment of sustainable solutions for frailty (disabled, elderly, difficulties)
which guarantees the recovery of functionality, social integration, equal op-
portunities, health, self determination and quality of life”. ATG gathers a
set of competences from ICT, Design and Management acting on a quality of
life projects; these set of competences is transversal to the considered mission
creating, in this way, a research and innovation-maker structure flexible and
adaptive. ATGroup faces with needs that, currently, have no commercial
answers such as analysis, identification and design of innovative solutions in
the field of ICT (e.g. graphical applications, efficient and low power wire-
less transmission, natural language processing, and high accuracy indoor
localization). A way for supporting independent life consists in monitoring
and analyzing the life style of the assisted people, in order to realize when
anomalies occur, and to support the analysis of their causes. A branch of
ATG focuses on making sense and insight of data through data analysis and
visualization techniques as a tool for helping independent ageing, as well as
user interface and interaction aspects.

1.2 Problem Statement

The number of elderly people is continuously increasing since the expected
lifespan is getting longer than in previous decades [1]. It is accepted that
our health services cannot continue to provide hospital-based care to this
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2 CHAPTER 1. INTRODUCTION

segment of population. This will be a problem in the next years, since the
existing resources for providing care to the elderly are inadequate to support
their essential health and social needs.

The ageing process usually involves a loss of mental and physical abilities
which raise the risks of accidents and the probability of making wrong ac-
tions. Often the senior is no more able to have an independent life with a
minimum standard of quality. Nowadays, when someone is in this situation,
there are few ways to overcome this problem: (i) to be admitted to a nursing
home; (ii) to be cared by an in-home nurse; (iii) to relocate into the dwelling
of the people in charge of the person. Unfortunately, these solutions are not
always feasible because they usually require an important economic effort,
and is not always possible to find a solution that fits the needs of all the
people involved (e.g., can be difficult to find a nursing home place in the
neighborhood of the people in charge of the senior). Moreover, often these
options are not accepted by the seniors that would prefer to continue living
in their usual environment without suffer too many changes in their life style.
When this not happens, it leads to demoralization and thus a decline in their
general well-being.

The usage of technology could be beneficial for the independent living of
the elderly. The maturity level and the pervasive use of telecommunica-
tion devices make possible the development and improvement of assisted
living. A widespread approach consists in upgrading the residents dwelling
in a smart environment, by installing specific sensors, actuators, communi-
cation hubs and interfaces. These Ambient Assisted Living (AAL) services
provide information about activity-sequence-awareness, location-awareness,
presence-awareness, and context-awareness capabilities that can be processed
and analyzed by experts.

Such an AAL system and the information gathered from it can augment
the patient care practices in several ways: monitoring the person’s activity
in real-time interacting with him/her, or alerting carers in case of a harmful
event. Furthermore, logs of the patient’s activity, annotated with the sen-
sor readings, can be processed and analyzed by software in order to study
patients personal behavior and to detect person-specific behavior anomalies
which may indicate a disorder in the residents health.

In such a setting, a huge amount of data from various sources could be
potentially collected: health-related data such as daily blood pressure, daily
activity levels, and heart rate; environment-related data such as the tem-
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perature, humidity, and luminosity; person-environment-related data such
as interaction with home apparatus and presence in specific places of the
home at specific times, just to name a few. Having such amount of data
provides the opportunity to explore and analyze the daily life of the older
adult. Data in raw format are not suited for being analyzed by humans. In
that representation, important information cannot be extracted, remaining
“hidden” to use user’s eyes. This fact implies a loss of relevant information.
Representing data in visual form makes it possible to discover the whole
information set contained in data. Thus, developing meaningful data visual-
izations can highly improve the end-user’s capabilities to make sense of data,
taking better decisions, and wasting less time. Since the range of end-user of
these kinds of systems may vary from domain-specific experts, who are inter-
ested in investigate a phenomenon (e.g., doctors, specialists), to caregivers
(or patients) who typically are more interested in the person’s well-being, the
relevant information vary too. Generally speaking, each group of end-users
has different information needs. This means that the developed visualiza-
tions must be reliable and flexible, in order to be adapted to the different
user’s needs. Moreover, the quality of visualization can determine the quality
of the end-user decisions and performances.

So, the main goal of this work is to support the independent life of aged
people, exploiting the advantages offered by AAL systems. The possibility
of monitoring and analyzing the resident’s life style can reduce the assistance
costs and increase the well-being of the elderly. AAL systems make it pos-
sible to collect a huge amount of data. Extracting the relevant information
from this data permits the end-user to discover important facts about the
aged person. Visual data representation increases the possibility to retrieve
these information, making it possible to improve the monitoring and assis-
tance capabilities. People in charge of the aged person can understand, from
remote and in asynchronous way, the general behavior of the assisted person
and realize if significative variations occurred.

1.3 Visual Analytics

Visual analytics is defined as the science of analytical reasoning facilitated
by interactive visual interfaces [2]. In a less formal way, it can be considered
as a form of query aimed to solve a problem, where data are expressed in
a graphical and interactive manner. In particular, the main goal of visual
analytics is to provide insight about the proposed problem.
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Nowadays, a huge amount of data is produced at an extremely fast rate,
and the technologies for collecting and storing the data are at a later stage
with respect to the data analysis capabilities. In the past years, many dif-
ferent methods for analyzing data have been developed, but the intrinsic
complexity of many problems, ensures that human abilities must be taken
into account at the early stages of the data analysis process.

Analysts, decision makers, and many others professional figures, depend on
information contained inside the data. One of the most important challenges
of today is to meaningfully make use of the immense amount of data avail-
able. This information overload can bring the decision makers to get lost
in irrelevant or misleading information, reaching null or wrong conclusions.
The efficient use of data, instead, can help realizing technological progress
and business success.

Therefore, visual analytics can be seen as an approach combining visual-
ization, human abilities, and data analysis. Gain insight into complex prob-
lems can be done by mixing the computers computational and the storage
capabilities with the humans background knowledge, and flexibility. The vi-
sualization part has particular importance, since it is the joining link between
data and human. It aims at communicating the information contained in the
data to the user, stimulating the cognition and perception mechanisms of the
human. This has a very important role in a decision-making process.

Visual analytics is helpful in applications involving large, complex datasets
and analytical processes that require a high degree of monitoring and inter-
action (i.e., data mining uses). The approach uses data visualization tech-
nologies to help users identify trends, patterns and relationships in the data
they are working with. Visual analytics tools make it easier for non-technical
users too. Visualizations allow the user to directly interact with the analysis
methods by adjusting parameters or selecting other algorithms of analysis.
The result can be continuously refined and verified. Misleading results in an
intermediate step can thus be discovered at an early stage, leading to better
results and a higher confidence. All these features make visual analytics an
interesting field of research.

1.4 Objectives of the Thesis

The main contributions of the thesis are:

• A review of the state of the art for data and AAL systems visualizations;
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• A review of the human visual perception mechanism, and how data
visualization can take advantage from it;

• The design and the implementation of a data visualization framework
composed of two complementary visualizations aimed to facilitate the
exploring and information-seeking tasks in AAL systems;

• An evaluation process designed to understand the usability of both the
visualizations and possible improvements to the framework.

1.5 Structure of the Thesis

The rest of this work is organized as follows. Chapter 2 is dedicated to
the presentation of the related works in the fields of AAL systems and
data visualization. Chapter 3 illustrates the most common visualization and
information-seeking theories and the methodology applied in this work. The
design and implementation of a visualization framework aimed to elderly’s
life style analysis is detailed in Chapter 4. Chapter 5 describes an imple-
mented demo, and it analyzes the results of an usability evaluation process.
Finally, Chapter 6 discusses the results obtained in this work and indicates
which are the possible improvements to this work.
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Chapter 2

Related Works

This chapter illustrates the related works in the field of data visualization.
In particular, it presents works regarding event-based and generic life moni-
toring visualizations, followed by visualizations specifically designed for pre-
senting AAL systems data.

2.1 Data Visualization

In [3], the authors show an example of diary of data collection where, through
a mobile application, users can record their daily activities. Each diary rep-
resents a single day and it is visualized as a vertical bar composed of the
sequence of performed activities. Color represents activity category, while
time is represented on the y-axis. The visualization of a collection of diaries
is done by putting side by side each singular diary (see Figure 2.1 for an
example).

Figure 2.1 Visual representations of activity diaries [3].

7
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Based on activity diaries, ActiviTree [4] has been proposed as a meaning-
ful way to represent sequence of events in presence of a large dataset. The
proposed algorithm, for the systematic identification of sequences in activity
diary data, is based on web searching algorithms using a matrix similarity
and assigning similarity scores to the events which depend both on connec-
tivity and frequency. These weighting scores is used to rank each sequence
during user analysis. In an interactive way, the user starts selecting an ac-
tivity and all the preceding and subsequent activities are sorted by rank
importance. Then, the user can select another connected activity creating
in this way a path and the process can be iterated. Figure 2.2 depicts an
example, in which every stage permits the user to see also the distribution,
time of occurrence and duration of the selected sequence.

Figure 2.2 Example of an exploration sequence. On the left, ActiviTree. On
the right, is shown the distribution of the explored sequence [4].

Since daily life activities are strongly related with time, the visualization
of time-series data can be meaningfully done with spirals [5]. The analysis
of time-series permits to discover trends, periodic behaviors and to predict
future developments. Usually time-series dataset are represented with line
graphs or bar charts but they do not fit very well when the amount of data
increases. The spiral visualization takes advantage from the human ability to
detect structures and patterns making it possible to identify periodic struc-
tures in the dataset.

An example of visualization of personal histories is LifeLines [6]. It is a
general visualization environment that can be applied to medical and court
records and other types of biographical data. It shows an overview screen
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where each record is represented by a line of different color and thickness,
depending on the records features. In this visualization all the records have
a time-component that is easily reported on the x-axis of the visualization.
The main benefits of such approach are the reduced probability of missing
information and the facility to spot anomalies and trends. The former ben-
efit is given by the intrinsic structure of this framework, since it presents an
overview for the given subject in a single screen with the possibility to go
deeper in details when needed. The latter is based on the fact that it is easier
to estimate intervals displayed as distances between segments with respect
to raw dates displayed in a table: cycles, trends and anomalies are quickly
detectable. Wang et al. developed an extension of LifeLines in [7]. Lifelines2
is an interactive visual tool that supports the visual exploration of multiple
records of categorical temporal data. In the medical field, displaying the pa-
tient histories aligned on sentinel events enable medical researchers to spot
precursor, co-occurring, and aftereffect events. Each record that matches an
input query is vertically stacked in alternating background color. Events are
represented by colored triangles and the display is fitted so that the entire
date range fits in the screen. A series of controls permit the user to filter,
align and rank the data. The event sequence analysis is an important task
in medical domain, but in many cases medical researchers have to deal with
thousands of records. LifeFlow [8] is an interactive visual overview of event
sequences. It is able to summarize all possible sequence and represents the
temporal spacing of the events within sequences. In LifeFlow all records are
aggregated into a tree-based data structure, where they are grouped event-
by-event from the beginning of the event sequence to the end. Then, each
node of the tree is represented with a color-coded event bar, matching the
color of the event type. The height of a bar is determined by the number
of records in that node proportionally to the total number of records. The
horizontal gap between a bar and its parent is proportional to the mean time
between the two events. LifeFlow can be combined to Lifelines2 facilitating
the data exploration by allowing users to review individual records (see Fig-
ure 2.4 for an example).

Timeline Tree approach is presented in [9]. It is an example of visualization
of sequences of transactions in information hierarchies. In a single diagram
TimeLine Tree integrates three views (see Figure 2.5). Starting from the left,
the “Information Hierarchy” interactive view shows the entire hierarchy. It is
possible to expand or collapse the hierarchy by clicking on a node. Then, the
“Thumbnails” view is a small representation of the “Timeline” view. The
latter is the visual representation of the sequence of transactions. “Timeline”
provides a way to explore and analyzed the transaction.
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Figure 2.3 Interface of Lifelines2 [7].

Figure 2.4 Example of LifeFlow used in combination with Lifelines2 [8].
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Figure 2.5 Example of TimeLine Tree [9].

2.2 Data Visualization for AAL Systems

The amount of data collected by AAL systems requires visual tools in order
to represent in a meaningful way the activities performed by the resident
of the dwelling. In the fields of elderly monitoring, independent living, and
behavioral pattern recognition many works has been done. One of the first
examples that makes use of AAL system data is [10], where Virone et al.
presented a method for discovering behavioral patterns of elderlies in smart
home environments. With the help of a pattern mining software (SAMCAD),
this method defines behavioral patterns and, by computing some norms and
deviations from the norms, it discerns normal behaviors and not-normal be-
haviors. People in charge of the resident are alerted in case of alarmingly
behavior.

In [11], authors discussed the needs of visual presentation of AAL data by
different group of users. It reported many commercial and academic exam-
ples highlighting the fact that it is necessary to develop interfaces and data
visualization components that can communicate clearly the health status of
the care recipients to different user groups. Figure 2.6 shows an example of
the application that uses life patterns for providing enhanced home-based
care. It is taken from [12], where the day life patterns of individual have
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modeled. Key concept in this work is “busyness”, defined as the measure of
overall movements, presence in locations and interaction with objects inside
a smart home. The target of this work was to identify behavioral patterns
in the daily life of residents. Starting from the data collected by the sensors,
they had been visualized after summarization, aggregation at different levels
of granularity and trend analysis.

Figure 2.6 Example of home-based care application showing busyness by time
zone [12].

Robben et al. expose the result of the interview to different types of elderly
care specialists to gather opinions and needs about sensor data visualization
[13]. It emerged that it is very important to start from activities of daily
life pattern and be able to catch significant deviations from it. In this way
caregivers can be aware of an impending disease and adapt their treatments.
Since decisions must be taken as soon as possible, Gestalt laws has been used
to express the information in the most relevant way. Figure 2.7 shows the
final version of the application, approved by the interview specialists. The
possibility to see intra-day variation and, most important, per-day variation
are the most appreciated features of the visualization. Furthermore, activity
description by color help to have an insight about relevant behavior devia-
tion, although specialists claimed that a more evident signaling of deviations
would be very appreciated. Zooming and selection tools are considered strong
help for discarding irrelevant data (i.e. particular time intervals) and get a
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Figure 2.7 An example of the application developed in [13].

deeper knowledge.

Another example of visualization of day life activities is presented in [14]. It
proposes the VISUAL-TimePAcTS framework as a visual-analysis tool for
sequential pattern identification. The authors state that traditional time-
use studies do not take into account important information like the place
and the context in which the activities are executed, the frequency and the
duration of each activity. These hidden information are very important for
discovering and deeply understanding daily life patterns. Once patterns are
identified and formatted as n-tuples, they are displayed in a “default” visu-
alization. Users can select a subset of patterns and these will be highlighted
with the activity path that contains them. In this way the selected patterns
can be studied in the context of the visualized individuals’ day without the
distraction of the surrounding activities. Figure 2.8 shows an example of the
identification of the pattern for the single activity eat dinner performed by
the VISUAL-TimePAcTS framework.

The previous mentioned works do not take into account the fact that two
or more activities of daily living can be done simultaneously. In [15], au-
thors propose an approach for analyzing patterns in activities daily living as
well as spatio-temporal relations. They determined the probability relations
between activities that occur at the same time, for extracting simultaneous
activities patterns incrementally. Furthermore, they proposed a visualization
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Figure 2.8 Example of patterns identified by the VISUAL-TimePAcTS
framework [14].

framework based on the frequency of relation between activities, and the per-
centage of sequential relations from accumulated frequency. The activities
set (or a single and non-simultaneous activity) are represented by circle, in
which the radius is proportional to the relative value of duration and the
brightness represents the relation value of frequency (see Figure 2.9 for an
example).

In [16], the authors used a density map to analyze the data extracted from
sensors logs in the homes of seniors (see Figure 2.10). Each line of the den-
sity map represents a day, sampled by hours. The y-axis represents days in
a month. The color of each cell represents the density of events raised by the
sensors and it ranges from white (no sensors activated) to blue (550 events
per hour). An exception is the black color assigned to the time spent away
from home that has an accuracy of seconds. Starting from that, Wangs et al.
introduced the concept of dissimilarity between density maps as a method
for detecting changes in the patterns of residents that aids caregivers in the
monitoring process [17]. The maps dissimilarity measure is based on the co-
occurrence matrix. The daily life pattern can be extracted from the textural
features (e.g., spatial and frequency properties) and structural features (e.g.,
coarseness and periodicity) of the density maps. The dissimilarity of two dif-
ferent density maps is represented by the distance from one map to another
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Figure 2.9 Visualization for User A and User B (E: entrance; T: toilet; A:
audio; S: shower; L: laptop; R: reading; P: phone; C: coffeepot) [15].

Figure 2.10 Example of a density map showing an active life-style [16].

computed in feature space: the smaller the distance, the more similar the
density maps are. Empirical results have shown the normalized Euclidean
distance to be the most sensitive and, thus, was chosen for the dissimilarity
measure.
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A framework for reliable and non-intrusive home assistance is described in
[18]. Events recorded by sensors connected to a Wireless Sensor Network are
stored and processed by a web service that shows off REST APIs for visualiz-
ing data in a variety of views. One of them represents the three-dimensional
model of the Smart Condo space augmenting the degree of realism and in-
tuitiveness. The system, that can approximate the residents position and
actions, is useful for monitoring seniors activity in real-time (i.e., alerting
caregivers in case of harmful events) and for real-time interaction between
the resident and caregivers.

[19] shows how it can be easy to upgrade a normal apartment into a smart
home. The applications included in the kit process and analyze the data
collected by the sensors, performing activity recognition and activity discov-
ery tasks (working on unlabeled data). On top of this work, two visualiza-
tions [20], [21] have been created. PyViz is a desktop visualization, while
CASASViz is web oriented and developed for working also on smartphones.
Both allow the user to quickly check updates as the sensor environment
evolves. CASASViz offers seven different visualization applications: Main
Visualizer indicates the location of the resident in the house (see Figure
2.11b), Mobility Heat Map (see Figure 2.12a) describes the frequency of the
sensor events triggered by the residents. Activity Graph (see Figure 2.12b),
Power Usage Visualizer, Long-term and Abnormal Patterns Visualizer, and
Activity Feature Extraction make it possible to identify behavior patterns
taking into account different aspects of the resident’s life.

Figure 2.11 Examples of PyViz [20] (a), and CASASViz Main Visualizer
Interface [21] (b).
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Figure 2.12 Examples of CASASViz Mobility Heat Map (a) and Activity
Graph (b) [21].
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Chapter 3

Methodology

In this chapter the common visualization theories and the adopted method-
ology are described. The first part reports the concepts of human visual
perception, cognition, and a brief explanation of how they work in the hu-
man brain. Then, how data visualization and information-seeking can take
advantage from these mechanisms is analyzed. In the second part, three vi-
sualization frameworks are presented. They explain different ways to reach
efficient visual data extraction. Finally, on the basis of the mentioned visu-
alization theories, the main line followed in this work is reported.

3.1 Visual Perception and Cognition

It happens frequently to find terms like data, information and knowledge in
visualization jargon. In many cases they are used as synonyms, sometimes
they indicate different levels of abstraction. Table 3.1 shows Ackoff’s defini-
tion of these terms in the perceptual and cognitive space.

Category Definition

Data Symbols
Information Data that are processed to be useful, provid-

ing answers to “who”, “what”, “where”, and
“when”” questions

Knowledge Application of data and information, provid-
ing answers to “how” questions

Table 3.1 Russell Ackoff’s definition of data, information, and knowledge in
perceptual and cognitive space. [22, pp. 13]

19
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The main goal of data visualization is to extract information and knowl-
edge starting from data: thus, making sense of data. Data in textual format
cannot communicate meaningful information about patterns, trends and ex-
ceptions in a satisfactory time. Instead, having data represented in a visual
form, makes it possible to take advantage of the capacity of human brain,
gathering valuable results, quickly.

The key to success of data visualization depends mainly on the degree of
encoded information it communicates to the users and in the way their brain
can extract this information and understand it. In other words, a good vi-
sualization must translate abstract information into a visual representation
that can be easily, efficiently, and meaningfully decoded. There is no other
way of presenting information so that structures, groups, and trends can be
discovered among a huge dataset.

Data visualization is broadly used nowadays, but sometimes it is used in
a wrong way. Many data representations are done with misleading elements
(e.g., graphs, charts, tables) and/or attributes (e.g., colors, sizes, edges) that
make them lose the great part of the visualization benefits.
Exploiting the advantages of data visualization requires to follow the prin-
ciple derived from the studying and understanding of human perception. It
must be aware that human brain is a powerful pattern-finding engine: if
information structures can be mapped to easily perceivable patterns, then
those structures will be more easily interpreted.
As Few [23] explained, data visualization is effective when it shifts the bal-
ance between perception and cognition on the perception side, exploiting all
the human brain abilities: visual perception (seeing) is extremely fast and
efficient. It is immediate and effortless. Cognition (thinking), instead, is
much slower and less efficient.

Figure 3.1 Perception and cognition balance [23].
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We can roughly define two types of memory: working memory and long-term
memory. Working memory is the one that holds the objects of immediate
impact, while long-term memory contains the information we collect from ev-
eryday experience. They have to be considered as complementary, although
in the visual process the capabilities and limitations of working memory are
the most important and critical.

The strength of long-term memory is its flexibility. Studies suggest that
we do not store such a huge amount of information about our life experi-
ences, but instead, we reuse the existing knowledge adding only few details.
This means that information is combined in many different ways and re-
dundancy is highly minimized. Information located in long-term memory is
retrieved through the chunking methods. A chunk can be anything like a
mental representation of an object, a method for achieving some goals, or
many other things. Thus, chunks representing simple concepts are grouped
together producing more complex concepts.

Working memory can be subdivided in different subsystems for processing
different types of input: visual, auditory information, body movements and
many others. The visual working memory, the one activated by visual per-
ception process, can be defined as the visual information gathered from what
we are seeing: it contains position, shape, color and texture information of
the visual scene. The problem is that only few simple objects can be re-
tained. Usually this number varies from three to five, depending on the task
and the pattern. This is the greatest limit of visual working memory. An
example of this limitation is shown in Figure 3.2, where the theory of visual
working memory suggests that three of the integrated glyphs could be held in
visual working memory (left case), but only one of the nonintegrated glyphs
(right case). This suggests that a perceptive visualization should prefer sen-
sory symbols with respect to arbitrary. The former are very expressive and
stimulate the visual sensory system, requiring no learning of their meaning.
The latter, instead, must be interpreted and learned.

Another important aspect is attention. Most of the time we simply do not
register what is going on in our environment unless we are looking for it. Al-
though we are blind to many changes in our environment, some visual events
are more likely to cause us to change attention than others are. The focus
of attention largely determines what we will see, and this focus is set by the
task we are undertaking.
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Figure 3.2 Comparison of multiple data attribute represented with glyphs [24,
pp. 380].

Starting from these notions, the information extraction process for human
visual perception can be expressed as a three stages model [24]. In the early
visual processing stage, our brain extracts low-level features from the visual
field (e.g., colors, textures, orientation of edges). All these information be-
longs to separated channels so, they are processed in parallel, rapidly. At this
point, in the pattern perception stage, regions and simple patterns (e.g., re-
gions of homogeneous color, with the same texture, or enclosed by contours)
are discovered in a serial and slower way. Here, both the visual working
memory and the long-term memory work. At the last stage, the visual work-
ing memory contains only the object demanded by active attention. At this
level, only a few objects can be held at time. They are constructed from the
available patterns that may provide answers to the visual query and from the
information stored in long-term memory related to the task. For visual query
it means a formulation of a hypothesis pertaining to a cognitive task that
can be resolved by the discovering of a visual pattern. The patterns involved
in visual problem solving are very different: pathfinding in graphs, quantity
estimation, trend estimation, cluster identification, just for mentioning some.

Perceptual phenomena have been studied by a group of German psychol-
ogists of the Gestalt School of Psychology in the beginning of 1900s. Their
results, the Gestalt laws of pattern perception are robust rules, accepted by
unanimity, that describe the way humans see and percept the reality. The
Gestalt laws have been easily translated into a set of design principles for
information displays [24, Chapter 6]. The most important are:

• proximity: things that are close together are perceptually grouped to-
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gether.

• similarity: similar elements tend to be grouped together.

• connectedness: connecting different graphical objects by lines is a pow-
erful way of expressing a relationship between them (e.g., node-link
diagram).

• continuity: we are more likely to construct visual entities out of visual
elements that are smooth and continuous, rather than ones that contain
abrupt changes in direction.

• closure: a closed contour tends to be seen as an object. Wherever a
closed contour is seen, there is a very strong perceptual tendency to
divide regions of space into inside or outside the contour. A region en-
closed by a contour tends to group much stronger than simple proximity
(e.g., Venn-Euler diagram).

• figure and ground: a figure is something object-like that is perceived as
being in the foreground. The ground is whatever lies behind the figure.
In general, smaller components of a pattern tend to be perceived as
objects.

There are many other laws, but they are not of interest for the purpose of
this work. These rules and other designing guidelines cannot be considered
as dogmatic, but they may be applied in classical situations, enhancing the
interpretability and self-explanatory features of a data visualization applica-
tion.

3.2 Visualization Frameworks

It is not an easy task to acquire a thorough insight directly from a huge
amount of data. Data visualization gives the opportunity to fill this gap.
The visualization process is a function that maps the dataset to a visual rep-
resentation which facilitates a more efficient and effective cognitive process
for acquiring information and/or knowledge. In [22] Chen et al. claim that
a typical visualization process is fundamentally the same as a typical search
process. Given a dataset, the user makes decisions about which visualiza-
tion tools to use for exploring the dataset, until he/she obtains a satisfactory
collection of visualization results. The decision is taken by experimenting
different controls such as styles, layout, colors, etc.
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Figure 3.3 A typical visualization process [22].

In the visualization process the decision space is huge, since, for example,
just changing the view position or trying out different transfer functions can
produce very different results. With the aim of providing much more sat-
isfactory outcomes in a quicker way, great importance has been given to
user interaction. Interactivity can help in achieving this objective. However,
working with very large dataset can slow down the visualization performance,
and since the amount of data is incredibly increasing, interactive visualiza-
tion alone results no longer adequate.

Information-assisted visualization expands the usual visualization process by
adding information abstracted from the data. These information are typi-
cally about the input dataset, but they can also represent attributes of the
visualization process or properties of the results. The user uses such infor-
mation to reduce the search space. Examples of information are: geometric
and temporal characteristics, topological properties, statistical indicators.

In Figure 3.3 and Figure 3.4 the interaction boxes sizes are intentionally
different. This is due to the fact that in information-assisted visualization
the degree of interactivity required, to reach the same results, is clearly lower
with respect to a typical visualization process. The increasing size and com-
plexity of data makes the help given by datasets information a necessity
rather than an option.

The next step, is knowledge-assisted visualization. This approach considers
the users knowledge as a fundamental factor in the visualization process.
Sharing the domain knowledge among different users reduce the burden (to
users) to acquire knowledge about complex visualizations, and enables the
visualization community to learn and model the best practice. The knowl-
edge representations can be given by expert users but in this way there may
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Figure 3.4 Information-assisted visualization [22].

Figure 3.5 Knowledge-assisted visualization with simulated cognitive
processing [22].

be difficulties in transcribing their knowledge. The solution can consist in
creating a general purpose visualization infrastructure for collecting, process-
ing and analyzing data about visualization processes in a systematical way.
At the moment, knowledge-assisted visualization is at its early stages, while
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information-assisted visualization is evolving significantly from the stable and
broadly-used interactive visualization approach.

3.3 Applied Method

This work follows the famous visual information-seeking mantra of “overview
first, zoom and filter, then details-on-demand” [25] as general framework. It
is accepted that this idea permits presenting information rapidly and allows
for rapid user-controlled exploration. The mantra is composed of four tasks.
“Overview” means to display an outline of the entire dataset, showing the
general trend or a relevant subset of the most significant components. “Fil-
tering” consists in hiding uninteresting items, letting the user focus on the
most important items and dropping out the noisy ones. “Zooming” means fo-
cusing on a portion of the collection. “Details-on-demand” task gives details
about a group or a single item, once it has been selected (and so required)
by the user.

Two complementary visualizations have been developed in this work: Lay-
ered Aggregate Radial Tree (LART) and Rich State Transition Graph (RSTG).
Both the visualizations are based on data collected by sensors activities in
an AAL system, representing some aspects of smart-home resident’s life.

LART displays information about the whole dataset in a compact way. It
takes in input a hierarchical-structured dataset and shows the aggregated
values at each level of hierarchy. This is the concept of overview. LART
is designed mainly for temporal data, since a hierarchy can be easily done
(e.g. years, seasons, months, days), but it can work also with non-temporal
data extracting their intrinsic hierarchical relation. LART potentialities are
enhanced by user interaction, which allows to zoom in at each level of the hi-
erarchy and to select a portion of data to focus the attention on it (filtering).
LART has many other features that will be deeply explained in Chapter 4.

RSTG performs the details-on-demand task. It is a variant of node-link
diagram presenting information about the resident’s behavior in a single day.
For producing a reasonable and clear outcome, in LART some information
are not representable. RSTG instead, focuses on those information expand-
ing the ones visualized in LART. With the help of interactive tools, RSTG
can perform further filtering operation. The complete feature-set of RSTG
will be described in Chapter 4.
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While LART visualization has a more generic target, RSTG is very related
to the field of indoor spatial visualizations. According to the taxonomy given
by Afyouni et al. in [26] about indoor spatial models, RSTG is a symbolic-
based approach since the resident location is provided using conventional
symbols and topological relationships (e.g., presence) are represented. More-
over, RSTG can be classified as graph-based, layout-based model, since nodes
stand for places and each edge stands for the transition from a place to an-
other. This kind of place-based graph is not suited for navigation purposes
since the connection links between nodes do not represent a distance function
but a frequency value. Instead, it is suited for location-awareness, activity-
awareness and for spatial and behavioral analysis.

3.3.1 Guidelines

The visualizations developed in this work follow some of the guidelines listed
in [24, Appendix C]. The aim of these recommendations is to suggest to the
visualization designer the best practices in visual perception and to avoid
misleading outcomes, resulting from collecting past empirical experiences.
In [24], more than 150 design guidelines are proposed, spread through the
wide domain of information visualization. Naturally, for this work, not all
the guidelines have been followed, but the focus has been pointed to the sub-
set including colors, contrast and lightness, pattern highlighting, interaction,
and visual thinking.

The first suggestion is the one that can sum up the purpose of this work:

[G1.1] “Design graphic representations of data by taking into account hu-

man sensory capabilities in such a way that important data elements and data

patterns can be quickly perceived.”

The concept of perception is taken into account also in

[G1.2] “Important data should be represented by graphical elements that are

more visually distinct than those representing less important information.”

Concerning the general development of the visualizations:

[G6.20] “Make every effort to standardize the mapping of data to visual pat-

terns within and across applications.”

This is a way to reduce the quantity of background application informa-
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tion that the user needs to learn in order to exploit the whole features of the
visualizations.

Another suggestion used to facilitate the user experience is derived from

[G6.5] “Consider putting related information inside a closed contour. A line

is adequate for regions having a simple shape. Color or texture can be used to

define regions that have more complex shapes.”

Indeed, it has been decided to separate as much as possible the visualiza-
tion part from the analysis tools. Particularly, in LART, but also in RTSG,
the interactive tools (Selection and Similarity panels, see Chapter 4) are ren-
dered in different areas, separated by a thin line which emphasize the different
nature of the two displayed regions.

The design of the LART chart involves the followings, basic, recommen-
dations:

[G10.5] “Consider providing an overview map to speed up the acquisition

of a mental map of the data space.”

[G10.6] “Consider providing a small overview map to support navigation

through a large data space.”

justified by the fact that the purpose of LART chart is to provide an overview
of the entire dataset, displaying its general trend and the most salient phe-
nomena. Also

[G8.18] “When a large number of data points must be represented in a visu-

alization, use symbols instead of words or pictorial icons.”

suggestion has been followed, because all the nodes (leaf and non-leaf) in
LART can be abstracted to symbols or self-explaining objects.

In LART, labels have an important role in the exploration task. Follow-
ing

[G8.19] “Use words directly on the chart where the number of symbolic ob-

jects on each category is relatively few and where the space is available.”

[G8.20] “Use Gestalt principles of proximity, connectedness, and common
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region to associate written labels with graphical elements.”

[G9.5] “Place explanatory text as close as possible to the related parts of

the diagram, and use a graphical linking method.”

LART’s flexibility, gives the opportunity to decide which layers must have
labels and which not. In the demo presented in Chapter 5, for example, it
has been decided to avoid labels at leaf-nodes since that layer has a density
of elements much higher than the non-leaf layers (see Figure 3.6).

Figure 3.6 Example of LART label positioning.

In the Selection interaction it is possible to notice that the object represent-
ing the selected elements is an arc drawn with a saturated color, as suggested
in

[G4.1] “Use more saturated colors when color coding small symbols, thin

lines, or other small areas. Use less saturated colors for coding large areas.”

[G4.16] “Use low-saturation colors to color code large areas. Generally, light

colors will be best because there is more room in color space in the high-lightness

region than in the low-lightness region.”

Moreover, the default colors of the LART chart elements are less saturated,
since their adjacency renders a big contiguous area.
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Figure 3.7 Example of LART Similarity interaction.

The Similarity interaction takes advantage from

[G5.7] “For maximum popout, a symbol should be the only object in a display

that is distinctive on a particular feature channel; for example, it might be the only

item that is colored in a display where everything else is black and white.”

[G5.9] “For highlighting, use whatever feature dimension is used least in other

parts of the design.”

The selected element is highlighted, by default, with a very different color,
and also matches are played up with colored borders (see Figure 3.7). This
rules has been followed also in demo presented in Chapter 5, during the tran-
sition from the LART chart to the RSTG diagram. The selected day, indeed,
is highlighted with a saturated color above the low-saturated colors of the
LART layers (see Figure 3.8).

In the LART-RSTG transition

[G9.10] “Use consistent representations from one part of a visualization se-

quence to the next. The same visual mapping of data must be preserved. [...]”

[G9.11] “Use graphical devices, such as frames and landmark object to help

maintain visual continuity from one view of a data space to another.”
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Figure 3.8 Example of LART to RSTG transition.

account for the small snapshot of the LART chart.

RSTG diagram covers great part of the previously mentioned guidelines.
It also follows

[G9.2] “Graphical elements, rather than words, should be used to show struc-

tural relationships, such as link between entities and group of entities.”

Nodes are connected through links, which have also an important seman-
tic value, and as explained in Chapter 6, future improvements can keep on
following this rule.
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Chapter 4

Design and Implementation

This chapter explains how the visualization framework for data related to
AAL systems has been designed and implemented. The work follows as
much as possible the theoretical principles and the guidelines expressed in
Chapter 3.

The decision of developing a web application is based on the fact that in
this way the problem of systems dependency will not be relevant anymore,
making the implemented visualizations available for every web-accessible de-
vice. Web-oriented programming languages are having a great diffusion and
this allows further improvements and manipulations of the framework. More-
over, in the last years many well-designed libraries concerning visualization
have been implemented, permitting to achieve efficient results.

The framework implements two complementary data visualizations: Layered
Aggregate Radial Tree (LART), and Rich State Transition Graph (RSTG).
Both the visualizations are developed to represent a large amount of data
and to support information-seeking in AAL systems. They are two types of
interactive visualizations designed to stimulate the human visual perception.
In particular, LART is a visualization that implements the “overview, zoom
and filter” part of the visualization mantra. It provides an overview of the
dataset and many techniques of interaction for focusing on a subset, and for
discarding useless data. Exploration and analysis of the dataset are the main
tasks offered by LART. RSTG implements the “details-on-demand” part of
the visualization mantra. It provides a day-level detailed view of data and
let the user get into the dynamics of day-level data.

33
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4.1 Technologies

The framework is implemented in JavaScript using mainly the Data-Driven
Document (d3js.com) library. Data-Driven Document (or D3) is a JavaScript
library widely used in the field of data visualization. Web-based interactive
visualizations usually combine different technologies: HTML for page con-
tent, CSS for aesthetics, JavaScript for interaction and SVG for vectorial
graphics. Since all of them share the Document Object Model (DOM) rep-
resentation of the page, it is easy to make them seamlessly work together.
The main benefit of D3 is to selectively bind input data to arbitrary DOM
elements, applying dynamic transforms to both generate and modify content:
it supports data-driven manipulation of the document [27].

The basic operand of D3 is the selection that adopts the W3C Selector API
to identify DOM elements. Elements can be selected by tag, class, unique
identifier, attribute or position in the DOM hierarchy. Many operators can
be applied to selected elements. The operators follows the W3C DOM API
and make it possible to manipulate the selection content (e.g., attributes,
styles, properties, and html). Operators values can be specified either as
constants or functions, which are evaluated for each element of the underly-
ing selection, and can be based on input data.

The data operator binds input data to selected nodes. It takes as argu-
ment an array containing the input data and then it computes the data join
with the selected elements. Once the join is done, there are available the en-
ter and exit subselections. The entering data have no corresponding nodes,
while the exiting nodes have no corresponding data. The updating nodes are
returned by the data operator. Figure 4.1 explains how the data join concept
works. For example, a web application takes in input values regarding the

Figure 4.1 When new data (blue) are joined with old nodes (orange), three
subselections result: enter, update and exit [27].
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temperature of Como, sampled hourly. The application plots these data on
a line chart, in real time, showing only ten values at time. Data are rendered
as ‘circle’ SVG element of class ‘point’. When new data arrives a selection
on the elements ‘circle’ of class ‘point’ is performed and the data operator is
executed:

• the elements contained in the update subselection are shifted to the
right by one position;

• a new ‘circle .point’ element is created, mapped to the incoming data,
and plotted on the leftmost position of the chart;

• the “older” element, which is in the exit subselection, is removed.

The definition of enter, update and exit permits to control the entire element
lifecycle. Static properties can be defined on enter, and dynamic properties
on update. This is essential for dynamic visualizations.

User interaction is managed with the event handlers operators that, as DOM
event listeners, execute callback functions receiving as parameters the user
input targeted at specific elements and the element associated data, permit-
ting the realization of data-driven interactions.

Other aspects of D3 concern animated transitions, interpolators and many
modules for simplifying common visualization tasks (e.g., shapes and scales).

Some features of the framework required the use of other libraries like jQuery
(jquery.com), for further DOM manipulation and asynchronous retrieving of
data, Moment.js (momentjs.com), for efficient date and time management,
and JSONPath (code.google.com/p/jsonpath), for efficient data extrac-
tion from JSON structures.

4.1.1 Server Side

The visualizations do not take in input the raw sensors logs. The input data
is a JSON structure following some rules in order to grant a correctly ren-
dered output. Thus, the joining link between the raw data and their visual
representation is the JSON structure.

This work implemented a server-side application which creates and responses
the specific JSON object based on the sensors log files. This server-side appli-
cation has been deployed on Google App Engine (appengine.google.com),
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a platform for developing and hosting web applications in Google-managed
data centers. This choice has been done for two reasons: (i) providing a
remote access to the input data, avoiding to copy all the log files on each de-
velopment machine; (ii) the simplicity and widespread use of this platform.
This choice has only illustration purposes. The framework can work with
input data structure contained in variables, local files, or wherever the user
prefers.

The architecture used in this work (see Figure 4.2) is composed of a series
of Java Servlets which parse the sensors log files, and compute the required
statistics. The client application requires the input data with asynchronous
requests to the server-side application which will return a JSON object. After
that, the JSON object is passed as argument to the specific visualization and
the result is displayed. The choice of JSON format is due to its popularity
and its strong integration with JavaScript, making it less verbose in reading
and writing operations, and well performing.

Figure 4.2 Architecture of the application.

The framework is designed to work with data collected from an AAL sys-
tem. This kind of data is the product of sensors activity and it is strongly
time-related. In this way, data can be sorted by the time the event occurred,
creating a sequence of ordered activities. The abstraction level of this frame-
work is raised up by the type of data it can handle: percentage, ordinal,
numerical and categorical values can be reproduced in the offered visualiza-
tions. Each specific visualization requires a specific data structure, formatted
in a specific way, and with some specific constraints to follow. Each specific
structure will be detailed in the next sections.
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4.2 Implemented Visualizations

The framework, following the theoretical principles described in Chapter 3,
proposes two types of visualizations: (i) Layered Aggregate Radial Tree and
(ii) Rich State Transition Graph. The former is oriented to a macro rep-
resentation of the data, emphasizing the general trends, while the latter is
a micro data representation, getting a deeper and complete description of
a single element. Both the visualizations are surrounded by additional ele-
ments, activated through user interactions. These elements have a central
role in the perception and sense-making target of this work.

In the following sections, the whole set of features and available operations
of both the visualizations are described. In particular, the visual structure
and how data are visually coded are explained, followed by an analysis of
the input JSON structure. Finally, the surrounding interactive modules are
listed, explaining their characteristics and the tasks they perform. LART,
being a variation of sunburst diagram, requires hierarchical data. The infor-
mation related to each node of the hierarchy is represented through colors.
RSTG instead, is a variation of the well-known node-link diagram. Colors,
nodes size, and arcs position are the elements that permit RSTG to repre-
sent the underlying information. RSTG input data are structured in two
JSON objects: the first contains information about nodes representation,
while second makes it possible to define the arcs extremes and position. The
interaction modules placed alongside the visualizations permit to increase the
exploration and analysis capabilities of the framework. In RSTG, filtering
task is performed by the Timeline Diagram tool. In LART this task is made
available by Selection tool that enables data comparison too. LART’s mouse
interactions make it possible to perform zooming operations on a subset of
the whole dataset. Finally, the LART’s Similarity tool permits the user to
discover similar elements in the dataset.

4.2.1 Layered Aggregate Radial Tree - LART

LART is an interactive compact representation of hierarchical data at various
aggregation levels that facilitates pattern discovery and comparison. LART
shows an overview of the dataset. It is possible to point the visualization only
on relevant properties subset avoiding data overload. LART is inspired by
sunburst diagram. The key aspect of this kind of diagram is the hierarchical
relationship of the data. For example, sunburst diagram is used in Linux
file system to represent the disk usage, because it allows the user to easily
detect files and folders that occupy more space. The enhancement of LART
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Figure 4.3 Example of LART and Selection module.

Figure 4.4 Example of LART and Similarity module.

is to represent resident’s behavioral parameters alongside the hierarchical re-
lations.

Taking into account that data collected from sensors activity are strongly
time related because every sensors event has a timestamp indicating when
it occurred, LART has been principally designed to work with time-related
data. Exploiting the natural time hierarchies, it is possible to represent the
behavior of the resident based on some particular factors (e.g., position inside
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the home, temperature, water usage) recorded for a long time frame (e.g.,
years). However LART can work with not time-related data too. To take
full advantage of this representation, data must have a hierarchical relation
(e.g., numbers of sensors events fired for each floor of the habitation, room,
region of the room, etc.). A workaround can be done preparing a fictitious
hierarchy relation: setting a figurehead root element, and using a collection a
sequential data, will produce a single-layer LART which can be nevertheless
helpful in the desired task. The decision-making activity is improved thanks
to the surrounding interaction tools that assist the user in gaining a correct
insight of the proposed problem. Figure 4.3 and Figure 4.4 illustrate a gen-
eral structure of LART and all its interactive modules. Finally, it is possible
to have two LARTs interlaced, one as the primary graph and the other as
the secondary graph. Interlaced LARTs is useful for visually exploring the
possible correlations between two data sets each represented by one LART.
Figure 4.5 depicts an example of interlaced LART where the primary LART
represents the amount of time spent in each room, and the secondary one
represents blood pressure values.

Figure 4.5 Example of LART.
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Structure

LART is structurally composed of a series of concentric layers each repre-
senting an aggregation level. Aggregation levels are based on hierarchical
relations: they can be time-related (e.g., years, seasons, months, days, etc.),
or not (e.g., floors of the home, rooms, areas of the room, etc.). Each layer
consists of data slots placed side by side with data belonging to the same
hierarchy level. The innermost layer is dedicated to the root element, while
the outmost layer represents leaf nodes data. Figure 4.5 shows an example
of time-related interlaced LART: its hierarchical relation is years, seasons,
months, days (depth = 4).

Dataset

The nature of LART requires data organized in a well defined hierarchy.
Examples of hierarchies can be based on time relations (e.g., years, months,
days), topological aspect (e.g., building, floors, apartments, rooms), or activity-
related (e.g., kitchen-events: cooking, washing, cleaning), just to mention
some examples.

The data collected by sensors are more likely to be related to the last level
of the hierarchy, so in the data structure only the leaf nodes contain data
regarding the residents behavior. The inner layers data are aggregated iter-
atively starting from the lower levels.

Technically, each node is a JSON object that, independently from the level
it belongs to, must have the following properties:

• id: a unique identifier for that node;

• name: the displayed node label;

Then, there is a distinction between non-leaf nodes and leaf nodes. The
former must have the property children, an array containing all its direct
children: it acts as the connecting link from one level to the subsequent. The
latter contains all the information regarding the resident behavior. These
information are formatted as a series of properties named valueXX, where
XX is an arbitrary sorting value used to localize a specific property. The
theoretical limit of the number of properties that LART can visualize is about
one hundred (from 01 to 99), but practically speaking, using more than 10
values can be counter-productive in terms of clarity and visual expressiveness
(except for very particular cases). In the demo presented in Chapter 5,
data have a hierarchical structure based on natural time-related hierarchy:
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year, season, month and day. Each element at day-level has four properties
(from value01 to value04) regarding the amount of time spent in each
room of the house (Bedroom, Kitchen, Living Room, and Toilet), and two
properties (value05 and value06) representing, respectively, diastolic and
systolic blood pressure. Figure 4.7 shows an extract of the JSON input.

Figure 4.6 Simple example of LART input data.

Figure 4.7 Example of LART input data.
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During the rendering of LART, the non-leaf nodes are integrated with the
aggregated values computed on top of their direct children. Figure 4.8 shows
a simple example of aggregation. Starting from the lowest levels, each node
is upgraded with the mean value of its direct children, which will be used for
displaying the resident’s behavior related to that node.

Figure 4.8 Simple example of layers aggregation: initial situation (a), and
after aggregation is performed (b).

The unique constraint required by this structure is that leaf nodes’ id must be
sequential. This is a fundamental requirement for the Selection interactivity.
However it can be managed easily. For example, it can generally be an
incremental counter, or in the case time-related dataset, it could be the day-
of-year value.

Data Coding

Data are coded based on color. They are sorted by data structures property
name (i.e., first value01, then value02, value03, etc.) and are painted in as-
cending order starting from the inner circumference of the layer. Since many
types of data can be represented, LART allows to paint data in two different
ways: they can be rendered as areas or as lines. The former method can be
useful for categorical and ordinal data, while the latter is more appropriate
for numerical or absolute data. Figure 4.9 shows an example of interlaced
LART where data are coded in two different ways: the primary LART repre-
sent percentages values coded with fill method, while the secondary LART
uses line method for absolute values. LART takes in input also a config.js

file which contains the parameters that permit to regulate and set up data
default values. Among these parameters, the array value.color defines the
default values colors following the painting order, while value.fill specifies
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the painting method (fill or line). The arrays RadialTree.LAYER SPACING

and RadialTree.LAYER WIDTH define, respectively, the inner radius and the
width of each singular layer. Changing these parameters allows the user
to see different rendering results, and to decide which is the combination
that produces a better visualization. Figure 4.10 illustrates an example of
config.js file. In particular, lines 10 and 13 define the fill method and
the values color, while lines 18 and 19 define the arcs inner radius and width.

Figure 4.9 Two examples of how data are coded in LART. Inner
circumference: fill method; outer circumference: line method.

Figure 4.10 Examples of LART config.js file.

Interactive Modules

User interaction is a very important component for gaining insight into the
data. Basically it improves the exploratory task, giving precise indication
when and where it is desired. Moreover, interaction operations allow to zoom
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in to a particular subset of elements and filter data focusing the analysis on
one or more selected subsets. In particular, interactions provide additional
tools that help to better understand the analyzed situation.

• Value Legend
The values represented in LART are not self-explanatory. For example,
it is possible to have two values regarding the minimum and maximum
temperature in the home measured in a specific day, and other two
values expressing the minimum and maximum residents blood pres-
sure measured at a specific time of the day. Plotting these two sets of
information produce an ambiguous result. In order to have a clearer
visualization, a legend is required. The Value Legend panel lists all
the rendered values. Each line of the panel refers to a value and is
composed by the label assigned to that value, and its rendered color.
In the config.js file, a JSON object is assigned to each visualized

Figure 4.11 Example of Value Legend panel.

LART. These objects contains many properties about the visual out-
come. The Value Legend labels are defined in the array value.label,
while the default color in value.color array. In Figure 4.10, lines 12

and 13 define the Value Legend labels and the values default colors,
respectively. Colors can be manually changed by clicking on them. A
color picker will permit the end-user to change the respective values
color and immediately watch the rendered result.

• Tooltip
When the pointer is over a LART’s element, a tooltip pops up (see
Figure 4.13). This tool shows the detailed value of the displayed resi-
dent behaviors characteristics (the valueXX defined in the input data
structure). It helps to understand which are the reference values of the
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Figure 4.12 Example of Value Legend panel color change.

visualization and can be used for precisely quantify how much two, or
more, elements differ one each other.

Figure 4.13 Example of LART Tooltip.

• Zoom
Zooming operations make it possible to prune task-useless elements,
focusing the attention only on the relevant elements subset. In pres-
ence of a very big dataset or very depth hierarchical structure (these
facts may not be correlated) zooming operations are extremely useful.
Zooming is performed by double-clicking a LART’s element. This ac-
tion produces a shrinking of the inner layers, and an expansion of the
elements directly related to the selected element (see Figure 4.14). In
this way, the subset including all the direct children of the selected el-
ement are highlighted. During zooming, a transition effect is used for
avoiding a brutal variation of the visualization. Zoom out operation is
performed by double-clicking on inner layers. It has been decided to
disallow zoom actions for the outermost layer elements since it would
show only the selected element. This does not contribute to any par-
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ticular benefit, interfering with the rational use of the other interaction
methods.

Figure 4.14 Example of zooming on April node.

• Selection
In the context of exploration of the daily life of an older adult, it may
happen that caregivers would like to compare the seniors behavior in
slots of different sizes. Augmenting the dataset granularity by adding
hierarchical levels may make the visualization heavier and less expres-
sive. Relying on the caregivers eyes and memory do not lead to a
reasonable solution. With the help of the Selection tool it is possible
to compare the aggregated values of different groups of elements.

A selection is a subset of the entire dataset composed by adjacent
elements and defined by a start and an end element. All the elements
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contained between those two, belong to that selection. This is the rea-
son why the leaf nodes of the dataset must have an ordered id property.
Moreover, each selection is identified by an index which is used to assign
it a color, improving its visual perception. Selection can be performed
in two different ways:

– drag-and-drop on elements of the outmost layer;

– single-click on elements of the inner layers;

The first way creates a selection of arbitrary size, while the second
method accomplishes a quick selection, selecting all the children of
the reference element. Selections can overlap, both partially and com-
pletely, because it may be helpful to compare the aggregated values
of selections spread on different layers (e.g., compare a month with its
season). Furthermore this option increases the flexibility of this kind
of interaction. When a selection is performed, the interested elements
are faded, in order to highlight the selections interval. Moreover, an
arc covering the selected elements is drawn. This arc does not over-
lap LART and it is painted with a color based on the selections index
property. Selection arcs have been designed also for disambiguate over-
lapping selections (see Figure 4.15).

Figure 4.15 Example of overlapping selections.

If at least one selection exists, Selection Panel is displayed. It consists
in a series of related bar charts. For each of the values regarding the res-
ident’s behavior represented in LART, a histogram is built, in order to
compare that value’s amount for each selection (see Figure 4.16b). The
joining link between LART and Selection Panel is the color assigned
to each selection: the bars of the histograms that share the same color
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Figure 4.16 Example of Range Panel (a) and Selection Panel (b).

represent the selection identified by the arc with that color.

Beside this area, there is a Range Panel (Figure 4.16a). It acts as
the selections legend: for each selection its assigned color and its inter-
val limits are displayed. In case of time-related data, it is possible to
manually change both the selection intervals. This is helpful in pres-
ence of dense datasets, where the width of the outmost layer elements
may be not so comfortable to allow a careful selection. In the Range
Panel it is also possible to remove a single selection, or the whole se-
lections set. This action provokes the removal of the corresponding arc
and histogram bars.

When zooming is performed after a selection activity, both the Range
Panel and Selection Panel undergo a change. Every time a zoom ac-
tion is done, it defines a new visual interval: in the initial situation this
interval coincides with the dataset interval, but zoom-in and zoom-out
operations make it change to the zoomed element bounds. Selections
that intersect the updated visual interval are temporarily split: for each
part, the corresponding statistics are computed and then visualized in
the Selection Panel. Only the entirely contained selections (and selec-
tion parts) are drawn in bright color. The remaining ones are disabled
and they are faded both in Range Panel and Selection Panel. In such
a situation, delete is allowed only for “non-split” selection in order to
avoid misleading actions. Zoom-out will restore the starting situation
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Figure 4.17 Example of Zoom on January 2014 alongside the previous
Selections.

for the split selections.

• Similarity
Similarity permits the user to understand which elements are similar.
By pointing the cursor over an element of the outmost layer, all the
other elements that are considered “similar” get highlighted. The met-
ric used to define the similarity is based on the represented resident’s
behavioral parameters: only the elements which have all the respective
values inside the interval

[reference.valueXX - thr ; reference.valueXX + thr]

will be considered acceptable. The pointed element is considered as
reference. The amplitude of the interval is defined by a threshold thr,
expressed in percentage, that can be specified through a slider. Figure
4.18 show a simple example of this mechanism, where the reference day
is set to February 10, 2014, and the threshold is set to 50%. Since the
reference value for ’Bedroom’ is 43.21%, the interval of acceptability is
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[ 43.21 - (0.5 * 43.21) ; 43.21 + (0.5 * 43.21) ] = [ 21.60% ; 64.81% ]

The same operation is done with all the other values, and only the days
that satisfy all the conditions and considered “similar”.

The side Similarity Panel provides more information regarding the dis-
tribution of data in similar days. It shows the count of matches for
the current reference day and for the specified threshold. Moreover, for
each represented value a line graph is plotted, expressing the kind of
distribution of the similar days for that specific value. For each point
belonging to a line graph it shows the precise value, and a single-click
will pop out the possible similar days which have in common the same
value for that parameter. In presence of interlaced LART, two thresh-
olds must be specified, taking into account the correlation between the
two different groups of information.

Figure 4.18 Example of Similarity (a) and Similarity Panel setting February
10, 2014 as reference day, and a similarity threshold of 50% (b)).

4.2.2 Rich State Transition Graph - RSTG

RSTG is the representation of a single group of information, visualizing state
transitions of sequential temporal data keeping time, duration, and frequency
information. It is a variant of node-link diagram, a kind of visualization useful
to show the transitions from one state to another. RSTG makes it possible
to get details about resident’s behavior, giving complementary information
to the ones offered by LART.
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Figure 4.19 Example of RSTG with Timeline Diagram.

Figure 4.20 Example of RSTG.

Structure

RSTG is structurally very similar to a classic node-link diagram: it is com-
posed of nodes represented by circles and links represented by arcs connecting
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one node to another one. Each node represents a state defined on top of the
underlying dataset. Each link represents a transition from one state to an-
other state. Multiple arcs are allowed and are used to show the amount
of transitions between two states. Figure 4.20 shows an example of RSTG
visualization.

Dataset

Data for RSTG should be categorical (or ordinal and finite). It does not
mean that RSTG cannot be used for numerical data but only that numeri-
cal data need to be discretized before. For example, blood pressure can be
discretized to low, normal, and high: each category is represented by a node
of radius proportional to the frequency of occurrence, and arcs represent the
trend of blood pressure in the selected time slot.

Two JSON structures are used in this visualization. The first contains in-
formation about the nodes, precisely the quantity that will define the nodes
radius. Figure 4.21 shows the first input data structure taken from the demo
of Chapter 5. For each room, is defined the “percentage” value which will be
used in order to compute the node’s size. The second structure is an array
listing the initial and ending time slot for each activity. This one is shared
between both RSTG and Timeline Diagram: the former uses it for deriv-
ing the transitions to be drawn (start&end nodes, left-to-right position, and
color), the latter uses it to create each activity block and plot the timeline.
Figure 4.22 illustrates an extract of the second JSON input, where is listed
the sequence of resident’s position in the house on a given day. Each group
of consecutive locations in the same room is associated with its initial and
final time slot’s IDs (in this example, a time slot is five minutes long).

Data Coding

The variations introduced to general node-link diagrams carry the data in-
formation: nodes have no equal size, and more links connect one node to
another. Nodes are colored following the values color code specified in LART
visualization, and their size is proportional to the total amount of time spent
in a state for the time period of interest. Links connecting the nodes are color
coded and arranged in a left-to-right/bottom-to-top manner to indicate the
timing of the transitions: the more a link is on the left, the lighter its color
is, representing a transition occurred in early hours of the day, and vice versa
for links shifted on the right.
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Figure 4.21 Example of RSTG first input data.

Figure 4.22 Example of RSTG second input data.
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Interactive Modules

The number of possible interactions in RSTG is lower with respect to LART
since it is a simpler visualization, very self-explanatory.

• Pop-up Label
When the pointer is over a node or a link, a label pops up explicating
the underlined information. Nodes will show the total amount of time
spent in that state, while links express when the transition occurred.
This kind of interaction makes it possible to understand precisely which
are the bounds in a dense group of close transitions. Figure 4.23 shows
an example of pop-out label on a transition link: the time at which the
transition happened is displayed.

Figure 4.23 RSTG Pop-up Label on a transition link.

• Timeline Diagram
Timeline Diagram is a complementary tool for RSTG (see Figure 4.24a).
It is a timeline composed of the behavioral values, represented as blocks
and painted with the usual color code. Each block represents a series
of identical activities occurred in sequence. It is another way to see
the situation. A slider placed next to the timeline makes it possible to
separate the blocks in the vertical direction, producing a clearer picture
in presence of very short activities.

An interaction that was thought be useful is the filtering proposed
by Timeline Diagram. It defines a temporal range for the visualiza-
tion. By default it coincides with the entire time frame analyzed (e.g.,
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a day of 24 hours). Performing a drag-and-drop action on the Time-
line Diagram will involve the variation of the temporal range, and the
recalculation of the aggregated information on top of data filtered and
confined to the specified range.

Figure 4.24 RSTG Timeline Diagram (a) and Range selection (b).
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Chapter 5

Usability Evaluation

This chapter reports an evaluation study in order to collect feedbacks and
opinions about the implemented framework. For this purpose, an interactive
demo has been implemented and a group of volunteer participants were asked
to perform some tasks and answer to a questionnaire, entirely reported in
Appendix A, for evaluating the visualizations.

5.1 Objectives of the Evaluation

The evaluation of the visualizations usability aims to understand if the de-
veloped visual representations fulfill the task of information-seeking and fa-
cilitate the exploration of large datasets. The collection of feedbacks and
comments from different users makes it possible to discover possible weak
points, indicating future works directions targeted to the improvement of
the visualizations.

5.2 Design of the Evaluation Methodology

After a brief explanation of the use case, the participant can start to experi-
ment the visualizations. A short tutorial describes which are the features and
the most important functionalities of both the visualizations. When the par-
ticipant feels confident with the application, the test session starts. The user
is asked to perform five tasks and to fill a questionnaire. Each task requires
to perform some operations and to provide an answer in order to understand
if the correct actions has been done. Participant has to fill a questionnaire
for an evaluation of each performed task. The task-specific questions, ask
for:

57
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• Task Difficulty: the perceived difficulty of the performed task;

• Visual Difficulty: the perceived difficulty of performing the task only
by means of visual searching.

Once all the tasks are performed, the participant is asked to provide an over-
all evaluation about the effectiveness of the visualizations, of the interaction
mechanisms, and about the usefulness of such a tool for a care professional.
Finally, the participant is asked to leave some comments about his/her ap-
plication experience. The analysis of the filled questionnaires allows a quali-
tative evaluation of the visualizations, useful to understand the participants’
feelings about them.

During the evaluation process a user-tracking mechanism traces the par-
ticipant’s actions and the provided answers to the tasks. This mechanism
makes it possible to collect information about the time spent by the user
to perform each task, the operation performed to accomplish each task, and
the correctness of his/her answers. These events are stored in log files, and
their analysis permits to have quantitative results that can be studied and
compared. Figure 5.1 shows an excerpt of log file: each line of the log con-
tains the timestamp and can represent a tracked event, or the answer the
user gave to a task. Possible types of tracked events are basically mouse-over
and mouse-out occurrences, and the mouse position, which is traced every
200ms.

5.3 Evaluation Session

The evaluation session took place between March 2, 2015 and March 10,
2015. It involved twenty volunteer participants belonging to the academic

Figure 5.1 Example of evaluation log file.
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Figure 5.2 Evaluation Demo home screen.

environment. For the majority of the participants this was the first experi-
ence with the proposed visualizations, while a couple of them had already
seen both LART and RSTG in the early development phase.

The use case defined for this evaluation session is the following: in the home
of an aged person, a PIR sensor is installed in each room. The resident’s
apartment is composed of four rooms: bedroom, kitchen, living room and
toilet. Moreover, the senior’s blood pressure (systolic and diastolic) is sup-
posed to be measured every day and to be collected in the system.

The implemented demo followed the classical visualization path described
in the previous chapter: the home screen displays an interlaced LART visu-
alization with all the interactive modules (see Figure 5.2), and the detailed
information are displayed with the help of a RSTG visualization. The data
collected in the elderly’s home are:

• position of the senior in his habitation, in terms of rooms;

• systolic (max) and diastolic (min) blood pressure values;

The “position” of the resident is supposed to be sampled every five minutes,
collecting the PIR sensors state. In this way, for each monitored day there
are 288 samples. In this scenario, we do not take into account out-of-home
events, but for the purposes of the demo this is not a lack of generalization.
The blood pressure values, instead, are absolute value types, expressed in



60 CHAPTER 5. USABILITY EVALUATION

mmHg unity of measure. The blood pressure is supposed to be measured daily
at the same time. The dataset, that has been created only for this evaluation
task, represents data collected from January 1, 2014 to December 31, 2014.

Both LART and RSTG visualizations follow the directives stated in Chapter
4. LART’s input data has a hierarchical structure based on natural time-
related hierarchy: year, season, month and day. Each element at day-level
has four properties (from value01 to value04) regarding the amount of time
spent in each specific room, and two properties (value05 and value06) rep-
resenting, respectively, diastolic and systolic blood pressure. The values re-
garding the rooms are expressed in percentage values, easily derivable from
the sensors logs. Figure 5.3 depicts and an example of day definition. In
RSTG each node is associated to a room. The node radius represents the
amount of time spent in that room. The links connecting two nodes represent
the transfers between the two rooms. Both the nodes and links properties
are computed based on the selected time range of visualization.

Figure 5.3 Example of LART input data at day-level.

The participants were asked to perform these tasks:

Task 1 In the overview, choose the room colors in a way so that you can
easily evaluate the kitchen percentage data (the colors that suit your
eyes the most).

Task 2 Find the MONTH with the highest average KITCHEN percentage.

Task 3 Choose the DAY in the month you found in the previous task (Task
2) that has the MAXIMUM KITCHEN time percentage.

Task 4 How many SIMILAR DAYS to the day you found in the previous
task (Task 3) with a threshold of 30% and NOT considering the blood
pressure (considering ONLY the same month)?
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Task 5 Get to the DETAILED VIEW of the day you found in Task 3. Does
the person have more transitional activities during the day or during
the night? How many times does the person go from the living room
to the kitchen and vice versa?

The questionnaire relative to this evaluation session in fully reported in Ap-
pendix A and it follows the structure defined in the previous section.

5.4 Summary of Results

Almost all of the participants have completed the requested tasks. Two of
them had found problems due to low monitor resolution, preventing the full
accomplishment of the evaluation process.

The quantitative analysis reveals that great part of the answers was cor-
rect (in particular no one made mistakes in Task 2 and Task 3). Task 4

was as a matter of fact the most difficult and some participants gave incor-
rect answers. In Task 5, 90% of the answers were correct, granting a good
result. Task 1 has been excluded from this analysis since it is strongly sub-
jective and its purpose was to understand if the default colors chosen for the
demo were meaningful and visually acceptable. The average time required
for completing all the tasks was about 8 minutes, which is a good result,
taking into account that for most of the participants it was the very first
time they saw such visualizations. The slowest user took about 16 minutes
to complete the process, a value that is close to the expected time. The
quickest user, which had a previous short experience with LART and RSTG
visualizations, used only 2.5 minutes to correctly answer to all the questions:
this reveals that even with a modest experience it is possible to gain correct
results in short time. Figure 5.4 summarizes the evaluation results taking
into account the correctness of the answers and the needed time to perform
the tasks. Moreover, it excluded the users who had trouble in the evaluation
accomplishment or have not entirely completed the evaluation process.

The qualitative results extracted from the filled questionnaires are illustrated
in Figure 5.5. As expected, Task 4 revealed to be the most difficult to ac-
complish since it involved many interaction tools and many conditions for
reaching the right result. Despite that, its Visual Difficulty value shows that
the involved interactive module (in this case, Similarity Panel) clearly repre-
sents the underlying information. Visual Difficulty and Task Difficulty values
of Task 2 and Task 3 are in the norm, since they are two simple tasks and
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Figure 5.4 Results of the quantitative evaluation.

Figure 5.5 Results of the qualitative evaluation.

the 80% of the participants had no difficulties in gathering the relevant infor-
mation. Surprisingly, the high value of Visual Difficulty for Task 5 indicates
a general complexity in retrieving the information for the RSTG visualiza-
tion, although the Task Difficulty value indicates that it is easy. This aspect
requires further investigations in order to understand which are the reasons
of such an low evaluation.

Most of the participants believed that the proposed visualizations are a good
tool to accomplish the monitoring of the elderly’s daily behavior. In par-
ticular, the interaction tools have been considered helpful for reaching that
kind of result. The participants’ comments confirm that the overall appli-
cation is considered positive. In particular, they appreciated the fact that
it simplifies the visualization of data structured in hierarchical way, making
possible to handle a great amount of data. A participant claimed that de-
spite the fact that at a first glance the visualizations (in particular LART)
seem a bit complicated, in short time it gets really easy to work with it. It
has been appreciated also the flexibility to extract data and the short time
needed to perform the required tasks. Some additional features was sug-
gested, like adding the possibility to perform a quick Selection by clicking
on the year/season/month label, and the highlighting of a value when on-
mouse-over event occurs. The non-presence of labels at day-level has been
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felt as a lack of notation by one user, but this has been an implementation
choice, since it would make the overall visualization heavier. A halfway may
be adding labels at regular intervals.

5.5 Discussion

The analysis of the evaluation results express that the effectiveness of LART
is appreciated. It can be further improved by adding new elements like, as
suggested, identificative labels on the outermost layer. The evaluation session
reveals an unexpected lack of expressiveness in RSTG. This aspect needs
extra investigations and must be accurately analyzed in order to discover the
RSTG components that have produced such a negative result. Since Task 5

concerns transitions, it is possible that some features of the connection links
may have produced a confusing result. Aspects like the links’ position, their
angle of curvature, their colors, or their thickness must be reviewed. Another
way that could increase the effectiveness of RTSG is to introduce a series of
inner circles inside each node representing continuous partial stay in that
state (see Figure 5.6).

Figure 5.6 An example of possible RTSG expressiveness improvement.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This work of thesis concerned the design and implementation of a visualiza-
tion framework aimed to explore and analyze data regarding the daily life of
aged people, collected in an AAL system. Since the amount of data gath-
ered from such a system is huge, data visualization tools are necessary to
extract relevant information. The main target of the proposed framework
is to provide a series of visualizations that can stimulate the human visual
perception, in order to get an insight of the represented data and make it pos-
sible a sense-making of them. Starting from the review of the related works
in the field of data visualization and visualization in AAL systems, this work
illustrates the human visual perception benefits for pattern recognition tasks
and how it can be exploited in data representation. The developed visualiza-
tions make it possible to have a clear understanding about some aspects of
the resident’s life style. Layered Aggregate Radial Tree (LART) summarizes
these aspects, producing a visual data representation that emphasizes the
exploration and analysis of a great amount of data. This way of presenting
information gives the opportunity to have a picture of the resident’s behav-
ior for a long time period, making it possible to understand if particular
variations in the daily habits may require further investigations. Rich State
Transition Graph (RSTG) displays information at a lower granularity level,
proposing statistics that cannot be shown in LART for clarity and space rea-
sons. RSTG integrates the information discovered by LART giving details
on demand. Both the visualizations are accompanied by interactive modules
that foster the dataset exploration and the information extraction.
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6.2 Future Work

This work marks the starting point of a series of activities concerning data
visualization in the ATG group. So, there is still a long way to reach a
mature solution. There are mainly three directions of future works in order
to improve the capabilities of the proposed work. The first path concerns the
internal structure of the visualizations and their rendered outcome. Then,
back-end improvements may be done in order to assure better performances.
Finally, an automatic mechanism for the analysis of the log files containing
the users’ visual actions collected during the evaluation session could give
further details about the visualizations usability.

Visualization

Both LART and RSTG visualizations can be improved under many aspects.
First of all, the RSTG structure could be generalized and parametrized in
order to get a level of flexibilty similar to LART. The parametrization work
could include the definition of a configuration file similar to the one used
in LART. Also some interactive modules should be updated in order to get
these module available for a broader set of data. For example, the LART’s
Range Panel works only with time related data, excluding the opportunity
to use it in other contexts. Finally, the visualizations and all the interactive
modules need to be converted to a full responsive interface, making them
completely available for a wider range of devices, like low resolution devices.
In order to get clearer ideas on the parts that need a prior improvement,
this work path must be supported by a further and maybe slightly different
evaluation process.

Performance

The computational balance between server-side and client-side application
can be brought into question. Interactions and exploration in real time that
avoid lags and time delay offer a better user experience. Some issues in
this aspect may be find in presence of very huge dataset. Optimizing the
back-end performances could be the first step. Data collected by the AAL
system could be arranged in databases, improving the statistics computation
performances. In the visualization process, caching methods can be intro-
duced in order to improve the response time of particular interactions (i.e.,
LART Zooming). In this direction, the input data structures of both LART
an RSTG can be slightly changed making possible an efficient use of shared
visualization elements (e.g., SVG <radialGradient> elements).
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Evaluation

An automated evaluation log analysis mechanism should be taken into ac-
count. The information contained in the log files collected during the evalua-
tion process can be better analyzed. A software could parse and analyze a log
file and give accurately information about the user’s actions in performing a
task. Having at disposal a clear tracking of the user’s experience makes it
possible to get a better idea about where and which the strength and weak
points are, giving even more weight to the evaluation process.
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Appendix A

Chapter 5 describes an evaluation process for the visualizations proposed in
this work. The participants were asked to fill an online questionnaire in order
to collect opinions and feedbacks about the tasks they had to perform. This
Appendix reports the entire questionnaire.
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