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Abstract 
 
The potential occurrence of internal parametric resonance phenomena has been recently indicated as a 
possible contributory cause of failure for long-span suspension bridges. The peculiar non-linear behaviour of 
such structures entails a fundamental coupling between flexural and torsional response, with the possible 
occurrence of energy transfer between resonant modes. This so-called internal resonance may happen if a 
critical energy threshold is attained and may represent a critical issue for structural safety. 
At the same time, suspension bridges, in view of their flexibility, are prone to aeroelasticity driven response, 
such as vortex shedding, torsional divergence and flutter. 
In this work, starting from the classical Deflection Theory a non-linear dynamic model of a suspension bridge 
is devised, with the purpose of providing a unified framework for the study of aeroelastic and internal 
resonance instabilities, along with their coupled effects. The onset of unstable conditions is detected by 
means of stability maps traced by means of the well-known Floquet Theory. The results confirm that the 
interaction between aeroelastic effects and non-linear internal resonance leads to unstable phenomena for 
wind speed levels which are by far lower than the critical threshold provided by purely aeroelastic prediction. 
 
 
Il possibile instaurarsi dei cosiddetti fenomeni di risonanza interna è stato recentemente identificato come 
una possibile concausa nell’instaurarsi di condizioni critiche in ponti sospesi di grande luce. L’intrinseca non 
linearità geometrica di tali strutture comporta un forte accoppiamento fra risposta flessionale e torsionale, 
con in aggiunta un possibile scambio di energia fra i modi posti in risonanza dall’azione parametrica. Questa 
cosiddetta risonanza interna può manifestarsi allorché si raggiunga un livello critico di energia oltre il quale 
la risposta strutturale può divenire instabile e divergere al passare del tempo. 
Ulteriormente, i ponti sospesi, essendo strutture molto flessibili, risentono fortemente dell’azione del vento, 
tanto che la risposta aeroelastica può portare a distacco di vortici, divergenza torsionale e flutter. 
Nel presente elaborato, partendo dalla teoria classica per la statica non lineare dei ponti sospesi nota come 
Deflection Theory, è stato sviluppato un modello numerico non lineare capace di analizzare la risposta 
dinamica di un ponte sospeso a fronte di possibili instabilità, dovute tanto all’azione aroelastica del vento, 
quanto alla risonanza interna, legata alle non linearità intrinseche della struttura. L’instaurarsi di una 
condizione instabile è stata identificata facendo uso di mappe di stabilità, appositamente realizzata per le 
condizioni strutturali analizzate, facendo uso della nota Teoria di Floquet. I risultati confermano che 
l’interazione fra gli effetti aeroelastici e le risonanze interne portano la struttura ad instabilizzarsi in 
corrispondenza di velocità del vento che sono significativamente inferiori a quelle previste dalla classica 
trattazione che tiene in conto della sola interazione fluido-struttura. 
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Introduction 

 
The first European suspension bridge is the Wynch Bridge, built in 1741 in England on the Tees River with a 

span of 21m and an unstiffened deck 61cm width. Four mooring chains restraint the bridge against lifting 

forces coming from wind action. 

 

 
Figure I.1_Wynch Bridge. 

 

The choice of unstiffened decks remains a characteristic feature of British bridges. First in 1920 the Union 

Bridge, the first road bridge, designed by S. Brown with a span of 137m, lasting for six years the world record. 

 

 
Figure I.2_Union Bridge. 
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Later in 1826 with the Conwy and Menai suspension bridges designed by T. Telford, respectively with a span 

of 100m and 176m.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure I.5_ Menai strait bridge 

Further I. K. Brunel designed the Clifton Bridge in Bristol with a central span of 214m and a very thin stiffening 

deck.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.4_ Conwy suspension bridge. Figure I.3_Thomas Telford. 

Figure I.6_Isambard Kingdom 
Brunel. 

Figure I.7_Clifton Bridge. 
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With the advent of the first railway in first half of XIX century the stiffness of the deck become a very 

important issue. The classical example is the Britannia Bridge by R. Stephenson in 1850, characterised by a 

tubular deck that avoid the use of any suspension system, though initially expected to be necessary. 

 

In 1823 Navier published the first book on statics of cables, which will be a reference for the following design 

of suspension bridges, up to that time based on experience and intuition of the designer. The formulation 

lack of the interaction between cable system and deck that will be catch only in the 1858 by Rankine. 

According to this theory the cables system and the deck exchange a uniformly distributed load that is equal 

to the accidental one. Consequently the cables system is able to reduce the bending moment on a simply 

supported deck of one quarter. In reality the reduction is far higher. This lead to a huge overestimation of 

loads acting on the stiffening structure that consequently would be oversized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.8_Britannia Bridge. Figure I.9_Robert Stephenson. 

Figure I.11_Claude-Louis Navier. Figure I.10_William John Macquorn 
Rankine. 
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Conversely in the North America stiffening girders were the norm from the first known suspension bridge, 

on the Jacob’s Creek, designed by J. Finley in 1801. It was characterised by a three spans of 21m each, with a 

reticular stiffening girder of 4m width. 

 

  

Later in 1855 by J. A. Roebling designed the first suspended rail bridge of history on the Niagara River. Its 

reticular girder of about 5.2m depth and 251m long, and stiffening stays and moorings make it a real 

complicate structure. The same feature have been repeated by the same designer in 1883 for the Brooklyn 

Bridge spanning about 487m of clearance. 

 

 

 
Figure I.14_Bridge on Niagara River. 

Figure I.13_Bridge on Jacob’s Creek. Figure I.12_James Finley. 
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The theory proposed by Melan in 1888 removed the hypothesis first proposed by Rankine, since the 

interaction between the cables system and the deck is proportional the relative stiffness of the two parallel 

systems. Consequently, the loads directly acting on the deck becomes lower with respect to Rankine 

approach, but anyway very high, leading to large dimensions of the stiffening girders. The classical example 

is the Williamsburg Bridge, completed in 1903 and characterised by a deck 488m long and 12.2m deep. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With the advent of the so-called Deflection Theory a real evolution in the design of suspension bridges begun. 

The idea date back to 1888 in Melan’s work but the complete theory was proposed by Steinman only in 1929. 

With respect to Rankine and Melan theories, the load exchanged between the cable system and the stiffening 

girder was no more uniformly distributed along the span. Further the geometric stiffness of cables reduces 

the loads acting on the deck as its stiffness reduces, leading to very thin stiffening girders. 

 

 

 

 

 

Figure I.16_Brooklin Bridge. Figure I.15_John Augustus Roebling. 

Figure I.17_Josef Melan. Figure I.18_ Williamsburg Bridge. 
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The first application was realised in 1931 with the George Washington Bridge, designed by O. Ammman, 

characterised by a span of 1067m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Later in 1937 the Golden Gate by J. Strauss was build up. In order to achieve such a length was necessary a 

reticular reversed U-shaped stiffening girder that unfortunately was susceptible of large wind-induced 

torsional oscillations. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure I.20_ George Washington Bridge Figure I.19_Othmar Amman. 

Figure I.22_ Golden Gate Bridge. Figure I.21_Joseph Strauss. 
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Two years later with the Deer Isle and the Bronx-Whitestone Bridges, designed by D. Steinman and O. Amman 

with a span of 329m and 701m respectively, continuous stiffening beams were realised. 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This solution, already used in 1915 with the German Koln-Deutz bridge, granted both to reduce the girder 

stiffness and then applied loads, and to get an optimal use of materials and then a better aesthetics. 

 

 

 

 

 

 

 

 

 

Figure I.23_Deer Isle Bridge. Figure I.24_David Barnard Steinman. 

Figure I.25_Leon Solomon 
Moisseiff. 

Figure I.26_Bronx_Whitestone Bridge. 
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Then in the 1940 the Tacoma Narrow was realised with the same approach by the design of Moisseiff. The 

deck was characterised by central span 854m and side span of 355m long, 11.9m width, stiffened by two I-

shaped steel bar of only 2.44m height. 

 

 

 
Figure I.27_Tacoma Narrow Bridge. 

 

The collapse of the TNB sanctioned the relevance of aeroelastic effects in bridge engineering practice, being 

the classical Theodorsen Theory known from about six years in aeronautical field. As a consequence many of 

the existing bridges were stiffened. An additional reticular structure realised a closed section for the deck of 

the Golden Gate Bridge in 1955. Similarly for the Washington Bridge in between 1958-1962 an additional 

lower deck was introduced. Whilst the final configuration for the Bronx-Whitestone has been realised in 2003 

and foresaw a system of flow deflectors. 

 

 

In the meanwhile in England G. Roberts in 1966 design the 988m long Severn Bridge, realising for the first 

time a closed box section for the concrete deck, properly designed for aerodynamic efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure I.29_Severn Bridge. Figure I.28_Gilbert Roberts. 
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This solution become the standard one thanks to the work of Scanlan at the end of  ’60, extending the 

Theodorsen theory from the thin plate to the generic section geometry by means of the so-called flutter 

derivatives, measured experimentally with wind tunnel tests. This paves the way for modern super-long 

suspension bridges design, leading to the design of the Messina Bridge spanning 3300m . Though truss girders 

still be used, such as in the construction of the Akashi Kaikyo Bridge, 1991m long.  

 

 

  

 

 

 

 

 

 

 

 

 

 

The emergence of new materials and advanced structural engineering technology makes suspension bridges 

a spontaneous answer for demands of larger spans, light weight, high strength, ease of construction, and 

aesthetic appearance. On one hand, the flexibility caused by the cable system and its long span makes the 

suspension bridges sensitive to dynamic loads; on the other hand, the relatively simple geometry of cable 

structures makes continuum approaches still very attractive, since can be based on a minimal number of non-

dimensional parameters. 

Early attempts on static equilibrium of suspension bridge were made by Steinman, who extended the elastic 

theory to the well-established Deflection Theory [1,2] by enforcing equilibrium in the deformed position, and 

accounting for the stiffening effect in the main cables. 

 

 

 

Figure I.31_Robert H. Scanlan. Figure I.33_Messina Strait Bridge (rendering). Figure I.30_Theodore 
Theodorsen. 

Figure I.32_Akashi Kaikyo Bridge. 
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Earliest continuum models for the linear vertical vibrations of suspension bridges reproduced the effects of 

the stiffening truss girder by means of an Euler–Bernoulli beam supported by the main cables through 

inextensible and distributed vertical hangers. In this regard, the classic continuum model for the linear 

vertical vibration of suspension bridges, based on the so called linearized deflection theory, was first 

proposed by Bleich et al. [3], and Steinman [4], which derived some formulas for computing natural 

frequencies and mode shapes, and recently reviewed by Luco and Turmo [5]. The last authors showed that 

the linear vibration of the considered suspension bridge model is completely governed by two non-

dimensional parameters: the classic Irvine parameter of suspended cables, first introduced by Irvine [6] and 

a second parameter accounting for the relative stiffness of the girder with respect to the main cable system. 

Abdel-Ghaffar in the late 1970's [7-9] developed the methodology of free vertical, torsional and lateral 

vibration analysis of suspension bridges by means of a variational principle and a finite element approach. 

Then, the same author [10-12] extended the continuum formulation to include coupling between vertical–

torsional vibrations, nonlinear effects occurring in the case of large vibrations and the effects of distortional 

deformation of the girder cross-section. 

Nowadays, in the design of suspension bridges a comprehensive set of wind related responses are taken into 

consideration, such as static divergence, vortex-shedding, buffeting and flutter. Hence, the risk of developing 

aeroelastic instabilities is always the matter while designing any lightweight long-span structures, 

characterized by high flexibility due to a low bending/torsional stiffness and a high width-to-depth ratio. 

Although the phenomenon was already well known in aviation, the research on flutter in civil engineering 

field started as the collapse of the Tacoma Narrows Bridge (USA) in 1940, when the catastrophe was seen 

mainly as a direct consequence of flutter [13] that developed on the bridge deck at wind speed much lower 

than the design one. Flutter is generally studied within linearized aeroelastic models, which can provide the 

range of wind speeds where Hopf bifurcation occurs. To consider the effects due to the unsteadiness of the 

relative motion between the section and the air flow, indicial Theodorsen type [14,15] formulations can be 

adopted to predict more accurately the critical wind speed at the onset of the flutter instability [16] with 

respect to the quasi-steady formulation. The equations of motion for suspension bridges were employed for 

aeroelastic investigations in [17], where analysis are centered on experimentally determined flutter 

derivatives, and a full three-dimensional modal analysis of the structure. 

It’s well known from non-linear dynamics that, between coupled oscillators, energy transfer [18] can occur 

as far as the energetic levels reaches critical well established thresholds. Classically this behaviour is referred 

to as the internal resonance phenomenon. Many authors applied this principles to study the vibrations 

response of suspension bridges. The authors of [19,20] used the continuous model proposed by Abdel-

Ghaffar [11], and solve the system of equations by means of the multiple scale perturbative technique [21]. 

Recently, Airoli and Gazzola [22], trying to explain why did torsional oscillations suddenly appears before the 

Tacoma Narrows collapse, found out that also in isolated systems as vertical oscillations become large 

enough they may switch to torsional ones. 

The problem was already tackled by other authors [23-27] but no one was able to identify the actual causes 

of that sudden large torsional oscillations. Hence, they paved the way for future works concerning the 

interaction between internal resonance and aeroelastic phenomena, as the present paper wants to do. 

The work intends to study the stability of a suspension bridge model using the continuum formulation 

proposed by Abdel-Ghaffar in [11] enriched by the terms coming from Theodorsen [15] indicial formulation 

for the wind-structure interaction. The stability will be checked in Lyapunov asymptotic sense exploiting the 

well-known Floquet theory [28]. The varational system of equations is obtained following the procedure 

proposed by Herrman [29] assuming small but finite flexural perturbations coming from vortex-shedding 

excitation. The possibility of parametric internal resonances such as harmonic, sub-harmonic and super-

harmonic, or additive combinational and anti-resonances will be checked by means of suitable stability maps. 
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Following the classical Deflection Theory, it is possible to write the nonlinear static flexural response of a 
suspension bridge, by simply enforcing the equilibrium condition in the deformed configuration of the deck-
cable system. A further step consists in the generalization of the displacement field in order to account for 
the torsional response of the deck-cables system. A variational formulation can be adopted, thus achieving 
the self-adjoin system of two equations of motion which is coupled due to non-linear (up to cubic) terms. 
The analytical expressions for modal shapes and frequencies of vibrations can be determined from the linear 
component of the complete nonlinear system of equations. A parametric analysis of the eigen-properties of 
the suspension bridge model allows us to detect the magnitude of influence of the main structural 
parameters introduced. Further the limit values for these parameters corresponding to the so-called Cross 
Over Frequency and Mode are analysed. 
 
The nonlinear equations of motion are then studied by means of the method of Multiple Scales, a 
perturbation technique, to find approximate analytical solutions. The direct approach allows us to avoid the 
discretization of the equations, and to write down the analytical expressions of second order correction of 
classical linear modal shapes. The parametric analysis shows that, under certain structural conditions, the 
second order correction of linear skew-symmetric modes may be symmetric, thus introducing a trailing wave 
in the response of the bridge. The amplitude and phase modulation equations are then obtained for the 
general forced and damped vibrations. Subsequent analysis of steady state response in the case of one-to-
one internal resonance focuses on the amplitude dependence of nonlinear frequency and on the stability of 
initial conditions. 
 
The aeroelastic behaviour is studied by means of the Theodorsen formulation. Wind forces introduce 
additional mass, damping and stiffness that not only couple the linear equations of motion but also yield a 
system which is no longer self-adjoin. In fact, it loses its symmetries both in damping and stiffness matrices, 
making the structure susceptible to flutter instabilities and static divergence problems, respectively. Hence 
for each of the different structural condition analysed, we are able to define a limit wind speed corresponding 
to torsional static Divergence and to the Flutter onset condition. For the latter case a comparison between 
the complete formulation of Thoedorsen, the steady-state and the quasi-static ones allows us to detect the 
main differences of the results coming from different approaches to the same problem. 
 
The nonlinear response of suspension bridges is caused not only by the so called global contribution given by 
the stiffening behaviour of the main cables system but also by the so called local one given by the slackening 
of hangers. Both phenomenon have geometrical reasons, the first associated to quadratic and cubic terms 
representing the main cables curvature and the second to linear ones due to the slenderness of the elements 
considered. In fact as the forces transmitted by the hangers become a compressive one and overcome the 
initial tension given by deck self-weight, hanger’s buckle and are no more able to transmit forces from the 
deck to the main cables. A simplified perfectly tenso-rigid constitutive model is assumed for hangers, in order 
to study the local reduction of the stiffness coming from the cables system. Hence, by means of linear 
equations, generalised conditions for slackening onset and development are defined introducing proper 
reductive parameters for the latter. 
Focusing on the simple flexural motion, for the different structural conditions, we have been able to detect 
the modal antinode amplitude necessary to led to the first slackening of hangers. Further the parametric 
analysis allows us to detect particular combination for structural parameter such that slackening will not be 
feasible. This analysis confirm the fact that as the order of the mode considered increases, the required 
slackening amplitude onset reduces. 
 
Finally, inspired by the pioneering work of Herrmann and Hauger, the stability analyses have been based on 
a linearized formulation that is able to represent the main structural non-linear effects and the coupling given 
by aerodynamic forces. By assuming, at a first step, null torsional vibrations and small but finite flexural ones, 
one can define the steady state solution of the flexural equation of motion forced by the vortex-shedding 
action. Then, by introducing small perturbations on the motions, a system of two variational equations is 
obtained, which can be used to check the stability of the motion directly applying the well- known Floquet 
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Theorem. The results confirm that the interaction between aeroelastic effects and non-linear internal 
resonance leads to unstable phenomena for wind speeds which are by far lower than the critical threshold 
for standard aeroelasticity. Further the analysis of stability maps confirm the possibility of parametric 
resonance of 2:1 type between flexural and torsional motion and the importance of bridge’s deck sectional 
shape factor in order to explain Parametric resonance phenomenon by means of Strouhal linear law for 
vortex-shedding excitation.  
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1. Problem formulation 
 

1.1. Deflection theory 

 

The classical Deflection theory allows us to study the nonlinear response of a suspension bridge enforcing 

equilibrium in the deformed configuration. 

 

1.1.1. General assumptions 
 

In order to be able to define the general nonlinear equations of motion the following assumptions hold: 

 

1) the self-weight of cables is negligible with respect to permanents loads acting on the deck; 

2) cables are inextensible just in the initial condition when they carry permanent loads only; 

3) permanent and variable loads are uniformly distributed along the length and the width of the 

bridge’s deck; 

4) negligible flexural stiffness of cables; 

5) inextensible hangers; 

6) curtain behaviour of hangers; 

7) rigid pylons and perfect constraints. 

 

The equilibrium equations of the two cables will consider just the central main span of the suspension bridge 

model. 

 

 
Figure 1.1_ Single span suspension bridge model. 

 

Notice that though there are clamps at the ends of cable, thanks to (4) they behave like hinges. By the same 

hypothesis, cables are able to resist external vertical loads just thanks to their axial internal tension since 

shear and bending moments are negligible. 

 

1.1.2. Equilibrium conditions 
 

In the initial condition, because of assumptions (1) and (6), permanent loads acting on the bridge’s deck 

mainly influence the shape of cables. 

Then, enforce equilibrium conditions of an infinitesimal piece of cable subjected to uniformly distributed 

loads along the horizontal projection of its length, as suggested by the hypothesis (3). 
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Figure 1.2_Cable static equilibrium configuration. 

 cable’s horizontal equilibrium in initial configuration: 

 

−𝑇
𝑑𝑥

𝑑𝑠
+ 𝑇

𝑑𝑥

𝑑𝑠
+
𝑑

𝑑𝑠
(𝑇

𝑑𝑥

𝑑𝑠
) 𝑑𝑠 = 0 ; 

 

𝑇
𝑑𝑥

𝑑𝑠
= 𝐻 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ; 

 

Because of the absence of axial loads, the horizontal projection H of the internal tension induced by 

permanent loads is constant. Therefore, T has to vary along the cable’s length in order to fulfil the 

tangential direction; hence, it reaches its maximum value in correspondence of the highest slope at 

cable’s ends. 

 

𝑇 = 𝐻
𝑑𝑥

𝑑𝑠
 ; 

 

 cable’s vertical equilibrium in initial configuration: 

 

−𝑇
𝑑𝑦

𝑑𝑠
+ 𝑇

𝑑𝑦

𝑑𝑠
−
𝑑

𝑑𝑠
(𝑇

𝑑𝑦

𝑑𝑠
) 𝑑𝑠 −

𝑝

2
𝑑𝑥 = 0 ; 

 

The equation refers to only one of the two cables on which the total amount of permanent loads per 

unit length p redistributes in equal parts because of (6) and (3). 

 
𝑑

𝑑𝑥
(𝑇

𝑑𝑦

𝑑𝑥
) = −

𝑝

2
 ; 

 

By substitution of 𝐻 = 𝑇
𝑑𝑥

𝑑𝑠
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

 

𝐻
𝑑2𝑦

𝑑𝑥2
= −

𝑝

2
 ; 

  

From the double integration of the last equation, it is possible to get the initial shape of the cable. 

Hence, thanks to the assumption (2), the actual parabolic shape corresponds to the exact catenary 
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configuration of the cable associated to uniformly distributed loads. While taking in account cable’s 

compressibility, a parabolic shape would be just a good approximation, as axial deformations remain 

small. Further, it is important to notice that the validity of (1) is fundamental to get a parabolic shape; 

in fact, the presence of a considerable self-weight is associated to an initial configuration of the cable 

that follows a hyperbolic cosine function (traditionally called “catenary”). Thus, the simplification for 

the following developments is evident. 

Because of the cable’s exact catenary shape, the initial configuration of the deck is unstressed. 

The derivation of the catenary expression refers only to geometrical quantities of the cable layout 

since they are more intuitive than static quantities, like external loads. 

  

  
𝑑2𝑦

𝑑𝑥2
= 𝐴 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ; 

 

  
𝑑𝑦

𝑑𝑥
= 𝐴𝑥 + 𝐵 ; 

 

  y(x)= 𝐴𝑥2 + 𝐵𝑥 + 𝐶 ; 

 

The assumptions (4) and (7) allow enforcing geometrical boundary conditions at cable’s ends as in 

the case of perfect hinges. The others constraints refer to the point at mid-span of maximum 

displacement (sag f ) and null slope. 

 

𝑦(0) = 0 ⇒ 𝐶 = 0 ; 

 

  𝑦 (
𝑙

2
) = 𝑓 ⇒ 𝐴

𝑙2

4
+𝐵

𝑙

2
= 𝑓 ⇒ 𝐴 = −4

𝑓

𝑙2
 ; 

 

  
𝑑𝑦

𝑑𝑥
(
𝑙

2
) = 0⇒𝐵 = −𝐴𝑙⇒𝐵 = −4

𝑓

𝑙
 ; 

 

The catenary expression representative of the cable’s initial configuration assumes the following 

parabolic shape. 

 

  𝑦(𝑥) = 4
𝑓

𝑙
𝑥(1 −

𝑥

𝑙
) ; 

 

The final configuration, which the cables reach after the addition of external variable loads to permanent 

ones, involves their compressibility, being (2) no more valid, then they lose their perfect catenary parabolic 

shape. 

Direct consequence of the first of previous statements coupled with the nonlinear geometrical hardening 

response of cables led to a nonlinear increase of both cable’s tension and vertical displacement. 

From the second one comes out that both the deck and the cables sustain the variable loads with a 

contribution proportional to their relative equivalent flexural stiffness. Thus, the amount sustained by the 

two cables is r(x), a uniform distributed load along their span thanks to (6). 

 

In vertical equilibrium equation, nothing changes but the following quantities. 

 

𝑝 ⇒ 𝑝 + 𝑟 ; 

𝐻 ⇒𝐻+ ℎ ; 

𝑦 ⇒ 𝑦 + 𝑣 ; 
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Notice that since both cable’s tension and slope vary with external loads, it’s necessary a variation 

of H to grant vertical equilibrium and tangential condition of the actual T+t, even if H+h remains 

constant along the cable’s span. 

 

 cable’s vertical equilibrium in current configuration: 

 

(𝐻 + ℎ)
𝑑2(𝑦+𝑣)

𝑑𝑥2
= −

𝑝+𝑟

2
 ; 

  

  𝐻
𝑑2𝑦

𝑑𝑥2
+ (𝐻 + ℎ)

𝑑2𝑣

𝑑𝑥2
+ ℎ

𝑑2𝑦

𝑑𝑥2
= −

𝑝

2
−
𝑟

2
 ; 

 

 Enforcing initial equilibrium condition 
𝑑2𝑦

𝑑𝑥2
= −

𝑝

2
 . 

 

  (𝐻 + ℎ)
𝑑2𝑣

𝑑𝑥2
+ ℎ

𝑑2𝑦

𝑑𝑥2
= −

𝑟

2
 ; 

 

  𝑟(𝑥) = −2(𝐻 + ℎ)
𝑑2𝑣

𝑑𝑥2
− 2ℎ

𝑑2𝑦

𝑑𝑥2
 ; 

 
Since at this stage the deck sustains a partial amount of total external load equal to q(x)-r(x), it undergoes 

to a deflection that involves its flexural stiffness. 

Concerning the vertical equilibrium equation of the infinitesimal piece of bridge’s deck, though the general 

format comes from the classical first order beam theory, it refers to the deformed configuration thanks to 

the dependence on r(x). 

 

 deck’s vertical equilibrium in current configuration: 

 

𝐸𝐼
𝑑4𝑤

𝑑𝑥4
= 𝑞 − 𝑟 ; 

 

Since it’s known the expression for (𝑥) = −2(𝐻 + ℎ)
𝑑2𝑣

𝑑𝑥2
− 2ℎ

𝑑2𝑦

𝑑𝑥2
 . 

 

𝐸𝐼
𝑑4𝑤

𝑑𝑦4
− 2(𝐻+ ℎ)

𝑑2𝑣

𝑑𝑥2
− 2ℎ

𝑑2𝑦

𝑑𝑥2
= 𝑞 ; 

 

The assumption (5) ensures that w(x)=v(x) . 
 

𝐸𝐼
𝑑4𝑣

𝑑𝑦4
− 2(𝐻+ ℎ)

𝑑2𝑣

𝑑𝑥2
− 2ℎ

𝑑2𝑦

𝑑𝑥2
= 𝑞 ; 

 

The last equilibrium equation links the cable and the deck response coupling the horizontal component of 

the cable’s tension with the vertical displacement of the deck. Since both previous quantities are unknown 

is necessary another equation in order to be able to solve the problem in close form. 
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1.1.3. Compatibility conditions 
 

Let’s consider an infinitesimal piece of cable undergoing to small elongation and write down the Pitagora 

identity in both the initial and final configuration. 

 

 
Figure 1.3_Cable end forces. 

 

 initial infinitesimal length: 

 

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 ; 

 

 final infinitesimal length: 

 

(𝑑𝑠 + 𝑑𝐿)2 = (𝑑𝑥 + 𝑑𝑢)2 + (𝑑𝑦 + 𝑑𝑣)2 ; 

 

 Developing the squares and substituting the initial length’s expression. 

 

  𝑑𝑠2 + 2 ∙ 𝑑𝑠 ∙ 𝑑𝐿 + 𝑑𝐿2 = 𝑑𝑥2 + 2 ∙ 𝑑𝑥 ∙ 𝑑𝑢 + 𝑑𝑢2 + 𝑑𝑦2 + 2 ∙ 𝑑𝑦 ∙ 𝑑𝑣 + 𝑑𝑣2 ; 

 

 Derive two times with respect to x and collect horizontal strain component. 

 

  
𝑑𝑢

𝑑𝑥
=
𝑑𝑠

𝑑𝑥

𝑑𝐿

𝑑𝑥
−
𝑑𝑦

𝑑𝑥

𝑑𝑣

𝑑𝑥
−
1

2
(
𝑑𝑣

𝑑𝑥
)
2
−
1

2
(
𝑑𝐿

𝑑𝑥
)
2
−
1

2
(
𝑑𝑢

𝑑𝑥
)
2

 ; 

 Write some terms in a more suitable form. 

  

  
𝑑𝑥

𝑑𝑠
= cos 휃 ; 

 

  
𝑑𝐿

𝑑𝑥
=
𝑑𝐿

𝑑𝑠

𝑑𝑠

𝑑𝑥
=

𝑡(𝑥)

𝐸𝐴(𝑥)

1

cos
=

ℎ

𝐸𝐴(𝑥)

1

cos 2 ; 

 

 Integrate the horizontal strain all over the span. 

 

  ∆𝑢 = ∫
𝑑𝑢

𝑑𝑥
𝑑𝑥 =

𝑙

0
ℎ ∫

𝑑𝑥

𝐸𝐴(𝑥)∙cos 3 − ∫ 𝑦
′𝑣′𝑑𝑥 −

1

2
∫ 𝑣′2𝑑𝑥 +

1

2
∫ 𝐿′2𝑑𝑥 +
𝑙

0

1

2
∫ 𝑢′2𝑑𝑥
𝑙

0

𝑙

0

𝑙

0

𝑙

0
 ; 
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Where the last two contributions are in general negligible due to the assumption of small 

displacements, while the one linked to 𝑣′2 still be important since large rotations are still taken in 

account. 

 

 Integrate by parts the second term on the right hand side of the equation and enforce hypothesis (7). 

 

  ∫ 𝑦′𝑣′𝑑𝑥 = [𝑦′𝑣]𝑥=0
𝑥=𝑙 −

𝑙

0 ∫ 𝑦′′𝑣𝑑𝑥
𝑙

0
 ; 

 

  𝑣(0) = 𝑣(𝑙) = 0 ; 

 

  ∆𝑢 = ℎ ∫
𝑑𝑥

𝐸𝐴(𝑥)∙cos 3 + ∫ 𝑦′
′𝑣𝑑𝑥 −

1

2
∫ 𝑣′2𝑑𝑥
𝑙

0

𝑙

0

𝑙

0
 ; 

 

 Introduce an equivalent reference length for the cable. 

 

  𝐿𝑐 = 𝐴𝑐 ∫
𝑑𝑥

𝐴(𝑥)∙cos 3

𝑙

0
 ; 

 

  ∆𝑢 =
ℎ∙𝐿𝑐

𝐸∙𝐴𝑐
+ ∫ 𝑦′′𝑣𝑑𝑥 −

1

2
∫ 𝑣′2𝑑𝑥
𝑙

0

𝑙

0
 ; 

 

The compatibility condition comes from assumption (7) and it states that pylons cannot get closer or 

further. 

 

  ∆𝑢 = 0  ⇒  ℎ =
𝐸∙𝐴𝑐

𝐿𝑐
∙ (−∫ 𝑦′′𝑣𝑑𝑥 +

1

2
∫ 𝑣′2𝑑𝑥
𝑙

0

𝑙

0
) ; 

 

The expression barely found it’s useful to introduce the concept of equivalent length Lc and the 

relation between cable’s elongation and the associate horizontal component h of the internal 

tension‘s increment. 

 

 ℎ = 𝐸𝐴𝑐
∆𝐿

𝐿𝑐
 ; 

 

Then it is important to underline the fact that the previous expression for the cable’s elongation is 

an approximation. This is evident from the first term, representing the contribution of the cable’s 

curvature, which neglects the contribution of the slope at the denominator typical of small 

perturbation approaches. 

Thence it is necessary a refinement of the expression for the cable’s elongation. 

 

To fulfil compatibility is necessary to know the actual curvilinear length of the cable in its different 

configurations, which means before and after the vertical perturbation v(x) of cable’s displacement takes 

place. 

 

 initial length: 

𝐿𝑖 = ∫ 𝑑𝑠
𝐿𝑖
0

= ∫ √(𝑑𝑥2 + 𝑑𝑦2)
𝑙

0
= ∫ √1 + (

𝑑𝑦

𝑑𝑥
)
2
𝑑𝑥

𝑙

0
 ; 
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 final length: 

𝐿𝑓 = ∫ √1 + [
𝑑(𝑦+𝑣)

𝑑𝑥
]
2
𝑑𝑥

𝑙

0
 ; 

 

Notice the implicit assumption stating that the increment in horizontal direction is negligible. 

Anyway, the solution of the previous integral is not of immediate computation; an approximate solution is 

available through a McLaurin’s series expansion truncated at second order terms of the unknown variable 

v(x)’. 
 

 basic function: 
 

𝑓(𝑣′) = √1 + (𝑦′ + 𝑣′)2 = √1 + 𝑦′2 + 2𝑦′𝑣′ + 𝑣′2 ; 

 
 I derivative: 

 
𝑑𝑓

𝑑𝑣′
=
𝑦′+𝑣′

𝑓(𝑣′)
 ; 

 
 II derivative: 

 

𝑑2𝑓

𝑑𝑣′2
=
𝑓(𝑣′)−(𝑦′+𝑣′)

𝑑𝑓

𝑑𝑣′

𝑓(𝑣′)2
=
𝑓(𝑣′) − 

(𝑦′+𝑣′)
2

𝑓(𝑣′)
 

𝑓(𝑣′)2
=
𝑓(𝑣′)

2
− (𝑦′+𝑣′)2

𝑓(𝑣′)3
=

1

[1+(𝑦′+𝑣′)2]3/2
 ; 

 

 McLaurin II order expansion: 

 

𝑓(𝑣′) ≅ 𝑓(𝑣′ = 0) + [
𝑑𝑓

𝑑𝑣′
]
𝑣′=0

∙ 𝑣′ + [
𝑑2𝑓

𝑑𝑣′
2]
𝑣′=0

∙
𝑣′
2

2
+ 𝜊(𝑣′3) ; 

 

Hence. 

  

𝑓(𝑣′) ≅ √1 + 𝑦′2 +
𝑦′𝑣′

√1+𝑦′
2
+

𝑣′2

2(1+𝑦′
2
)
3/2 ; 

 

 approximate expression of cable’s length: 

 

𝐿𝑓 = ∫ √1 + 𝑦
′2𝑑𝑥 + ∫

𝑦′𝑣′

√1+𝑦′
2
𝑑𝑥 +

1

2
∫

𝑣′2

(1+𝑦′
2
)
3/2 𝑑𝑥

𝑙

0

𝑙

0

𝑙

0
= 𝐿𝑖 + ∆𝐿 ; 

 

Only the last two terms, representative of cable’s elongation, are of interest in order to enforce compatibility 

with external constraints. 

 

Partial integration of the first term inside ΔL allows us a simplification in following computations. 

 

 primitive function: 

 

  𝑔(𝑥) =
𝑦′𝑣

√1+𝑦′2
 ; 
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 I derivative: 

 

𝑑𝑔

𝑑𝑥
=

(𝑦′′𝑣+𝑦′𝑣′)√1+𝑦′
2
−
𝑦′′𝑦′

2
𝑣

√1+𝑦′
2

1+𝑦′2
=
(𝑦′′𝑣+𝑦′𝑣′)∙(1+𝑦′

2
)−𝑦′′𝑦′

2
𝑣

(1+𝑦′
2
)
3/2 =… 

 

 

… =
𝑦′′𝑣+𝑦′𝑣′∙(1+𝑦′

2
)

(1+𝑦′
2
)
3/2 =

𝑦′𝑣′

√1+𝑦′
2
+

𝑦′′𝑣

(1+𝑦′
2
)
3/2 ; 

 

 cable’s elongation: 

 

∆𝐿 = [
𝑦′𝑣

√1+𝑦′2
]
𝑥=0

𝑥=𝑙

− ∫
𝑦′′𝑣

(1+𝑦′
2
)
3/2 𝑑𝑥 +

1

2
∫

𝑣′2

(1+𝑦′
2
)
3/2 𝑑𝑥

𝑙

0

𝑙

0
 ; 

 

 boundary conditions: 

 

Because of the assumptions (7) and (5) respectively. 

 

𝑣(0) = 𝑣(𝑙) = 0 ; 

  

  𝑣(𝑥) = 𝑤(𝑥) ; 

 

 Then. 

 

  ∆𝐿 = −∫
𝑦′′𝑣

(1+𝑦′
2
)
3/2 𝑑𝑥 +

1

2
∫

𝑣′2

(1+𝑦′
2
)
3/2 𝑑𝑥

𝑙

0

𝑙

0
 ; 

 

With this expression, the cable’s elongation takes in consideration also the contribution of its slope but the 

format is identical to that previously found. 

 

It is of interest to test the contribution of different terms in the previous series expansion. 

To do that in a simple way, first analyse the case of a homothetic deformation of the parabolic cable with a 

main span of 1000m and a central sag of 100m. 

 

𝑣(𝑥) = 𝛼 ∙ 𝑦(𝑥) ; 

𝑙 = 1000𝑚 ; 

𝑓 = 100𝑚 ; 

 

The amplification factor α ranges between positive and negative values to be able to take in account cable’s 

stiffening but also loosening. 

To get a higher accuracy, add further two terms to the series expansion, respectively of the third and fourth 

order. In this way, it is possible to maintain equal the total number of terms with pair and odd exponent, 

which respectively loose or not the sign of α. 
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∆𝐿 = −∫
𝑦′′𝛼𝑦

(1+𝑦′
2
)
3/2 𝑑𝑥 +

1

2
∫

(𝛼𝑦)′2

(1+𝑦′
2
)
3/2 𝑑𝑥

𝑙

0

𝑙

0
−
1

2
∫

𝑦′(𝛼𝑦)′3

(1+𝑦′
2
)
5/2 𝑑𝑥 −

1

8
∫
(1−4𝑦′2)(𝛼𝑦)′4

(1+𝑦′
2
)
7/2

𝑙

0

𝑙

0
𝑑𝑥 ; 

 

Numerical integration, by means of rectangle approximation, allows plotting the variation of the cable’s 

elongation as the homothetic amplification changes. 

 

 
Figure 1.4_Cable’s elongation for large homothetic perturbation’s amplitude. 

 

Notice that the linear contribution is dominant all over the other approximately up to |α| =2, beyond which 

the quadratic term rapidly grows and higher order ones start to become relevant. 

For positive values of α, the response of the cable simply shows a monotonic stiffening behaviour. Whereas, 

as α starts to become negative, initially the cable reduces its length, then it slacks (α =-1) where the 

elongation reach a minimum, and finally, as the perturbation doubles the initial parabolic configuration (α=-

2), the length increases again since the cable’s configuration is just mirrored with respect to the initial one. 
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Figure 1.5_ Elongation’s percentage contribution for large amplitudes. 

 

The figure 4 tries to detect the percentage contribution of each series term to the total elongation. 

All the percentages explode at α=-2 in consequence of the fact that the cable’s elongation here is null. On 

the other hand, contributions higher than 100% or with negative sign are due to the presence of both positive 

and negative contributions to the overall elongation. 

 
Figure 1.6_ Cable’s elongation for realistic perturbation’s amplitude. 
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The relevant observation is that in real situations perturbation v(x) represents a little percentage of the initial 

configuration, approximately of the order of 10% the central sag. Therefore, is relevant just the contribution 

of the first two terms of the series. 

 

 
Figure 1.7_ Elongation’s percentage contribution for small amplitudes. 

The term proportional to v’2 is crucial for the modelling of the cable’s nonlinear stiffening response, at least 

with a second order approximation, though it’s percentage contribution doesn’t overcome the 5% even for 

α=10%. 

 

Much more interesting is the slope contribution. In fact, it can be of critical importance because of the cable’s 

parabolic shape has a large sag that is associated to high slope near the support’s extremities. 
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Figure 1.8_ Exact vs approximate curvature. 

 

It is evident that neglecting the slope contribution led to results that are reliable and conservative (green 

line). Thus, it is possible to use the first simple and handy formulation found for ΔL to be on safe side. 

 

∆𝐿 = −∫ 𝑦′′(𝛼𝑦)𝑑𝑥 +
1

2
∫ (𝛼𝑦)′2𝑑𝑥
𝑙

0

𝑙

0
 ; 

 

We notice that neglecting the second order term but taking in account the complete curvature expression, 

or taking its approximate expression, it is possible to reach the same level of accuracy. In fact, both the second 

order term and the slope has the same weight of about 5% on the total elongation of the cable. 

 

On the other hand, it is easy to see that as the sag f  tends to infinity the asymptotic behaviour of the cable 

changes strongly from one model to another. In fact, taking in consideration the presence of y’  the trend of 

ΔL is hyperbolic, whereas using the simplified expression the cable’s elongation explodes with a power of 

two. 

Concerning the influence of the cable’s span l  it establishes a quadratic relation with the cables’ elongation 

in its complete formulation and a fourth order hyperbole in the simplified form. 

 

Up to now, we have considered the presence of a unique antinode; but the dynamic response of a real cable 

can be very similar to that of a sinusoid. Then, the initial model would be too conservative dealing with higher 

order modal shapes. In order to be able to catch the actual elongation in a more generic framework, let us 

assume that our reference cable shapes itself as a sine function with arbitrary number of half waves. 

 

𝑤(𝑥) = 𝑊𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑙
) ; 

 

This kind of approach is a kind of assumed mode method, and allows defining each term contributing to the 

total elongation of the cable. 
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∆𝐿 = −∫
𝑦′′𝑤

(1+𝑦′
2
)
3/2 𝑑𝑥 +

1

2
∫

𝑤′2

(1+𝑦′
2
)
3/2 𝑑𝑥

𝑙

0

𝑙

0
−
1

2
∫

𝑦′𝑤′3

(1+𝑦′
2
)
5/2 𝑑𝑥 −

1

8
∫
(1−4𝑦′2)𝑤′4

(1+𝑦′
2
)
7/2

𝑙

0

𝑙

0
𝑑𝑥 ; 

 

The first test focuses on the influence of the number of half waves, and then it is possible to assume a unitary 

perturbation amplitude. 

 

 
Figure 1.9_Cable’s elongation for large number of sinusoidal half waves. 

 

The choice of plotting the results for a large range of half wave’s numbers allows focusing on the general 

path followed by each contribution. 

Since the third and the fourth order terms are always negligible, let us focus on the other two. 

 

The first order term has a strange pattern due to its analytical expression. For sake of simplicity, let’s write it 

by means of the approximate expression for the curvature, neglecting the slope contribution. 

 

∆𝐿1 = −∫ (𝑦
′′𝑤)𝑑𝑥

𝑙

0
=
8𝑓

𝑙2
𝑊∫ 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑙
)𝑑𝑥

𝑙

0
= −

8𝑓

𝑛𝜋𝑙
𝑊(cos(𝑛𝜋) − 1) ; 

 

Then the linear contribution vanishes for each modal shape characterised by an even number of half waves, 

but for all the odd values it decreases along a hyperbolic path. 

Contrary the second order one increases monotonically with a power of two its overall contribution. Also in 

this case let’s write the analytical expression neglecting the slope contribution to the curvature. 

 

∆𝐿2 =
1

2
∫ 𝑤′2𝑑𝑥
𝑙

0
=
1

2
(𝑊

𝑛𝜋

𝑙
)
2

∫ [𝑐𝑜𝑠 (
𝑛𝜋𝑥

𝑙
)]
2
𝑑𝑥

𝑙

0
 ; 
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Where by means of partial integration. 

 

∫ [𝑐𝑜𝑠 (
𝑛𝜋𝑥

𝑙
)]
2
𝑑𝑥

𝑙

0
= ∫ 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝑙
) 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝑙
)

𝑙

0
𝑑𝑥 =

𝑛𝜋

𝑙
[𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝑙
) 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑙
)]
0

𝑙
+ ∫ [𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑙
)]
2
𝑑𝑥

𝑙

0
 ; 

 

Some simplifications hold. 

 

[𝑐𝑜𝑠 (
𝑛𝜋𝑥

𝑙
) 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑙
)]
0

𝑙
= 0 ; 

 

∫ [𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑙
)]
2
𝑑𝑥

𝑙

0
= ∫ 1 − [𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝑙
)]
2
𝑑𝑥

𝑙

0
 ; 

 

Hence finally. 

 

∫ [𝑐𝑜𝑠 (
𝑛𝜋𝑥

𝑙
)]
2
𝑑𝑥

𝑙

0
=
𝑙

2
 ; 

 

∆𝐿2 = (𝑊
𝑛𝜋

2√𝑙
)
2
 ; 

 

As in a modal approach only the lower order modes are of practical interest, let’s compare the contribution 

to the total elongation associated to small number of half waves. 

 

 
Figure 1.10_Cable’s elongation for a realistic number of sinusoidal half waves. 

 

First, it’s important to underline the huge decrease of total elongation passing from just one to higher number 

of half waves. In fact, also considering odd “modes ”, in which the first order term doesn’t vanish, we need 

to wait until the 14° one so that the second order contribution grants the same elongation of the 1°. 
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But this condition is purely ideal since higher order modes in general has smaller perturbation’s amplitude, 

then it’s expected even a much higher reduction of total elongation as the number of half waves increases. 

This considerable reduction can be easily explained thinking of the fact that in higher order modes there are 

region of the cable that are slackening not only with negative W. Hence, there the perturbation always 

counterbalance partially the initial deformation. 

Because of the stress stiffening behaviour of the reference cable, higher order modes can have lower 

stiffness. This leads to lower frequencies of oscillations and then can happen that higher order modes appear 

earlier. 

For the first mode is approximately valid the same discussion made for the parabolic homothetic deformation 

with a parameter of perturbation α=1%, where the second order term practically vanishes. 

 

Now it’s possible to briefly analyse the influence of other parameters as the span’s length or the 

perturbation’s amplitude. 

 

 
Figure 1.11_Parametric influence of the perturbation’s amplitude. 

 

Concerning the second order contribution is important to notice that its magnitude is fundamental in 

correspondence of all even modes since the first order one vanishes but in odd ones plays an important 

role another parameter. In fact, from the analytical expression of the first and second order contribution, 

it’s possible to notice that the perturbation’s amplitude enters respectively in a linear and quadratic term. 

Then, as W increases, the second order contribution becomes dominant on the first one in correspondence 

of a lower number of half waves. 

For a deeper insight in the contribution of the perturbation, it’s possible to plot for each number of half 

waves the elongation’s trend as W varies. 
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Figure 1.12_Elongation path for the first mode. 

 

The first sinusoidal mode behaves practically in the same manner as the homothetic parabola. In fact, the 

first order term dominates the second one, that weights just the 5% on the total elongation, and then can be 

neglected also for large perturbations. Then the linear approximation gives good results also for large 

displacements. 

 

 
Figure 1.34_Elongation path for the second mode. 



41 
 

 

 

Considering the second mode, being representative of all other even ones, here the second order term is the 

only one that grants an increment in the cable’s length since the first order contribution vanishes. Its 

contribution increases with the number of half waves as already stated and then neglecting it would lead to 

misleading and unsafe approximations. It’s noticeable that there’s an easy physical explanation behind the 

symmetry of the second mode response. In fact, it comes from the fact that the region of softening and 

hardening are equal along the cable. Hence, it is insensitive to the sign of the perturbation since the number 

of positive and negative half waves are the same. 

 

 
Figure 1.35_Elongation path for the third mode. 

 

The third one can represent the odd modes. At a first glance it easy to see that both the linear and the 

quadratic terms are essential to catch the actual elongation. The first one introduce a remarkable asymmetric 

response in correspondence of positive or negative perturbations. On physical ground, this is because the 

number of positive and negative half waves cannot be the same in odd modes. Therefore if W is negative, 

the negative contributions overcome the positive ones and the cable is shortening from the initial 

configuration. About this point are valid the comments made for the homothetic deformation in presence of 

large negative α concerning the point of null elongation. As already said for higher order odd modes the 

quadratic contribution becomes dominant, in fact the total elongation tends to align on a symmetric path. 
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Finally can be of interest to underline the influence of the slope contribution in defining the exact curvature 

of the reference cable. 

 

 
Figure 1.15 _Exact vs approximate curvature. 

 

As can be seen from the previous graph, it’s valid the same conclusion written for the case of an homothetic 

parabolic deformation. Hence assuming an approximate expression for the cable’s curvature leads to an 

overestimation of its actual elongation. This is not always true in the case of odd modes; in fact, their 

asymmetry leads to an underestimation of cable’s elongation for negative W. This is because the shortening 

contributions dominates the positive ones because of higher number of negative half waves, until the cable 

starts again to elongate. 
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Figure 1.16_Exact vs approximate curvature for the third mode. 

 

Nevertheless, with respect to the previous analysis is not always possible to states that this overestimation 

compensate the lack of the second order term contribution, since its magnitude depends on the number of 

half waves and the perturbation amplitude considered.  
 

To conclude, concerning cable’s compatibility it’s possible to state that: 

 

 for usual perturbation’s amplitude it’s always possible to neglect third and fourth order terms in the 

series expansion of the cable’s elongation; 

 for single half wave it’s possible to consider just the linear term and an approximate curvature to get 

reliable results also in large deflections; 

 for two or more half waves’ number it’s strictly necessary to consider both the linear and the 

quadratic terms; 

 in the last case the approximated curvature introduces higher overestimation of cable’s length than 

in the single half wave mode; 

 for relevant higher order modes than the first, the negative contribution of antinode waves reduces 

drastically the cable’s elongation. 
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1.2. Extended 2 dof model 
 

The classical Deflection theory takes in consideration just the possibility of vertical displacement of the 

bridge. This is not enough accurate for very large bridges, for which the rotational degree of freedom plays 

an important role in the response of the structure due to its low torsional stiffness. 

 

1.2.1. TPE formulation 
 

The straight and simplest way to extend the classical deflection theory to a 2 dof model requires to 

reformulate the classical deflection Theory in energetic terms. 

 

First of all let’s write again the compatibility of an infinitesimal cable in order to introduce some fundamental 

quantities. 

 

(𝑑𝑠 + 𝑑𝐿)2 = (𝑑𝑥 + 𝑑𝑢)2 + (𝑑𝑦 + 𝑑𝑣)2 ; 

 

𝑑𝑠2 + 2 ∙ 𝑑𝑠 ∙ 𝑑𝐿 + (𝑑𝐿2) = 𝑑𝑥2 + 2 ∙ 𝑑𝑥 ∙ 𝑑𝑢 + (𝑑𝑢2) + 𝑑𝑦2 + 2 ∙ 𝑑𝑦 ∙ 𝑑𝑣 + 𝑑𝑣2 ; 

 

𝑑𝑠 ∙ 𝑑𝐿 = 𝑑𝑥 ∙ 𝑑𝑢 + 𝑑𝑦 ∙ 𝑑𝑣 + 𝑑𝑣2/2 ; 

 

Hence it’s possible to define the cable’s axial strain and by the assumption of linear elasticity the associated 

axial tension. 

 

 휀(𝑠) =
𝑑𝐿

𝑑𝑠
=
𝑢′+𝑦′𝑣′+𝑣′2/2

𝑠′2
=

̃

𝑑𝑠
 ; 

 

𝜏(𝑠) = 𝐸𝑐𝐴𝑐 ∙ 휀 ; 

 

The component of the cable’s tension in the horizontal plan is given by a simple trigonometric projection of 

inclined axial tension, assumed to be aligned with the initial not perturbed configuration of the cable. 

 

ℎ(𝑥) =
𝜏(𝑠)

𝑠′
=
𝐸𝑐𝐴𝑐

𝑠′3
∙ 휀̃ ; 

 

Now we are ready to write the Total Potential Energy Variation of the suspension bridge starting from the 

initial equilibrium configuration under self-weight up to the final perturbed one under external variable loads. 

 

 ∆𝑉(𝑢, 𝑣, 𝑞) = 𝑉(𝑢, 𝑦 + 𝑣, 𝑔 + 𝑞) − 𝑉(0, 𝑦, 𝑔) = 𝐸𝑑𝑒𝑐𝑘 + 2𝐸𝑐𝑎𝑏𝑙𝑒 − 𝐿𝑒𝑥𝑡 ; 

 

Lets’ analyse each single contribution starting from the elastic energy stored by the deck that is associated 

only to its flexural deformation. Quantitatively this involves the bending moment distribution along the 

bridge’s span, which from the assumption of linear elastic material response is linearly dependent on the 

curvature by means of the flexural stiffness. Further the parametric analysis of the previous chapter allows 

us to consider a simplified expression for the curvature, neglecting the slope contribution. 

 

 𝐸𝑑𝑒𝑐𝑘 =
1

2
∫ 𝑀(𝑥) ∙ 𝜒(𝑥)𝑑𝑥
𝑙

0
=
1

2
∫ 𝐸𝑑𝐼𝑑 ∙ (

𝑑2𝑤

𝑑𝑥2
)
2

𝑑𝑥
𝑙

0
 ; 

 



45 
 

Notice that up to now all sectional properties are considered generically variable along the length of the 

element under consideration. 

 

On the other hand each cable has two contributions of different nature. The first one is associated to the 

initial constant tension needed by assumption to sustain the self-weight of the whole structure. The second 

takes in account the nonlinear geometrical response of the cable, introducing a higher order correction to 

the energy stored, that takes in account the variable increment of the cable’s tension along its effective 

length. 

 

 𝐸𝑐𝑎𝑏𝑙𝑒,𝐻 = ∫ 𝑇(𝑥) ∙ 휀(𝑥)𝑑𝑠
𝐿

0
= ∫ 𝐻𝑠′(𝑥) ∙

̃(𝑥)

𝑠′2
𝑑𝑠

𝐿

0
= 𝐻∫ 휀̃(𝑥)𝑑𝑥

𝑙

0
 ; 

 

 𝐸𝑐𝑎𝑏𝑙𝑒,ℎ =
1

2
∫ 𝜏(𝑥) ∙ 휀(𝑥)𝑑𝑠
𝐿

0
=
1

2
∫ 𝐸𝑐𝐴𝑐  ∙ 휀(𝑥)

2𝑑𝑠
𝐿

0
=
1

2
∫ 𝐸𝑐𝐴𝑐  ∙

̃(𝑥)2

𝑠′4
𝑑𝑠

𝐿

0
=
1

2
∫ 𝐸𝑐𝐴𝑐  ∙

̃(𝑥)2

𝑠′3
𝑑𝑥

𝑙

0
 ; 

 

From the last two expression is evident that the energetic contribution linked to cable’s tension increment is 

nonlinear with both cable’s strain and undeformed configuration. 

 

Finally the contribution of external actions associated to permanent self-weight loads and variable ones. 

 

 𝐿𝑒𝑥𝑡 = ∫ (𝑔 + 𝑞) ∙ 𝑤𝑑𝑥
𝑙

0
 ; ; 

 

The assumption of taut hangers allows us to write the TPE variation just in terms of the vertical displacement 

of the deck, being equal to that of the corresponding point on the cable. 

 

  𝑣(𝑥) = 𝑤(𝑥) ⇒ ∆𝑉(𝑢,𝑤, 𝑔, 𝑞) = {

1

2
∫ 𝐸𝑑𝐼𝑑 ∙ 𝑤

′′2𝑑𝑥
𝑙

0
+𝐻∫ (𝑢′ + 𝑦′𝑤′ +

𝑤′2

2
) 𝑑𝑥

𝑙

0
+

+
1

2
∫
𝐸𝑐𝐴𝑐

𝑠′3
 ∙ (𝑢′ + 𝑦′𝑤′ +

𝑤′2

2
)
2

𝑑𝑥
𝑙

0
− ∫ (𝑔 + 𝑞) ∙ 𝑤𝑑𝑥

𝑙

0

} ; 

 

Performing an integration by parts and enforcing the simply supports boundary conditions it’s possible to 

extract from the TPE formulation the initial equilibrium equation. 

 

 ∫ 𝑦′𝑤′𝑑𝑥
𝑙

0
= [𝑦′𝑤]0

𝑙 − ∫ 𝑦′′𝑤𝑑𝑥
𝑙

0
= 𝑦′(𝑙)𝑤(𝑙) − 𝑦′(0)𝑤(0) − ∫ 𝑦′′𝑤𝑑𝑥

𝑙

0
= −∫ 𝑦′′𝑤𝑑𝑥

𝑙

0
 ; 

 

 𝐻∫ 𝑦′𝑤′𝑑𝑥
𝑙

0
− ∫ 𝑔 ∙ 𝑤𝑑𝑥

𝑙

0
= −∫ (𝐻𝑦′′ + 𝑔) ∙ 𝑤𝑑𝑥

𝑙

0
= 0 

 

Hence it’s possible to simplify the TPE formulation as follows. 

 

 ∆𝑉(𝑢,𝑤, 𝑞) = {

1

2
∫ 𝐸𝑑𝐼𝑑 ∙ 𝑤

′′2𝑑𝑥
𝑙

0
+ 2𝐻∫ (𝑢′ +

𝑤′2

2
) 𝑑𝑥

𝑙

0
+

+2 [
1

2
∫
𝐸𝑐𝐴𝑐

𝑠′3
 ∙ (𝑢′ + 𝑦′𝑤′ +

𝑤′2

2
)
2

𝑑𝑥
𝑙

0
] − ∫ 𝑞 ∙ 𝑤𝑑𝑥

𝑙

0

} ; 

 

Enforcing the stationarity of the variational formulation along with suitable boundary conditions both for the 

suspension cables and the stiffening deck, leads to the equilibrium equations in the longitudinal and vertical 

directions. 
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Suitable boundary conditions for the longitudinal equilibrium are those that grant fixed perfectly rigid pylons. 

Otherwise taking in account also the possible motion of pylons we should consider that the cables curvature 

increases as pylons comes near and vice versa. 

 

𝑏. 𝑐. = {
𝑢(0) = 𝑢(𝑙) = 0 ⇒ 𝑑𝑢(0) = 𝑑𝑢(𝑙) = 0

𝐻 = 𝑐𝑜𝑛𝑠𝑡 ⇒ 𝐻′ = 0

 ; 

 

 

 𝛿𝑢𝑉 =

{
 
 
 
 

 
 
 
 2𝐻 ∫ 𝑑𝑢

′𝑑𝑥
𝑙

0
+ ∫

𝐸𝑐𝐴𝑐

𝑠′3
∙ 2 (𝑢′ + 𝑦′𝑤′ +

𝑤′2

2
) 𝑑𝑢′𝑑𝑥

𝑙

0
= 2∫ (𝐻 + ℎ)𝑑𝑢′𝑑𝑥

𝑙

0
=

= 2[(𝐻 + ℎ)𝑑𝑢]0
𝑙 − 2∫ (𝐻 + ℎ)′𝑑𝑢𝑑𝑥

𝑙

0
=

= 2[(𝐻 + ℎ(𝑙))𝑑𝑢(𝑙) − (𝐻 + ℎ(0))𝑑𝑢(0)] − 2∫ ℎ′𝑑𝑢𝑑𝑥
𝑙

0
=

= −2∫ ℎ′𝑑𝑢𝑑𝑥
𝑙

0 }
 
 
 
 

 
 
 
 

 ; 

 

 

𝛿𝑢𝑉 = 0   ∀𝛿𝑢 ⇔ ℎ(𝑥) = 𝑐𝑜𝑛𝑠𝑡 ; 

 

The final statement is coherent with the assumptions of fixed pylons and the absence of longitudinal loadings, 

and it allows us to define an important term related to the main cable’s tension increment. This term is in 

general called global or non-local term since has to be distinguished from the local one typical of 4 dof models 

that takes in account also the actual stiffness of hanger. Since in 2 dof model hangers are considered as 

perfectly rigid not only in tension but also in compression, the cable’s stiffening action has a distributed effect 

on all the structure. In fact the cable can be seen as a non-uniform distributed set of springs that smear out 

local effects of external loads along the whole length of the stiffening deck. 

Hence the global increment of the cable’s tension is not dependent on the position along the cable but only 

on the integral contributions along all its length.  

 

ℎ(𝑤) = ∫ ℎ(𝑥)𝑑𝑥
𝑙

0
=

{
 
 
 

 
 
 ∫

𝐸𝑐𝐴𝑐

𝑠′3
𝑑𝑥

𝑙

0
∙ ∫ (𝑢′ + 𝑦′𝑤′ +

𝑤′2

2
) 𝑑𝑥

𝑙

0
=

=
𝐸𝑐𝐴𝑐̅̅ ̅̅ ̅̅ ̅

𝐿𝑐
∙ [𝑢(𝑙) − 𝑢(0) + ∫ (𝑦′𝑤′ +

𝑤′2

2
) 𝑑𝑥

𝑙

0
] =

=
𝐸𝑐𝐴𝑐̅̅ ̅̅ ̅̅ ̅

𝐿𝑐
∙ ∫ (𝑦′𝑤′ +

𝑤′2

2
) 𝑑𝑥

𝑙

0 }
 
 
 

 
 
 

 ; 

 

As can be seen has been introduced an equivalent cable’s length that takes in account also the variation of 

its sectional axial stiffness. 

 

 𝐿𝑐 = ∫
𝐸𝑐𝐴𝑐̅̅ ̅̅ ̅̅ ̅

𝐸𝑐𝐴𝑐
∙ 𝑠′3𝑑𝑥

𝑙

0
 ; 

 

Then for the vertical direction are sufficient the boundary conditions associated to a simply supported beam. 
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𝑏. 𝑐. =

{
 
 

 
 𝑤(0) = 𝑤(𝑙) = 0 ⇒ 𝑑𝑤(0) = 𝑑𝑤(𝑙) = 0

𝑤′′(0) = 𝑤′′(𝑙) = 0

𝐻, ℎ(𝑤) = 𝑐𝑜𝑛𝑠𝑡(𝑥)

 ; 

 

 

𝛿𝑤𝑉 =

{
 
 
 
 

 
 
 
 

1

2
∫ 𝐸𝑑𝐼𝑑 ∙ 2𝑤

′′𝑑𝑤′′𝑑𝑥 + 2𝐻 ∫
2𝑤′𝑑𝑤′

2
𝑑𝑥

𝑙

0

𝑙

0
+

+2 [
1

2
∫
𝐸𝑐𝐴𝑐

𝑠′3
 ∙ 2 (𝑢′ + 𝑦′𝑤′ +

𝑤′2

2
) (𝑦′ +

2𝑤′

2
) 𝑑𝑤′𝑑𝑥

𝑙

0
] − ∫ 𝑞 ∙ 𝑑𝑤𝑑𝑥

𝑙

0
=

= ∫ 𝐸𝑑𝐼𝑑 ∙ 𝑤
′′𝑑𝑤′′𝑑𝑥 + 2𝐻∫ 𝑤′𝑑𝑤′𝑑𝑥

𝑙

0

𝑙

0
+

+2ℎ(𝑤) ∙ ∫ (𝑦′ +𝑤′)𝑑𝑤′𝑑𝑥
𝑙

0
− ∫ 𝑞 ∙ 𝑑𝑤𝑑𝑥

𝑙

0 }
 
 
 
 

 
 
 
 

 ; 

 

 

𝛿𝑤𝑉 = 0   ∀𝛿𝑤⇔ {

∫ 𝐸𝑑𝐼𝑑 ∙ 𝑤
′′𝑑𝑤′′𝑑𝑥

𝑙

0
+ 2𝐻∫ 𝑤′𝑑𝑤′𝑑𝑥

𝑙

0
+

+2ℎ(𝑤) ∙ ∫ (𝑦′ +𝑤′)𝑑𝑤′𝑑𝑥
𝑙

0
− ∫ 𝑞 ∙ 𝑑𝑤𝑑𝑥

𝑙

0

} = 0   ∀𝛿𝑤 ; 

 

Hence we need to pass all derivatives from the differential terms to the associated ones by means of 

integration by parts and enforcing proper boundary conditions. 

 

∫ 𝐸𝑑𝐼𝑑𝑤
′′𝑑𝑤′′𝑑𝑥

𝑙

0
=

{
 
 
 
 
 

 
 
 
 
 [𝐸𝑑𝐼𝑑 ∙ 𝑤

′′𝑑𝑤′]0
𝑙 − ∫ (𝐸𝑑𝐼𝑑 ∙ 𝑤

′′)′𝑑𝑤′𝑑𝑥
𝑙

0
=

= 𝐸𝑑𝐼𝑑(𝑙) ∙ 𝑤
′′(𝑙)𝑑𝑤′(𝑙) − 𝐸𝑑𝐼𝑑(0) ∙ 𝑤

′′(0)𝑑𝑤′(0) +

−[(𝐸𝑑𝐼𝑑 ∙ 𝑤
′′)′𝑑𝑤]0

𝑙 + ∫ (𝐸𝑑𝐼𝑑 ∙ 𝑤
′′)′′𝑑𝑤𝑑𝑥

𝑙

0
=

= −[𝐸𝑑𝐼𝑑 ∙ 𝑤
′′]𝑥=𝑙
′ ∙ 𝑑𝑤(𝑙) + [𝐸𝑑𝐼𝑑 ∙ 𝑤

′′]𝑥=0
′ ∙ 𝑑𝑤(0) + ∫ (𝐸𝑑𝐼𝑑 ∙ 𝑤

′′)′′𝑑𝑤𝑑𝑥
𝑙

0
=

= ∫ (𝐸𝑑𝐼𝑑 ∙ 𝑤
′′)′′𝑑𝑤𝑑𝑥

𝑙

0 }
 
 
 
 
 

 
 
 
 
 

 ; 

 

 

𝐻∫ 𝑤′𝑑𝑤′𝑑𝑥
𝑙

0
= 𝐻

{
  
 

  
 [𝑤′𝑑𝑤]0

𝑙 − ∫ 𝑤′′𝑑𝑤𝑑𝑥
𝑙

0
=

= 𝑤′(𝑙)𝑑𝑤(𝑙) − 𝑤′(0)𝑑𝑤(0) − ∫ 𝑤′′𝑑𝑤𝑑𝑥
𝑙

0
=

= −∫ 𝑤′′𝑑𝑤𝑑𝑥
𝑙

0 }
  
 

  
 

 ; 
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∫ ℎ(𝑥) ∙ (𝑦′ +𝑤′)𝑑𝑤′𝑑𝑥
𝑙

0
=

{
 
 
 
 

 
 
 
 [ℎ(𝑤) ∙ (𝑦

′ +𝑤′)𝑑𝑤]0
𝑙 − ∫ ℎ(𝑤) ∙ (𝑦′ +𝑤′)′𝑑𝑤𝑑𝑥

𝑙

0
=

= [
ℎ(𝑤(𝑙)) ∙ (𝑦′(𝑙) + 𝑤′(𝑙))𝑑𝑤(𝑙) +

−ℎ(𝑤(0)) ∙ (𝑦′(0) + 𝑤′(0))𝑑𝑤(0)
] +

−ℎ(𝑤) ∙ ∫ (𝑦′′ +𝑤′′)𝑑𝑤𝑑𝑥
𝑙

0
=

= −ℎ(𝑤) ∙ ∫ (𝑦′′ +𝑤′′)𝑑𝑤𝑑𝑥
𝑙

0 }
 
 
 
 

 
 
 
 

 ; 

 

 

Hence. 

 

𝛿𝑤𝑉 = 0   ∀𝛿𝑤⇔ ∫ [(𝐸𝑑𝐼𝑑 ∙ 𝑤
′′)′′ − 2(𝐻 + ℎ(𝑤)) ∙ 𝑤′′ − 2ℎ(𝑤) ∙ 𝑦′′ − 𝑞]𝑑𝑤𝑑𝑥

𝑙

0
= 0   ∀𝛿𝑤 ; 

 

Finally we obtain again the equilibrium equation in the perturbed configuration. 

 

(𝐸𝑑𝐼𝑑 ∙ 𝑤
′′)′′ − 2(𝐻 + ℎ(𝑤)) ∙ 𝑤′′ − 2ℎ(𝑤) ∙ 𝑦′′ = 𝑞 ; 

 

But for the following treatment is much more important to return to the TPE formulation taking in account 

just important information concerning perturbed vertical displacements. 

 

∆𝑉(𝑤, 𝑞) =

{
 
 

 
 1
2
∫ 𝐸𝑑𝐼𝑑 ∙ 𝑤

′′2𝑑𝑥
𝑙

0
+ 2𝐻∫

𝑤′2

2
𝑑𝑥

𝑙

0
+ 2 [

1

2
∫
𝐸𝑐𝐴𝑐

𝑠′3
 ∙ (𝑦′𝑤′ +

𝑤′2

2
)
2

𝑑𝑥
𝑙

0
] − ∫ 𝑞 ∙ 𝑤𝑑𝑥

𝑙

0
=

= ∫ [
1

2
𝐸𝑑𝐼𝑑 ∙ 𝑤

′′2 +
1

2
𝐻 ∙ (2𝑤′2) + ∫ ℎ(𝑤) ∙ (𝑦′ +𝑤′)𝑑𝑤′

𝑤′

0
− 𝑞 ∙ 𝑤]𝑑𝑥

𝑙

0 }
 
 

 
 

 ; 

 

The redundant expression for the initial tension in the cable wants to stress the fact that in the single dof 

model each of the two main cables introduces the same elastic energy in the structural system. On the 

contrary in the following 2dofs model each cable introduces a different amount of elastic energy as a direct 

consequence of the difference in the kinematics of the two elements. 

 

1.2.2. Generalisation to 2dof 
 

Once we get the general expression for the TPE of the single dof flexural model it’s straightforward to 

generalise it for the 2 dof one. The new model not only takes trace of the vertical displacement in 

correspondence of the axis of the deck but also of the rotation around the same axis. 

 

First of all it’s necessary to introduce a new coordinate that takes in account for the rotation of the deck in 

its section. If the flexural motions are assumed to be positive when downward, for the torsional one we will 

assume to be positive if clockwise. 

Hence it’s possible to write down the displacements at the two extreme sides of the deck where are assume 

to be located the plans of the two main cables. 

 

 {

𝑤𝑅 = 𝑤𝑑 + 𝜗𝑑 ∙ 𝑏

𝑤𝐿 = 𝑤𝑑 − 𝜗𝑑 ∙ 𝑏
  ; 
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The introduction of a new degree of freedom not only changes the kinematics of the model but also 

introduces additional elastic energy, being the model more deformable than previously, that has to be added 

to the TPE variation. 

 

 𝐸𝑑𝑒𝑐𝑘,𝜗𝑑 =
1

2
∫ 𝐺𝑑𝐽𝑑 ∙ 𝜗𝑑

′2𝑑𝑥
𝑙

0
+
1

2
∫ 𝐸𝑑𝛤𝑑 ∙ 𝜗𝑑

′′2𝑑𝑥
𝑙

0
 ; 

 

The first term is the classical one related to the primary torsion given by the S. Venant theory of beams. The 

second one on the other hand is associated to secondary torsion effects that are relevant just in thin open 

section elements and can be studied by means of the Vlasov-Wagner theory. 

Generally modern bridges has closed box sections that allows to get high torsional rigidities saving a lot of 

material and hence reducing drastically self-weight of the stiffening deck. Hence the so called warping 

deformation it’s relevant just in those bridges characterised by very thin decks and few longitudinal I shaped 

beams in order to restrain possible torsional motions. The design of such kind of bridges can be located in 

time just after the Deflection Theory took hold in the design practice allowing to use larger structural 

resources but just before the Tacoma Narrows Bridge collapse when the aerodynamic effects on bridges 

became of fundamental importance. 

 

The presence of an additional dof allows also to introduce the associated external action linked in terms of 

external work. 

 

Replacing inside the expression for the single dof TPE variation and adding the terms related to the additional 

elastic energy stored by the torsional deformation we get. 

 

∆𝑉(𝑤𝑑 , 𝜗𝑑 , 𝑞, 𝑚) = ∫

{
 
 
 
 

 
 
 
 

1

2
𝐸𝑑𝐼𝑑 ∙ 𝑤𝑑

′′2 +
1

2
𝐸𝑑𝛤𝑑 ∙ 𝜗𝑑

′′2 +
1

2
𝐺𝑑𝐽𝑑 ∙ 𝜗𝑑

′2 +

+
1

2
𝐻 ∙ (𝑤𝑅

′2 +𝑤𝐿
′2) +

+∫ ℎ(𝑤𝑅) ∙ (𝑦
′ +𝑤𝑅

′ )𝑑𝑤𝑅
′𝑤𝑅

′

0
+ ∫ ℎ(𝑤𝐿) ∙ (𝑦

′ +𝑤𝐿
′)𝑑𝑤𝐿

′𝑤𝐿
′

0
+

−𝑞 ∙ 𝑤𝑑 −𝑚 ∙ 𝜗𝑑 }
 
 
 
 

 
 
 
 

𝑑𝑥
𝑙

0
 ; 

 

In order to get the general expression for the static equilibrium equations the following passages are needed.  

 

First of all notice that from the kinematic model we get the total elastic energy stored by the two main cables. 

 

𝐻 ∙ (𝑤𝑅
′2 +𝑤𝐿

′2) = 𝐻 ∙

{
 
 

 
 

[(𝑤𝑑
′ + 𝜗𝑑

′ ∙ 𝑏)2 + (𝑤𝑑
′ − 𝜗𝑑

′ ∙ 𝑏)2] =

= 𝑤𝑑
′2 + 2𝑤𝑑

′2 ∙ 𝜗𝑑
′2𝑏2 + 𝜗𝑑

′2 ∙ 𝑏2 +𝑤𝑑
′2 − 2𝑤𝑑

′2 ∙ 𝜗𝑑
′2𝑏2 + 𝜗𝑑

′2 ∙ 𝑏2 =

= 2 ∙ (𝑤𝑑
′2 + 𝜗𝑑

′2 ∙ 𝑏2) }
 
 

 
 

 ; 
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Then we need to find the first differential of the TPE variation. 

 

𝛿𝑉 = ∫

{
 
 
 
 
 

 
 
 
 
 
1

2
𝐸𝑑𝐼𝑑 ∙ 2𝑤𝑑

′′𝑑𝑤𝑑
′′ +

1

2
𝐸𝑑𝛤𝑑 ∙ 2𝜗𝑑

′′𝑑𝜗𝑑
′′ +

1

2
𝐺𝑑𝐽𝑑 ∙ 2𝜗𝑑

′𝑑𝜗𝑑
′ +

+
1

2
𝐻 ∙ 2 ∙ (2𝑤𝑑

′𝑑𝑤𝑑
′ + 2𝜗𝑑

′𝑑𝜗𝑑
′ ∙ 𝑏2) +

+ℎ(𝑤𝑅) ∙ (𝑦
′ +𝑤𝑑

′ + 𝜗𝑑
′ ∙ 𝑏) ∙ 𝑑(𝑤𝑑

′ + 𝜗𝑑
′ ∙ 𝑏) +

+ℎ(𝑤𝐿) ∙ (𝑦
′ +𝑤𝑑

′ − 𝜗𝑑
′ ∙ 𝑏) ∙ 𝑑(𝑤𝑑

′ − 𝜗𝑑
′ ∙ 𝑏) +

−𝑞 ∙ 𝑑𝑤𝑑 −𝑚 ∙ 𝑑𝜗𝑑 }
 
 
 
 
 

 
 
 
 
 

𝑑𝑥
𝑙

0
 ; 

 

Integration by parts leads to the following statement. 

 

 𝛿𝑉 = ∫

{
 
 
 
 

 
 
 
 
(𝐸𝑑𝐼𝑑 ∙ 𝑤𝑑

′′)′′ ∙ 𝑑𝑤𝑑 + (𝐸𝑑𝛤𝑑 ∙ 𝜗𝑑
′′)′′ ∙ 𝑑𝜗𝑑 − (𝐺𝑑𝐽𝑑 ∙ 𝜗𝑑

′)′ ∙ 𝑑𝜗𝑑 +

−2𝐻 ∙ (𝑤𝑑
′′𝑑𝑤𝑑 + 𝜗𝑑

′′𝑑𝜗𝑑 ∙ 𝑏
2) +

−ℎ(𝑤𝑅) ∙ (𝑦
′′ +𝑤𝑑

′′ + 𝜗𝑑
′′ ∙ 𝑏) ∙ 𝑑(𝑤𝑑 + 𝜗𝑑 ∙ 𝑏) +

−ℎ(𝑤𝐿) ∙ (𝑦
′′ +𝑤𝑑

′′ − 𝜗𝑑
′′ ∙ 𝑏) ∙ 𝑑(𝑤𝑑 − 𝜗𝑑 ∙ 𝑏) +

−𝑞 ∙ 𝑑𝑤𝑑 −𝑚 ∙ 𝑑𝜗𝑑 }
 
 
 
 

 
 
 
 

𝑑𝑥
𝑙

0
 ; 

 

Let’s now analyse the non-local term associated to the stiffening behaviour of the main cables. 

 

 ℎ(𝑤𝑑 ± 𝜗𝑑 ∙ 𝑏) =
𝐸𝑐𝐴𝑐̅̅ ̅̅ ̅̅ ̅

𝐿𝑐
∙ ∫

{
  
 

  
 𝑦′ ∙ (𝑤𝑑

′ ± 𝜗𝑑
′ ∙ 𝑏) +

1

2
(𝑤𝑑

′ ± 𝜗𝑑
′ ∙ 𝑏)2 =

= 𝑦′𝑤𝑑
′ ± 𝑦′𝜗𝑑

′ ∙ 𝑏 +
1

2
(𝑤𝑑

′2 ± 2𝑤𝑑
′𝜗𝑑

′
∙ 𝑏 + 𝜗𝑑

′2 ∙ 𝑏2) =

= (𝑦′𝑤𝑑
′ +

𝑤𝑑
′2

2
) ± (𝑦′𝜗𝑑

′ +𝑤𝑑
′𝜗𝑑

′) ∙ 𝑏 + (
𝜗𝑑
′2

2
∙ 𝑏2) }

  
 

  
 

𝑑𝑥
𝑙

0
 ; 

 

Hence for sake of brevity we can introduce few parameters, taking in account of the effect on cable’s 

additional tension respectively for contribution given by pure flexure, coupled flexure-torsion and pure 

torsion. 

 

ℎ(𝑤𝑑 ± 𝜗𝑑 ∙ 𝑏) = ℎ(𝑤
±) = ℎ𝑤 ± ℎ𝑤𝜗 + ℎ𝜗 ; 

 

Where each term can be define as follows. 

 

{
 
 
 

 
 
 ℎ𝑤(𝑤𝑑) =

𝐸𝑐𝐴𝑐̅̅ ̅̅ ̅̅ ̅

𝐿𝑐
∙ ∫ (𝑦′𝑤𝑑

′ +
𝑤𝑑

′2

2
)𝑑𝑥

𝑙

0
=
𝐸𝑐𝐴𝑐̅̅ ̅̅ ̅̅ ̅

𝐿𝑐
∙ ∫ (−𝑦′′𝑤𝑑 +

𝑤𝑑
′2

2
)𝑑𝑥

𝑙

0

ℎ𝑤𝜗(𝑤𝑑, 𝜗𝑑) =
𝐸𝑐𝐴𝑐̅̅ ̅̅ ̅̅ ̅

𝐿𝑐
∙ ∫ (𝑦′𝜗𝑑

′ +𝑤𝑑
′𝜗𝑑

′) ∙ 𝑏𝑑𝑥
𝑙

0
=
𝐸𝑐𝐴𝑐̅̅ ̅̅ ̅̅ ̅

𝐿𝑐
∙ ∫ (−𝑦′′𝜗𝑑 +𝑤𝑑

′𝜗𝑑
′) ∙ 𝑏𝑑𝑥

𝑙

0

ℎ𝜗(𝜗𝑑) =
𝐸𝑐𝐴𝑐̅̅ ̅̅ ̅̅ ̅

𝐿𝑐
∙ ∫

𝜗𝑑
′2

2
∙ 𝑏2𝑑𝑥

𝑙

0

 ; 
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Hence it’s easy to compute the stiffening contributions of both cables to the TPE variation. 

 

ℎ(𝑤±)(𝑦′′ +𝑤𝑑
′′ ± 𝜗𝑑

′′ ∙ 𝑏)(𝑑𝑤𝑑 ± 𝑑𝜗𝑑 ∙ 𝑏) = 2 ∙ {

(ℎ𝑤 + ℎ𝜗) ∙ [(𝑦
′′ +𝑤𝑑

′′) ∙ 𝑑𝑤𝑑 + 𝜗𝑑
′′𝑏2 ∙ 𝑑𝜗𝑑] +

+ℎ𝑤𝜗 ∙ 𝑏[(𝑦
′′ +𝑤𝑑

′′) ∙ 𝑑𝜗𝑑 + 𝜗𝑑
′′ ∙ 𝑑𝑤𝑑]

} ; 

 

Now we are able to enforce the stationarity of the TPE variation. 

 

 𝛿𝑤𝑑𝑉 = 0   ∀𝛿𝑤𝑑⇔

{
 
 
 

 
 
 (𝐸𝑑𝐼𝑑(𝑥) ∙ 𝑤𝑑

′′(𝑥))
′′
+

−2𝐻 ∙ 𝑤𝑑
′′(𝑥) +

−2(ℎ𝑤 + ℎ𝜗) ∙ (𝑦
′′ +𝑤𝑑

′′(𝑥)) +

−2ℎ𝑤𝜗𝑏 ∙ 𝜗𝑑
′′(𝑥) }

 
 
 

 
 
 

= 𝑞(𝑥) ; 

 

 

𝛿𝜗𝑑𝑉 = 0   ∀𝛿𝜗𝑑⇔

{
 
 
 
 
 

 
 
 
 
 (𝐸𝑑𝛤𝑑(𝑥) ∙ 𝜗𝑑

′′(𝑥))
′′
+

−(𝐺𝑑𝐽𝑑(𝑥) ∙ 𝜗𝑑
′(𝑥))

′
+

−2𝐻𝑏2 ∙ 𝜗𝑑
′′(𝑥) +

−2(ℎ𝑤 + ℎ𝜗)𝑏
2 ∙ 𝜗𝑑

′′(𝑥) +

−2ℎ𝑤𝜗𝑏 ∙ (𝑦
′′ +𝑤𝑑

′′(𝑥)) }
 
 
 
 
 

 
 
 
 
 

= 𝑚(𝑥) ; 

 

Once again we have obtained a self-adjoin system of equations that grants the static equilibrium of the 

structural system. 

 

In order to extend the present treatment to the dynamic field is simply necessary to add the inertial terms. 

 

  𝛿𝑤𝑑𝑉 = 0   ∀𝛿𝑤𝑑⇔

{
 
 
 
 

 
 
 
 

(𝑚𝑑 + 2𝑚𝑐) ∙ �̈�𝑑(𝑥, 𝑡) +

+(𝐸𝑑𝐼𝑑(𝑥) ∙ 𝑤𝑑
′′(𝑥, 𝑡))

′′
+

−2𝐻 ∙ 𝑤𝑑
′′(𝑥, 𝑡) +

−2(ℎ𝑤 + ℎ𝜗) ∙ (𝑦
′′ +𝑤𝑑

′′(𝑥, 𝑡)) +

−2ℎ𝑤𝜗𝑏 ∙ 𝜗𝑑
′′(𝑥, 𝑡) }

 
 
 
 

 
 
 
 

= 𝑞(𝑥, 𝑡) ; 
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𝛿𝜗𝑑𝑉 = 0   ∀𝛿𝜗𝑑⇔

{
 
 
 
 
 
 

 
 
 
 
 
 
(𝐽𝑡 + 2𝑚𝑐𝑏

2) ∙ �̈�𝑑(𝑥, 𝑡) +

+(𝐸𝑑𝛤𝑑(𝑥) ∙ 𝜗𝑑
′′(𝑥, 𝑡))

′′
+

−(𝐺𝑑𝐽𝑑(𝑥) ∙ 𝜗𝑑
′(𝑥, 𝑡))

′
+

−2𝐻𝑏2 ∙ 𝜗𝑑
′′(𝑥, 𝑡) +

−2(ℎ𝑤 + ℎ𝜗)𝑏
2 ∙ 𝜗𝑑

′′(𝑥, 𝑡) +

−2ℎ𝑤𝜗𝑏 ∙ (𝑦
′′ +𝑤𝑑

′′(𝑥, 𝑡)) }
 
 
 
 
 
 

 
 
 
 
 
 

= 𝑚(𝑥, 𝑡) ; 

 

Notice that the equations just obtained refers to the generic situation where the sectional properties of both 

the deck and the cables can vary along their respective length. But for sake of simplicity, in the following we 

will assume to consider constant values. 

 

It’s evident that the two equations of motion so obtained are not linear with the actual configuration of the 

structural system. This is a consequence of the presence of the non-local cable term, that is function itself of 

the bridge configuration though in integral form. 

 

The second remark concerns the coupling of the two equations of motions. This is a common property of 

nonlinear mechanical systems, and in the actual structural system it’s due once again by the non-local term. 

 

Thence can be of interest first to separate the terms with different order of magnitude and secondly to have 

an estimate of the degree of coupling of the 2 dofs, mainly related to the order of non-linearity of the 

problem. 

 

 

1.2.3. Dimensionless format 
 

For a better comprehension of the following treatment let’s introduce the dimensionless format for the 

equation of motions. 

 

First of all let’s define some fundamental dimensionless quantities. 

 

 

{
  
 

  
 

𝜉 =
𝑥

𝑙
∈ [0,1]

�̃�𝑑(𝜉, 𝜏) =
𝑤𝑑(𝑥,𝑡)

𝑓

�̃�𝑑(𝜉, 𝜏) =
𝜗𝑑(𝑥,𝑡)∙𝑏

𝑓

 ; 

 

Notice that the dimensionless time variable will be define subsequently. 
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Before considering separately each equation of motion, it’s better to expand some terms. 

 

2(ℎ𝑤 + ℎ𝜗) ∙ (𝑦
′′ +𝑤𝑑

′′) = 2 ∙

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 ℎ𝑤 ∙ 𝑦

′′ =
𝐸𝑐𝐴𝑐

𝐿𝑐
∙ ∫ (−𝑦′′𝑤𝑑 +

𝑤𝑑
′2

2
)𝑑𝑥

𝑙

0
∙ 𝑦′′ =

=
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′ (−𝑦′′ ∙ 𝑓𝑙 ∫ �̃�𝑑

1

0
𝑑𝜉 +

1

2

𝑓2

𝑙2
𝑙 ∫ �̃�𝑑

′21

0
𝑑𝜉) =

= −
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2𝑓𝑙 ∙ ∫ �̃�𝑑

1

0
𝑑𝜉 +

1

2

𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2

𝑙
∙ ∫ �̃�𝑑

′21

0
𝑑𝜉]
 
 
 
 
 
 
 

+

+

[
 
 
 
 
 
 
 ℎ𝑤 ∙ 𝑤𝑑

′′ =
𝐸𝑐𝐴𝑐

𝐿𝑐
∙ ∫ (−𝑦′′𝑤𝑑 +

𝑤𝑑
′2

2
)𝑑𝑥

𝑙

0
∙ 𝑤𝑑

′′ =

=
𝐸𝑐𝐴𝑐

𝐿𝑐
∙
𝑓

𝑙2
�̃�𝑑

′′ (−𝑦′′ ∙ 𝑓𝑙 ∫ �̃�𝑑
1

0
𝑑𝜉 +

1

2

𝑓2

𝑙2
𝑙 ∫ �̃�𝑑

′21

0
𝑑𝜉) =

= −
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2

𝑙
∙ �̃�𝑑

′′
∫ �̃�𝑑
1

0
𝑑𝜉 +

1

2

𝐸𝑐𝐴𝑐

𝐿𝑐

𝑓3

𝑙3
∙ �̃�𝑑

′′
∫ �̃�𝑑

′21

0
𝑑𝜉]
 
 
 
 
 
 
 

+

+

[
 
 
 
 
 
 
 ℎ𝜗 ∙ 𝑦

′′ =
𝐸𝑐𝐴𝑐

𝐿𝑐
∙ ∫

𝜗𝑑
′2

2
∙ 𝑏2𝑑𝑥

𝑙

0
∙ 𝑦′′ =

=
1

2

𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′ ∙

𝑓2𝑙

𝑏2𝑙2
∫ �̃�𝑑

′2
𝑑𝜉 ∙ 𝑏2

1

0
=

=
1

2

𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2

𝑙
∙ ∫ �̃�𝑑

′2
𝑑𝜉

1

0 ]
 
 
 
 
 
 
 

+

+

[
 
 
 
 
 
 
 ℎ𝜗 ∙ 𝑤𝑑

′′ =
𝐸𝑐𝐴𝑐

𝐿𝑐
∙ ∫

𝜗𝑑
′2

2
∙ 𝑏2𝑑𝑥

𝑙

0
∙ 𝑤𝑑

′′ =

=
1

2

𝐸𝑐𝐴𝑐

𝐿𝑐
∙
𝑓

𝑙2
�̃�𝑑

′′ ∙
𝑓2𝑙

𝑏2𝑙2
∫ �̃�𝑑

′2
𝑑𝜉 ∙ 𝑏2

1

0
=

=
1

2

𝐸𝑐𝐴𝑐

𝐿𝑐

𝑓3

𝑙3
∙ �̃�𝑑

′′
∫ �̃�𝑑

′2
𝑑𝜉

1

0 ]
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ; 

 

 

2ℎ𝑤𝜗𝑏 ∙ 𝜗𝑑
′′ = 2 ∙

{
 
 
 

 
 
 

𝐸𝑐𝐴𝑐

𝐿𝑐
∙ ∫ (−𝑦′′𝜗𝑑 +𝑤𝑑

′𝜗𝑑
′) ∙ 𝑏𝑑𝑥

𝑙

0
∙ 𝑏𝜗𝑑

′′ =

=
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑏 ∙

𝑓

𝑏𝑙2
�̃�𝑑
′′
∙ [−𝑦′′

𝑓𝑙

𝑏
∫ �̃�𝑑𝑑𝜉
1

0
+
𝑓2𝑙

𝑏𝑙2
∫ �̃�𝑑

′�̃�𝑑
′
𝑑𝜉

1

0
] ∙ 𝑏 =

= −
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2

𝑙
∙ �̃�𝑑

′′
∫ �̃�𝑑𝑑𝜉
1

0
+
𝐸𝑐𝐴𝑐

𝐿𝑐

𝑓3

𝑙3
∙ �̃�𝑑

′′
∫ �̃�𝑑

′�̃�𝑑
′
𝑑𝜉

1

0 }
 
 
 

 
 
 

 ; 
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2(ℎ𝑤 + ℎ𝜗)𝑏
2 ∙ 𝜗𝑑

′′ = 2 ∙

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 ℎ𝑤𝑏

2 ∙ 𝜗𝑑
′′ =

𝐸𝑐𝐴𝑐

𝐿𝑐
∙ ∫ (−𝑦′′𝑤𝑑 +

𝑤𝑑
′2

2
)𝑑𝑥

𝑙

0
𝑏2 ∙ 𝜗𝑑

′′ =

=
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑏2 ∙

𝑓

𝑏𝑙2
�̃�𝑑
′′
(−𝑦′′ ∙ 𝑓𝑙 ∫ �̃�𝑑

1

0
𝑑𝜉 +

1

2

𝑓2

𝑙2
𝑙 ∫ �̃�𝑑

′21

0
𝑑𝜉) =

= −
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2𝑏

𝑙
∙ �̃�𝑑

′′
∫ �̃�𝑑
1

0
𝑑𝜉 +

1

2

𝐸𝑐𝐴𝑐

𝐿𝑐

𝑓3𝑏

𝑙3
∙ �̃�𝑑

′′
∫ �̃�𝑑

′21

0
𝑑𝜉 ]
 
 
 
 
 
 
 

+

+

[
 
 
 
 
 
 
 ℎ𝜗𝑏

2 ∙ 𝜗𝑑
′′ =

𝐸𝑐𝐴𝑐

𝐿𝑐
∙ ∫

𝜗𝑑
′2

2
∙ 𝑏2𝑑𝑥

𝑙

0
𝑏2 ∙ 𝜗𝑑

′′ =

=
1

2

𝐸𝑐𝐴𝑐

𝐿𝑐
𝑏4 ∙

𝑓

𝑏𝑙2
�̃�𝑑
′′
∙
𝑓2𝑙

𝑏2𝑙2
∫ �̃�𝑑

′2
𝑑𝜉

1

0
=

=
1

2

𝐸𝑐𝐴𝑐

𝐿𝑐

𝑓3𝑏

𝑙3
∙ �̃�𝑑

′′
∫ �̃�𝑑

′2
𝑑𝜉

1

0 ]
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 ; 

 

 

2ℎ𝑤𝜗𝑏 ∙ (𝑦
′′ +𝑤𝑑

′′) = 2 ∙

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

[
 
 
 
 
 
 ℎ𝑤𝜗𝑏 ∙ 𝑦

′′ =
𝐸𝑐𝐴𝑐

𝐿𝑐
∙ ∫ (−𝑦′′𝜗𝑑 +𝑤𝑑

′𝜗𝑑
′) ∙ 𝑏𝑑𝑥

𝑙

0
∙ 𝑏𝑦′′ =

=
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑏𝑦′′ ∙ (−𝑦′′

𝑓𝑙

𝑏
∫ �̃�𝑑𝑑𝜉
1

0
+
𝑓2𝑙

𝑏𝑙2
∫ �̃�𝑑

′�̃�𝑑
′
𝑑𝜉

1

0
) ∙ 𝑏 =

= −
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2𝑓𝑙𝑏 ∫ �̃�𝑑𝑑𝜉

1

0
+
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2𝑏

𝑙
∫ �̃�𝑑

′�̃�𝑑
′
𝑑𝜉

1

0 ]
 
 
 
 
 
 

[
 
 
 
 
 
 ℎ𝑤𝜗𝑏 ∙ 𝑤𝑑

′′ =
𝐸𝑐𝐴𝑐

𝐿𝑐
∙ ∫ (−𝑦′′𝜗𝑑 +𝑤𝑑

′𝜗𝑑
′) ∙ 𝑏𝑑𝑥

𝑙

0
∙ 𝑏𝑤𝑑

′′ =

=
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑏 ∙

𝑓

𝑙2
�̃�𝑑

′′ ∙ (−𝑦′′
𝑓𝑙

𝑏
∫ �̃�𝑑𝑑𝜉
1

0
+
𝑓2𝑙

𝑏𝑙2
∫ �̃�𝑑

′�̃�𝑑
′
𝑑𝜉

1

0
) ∙ 𝑏 =

= −
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2𝑏

𝑙
∙ �̃�𝑑

′′
∫ �̃�𝑑𝑑𝜉
1

0
+
𝐸𝑐𝐴𝑐

𝐿𝑐

𝑓3𝑏

𝑙3
∙ �̃�𝑑

′′
∫ �̃�𝑑

′�̃�𝑑
′
𝑑𝜉

1

0 ]
 
 
 
 
 
 

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 ; 
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 Flexural equation of motion: 

 

 

 

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 [(𝑚𝑑 + 2𝑚𝑐) ∙

𝑑2𝑤𝑑

𝑑𝑡2
= (𝑚𝑑 + 2𝑚𝑐)𝑓 ∙

𝑑2�̃�𝑑

𝑑𝑡2
] +

+ [𝐸𝑑𝐼𝑑 ∙
𝑑4𝑤𝑑

𝑑𝑥4
= 𝐸𝑑𝐼𝑑

𝑓

𝑙4
∙
𝑑4�̃�𝑑

𝑑𝜉4
] +

− [2𝐻 ∙
𝑑2𝑤𝑑

𝑑𝑥2
= 2𝐻

𝑓

𝑙2
∙
𝑑2�̃�𝑑

𝑑𝜉2
] +

−

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2(ℎ𝑤 + ℎ𝜗) ∙ (𝑦
′′ +𝑤𝑑

′′) = 2 ∙

(

 
 
 
 
 
 
 
 
 
 
 
 
 

−
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2𝑓𝑙 ∙ ∫ �̃�𝑑

1

0
𝑑𝜉 +

+
1

2

𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2

𝑙
∙ ∫ �̃�𝑑

′21

0
𝑑𝜉 +

−
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2

𝑙
∙ �̃�𝑑

′′
∫ �̃�𝑑
1

0
𝑑𝜉 +

+
1

2

𝐸𝑐𝐴𝑐

𝐿𝑐

𝑓3

𝑙3
∙ �̃�𝑑

′′
∫ �̃�𝑑

′21

0
𝑑𝜉 +

+
1

2

𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2

𝑙
∙ ∫ �̃�𝑑

′2
𝑑𝜉

1

0
+

+
1

2

𝐸𝑐𝐴𝑐

𝐿𝑐

𝑓3

𝑙3
∙ �̃�𝑑

′′
∫ �̃�𝑑

′2
𝑑𝜉

1

0 )

 
 
 
 
 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+

−

[
 
 
 
 

2ℎ𝑤𝜗𝑏 ∙ 𝜗𝑑
′′ = 2 ∙

(

 
 
−
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2

𝑙
∙ �̃�𝑑

′′
∫ �̃�𝑑𝑑𝜉
1

0
+

+
𝐸𝑐𝐴𝑐

𝐿𝑐

𝑓3

𝑙3
∙ �̃�𝑑

′′
∫ �̃�𝑑

′�̃�𝑑
′
𝑑𝜉

1

0 )

 
 

]
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 𝑞(𝜉, 𝜏) ; 

 

It can be noticed that the choice of the cable’s initial arrow, as reference length for the flexural perturbations, 

doesn’t affect the format of the dimensionless equations in the special case of free-vibrations. 

 

On the other hand for the forced case is important to remember that also the forcing terms has to be 

dimensionless. 

 

Hence collecting the modulus of the coefficient of the third term, that is associated to the initial tension in 

the cable, we get. 
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{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(𝑚𝑑+2𝑚𝑐)

2𝐻
𝑙2 ∙

𝑑2�̃�𝑑

𝑑𝑡2
+

+
𝐸𝑑𝐼𝑑

2𝐻𝑙2
∙
𝑑4�̃�𝑑

𝑑𝜉4
+

−
𝑑2�̃�𝑑

𝑑𝜉2
+

+

(

 
 
 
 
 
 
 
 
 
 
 
 
 

+
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(𝑦′′𝑙)2 ∙ ∫ �̃�𝑑

1

0
𝑑𝜉 +

−
1

2

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓 ∙ ∫ �̃�𝑑

′21

0
𝑑𝜉 +

+
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓 ∙ �̃�𝑑

′′
∫ �̃�𝑑
1

0
𝑑𝜉 +

−
1

2

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2
∙ �̃�𝑑

′′
∫ �̃�𝑑

′21

0
𝑑𝜉 +

−
1

2

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓 ∙ ∫ �̃�𝑑

′2
𝑑𝜉

1

0
+

−
1

2

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2
∙ �̃�𝑑

′′
∫ �̃�𝑑

′2
𝑑𝜉

1

0 )

 
 
 
 
 
 
 
 
 
 
 
 
 

+

+

(

 
 
+
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓 ∙ �̃�𝑑

′′
∫ �̃�𝑑𝑑𝜉
1

0
+

−
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2
∙ �̃�𝑑

′′
∫ �̃�𝑑

′�̃�𝑑
′
𝑑𝜉

1

0 )

 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=
𝑙2

2𝐻𝑓
𝑞(𝜉, 𝜏) ; 

 

 

Let’s define other fundamental dimensionless parameters. 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝜏 = 𝑡 ∙

1

𝑙
√

2𝐻

(𝑚𝑑+2𝑚𝑐)

�̃�(𝜉, 𝜏) =
𝑙2

2𝐻𝑓
𝑞(𝜉, 𝜏)

𝜇2 =
𝐸𝑑𝐼𝑑

2𝐻𝑙2

𝜆𝐿
2 =

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(𝑦′′𝑙)2

𝜆𝑄
2 = −

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓

𝜆𝐶
2 =

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2

 ; 

 

The first two terms simply define respectively the dimensionless time coordinate and the equivalent flexural 

external forcing. 
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Regarding the first one, can be of interest to have an estimate of the term collected in order to get 

dimensionless time variable. In fact, this will be used in the following defining the dimensionless circular 

eigen-frequency. From literature [31-40] we can give a reasonable range of variation. 

 

 𝑙√
(𝑚𝑑+2𝑚𝑐)

2𝐻
≅ (5 ÷ 20)   [𝑠] ; 

 

The range is very large but it’s useful to get the order of magnitude of real values passing from the 

dimensionless to dimensional values. 

 

The third is the ratio between the deck and cables flexural stiffness, hence it’s an important parameter giving 

us directly the weight of each contribution to the whole bridge flexural stiffness. In the following a 

bibliographical research will allow us to give it reasonable values. 

 

The last three terms measure the extensibility of cables in relation to the initial tension needed to sustain 

the whole self-weight of the suspended structure. 

Each can only multiply respectively linear, quadratic and cubic terms of the deck configuration. Thus are clear 

the subscript given to each, and it’s also clear that the equation of motions would be nonlinear up to the 

third order. 

The parabolic initial cable shape allows us to give also an estimation of the degree of nonlinear terms, thanks 

to the fact that this particular cable configuration has a constant curvature. 

 

 𝑦′′ = −
8𝑓

𝑙2
⇒

{
 
 
 

 
 
 𝜆𝐿

2 = 64
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2

𝜆𝑄
2 = 8

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2

𝜆𝐶
2 =

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2

⇒ 𝜆𝐿
2 = 8𝜆𝑄

2 = 64𝜆𝐶
2 ; 

 

It’s is evident that the higher order terms are very smooth; this is an intrinsic structural property of the 2 dof 

model proposed since the only nonlinearities are related to the nonlinear response of the main cables. This 

has been already evidenced in the previous chapter where the parametric analysis of a cable shows that 

second order terms are the only that can be appreciated within reasonable deformations. 

Larger contributions comes from nonlinearities in 4 dofs model where the possible local slackening of hangers 

introduces a hard type of nonlinearity in the response. This behaviour is due to the intrinsic geometrical 

property of these structural elements, characterised by values of slenderness so high that makes it unable to 

react in compression. 

Hence we can say that the proposed 2 dofs mathematical model of the suspension bridge is characterised by 

soft nonlinearities. This property will be useful in the further study of the model once we try to find an 

analytical solution for the structural response by means of a perturbative technique. 

Generally the linear term is called Irvine parameter [5] being the first one that discover it importance in the 

vibrations of suspended cables. 
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Let’s introduce some further parameters. 

 

{
 
 
 
 
 

 
 
 
 
 ℎ̃𝑤 = ∫ �̃�𝑑

1

0
𝑑𝜉

ℎ̃𝜗 = ∫ �̃�𝑑
1

0
𝑑𝜉

ℎ̃𝑤′𝑤′ = ∫ �̃�𝑑
′ ∙ �̃�𝑑

′1

0
𝑑𝜉

ℎ̃𝜗′𝜗′ = ∫ �̃�𝑑
′
∙ �̃�𝑑

′1

0
𝑑𝜉

ℎ̃𝑤′𝜗′ = ∫ �̃�𝑑
′ ∙ �̃�𝑑

′1

0
𝑑𝜉

 ; 

 

Now we are able to rewrite the flexural equation of motion in a more compact form collecting terms with 

the same order. 

 

{
  
 

  
 

𝑑2�̃�𝑑

𝑑𝜏2
+ 𝜇2 ∙ �̃�𝑑

′𝑣 − �̃�𝑑
′′ + 𝜆𝐿

2ℎ̃𝑤 +

−𝜆𝑄
2 ∙ [ℎ̃𝑤 ∙ �̃�𝑑

′′ + ℎ̃𝜗 ∙ �̃�𝑑
′′
−
1

2
(ℎ̃𝑤′𝑤′ + ℎ̃𝜗′𝜗′)] +

−𝜆𝐶
2 ∙ [

1

2
(ℎ̃𝑤′𝑤′ + ℎ̃𝜗′𝜗′) ∙ �̃�𝑑

′′ + ℎ̃𝑤′𝜗′ ∙ �̃�𝑑
′′
] }
  
 

  
 

= �̃�(𝜉, 𝜏) ;  

 

 

From a first analysis of parameters we can say that the dominant one will be the cables stiffening term 

associated to 𝜆𝐿
2 (linear component), then the quadratic and the cubic components. Of two order of 

magnitude lower will be the inertial and the curvature contributions and finally of five order of magnitude 

lower the terms associated to the deck relative flexural stiffness 𝜇2. 

 

 𝜆𝐿
2 = 8 ∙ 𝜆𝑄

2 = 64 ∙ 𝜆𝐶
2 ≅ 102 ∙ {

𝑑2�̃�𝑑

𝑑𝜏2

�̃�𝑑
′′

≅ (105 ÷ 106) ∙ 𝜇2 
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 Torsional equation of motion: 

 

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 [(𝐽𝑡 + 2𝑚𝑐𝑏

2) ∙
𝑑2𝜗𝑑

𝑑𝑡2
= (𝐽𝑡 + 2𝑚𝑐𝑏

2)
𝑓

𝑏
∙
𝑑2�̃�𝑑

𝑑𝑡2
] +

+ [𝐸𝑑𝛤𝑑 ∙
𝑑4𝜗𝑑

𝑑𝑥4
= 𝐸𝑑𝛤𝑑

𝑓

𝑏𝑙4
∙
𝑑4�̃�𝑑

𝑑𝜉4
] +

− [𝐺𝑑𝐽𝑑 ∙
𝑑2𝜗𝑑

𝑑𝑥2
= 𝐺𝑑𝐽𝑑

𝑓

𝑏𝑙2
∙
𝑑2�̃�𝑑

𝑑𝜉2
] +

− [2𝐻𝑏2 ∙
𝑑2𝜗𝑑

𝑑𝑥2
= 2𝐻𝑏2

𝑓

𝑏𝑙2
∙
𝑑2�̃�𝑑

𝑑𝜉2
= 2𝐻

𝑓𝑏

𝑙2
∙
𝑑2�̃�𝑑

𝑑𝜉2
] +

−

[
 
 
 
 
 
 
 

2(ℎ𝑤 + ℎ𝜗)𝑏
2 ∙ 𝜗𝑑

′′ = 2 ∙

(

 
 
 
 
 

−
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2𝑏

𝑙
∙ �̃�𝑑

′′
∫ �̃�𝑑
1

0
𝑑𝜉 +

+
1

2

𝐸𝑐𝐴𝑐

𝐿𝑐

𝑓3𝑏

𝑙3
∙ �̃�𝑑

′′
∫ �̃�𝑑

′21

0
𝑑𝜉 +

+
1

2

𝐸𝑐𝐴𝑐

𝐿𝑐

𝑓3𝑏

𝑙3
∙ �̃�𝑑

′′
∫ �̃�𝑑

′2
𝑑𝜉

1

0 )

 
 
 
 
 

]
 
 
 
 
 
 
 

+

−

[
 
 
 
 
 
 
 
 
 

2ℎ𝑤𝜗𝑏 ∙ (𝑦
′′ +𝑤𝑑

′′(𝑥, 𝑡)) = 2 ∙

(

 
 
 
 
 
 
 

−
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2𝑓𝑙𝑏 ∫ �̃�𝑑𝑑𝜉

1

0
+

+
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2𝑏

𝑙
∫ �̃�𝑑

′�̃�𝑑
′
𝑑𝜉

1

0
+

−
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′

𝑓2𝑏

𝑙
∙ �̃�𝑑

′′
∫ �̃�𝑑𝑑𝜉
1

0
+

+
𝐸𝑐𝐴𝑐

𝐿𝑐

𝑓3𝑏

𝑙3
∙ �̃�𝑑

′′
∫ �̃�𝑑

′�̃�𝑑
′
𝑑𝜉

1

0 )

 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 𝑚(𝜉, 𝜏) ; 
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Once again let’s collect the modulus of the second term coefficient. 

 

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(𝐽𝑡+2𝑚𝑐𝑏
2)

2𝐻𝑏2
𝑙2 ∙

𝑑2�̃�𝑑

𝑑𝑡2
+

+
𝐸𝑑𝛤𝑑

2𝐻𝑏2𝑙2
∙
𝑑4�̃�𝑑

𝑑𝜉4
+

−
𝐺𝑑𝐽𝑑

2𝐻𝑏2
∙
𝑑2�̃�𝑑

𝑑𝜉2
+

−
𝑑2�̃�𝑑

𝑑𝜉2
+

−

(

 
 
 
 
 

−
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓 ∙ �̃�𝑑

′′
∫ �̃�𝑑
1

0
𝑑𝜉 +

+
1

2

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2
∙ �̃�𝑑

′′
∫ �̃�𝑑

′21

0
𝑑𝜉 +

+
1

2

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2
∙ �̃�𝑑

′′
∫ �̃�𝑑

′2
𝑑𝜉

1

0 )

 
 
 
 
 

+

−

(

 
 
 
 
 
 
 

−
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(𝑦′′𝑙)2 ∫ �̃�𝑑𝑑𝜉

1

0
+

+
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓 ∫ �̃�𝑑

′�̃�𝑑
′
𝑑𝜉

1

0
+

−
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓 ∙ �̃�𝑑

′′
∫ �̃�𝑑𝑑𝜉
1

0
+

+
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2
∙ �̃�𝑑

′′
∫ �̃�𝑑

′�̃�𝑑
′
𝑑𝜉

1

0 )

 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=
𝑙2

2𝐻𝑓𝑏
𝑚(𝜉, 𝜏) ; 

 

 

It’s necessary to define others few parameters. 

 

 

{
 
 
 
 

 
 
 
 
(𝐽𝑡+2𝑚𝑐𝑏

2)

𝑏2
𝑙2

2𝐻
=

(𝐽𝑡+2𝑚𝑐𝑏
2)

(𝑚𝑑+2𝑚𝑐)∙𝑏
2 (
𝑡

𝜏
)
2
⇒ 𝐽�̃� =

(𝐽𝑡+2𝑚𝑐𝑏
2)

(𝑚𝑑+2𝑚𝑐)∙𝑏
2 = (

𝜌𝑑

𝑏
)
2

�̃�(𝜉, 𝜏) =
𝑙2

2𝐻𝑓𝑏
𝑚(𝜉, 𝜏)

𝛽2 =
𝐺𝑑𝐽𝑑

2𝐻𝑏2

𝛾2 =
𝐸𝑑𝛤𝑑

2𝐻𝑏2𝑙2
=

𝐸𝑑𝛤𝑑

𝐺𝑑𝐽𝑑𝑙
2 𝛽

2 =
𝛽2

𝜒2

 ; 

 

The first term represent respectively the ratio between the actual torsional inertia of the deck and cables 

system and the maximum one corresponding to ideal condition with all the masses lumped at the two deck 

sectional sides. Hence it can be seen as a sort of dimensionless gyration radius normalised with respect to 

the half width of the deck. 

While the second one represent just the dimensionless format of the external torsional moment. 
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The last two terms relate respectively the torsional and warping stiffness contribution given by the deck and 

that given by the two cables. Also these terms will play an important role in further analysis thence will be 

given realistic values to it. 

 

Hence the torsional equation of motion can be written synthetically as follows, separating different order 

terms. 

 

 

{
  
 

  
 𝐽�̃� ∙

𝑑2�̃�𝑑

𝑑𝑡2
+
𝛽2

𝜒2
∙ �̃�𝑑

′𝑣
− (1 + 𝛽2) ∙ �̃�𝑑

′′
+ 𝜆𝐿

2ℎ̃𝜗 +

−𝜆𝑄
2 ∙ [ℎ̃𝜗 ∙ �̃�𝑑

′′ + ℎ̃𝑤 ∙ �̃�𝑑
′′
− ℎ̃𝑤′𝜗′] +

−𝜆𝐶
2 ∙ [ℎ̃𝑤′𝜗′ ∙ �̃�𝑑

′′ +
1

2
(ℎ̃𝑤′𝑤′ + ℎ̃𝜗′𝜗′) ∙ �̃�𝑑

′′
] }
  
 

  
 

= �̃�(𝜉, 𝜏) ;  

 

It’s important to notice that only the linear terms of both the flexural and torsional equations of motion are 

uncoupled. This is an important feature of the structural system that allows us to get into analytical solutions 

by means of modal analysis. 

 

Once again the dominant term is the cables stiffening associated to 𝜆𝐿
2 (linear component), then the 

quadratic and the cubic components. Of three order of magnitude lower will be the inertial and of four order 

of magnitude lower the terms associated to the deck relative torsional stiffness 
𝛽2

𝜒2
. Whilst the curvature 

contribution, depending on the structural configuration, can be of the same order of magnitude of the 

dominant 𝜆𝐿
2 or nearly negligible being of six order of magnitude lower. 

 

 𝜆𝐿
2 = 8 ∙ 𝜆𝑄

2 = 64 ∙ 𝜆𝐶
2 ≅ 103 ∙ 𝐽�̃� ≅ (10

4 ÷ 105) ∙
𝛽2

𝜒2
≅ (1 ÷ 106) ∙ (1 + 𝛽2) 

 

Hence we have defined the governing equations for both the flexural and the torsional motion of the 

simplified model for a suspension bridge. In the following we will analyse the fundamental modal 

characteristic. 
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2. Modal response 

 
Modal analysis is usually seen as a simple separation of variable process, since it’s able to split the spatial and 

time dependence of variables, allowing to study their variation in those spaces separately and in an easy way. 

Hence permitting to pass from partial differential equations to ordinary ones. 

The only requirement is that the field of application has to be linear where the superposition principle is still 

valid. In fact modal decomposition describe the actual configuration of the system summing ideally an infinite 

number of products between a modal shape variable in space and function variable in time. 

 

2.1. Modal decomposition analysis 
 

It’s important to underline also the fact that we are going to define structural properties, hence the external 

forcing cannot affect them in a structural model that doesn’t consider the effects of the external world on 

the structure itself (as can be done for example with an aeroelastic model). 

Hence the modal approach can be applied just to the linear component of the free equations of motion. 

 

In general is not useful to get all terms of this series since the first modes are sufficient to represent accurately 

the actual behaviour of the structure. 

 

2.1.1. Flexural equation of motion 

 

First of all let’s introduce the modal decomposition for flexural modes. 

 

 �̃�𝑑(𝜉, 𝜏) = ∑ 𝑊𝑛(𝜉) ∙ 𝑧𝑛(𝜏)
∞
𝑛=1    𝑤𝑖𝑡ℎ  𝑛 ∈ ℵ\{0} ; 

 

Hence Euler formula allows us to use a simple representation of the time variant function by means of an 

exponential function that is a sin and cosine time series. 

 

 𝑧𝑛(𝜏) = 𝑍𝑛 ∙ exp(𝑖 ∙ �̃�𝑤,𝑛 ∙ 𝜏) + �̂�𝑛 ∙ exp(−𝑖 ∙ �̃�𝑤,𝑛 ∙ 𝜏) ; 

 

Notice that in order to get a structural response in the real field is necessary to consider also the complex 

conjugate of the time function that otherwise would be a complex value as shown by the Euler formula. 

 

 𝑧𝑛(𝜏) =

{
 
 
 

 
 
 
[

(𝑍𝑛
𝑅 + 𝑖𝑍𝑛

𝐼) ∙ [𝑐𝑜𝑠(�̃�𝑤,𝑛 ∙ 𝜏) + 𝑖 ∙ 𝑠𝑖𝑛(�̃�𝑤,𝑛 ∙ 𝜏)] +

+(𝑍𝑛
𝑅 − 𝑖𝑍𝑛

𝐼) ∙ [𝑐𝑜𝑠(�̃�𝑤,𝑛 ∙ 𝜏) − 𝑖 ∙ 𝑠𝑖𝑛(�̃�𝑤,𝑛 ∙ 𝜏)]

] =

= 2 ∙ [𝑍𝑛
𝑅 ∙ 𝑐𝑜𝑠(�̃�𝑤,𝑛 ∙ 𝜏) − 𝑍𝑛

𝐼 ∙ 𝑠𝑖𝑛(�̃�𝑤,𝑛 ∙ 𝜏)] =

= �̅�𝑛 ∙ 𝑐𝑜𝑠(�̃�𝑤,𝑛 ∙ 𝜏 + 𝜑𝑤,𝑛) }
 
 
 

 
 
 

 ; 
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Where new terms has been introduced. 

 

 

{
 
 

 
 �̅�𝑛 = 2 ∙ √(𝑍𝑛

𝑅)
2
+ (𝑍𝑛

𝐼)
2

tan𝜑𝑤,𝑛 =
𝑍𝑛
𝐼

𝑍𝑛
𝑅

  ; 

 

First has to be notice that the amplitude of oscillations becomes a real quantity and that to account for the 

effect of imaginary terms we need to introduce a phase lag. This term could be useful once we superimpose 

the effects of flexural and torsional motions, where a time lag between the two modal shapes can change 

the response of the structure. 

 

Notice that in principle also the modal shapes could be complex functions of spatial coordinate but the 

assumption to be real allow us to follow an analytical treatment. 

 

Before proceeding is important to notice that the time function contains a dimensionless term related to the 

circular eigen-frequency of each specific mode. 

 

 �̃�𝑤,𝑛 = 𝜔𝑤,𝑛 ∙ 𝑙√
(𝑚𝑑+2𝑚𝑐)

2𝐻
 ; 

 

Now we are able to introduce the modal decomposition in the linear flexural equation of motion of the free 

vibrating system. 

 

 𝐹(𝜉, 𝜏) =
𝑑2�̃�𝑑

𝑑𝜏2
+ 𝜇2 ∙ �̃�𝑑

′𝑣 − �̃�𝑑
′′ + 𝜆𝐿

2ℎ̃𝑤 = ∑ {

−�̃�𝑤,𝑛
2 ∙ 𝑊𝑛(𝜉) + 𝜇

2 ∙ 𝑊𝑛
′𝑣(𝜉) +

−𝑊𝑛
′′(𝜉) + 𝜆𝐿

2
∫ 𝑊𝑛(𝜉)𝑑𝜉
1

0

} ∙ 𝑧𝑛(𝜏)
∞
𝑛=1  ; 

 

Hence in order to satisfy dynamic equilibrium at each instant of time we need to grant the following relation 

for each mode. 

 

𝐹𝑛(𝜉, 𝜏, 𝑛) = 0   ∀(𝜉, 𝜏, 𝑛)⇔ 𝐹𝑛(𝜉) = {

𝜇2 ∙ 𝑊𝑛
′𝑣(𝜉) −𝑊𝑛

′′(𝜉) +

−�̃�𝑤,𝑛
2 ∙ 𝑊𝑛(𝜉) + 𝜆𝐿

2 ∙ ℎ̃𝑊,𝑛

} = 𝐹𝑛,𝑜(𝜉) + 𝜆𝐿
2 ∙ ℎ̃𝑊,𝑛 = 0   ∀(𝜉, 𝑛) 

; 

 

We have just found the ordinary differential equation of fourth order that can be solved analytically and find 

out both the unknowns that are the modal shape and the circular eigen-frequencies. The fact that from a 

single equation is possible to define two unknowns is not so surprising if we think that the two variables are 

implicitly linked together. In fact the procedure is the usual one used to solve eigen-values problems. 

In order to solve an ode with spatial variable are necessary proper boundary conditions, that in this case has 

to be four and are those associate to the simply supported beam. 

The analytical procedure allows us to detect particular conditions that a numerical approach will risk to 

neglect. 
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First of all is the distinction between symmetric and skew-symmetric modal shapes. 

 

i. Skew-symmetric modes: 

 

In the parametric analysis of the previous Chapter 1 we have already notice that in correspondence of even 

wave numbers the linear contribution to the cable’s elongation vanishes. Hence, this means that the initial 

tension in the cable doesn’t change when the structure vibrates following a skew-symmetric shape along its 

length. 

As a consequence the stiffening term would be null and the equation of motion reduce to that of a tensioned 

simply supported Euler-Bernoulli beam or to that of a taut string depending on the values assumed by the 

parameters. 

 

 ℎ̃𝑊,𝑛 = 0   ∀𝑛 ⇒ 𝐹𝑛(𝜉) = 𝜇
2 ∙ 𝑊𝑛

′𝑣(𝜉) −𝑊𝑛
′′(𝜉) − �̃�𝑤,𝑛

2 ∙ 𝑊𝑛(𝜉) = 0   ∀(𝜉, 𝑛) ; 

 

This equation admits a simple sinusoidal motion with even number of half waves. 

 

 𝑊𝑛(𝜉) = sin(2𝑛 ∙ 𝜋 ∙ 𝜉) ; 

 

Notice that we have found a modal shape, hence it’s not important the actual amplitude of vibration, since 

it will be given by the time dependent function after a time integration of the equation of motion. 

 

Thus, all modal shapes will be normalised with respect to the maximum positive downward displacement. 

 

It’s simple to show that effectively the stiffening term vanishes for any choice of half wave number. 

 

 ℎ̃𝑊,𝑛 = ∫ 𝑊𝑛(𝜉)𝑑𝜉
1

0
= ∫ sin(2𝑛 ∙ 𝜋 ∙ 𝜉) 𝑑𝜉

1

0
= {

= −
1

2𝑛𝜋
[cos(2𝑛 ∙ 𝜋 ∙ 𝜉)]0

1 =

= −
1

2𝑛𝜋
[cos(2𝜋 ∙ 𝑛) − 1]

} = 0   ∀𝑛 ; 

 

Substituting inside the equation of motion we get the expression for the circular eigen-frequencies. 

 

𝐹𝑛(𝜉) = {𝜇
2 ∙ (2𝑛𝜋)4 + (2𝑛𝜋)2 − �̃�𝑤,𝑛

2} ∙ sin(2𝑛𝜋 ∙ 𝜉) ; 

 

It’s evident that the format is the usual one used in discrete systems to study the eigen-value solutions. 

 

 𝐹𝑛(𝜉) = 0  ∀(𝜉, 𝑛)⇔ 𝜇2 ∙ (2𝑛𝜋)4 + (2𝑛𝜋)2 − �̃�𝑤,𝑛
2 = 0   ∀𝑛 ⇔ �̃�𝑤,𝑛 = 2𝑛𝜋 ∙ √1 + 𝜇

2 ∙ (2𝑛𝜋)2 ; 

 

As previously mentioned two extreme situations can be described respectively when the cable’s or deck 

flexural stiffness is dominant on the whole system response. 

 

 𝑖𝑓   𝜇2 ≪
1

(2𝑛𝜋)2
⇒ �̃�𝑤,𝑛 = 2𝑛𝜋   (𝑡𝑎𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔); 

 

 𝑖𝑓   𝜇2 ≫
1

(2𝑛𝜋)2
⇒ �̃�𝑤,𝑛 = (2𝑛𝜋)

2 ∙ 𝜇   (𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑑 𝑏𝑒𝑎𝑚); 
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ii. Symmetric modes: 

 

In this case the linear contribution of the stiffening term becomes relevant on the flexural response. As direct 

consequence the equation of motion becomes a complete ODE in spatial variable. Hence the solution is a 

combination of a homogeneous and a particular integral. 

 

Since the stiffening term is constant once we fix the modal shape to be analysed, then the particular solution 

required is a constant, since has to be able to solve by itself the complete ODE without any need for boundary 

conditions. 

 

 𝑊𝑛,𝑝 = 𝐶𝑛 ⇒𝐹𝑛(𝜉) = 0  ∀(𝜉, 𝑛)⇔ 𝐶𝑛 =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ; 

 

Notice that in the stiffening term we need to consider the complete solution and not only the particular one, 

though up to now it’s unknown. 

 

On the other hand the Euler method is the easiest way to find out the homogeneous integral for ODE with 

constant coefficients. This method exploits the linearity of the equation, trying to find the homogeneous 

solution as a linear combination of exponential terms. 

The terms necessary to describe exactly the modal shape under consideration are equal to the number of 

boundary conditions that affects its shape, that in the present general case are the four ones proper of a 

simply supported beam. In fact with respect to the particular integral, the homogeneous one has to satisfy 

both the homogeneous equation and all the boundary conditions. 

 

 𝑊𝑛,𝑜(𝜉) = ∑ 𝑐𝑛,𝑖 ∙ 𝑒𝑥𝑝(𝛼𝑛,𝑖 ∙ 𝜉)
4
𝑖=1  ; 

 

Replacing in the homogeneous equation of motion we get the expression for the exponential coefficient. 

 

 𝐹𝑛,𝑜(𝜉) = ∑ 𝑐𝑛,𝑖 ∙ {𝜇
2 ∙ 𝛼𝑛,𝑖

4 − 𝛼𝑛,𝑖
2 − �̃�𝑤,𝑛

2} ∙ 𝑒𝑥𝑝(𝛼𝑛,𝑖𝜉)
4
𝑖=1  ; 

 

Hence. 

 

𝐹𝑛,𝑜(𝜉) = 0  ∀(𝜉, 𝑖, 𝑛)⇔ {𝜇2 ∙ 𝛼𝑛,𝑖
4 − 𝛼𝑛,𝑖

2 − �̃�𝑤,𝑛
2} = 0   ∀(𝑖, 𝑛) ; 

 

⇔𝛼𝑛,𝑖
2 =

1

2𝜇2
(1 ± √1 + 4𝜇2 ∙ �̃�𝑤,𝑛

2) ; 

 

In the following will be useful to manage easily these coefficients. 

 

 휂𝑤,𝑛
2 =

1

2𝜇2
(√1 + 4𝜇2 ∙ �̃�𝑤,𝑛

2 − 1) ; 

 

 𝛹𝑤,𝑛
2 =

1

2𝜇2
(√1 + 4𝜇2 ∙ �̃�𝑤,𝑛

2 + 1) ; 

 

The previous definition allow us to define respectively the so called trigonometric and hyperbolic exponential 

coefficient. 
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The following relation will be useful in the following. 

 

 𝛹𝑤,𝑛
2 = 휂𝑤,𝑛

2 +
1

𝜇2
 ; 

 

Then we are able to superimpose effects of both the particular and homogeneous integrals in order to obtain 

the complete solution of the equation of motion. 

 

 𝑊𝑛(𝜉) = 𝑊𝑛,𝑝 +𝑊𝑛,𝑜(𝜉) =

{
  
 

  
 

𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 +

+𝑐𝑛,1 ∙ exp(𝛹𝑤,𝑛𝜉) + 𝑐𝑛,2 ∙ exp(−𝛹𝑤,𝑛𝜉) +

+𝑐𝑛,3 ∙ exp(𝑖 ∙ 휂𝑤,𝑛𝜉) + 𝑐𝑛,4 ∙ exp(−𝑖 ∙ 휂𝑤,𝑛𝜉)}
  
 

  
 

 ; 

 

Now it’s evident that we are searching for real modal shapes, in fact the last two contributions if taken 

separately would be a complex combination of sine and cosine spatial functions, while together grant the 

solution to be a real function, being complex conjugate number. 

 

At this point is necessary to enforce the following boundary conditions in order to find the values of the 

constant coefficients necessary to linearly combine each contribution. 

 

 𝑏. 𝑐. (𝑠𝑢𝑝𝑝𝑜𝑟𝑡) {

𝑊𝑛(0) = 𝑊𝑛(1) = 0   (𝑛𝑢𝑙𝑙 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)

𝑊𝑛
′′(0) = 𝑊𝑛

′′(1) = 0   (𝑓𝑟𝑒𝑒 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒)
   ∀𝑛 ; 

 

It’s possible to study separately the conditions at the two ends. 

 

{
 
 

 
 𝑊𝑛(0) = 0⇔ 𝑐𝑛,1 + 𝑐𝑛,2 + 𝑐𝑛,3 + 𝑐𝑛,4 +

𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 = 0

𝑊𝑛
′′(0) = 0⇔ (𝑐𝑛,1 + 𝑐𝑛,2) ∙ 𝛹𝑤,𝑛

2 − (𝑐𝑛,3 + 𝑐𝑛,4) ∙ 휂𝑤,𝑛
2 = 0

 ; 

 

⇒ 𝑐𝑛,3 = −(𝑐𝑛,4 +
𝛹𝑤,𝑛

2

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛) ; 

 

{
 
 

 
 𝑊𝑛(1) = 0⇔ 𝑐𝑛,1 ∙ 𝑒

𝛹𝑤,𝑛 + 𝑐𝑛,2 ∙ 𝑒
−𝛹𝑤,𝑛 + 𝑐𝑛,3 ∙ 𝑒

𝑖∙ 𝑤,𝑛 + 𝑐𝑛,4 ∙ 𝑒
−𝑖∙ 𝑤,𝑛 +

𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 = 0

𝑊𝑛
′′(1) = 0⇔ (𝑐𝑛,1 ∙ 𝑒

𝛹𝑤,𝑛 + 𝑐𝑛,2 ∙ 𝑒
−𝛹𝑤,𝑛) ∙ 𝛹𝑤,𝑛

2 − (𝑐𝑛,3 ∙ 𝑒
𝑖∙ 𝑤,𝑛 + 𝑐𝑛,4 ∙ 𝑒

−𝑖∙ 𝑤,𝑛) ∙ 휂𝑤,𝑛
2 = 0

 ; 

 

⇒ 𝑐𝑛,3 = −(𝑐𝑛,4 +
𝛹𝑤,𝑛

2

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙ 𝑒
−𝑖∙ 𝑤,𝑛 ∙

𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛) ; 

 

Hence the constant parameters assume the following expression. 

 

 𝑐𝑛,4 =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙

𝛹𝑤,𝑛
2

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙
1−𝑒𝑖∙𝜂𝑤,𝑛

𝑒𝑖∙𝜂𝑤,𝑛−𝑒−𝑖∙𝜂𝑤,𝑛
 ; 
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 𝑐𝑛,3 = −
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙

𝛹𝑤,𝑛
2

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙
1−𝑒−𝑖∙𝜂𝑤,𝑛

𝑒𝑖∙𝜂𝑤,𝑛−𝑒−𝑖∙𝜂𝑤,𝑛
 ; 

 

 𝑐𝑛,2 =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙

𝑤,𝑛
2

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙
1−𝑒𝛹𝑤,𝑛

𝑒𝛹𝑤,𝑛−𝑒−𝛹𝑤,𝑛
 ; 

 

 𝑐𝑛,1 = −
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙

𝑤,𝑛
2

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙
1−𝑒−𝛹𝑤,𝑛

𝑒𝛹𝑤,𝑛−𝑒−𝛹𝑤,𝑛
 ; 

 

The substitution in the general solution leads to the following expression. 

 

 𝑊𝑛(𝜉) =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙

{
 
 

 
 

1 −
1

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙

(

 
 
휂𝑤,𝑛

2 ∙
𝑒𝛹𝑤,𝑛∙𝜉−𝑒𝛹𝑤,𝑛∙(𝜉−1)+𝑒−𝛹𝑤,𝑛∙𝜉−𝑒−𝛹𝑤,𝑛∙(𝜉−1)

𝑒𝛹𝑤,𝑛−𝑒−𝛹𝑤,𝑛
+

+𝛹𝑤,𝑛
2 ∙
𝑒𝑖∙𝜂𝑤,𝑛∙𝜉−𝑒𝑖∙𝜂𝑤,𝑛∙(𝜉−1)+𝑒−𝑖∙𝜂𝑤,𝑛∙𝜉−𝑒−𝑖∙𝜂𝑤,𝑛∙(𝜉−1)

𝑒𝜂𝑤,𝑛−𝑒−𝜂𝑤,𝑛 )

 
 

}
 
 

 
 

 ; 

 

Some trigonometric relations allow us to reformulate the solution in a more compact form. 

 

 {

sinh(𝛼) =
1

2
(𝑒𝛼 − 𝑒−𝛼)

sin(𝛼) =
1

2
(𝑒𝑖∙𝛼 − 𝑒−𝑖∙𝛼)

 ; 

 

 ⇒𝑊𝑛(𝜉) =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙

{
 
 

 
 

1 −
1

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙

(

 
 
휂𝑤,𝑛

2 ∙
sinh (𝛹𝑤,𝑛∙𝜉)−sinh (𝛹𝑤,𝑛∙(𝜉−1))

sinh (𝛹𝑤,𝑛)
+

+𝛹𝑤,𝑛
2 ∙
sin ( 𝑤,𝑛∙𝜉)−sin ( 𝑤,𝑛∙(𝜉−1))

sin ( 𝑤,𝑛) )

 
 

}
 
 

 
 

 ; 

 

 

 

{
 

 sinh(𝛼) ± sinh(𝛽) = 2 ∙ sinh (
𝛼±𝛽

2
) ∙ cosh (

𝛼∓𝛽

2
)

sin(𝛼) ± sin(𝛽) = 2 ∙ sin (
𝛼±𝛽

2
) ∙ cos (

𝛼∓𝛽

2
)

 ; 

 

 ⇒

{
 
 

 
 sinh (𝛹𝑤,𝑛 ∙ 𝜉) − sinh (𝛹𝑤,𝑛 ∙ (𝜉 − 1)) = 2 ∙ sinh (

𝛹𝑤,𝑛

2
) ∙ cosh(𝛹𝑤,𝑛 ∙ (𝜉 −

1

2
))

sin (휂𝑤,𝑛 ∙ 𝜉) − sin (휂𝑤,𝑛 ∙ (𝜉 − 1)) = 2 ∙ sin (
𝑤,𝑛

2
) ∙ cos (휂𝑤,𝑛 ∙ (𝜉 −

1

2
))

 ; 

 

 

 {
sinh(2𝛼) = 2 ∙ sinh(𝛼) ∙ cosh(𝛼)

sin(2𝛼) = 2 ∙ sin(𝛼) ∙ cos(𝛼)
 ; 

 

 ⇒

{
 
 

 
 
sinh(𝛹𝑤,𝑛)

sinh(
𝛹𝑤,𝑛
2
)
= 2 ∙ cosh (

𝛹𝑤,𝑛

2
)

sin( 𝑤,𝑛)

sin(
𝜂𝑤,𝑛
2
)
= 2 ∙ cos ( 𝑤,𝑛

2
)

 ; 
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Hence the final expression for the eigen-modes is the following. 

 

𝑊𝑛(𝜉) =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {1 −

1

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙ (휂𝑤,𝑛
2 ∙
cosh(𝛹𝑤,𝑛∙(𝜉−

1

2
))

cosh(
𝛹𝑤,𝑛
2
)

+𝛹𝑤,𝑛
2 ∙
cos( 𝑤,𝑛∙(𝜉−

1

2
))

cos(
𝜂𝑤,𝑛
2
)
)} ; 

 

It’s evident that the actual expression is implicit due to the presence of the stiffening term that depends itself 

by the modal shape, but as already said the eigen-modes has to be normalised, hence all common constant 

terms can be neglected. 

Effectively the modal shape is not already known, since the parameters inside the parenthesis are all 

functions of the unknown circular eigen-frequency. 

 

In fact the only reason why is important to takes in account for the stiffening implicit term is that only in this 

way it is possible to find the eigen-function giving us the circular frequency associated to that particular 

modal shape. 

 

Thence from the definition of the stiffening term we get the following relation. 

 

 ℎ̃𝑊,𝑛 = ∫ 𝑊𝑛(𝜉)𝑑𝜉
1

0
=

𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ ∫

{
 
 

 
 

1 −
1

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙

(

 
 
 
휂𝑤,𝑛

2 ∙
cosh(𝛹𝑤,𝑛∙(𝜉−

1

2
))

cosh(
𝛹𝑤,𝑛
2
)

+

+𝛹𝑤,𝑛
2 ∙
cos( 𝑤,𝑛∙(𝜉−

1

2
))

cos(
𝜂𝑤,𝑛
2
) )

 
 
 

}
 
 

 
 

1

0
𝑑𝜉 ; 

 

It’s evident the implicit nature of the actual problem, since the stiffening term can be cancelled out to find 

the general eigen-function of the problem. 

 

 
�̃�𝑤,𝑛

2

𝜆𝐿
2 = 1 −

1

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙ (휂𝑤,𝑛
2 ∙

tanh(
𝛹𝑤,𝑛
2
)

𝛹𝑤,𝑛
2

+𝛹𝑤,𝑛
2 ∙

tan(
𝜂𝑤,𝑛
2
)

𝜂𝑤,𝑛
2

) ; 

 

The last expression is once again an implicit equation that can be solved numerically by an iterative trial and 

error process. 

We have to underline the fact that this eigen-function is general in the sense that its expression is valid for 

any symmetrical flexural modes we want to consider. 

Hence we expect that function to have an infinite number of zeros, since it has to be able to describe all the 

infinite set of eigen-solution that characterise the problem. 
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Figure 2.1_Eigen function for flexural symmetric mode shape of fifth order. 

 

As can be seen from the figure above that eigen-function has asymptotic vertical discontinuities that make 

the rooting a little bit cumbersome. The complexity grows with the order of the mode since for higher orders 

the continuous branch tends to move the zero nearer and nearer to the discontinuity point. In that way the 

slope of the function become so high that it’s hard to distinguish numerically between the zero given by the 

vertical asymptote and the one given by the continuous branch of the eigen- function. Fortunately each 

“true” zero is always in between two asymptotes hence a simple rudimental counter allows us to write a 

code capable to capture automatically any circular eigen-frequency also for very high modal order. 

 

Once we get the actual eigen-value of interest we can compute both the trigonometric and hyperbolic 

exponential coefficient and get the associated normalised modal shape. 

 

2.1.2. Torsional equation of motion 

 

The steps to be followed are the same as for the flexural counterpart, hence we will report just the 

fundamental passages. 

 

First of all introduce the modal decomposition for torsional vibrations. 

 

�̃�𝑑(𝜉, 𝜏) = ∑ 𝛩𝑚(𝜉) ∙ 𝛾𝑚(𝜏)
∞
𝑚=1    𝑤𝑖𝑡ℎ  𝑚 ∈ ℵ\{0} ; 

 

𝛾𝑚(𝜏) = 𝛤𝑚 ∙ exp(𝑖 ∙ �̃�𝜗,𝑚 ∙ 𝜏) + �̂�𝑚 ∙ exp(−𝑖 ∙ �̃�𝜗,𝑚 ∙ 𝜏) = �̅�𝑚 ∙ cos (�̃�𝜗,𝑚 ∙ 𝜏 + 𝜑𝜗,𝑚) ; 
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Where the following parameters has been used. 

 

{
 
 

 
 �̅�𝑚 = 2 ∙ √(𝛤𝑚

𝑅)
2
+ (𝛤𝑚

𝐼)
2

tan𝜑𝜗,𝑚 =
𝛤𝑚

𝐼

𝛤𝑚
𝑅

 ; 

 

�̃�𝜗,𝑚 = 𝜔𝜗,𝑚 ∙ 𝑙√
(𝑚𝑑+2𝑚𝑐)

2𝐻
 ; 

 

Substitution in the linear component of the free torsional equation of motion leads to its modal format. 

 

𝑇(𝜉, 𝜏) = {

𝐽�̃� ∙
𝑑2�̃�𝑑

𝑑𝑡2
+
𝛽2

𝜒2
∙ �̃�𝑑

′𝑣
+

−(1 + 𝛽2) ∙ �̃�𝑑
′′
+ 𝜆𝐿

2ℎ̃𝜗

} = ∑

{
 

 −𝐽�̃� ∙ �̃�𝜗,𝑚
2 ∙ 𝛩𝑚(𝜉) +

𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) +

−(1 + 𝛽2)𝛩𝑚
′′(𝜉) + 𝜆𝐿

2
∫ 𝛩𝑚(𝜉)𝑑𝜉
1

0 }
 

 
∙ 𝛾𝑚(𝜏)

∞
𝑚=1  ; 

 

𝑇(𝜉, 𝜏) = 0   ∀(𝜉, 𝜏,𝑚)⇔ 𝑇𝑚(𝜉) =

{
 
 
 
 

 
 
 
 

𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) +

−(1 + 𝛽2)𝛩𝑚
′′(𝜉) +

−𝐽�̃� ∙ �̃�𝜗,𝑚
2 ∙ 𝛩𝑚(𝜉) +

+𝜆𝐿
2ℎ̃𝛩,𝑚 }

 
 
 
 

 
 
 
 

= 𝑇𝑚,𝑜(𝜉) + 𝜆𝐿
2ℎ̃𝛩,𝑚 = 0   ∀(𝜉,𝑚) ; 

 

i. Skew-symmetric modes: 

 

The vanishing of the stiffening parameter allows us to define both the modal shapes and the corresponding 

circular eigen-frequencies. 

 

 ℎ̃𝛩,𝑚 = 0   ∀𝑚 ⇒ 𝑇𝑚(𝜉) =
𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2)𝛩𝑚
′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚

2 ∙ 𝛩𝑚(𝜉) = 0  ∀(𝜉,𝑚) ; 

 

 𝛩𝑚(𝜉) = sin(2𝑚 ∙ 𝜋 ∙ 𝜉) ; 

 

𝑇𝑚(𝜉) = {
𝛽2

𝜒2
∙ (2𝑚𝜋)4 + (1 + 𝛽2) ∙ (2𝑚𝜋)2 − 𝐽�̃� ∙ �̃�𝜗,𝑚

2} ∙ sin(2𝑚𝜋 ∙ 𝜉) ; 

 

𝑇𝑚(𝜉) = 0  ∀(𝜉,𝑚)⇔
𝛽2

𝜒2
∙ (2𝑚𝜋)4 + (1 + 𝛽2) ∙ (2𝑚𝜋)2 − 𝐽�̃� ∙ �̃�𝜗,𝑚

2 = 0   ∀𝑚 ; 

 

⇔√𝐽�̃� ∙ �̃�𝜗,𝑚 = 2𝑚𝜋 ∙ √1 + 𝛽
2 +

𝛽2

𝜒2
∙ (2𝑚𝜋)2 ; 

 

The fact that the dimensionless torsional inertia is not on the right hand side is not casual but the reason of 

this choice will be clear in the following treatment. 
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Also for torsional skew-symmetric modes we can distinguish some fundamental situations. 

 

 𝑖𝑓   𝛽2 ≪
1

1+
(2𝑚𝜋)2

𝜒2

⇒√𝐽�̃� ∙ �̃�𝜗,𝑚 = 2𝑚𝜋   (2 𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝑡𝑎𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔𝑠) ; 

 

 𝑖𝑓   𝛽2 ≫
1

1+
(2𝑚𝜋)2

𝜒2

⇒√𝐽�̃� ∙ �̃�𝜗,𝑚 = 2𝑚𝜋 ∙ √1 +
(2𝑚𝜋)2

𝜒2
∙ 𝛽   (𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑑 𝑏𝑒𝑎𝑚) ; 

 

Notice that the threshold for the ratio between the torsional stiffness given by the deck and that given by 

the cables is strongly influenced by the warping stiffness of the deck’s section, being a parameter that can 

assume very different values. 

 

 𝑖𝑓   𝜒2 ≫
(2𝑚𝜋)2

1+
1

𝛽2

⇒√𝐽�̃� ∙ �̃�𝜗,𝑚 = 2𝑚𝜋 ∙ √1 + 𝛽
2   (𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑑 𝑏𝑒𝑎𝑚 𝑤𝑖𝑡ℎ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑜𝑥 𝑠𝑒𝑐𝑡𝑖𝑜𝑛) ; 

 

 𝑖𝑓   𝜒2 ≪
(2𝑚𝜋)2

1+
1

𝛽2

⇒√𝐽�̃� ∙ �̃�𝜗,𝑚 = (2𝑚𝜋)
2 ∙
𝛽

𝜒
   (𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑑 𝑏𝑒𝑎𝑚 𝑤𝑖𝑡ℎ 𝑡ℎ𝑖𝑛 𝑜𝑝𝑒𝑛 𝑠𝑒𝑐𝑡𝑖𝑜𝑛) ; 

 

ii. Symmetric modes: 

 

Let’s introduce the general expression for the complete solution composed by the particular integral and the 

homogeneous one. 

 

𝛩𝑚,𝑝 = 𝐶𝑚 ⇒ 𝑇𝑚(𝜉) = 0  ∀(𝜉,𝑚)⇔ 𝐶𝑚 =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ; 

 

𝛩𝑚,𝑜(𝜉) = ∑ 𝑐𝑚,𝑖 ∙ 𝑒𝑥𝑝(𝛼𝑚 ∙ 𝜉)
4
𝑖=1  ; 

 

𝑇𝑚,𝑜(𝜉) = ∑ 𝑐𝑚,𝑖 ∙ {
𝛽2

𝜒2
∙ 𝛼𝑚,𝑖

4 − (1 + 𝛽2) ∙ 𝛼𝑚,𝑖
2 − 𝐽�̃� ∙ �̃�𝜗,𝑚

2} ∙ 𝑒𝑥𝑝(𝛼𝑚,𝑖𝜉)
4
𝑖=1  ; 

 

𝑇𝑚,𝑜(𝜉) = 0  ∀(𝜉, 𝑖,𝑚)⇔ {
𝛽2

𝜒2
∙ 𝛼𝑚,𝑖

4 − (1 + 𝛽2) ∙ 𝛼𝑚,𝑖
2 − 𝐽�̃� ∙ �̃�𝜗,𝑚

2} = 0   ∀(𝑖,𝑚) ; 

⇔𝛼𝑚,𝑖
2 =

𝜒2

2𝛽2
(1 + 𝛽2 ±√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃� ∙ �̃�𝜗,𝑚

2) ; 

 

Define the trigonometric and hyperbolic exponential parameters. 

 

휂𝜗,𝑚
2 =

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃� ∙ �̃�𝜗,𝑚

2 − (1 + 𝛽2)) ; 

 

 𝛹𝜗,𝑚
2 =

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃� ∙ �̃�𝜗,𝑚

2 + (1 + 𝛽2)) = 휂𝜗,𝑚
2 +

𝜒2

𝛽2
(1 + 𝛽2) ; 
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 𝛩𝑚(𝜉) = 𝛩𝑚,𝑝 + 𝛩𝑚,𝑜(𝜉) =

{
  
 

  
 

𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 +

+𝑐𝑚,1 ∙ exp(𝛹𝜗,𝑚𝜉) + 𝑐𝑚,2 ∙ exp(−𝛹𝜗,𝑚𝜉) +

+𝑐𝑚,3 ∙ exp(𝑖 ∙ 휂𝜗,𝑚𝜉) + 𝑐𝑚,4 ∙ exp(−𝑖 ∙ 휂𝜗,𝑚𝜉)}
  
 

  
 

 ; 

 

Hence enforcing proper boundary conditions for the fork support and by means of proper trigonometric 

relations we can get the expression for the eigen-modes. 

 

 𝑏. 𝑐. (𝑓𝑜𝑟𝑘) {

𝛩𝑚(0) = 𝛩𝑚(1) = 0   (𝑛𝑢𝑙𝑙 𝑡𝑜𝑟𝑠𝑖𝑜𝑛)

𝛩𝑚
′′(0) = 𝛩𝑚

′′(1) = 0   (𝑓𝑟𝑒𝑒 𝑤𝑎𝑟𝑝𝑖𝑛𝑔)
   ∀𝑚 ; 

 

{
 
 

 
 𝛩𝑚(0) = 0⇔ 𝑐𝑚,1 + 𝑐𝑚,2 + 𝑐𝑚,3 + 𝑐𝑚,4 +

𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 = 0

𝛩𝑚
′′(0) = 0⇔ (𝑐𝑚,1 + 𝑐𝑚,2) ∙ 𝛹𝜗,𝑚

2 − (𝑐𝑚,3 + 𝑐𝑚,4) ∙ 휂𝜗,𝑚
2 = 0

 ; 

 

⇒ 𝑐𝑚,3 = −(𝑐𝑚,4 +
𝛹𝜗,𝑚

2

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚) ; 

 

{
 
 

 
 𝛩𝑚(1) = 0⇔ 𝑐𝑚,1 ∙ 𝑒

𝛹𝜗,𝑚 + 𝑐𝑚,2 ∙ 𝑒
−𝛹𝜗,𝑚 + 𝑐𝑚,3 ∙ 𝑒

𝑖∙ 𝜗,𝑚 + 𝑐𝑚,4 ∙ 𝑒
−𝑖∙ 𝜗,𝑚 +

𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 = 0

𝛩𝑚
′′(1) = 0⇔ (𝑐𝑚,1 ∙ 𝑒

𝛹𝜗,𝑚 + 𝑐𝑚,2 ∙ 𝑒
−𝛹𝜗,𝑚) ∙ 𝛹𝜗,𝑚

2 − (𝑐𝑚,3 ∙ 𝑒
𝑖∙ 𝜗,𝑚 + 𝑐𝑚,4 ∙ 𝑒

−𝑖∙ 𝜗,𝑚) ∙ 휂𝜗,𝑚
2 = 0

 

; 

 

⇒ 𝑐𝑚,3 = −(𝑐𝑚,4 +
𝛹𝜗,𝑚

2

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙ 𝑒
−𝑖∙ 𝜗,𝑚 ∙

𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚) ; 

 

Find the constant coefficients. 

 

𝑐𝑚,4 =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

𝛹𝜗,𝑚
2

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙
1−𝑒

𝑖∙𝜂𝜗,𝑚

𝑒
𝑖∙𝜂𝜗,𝑚−𝑒

−𝑖∙𝜂𝜗,𝑚
 ; 

 

 𝑐𝑚,3 = −
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

𝛹𝜗,𝑚
2

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙
1−𝑒

𝑖∙𝜂𝜗,𝑚

𝑒
𝑖∙𝜂𝜗,𝑚−𝑒

−𝑖∙𝜂𝜗,𝑚
 ; 

 

 𝑐𝑚,2 =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

𝜗,𝑚
2

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙
1−𝑒

𝛹𝜗,𝑚

𝑒
𝛹𝜗,𝑚−𝑒

−𝛹𝜗,𝑚
 ; 

 

 𝑐𝑚,1 = −
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

𝜗,𝑚
2

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙
1−𝑒

𝛹𝜗,𝑚

𝑒
𝛹𝜗,𝑚−𝑒

−𝛹𝜗,𝑚
 ; 
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Exploiting some trigonometric relations. 

  

𝛩𝑚(𝜉) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

{
 
 

 
 

1 −
1

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙

(

 
 
휂𝜗,𝑚

2 ∙
𝑒
𝛹𝜗,𝑚∙𝜉−𝑒

𝛹𝜗,𝑚∙(𝜉−1)+𝑒
−𝛹𝜗,𝑚∙𝜉−𝑒

−𝛹𝜗,𝑚∙(𝜉−1)

𝑒
𝛹𝜗,𝑚−𝑒

−𝛹𝜗,𝑚
+

+𝛹𝜗,𝑚
2 ∙
𝑒
𝑖∙𝜂𝜗,𝑚∙𝜉−𝑒

𝑖∙𝜂𝜗,𝑚∙(𝜉−1)+𝑒
−𝑖∙𝜂𝜗,𝑚∙𝜉−𝑒

−𝑖∙𝜂𝜗,𝑚∙(𝜉−1)

𝑒
𝜂𝜗,𝑚−𝑒

−𝜂𝜗,𝑚 )

 
 

}
 
 

 
 

 

; 

 

𝛩𝑚(𝜉) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

{
 
 

 
 

1 −
1

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙

(

 
 
휂𝜗,𝑚

2 ∙
sinh (𝛹𝜗,𝑚∙𝜉)−sinh (𝛹𝜗,𝑚∙(𝜉−1))

sinh (𝛹𝜗,𝑚)
+

+𝛹𝜗,𝑚
2 ∙
sin ( 𝜗,𝑚∙𝜉)−sin ( 𝜗,𝑚∙(𝜉−1))

sin ( 𝜗,𝑚) )

 
 

}
 
 

 
 

 ; 

 

𝛩𝑚(𝜉) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙ {1 −

1

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙ (휂𝜗,𝑚
2 ∙
cosh(𝛹𝜗,𝑚∙(𝜉−

1

2
))

cosh(
𝛹𝜗,𝑚
2
)

+𝛹𝜗,𝑚
2 ∙
cos( 𝜗,𝑚∙(𝜉−

1

2
))

cos(
𝜂𝜗,𝑚
2
)
)} ; 

 

Hence enforcing the definition of the stiffening term we get the eigen-function for circular torsional 

frequencies. 

 

 ℎ̃𝛩,𝑚 = ∫ 𝛩𝑚(𝜉)𝑑𝜉
1

0
=

𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙ ∫

{
  
 

  
 

1 −
1

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙

(

 
 
 
 
휂𝜗,𝑚

2 ∙
cosh(𝛹𝜗,𝑚∙(𝜉−

1

2
))

cosh(
𝛹𝜗,𝑚
2
)

+

+𝛹𝜗,𝑚
2 ∙
cos( 𝜗,𝑚∙(𝜉−

1

2
))

cos(
𝜂𝜗,𝑚
2
) )

 
 
 
 

}
  
 

  
 

1

0
𝑑𝜉 ; 

 

 
𝐽�̃�∙�̃�𝜗,𝑚

2

𝜆𝐿
2 = 1 −

1

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙ (휂𝜗,𝑚
2 ∙

tanh(
𝛹𝜗,𝑚
2
)

𝛹𝜗,𝑚
2

+𝛹𝜗,𝑚
2 ∙

tan(
𝜂𝜗,𝑚
2
)

𝜂𝜗,𝑚
2

) ; 

 

It’s now evident that the solution of the eigen-function can be found taking as unknown the dimensionless 

torsional inertia and circular frequency together. In fact both the trigonometric and the hyperbolic 

exponential coefficients depends on that product. 

This trick allows us to define the eigen-values and vectors of the problem without necessary specify the 

torsional inertia of the structural system that in general could be not so easily found in literature.  
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2.2. Parametric analysis 

 
Once the general solutions have been defined both for the flexural and the torsional equation of motion, 

could be interesting to analyse some special cases. In fact, considering extreme values for the fundamental 

parameters entering in the equation of motion, we can get in some cases simpler solution than in the general 

situation and then we will use those results to validate and bound the latter. 

 

2.2.1. Flexural modes 

 

Let’s start to analyse the parametric influence of the so called Irvine parameter and of the deck to cable 

flexural stiffness on the flexural vibrations. 

First of all it’s useful to recall their definitions. 

 

 𝜆𝐿
2 =

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(𝑦′′𝑙)2   𝑎𝑛𝑑   𝜇2 =

𝐸𝑑𝐼𝑑

2𝐻𝑙2
 ; 

 

i. Flat cable: 

 

As far as the initial tension in the cable grows the cable’s stretch increases too, hence its curvature reduces 

as its effective curvilinear length tends to reach the rectilinear distance between pylons. 

In the extreme situation the initial tension would be so high that prevent the cable to have any curvature and 

behaves like a taut string. 

 

 lim
𝐻→∞

𝜆𝐿
2 = 0⇒ lim

𝐻→∞
𝐹𝑛(𝜉) = 𝜇

2 ∙ 𝑊𝑛
′𝑣(𝜉) −𝑊𝑛

′′(𝜉) − �̃�𝑤,𝑛
2 ∙ 𝑊𝑛(𝜉) ; 

 

 𝐹𝑛(𝜉) = 0   ∀(𝜉, 𝑛)⇔ 𝜇2 ∙ 𝑊𝑛
′𝑣(𝜉) −𝑊𝑛

′′(𝜉) − �̃�𝑤,𝑛
2 ∙ 𝑊𝑛(𝜉) = 0   ∀(𝜉, 𝑛) ; 

 

It’s evident that the equation of motion reduces to that of skew-symmetric modes. Hence the solution will 

be in the same format, with the exception that now we are considering symmetric modes and consequently 

the number of sinusoidal half-waves has to be odd and no more even. 

 

 𝑊𝑛(𝜉) = sin((2𝑛 − 1) ∙ 𝜋 ∙ 𝜉) ; 

 

 �̃�𝑤,𝑛 = (2𝑛 − 1)𝜋 ∙ √1 + 𝜇
2 ∙ ((2𝑛 − 1)𝜋)

2
 ; 

 

Also in this special condition there are two special situations. 

 

 𝑖𝑓   𝜇2 ≪
1

((2𝑛−1)𝜋)
2⇒ �̃�𝑤,𝑛 = (2𝑛 − 1)𝜋   (𝑡𝑎𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔); 

 

 𝑖𝑓   𝜇2 ≫
1

((2𝑛−1)𝜋)
2⇒ �̃�𝑤,𝑛 = ((2𝑛 − 1)𝜋)

2
∙ 𝜇   (𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑑 𝑏𝑒𝑎𝑚); 
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ii. Inextensible cable: 

 

The inverse situation happens when the axial stiffness of the cable is so high with respect to the initial tension 

that it can be assumed to be inextensible. This kind of assumption is a classical one that is generally assumed 

for preliminary analysis of cables with large diameter. 

 

 lim
𝐸𝑐𝐴𝑐→∞

𝜆𝐿
2 = ∞⇒ lim

𝐸𝑐𝐴𝑐→∞
𝐹𝑛(𝜉) = 𝜇

2 ∙ 𝑊𝑛
′𝑣(𝜉) −𝑊𝑛

′′(𝜉) − �̃�𝑤,𝑛
2 ∙ 𝑊𝑛(𝜉) + 𝜆𝐿

2 ∙ ℎ̃𝑊,𝑛 ; 

 

Since the equation of motion doesn’t change then the expression for the eigen-modes remains the same as 

for the general case, in fact would be normalised with respect the Irvine parameter. 

 

𝑊𝑛(𝜉) =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {1 −

1

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙ (휂𝑤,𝑛
2 ∙
cosh(𝛹𝑤,𝑛∙(𝜉−

1

2
))

cosh(
𝛹𝑤,𝑛
2
)

+𝛹𝑤,𝑛
2 ∙
cos( 𝑤,𝑛∙(𝜉−

1

2
))

cos(
𝜂𝑤,𝑛
2
)
)} ; 

 

On the other hand the same parameter affect those modal shapes indirectly by means of the circular eigen-

frequency, due to the fact that the eigen-function changes as follows. 

 

 lim
𝐸𝑐𝐴𝑐→∞

�̃�𝑤,𝑛
2

𝜆𝐿
2 = 0⇒ 1 −

1

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙ (휂𝑤,𝑛
2 ∙

tanh(
𝛹𝑤,𝑛
2
)

𝛹𝑤,𝑛
2

+𝛹𝑤,𝑛
2 ∙

tan(
𝜂𝑤,𝑛
2
)

𝜂𝑤,𝑛
2

) = 0 ; 

 

Further, substituting the expression relating the hyperbolic exponential parameter to the trigonometric one, 

after some passage we can get the following expression proposed by [5]. 

 

 𝛹𝑤,𝑛
2 = 휂𝑤,𝑛

2 +
1

𝜇2
⇒ �̃�𝑤,𝑛

2 =
1

2𝜇2
{(1 + 2𝜇2휂𝑤,𝑛

2)
2
− 1} ; 

 

iii. Flexible deck: 

 

This situation wants to make evident that hidden in the model there is also the elastic suspension cable 

formulation. In fact once the deck is assumed to have a negligible flexural stiffness with respect to the cable’s 

one, external loads are mainly sustained just by the cables system. 

In the limit case the deck loose completely its flexural stiffness and hence cannot behave like an equivalent 

cable since in the formulation of the model we assume that it has not axially fixed ends. 

 

 lim
𝐸𝑑𝐼𝑑→0

𝜇2 = 0⇒ lim
𝐸𝑑𝐼𝑑→0

𝐹𝑛(𝜉) = −𝑊𝑛
′′(𝜉) − �̃�𝑤,𝑛

2 ∙ 𝑊𝑛(𝜉) + 𝜆𝐿
2 ∙ ℎ̃𝑊,𝑛 = 𝐹𝑛,𝑜(𝜉) + 𝜆𝐿

2 ∙ ℎ̃𝑊,𝑛 ; 

 

Since the equation of motion changes drastically it’s better to follow all the passages. 

 

 𝑊𝑛,𝑝 = 𝐶𝑛 ⇒𝐹𝑛(𝜉) = 0  ∀(𝜉, 𝑛)⇔ 𝐶𝑛 =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ; 

 

It’s important to notice that in this particular situation has no sense to enforce free curvature at the two end 

of the bridge. In fact we are dealing with a suspension cable system that by hypothesis has null flexural 

sectional stiffness. Hence the free curvature condition is automatically satisfied by the modal shape. 

As direct consequence in the homogeneous integral we need no more four terms but only two. 
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 𝑊𝑛,𝑜(𝜉) = ∑ 𝑐𝑛,𝑖 ∙ 𝑒𝑥𝑝(𝛼𝑛,𝑖 ∙ 𝜉)
2
𝑖=1  

 

  

 𝐹𝑛,𝑜(𝜉) = ∑ 𝑐𝑛,𝑖 ∙ {−𝛼𝑛,𝑖
2 − �̃�𝑤,𝑛

2} ∙ 𝑒𝑥𝑝(𝛼𝑛,𝑖𝜉)
2
𝑖=1  ; 

 

Hence we can enforce. 

 

𝐹𝑛,𝑜(𝜉) = 0  ∀(𝜉, 𝑖, 𝑛)⇔ {−𝛼𝑛,𝑖
2 − �̃�𝑤,𝑛

2} = 0   ∀(𝑖, 𝑛)⇔ 𝛼𝑛,𝑖 = ±𝑖 ∙ �̃�𝑤,𝑛 ; 

 

It’s evident that the contribution of the hyperbolic exponential term vanishes, hence the modal shapes will 

be characterised by a trigonometric function. 

 

 lim
𝜇2→0

휂𝑤,𝑛
2 = lim

𝜇2→0

1

2𝜇2
(√1 + 4𝜇2 ∙ �̃�𝑤,𝑛

2 − 1) = �̃�𝑤,𝑛
2 ; 

 

 lim
𝜇2→0

𝛹𝑤,𝑛
2 = lim

𝜇2→0

1

2𝜇2
(√1 + 4𝜇2 ∙ �̃�𝑤,𝑛

2 + 1) = lim
𝜇2→0

1

𝜇2
= ∞ ; 

  

The complete solution becomes. 

 

 𝑊𝑛(𝜉) = 𝑊𝑛,𝑝 +𝑊𝑛,𝑜(𝜉) =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 + 𝑐𝑛,1 ∙ exp(𝑖 ∙ 휂𝑤,𝑛𝜉) + 𝑐𝑛,2 ∙ exp(−𝑖 ∙ 휂𝑤,𝑛𝜉) ; 

 

Enforcing the following boundary conditions. 

 

 𝑏. 𝑐. {

𝑊𝑛(0) = 0

𝑊𝑛(1) = 0
   ∀𝑛 ⇒

{
 
 

 
 𝑊𝑛(0) = 0⇔ 𝑐𝑛,1 + 𝑐𝑛,2 +

𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 = 0

𝑊𝑛(1) = 0⇔ 𝑐𝑛,1 ∙ 𝑒
𝑖∙ 𝑤,𝑛 + 𝑐𝑛,2 ∙ 𝑒

−𝑖∙ 𝑤,𝑛 +
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 = 0

 ; 

 

Hence the constant parameters assume the following expression. 

 

 𝑐𝑛,2 =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙

1−𝑒𝑖∙𝜂𝑤,𝑛

𝑒𝑖∙𝜂𝑤,𝑛−𝑒−𝑖∙𝜂𝑤,𝑛
 ; 

 

 𝑐𝑛,1 = −
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙

1−𝑒−𝑖∙𝜂𝑤,𝑛

𝑒𝑖∙𝜂𝑤,𝑛−𝑒−𝑖∙𝜂𝑤,𝑛
 ; 

 

The substitution in the general solution leads to the following expression. 

 

 𝑊𝑛(𝜉) =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {1 −

𝑒𝑖∙𝜂𝑤,𝑛∙𝜉−𝑒𝑖∙𝜂𝑤,𝑛∙(𝜉−1)+𝑒−𝑖∙𝜂𝑤,𝑛∙𝜉−𝑒−𝑖∙𝜂𝑤,𝑛∙(𝜉−1)

𝑒𝑖∙𝜂𝑤,𝑛−𝑒−𝑖∙𝜂𝑤,𝑛
} ; 

 

The usual trigonometric relations allow us to reformulate the solution in a more compact form. 

 

 𝑊𝑛(𝜉) =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {1 −

sin ( 𝑤,𝑛∙𝜉)−sin ( 𝑤,𝑛∙(𝜉−1))

sin ( 𝑤,𝑛)
} =

𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {1 −

cos(�̃�𝑤,𝑛∙(𝜉−
1

2
))

cos(
�̃�𝑤,𝑛
2
)
} ; 
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From the definition of the stiffening term we get the eigen-function of the problem. 

 

 ℎ̃𝑊,𝑛 = ∫ 𝑊𝑛(𝜉)𝑑𝜉
1

0
⇒
�̃�𝑤,𝑛

2

𝜆𝐿
2 = 1 −

tan(
�̃�𝑤,𝑛
2
)

�̃�𝑤,𝑛
2

 ; 

 

iv. Rigid deck: 

 

Let’s consider the opposite case in which it’s the deck the main stiffening structure for the flexural vibration 

of the suspension bridge. 

  

lim
𝐸𝑑𝐼𝑑→∞

𝜇2 = ∞⇒ lim
𝐸𝑑𝐼𝑑→∞

𝐹𝑛(𝜉) = 𝜇
2 ∙ 𝑊𝑛

′𝑣(𝜉) −𝑊𝑛
′′(𝜉) − �̃�𝑤,𝑛

2 ∙ 𝑊𝑛(𝜉) + 𝜆𝐿
2 ∙ ℎ̃𝑊,𝑛 ; 

 

As before since the equation of motion doesn’t change its shape we expect the modal shape to be influenced 

by the actual condition indirectly by means of the circular eigen-frequency. 

 

 𝑖𝑓   𝜇2 ≫
1

4∙�̃�𝑤,𝑛
2⇒ (휂𝑤,𝑛

2, 𝛹𝑤,𝑛
2) =

�̃�𝑤,𝑛

𝜇
⇒
( 𝑤,𝑛

2,𝛹𝑤,𝑛
2)

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 =
1

2
 ; 

 

Hence we can find the following expression for the modal shapes and the eigen-function. 

 

 𝑊𝑛(𝜉) =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {1 −

1

2
∙ (

cosh(√
�̃�𝑤,𝑛
𝜇
∙(𝜉−

1

2
))

cosh(
1

2
√
�̃�𝑤,𝑛
𝜇
)

+
cos(√

�̃�𝑤,𝑛
𝜇
∙(𝜉−

1

2
))

cos(
1

2
√
�̃�𝑤,𝑛
𝜇
)

)} ; 

 

 ℎ̃𝑊,𝑛 = ∫ 𝑊𝑛(𝜉)𝑑𝜉
1

0
⇒
�̃�𝑤,𝑛

2

𝜆𝐿
2 = 1 −

1

2
∙ (
tanh(

1

2
√
�̃�𝑤,𝑛
𝜇
)

1

2
√
�̃�𝑤,𝑛
𝜇

+
tan(

1

2
√
�̃�𝑤,𝑛
𝜇
)

1

2
√
�̃�𝑤,𝑛
𝜇

) ; 

 

Let’s now try to combine those particular conditions in order to find the limiting cases. 

 

v. Flat cable & Flexible deck: 

 

lim
𝐻→∞

𝜆𝐿
2 = 0   𝑎𝑛𝑑   lim

𝐸𝑑𝐼𝑑→0
𝜇2 = 0⇒ lim

𝐻→∞

𝐸𝑑𝐼𝑑→0

𝐹𝑛(𝜉) = −𝑊𝑛
′′(𝜉) − �̃�𝑤,𝑛

2 ∙ 𝑊𝑛(𝜉) ; 

 

𝐹𝑛(𝜉) = 0   ∀(𝜉, 𝑛)⇔−𝑊𝑛
′′(𝜉) − �̃�𝑤,𝑛

2 ∙ 𝑊𝑛(𝜉) = 0   ∀(𝜉, 𝑛) ; 

 

Hence we get the same sinusoidal modal shape obtained by the only flat cable condition and a slightly 

different circular eigen-frequency. 

 

𝑊𝑛(𝜉) = sin((2𝑛 − 1) ∙ 𝜋 ∙ 𝜉) ; 

 

 �̃�𝑤,𝑛 = (2𝑛 − 1)𝜋 ; 
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Notice that this case has been already analysed for the flat cable limit condition. Hence the condition on the 

deck to cable flexural stiffness parameter can be smoother. 

 

 𝑓𝑟𝑜𝑚   lim
𝐸𝑑𝐼𝑑→0

𝜇2 = 0⇒ 𝑡𝑜   𝜇2 ≪
1

((2𝑛−1)𝜋)
2 ; 

 

vi. Flat cable & Rigid deck: 

 

lim
𝐻→∞

𝜆𝐿
2 = 0   𝑎𝑛𝑑   lim

𝐸𝑑𝐼𝑑→∞
𝜇2 = ∞⇒ lim

𝐻→∞

𝐸𝑑𝐼𝑑→∞

𝐹𝑛(𝜉) = 𝜇
2𝑊𝑛

′𝑣(𝜉) −𝑊𝑛
′′(𝜉) − �̃�𝑤,𝑛

2 ∙ 𝑊𝑛(𝜉) ; 

 

𝐹𝑛(𝜉) = 0   ∀(𝜉, 𝑛)⇔ 𝜇2𝑊𝑛
′𝑣(𝜉) −𝑊𝑛

′′(𝜉) − �̃�𝑤,𝑛
2 ∙ 𝑊𝑛(𝜉) = 0   ∀(𝜉, 𝑛) ; 

 

Hence we get the same condition already seen for the flat cable condition. 

 

 𝑊𝑛(𝜉) = sin((2𝑛 − 1) ∙ 𝜋 ∙ 𝜉) ; 

 

 �̃�𝑤,𝑛 = ((2𝑛 − 1)𝜋)
2
∙ 𝜇 ; 

 

So the sufficient condition for flexural stiffness becomes as follows. 

 

 𝑓𝑟𝑜𝑚   lim
𝐸𝑑𝐼𝑑→∞

𝜇2 = ∞⇒ 𝑡𝑜      𝜇2 ≫
1

((2𝑛−1)𝜋)
2 ; 

 

vii. Inextensible cable & Flexible deck: 

 

lim
𝐸𝑐𝐴𝑐→∞

𝜆𝐿
2 = 0   𝑎𝑛𝑑   lim

𝐸𝑑𝐼𝑑→0
𝜇2 = 0⇒ lim

𝐸𝑐𝐴𝑐→∞

𝐸𝑑𝐼𝑑→0

𝐹𝑛(𝜉) = −𝑊𝑛
′′(𝜉) − �̃�𝑤,𝑛

2 ∙ 𝑊𝑛(𝜉) + 𝜆𝐿
2 ∙ ℎ̃𝑊,𝑛 ; 

 

 𝐹𝑛(𝜉) = 0   ∀(𝜉, 𝑛)⇔−𝑊𝑛
′′(𝜉) − �̃�𝑤,𝑛

2 ∙ 𝑊𝑛(𝜉) + 𝜆𝐿
2 ∙ ℎ̃𝑊,𝑛 = 0   ∀(𝜉, 𝑛) ; 

 

Hence obtain eigen-modes that are identical to that fount for the flexible deck limit condition and eigen-

functions similar to the case of inextensible cables. 

 

 𝑊𝑛(𝜉) =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {1 −

cos(�̃�𝑤,𝑛∙(𝜉−
1

2
))

cos(
�̃�𝑤,𝑛
2
)
}; 

 

 ℎ̃𝑊,𝑛 = ∫ 𝑊𝑛(𝜉)𝑑𝜉
1

0
⇒ lim
𝐸𝑐𝐴𝑐→∞

�̃�𝑤,𝑛
2

𝜆𝐿
2 = 0 ⇒ 1 −

tan(
�̃�𝑤,𝑛
2
)

�̃�𝑤,𝑛
2

= 0 ; 

 

viii. Inextensible cable & Rigid deck: 
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lim
𝐸𝑐𝐴𝑐→∞

𝜆𝐿
2 = 0   𝑎𝑛𝑑   lim

𝐸𝑑𝐼𝑑→∞
𝜇2 = ∞⇒ lim

𝐸𝑐𝐴𝑐→∞

𝐸𝑑𝐼𝑑→∞

𝐹𝑛(𝜉) = {

𝜇2𝑊𝑛
′𝑣(𝜉) −𝑊𝑛

′′(𝜉) +

−�̃�𝑤,𝑛
2 ∙ 𝑊𝑛(𝜉) + 𝜆𝐿

2 ∙ ℎ̃𝑊,𝑛

} ; 

 

 𝐹𝑛(𝜉) = 0   ∀(𝜉, 𝑛)⇔ 𝜇2𝑊𝑛
′𝑣(𝜉) −𝑊𝑛

′′(𝜉) − �̃�𝑤,𝑛
2 ∙ 𝑊𝑛(𝜉) + 𝜆𝐿

2 ∙ ℎ̃𝑊,𝑛 = 0   ∀(𝜉, 𝑛) ; 

 

Once again since the equation of motion is unchanged with respect to the general situation, we expect a 

slight modification of both the modal shape with respect to the general case and of the expression for the 

eigen-function that takes some feature of the rigid deck condition. 

 

 𝑖𝑓   𝜇2 ≫
1

4∙�̃�𝑤,𝑛
2⇒ (휂𝑤,𝑛

2, 𝛹𝑤,𝑛
2) =

�̃�𝑤,𝑛

𝜇
⇒
( 𝑤,𝑛

2,𝛹𝑤,𝑛
2)

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 =
1

2
 ; 

 

 𝑊𝑛(𝜉) =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {1 −

1

2
∙ (

cosh(√
�̃�𝑤,𝑛
𝜇
∙(𝜉−

1

2
))

cosh(
1

2
√
�̃�𝑤,𝑛
𝜇
)

+
cos(√

�̃�𝑤,𝑛
𝜇
∙(𝜉−

1

2
))

cos(
1

2
√
�̃�𝑤,𝑛
𝜇
)

)} ; 

  

ℎ̃𝑊,𝑛 = ∫ 𝑊𝑛(𝜉)𝑑𝜉
1

0
⇒ lim
𝐸𝑐𝐴𝑐→∞

�̃�𝑤,𝑛
2

𝜆𝐿
2 = 0 ⇒ 1 −

1

2
∙ (
tanh(

1

2
√
�̃�𝑤,𝑛
𝜇
)

1

2
√
�̃�𝑤,𝑛
𝜇

+
tan(

1

2
√
�̃�𝑤,𝑛
𝜇
)

1

2
√
�̃�𝑤,𝑛
𝜇

) = 0 ; 

 

An important conclusion of this first parametric analysis is that the Irvine parameter strongly influences both 

the modal shapes and the circular frequencies only in the special case of flat cables, while the deck to cable 

flexural stiffness parameter plays just a secondary role tuning the structural frequencies. In all the other 

extreme situations the Irvine parameter cannot influence directly the modal shapes, but indirectly since it 

can strongly influence the expression for eigen-functions. The flexural stiffness parameter now plays an 

important role in the definition of the modal shapes mainly by its direct effect on the eigen-modes expression 

adding or not the hyperbolic contribution.  

 

2.2.2. Torsional modes 

 

Regarding the torsional modes the fundamental parameters to be taken in account are the Irvine and the 

deck to cables torsional stiffness parameters, with the deck warping coefficient. 

 

 𝜆𝐿
2 =

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(𝑦′′𝑙)2   𝑎𝑛𝑑   𝛽2 =

𝐺𝑑𝐽𝑑

2𝐻𝑏2
   𝑎𝑛𝑑 𝜒2 ; 

 

i. Flat cable: 

 

As for flexural modes, if the cable tension grows very much at limit condition can lead the cable’s curvature 

to vanish. 

 

lim
𝐻→∞

𝜆𝐿
2 = 0⇒ lim

𝐻→∞
𝑇𝑚(𝜉) =

𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2)𝛩𝑚
′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚

2 ∙ 𝛩𝑚(𝜉) ; 

 

 𝑇𝑚(𝜉) = 0   ∀(𝜉,𝑚)⇔
𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2)𝛩𝑚
′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚

2 ∙ 𝛩𝑚(𝜉) = 0   ∀(𝜉,𝑚) ; 
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Both the equation of motion and the eigen-solutions reduces to that of skew-symmetric modes, with the 

exception that now the number of sinusoidal half-waves has to be odd. 

 

 𝛩𝑚(𝜉) = sin((2𝑚 − 1) ∙ 𝜋 ∙ 𝜉) ; 

 

 √𝐽�̃� ∙ �̃�𝜗,𝑚 = (2𝑚 − 1)𝜋 ∙ √1 + 𝛽
2 +

𝛽2

𝜒2
∙ ((2𝑚 − 1)𝜋)

2
 ; 

 

The associated special situations are as follows. 

 

 𝑖𝑓   𝛽2 ≪
1

1+
((2𝑚−1)𝜋)

2

𝜒2

⇒√𝐽�̃� ∙ �̃�𝜗,𝑚 = (2𝑚 − 1)𝜋   (2 𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝑡𝑎𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔𝑠) ; 

 

 𝑖𝑓   𝛽2 ≫
1

1+
((2𝑚−1)𝜋)

2

𝜒2

⇒√𝐽�̃� ∙ �̃�𝜗,𝑚 = (2𝑚 − 1)𝜋 ∙ √1 +
((2𝑚−1)𝜋)

2

𝜒2
∙ 𝛽   (𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑑 𝑏𝑒𝑎𝑚) ; 

 

𝑖𝑓   𝜒2 ≫
((2𝑚−1)𝜋)

2

1+
1

𝛽2

⇒√𝐽�̃� ∙ �̃�𝜗,𝑚 = (2𝑚 − 1)𝜋 ∙ √1 + 𝛽
2   (𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑑 𝑏𝑒𝑎𝑚 𝑤𝑖𝑡ℎ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑜𝑥 𝑠𝑒𝑐𝑡𝑖𝑜𝑛) ; 

 

𝑖𝑓   𝜒2 ≪
((2𝑚−1)𝜋)

2

1+
1

𝛽2

⇒√𝐽�̃� ∙ �̃�𝜗,𝑚 = ((2𝑚 − 1)𝜋)
2
∙
𝛽

𝜒
   (𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑑 𝑏𝑒𝑎𝑚 𝑤𝑖𝑡ℎ 𝑡ℎ𝑖𝑛 𝑜𝑝𝑒𝑛 𝑠𝑒𝑐𝑡𝑖𝑜𝑛) ; 

 

 

ii. Inextensible cable: 

 

The inverse situation happens when the cable can be assumed to be inextensible. 

 

lim
𝐸𝑐𝐴𝑐→∞

𝜆𝐿
2 = ∞⇒ lim

𝐸𝑐𝐴𝑐→∞
𝑇𝑚(𝜉) =

𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2)𝛩𝑚
′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚

2 ∙ 𝛩𝑚(𝜉) + 𝜆𝐿
2 ∙ ℎ̃𝛩,𝑚 ; 

 

The expression for the eigen-modes remains the same as for the general case, in fact would be normalised 

with respect the Irvine parameter. 

 

𝛩𝑚(𝜉) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙ {1 −

1

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙ (휂𝜗,𝑚
2 ∙
cosh(𝛹𝜗,𝑚∙(𝜉−

1

2
))

cosh(
𝛹𝜗,𝑚
2
)

+𝛹𝜗,𝑚
2 ∙
cos( 𝜗,𝑚∙(𝜉−

1

2
))

cos(
𝜂𝜗,𝑚
2
)
)} ; 

 

On the other hand the eigen-function changes as follows. 

 

 lim
𝐸𝑐𝐴𝑐→∞

𝐽�̃�∙�̃�𝜗,𝑚
2

𝜆𝐿
2 = 0⇒ 1 −

1

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙ (휂𝜗,𝑚
2 ∙

tanh(
𝛹𝜗,𝑚
2
)

𝛹𝜗,𝑚
2

+𝛹𝜗,𝑚
2 ∙

tan(
𝜂𝜗,𝑚
2
)

𝜂𝜗,𝑚
2

) = 0 ; 
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Further, substituting the expression relating the hyperbolic exponential parameter to the trigonometric one, 

by analogy with the expression previously fount for flexural modes in the inextensible condition we get the 

following expression. 

 

 𝛹𝜗,𝑚
2 = 휂𝜗,𝑚

2 +
𝜒2

𝛽2
(1 + 𝛽2) ⇒ 𝐽�̃� ∙ �̃�𝜗,𝑚

2 =
𝜒2

2𝛽2
{((1 + 𝛽2)2 + 2

𝛽2

𝜒2
∙ 휂𝜗,𝑚

2)
2

− 1} ; 

 

iii. Free warping deck: 

 

As previously mentioned this is the usual condition for modern suspension bridges, characterised by thin 

walled box girders for which the secondary torsional stiffness given by the Vlasov-Wagner theory is negligible 

with respect to the primary contribution from the de S. Venant theory. 

 

 𝑖𝑓   𝜒2 →∞⇒ lim
𝜒2→∞

𝑇𝑚(𝜉) = −(1 + 𝛽
2)𝛩𝑚

′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚
2 ∙ 𝛩𝑚(𝜉) + 𝜆𝐿

2 ∙ ℎ̃𝛩,𝑚 ; 

 

In reality the most proper condition would be the one that takes in consideration also the value reached by 

the deck to cables torsional stiffness parameter. Hence this relative condition will be in the following form 

and avoid to fall into mathematical indeterminate conditions of the kind infinite over infinite. 

 

 𝑓𝑟𝑜𝑚   𝜒2 →∞⇒ 𝑡𝑜   
𝜒2

𝛽2
→∞ ; 

 

This means that if we are dealing with a closed box girder is not possible to neglect the torsional stiffness 

contribution given by the cable system with respect to the primary torsional stiffness of the deck. 

 

The modifications of the equation of motion are similar to the ones of flexural modes under the flexible deck 

condition. In fact disappear the term related to the fourth order derivative that grant the presence of the 

hyperbolic contribution both to the modal shapes and to the eigen-functions, that consequently changes as 

follows. 

 

Starting from the particular and homogeneous solution we get. 

 

𝛩𝑚,𝑝 = 𝐶𝑚 ⇒ 𝑇𝑚(𝜉) = 0  ∀(𝜉,𝑚)⇔ 𝐶𝑚 =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ; 

 

𝛩𝑚,𝑜(𝜉) = ∑ 𝑐𝑚,𝑖 ∙ 𝑒𝑥𝑝(𝛼𝑚,𝑖 ∙ 𝜉)
2
𝑖=1  ; 

  

𝑇𝑚,𝑜(𝜉) = ∑ 𝑐𝑚,𝑖 ∙ {−(1 + 𝛽
2)𝛼𝑚,𝑖

2 − 𝐽�̃� ∙ �̃�𝜗,𝑚
2} ∙ 𝑒𝑥𝑝(𝛼𝑚,𝑖𝜉)

2
𝑖=1  ; 

 

𝑇𝑚,𝑜(𝜉) = 0  ∀(𝜉, 𝑖,𝑚)⇔ {−(1 + 𝛽2)𝛼𝑚,𝑖
2 − 𝐽�̃� ∙ �̃�𝜗,𝑚

2} = 0   ∀(𝑖,𝑚)⇔ 𝛼𝑚,𝑖
2 = −

𝐽�̃�∙�̃�𝜗,𝑚
2

(1+𝛽2)
 ; 

 

It’s evident that the contribution of the hyperbolic exponential term vanishes. 

 

 lim
𝜒2→∞

휂𝜗,𝑚
2 = lim

𝜒2→∞

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃� ∙ �̃�𝜗,𝑚

2 − (1 + 𝛽2)) =
𝐽�̃�∙�̃�𝜗,𝑚

2

(1+𝛽2)
 ; 
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 lim
𝜒2→∞

𝛹𝜗,𝑚
2 = lim

𝜒2→∞

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃� ∙ �̃�𝜗,𝑚

2 + (1 + 𝛽2)) = lim
𝜇2→0

𝜒2 (1 +
1

𝛽2
) = ∞ ; 

  

The complete solution becomes. 

 

 𝛩𝑚(𝜉) = 𝛩𝑚,𝑝 + 𝛩𝑚,𝑜(𝜉) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 + 𝑐𝑚,1 ∙ exp(𝑖 ∙ 휂𝜗,𝑚𝜉) + 𝑐𝑚,2 ∙ exp(−𝑖 ∙ 휂𝜗,𝑚𝜉) ; 

 

Enforcing the boundary conditions it’s important to notice that in this particular situation has no sense to 

enforce free warping condition at the two end of the bridge, since satisfied by hypothesis. 

 

 𝑏. 𝑐. {

𝛩𝑚(0) = 0

𝛩𝑚(1) = 0
   ∀𝑚 ⇒

{
 
 

 
 𝛩𝑚(0) = 0⇔ 𝑐𝑚,1 + 𝑐𝑚,2 +

𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 = 0

𝛩𝑚(1) = 0⇔ 𝑐𝑚,1 ∙ 𝑒
𝑖∙ 𝜗,𝑚 + 𝑐𝑚,2 ∙ 𝑒

−𝑖∙ 𝜗,𝑚 +
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 = 0

 ; 

 

Hence the constant parameters assume the following expression. 

 

 𝑐𝑛,2 =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

1−𝑒
𝑖∙𝜂𝜗,𝑚

𝑒
𝑖∙𝜂𝜗,𝑚−𝑒

−𝑖∙𝜂𝜗,𝑚
 ; 

 

 𝑐𝑛,1 = −
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

1−𝑒
−𝑖∙𝜂𝜗,𝑚

𝑒
𝑖∙𝜂𝜗,𝑚−𝑒

−𝑖∙𝜂𝜗,𝑚
 ; 

 

The substitution in the general solution leads to the following expression. 

 

 𝛩𝑚(𝜉) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙ {1 −

𝑒
𝑖∙𝜂𝜗,𝑚∙𝜉−𝑒

𝑖∙𝜂𝜗,𝑚∙(𝜉−1)+𝑒
−𝑖∙𝜂𝜗,𝑚∙𝜉−𝑒

−𝑖∙𝜂𝜗,𝑚∙(𝜉−1)

𝑒
𝑖∙𝜂𝜗,𝑚−𝑒

−𝑖∙𝜂𝜗,𝑚
} ; 

 

The usual trigonometric relations allow us to reformulate the solution in a more compact form. 

 

𝛩𝑚(𝜉) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙ {1 −

sin ( 𝜗,𝑚∙𝜉)−sin ( 𝜗,𝑚∙(𝜉−1))

sin ( 𝜗,𝑚)
} =

𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

{
 
 

 
 

1 −

cos(√
𝐽�̃�

(1+𝛽2)
∙�̃�𝜗,𝑚∙(𝜉−

1

2
))

cos(
1

2
√

𝐽�̃�
(1+𝛽2)

∙�̃�𝜗,𝑚)

}
 
 

 
 

 ; 

 

From the definition of the stiffening term we get the eigen-function of the problem. 

 

 ℎ̃𝛩,𝑚 = ∫ 𝛩𝑚(𝜉)𝑑𝜉
1

0
⇒
𝐽�̃�∙�̃�𝜗,𝑚

2

𝜆𝐿
2 = 1 −

tan(
1

2
√

𝐽�̃�
(1+𝛽2)

∙�̃�𝜗,𝑚)

(
1

2
√

𝐽�̃�
(1+𝛽2)

∙�̃�𝜗,𝑚)

 ; 

 

iv. Flexible deck: 

 

This occurs any time that the torsional stiffness contribution given by the deck becomes negligible with 

respect to the one given by the action of the couple of cables.  
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In the limit case the deck loose completely its torsional stiffness and hence cannot behave like an equivalent 

couple of cables since in the formulation of the model we assume that it has not axially fixed ends. 

 

 lim
𝐺𝑑𝐽𝑑→0

𝛽2 = 0⇒ lim
𝐺𝑑𝐽𝑑→0

𝑇𝑚(𝜉) = −𝛩𝑚
′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚

2 ∙ 𝛩𝑚(𝜉) + 𝜆𝐿
2 ∙ ℎ̃𝛩,𝑚 ; 

 

In this case in order to avoid indeterminate condition we need to specify the following additional condition. 

 

 𝛽2 → 0   𝑎𝑛𝑑   
𝛽2

𝜒2
→ 0 ; 

 

This additional condition has the physical meaning that when the primary torsional stiffness of the deck is 

negligible with respect to the cable system contribution then we cannot consider a thin walled open section 

girder. 

 

Since the equation of motion is identical to the one obtained just previously in the case of free warping 

condition, with the exception that the deck to cables torsional stiffness parameter is now vanished. Thence 

we can conclude that the modal shapes and eigen-function expression are just slightly modified as follows. 

 

 𝛩𝑚(𝜉) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙ {1 −

cos(√𝐽�̃�∙�̃�𝜗,𝑚∙(𝜉−
1

2
))

cos(
1

2
√𝐽�̃�∙�̃�𝜗,𝑚)

} ; 

 

ℎ̃𝛩,𝑚 = ∫ 𝛩𝑚(𝜉)𝑑𝜉
1

0
⇒
𝐽�̃�∙�̃�𝜗,𝑚

2

𝜆𝐿
2 = 1 −

tan(
1

2
√𝐽�̃�∙�̃�𝜗,𝑚)

(
1

2
√𝐽�̃�∙�̃�𝜗,𝑚)

 ; 

 

v. Stiff warping deck: 

 

The typical girders characterised by low values of the warping coefficient are those with thin walled open 

cross section, where the primary torsional stiffness by de S. Venant is negligible with respect to the secondary 

Vlasov-Wagner contribution. 

 

 𝑖𝑓   𝜒2 → 0⇒ lim
𝜒2→0

𝑇𝑚(𝜉) =
𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2)𝛩𝑚
′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚

2 ∙ 𝛩𝑚(𝜉) + 𝜆𝐿
2 ∙ ℎ̃𝛩,𝑚  ; 

 

Once again to avoid indeterminate situations let’s reformulate the previous condition as follows. 

 

 𝑓𝑟𝑜𝑚   𝜒2 → 0⇒ 𝑡𝑜   
𝜒2

𝛽2
→ 0 ; 

 

This states that for thin open sections is not possible to neglect the primary torsional stiffness contribution 

given by the deck with respect to the one of cable system. 

 

Since the equation of motion format is not directly sensible to this limit condition let’s analyse the 

trigonometric and hyperbolic exponential coefficients. 

The previous limit condition is too stringent hence a more relaxed condition will suffice. 

 

 𝑖𝑓   𝜒2 ≪
4𝛽2∙𝐽�̃�∙�̃�𝜗,𝑚

2

(1+𝛽2)2
⇒ (휂𝜗,𝑚

2, 𝛹𝜗,𝑚
2) = √𝐽�̃� ∙ �̃�𝜗,𝑚 ∙

𝜒

𝛽
⇒
( 𝜗,𝑚

2,𝛹𝜗,𝑚
2)

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 =
1

2
 ; 
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Hence we can find expression for modal shapes and eigen-functions similar to the flexural modes under stiff 

deck hypothesis. 

 

 𝛩𝑚(𝜉) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙ {1 −

1

2
∙ (
cosh(√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
∙(𝜉−

1

2
))

cosh(
1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)
+
cos(√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
∙(𝜉−

1

2
))

cos(
1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)
)} ; 

 

 ℎ̃𝛩,𝑚 = ∫ 𝛩𝑚(𝜉)𝑑𝜉
1

0
⇒
𝐽�̃�∙�̃�𝜗,𝑚

2

𝜆𝐿
2 = 1 −

1

2
∙ (
tanh(

1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)

(
1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)
+
tan(

1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)

(
1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)
) ; 

 

vi. Rigid deck: 

 

As the primary torsional stiffness of the deck is dominant on the contribution given by the cable system we 

can state the following relations. 

 

lim
𝐺𝑑𝐽𝑑→∞

𝛽2 = ∞⇒ lim
𝐺𝑑𝐽𝑑→∞

𝑇𝑚(𝜉) =
𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2)𝛩𝑚
′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚

2 ∙ 𝛩𝑚(𝜉) + 𝜆𝐿
2 ∙ ℎ̃𝛩,𝑚 ; 

 

In order to avoid indeterminate condition the following additional relation holds. 

 

 𝛽2 →∞   𝑎𝑛𝑑   
𝛽2

𝜒2
→∞ ; 

 

Meaning that once the torsional stiffness contribution coming from the cable system is negligible with 

respect to the primary one from of the deck, thence the latter cannot be of the close box section type. 

 

As for the previous case the equation of motion format doesn’t change, hence let’s analyse the exponential 

coefficients, introducing by the way a more general limiting condition. 

 

 𝑖𝑓   𝛽2 ≫ 1⇒ (휂𝜗,𝑚
2, 𝛹𝜗,𝑚

2) =
𝜒2

2
(√1 +

4

𝜒2∙𝛽2
∙ 𝐽�̃� ∙ �̃�𝜗,𝑚

2 ∓ 1) ; 

 

 𝑖𝑓   𝛽2 ≫
4

𝜒2
∙ 𝐽�̃� ∙ �̃�𝜗,𝑚

2⇒ (휂𝜗,𝑚
2, 𝛹𝜗,𝑚

2) = (0, 𝜒2) ; 

 

Hence the expression for modal shapes and eigen-function can be found. 

 

 𝛩𝑚(𝜉) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙ {1 −

cosh(𝜒∙(𝜉−
1

2
))

cosh(
𝜒

2
)
} ; 

 

 ℎ̃𝛩,𝑚 = ∫ 𝛩𝑚(𝜉)𝑑𝜉
1

0
⇒
𝐽�̃�∙�̃�𝜗,𝑚

2

𝜆𝐿
2 = 1 −

cosh(𝜒∙(𝜉−
1

2
))

cosh(
𝜒

2
)

 ; 

 

Is interesting to notice that this is the first case in which the hyperbolic term survive on the trigonometric 

one. 
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Finally let’s consider very special case situations. 

 

vii. Flat cables & Free warping deck & Flexible deck: 

 

First of all consider the more general case of flat cable and free warping deck conditions. 

 

lim
𝐻→∞

𝜆𝐿
2 = 0   𝑎𝑛𝑑   𝜒2 →∞⇒ lim

𝐻→∞

𝜒2→∞

𝑇𝑚(𝜉) = −(1 + 𝛽
2)𝛩𝑚

′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚
2 ∙ 𝛩𝑚(𝜉); 

 

𝑇𝑚(𝜉) = 0   ∀(𝜉,𝑚)⇔−(1 + 𝛽2)𝛩𝑚
′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚

2 ∙ 𝛩𝑚(𝜉) = 0   ∀(𝜉,𝑚) ; 

 

Hence we get the same sinusoidal modal shape obtained by the only flat cable condition and a slightly 

different circular eigen-frequency. 

 

𝛩𝑚(𝜉) = sin((2𝑚 − 1) ∙ 𝜋 ∙ 𝜉) ; 

 

 √𝐽�̃� ∙ �̃�𝜗,𝑚 = (2𝑚 − 1)𝜋 ∙ √1 + 𝛽
2 ; 

 

Notice that this case has been already analysed for the flat cable limit condition. Hence the condition on the 

deck warping coefficient can be reformulate as follows. 

 

 𝑓𝑟𝑜𝑚   𝜒2 →∞⇒ 𝑡𝑜   
𝜒2

𝛽2
→∞⇒ 𝑡𝑜   𝜒2 ≫

((2𝑚−1)∙𝜋)
2

1+
1

𝛽2

  ; 

 

If also the deck becomes extremely flexible under torsional actions then we get similar results, in fact only 

the circular eigen-frequencies and the limit condition are slightly modified. 

 

lim
𝐺𝑑𝐽𝑑→0

𝛽2 = 0⇒ 𝜒2 ≫ ((2𝑚 − 1) ∙ 𝜋)
2
⇒√𝐽�̃� ∙ �̃�𝜗,𝑚 = (2𝑚 − 1)𝜋 ;  

 

Notice that we get the same sinusoidal modal shape and the latter circular eigen-frequency expression also 

for the simpler combination flat cables and torsional flexible deck. While the limiting condition for a generic 

warping coefficient is that already obtained from the flat cables condition. 

 

 𝑓𝑟𝑜𝑚   𝛽2 → 0⇒ 𝑡𝑜   
𝛽2

𝜒2
→ 0⇒ 𝑡𝑜   𝛽2 ≪

1

1+
((2𝑚−1)∙𝜋)

2

𝜒2

 ; 

 

viii. Flat cables & Stiff warping deck & Flexible deck: 

 

First of all consider the more general case of flat cable and stiff warping deck conditions. 

 

lim
𝐻→∞

𝜆𝐿
2 = 0   𝑎𝑛𝑑   𝜒2 → 0⇒ lim

𝐻→∞

𝜒2→0

𝑇𝑚(𝜉) =
𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2)𝛩𝑚
′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚

2 ∙ 𝛩𝑚(𝜉); 

 

𝑇𝑚(𝜉) = 0   ∀(𝜉,𝑚)⇔
𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2)𝛩𝑚
′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚

2 ∙ 𝛩𝑚(𝜉) = 0   ∀(𝜉,𝑚) ; 
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Hence we get the same sinusoidal modal shape obtained by the only flat cable condition and a slightly 

modified circular eigen-frequency. 

 

𝛩𝑚(𝜉) = sin((2𝑚 − 1) ∙ 𝜋 ∙ 𝜉) ; 

 

 𝜒2 → 0⇒√𝐽�̃� ∙ �̃�𝜗,𝑚 = ((2𝑚 − 1)𝜋)
2
∙
𝛽

𝜒
 ; 

 

Notice that this case has been already analysed for the flat cable limit condition. Hence the condition on the 

deck warping coefficient can be reformulate as follows. 

 

 𝑓𝑟𝑜𝑚   𝜒2 → 0⇒ 𝑡𝑜   
𝜒2

𝛽2
→ 0⇒ 𝑡𝑜   𝜒2 ≪

((2𝑚−1)𝜋)
2

(1+
1

𝛽2
)

  ; 

 

If also the deck becomes extremely rigid under torsional actions then we get identical results, in fact only the 

limit condition is slightly modified. 

 

lim
𝐺𝑑𝐽𝑑→∞

𝛽2 = ∞⇒ 𝜒2 ≪ ((2𝑚 − 1) ∙ 𝜋)
2

;  

 

For the simpler combination flat cables and torsional rigid deck the expression for the modal shapes remains 

the same. While change a little bit both the circular eigen-frequency and the limiting condition, that for a 

generic warping coefficient are that obtained from the flat cables condition. 

 

 𝛽2 →∞⇒√𝐽�̃� ∙ �̃�𝜗,𝑚 = (2𝑚 − 1)𝜋 ∙ √1 +
((2𝑚−1)∙𝜋)

2

𝜒2
∙ 𝛽 ; 

 

 𝑓𝑟𝑜𝑚   𝛽2 →∞⇒ 𝑡𝑜   
𝛽2

𝜒2
→∞⇒ 𝑡𝑜   𝛽2 ≫

1

1+
((2𝑚−1)∙𝜋)

2

𝜒2

 ; 

 

ix. Inextensible cables & Free warping deck & Flexible deck: 

 

First of all consider the more general case of inextensible cables and free warping deck conditions. 

 

lim
𝐸𝑐𝐴𝑐→∞

𝜆𝐿
2 = ∞   𝑎𝑛𝑑   𝜒2 →∞⇒ lim

𝐸𝑐𝐴𝑐→∞

𝜒2→∞

𝑇𝑚(𝜉) = −(1 + 𝛽
2)𝛩𝑚

′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚
2 ∙ 𝛩𝑚(𝜉) + 𝜆𝐿

2 ∙ ℎ̃𝛩,𝑚; 

 

𝑇𝑚(𝜉) = 0   ∀(𝜉,𝑚)⇔−(1 + 𝛽2)𝛩𝑚
′′(𝜉) − 𝐽�̃� ∙ �̃�𝜗,𝑚

2 ∙ 𝛩𝑚(𝜉) + 𝜆𝐿
2 ∙ ℎ̃𝛩,𝑚 = 0   ∀(𝜉,𝑚) ; 
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Hence we get the same modal shapes of the free warping deck condition and a slightly modified eigen-

functions. 

 

 𝛩𝑚(𝜉) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

{
 
 

 
 

1 −

cos(√
𝐽�̃�

(1+𝛽2)
∙�̃�𝜗,𝑚∙(𝜉−

1

2
))

cos(
1

2
√

𝐽�̃�
(1+𝛽2)

∙�̃�𝜗,𝑚)

}
 
 

 
 

 ;  

 

 ℎ̃𝛩,𝑚 = ∫ 𝛩𝑚(𝜉)𝑑𝜉
1

0
⇒ lim
𝜆𝐿
2→∞

𝐽�̃�∙�̃�𝜗,𝑚
2

𝜆𝐿
2 = 0⇒ 1 −

tan(
1

2
√

𝐽�̃�
(1+𝛽2)

∙�̃�𝜗,𝑚)

(
1

2
√

𝐽�̃�
(1+𝛽2)

∙�̃�𝜗,𝑚)

= 0 ; 

 

As the flexible deck condition is taken in account we need just to substitute inside the previous expression 

the condition that make vanish the deck to cable system torsional stiffness ratio. 

Although this last condition can be generalised as follows. 

 

 𝑓𝑟𝑜𝑚   𝛽2 → 0⇒ 𝑡𝑜   
𝛽2

𝜒2
→ 0⇒ 𝑡𝑜   𝛽2 ≪ 1 ; 

 

The last step allows us to find also the right expression valid for the inextensible cable system and flexible 

deck condition with generic warping coefficient.  

While if we consider just the conditions of free warping and flexible deck we get the same expressions for 

the modal shapes but cannot neglect the contribution of the Irvine parameter on the eigen-function 

expression. 

 

x. Inextensible cables & Stiff warping deck & Rigid deck: 

 

First of all consider the more general case of inextensible cables and stiff warping deck conditions. 

 

lim
𝐸𝑐𝐴𝑐→∞

𝜆𝐿
2 = ∞   𝑎𝑛𝑑   𝜒2 → 0⇒ lim

𝐸𝑐𝐴𝑐→∞

𝜒2→0

𝑇𝑚(𝜉) = {

𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2)𝛩𝑚
′′(𝜉) +

−𝐽�̃� ∙ �̃�𝜗,𝑚
2 ∙ 𝛩𝑚(𝜉) + 𝜆𝐿

2 ∙ ℎ̃𝛩,𝑚

}; 

 

𝑇𝑚(𝜉) = 0   ∀(𝜉,𝑚)⇔ {

𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2)𝛩𝑚
′′(𝜉) +

−𝐽�̃� ∙ �̃�𝜗,𝑚
2 ∙ 𝛩𝑚(𝜉) + 𝜆𝐿

2 ∙ ℎ̃𝛩,𝑚

} = 0   ∀(𝜉,𝑚) ; 

 

Hence we get the same modal shapes of the stiff warping deck condition and a slightly modified eigen-

functions. 

  

 𝛩𝑚(𝜉) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙ {1 −

1

2
∙ (
cosh(√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
∙(𝜉−

1

2
))

cosh(
1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)
+
cos(√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
∙(𝜉−

1

2
))

cos(
1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)
)} ; 
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 ℎ̃𝛩,𝑚 = ∫ 𝛩𝑚(𝜉)𝑑𝜉
1

0
⇒ lim
𝜆𝐿
2→∞

𝐽�̃�∙�̃�𝜗,𝑚
2

𝜆𝐿
2 = 0⇒ 1 −

1

2
∙ (
tanh(

1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)

(
1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)
+
tan(

1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)

(
1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)
) = 0 ; 

 

Taking in account also for the rigid deck condition any variation to previous expression is needed. 

The last statement is valid also for the inextensible cable system and rigid deck condition with generic 

warping coefficient. 

While if we consider just the conditions of stiff warping and rigid deck we get the same expressions for the 

modal shapes but cannot neglect the contribution of the Irvine parameter on the eigen-function expression. 

 

What is really important to notice is that in the combined limit situations what really governs format of the 

fundamental expressions are those parameters that make vanish some terms in the equation of motion.  

 

 

2.3. Numerical analysis of eigen-properties 
 

Once the solutions  for both the flexural and the torsional equation of motion has been defined for the 

general and the extreme situations is possible to analyse some numerical result in order to see the influence 

of the mechanical and structural parameters on the response of the system. 

 

2.3.1. Flexural vibrations 

 

The parameters affecting the flexural equation of motion change depending if we are considering symmetric 

or skew symmetric modes. 

For the symmetric ones is necessary to define both the deck to cable flexural stiffness ratio 𝜇2 and the Irvine 

parameter 𝜆𝐿
2 in order to compute circular eigen-frequencies and the associate modal shapes. 

On contrary for skew-symmetric modes the eigen-vectors are simply sinusoidal with a prescribed half wave 

length proportional to the modal number and it’s not influenced directly by the circular eigen-frequency that 

depends only on the modal number and on the deck to cable stiffness parameter. 

 

Concluding, the parameters of interest would be the following. 

 

𝑛      ;       𝜆𝐿
2 =

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(𝑦′′𝑙)2      ;       𝜇2 =

𝐸𝑑𝐼𝑑

2𝐻𝑙2
 ; 

 

From literature has been possible to define reliable values for such parameters. 

In their paper [38], Cobo and Aparicio collect the values such parameters in relation to 13 three span bridges 

with different peculiarities. They include the Bronx-Withestone, Tacoma Narrows, Severn, Forth Road, 

George Washingtonj, Bosforus I, Mackinac, Golden Gate, Verrazzano, Humber, Great Belt and Akashi-Kaikyo 

Bridges. 

Furher from the work [5] done by Luco and Lo Turmo has been possible to introduce also data related to 

Innoshima Bridge. 

 

The center –span ranges from 700 to 1990 meters, hence the Irvine parameter has a bimodal distribution, 

ranging from 90 up to 132 for ten of the bridges and for the remaining from 171 to 231, with a global average 

value of 198. We must remember that these are results referring to three span bridges but our structural 

model takes in account just the central main span neglecting the presence of backstays. Hence if we account 

just for the data related to the central span we get Irvine parameters ranging from 148 to 376 with an average 

of 220. 
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Hence in the following we will consider values for the cables parameter corresponding to 0 to take in account 

for the flat cables condition, 100 and 225 to represent the bimodal behaviour seen from real data, and ∞ for 

the inextensible cables situation. 

 

 𝜆𝐿
2 = [   0   ;    100   ;    225   ;    ∞   ] ; 

 

The relative deck flexural stiffness parameter ranges from 0.4 ∙ 10−3 for the Tacoma Narrows Bridge to 11.4 ∙

10−3 for the Tagus Bridge, but is also important to notice that for nine of the bridges this parameter has an 

average value close to 1.17 ∙ 10−3. 

Hence seems that values ranging from 0.5 ∙ 10−3 up to 10 ∙ 10−3 would span most of the typical situations, 

but in the following this array will be enlarged in order to take in account some extreme conditions from 0 

to include the flexible deck condition and 1 for the opposite rigid deck condition. 

 

 𝜇2 = [   0 …    0.5 ∙ 10−3  …   10−2  …    1   ] ; 

 

Let’s analyse the results obtained for the first two relevant modes. 

 

i. Circular eigen-frequencies: 

 

 
Figure 2.2_ Flexural circular eigen-frequencies of Mode 1. 

 

For the first mode it’s evident that for 𝜇2 < 10−3 the circular eigen-frequencies remains constant meaning 

that the deck relative stiffness 𝜇2 is no more influent on them, becoming dominant the cables contribution. 

This threshold reduces in higher order modes. 
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On the contrary the effect of 𝜇2 becomes more and more relevant increasing the cable parameter 𝜆𝐿
2 and 

the modal order as it’s evident from next figures. 

 

 
Figure 2.3_ Flexural circular eigen-frequencies of Mode 2. 

 

As mentioned above is evident that the deck stiffness parameter threshold reduces to 𝜇2 < 10−4 in fact its 

influence on frequencies increases. 

 

From the second mode plot it’s evident that for finite values of 𝜆𝐿
2 as the deck relative flexural stiffness 

parameter increases, all curves of the circular eigen-frequencies tend to collapse on that one characterised 

by 𝜆𝐿
2 = 0. This means that beyond certain level of deck rigidity (𝜇2 > 5 ∙ 10−2) the cables contribution to 

flexural vibrations has no more effects on the structural response in time.  

 

It’s interesting to notice that in correspondence of any 𝜇2 hold a relation between the frequencies of 

subsequent modes. 

 

 𝜔∗𝑛+1(𝜆
2
𝐿 = 0, ∀𝜇

2) ≈ 𝜔∗𝑛(𝜆
2
𝐿 = ∞,∀𝜇

2) ; 

 

Can be of interest to find the critical conditions that leads a symmetric modal shape to vibrate according to 

the circular eigen-frequency of the corresponding skew symmetric one. Consequently being the eigen-value 

associated to a unique eigen-vector, as the vibration frequency cohalesce with the skew-symmetric one, as 

a consequence also the modal shape is forced to be skew-symmetric. Further we must underline the fact that 

generally for real structures we should expect skew-symmetric modes. In fact in this condition, cables do not 

elongate, leading the structure on to a minimum energetic level, which usually is much more stable. 

 

It is evident from the previous figures that tuning properly the structural properties it’s possible to reach this 

condition that we will call Cross Over Frequency (COF). 
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Let’s analyse analytically the conditions that leads to this particular situation. 

 

 (�̃�𝑎𝑤,𝑛)
2
= (2𝑛𝜋)2 ∙ [1 + 𝜇2 ∙ (2𝑛𝜋)2] ; 

 

 (�̃�𝑠𝑤,𝑛)
2
= 𝜆𝐿

2 ∙ [1 −
1

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙ (휂𝑤,𝑛
2 ∙

tanh(
𝛹𝑤,𝑛
2
)

𝛹𝑤,𝑛
2

+𝛹𝑤,𝑛
2 ∙

tan(
𝜂𝑤,𝑛
2
)

𝜂𝑤,𝑛
2

)] ; 

 

In the general situation the COF condition requires an iterative solution of the following equality. 

 

 (𝜆𝐿
2)
𝑐𝑟
= (2𝑛𝜋)2 ∙ [1 + 𝜇2 ∙ (2𝑛𝜋)2] ∙

[
 
 
 
 
 

1 −
1

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙

(

 
 
 
휂𝑤,𝑛

2 ∙
tanh(

𝛹𝑤,𝑛
2
)

𝛹𝑤,𝑛
2

+

+𝛹𝑤,𝑛
2 ∙

tan(
𝜂𝑤,𝑛
2
)

𝜂𝑤,𝑛
2 )

 
 
 

]
 
 
 
 
 
−1

 ; 

 

Hence for each values of the deck relative flexural stiffness parameter 𝜇2 is possible to define a critical value 

for the Irvine parameter that grant the cross over condition. 

 

Let’s simplify the treatment considering the case of perfectly flexible deck  𝜇2 = 0. 

 

 (�̃�𝑎𝑤,𝑛)
2
= (2𝑛𝜋)2 ; 

 

 (�̃�𝑠𝑤,𝑛)
2
= 𝜆𝐿

2 ∙ [1 −
tan(

�̃�𝑠𝑤,𝑛
2
)

�̃�𝑠𝑤,𝑛
2

] ; 

 

Enforcing the COF threshold condition we get the following relation. 

 

 (�̃�𝑠𝑤,𝑛)
2
= (�̃�𝑎𝑤,𝑛)

2
⇒ 𝜆𝐿

2 ∙ [1 −
tan(𝑛𝜋)

𝑛𝜋
] = (2𝑛𝜋)2⇒ (𝜆𝐿

2)
𝑐𝑟,0

= (2𝑛𝜋)2 ; 
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ii. Modal shapes: 

 

Let’s analyse the modal shapes associate to the first order mode. 

 

 
Figure 2.4_ Modal shape of Mode 1 for 𝜆𝐿

2 = 0 and skew-symmetric condition. 

 

In both the situation of skew symmetric modes or very taut cables, the stiffening contribution vanishes and 

hence the bridge vibrates according to a sinusoidal shape proper of strings. In fact the deck stiffness 

parameter has no effect on the modal shape. 

 

 
Figure 2.5_ Modal shape of Mode 1 for  𝜆𝐿

2 = 100. 
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Figure 2.6_ Modal shape of Mode 1 for  𝜆𝐿
2 = 225. 

 

 

Figure 2.7_ Modal shape of Mode 1 for  𝜆𝐿
2 = ∞ . 

As can be seen from the last three figures the increase of the Irvine parameter 𝜆𝐿
2 leads to higher negative 

displacements. In fact as the cables axial stiffness increases the geometrical contribution to the flexural 

stiffness increases too. Hence enforcing a downward displacement to the centre span of the deck would lead 

to an increment to the cable’s sag. Consequently the original parabolic shape is more distorted as 

compressibility decreases. 
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In fact in the limit condition of incompressible cable being not able to increase its length it must assume a V 

shape that leads the lateral sides to undergo an upward displacement with respect to the initial parabolic 

shape. The inextensibility of hangers grants that the deck follow exactly the same path from the initial 

undeformed straight configuration. 

 

The deck relative stiffness parameter 𝜇2 has a great influence on standard symmetric modal shapes, and this 

peculiarity increases as it assumes values far from extreme conditions and the cables stiffness parameter 

decreases. In fact as the latter increases the modal shapes collapses to the lower curves meaning that as the 

cable inextensibility grows the influence of the deck relative flexural stiffness become more and more 

negligible. 

Another interesting feature is evident as 𝜆𝐿
2 increases. In fact is possible to define a critical value beyond 

which the modal shape internal nodes number changes. In general we will refer to it as to the Cross Over 

Mode (COM), that for the first symmetric modes ensure the passage from a zero to a two node modal shape. 

This critical condition changes with 𝜇2 and can be define by the following relation that enforce the vanishing 

of the first derivative at the two extremities of the span. 

 

 [
𝑑

𝑑𝜉
𝑊𝑛(𝜉)]

𝜉=0
=

𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙

{
 
 

 
 

− 𝑤,𝑛∙𝛹𝑤,𝑛

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙

(

 
 
 
휂𝑤,𝑛 ∙

sinh(𝛹𝑤,𝑛∙(𝜉−
1

2
))

cosh(
𝛹𝑤,𝑛
2
)
+

+𝛹𝑤,𝑛 ∙
sin( 𝑤,𝑛∙(𝜉−

1

2
))

cos(
𝜂𝑤,𝑛
2
) )

 
 
 

}
 
 

 
 

𝜉=0

= 

 

=
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙

{
 

 
− 𝑤,𝑛∙𝛹𝑤,𝑛

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙ (

휂𝑤,𝑛 ∙ tanh (
𝛹𝑤,𝑛

2
) +

+𝛹𝑤,𝑛 ∙ tan (
𝑤,𝑛

2
)

)

}
 

 
≥ 0 ; 

 

That reduces to the following condition that grants upward slope at the two ends. 

 

 휂𝑤,𝑛 ∙ tanh (
𝛹𝑤,𝑛

2
) ≥ 𝛹𝑤,𝑛 ∙ tan (

𝑤,𝑛

2
) ; 

 

Notice that the symmetry of the problem allows to consider simply one side of the deck. 

The last condition can be solved only iteratively, hence to get an analytical expression let’s consider the usual 

flexible deck limit condition (𝜇2 = 0). 

 

 𝑊𝑛(𝜉) =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {1 −

cos(�̃�𝑤,𝑛∙(𝜉−
1

2
))

cos(
�̃�𝑤,𝑛
2
)
} ⇒ [

𝑑

𝑑𝜉
𝑊𝑛(𝜉)]

𝜉=0
=

𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {−�̃�𝑤,𝑛 ∙ tan (

�̃�𝑤,𝑛

2
)} ; 

 

Hence enforcing the COM condition for the 0 to 2 node transition leads to. 

 

 [
𝑑

𝑑𝜉
𝑊𝑛(𝜉)]

𝜉=0
≥ 0⇔ tan (

�̃�𝑤,𝑛

2
) ≤ 0⇔ (

𝜋

2
+ 𝑛𝜋) ≤ (

�̃�𝑤,𝑛

2
) ≤ (𝜋 + 𝑛𝜋) 

  

Notice that in the last condition is implicitly assumed that the cables stiffening term is positive as generally 

happens. 
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After few computations we can find the following final expression. 

 (2𝑛 + 1) ∙ 𝜋 ≤ �̃�𝑤,𝑛 ≤ (2𝑛 + 1) ∙ 𝜋 + 𝜋 ⇒ �̃�
𝑎
𝑤,𝑛 ≤ �̃�

𝑠
𝑤,𝑛 ≤ �̃�

𝑎
𝑤,𝑛 + 𝜋 ; 

 

Hence it’s evident that at the limit condition the last relation correspond to the COF condition. This means 

that for infinitely flexible deck (𝜇2 = 0) is possible to tune the structural parameters in such a way that at 

the same time the bridge oscillates according to a symmetric mode characterised by null side slope and with 

the same frequency of vibration of the corresponding skew-symmetric mode. However as previously 

mentioned this would not be possible since in correspondence of a skew-symmetric frequency would be 

located a similar modal shape. 

 

For the general case has been performed a numerical rooting of the first COM condition. 

 

 
Figure 2.8_ Cross Over Frequency and Mode thresholds of Mode 1. 

 

As it can be seen the COF limit for the flexible deck condition holds up to 𝜇2 = 10−3, corresponding to the 
limit before that the circular eigen-frequencies of the first mode are practically constant with the deck 
relative stiffness parameter. 

Notice that the max admissible values for normalised critical 
𝜆𝐿

𝜋
 is fixed to 10 since the corresponding value 

of 𝜆𝐿
2 is equal to 1000, that is an excellent numerical representation of the inextensible cables limit condition 

𝜆𝐿
2 = ∞ . In fact as can be seen for 𝜇2 > 0.75 the values of 

𝜆𝐿

𝜋
 collapse to 10, meaning that for very stiff 

decks the Cross Over Frequency cannot be reached for any level of tension inside the cables. 
 
On the other hand the limits for the Cross Over Modes are practically equal to that of COF as long as 𝜇2 ≤

10−4, but beyond that limit it diverges until collapse to the limit value of 10. This means that in general is not 

possible to get a symmetric mode oscillating according to the same circular frequency of the associate skew-

symmetric counterpart and with null slope at the two end. Hence tuning properly the structural parameters 

for the COF condition we get a symmetric modal shape with upward slope at the two ends. 
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Vice versa tuning those parameters for the COM condition leads to oscillations characterised with 

frequencies higher than that proper of the associate skew-symmetric mode. 

 

 

Figure 2.9_ Cross Over Modes of Mode 1. 

Plotting the critical modal shape with null side slope it’s evident that beyond a certain limit (𝜇2 = 0.1

⇒
𝜆𝐿

𝜋
= 7.5) the increment of the cables initial tension is no more able to grant the vanishing of the slope at 

the two ends. This means that for too rigid deck is not possible to grant the COM condition also for cables 

tension lower than the limit taut cables situation (
𝜆𝐿

𝜋
= 10) . 
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Let’s now analyse the modal shapes assumed by the second order mode. 

 

 
Figure 2.10_ Modal shape of Mode 2 for 𝜆𝐿

2 = 0 and skew-symmetric condition. 

 

 

 
Figure 2.11_ Modal shape of Mode 2 for  𝜆𝐿

2 = 100. 
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Figure 2.12_ Modal shape of Mode 2 for  𝜆𝐿
2 = 225. 

 

 

Figure 2.13_ Modal shape of Mode 2 for  𝜆𝐿
2 = ∞. 

 

With respect to the mode 1 here is evident how much is influent the deck relative stiffness parameter on the 

position of peak antinode displacement, that moves farther to the midspan section as 𝜇2 increases. 

The same parameter affects the antinode upward displacements that increase with the deck relative 

stiffness. In fact as the cables initial tension reduce consequently the geometric flexural stiffness contribution 

reduces too, hence their deformed shape is much more pronounced. 
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Since the second order of a suspension string alone would be a double wave sinusoidal with the central part 

uplifted. Consequently, the lower is the cables flexural stiffness contribution the higher is that uplift. 

 

Much more interesting is the evolution of modal shapes as the main parameters 𝜇2 and 𝜆𝐿
2 are tuned. In 

fact the transition is now much more complex, passing from a mode characterised by 2 then by 0 and finally 

by 4 internal nodes as the Irvine parameter increases.  

This requires further investigations of the modal properties in order to find a second Cross Over Mode in 

correspondence of null midspan displacement and making the modal shape transit from a 2 node to a 0 node 

condition; and a third COM condition again as the midspan displacement vanishes but characterising the 

passage from a 0 to a four node modal shape. 

 

Hence the condition required for a generic mode is the vanishing of the negative antinode displacement. 

 

𝑊𝑛(𝜉) =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {1 −

1

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙ (휂𝑤,𝑛
2 ∙
cosh(𝛹𝑤,𝑛∙(𝜉−

1

2
))

cosh(
𝛹𝑤,𝑛
2
)

+𝛹𝑤,𝑛
2 ∙
cos( 𝑤,𝑛∙(𝜉−

1

2
))

cos(
𝜂𝑤,𝑛
2
)
)}

𝜉=𝜉𝑚𝑖𝑛

= 0 ; 

 

Notice that this condition is not required by the first order modes since the vanishing of lateral slopes grant 

it automatically. 

 

Since in general the position of the antinode points varies with the actual values of the parameters 𝜇2 and 

𝜆𝐿
2 need to enforce the vanishing of the slope in order to find the stationary point and then find the minima 

searching for negative curvatures. 

 

The only cases that allows simpler treatment are those related to the usual flexible deck condition (𝜇2 = 0) 

and the generic condition (∀𝜇2)  for the mode 2. 

 

Let’s start from the latter one. The fact that we are dealing with the second order mode simplify the 

treatment since the position of the minimum antinode displacement is known a priori (𝜉𝑚𝑖𝑛 =
1

2
) . 

 

On the contrary the first case as usual the flexible deck condition allows analytical results. In fact the COM 

condition reduces to the following relation. 

 

 𝑊𝑛(𝜉𝑚𝑖𝑛) =
𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {1 −

cos(�̃�𝑤,𝑛∙(𝜉−
1

2
))

cos(
�̃�𝑤,𝑛
2
)
}

𝜉=𝜉𝑚𝑖𝑛

; 

 

First if all need to define the position of the antinode displacement. 

 

 
𝑑

𝑑𝜉
𝑊𝑛(𝜉) =

𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {�̃�𝑤,𝑛 ∙

sin(�̃�𝑤,𝑛∙(𝜉−
1

2
))

cos(
�̃�𝑤,𝑛
2
)
} = 0⇔ �̃�𝑤,𝑛 ∙ (𝜉 −

1

2
) = 𝑘𝜋   𝑤𝑖𝑡ℎ   𝑘𝜖ℵ\{0} ; 

Hence. 

 

 𝜉 = 𝜉𝑠𝑡𝑎𝑧 =
1

2
+

𝑘𝜋

�̃�𝑤,𝑛
 ; 

 

 



101 
 

It’s evident that the latter relation gives the actual position of the minimum antinode point of the 2 order 

mode as = 0 . Hence it’s possible to link the parameter 𝑘 to the actual modal order. 

 

 𝑘 = 𝑛 − 2 ; 

 

Then enforce positive curvature since the positive displacements convention is downward, and hence 

upward min displacements are characterised by such kind of curvatures. 

 

 
𝑑2

𝑑𝜉2
𝑊𝑛(𝜉𝑚𝑖𝑛) =

𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {�̃�

2
𝑤,𝑛 ∙

cos(�̃�𝑤,𝑛∙(𝜉𝑠𝑡𝑎𝑧−
1

2
))

cos(
�̃�𝑤,𝑛
2
)

} ≥ 0⇔ cos(𝑘𝜋) ≥ 0⇔ 𝑘 = 𝑒𝑣𝑒𝑛 ; 

 

Hence the previous relation becomes as follows. 

 

 𝑘 = 2 ∙ (𝑛 − 2) ⇒ 𝜉𝑚𝑖𝑛 =
1

2
±
2∙(𝑛−2)𝜋

�̃�𝑤,𝑛
 ; 

 

Finally substituting in the initial modal shape we get the following condition. 

 

 𝑊𝑛 (𝜉𝑚𝑖𝑛 =
1

2
+
2∙(𝑛−2)𝜋

�̃�𝑤,𝑛
) =

𝜆𝐿
2

�̃�𝑤,𝑛
2 ℎ̃𝑊,𝑛 ∙ {1 −

cos(2∙(𝑛−2)𝜋)

cos(
�̃�𝑤,𝑛
2
)
} = 0   ∀𝑛 

 

The meaning of the last statement is that for perfectly flexible deck the transition from a 2 to a 0 node 

condition is doesn’t depend on the actual value of the Irvine parameter 𝜆𝐿
2. 

 

Lets’ comment some numerical results obtained for the second mode of vibration. 

 

 
Figure 2.14_ Cross Over Frequency and Mode thresholds of Mode 2. 
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As for circular eigen-frequencies the Cross Over Frequency is constant for very flexible decks (𝜇2 ≤ 10−4) 

and cannot be tuned beyond 𝜇2 = 2 ∙ 10−2 . 

 

With respect to the first symmetric mode the transition of modal shapes for higher order modes are always 

three as the Irvine parameter increases. Starting from the one with 2 ∙ (𝑛 − 1) internal nodes, then passing 

by Cross Over Frequency condition to increase further to reach the one with 0 internal nodes and ending 

with the last one with 2 ∙ 𝑛 internal nodes. 

 

Here the transition from 2 to 0 internal nodes occurs in correspondence of values for the critical Irvine 

parameter lower than the Cross Over Frequency, at least for not perfectly flexible deck. In fact all the curves 

collapse to the same critical 𝜆𝐿
2 only for deck relative stiffnesses lower than (𝜇2 = 10−5). 

 

This means that for the special case of perfectly flexible deck both the Cross Over Frequency and the three 

Cross Over Mode conditions occurs at the same critical value for 𝜆𝐿
2. 

This explain why we found that for 𝜇2 = 0 the condition for null negative antinodal displacement is satisfied 

for any modes independently from the value assumed by the Irvine parameter. In fact once we reach the 

COF we satisfy all four possible conditions simultaneously. 

 

Focusing on the 2 to 0 nodes transition curve, is possible to see that approximately for 𝜇2 belonging to the 

interval (10−5 ÷ 2 ∙ 10−3) the critical 𝜆𝐿
2 required is lower than the one required for perfectly flexible deck. 

This means that the initial increase of the flexural stiffness of the deck gives a huge contribution to grant null 

midspan displacement, but beyond a certain threshold (𝜇2 = 2 ∙ 10−3) since the midspan uplift increases 

higher values for 𝜆𝐿
2 are required.  

 

 
Figure 2.15_ Cross Over Modes of Mode 2 for 2-0 nodes transition. 

From the last image is evident that beyond (𝜇2 = 0.1) is no more possible to tune the Irvine parameter in 

order to obtain null midspan displacements. 
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With respect to the previous limit curve the ones associated to the 0 to 2 and the 2 to 4 internal nodes 

transitions are both monotonically increasing and with a threshold value of 𝜇2 = 10−2 beyond which those 

transitions are no more feasible. The last statement is much clearer from the next two figures. 

 
Figure 2.16_ Cross Over Modes of Mode 2 for 0-2 nodes transition. 

 

 

 

 
Figure 2.17_Cross Over Modes of Mode 2 for 2-4 nodes transition. 
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Another important thing that can be notice for any choice of the modal order is that once 𝜆𝐿
2 overcome the 

last COM condition that grants generally the transition to the 2 ∙ 𝑛 internal nodes modal shape, rapidly all 

the negative antinodal displacements becomes equal and remains for any higher value of 𝜆𝐿
2.  

 

2.3.2. Torsional vibrations 

 

As for the flexural counterpart the parameters affecting the torsional equation of motion change depending 

if we are considering symmetric or skew symmetric modes. 

For the symmetric ones is necessary to define the warping coefficient 𝜒2 together with the deck to cable 

torsional stiffness ratio 𝛽2 and the Irvine parameter in order to compute circular eigen-frequencies and the 

associate modal shapes. 

On contrary for skew-symmetric modes the eigen-vectors are simply sinusoidal with a prescribed half wave 

length proportional to the modal number and it’s not influenced directly by the circular eigen-frequency that 

depends only on the modal number and on 𝜒2 and 𝛽2. 

 

Concluding, the parameters of interest would be the following. 

 

𝑛      ;       𝜆𝐿
2 =

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(𝑦′′𝑙)2      ;       𝜒2      ;       𝛽2 =

𝐺𝑑𝐽𝑑

2𝐻𝑏2
 ; 

 

From literature has been possible to define reliable values for such parameters, from different [31-40] we 

take the values of 10 bridges including the Innoshima, Runyang, HuMen, Takoma Narrows, Golden Gate, 

Vincent Thomas, Bosporus I, Fatih Sultan Mehmet, Great Belt, Humber and Taizhou Bridges. 

 

The center –span ranges from 458 to 1624 meters, hence the Irvine parameter has a bimodal distribution, 

ranging from 61 up to 134 for six of the bridges and for the remaining from 168 to 304, with a global average 

value of 162. In this case the cables data refer directly to the central main span. 

Hence as for the flexural motion in the following we will consider values for the cables parameter 

corresponding to 0 to take in account for the flat cables condition, 100 and 225 to represent the bimodal 

behaviour seen from real data, and ∞ for the inextensible cables situation. 

 

 𝜆𝐿
2 = [   0   ;    100   ;    225   ;    ∞   ] ; 

 

The relative deck torsional stiffness parameter ranges from 1.2 ∙ 10−4 for the Tacoma Narrows Bridge to 

65.3 for the Bosporus I, with an average value for the remaining bridges close to 10. 

Hence seems that values ranging from 0.5 ∙ 10−4 up to 50 would span most of the typical situations, but in 

the following this array will be enlarged in order to take in account some extreme conditions from 0 to include 

the flexible deck condition and 100 for the opposite rigid deck condition. 

 

 𝛽2 = [   0 …    0.5 ∙ 10−4  …    50 …    100   ] ; 

 

By last we leave the warping coefficient that generally can be neglected when dealing with closed box section 

girders for which the primary S. Venant torsional stiffness is predominant on the secondary one related to 

Vlasov-Wagner theory. But when dealing with thin walled open section girders as that of the Takoma Narrows 

things changes drastically with values of the warping coefficient nearly to vanish. 

From literature has been possible to find data referring to the Innoshima, Golden Gate, Tacoma Narrows and 

Vincent Thomas Bridges. Except for the Tacoma Narrows bridge characterised by a warping coefficient of 

about 0.31 the others three values ranges from 805.7 to 2941.28. 
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Hence in order to be able to describe both the situation we assume to consider the extreme situations. 

 

 𝜒2 = [   0   ;    ∞   ] 

 

Let’s analyse the results obtained for the first two relevant modes.  

 

i. Circular eigen-frequencies: 

 

 
Figure 2.18_Torsional circular eigen-frequencies of Mode 1 for 𝜒2 = 0. 

  

 

Figure 2.19_Torsional circular eigen-frequencies of Mode 1 for 𝜒2 = ∞. 
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First of all notice that increasing the warping coefficient the structure is more and more flexible and 

consequently we get higher lower eigen-frequencies. 

For χ2 = 0 and χ2 = ∞ the circular eigen-frequencies remains constant as long as 𝛽2 < 10−4 and 𝛽2 <

10−1 respectively meaning that the deck torsional relative stiffness 𝛽2 is no more influent on them, becoming 

dominant the cables contribution. This threshold reduces in higher order modes. On the contrary the effect 

of 𝛽2 become more and more relevant increasing the cable parameter 𝜆𝐿
2 and the modal order as it’s evident 

from next figures. 

 

 
Figure 2.20_Torsional circular eigen-frequencies of Mode 2 for 𝜒2 = 0. 

  

Also for the torsional motion it’s evident that for finite values of 𝜆𝐿
2 as the deck relative torsional stiffness 

parameter increases, all curves of the circular eigen-frequencies tend to collapse on that one characterised 

by 𝜆𝐿
2 = 0. This means that beyond certain level of deck rigidity the cables contribution to torsional 

vibrations has no more effects on the structural response in time. These limits are 𝛽2 > 5 for the second 

symmetric modes characterised by χ2 = 0 and 𝛽2 > 7.5 for the one associated to χ2 = ∞. 
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Figure 2.21_ Torsional circular eigen-frequencies of Mode 2 for 𝜒2 = ∞. 

 

As mentioned above is evident that the deck torsional stiffness parameter threshold reduces to 𝛽2 < 10−5 

and 𝛽2 < 10−2 respectively for 𝜒2 = 0 and 𝜒2 = ∞.  

 

The same relation between the frequencies of subsequent modes found for flexural motion is valid for the 

torsional case. 

 

 𝜔∗𝑚+1(𝜆
2
𝐿 = 0, ∀𝜒

2, ∀𝛽2) ≈ 𝜔∗𝑚(𝜆
2
𝐿 = ∞,∀𝜒

2, ∀𝛽2) ; 

 

Can be of interest to find the critical conditions that leads a symmetric modal shape to vibrate according to 

the circular eigen-frequency of the corresponding skew symmetric one. 

In fact is evident from the previous figures that tuning properly the structural properties it’s possible to reach 

this condition that we will call Cross Over Frequency (COF). 

 

Let’s analyse analytically the conditions that leads to this particular situation. 

 

𝐽�̃� ∙ (�̃�
𝑎
𝜗,𝑚)

2
= (2𝑚𝜋)2 ∙ [1 + 𝛽2 +

𝛽2

𝜒2
∙ (2𝑚𝜋)2] ; 

 

𝐽�̃� ∙ (�̃�
𝑠
𝜗,𝑚)

2
= 𝜆𝐿

2 ∙ [1 −
1

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙ (휂𝜗,𝑚
2 ∙

tanh(
𝛹𝜗,𝑚
2
)

𝛹𝜗,𝑚
2

+𝛹𝜗,𝑚
2 ∙

tan(
𝜂𝜗,𝑚
2
)

𝜂𝜗,𝑚
2

)] ; 
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In the general situation the COF condition requires an iterative solution of the following equality. 

 

 (𝜆𝐿
2)
𝑐𝑟
= (2𝑚𝜋)2 ∙ [1 + 𝛽2 +

𝛽2

𝜒2
∙ (2𝑚𝜋)2] ∙

[
 
 
 
 
 

1 −
1

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙

(

 
 
 
휂𝜗,𝑚

2 ∙
tanh(

𝛹𝜗,𝑚
2
)

𝛹𝜗,𝑚
2

+

+𝛹𝜗,𝑚
2 ∙

tan(
𝜂𝜗,𝑚
2
)

𝜂𝜗,𝑚
2 )

 
 
 

]
 
 
 
 
 
−1

 ; 

 

Hence for each values of the deck relative torsional stiffness parameter 𝛽2 is possible to define a critical value 

for the Irvine parameter that grant the cross over condition. 

 

Let’s simplify the treatment considering the case of perfectly free warping deck  𝜒2 = ∞. 

 

 𝐽�̃� ∙ (�̃�
𝑎
𝜗,𝑚)

2
= (2𝑚𝜋)2 ∙ (1 + 𝛽2) ; 

 

𝐽�̃� ∙ (�̃�
𝑠
𝜗,𝑚)

2
= 𝜆𝐿

2 ∙

[
 
 
 
 

1 −

tan(
1

2
√

𝐽�̃�
(1+𝛽2)

∙�̃�𝑠𝜗,𝑚)

(
1

2
√

𝐽�̃�
(1+𝛽2)

�̃�𝑠𝜗,𝑚)

]
 
 
 
 

 ; 

 

Enforcing the COF threshold condition we get the following relation. 

 

(�̃�𝑠𝜗,𝑚)
2
= (�̃�𝑎𝜗,𝑚)

2
⇒ 𝜆𝐿

2 ∙ [1 −
tan(𝑚𝜋)

𝑚𝜋
] = (2𝑚𝜋)2 ∙ (1 + 𝛽2) ⇒ (𝜆𝐿

2)
𝑐𝑟,0

= (2𝑚𝜋)2 ∙ (1 + 𝛽2) ; 

 

ii. Modal shapes: 

 

 
Figure 2.22_ Modal shape of Mode 1 for 𝜆𝐿

2 = 0  and skew-symmetric condition. 
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In both the situation of skew symmetric modes or very taut cables, the stiffening contribution vanishes and 

hence the bridge vibrates according to a sinusoidal shape proper of strings. Notice that the modal shapes are 

identical to that fount for flexural motion under the same conditions in terms of flexural parameters, since 

both the deck torsional stiffness parameter 𝛽2 and the warping coefficient 𝜒2 have no effect on the modal 

shape.  

Let’s sketch the modal shapes associate to 𝜒2 = 0. 

 
Figure 2.23_ Modal shape of Mode 1 for 𝜒2 = 0 and  𝜆𝐿

2 = 100. 

At first sight it’s clear that for finite values of the Irvine parameter λL
2 beyond 𝛽2 = 1 the effect of cables 

has no more effect on the torsional modal shape. 

 
Figure 2.24_ Modal shape of Mode 1 for 𝜒2 = 0 and  𝜆𝐿

2 = 225. 
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Figure 2.25_ Modal shape of Mode 1 for 𝜒2 = 0 and  𝜆𝐿

2 = ∞. 

 

Then the free warping condition 𝜒2 = ∞ leads to the following modal shapes. 

 

 
Figure 2.26_Modal shape of Mode 1 for 𝜒2 = ∞ and  𝜆𝐿

2 = 100. 
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Figure 2.27_Modal shape of Mode 1 for 𝜒2 = ∞ and  𝜆𝐿

2 = 225. 

Again for finite values of the Irvine parameter λL
2 there exist a threshold beyond which the deck relative 

torsional stiffness (𝛽2 > 50) has no more influence on the modal shapes, but with respect to the case 

𝜒2 = 0 is an order of magnitude higher due to the flexibility introduced by the free warping condition. 

 
Figure 2.28_Modal shape of Mode 1 for 𝜒2 = ∞ and  𝜆𝐿

2 = ∞. 

  

On the contrary for perfectly inextensible cables the torsional response in space is practically unaffected by 

the deck relative stiffness 𝛽2 in both the cases char characterised by 𝜒2 = ∞ and 𝜒2 = 0 , although in the 

second condition a slight contribution can be seen since because of the extremely high warping rigidity of 

the deck. 
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For both the cases 𝜒2 = ∞ and 𝜒2 = 0 the increase of the Irvine parameter 𝜆𝐿
2 leads to higher negative 

rotations as consequence of the combined action of two opposite flexural motion of the deck and cables 

system. 

 

The deck relative stiffness parameter 𝛽2 has a great influence on standard symmetric modal shapes, and this 

peculiarity increases as it assumes values far from extreme conditions and the cables stiffness parameter 

decreases. In fact as the latter increases the modal shapes collapses to the lower curves meaning that the as 

the cable inextensibility grows the influence of the deck relative torsional stiffness become more and more 

negligible. 

 

Another interesting feature is evident as 𝜆𝐿
2 increases. In fact is possible to define a critical value beyond 

which the modal shape internal nodes number changes. In general we will refer to it as to the Cross Over 

Mode (COM), that for the first symmetric modes ensure the passage from a zero to a two node modal shape. 

This critical condition changes with 𝛽2 and can be define by the following relation that enforce the vanishing 

of the first derivative at the two extremities of the span. 

 

 [
𝑑

𝑑𝜉
𝛩𝑚(𝜉)]

𝜉=0
=

𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

{
  
 

  
 

− 𝜗,𝑚∙𝛹𝜗,𝑚

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙

(

 
 
 
 
휂𝜗,𝑚 ∙

sinh(𝛹𝜗,𝑚∙(𝜉−
1

2
))

cosh(
𝛹𝜗,𝑚
2
)

+

+𝛹𝜗,𝑚 ∙
sin( 𝜗,𝑚∙(𝜉−

1

2
))

cos(
𝜂𝜗,𝑚
2
) )

 
 
 
 

}
  
 

  
 

𝜉=0

= 

 

=
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

{
 

 
− 𝜗,𝑚∙𝛹𝜗,𝑚

𝛹𝜗,𝑚
2+ 𝜗,𝑚

2 ∙ (

휂𝜗,𝑚 ∙ tanh (
𝛹𝜗,𝑚

2
) +

+𝛹𝜗,𝑚 ∙ tan (
𝜗,𝑚

2
)

)

}
 

 
≥ 0  ; 

 

That reduces to the following condition that grants counter-clockwise torsion at the two ends. 

 

 휂𝜗,𝑚 ∙ tanh (
𝛹𝜗,𝑚

2
) ≥ 𝛹𝜗,𝑚 ∙ tan (

𝜗,𝑚

2
) ; 

 

Notice that the symmetry of the problem allows to consider simply one side of the deck. 

The last condition can be solved only iteratively, hence to get an analytical expression let’s consider the usual 

free warping deck limit condition (𝜒2 = ∞ ). 

 

 

𝛩𝑚(𝜉) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

{
 
 

 
 

1 −

cos(√
𝐽�̃�

(1+𝛽2)
∙�̃�𝜗,𝑚∙(𝜉−

1

2
))

cos(
1

2
√

𝐽�̃�
(1+𝛽2)

∙�̃�𝜗,𝑚)

}
 
 

 
 

  

 

⇒ [
𝑑

𝑑𝜉
𝛩𝑚(𝜉)]

𝜉=0
=

𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙ {−√

𝐽�̃�
(1+𝛽2)

∙ �̃�𝜗,𝑚 ∙ tan (
1

2
√

𝐽�̃�
(1+𝛽2)

∙ �̃�𝜗,𝑚)} ; 
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Hence enforcing the COM condition for the 0 to 2 node transition leads to. 

 

 [
𝑑

𝑑𝜉
𝛩𝑚(𝜉)]

𝜉=0
≥ 0⇔ tan(

1

2
√

𝐽�̃�
(1+𝛽2)

∙ �̃�𝜗,𝑚) ≤ 0⇔ (
𝜋

2
+𝑚𝜋) ≤ (

1

2
√

𝐽�̃�
(1+𝛽2)

∙ �̃�𝜗,𝑚) ≤ (𝜋 +𝑚𝜋) 

  

Notice that in the last condition is implicitly assumed that the cables stiffening term is positive as generally 

happens. 

After few computations we can find the following final expression. 

 

 (2𝑚 + 1) ∙ 𝜋 ∙ √(1 + 𝛽2) ≤ √𝐽�̃� ∙ �̃�𝜗,𝑚 ≤ (2𝑚 + 1) ∙ 𝜋 ∙ √(1 + 𝛽
2) + 𝜋 ∙ √(1 + 𝛽2)  

 

⇒√𝐽�̃� ∙ �̃�
𝑎
𝜗,𝑚 ≤ √𝐽�̃� ∙ �̃�

𝑠
𝜗,𝑚 ≤ √𝐽�̃� ∙ �̃�

𝑎
𝜗,𝑚 + 𝜋 ∙ √(1 + 𝛽

2); 

 

Hence it’s evident that at the limit condition the last relation correspond to the COF condition. This means 

that for infinitely free warping deck (𝜒2 = ∞ ) is possible to tune the structural parameters in such a way 

that at the same time the bridge oscillates according to a symmetric mode characterised by null side torsional 

slope and with the same frequency of vibration of the corresponding skew-symmetric mode. Again this is not 

feasible since both the frequency and the modal shape will be of symmetric case. 

 

Hence the situation of perfectly flexible deck (𝛽2 = 0 ) is a subcase of the previous one, and it’s not strictly 

require to get the satisfaction of both the COF and COM at the same time. 

 

Has been performed a numerical rooting of the first COM condition for both perfectly rigid and flexible 

warping deck condition. 

 

 
Figure 2.2936_Cross Over Frequency and Mode thresholds of Mode 1 for 𝜒2 = 0. 
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Figure 2.30_ Cross Over Frequency and Mode thresholds of Mode 1 for 𝜒2 = ∞. 

 

As it can be seen both the COF and COM limit for the flexible deck condition holds up to 𝛽2 = 10−2 only for 

𝜒2 = ∞, corresponding to the limit before which the circular eigen-frequencies of the first mode are 

practically constant with the deck relative stiffness parameter. For the opposite condition (𝜒2 = 0) we can 

find such threshold only for both the COF corresponding to 𝛽2 = 10−4 as for the circular eigen-frequencies 

curves. 

Hence the main conclusion is that for finite values of 𝜒2 we can get different critical values for 𝜆𝐿
2 for the 

COF and COM limit conditions, as happen for the flexural motion with different parameters. 

 

Once again the max admissible values for normalised critical 
𝜆𝐿

𝜋
 is fixed to 10 since the corresponding value 

of 𝜆𝐿
2 is equal to 1000, that is an excellent numerical representation of the inextensible cables limit condition 

𝜆𝐿
2 = ∞ . In fact as can be seen for 𝛽2 > 10 as 𝜒2 = ∞ and 𝛽2 > 0.1 as 𝜒2 = 0  the values of 

𝜆𝐿

𝜋
 collapse to 

10, meaning that for very stiff decks the Cross Over Frequency cannot be reached for any level of tension 

inside the cables. 

 

On the other hand the limits for the Cross Over Modes are practically equal to that of COF as long as 𝛽2 ≤

10−5 for 𝜒2 = 0  and  for any 𝛽2 if 𝜒2 = ∞, but beyond that limit it diverges until collapse to the limit value 

of 10. 

This means that in general (𝜒2 < ∞) is not possible to get a symmetric mode oscillating according to the 

same circular frequency of the associate skew-symmetric counterpart and with null torsional slope at the 

two end. Hence tuning properly the structural parameters for the COF condition we get a symmetric modal 

shape with counter-clockwise torsion at the two ends. Vice versa tuning those parameters for the COM 

condition leads to oscillations characterised with frequencies higher than that proper of the associate skew-

symmetric mode. 
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Figure 2.31_Cross Over Modes of Mode 1 for 𝜒2 = 0. 

 

 

Figure 2.32_Cross Over Modes of Mode 1 for 𝜒2 = ∞. 

Plotting the critical modal shape with null side torsional slope for 𝜒2 = 0 it’s evident that beyond a certain 

limit (𝛽2 = 0.1 ⇒
𝜆𝐿

𝜋
= 8.5) the increment of the cables initial tension is no more able to grant the vanishing 

of the torsional slope at the two ends. This means that for too rigid deck is not possible to grant the COM 

condition also for cables tension lower than the limit taut cables situation (
𝜆𝐿

𝜋
= 10) . 

On the other hand for 𝜒2 = ∞ all the modal shapes collapses to the same curve if the COM can be reached 

(𝛽2 < 10⇒
𝜆𝐿

𝜋
< 7) .  
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Let’s now analyse the second order modal shapes. 

 

 
Figure 2.33_Modal shape of Mode 2 for 𝜆𝐿

2 = 0 and skew-symmetric condition. 

 

First analyse the perfectly rigid warping condition. 

 

 
Figure 2.34_Modal shape of Mode 2 for 𝜒2 = 0  and  𝜆𝐿

2 = 100. 
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Figure 2.35_Modal shape of Mode 2 for 𝜒2 = 0  and  𝜆𝐿
2 = 225. 

 

 

Figure 2.36_Modal shape of Mode 2 for  𝜒2 = 0  and  𝜆𝐿
2 = ∞. 
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Then the modes associate to the perfectly free warping condition. 

 

 
Figure 2.37_Modal shape of Mode 2 for 𝜒2 = ∞  and  𝜆𝐿

2 = 100. 

 

 
Figure 2.38_Modal shape of Mode 2 for 𝜒2 = ∞  and  𝜆𝐿

2 = 225. 
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Figure 2.39_Modal shape of Mode 2 for  𝜒2 = ∞  and  𝜆𝐿
2 = ∞. 

 

Comparing the two limit conditions 𝜒2 = 0 and 𝜒2 = ∞ is evident that increasing the warping stiffness the 

deck relative torsional stiffness 𝛽2 influence on negative rotations reduces itself. In fact for 𝜒2 = 0 we get 

many modes collapsed to the one proper of a stiff deck condition characterised by high counter-clockwise 

torsion. This is linked to the fact that the torsional stiffness contribution given by warping become 

dominant on both the primary de S Venant and cables system. 

With respect to the mode 1 here is evident how much is influent the deck relative stiffness parameter on the 

position of peak antinode displacement, that moves farther to the midspan section as 𝛽2 increases. While 

no evident effect on this feature is associate to 𝜒2. 

The same parameter 𝛽2 affects the antinode counter-clockwise rotation that increases with the deck relative 

stiffness, due to the combined action of two opposite flexural motion of the main cables. 

 

Much more interesting is the evolution of modal shapes as the main parameters 𝜒2, 𝛽2 and 𝜆𝐿
2 are tuned. 

In fact the transition is now much more complex, passing from a mode characterised by 2 then by 0 and 

finally by 4 internal nodes as the Irvine parameter increases.  

This requires further investigations of the modal properties in order to find a second Cross Over Mode in 

correspondence of null midspan rotation and making the modal shape transit from a 2 node to a 0 node 

condition; and a third COM condition again as the midspan rotation vanishes but characterising the passage 

from a 0 to a four node modal shape. 

 

Hence the condition required for a generic mode is the vanishing of the negative antinode rotation. 

 

 𝛩𝑚(𝜉𝑚𝑖𝑛) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙ {1 −

1

2
∙ (
cosh(√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
∙(𝜉−

1

2
))

cosh(
1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)
+
cos(√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
∙(𝜉−

1

2
))

cos(
1

2
√𝐽�̃�∙�̃�𝜗,𝑚∙

𝜒

𝛽
)
)}

𝜉=𝜉𝑚𝑖𝑛

= 0 ; 
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Notice that this condition is not required by the first order modes since the vanishing of lateral torsional 

slopes grant it automatically. 

 

Since in general the position of the antinode points varies with the actual values of the parameters 𝜒2, 𝛽2 

and  𝜆𝐿
2 need to enforce the vanishing of the slope in order to find the stationary point and then find the 

minima searching for negative curvatures. 

 

The only cases that allows simpler treatment are those related to the usual free warping deck condition 

(𝜒2 = 0) and the generic condition (∀𝜒2, ∀𝛽2)  for the mode 2. 

 

Let’s start from the latter one. The fact that we are dealing with the second order mode simplify the 

treatment since the position of the minimum antinode displacement is known a priori (𝜉𝑚𝑖𝑛 =
1

2
) . 

 

On the contrary the first case as usual the free warping condition allows analytical results. In fact the COM 

condition reduces to the following relation. 

 

 𝛩𝑚(𝜉𝑚𝑖𝑛) =
𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

{
 
 

 
 

1 −

cos(√
𝐽�̃�

(1+𝛽2)
∙�̃�𝜗,𝑚∙(𝜉−

1

2
))

cos(
1

2
√

𝐽�̃�
(1+𝛽2)

∙�̃�𝜗,𝑚)

}
 
 

 
 

𝜉=𝜉𝑚𝑖𝑛

 ; 

 

First if all need to define the position of the antinode rotations. 

  

 
𝑑

𝑑𝜉
𝛩𝑚(𝜉) =

𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

{
 
 

 
 

√
𝐽�̃�

(1+𝛽2)
∙ �̃�𝜗,𝑚 ∙

sin(√
𝐽�̃�

(1+𝛽2)
∙�̃�𝜗,𝑚∙(𝜉−

1

2
))

cos(
1

2
√

𝐽�̃�
(1+𝛽2)

∙�̃�𝜗,𝑚)

}
 
 

 
 

= 0  

 

⇔√
𝐽�̃�

(1+𝛽2)
∙ �̃�𝜗,𝑚 ∙ (𝜉 −

1

2
) = 𝑘𝜋   𝑤𝑖𝑡ℎ   𝑘𝜖ℵ\{0} ⇒ 𝜉 = 𝜉𝑠𝑡𝑎𝑧 =

1

2
+
𝑘𝜋∙√(1+𝛽2)

√𝐽�̃�∙�̃�𝑤,𝑛
 ; 

  

It’s evident that the latter relation gives the actual position of the minimum antinode point of the 2 order 

mode as = 0 . Hence it’s possible to link the parameter 𝑘 to the actual modal order. 

 

 𝑘 = 𝑚 − 2 ; 

 

Then enforce positive curvature since the positive rotation convention is clockwise, and hence counter-

clockwise min rotations are characterised by such kind of curvatures. 

 

𝑑2

𝑑𝜉2
𝛩𝑚(𝜉) =

𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

{
 
 

 
 

𝐽�̃�
(1+𝛽2)

∙ �̃�2𝜗,𝑚 ∙

cos(√
𝐽�̃�

(1+𝛽2)
∙�̃�𝜗,𝑚∙(𝜉𝑠𝑡𝑎𝑧−

1

2
))

cos(
1

2
√

𝐽�̃�
(1+𝛽2)

∙�̃�𝜗,𝑚)

}
 
 

 
 

≥ 0⇔ cos(𝑘𝜋) ≥ 0⇔ 𝑘 = 𝑒𝑣𝑒𝑛; 
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Hence the previous relation becomes as follows. 

 

 𝑘 = 2 ∙ (𝑚 − 2) ⇒ 𝜉𝑚𝑖𝑛 =
1

2
±
2∙(𝑚−2)𝜋∙√(1+𝛽2)

√𝐽�̃�∙�̃�𝑤,𝑛
 ; 

 

Finally substituting in the initial modal shape we get the following condition. 

 

 𝛩𝑚 (𝜉𝑚𝑖𝑛 =
1

2
+
2∙(𝑚−2)𝜋∙√(1+𝛽2)

√𝐽�̃�∙�̃�𝑤,𝑛
) =

𝜆𝐿
2

𝐽�̃�∙�̃�𝜗,𝑚
2 ℎ̃𝛩,𝑚 ∙

{
 
 

 
 

1 −
cos(2∙(𝑚−2)𝜋)

cos(
1

2
√

𝐽�̃�
(1+𝛽2)

∙�̃�𝜗,𝑚)

}
 
 

 
 

= 0   ∀𝑚 𝑎𝑛𝑑 ∀𝛽2 ; 

 

The meaning of the last statement is that for perfectly free warping deck the transition from a 2 to a 0 node 

condition is doesn’t depend on the actual value of the Irvine parameter 𝜆𝐿
2. 

 

Lets’ comment some numerical results obtained for the second mode of vibrations. 

 

 
Figure 2.40_Cross Over Frequency and Mode thresholds of Mode 2 for 𝜒2 = 0. 
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Figure 2.41_Cross Over Frequency and Mode thresholds of Mode 2 for 𝜒2 = ∞. 

Let’s first analyse the 𝜒2 = 0 condition. 

As for circular eigen-frequencies the Cross Over Frequency is constant for very flexible decks (𝛽2 ≤ 10−4) 

and cannot be tuned beyond 𝛽2 = 10−2 . 

 

With respect to the first symmetric mode the transition of modal shapes for higher order modes are always 

three as the Irvine parameter increases. Starting from the one with 2 ∙ (𝑚 − 1) internal nodes, then passing 

by Cross Over Frequency condition to increase further to reach the one with 0 internal nodes and ending 

with the last one with 2 ∙ 𝑚 internal nodes. 

 

Here the transition from 2 to 0 internal nodes occurs in correspondence of values for the critical Irvine 

parameter lower than the Cross Over Frequency, at least for not perfectly flexible deck. In fact all the curves 

collapse to the same critical 𝜆𝐿
2 only for deck relative stiffnesses lower than (𝛽2 = 10−5). 

This means that for the special case of perfectly flexible deck both the Cross Over Frequency and the three 

Cross Over Mode conditions occurs at the same critical value for 𝜆𝐿
2.  

 

Focusing on the 2 to 0 nodes transition curve, is possible to see that approximately for 𝛽2 belonging to the 

interval (10−5 ÷ 2 ∙ 10−3) the critical 𝜆𝐿
2 required is lower than the one required for perfectly flexible deck. 

This means that the initial increase of the flexural stiffness of the deck gives a huge contribution to grant null 

midspan rotation, but beyond a certain threshold (𝛽2 = 2 ∙ 10−3) since the midspan rotation increases then 

higher values for 𝜆𝐿
2 are required.  
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Figure 2.42_Cross Over Modes of Mode 2 for 2-0 nodes transition for 𝜒2 = 0. 

  

 

 

 
Figure 2.43_Cross Over Modes of Mode 2 for 0-2 nodes transition for 𝜒2 = 0. 

  

 



124 
 

 

Notice that for 𝛽2 > 0.025 is no more possible to tune the Irvine parameter in order to satisfy the first COM 

condition, for 𝛽2 > 0.0075  the second and for 𝛽2 > 0.005 the third. 

 

 
Figure 2.44_Cross Over Modes of Mode 2 for 2-4 nodes transition for 𝜒2 = 0. 

  

For the limit case 𝜒2 = ∞ the curve is unique for all the critical conditions taken in consideration as just 

demonstrated before saying that the vanishing of the midspan rotation is not dependent on the actual mode 

considered and on the other structural parameters. This means that for any 𝛽2 we can satisfy both the COF 

and the three COM conditions simultaneously. 

 

 
Figure 2.45_Cross Over Modes of Mode 2 for 2-0 nodes transition for 𝜒2 = ∞. 
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Figure 2.46_Cross Over Modes of Mode 2 for 0-2 nodes transition for 𝜒2 = ∞. 

 

 
Figure 2.47_Cross Over Modes of Mode 2 for 2-4 nodes transition for 𝜒2 = ∞. 

In this second limit condition when is possible to satisfy the COF at the same time are satisfied the three 

COM condition. Hence the modal shapes are identical as the Irvine parameter for any choice of 𝛽2. 

Any condition can be satisfied once 𝛽2 > 5 . 

Also for the torsional modes can be notice that for any choice of the modal order is that once 𝜆𝐿
2 overcome 

the last COM condition that grants generally the transition to the 2 ∙ 𝑛 internal nodes modal shape, 

immediately all the negative antinodal rotations becomes equal and remains so for any higher value of 𝜆𝐿
2. 
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Before concluding this section we want to mention the fact that the hyperbolic contribution associated to 

the deck stiffness contribution is responsible for the distortion of modal shapes from the sinusoidal one 

typical of strings. But as the modal order increases its effect reduces, and from numerical analysis can be 

seen that sinusoidal shape is a very good approximation beyond the fourth order mode. 

 

 
Figure 2.48_Hyperbolic contribution on high order modal shape. 

 

2.4. Modal participation analysis 
 

The modal expansion has the great advantage that allows us to decouple the spatial and time variable. As a 

consequence on one hand the vibration analysis becomes much more easily but on the other hand it gives 

us the response of each mode separately. Since the reals structural response would be a superposition of all 

modal contributions is important to find out how much each modes weight on the global solution. These 

parameters are in general called modal participation parameters. 

 

In order to obtain those parameters is necessary first of all to perform a modal expansion of the equation of 

motion. We have already done it for the linear dimensionless undamped free vibrations assuming an 

exponential format for the time variables. 

 

We remember once again that the modal superposition is allowed thanks to the linearity of the equations. 

 

Now we will analyse the more general situation of forced damped vibrations hence we will not specify the 

time variation format. 

 

 �̃�𝑑(𝜉, 𝜏) = ∑ 𝑊𝑛(𝜉) ∙ 𝑧𝑛(𝜏)
∞
𝑛=1    𝑤𝑖𝑡ℎ  𝑛 ∈ ℵ\{0} ; 

 

�̃�𝑑(𝜉, 𝜏) = ∑ 𝛩𝑚(𝜉) ∙ 𝛾𝑚(𝜏)
∞
𝑚=1    𝑤𝑖𝑡ℎ  𝑚 ∈ ℵ\{0} ; 
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Hence substituting in the generalised linear dimensionless equations of motion we get the following 

expressions.  

 
𝑑2�̃�𝑑

𝑑𝜏2
+ �̃�𝑤 ∙

𝑑�̃�𝑑

𝑑𝜏
+ 𝜇2 ∙ �̃�𝑑

′𝑣 − �̃�𝑑
′′ + 𝜆𝐿

2ℎ̃𝑤 = �̃�(𝜉, 𝜏) ; 

 

𝐽�̃� ∙
𝑑2�̃�𝑑

𝑑𝑡2
+ �̃�𝜗 ∙

𝑑�̃�𝑑

𝑑𝜏
+
𝛽2

𝜒2
∙ �̃�𝑑

′𝑣
− (1 + 𝛽2) ∙ �̃�𝑑

′′
+ 𝜆𝐿

2ℎ̃𝜗 = �̃�(𝜉, 𝜏) ; 

 

The new parameters introduced are the dimensionless damping parameters that can be define as follows. 

 

 𝑐𝑤 ∙
𝑑𝑤𝑑

𝑑𝑡
= 𝑐𝑤 ∙ 𝑓 ∙

1

𝑙
√

2𝐻

𝑚𝑑+2∙𝑚𝑐
∙
𝑙2

2𝐻𝑓
∙
𝑑�̃�𝑑

𝑑𝜏
= 𝑐𝑤 ∙

𝑙

√2𝐻(𝑚𝑑+2∙𝑚𝑐)
∙
𝑑�̃�𝑑

𝑑𝜏
= �̃�𝑤 ∙

𝑑�̃�𝑑

𝑑𝜏
 ; 

 

 𝑐𝜗 ∙
𝑑𝜗𝑑

𝑑𝑡
= 𝑐𝜗 ∙

𝑓

𝑏
∙
1

𝑙
√

2𝐻

𝑚𝑑+2∙𝑚𝑐
∙
𝑙2

2𝐻𝑓𝑏
∙
𝑑�̃�𝑑

𝑑𝜏
= 𝑐𝜗 ∙

𝑙

𝑏2√2𝐻(𝑚𝑑+2∙𝑚𝑐)
∙
𝑑�̃�𝑑

𝑑𝜏
= �̃�𝜗 ∙

𝑑�̃�𝑑

𝑑𝜏
 ; 

 

The next step consists in the projection on the modal space of the previous equations. In continuous 

mechanics this can be done simply multiplying each equation by the respective modals shape and then 

integrating over the spatial domain. The counterpart in discrete mechanics is the diagonalization of the mass, 

damping and stiffness matrix multiplying and pre-multiplying each of them by the modal matrix whose 

columns should be all the possible modal shapes allowed by discretisation but in general has much more 

limited dimensions since few modes are sufficient to define sufficiently accurately the structural response. 

In the present case, hence, we will multiply respectively the fist and the second linear dimensionless 

equations of motion by 𝑊𝑛(𝜉) and 𝛩𝑚(𝜉) and then integrate them over the domain [0,1]. 

We obtain the following modal equations of motion. 

 

𝑀𝑤,𝑛 ∙ �̈�𝑛(𝜏) + 2𝜉𝑤,𝑛�̃�𝑤,𝑛𝑀𝑤,𝑛 ∙ �̇�𝑛(𝜏) + 𝐾𝑤,𝑛 ∙ 𝑧𝑛(𝜏) = 𝛤𝑤,𝑛(𝜏); 

 

𝐽𝜗,𝑚 ∙ �̈�𝑚(𝜏) + 2𝜉𝜗,𝑚�̃�𝜗,𝑚𝐽𝜗,𝑚 ∙ �̇�𝑚(𝜏) + 𝐾𝜗,𝑚 ∙ 𝛾𝑚(𝜏) = 𝛤𝜗,𝑚(𝜏) ; 

 

Where the new parameters defined are modal masses, damping ratios, stiffness and forcing terms. 

 

 𝑀𝑤,𝑛 = ∫ 𝑊𝑛
2(𝜉)𝑑𝜉

1

0
 ; 

 

 𝑀𝜗,𝑚 = ∫ 𝛩𝑚
2(𝜉)𝑑𝜉

1

0
⇒ 𝐽𝜗,𝑚 = 𝐽�̃�𝑀𝜗,𝑚 ; 

 

 𝜉𝑤,𝑛 =
𝑐�̃�

2√𝐾𝑤,𝑛∙𝑀𝑤,𝑛
=

𝑐�̃�

2�̃�𝑤,𝑛𝑀𝑤,𝑛
 ; 

 

 𝜉𝜗,𝑚 =
𝑐̃𝜗

2√𝐾𝜗,𝑚∙𝐽𝜗,𝑚
=

𝑐̃𝜗

2�̃�𝜗,𝑚𝐽𝜗,𝑚
 ; 

 

𝐾𝑤,𝑛 = ∫ 𝑊𝑛(𝜉) ∙ [𝜇
2 ∙ 𝑊𝑛

′𝑣(𝜉) −𝑊𝑛
′′(𝜉)]𝑑𝜉 + 𝜆𝐿

2ℎ̃𝑊,𝑛
21

0
= �̃�𝑤,𝑛

2 ∙ 𝑀𝑤,𝑛 ; 

 

𝐾𝜗,𝑚 = ∫ 𝛩𝑚(𝜉) ∙ [
𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2) ∙ 𝛩𝑚
′′(𝜉)] 𝑑𝜉 + 𝜆𝐿

2ℎ̃𝛩,𝑚
21

0
= �̃�𝜗,𝑚

2 ∙ 𝐽𝜗,𝑚 ; 

 

𝛤𝑤,𝑛(𝜏) = ∫ 𝑊𝑛(𝜉) ∙ �̃�(𝜉, 𝜏)𝑑𝜉
1

0
 ; 
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𝛤𝜗,𝑚(𝜏) = ∫ 𝛩𝑚(𝜉) ∙ �̃�(𝜉, 𝜏)𝑑𝜉
1

0
 ; 

 

It’s evident that the modal projection allows us to reduce the equations of motion to the same format of 2 

single degree of freedom systems. The fact that the dofs are independent is due to the fact that we are 

considering just the linear component of the structural response. 

 

The analytical solution of a general forced and damped system can be found performing the Convolution 

Integration proposed by Duhamel. The theory is based on the assumption that a generic forcing can be seen 

as an infinite series of unitary impulses adequately scaled in order to map the actual external forcing term. 

The superposition once again is allowed by the linearity of the problem. The second principal hypothesis is 

that each impulse has effect only on subsequent instant since the system considered is causal. We must 

remember that in nature not all the process are causal, since we can feel the effect of events that are going 

to happen.  

 

Anyway, the convolution integral is able to give us not only the forced response of the system but 

superimposing the well-known free vibration response of a generic single degree of freedom oscillator we 

can get the generic response of a forced and damped system starting from non-trivial initial conditions. 

 

In the present case is not of interest the free vibration response hence we will assume null initial conditions. 

Consequently we need to consider just the Duhamel Integral that has the following expression. 

 

 𝑧𝑛(𝜏) =
1

�̃�𝑤,𝑛𝑀𝑤,𝑛
∫ 𝛤𝑤,𝑛(𝜏) ∙ exp {−𝜉𝑤,𝑛�̃�𝑤,𝑛 ∙ (𝜏 − �̅�)}
�̅�

0
∙ sin {�̃�𝑤,𝑛√1− 𝜉𝑤,𝑛 ∙ (𝜏 − �̅�)}𝑑𝜏 ; 

 

 𝛾𝑚(𝜏) =
1

�̃�𝜗,𝑚𝐽𝜗,𝑚
∫ 𝛤𝜗,𝑚(𝜏) ∙ exp {−𝜉𝜗,𝑚�̃�𝜗,𝑚 ∙ (𝜏 − �̅�)}
�̅�

0
∙ sin {�̃�𝜗,𝑚√1 − 𝜉𝜗,𝑚 ∙ (𝜏 − �̅�)}𝑑𝜏 ; 

 

Notice that the Duhamel integral gives us the time history of the max positive antinode displacement or 

rotation since we reduce to study an equivalent single dof system for each equation. 

As we can see the response is the superposition of many sub-responses of that of a damped oscillator at the 

generic instant 𝜏 forced by a term acting at the instant �̅�. This means that at a generic instant 𝜏 the response 

of the system is given by the superposition of the effects given by all the forcing acting in previous instants. 

 

In order to get the time response in a generic point along the span of the bridge is necessary to return to the 

definition of the modal decomposition. 

 

 �̃�𝑑(𝜉, 𝜏) = ∑
𝑊𝑛(𝜉)

�̃�𝑤,𝑛𝑀𝑤,𝑛
∙ 𝐼𝑤,𝑛(𝜏)

∞
𝑛=1 = ∑ 𝐹𝑤,𝑛(𝜉) ∙ 𝐼𝑤,𝑛(𝜏)

∞
𝑛=1  ; 

 

�̃�𝑑(𝜉, 𝜏) = ∑
𝛩𝑚(𝜉)

�̃�𝜗,𝑚𝐽𝜗,𝑚
∙ 𝐼𝜗,𝑚(𝜏)

∞
𝑚=1 = ∑ 𝐹𝜗,𝑚(𝜉) ∙ 𝐼𝜗,𝑚(𝜏)

∞
𝑚=1 ; 

 

Where the new parameters 𝐹𝑤,𝑛(𝜉) and 𝐹𝜗,𝑚(𝜉) can be define as participation factors since represent the 

response of the system in any position in space when at a generic instant the amplitude of oscillation is 

unitary meaning that all the forcing terms acting in previous instants gives a global unitary displacement to 

the system. 
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In order to get normalised results we will slightly modify the previous definitions as follows. 

  

�̃�𝑑(𝜉, 𝜏) = ∑ 𝑊𝑛(𝜉)
ℎ̃𝑊,𝑛

𝑀𝑤,𝑛
∙
𝐼𝑤,𝑛(𝜏)

�̃�𝑤,𝑛∙ℎ̃𝑊,𝑛

∞
𝑛=1 =

1

8
∙ ∑ 8 ∙ 𝑊𝑛(𝜉)

ℎ̃𝑊,𝑛

𝐾𝑤,𝑛
∙ �̃�𝑤,𝑛

2𝐷𝑤,𝑛(𝜏)
∞
𝑛=1 =

1

8
∙ ∑ 𝑃𝑤,𝑛(𝜉) ∙ �̃�𝑤,𝑛

2𝐷𝑤,𝑛(𝜏)
∞
𝑛=1  ; 

 

�̃�𝑑(𝜉, 𝜏) = ∑ 𝛩𝑚(𝜉)
ℎ̃𝛩,𝑚

𝐽𝜗,𝑚
∙
𝐼𝜗,𝑚(𝜏)

�̃�𝜗,𝑚∙ℎ̃𝛩,𝑚

∞
𝑚=1 =

1

8
∙ ∑ 8 ∙ 𝛩𝑚(𝜉)

ℎ̃𝛩,𝑚

𝐾𝜗,𝑚
∙ �̃�𝜗,𝑚

2𝐷𝜗,𝑚(𝜏)
∞
𝑚=1 =

1

8
∙ ∑ 𝑃𝜗,𝑚(𝜉) ∙ �̃�𝜗,𝑚

2𝐷𝜗,𝑚(𝜏)
∞
𝑚=1  ; 

 

Hence we have defined the displacement and rotation participation parameters slightly different from the 

participation factors, and a Duhamel parameter slightly different from the corresponding integral. In this way 

we get normalised parameters with respect to the actual amplitude response of the system. 

The main limit of these definitions is that for sinusoidal modals shapes the participation parameters vanish 

since the stiffening parameter is null. Hence we need to define them as follows. 

 

 �̃�𝑑(𝜉, 𝜏) = 2∑ sin(�̃�𝜋𝜉) ∙ 𝐷𝑤,𝑛(𝜏)
∞
𝑛=1  ; 

 

Where the half-wave number can be odd or even respectively for perfectly flat cables limit condition and 

skew-symmetric modes. 

 

The other disadvantage is that is required to know the actual dimensionless gyration radius of the deck and 

cables system 𝐽�̃�, since the torsional eigen frequency appears separately from it. from [31-40] we can state 

that its value ranges between 0.4 and 0.7. 

 

As previously mentioned the Duhamel integral give us the amplitude in correspondence of the max antinode 

point that has a different location along the bridge axis for each modal shape. Hence would be meaningless 

to get the participation factors in that position since cannot be superimposed. Consequently is better to focus 

the attention on some position along the deck that could be of interest for the structural analysis as for 

example the displacements and the rotations at midspan and at quarter points. 

 

 
Figure 2.49_Midspan displacement participation parameter  for flexural symmetric mode shape 1. 

It is evident that increasing the Irvine parameter, displacements decreases due to the higher stiffness of the 

structure. 
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Whilst increasing the deck flexural stiffness is important to take in consideration the relative importance of 

cables and deck contribution. In fact we get increasing displacements as deck stiffness grows just below a 

certain value for Irvine parameter. 

 

 
Figure 2.50_Quarter point displacement participation parameter  for flexural symmetric mode shape 1. 

 

Considering higher order modes we observe lower displacements and an higher influence of the deck 

stiffness. 

 

 
Figure 2.51_Midspan displacement participation parameter for flexural symmetric mode shape 2. 
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Figure 2.52_Midspan displacement participation parameter for flexural symmetric mode shape 2. 

Another important parameter could be the linear stiffening parameter that represent the cables tension 

increment due to independent flexural and torsional motions and it’s defined as follows. 

 

ℎ𝑤 = −
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′ ∫ 𝑤𝑑(𝑥, 𝑡)𝑑𝑥

𝑙

0
=
𝐻

8

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
8𝑓

𝑙
)
2

∫ �̃�𝑑(𝜉, 𝜏)𝑑𝜉
1

0
=
𝐻

8
𝜆𝐿
2∑ ∫ 𝐹𝑤,𝑛(𝜉)𝑑𝜉

1

0
∙ 𝐼𝑤,𝑛(𝜏)

∞
𝑛=1  ; 

 

ℎ𝜗 = −
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′𝑏 ∫ 𝜗𝑑(𝑥, 𝑡)𝑑𝑥

𝑙

0
=
𝐻

8

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
8𝑓

𝑙
)
2

∫ �̃�𝑑(𝜉, 𝜏)𝑑𝜉
1

0
=
𝐻

8
𝜆𝐿
2∑ ∫ 𝐹𝜗,𝑚(𝜉)𝑑𝜉

1

0
∙ 𝐼𝜗,𝑚(𝜏)

∞
𝑚=1  ; 

 

Or in term of the normalised participation parameters. 

 

 ℎ𝑤 = 𝐻∑
𝜆𝐿
2

8
∫ 𝑃𝑤,𝑛(𝜉)𝑑𝜉
1

0
∙ �̃�𝑤,𝑛

2𝐷𝑤,𝑛(𝜏)
∞
𝑛=1 = 𝐻 ∙

1

8
∑ ℎ𝑤,𝑛 ∙ �̃�𝑤,𝑛

2𝐷𝑤,𝑛(𝜏)
∞
𝑛=1  ; 

 

 ℎ𝜗 = 𝐻∑
𝜆𝐿
2

8
∫ 𝑃𝜗,𝑚(𝜉)𝑑𝜉
1

0
∙ �̃�𝜗,𝑚

2𝐷𝜗,𝑚(𝜏)
∞
𝑚=1 = 𝐻 ∙

1

8
∑ ℎ𝜗,𝑚 ∙ �̃�𝜗,𝑚

2𝐷𝜗,𝑚(𝜏)
∞
𝑚=1  ; 

 

Hence the new participation parameters ℎ𝑤,𝑛 and ℎ𝜗,𝑚 gives us the modal contribution to the tension 

increment in the cable given by flexural and torsional vibrations respectively, normalised with respect to the 

initial cable tension H. Notice that the fractional term out of the summation is a residual of the dimensionless 

convention chosen. Hence we decide to get results independent from that assumption in order to be able to 

compare the numerical results with similar analysis as those performed by Lo Turmo & Aparicio [5]. In fact 

they perform the same analysis for the single degree of freedom model of a suspension bridge, hence we 

have generalised it to the two degree of freedom one.  

 



132 
 

 
Figure 2.53_Cables tension increment for flexural symmetric mode shape 1. 

 

As we can see as the cables inextensibility is not too high, as the deck stiffness increases the increment in the 

cables tension reduces since is the deck that holds a high amount of vertical forces not requiring the 

contribution coming from the cable system. On the contrary as the cables becomes enough rigid the increase 

of deck stiffness leads to higher values of cables stiffening increment since the deck is not enough rigid to 

absorb the major amount of external forces. Considering the same deck rigidity we can see that increasing 

the cables inextensibility remaining below the peck we get increasing tension increments since forces moves 

to the stiff element of the structure. Whilst above the peak we get a decreasing branch since the modal 

contribution reduces, being the mode approaching a sinusoidal shape characterised by a lower ℎ𝑤,𝑛 or ℎ𝜗,𝑚. 

 

Further considering higher order modes we can say that the curves slightly increases their pecks and move 

through higher values for Irvine parameters because in higher order modes there is a larger upward region 

that reduces the overall cables tension increment. However, as already noticed with the parametric analysis, 

increasing the Irvine parameter the upward motion should disappear, consequently we get a peak in 

correspondence of higher 𝜆𝐿
2 and also we reach higher peak values since the summation of curvatures in 

the cables is higher than in a single wave mode. 
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Figure 2.54_Cables tension increment for flexural symmetric mode shape 2. 
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3. Nonlinear analysis 

 
Up to now, we have analysed first the structural two-dimensional model for a suspension bridge, in order to 

perform a parametric analysis of linear eigen-properties. 

Now we want to solve the complete non-linear coupled system of equations coming from the structural 

model. We will not analyse the more complex aeroelastic one since it would couple also the linear component 

of the equations and consequently an analytical treatment will not be feasible. Further, if the structure alone 

is able to catch the main feature of internal resonances, by means of its quadratic and cubic non-linearities, 

we can state that the addition of linear coupling term, coming from wind action, will simply enhance these 

features. 

 
3.1. Direct multiple-scale perturbation technique 

 
The non-linearity of the system of equations of motion of the suspension bridge preclude the exact analytical 

solution to the problem.  Hence, we are forced to resort approximations in order to obtain information about 

solutions of equations. Among those approximate methods are the so-called perturbation or asymptotic 

methods, which are able to approximate the solution by means of the first terms (usually no more than three) 

of an asymptotic expansion. Generally, artificial parameters are introduced representing perturbations, small 

or large, able to carry out expansion of nonlinear terms. A huge variety of perturbative methods have been 

developed in the past years in order to study the response of some classical non-linear equations (Van der 

Pol oscillator, Duffing equation, Klein-Gordon equation). These methods can be divided in few classes: the 

Straightforward Expansion, the method of Strained Coordinates, the method of Matched and Asymptotic 

Expansions, the method of Variation of Parameters and Averaging [21, 44].  In the present treatment we will 

use the so-called multiple time scale method, which is able to give us approximate but accurate solutions in 

presence of small but finite nonlinearities and belong to the latter class. The solution for the non-dimensional 

equations of motion of the suspension bridge alone will be search in the following format. 

 

�̃�𝑑(𝜉, 𝜏) = 𝜖 ∙  �̃�1(𝜉, 𝑇0, 𝑇1, 𝑇2) + 𝜖
2 ∙  �̃�2(𝜉, 𝑇0, 𝑇1, 𝑇2) + 𝜖

3 ∙  �̃�3(𝜉, 𝑇0, 𝑇1, 𝑇2) 
 

�̃�𝑑(𝜉, 𝜏) = 𝜖 ∙  �̃�1(𝜉, 𝑇0, 𝑇1, 𝑇2) + 𝜖
2 ∙  �̃�2(𝜉, 𝑇0, 𝑇1, 𝑇2) + 𝜖

3 ∙  �̃�3(𝜉, 𝑇0, 𝑇1, 𝑇2) 

 

Where we introduce the parameter 𝜖 representing a small but finite perturbation applied to the system, in 

fact the multiple time scale method is much more accurate in weakly non linear problems. Generally the 

perturbative term is not completely artificial but it can be associated to the order to magnitude of the actual 

flexural oscillations. 

𝜖 = max (�̃�𝑑(𝜉, 𝜏)) 𝜆⁄  

 

From the last definition, we can state that we will expect higher non-linear contributions to the motion 

coming from higher order modes, since at equal amplitudes the perturbation parameter increases as the 

wavelength 𝜆  decreases. 

 

We want to stress the fact that we are going to apply the multiple time scale technique in its more general 

direct approach. In fact, as we can see the unknown functions �̃�𝑑(𝜉, 𝜏) and �̃�𝑑(𝜉, 𝜏) are yet dependent on 

both time and space variables. 
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Generally, in order to simplify the treatment other authors facing the same or similar problems [11, 12, 19, 

20] apply the perturbative method to the discretized equations, consequently called Discrete approach. This 

would require the projection of the equations on the modal space, so that the spatial dependence would be 

hidden inside integral terms, and then the multiple time scale expansion will involve functions dependent 

only on the time variable. The main differences we can found [45] are that, though both the approaches led 

to approximate solution in time, the discrete method will be exact in space only accounting for an infinite 

number of modal shapes. Further, the direct approach is able to give us explicit analytical expressions for the 

spatial functions eliminating the pitfalls of dealing with spatial series expansion. Usually, in engineering field 

just few normal modes are of interest, such as those directly excited by external forces or indirectly through 

internal parametric excitations, since all the others will decay in time as damping exists. Thence, generally 

finite mode truncation are inevitable and, with the same number of time scale terms, we can get higher 

convergence with the direct approach having exact spatial functions. Finally, in the discrete approach not 

only we should choose an infinite number shape functions in order to get the same accuracy of the direct 

one, but also they have to be a complete set of functions forming a basis, otherwise the convergence would 

be very poor. 

 

Let’s continue with the analytical treatment defining the so-called Time Scale parameter 𝑇𝑛 = 𝜖
𝑛 ∙ 𝜏, that is 

a new set of independent variables accounting for the fast and slow time variation of different perturbations. 

This means that we will obtain a solution that is exact in spatial terms but just approximate in time domain. 

In fact, the solution will be the superposition of functions characterized by a frequency equal to the natural 

ones �̃�𝑤,𝑛 and �̃�𝜗,𝑚, the so-called fast time scale functions, and of their submultiples, the slow time scale 

ones slowed down as 𝑛 increases. Then 𝑇𝑛 can be see as a sort of  period of the different time scale functions. 

Consequently, the derivatives with respect to time requires some further development by means of the chain 

rule. 

 
𝑑(∙)

𝑑𝜏
=
𝜕(∙)

𝜕𝑇0
∙
𝑑𝑇0

𝑑𝜏
+
𝜕(∙)

𝜕𝑇1
∙
𝑑𝑇1

𝑑𝜏
+
𝜕(∙)

𝜕𝑇2
∙
𝑑𝑇2

𝑑𝜏
= 𝐷0 + 𝜖 ∙  𝐷1 + 𝜖

2 ∙  𝐷2  

 

𝑑2(∙)

𝑑𝜏2
=

{
 
 
 

 
 
 

𝑑

𝑑𝜏
(𝐷0 + 𝜖 ∙  𝐷1 + 𝜖

2 ∙  𝐷2) =

= (𝐷0 + 𝜖 ∙  𝐷1 + 𝜖
2 ∙  𝐷2)

2 =

= 𝐷0
2 + 2𝜖 ∙ 𝐷0𝐷1 + 2𝜖

2 ∙ 𝐷0𝐷2 + 𝜖
2 ∙ 𝐷1

2 + 2𝜖3 ∙ 𝐷1𝐷2 + 𝜖
4 ∙ 𝐷2

2 ≅

≅ 𝐷0
2 + 2𝜖 ∙ 𝐷0𝐷1 + 2𝜖

2 ∙ 𝐷0𝐷2 + 𝜖
2 ∙ 𝐷1

2 }
 
 
 

 
 
 

  

 

Where we have introduce a new operator 𝐷𝑘 =
𝜕(∙)

𝜕𝑇𝑘
 that is the counter part of the time derivative in the 

multiple time scale field. Notice that we have introduced an approximation in the definition of the second 

order time derivative since we are not interested in perturbation contributions that are too small. 

It’s now evident that the solutions �̃�𝑑(𝜉, 𝜏) and �̃�𝑑(𝜉, 𝜏) depends both explicitly and implicitly on the time 

scale 𝑇𝑘. Since each term of the time scale expansion depends on every time scale, hence the truncation will 

be valid for all instant 𝜏 < 𝑂(𝜖−𝐾) where 𝐾 = max (𝑘) represents the number of time expansion terms taken 

in consideration. Beyond these times, we must add further time scales to keep the expansion still valid. 

Notice that the introduction of the multiple time scales leads to transform the system from an ordinary to a 

partial differential equations one, increasing the number of independent variables. Consequently, it’s known 

as the many variables version of the multiple time scale method. 

 



137 
 

The next step consist in substituting the time scale expansion into the original system of equations and 

equating coefficients of like powers of 𝜖. This allows us to obtain equations for determining each component 

�̃�𝑘 and �̃�𝑘 of the time scale expansion. Since the solutions will contain arbitrary functions of different time 

scales 𝑇𝑘, additional conditions are required. In fact we must remember that we are dealing with 

perturbations of the system and consequently each higher order term should be a small correction of the 

corresponding lower one. 

 

�̃�𝑘 �̃�𝑘−1⁄ < ∞ ; �̃�𝑘 �̃�𝑘−1⁄ < ∞   ∀𝑇𝑘 , 𝑘 = 1,… , 𝐾  

 

This condition does not requires that each component �̃�𝑘 and �̃�𝑘 is bounded, but simply that higher order 

approximations should be no more singular than the first lower order one. This condition is equivalent to the 

elimination technique used in the Straight-forward expansion method. It allows us to neglect divergent terms 

of lower order when the time instant overcomes its upper bound beyond which the 𝑘_𝑡ℎ term of the time 

scale expansion has a contribution to the overall solution comparable to the  𝑘_𝑡ℎ − 1 one and hence cannot 

be more considered a perturbation. 

 

Hence substituting the multiple time scale expansion inside the original structural equations of motion we 

obtain three new systems, associate to the linear, quadratic and cubic order of the perturbation parameter 

𝜖. Notice that we will consider expansions up to the third order since, as already mentioned, the system of 

equations governing the vibrations of the suspension bridge are non-linear up to cubic components. 

 
3.2. Linear contribution 

 
The first component is the linear one being proportional to the first order perturbation 𝜖. 

 

𝐷0
2�̃�1 + 𝜇

2 ∙ �̃�1
𝑖𝑣 − �̃�1

𝑖𝑖 + 𝜆𝐿
2 ∙ ℎ̃𝑤1 = 0  

 

𝐽�̃� ∙ 𝐷0
2
�̃�1 +

𝛽2

𝜒2
∙ �̃�1

𝑖𝑣
− (1 + 𝛽2) ∙ �̃�1

𝑖𝑖
+ 𝜆𝐿

2 ∙ ℎ̃𝜗1 = 0  

 

As we can see we obtain similar equations used in defining the normal modes of the structure. The slight but 

relevant difference lies in the time variables that this time is not unique but we have a set of three periods 

𝑇𝑘. Hence, the following modal expansion will be feasible. 

 

 �̃�1(𝜉, 𝑇0, 𝑇1, 𝑇2) = ∑ 𝑊𝑛(𝜉) ∙ 𝑧𝑛(𝑇0, 𝑇1, 𝑇2)
∞
𝑛=1    𝑤𝑖𝑡ℎ  𝑛 ∈ ℵ\{0}  

 

 �̃�1(𝜉, 𝑇0, 𝑇1, 𝑇2) = ∑ 𝛩𝑚(𝜉) ∙ 𝛾𝑚(𝑇0, 𝑇1, 𝑇2)
∞
𝑚=1    𝑤𝑖𝑡ℎ  𝑚 ∈ ℵ\{0} 

 

Where Euler approach allows defining the amplitudes variable in time. 

 

 𝑧𝑛(𝑇0, 𝑇1, 𝑇2) = 𝑍𝑛(𝑇1, 𝑇2) ∙ exp(𝑖 ∙ �̃�𝑤,𝑛 ∙ 𝑇0) + �̂�𝑛(𝑇1, 𝑇2) ∙ exp(−𝑖 ∙ �̃�𝑤,𝑛 ∙ 𝑇0) 

 

 𝛾𝑚(𝑇0, 𝑇1, 𝑇2) = 𝛤𝑚(𝑇1, 𝑇2) ∙ exp(𝑖 ∙ �̃�𝜗,𝑚 ∙ 𝑇0) + �̂�𝑚(𝑇1, 𝑇2) ∙ exp(−𝑖 ∙ �̃�𝜗,𝑚 ∙ 𝑇0) 
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It’s of relevance to notice that with respect to the analysis, already performed in order to define the linear 

eigen-modes, the amplitudes may be not vary periodically in time though any damping is taken in account 

here. This is because the max amplitudes 𝑍𝑛 and 𝛤𝑚 are no more constant in time but becomes functions of 

all the slow time scales 𝑇1, 𝑇2. 

Substituting the modal expansion in the linear systems, we obtain two uncoupled linear equations (the eigen-

functions of the system) that allows us to define the linear modal shapes and eigen-frequencies already 

obtained in the initial structural analysis performed in the first chapter. 

It’s evident that the presence of additional linear terms coming from the wind-structure interaction will lead 

to couple also the linear equations of motion making impossible an analytical treatment also of the higher 

order modes, being dependent on the linear ones as we will see in the following.  

 
3.3. Quadratic contribution 

 
The second order terms are governed by a different set of equations of motion. 

 

𝐷0
2�̃�2 + 𝜇

2 ∙ �̃�2
𝑖𝑣 − �̃�2

𝑖𝑖 + 𝜆𝐿
2 ∙ ℎ̃𝑤2 = −2𝐷0𝐷1�̃�1 + 𝜆𝑄

2{

�̃�1
𝑖𝑖 ∙ ℎ̃𝑤1 + �̃�1

𝑖𝑖
∙ ℎ̃𝜗1 +

−
1

2
∙ (ℎ̃𝑤1′𝑤1′ + ℎ̃𝜗1

′𝜗1
′)

}  

 

𝐽�̃�𝐷0
2
�̃�2 +

𝛽2

𝜒2
∙ �̃�2

𝑖𝑣
− (1 + 𝛽2) ∙ �̃�2

𝑖𝑖
+ 𝜆𝐿

2 ∙ ℎ̃𝜗2 = −2𝐽�̃�𝐷0𝐷1�̃�1 + 𝜆𝑄
2{

�̃�1
𝑖𝑖
∙ ℎ̃𝑤1 + �̃�1

𝑖𝑖 ∙ ℎ̃𝜗1 +

−ℎ̃𝑤1′𝜗1
′

}  

 

With respect to the linear ones, we get non-homogenous coupled linear ordinary differential equations. 

Hence substituting the modal expansion proposed for the linear terms we get the following expressions for 

the right hand side terms of the flexural and torsional equations. 

 

(1) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

−2∑ {𝑖�̃�𝑤,𝑛𝐷1𝑍𝑛 exp(𝑖 ∙ �̃�𝑤,𝑛 ∙ 𝑇0) + 𝑐. 𝑐. }𝑊𝑛(𝜉)
∞
𝑛=1 +

+𝜆𝑄
2

{
 
 
 
 
 

 
 
 
 
 

∑

{
 
 

 
 
𝑍𝑝𝑍𝑟 exp(𝑖 ∙ (�̃�𝑤,𝑝 + �̃�𝑤,𝑟) ∙ 𝑇0) +

𝑍𝑝�̃�𝑟 exp(𝑖 ∙ (�̃�𝑤,𝑝 − �̃�𝑤,𝑟) ∙ 𝑇0) +

+𝑐. 𝑐. }
 
 

 
 

∞
𝑝,𝑟=1 ∙ {𝑊𝑝

𝑖𝑖 ∙ ℎ̃𝑊𝑟 −
1

2
∙ ℎ̃𝑊𝑝′𝑊𝑟′} +

∑

{
 
 

 
 
Г𝑞Г𝑠 exp(𝑖 ∙ (�̃�𝜗,𝑞 + �̃�𝜗,𝑠) ∙ 𝑇0) +

Г𝑞Г̃𝑠 exp(𝑖 ∙ (�̃�𝜗,𝑞 − �̃�𝜗,𝑠) ∙ 𝑇0) +

+𝑐. 𝑐. }
 
 

 
 

∞
𝑞,𝑠=1 ∙ {𝛩𝑞

𝑖𝑖 ∙ ℎ̃𝛩𝑠 −
1

2
∙ ℎ̃𝛩𝑞′𝛩𝑠′}

}
 
 
 
 
 

 
 
 
 
 

}
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(2) =

{
 
 
 

 
 
 

−2𝐽�̃� ∑ {𝑖�̃�𝜗,𝑚𝐷1Г𝑚 exp(𝑖 ∙ �̃�𝜗,𝑚 ∙ 𝑇0) + 𝑐. 𝑐. }𝛩𝑚(𝜉)
∞
𝑚=1 +

+𝜆𝑄
2∑

{
 
 

 
 
𝑍𝑝Г𝑞 exp(𝑖 ∙ (�̃�𝑤,𝑝 + �̃�𝜗,𝑞) ∙ 𝑇0) +

𝑍𝑝Г̃𝑞 exp(𝑖 ∙ (�̃�𝑤,𝑝 − �̃�𝜗,𝑞) ∙ 𝑇0) +

+𝑐. 𝑐. }
 
 

 
 

∞
𝑝,𝑞=1 ∙ {𝛩𝑞

𝑖𝑖 ∙ ℎ̃𝑊𝑝 +𝑊𝑝
𝑖𝑖 ∙ ℎ̃𝛩𝑞 − ℎ̃𝑊𝑝′𝛩𝑞′}

}
 
 
 

 
 
 

  

 

The solution of these equations is feasible only enforcing additional conditions. 

The so-called Solvability Conditions simply enforce that the secular terms vanishes in time, that means the 

terms associated to the lower order contributions are damped out as time overcome the threshold of validity 

for them. In mathematical terms this simply requires that the particular integral of the solutions must have 

any exponential term function of the lower order time scale. Otherwise, the solution will contain a term 

growing linearly with the lower time scale since the exponential term is already taken in account in the 

homogeneous contribution that is identical to the linear format. Hence, to avoid that the exponential term 

function of the lower order time scale would have a multiplicity of two, we need that the right hand side 

term proportional to it has to vanish. 

Things are a little bit more complex since we are dealing with a generic combination of interacting modes 

also for the same motion component. Thence, we need to make some assumptions to restrict the area of 

investigations. We will assume to neglect combinational internal resonances of additive and difference (anti-

resonance) type, focusing on the so-called one-to-one internal resonance. 

 

However, before proceeding we want just to mention the fact that in order to analyse by means of a mode-

by-mode approach the two-to-one internal resonance is necessary to assume that �̃�𝑤,𝑛 = 2�̃�𝜗,𝑞 + 𝜖
2𝜎. The 

detailed process will be clear in the following treatment for the one-to one resonance. Hence, we will just 

report the final equations governing the time variation of flexural and torsional amplitudes and phases. 

 

 𝐷2�̿�𝑛 =
1

2
{

1

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
(�̿�𝑤,𝑛 ∙ 𝑠𝑖𝑛𝛿𝑤 −

1

2
𝛼 ∙ Г̿𝑛

2
∙ 𝑠𝑖𝑛𝛿1) − 𝜈𝑤�̿�𝑛}  

 

 𝐷2𝛾𝑤,𝑛 =
1

2

1

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
{
1

2
[𝛼 ∙ Г̿𝑛

2
�̿�𝑛⁄ ∙ 𝑐𝑜𝑠𝛿1] + �̿�𝑤,𝑛𝑐𝑜𝑠𝛿𝑤}  

 

 𝐷2Г̿𝑛 =
1

2
{

1

𝐽�̃�∙�̃�𝜗,𝑛∙𝑀𝜗,𝑛
(�̿�𝜗,𝑛 ∙ 𝑠𝑖𝑛𝛿𝜗 + 𝛼 ∙ Г̿𝑛�̿�𝑛 ∙ 𝑠𝑖𝑛𝛿1) − 𝜈𝑤Г̿𝑛} 

 

 𝐷2𝛾𝜗,𝑛 =
1

2

1

𝐽�̃�∙�̃�𝜗,𝑛∙𝑀𝜗,𝑛
{𝛼 ∙ �̿�𝑛 ∙ 𝑐𝑜𝑠𝛿1 + �̿�𝜗,𝑛𝑐𝑜𝑠𝛿𝜗} 

 

Where. 

 

 𝛿1 = (2𝛾𝜗,𝑛 − 𝛾𝑤,𝑛 − 𝜎 ∙ 𝑇1)  

 

 𝛿𝑤 = (𝛺𝑤 − �̃�𝑤,𝑛)𝑇0 − 𝛾𝑤,𝑛 

 

 𝛿𝜗 = (𝛺𝜗 − �̃�𝜗,𝑛)𝑇0 − 𝛾𝜗,𝑛 

 

 𝛼 = 𝜆𝑄
2 {
1

2
ℎ̃𝑊𝑛 ∙ ℎ̃𝛩𝑛′𝛩𝑛′ + ℎ̃𝛩𝑛′ ∙ ℎ̃𝑊𝑛′𝛩𝑛′} 
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We will not exploit any further analysis towards the two-to-one analysis since computations become very 

cumbersome. Anyway we report the governing equations that are easy to handle in a numerical integration 

approach. 

 

Hence, focusing on the one-to one resonance for the flexural motion we can write the constraint on the 

circular eigen-frequencies and the solvability conditions as follows. 

 

 {

�̃�𝑤,𝑝 ± �̃�𝑤,𝑟 ≠ �̃�𝑤,𝑛

�̃�𝜗,𝑞 ± �̃�𝜗,𝑠 ≠ �̃�𝑤,𝑛

⇒𝐷1𝑍𝑛 = 0 ⇒ 𝑍𝑛 = 𝑍𝑛(𝑇2) 

 

Whilst, for the torsional. 

 

 �̃�𝑤,𝑝 ± �̃�𝜗,𝑞 ≠ �̃�𝜗,𝑚 ⇒𝐷1Г𝑚 = 0⇒ Г𝑚 = Г𝑚(𝑇2) 

 

As we can see the main consequence is that the amplitudes of vibrations are no more function of the second 

order time scale 𝑇1. 

Thence, suitable solutions for the quadratic system can be search in the following form. 

 

 �̃�2(𝜉, 𝑇0, 𝑇2) =

{
 
 
 
 
 

 
 
 
 
 

∑

{
 
 

 
 
𝑍𝑝𝑍𝑟 exp(𝑖 ∙ (�̃�𝑤,𝑝 + �̃�𝑤,𝑟) ∙ 𝑇0) ∙ 𝑌𝑝𝑟,1(𝜉) +

+𝑍𝑝�̃�𝑟 exp(𝑖 ∙ (�̃�𝑤,𝑝 − �̃�𝑤,𝑟) ∙ 𝑇0) ∙ 𝑌𝑝𝑟,2(𝜉) +

+𝑐. 𝑐. }
 
 

 
 

∞
𝑝,𝑟=1 +

+∑

{
 
 

 
 
Г𝑞Г𝑠 exp(𝑖 ∙ (�̃�𝜗,𝑞 + �̃�𝜗,𝑠) ∙ 𝑇0) ∙ 𝑇𝑞𝑠,1(𝜉) +

Г𝑞Г̃𝑠 exp(𝑖 ∙ (�̃�𝜗,𝑞 − �̃�𝜗,𝑠) ∙ 𝑇0) ∙ 𝑇𝑞𝑠,2(𝜉) +

+𝑐. 𝑐. }
 
 

 
 

∞
𝑞,𝑠=1

}
 
 
 
 
 

 
 
 
 
 

  

 

 �̃�2(𝜉, 𝑇0, 𝑇2) = ∑

{
 
 

 
 
𝑍𝑝Г𝑞 exp(𝑖 ∙ (�̃�𝑤,𝑝 + �̃�𝜗,𝑞) ∙ 𝑇0) ∙ 𝐻𝑝𝑞,1(𝜉) +

𝑍𝑝Г̃𝑞 exp(𝑖 ∙ (�̃�𝑤,𝑝 − �̃�𝜗,𝑞) ∙ 𝑇0) ∙ 𝐻𝑝𝑞,2(𝜉) +

+𝑐. 𝑐. }
 
 

 
 

∞
𝑝,𝑞=1   

 

Finally substituting in the quadratic equations of motion and collecting similar time dependent terms, we can 

recognise six independent equations of motion allowing us to find the six unknown functions 𝑌𝑝𝑟,1(𝜉), 

𝑌𝑝𝑟,2(𝜉), 𝑇𝑞𝑠,1(𝜉), 𝑇𝑞𝑠,2(𝜉), 𝐻𝑝𝑞,1(𝜉), 𝐻𝑝𝑞,2(𝜉). These can be referred as second order corrections of linear 

modal shapes, hence we will refer to them as to Quadratic Modes. Notice that the global solution of the 

suspension bridge will be a combination of linear and quadratic modes that vibrates according to different 

frequencies. Further the quadratic ones will be smoothed out by the scaling factor 𝜖, hence the contribution 

to the overall shape is expected to be just a perturbation of the dominant linear shape. Though we must 

remember that this perturbation grows as the modal order does. 
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The six independent equations can be written as follows. 

 

𝜇2 ∙ 𝑌𝑝𝑟,1
𝑖𝑣 − 𝑌𝑝𝑟,1

𝑖𝑖 − (�̃�𝑤,𝑝 + �̃�𝑤,𝑟)
2
∙ 𝑌𝑝𝑟,1 + 𝜆𝐿

2 ∙ ℎ̃𝑌𝑝𝑟,1 = 𝜆𝑄
2 (𝑊𝑝

𝑖𝑖 ∙ ℎ̃𝑊𝑟 −
1

2
∙ ℎ̃𝑊𝑝′𝑊𝑟′)  

 

 𝜇2 ∙ 𝑌𝑝𝑟,2
𝑖𝑣 − 𝑌𝑝𝑟,2

𝑖𝑖 − (�̃�𝑤,𝑝 − �̃�𝑤,𝑟)
2
∙ 𝑌𝑝𝑟,2 + 𝜆𝐿

2 ∙ ℎ̃𝑌𝑝𝑟,2 = 𝜆𝑄
2 (𝑊𝑝

𝑖𝑖 ∙ ℎ̃𝑊𝑟 −
1

2
∙ ℎ̃𝑊𝑝′𝑊𝑟′)  

 

𝜇2 ∙ 𝑇𝑞𝑠,1
𝑖𝑣 − 𝑇𝑞𝑠,1

𝑖𝑖 − (�̃�𝜗,𝑞 + �̃�𝜗,𝑠)
2
∙ 𝑇𝑞𝑠,1 + 𝜆𝐿

2 ∙ ℎ̃𝑇𝑞𝑠,1 = 𝜆𝑄
2 (𝛩𝑞

𝑖𝑖 ∙ ℎ̃𝛩𝑠 −
1

2
∙ ℎ̃𝛩𝑞′𝛩𝑠′)  

 

𝜇2 ∙ 𝑇𝑞𝑠,2
𝑖𝑣 − 𝑇𝑞𝑠,2

𝑖𝑖 − (�̃�𝜗,𝑞 − �̃�𝜗,𝑠)
2
∙ 𝑇𝑞𝑠,2 + 𝜆𝐿

2 ∙ ℎ̃𝑇𝑞𝑠,2 = 𝜆𝑄
2 (𝛩𝑞

𝑖𝑖 ∙ ℎ̃𝛩𝑠 −
1

2
∙ ℎ̃𝛩𝑞′𝛩𝑠′)  

 

{
 

 
𝛽2

𝜒2
∙ 𝐻𝑝𝑞,1

𝑖𝑣 − (1 + 𝛽2) ∙ 𝐻𝑝𝑞,1
𝑖𝑖 +

−𝐽�̃�(�̃�𝑤,𝑝 + �̃�𝜗,𝑞)
2
𝐻𝑝𝑞,1 + 𝜆𝐿

2 ∙ ℎ̃𝐻𝑝𝑞,1}
 

 

= 𝜆𝑄
2 (𝛩𝑞

𝑖𝑖 ∙ ℎ̃𝑊𝑝 +𝑊𝑝
𝑖𝑖 ∙ ℎ̃𝛩𝑞 − ℎ̃𝑊𝑝′𝛩𝑞′)  

 

{
 

 
𝛽2

𝜒2
∙ 𝐻𝑝𝑞,2

𝑖𝑣 − (1 + 𝛽2) ∙ 𝐻𝑝𝑞,2
𝑖𝑖 +

−𝐽�̃�(�̃�𝑤,𝑝 − �̃�𝜗,𝑞)
2
𝐻𝑝𝑞,2 + 𝜆𝐿

2 ∙ ℎ̃𝐻𝑝𝑞,2}
 

 

= 𝜆𝑄
2 (𝛩𝑞

𝑖𝑖 ∙ ℎ̃𝑊𝑝 +𝑊𝑝
𝑖𝑖 ∙ ℎ̃𝛩𝑞 − ℎ̃𝑊𝑝′𝛩𝑞′)  

 

As we can see we obtain six linear non-homogenous ordinary differential equations of fourth order, where 

the right-hand side term is known as the linear modes has been determined. 

In order to solve the whole set of equations we need proper boundary conditions. Since we are dealing with 

modal shapes we may assume that the same conditions enforced on the linear ones are still valid here. Hence, 

we will enforce that the functions and their second derivative vanishes at the extremities of the domain. 

It’s evident that the choice of symmetric or skew-symmetric modes strongly influence the shape of the 

previous equations and then the computations required. 

 

3.1.1 Skew-symmetric modes 

 

Let’s assume first of all that the structural parameters are such that the structure vibrates according to skew-

symmetric linear modes. 

 

 𝑊𝑛(𝜉) = sin(2𝑛𝜋 ∙ 𝜉) 

 

 𝛩𝑚(𝜉) = sin(2𝑚𝜋 ∙ 𝜉) 

 

Substituting in the equations, we immediately see that all the integrals of the modal shapes vanishes hence 

remains just the contribution coming from the slopes. We get the same expression commonly found in the 

Fourier series proof that requires to apply the orthogonality lemma. 

 

 ∫ cos(2𝑛𝜋 ∙ 𝜉)
1

0
∙ cos(2𝑚𝜋 ∙ 𝜉) 𝑑𝜉 =

{
 
 

 
 0⇔ 𝑛 ≠ 𝑚

1 2⁄ ⇔ 𝑛 = 𝑚 ≠ 0

1⇔ 𝑛 = 𝑚 = 0
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The last case will not be feasible in physical systems, hence let’s focus on the first two. 

 

 Mode-by-mode vibrations: 

 

In the so-called mode-by-mode oscillation we assume that each quadratic modal configuration interact with 

itself only. In real life system this is not true but generally should be a good approximation since this is the 

higher contribution to the overall response. Hence we are in the second case with 𝑛 = 𝑚 ≠ 0. 

The solution can be found only making some a priori assumptions on the modal shape and then checking it. 

Hence we will assume that also the second order correction of skew-symmetric linear modes perform the 

same symmetries. Consequently ℎ̃(∙) = 0, and the equations can be written in the following format. 

Let’s focus on the first equation. 

 

 𝜇2 ∙ 𝑌𝑛,1
𝑖𝑣 − 𝑌𝑛,1

𝑖𝑖 − 4�̃�𝑤,𝑛
2 ∙ 𝑌𝑛,1 + 𝜆𝑄

2(𝑛𝜋 2⁄ )2 = 0  

 

As we can see the equation is similar to the one that governs the vibration of flexural linear modes in the 

general case. The slight modifications concern the constant term and the circular-eigen frequency to be used 

inside the trigonometric and hyperbolic exponential parameters 𝛹 and 휂. 

Then with the same procedure performed with linear modes, we get a similar expression obtained for the 

general symmetric linear modes. 

 

 𝑌𝑛,1(𝜉) =
𝜆𝑄
2(𝑛𝜋 2⁄ )2

4�̃�𝑤,𝑛
2 ∙ {1 −

1

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙ (휂𝑤,𝑛
2 ∙
cosh(𝛹𝑤,𝑛∙(𝜉−

1

2
))

cosh(
𝛹𝑤,𝑛
2
)

+𝛹𝑤,𝑛
2 ∙
cos( 𝑤,𝑛∙(𝜉−

1

2
))

cos(
𝜂𝑤,𝑛
2
)
)}  

 

The modal shape just found is not feasible since it does not satisfy the initial hypothesis made that allow us 

to cancel out ℎ̃(∙). 

This means that effectively, in the case of a mode-by mode formulation, the second order correction of a 

skew-symmetric linear mode is symmetric. Hence assuming ℎ̃(∙) ≠ 0 we get the following exact modal shape. 

 

 𝑌𝑛,1(𝜉) = �̿�𝑛,1 ∙

{
 
 

 
 

1 −
1

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙

(

 
 
 
휂𝑤,𝑛

2 ∙
cosh(𝛹𝑤,𝑛∙(𝜉−

1

2
))

cosh(
𝛹𝑤,𝑛
2
)

+

+𝛹𝑤,𝑛
2 ∙
cos( 𝑤,𝑛∙(𝜉−

1

2
))

cos(
𝜂𝑤,𝑛
2
) )

 
 
 

}
 
 

 
 

 

 

Where. 

 

 �̿�𝑛,1 =

{
 
 

 
 

𝜆𝑄
2(𝑛𝜋 2⁄ )2

4�̃�𝑤,𝑛
2

(

 
 
 
1−

𝜆𝐿
2

4�̃�𝑤,𝑛
2

(

  
 
1 −

1

𝛹𝑤,𝑛
2+ 𝑤,𝑛

2 ∙

(

 
 
휂𝑤,𝑛

2 ∙
tanh(𝛹𝑤,𝑛 2⁄ )

𝛹𝑤,𝑛 2⁄
+

+𝛹𝑤,𝑛
2 ∙
cos( 𝑤,𝑛 2⁄ )

𝑤,𝑛 2⁄ )

 
 

)

  
 

)

 
 
 

⁄

}
 
 

 
 

  

 

However, the modal amplitude is not of interest since the shape will be normalised so that �̿�𝑛,1 = 1. 

The solution for 𝑇𝑛,1(𝜉) and 𝐻𝑛,1(𝜉) have the same format, but we must pay attention to the fact that the 

equivalent frequency changes as the expression for 𝛹 and 휂. 



143 
 

Notice that though not relevant the expression for modal amplitudes of torsional quadratic modes has to be 

doubled due to different contribution coming from the slope stiffening term. 

 

 𝑇𝑛,1(𝜉) ⇒ 4�̃�𝜗,𝑛
2⇒𝛹𝑤,𝑛 ; 휂𝑤,𝑛  

 

 𝐻𝑛,1(𝜉) ⇒ 𝐽�̃�(�̃�𝑤,𝑛 + �̃�𝜗,𝑛)
2
⇒𝛹𝜗,𝑛 ; 휂𝜗,𝑛 

 

Though not relevant, for torsional second order contributions we need always to double the modal 

amplitudes with respect to the expression fount for the flexural ones, due to the slight difference in the 

stiffening slope term in the governing equations. 

 

A different condition can be found for the other three functions since for mode-by-mode approach has null 

inertial contribution being �̃�(∙),𝑖 − �̃�(∙),𝑗 = 0. 

 

 𝜇2 ∙ 𝑌𝑛,2
𝑖𝑣 − 𝑌𝑛,2

𝑖𝑖 + 𝜆𝐿
2 ∙ ℎ̃𝑌𝑛,2 + 𝜆𝑄

2(𝑛𝜋 2⁄ )2 = 0  

 

Notice that we assume the quadratic mode to be symmetric. 

 

 𝑌𝑛,2(𝜉) = �̿�𝑛,2 ∙ {
1

�̿�2
{1 −

cosh(�̿�∙(𝜉−
1

2
))

cosh(�̿� 2⁄ )
} −

𝜉

2
(𝜉 −

1

2
)} 

 

 �̿� = 1 𝜇⁄  
 

 �̿�𝑛,2 = {𝜆𝑄
2(𝑛𝜋 2⁄ )2 (1 − 𝜆𝐿

2 (
1

�̿�2
(1 −

tanh(�̿� 2⁄ )

�̿� 2⁄
) −

1

12
))⁄ }  

 

Hence the hypothesis was true, and we get also in this case a symmetric correction of a skew-symmetric 

linear shape. The flexural mode �̿�𝑛,2 has the same expression of 𝑌𝑛,2, whilst slight modification occurs for the 

torsional ones. 

 

 𝐻𝑛,2(𝜉) ⇒ �̿� =
𝛽2 𝜒2⁄

1+𝛽2
 

 

 Multi-mode vibrations 

 

In this case we will consider the effects on quadratic modes coming from the interaction between two 

different linear modes. Since 𝑛 ≠ 𝑚 all the governing equations become homogeneous. Hence, we will 

assume that the second order correction will be skew-symmetric as the associated linear mode, meaning 

ℎ̃(∙) = 0. 

 

 𝜇2 ∙ 𝑌𝑛𝑚,1
𝑖𝑣 − 𝑌𝑛𝑚,1

𝑖𝑖 − (�̃�𝑤,𝑛 + �̃�𝑤,𝑚)
2
∙ 𝑌𝑛𝑚,1 = 0 

 

We get a governing equation similar to the one for skew-symmetric modes, with a slight different frequency. 

Hence we can state that with respect to the mode-by-mode approach that gives always symmetric quadratic 

modes, in the multi-mode one there is a condition that grant the solution function to be skew-symmetric.  
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This condition concern the equivalent combinational frequency. 

 

 𝑌𝑛𝑚,1 = sin(2𝑘𝜋 ∙ 𝜉)⇔ (�̃�𝑤,𝑛 + �̃�𝑤,𝑚) = 2𝑘𝜋 ∙ √1 + 𝜇
2 ∙ (2𝑘𝜋)2   𝑤𝑖𝑡ℎ   𝑘 = 𝑛,𝑚 

 

This means that the quadratic correction of two interacting modes is able to shapes itself according 

to one of the them. Similar expressions holds for the other flexural functions. 

 

 𝑌𝑛𝑚,2⇒ (�̃�𝑤,𝑛 − �̃�𝑤,𝑚) = 2𝑘𝜋 ∙ √1 + 𝜇
2 ∙ (2𝑘𝜋)2 

 

 𝑇𝑛𝑚,1 ⇒ (�̃�𝜗,𝑛 + �̃�𝜗,𝑚) = 2𝑘𝜋 ∙ √1 + 𝜇
2 ∙ (2𝑘𝜋)2 

 

 𝑇𝑛𝑚,2 ⇒ (�̃�𝜗,𝑛 − �̃�𝜗,𝑚) = 2𝑘𝜋 ∙ √1 + 𝜇
2 ∙ (2𝑘𝜋)2 

 

Whilst the torsional ones becomes as follows. 

 

 𝐻𝑛𝑚,1 ⇒√𝐽�̃� ∙ (�̃�𝑤,𝑛 + �̃�𝜗,𝑚) = 2𝑘𝜋 ∙ √1 + 𝛽
2 +

𝛽2

𝜒2
∙ (2𝑘𝜋)2 

 

 𝐻𝑛𝑚,2 ⇒√𝐽�̃� ∙ (�̃�𝑤,𝑛 − �̃�𝜗,𝑚) = 2𝑘𝜋 ∙ √1 + 𝛽
2 +

𝛽2

𝜒2
∙ (2𝑘𝜋)2  

 

If the conditions are not satisfied the modal shapes are identical to those obtained in the mode-by-mode 

approach being normalized with respect to the modal amplitude. 

 

What is important to underline is that in most of the cases the second order correction of skew-symmetric 

modes is symmetric [24]. This seems to confirm what observed experimentally during oscillations of the 

Takoma Narrows Bridge just before the collapse and then confirmed by numerical results obtained by means 

of a simple two dof model of suspension bridge. That is, non-linear oscillations of suspension bridges can lose 

symmetries and vibrations are characterized by the higher oscillation that moves along the span generating 

the well-known travelling wave phenomenon. Notice that we cannot have the max amplitude fixed on the 

same point just to the fact that quadratic modes vibrates with a frequency that is different from the one of 

linear modes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



145 
 

3.1.2 Symmetric modes 

 

Let’s now focus on the symmetric response of the suspension bridge. As we can see from the governing 

equations is not possible that the second order correction of symmetric linear mode is skew-symmetric since 

the right-hand side known term cannot vanish. Hence any travelling waves phenomenon will be expected. 

 

 Multi-mode vibrations 

 

Let’s start from the flexural motion. 

 

𝑌𝑝𝑟,1 =

{
 
 

 
 �̿�1,1 ∙

cosh(𝛹𝑤,𝑝𝑟∙(𝜉−
1

2
))

cosh(
𝛹𝑤,𝑝𝑟

2
)

+ �̿�1,2 ∙
cos( 𝑤,𝑝𝑟∙(𝜉−

1

2
))

cos(
𝜂𝑤,𝑝𝑟

2
)

+

+�̿�1,3 ∙ (
cos( 𝑤,𝑝∙(𝜉−1/2)) cos ( 𝑤,𝑝/2)⁄

𝜇2∙ 𝑤,𝑝
4+ 𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 −

cosh(𝛹𝑤,𝑝∙(𝜉−1/2)) 𝑐𝑜𝑠ℎ(𝛹𝑤,𝑝/2)⁄

𝜇2∙𝛹𝑤,𝑝
4−𝛹𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 ) + �̿�1,4

}
 
 

 
 

  

 

Where. 

 

 𝛹𝑤,𝑝𝑟
2 =

1

2𝜇2
(√1 + 4𝜇2 ∙ (�̃�𝑤,𝑝 + �̃�𝑤,𝑟)

2
+ 1) = 휂𝑤,𝑝𝑟

2 +
1

𝜇2
 

 

 𝛹𝑤,𝑝
2 =

1

2𝜇2
(√1 + 4𝜇2 ∙ �̃�𝑤,𝑝

2 + 1) = 휂𝑤,𝑝
2 +

1

𝜇2
 

 

�̿�1,1 =
1

�̿�1,5

(

 
 
 
 
 
 
 
 
 
 
 
 

�̿�1,3

𝛹𝑤,𝑝𝑟
2+ 𝑤,𝑝𝑟

2 ∙

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

{
 
 
 

 
 
 

𝑤,𝑝
2[1−

𝜆𝐿
2

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2(1−

𝑡𝑎𝑛(
𝜂𝑤,𝑝𝑟
2

)

(
𝜂𝑤,𝑝𝑟
2

)
)]+

− 𝑤,𝑝𝑟
2[1−

𝜆𝐿
2

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2(1−

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)]

}
 
 
 

 
 
 

𝜇2∙ 𝑤,𝑝
4+ 𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 +

+
{
 
 
 

 
 
 
𝛹𝑤,𝑝

2[1−
𝜆𝐿
2

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2(1−

𝑡𝑎𝑛(
𝜂𝑤,𝑝𝑟
2 )

(
𝜂𝑤,𝑝𝑟
2

)
)]+

+ 𝑤,𝑝𝑟
2[1−

𝜆𝐿
2

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
)]

}
 
 
 

 
 
 

𝜇2∙𝛹𝑤,𝑝
4−𝛹𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

−
𝜆𝑄
2

2

ℎ̃
𝑊𝑝

′𝑊𝑟
′

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 ∙ 휂𝑤,𝑝𝑟

2

)
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�̿�1,2 =
1

�̿�1,5

(

 
 
 
 
 
 
 
 
 
 
 
 

−
�̿�1,3

𝛹𝑤,𝑝𝑟
2+ 𝑤,𝑝𝑟

2 ∙

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

{
 
 
 

 
 
 
𝑤,𝑝

2[1−
𝜆𝐿
2

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝𝑟
2

)

(
𝛹𝑤,𝑝𝑟
2

)
)]+

+ 𝛹𝑤,𝑝𝑟
2[1−

𝜆𝐿
2

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2(1−

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)]

}
 
 
 

 
 
 

𝜇2∙ 𝑤,𝑝
4+ 𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 +

+
{
 
 
 

 
 
 
𝛹𝑤,𝑝

2[1−
𝜆𝐿
2

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2(1−

𝑡𝑎𝑛(
𝛹𝑤,𝑝𝑟
2 )

(
𝛹𝑤,𝑝𝑟
2

)
)]+

− 𝛹𝑤,𝑝𝑟
2[1−

𝜆𝐿
2

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
)]

}
 
 
 

 
 
 

𝜇2∙𝛹𝑤,𝑝
4−𝛹𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

+
𝜆𝑄
2

2

ℎ̃
𝑊𝑝

′𝑊𝑟
′

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 ∙ 𝛹𝑤,𝑝𝑟

2

)

 
 
 
 
 
 
 
 
 
 
 
 

  

 

�̿�1,3 =
𝜆𝐿
2𝜆𝑄

2ℎ̃𝑊𝑝ℎ̃𝑊𝑟

�̃�𝑤,𝑝
2 ∙

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2  

 

�̿�1,4 =
1

�̿�1,5

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�̿�1,3

𝛹𝑤,𝑝𝑟
2+ 𝑤,𝑝𝑟

2 ∙
𝜆𝐿
2

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

𝑤,𝑝
2(
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑟
2

)

(
𝛹𝑤,𝑝𝑟
2

)
−
𝑡𝑎𝑛(

𝜂𝑤,𝑝𝑟
2

)

(
𝜂𝑤,𝑝𝑟
2

)
)+

− 𝑤,𝑝𝑟
2(
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑟
2

)

(
𝛹𝑤,𝑝𝑟
2

)
−
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)+

−𝛹𝑤,𝑝𝑟
2(
𝑡𝑎𝑛(

𝜂𝑤,𝑝𝑟
2

)

(
𝜂𝑤,𝑝𝑟
2

)
−
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)

}
 
 
 
 
 

 
 
 
 
 

𝜇2∙ 𝑤,𝑝
4+ 𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 +

+
{
 
 
 
 
 

 
 
 
 
 
𝛹𝑤,𝑝

2(
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑟
2

)

(
𝛹𝑤,𝑝𝑟
2

)
−
𝑡𝑎𝑛(

𝜂𝑤,𝑝𝑟
2

)

(
𝜂𝑤,𝑝𝑟
2

)
)+

+ 𝑤,𝑝𝑟
2(
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑟
2

)

(
𝛹𝑤,𝑝𝑟
2

)
−
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
)+

+𝛹𝑤,𝑝𝑟
2(
𝑡𝑎𝑛(

𝜂𝑤,𝑝𝑟
2

)

(
𝜂𝑤,𝑝𝑟
2

)
−
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
)

}
 
 
 
 
 

 
 
 
 
 

𝜇2∙𝛹𝑤,𝑝
4−𝛹𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2

}
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

+
𝜆𝑄
2

2

ℎ̃
𝑊𝑝

′𝑊𝑟
′

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

�̿�1,5 = 1 −
𝜆𝐿
2

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 {1 −

1

𝛹𝑤,𝑝𝑟
2+ 𝑤,𝑝𝑟

2 (휂𝑤,𝑝𝑟
2
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑟

2
)

(
𝛹𝑤,𝑝𝑟

2
)
+𝛹𝑤,𝑝𝑟

2 𝑡𝑎𝑛(
𝜂𝑤,𝑝𝑟

2
)

(
𝜂𝑤,𝑝𝑟

2
)
)}  

 

We get similar expression for the other functions with slight modifications. 

 

𝑌𝑝𝑟,2⇒

{
 
 

 
 (�̃�𝑤,𝑝 − �̃�𝑤,𝑟)

2
⇒𝛹𝑤,𝑝𝑟 ; 휂𝑤,𝑝𝑟

�̃�𝑤,𝑝⇒𝛹𝑤,𝑝 ; 휂𝑤,𝑝 ;  ℎ̃𝑊𝑝′𝑊𝑟′
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 𝑇𝑞𝑠,1 ⇒

{
 

 (�̃�𝜗,𝑞 + �̃�𝜗,𝑠)
2
⇒𝛹𝑤,𝑞𝑠 ; 휂𝑤,𝑞𝑠

�̃�𝜗,𝑞 , �̃�𝜗,𝑠 ⇒𝛹𝜗,𝑞 ; 휂𝜗,𝑞 ;  ℎ̃𝛩𝑞′𝛩𝑠′

  

 

 𝑇𝑞𝑠,2 ⇒

{
 

 (�̃�𝜗,𝑞 − �̃�𝜗,𝑠)
2
⇒𝛹𝑤,𝑞𝑠 ; 휂𝑤,𝑞𝑠

�̃�𝜗,𝑞 , �̃�𝜗,𝑠 ⇒𝛹𝜗,𝑞 ; 휂𝜗,𝑞 ;  ℎ̃𝛩𝑞′𝛩𝑠′

  

 

The torsional functions have stronger differences. 

 𝐻𝑝𝑞,1 =

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 �̿�1,1 ∙

cosh(𝛹𝜗,𝑝𝑞∙(𝜉−
1

2
))

cosh(
𝛹𝜗,𝑝𝑞

2
)

+ �̿�1,2 ∙
cos( 𝜗,𝑝𝑞∙(𝜉−

1

2
))

cos(
𝜂𝜗,𝑝𝑞

2
)

+

+�̿�1,3

(

 
 
 
 
 
 
 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

{
  
 

  
 

cos( 𝑤,𝑝∙(𝜉−
1

2
)) cos(

𝜂𝑤,𝑝

2
)⁄

𝛽2

𝜒2
∙ 𝑤,𝑝

4+(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

−
cosh(𝛹𝑤,𝑝∙(𝜉−1/2)) 𝑐𝑜𝑠ℎ(𝛹𝑤,𝑝/2)⁄

𝛽2

𝜒2
∙𝛹𝑤,𝑝

4−(1+𝛽2)∙𝛹𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

}
  
 

  
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑞
2
𝜗,𝑞

2

𝛹𝜗,𝑞
2+ 𝜗,𝑞

2

{
  
 

  
 

cos( 𝜗,𝑞∙(𝜉−
1

2
)) cos(

𝜂𝜗,𝑞

2
)⁄

𝛽2

𝜒2
∙ 𝜗,𝑞

4+(1+𝛽2)∙ 𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
+

−
cosh(𝛹𝜗,𝑞∙(𝜉−1/2)) 𝑐𝑜𝑠ℎ(𝛹𝜗,𝑞/2)⁄

𝛽2

𝜒2
∙𝛹𝜗,𝑞

4−(1+𝛽2)∙𝛹𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

}
  
 

  
 

)

 
 
 
 
 
 
 
 
 
 
 
 

+

+�̿�1,4 }
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  

 

Where. 

 

 𝛹𝜗,𝑝𝑞
2 =

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃�(�̃�𝑤,𝑝 + �̃�𝜗,𝑞)

2
+ (1 + 𝛽2)) = 휂𝜗,𝑝𝑞

2 +
𝜒2

𝛽2
(1 + 𝛽2)  

 

 𝛹𝑤,𝑝
2 =

1

2𝜇2
(√1 + 4𝜇2 ∙ �̃�𝑤,𝑝

2 + 1) = 휂𝑤,𝑝
2 +

1

𝜇2
  

 

 𝛹𝜗,𝑞
2 =

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃��̃�𝜗,𝑞

2 + (1 + 𝛽2)) = 휂𝜗,𝑞
2 +

𝜒2

𝛽2
(1 + 𝛽2) 
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�̿�1,1 =
1

�̿�1,5

1

𝛹𝜗,𝑝𝑞
2+ 𝜗,𝑝𝑞

2

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�̿�1,3

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 

 
 
 

𝑤,𝑝
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
)]+

− 𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)]

}
 
 
 

 
 
 

𝛽2

𝜒2
∙ 𝑤,𝑝

4+(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+
{
 
 
 

 
 
 
𝛹𝑤,𝑝

2[1−
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
)]+

+ 𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
)]

}
 
 
 

 
 
 

𝛽2

𝜒2
∙𝛹𝑤,𝑝

4−(1+𝛽2)∙𝛹𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 
 
 
 
 
 
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑞
2
𝜗,𝑞

2

𝛹𝜗,𝑞
2+ 𝜗,𝑞

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 

 
 
 

𝜗,𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞
2 )

(
𝜂𝜗,𝑝𝑞
2

)
)]+

− 𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑞
2
)

(
𝜂𝜗,𝑞
2
)
)]

}
 
 
 

 
 
 

𝛽2

𝜒2
∙ 𝜗,𝑞

4+(1+𝛽2)∙ 𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+
{
 
 
 
 

 
 
 
 
𝛹𝜗,𝑞

2[1−
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
)]+

+ 𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑞
2
)

(
𝛹𝜗,𝑞
2
)

)]

}
 
 
 
 

 
 
 
 

𝛽2

𝜒2
∙𝛹𝜗,𝑞

4−(1+𝛽2)∙𝛹𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+

−𝜆𝑄
2

ℎ̃
𝑊𝑝

′𝛩𝑞
′

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2 휂𝜗,𝑝𝑞

2

}
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�̿�1,2 =
1

�̿�1,5

1

𝛹𝜗,𝑝𝑞
2+ 𝜗,𝑝𝑞

2

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�̿�1,3

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝑤,𝑝

2[1−
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

)]+

+ 𝛹𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)]

}
 
 
 
 

 
 
 
 

𝛽2

𝜒2
∙ 𝑤,𝑝

4+(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+
{
 
 
 
 

 
 
 
 
𝛹𝑤,𝑝

2[1−
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

)]+

− 𝛹𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
)]

}
 
 
 
 

 
 
 
 

𝛽2

𝜒2
∙𝛹𝑤,𝑝

4−(1+𝛽2)∙𝛹𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑞
2
𝜗,𝑞

2

𝛹𝜗,𝑞
2+ 𝜗,𝑞

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝜗,𝑞

2[1−
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

)]+

+ 𝛹𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑞
2
)

(
𝜂𝜗,𝑞
2
)
)]

}
 
 
 
 

 
 
 
 

𝛽2

𝜒2
∙ 𝜗,𝑞

4+(1+𝛽2)∙ 𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
+

+
{
 
 
 
 

 
 
 
 
𝛹𝜗,𝑞

2[1−
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

)]+

− 𝛹𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑞
2
)

(
𝛹𝜗,𝑞
2
)

)]

}
 
 
 
 

 
 
 
 

𝛽2

𝜒2
∙𝛹𝜗,𝑞

4−(1+𝛽2)∙𝛹𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+

−𝜆𝑄
2

ℎ̃
𝑊𝑝

′𝛩𝑞
′

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2𝛹𝜗,𝑝𝑞

2

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

�̿�1,3 = 𝜆𝐿
2𝜆𝑄

2ℎ̃𝑊𝑝ℎ̃𝛩𝑞  
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�̿�1,4 =
1

�̿�1,5

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 

�̿�1,3

𝛹𝜗,𝑝𝑞
2+ 𝜗,𝑝𝑞

2 ∙

∙
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2
)

 
 

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑤,𝑝
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2 )

(
𝜂𝜗,𝑝𝑞
2

)
)+

− 𝜗,𝑝𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2 )

(
𝜂𝑤,𝑝
2
)
)+

− 𝛹𝜗,𝑝𝑞
2(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)

}
 
 
 
 
 
 

 
 
 
 
 
 

𝛽2

𝜒2
∙ 𝑤,𝑝

4+(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
+

+
{
 
 
 
 
 
 

 
 
 
 
 
 
𝛹𝑤,𝑝

2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
)+

+ 𝜗,𝑝𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
)+

+ 𝛹𝜗,𝑝𝑞
2(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
)

}
 
 
 
 
 
 

 
 
 
 
 
 

𝛽2

𝜒2
∙𝛹𝑤,𝑝

4−(1+𝛽2)∙𝛹𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑞
2
𝜗,𝑞

2

𝛹𝜗,𝑞
2+ 𝜗,𝑞

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜗,𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
)+

− 𝜗,𝑝𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑞
2
)

(
𝜂𝜗,𝑞
2
)
)+

− 𝛹𝜗,𝑝𝑞
2(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑞
2
)

(
𝜂𝜗,𝑞
2
)
)

}
 
 
 
 
 
 

 
 
 
 
 
 

𝛽2

𝜒2
∙ 𝜗,𝑞

4+(1+𝛽2)∙ 𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
+

+
{
 
 
 
 
 
 

 
 
 
 
 
 
𝛹𝜗,𝑞

2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
)+

+ 𝜗,𝑝𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑞
2
)

(
𝛹𝜗,𝑞
2
)

)+

+ 𝛹𝜗,𝑝𝑞
2(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑞
2
)

(
𝛹𝜗,𝑞
2
)

)

}
 
 
 
 
 
 

 
 
 
 
 
 

𝛽2

𝜒2
∙𝛹𝜗,𝑞

4−(1+𝛽2)∙𝛹𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+

+
𝜆𝑄
2ℎ̃
𝑊𝑝

′𝛩𝑞
′

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2

)
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�̿�1,5 = 1 −
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2 {1 −

1

𝛹𝜗,𝑝𝑞
2+ 𝜗,𝑝𝑞

2 (휂𝜗,𝑝𝑞
2
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞

2
)

(
𝛹𝜗,𝑝𝑞

2
)
+𝛹𝜗,𝑝𝑞

2 𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞

2
)

(
𝜂𝜗,𝑝𝑞

2
)
)}  

 

A similar expression holds also for the other torsional contribution. 

 

 𝐻𝑝𝑞,2 ⇒

{
  
 

  
 𝐽�̃� ∙ (�̃�𝑤,𝑝 − �̃�𝜗,𝑞)

2
⇒𝛹𝜗,𝑝𝑞 ; 휂𝜗,𝑝𝑞

�̃�𝑤,𝑝 ⇒𝛹𝑤,𝑝 ; 휂𝑤,𝑝

�̃�𝜗,𝑞 ⇒𝛹𝜗,𝑞 ; 휂𝜗,𝑞

  

 

 Mode-by-mode vibrations 

 

Concerning 𝑌𝑝𝑟,1, 𝑇𝑞𝑠,1, 𝐻𝑝𝑞,1 we can use the same expression fount for the multi-mode approach since the 

governing equation does not lose any term. On the contrary, for the other functions inertial term vanishes 

and then we need to reformulate the problem. The modal shape we found are the following. 

 

 𝑌𝑝𝑝,2 =

{
 
 

 
 �̿�2,1 ∙

cosh(𝛹𝑤,𝑝𝑝∙(𝜉−
1

2
))

cosh(
𝛹𝑤,𝑝𝑝

2
)

+ �̿�2,2 ∙
𝜉

2
(𝜉 −

1

2
) +

+�̿�2,3 ∙ (
cos( 𝑤,𝑝∙(𝜉−1/2)) cos ( 𝑤,𝑝/2)⁄

𝑤,𝑝
2(𝜇2∙ 𝑤,𝑝

2+1)
−
cosh(𝛹𝑤,𝑝∙(𝜉−1/2)) 𝑐𝑜𝑠ℎ(𝛹𝑤,𝑝/2)⁄

𝛹𝑤,𝑝
2(𝜇2∙𝛹𝑤,𝑝

2−1)
) + �̿�2,4

}
 
 

 
 

  

 

Where. 

 

 𝛹𝑤,𝑝𝑝
2 = 1 𝜇2⁄   

 

 𝛹𝑤,𝑝
2 =

1

2𝜇2
(√1 + 4𝜇2 ∙ �̃�𝑤,𝑝

2 + 1) = 휂𝑤,𝑝
2 +

1

𝜇2
  

 

�̿�2,1 =
1

�̿�2,5

(

 
 
 
 
 

1

𝛹𝑤,𝑝𝑝
2 �̿�2,3 ∙

{
 
 
 

 
 
 𝑤,𝑝

2+𝜆𝐿
2
(1− 

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
 + 
𝜂𝑤,𝑝

2

12
)

𝑤,𝑝
2(𝜇2∙ 𝑤,𝑝

2+1)
+

+

𝛹𝑤,𝑝
2−𝜆𝐿

2
(1− 

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
− 
𝛹𝑤,𝑝

2

12
)

𝛹𝑤,𝑝
2(𝜇2∙𝛹𝑤,𝑝

2−1) }
 
 
 

 
 
 

−
𝜆𝑄
2

2
ℎ̃𝑊𝑝′𝑊𝑝′

)

 
 
 
 
 

  

 

�̿�2,2 =
1

�̿�2,5

(

 
 
 
 
 

−
𝜆𝐿
2

𝛹𝑤,𝑝𝑝
2 �̿�2,3 ∙

{
 
 
 

 
 
 𝑤,𝑝

2(1− 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑝
2

)

(
𝛹𝑤,𝑝𝑝
2

)
 )+𝛹𝑤,𝑝𝑝

2(1− 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
 )

𝑤,𝑝
2(𝜇2∙ 𝑤,𝑝

2+1)
+

+

𝛹𝑤,𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝𝑝
2 )

(
𝛹𝑤,𝑝𝑝
2

)
 )−𝛹𝑤,𝑝𝑝

2(1− 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
 )

𝛹𝑤,𝑝
2(𝜇2∙𝛹𝑤,𝑝

2−1) }
 
 
 

 
 
 

+
𝜆𝑄
2

2
ℎ̃𝑊𝑝′𝑊𝑝′

)
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�̿�2,3 =
𝜆𝐿
2𝜆𝑄

2ℎ̃𝑊𝑝
2

�̃�𝑤,𝑝
2 ∙

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2  

 

�̿�2,4 = −
1

𝛹𝑤,𝑝𝑝
2

1

�̿�2,5

{
 
 
 

 
 
 

�̿�2,3

(

 
 
 
 
 

𝑤,𝑝
2+𝛹𝑤,𝑝𝑝

2+𝜆𝐿
2
(
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑝
2

)

(
𝛹𝑤,𝑝𝑝
2

)
 − 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
 + 
𝜂𝑤,𝑝

2+𝛹𝑤,𝑝𝑝
2

12
)

𝑤,𝑝
2(𝜇2∙ 𝑤,𝑝

2+1)
+

+

𝛹𝑤,𝑝
2−𝛹𝑤,𝑝𝑝

2−𝜆𝐿
2
(
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑝
2 )

(
𝛹𝑤,𝑝𝑝
2

)
− 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
− 
𝛹𝑤,𝑝

2−𝛹𝑤,𝑝𝑝
2

12
)

𝛹𝑤,𝑝
2(𝜇2∙𝛹𝑤,𝑝

2−1) )

 
 
 
 
 

−
𝜆𝑄
2

2
ℎ̃𝑊𝑝′𝑊𝑝′

}
 
 
 

 
 
 

  

 

�̿�2,5 = 1 − 𝜆𝐿
2 (

1

𝛹𝑤,𝑝𝑝
2 (1 −

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝𝑝

2
)

(
𝛹𝑤,𝑝𝑝

2
)
) − 

1

12
)  

 

For the other functions we get similar expressions with slight modifications. 

 

 𝑇𝑞𝑞,2⇒{

𝛹𝑤,𝑞𝑞
2 = 1 𝜇2⁄

�̃�𝜗,𝑞  ⇒ 𝛹𝜗,𝑞 ; 휂𝜗,𝑞 ;  ℎ̃𝛩𝑞′𝛩𝑞′

  

 

On the contrary we need to define new expressions for the torsional components. 

 

 𝐻𝑝𝑝,2 =

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 �̿�2,1 ∙

cosh(𝛹𝜗,𝑝𝑝∙(𝜉−
1

2
))

cosh(
𝛹𝜗,𝑝𝑝

2
)

+ �̿�2,2 ∙
𝜉

2
(𝜉 −

1

2
) +

+�̿�2,3

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

{
  
 

  
 

cos( 𝑤,𝑝∙(𝜉−
1

2
)) cos(

𝜂𝑤,𝑝

2
)⁄

𝑤,𝑝
2(
𝛽2

𝜒2
∙ 𝑤,𝑝

2+(1+𝛽2))

+

−
cosh(𝛹𝑤,𝑝∙(𝜉−1/2)) 𝑐𝑜𝑠ℎ(𝛹𝑤,𝑝/2)⁄

𝛹𝑤,𝑝
2(
𝛽2

𝜒2
∙𝛹𝑤,𝑝

2−(1+𝛽2)) }
  
 

  
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑝
2

𝛹𝜗,𝑝
2
𝜗,𝑝

2

𝛹𝜗,𝑝
2+ 𝜗,𝑝

2

{
  
 

  
 

cos( 𝜗,𝑝∙(𝜉−
1

2
)) cos(

𝜂𝜗,𝑝

2
)⁄

𝜗,𝑝
2(
𝛽2

𝜒2
∙ 𝜗,𝑝

2+(1+𝛽2))

+

−
cosh(𝛹𝜗,𝑝∙(𝜉−1/2)) 𝑐𝑜𝑠ℎ(𝛹𝜗,𝑝/2)⁄

𝛹𝜗,𝑝
2(
𝛽2

𝜒2
∙𝛹𝜗,𝑝

4−(1+𝛽2)) }
  
 

  
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

+

+�̿�2,4 }
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  

 

Where.  
 

 𝛹𝜗,𝑝𝑝
2 = √(1 + 𝛽2)2 (𝛽2 𝜒2⁄ )⁄  
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 𝛹𝑤,𝑝
2 =

1

2𝜇2
(√1 + 4𝜇2 ∙ �̃�𝑤,𝑝

2 + 1) = 휂𝑤,𝑝
2 +

1

𝜇2
 

 𝛹𝜗,𝑝
2 =

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃��̃�𝜗,𝑝

2 + (1 + 𝛽2)) = 휂𝜗,𝑝
2 +

𝜒2

𝛽2
(1 + 𝛽2)  

 

 

�̿�2,1 =
1

�̿�2,5

1

𝛹𝜗,𝑝𝑝
2

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

�̿�2,3

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 
 
 
 
 

𝑤,𝑝
2+𝜆𝐿

2
(1− 

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
 + 
𝜂𝑤,𝑝

2

12
)

𝑤,𝑝
2(
𝛽2

𝜒2
∙ 𝑤,𝑝

2+(1+𝛽2))

+

+

𝛹𝑤,𝑝
2−𝜆𝐿

2
(1− 

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
− 
𝛹𝑤,𝑝

2

12
)

𝛹𝑤,𝑝
2(
𝛽2

𝜒2
∙𝛹𝑤,𝑝

2−(1+𝛽2))
)

 
 
 
 
 
 
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑝
2

𝛹𝜗,𝑝
2
𝜗,𝑝

2

𝛹𝜗,𝑝
2+ 𝜗,𝑝

2

(

 
 
 
 
 
 
 

𝜗,𝑝
2+𝜆𝐿

2
(1− 

𝑡𝑎𝑛(
𝜂𝜗,𝑝
2
)

(
𝜂𝜗,𝑝
2
)
 + 
𝜂𝜗,𝑝

2

12
)

𝜗,𝑝
2(
𝛽2

𝜒2
∙ 𝜗,𝑝

2+(1+𝛽2))

+

+

𝛹𝜗,𝑝
2−𝜆𝐿

2(1− 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝
2
)

(
𝛹𝜗,𝑞
2
)

− 
𝛹𝜗,𝑝

2

12
)

𝛹𝜗,𝑝
2(
𝛽2

𝜒2
∙𝛹𝜗,𝑝

4−(1+𝛽2))
)

 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

+

−𝜆𝑄
2ℎ̃𝑊𝑝′𝛩𝑝′ }
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�̿�2,2 =
1

�̿�2,5

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−
𝜆𝐿
2

𝛹𝑤,𝑝𝑝
2 �̿�2,3 ∙

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝑤,𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

 )+

+𝛹𝜗,𝑝𝑝
2(1− 

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
 )

]
 
 
 
 
 
 
 
 

𝑤,𝑝
2(
𝛽2

𝜒2
∙ 𝑤,𝑝

2+(1+𝛽2))

+

+
[
 
 
 
 
 
 
 
 
𝛹𝑤,𝑝

2(1− 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

 )+

−𝛹𝜗,𝑝𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
 )

]
 
 
 
 
 
 
 
 

𝛹𝑤,𝑝
2(
𝛽2

𝜒2
∙𝛹𝑤,𝑝

2−(1+𝛽2))
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑝
2
𝜗,𝑝

2

𝛹𝜗,𝑝
2+ 𝜗,𝑝

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝜗,𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

 )+

+𝛹𝜗,𝑝𝑝
2(1− 

𝑡𝑎𝑛(
𝜂𝜗,𝑝
2
)

(
𝜂𝜗,𝑝
2
)
 )

]
 
 
 
 
 
 
 
 

𝜗,𝑝
2(
𝛽2

𝜒2
∙ 𝜗,𝑝

2+(1+𝛽2))

+

+
[
 
 
 
 
 
 
 
 
𝛹𝜗,𝑝

2(1− 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

 )+

−𝛹𝑤,𝑝𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝
2
)

(
𝛹𝜗,𝑝
2
)

 )

]
 
 
 
 
 
 
 
 

𝛹𝜗,𝑝
2(
𝛽2

𝜒2
∙𝛹𝜗,𝑝

2−(1+𝛽2)) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 𝜆𝑄
2ℎ̃𝑊𝑝′𝛩𝑝′

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

�̿�2,3 = 𝜆𝐿
2𝜆𝑄

2ℎ̃𝑊𝑝ℎ̃𝛩𝑝  
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�̿�2,4 = −
1

𝛹𝑤,𝑝𝑝
2

1

�̿�2,5

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�̿�2,3

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 𝑤,𝑝

2+𝛹𝑤,𝑝𝑝
2+

+𝜆𝐿
2

(

 
 
 
 

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝𝑝
2

)

(
𝛹𝑤,𝑝𝑝
2

)
 − 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
+

+ 
𝜂𝑤,𝑝

2+𝛹𝑤,𝑝𝑝
2

12 )

 
 
 
 

}
 
 
 
 

 
 
 
 

𝑤,𝑝
2(
𝛽2

𝜒2
∙ 𝑤,𝑝

2+(1+𝛽2))

+

+
{
 
 
 
 

 
 
 
 

𝛹𝑤,𝑝
2−𝛹𝑤,𝑝𝑝

2+

−𝜆𝐿
2

(

 
 
 
 

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝𝑝
2

)

(
𝛹𝑤,𝑝𝑝
2

)
− 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
+

− 
𝛹𝑤,𝑝

2−𝛹𝑤,𝑝𝑝
2

12 )

 
 
 
 

}
 
 
 
 

 
 
 
 

𝛹𝑤,𝑝
2(
𝛽2

𝜒2
∙𝛹𝑤,𝑝

2−(1+𝛽2)) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑝
2

𝛹𝜗,𝑝
2
𝜗,𝑝

2

𝛹𝜗,𝑝
2+ 𝜗,𝑝

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 𝜗,𝑝

2+𝛹𝜗,𝑝𝑝
2+

+𝜆𝐿
2

(

 
 
 
 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝
2 )

(
𝜂𝜗,𝑝
2
)
+

+ 
𝜂𝜗,𝑝

2+𝛹𝜗,𝑝𝑝
2

12 )

 
 
 
 

}
 
 
 
 

 
 
 
 

𝜗,𝑝
2(
𝛽2

𝜒2
∙ 𝜗,𝑝

2+(1+𝛽2))

+

+
{
 
 
 
 

 
 
 
 

𝛹𝜗,𝑝
2−𝛹𝜗,𝑝𝑝

2+

−𝜆𝐿
2

(

 
 
 
 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

− 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝
2
)

(
𝛹𝜗,𝑝
2
)

+

− 
𝛹𝜗,𝑝

2−𝛹𝜗,𝑝𝑝
2

12 )

 
 
 
 

}
 
 
 
 

 
 
 
 

𝛹𝜗,𝑝
2(
𝛽2

𝜒2
∙𝛹𝜗,𝑝

2−(1+𝛽2))
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− 𝜆𝑄
2ℎ̃𝑊𝑝′𝛩𝑝′

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

�̿�2,5 = 1 − 𝜆𝐿
2 (

1

𝛹𝜗,𝑝𝑝
2 (1 −

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑝

2
)

(
𝛹𝜗,𝑝𝑝

2
)
) − 

1

12
)  

 

 

3.2 Parametric analysis 

 

As we have done for the linear modes, let’s analyse the quadratic modal shapes in correspondence of the 

main extreme structural conditions. 

 

3.2.1 Taut string (𝜆𝐿
2 = 𝜆𝑄

2 = 0) 

 

In this particular situation linear modes are always sinusoidal functions with odd  or even number of half-

waves respectively for symmetric and skew-symmetric modal shapes. 
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This added to the vanishing of the linear and quadratic Irvine parameter led all the governing equations to 

become homogenous without any known term. Meaning that quadratic modal shapes are independent from 

linear ones. Being the governing equations homogeneous and of fourth order we can get sinusoidal shapes 

for all the functions involved only if proper conditions on frequencies are fulfilled. 

Let’s start with the multi-modal approach. 

 

𝜇2 ∙ 𝑌𝑝𝑟,1
𝑖𝑣 − 𝑌𝑝𝑟,1

𝑖𝑖 − (�̃�𝑤,𝑝 + �̃�𝑤,𝑟)
2
∙ 𝑌𝑝𝑟,1 = 0  

 

 𝑌𝑝𝑟,1 = sin(𝑘𝜋𝜉)⇔ (�̃�𝑤,𝑝 + �̃�𝑤,𝑟) = 𝑘𝜋√1 + 𝜇
2(𝑘𝜋)2  

 

Where 𝑘 can be even or odd respectively for skew-symmetric and symmetric modes. Similar relations holds 

for the other functions. 

 

 𝑌𝑝𝑟,2⇒ (�̃�𝑤,𝑝 − �̃�𝑤,𝑟) = 𝑘𝜋√1 + 𝜇
2(𝑘𝜋)2  

 

 𝑇𝑞𝑠,1 ⇒ (�̃�𝜗,𝑞 + �̃�𝜗,𝑠) = 𝑘𝜋√1 + 𝜇
2(𝑘𝜋)2  

 

𝑇𝑞𝑠,2 ⇒ (�̃�𝜗,𝑞 − �̃�𝜗,𝑠) = 𝑘𝜋√1 + 𝜇
2(𝑘𝜋)2  

 

𝐻𝑝𝑞,1 ⇒√𝐽�̃� ∙ (�̃�𝑤,𝑝 + �̃�𝜗,𝑞) = 2𝑘𝜋 ∙ √1 + 𝛽
2 +

𝛽2

𝜒2
∙ (2𝑘𝜋)2  

 

𝐻𝑝𝑞,2 ⇒√𝐽�̃� ∙ (�̃�𝑤,𝑝 − �̃�𝜗,𝑞) = 2𝑘𝜋 ∙ √1 + 𝛽
2 +

𝛽2

𝜒2
∙ (2𝑘𝜋)2  

 

For the mode-by-mode vibrations the situation is changes just for the functions with even subscript. In fact 

in the governing equation vanishes also the inertial term. 

 

 𝜇2 ∙ 𝑌𝑝𝑟,2
𝑖𝑣 − 𝑌𝑝𝑟,2

𝑖𝑖 = 0  

 

The equality can be never satisfied since it requires that the combinational frequency vanish. It can be check 

simply substituting the sinusoidal shape. Hence, this means that the contribution of these functions vanishes 

applying as mode-by-mode approach. 

 

3.2.2 Inextensible cables 

 

In this extreme structural condition (𝜆𝐿
2 = 𝜆𝑄

2→∞) the modal shape can be easily found as the general 

expressions are known. In fact it’s required to neglect all the term not proportional to 𝜆𝐿
2and (𝜆𝐿

2)
2
∙ 𝜆𝑄

2. 

This means that the format of the expressions does not change whilst the parameter one does. 

First of all let’s assume that linear normal modes are symmetric. Then, for the multi-modal approach we get. 

 

𝑌𝑝𝑟,1 = �̿�1,1 ∙
cosh(𝛹𝑤,𝑝𝑟∙(𝜉−

1

2
))

cosh(
𝛹𝑤,𝑝𝑟

2
)

+ �̿�1,2 ∙
cos( 𝑤,𝑝𝑟∙(𝜉−

1

2
))

cos(
𝜂𝑤,𝑝𝑟

2
)

+ �̿�1,4  
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�̿�1,1 = −
�̿�1,3 �̿�1,5⁄

𝛹𝑤,𝑝𝑟
2+ 𝑤,𝑝𝑟

2 ∙
1

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2

{
 
 
 

 
 
 𝑤,𝑝

2(1− 
𝑡𝑎𝑛(

𝜂𝑤,𝑝𝑟
2

)

(
𝜂𝑤,𝑝𝑟
2

)
)− 𝑤,𝑝𝑟

2(1− 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)

𝜇2∙ 𝑤,𝑝
4+ 𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 +

+

𝛹𝑤,𝑝
2(1−

𝑡𝑎𝑛(
𝜂𝑤,𝑝𝑟
2 )

(
𝜂𝑤,𝑝𝑟
2

)
)+ 𝑤,𝑝𝑟

2(1−
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
)

𝜇2∙𝛹𝑤,𝑝
4−𝛹𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2

}
 
 
 

 
 
 

  

 

�̿�1,2 =
�̿�1,3 �̿�1,5⁄

𝛹𝑤,𝑝𝑟
2+ 𝑤,𝑝𝑟

2 ∙
1

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2

{
 
 
 

 
 
 𝑤,𝑝

2(1−
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑟
2

)

(
𝛹𝑤,𝑝𝑟
2

)
)+ 𝛹𝑤,𝑝𝑟

2(1−
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)

𝜇2∙ 𝑤,𝑝
4+ 𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 +

+

𝛹𝑤,𝑝
2(1−

𝑡𝑎𝑛(
𝛹𝑤,𝑝𝑟
2 )

(
𝛹𝑤,𝑝𝑟
2

)
)− 𝛹𝑤,𝑝𝑟

2(1−
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
)

𝜇2∙𝛹𝑤,𝑝
4−𝛹𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2

}
 
 
 

 
 
 

  

 

�̿�1,3 =
ℎ̃𝑊𝑝ℎ̃𝑊𝑟

�̃�𝑤,𝑝
2 ∙

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2  

�̿�1,4 =
�̿�1,3 �̿�1,5⁄

𝛹𝑤,𝑝𝑟
2+ 𝑤,𝑝𝑟

2 ∙
1

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

𝑤,𝑝
2(
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑟
2

)

(
𝛹𝑤,𝑝𝑟
2

)
−
𝑡𝑎𝑛(

𝜂𝑤,𝑝𝑟
2

)

(
𝜂𝑤,𝑝𝑟
2

)
)+

− 𝑤,𝑝𝑟
2(
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑟
2

)

(
𝛹𝑤,𝑝𝑟
2

)
−
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)+

−𝛹𝑤,𝑝𝑟
2(
𝑡𝑎𝑛(

𝜂𝑤,𝑝𝑟
2

)

(
𝜂𝑤,𝑝𝑟
2

)
−
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)

}
 
 
 
 
 

 
 
 
 
 

𝜇2∙ 𝑤,𝑝
4+ 𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 +

+
{
 
 
 
 
 

 
 
 
 
 
𝛹𝑤,𝑝

2(
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑟
2 )

(
𝛹𝑤,𝑝𝑟
2

)
−
𝑡𝑎𝑛(

𝜂𝑤,𝑝𝑟
2 )

(
𝜂𝑤,𝑝𝑟
2

)
)+

+ 𝑤,𝑝𝑟
2(
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑟
2 )

(
𝛹𝑤,𝑝𝑟
2

)
−
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
)+

+𝛹𝑤,𝑝𝑟
2(
𝑡𝑎𝑛(

𝜂𝑤,𝑝𝑟
2

)

(
𝜂𝑤,𝑝𝑟
2

)
−
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
)

}
 
 
 
 
 

 
 
 
 
 

𝜇2∙𝛹𝑤,𝑝
4−𝛹𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2

}
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  

 

�̿�1,5 = −
1

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 {1 −

1

𝛹𝑤,𝑝𝑟
2+ 𝑤,𝑝𝑟

2 (휂𝑤,𝑝𝑟
2
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑟

2
)

(
𝛹𝑤,𝑝𝑟

2
)
+𝛹𝑤,𝑝𝑟

2 𝑡𝑎𝑛(
𝜂𝑤,𝑝𝑟

2
)

(
𝜂𝑤,𝑝𝑟

2
)
)}  

 

Similar expressions can be obtained for 𝑌𝑝𝑟,2, 𝑇𝑞𝑠,1, 𝑇𝑞𝑠,2 with the modifications on trigonometric and 

hyperbolic exponential parameters already mentioned. 

 



158 
 

�̿�1,1 = −
�̿�1,3 �̿�1,5⁄

𝛹𝜗,𝑝𝑞
2+ 𝜗,𝑝𝑞

2

1

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 
 
 
 

𝑤,𝑝
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞
2 )

(
𝜂𝜗,𝑝𝑞
2

)
)− 𝜗,𝑝𝑞

2(1−
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2 )

(
𝜂𝑤,𝑝
2
)
)

𝛽2

𝜒2
∙ 𝑤,𝑝

4+(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+

𝛹𝑤,𝑝
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
)+ 𝜗,𝑝𝑞

2(1−
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
)

𝛽2

𝜒2
∙𝛹𝑤,𝑝

4−(1+𝛽2)∙𝛹𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑞
2
𝜗,𝑞

2

𝛹𝜗,𝑞
2+ 𝜗,𝑞

2

(

 
 
 
 
 
 
 

𝜗,𝑞
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
)− 𝜗,𝑝𝑞

2(1−
𝑡𝑎𝑛(

𝜂𝜗,𝑞
2
)

(
𝜂𝜗,𝑞
2
)
)

𝛽2

𝜒2
∙ 𝜗,𝑞

4+(1+𝛽2)∙ 𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+

𝛹𝜗,𝑞
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞
2 )

(
𝜂𝜗,𝑝𝑞
2

)
)+ 𝜗,𝑝𝑞

2(1−
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑞
2 )

(
𝛹𝜗,𝑞
2
)

)

𝛽2

𝜒2
∙𝛹𝜗,𝑞

4−(1+𝛽2)∙𝛹𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

  

 

�̿�1,2 = −
�̿�1,3 �̿�1,5⁄

𝛹𝜗,𝑝𝑞
2+ 𝜗,𝑝𝑞

2

1

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 
 
 
 
 

𝑤,𝑝
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

)+𝛹𝜗,𝑝𝑞
2(1−

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2 )

(
𝜂𝑤,𝑝
2
)
)

𝛽2

𝜒2
∙ 𝑤,𝑝

4+(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+

𝛹𝑤,𝑝
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

)− 𝛹𝜗,𝑝𝑞
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
)

𝛽2

𝜒2
∙𝛹𝑤,𝑝

4−(1+𝛽2)∙𝛹𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑞
2
𝜗,𝑞

2

𝛹𝜗,𝑞
2+ 𝜗,𝑞

2

(

 
 
 
 
 
 
 

𝜗,𝑞
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

)+ 𝛹𝜗,𝑝𝑞
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑞
2
)

(
𝜂𝜗,𝑞
2
)
)

𝛽2

𝜒2
∙ 𝜗,𝑞

4+(1+𝛽2)∙ 𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
+

+

𝛹𝜗,𝑞
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

)− 𝛹𝜗,𝑝𝑞
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑞
2
)

(
𝛹𝜗,𝑞
2
)

)

𝛽2

𝜒2
∙𝛹𝜗,𝑞

4−(1+𝛽2)∙𝛹𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  

 

�̿�1,3 = ℎ̃𝑊𝑝ℎ̃𝛩𝑞  
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�̿�1,4 =
1

�̿�1,5

�̿�1,3

𝛹𝜗,𝑝𝑞
2+ 𝜗,𝑝𝑞

2 ∙
1

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑤,𝑝
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
)+

− 𝜗,𝑝𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)+

− 𝛹𝜗,𝑝𝑞
2(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2 )

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2 )

(
𝜂𝑤,𝑝
2
)
)

}
 
 
 
 
 
 

 
 
 
 
 
 

𝛽2

𝜒2
∙ 𝑤,𝑝

4+(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
+

+
{
 
 
 
 
 
 

 
 
 
 
 
 
𝛹𝑤,𝑝

2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2 )

(
𝜂𝜗,𝑝𝑞
2

)
)+

+ 𝜗,𝑝𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
)+

+ 𝛹𝜗,𝑝𝑞
2(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
)

}
 
 
 
 
 
 

 
 
 
 
 
 

𝛽2

𝜒2
∙𝛹𝑤,𝑝

4−(1+𝛽2)∙𝛹𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑞
2
𝜗,𝑞

2

𝛹𝜗,𝑞
2+ 𝜗,𝑞

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜗,𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2 )

(
𝜂𝜗,𝑝𝑞
2

)
)+

− 𝜗,𝑝𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑞
2
)

(
𝜂𝜗,𝑞
2
)
)+

− 𝛹𝜗,𝑝𝑞
2(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑞
2
)

(
𝜂𝜗,𝑞
2
)
)

}
 
 
 
 
 
 

 
 
 
 
 
 

𝛽2

𝜒2
∙ 𝜗,𝑞

4+(1+𝛽2)∙ 𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
+

+
{
 
 
 
 
 
 

 
 
 
 
 
 
𝛹𝜗,𝑞

2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
)+

+ 𝜗,𝑝𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑞
2
)

(
𝛹𝜗,𝑞
2
)

)+

+ 𝛹𝜗,𝑝𝑞
2(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2 )

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑞
2
)

(
𝛹𝜗,𝑞
2
)

)

}
 
 
 
 
 
 

 
 
 
 
 
 

𝛽2

𝜒2
∙𝛹𝜗,𝑞

4−(1+𝛽2)∙𝛹𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

�̿�1,5 = −
1

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2 {1 −

1

𝛹𝜗,𝑝𝑞
2+ 𝜗,𝑝𝑞

2 (휂𝜗,𝑝𝑞
2
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞

2
)

(
𝛹𝜗,𝑝𝑞

2
)
+𝛹𝜗,𝑝𝑞

2 𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞

2
)

(
𝜂𝜗,𝑝𝑞

2
)
)}  
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Similarly we can obtain the expression of parameters for �̿�𝑝𝑞,2 with proper 𝛹𝜗,𝑝𝑞 ; 휂𝜗,𝑝𝑞 and 𝛹𝑤,𝑝 ; 휂𝑤,𝑝;  

𝛹𝜗,𝑞 ; 휂𝜗,𝑞. 

 

Concerning the mode-by-mode approach we get. 

 

�̿�2,1 =
1

𝛹𝑤,𝑝𝑝
2 �̿�2,3 �̿�2,5⁄ ∙

(

 
 
1− 

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2 )

(
𝜂𝑤,𝑝
2
)
 + 
𝜂𝑤,𝑝

2

12

𝑤,𝑝
2(𝜇2∙ 𝑤,𝑝

2+1)
−

1− 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
− 
𝛹𝑤,𝑝

2

12

𝛹𝑤,𝑝
2(𝜇2∙𝛹𝑤,𝑝

2−1)

)

 
 

  

 

�̿�2,2 = −
1

𝛹𝑤,𝑝𝑝
2 �̿�2,3 �̿�2,5⁄ ∙

{
 
 
 

 
 
 𝑤,𝑝

2(1− 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑝
2

)

(
𝛹𝑤,𝑝𝑝
2

)
 )+𝛹𝑤,𝑝𝑝

2(1− 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
 )

𝑤,𝑝
2(𝜇2∙ 𝑤,𝑝

2+1)
+

+

𝛹𝑤,𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝𝑝
2 )

(
𝛹𝑤,𝑝𝑝
2

)
 )−𝛹𝑤,𝑝𝑝

2(1− 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
 )

𝛹𝑤,𝑝
2(𝜇2∙𝛹𝑤,𝑝

2−1) }
 
 
 

 
 
 

  

 

�̿�2,3 =
ℎ̃𝑊𝑝

2

�̃�𝑤,𝑝
2 ∙

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2  

 

�̿�2,4 = −
1

𝛹𝑤,𝑝𝑝
2 �̿�2,3 �̿�2,5⁄

(

 
 
 
 
 

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝𝑝
2

)

(
𝛹𝑤,𝑝𝑝
2

)
 − 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
 + 
𝜂𝑤,𝑝

2+𝛹𝑤,𝑝𝑝
2

12

𝑤,𝑝
2(𝜇2∙ 𝑤,𝑝

2+1)
+

−

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝𝑝
2

)

(
𝛹𝑤,𝑝𝑝
2

)
− 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
− 
𝛹𝑤,𝑝

2−𝛹𝑤,𝑝𝑝
2

12

𝛹𝑤,𝑝
2(𝜇2∙𝛹𝑤,𝑝

2−1) )

 
 
 
 
 

  

 

�̿�2,5 = −(
1

𝛹𝑤,𝑝𝑝
2 (1 −

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝𝑝

2
)

(
𝛹𝑤,𝑝𝑝

2
)
) − 

1

12
)  

 

Similarly for �̿�𝑞𝑠,2 with proper 𝛹𝑤,𝑞𝑠 ; 휂𝑤,𝑞𝑠 and 𝛹𝜗,𝑞 ; 휂𝜗,𝑞. 

 

Then for the torsional component. 

 

�̿�2,1 =
1

𝛹𝜗,𝑝𝑝
2 �̿�2,3 �̿�2,5⁄

{
 
 
 
 
 

 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
(1− 

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
 + 
𝜂𝑤,𝑝

2

12
)

𝑤,𝑝
2(
𝛽2

𝜒2
∙ 𝑤,𝑝

2+(1+𝛽2))

−

(1− 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
− 
𝛹𝑤,𝑝

2

12
)

𝛹𝑤,𝑝
2(
𝛽2

𝜒2
∙𝛹𝑤,𝑝

2−(1+𝛽2))

)

 
 
+

+
1

𝐽�̃�∙ �̃�𝜗,𝑝
2

𝛹𝜗,𝑝
2
𝜗,𝑝

2

𝛹𝜗,𝑝
2+ 𝜗,𝑝

2

(

 
 
 (1− 

𝑡𝑎𝑛(
𝜂𝜗,𝑝
2
)

(
𝜂𝜗,𝑝
2
)
 + 
𝜂𝜗,𝑝

2

12
)

𝜗,𝑝
2(
𝛽2

𝜒2
∙ 𝜗,𝑝

2+(1+𝛽2))

−

(1− 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝
2
)

(
𝛹𝜗,𝑞
2
)

− 
𝛹𝜗,𝑝

2

12
)

𝛹𝜗,𝑝
2(
𝛽2

𝜒2
∙𝛹𝜗,𝑝

4−(1+𝛽2))

)

 
 
 

}
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�̿�2,2 = −
1

𝛹𝑤,𝑝𝑝
2 �̿�2,3 �̿�2,5⁄ ∙

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 
 
 
 
 
 

𝑤,𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

 )+𝛹𝜗,𝑝𝑝
2(1− 

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2 )

(
𝜂𝑤,𝑝
2
)
 )

𝑤,𝑝
2(
𝛽2

𝜒2
∙ 𝑤,𝑝

2+(1+𝛽2))

+

+

𝛹𝑤,𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

 )−𝛹𝜗,𝑝𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
 )

𝛹𝑤,𝑝
2(
𝛽2

𝜒2
∙𝛹𝑤,𝑝

2−(1+𝛽2))
)

 
 
 
 
 
 
 
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑝
2
𝜗,𝑝

2

𝛹𝜗,𝑝
2+ 𝜗,𝑝

2

(

 
 
 
 
 
 
 
 

𝜗,𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

 )+𝛹𝜗,𝑝𝑝
2(1− 

𝑡𝑎𝑛(
𝜂𝜗,𝑝
2
)

(
𝜂𝜗,𝑝
2
)
 )

𝜗,𝑝
2(
𝛽2

𝜒2
∙ 𝜗,𝑝

2+(1+𝛽2))

+

+

𝛹𝜗,𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑝
2 )

(
𝛹𝜗,𝑝𝑝
2

)

 )−𝛹𝑤,𝑝𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝
2 )

(
𝛹𝜗,𝑝
2
)

 )

𝛹𝜗,𝑝
2(
𝛽2

𝜒2
∙𝛹𝜗,𝑝

2−(1+𝛽2)) )

 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

 

�̿�2,3 = ℎ̃𝑊𝑝ℎ̃𝛩𝑝  

 

�̿�2,4 = −
1

𝛹𝑤,𝑝𝑝
2 �̿�2,3 �̿�2,5⁄

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 
 
 
 
 

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝𝑝
2

)

(
𝛹𝑤,𝑝𝑝
2

)
 − 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
 + 
𝜂𝑤,𝑝

2+𝛹𝑤,𝑝𝑝
2

12

𝑤,𝑝
2(
𝛽2

𝜒2
∙ 𝑤,𝑝

2+(1+𝛽2))

+

−

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝𝑝
2

)

(
𝛹𝑤,𝑝𝑝
2

)
− 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
 − 
𝛹𝑤,𝑝

2−𝛹𝑤,𝑝𝑝
2

12

𝛹𝑤,𝑝
2(
𝛽2

𝜒2
∙𝛹𝑤,𝑝

2−(1+𝛽2))
)

 
 
 
 
 
 
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑝
2

𝛹𝜗,𝑝
2
𝜗,𝑝

2

𝛹𝜗,𝑝
2+ 𝜗,𝑝

2

(

 
 
 
 
 
 
 
 

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝
2 )

(
𝜂𝜗,𝑝
2
)
 +  

𝜂𝜗,𝑝
2+𝛹𝜗,𝑝𝑝

2

12

𝜗,𝑝
2(
𝛽2

𝜒2
∙ 𝜗,𝑝

2+(1+𝛽2))

+

−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

− 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝
2
)

(
𝛹𝜗,𝑝
2
)

 − 
𝛹𝜗,𝑝

2−𝛹𝜗,𝑝𝑝
2

12

𝛹𝜗,𝑝
2(
𝛽2

𝜒2
∙𝛹𝜗,𝑝

2−(1+𝛽2))
)

 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  

 

�̿�2,5 = −(
1

𝛹𝜗,𝑝𝑝
2 (1 −

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑝

2
)

(
𝛹𝜗,𝑝𝑝

2
)
) − 

1

12
)  

 

Similarly for �̿�𝑝𝑞,2 with proper  𝛹𝜗,𝑝𝑞 ; 휂𝜗,𝑝𝑞 and 𝛹𝑤,𝑝 ; 휂𝑤,𝑝;  𝛹𝜗,𝑞 ; 휂𝜗,𝑞. 
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As we assume that the linear modes becomes skew-symmetric things change drastically. In fact, for both the 

multi-modal and mode-by-mode approaches we get the same results obtained for finite values of the linear 

and quadratic Irvine parameters. This means that the Irvine parameter does not influence the shape of 

quadratic modal functions only in the special case of skew-symmetric linear modes. This is an important 

difference between linear and quadratic normal modes, the latter being generally strongly influenced by 𝜆𝐿
2 

and 𝜆𝑄
2 whilst the first being completely independent thanks to normalization with respect to the modal 

amplitude. 

 

3.2.3 Flexible deck 

 

As the deck is no more able to sustain bending moments (𝜇2 = 0) the linear flexural modes change shape 

whilst the torsional one remains in the general format. Further, the governing equation for the flexural 

quadratic mode lose the fourth order term. Hence, the associated second order correction become as 

follows. 

  

𝑌𝑝𝑟,1 = �̿�1,1 ∙
cos( 𝑤,𝑝𝑟∙(𝜉−

1

2
))

cos(
𝜂𝑤,𝑝𝑟

2
)

+ �̿�1,2 ∙
cos( 𝑤,𝑝∙(𝜉−1/2)) cos ( 𝑤,𝑝/2)⁄

𝜇2∙ 𝑤,𝑝
4+ 𝑤,𝑝

2−(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 + �̿�1,3  

 

Where. 

 

 휂𝑤,𝑝𝑟
2 = (�̃�𝑤,𝑝 + �̃�𝑤,𝑟)

2
 

 

 휂𝑤,𝑝
2 = �̃�𝑤,𝑝

2 

 

�̿�1,1 =
1

�̿�1,5

(

 
 
−�̿�1,4 ∙

 1− 
𝜆𝐿
2

𝜂𝑤,𝑝𝑟
2(1−

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)

𝑤,𝑝
2− 𝑤,𝑝𝑟

2 −
𝜆𝑄
2

2

ℎ̃
𝑊𝑝

′𝑊𝑟
′

𝑤,𝑝𝑟
2

)

 
 

  

 

�̿�1,2 =
1

�̿�1,5
∙

(

 
 
�̿�1,4 ∙

1−
𝜆𝐿
2

𝜂𝑤,𝑝𝑟
2(1−

𝑡𝑎𝑛(
𝜂𝑤,𝑝𝑟
2

)

(
𝜂𝑤,𝑝𝑟
2

)
)

𝑤,𝑝
2− 𝑤,𝑝𝑟

2

)

 
 

  

 

�̿�1,3 =
1

�̿�1,5

(

 
 
�̿�1,4

𝜆𝐿
2

𝑤,𝑝𝑟
∙

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2 )

(
𝜂𝑤,𝑝
2
)
 − 
𝑡𝑎𝑛(

𝜂𝑤,𝑝𝑟
2 )

(
𝜂𝑤,𝑝𝑟
2

)

𝑤,𝑝
2− 𝑤,𝑝𝑟

2 +
𝜆𝑄
2

2

ℎ̃
𝑊𝑝

′𝑊𝑟
′

𝑤,𝑝𝑟
2

)

 
 

  

 

�̿�1,4 = 𝜆𝐿
2𝜆𝑄

2ℎ̃𝑊𝑝ℎ̃𝑊𝑟  

 

�̿�1,5 = 1 −
𝜆𝐿
2

𝑤,𝑝𝑟
2 {1 −

𝑡𝑎𝑛(
𝜂𝑤,𝑝𝑟

2
)

(
𝜂𝑤,𝑝𝑟

2
)
}  
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We get similar expression for 𝑌𝑝𝑟,2 enforcing 휂𝑤,𝑝𝑟
2 = (�̃�𝑤,𝑝 − �̃�𝑤,𝑟)

2
. 

 

𝑇𝑞𝑠,1 =

{
 
 

 
 �̿�1,1 ∙

cos( 𝑤,𝑞𝑠∙(𝜉−
1

2
))

cos(
𝜂𝑤,𝑞𝑠

2
)

+

+�̿�1,2 ∙ (
cos( 𝜗,𝑞∙(𝜉−1/2)) cos ( 𝜗,𝑞/2)⁄

𝜗,𝑞
2− 𝑤,𝑞𝑠

2 +
cosh(𝛹𝜗,𝑞∙(𝜉−1/2)) 𝑐𝑜𝑠ℎ(𝛹𝜗,𝑞/2)⁄

𝛹𝜗,𝑞
2+ 𝑤,𝑞𝑠

2 ) + �̿�1,3
}
 
 

 
 

  

 

Where. 

 

 휂𝑤,𝑞𝑠
2 = (�̃�𝜗,𝑞 + �̃�𝜗,𝑠)

2
 

 

 𝛹𝜗,𝑞
2 =

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃��̃�𝜗,𝑞

2 + (1 + 𝛽2)) = 휂𝜗,𝑞
2 +

𝜒2

𝛽2
(1 + 𝛽2) 

 

�̿�1,1 =
1

�̿�1,4

(

 
 
 
−�̿�1,2 ∙

{
 
 

 
 
1−

𝜆𝐿
2

𝜂𝑤,𝑞𝑠
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑞
2
)

(
𝜂𝜗,𝑞
2
)
)

𝜗,𝑞
2− 𝑤,𝑞𝑠

2 +

1−
𝜆𝐿
2

𝜂𝑤,𝑞𝑠
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑞
2
)

(
𝛹𝜗,𝑞
2
)

)

𝛹𝜗,𝑞
2− 𝑤,𝑞𝑠

2

}
 
 

 
 

−
𝜆𝑄
2

2

ℎ̃
𝑊𝑝

′𝑊𝑟
′

𝑤,𝑞𝑠
2

)

 
 
 

  

 

�̿�1,2 =
𝜆𝐿
2𝜆𝑄

2ℎ̃𝛩𝑞ℎ̃𝛩𝑠

𝐽�̃�∙ �̃�𝜗,𝑞
2 ∙

𝛹𝜗,𝑞
2
𝜗,𝑞

2

𝛹𝜗,𝑞
2+ 𝜗,𝑞

2  

 

�̿�1,3 =
1

�̿�1,4

(

 
 
 
−�̿�1,2 ∙

𝜆𝐿
2

𝑤,𝑞𝑠
2

{
 
 

 
 𝑡𝑎𝑛(

𝜂𝑤,𝑞𝑠
2 )

(
𝜂𝑤,𝑞𝑠
2

)
 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑞
2 )

(
𝜂𝜗,𝑞
2
)

𝜗,𝑞
2− 𝑤,𝑞𝑠

2 +

𝑡𝑎𝑛(
𝜂𝑤,𝑞𝑠
2

)

(
𝜂𝑤,𝑞𝑠
2

)
 − 
𝑡𝑎𝑛(

𝛹𝜗,𝑞
2
)

(
𝛹𝜗,𝑞
2
)

𝛹𝜗,𝑞
2− 𝑤,𝑞𝑠

2

}
 
 

 
 

+
𝜆𝑄
2

2

ℎ̃
𝑊𝑝

′𝑊𝑟
′

𝑤,𝑞𝑠
2

)

 
 
 

  

 

�̿�1,4 = 1 −
𝜆𝐿
2

𝑤,𝑞𝑠
2 {1 −

𝑡𝑎𝑛(
𝜂𝑤,𝑞𝑠

2

2
)

(
𝜂𝑤,𝑞𝑠

2

2
)
}  

 

We get similar expression for 𝑇𝑞𝑠,2 enforcing 휂𝑤,𝑞𝑠
2 = (�̃�𝜗,𝑞 − �̃�𝜗,𝑠)

2
. 
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Concerning the torsional modes we can take the general expression and make simple modifications as 

follows. 

 

𝐻𝑝𝑞,1 =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 �̿�1,1 ∙

cosh(𝛹𝜗,𝑝𝑞∙(𝜉−
1

2
))

cosh(
𝛹𝜗,𝑝𝑞

2
)

+ �̿�1,2 ∙
cos( 𝜗,𝑝𝑞∙(𝜉−

1

2
))

cos(
𝜂𝜗,𝑝𝑞

2
)

+

+�̿�1,3

(

 
 
 
 
 
 
 
 

cos( 𝑤,𝑝∙(𝜉−
1

2
)) cos(

𝜂𝑤,𝑝

2
)⁄

𝛽2

𝜒2
∙ 𝑤,𝑝

4+(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
+

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑞
2
𝜗,𝑞

2

𝛹𝜗,𝑞
2+ 𝜗,𝑞

2

{
  
 

  
 

cos( 𝜗,𝑞∙(𝜉−
1

2
)) cos(

𝜂𝜗,𝑞

2
)⁄

𝛽2

𝜒2
∙ 𝜗,𝑞

4+(1+𝛽2)∙ 𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

−
cosh(𝛹𝜗,𝑞∙(𝜉−1/2)) 𝑐𝑜𝑠ℎ(𝛹𝜗,𝑞/2)⁄

𝛽2

𝜒2
∙𝛹𝜗,𝑞

4−(1+𝛽2)∙𝛹𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

}
  
 

  
 

)

 
 
 
 
 
 
 
 

+

+�̿�1,4 }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  

 

Where. 

 

 𝛹𝜗,𝑝𝑞
2 =

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃�(�̃�𝑤,𝑝 + �̃�𝜗,𝑞)

2
+ (1 + 𝛽2)) = 휂𝜗,𝑝𝑞

2 +
𝜒2

𝛽2
(1 + 𝛽2)  

 

 휂𝑤,𝑝
2 =

1

2𝜇2
(√1 + 4𝜇2 ∙ �̃�𝑤,𝑝

2 − 1)  

 

 𝛹𝜗,𝑞
2 =

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃��̃�𝜗,𝑞

2 + (1 + 𝛽2)) = 휂𝜗,𝑞
2 +

𝜒2

𝛽2
(1 + 𝛽2) 
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𝐻1,1 =
1

�̿�1,5

1

𝛹𝜗,𝑝𝑞
2+ 𝜗,𝑝𝑞

2

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

𝐻1,3

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 𝑤,𝑝

2[1−
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞
2 )

(
𝜂𝜗,𝑝𝑞
2 )

)]+

− 𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2 )

(
𝜂𝑤,𝑝
2 )

)]

)

 
 
 
 
 

𝛽2

𝜒2
∙ 𝑤,𝑝

4+(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑞
2
𝜗,𝑞

2

𝛹𝜗,𝑞
2+ 𝜗,𝑞

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 

 
 
 

𝜗,𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞
2 )

(
𝜂𝜗,𝑝𝑞
2 )

)]+

− 𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑞
2 )

(
𝜂𝜗,𝑞
2 )

)]

}
 
 
 

 
 
 

𝛽2

𝜒2
∙ 𝜗,𝑞

4+(1+𝛽2)∙ 𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+
{
 
 
 
 

 
 
 
 
𝛹𝜗,𝑞

2[1−
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞
2 )

(
𝜂𝜗,𝑝𝑞
2 )

)]+

+ 𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑞
2 )

(
𝛹𝜗,𝑞
2 )

)]

}
 
 
 
 

 
 
 
 

𝛽2

𝜒2
∙𝛹𝜗,𝑞

4−(1+𝛽2)∙𝛹𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

+

−𝜆𝑄
2

ℎ̃
𝑊𝑝

′𝛩𝑞
′

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2 휂𝜗,𝑝𝑞

2

}
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

𝐻1,2 =
1

�̿�1,5

1

𝛹𝜗,𝑝𝑞
2+ 𝜗,𝑝𝑞

2

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐻1,3

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 

𝑤,𝑝
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑞
2 )

(
𝛹𝜗,𝑝𝑞
2 )

)]+

+ 𝛹𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2 )

(
𝜂𝑤,𝑝
2 )

)]

}
 
 
 
 

 
 
 
 

𝛽2

𝜒2
∙ 𝑤,𝑝

4+(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑞
2
𝜗,𝑞

2

𝛹𝜗,𝑞
2+ 𝜗,𝑞

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 

𝜗,𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑞
2 )

(
𝛹𝜗,𝑝𝑞
2 )

)]+

+ 𝛹𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑞
2 )

(
𝜂𝜗,𝑞
2 )

)]

}
 
 
 
 

 
 
 
 

𝛽2

𝜒2
∙ 𝜗,𝑞

4+(1+𝛽2)∙ 𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+
{
 
 
 
 

 
 
 
 
𝛹𝜗,𝑞

2[1−
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑞
2 )

(
𝛹𝜗,𝑝𝑞
2 )

)]+

− 𝛹𝜗,𝑝𝑞
2[1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑞
2 )

(
𝛹𝜗,𝑞
2 )

)]

}
 
 
 
 

 
 
 
 

𝛽2

𝜒2
∙𝛹𝜗,𝑞

4−(1+𝛽2)∙𝛹𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

+

−𝜆𝑄
2

ℎ̃
𝑊𝑝

′𝛩𝑞
′

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2𝛹𝜗,𝑝𝑞

2

}
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�̿�1,3 = 𝜆𝐿
2𝜆𝑄

2ℎ̃𝑊𝑝ℎ̃𝛩𝑞  

 

�̿�1,4 =
1

�̿�1,5

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 

�̿�1,3

𝛹𝜗,𝑝𝑞
2+ 𝜗,𝑝𝑞

2 ∙

∙
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2
)

 
 

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑤,𝑝
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2 )

(
𝜂𝜗,𝑝𝑞
2

)
)+

− 𝜗,𝑝𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2 )

(
𝜂𝑤,𝑝
2
)
)+

− 𝛹𝜗,𝑝𝑞
2(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)

}
 
 
 
 
 
 

 
 
 
 
 
 

𝛽2

𝜒2
∙ 𝑤,𝑝

4+(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑞
2
𝜗,𝑞

2

𝛹𝜗,𝑞
2+ 𝜗,𝑞

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜗,𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
)+

− 𝜗,𝑝𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑞
2
)

(
𝜂𝜗,𝑞
2
)
)+

− 𝛹𝜗,𝑝𝑞
2(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑞
2
)

(
𝜂𝜗,𝑞
2
)
)

}
 
 
 
 
 
 

 
 
 
 
 
 

𝛽2

𝜒2
∙ 𝜗,𝑞

4+(1+𝛽2)∙ 𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+
{
 
 
 
 
 
 

 
 
 
 
 
 
𝛹𝜗,𝑞

2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
)+

+ 𝜗,𝑝𝑞
2(
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞
2

)

(
𝛹𝜗,𝑝𝑞
2

)

 − 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑞
2
)

(
𝛹𝜗,𝑞
2
)

)+

+ 𝛹𝜗,𝑝𝑞
2(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑞
2
)

(
𝛹𝜗,𝑞
2
)

)

}
 
 
 
 
 
 

 
 
 
 
 
 

𝛽2

𝜒2
∙𝛹𝜗,𝑞

4−(1+𝛽2)∙𝛹𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+

+
𝜆𝑄
2ℎ̃
𝑊𝑝

′𝛩𝑞
′

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

�̿�1,5 = 1 −
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2 {1 −

1

𝛹𝜗,𝑝𝑞
2+ 𝜗,𝑝𝑞

2 (휂𝜗,𝑝𝑞
2
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑞

2
)

(
𝛹𝜗,𝑝𝑞

2
)
+𝛹𝜗,𝑝𝑞

2 𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞

2
)

(
𝜂𝜗,𝑝𝑞

2
)
)}  
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A similar expression holds also for the other torsional contribution. 

 

 𝐻𝑝𝑞,2 ⇒

{
  
 

  
 𝐽�̃� ∙ (�̃�𝑤,𝑝 − �̃�𝜗,𝑞)

2
⇒𝛹𝜗,𝑝𝑞 ; 휂𝜗,𝑝𝑞

�̃�𝑤,𝑝 ⇒;휂𝑤,𝑝

�̃�𝜗,𝑞 ⇒𝛹𝜗,𝑞 ; 휂𝜗,𝑞

  

 

Let’s consider then the case of mode-by-mode vibrations. We already know that the functions with 

odd subscripts maintain the same modal expressions. Whilst the remaining functions change. 

 

𝑌𝑝𝑝,2 = �̿�2,1 ∙
𝜉

2
(𝜉 −

1

2
) + �̿�2,2 ∙ (

cos( 𝑤,𝑝∙(𝜉−1/2))

cos ( 𝑤,𝑝/2)
− 1)  

 

Where.  

 

 휂𝑤,𝑝
2 = �̃�𝑤,𝑝

2  

 

�̿�2,1 = {−�̿�2,2 ∙ 𝜆𝐿
2 (1 − 

𝑡𝑎𝑛(
𝜂𝑤,𝑝

2
)

(
𝜂𝑤,𝑝

2
)
 ) +

𝜆𝑄
2

2
ℎ̃𝑊𝑝′𝑊𝑝′} �̿�2,3⁄   

 

�̿�2,2 =
𝜆𝐿
2𝜆𝑄

2ℎ̃𝑊𝑝
2

�̃�𝑤,𝑝
2   

 

�̿�2,3 = 1 +
𝜆𝐿
2

12
  

 

Further. 

 

𝑇𝑞𝑞,2 = �̿�2,1 ∙
𝜉

2
(𝜉 −

1

2
) + �̿�2,2 ∙ {𝛹𝜗,𝑞 (

cos( 𝜗,𝑞∙(𝜉−1/2))

cos ( 𝜗,𝑞/2)
− 1) + 휂𝜗,𝑞 (

cos(𝛹𝜗,𝑞∙(𝜉−1/2))

cos (𝛹𝜗,𝑞/2)
− 1)}  

 

Where.  

 

 𝛹𝜗,𝑞
2 =

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃��̃�𝜗,𝑞

2 + (1 + 𝛽2)) = 휂𝜗,𝑞
2 +

𝜒2

𝛽2
(1 + 𝛽2)  

 

�̿�2,1 = {−�̿�2,2 ∙ 𝜆𝐿
2 {𝛹𝜗,𝑞

2 (1 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑞

2
)

(
𝜂𝜗,𝑞

2
)
) + 휂𝜗,𝑞

2 (1 − 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑞

2
)

(
𝛹𝜗,𝑞

2
)
)} +

𝜆𝑄
2

2
ℎ̃𝛩𝑞′𝛩𝑞′} �̿�2,3⁄   

 

�̿�2,2 =
𝜆𝐿
2𝜆𝑄

2ℎ̃𝛩𝑞
2

𝐽�̃�∙ �̃�𝜗,𝑞
2 ∙

1

𝛹𝜗,𝑞
2+ 𝜗,𝑞

2  

 

�̿�2,3 = 1 +
𝜆𝐿
2

12
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Finally. 

 

𝐻𝑝𝑝,2 =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 �̿�2,1 ∙

cosh(𝛹𝜗,𝑝𝑝∙(𝜉−
1

2
))

cosh(
𝛹𝜗,𝑝𝑝

2
)

+ �̿�2,2 ∙
𝜉

2
(𝜉 −

1

2
) +

+�̿�2,3

(

 
 
 
 
 
 
 
 
 

cos( 𝑤,𝑝∙(𝜉−
1

2
)) cos(

𝜂𝑤,𝑝

2
)⁄

𝑤,𝑝
2(
𝛽2

𝜒2
∙ 𝑤,𝑝

2+(1+𝛽2))

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑝
2

𝛹𝜗,𝑝
2
𝜗,𝑝

2

𝛹𝜗,𝑝
2+ 𝜗,𝑝

2

{
  
 

  
 

cos( 𝜗,𝑝∙(𝜉−
1

2
)) cos(

𝜂𝜗,𝑝

2
)⁄

𝜗,𝑝
2(
𝛽2

𝜒2
∙ 𝜗,𝑝

2+(1+𝛽2))

+

−
cosh(𝛹𝜗,𝑝∙(𝜉−1/2)) 𝑐𝑜𝑠ℎ(𝛹𝜗,𝑝/2)⁄

𝛹𝜗,𝑝
2(
𝛽2

𝜒2
∙𝛹𝜗,𝑝

4−(1+𝛽2))
}
  
 

  
 

)

 
 
 
 
 
 
 
 
 

+

+�̿�2,4 }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  

 

Where.  
 

 𝛹𝜗,𝑝𝑝
2 = √(1 + 𝛽2)2 (𝛽2 𝜒2⁄ )⁄  

 

 휂𝑤,𝑝
2 =

1

2𝜇2
(√1 + 4𝜇2 ∙ �̃�𝑤,𝑝

21) 

 𝛹𝜗,𝑝
2 =

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃��̃�𝜗,𝑝

2 + (1 + 𝛽2)) = 휂𝜗,𝑝
2 +

𝜒2

𝛽2
(1 + 𝛽2)  

 

 

�̿�2,1 =
1

�̿�2,5

1

𝛹𝜗,𝑝𝑝
2

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

�̿�2,3

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑤,𝑝

2+𝜆𝐿
2
(1− 

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
 + 
𝜂𝑤,𝑝

2

12
)

𝑤,𝑝
2(
𝛽2

𝜒2
∙ 𝑤,𝑝

2+(1+𝛽2))

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑝
2

𝛹𝜗,𝑝
2
𝜗,𝑝

2

𝛹𝜗,𝑝
2+ 𝜗,𝑝

2

(

 
 
 
 
 
 
 

𝜗,𝑝
2+𝜆𝐿

2
(1− 

𝑡𝑎𝑛(
𝜂𝜗,𝑝
2
)

(
𝜂𝜗,𝑝
2
)
 + 
𝜂𝜗,𝑝

2

12
)

𝜗,𝑝
2(
𝛽2

𝜒2
∙ 𝜗,𝑝

2+(1+𝛽2))

+

+

𝛹𝜗,𝑝
2−𝜆𝐿

2(1− 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝
2 )

(
𝛹𝜗,𝑞
2
)

− 
𝛹𝜗,𝑝

2

12
)

𝛹𝜗,𝑝
2(
𝛽2

𝜒2
∙𝛹𝜗,𝑝

4−(1+𝛽2))
)

 
 
 
 
 
 
 

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

+

−𝜆𝑄
2ℎ̃𝑊𝑝′𝛩𝑝′ }
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�̿�2,2 =
1

�̿�2,5

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−
𝜆𝐿
2

𝛹𝑤,𝑝𝑝
2 �̿�2,3 ∙

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

𝑤,𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

 )+𝛹𝜗,𝑝𝑝
2(1− 

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
 )

𝑤,𝑝
2(
𝛽2

𝜒2
∙ 𝑤,𝑝

2+(1+𝛽2))

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝛹𝜗,𝑝
2
𝜗,𝑝

2

𝛹𝜗,𝑝
2+ 𝜗,𝑝

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝜗,𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

 )+

+𝛹𝜗,𝑝𝑝
2(1− 

𝑡𝑎𝑛(
𝜂𝜗,𝑝
2
)

(
𝜂𝜗,𝑝
2
)
 )

]
 
 
 
 
 
 
 
 

𝜗,𝑝
2(
𝛽2

𝜒2
∙ 𝜗,𝑝

2+(1+𝛽2))

+

+
[
 
 
 
 
 
 
 
 
𝛹𝜗,𝑝

2(1− 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

 )+

−𝛹𝑤,𝑝𝑝
2(1− 

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝
2
)

(
𝛹𝜗,𝑝
2
)

 )

]
 
 
 
 
 
 
 
 

𝛹𝜗,𝑝
2(
𝛽2

𝜒2
∙𝛹𝜗,𝑝

2−(1+𝛽2))
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

+ 𝜆𝑄
2ℎ̃𝑊𝑝′𝛩𝑝′

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

�̿�2,3 = 𝜆𝐿
2𝜆𝑄

2ℎ̃𝑊𝑝ℎ̃𝛩𝑝  

 

�̿�2,4 = −
1

𝛹𝑤,𝑝𝑝
2

1

�̿�2,5

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

�̿�2,3

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 𝑤,𝑝

2+𝛹𝑤,𝑝𝑝
2+𝜆𝐿

2
(
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝𝑝
2

)

(
𝛹𝑤,𝑝𝑝
2

)
 − 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
+ 
𝜂𝑤,𝑝

2+𝛹𝑤,𝑝𝑝
2

12
)

𝑤,𝑝
2(
𝛽2

𝜒2
∙ 𝑤,𝑝

2+(1+𝛽2))

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑝
2

𝛹𝜗,𝑝
2
𝜗,𝑝

2

𝛹𝜗,𝑝
2+ 𝜗,𝑝

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 𝜗,𝑝

2+𝛹𝜗,𝑝𝑝
2+

+𝜆𝐿
2

(

 
 
 
 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑝
2
)

(
𝜂𝜗,𝑝
2
)
+

+ 
𝜂𝜗,𝑝

2+𝛹𝜗,𝑝𝑝
2

12 )

 
 
 
 

}
 
 
 
 

 
 
 
 

𝜗,𝑝
2(
𝛽2

𝜒2
∙ 𝜗,𝑝

2+(1+𝛽2))

+

+
{
 
 
 
 

 
 
 
 

𝛹𝜗,𝑝
2−𝛹𝜗,𝑝𝑝

2+

−𝜆𝐿
2

(

 
 
 
 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝𝑝
2

)

(
𝛹𝜗,𝑝𝑝
2

)

− 
𝑡𝑎𝑛ℎ(

𝛹𝜗,𝑝
2
)

(
𝛹𝜗,𝑝
2
)

+

− 
𝛹𝜗,𝑝

2−𝛹𝜗,𝑝𝑝
2

12 )

 
 
 
 

}
 
 
 
 

 
 
 
 

𝛹𝜗,𝑝
2(
𝛽2

𝜒2
∙𝛹𝜗,𝑝

2−(1+𝛽2))
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

− 𝜆𝑄
2ℎ̃𝑊𝑝′𝛩𝑝′

}
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

 

�̿�2,5 = 1 − 𝜆𝐿
2 (

1

𝛹𝜗,𝑝𝑝
2 (1 −

𝑡𝑎𝑛ℎ(
𝛹𝜗,𝑝𝑝

2
)

(
𝛹𝜗,𝑝𝑝

2
)
) − 

1

12
)  
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Considering skew-symmetric linear modes, for the multi-mode approach, we get a second order flexural 

correction equal to the linear symmetric mode in the case of flexible deck as far as the combinational 

frequency does not satisfy the condition already seen. 

 

 𝑌𝑝𝑟,1 =
𝜆𝐿
2

(�̃�𝑤,𝑝+�̃�𝑤,𝑟)
2 ℎ̃𝑊,𝑛 ∙ {1 −

cos((�̃�𝑤,𝑝+�̃�𝑤,𝑟)∙(𝜉−
1

2
))

cos(
(�̃�𝑤,𝑝+�̃�𝑤,𝑟)

2
)

}  

 

Similarly for  𝑌𝑝𝑟,2, 𝑇𝑞𝑠,1, 𝑇𝑞𝑠,2 simply changing properly the combinational frequency. Contrary, the two 

functions 𝐻𝑝𝑞,1, 𝐻𝑝𝑞,2 becomes equal to the general format of symmetric linear torsional modes as the 

combinational frequency does not allow the mode to be sinusoidal. 

 

 𝐻𝑝𝑞,1 =
𝜆𝐿
2

𝐽�̃�∙(�̃�𝜗,𝑝+�̃�𝜗,𝑞)
2 ℎ̃𝐻𝑝𝑞,1 ∙

{
  
 

  
 

1 −
1

𝛹𝜗,𝑝𝑞
2+ 𝜗,𝑝𝑞

2 ∙

(

 
 
 
 
휂𝜗,𝑝𝑞

2 ∙
cosh(𝛹𝜗,𝑝𝑞∙(𝜉−

1

2
))

cosh(
𝛹𝜗,𝑝𝑞

2
)

+

+𝛹𝜗,𝑝𝑞
2 ∙
cos( 𝜗,𝑝𝑞∙(𝜉−

1

2
))

cos(
𝜂𝜗,𝑝𝑞

2
) )

 
 
 
 

}
  
 

  
 

  

 

Then passing to the mode-by-mode approach for quadratic modes with odd subscripts, with respect to the 

multi-mode approach, only the modal amplitude changes but it is not relevant since the mode will be 

normalized. 

Contrary for the remaining functions we get. 

 

 𝑌𝑝𝑟,2 = 𝜆𝑄
2 (
𝑛𝜋

2
)
2
(1 −

1

𝜆𝐿
2+12

)
𝜉

2
(𝜉 −

1

2
) 

 

Similarly for 𝑇𝑞𝑠,2, whilst both the torsional ones has the same shape performed in the general case of mode-

by-mode approach with skew-symmetric linear modes. 

 

3.2.4 Free warping 

 

Considering a thin walled close cross section deck (𝜒2 →∞) we can state that the flexural functions 𝑌𝑝𝑟,1, 

𝑌𝑝𝑟,2 are not affected by the parameter 𝜒2. Contrary, for the torsional contribution on the quadratic flexural 

mode we get similar results obtained for 𝐻𝑝𝑞,1 for µ2 = 0. 

 

 𝑇𝑞𝑠,1 =

{
 
 
 

 
 
 �̿�1,1 ∙

cosh(𝛹𝜗,𝑞𝑠∙(𝜉−
1

2
))

cosh(
𝛹𝜗,𝑞𝑠

2
)

+ �̿�1,2 ∙
cos( 𝜗,𝑞𝑠∙(𝜉−

1

2
))

cos(
𝜂𝜗,𝑞𝑠

2
)

+

+�̿�1,3 ∙ cos (휂𝜗,𝑞 ∙ (𝜉 −
1

2
)) cos (

𝜗,𝑞

2
)⁄ +

+�̿�1,4 }
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Where. 

 

 𝛹𝑤,𝑞𝑠
2 =

1

2𝜇2
(√1 + 4𝜇2 ∙ (�̃�𝜗,𝑞 + �̃�𝜗,𝑠)

2
− 1) = 휂𝑤,𝑞𝑠

2 +
1

𝜇2
  

 

 휂𝑤,𝑞
2 =

1

2𝜇2
(√1 + 4𝜇2 ∙ �̃�𝜗,𝑞

2 − 1)  

 

 

�̿�1,1 =
1 �̿�1,5⁄

𝛹𝑤,𝑞𝑠
2+ 𝑤,𝑞𝑠

2

{
 
 
 
 

 
 
 
 

�̿�1,3

{
 
 

 
 휂𝜗,𝑞

2 [1 − 
𝜆𝐿
2

(�̃�𝜗,𝑞+�̃�𝜗,𝑠)
2 (1 −

𝑡𝑎𝑛(
𝜂𝑤,𝑞𝑠

2
)

(
𝜂𝑤,𝑞𝑠

2
)
)] +

− 휂𝑤,𝑞𝑠
2 [1 − 

𝜆𝐿
2

(�̃�𝜗,𝑞+�̃�𝜗,𝑠)
2 (1 −

𝑡𝑎𝑛(
𝜂𝜗,𝑞

2
)

(
𝜂𝜗,𝑞

2
)
)]
}
 
 

 
 

+

−
𝜆𝑄
2

2

ℎ̃
𝛩𝑞
′𝛩𝑠

′

(�̃�𝜗,𝑞+�̃�𝜗,𝑠)
2 휂𝑤,𝑞𝑠

2

}
 
 
 
 

 
 
 
 

   

 

�̿�1,2 = −
1 �̿�1,5⁄

𝛹𝑤,𝑞𝑠
2+ 𝑤,𝑞𝑠

2

{
 
 
 
 

 
 
 
 

�̿�1,3

{
 
 

 
 휂𝜗,𝑞

2 [1 − 
𝜆𝐿
2

(�̃�𝜗,𝑞+�̃�𝜗,𝑠)
2 (1 −

𝑡𝑎𝑛(
𝛹𝑤,𝑞𝑠

2
)

(
𝛹𝑤,𝑞𝑠

2
)
)] +

+ 𝛹𝑤,𝑞𝑠
2 [1 − 

𝜆𝐿
2

(�̃�𝜗,𝑞+�̃�𝜗,𝑠)
2 (1 −

𝑡𝑎𝑛(
𝜂𝜗,𝑞

2
)

(
𝜂𝜗,𝑞

2
)
)]
}
 
 

 
 

+

+
𝜆𝑄
2

2

ℎ̃
𝛩𝑞
′𝛩𝑠

′

(�̃�𝜗,𝑞+�̃�𝜗,𝑠)
2𝛹𝑤,𝑞𝑠

2

}
 
 
 
 

 
 
 
 

  

 

�̿�1,3 =
𝜆𝐿
2𝜆𝑄

2ℎ̃𝛩𝑞ℎ̃𝛩𝑠

𝐽�̃�∙ �̃�𝜗,𝑞
2

𝜗,𝑞
2

𝜇2∙ 𝜗,𝑞
4+ 𝜗,𝑞

2−(�̃�𝜗,𝑞+�̃�𝜗,𝑠)
2  

 

�̿�1,4 =
�̿�1,3 �̿�1,5⁄

𝛹𝑤,𝑞𝑠
2+ 𝑤,𝑞𝑠

2 ∙
𝜆𝐿
2

(�̃�𝜗,𝑞+�̃�𝜗,𝑠)
2

{
 
 
 
 

 
 
 
 휂𝜗,𝑞

2 (
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑞𝑠

2
)

(
𝛹𝑤,𝑞𝑠

2
)
−
𝑡𝑎𝑛(

𝜂𝑤,𝑞𝑠

2
)

(
𝜂𝑤,𝑞𝑠

2
)
) +

−휂𝑤,𝑞𝑠
2 (

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑞𝑠

2
)

(
𝛹𝑤,𝑞𝑠

2
)
−
𝑡𝑎𝑛(

𝜂𝜗,𝑞

2
)

(
𝜂𝜗,𝑞

2
)
) +

−𝛹𝑤,𝑞𝑠
2 (

𝑡𝑎𝑛(
𝜂𝑤,𝑞𝑠

2
)

(
𝜂𝑤,𝑞𝑠

2
)
−
𝑡𝑎𝑛(

𝜂𝜗,𝑞

2
)

(
𝜂𝜗,𝑞

2
)
)
}
 
 
 
 

 
 
 
 

+
𝜆𝑄
2

2

ℎ̃
𝛩𝑞
′𝛩𝑠

′

(�̃�𝜗,𝑞+�̃�𝜗,𝑠)
2  

 

�̿�1,5 = 1 −
𝜆𝐿
2

(�̃�𝜗,𝑞+�̃�𝜗,𝑠)
2 {1 −

1

𝛹𝑤,𝑞𝑠
2+ 𝑤,𝑞𝑠

2 (휂𝑤,𝑞𝑠
2
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑞𝑠

2
)

(
𝛹𝑤,𝑞𝑠

2
)
+𝛹𝑤,𝑞𝑠

2 𝑡𝑎𝑛(
𝜂𝑤,𝑞𝑠

2
)

(
𝜂𝑤,𝑞𝑠

2
)
)}  

 

Similar expression holds for 𝑇𝑞𝑠,2, while for 𝐻𝑝𝑞,1 we get similar result of 𝑇𝑞𝑠,1 for µ2 = 0. 
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𝐻𝑝𝑞,1 =

{
 
 
 
 
 
 

 
 
 
 
 
 �̿�1,1 ∙

cos( 𝜗,𝑝𝑞∙(𝜉−
1

2
))

cos(
𝜂𝜗,𝑝𝑞

2
)

+

+�̿�1,2 ∙

{
 
 
 
 

 
 
 
 

1

 �̃�𝑤,𝑝
2 ∙

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 

cos( 𝑤,𝑝∙(𝜉−
1

2
)) cos(

𝜂𝑤,𝑝

2
)⁄

(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+
cosh(𝛹𝑤,𝑝∙(𝜉−

1

2
)) 𝑐𝑜𝑠ℎ(

𝛹𝑤,𝑝

2
)⁄

(1+𝛽2)∙𝛹𝑤,𝑝
2+𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
)

 
 
 
+

+
𝜗,𝑞

2

𝐽�̃�∙ �̃�𝜗,𝑞
2

cos( 𝜗,𝑞∙(𝜉−
1

2
)) cos(

𝜂𝜗,𝑞

2
)⁄

(1+𝛽2)∙ 𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
}
 
 
 
 

 
 
 
 

+ �̿�1,3

}
 
 
 
 
 
 

 
 
 
 
 
 

  

 

Where. 

 

 휂𝜗,𝑝𝑞
2 = 𝐽�̃�(�̃�𝜗,𝑞 + �̃�𝜗,𝑠)

2
(1 + 𝛽2)⁄  

 

 𝛹𝑤,𝑝
2 =

1

2𝜇2
(√1 + 4𝜇2 ∙ �̃�𝑤,𝑝

2 − 1) = 휂𝑤,𝑝
2 +

1

𝜇2
 

 

 휂𝜗,𝑞
2 =

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃��̃�𝜗,𝑞

2 − (1 + 𝛽2)) 

 

�̿�1,1 = −
1

�̿�1,4

{
 
 
 
 
 
 

 
 
 
 
 
 

�̿�1,2

{
 
 
 
 
 
 

 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 
 
 
 
1−

𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)

(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+

1−
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
)

(1+𝛽2)∙𝛹𝑤,𝑝
2+𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
)

 
 
 
 
 
 

+

+
𝜗,𝑞

2

𝐽�̃�∙ �̃�𝜗,𝑞
2 ∙

1−
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2(1−

𝑡𝑎𝑛(
𝜂𝜗,𝑞
2 )

(
𝜂𝜗,𝑞
2
)
)

(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
}
 
 
 
 
 
 

 
 
 
 
 
 

+ 𝜆𝑄
2

ℎ̃
𝑊𝑝

′𝛩𝑞
′

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2

}
 
 
 
 
 
 

 
 
 
 
 
 

  

 

�̿�1,2 = 𝜆𝐿
2𝜆𝑄

2ℎ̃𝑊𝑝ℎ̃𝛩𝑞  
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�̿�1,3 =
1

�̿�1,4

{
 
 
 
 
 
 

 
 
 
 
 
 

−�̿�1,2
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2

{
 
 
 
 
 
 

 
 
 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
 
 
 
 

(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛(

𝜂𝑤,𝑝
2
)

(
𝜂𝑤,𝑝
2
)
)

(1+𝛽2)∙ 𝑤,𝑝
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2 +

+

(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2

)

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2

)

(
𝛹𝑤,𝑝
2

)
)

(1+𝛽2)∙𝛹𝑤,𝑝
2+𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
)

 
 
 
 
 
 

+

+
𝜗,𝑞

2

𝐽�̃�∙ �̃�𝜗,𝑞
2

(
𝑡𝑎𝑛(

𝜂𝜗,𝑝𝑞
2 )

(
𝜂𝜗,𝑝𝑞
2

)
 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑞
2 )

(
𝜂𝜗,𝑞
2
)
)

(1+𝛽2)∙ 𝜗,𝑞
2−𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)

2
}
 
 
 
 
 
 

 
 
 
 
 
 

+
𝜆𝑄
2ℎ̃
𝑊𝑝

′𝛩𝑞
′

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2

}
 
 
 
 
 
 

 
 
 
 
 
 

  

 

�̿�1,4 = 1 −
𝜆𝐿
2

𝐽�̃�(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2 {1 −

𝑡𝑎𝑛(
𝜂𝜗,𝑝𝑞

2
)

(
𝜂𝜗,𝑝𝑞

2
)
}  

 

Similarly for 𝐻𝑞𝑠,2 with proper modification of the combinational resonance. 

 

Then passing to consider the mode-by-mode approach, we can state that 𝑇𝑞𝑠,2 is modified as 𝐻𝑝𝑞,2 for µ2

= 0. 

 

𝑇𝑞𝑞,2 =

{
 
 

 
 �̿�2,1 ∙

cosh(𝛹𝑤,𝑞𝑞∙(𝜉−
1

2
))

cosh(
𝛹𝑤,𝑞𝑞

2
)

+ �̿�2,2 ∙
𝜉

2
(𝜉 −

1

2
) +

+�̿�2,3 ∙ cos (휂𝜗,𝑞 ∙ (𝜉 − 1/2)) cos (휂𝜗,𝑞/2)⁄ + �̿�2,4}
 
 

 
 

  

 

Where. 

 

 𝛹𝑤,𝑞𝑞
2 = 1 𝜇2⁄   

 

 휂𝜗,𝑞
2 =

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃��̃�𝜗,𝑞

2 − (1 + 𝛽2))  

 

�̿�2,1 =

{
 
 

 
 

1

𝛹𝑤,𝑞𝑞
2 �̿�2,3 ∙

𝜗,𝑞
2+𝜆𝐿

2
(1− 

𝑡𝑎𝑛(
𝜂𝜗,𝑞
2
)

(
𝜂𝜗,𝑞
2
)
 + 
𝜂𝜗,𝑞

2

12
)

𝜗,𝑞
2(𝜇2∙ 𝜗,𝑞

2+1)
−
𝜆𝑄
2

2
ℎ̃𝛩𝑞′𝛩𝑞′

}
 
 

 
 

�̿�2,5⁄   

 

�̿�2,2 = −
𝜆𝐿
2

𝛹𝑤,𝑞𝑞
2 �̿�2,3 ∙ 휂𝜗,𝑞

2 (1 − 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑞𝑞

2
)

(
𝛹𝑤,𝑞𝑞

2
)
 ) + 𝛹𝑤,𝑞𝑞

2 (1 − 
𝑡𝑎𝑛(

𝜂𝜗,𝑞

2
)

(
𝜂𝜗,𝑞

2
)
 ) +

𝜆𝑄
2

2
ℎ̃𝛩𝑞′𝛩𝑞′  

 

�̿�2,3 =
𝜆𝐿
2𝜆𝑄

2ℎ̃𝛩𝑞
2

𝐽�̃�∙ �̃�𝜗,𝑞
2 ∙

𝜗,𝑞
2

𝜗,𝑞
2(𝜇2∙ 𝜗,𝑞

2+1)
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�̿�2,4 = −
1

𝛹𝑤,𝑞𝑞
2

1

�̿�2,5

{
 
 

 
 

�̿�2,3

(

 
 
 
휂𝜗,𝑞

2 +𝛹𝑤,𝑞𝑞
2 + 𝜆𝐿

2

(

 
 

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑞𝑞

2
)

(
𝛹𝑤,𝑞𝑞

2
)
 − 

𝑡𝑎𝑛(
𝜂𝜗,𝑞

2
)

(
𝜂𝜗,𝑞

2
)
+

 + 
𝜗,𝑞

2+𝛹𝑤,𝑞𝑞
2

12 )

 
 

)

 
 
 
−
𝜆𝑄
2

2
ℎ̃𝛩𝑞′𝛩𝑞′  

}
 
 

 
 

  

 

�̿�2,5 = 1 − 𝜆𝐿
2 (

1

𝛹𝑤,𝑞𝑞
2 (1 −

𝑡𝑎𝑛ℎ(
𝛹𝑤,𝑞𝑞

2
)

(
𝛹𝑤,𝑞𝑞

2
)
) − 

1

12
)  

 

Whilst 𝐻𝑝𝑞,2 changes as 𝑇𝑞𝑠,2 for µ2 = 0. 

 

𝐻𝑝𝑝,2 =

{
 
 
 
 
 

 
 
 
 
 �̿�2,1 ∙

𝜉

2
(𝜉 −

1

2
) +

+
�̿�2,2

(1+𝛽2)

(

 
 
 
 
 
 1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

{
 
 

 
 

cos( 𝑤,𝑝∙(𝜉−
1

2
)) cos(

𝜂𝑤,𝑝

2
)⁄ −1

𝑤,𝑝
2 +

+
cosh(𝛹𝑤,𝑝∙(𝜉−1/2)) 𝑐𝑜𝑠ℎ(𝛹𝑤,𝑝/2)⁄ −1

𝛹𝑤,𝑝
2 }

 
 

 
 

+

+
1

𝐽�̃�∙ �̃�𝜗,𝑝
2 {cos (휂𝜗,𝑝 ∙ (𝜉 −

1

2
)) cos (

𝜗,𝑝

2
)⁄ }

)

 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

  

 

Where.  
 

 𝛹𝑤,𝑝
2 =

1

2𝜇2
(√1 + 4𝜇2 ∙ �̃�𝑤,𝑝

2 + 1) = 휂𝑤,𝑝
2 +

1

𝜇2
 

 휂𝜗,𝑝
2 =

𝜒2

2𝛽2
(√(1 + 𝛽2)2 + 4

𝛽2

𝜒2
∙ 𝐽�̃��̃�𝜗,𝑝

2 − (1 + 𝛽2))  

 

�̿�2,1 = −
𝜆𝐿
2

1+
𝜆𝐿
2

12

�̿�2,2

(1+𝛽2)
∙

{
 
 
 
 

 
 
 
 

1

 �̃�𝑤,𝑝
2

𝛹𝑤,𝑝
2
𝑤,𝑝

2

𝛹𝑤,𝑝
2+ 𝑤,𝑝

2

(

 
 
(1− 

𝑡𝑎𝑛(
𝜂𝑤,𝑝
2 )

(
𝜂𝑤,𝑝
2
)
 )

𝑤,𝑝
2 +

(1− 
𝑡𝑎𝑛ℎ(

𝛹𝑤,𝑝
2 )

(
𝛹𝑤,𝑝
2

)
 )

𝛹𝑤,𝑝
2

)

 
 
+

+
1

𝐽�̃�∙ �̃�𝜗,𝑞
2 (1 − 

𝑡𝑎𝑛(
𝜂𝜗,𝑝

2
)

(
𝜂𝜗,𝑝

2
)
 )

}
 
 
 
 

 
 
 
 

+ 𝜆𝑄
2ℎ̃𝑊𝑝′𝛩𝑝′  

 

�̿�2,2 = 𝜆𝐿
2𝜆𝑄

2ℎ̃𝑊𝑝ℎ̃𝛩𝑝  

 

Considering skew-symmetric linear modes, we get that 𝜒2 →∞ does not influence the second order 

correction of flexural modes. Whilst the two functions associated to torsional ones becomes for the multi-

modal approach equal to the linear torsional modes for free warping. 
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 𝐻𝑝𝑞,2 =
𝜆𝐿
2

𝐽�̃�∙(�̃�𝑤,𝑝+�̃�𝜗,𝑞)
2 ℎ̃𝐻𝑝𝑞,2 ∙

{
 
 

 
 

1 −

cos(√
𝐽�̃�

(1+𝛽2)
∙(�̃�𝑤,𝑝+�̃�𝜗,𝑞)∙(𝜉−

1

2
))

cos(
1

2
√

𝐽�̃�
(1+𝛽2)

∙(�̃�𝑤,𝑝+�̃�𝜗,𝑞))

}
 
 

 
 

 

 

In addition, for mode-by-mode becomes parabolic. 

 

 𝐻𝑝𝑝,2 = 𝜆𝑄
2 (𝑛𝜋)

2

2
(1 −

1

𝜆𝐿
2−12

)
𝜉

2
(𝜉 −

1

2
) 

 

Notice that the particular case of torsionally flexible deck is a subcase of the free warping condition 

simply enforcing 𝛽2 = 0. 

 
3.4. Cubic contribution 

 
We have mentioned many times that the equations of motion governing the vibration of a two-dof 

suspension bridge are nonlinear up to cubic terms. Consequently, the last correction with respect 

to the linear motion will be of third order due to the assumption of neglecting higher order terms 

in the multiple time scale expansion. 

 

 𝐷0
2�̃�3 + 𝜇

2 ∙ �̃�3
𝑖𝑣 − �̃�3

𝑖𝑖 + 𝜆𝐿
2 ∙ ℎ̃𝑤3 =

{
 
 
 
 
 

 
 
 
 
 
−2𝐷0𝐷1�̃�2 − (𝐷1

2 + 2𝐷0𝐷2)�̃�1 − 𝜈𝑤𝐷0�̃�1 + 𝐹𝑤

+𝜆𝑄
2

{
  
 

  
 �̃�1

𝑖𝑖 ∙ ℎ̃𝑤2 + �̃�2
𝑖𝑖 ∙ ℎ̃𝑤1 +

+�̃�1
𝑖𝑖
∙ ℎ̃𝜗2 + �̃�2

𝑖𝑖
∙ ℎ̃𝜗1 +

−(ℎ̃𝑤1′𝑤2′ + ℎ̃𝜗1
′𝜗2

′) }
  
 

  
 

+

+𝜆𝐶
2 {
1

2
�̃�1
𝑖𝑖 ∙ (ℎ̃𝑤1′𝑤1′ + ℎ̃𝜗1

′𝜗1
′) + �̃�1

𝑖𝑖
∙ ℎ̃𝑤1′𝜗1

′}}
 
 
 
 
 

 
 
 
 
 

  

 

{
𝐽�̃�𝐷0

2
�̃�3 +

𝛽2

𝜒2
∙ �̃�3

𝑖𝑣
+

−(1 + 𝛽2) ∙ �̃�3
𝑖𝑖
+ 𝜆𝐿

2 ∙ ℎ̃𝜗3

} =

{
 
 
 
 
 

 
 
 
 
 
−2𝐽�̃�𝐷0𝐷1�̃�2 − (𝐷1

2 + 2𝐷0𝐷2)�̃�1 − 𝜈𝜗𝐷0�̃�1 + 𝐹𝜗 +

+𝜆𝑄
2

{
  
 

  
 �̃�1

𝑖𝑖
∙ ℎ̃𝑤2 + �̃�2

𝑖𝑖
∙ ℎ̃𝑤1 +

+�̃�1
𝑖𝑖 ∙ ℎ̃𝜗2 + �̃�2

𝑖𝑖 ∙ ℎ̃𝜗1 +

−(ℎ̃𝑤1′𝜗2
′ + ℎ̃𝑤2′𝜗1

′) }
  
 

  
 

+

+𝜆𝐶
2 {
1

2
�̃�1
𝑖𝑖
∙ (ℎ̃𝑤1′𝑤1′ + ℎ̃𝜗1

′𝜗1
′) + �̃�1

𝑖𝑖 ∙ ℎ̃𝑤1′𝜗1
′} }
 
 
 
 
 

 
 
 
 
 

  

 

Notice that in the linear component of the right hand side term we have added both flexural and torsional 

damping and external forcing. In order to make them appear just in the cubic equation and do not affect the 

lower order ones, making computations further cumbersome, we make the a priori assumption that 
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dimensionless damping is a second order quantity and dimensionless external forces just perturb the system 

by means of a third order term. 

 

𝜈(∙) = 𝜖
2 ∙ �̃�(∙)  

 

 𝐹(∙) = 𝜖
3 ∙ 𝑓(∙)  

 

This way, we are able to account for wind-structure interaction effects, such as additional damping and vortex 

shedding forcing. As already mentioned the variation of eigen-frequencies with the wind speed level can be 

taken in account simply substituting the actual values for the specified wind speed. 

 

In order to explicit the righ-hand side terms we need to substitute the expressions previously found for the 

linear and quadratic component of motion. After some computations and taking in mind the fact that 

amplitudes are function only of the quadratic time scale 𝑇2 we get the following expressions. 

 

For the flexural one. 

 

 (1) = {

−∑ {𝑖�̃�𝑤,𝑛(2𝐷2𝑍𝑛 + 𝜈𝑤𝑍𝑛) ∙ 𝑒𝑥𝑝(𝑖�̃�𝑤,𝑛𝑇0) + 𝑐. 𝑐. }𝑊𝑛
∞
𝑛=1 +

∑ 𝐹𝑤,𝑝𝑟𝑡
∞
𝑝,𝑟,𝑡=1 +∑ 𝐹𝑤,𝑞𝑠𝑡

∞
𝑞,𝑠,𝑡=1 + 𝐹𝑤

} 

 

Where. 

 
  

𝐹𝑤,𝑝𝑟𝑡 =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

(

 
 
 
 

{𝑍𝑝𝑍𝑟𝑍𝑡 ∙ 𝑒𝑥𝑝(𝑖(�̃�𝑤,𝑝 + �̃�𝑤,𝑟 + �̃�𝑤,𝑡)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
 

 𝜆𝑄
2 (𝑊𝑡

𝑖𝑖 ∙ ℎ̃𝑌𝑝𝑟,1 + 𝑌𝑝𝑟,1
𝑖𝑖 ∙ ℎ̃𝑊𝑡 − ℎ̃𝑊𝑡′𝑌𝑝𝑟,1′) +

+
𝜆𝐶
2

2
(𝑊𝑡

𝑖𝑖 ∙ ℎ̃𝑊𝑝′𝑊𝑟′) }
 

 

)

 
 
 
 

+

+

(

 
 
 
 
 
 
 
 
 

{𝑍𝑝𝑍𝑟�̂�𝑡 ∙ 𝑒𝑥𝑝(𝑖(�̃�𝑤,𝑝 + �̃�𝑤,𝑟 − �̃�𝑤,𝑡)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
 
 
 
 

 
 
 
 

𝜆𝑄
2

(

 
 
 
 

𝑊𝑡
𝑖𝑖 ∙ ℎ̃𝑌𝑝𝑟,1 + 𝑌𝑝𝑟,1

𝑖𝑖 ∙ ℎ̃𝑊𝑡 − ℎ̃𝑊𝑡′𝑌𝑝𝑟,1′ +

+𝑊𝑟
𝑖𝑖 ∙ ℎ̃𝑌𝑝𝑡,2 + 𝑌𝑝𝑡,2

𝑖𝑖 ∙ ℎ̃𝑊𝑟 − ℎ̃𝑊𝑟′𝑌𝑝𝑡,2′ +

+𝑊𝑝
𝑖𝑖 ∙ ℎ̃𝑌𝑡𝑟,2 + 𝑌𝑡𝑟,2

𝑖𝑖 ∙ ℎ̃𝑊𝑝 − ℎ̃𝑊𝑝′𝑌𝑡𝑟,2′ )

 
 
 
 

+

+
𝜆𝐶
2

2
(𝑊𝑝

𝑖𝑖 ∙ ℎ̃𝑊𝑟′𝑊𝑡′ +𝑊𝑟
𝑖𝑖 ∙ ℎ̃𝑊𝑡′𝑊𝑝′ +𝑊𝑡

𝑖𝑖 ∙ ℎ̃𝑊𝑟′𝑊𝑝′)}
 
 
 
 

 
 
 
 

)

 
 
 
 
 
 
 
 
 

}
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𝐹𝑤,𝑞𝑠𝑡 =

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 

{Г𝑞Г𝑠𝑍𝑝 ∙ 𝑒𝑥𝑝(𝑖(�̃�𝜗,𝑞 + �̃�𝜗,𝑠 + �̃�𝑤,𝑝)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝑊𝑡
𝑖𝑖 ∙ ℎ̃𝑇𝑞𝑠,1 + 𝑇𝑞𝑠,1

𝑖𝑖 ∙ ℎ̃𝑊𝑡 − ℎ̃𝑊𝑡′𝑇𝑞𝑠,1′ +

+𝛩𝑞
𝑖𝑖 ∙ ℎ̃𝐻𝑡𝑠,1 +𝐻𝑡𝑠,1

𝑖𝑖 ∙ ℎ̃𝛩𝑞 − ℎ̃𝛩𝑞′𝐻𝑡𝑠,1′

)+

+𝜆𝐶
2 (
1

2
𝑊𝑡

𝑖𝑖 ∙ ℎ̃𝛩𝑞′𝛩𝑠′ + 𝛩𝑞
𝑖𝑖 ∙ ℎ̃𝛩𝑠′𝑊𝑡′) }

  
 

  
 

)

 
 
 
 
 
 

+

+

(

 
 
 
 
 
 

{Г̂𝑞Г𝑠𝑍𝑝 ∙ 𝑒𝑥𝑝(𝑖(−�̃�𝜗,𝑞 + �̃�𝜗,𝑠 + �̃�𝑤,𝑝)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝑊𝑡
𝑖𝑖 ∙ ℎ̃𝑇𝑞𝑠,2 + 𝑇𝑞𝑠,2

𝑖𝑖 ∙ ℎ̃𝑊𝑡 − ℎ̃𝑊𝑡′𝑇𝑞𝑠,2′ +

+𝛩𝑞
𝑖𝑖 ∙ ℎ̃𝐻𝑡𝑠,1 +𝐻𝑡𝑠,1

𝑖𝑖 ∙ ℎ̃𝛩𝑞 − ℎ̃𝛩𝑞′𝐻𝑡𝑠,1′

)+

+𝜆𝐶
2 (
1

2
𝑊𝑡

𝑖𝑖 ∙ ℎ̃𝛩𝑞′𝛩𝑠′ + 𝛩𝑞
𝑖𝑖 ∙ ℎ̃𝛩𝑠′𝑊𝑡′) }

  
 

  
 

)

 
 
 
 
 
 

+

+

(

 
 
 
 
 
 

{Г𝑞Г̂𝑠𝑍𝑝 ∙ 𝑒𝑥𝑝(𝑖(�̃�𝜗,𝑞 − �̃�𝜗,𝑠 + �̃�𝑤,𝑝)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝑊𝑡
𝑖𝑖 ∙ ℎ̃𝑇𝑞𝑠,2 + 𝑇𝑞𝑠,2

𝑖𝑖 ∙ ℎ̃𝑊𝑡 − ℎ̃𝑊𝑡′𝑇𝑞𝑠,2′ +

+𝛩𝑞
𝑖𝑖 ∙ ℎ̃𝐻𝑡𝑠,2 +𝐻𝑡𝑠,2

𝑖𝑖 ∙ ℎ̃𝛩𝑞 − ℎ̃𝛩𝑞′𝐻𝑡𝑠,2′

)+

+𝜆𝐶
2 (
1

2
𝑊𝑡

𝑖𝑖 ∙ ℎ̃𝛩𝑞′𝛩𝑠′ + 𝛩𝑞
𝑖𝑖 ∙ ℎ̃𝛩𝑠′𝑊𝑡′) }

  
 

  
 

)

 
 
 
 
 
 

+

+

(

 
 
 
 
 
 

{Г𝑞Г𝑠�̂�𝑝 ∙ 𝑒𝑥𝑝(𝑖(�̃�𝜗,𝑞 + �̃�𝜗,𝑠 − �̃�𝑤,𝑝)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝑊𝑡
𝑖𝑖 ∙ ℎ̃𝑇𝑞𝑠,1 + 𝑇𝑞𝑠,1

𝑖𝑖 ∙ ℎ̃𝑊𝑡 − ℎ̃𝑊𝑡′𝑇𝑞𝑠,1′ +

+𝛩𝑞
𝑖𝑖 ∙ ℎ̃𝐻𝑡𝑠,2 +𝐻𝑡𝑠,2

𝑖𝑖 ∙ ℎ̃𝛩𝑞 − ℎ̃𝛩𝑞′𝐻𝑡𝑠,2′

)+

+𝜆𝐶
2 (
1

2
𝑊𝑡

𝑖𝑖 ∙ ℎ̃𝛩𝑞′𝛩𝑠′ + 𝛩𝑞
𝑖𝑖 ∙ ℎ̃𝛩𝑠′𝑊𝑡′) }

  
 

  
 

)

 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

For the torsional one. 

 

 (2) = {

−∑ {𝑖�̃�𝜗,𝑚(2𝐷2Г𝑚 + 𝜈𝜗Г𝑚) ∙ 𝑒𝑥𝑝(𝑖�̃�𝜗,𝑚𝑇0) + 𝑐. 𝑐. }𝛩𝑚
∞
𝑚=1 +

∑ 𝐹𝜗,𝑝𝑟𝑣
∞
𝑝,𝑟,𝑣=1 + ∑ 𝐹𝑤,𝑞𝑠𝑣

∞
𝑞,𝑠,𝑣=1 + 𝐹𝜗

} 
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Where. 

 

  𝐹𝜗,𝑝𝑟𝑣 =

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 

{𝑍𝑝𝑍𝑟Г𝑣 ∙ 𝑒𝑥𝑝(𝑖(�̃�𝑤,𝑝 + �̃�𝑤,𝑟 + �̃�𝜗,𝑣)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝛩𝑣
𝑖𝑖 ∙ ℎ̃𝑌𝑝𝑟,1 + 𝑌𝑝𝑟,1

𝑖𝑖 ∙ ℎ̃𝛩𝑣 − ℎ̃𝛩𝑣′𝑌𝑝𝑟,1′

+𝑊𝑟
𝑖𝑖ℎ̃𝐻𝑝𝑣,1 +𝐻𝑝𝑣,1

𝑖𝑖 ∙ ℎ̃𝑊𝑟 − ℎ̃𝑊𝑟′𝐻𝑝𝑣,1′

)+

+𝜆𝐶
2 (
1

2
𝛩𝑣
𝑖𝑖 ∙ ℎ̃𝑊𝑝′𝑊𝑟′ +𝑊𝑝

𝑖𝑖 ∙ ℎ̃𝑊𝑟′𝛩𝑣′) }
  
 

  
 

)

 
 
 
 
 
 

+

+

(

 
 
 
 
 
 

{�̂�𝑝𝑍𝑟Г𝑣 ∙ 𝑒𝑥𝑝(𝑖(−�̃�𝑤,𝑝 + �̃�𝑤,𝑟 + �̃�𝜗,𝑣)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝛩𝑣
𝑖𝑖 ∙ ℎ̃𝑌𝑝𝑟,2 + 𝑌𝑝𝑟,2

𝑖𝑖 ∙ ℎ̃𝛩𝑣 − ℎ̃𝛩𝑣′𝑌𝑝𝑟,2′

+𝑊𝑟
𝑖𝑖ℎ̃𝐻𝑝𝑣,2 +𝐻𝑝𝑣,2

𝑖𝑖 ∙ ℎ̃𝑊𝑟 − ℎ̃𝑊𝑟′𝐻𝑝𝑣,2′

)+

+𝜆𝐶
2 (
1

2
𝛩𝑣
𝑖𝑖 ∙ ℎ̃𝑊𝑝′𝑊𝑟′ +𝑊𝑝

𝑖𝑖 ∙ ℎ̃𝑊𝑟′𝛩𝑣′) }
  
 

  
 

)

 
 
 
 
 
 

+

+

(

 
 
 
 
 
 

{𝑍𝑝�̂�𝑟Г𝑣 ∙ 𝑒𝑥𝑝(𝑖(�̃�𝑤,𝑝 − �̃�𝑤,𝑟 + �̃�𝜗,𝑣)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝛩𝑣
𝑖𝑖 ∙ ℎ̃𝑌𝑝𝑟,2 + 𝑌𝑝𝑟,2

𝑖𝑖 ∙ ℎ̃𝛩𝑣 − ℎ̃𝛩𝑣′𝑌𝑝𝑟,2′

+𝑊𝑟
𝑖𝑖ℎ̃𝐻𝑝𝑣,1 +𝐻𝑝𝑣,1

𝑖𝑖 ∙ ℎ̃𝑊𝑟 − ℎ̃𝑊𝑟′𝐻𝑝𝑣,1′

)+

+𝜆𝐶
2 (
1

2
𝛩𝑣
𝑖𝑖 ∙ ℎ̃𝑊𝑝′𝑊𝑟′ +𝑊𝑝

𝑖𝑖 ∙ ℎ̃𝑊𝑟′𝛩𝑣′) }
  
 

  
 

)

 
 
 
 
 
 

+

+

(

 
 
 
 
 
 

{𝑍𝑝𝑍𝑟Г̂𝑣 ∙ 𝑒𝑥𝑝(𝑖(�̃�𝑤,𝑝 + �̃�𝑤,𝑟 − �̃�𝜗,𝑣)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝛩𝑣
𝑖𝑖 ∙ ℎ̃𝑌𝑝𝑟,1 + 𝑌𝑝𝑟,1

𝑖𝑖 ∙ ℎ̃𝛩𝑣 − ℎ̃𝛩𝑣′𝑌𝑝𝑟,1′

+𝑊𝑟
𝑖𝑖ℎ̃𝐻𝑝𝑣,2 +𝐻𝑝𝑣,2

𝑖𝑖 ∙ ℎ̃𝑊𝑟 − ℎ̃𝑊𝑟′𝐻𝑝𝑣,2′

)+

+𝜆𝐶
2 (
1

2
𝛩𝑣
𝑖𝑖 ∙ ℎ̃𝑊𝑝′𝑊𝑟′ +𝑊𝑝

𝑖𝑖 ∙ ℎ̃𝑊𝑟′𝛩𝑣′) }
  
 

  
 

)

 
 
 
 
 
 

}
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𝐹𝑤,𝑞𝑠𝑣 =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

(

 
 
 
 

{Г𝑞Г𝑠Г𝑣 ∙ 𝑒𝑥𝑝(𝑖(�̃�𝜗,𝑞 + �̃�𝜗,𝑠 + �̃�𝜗,𝑣)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
 

 𝜆𝑄
2 (𝛩𝑣

𝑖𝑖 ∙ ℎ̃𝑇𝑞𝑠,1 + 𝑇𝑞𝑠,1
𝑖𝑖 ∙ ℎ̃𝛩𝑣 − ℎ̃𝛩𝑣′𝑇𝑞𝑠,1′) +

+𝜆𝐶
2 (
1

2
𝛩𝑞
𝑖𝑖 ∙ ℎ̃𝛩𝑠′𝛩𝑣′) }

 

 

)

 
 
 
 

+

+

(

 
 
 
 
 
 
 
 
 

{Г𝑞Г𝑠Г̂𝑣 ∙ 𝑒𝑥𝑝(𝑖(�̃�𝜗,𝑞 + �̃�𝜗,𝑠 − �̃�𝜗,𝑣)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
 
 
 
 

 
 
 
 

𝜆𝑄
2

(

 
 
 
 

𝛩𝑣
𝑖𝑖 ∙ ℎ̃𝑇𝑞𝑠,1 + 𝑇𝑞𝑠,1

𝑖𝑖 ∙ ℎ̃𝛩𝑣 − ℎ̃𝛩𝑣′𝑇𝑞𝑠,1′ +

+𝛩𝑠
𝑖𝑖 ∙ ℎ̃𝑇𝑞𝑣,2 + 𝑇𝑞𝑣,2

𝑖𝑖 ∙ ℎ̃𝛩𝑠 − ℎ̃𝛩𝑠′𝑇𝑞𝑣,2′ +

+𝛩𝑞
𝑖𝑖 ∙ ℎ̃𝑇𝑣𝑠,2 + 𝑇𝑣𝑠,2

𝑖𝑖 ∙ ℎ̃𝛩𝑞 − ℎ̃𝛩𝑞′𝑇𝑣𝑠,2′ )

 
 
 
 

+

+
𝜆𝐶
2

2
(𝛩𝑞

𝑖𝑖 ∙ ℎ̃𝛩𝑠′𝛩𝑣′ + 𝛩𝑠
𝑖𝑖 ∙ ℎ̃𝛩𝑣′𝛩𝑞′ + 𝛩𝑣

𝑖𝑖 ∙ ℎ̃𝛩𝑠′𝛩𝑞′)}
 
 
 
 

 
 
 
 

)

 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

  

 

We have finally found the explicit expressions for the equations governing the third order contribution to 

oscillations. The format is the most general as possible since we are dealing with multi-modal approach. 

However, analytical solutions are feasible only making some assumptions on the modal interaction. In fact, 

in the general case we should consider any possible combination between three different modes. Hence to 

simplify the treatment in the following we will focus just on the mode-by-mode vibrations that are a 

particular condition for the multi-modal approach and generally gives a contribution that is dominant. This 

means that in the following we will not be able to detect combinational resonances but only parametric one. 

We remember that this kind of assumption was introduced first in the definition of the first solvability 

condition in the analysis of quadratic equations. 

The main advantage of this assumption is that equations simplifies very much since we can collect all terms 

under the same summation operator. 

 

3.4.1 Flexural equation 

 

Let’s analyse the mode-by-mode cubic flexural equation of motion for the suspension bridge model. 

 

 (1) = ∑ {

−{𝑖�̃�𝑤,𝑛(2𝐷2𝑍𝑛 + 𝜈𝑤𝑍𝑛) ∙ 𝑒𝑥𝑝(𝑖�̃�𝑤,𝑛𝑇0) + 𝑐. 𝑐. }𝑊𝑛 +

(𝐹𝑤,1)𝑛 + (𝐹𝑤,2)𝑛

}+ 𝐹𝑤
∞
𝑛=1  

 

 

 

 

 

 

 

 

 

 

 



180 
 

Where. 

 

(𝐹𝑤,1)𝑛 =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

(

 
 
 
 

{𝑍𝑛
3 ∙ 𝑒𝑥𝑝(𝑖3�̃�𝑤,𝑛𝑇0) + 𝑐. 𝑐. } ∙

∙

{
 

 𝜆𝑄
2 (𝑊𝑛

𝑖𝑖 ∙ ℎ̃𝑌1,𝑛 + 𝑌1,𝑛
𝑖𝑖 ∙ ℎ̃𝑊𝑛 − ℎ̃𝑊𝑛′𝑌1,𝑛′) +

+
𝜆𝐶
2

2
(𝑊𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛′𝑊𝑛′) }
 

 

)

 
 
 
 

+

+

(

 
 
 
 
 
 

{𝑍𝑛
2�̂�𝑛 ∙ 𝑒𝑥𝑝(𝑖�̃�𝑤,𝑛𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝑊𝑛
𝑖𝑖 ∙ ℎ̃𝑌1,𝑛 + 𝑌1,𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛 − ℎ̃𝑊𝑛′𝑌1,𝑛′ +

+2(𝑊𝑛
𝑖𝑖 ∙ ℎ̃𝑌2,𝑛 + 𝑌2,𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛 − ℎ̃𝑊𝑛′𝑌2,𝑛′) +

)+

+
3

2
𝜆𝐶
2𝑊𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛′𝑊𝑛′ }
  
 

  
 

)

 
 
 
 
 
 

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  

 

(𝐹𝑤,2)𝑛 =

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 

{Г𝑛
2𝑍𝑛 ∙ 𝑒𝑥𝑝(𝑖(2�̃�𝜗,𝑛 + �̃�𝑤,𝑛)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝑊𝑛
𝑖𝑖 ∙ ℎ̃𝑇1,𝑛 + 𝑇1.𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛 − ℎ̃𝑊𝑛′𝑇1,𝑛′ +

+𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝐻1,𝑛 +𝐻1,𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛 − ℎ̃𝛩𝑛′𝐻1,𝑛′

)+

+𝜆𝐶
2 (
1

2
𝑊𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛′𝛩𝑛′ + 𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝛩𝑛′𝑊𝑛′) }

  
 

  
 

)

 
 
 
 
 
 

+

+

(

 
 
 
 
 
 
 
 
 

{Г̂𝑛Г𝑛𝑍𝑛 ∙ 𝑒𝑥𝑝(𝑖�̃�𝑤,𝑛𝑇0) + 𝑐. 𝑐. } ∙

∙

{
 
 
 
 

 
 
 
 

𝜆𝑄
2

(

 
 
 
 

2(𝑊𝑛
𝑖𝑖 ∙ ℎ̃𝑇2,𝑛 + 𝑇2.𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛 − ℎ̃𝑊𝑛′𝑇2,𝑛′) +

+𝛩𝑛
𝑖𝑖 ∙ (ℎ̃𝐻1,𝑛 + ℎ̃𝐻2,𝑛) + (𝐻1,𝑛

𝑖𝑖 +𝐻2,𝑛
𝑖𝑖) ∙ ℎ̃𝛩𝑛 +

−(ℎ̃𝛩𝑛′𝐻1,𝑛′ + ℎ̃𝛩𝑛′𝐻2,𝑛′) )

 
 
 
 

+

+2𝜆𝐶
2 (
1

2
𝑊𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛′𝛩𝑛′ + 𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝛩𝑛′𝑊𝑛′) }

 
 
 
 

 
 
 
 

)

 
 
 
 
 
 
 
 
 

+

+

(

 
 
 
 
 
 

{Г𝑛
2�̂�𝑛 ∙ 𝑒𝑥𝑝(𝑖(2�̃�𝜗,𝑛 − �̃�𝑤,𝑛)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝑊𝑛
𝑖𝑖 ∙ ℎ̃𝑇1,𝑛 + 𝑇1.𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛 − ℎ̃𝑊𝑛′𝑇1,𝑛′ +

+𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝐻2,𝑛 +𝐻2,𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛 − ℎ̃𝛩𝑛′𝐻2,𝑛′

)+

+𝜆𝐶
2 (
1

2
𝑊𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛′𝛩𝑛′ + 𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝛩𝑛′𝑊𝑛′) }

  
 

  
 

)

 
 
 
 
 
 

}
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In order to decouple flexural and torsional motion we introduce a detuning parameter 𝜎 that allows us to 

link the respective frequencies. 

 

 �̃�𝑤,𝑛 = �̃�𝜗,𝑛 + 𝜖
2 ∙ 𝜎  

 

The meaning of the last expression is that flexural and torsional frequencies are closely spaced. Hence we 

are implicitly going to analyse the so-called one-to-one internal resonance. 

Substituting in the mode-by-mode cubic flexural equation we notice that appear some further exponential 

terms proportional to the flexural eigen-frequency �̃�𝑤,𝑛. These are the so-called secular terms that has to 

vanish as the actual time instant overcomes the limit proper for the linear time scale. 

Let’s write just the terms that can become Secular. 

 

∑

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−𝑖�̃�𝑤,𝑛(2𝐷2𝑍𝑛 + 𝜈𝑤𝑍𝑛)𝑊𝑛 +

+𝑍𝑛
2�̂�𝑛 ∙

{
  
 

  
 
𝜆𝑄
2(

𝑊𝑛
𝑖𝑖 ∙ ℎ̃𝑌1,𝑛 + 𝑌1,𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛 − ℎ̃𝑊𝑛′𝑌1,𝑛′ +

+2(𝑊𝑛
𝑖𝑖 ∙ ℎ̃𝑌2,𝑛 + 𝑌2,𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛 − ℎ̃𝑊𝑛′𝑌2,𝑛′) +

)+

+
3

2
𝜆𝐶
2𝑊𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛′𝑊𝑛′ }
  
 

  
 

+

+Г̂𝑛Г𝑛𝑍𝑛 ∙

{
 
 
 
 

 
 
 
 

𝜆𝑄
2

(

 
 
 
 

2 (𝑊𝑛
𝑖𝑖 ∙ ℎ̃𝑇2,𝑛 + 𝑇2.𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛 − ℎ̃𝑊𝑛′𝑇2,𝑛′
)+

+𝛩𝑛
𝑖𝑖 ∙ (ℎ̃𝐻1,𝑛 + ℎ̃𝐻2,𝑛)+ (𝐻1,𝑛

𝑖𝑖 +𝐻2,𝑛
𝑖𝑖
) ∙ ℎ̃𝛩𝑛 +

− (ℎ̃
𝛩𝑛
′𝐻1,𝑛

′ + ℎ̃𝛩𝑛′𝐻2,𝑛′
)

)

 
 
 
 

+

+2𝜆𝐶
2
(
1

2
𝑊𝑛

𝑖𝑖 ∙ ℎ̃
𝛩𝑛
′𝛩𝑛

′ +𝛩𝑛
𝑖𝑖 ∙ ℎ̃

𝛩𝑛
′𝑊𝑛

′) }
 
 
 
 

 
 
 
 

+

+Г𝑛
2�̂�𝑛 ∙ 𝑒𝑥𝑝(−𝑖2𝜎𝑇2)

{
 
 
 

 
 
 

𝜆𝑄
2

(

 
 
𝑊𝑛

𝑖𝑖 ∙ ℎ̃𝑇1,𝑛 + 𝑇1.𝑛
𝑖𝑖 ∙ ℎ̃𝑊𝑛 − ℎ̃𝑊𝑛′𝑇1,𝑛′

+

+𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝐻2,𝑛 +𝐻2,𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛 − ℎ̃𝛩𝑛′𝐻2,𝑛′ )

 
 
+

+𝜆𝐶
2
(
1

2
𝑊𝑛

𝑖𝑖 ∙ ℎ̃
𝛩𝑛
′𝛩𝑛

′ +𝛩𝑛
𝑖𝑖 ∙ ℎ̃

𝛩𝑛
′𝑊𝑛

′) }
 
 
 

 
 
 

+

+
1

2
�̿�𝑤 ∙ 𝑒𝑥𝑝(𝑖(𝛺𝑤 − �̃�𝑤,𝑛)𝑇0)+ 𝑐. 𝑐. }

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑒𝑥𝑝(𝑖�̃�𝑤,𝑛𝑇0)
∞
𝑛=1   

 

Notice that the external forcing has been expanded in Fourier series by means of Euler exponential notation 

for complex numbers. Hence �̿�𝑤 will be the forcing magnitude tuned by a trigonometric function with circular 

frequency equal to 𝛺𝑤. As we can see, the model is able to catch also external linear resonance as it’s 

satisfied the condition  𝛺𝑤 = �̃�𝑤,𝑛. 

 

The following step requires to assume a solution format also for the cubic flexural equation. 

 

 �̃�3(𝜉, 𝑇0, 𝑇2) = ∑ {𝛷𝑆,𝑛(𝜉, 𝑇0, 𝑇2) ∙ 𝑒𝑥𝑝(𝑖�̃�𝑤,𝑛𝑇0) + 𝛷𝑁𝑆,𝑛(𝜉, 𝑇0, 𝑇2) + 𝑐. 𝑐. }
∞
𝑛=1  
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Where we simply assume that the cubic flexural solution will be equal to the superposition of a secular 

function 𝛷𝑆 and a non-secular one 𝛷𝑁𝑆. 

Substituting in the left-hand side term of the governing equation and considering just the secular contribution 

we get. 

 

 ∑ {𝜇2 ∙ 𝛷𝑆,𝑛
𝑖𝑣 −𝛷𝑆,𝑛

𝑖𝑖 − �̃�𝑤,𝑛
2𝛷𝑆,𝑛 + 𝜆𝐿

2 ∙ ℎ̃𝛷𝑆,𝑛}𝑒𝑥𝑝(𝑖�̃�𝑤,𝑛𝑇0)
∞
𝑛=1  

 

Since the corresponding homogeneous equation has a non-trivial solution we need to satisfy a proper 

solvability condition in order to solve the complete problem. 

To do that we introduce an adjoin solution 𝑢(𝜉) that will be defined later. This unknown function multiplies 

both the left and right-hand side 𝐹𝑤(𝜉) terms of the governing equation that then has to be integrated in the 

unitary spatial domain of interest at which extremities boundary conditions has to be enforced. 

Hence considering a mode per time and simplifying the exponential 𝑒𝑥𝑝(𝑖�̃�𝑤,𝑛𝑇0) we get. 

 

{

𝜇2 ∫  𝑢(𝜉) ∙ 𝛷𝑆,𝑛
𝑖𝑣𝑑𝜉

1

0
− ∫  𝑢(𝜉) ∙ 𝛷𝑆,𝑛

𝑖𝑖𝑑𝜉
1

0
+

−�̃�𝑤,𝑛
2
∫  𝑢(𝜉) ∙ 𝛷𝑆,𝑛𝑑𝜉
1

0
+ 𝜆𝐿

2
∫  𝑢(𝜉) ∙ ℎ̃𝛷𝑆,𝑛𝑑𝜉
1

0

} = ∫  𝑢(𝜉) ∙ 𝐹𝑤(𝜉)𝑑𝜉
1

0
  

 

Then integration by parts allows us to pass the derivative from 𝛷𝑆,𝑛 to 𝑢(𝜉). 

 

 

{
 
 

 
 ∫ (𝜇2 ∙ 𝑢𝑖𝑣 − 𝑢𝑖𝑖 − �̃�𝑤,𝑛

2 ∙ 𝑢 + 𝜆𝐿
2ℎ̃𝑢)𝛷𝑆,𝑛𝑑𝜉

1

0
+

[𝜇2 ∙ (

𝑢 ∙ 𝛷𝑆,𝑛
𝑖𝑖𝑖 − 𝑢𝑖 ∙ 𝛷𝑆,𝑛

𝑖𝑖 +

+𝑢𝑖𝑖 ∙ 𝛷𝑆,𝑛
𝑖 − 𝑢𝑖𝑖𝑖 ∙ 𝛷𝑆,𝑛

)+ −𝑢 ∙ 𝛷𝑆,𝑛
𝑖 + 𝑢𝑖 ∙ 𝛷𝑆,𝑛]

0

1

}
 
 

 
 

= ∫  𝑢(𝜉) ∙ 𝐹𝑤(𝜉)𝑑𝜉
1

0
  

 

The so-called adjoin homogenous equation (𝜇2 ∙ 𝑢𝑖𝑣 − 𝑢𝑖𝑖 − �̃�𝑤,𝑛
2 ∙ 𝑢 + 𝜆𝐿

2ℎ̃𝑢 = 0) is self-adjoin since the 

coefficients are the same of the original governing equation of 𝛷𝑆,𝑛. 

To define explicitly the function 𝑢(𝜉) we need to assume 𝐹𝑤(𝜉) = 0 and enforce the vanishing of 𝛷𝑆,𝑛 and 

its second derivative at the boundary of the domain. 

 

 [𝜇2 ∙ (

𝑢 ∙ 𝛷𝑆,𝑛
𝑖𝑖𝑖 − 𝑢𝑖 ∙ 𝛷𝑆,𝑛

𝑖𝑖 +

+𝑢𝑖𝑖 ∙ 𝛷𝑆,𝑛
𝑖 − 𝑢𝑖𝑖𝑖 ∙ 𝛷𝑆,𝑛

)+ −𝑢 ∙ 𝛷𝑆,𝑛
𝑖 + 𝑢𝑖 ∙ 𝛷𝑆,𝑛]

0

1

= 0 

 

That can be rewritten as. 

 

 𝜇2 ∙ [𝑢]0
1 ∙ 𝛷𝑆,𝑛

𝑖𝑖𝑖 + 𝜇2 ∙ [𝑢𝑖𝑖 − 𝑢]
0

1
∙ 𝛷𝑆,𝑛

𝑖 = 0 

 

Assuming that each coefficient vanish independently we get proper boundary conditions for 𝑢(𝜉) that are 

the same previously mentioned for 𝛷𝑆,𝑛. Thence, we have define the complete self-adjoin problem that it’s 

equal to the one defined for the linear eigen-properties. Consequently. 

 

 𝑢(𝜉) = 𝑊𝑛(𝜉)  
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The initial purpose was to define proper solvability conditions for the original cubic secular equation. Hence 

substituting in the modal projection of the secular cubic equation the self-adjoin one for 𝑢(𝜉) and the 

boundary conditions for 𝑢(𝜉) and 𝛷𝑆,𝑛 we get the Solvability condition. 

 

 ∫  𝑊𝑛(𝜉) ∙ 𝐹𝑤(𝜉)𝑑𝜉
1

0
= 0  

 

Integration by parts allows us to reduce the order of spatial derivative down to the first order and enforce 

the well-known boundary conditions on linear modal shapes 𝑊𝑛(𝜉). 

Summing up common terms the solvability condition gives us the one of the ordinary differential equation 

governing the time variation (𝑇2) of flexural and torsional amplitudes. 

 

{

𝑖�̃�𝑤,𝑛(2𝐷2𝑍𝑛 + 𝜈𝑤𝑍𝑛) ∙ 𝑀𝑤,𝑛 + 𝑍𝑛
2�̂�𝑛 ∙ 𝛼1,𝑤 +

+Г̂𝑛Г𝑛𝑍𝑛 ∙ 𝛼2,𝑤 + Г𝑛
2�̂�𝑛 ∙ 𝑒𝑥𝑝(−𝑖2𝜎𝑇2) ∙ 𝛼3,𝑤

} =
1

2
�̿�𝑤,𝑛 ∙ 𝑒𝑥𝑝(𝑖(𝛺𝑤 − �̃�𝑤,𝑛)𝑇0)  

 

Where we define the modal mass 𝑀𝑤,𝑛 and force �̿�𝑤,𝑛, plus other constant parameters. 

 

 𝑀𝑤,𝑛 = ∫ 𝑊𝑛
2𝑑𝜉

1

0
  

 

 𝛼1,𝑤 = 𝜆𝑄
2 {2 [ℎ̃𝑊𝑛 (ℎ̃𝑊𝑛′𝑌1,𝑛′ + 2ℎ̃𝑊𝑛′𝑌2,𝑛′)] + ℎ̃𝑊𝑛′𝑊𝑛′ (ℎ̃𝑌1,𝑛 + 2ℎ̃𝑌2,𝑛′)} +

3

2
𝜆𝐶
2(ℎ̃𝑊𝑛′𝑊𝑛′)

2
  

 

𝛼2,𝑤 = 𝜆𝑄
2

{
 
 

 
 2ℎ̃𝑊𝑛′𝑊𝑛′ℎ̃𝑇2,𝑛 + ℎ̃𝑊𝑛 (4ℎ̃𝑊𝑛′𝑇2,𝑛′ + ℎ̃𝛩𝑛′𝐻1,𝑛′

+ ℎ̃
𝛩𝑛
′𝐻2,𝑛

′) +

+ℎ̃
𝑊𝑛

′𝛩𝑛
′(ℎ̃𝐻1,𝑛 + ℎ̃𝐻2,𝑛) + ℎ̃𝛩𝑛 (ℎ̃𝑊𝑛′𝐻1,𝑛′

+ ℎ̃
𝑊𝑛

′𝐻2,𝑛
′)
}
 
 

 
 

+ 𝜆𝐶
2

{
 
 

 
 ℎ̃𝑊𝑛′𝑊𝑛′ℎ̃𝛩𝑛′𝛩𝑛′

+

+2 (ℎ̃
𝑊𝑛

′𝛩𝑛
′)
2

}
 
 

 
 

 

 

𝛼3,𝑤 = 𝜆𝑄
2

{
 

 ℎ̃𝑊𝑛′𝑊𝑛′ℎ̃𝑇1,𝑛 + ℎ̃𝑊𝑛 (2ℎ̃𝑊𝑛′𝑇1,𝑛′ + ℎ̃𝛩𝑛′𝐻2,𝑛′
) +

ℎ̃
𝑊𝑛

′𝛩𝑛
′ℎ̃𝐻2,𝑛 + ℎ̃𝛩𝑛ℎ̃𝑊𝑛′𝐻2,𝑛′ }

 

 

+ 𝜆𝐶
2

{
 
 

 
 
1

2
ℎ̃𝑊𝑛′𝑊𝑛′ℎ̃𝛩𝑛′𝛩𝑛′

+

+ (ℎ̃
𝑊𝑛

′𝛩𝑛
′)
2

}
 
 

 
 

 

 

 �̿�𝑤,𝑛 = ∫ 𝑊𝑛�̿�𝑤𝑑𝜉
1

0
 

 

 

3.4.2 Torsional equation 

 

Notice that we obtain an equation that contains both the flexural and torsional amplitudes. Then we need to 

define also the torsional companion of that equation. 

 

(2) = ∑ {

−{𝑖�̃�𝜗,𝑛(2𝐷2Г𝑛 + 𝜈𝜗Г𝑛) ∙ 𝑒𝑥𝑝(𝑖�̃�𝜗,𝑛𝑇0) + 𝑐. 𝑐. }𝛩𝑛 +

(𝐹𝜗,1)𝑛 + (𝐹𝜗,2)𝑛

}∞
𝑛=1 + 𝐹𝜗  
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Where. 

 

  (𝐹𝜗,1)𝑛 =

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 

{𝑍𝑛
2Г𝑛 ∙ 𝑒𝑥𝑝(𝑖(2�̃�𝑤,𝑛 + �̃�𝜗,𝑛)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝑌1,𝑛 + 𝑌1,𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛 − ℎ̃𝛩𝑛′𝑌1,𝑛′

+𝑊𝑛
𝑖𝑖ℎ̃𝐻1,𝑛 +𝐻1,𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛 − ℎ̃𝑊𝑛′𝐻1,𝑛′

)+

+𝜆𝐶
2 (
1

2
𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝑊𝑛′𝑊𝑛′ +𝑊𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛′𝛩𝑛′) }
  
 

  
 

)

 
 
 
 
 
 

+

+

(

 
 
 
 
 
 
 
 
 

{�̂�𝑛𝑍𝑛Г𝑛 ∙ 𝑒𝑥𝑝(𝑖�̃�𝜗,𝑛𝑇0) + 𝑐. 𝑐. } ∙

∙

{
 
 
 
 

 
 
 
 

𝜆𝑄
2

(

 
 
 
 

2(𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝑌2,𝑛 + 𝑌2,𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛 − ℎ̃𝛩𝑛′𝑌2,𝑛′)

+𝑊𝑛
𝑖𝑖(ℎ̃𝐻1,𝑛 + ℎ̃𝐻2,𝑛) + (𝐻1,𝑛

𝑖𝑖 +𝐻2,𝑛
𝑖𝑖) ∙ ℎ̃𝑊𝑛 +

−(ℎ̃𝑊𝑛′𝐻1,𝑛′ + ℎ̃𝑊𝑛′𝐻2,𝑛′) )

 
 
 
 

+

+2𝜆𝐶
2 (
1

2
𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝑊𝑛′𝑊𝑛′ +𝑊𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛′𝛩𝑛′) }
 
 
 
 

 
 
 
 

)

 
 
 
 
 
 
 
 
 

+

+

(

 
 
 
 
 
 

{𝑍𝑛
2Г̂𝑛 ∙ 𝑒𝑥𝑝(𝑖(2�̃�𝑤,𝑛 − �̃�𝜗,𝑛)𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝑌1,𝑛 + 𝑌1,𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛 − ℎ̃𝛩𝑛′𝑌1,𝑛′

+𝑊𝑛
𝑖𝑖ℎ̃𝐻2,𝑛 +𝐻2,𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛 − ℎ̃𝑊𝑛′𝐻2,𝑛′

)+

+𝜆𝐶
2 (
1

2
𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝑊𝑛′𝑊𝑛′ +𝑊𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛′𝛩𝑛′) }
  
 

  
 

)

 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 

(𝐹𝜗,2)𝑛 =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

(

 
 
 
 

{Г𝑛
3 ∙ 𝑒𝑥𝑝(𝑖3�̃�𝜗,𝑞𝑇0) + 𝑐. 𝑐. } ∙

∙

{
 

 𝜆𝑄
2 (𝛩𝑛

𝑖𝑖 ∙ ℎ̃𝑇1,𝑛 + 𝑇1,𝑛
𝑖𝑖 ∙ ℎ̃𝛩𝑛 − ℎ̃𝛩𝑛′𝑇1,𝑛′) +

+𝜆𝐶
2 (
1

2
𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝛩𝑛′𝛩𝑛′) }

 

 

)

 
 
 
 

+

+

(

 
 
 
 
 
 

{Г𝑛
2Г̂𝑛 ∙ 𝑒𝑥𝑝(𝑖�̃�𝜗,𝑛𝑇0) + 𝑐. 𝑐. } ∙

∙

{
  
 

  
 
𝜆𝑄
2(

𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝑇1,𝑛 + 𝑇1,𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛 − ℎ̃𝛩𝑛′𝑇1,𝑛′ +

+2(𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝑇2,𝑛 + 𝑇2,𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛 − ℎ̃𝛩𝑛′𝑇2,𝑛′)

)+

+
3

2
𝜆𝐶
2𝛩𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛′𝛩𝑛′ }
  
 

  
 

)

 
 
 
 
 
 

}
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Substituting �̃�𝑤,𝑛 = �̃�𝜗,𝑛 + 𝜖
2 ∙ 𝜎 we get the secular terms from the right-hand side of the governing 

equation. 

 

 ∑

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

−{𝑖�̃�𝜗,𝑛(2𝐷2Г𝑛 + 𝜈𝜗Г𝑛) + 𝑐. 𝑐. }𝛩𝑛 +

Г𝑛
2Г̂𝑛 ∙

{
  
 

  
 
𝜆𝑄
2(

𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝑇1,𝑛 + 𝑇1,𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛 − ℎ̃𝛩𝑛′𝑇1,𝑛′ +

+2(𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝑇2,𝑛 + 𝑇2,𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛 − ℎ̃𝛩𝑛′𝑇2,𝑛′)

) +

+
3

2
𝜆𝐶
2𝛩𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛′𝛩𝑛′ }
  
 

  
 

+

�̂�𝑛𝑍𝑛Г𝑛 ∙

{
 
 
 
 

 
 
 
 

𝜆𝑄
2

(

 
 
 
 

2(𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝑌2,𝑛 + 𝑌2,𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛 − ℎ̃𝛩𝑛′𝑌2,𝑛′)

+𝑊𝑛
𝑖𝑖(ℎ̃𝐻1,𝑛 + ℎ̃𝐻2,𝑛) + (𝐻1,𝑛

𝑖𝑖 +𝐻2,𝑛
𝑖𝑖) ∙ ℎ̃𝑊𝑛 +

−(ℎ̃𝑊𝑛′𝐻1,𝑛′ + ℎ̃𝑊𝑛′𝐻2,𝑛′) )

 
 
 
 

+

+𝜆𝐶
2(𝛩𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛′𝑊𝑛′ + 2𝑊𝑛
𝑖𝑖 ∙ ℎ̃𝑊𝑛′𝛩𝑛′) }

 
 
 
 

 
 
 
 

𝑍𝑛
2Г̂𝑛 ∙ 𝑒𝑥𝑝(𝑖2𝜎𝑇2)

{
  
 

  
 
𝜆𝑄
2(

𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝑌1,𝑛 + 𝑌1,𝑛

𝑖𝑖 ∙ ℎ̃𝛩𝑛 − ℎ̃𝛩𝑛′𝑌1,𝑛′

+𝑊𝑛
𝑖𝑖ℎ̃𝐻2,𝑛 +𝐻2,𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛 − ℎ̃𝑊𝑛′𝐻2,𝑛′

)+

+𝜆𝐶
2 (
1

2
𝛩𝑛
𝑖𝑖 ∙ ℎ̃𝑊𝑛′𝑊𝑛′ +𝑊𝑛

𝑖𝑖 ∙ ℎ̃𝑊𝑛′𝛩𝑛′) }
  
 

  
 

+
1

2
�̿�𝜗 ∙ 𝑒𝑥𝑝(𝑖(𝛺𝜗 − �̃�𝜗,𝑛)𝑇0)+ 𝑐. 𝑐. }

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

∞
𝑛=1 ∙ 𝑒𝑥𝑝(𝑖�̃�𝜗,𝑛𝑇0)  

 

Then assuming the solution format. 

 

 �̃�3(𝜉, 𝑇0, 𝑇2) = ∑ {𝛹𝑆,𝑛(𝜉, 𝑇0, 𝑇2) ∙ 𝑒𝑥𝑝(𝑖�̃�𝜗,𝑛𝑇0) + 𝛹𝑁𝑆,𝑛(𝜉, 𝑇0, 𝑇2) + 𝑐. 𝑐. }
∞
𝑛=1   

 

Substituting the solution in the left-hand side term, considering just secular contributions 𝛹𝑆,𝑛, multipling 

both the right 𝐹𝜗(𝜉) and left hand side terms by the adjoin function 𝑣(𝜉) and integrating on the unitary 

domain we get. 

 

 

{
 

 
𝛽2

𝜒2
∫  𝑣(𝜉) ∙ 𝛹𝑆,𝑛

𝑖𝑣𝑑𝜉
1

0
− (1 + 𝛽2) ∫  𝑣(𝜉) ∙ 𝛹𝑆,𝑛

𝑖𝑖𝑑𝜉
1

0
+

−𝐽�̃��̃�𝜗,𝑛
2
∫  v(𝜉) ∙ 𝛹𝑆,𝑛𝑑𝜉
1

0
+ 𝜆𝐿

2
∫  v(𝜉) ∙ ℎ̃𝛹𝑆,𝑛𝑑𝜉
1

0 }
 

 
= ∫  𝑣(𝜉) ∙ 𝐹𝜗(𝜉)𝑑𝜉

1

0
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Integrating by parts we get. 

 

 

{
  
 

  
 ∫ (

𝛽2

𝜒2
𝑣𝑖𝑣 − (1 + 𝛽2)𝑣𝑖𝑖 − 𝐽�̃��̃�𝜗,𝑛

2𝑣 + 𝜆𝐿
2ℎ̃𝑣)𝛹𝑆,𝑛𝑑𝜉

1

0
+

[
𝛽2

𝜒2
∙ (

𝑣 ∙ 𝛹𝑆,𝑛
𝑖𝑖𝑖 − 𝑣𝑖 ∙ 𝛹𝑆,𝑛

𝑖𝑖 +

+𝑣𝑖𝑖 ∙ 𝛹𝑆,𝑛
𝑖 − 𝑣𝑖𝑖𝑖 ∙ 𝛹𝑆,𝑛

)− (1 + 𝛽2) ∙ (𝑣 ∙ 𝛹𝑆,𝑛
𝑖 + 𝑣𝑖 ∙ 𝛹𝑆,𝑛)]

0

1

}
  
 

  
 

= ∫  𝑣(𝜉) ∙ 𝐹𝜗(𝜉)𝑑𝜉
1

0
 

 

Enforcing that the secular function 𝛹𝑆,𝑛 vanishes with its second derivative at the domain boundaries we get 

the self-adjoin homogeneous equation (
𝛽2

𝜒2
𝑣𝑖𝑣 − (1 + 𝛽2)𝑣𝑖𝑖 − 𝐽�̃��̃�𝜗,𝑛

2𝑣 + 𝜆𝐿
2ℎ̃𝑣 = 0) and proper 

boundary conditions for 𝑣(𝜉) defining the complete adjoin problem. The problem is identical to the one 

analysed for torsional linear eigen-properties, hence it admits the same solution. 

 

 𝑣(𝜉) = 𝛩𝑛(𝜉)  

 

Then the solvability condition required becomes as follows. 

 

 ∫  𝛩𝑛(𝜉) ∙ 𝐹𝜗(𝜉)𝑑𝜉
1

0
= 0 

 

Integrating by part and exploiting the boundary conditions proper for torsional linear modes we get 

the second ordinary differential equation governing the time variation (𝑇2) of flexural and torsional 

amplitudes. 

  

{

𝑖�̃�𝜗,𝑛(2𝐷2Г𝑛 + 𝜈𝜗Г𝑛) ∙ 𝑀𝜗,𝑛 + Г𝑛
2Г̂𝑛 ∙ 𝛼1,𝜗 +

+�̂�𝑛𝑍𝑛Г𝑛 ∙ 𝛼2,𝜗 + 𝑍𝑛
2Г̂𝑛 ∙ 𝑒𝑥𝑝(𝑖2𝜎𝑇2) ∙ 𝛼3,𝜗

} =
1

2
�̿�𝜗,𝑛 ∙ 𝑒𝑥𝑝(𝑖(𝛺𝜗 − �̃�𝜗,𝑛)𝑇0)  

 

Where we define the modal mass 𝑀𝜗,𝑛 and force �̿�𝜗,𝑛, plus other constant parameters. 

 

 𝑀𝜗,𝑛 = ∫ 𝛩𝑛
2𝑑𝜉

1

0
  

 

 𝛼1,𝜗 = 𝜆𝑄
2 {2 [ℎ̃𝛩𝑛 (ℎ̃𝛩𝑛′𝑇1,𝑛′ + 2ℎ̃𝛩𝑛′𝑇2,𝑛′)] + ℎ̃𝛩𝑛′𝛩𝑛′ (ℎ̃𝑇1,𝑛 + 2ℎ̃𝑇2,𝑛′)} +

3

2
𝜆𝐶
2(ℎ̃𝛩𝑛′𝛩𝑛′)

2
  

 

𝛼2,𝜗 = 𝜆𝑄
2

{
 
 

 
 2ℎ̃𝛩𝑛′𝛩𝑛′ℎ̃𝑌2,𝑛 + ℎ̃𝛩𝑛 (4ℎ̃𝛩𝑛′𝑌2,𝑛′ + ℎ̃𝑊𝑛′𝐻1,𝑛′

+ ℎ̃
𝑊𝑛

′𝐻2,𝑛
′) +

+ℎ̃
𝑊𝑛

′𝛩𝑛
′(ℎ̃𝐻1,𝑛 + ℎ̃𝐻2,𝑛) + ℎ̃𝑊𝑛 (ℎ̃𝛩𝑛′𝐻1,𝑛′

+ ℎ̃
𝛩𝑛
′𝐻2,𝑛

′)
}
 
 

 
 

+ 𝜆𝐶
2

{
 
 

 
 ℎ̃𝑊𝑛′𝑊𝑛′ℎ̃𝛩𝑛′𝛩𝑛′

+

+2 (ℎ̃
𝑊𝑛

′𝛩𝑛
′)
2

}
 
 

 
 

 

 

𝛼3,𝜗 = 𝜆𝑄
2

{
 

 ℎ̃𝛩𝑛′𝛩𝑛′ℎ̃𝑌1,𝑛 + ℎ̃𝛩𝑛 (2ℎ̃𝛩𝑛′𝑌1,𝑛′ + ℎ̃𝑊𝑛′𝐻2,𝑛′
) +

ℎ̃
𝑊𝑛

′𝛩𝑛
′ℎ̃𝐻2,𝑛 + ℎ̃𝑊𝑛ℎ̃𝛩𝑛′𝐻2,𝑛′ }

 

 

+ 𝜆𝐶
2

{
 
 

 
 
1

2
ℎ̃𝛩𝑛′𝑊𝑛′ℎ̃𝛩𝑛′𝛩𝑛′

+

+ (ℎ̃
𝑊𝑛

′𝛩𝑛
′)
2

}
 
 

 
 

 

 

 �̿�𝜗,𝑛 = ∫ 𝛩𝑛�̿�𝜗𝑑𝜉
1

0
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3.5. Governing equations 
 

We have already mentioned that the modal amplitudes are not constant in time. Hence assuming a sinusoidal 

variation, we can express the flexural and torsional amplitudes in polar form by means of the well-known 

Euler exponential complex formulation. 

 

This way we are able to distinguish explicitly between the actual amplitude and the phase lag. 

 

 𝑍𝑛(𝑇2) =
1

2
�̿�𝑛(𝑇2) ∙ 𝑒𝑥𝑝(𝑖𝛾𝑤,𝑛𝑇0) 

 

 Г𝑛(𝑇2) =
1

2
Г̿𝑛(𝑇2) ∙ 𝑒𝑥𝑝(𝑖𝛾𝜗,𝑛𝑇0) 

 

Substituting in the solvability conditions, we are able to distinguish the real from the imaginary part of 

equations. 

Finally, we come to a governing system of four ordinary differential equations of first order. 

 

 𝐷2�̿�𝑛 =
1

2
{
1

�̃�𝑤,𝑛
(�̿�𝑤,𝑛 ∙ 𝑠𝑖𝑛𝛿𝑤 −

1

4
𝛼3,𝑤 ∙ �̿�𝑛Г̿𝑛

2
∙ 𝑠𝑖𝑛𝛿1) − 𝜈𝑤�̿�𝑛}  

 

 𝐷2𝛾𝑤,𝑛 =
1

2

1

�̃�𝑤,𝑛
{
1

4
[𝛼1,𝑤 ∙ �̿�𝑛

2
+ Г̿𝑛

2
(𝛼2,𝑤 + 𝛼3,𝑤 ∙ 𝑐𝑜𝑠𝛿1)] − �̿�𝑤,𝑛 �̿�𝑛⁄ 𝑐𝑜𝑠𝛿𝑤}  

 

 𝐷2Г̿𝑛 =
1

2
{
1

�̃�𝜗,𝑛
(�̿�𝜗,𝑛 ∙ 𝑠𝑖𝑛𝛿𝜗 +

1

4
𝛼3,𝜗 ∙ Г̿𝑛�̿�𝑛

2
∙ 𝑠𝑖𝑛𝛿1) − 𝜈𝑤Г̿𝑛} 

 

 𝐷2𝛾𝜗,𝑛 =
1

2

1

�̃�𝜗,𝑛
{
1

4
[𝛼1,𝜗 ∙ Г̿𝑛

2
+ �̿�𝑛

2
(𝛼2,𝜗 + 𝛼3,𝜗 ∙ 𝑐𝑜𝑠𝛿1)] − �̿�𝜗,𝑛 Г̿𝑛⁄ 𝑐𝑜𝑠𝛿𝜗} 

 

Where we have define some new parameters in order to get autonomous equations (implicit time 

dependence). 

 

 𝛿1 = 2(𝛾𝜗,𝑛 − 𝛾𝑤,𝑛 − 𝜎 ∙ 𝑇2)  

 

 𝛿𝑤 = (𝛺𝑤 − �̃�𝑤,𝑛)𝑇0 − 𝛾𝑤,𝑛 

 

 𝛿𝜗 = (𝛺𝜗 − �̃�𝜗,𝑛)𝑇0 − 𝛾𝜗,𝑛 

 

3.5.1 Free undamped vibrations 

 
The case without external forcing and any damping sources will be analysed since it’s the simpler one and 

allows us to study the possibility of internal energy exchange between different modes due to one-to-one 

internal resonance. 

 

The governing equations can be written as follows. 

 

 𝐷2�̿�𝑛 = −
1

8

1

�̃�𝑤,𝑛
𝛼3,𝑤 ∙ �̿�𝑛Г̿𝑛

2
∙ 𝑠𝑖𝑛𝛿1  
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 𝐷2𝛾𝑤,𝑛 =
1

8

1

�̃�𝑤,𝑛
{𝛼1,𝑤 ∙ �̿�𝑛

2
+ Г̿𝑛

2
(𝛼2,𝑤 + 𝛼3,𝑤 ∙ 𝑐𝑜𝑠𝛿1)} 

 

 𝐷2Г̿𝑛 =
1

8

1

�̃�𝜗,𝑛
𝛼3,𝜗 ∙ Г̿𝑛�̿�𝑛

2
∙ 𝑠𝑖𝑛𝛿1 

 

 𝐷2𝛾𝜗,𝑛 =
1

8

1

�̃�𝜗,𝑛
{𝛼1,𝜗 ∙ Г̿𝑛

2
+ �̿�𝑛

2
(𝛼2,𝜗 + 𝛼3,𝜗 ∙ 𝑐𝑜𝑠𝛿1)} 

 

Further. 

 

 𝐷2𝛿1 = 2(𝐷2𝛾𝜗,𝑛 −𝐷2𝛾𝑤,𝑛 − 𝜎) =
1

4

{
 
 
 

 
 
 (

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
−

𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
) �̿�𝑛

2
+

+(
𝛼1,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
−

𝛼2,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
) Г̿𝑛

2
+

+(
𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
�̿�𝑛
2
−

𝛼3,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
Г̿𝑛
2
) ∙ 𝑐𝑜𝑠𝛿1}

 
 
 

 
 
 

− 2𝜎  

 

Let’s focus on particular conditions for which analytical solutions are feasible. 

 
a) Dominant flexural mode 

 

In this situation we are analysing the classical condition for suspension bridges. In fact we are searching for 

the torsional perturbation coming from a flexural vibration. Hence we will assume that there is no evident 

energetic exchange between the two motion, consequently the second order correction of flexural amplitude 

remains constant in time (�̿�𝑛(𝑇2) = �̿�𝑛,0) and the torsional one null (Г̿𝑛(𝑇2) = 0). Consequently we get 

that. 

 

 𝛾𝑤,𝑛 =
1

2
(𝜖 ∙ �̿�𝑛,0)

2 𝛼1,𝑤

4∙�̃�𝑤,𝑛∙𝑀𝑤,𝑛
𝜏 + 𝛾𝑤,𝑛0 

 

Notice that the subscript zero indicates initial conditions. 

 

Exploiting the polar form for vibration amplitudes and substituting these two conditions and inside the 

expressions for the linear 𝑤1, 𝜗1 and quadratic 𝑤2, 𝜗2 components of motion, we get the resultant vertical 

motion of the bridge’s deck axis. 

 

 𝑤𝑑(𝜉, 𝜏) = {

(𝜖 ∙ �̿�𝑛,0) ∙ 𝑐𝑜𝑠(�̃�𝑤,𝑛
𝑁𝐿 ∙ 𝜏 + 𝛾𝑤,𝑛0) ∙ 𝑊𝑛(𝜉) +

+
1

2
(𝜖 ∙ �̿�𝑛,0)

2
∙ {𝑐𝑜𝑠[2(�̃�𝑤,𝑛

𝑁𝐿 ∙ 𝜏 + 𝛾𝑤,𝑛0)] ∙ 𝑌1,𝑛(𝜉) + 𝑌2,𝑛(𝜉)}

} + 𝑜(𝜖3)  

 

Where we have introduce the nonlinear circular frequency. 

 

 �̃�𝑤,𝑛
𝑁𝐿 = �̃�𝑤,𝑛 + 𝜖

2𝐷2𝛾𝑤,𝑛 = �̃�𝑤,𝑛 +
1

2
(𝜖 ∙ �̿�𝑛,0)

2
∙

𝛼1,𝑤

4∙�̃�𝑤,𝑛∙𝑀𝑤,𝑛
+ 𝑜(𝜖3)  
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This is better known as the frequency-amplitude equation since it’s able to trace the variation of frequencies 

as the amplitudes of oscillations changes. This is a typical feature of nonlinear systems that can lead to the 

Jump Phenomenon according which not all the curve can be traced since the system prefer to minimize 

energy in a more stable configuration. In fact the classical straight line of linear system, that represent a 

constant frequency for any amplitudes, as the latter grow it is curved toward higher frequencies, if the 

nonlinear system has a stiffening behaviour, and toward lower frequencies, if the system has a softening 

behaviour. This means that as the downward motion is dominant we expect a hardening of the suspension 

bridge because cable stiffening behaviour grows, contrary a softening one as dominant upward motion 

occurs. This is known a priori simply checking the sign of 𝛼1,𝑤 since would be positive for hardening and 

negative for softening behaviour. In the particular case in which 𝛼1,𝑤 = 0 we get a linear response since 

nonlinearities balance themselves. 

We notice that vertical oscillations are a superposition of dominant linear oscillation with frequency �̃�𝑤,𝑛
𝑁𝐿  

and a second order correction oscillating with double frequency with a phase shift 𝛾𝑤,0 constant in time. 

Further the latter introduce a vertical translation of displacements 𝑌2,𝑛(𝜉), meaning that the bridge will not 

oscillate around the undeformed configuration 𝑤𝑑 = 0. 

Finally it’s fundamental to notice that flexural motion is not able to give any contribution to the torsional 

motion. This is due to the fact that the flexural motion alone is not able to introduce sectional asymmetries 

in the response of the suspension bridge, since cables perform the same stiffening behaviour, that is both 

hardening or softening. 

 

b) Dominant torsional mode 

 

The initial assumption Г̿𝑛(𝑇2) = Г̿𝑛,0 and �̿�𝑛(𝑇2) = 0 allow us to write. 

 

 𝛾𝜗,𝑛 =
1

2
(𝜖 ∙ Г̿𝑛,0)

2 𝛼1,𝜗

4∙�̃�𝜗,𝑛∙𝑀𝜗,𝑛
𝜏 + 𝛾𝜗,𝑛0 

 

Exploiting polar form for amplitudes and the two assumptions made we get the following resultant motions. 

 

 𝑤𝑑(𝜉, 𝜏) =
1

2
(𝜖 ∙ Г̿𝑛,0)

2
{(𝜖 ∙ �̿�𝑛,0) ∙ 𝑐𝑜𝑠[2(�̃�𝜗,𝑛

𝑁𝐿 ∙ 𝜏 + 𝛾𝜗,𝑛0)] ∙ 𝑇1,𝑛(𝜉) + 𝑇2,𝑛(𝜉)} + 𝑜(𝜖
3)  

 

 𝜗𝑑(𝜉, 𝜏) = (𝜖 ∙ Г̿𝑛,0) ∙ 𝑐𝑜𝑠(�̃�𝜗,𝑛
𝑁𝐿 ∙ 𝜏 + 𝛾𝜗,𝑛0) ∙ 𝛩𝑛(𝜉) + 𝑜(𝜖

3)  

 

Where the nonlinear torsional frequency becomes. 

 

 �̃�𝜗,𝑛
𝑁𝐿 = �̃�𝜗,𝑛 + 𝜖

2𝐷2𝛾𝜗,𝑛 = �̃�𝜗,𝑛 +
1

2
(𝜖 ∙ Г̿𝑛,0)

2
∙

𝛼1,𝜗

4∙�̃�𝜗,𝑛∙𝑀𝜗,𝑛
+ 𝑜(𝜖3)  

 

It’s interesting to notice that torsional motion has just the linear contribution. In fact, as just torsional motion 

is present the additional stiffness given by cables nonlinear behaviour vanishes since each cable gives equal 

contribution but with opposite sign. Contrary torsional vibrations are able to perturb the flexural ones by 

means of a second order contribution. This is because the reference system is positioned in the mass centre 

of the deck section, not in the stiffness one. Consequently, a torsional motion is able to introduce an 

asymmetric response in the section that led the centre of mass to move in the vertical direction since the 

stiffness centre changes position as amplitudes vary. Notice that the vertical oscillations are two time faster 

than the torsional ones but start with the same phase lag, being activated by the latter. Further 𝑇2,𝑛(𝜉) drift 

the flexural motion to vibrate not in the neighbourhood of the initial undeformed configuration. Once again 

the sign of 𝛼1,𝜗 govern the hardening and softening behaviour of the response. 
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c) Modal energy exchange 

 

This time we will consider the more general condition, for which both the flexural and the torsional motions 

are activated and internal energy exchange occurs between the two. Consequently nor �̿�𝑛(𝑇2) nor Г̿𝑛(𝑇2) 

assume a priori constant values with passing of time. 

Recalling that the operator 𝐷2 simply represent the first order derivative with respect to the second order 

time scale 𝑇2, we can write the ratio between the equations governing the time variation of �̿�𝑛 and Г̿𝑛. 

 

 𝐷2�̿�𝑛 𝐷2Г̿𝑛⁄ = 𝑑�̿�𝑛 𝑑Г̿𝑛⁄ = −𝛼3,𝑤 𝛼3,𝜗⁄ ∙ �̃�𝜗,𝑛 �̃�𝑤,𝑛⁄ ∙ 𝑀𝜗,𝑛 𝑀𝑤,𝑛⁄ ∙ Г̿𝑛 �̿�𝑛⁄  

 

Separating variables and integrating with respect to amplitudes we get. 

 

 �̿�𝑛
2
+ {(𝛼3,𝑤 ∙ �̃�𝜗,𝑛 ∙ 𝑀𝜗,𝑛) (𝛼3,𝜗 ∙ �̃�𝑤,𝑛 ∙ 𝑀𝑤,𝑛)⁄ } ∙ Г̿𝑛

2
= �̿�0 

 

Where the constant of integration �̿�0 is proportional to the initial total energy stored by the isolated system. 

Notice that as far as 𝛼3,𝑤 and 𝛼3,𝜗 have the same sign, �̿�0 must be positive definite at any time instant. This 

means that the system is isolated, and consequently flexural and torsional amplitudes are bounded being the 

system energetic level of the system constant. Conversely, as the two parameters has opposite signs then 

the initial energy is no more positive definite, meaning that in the system there are regenerative elements 

like sources and sinks of energy. Being the system no more isolated, oscillations can grow or decrease 

indefinitely. 

In the following, for sake of simplicity, we will consider systems completely isolated. 

 

Let’s transform the energetic relation. First, introduce some differential equalities. Making use of the 

differential format for the energetic equation we get. 

 

 𝑑 (
1

8

1

�̃�𝜗,𝑛
𝛼3,𝜗 ∙ Г̿𝑛

2
�̿�𝑛
2
∙ 𝑐𝑜𝑠𝛿1) =

{
 
 

 
 
1

4
(

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
�̿�𝑛
2
−

𝛼3,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
Г̿𝑛
2
) ∙ 𝑐𝑜𝑠𝛿1 ∙ Г̿𝑛𝑑Г̿𝑛 +

−
1

8

1

�̃�𝜗,𝑛
𝛼3,𝜗 ∙ Г̿𝑛

2
�̿�𝑛
2
∙ 𝑠𝑖𝑛𝛿1 ∙ 𝑑𝛿1 }

 
 

 
 

  

 

Further explicating 𝑇2 from the equation governing the time variation of the torsional amplitude we get. 

 

 Г̿𝑛𝐷2𝛿1 = Г̿𝑛(𝑑𝛿1 𝑑𝑇2⁄ ) =
1

8

1

�̃�𝜗,𝑛
𝛼3,𝜗 ∙ Г̿𝑛

2
�̿�𝑛
2
∙ 𝑠𝑖𝑛𝛿1 ∙ 𝑑𝛿1 𝑑Г̿𝑛⁄  

 

Then explicating the definition of 𝐷2𝛿1, making use of the energetic relation between �̿�𝑛
2

 and Г̿𝑛
2

  

and exploiting the first differential relation just fount we get, after integration with respect to Г̿𝑛. 

 

 
1

8

1

�̃�𝜗,𝑛
𝛼3,𝜗 ∙ Г̿𝑛

2
�̿�𝑛
2
∙ 𝑐𝑜𝑠𝛿1 =

{
 
 
 

 
 
 [

1

4
(

𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) �̿�0 + 2𝜎]

Г̿𝑛
2

2
+

+
1

4

[
 
 
 
 (

𝛼2,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼1,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) +

−(
𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) (

𝛼3,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
⁄ )

]
 
 
 
 
Г̿𝑛
2

4
+ 𝐶

}
 
 
 

 
 
 

   (𝑎)  



191 
 

 

In order to decouple variables �̿�𝑛 and Г̿𝑛 we may introduce a unique parameter able to define both of 

them. 

Thanks to the fact that initial energy �̿�0 remains the same, we can take as reference parameter the 

exchange ratio between the flexural and torsional modes, called 휁. 

 

 Г̿𝑛
2
= 휁 ∙ �̿�0 ⇒ �̿�𝑛

2
= (𝛼3,𝜗 ∙ �̃�𝑤,𝑛 ∙ 𝑀𝑤,𝑛) (𝛼3,𝑤 ∙ �̃�𝜗,𝑛 ∙ 𝑀𝜗,𝑛)⁄ ∙ (1 − 휁)�̿�0 

 

Consequently, we can write. 

 

 𝐷2Г̿𝑛
2
= 2Г̿𝑛𝐷2Г̿𝑛 = 4(

𝛼3,𝑤

8�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)
2

(
𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛

𝛼3,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
⁄ )

2

휁2(1 − 휁)2�̿�0
4
𝑠𝑖𝑛2𝛿1 

 

Then exploiting the latter energetic relations in the relation (a), adding and subtracting to 𝐷2Г̿𝑛
2
 the 

right and left hand side term of the same equality (a) we get. 

 

 (𝐷2휁)
2 = (

𝛼3,𝜗

4�̃�𝜗,𝑛∙𝑀𝜗,𝑛
)
2

�̿�0
2
∙ {𝐹2(휁) − 𝐺2(휁)} 

 

Where. 

  

 𝐹2(휁) = 휁2(1 − 휁)2  

 

𝐺2(휁) =

{
 
 
 
 

 
 
 
 {

1

8
(

𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) �̿�0 + 𝜎} (

𝛼3,𝜗
�̃�𝜗,𝑛∙𝑀𝜗,𝑛
𝛼3,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛

) (1 − 휁)�̿�0 +

+
1

16

[
 
 
 
 
 (

𝛼2,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼1,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) +

−(
𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
)(

𝛼3,𝑤
�̃�𝑤,𝑛∙𝑀𝑤,𝑛

𝛼3,𝜗
�̃�𝜗,𝑛∙𝑀𝜗,𝑛

)
]
 
 
 
 
 

(

𝛼3,𝜗
�̃�𝜗,𝑛∙𝑀𝜗,𝑛
𝛼3,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛

)

2

(1 − 휁)2�̿�0
2
+ 𝐶

}
 
 
 
 

 
 
 
 
2

(
𝛼3,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)
2

(
𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
)
4

�̿�0
4
  

 

Hence we need to perform numerical integration of a nonlinear ordinary differential equation to 

get the transient path. 

 

 ∫ 𝑑휁 √𝐹2(휁) − 𝐺2(휁)⁄
휁

휁0
= (

𝛼3,𝜗

4�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) �̿�0𝑇2 
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Notice that to get real amplitudes we need a positive radicand, meaning 𝐹2(휁) > 𝐺2(휁). Whilst stationary 

response can be defined analytically as 𝑇2 →∞ leading to 𝐹2(휁) = 𝐺2(휁). This does not mean that 

amplitudes remains constant in time but can still vary though in a regular path. 

 

 
Figure 3.1_Functions governing the internal energy exchange. 

 

  

Let’s consider some particular conditions. 

 

 Amplitude and phase modulation 

 
The stationary condition is a fourth order equation leading to four roots. Hence we may assume that 휁𝑖 <

휁𝑖+1 with 𝑖 = 1,… ,4. However since the system is isolated, only the roots satisfying 0 < 휁𝑖 < 1 are feasible. 

Hence we can say that 휁 must oscillates periodically between 휁2 and 휁3 at passing of time. In fact energy 

transfer occurs, and consequently flexural and torsional amplitudes vary periodically in time leading to an 

aperiodic motion in terms of 𝑤𝑑 and 𝜗𝑑 since amplitudes are modulated like in the beatment phenomenon. 

 

 
Figure 3.2_Amplitude modulation in time. 

Since the equations governing the phase modulation in time are strictly dependent on amplitudes, we can 

say that also phase lags are aperiodic. 

 



193 
 

 Phase modulation 

 
This particular condition occurs only in the case in which the stationary condition gives only one root, leading 

to constant amplitudes. This does not mean that amplitudes remain equal to the ones dictated by initial 

conditions. In fact the initial energy, during the transitory, can flow through the flexural and torsional 

amplitudes as the system prefer in order to minimize potential energy. Once a stable condition is reached, 

amplitudes does not vary any more since initial repartition of energy is fixed. 

Hence enforcing constancy of amplitudes (𝐷2�̿�𝑛 = 𝐷2Г̿𝑛 = 0) we get that the condition is satisfied as far as 

𝛿1 = 𝑛𝜋 with 𝑛 ∈ 𝑁. Consequently, 𝑐𝑜𝑠𝛿1 = ±1 depending on the choice of 𝑛. Hence substituting in the 

equation governing the phase lags, lead to a linear growth in time of 𝛾𝑤,𝑛 and 𝛾𝜗,𝑛 being 𝐷2�̿�𝑛 and 𝐷2�̿�𝑛 

constant. The fact that amplitudes remains constant grant the nonlinear frequencies to be constant in time 

too. 

Further, another phenomenon can be observed. 

 

 �̃�𝜗,𝑛
𝑁𝐿 − �̃�𝑤,𝑛

𝑁𝐿 = (�̃�𝜗,𝑛 − �̃�𝑤,𝑛) + 𝜖
2(𝐷2𝛾𝜗,𝑛 − 𝐷2𝛾𝑤,𝑛) = 𝜖

2(𝐷2𝛾𝜗,𝑛 − 𝐷2𝛾𝑤,𝑛 − 𝜎) =
1

2
𝜖2𝐷2𝛿1 

 

Being 𝛿1 = 𝑛𝜋 lead to �̃�𝜗,𝑛
𝑁𝐿 = �̃�𝑤,𝑛

𝑁𝐿  meaning that nonlinearities adjust the phase lag between the flexural 

and torsional motion so that the respective frequencies coalesce. This is the well-known Synchronization or 

Entrainment phenomenon and has been a great issue to be solved in the past, when clock pendulum where 

the only available instruments for time measurement at least during daytime. 

 

 Amplitude modulation 

 

We are looking for stationary phases enforcing 𝐷2𝛾𝑤,𝑛  = 𝐷2𝛾𝜗,𝑛 = 0. Explicating both the conditions 

with respect to 𝑐𝑜𝑠𝛿1 and equating the two expressions fount we get. 

 

 {𝛼1,𝑤𝛼3,𝜗�̿�𝑛
4
+ (𝛼2,𝑤𝛼3,𝜗 − 𝛼2,𝜗𝛼3,𝑤)�̿�𝑛

2
Г̿𝑛
2
− 𝛼1,𝜗𝛼3,𝑤Г̿𝑛

4
} (�̿�𝑛

2
Г̿𝑛
2
𝛼3,𝑤𝛼3,𝜗)⁄ = 0 

 

That together with the energetic relation between amplitudes is able to give us the time variation of �̿�𝑛 and 

Г̿𝑛. Since the governing equations are not directly dependent on time, the system gives us constant 

amplitudes as in periodic motion. We conclude saying that is not possible to have just pure amplitude 

modulation. 

Slight different is the condition for the phase lag 𝛿1to be periodic, meaning 𝐷2𝛾𝑤,𝑛 − 𝐷2𝛾𝜗,𝑛 = 0 hence 

the stationarity of phases is just a special subcase. 

 

 𝐷2𝛿1 = 0⇔ 𝑑휁2 + 𝑒휁 + 𝑓 = 0 

 

Where. 

 

 𝑑 =

{
 
 

 
 (

𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) [
3

2
+ 2

𝛼3,𝑤

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
] +

−
1

2
(

𝛼2,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼1,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) (

𝛼3,𝑤

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)⁄ +

8

�̿�0
(
2𝐶

�̿�0
− 𝜎) (

𝛼3,𝑤

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)
}
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 𝑒 =

{
 
 

 
 −(2 +

𝛼3,𝑤

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
) +

+(
𝛼2,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼1,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) (

𝛼3,𝑤

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)⁄ +

8

�̿�0
(
2𝐶

�̿�0
− 𝜎) (

𝛼3,𝑤

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)
}
 
 

 
 

 

 

 𝑓 =

{
 
 

 
 

1

2
(

𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) +

−
1

2
(

𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼1,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) (

𝛼3,𝑤

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)⁄ −

8

�̿�0
𝐶 (

𝛼3,𝑤

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)
}
 
 

 
 

  

 

 

Let’s analyse the steady response in time of the system as different initial conditions are enforced. 

First, let’s write the stationarity condition in a compact format. 

 

 ±𝐹(휁) = 𝐺(휁) ⇒ ±휁(1 − 휁) = 𝑎(1 − 휁) + 𝑏(1 − 휁)2 + 𝑐 

 

Where. 

 

 𝑎 = {
1

8
(

𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) �̿�0 + 𝜎} (

𝛼3,𝜗

8�̃�𝜗,𝑛∙𝑀𝜗,𝑛
�̿�0)⁄  

 

 𝑏 =
1

16

{
 
 

 
 (

𝛼2,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼1,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) +

−(
𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
)(

𝛼3,𝑤
�̃�𝑤,𝑛∙𝑀𝑤,𝑛

𝛼3,𝜗
�̃�𝜗,𝑛∙𝑀𝜗,𝑛

)
}
 
 

 
 

(
𝛼3,𝑤

8�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)⁄  

 

 𝑐 = 𝐶 {
𝛼3,𝑤

8�̃�𝑤,𝑛∙𝑀𝑤,𝑛
(

𝛼3,𝜗

8�̃�𝜗,𝑛∙𝑀𝜗,𝑛
�̿�0)

2

⁄ } 

 

The solutions can be written as. 

 

 휁1,2 = ((𝑎 + 2𝑏 ± 1) ± √(𝑎 + 2𝑏 ± 1)
2 − 4(𝑏 ± 1)(𝑎 + 𝑏 + 𝑐)) (2(𝑏 ± 1))⁄  

 

Searching for periodic solutions we get that 휁1 = 휁2 as long as the radicand vanishes. 

 

휁1,2 = 휁𝑝 = (𝑎 + 2𝑏 ± 1) (2(𝑏 ± 1))⁄ ⇔ 𝑐 = (1 + 𝑎2 ∓ 2𝑎) (4(𝑏 ± 1))⁄   

 

In order to explicit this condition we need first recall the fact that the constant 𝐶 depends on initial energetic 

conditions. 

 

 𝐶 = (
𝛼3,𝜗

8�̃�𝜗,𝑛∙𝑀𝜗,𝑛
�̿�0)

2

(
𝛼3,𝑤

8�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)⁄ {휁0(1 − 휁0)𝑐𝑜𝑠𝛿1,0 − 𝑎(1 − 휁0)− 𝑏(1 − 휁0)

2} 
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Hence we can explicit the periodicity condition as follows. 

 

 {휁0(1 − 휁0)𝑐𝑜𝑠𝛿1,0 − 𝑎(1 − 휁0)− 𝑏(1 − 휁0)
2} = (1 + 𝑎2 ∓ 2𝑎) (4(𝑏 ± 1))⁄  

 

Since periodicity of amplitudes means 𝐷2�̿�𝑛 = 𝐷2Г̿𝑛 = 0, as already seen, we get from both the governing 

differential equations that 𝛿1 = 𝛿1,0 = 𝑛𝜋 and hence the periodic solutions can be defined. 

 

 휁0,𝑝 = 휁𝑝 {1 ± √1 − (𝑏 + (−1)^𝑛) (𝑏 ± 1)⁄ } = 휁𝑝⇔{

𝐹(휁) = 𝐺(휁) ; 𝑛 𝑒𝑣𝑒𝑛

𝐹(휁) = −𝐺(휁) ; 𝑛 𝑜𝑑𝑑
 

 

This means that the periodic condition can be reached only in the case in which the initial repartition of 

energy is already the one that would be at steady state periodic conditions. Meaning that periodic conditions 

are very unstable and rare to occur, but anyway feasible. 

 

Let’s analyse the extreme values reached by the constant 𝐶 as initial conditions vary. 

 

 𝜕𝐶 𝜕𝛿1,0⁄ = 0⇔

{
  
 

  
 휁0 = 0⇒ 𝜕𝐶 𝜕휁0⁄ = 0⇔ 𝑐𝑜𝑠𝛿1,0 = −(𝑎 + 2𝑏) ⇒ 휁𝑠𝑡 = [0 ;  휁𝐿 = 2휁0,𝑝]

휁0 = 1 ⇒ 𝜕𝐶 𝜕휁0⁄ = 0⇔ 𝑐𝑜𝑠𝛿1,0 = 𝑎⇒ 휁𝑠𝑡 = [휁𝑈 =
𝑎+𝑏

𝑏±1
 ;  1] 

𝛿1,0 = 𝑛𝜋⇒𝜕𝐶 𝜕휁0⁄ = 0⇔ 휁0 = 휁𝑝

 

 

Where we have introduced the so-called lower and upper aperiodic regime thresholds 휁𝐿 and 휁𝑈, where as 

the name suggest there will be exchange of energy between modes at passing of time. Notice that we must 

pay attention to chose a sign for 휁𝑈 granting 휁 to be bounded between 0 and 1. Further it’s clear that as initial 

conditions are stationary points for 𝐶(휁0,𝛿1,0) then the steady state conditions of the system will 

oscillate between two configurations of which one is represented by the initial condition itself. 

Hence the system will return periodically to the initial conditions.Then looking for the concavity of the 

stationary points for 𝐶(휁0,𝛿1,0). 

Being. 

 

 {

𝜕2𝐶 𝜕𝛿1,0
2⁄ > 0⇔ 𝑐𝑜𝑠𝛿1,0 < −𝑏

𝜕2𝐶 𝜕휁
0
2⁄ > 0⇔ 𝑐𝑜𝑠𝛿1,0 < 0
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Then we can say that. 

 

 

{
 
 
 

 
 
 휁0 = 0 ; 𝑐𝑜𝑠𝛿1,0 = −(𝑎+ 2𝑏) ⇒ 𝜕

2𝐶 𝜕𝛿1,0
2

⁄ = 0 ;  𝜕2𝐶 𝜕휁0
2⁄ > 0

휁0 = 1 ;  𝑐𝑜𝑠𝛿1,0 = 𝑎⇒ 𝜕
2𝐶 𝜕𝛿1,0

2
⁄ = 0 ;  𝜕2𝐶 𝜕휁0

2⁄ > 0⇔ 𝑎 < −𝑏

𝛿1,0 = 𝑛𝜋 ;  휁0 = 휁𝑝 ⇒𝜕
2𝐶 𝜕𝛿1,0

2
⁄ > 0⇔ 𝑛 𝑜𝑑𝑑 ;  𝜕2𝐶 𝜕휁0

2⁄ > 0⇔ {
𝑏 < −1 ;  𝑛 𝑒𝑣𝑒𝑛

𝑏 > 1 ;  𝑛 𝑜𝑑𝑑

 

 

Let’s perform a simple parametric analysis of initial conditions. 

 

 휁0 = 0⇒ {

휁𝐿 = 0⇔ 𝑎 + 2𝑏 ± 1 = 0⇔ �̿�0 = �̿�0,1

휁𝐿 = 1⇔ 𝑎 + 𝑏 = 0⇔ �̿�0 = �̿�0,2

 

 

 휁0 = 1⇒ {

휁𝑈 = 0⇔ 𝑎 + 𝑏 = 0⇔ �̿�0 = �̿�0,3

휁𝑈 = 1⇔ 𝑎 = ±1⇔ �̿�0 = �̿�0,2

 

 

 휁0 = 휁𝑝⇒

{
 

 휁𝑝 = 0⇔ 𝑎 + 2𝑏 ± 1 = 0⇔ �̿�0 = �̿�0,1

휁𝑝 = 1⇔ 𝑎 = ±1⇔ �̿�0 = �̿�0,2

 

 

Where. 

 

 �̿�0,1 = 𝜎
𝛼3,𝑤

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
{(

𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
) ∓

𝛼3,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
}⁄  

 

 �̿�0,2 = 2𝜎
𝛼3,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
{

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
(

𝛼1,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
−

𝛼2,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
) −

𝛼3,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
(

𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
)}⁄  

 

�̿�0,3 = 𝜎 {±
𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
− (

𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
−

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
)}⁄   

 

Hence, we have found the initial total energy required to get pure translational and rotational vibrations, and 

the one that grant periodic transition between the two extreme conditions. 

 

Finally, we can perform a stability analysis of initial conditions simply analysing the perturbed configuration.  

 

 휁 = 휁0 + ∆휁 

 

 𝛿1 = 𝛿1,0 + ∆𝛿 

 

Since the perturbations ∆휁 = ∆휁(𝑇2) and ∆𝛿 = ∆𝛿(𝑇2) vary in time, the expressions for 𝐷2(�̿�𝑛)
2

 and 𝐷2𝛿  

can be written in terms of energy ratio 휁 as follows. 
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Further assuming small but finite perturbations we can focus just on linear terms and make the usual 

simplifications for trigonometric functions in presence of small angles. 

 

 𝐷2∆휁 = −
𝛼3,𝜗

4�̃�𝜗,𝑛∙𝑀𝜗,𝑛
�̿�0 ∙ 휁(1 − 휁) ∙ 𝑠𝑖𝑛𝛿1 ≅ −

𝛼3,𝜗

4�̃�𝜗,𝑛∙𝑀𝜗,𝑛
�̿�0 ∙ {

[(1 − 2휁0) ∙ 𝑠𝑖𝑛𝛿1,0]∆휁 +

+[휁0(1 − 휁0) ∙ 𝑐𝑜𝑠𝛿1,0]∆𝛿

} 

 

 𝐷2∆𝛿 =
1

4

{
 
 
 

 
 
 (

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
−

𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
) �̿�0휁 +

+(
𝛼1,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
−

𝛼2,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
) (

𝛼3,𝑤

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)⁄ �̿�0(1 − 휁) +

−
𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
�̿�0(1 − 2휁) ∙ 𝑐𝑜𝑠𝛿1 }

 
 
 

 
 
 

− 2𝜎  

 

≅
�̿�0

4
∙

{
 
 
 
 

 
 
 
 

[
 
 
 
 
 
 

𝛼2,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
−

𝛼1,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
+

−(
𝛼1,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
−

𝛼2,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
) (

𝛼3,𝑤

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)⁄ +

+2
𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
∙ 𝑐𝑜𝑠𝛿1,0 ]

 
 
 
 
 
 

∆휁 +

+ [
𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
(1 − 2휁0) ∙ 𝑐𝑜𝑠𝛿1,0] ∆𝛿 }

 
 
 
 

 
 
 
 

  

 

Assuming the usual polar format for perturbations ∆휁 = ∆휁̿̿ ̿ ∙ exp (𝜆𝑇2) and ∆𝛿 = ∆𝛿̿̿̿̿ ∙ exp (𝜆𝑇2) we can 

enforce the vanishing of the determinant for the previous linear homogeneous system in order to get non-

trivial solutions. Hence, we find the analytical expression for the exponential parameter. 

 

 𝜆 = ±
�̿�0

4

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
√(1 − 2휁0)

2𝑠𝑖𝑛2𝛿1,0 − (
𝜕2𝐶

𝜕𝛿1,0
2

𝜕2𝐶

𝜕 0
2) [(

𝛼3,𝜗

8�̃�𝜗,𝑛∙𝑀𝜗,𝑛
�̿�0)

2

(
𝛼3,𝑤

8�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)⁄ ]

2

⁄  

 

Necessary and sufficient condition to get bounded response of the system is the exponential parameter to 

be imaginary. 

 

𝜕2𝐶

𝜕𝛿1,0
2

𝜕2𝐶

𝜕휁0
2 > [(

𝛼3,𝜗

�̃�𝜗,𝑛∙𝑀𝜗,𝑛
�̿�0)

2

8 (
𝛼3,𝑤

�̃�𝑤,𝑛∙𝑀𝑤,𝑛
)⁄ ]

2

(1 − 2휁
0
)
2
𝑠𝑖𝑛2𝛿1,0  

 
Hence, the most general stability condition can be written more synthetically. 

 

 2휁0(1 − 휁0) ∙ 𝑐𝑜𝑠𝛿1,0(𝑏 + 𝑐𝑜𝑠𝛿1,0) > (1 − 2휁0)
2𝑠𝑖𝑛2𝛿1,0 

 

It’s evident the important role played by the curvature of the function 𝐶(휁0,𝛿1,0) that we have 

deeply analysed. 
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Let’s analyse the main possible initial conditions. 

 

 휁0 =
1

2
 𝑎𝑛𝑑/𝑜𝑟 𝛿1,0 = 𝑛𝜋⇒

𝜕2𝐶

𝜕𝛿1,0
2

𝜕2𝐶

𝜕 0
2 > 0⇔𝑐𝑜𝑠𝛿1,0 < 𝑚𝑖𝑛{−𝑏 ; 0} 

 

 휁0 = [0 ; 1] ⇒ 0 > 𝑠𝑖𝑛
2𝛿1,0⇒𝑛𝑒𝑣𝑒𝑟 𝑠𝑡𝑎𝑏𝑙𝑒 

 

 𝛿1,0 = (2𝑛 + 1)
𝜋

2
⇒ 0 > ±(1 − 2휁

0
)
2
⇔ {

𝑎𝑙𝑤𝑎𝑦𝑠 𝑠𝑡𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑛 𝑜𝑑𝑑

𝑛𝑒𝑣𝑒𝑟 𝑠𝑡𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑛 𝑒𝑣𝑒𝑛
 

 

Notice that we are able just to detect the regions where stability is granted, hence when initial conditions 

does not grant it we cannot say that conditions are surely unstable since may be indifferent. Further in 

general we can talk of strong instability when both the perturbations grows in time, whilst we have weak 

instability as 𝛿1,0 diverges and 휁0 → 0.  
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4. Slackening of hangers 

 
As we have mentioned many time in the previous treatment, that the proposed model is a continuous 2 dof 

representation of a generic suspension bridge. Hence we make very restrictive hypothesis as for example we 

neglect the third degree of freedom associated to lateral displacement of the deck since it has generally small 

effects on the critical Flutter threshold  due to the fact that the lateral displacement given by drag aeroelastic 

forces introduces small rotation of the deck cross sections. Another important hypothesis is the assumption 

of perfectly rigid pylons in order to neglect their relative displacement in correspondence of the main cables, 

assumption that allow us to neglect longitudinal displacements of cables and hence ensure that the non-local 

cables stiffening contribution to be a constant term. 

 

Since the main goal of the present work is to obtain a reliable simple but sufficiently accurate sectional 

nonlinear model of a generic suspension bridge the previous two contributions can be easily neglected. 

What we continue to neglect in the equivalent sectional model is the possibility that hangers undergo to 

slackening. Since this contribution has an important effect on the structural response both during large 

oscillations and at Flutter threshold, due to the fact that it introduces a high variation of the actual stiffness 

of the structural system, we want to make our model capable to catch this phenomenon. 

 

Previously we mentioned the fact that to model precisely the actual behaviour of hangers it’s necessary to 

increase the number of the dof from 2 to 4. In fact just in the latter kind of models is possible to introduce 

an appropriate constitutive model that is able to capture the linear elastic response of hangers in tension and 

their slackening in compression due to the very high slenderness that characterised these structural 

elements. For better representation of the actual behaviour of hangers is also possible to introduce a 

constitutive model properly tuned so that it is able to catch the initial stretch induced by self-weight of the 

stiffening girder. Notice that we want to consider just non linearity coming from geometrical effects hence 

all material hardening or softening behaviour and yielding condition will be neglected. 

 

Hence in order to remain in the field of a 2 dof model we need to introduce some simplifications in the 

hangers’ behaviour. 

Up to now we make the easiest assumption considering hangers perfectly rigid both in tension and in 

compression, in order to neglect all problems related to their slackening. 

 

The further and immediate improvement of the model would be to model the hangers as perfectly rigid in 

tension and perfectly flexible in tension. This assumption is a crude representation of the actual behaviour 

of hangers, but it’s able to catch the main feature of their structural response. In fact is a good representation 

of both the tension response of real bridges during serviceability conditions where hangers remains in the 

linear branch also during large displacements and of the compression response once the displacements are 

enough large to grant slackening, overcoming the initial tensile stretch. In terms of constitutive model it’s 

like if we introduce a perfectly tenso-rigid material behaviour. 

 

The curtain assumption allows us to consider hangers as uniformly smeared along the bridge’s span, losing 

the actual local effect due to their effective location. Hence the local contribution given by slackening of 

hanger is approximate also in term of the actual position in which hangers could effectively undergo to 

slackening. 
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The first step is to find out a proper limit condition able to distinguish between taut and slack hangers. As 

long as hangers remains taut, thanks to the tenso-rigid model assumed, they are able to transfer the loads 

acting on the stiffening girder to the main cable of pertinence depending on the side of the deck to which it 

belongs to. While in those region where the vertical displacement on one side of the bridge, due to the 

combination of flexural and torsional vibrations, are so high that slackening occurs consequently the loads 

acting on the deck cannot be sustained by the deck and cables system. In fact locally one or both cables are 

no more loaded by the action of external forces, hence this surplus of energy has to be absorbed by the 

remaining stiff part of the deck and cables system. Hence as usual a flow of forces occurs and it moves from 

the flexible elements towards stiff ones. 

 
4.1 Modified equations of motion 
 

In order to find out a proper threshold condition for slackening initiation is necessary to reformulate the 

equations of motion from the beginning starting from the Total Potential Energy Variation. 

 

 ∆𝑉(𝑤𝑑 , 𝜗𝑑 , 𝑞, 𝑚) =

{
  
 

  
 ∫ (

1

2
𝐸𝑑𝐼𝑑 ∙ 𝑤𝑑

′′2 +
1

2
𝐸𝑑𝛤𝑑 ∙ 𝜗𝑑

′′2 +
1

2
𝐺𝑑𝐽𝑑 ∙ 𝜗𝑑

′2 − 𝑞 ∙ 𝑤𝑑 −𝑚 ∙ 𝜗𝑑) 𝑑𝑥
𝑙

0
+

+∫ {
1

2
𝐻 ∙ (𝑤𝑑

′ + 𝑏𝜗𝑑
′)2 + ∫ ℎ+(𝑤𝑅) ∙ (𝑦

′ +𝑤𝑅
′ )𝑑𝑤𝑅

′𝑤𝑅
′

0
} 𝑑𝑥

𝑙𝑅
+

0
+

+∫ {
1

2
𝐻 ∙ (𝑤𝑑

′ − 𝑏𝜗𝑑
′)2 + ∫ ℎ+(𝑤𝐿) ∙ (𝑦

′ +𝑤𝐿
′)𝑑𝑤𝐿

′𝑤𝐿
′

0
} 𝑑𝑥

𝑙𝐿
+

0 }
  
 

  
 

 ; 

 

Notice that with respect the initial formulation, this time we cannot collect all terms under the same sign of 

integration since each of them has a different domain in which it is able to make work. 

Since we need to integrate the contribution of cables along a piecewise continuous domain the following 

definition holds. 

 

 ∫ {∙}𝑑𝑥
𝑙+

0
= ∑∫ {∙}𝑑𝑥

𝑥2

𝑥1
      𝑤𝑖𝑡ℎ      (𝑥1, 𝑥2)𝜖[0, 𝑙] ; 

 

The stiffening terms are define as follows. 

 

 ℎ+(𝑤𝑅) = ∫
𝐸𝑐𝐴𝑐

𝐿𝑐
{(𝑦′𝑤𝑑

′ +
𝑤𝑑

′2

2
) + 𝑏(𝑦′ +𝑤𝑑

′)𝜗𝑑
′ +

(𝑏𝜗𝑑
′
)
2

2
}𝑑𝑥

𝑙𝑅
+

0
= ℎ+𝑤𝑅 + ℎ

+
𝑤𝜗𝑅 + ℎ

+
𝜗𝑅 ; 

 

 ℎ+(𝑤𝐿) = ∫
𝐸𝑐𝐴𝑐

𝐿𝑐
{(𝑦′𝑤𝑑

′ +
𝑤𝑑

′2

2
) − 𝑏(𝑦′ +𝑤𝑑

′)𝜗𝑑
′ +

(𝑏𝜗𝑑
′
)
2

2
} 𝑑𝑥

𝑙𝐿
+

0
= ℎ+𝑤𝐿 + ℎ

+
𝑤𝜗𝐿 + ℎ

+
𝐿 ; 
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Then integration by parts of the differential of the TPE leads to the following equality. 

 

 𝛿𝑉 =

{
 
 
 
 
 

 
 
 
 
 ∫ {(𝐸𝑑𝐼𝑑 ∙ 𝑤𝑑

′𝑣 − 𝑞) ∙ 𝑑𝑤𝑑 + (𝐸𝑑𝛤𝑑 ∙ 𝜗𝑑
′𝑣 − 𝐺𝑑𝐽𝑑 ∙ 𝜗𝑑

′′ −𝑚) ∙ 𝑑𝜗𝑑}𝑑𝑥
𝑙

0
+

−∫

{
 

 (𝐻 ∙ (𝑤𝑑
′′ + 𝑏𝜗𝑑

′′) + ℎ+(𝑤𝑅) ∙ (𝑦
′′ +𝑤𝑑

′′ + 𝑏𝜗𝑑
′′)) ∙ 𝑑𝑤𝑑 +

+𝑏(𝐻 ∙ (𝑤𝑑
′′ + 𝑏𝜗𝑑

′′) + ℎ+(𝑤𝑅) ∙ (𝑦
′′ +𝑤𝑑

′′ + 𝑏𝜗𝑑
′′)) ∙ 𝑑𝜗𝑑}

 

 
𝑑𝑥

𝑙𝑅
+

0
+

−∫

{
 

 (𝐻 ∙ (𝑤𝑑
′′ − 𝑏𝜗𝑑

′′) + ℎ+(𝑤𝐿) ∙ (𝑦
′′ +𝑤𝑑

′′ − 𝑏𝜗𝑑
′′)) ∙ 𝑑𝑤𝑑 +

+𝑏(𝐻 ∙ (𝑤𝑑
′′ − 𝑏𝜗𝑑

′′) + ℎ+(𝑤𝐿) ∙ (𝑦
′′ +𝑤𝑑

′′ − 𝑏𝜗𝑑
′′)) ∙ 𝑑𝜗𝑑}

 

 
𝑑𝑥

𝑙𝐿
+

0

}
 
 
 
 
 

 
 
 
 
 

 ; 

 

Exploiting the stationarity of the TPE variational we get the nonlinear equations of equilibrium. 

 

𝛿𝑤𝑑𝑉 = 0   ∀𝛿𝑤𝑑⇔

{
  
 

  
 ∫ {𝐸𝑑𝐼𝑑 ∙ 𝑤𝑑

′𝑣 − 𝑞(𝑥)}𝑑𝑥
𝑙

0
+

−∫ {𝐻 ∙ (𝑤𝑑
′′ + 𝑏𝜗𝑑

′′) + ℎ+(𝑤𝑅) ∙ (𝑦
′′ +𝑤𝑑

′′ + 𝑏𝜗𝑑
′′)}𝑑𝑥

𝑙𝑅
+

0
+

−∫ {𝐻 ∙ (𝑤𝑑
′′ − 𝑏𝜗𝑑

′′) + ℎ+(𝑤𝐿) ∙ (𝑦
′′ +𝑤𝑑

′′ − 𝑏𝜗𝑑
′′)}𝑑𝑥

𝑙𝐿
+

0 }
  
 

  
 

= 0  ; 

 

 

𝛿𝜗𝑑𝑉 = 0   ∀𝛿𝜗𝑑⇔

{
  
 

  
 ∫ {𝐸𝑑𝛤𝑑 ∙ 𝜗𝑑

′𝑣 − 𝐺𝑑𝐽𝑑 ∙ 𝜗𝑑
′′ −𝑚(𝑥)}𝑑𝑥

𝑙

0
+

−∫ 𝑏{𝐻 ∙ (𝑤𝑑
′′ + 𝑏𝜗𝑑

′′) + ℎ+(𝑤𝑅) ∙ (𝑦
′′ +𝑤𝑑

′′ + 𝑏𝜗𝑑
′′)}𝑑𝑥 +

𝑙𝑅
+

0

−∫ 𝑏{𝐻 ∙ (𝑤𝑑
′′ − 𝑏𝜗𝑑

′′) + ℎ+(𝑤𝐿) ∙ (𝑦
′′ +𝑤𝑑

′′ − 𝑏𝜗𝑑
′′)}𝑑𝑥

𝑙𝐿
+

0 }
  
 

  
 

= 0 ; 

 
4.2 Slackening development 
 

Let’s consider just the linear components of the equations of motion adding the inertial terms. 

 

 

{
  
 

  
 ∫ {𝑚𝑑 ∙ �̈�𝑑 + 𝐸𝑑𝐼𝑑 ∙ 𝑤𝑑

′𝑣 − 𝑞(𝑥, 𝑡)}𝑑𝑥
𝑙

0
+

−∫ {−𝑚𝑐 ∙ (�̈�𝑑 + 𝑏�̈�𝑑) + 𝐻 ∙ (𝑤𝑑
′′ + 𝑏𝜗𝑑

′′) − ∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 + 𝑏𝜗𝑑)𝑑𝑥

𝑙𝑅
+

0
} 𝑑𝑥

𝑙𝑅
+

0
+

−∫ {−𝑚𝑐 ∙ (�̈�𝑑 − 𝑏�̈�𝑑) + 𝐻 ∙ (𝑤𝑑
′′ − 𝑏𝜗𝑑

′′) − ∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 − 𝑏𝜗𝑑)𝑑𝑥

𝑙𝐿
+

0
} 𝑑𝑥

𝑙𝐿
+

0 }
  
 

  
 

= 0 ; 
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{
  
 

  
 ∫ {𝐽𝑡�̈�𝑑 + 𝐸𝑑𝛤𝑑 ∙ 𝜗𝑑

′𝑣 − 𝐺𝑑𝐽𝑑 ∙ 𝜗𝑑
′′ −𝑚(𝑥, 𝑡)}𝑑𝑥

𝑙

0
+

−𝑏∫ {−𝑚𝑐 ∙ (�̈�𝑑 + 𝑏�̈�𝑑) + 𝐻 ∙ (𝑤𝑑
′′ + 𝑏𝜗𝑑

′′) − ∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 + 𝑏𝜗𝑑)𝑑𝑥

𝑙𝑅
+

0
} 𝑑𝑥 +

𝑙𝑅
+

0

−𝑏∫ {−𝑚𝑐 ∙ (�̈�𝑑 − 𝑏�̈�𝑑) + 𝐻 ∙ (𝑤𝑑
′′ − 𝑏𝜗𝑑

′′) − ∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 − 𝑏𝜗𝑑)𝑑𝑥

𝑙𝐿
+

0
} 𝑑𝑥

𝑙𝐿
+

0 }
  
 

  
 

= 0 ; 

 

Let’s write the forces and couples transmitted by the deck to the cables system, from initial to perturbed 

condition, and hence including the self-weight of the girder. 

 

 �̅�𝑑(𝑡) = ∫ 𝐹𝑑(𝑥, 𝑡)𝑑𝑥
𝑙

0
= ∫ {𝑚𝑑 ∙ 𝑔 + 𝑞(𝑥, 𝑡) − 𝑚𝑑 ∙ �̈�𝑑(𝑥, 𝑡) − 𝐸𝑑𝐼𝑑 ∙ 𝑤𝑑

′𝑣(𝑥, 𝑡)}𝑑𝑥
𝑙

0
 ; 

 

 𝐶�̅�(𝑡) = ∫ 𝐶𝑑(𝑥, 𝑡)𝑑𝑥
𝑙

0
= ∫ {𝑚(𝑥, 𝑡) − 𝐽𝑡 ∙ �̈�𝑑(𝑥, 𝑡) − 𝐸𝑑𝛤𝑑 ∙ 𝜗𝑑

′𝑣(𝑥, 𝑡) + 𝐺𝑑𝐽𝑑(𝑥) ∙ 𝜗𝑑
′′(𝑥, 𝑡)}𝑑𝑥

𝑙

0
 ; 

 

Notice that we assume that the deck has a symmetric section as usually happens in real structures, hence, 

before external actions initiate to work, the deck is able to transfer only a vertical static load to the cables 

system. This assumption would be relevant for further conclusions.  

 

Taking in consideration the linear component of the equilibrium equation we can rewrite the previous 

relations as follows. 

 

�̅�𝑑(𝑡) = ∫ (𝑚𝑑 ∙ 𝑔)𝑑𝑥
𝑙

0
− ∫

{
 
 

 
 

−𝑚𝑐 ∙ (�̈�𝑑 + 𝑏�̈�𝑑) +

+𝐻 ∙ (𝑤𝑑
′′ + 𝑏𝜗𝑑

′′) +

−∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 + 𝑏𝜗𝑑)𝑑𝑥

𝑙𝑅
+

0 }
 
 

 
 

𝑑𝑥
𝑙𝑅
+

0
− ∫

{
 
 

 
 

−𝑚𝑐 ∙ (�̈�𝑑 − 𝑏�̈�𝑑) +

+𝐻 ∙ (𝑤𝑑
′′ − 𝑏𝜗𝑑

′′) +

−∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 − 𝑏𝜗𝑑)𝑑𝑥

𝑙𝐿
+

0 }
 
 

 
 

𝑑𝑥
𝑙𝐿
+

0
 ; 

 

 

 𝐶�̅�(𝑡) = −𝑏∫

{
 
 

 
 

−𝑚𝑐 ∙ (�̈�𝑑 + 𝑏�̈�𝑑) +

+𝐻 ∙ (𝑤𝑑
′′ + 𝑏𝜗𝑑

′′) +

−∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 + 𝑏𝜗𝑑)𝑑𝑥

𝑙𝑅
+

0 }
 
 

 
 

𝑑𝑥
𝑙𝑅
+

0
− 𝑏∫

{
 
 

 
 

−𝑚𝑐 ∙ (�̈�𝑑 − 𝑏�̈�𝑑) +

+𝐻 ∙ (𝑤𝑑
′′ − 𝑏𝜗𝑑

′′) +

−∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 − 𝑏𝜗𝑑)𝑑𝑥

𝑙𝐿
+

0 }
 
 

 
 

𝑑𝑥
𝑙𝐿
+

0
 ; 

 

Notice that even if we are dealing with the only linear terms anyway the equations of motion are coupled 

due to the asymmetric response of the two main cables. 

 

Let’s pass to the dimensionless format. It’s evident that though each cable has a different contribution due 

to different domains, the analytical expressions under integral sign are similar. 

 

 𝐹𝑐
𝑖(𝑥, 𝑡) =

{
 
 

 
 

−𝑚𝑐 ∙ (�̈�𝑑 ± 𝑏�̈�𝑑) +

+𝐻 ∙ (𝑤𝑑
′′ ± 𝑏𝜗𝑑

′′) +

−∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 ± 𝑏𝜗𝑑)𝑑𝑥

𝑙𝑖
+

0 }
 
 

 
 

=

{
  
 

  
 −𝑚𝑐𝑓 ∙ (

𝑑2�̃�𝑑

𝑑𝑡2
±
𝑑2�̃�𝑑

𝑑𝑡2
) +

+𝐻
𝑓

𝑙2
∙ (�̃�𝑑

′′ ± �̃�𝑑
′′
) +

−
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2𝑓𝑙𝛼ℎ

𝑖 ∫ (�̃�𝑑 ± �̃�𝑑)𝑑𝜉
1

0 }
  
 

  
 

 ; 
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Notice that we have introduce a new parameter representing the ratio between the contributions coming 

from the residual fraction of the span where the deck is still able to transfer forces and couples to the main 

cables, and the ideal condition without slackening. In general this fraction would be different for each side 

of the deck section, hence 𝛼𝑅 refers to the right side and 𝛼𝐿 to the left one. 

 

 𝛼ℎ
𝑅 = ∫ (𝑤𝑑 ± 𝜗𝑑)𝑑𝑥

𝑙𝑅
+

0 ∫ (𝑤𝑑 ± 𝜗𝑑)𝑑𝑥
𝑙

0
⁄  ; 

 

 𝛼ℎ
𝐿 = ∫ (𝑤𝑑 ± 𝜗𝑑)𝑑𝑥

𝑙𝐿
+

0 ∫ (𝑤𝑑 ± 𝜗𝑑)𝑑𝑥
𝑙

0
⁄  ; 

 

Notice that the subscript refers to the cables tension increment and not to hangers response. 

 

Other similar parameters allow us to get simpler expression for the previous definitions collecting all terms 

under the same integral sign. 

 

 𝛼𝑐
𝑅 = ∫ 𝐹𝑐

𝑅(𝑥, 𝑡)𝑑𝑥
𝑙𝑅
+

0 ∫ 𝐹𝑐
𝑅(𝑥, 𝑡)𝑑𝑥

𝑙

0
⁄  ; 

 

 𝛼𝑐
𝐿 = ∫ 𝐹𝑐

𝐿(𝑥, 𝑡)𝑑𝑥
𝑙𝐿
+

0 ∫ 𝐹𝑐
𝐿(𝑥, 𝑡)𝑑𝑥

𝑙

0
⁄  ; 

 

In the following we will refer to these parameters and we will call them generally slackening parameters. 

 

Hence substitution in the forces and couples expression lead to the following relations. 

 

�̅�𝑑(𝑡) = ∫

{
  
 

  
 

𝑚𝑑 ∙ 𝑔 − 𝛼𝑐
𝑅 ∙

(

 
 
 
 

−𝑚𝑐𝑓 ∙ (
𝑑2�̃�𝑑

𝑑𝑡2
+
𝑑2�̃�𝑑

𝑑𝑡2
) +

+𝐻
𝑓

𝑙2
∙ (�̃�𝑑

′′ + �̃�𝑑
′′
) +

−
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2𝑓𝑙𝛼ℎ

𝑅 ∫ (�̃�𝑑 + �̃�𝑑)𝑑𝜉
1

0 )

 
 
 
 

− 𝛼𝑐
𝐿 ∙

(

 
 
 
 

−𝑚𝑐𝑓 ∙ (
𝑑2�̃�𝑑

𝑑𝑡2
−
𝑑2�̃�𝑑

𝑑𝑡2
) +

+𝐻
𝑓

𝑙2
∙ (�̃�𝑑

′′ − �̃�𝑑
′′
) +

−
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2𝑓𝑙𝛼ℎ

𝐿 ∫ (�̃�𝑑 − �̃�𝑑)𝑑𝜉
1

0 )

 
 
 
 

}
  
 

  
 

𝑑𝑥
𝑙

0
 ; 

 

 

𝐶�̅�(𝑡) = −𝑏 ∫

{
  
 

  
 

𝛼𝑐
𝑅 ∙

(

 
 
 
 

−𝑚𝑐𝑓 ∙ (
𝑑2�̃�𝑑

𝑑𝑡2
+
𝑑2�̃�𝑑

𝑑𝑡2
) +

+𝐻
𝑓

𝑙2
∙ (�̃�𝑑

′′ + �̃�𝑑
′′
) +

−
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2𝑓𝑙𝛼ℎ

𝑅 ∫ (�̃�𝑑 + �̃�𝑑)𝑑𝜉
1

0 )

 
 
 
 

+ 𝛼𝑐
𝐿 ∙

(

 
 
 
 

−𝑚𝑐𝑓 ∙ (
𝑑2�̃�𝑑

𝑑𝑡2
−
𝑑2�̃�𝑑

𝑑𝑡2
) +

+𝐻
𝑓

𝑙2
∙ (�̃�𝑑

′′ − �̃�𝑑
′′
) +

−
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2𝑓𝑙𝛼ℎ

𝐿 ∫ (�̃�𝑑 − �̃�𝑑)𝑑𝜉
1

0 )

 
 
 
 

}
  
 

  
 

𝑑𝑥
𝑙

0
 ; 

 

Then introducing the definition of dimensionless time we can get the local format of the previous relations. 

 

�̃�𝑑(𝜉, 𝜏) =
𝐹𝑑∙𝑙

2

𝐻𝑓
= 16 ∙ �̃�𝑑 − 𝛼𝑐

𝑅 ∙

(

 
 
 
 

−(1 − �̃�𝑑) ∙ (
𝑑2�̃�𝑑

𝑑𝜏2
+
𝑑2�̃�𝑑

𝑑𝜏2
) +

+(�̃�𝑑
′′ + �̃�𝑑

′′
) +

−𝛼ℎ
𝑅 ∙ 𝜆𝐿

2
∫ (�̃�𝑑 + �̃�𝑑)𝑑𝜉
1

0 )

 
 
 
 

− 𝛼𝑐
𝐿 ∙

(

 
 
 
 

−(1 − �̃�𝑑) ∙ (
𝑑2�̃�𝑑

𝑑𝜏2
−
𝑑2�̃�𝑑

𝑑𝜏2
) +

+(�̃�𝑑
′′ − �̃�𝑑

′′
) +

−𝛼ℎ
𝐿 ∙ 𝜆𝐿

2
∫ (�̃�𝑑 − �̃�𝑑)𝑑𝜉
1

0 )

 
 
 
 

 ; 
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�̃�𝑑(𝜉, 𝜏) =
𝐶𝑑∙𝑙

2

𝐻𝑓𝑏
= −

{
  
 

  
 

𝛼𝑐
𝑅 ∙

(

 
 
 
 

−(1 − �̃�𝑑) ∙ (
𝑑2�̃�𝑑

𝑑𝜏2
+
𝑑2�̃�𝑑

𝑑𝜏2
) +

+(�̃�𝑑
′′ + �̃�𝑑

′′
) +

−𝛼ℎ
𝑅 ∙ 𝜆𝐿

2
∫ (�̃�𝑑 + �̃�𝑑)𝑑𝜉
1

0 )

 
 
 
 

+ 𝛼𝑐
𝐿 ∙

(

 
 
 
 

−(1 − �̃�𝑑) ∙ (
𝑑2�̃�𝑑

𝑑𝜏2
−
𝑑2�̃�𝑑

𝑑𝜏2
) +

+(�̃�𝑑
′′ − �̃�𝑑

′′
) +

−𝛼ℎ
𝐿 ∙ 𝜆𝐿

2
∫ (�̃�𝑑 − �̃�𝑑)𝑑𝜉
1

0 )

 
 
 
 

}
  
 

  
 

 ; 

 

In order to define the new dimensionless term inside the vertical force component we need first to recall the 

initial equilibrium condition of cables under the self-weight of the deck. 

 

 −2𝐻𝑦′′ = (𝑚𝑑 + 2𝑚𝑐) ∙ 𝑔 ⇒ 2𝐻
8𝑓

𝑙2
= (𝑚𝑑 + 2𝑚𝑐) ∙ 𝑔 ⇒ 𝐻

𝑓

𝑙2
=
(𝑚𝑑+2𝑚𝑐)

16
∙ 𝑔;  

 

Consequently the following definitions for the dimensionless masses hold. 

 

 �̃�𝑑 =
𝑚𝑑

(𝑚𝑑+2𝑚𝑐)
= 1 −

2𝑚𝑐
(𝑚𝑑+2𝑚𝑐)

= 1 − 2�̃�𝑐 ;  

 

We choose to take the dimensionless mass of the deck as only variable since in literature is much more easy 

to find data referred to this parameter with respect to those of cables, for which when present is not in 

general clear if they refer to the single cable or to both of them.  

 

Hence the critical conditions for the initiation of slackening correspond to those amplitude that induces 

negative forces and null couples in the cables system. Consequently hangers undergoes to slackening and 

the external actions cannot more be transfer from the stiffening girder to the main cables. 

 

 �̃�𝑑(𝜉, 𝜏) = 16 ∙ �̃�𝑑 + �̃�𝑑(𝜉, 𝜏) ≤ 0 ; 

 

 �̃�𝑑(𝜉, 𝜏) = 0 ; 

 

Notice that for the torsional couple the slackening condition is much more restrictive than for vertical forces 

since the cables system is able to sustain both positive and negative couples but only stretching forces. 

It’s also evident that the two condition cannot be satisfied at the same time. This means that even if locally 

the hangers are no more able to transfer the vertical forces coming from the deck anyway are able to transfer 

couples, and vice versa. 

 

The further step required is the exploitation of the modal expansion. 

 

 �̃�𝑑(𝜉, 𝜏) = ∑ 𝑊𝑛(𝜉) ∙ 𝑧𝑛(𝜏)
∞
𝑛=1    𝑤𝑖𝑡ℎ  𝑛 ∈ ℵ\{0} ; 

 

�̃�𝑑(𝜉, 𝜏) = ∑ 𝛩𝑚(𝜉) ∙ 𝛾𝑚(𝜏)
∞
𝑚=1    𝑤𝑖𝑡ℎ  𝑚 ∈ ℵ\{0} ;  

 

It’s evident that the actual formulation is too complex to be handled analytically. In fact the interaction 

between at least two modes, one vertical and the other torsional, requires to consider not only the 

superposition in space of the effect given by each mode but also in time. In fact each of them would have a 

proper circular frequency and phase lag that shift the response in time and make superposition of effects 

very complicate. Also numerical investigations are not so simple since the slackening parameters are a priori 

unknown, hence iterative methods are required. 
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In order to analyse simpler cases let’s study separately the flexural and the torsional motion. 

 

 Flexural vibrations: 

As the torsional components becomes negligible the vertical slackening condition reduces to the following 

relation. 

 

�̃�𝑑(𝜉, 𝜏) ≤ 0⇔ 8 ∙ �̃�𝑑 + 𝛼𝑐 ∙ {(1 − �̃�𝑑) ∙
𝑑2�̃�𝑑

𝑑𝜏2
− �̃�𝑑

′′ + 𝛼ℎ ∙ 𝜆𝐿
2
∫ �̃�𝑑𝑑𝜉
1

0
} ≤ 0 ; 

 

Is possible to consider a common slackening parameter because under pure vertical motions the contribution 

of each cable is equal, in fact is the torsional component that introduces asymmetry in the response of the 

cables. 

Consequently the slackening parameters are equal on the two side of the bridge section and then the 

previous relation holds. 

 

 𝛼𝑐
𝑅 = 𝛼𝑐

𝐿      𝑎𝑛𝑑      𝛼ℎ
𝑅 = 𝛼ℎ

𝐿 ; 

 

Notice that under pure flexural vibrations the torsional slackening condition simply requires that each cable 

contribution should be null. Albeit this the hangers system is still able to transfer vertical forces due to the 

initial stretch given by self-weight. 

 

�̃�𝑑(𝜉, 𝜏) = 0⇔ 𝛼𝑐 ∙ {(1 − �̃�𝑑) ∙
𝑑2�̃�𝑑

𝑑𝜏2
− �̃�𝑑

′′ + 𝛼ℎ ∙ 𝜆𝐿
2
∫ �̃�𝑑𝑑𝜉
1

0
} = 0 ; 

 

 

 Torsional vibrations: 

 

When only the asymmetric sectional motion occurs the slackening threshold reduces to the following 

equality. 

 

�̃�𝑑(𝜉, 𝜏) = 0⇔ 𝛼𝑐
𝑅 ∙ {

(1 − �̃�𝑑) ∙
𝑑2�̃�𝑑

𝑑𝜏2
− �̃�𝑑

′′
+

+𝛼ℎ
𝑅 ∙ 𝜆𝐿

2
∫ �̃�𝑑𝑑𝜉
1

0

} = 𝛼𝑐
𝐿 ∙ {

(1 − �̃�𝑑) ∙
𝑑2�̃�𝑑

𝑑𝜏2
− �̃�𝑑

′′
+

+𝛼ℎ
𝐿 ∙ 𝜆𝐿

2
∫ �̃�𝑑𝑑𝜉
1

0

} ; 

 

Can be rewritten in a more synthetic form. 

 

 (𝛼𝑐
𝑅 − 𝛼𝑐

𝐿) ∙ {(1 − �̃�𝑑) ∙
𝑑2�̃�𝑑

𝑑𝜏2
− �̃�𝑑

′′
} = (𝛼𝑐

𝑅 ∙ 𝛼ℎ
𝑅 − 𝛼𝑐

𝐿 ∙ 𝛼ℎ
𝐿) ∙ 𝜆𝐿

2
∫ �̃�𝑑𝑑𝜉
1

0
 

 

It’s evident that under pure torsional motion each cable response can be different from the other since the 

one characterised by a dominant upward motion will have lower slackening parameters. 

 

 𝛼𝑐
𝑅 ≠ 𝛼𝑐

𝐿      𝑎𝑛𝑑      𝛼ℎ
𝑅 ≠ 𝛼ℎ

𝐿 ; 

 

As a consequence of this statement the cable system could have a net vertical contribution even if the 

hangers system is not able to transfer torsional moments. Once again this contribution is given by initial 

stretch given by self-weight. 

 

 �̃�𝑑(𝜉, 𝜏) ≤ 0⇔ 16 ∙ �̃�𝑑 + �̃�𝑑(𝜉, 𝜏) ≤ 0 ; 
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Hence it’s now evident that the symmetry of the stiffening girder section avoids that both the conditions 

could be satisfied at the same time. Conversely an additional contribution to initial stretching given by the 

eccentricity of the deck centre of mass should be accidentally tuned in order to get that dangerous condition. 

Anyway this condition can occurs also in the very unfortunate case in which some of the hangers break 

introducing an asymmetry in the cable system stiffness. 

 
4.3 Slackening initiation 
 

The presence of the slackening terms does not allow us to get further information on the problem. Hence 

before passing to numerical investigations is better to search for the threshold condition of slackening. 

This allows us to get analytical solutions of the following limit conditions without the need for defining any 

slackening parameters. 

 

 �̃�𝑑(𝜉, 𝜏) = 16 ∙ �̃�𝑑 + �̃�𝑑(𝜉, 𝜏) = 0 ; 

 

 �̃�𝑑(𝜉, 𝜏) = 0 ; 

 

In fact up to the slackening initiation all the hangers are still taut, condition that allows us to integrate the 

cable system contribution on the whole length of the bridge’s span. 

 

 𝛼𝑐
𝑅 = 𝛼𝑐

𝐿 = 1      𝑎𝑛𝑑      𝛼ℎ
𝑅 = 𝛼ℎ

𝐿 = 1 ; 

 

Since some terms drops out thanks to the symmetry of the cables response is not sufficient to substitute the 

last two equalities into the slackening condition. Hence is necessary to reformulate the problem starting from 

the linear equations of motion fount in the initial chapters where the flexural and torsional response are 

completely decoupled.  

 

Hence let’s write the forces and couples transmitted by the deck to the cables system. 

 

 𝐹𝑑(𝑥, 𝑡) = 𝑚𝑑 ∙ 𝑔 + 𝑞(𝑥, 𝑡) − 𝑚𝑑 ∙ �̈�𝑑(𝑥, 𝑡) − 𝐸𝑑𝐼𝑑 ∙ 𝑤𝑑
′𝑣(𝑥, 𝑡) ; 

 

 𝐶𝑑(𝑥, 𝑡) = 𝑚(𝑥, 𝑡) − 𝐽𝑡 ∙ �̈�𝑑(𝑥, 𝑡) − 𝐸𝑑𝛤𝑑 ∙ 𝜗𝑑
′𝑣(𝑥, 𝑡) + 𝐺𝑑𝐽𝑑(𝑥) ∙ 𝜗𝑑

′′(𝑥, 𝑡) ; 

 

Notice that this time is possible to get immediately the local values of the deck actions since we can collect 

both the contributions coming from the deck and the two cables under the same integral. 

 

Replacing the deck contributions with those coming from the cable system we finally get the following 

relations.  

 

 𝐹𝑑(𝑥, 𝑡) = 𝑚𝑑 ∙ 𝑔 + 2𝑚𝑐 ∙ �̈�𝑑(𝑥, 𝑡) − 2𝐻 ∙ 𝑤𝑑
′′(𝑥, 𝑡) − 2ℎ𝑤 ∙ 𝑦

′′ ;  

 

 𝐶𝑑(𝑥, 𝑡) = 2𝑚𝑐𝑏
2 ∙ �̈�𝑑(𝑥, 𝑡) − 2𝐻𝑏

2 ∙ 𝜗𝑑
′′(𝑥, 𝑡) − 2ℎ𝜗𝑏 ∙ 𝑦

′′ ;  
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Let’s pass to the dimensionless format. 

 

 𝐹𝑑(𝑥, 𝑡) = 𝑚𝑑𝑔 + 2𝑚𝑐𝑓
2𝐻

𝑙2(𝑚𝑑+2𝑚𝑐)
∙
𝑑2�̃�𝑑

𝑑𝜏2
(𝜉, 𝜏) − 2𝐻

𝑓

𝑙2
∙ �̃�𝑑

′′(𝜉, 𝜏) + 2
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2𝑓𝑙 ∫ �̃�𝑑(𝜉, 𝜏)𝑑𝜉

1

0
 ; 

 

 𝐶𝑑(𝑥, 𝑡) = 2𝑚𝑐𝑏
2 𝑓

𝑏

2𝐻

𝑙2(𝑚𝑑+2𝑚𝑐)
∙
𝑑2�̃�𝑑

𝑑𝜏2
(𝜉, 𝜏) − 2𝐻𝑏2

𝑓

𝑏𝑙2
∙ �̃�𝑑

′′
(𝜉, 𝜏) + 2

𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2𝑓𝑙𝑏 ∫ �̃�𝑑(𝜉, 𝜏)𝑑𝜉

1

0
 ; 

 

Hence we get the dimensionless forces and couples transferred to the cables. 

 

 �̃�𝑑(𝜉, 𝜏) = 𝐹𝑑 ∙
𝑙2

2𝐻𝑓
= 𝑚𝑑

𝑙2

2𝐻𝑓
𝑔 +

2𝑚𝑐
(𝑚𝑑+2𝑚𝑐)

∙
𝑑2�̃�𝑑

𝑑𝜏2
(𝜉, 𝜏) − �̃�𝑑

′′(𝜉, 𝜏) +
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
8𝑓

𝑙
)
2

∫ �̃�𝑑(𝜉, 𝜏)𝑑𝜉
1

0
 ; 

 

 �̃�𝑑(𝜉, 𝜏) = 𝐶𝑑 ∙
𝑙2

2𝐻𝑏𝑓
=

2𝑚𝑐
(𝑚𝑑+2𝑚𝑐)

∙
𝑑2�̃�𝑑

𝑑𝜏2
(𝜉, 𝜏) − �̃�𝑑

′′
(𝜉, 𝜏) +

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
8𝑓

𝑙
)
2

∫ �̃�𝑑(𝜉, 𝜏)𝑑𝜉
1

0
 ;  

 

Again in order to define some dimensionless masses we need first to recall the initial equilibrium condition 

of cables under the self-weight of the deck. Consequently we obtain the same expressions for the deck and 

cables dimensionless masses previously defined. 

  

Hence finally we get the conditions for slackening initiation. 

 

 �̃�𝑑(𝜉, 𝜏) = 8 ∙ �̃�𝑑 + (1 − �̃�𝑑) ∙
𝑑2�̃�𝑑

𝑑𝜏2
(𝜉, 𝜏) − �̃�𝑑

′′(𝜉, 𝜏) + 𝜆𝐿
2ℎ̃𝑤 = 0 ; 

 

 �̃�𝑑(𝜉, 𝜏) = (1 − �̃�𝑑) ∙
𝑑2�̃�𝑑

𝑑𝜏2
(𝜉, 𝜏) − �̃�𝑑

′′
(𝜉, 𝜏) + 𝜆𝐿

2ℎ̃𝜗 = 0 ; 

 

It’s evident that with respect to previous more general conditions that get into the slackening domain thanks 

to some additional parameters, here the formulation is very much simpler. 

The main reason is that the critical conditions are completely independent since they take trace just of the 

motion proper of the deck axis and not of the actual position of cables. This is a direct consequence of the 

fact that skew-symmetric some terms coming from cables torsional contributions drop out. Not all of them 

can vanish otherwise the cables system contribution to torsion would be null. 

Hence we can have really two distinct critical conditions for slackening initiation; one associated to pure 

vertical and the second to pure torsional vibrations.  

 

Let’s now exploit the modal expansion of the actual structural response. 

 

 �̃�𝑑,𝑛 = 8 ∙ �̃�𝑑 + {(1 − �̃�𝑑)𝑊𝑛(𝜉) ∙ 𝜆
2
𝑤,𝑛 −𝑊𝑛

′′(𝜉) + 𝜆𝐿
2ℎ̃𝑊,𝑛} ∙ 𝑍𝑛𝑒

𝜆𝑤,𝑛𝜏 + 𝑐. 𝑐. ; 

 

 �̃�𝑑,𝑚 = {(1 − �̃�𝑑)𝛩𝑚(𝜉) ∙ 𝜆
2
𝜗,𝑚 − 𝛩𝑚

′′(𝜉) + 𝜆𝐿
2ℎ̃𝛩,𝑚} ∙ 𝛤𝑚𝑒

𝜆𝜗,𝑚𝜏 + 𝑐. 𝑐. ; 
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The following simple relations hold. 

 

𝜆2𝑤,𝑛𝑍𝑛𝑒
𝜆𝑤,𝑛𝜏 + 𝑐𝑐 =

{
 
 
 

 
 
 
(𝛼𝑤,𝑛

2 − �̃�𝑤,𝑛
2 + 𝑖2𝛼𝑤,𝑛�̃�𝑤,𝑛)(𝑍𝑛

𝑅 + 𝑖𝑍𝑛
𝐼)[cos(�̃�𝑤,𝑛𝜏) + 𝑖 sin(�̃�𝑤,𝑛𝜏)] ∙ 𝑒

𝛼𝑤,𝑛𝜏 + 𝑐. 𝑐.=

= 2 ∙ {

[𝑍𝑛
𝑅(𝛼𝑤,𝑛

2 − �̃�𝑤,𝑛
2) − 𝑍𝑛

𝐼2𝛼𝑤,𝑛�̃�𝑤,𝑛] cos(�̃�𝑤,𝑛𝜏) +

−[𝑍𝑛
𝐼(𝛼𝑤,𝑛

2 − �̃�𝑤,𝑛
2) + 𝑍𝑛

𝑅2𝛼𝑤,𝑛�̃�𝑤,𝑛] sin(�̃�𝑤,𝑛𝜏)

} ∙ 𝑒𝛼𝑤,𝑛𝜏 =

= 𝑍𝑛,1cos (�̃�𝑤,𝑛𝜏 + 𝜑𝑤𝑛,1) ∙ 𝑒
𝛼𝑤,𝑛𝜏 }

 
 
 

 
 
 

 ; 

 

𝑍𝑛𝑒
𝜆𝑤,𝑛𝜏 + 𝑐𝑐 =

{
 
 

 
 
(𝑍𝑛

𝑅 + 𝑖𝑍𝑛
𝐼)[cos(�̃�𝑤,𝑛𝜏) + 𝑖 sin(�̃�𝑤,𝑛𝜏)] ∙ 𝑒

𝛼𝑤,𝑛𝜏 + 𝑐. 𝑐. =

= 2 ∙ {𝑍𝑛
𝑅 cos(�̃�𝑤,𝑛𝜏) − 𝑍𝑛

𝐼 sin(�̃�𝑤,𝑛𝜏)} ∙ 𝑒
𝛼𝑤,𝑛𝜏 =

= 𝑍𝑛,2cos (�̃�𝑤,𝑛𝜏 + 𝜑𝑤𝑛,2) ∙ 𝑒
𝛼𝑤,𝑛𝜏 }

 
 

 
 

 ; 

 

Where we have defined the following vibrations amplitudes and phase lags. 

 

 𝑍𝑛,1 = 2√{𝑍𝑛
𝑅(𝛼𝑤,𝑛

2 − �̃�𝑤,𝑛
2) − 𝑍𝑛

𝐼2𝛼𝑤,𝑛�̃�𝑤,𝑛}
2
+ {𝑍𝑛

𝐼(𝛼𝑤,𝑛
2 − �̃�𝑤,𝑛

2) + 𝑍𝑛
𝑅2𝛼𝑤,𝑛�̃�𝑤,𝑛}

2
 ; 

 

 𝑡𝑎𝑛(𝜑𝑤𝑛,1) =
𝑍𝑛
𝑅(𝛼𝑤,𝑛

2−�̃�𝑤,𝑛
2)−𝑍𝑛

𝐼2𝛼𝑤,𝑛�̃�𝑤,𝑛

𝑍𝑛
𝐼(𝛼𝑤,𝑛

2−�̃�𝑤,𝑛
2)+𝑍𝑛

𝑅2𝛼𝑤,𝑛�̃�𝑤,𝑛
 ; 

 

 𝑍𝑛,2 = 2√{𝑍𝑛
𝑅}
2
+ {𝑍𝑛

𝐼}
2
 ; 

 

 𝑡𝑎𝑛(𝜑𝑤𝑛,2) =
𝑍𝑛
𝑅

𝑍𝑛
𝐼  ; 

 

Similar relations hold also for the torsional counterpart. Hence substituting in the general expression we can 

get the modal limit conditions. 

 

�̃�𝑑,𝑛 = 8 ∙ �̃�𝑑 + {

(1 − �̃�𝑑)𝑊𝑛(𝜉) ∙ 𝑍𝑛,1 cos(�̃�𝑤,𝑛𝜏 + 𝜑𝑤𝑛,1) +

−(𝑊𝑛
′′(𝜉) − 𝜆𝐿

2ℎ̃𝑊,𝑛) ∙ 𝑍𝑛,2 cos(�̃�𝑤,𝑛𝜏 + 𝜑𝑤𝑛,2)

} ∙ 𝑒𝛼𝑤,𝑛𝜏; 

 

 

 �̃�𝑑,𝑚 = {

(1 − �̃�𝑑)𝛩𝑚(𝜉) ∙ 𝛤𝑚,1 cos(�̃�𝜗,𝑚𝜏 + 𝜑𝜗𝑚,1) +

−(𝛩𝑚
′′(𝜉) − 𝜆𝐿

2ℎ̃𝛩,𝑚) ∙ 𝛤𝑚,2 cos(�̃�𝜗,𝑚𝜏 + 𝜑𝜗𝑚,2)

} ∙ 𝑒𝛼𝜗,𝑚𝜏 ; 

 

It’s evident that the general damped motion is more reliable but it doesn’t allow to get analytical results in 

term of max admissible amplitude of vibrations due to the presence of the real exponential term that 

introduce phase lag and tune the vibrations. 

Hence let’s make a further assumption that is consider undamped vibrations. Consequently the time 

evolution of modes can be described by a simple trigonometric function with constant amplitude. 
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The previous limit conditions require just a slight modification, due to the following definitions. 

 

 𝜆𝑤,𝑛 = 𝑖�̃�𝑤,𝑛 ; 

 

 𝜆𝜗,𝑚 = 𝑖�̃�𝜗,𝑚  ; 

 

Hence we get simpler critical conditions identical to that obtained by [5] for the only vertical component.  

 

�̃�𝑑,𝑛 = 8 ∙ �̃�𝑑 − {(1 − �̃�𝑑)�̃�𝑤,𝑛
2 ∙ 𝑊𝑛(𝜉) +𝑊𝑛

′′(𝜉) − 𝜆𝐿
2ℎ̃𝑊,𝑛} ∙ 𝑍𝑛 cos(�̃�𝑤,𝑛𝜏 + 𝜑𝑤𝑛) = 0 ; 

 

 

 �̃�𝑑,𝑚 = {(1 − �̃�𝑑)�̃�𝜗,𝑚
2 ∙ 𝛩𝑚(𝜉) + 𝛩𝑚

′′(𝜉) − 𝜆𝐿
2ℎ̃𝛩,𝑚} ∙ 𝛤𝑚 cos(�̃�𝜗,𝑚𝜏 + 𝜑𝜗𝑚) = 0 ; 

 

Now we are able to find out the critical flexural and torsional amplitude that is able to fix the limit between 

the linear response of the system and the non-linear one induced by hangers slackening. 

 

Two observations have to be make. 

 

First of all, since we are searching for a critical condition that has to be valid for any instant in the time 

domain, we can neglect the trigonometric terms. This correspond to consider only the instant in which the 

trigonometric function reaches its maximum without tuning the amplitude. 

 

Secondly, as a consequence of neglecting damping effects, the vibration response will be identical after any 

cycle. Since to do that has to pass by its symmetric configuration we must take the time dependent 

contributions in absolute value in order to consider the worst situation. 

This is not sufficient since the cable’s system contribution varies along the span, hence in order to catch the 

first point undergoing to slackening we must consider the one in correspondence of which the cables system 

contribution reaches its minimum, that in general correspond to the one with the maximum displacement. 

 

Hence the max antinode critical conditions can be found. 

 

 �̃�𝑑,𝑛 = 0⇔𝑍𝑐𝑟,𝑛 = 8 ∙ �̃�𝑑 ∙ 𝑚𝑖𝑛 {|(1 − �̃�𝑑)�̃�𝑤,𝑛
2 ∙ 𝑊𝑛(𝜉) +𝑊𝑛

′′(𝜉) − 𝜆𝐿
2ℎ̃𝑊,𝑛|

−1
} ; 

 

 �̃�𝑑,𝑚 = 0⇔𝛩𝑚
′′(𝜉) = 𝜆𝐿

2ℎ̃𝛩,𝑚 − (1 − �̃�𝑑)�̃�𝜗,𝑚
2 ∙ 𝛩𝑚(𝜉) ; 

 

Notice that we are able to define a critical amplitude threshold just for the flexural vibration component. This 

is the main consequence of the fact that hangers are prestretched by a symmetric force given by deck self-

weight. The absence of an asymmetry in the initial sectional configuration as already said avoid that both the 

critical conditions can occur at the same time, and drastically modifies the critical threshold condition. 

Consequently concerning the torsional limit, we can say that the cable system is no more able to sustain any 

torque in all the points where the deck reach a critical warping independently on the actual max antinode 

rotation. 
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Since the antinode displacement varies its position along the span not only as different modes are taken into 

account but also tuning the structural parameters. Hence we can give a more general definition. 

 

𝑍𝑛 =
𝑍𝑛(�̅�𝑎)

𝑊𝑛(�̅�𝑎)
⇒ 𝑍𝑐𝑟,𝑛(𝜉�̅�) = 8 ∙ �̃�𝑑 ∙ 𝑚𝑖𝑛 {|(1 − �̃�𝑑)�̃�𝑤,𝑛

2 ∙ 𝑊𝑛(𝜉) +𝑊𝑛
′′(𝜉) − 𝜆𝐿

2ℎ̃𝑊,𝑛|
−1
} ∙ 𝑊𝑛(𝜉�̅�) ; 

 

Notice that even if we get an analytical expression for the flexural critical amplitude, there are two subcases 

for which the previous expression further simplifies. 

These conditions are the cases of skew-symmetric modes and perfectly flat cable limit condition that grant a 

simple sinusoidal modal shape. 

 

 𝑊𝑛(𝜉) = sin(�̃�𝜋𝜉) ; 

 

 �̃�𝑤,𝑛 = �̃�𝜋 ∙ √1 + 𝜇
2 ∙ (�̃�𝜋)2 ; 

 

Where the number of half-waves can be odd or even respectively for the two particular cases analysed. 

 

Consequently the stiffening term vanishes and the flexural critical condition give us the following amplitude. 

 

 𝑍𝑐𝑟,𝑛(𝜉�̅�) = 8 ∙ �̃�𝑑 ∙ 𝑚𝑖𝑛{(�̃�𝜋)
2 ∙ |(1 − �̃�𝑑) ∙ (1 + 𝜇

2 ∙ (�̃�𝜋)2) − 1| ∙ sin(�̃�𝜋𝜉)}−1 ; 

 

Hence. 

 

 𝑍𝑐𝑟,𝑛(𝜉�̅�) = {
(�̃�𝜋)2

8
∙ |(

1

�̃�𝑑
− 1) ∙ 𝜇2 ∙ (�̃�𝜋)2 − 1|}

−1

 ; 

 

Before going into the numerical analysis we want to focus the attention on the fact that it’s important to 

check the reliability of the results. In order to do that we will compute the modal participation parameter for 

the cables stiffening term associate to the actual critical flexural amplitude. Then we will consider acceptable 

only the amplitudes that grant a variation of the cables initial tension far enough from unity. The others 

results will be neglected since the fact that the stiffening term becomes comparable with the initial tension 

means that the slackening of hangers occurs at vibration amplitudes larger than that required for the 

slackening of the main cables. We can say a priori that this cannot happen for any amplitude in the case of 

sinusoidal modal shapes since the stiffening term vanishes anyway. 

 

Hence since the critical amplitude is the maximum value that the vibration history will assume, let’s write the 

tension increment associate to vertical vibrations as follows.  

 

ℎ𝑤,𝑐𝑟 =
𝐻

8
𝜆𝐿
2
∫ �̃�𝑑(𝜉, 𝜏)𝑑𝜉
1

0
=
𝐻

8
𝜆𝐿
2∑ ∫ 𝑊𝑛(𝜉)𝑑𝜉

1

0
∙ 𝑧𝑛(𝜏)

∞
𝑛=1 =

𝐻

8
𝜆𝐿
2∑ ℎ̃𝑊,𝑛 ∙ 𝑍𝑐𝑟,𝑛(𝜉�̅�)

∞
𝑛=1  ; 

 

Or in term of the normalised participation parameters. 

 

 ℎ𝑤 = 𝐻∑
𝜆𝐿
2

8
∫ 𝑃𝑤,𝑛(𝜉)𝑑𝜉
1

0
∙ �̃�𝑤,𝑛

2𝐷𝑤,𝑛(𝜏)
∞
𝑛=1 = 𝐻 ∙

1

8
∑ ℎ𝑤,𝑛 ∙ �̃�𝑤,𝑛

2𝐷𝑤,𝑛(𝜏)
∞
𝑛=1  ; 
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First analyse the main feature of the antinode displacements associated to the first slackening of the flexural 

mode of order one. 

 

Figure 4.1_Antinode displacement at first slackening for flexural mode 1. 

As we can see increasing the flexural deck stiffness requires higher antinode displacements for slackening 

onset. Whilst increasing the cables inextensibility we get decreasing limits only if the deck stiffness is enough 

stiff. In fact for values of 𝜇2 that are not too much high we get as 𝜆𝐿
2 increases, first the slack displacement 

decreases and then increase tending to a horizontal asymptote. 

Let’s now compare the slackening amplitudes associated to modal shapes of different order considering the 

second one. 

 

 

Figure 4.2_ Antinode displacement at first slackening for flexural mode 2. 

It’s evident that slack amplitudes rapidly decreases as the modal order increases, since the moving upward 

regions extend to a larger part of the deck. 
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Further the variation of the slack displacements changes since become monotonically decreasing as 𝜆𝐿
2 

increases for 𝜇2 > 0.1  whilst as 𝜇2 do we get can get an initial increase followed by a rapid reduction. 

Analyse the cable system tension increment for both the first and the second order mode. 

 

 
Figure 4.3_Cable tension increment at first slackening for flexural mode 1. 

 
Figure 4.4_ Cable tension increment at first slackening for flexural mode 2. 

In both the first and second mode we can recognise a similar behaviour, leading the cable tension to increase 

initially reaching a peak and then decreasing tending to a horizontal asymptote as the cables inextensibility 

increases. Whilst as the deck stiffness grows we get for the first case a monotonic increase of the slack flexural 

amplitude and for the second one a rapid decrease as 𝜇2 > 0.075. 

However the most important feature is the fact that the slack displacement has a fixed upper bound that can 

be reached only in correspondence of particular structural conditions. We observe that this upper value is 

always the same for any choice of the modal order and it coincides exactly with the dimensionless deck mass 

(�̃�𝑑 = 0.85) assumed. This fact not only can be easily explained but lead to an interesting conclusion. 
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 Let’s enforce the condition we have just observed for a generic mode. 

 

 ℎ𝑤,𝑐𝑟 𝐻⁄ =
1

8
𝜆𝐿
2 ∙ ℎ̃𝑊,𝑛 ∙ 𝑍𝑐𝑟,𝑛 =

𝜆𝐿
2∙ℎ̃𝑊,𝑛

𝑚𝑎𝑥{|(1−�̃�𝑑)�̃�𝑤,𝑛
2∙𝑊𝑛(𝜉)+𝑊𝑛

′′(𝜉)−𝜆𝐿
2ℎ̃𝑊,𝑛|}

∙ �̃�𝑑  

 

Hence. 

 ℎ𝑤,𝑐𝑟 𝐻⁄ = �̃�𝑑⇔𝑚𝑎𝑥{|(1 − �̃�𝑑)�̃�𝑤,𝑛
2 ∙ 𝑊𝑛(𝜉) +𝑊𝑛

′′(𝜉) − 𝜆𝐿
2ℎ̃𝑊,𝑛|} = 𝜆𝐿

2 ∙ ℎ̃𝑊,𝑛 

 

This condition generally can be satisfied only punctually for a particular choice of the structural parameters 

that are a priori unknowns. However the positions where this condition holds are certainly the two ends of 

the deck, where due to the particular boundary conditions assumed both the inertial and curvature 

contributions vanish. 

Let’s analyse the modal shape of second order and a particular structural condition, decoupling the total 

force transmitted to the cable system into the inertial ((1 − �̃�𝑑)�̃�𝑤,𝑛
2 ∙ 𝑊𝑛(𝜉)), curvature (𝑊𝑛

′′(𝜉)) and 

stiffening (𝜆𝐿
2 ∙ ℎ̃𝑊,𝑛) contributions. 

 

 
Figure 4.5_Deck to cables forces before critical conditions. 
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Figure 4.6_ Deck to cables forces after critical conditions. 

Assuming 𝜆𝐿
2 as the variable parameter we can say that as it is below a limit critical value the slackening 

condition occurs in a generic position inside the deck span that varies as 𝜆𝐿
2 does . On the contrary as the 

Irvine parameter exceeds a critical upper bound the hangers will initiate to slack in correspondence of the 

two extreme sections of the deck for any further increase of 𝜆𝐿
2, since the maximum force transmitted from 

the deck to the cables will be always in correspondence of that position. However in correspondence of 

higher deck stiffness we can get a secondary critical condition for which the slackening returns to initiate in 

along the span of the bridge. 

The critical condition for the actual condition analysed can be sketched as follows. 

 

 
Figure 4.7_Critical condition for slackening initiation. 

Since in real life bridges the central span is supported by the pylons at the two extremities, the results just 

obtained simply state that there exist some particular structural conditions such that slackening initiation 

cannot occur. 
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But this statement can be misleading since increasing further the antinode displacement the regions 

immediately near the deck ends will slack since the curves representing the total deck to cable forces 

undergoes simply to an homothetic amplification. Hence it’s better to say that there exist particular structural 

conditions such that hangers start to slack in the neighbourhood of pylons. 

However we can say that these are extreme conditions that real life bridges do not perform. Further 

increasing the modal order this condition will disappear. 
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217 
 

5. Aeroelastic model 

 
Once we have deeply analysed the structural response of the bridge alone we want to study the effects that 

wind forces may have on such a slender structure. Hence we will analyse the so called wind-structure 

interaction and its effects on the linear eigen-properties of the model. 

 

5.1. Fluid dynamics tools 
 

Consider the unsteady motion of a fluid consisting of a single substance (to exclude mixtures and chemical 

reactions) characterized by fundamental unknown properties such as speed u, density ρ and pressure P 

variables with regularity in space and time. For simplicity, we assume that a negligible dynamic viscosity 

characterizes the fluid. 

 

𝜇 = 𝜌𝜈 ≅ 0 ; 

 

Fixed, in an inertial reference system, the position of a reference finite volume V and the corresponding 

surface of the closed contour S is possible to write the fundamental equations that govern the dynamics of 

the flow. 

  

5.1.1. Conservation of mass 

 

Mathematically translates the absence of wells or springs of mass of the fluid in the domain V considered, 

equating the rate of change of the mass of fluid in the reference volume and the net flow of the incoming 

fluid through the border S. 

 

∫
∂ρ(r⃗ ,t)

∂tV
dV = −∮ ρ(r , t)u⃗ (r , t)

S
∙ n̂(r )dS ; 

 

Applying the divergence theorem turns the surface integral into a volume one, so it is useful to introduce the 

operator Nabla allowing a concise notation operators gradient, divergence and curl. 

 

�⃗� = (
𝜕.

𝜕𝑥

𝜕.

𝜕𝑦

𝜕.

𝜕𝑧
)
𝑇

 ; 

 

𝑔𝑟𝑎𝑑(𝑠) = �⃗� 𝑠 ; 

 

𝑑𝑖𝑣(𝑣 ) = �⃗� ∙ 𝑣  ; 

 

𝑟𝑜𝑡(𝑣 ) = �⃗� × 𝑣  ; 

 

∫ [
𝜕𝜌

𝜕𝑡
+ �⃗� ∙ (𝜌�⃗� )] 𝑑𝑉 = 0

𝑉
 ; 

 

Because of the arbitrariness of the control volume chosen, we can express the equation in a local form. 

 
𝜕𝜌

𝜕𝑡
+ �⃗� ∙ (𝜌�⃗� ) = 0 ; 
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Note that the notation "continuity equation" can be misleading because the equation of conservation of 

mass is also valid when the speed and / or density are discontinuous functions. 

 

5.1.2. Conservation of momentum 

 

From the fundamental law of dynamics (Newton's second law) for inertial systems is possible to match the 

rate of change of momentum in the volume V with the resultant of the forces acting on it (mainly the force 

of gravity) and on its surface S (pressure alone, having assumed negligible viscosity of the fluid). 

 

∫
𝜕(𝜌�⃗⃗� )

𝜕𝑡
𝑑𝑉 = −∮ 𝜌�⃗� ∗ (�⃗� ∙ �̂�)

𝑆𝑉
𝑑𝑆 − ∮ 𝑃�̂�

𝑆
𝑑𝑆 + ∫ 𝜌𝑔 𝑑𝑉

𝑉
 ; 

 

Where the * operator indicates that the operation must be performed for each component of the vector in 

separate equations along the three Cartesian directions. 

 

Let’s transform the surface integrals into volume ones for both vector and scalar quantities respectively using 

the divergence and the gradient theorems. Pay attention to the fact that we cannot apply directly the 

divergence theorem to a vector quantity. Therefore, it is necessary to consider separately each Cartesian  

component of 𝜌�⃗�  and only finally add vectorially the different contributions. 

 

∮ ρui(u⃗ ∙ �̂�)S
dS = ∫ ∇⃗⃗ ∙ (ρuiu⃗ )dV = ∫ [ρu⃗ ∙ ∇⃗⃗ ui + ui∇⃗⃗ ∙ (ρu⃗ )]VV

dV ; 

 

∮ ρu⃗ ∗ (u⃗ ∙ n̂)
S

dS = ∫ [ρ(u⃗ ∙ ∇⃗⃗ ) ∗ u⃗ + u⃗ ∗ ∇⃗⃗ ∙ (ρu⃗ )]
V

 ; 

 

Developing the time derivative and substituting the equation of conservation of mass will simplify some 

terms. 

 

∫ {

ρ
∂u⃗⃗ 

∂t
+ [u⃗ 

∂ρ

∂t
+ u⃗ ∗ ∇⃗⃗ ∙ (ρu⃗ )] +

+ρ(u⃗ ∙ ∇⃗⃗ ) ∗ u⃗ + ∇⃗⃗ P − ρg⃗ 

}
V

dV = ∫ {ρ
∂u⃗⃗ 

∂t
+ ρ(u⃗ ∙ ∇⃗⃗ ) ∗ u⃗ + ∇⃗⃗ P − ρg⃗ }

V
dV = 0 ; 

 

Exploiting the arbitrariness of V and collecting ρ, we obtain a partial differential equation, which appears to 

be non-linear due to the presence of the quadratic term (�⃗� ∙ ∇)�⃗�  and the presence of the unknown variable 

ρ in the denominator. 

 
∂u⃗⃗ 

∂t
+ (u⃗ ∙ ∇⃗⃗ ) ∗ u⃗ +

∇P

ρ
= g⃗ ; 

 

 

5.1.3. Conservation of total energy 

 

The unknowns of the problem are two scalar quantity 𝜌(𝑟 , 𝑡) , 𝑃(𝑟 , 𝑡) and a vector one 𝜌(𝑟 , 𝑡). Hence to solve 

the problem in closed form is necessary to introduce an additional scalar equation representing the balance 

of the total energy in the fluid volume. 

This equation is a function of two additional unknowns, namely the temperature 𝑇(𝑟 , 𝑡)and internal 

energy 𝑒(𝑟 , 𝑡). Therefore, it is necessary to introduce two state equations to express the pressure and the 

temperature as a function of internal energy and density. These expressions vary according to the 

thermodynamic properties of the fluid under consideration. 
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Neglecting the viscosity of the fluid can simplify the equation of energy balance since the contribution to the 

internal energy coming from the viscous friction vanishes. In addition to its introduction would require a 

special formulation of the stress-strain relation, which for Newtonian fluids (in which the relationship 

involves first derivatives of the speed) results in the model proposed by Stokes. 

 

 

5.1.4. Inviscid incompressible flows 

 

The condition of incompressibility imposes an external constraint on the velocity field that should prove to 

be solenoidal at each instant in each point of the domain. 

 

�⃗� ∙ �⃗� = 0 ; 

 

It is interesting to observe the consequences of this hypothesis when applied to the equation of mass 

balance. 

 
𝜕𝜌

𝜕𝑡
+ �⃗� ∙ �⃗� 𝜌 = 0 ; 

 

The above expression is an equation of mass transport per unit volume (namely ρ). Consequently, only in the 

particular case where the initial density of the fluid is uniformly distributed in the entire control volume, it is 

possible to assume 𝜌(𝑟 , 𝑡) = 𝜌 = 𝑐𝑜𝑠𝑡 as a solution of the equation. Otherwise, the density variation in time 

and space is defined by the equation itself. 

Therefore, it is important to underline the fact that the condition of incompressibility is an external constraint 

that cannot be interpreted as an alternative equation of the mass balance. Should not mislead the fact that 

it is possible to derive the condition of the solenoidal field motion writing the mass balance with the condition 

that the density of the fluid is always and everywhere constant. In fact, the latter constraint is related to a 

physical property of the fluid, then turns out to be an unacceptable forcing if imposed a priori. Therefore, 

only when the flow is incompressible and with uniform density is permissible to refer to a fluid characterized 

by constant density. 

 

The equations that govern the motion of an inviscid incompressible flow with uniform density are called 

"Euler equations for incompressible currents". They bind the balance of momentum to the condition of 

incompressibility. 

 
𝜕�⃗⃗� 

𝜕𝑡
+ (�⃗� ∙ �⃗� ) ∗ �⃗� +

�⃗⃗� �̃�

�̅�
= 𝑔  ; 

 

�⃗� ∙ �⃗� = 0 ; 

 

Key aspect is that, in order to satisfy the additional constraint of incompressibility disappears the dependence 

of the solution of the problem by thermodynamics, expressed by the equation of energy balance and state 

equations. Consequently, it is distorted the original meaning of the pressure and the one that appears in the 

equation of momentum balance is not a function of temperature and density of the fluid. In fact, it simply 

represents the Lagrange multiplier associated with the constraint of incompressibility, which allows solving 

the system of four equations (otherwise indeterminate considering only three Cartesian components of the 

velocity). Therefore, the system of Euler equations refers exclusively to an ideal fluid whose viscosity and 

thermal conductivity are negligible (to be distinguished from the perfect gas, whereby the pressure keeps its 

thermodynamics valence, persisting the relation 𝑃 = 𝜌𝑅𝑇). 
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Therefore, although the model of incompressible flow is completely unrealistic, because it loses the physical 

meaning of the fluid pressure, for low flow velocity that model is able to represent adequately accurate 

prediction of experimental results. Usually to verify the validity of the previous finding refers to the Mach 

number that expresses the ratio between the average velocity of the flow and that of sound (in the same 

fluid at rest and in thermodynamic standard conditions). 

 

𝑀𝑎 ∶=
𝑈

𝑐
< 0.3 ; 

 

In general, the speed that can be achieved respecting the condition of incompressibility are high enough to 

make a reasonable approximation of inviscid fluid. In fact, for Reynolds numbers high enough you can focus 

all the effects of viscosity in a very thin fluid layer at the interface with solid walls, said Viscous Boundary 

Layer. In this way, the flow can be studied separately in the area of the boundary layer and in that away from 

it, respectively, with suitable laws of the wall and through the Euler equations. 

 

𝑅𝑒 ∶=
𝜌𝑈𝐷

𝜇
=
𝑈𝐷

𝜈
 ; 

 

Euler equations containing partial derivatives both temporal and spatial, therefore, to determine fully the 

unknowns of the problem (speed and pseudo-fluid pressure) is necessary to provide appropriate initial and 

boundary conditions. 

Respectively express the distribution of the velocity field at the initial time in each point of the control volume 

and the distribution of the normal component to the surface S of the domain at any time subsequent to the 

initial one. 

 

�⃗� (𝑟 , 0) = 𝑢0⃗⃗⃗⃗ (𝑟 ) ; 

 

�⃗� (𝑟𝑆⃗⃗⃗  , 𝑡) ∙ �̂� = 𝑢𝑛⃗⃗ ⃗⃗ (𝑟𝑆⃗⃗⃗  , 𝑡) ; 

 

It 'important to note that it is possible to impose a condition solely on the normal component of the velocity 

at the boundary, because, from the hypothesis of inviscid flow, the tangential component is free to assume 

any distribution. Therefore, it is good to note that the speed should not be forced to be orthogonal to the 

boundary. In fact, in the case where the contour represents a still and waterproof wall, holds 𝑢𝑛⃗⃗ ⃗⃗ (𝑟𝑆⃗⃗⃗  , 𝑡) = 0, 

so the only motion granted to the flow is to slip on the solid surface. 

 

It highlights the fact that you have not set any conditions on the initial pseudo-pressure, because it lacks the 

time dependence in the condition of incompressibility. 

 

The fact that the couple �⃗� (𝑟 , 𝑡)  and  𝑃(𝑟 , 𝑡) + 𝐶(𝑡) represents a complete solution to the problem for any 

choice of the arbitrary function 𝐶(𝑡) is a consequence of the fact that the flow is incompressible and that the 

normal component of the velocity is prescribed on the entire contour of the reference volume. In purely 

mathematical terms it is observed that in the system of equations never appears directly the pseudo-pressure 

but only the gradient, therefore, the form taken by the flow field is irrelevant. This condition is typical in the 

current confined in which the flow is completely contained within impermeable and rigid walls. 

From the thermodynamic point of view it would have drastic consequences if the pressure field was defined 

up to a reference value variable in time. In fact, it would introduce arbitrary variations of the absolute 

pressure that strongly affects all the physical characteristics of the fluid. This is one more reason to exclude 

from any thermodynamic consideration the pressure that appears in the Euler equations and consider it as a 

simple additional variable of little physical meaning. 
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On the other hand, in the case of open flows is necessary to specify the pressure distribution on the boundary 

portion in which is not indicated any condition on the normal speed. In this way, in the governing equations 

appears directly a pressure value that is taken as a reference for every moment after the initial one, so that 

the distribution appears uniquely defined. 

 

The presence of the incompressibility constraint must also be met by the initial and boundary conditions, 

which implies a direct link between the two. 

 

∇⃗⃗ ∙ 𝑢0⃗⃗⃗⃗ (𝑟𝑆⃗⃗⃗  ) = 0; 

 

𝑢0⃗⃗⃗⃗ (𝑟𝑆⃗⃗⃗  ) ∙ �̂� = 𝑢𝑛⃗⃗ ⃗⃗ (𝑟𝑆⃗⃗⃗  , 0); 

 

The fact that the flow field is solenoidal has not only local effects as observed so far. In fact, it is possible to 

impose a condition of global compatibility on the entire border. 

 

∫ �⃗� (𝑟𝑆⃗⃗⃗  , 𝑡) ∙  �̂�𝑆
𝑑𝑆 = ∫ ∇⃗⃗ ∙

𝑉
�⃗� (𝑟 , 𝑡)𝑑𝑉 = 0⇒ ∫ 𝑢𝑛⃗⃗ ⃗⃗ (𝑟𝑆⃗⃗⃗  , 𝑡)𝑆

𝑑𝑆 = 0 ; 

 

In the case in which the external force field 𝑔  is conservative, it’s possible to express it as the gradient of the 

corresponding potential ε. In the particular case where ε represents the action of gravitation per unit volume 

of fluid, it is possible to write the equation of momentum balance, in the formulation of Euler, in function of 

the known "Bernoulli’s Trinomio ". 

 

∇⃗⃗ (𝑎 ∙ �⃗� ) = 𝑎 × ∇⃗⃗ × �⃗� + �⃗� × ∇⃗⃗ × 𝑎 + (𝑎 ∙ ∇⃗⃗ ) ∗ �⃗� + (�⃗� ∙ ∇⃗⃗ ) ∗ 𝑎  ; 

 

𝑎 = �⃗� = �⃗� ⇒
∇⃗⃗ (|𝑢|2)

2
= �⃗� × ∇⃗⃗ × �⃗� + (�⃗� ∙ ∇⃗⃗ ) ∗ �⃗� ⇒ (�⃗� ∙ ∇⃗⃗ ) ∗ �⃗� =

∇⃗⃗ (|𝑢|2)

2
− �⃗� × ∇⃗⃗ × �⃗� =

∇⃗⃗ (|𝑢|2)

2
− (∇⃗⃗ × �⃗� ) × u⃗ ; 

 

∂u⃗⃗ 

∂t
+ (u⃗ ∙ ∇⃗⃗ ) ∗ u⃗ +

∇⃗⃗ P̃

ρ̅
= g⃗ ⇒

∂u⃗⃗ 

∂t
+ (∇⃗⃗ × u⃗ ) × u⃗ + ∇⃗⃗ (

P̃

ρ̅
+
|u⃗⃗ |2

2
) = g⃗  ; 

 

𝑔 = −𝑔�̂� ⇒ ∇⃗⃗ 𝜖 = −∇⃗⃗ (𝑔𝑧) ⇒ 𝜖 = −𝑔⇒
∂u⃗⃗ 

∂t
+ (∇⃗⃗ × �⃗� ) × u⃗ = −∇⃗⃗ 𝐻 ; 

 

𝐻 ∶=
P̃

ρ̅
+
|�⃗⃗� |2

2
+ 𝑔; 

  

 

5.1.5. Potential flows 

 

By definition, the rotor of the velocity field of a flow is said vorticity field. 

 

�⃗⃗� ∶= ∇⃗⃗ × �⃗� ; 

 

This magnitude represents a local index than a fluid particle is rotating around its own axis (it can be shown 

that the vorticity is exactly equal to twice the angular velocity). However, we must not think that flows 

characterized by current lines (lines tangent to the velocity field) curved are associated to values of the local 

vorticity always different from zero, or vice versa it is possible that rectilinear current lines have not null 

vorticity. Therefore, there is no link between the intensity of the vorticity and shape of the field lines of 

current flow. 
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By definition of vorticity can immediately rewrite the Euler equation of balance of momentum. 

 
∂u⃗⃗ 

∂t
+ ω⃗⃗ × u⃗ = −∇⃗⃗ H̃ ; 

 

H̃ ∶=
P̃

ρ̅
+
|u⃗⃗ |2

2
+ ϵ ; 

 

The application of the rotor and a simple mathematical identity allows to obtain the so-called "equation of 

vorticity" in which disappears the dependence from the pressure field. 

 

∇⃗⃗ × (𝑎 × �⃗� ) = 𝑎 ∗ ∇⃗⃗ ∙ �⃗� − �⃗� ∗ ∇⃗⃗ ∙ 𝑎 − (𝑎 ∙ ∇⃗⃗ ) ∗ �⃗� + (�⃗� ∙ ∇⃗⃗ ) ∗ 𝑎  ; 

 

𝑎 = �⃗⃗� ; �⃗� = �⃗� ⇒ 𝑎 ∗ ∇⃗⃗ ∙ �⃗� = 0 ;  �⃗� ∗ ∇⃗⃗ ∙ 𝑎 = 0 ⇒ ∇⃗⃗ × (�⃗⃗� × �⃗� ) = −(�⃗⃗� ∙ ∇⃗⃗ ) ∗ �⃗� + (�⃗� ∙ ∇⃗⃗ ) ∗ �⃗⃗�   ; 

 

�⃗⃗� × (
∂u⃗⃗ 

∂t
+ �⃗⃗� × u⃗ ) = �⃗⃗� × (−∇⃗⃗ �̃�) ⇒

∂ω⃗⃗⃗ 

∂t
+ ∇⃗⃗ × (�⃗⃗� × �⃗� ) = 0 ⇒

∂ω⃗⃗⃗ 

∂t
+ (�⃗� ∙ ∇⃗⃗ ) ∗ �⃗⃗� = (�⃗⃗� ∙ ∇⃗⃗ ) ∗ �⃗�  ; 

 

The last expression is a transport equations of vorticity and allows you to translate on the fly an additional 

external constraint that you can force the flow. In fact, the vanishing of the vorticity at the initial time of each 

particle of the fluid is an index of irrotational motion field at each point of the domain and for each 

subsequent instant. 

 

𝜔0⃗⃗⃗⃗  ⃗ = 0⇒ ∇⃗⃗ × �⃗� = 0⃗  ; 

 

This is a direct consequence of the fact that we are neglecting the viscosity of the fluid, which is the only 

mechanism that allows the transfer of vorticity between particles. Therefore, we can say that in the presence 

of external conservative forcing also the vorticity is conserved. 

In reality, this statement is valid even in the viscous fluid flows provided they are not in contact with any solid 

wall, where it generates the large part of vorticity, and speed ensures a Reynolds number sufficiently high, 

to neglect the viscosity of the flow far from the wall. 

In any case, it is a condition very useful because it allows extending the irrotational uniform flow condition, 

which typically it’s assumed to come from infinity, in the neighbourhood of the body that is immersed, where 

the motion field loses its uniformity and nothing guarantees a priori the vanishing of its rotor. 

Substituting this condition in the formulation of Euler under the assumption of conservative forces field is 

further simplifies the equation of momentum balance. 

 
∂u⃗⃗ 

∂t
= −∇⃗⃗ (

P̃

ρ̅
+
|�⃗⃗� |2

2
+ 𝜖); 

 

�⃗� ∙ �⃗� = 0; 

 

∇⃗⃗ × �⃗� = 0⃗ ; 

 

It is noted that having considered a generic conservative force field, it is not possible to introduce the 

definition of Bernoulli’s Trinomio H, only valid for the gravitational forces field. 
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An irrotational velocity field, in the particular case where the domain considered is simply connected, is 

definitely conservative, therefore, is expressed by the gradient of a scalar function called "Kinetic Potential". 

 

�⃗� = ∇⃗⃗ 𝛷 ; 

 

The main advantage of this change of variables is mainly because from an unknown three-component vector 

we switch to a single scalar one. The price to pay is the increase of the order of the system of solving 

equations by one point. 

In fact, the condition of incompressibility is transformed into the homogeneous Laplace equation, a second 

order partial derivatives equation. 

 

∇⃗⃗ ∙ �⃗� = ∇⃗⃗ ∙ ∇⃗⃗ 𝛷 = 0⇒ ∇2𝛷 = 0 ; 

 

The full definition of the solution requires suitable boundary conditions, which result in only Neumann 

condition on normal gradient at each point of the border. 

 

�⃗� (𝑟𝑆⃗⃗⃗  , 𝑡) ∙ �⃗� = ∇⃗⃗ 𝛷(𝑟𝑆⃗⃗⃗  , 𝑡) ∙ �⃗� = 𝑢𝑛⃗⃗ ⃗⃗ (𝑟𝑆⃗⃗⃗  , 𝑡) ⇒
𝜕𝛷(𝑟𝑆⃗⃗ ⃗⃗ ,𝑡)

𝜕𝑛
= 𝑢𝑛⃗⃗ ⃗⃗ (𝑟𝑆⃗⃗⃗  , 𝑡) ; 

 

Consequently, the system of two scalar equations is said "Neumann problem" and is harmonic, i.e. an elliptic 

problem in the particular case in which the governing equation is homogeneous. 

Since the boundary condition is time-variant, we have at every moment a different problem. Therefore, the 

temporal evolution of  𝛷(𝑟 , 𝑡) and of all quantities dependent from it, are closely dominated by the 

instantaneous distribution of the normal speed at the border of the domain. 

 

The expression of the condition of global compatibility entire boundary of the domain does not undergo 

formal changes. 

 

∫ 𝑢𝑛⃗⃗ ⃗⃗ (𝑟𝑆⃗⃗⃗  , 𝑡)𝑆
𝑑𝑆 = 0; 

 

This condition guarantees the existence of the solution but not its uniqueness. In fact, similarly to what said 

for the pseudo-pressure, also the kinetic potential of the resulting solution of the Neumann problem is 

defined up to an arbitrary function of time, in consequence of the fact that in the equations always appears 

with at least one derivative of order greater than the first. But even in this case the velocity field is unique 

because it is not affected by this under determination being dependent on the gradient of the kinetic 

potential. This explains why it was not necessary to impose any conditions of Dirichlet for the distribution of 

the potential on the boundary of the domain. 

 

Once that has been calculated, the function  𝛷(𝑟 , 𝑡) can be defined separately both the velocity field that the 

distribution of pressure. In fact, the momentum balance equation can be also written as a function only of 

the kinetic potential. 

 

∂(∇⃗⃗ 𝛷)

∂t
= −∇⃗⃗ (

P̃

ρ̅
+
|∇⃗⃗ 𝛷|

2

2
+ 𝜖)⇒ ∇⃗⃗ (

𝜕𝛷

𝜕𝑡
+
P̃

ρ̅
+
|∇⃗⃗ 𝛷|

2

2
+ 𝜖) = 0⇒

𝜕𝛷

𝜕𝑡
+
P̃

ρ̅
+
|∇⃗⃗ 𝛷|

2

2
+ 𝜖 = 𝐶(𝑡) ; 

 

The equation just determined expresses the so-called "Bernoulli theorem for non-stationary irrotational 

potential flows” and allows to derive directly at each instant the pressure at any point of the domain simply 

by knowing 𝛷(𝑟 , 𝑡) 
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It concludes by emphasizing the fact that the introduction of the kinetic potential is granted only when you 

disappear from the equation of momentum balance the nonlinear term �⃗⃗� × �⃗� = (∇⃗⃗ × �⃗� ) × u⃗ . This allows to 

completely decoupling the determination of the velocity field from the pressure one. 

 

Consequently to the fact that the problem is completely dependent on one scalar function 𝛷(𝑟 , 𝑡) it is called 

"flow potential" but we must remember the basic assumptions that lie behind this concise definition. 

 

 unsteady flow; 

 inviscid fluid; 

 incompressible flow in uniform density; 

 irrotational velocity field; 

 conservative force field; 

 domain simply connected; 

 

 

5.1.6. Multi connected domains 

 

Effectively the need to have a simply connected domain is a forcing difficult to find in many problems of 

interest for applications in which is interesting to analyse the interaction of the flow with an immersed body. 

In fact, when the axial extent of a cylindrical body is much larger than its size in cross section, it is reasonable 

to consider a sectional model of the body, for simplicity assumed infinitely extended. This way we can be 

traced back to the condition of the planar motion but you lose the domain mono- connectivity. 

For this purpose we introduce a new quantity called "Circulation" representative of the circulation of the 

velocity field along a closed path entirely contained in the fluid domain. 

 

𝛤 ∶= ∮ �⃗� (𝑟 , 𝑡) ∙ �̂�𝑑𝑠
𝜕𝑆

= ∮ �⃗� (𝑟 , 𝑡) ∙ 𝑑𝑟 
𝜕𝑆

; 

 

There is a close link between circulation and vorticity that can be expressed using the Stokes theorem of the 

rotor, which allows you to switch from the integral of line to that on the surface that the closed path borders 

and within which the flow field is defined and regular. It stresses the importance of having a regular domain 

(no singularity) in order to apply the above theorem. 

 

∮ �⃗� (𝑟 , 𝑡) ∙ 𝑑𝑟 = ∫ ∇⃗⃗ × �⃗� ∙ �̂�
𝑆

𝑑𝑆
𝜕𝑆

⇒𝛤 = ∫ �⃗⃗� ∙ �̂�
𝑆

𝑑𝑆 ; 

 

Therefore, in order to be able to express the velocity field in terms of the gradient of a potential, the vanishing 

of vorticity in the whole domain is a sufficient condition, as can be deduced from the second equation 

written, equivalent to the condition of conservative field. 

 

�⃗⃗� = 0⃗ ⇒ 𝛤 = 0⇒ ∮ �⃗� (𝑟 , 𝑡) ∙ 𝑑𝑟 
𝜕𝑆

= 0⇒ ∫ �⃗� (𝑟 , 𝑡) ∙ 𝑑𝑟 =
𝜕𝑆1

∫ �⃗� (𝑟 , 𝑡) ∙ 𝑑𝑟 
𝜕𝑆2

 ; 

 

Instead is strictly necessary that the circulation vanishes along any closed path within that domain. Therefore, 

in the case of multi connected domains it is necessary that the chosen path never concatenates the source 

of circulation. This condition can be satisfied if you apply a cut to the fluid domain such that, starting from 

the external border, reaches the edge of the solid so that any closed path chosen is reducible to a point 

without departing from the stream. Usually, this cut is to coincide with the wake of the flow when it is 

sufficiently thin, so that only a small perturbation in the solution is introduced. 
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5.1.7. Kelvin theorem 

 

It is now considered a more general situation of non-viscous fluid whose incompressible constant density 

flow field is regular and subject to a system of conservative forces. The calculation of the circulation by 

definition in this case is based on a Lagrangian approach choosing a closed path that moves with the flow. 

 

𝛤 ∶= ∮ �⃗� (𝑟 , 𝑡) ∙ 𝑑𝑟 
𝜕�̃�

 ; 

 

It replaces the Euler equation, valid for the above conditions, the expression of the circulation differentiated 

with respect to time, remembering that also the contour of interaction moves with the flow. 

 
∂u⃗⃗ 

∂t
+ (∇⃗⃗ × �⃗� ) × u⃗ = −∇⃗⃗ (

P̃

ρ̅
+
|�⃗⃗� |2

2
+ 𝜖) ; 

 
𝑑𝛤

𝑑𝑡
=
𝑑

𝑑𝑡
∮ �⃗� (𝑟 , 𝑡) ∙ 𝑑𝑟 
𝜕�̃�

= ∮ [
∂u⃗⃗ 

∂t
+ (∇⃗⃗ × �⃗� ) × u⃗ ] ∙ 𝑑𝑟 

𝜕�̃�
= −∮ ∇⃗⃗ (

P̃

ρ̅
+
|�⃗⃗� |2

2
+ 𝜖) ∙ 𝑑𝑟 

𝜕�̃�
= −∮ d(

P̃

ρ̅
+
|�⃗⃗� |2

2
+ 𝜖)

𝜕�̃�
; 

 

Since we chose a regular motion field the integral over a closed line of a scalar must vanish. 

 
𝑑𝛤

𝑑𝑡
= 0 ; 

 

The condition derived summarizes the statement of the "Kelvin's Theorem" which can be generalized to the 

case of regular barotropic flow (in which the density can vary with pressure alone) of an inviscid fluid 

subjected to a conservative force field. In these conditions, the theorem shows that the circulation around a 

closed perimeter that moves with the flow remains constant in time. This condition explains a very important 

physical phenomenon that occurs in the wake of bodies immersed in a flow. In fact, it is observed that each 

vortex generated on the profile corresponds to one opposite in the wake (called starter) so that the total 

circulation remains null along the closed path that embraces both and the theorem is satisfied. 

 

5.1.8. Elementary solutions for planar potential flows 

 

The Laplace equation and associated boundary conditions have the distinction of being all linear equations. 

Consequently applies the fundamental properties of superposition that allows formulating a new solution to 

the linear problem simply by linearly combining an arbitrary number of elementary solutions. The same 

approach is the basis of the method of separation of variables in which the choice of the number of necessary 

elementary solutions must take in account of the complexity of the problem, which in turn is primarily related 

to the geometry of the domain under consideration. Although the available solutions form a very narrow set, 

to get a wider basis is sufficient a spatial translation of available solutions. The optimal arrangement of such 

solutions is of fundamental importance in order to build a solution that reproduce as closely as possible the 

actual response of the system. In addition, for those solutions that have a primary point of indeterminacy it 

is necessary that the placement be such that the singular point does not belong to the fluid domain where 

the motion field is defined. Further, also the choice of the positions in which impose boundary conditions 

greatly affects the accuracy of the solution, as they change the values of the coefficients of the linear 

combination determined by them. Instead, the number of conditions to be imposed is dictated by that of the 

solutions used. 

 

The elementary solutions of relevant importance available for the Laplace equation in terms of plane motion 

are those relating to cases of uniform current, straight source, straight doublet and straight vortex. 

For brevity will be treated only those that later will prove useful in the treatment. 
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Due to the planarity of the problem, it is convenient to refer, at least initially, to a cylindrical reference system 

for the definition of the flow field of the governing equation. 

 

𝑟 = 𝑅�̂� + 𝑧�̂� ; 

 

�⃗� (�⃗� ) = �⃗� (𝑅, 휃) = 𝑢𝑅(𝑅, 휃)�̂�(휃) + 𝑢 (𝑅, 휃)휃̂(휃) ; 

 

𝛷 = 𝛷(𝑅, 휃) ⇒ 𝑢𝑅(𝑅, 휃) =
𝜕𝛷

𝜕𝑅
 ;  𝑢 (𝑅, 휃) =

1

𝑅

𝜕𝛷

𝜕
 ; 

 

∇2𝛷 =
1

𝑅

𝜕

𝜕𝑅
(𝑅

𝜕𝛷

𝜕𝑅
) +

1

𝑅2
𝜕2𝛷

𝜕 2 = 0 ; 

 

We consider first a rectilinear source characterized by a plane motion field having constant intensity speed 

along each circle centred on the axis of the source from which each particle branches off radially. 

Consequently, to the cylindrical symmetry of the flow field also the kinetic potential will be a function of only 

the radial coordinate. 

 

�⃗� (𝑅, 휃) = 𝑢𝑅(𝑅, 휃)�̂�(휃) ; 

 

𝛷 = 𝛷(𝑅) ⇒ 𝑢𝑅(𝑅, 휃) =
𝑑𝛷

𝑑𝑅
 ;  𝑢 (𝑅, 휃) = 0 ; 

 

The Laplace equation simplifies accordingly. 

 

∇2𝛷 =
1

𝑅

𝜕

𝜕𝑅
(𝑅

𝜕𝛷

𝜕𝑅
) +

1

𝑅2
𝜕2𝛷

𝜕 2 =
1

𝑅

𝑑

𝑑𝑅
(𝑅

𝑑𝛷

𝑑𝑅
) =

1

𝑅

𝑑

𝑑𝑅
(𝑅𝑢𝑅) = 0

∀𝑅≠0
⇒   𝑢𝑅(𝑅, 휃) =

𝐶

𝑅
 ; 

 

The solution of the equation leads to explicit the expression of the radial component of velocity, the intensity 

of which is deduced to be inversely proportional to the distance from the axis of the source. 

The integration constant C can be related to volumetric flow rate per unit length λ through a cylindrical 

surface surrounding the axis of the source. 

 

𝑄𝑉 = ∫ �⃗� (𝑅, 휃) ∙ �̂�
𝑆

𝑑𝑆 = ∫
𝐶

𝑅
 �̂� ∙ �̂�

𝑆
𝑑𝑆 =

𝐶

𝑅
∫  �̂� ∙ �̂�
𝑆

𝑑𝑆 =
𝐶

𝑅
∫ 𝑑𝑆
𝑆

=
𝐶

𝑅
2𝜋𝑅𝐿 = 2𝜋𝐶𝐿 ; 

 

𝜆 =
𝑄𝑉

𝐿
= 2𝜋𝐶 ⇒ 𝐶 =

𝜆

2𝜋
 ; 

 

𝑢𝑠⃗⃗⃗⃗ (𝑅, 휃) =
𝜆

2𝜋𝑅
�̂�(휃) ⇒ 𝛷𝑠(𝑅) = ∫ 𝑢𝑅(𝑅, 휃)𝑑𝑅

𝑅

0
= ∫

𝜆

2𝜋𝑅
𝑑𝑅

𝑅

0
⇒𝛷𝑠(𝑅) =

𝜆

2𝜋
ln 𝑅 ; 

 

This emphasizes the fact that the solution has a singularity point at the axis of the source, which therefore 

must be suitably positioned outside of the domain of definition of the flow field. 

 

Let’s now consider the elementary case of rectilinear vortex with reference to a particular whirling structure 

that generates a velocity field characterized by cylindrical symmetry in which the particles of the fluid move 

on circular paths around a fixed axis with a speed inversely proportional to the distance from the axis. 

 

�⃗� (𝑅, 휃) = 𝑢 (𝑅)휃̂ =
𝐶

𝑅
휃̂ ; 
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The vortex, as it is defined, has the particularity to be irrotational in fact, even though following circular 

trajectories, the particles do not rotate on their own, except along the axis where, however, the motion field 

is not defined. 

 

|�⃗⃗� |𝑅≠0 = |∇⃗⃗ × �⃗� | =
1

𝑅

𝜕(𝑅𝑢𝜃)

𝜕𝑅
−
1

𝑅

𝜕𝑢𝑅

𝜕
=
1

𝑅

𝑑(𝑅𝑢𝜃)

𝑑𝑅
=
1

𝑅

𝑑𝐶

𝑑𝑅
= 0 ; 

 

So along any closed path that does not concatenate the axis of the vortex you can apply the theorem of 

Stokes as encloses a regular domain, therefore the circulation is null as the vorticity. The same theorem is no 

longer valid when the closed path concatenate the cylinder axis, therefore the circulation expressed as by 

definition in general doesn’t vanish. 

 

𝛤 = ∮ �⃗� (𝑅, 휃) ∙ 𝑑�⃗� 
𝐿

= ∮
𝐶

𝑅
휃̂ ∙ 𝑑�⃗� 

𝐿
= ∫

𝐶

𝑅

2𝜋

0
𝑅𝑑휃 = 2𝜋𝐶 ; 

 

It is observed immediately that the circulation of the velocity field is not cancelled along a path that surrounds 

the axis of the rectilinear vortex, further is constant for any shape and size of the path as long as the 

concatenation is unique. 

Therefore, the intensity of the vortex represented by the arbitrary constant C can be directly linked to the 

physical constant Γ. 

 

𝐶 =
𝛤

2𝜋
⇒𝑢𝑣⃗⃗⃗⃗ (𝑅, 휃) =

𝛤

2𝜋𝑅
휃̂; 

 

Note that also in this case the solution has a singularity at the swirling axis. 

To determine the expression of the kinetic potential let’s proceed integrating the definition of the velocity 

components in cylindrical coordinates. 

 

𝑢𝑅(𝑅, 휃) =
𝑑𝛷

𝑑𝑅
= 0 ⇒𝛷(휃) = 𝑓(휃) ; 

 

𝑢 (𝑅, 휃) =
1

𝑅

𝜕𝛷

𝜕
=

𝛤

2𝜋𝑅
⇒𝛷(휃) =

𝛤

2𝜋
+ 𝑔(𝑅) ; 

 

Equating the two possible expressions for the potential and assuming to be null the arbitrary constant of 

integration we obtain the following expression. 

 

𝛷(휃) =
𝛤

2𝜋
+ 𝑔(𝑅) = 𝑓(휃)⇔ 𝑔(𝑅) = 𝐶 ⇒ 𝐶 = 0⇒ 𝛷𝑣(휃) =

𝛤

2𝜋
 ; 

 

The expression just found is a biunique function of the plan only when the angular coordinate ranges within 

the first round angle. Because we want the solution to be periodic exactly of that angle, because generally 

we consider problems in which the fluid wets the entire contour of the body that is immersed, it will be 

necessary to introduce in the previous expression a suitable angular coordinate curtailed of the first round 

angle. 

 

Since the translation of the singular points outside of the fluid domain is easier if it has to do with Cartesian 

coordinates, it is necessary to express in such coordinates the elementary expressions thus far found. To do 

this we will use some well-known polar transformations. 

 

𝑥 = 𝑅 cos 휃 ;  𝑦 = 𝑅 sen휃 ⇒ 𝑅 = √𝑥2 + 𝑦2 ;  tan 휃 =
𝑦

𝑥
 ; 
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𝛷𝑠(𝑥, 𝑦) =
𝜆

2𝜋
ln√𝑥2 + 𝑦2  ; 

 

𝛷𝑣(𝑥, 𝑦) =
𝛤

2𝜋
𝑡𝑎𝑛−1 (

𝑦

𝑥
) ; 

 

It points out the need to pay attention to the reversal of the tangent function because you can lose the 

information on the dial where you are actually therefore should take the necessary precautions. 

 

In this way, any translation requires a simple change of variables in the above formulas. 

 

𝑥 → 𝑥 − 𝑥0 ; 

 

𝑦 → 𝑦 − 𝑦0 ; 

 

We must pay attention to the fact that in general performing a translation you lose the symmetry of the 

solution with respect to at least one of the two axes. 

 

5.1.9. Stream functions 

 

Current lines represent the lines of the instantaneous velocity vector field therefore cannot be crossed by 

the flow. This, in the particular case in which the flow is incompressible and planar, can be described by a 

scalar function called current function and defined as the volumetric flow rate, per unit length perpendicular 

to the plane, of the fluid flowing between a generic point and another taken as a reference. 

 

𝛹(𝑥, 𝑦, 𝑡) ∶= ∫ �⃗� (𝑥, 𝑦, 𝑡) ∙ �̂�(𝑥, 𝑦)𝑑𝑠
(𝑥,𝑦)

(𝑥0,𝑦0)
 ; 

 

By choosing a closed path that encloses a flow domain simply connected you can apply the divergence 

theorem. 

 

∮ �⃗� (𝑥, 𝑦, 𝑡) ∙ �̂�(𝑥, 𝑦)𝑑𝑠
𝜕𝑆

= ∫ ∇⃗⃗ 
𝑆

∙ 𝑢 ⃗⃗  ⃗𝑑𝑆 ; 

 

Thanks to the incompressibility of the flow, it can be shown that the velocity field is conservative. 

 

∮ �⃗� (𝑥, 𝑦, 𝑡) ∙ �̂�(𝑥, 𝑦)𝑑𝑠
𝜕𝑆1

= ∮ �⃗� (𝑥, 𝑦, 𝑡) ∙ �̂�(𝑥, 𝑦)𝑑𝑠
𝜕𝑆2

 ; 

 

The same applies also in the case in which the path considered surrounds a multiply connected fluid domain 

when the outline of the region, alien to the flow, is waterproof. In fact, in this case, it is necessary to consider 

also the contour that encloses that region where, however, the normal component of velocity at each point 

vanishes, and then the conservation condition is automatically satisfied. 

 

The last equation expresses the conservativeness of the motion field normal to a generic path and 

consequently the definition of the current function depends only on the choice of the end points of the path 

along which it is defined. 

Expressing the unit normal by the scalar product between the other two components of the intrinsic triad. 

 

𝛹(𝑥, 𝑦, 𝑡) = ∫ �⃗� (𝑥, 𝑦, 𝑡) ∙ �̂� × �̂� 𝑑𝑠
(𝑥,𝑦)

(𝑥0,𝑦0)
= ∫ �⃗� (𝑥, 𝑦, 𝑡) × �̂� ∙ �̂� 𝑑𝑠

(𝑥,𝑦)

(𝑥0,𝑦0)
= ∫ [�⃗� (𝑥, 𝑦, 𝑡) × 𝑑�̂�]𝑧

(𝑥,𝑦)

(𝑥0,𝑦0)
 ; 
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Recalling that the motion field is flat, the only non-zero component of the vector product is the one belonging 

to the plane of the flow. 

 

𝛹(𝑥, 𝑦, 𝑡) = ∫ [𝑢(𝑥, 𝑦, 𝑡) 𝑑𝑦 − 𝑣(𝑥, 𝑦, 𝑡) 𝑑𝑥]
(𝑥,𝑦)

(𝑥0,𝑦0)
 ; 

 

From the differentiation of the current function can be derived expressions for the two components of the 

fluid velocity. 

 

𝑢(𝑥, 𝑦, 𝑡) =
𝜕𝛹

𝜕𝑦
 ; 

 

𝑣(𝑥, 𝑦, 𝑡) = −
𝜕𝛹

𝜕𝑥
 ; 

 

Expressions just obtained can be rewritten synthetically in vector terms. 

 

�⃗� = ∇⃗⃗ 𝛹 × �̂� ; 

 

The vector notation has a more general value, in fact, can also be used in systems of plane coordinates 

different from the Cartesian one. 

For example, in the frequent case of cylindrical symmetry is particularly advantageous to express the current 

function in terms of a radial and an angular coordinate. 

 

𝛹 = 𝛹(𝑅, 휃) ; 

 

Consequently, also the velocity components associated with it must take account of the change of variables 

in the expression of the derivatives. 

 

𝑢𝑅(𝑅, 휃, 𝑡) =
1

𝑅

𝜕𝛹

𝜕
 ; 

 

𝑢 (𝑅, 휃, 𝑡) = −
𝜕𝛹

𝜕𝑅
 ; 

 

It is observed immediately that the velocity field thus defined automatically satisfies the condition of 

incompressibility, thanks to equality of the second mixed derivatives of the scalar function guaranteed by the 

Schwatz theorem. 

 

∇⃗⃗ ∙ �⃗� =
1

𝑅

𝜕(𝑅𝑢𝑅⃗⃗ ⃗⃗  ⃗)

𝜕𝑅
+
1

𝑅

𝜕𝑢𝜃

𝜕𝑅
=
1

𝑅

𝜕

𝜕𝑅
(
𝜕𝛹

𝜕
) +

1

𝑅

𝜕

𝜕𝑅
(−

𝜕𝛹

𝜕𝑅
) = 0 ; 

 

It must be stressed that what is said in this paragraph is valid whatever the viscosity of the fluid considered, 

in fact, no hypothesis has been made in this regard. 

In the case where the flow is irrotational the stream function is the solution of the Laplace equation. 

 

∇⃗⃗ × �⃗� =
𝜕(𝑢𝜃⃗⃗ ⃗⃗  ⃗)

𝜕𝑅
−
1

𝑅

𝜕(𝑢𝑅⃗⃗ ⃗⃗  ⃗)

𝜕
=

𝜕

𝜕𝑅
(−

𝜕𝛹

𝜕𝑅
 ) −

1

𝑅

𝜕

𝜕
(
1

𝑅

𝜕𝛹

𝜕
) = −∇2𝛹 = 0 ; 
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As has already been determined expressions for the components of the flow field of a plane potential flow is 

possible to define a direct link between the kinetic potential and stream function. 

 

𝑢𝑅(𝑅, 휃, 𝑡) =
𝜕𝛷

𝜕𝑅
=
1

𝑅

𝜕𝛹

𝜕
 ; 

 

𝑢 (𝑅, 휃, 𝑡) =
1

𝑅

𝜕𝛷

𝜕
= −

𝜕𝛹

𝜕𝑅
 ; 

 

Which implies that the family of equipotential lines and 𝛹 =  𝑐𝑜𝑛𝑠𝑡 are orthogonal, simply by checking the 

condition of orthogonality of the respective gradients. 

 

∇⃗⃗ 𝛷 =
𝜕𝛷

𝜕𝑅
�̂� +

1

𝑅

𝜕𝛷

𝜕
휃̂ ; 

 

∇⃗⃗ 𝛹 =
𝜕𝛹

𝜕𝑅
�̂� +

1

𝑅

𝜕𝛹

𝜕
휃̂ ; 

 

∇⃗⃗ 𝛷 ∙ ∇⃗⃗ 𝛹 = (
𝜕𝛷

𝜕𝑅
) (
𝜕𝛹

𝜕𝑅
) + (

1

𝑅

𝜕𝛷

𝜕
) (

1

𝑅

𝜕𝛹

𝜕
) = 0 ; 

 

Besides, the elementary solutions previously obtained can be rewritten in terms of the stream function by 

integrating the relationships just viewed and taking null arbitrary constants of integration for simplicity. 

 

𝛷𝑠(𝑅) =
𝜆

2𝜋
ln 𝑅 ⇒

𝜕𝛷𝑠

𝜕𝑅
=

𝜆

2𝜋𝑅
=
1

𝑅

𝜕𝛹𝑠

𝜕
⇒𝛹𝑠(𝑅) =

𝜆

2𝜋
휃 ⇒𝛹𝑠(𝑥, 𝑦) =

𝜆

2𝜋
𝑡𝑎𝑛−1 (

𝑦

𝑥
) ; 

 

𝛷𝑣(휃) =
𝛤

2𝜋
⇒
1

𝑅

𝜕𝛷

𝜕
=

𝛤

2𝜋𝑅
= −

𝜕𝛹𝑣

𝜕𝑅
⇒𝛹𝑣(𝑅) = −

𝛤

2𝜋
ln 𝑅 ⇒𝛹𝑣(𝑥, 𝑦) = −

𝛤

2𝜋
ln√𝑥2 + 𝑦2 ; 

 

 

5.2. Two dimensional stationary lifting flow around a circular cylinder 

 
It is considered a cylinder of length ideally infinite with circular section, so as to be able to study the problem 

in two dimensions by considering a generic section of the solid. The plane flow, steady, incompressible with 

uniform density and irrotational of a non-viscous fluid invest the body perpendicularly to its axis with uniform 

velocity in space and time average intensity equal to U. 

From the analysis you want to determine the distribution of the velocity field and pressure around the generic 

section of the body, rigidly constrained to the global reference system of cylindrical coordinates (R, θ, z), with 

z outgoing from the plane along the axis of cylinder. For convenience we introduce two auxiliary Cartesian 

axes to form a right-handed triad with z, where x is directed as U. 

 

In consequence of the fact that the velocity field around the cylinder must be planar, the expression of 

vorticity is simplified and the condition of irrotational flow is rewritten in another form. 

 

�⃗� (𝑅, 휃) = 𝑢𝑅(𝑅, 휃)�̂� + 𝑢 (𝑅, 휃)휃̂ ⇒ �⃗⃗� = ∇⃗⃗ × �⃗� = 𝜔�̂� = 0⇔ �̂� ∙ �⃗⃗� = 0 ; 
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We write the equations governing the problem, namely the condition of incompressible and irrotational flow, 

in cylindrical coordinates. 

 

∇⃗⃗ ∙ �⃗� = 0 ⇒
1

𝑅

𝜕(𝑅𝑢𝑅)

𝜕𝑅
+
1

𝑅

𝜕𝑢𝜃

𝜕
= 0⇒

𝜕(𝑅𝑢𝑅)

𝜕𝑅
+
𝜕𝑢𝜃

𝜕
= 0 ; 

 

∇⃗⃗ × �⃗� = 0 ⇒
1

𝑅

𝜕(𝑅𝑢𝜃)

𝜕𝑅
−
1

𝑅

𝜕𝑢𝑅

𝜕
= 0⇒

𝜕(𝑅𝑢𝜃)

𝜕𝑅
−
𝜕𝑢𝑅

𝜕
= 0  ; 

 

In order to solve the linear first order differential system of two equations, are needed suitable boundary 

conditions that translate mathematically the impermeability of the surface of the cylinder and restore the 

undisturbed condition infinitely upstream of the body (set for simplicity on a single component of the velocity 

field). 

 

�̂� = �̂� ⇒ 𝑢𝑅(�̅�, 휃) = 0 ; 

 

lim
𝑅→∞

𝑢𝑅(𝑅, 휃) = 𝑈 cos 휃; 

 

We emphasize the fact that the initial conditions are not necessary since it considers the stationary regime 

condition. 

Substituting the expression for 
𝜕𝑢𝜃

𝜕
 obtained from the first equation into the second specifically derivate with 

respect to θ there can be traced back to a single differential equation of second order. 

 
𝜕

𝜕
[
𝜕(𝑅𝑢𝜃)

𝜕𝑅
−
𝜕𝑢𝑅

𝜕
] =

𝜕

𝜕𝑅
(𝑅

𝜕𝑢𝜃

𝜕𝑅
) −

𝜕2𝑢𝑅

𝜕 2 = 0 ; 

 

𝜕𝑢𝜃

𝜕
= −

𝜕(𝑅𝑢𝑅)

𝜕𝑅
⇒

𝜕

𝜕𝑅
[𝑅

𝜕(𝑅𝑢𝑅)

𝜕𝑅
] −

𝜕2𝑢𝑅

𝜕 2 = 0  ; 

 

The search for elementary solutions of the equation is addressed by means of the method of separation of 

variables in which the velocity field is described by the product of two unknown functions dependent each 

by a single variable between R and θ. This is a very strong hypothesis that dramatically narrows the range of 

validity of each elementary solution obtained. Therefore, it is imperative to exploit the linearity of the 

problem, and overlap the effects of various elementary solutions through a linear combination to obtain a 

new solution of the problem which is better suited to the boundary conditions. This is allowed by the fact 

that the number of elementary solutions is large enough to be considered a base. 

 

𝑢𝑅(𝑅, 휃) = 𝑓(𝑅)𝑔(휃) ; 

 

𝜕

𝜕𝑅
[𝑅

𝜕(𝑅𝑢𝑅)

𝜕𝑅
] −

𝜕2𝑢𝑅

𝜕 2 = 𝑔
𝑑

𝑑𝑅
[𝑅

𝑑(𝑅𝑓)

𝑑𝑅
] − 𝑓

𝑑2𝑔

𝑑 2 = 𝑔
𝑑

𝑑𝑅
[𝑅𝑓 + 𝑅2

𝑑𝑓

𝑑𝑅
] − 𝑓

𝑑2𝑔

𝑑 2 = {𝑔(

𝑓 + 𝑅𝑓′ +

+2𝑅𝑓′′ + 𝑅2𝑓′′
) + 𝑓𝑔′} = 0 ; 

 

1

𝑓
(𝑓 + 𝑅𝑓′ + 2𝑅𝑓′ + 𝑅2𝑓′′) = −

𝑔′

𝑔
⇒𝐹(𝑅) = −𝐺(휃)  ∀(𝑅, 휃) ; 

 

The equality of two functions dependent on different variables can be satisfied only in the case where both 

are constants. 

 



232 
 

Thus, the problem reduces to two ordinary differential equations, in independent variables (but linked by the 

constant separation σ), of second order and with constant coefficients. 

 

𝑔′′ + 𝜎𝑔 = 0; 

 

𝑅2𝑓′′ + 3𝑅𝑓′ + (1 − 𝜎)𝑓 = 0; 

 

The solutions to the first equation in exponential form can be searched using the method proposed by Euler. 

 

𝑔(휃) = 𝑒𝜆  ; 

 

Substituting in the equation and remembering that the exponential does not vanish for any value of λ and θ, 

it comes down to an algebraic equation in the unknown λ. 

 

𝜆2 + 𝜎 = 0 ; 

 

We must distinguish three different solutions depending on the value assumed by σ. 

 

𝜎 < 0 ⇒ 𝜎 = −𝑘2⇒ 𝜆1,2 = ±𝑘 ⇒ 𝑔(휃) = 𝐶1𝑒
𝑘 + 𝐶2𝑒

−𝑘  ; 

 

𝜎 = 0⇒ 𝜆1,2 = 0 ⇒ 𝑔(휃) = 𝐶1 + 𝐶2휃 ; 

 

𝜎 > 0 ⇒ 𝜎 = 𝑘2⇒ 𝜆1,2 = ±𝑖𝑘 ⇒ 𝑔𝑘(휃) = 𝐴1,𝑘 sin(𝑘휃) + 𝐴2,𝑘 cos(𝑘휃) ; 

 

The choice must fall back to that which guarantees a periodic solution of 2π around the cross section of the 

cylinder. It is noted immediately that the first solution should be discarded because as θ grows it is divergent, 

the same problem is avoided in the second assuming to be null the second integration constant. Therefore, 

the solution should have the same form of the third equation that appears to be periodic of a round angle 

only if the arbitrary constant k is an integer, including zero. 

 

Given the range of variability of k turns out to be uniquely defined also the one for σ, then you can proceed 

to the resolution of the second ordinary differential equation dependent only on R. 

To begin with let’s consider the particularly simple case in which k is zero. 

 
1

𝑓

𝑑

𝑑𝑅
[𝑅

𝑑(𝑅𝑓)

𝑑𝑅
] = −

1

𝑔

𝑑2𝑔

𝑑 2 = 𝜎 ; 

 

𝑘 = 0⇒ 𝜎 = 0⇒
1

𝑓0

𝑑

𝑑𝑅
[𝑅

𝑑(𝑅𝑓0)

𝑑𝑅
] = 0 ⇒

𝑑(𝑅𝑓0)

𝑑𝑅
=
𝐵1,0

𝑅
⇒𝑓0(𝑅) =

𝐵1,0 log𝑒 𝑅

𝑅
+
𝐵2,0

𝑅
 ; 

 

For any other value assumed by k, the ordinary differential equation takes the form of an “equi-dimensional” 

or Euler equation, so called because it is characterized by being composed of the terms in which the order is 

equal to the degree of differentiation. 

 

𝑘 > 0⇒ 𝑅2𝑓′′ + 3𝑅𝑓′ + (1 − 𝑘2)𝑓 = 0 ↔ 𝑎𝑥2
𝑑2𝑦

𝑑𝑥2
+ 𝑏𝑥

𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0 ; 
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Seeking elementary solutions suitable for a development in power series of the final solution. 

 

𝑓(𝑅) = 𝑅𝑛; 

 

Substituting in the governing equation it reduces to an algebraic equation as a function of the unknown 

parameter n (confirming that the solution never vanishes for any value taken by the exponent). 

 

𝑛(𝑛 − 1) + 3𝑛 + (1 − 𝑘2) = 𝑛2 + 2𝑛 + 1 − 𝑘2 = 0⇒ (𝑛 + 1)2 = 𝑘2⇒ 𝑛1,2 = ±𝑘 − 1 ; 

 

𝑓𝑘(𝑅) = 𝐶1,𝑘𝑅
𝑘−1 + 𝐶2,𝑘

1

𝑅𝑘+1
 ; 

 

Leveraging the ability to overlay the effects of the special conditions so far analysed, you can write a final 

shape of the solution to the original second order partial differential equation with separate variables. 

 

𝑢𝑅(𝑅, 휃) = 𝑓(𝑅)𝑔(휃) = 𝑓0(𝑅)𝑔0(휃) + ∑ 𝑓𝑘(𝑅)𝑔𝑘(휃)
∞
𝑘=1  ; 

 

𝑢𝑅(𝑅, 휃) =
𝐵1,0 log𝑒 𝑅

𝑅
+
𝐵2,0

𝑅
+ ∑ (𝐶1,𝑘𝑅

𝑘−1 + 𝐶2,𝑘
1

𝑅𝑘+1
) [𝐴1,𝑘 sin(𝑘휃) + 𝐴2,𝑘 cos(𝑘휃)]

∞
𝑘=1 ; 

 

Note that the second term corresponds to the elementary solution of Laplace's equation previously 

determined for the case of linear source where 𝐵2,0 =
𝜆

2𝜋
. 

Now it is possible to determine the expressions taken from the integration constants in order to satisfy the 

boundary conditions of the problem. 

 

lim
𝑅→∞

𝑢𝑅(𝑅, 휃) < ∞⇔ lim
𝑅→∞

𝑅𝑘−1 < ∞⇔𝑘 = 1⇒ 𝐶1,𝑘>1 = 0 𝑎𝑛𝑑 𝐶1,1 ≠ 0 ; 

 

You collect integration constants to define new ones. 

 

∑ (

𝐶1,𝑘𝑅
𝑘−1 +

+𝐶2,𝑘
1

𝑅𝑘+1

)[

𝐴1,𝑘 sin(𝑘휃) +

+𝐴2,𝑘 cos(𝑘휃)
]∞

𝑘=1 = 𝐴1 sin휃 + 𝐴2 cos 휃 + ∑ 𝑎1,𝑘
sin(𝑘 )

𝑅𝑘+1
+ 𝑎2,𝑘

cos(𝑘 )

𝑅𝑘+1
∞
𝑘=1  ; 

 

Consequently, the condition undisturbed flow indefinitely upstream of the cylinder can be imposed. 

 

𝑙𝑖𝑚
𝑅→∞

𝑢𝑅(𝑅, 휃) = 𝐴1 𝑠𝑖𝑛 휃 + 𝐴2 𝑐𝑜𝑠 휃 = 𝑈 𝑐𝑜𝑠 휃 ⇔𝐴1 = 0 𝑎𝑛𝑑 𝐴2 = 𝑈 ; 

 

The water resistance of the cylinder determines the vanishing of the orthogonal velocity to the body surface 

along a generic direction. 

 

𝑢𝑅(�̅�, 휃) =
𝐵1,0 log𝑒 �̅�

�̅�
+
𝐵2,0

�̅�
+ 𝑈 cos 휃 + ∑ 𝑎1,𝑘

sin(𝑘 )

�̅�𝑘+1
+ 𝑎2,𝑘

cos(𝑘 )

�̅�𝑘+1
= 0∞

𝑘=1  ; 

 
𝐵1,0 log𝑒 �̅�

�̅�
+
𝐵2,0

�̅�
= 0⇔𝐵2,0 = −𝐵1,0 log𝑒 �̅� ; 

 

𝑈 cos 휃 + 𝑎2,1
cos

�̅�2
= 0⇔ 𝑎2,1 = −�̅�

2𝑈 ; 
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∑ 𝑎1,𝑘
sen(𝑘 )

�̅�𝑘+1
∞
𝑘=1 + ∑ 𝑎2,𝑘

cos(𝑘 )

�̅�𝑘+1
= 0∞

𝑘=2 ⇔𝑎1,𝑘>0 = 0   ;    𝑎2,𝑘>1 = 0 ; 

 

It finally gets the final expression for the radial component of the velocity field of the flow. 

 

𝑢𝑅(𝑅, 휃) =
𝐶 log𝑒

𝑅
�̅�⁄

𝑅
+ 𝑈(1 −

�̅�2

𝑅2
) cos 휃; 

 

From the condition of incompressibility is extracted term derived with respect to the coordinate θ. 

 

𝜕(𝑅𝑢𝑅)

𝜕𝑅
+
𝜕𝑢𝜃

𝜕
= 0⇒

𝜕𝑢𝜃

𝜕
= −

𝜕(𝑅𝑢𝑅)

𝜕𝑅
= −

𝜕

𝜕𝑅
{𝑅 [

𝐶 log𝑒
𝑅
�̅�⁄

𝑅
+ 𝑈(1 −

�̅�2

𝑅2
) cos 휃]} = −

𝜕

𝜕𝑅
[𝐶 log𝑒

𝑅

�̅�
+

𝑈(𝑅 −
�̅�2

𝑅
) cos휃] = −

𝐶

𝑅
− 𝑈 (1 +

�̅�2

𝑅2
) cos 휃 ; 

 

The integration of the previous expression is used to define the angular component of velocity of the flow. 

 

𝑢 (𝑅, 휃) = −
𝐶

𝑅
− 𝑈(1 +

�̅�2

𝑅2
) sen휃 + 𝐹(𝑅) ; 

 

The integration constant C is defined by recalling that the final solution should be periodic by 2π. 

 

𝑢 (𝑅, 휃) = 𝑢 (𝑅, 휃 + 2𝜋)⇔−
𝐶

𝑅
− 𝑈(1 +

�̅�2

𝑅2
) sen 휃 = −

𝐶( +2𝜋)

𝑅
− 𝑈(1 +

�̅�2

𝑅2
) sen(휃 + 2𝜋) ; 

 

sin휃 = sin(휃 + 2𝜋) ⇒
2𝜋𝐶

𝑅
= 0⇔𝐶 = 0 ; 

 

𝑢𝑅(𝑅, 휃) = 𝑈 (1 −
�̅�2

𝑅2
) cos 휃; 

 

𝑢 (𝑅, 휃) = −𝑈 (1 +
�̅�2

𝑅2
) sen휃 + 𝐹(𝑅) ; 

 

The integration with respect to θ has introduced an arbitrary function depends only on the radial coordinate, 

the expression of which can be defined by the irrotational condition of the velocity field expressed by the 

equations so far found. 

 

𝜕(𝑅𝑢𝜃)

𝜕𝑅
−
𝜕𝑢𝑅

𝜕
= 0⇒

𝜕(𝑅𝑢𝜃)

𝜕𝑅
=
𝜕𝑢𝑅

𝜕
= −𝑈(1 −

�̅�2

𝑅2
) 𝑠𝑒𝑛 휃 ; 

 

Integrating with respect to R another expression for the angular component of the flow is obtained. 

 

𝑢 (𝑅, 휃) = −𝑈 (1 +
�̅�2

𝑅2
) sen휃 +

𝐺( )

𝑅
 ; 

 

In this case the arbitrary function appears to be dependent only on angular coordinate. 

So that the expression for 𝑢 (𝑅, 휃) to be unique is necessary that the two arbitrary functions above are 

linked appropriately to each other. 

 

𝐹(𝑅) =
𝐺( )

𝑅
⇔𝐺(휃) = 𝐵 = 𝑐𝑜𝑠𝑡 ; 
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𝑢 (𝑅, 휃) = −𝑈 (1 +
�̅�2

𝑅2
) sen휃 +

𝐵

𝑅
 ; 

 

To give a physical meaning to the constant just introduced is appropriate to recall the definition of rectilinear 

vortex, whose velocity field contributes to the definition of the flow in the tangential direction around the 

cylinder section previously obtained. 

 

𝑢𝑣⃗⃗⃗⃗ (𝑅, 휃) = 𝑢 (𝑅)휃̂ =
𝛤

2𝜋𝑅
휃̂ ⇒ 𝐵 =

𝛤

2𝜋
 ; 

 

Ultimately, you can write the final formulation for the angular component of velocity. 

 

𝑢 (𝑅, 휃) = −𝑈 (1 +
�̅�2

𝑅2
) sen휃 +

𝛤

2𝜋𝑅
; 

 

By overlaying the two scalar components is obtained the total vector flow field around the circular cylinder. 

 

�⃗� (𝑅, 휃) = [𝑈 (1 −
�̅�2

𝑅2
) cos 휃] �̂� + [

𝛤

2𝜋𝑅
− 𝑈(1 +

�̅�2

𝑅2
) sen휃] 휃̂; 

 

Given the arbitrariness of the parameter Γ exists a family of infinite possible solutions that properly describe 

the flow field around the body. This emphasizes the fact that the non-uniqueness of the solution is valid for 

any form of the section of the cylinder being Γ independent from it. 

In summary, the presence of the infinitely extended solid body makes multiply connected fluid domain, which 

does not allow to apply the Stokes theorem since in the region occupied by the solid is not defined any flow. 

The circulation cannot, therefore, be determined by the vorticity, for which it would be null like in any mono-

connected domain, but by means of its definition it reveals the arbitrariness. Consequently, the solution loses 

the uniqueness, the motion field is not conservative, being a priori Γ not null, and therefore cannot be 

expressed by the gradient of a scalar function, since it has no kinematic potential. 

As for the loss of uniqueness of the solution is linked to the idealization of non-viscous fluid. In fact, every 

real fluid is always characterized by even a small viscosity, concentrated in the boundary layer, which in 

conditions of stationary flow makes it unique solution by fixing the circulation, the value of which, however, 

depends on the shape of the section of the cylinder and on the past history of the momentum field. At the 

physical level, the circulation generated in the viscous boundary layer grows until the flow moves in 

stationary conditions. From here onwards is maintained constant thanks to the fact that the flow is well 

described by the Euler equations in most of the domain, which can be written in terms of vorticity to explain 

the condition of preservation of the circulation. 

 

Being known the velocity field is also possible to determine the one associated to the pressure applying the 

Bernoulli theorem in the stationary version. The formulation of the previously determined theorem is valid 

for incompressible (with uniform density) and irrotational currents in the simply connected domain that has 

permission to write the speed as a function of a kinetic potential. This is no longer possible because the 

domain is multi connected and the circulation of the flow is non-zero for each path traced around the body 

that there is immersed. Therefore, in this case, the motion field is not conservative and consequently the 

Bernoulli theorem is not associated with a potential. 

 
𝜕�⃗⃗� 

𝜕𝑡
= −�⃗� (

�̃�

�̅�
+
|�⃗⃗� |2

2
+ 𝜖) = 0 ; 

 

It is assumed that there are no other external forcing except from the fluid pressure, which can be expressed 

by a dimensionless pressure coefficient. 
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This is equal to the difference between the pressure reached by the fluid near the cylinder and the one at 

the inlet of the body, where the speed is uniform and can be defined a kinetic energy per unit volume taken 

as a parameter for normalization. 

 

∇⃗⃗ (
P̃

ρ̅
+
|�⃗⃗� |2

2
) = 0⇔

P̃

ρ̅
+
|�⃗⃗� |2

2
= 𝐶 = 𝑐𝑜𝑠𝑡 ⇒ P̃(𝑅, 휃) = ρ̅𝐶 −

1

2
ρ̅|�⃗� |2⇒ P̃∞ = P̃(𝑅 → ∞) = ρ̅𝐶 −

1

2
ρ̅𝑈2 ; 

 

𝐶�̃�(𝑅, 휃) =
�̃�(𝑅, )−�̃�∞

1

2
�̅�𝑈2

= 1 −
|�⃗⃗� (𝑅, )|2

𝑈2
 ; 

 

It is evident that the pressure coefficient can be at most equal to unity, the condition reached only in the 

stagnation point where it cancels the local velocity. 

From the previously calculated expression for the velocity field you can define the module in cylindrical 

coordinates. 

 

𝑢𝑅(𝑅, 휃) = 𝑈 (1 −
�̅�2

𝑅2
) cos 휃 ; 

 

𝑢 (𝑅, 휃) = −𝑈 (1 +
�̅�2

𝑅2
) sen휃 +

𝛤

2𝜋𝑅
 ; 

 

|�⃗� (𝑅, 휃)|2 = 𝑢𝑅(𝑅, 휃)
2 + 𝑢 (𝑅, 휃)2 = 𝑈2 (1 − 2

�̅�2

𝑅2
+
�̅�4

𝑅4
) cos2 휃 + 𝑈2 (1 + 2

�̅�2

𝑅2
+
�̅�4

𝑅4
) sen2 휃 −

𝛤𝑈

𝜋𝑅
(1 +

�̅�2

𝑅2
) sen휃 + (

𝛤

2𝜋𝑅
)
2
= 𝑈2 (1 +

�̅�4

𝑅4
) + 2𝑈2

�̅�2

𝑅2
(sin2 휃 − cos2 휃) −

𝛤𝑈

𝜋𝑅
(
𝑅2+�̅�2

𝑅2
) sin 휃 + (

𝛤

2𝜋𝑅
)
2
=

𝑈2 (1 +
�̅�4

𝑅4
) − 2𝑈2

�̅�2

𝑅2
cos(2휃) −

𝛤𝑈�̅�

𝜋𝑅2
(
𝑅

�̅�
+
�̅�

𝑅
) sin 휃 + (

𝛤

2𝜋𝑅
)
2

 ; 

 

The pressure coefficient is now immediately defined in the coordinates adopted. 

 

𝐶�̃�(𝑅, 휃) = −
�̅�2

𝑅2
[
�̅�2

𝑅2
− 2cos(2휃) −

𝛤

𝜋�̅�𝑈
(
𝑅

�̅�
+
�̅�

𝑅
) sin휃 + (

𝛤

2𝜋𝑅𝑈
)
2
] ; 

 

The pressure coefficient reveals that the circulation makes the pressure around the cylinder asymmetrical 

with respect to the plane aligned with the undisturbed upstream flow. 

This becomes clearer if one refers to the pressure exerted on the body surface. 

 

𝑢𝑅(�̅�, 휃) = 0 ; 

 

𝑢 (�̅�, 휃) = −2𝑈 sen휃 +
𝛤

2𝜋�̅�
 ; 

 

|�⃗� (�̅�, 휃)|2 = 𝑢𝑅(𝑅, 휃)
2 + 𝑢 (𝑅, 휃)2 = 4𝑈2 sen2 휃 −

2𝛤𝑈

𝜋�̅�
sen 휃 + (

𝛤

2𝜋�̅�
)
2

 ; 

 

𝐶�̃�(�̅�, 휃) = 1 −
|�⃗⃗� (�̅�, )|2

𝑈2
= 1 − 4 sen2 휃 −

2𝛤

𝜋�̅�𝑈
sen휃 + (

𝛤

2𝜋�̅�𝑈
)
2

 ; 

 

The expression just found contains two terms related to the circulation of the fluid, of which the one constant 

with the angle has no effect against the net force on the body, instead of the other, varying with the sine of 

the angular coordinate, introduces an asymmetry in the distribution of pressure at the surface of the body.  
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Consequently, by integrating the pressure field along the contour of the section of the cylinder is possible to 

calculate the net force, per unit length, acting on it in the direction orthogonal to the upstream flow. 

 

𝑓 = ∫ �̃�(�̅�, 휃)[−�̂�(휃)]
2𝜋

0
�̅�𝑑휃 = −�̅� ∫ �̃�(�̅�, 휃)

2𝜋

0
(𝑐𝑜𝑠휃𝑥 + 𝑠𝑒𝑛휃�̂�)�̅�𝑑휃 ; 

 

Determining the direction of this force is immediate if one considers the fact that the pressure distribution 

was obtained through the Bernoulli theorem. In the particular case considered, the theorem expresses a 

relationship of mutual balance between the flow field and the pressure distribution of the flow, in such a way 

that the sum of the two contributions is kept constant. Since the circulation is due to the presence of a 

rectilinear vortex, the velocity field is perturbed by Γ which increases the intensity in those locations where 

the symmetrical component of the velocity is concordant with the direction of rotation of the flow and 

otherwise it reduces. The asymmetry of the flow is therefore linked to the variation of relative direction 

between these two velocity components along the profile of the section. In consequence of the above 

theorem, there is respectively a decrease and an increase of the pressure on the cylinder, which then turns 

out to be not symmetrically distributed. 

Substituting the expression of pressure and remembering some trigonometric identities the formulation for 

the total force acting on the cylinder is simplified. 

 

𝑓 = −�̅� ∫ {ρ̅𝐶 −
1

2
ρ̅ [4𝑈2 sen2 휃 −

2𝛤𝑈

𝜋�̅�
sen휃 + (

𝛤

2𝜋�̅�
)
2
]}

2𝜋

0
(𝑐𝑜𝑠휃𝑥 + 𝑠𝑒𝑛휃�̂�)�̅�𝑑휃 ; 

 

∫ sen2 휃
2𝜋

0
𝑐𝑜𝑠휃𝑑휃 = ∫ sen휃

2𝜋

0
𝑐𝑜𝑠휃𝑑휃 = ∫ 𝑐𝑜𝑠휃𝑑휃

2𝜋

0
= ∫ sen3 휃

2𝜋

0
𝑑휃 = ∫ 𝑠𝑒𝑛휃𝑑휃

2𝜋

0
= 0 ; 

 

𝑓 = −
ρ̅𝛤𝑈

𝜋
(∫ 𝑠𝑒𝑛2휃𝑑휃
2𝜋

0
) �̂� = −ρ̅𝛤𝑈�̂�; 

 

Since you are considering a plane motion in which the average velocity of the undisturbed flow is directed 

perpendicular to the cylinder axis along which the circulation can be represented as a vector, is easily fount 

the general expression of the so called "Kutta-Joukowsky Theorem " . 

 

𝑓 = ρ̅�⃗⃗� × 𝛤  ; 

 

The theorem provides intensity, direction and orientation of the lift force per unit length for a cylinder having 

a section of any shape. More specifically we speak of lift and downforce depending on whether the force is 

directed respectively upwards or downwards, depending on the direction of rotation of the straight vortex 

and the direction of the undisturbed velocity field. 

This emphasizes the fact that in the case in which the circulation were null, as happens for symmetrical flow, 

the previous expression is transformed into the paradox of d'Alembert. According to which bodies invested 

by a stationary, irrotational, incompressible with constant density and negligible viscosity flows offer no 

resistance to the motion of the fluid itself, that is, are not lifting. As already mentioned, in the real 

applications this is not possible mainly by the fact that the viscosity of the fluid is never completely null, at 

least in the boundary layer, and this fact always introduces a contribution to the swirling motion, which in 

steady state becomes constant. 

The last statement has important consequences for the velocity and pressure fields that can actually develop 

around a body of infinitely extended of generic section immersed in a fluid. 

 

In this regard, it is considered a flat plate placed in incidence uniform, incompressible with uniform density, 

irrotational and with null circulation flow for any path that concatenates the section of the solid. 
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In these conditions, the tracking of the trajectories allows to identify two stagnation points located 

respectively on the lower part of the abdomen front and rear upper back. The trajectories near either end of 

the back and of the abdomen have a distortion at the output region. The presence of the body, in fact, force 

the particles to follow a given path with an influence increasingly louder as you get closer to the solid wall. 

Consequently, only the particles closer to the plate are bound to move from the stagnation point on the back 

of the one in the belly. In order to reach the second stagnation point must pass a sharp edge and travel a 

stretch in the opposite direction to the uniform flow. In the reversal point has a concentration of trajectories 

that involves a speed unrealistically tending to infinity. For this reason, it is necessary to consider the effects 

of viscosity which, by introducing a component of circulatory motion, move the stagnation points, particularly 

the one on back moves in correspondence with the sharp edge output. This prevents the inversion of the 

trajectories for the particles in output, which quite simply follow the direction suggested by the airfoil, and 

thus no longer has the singularity in the motion field. Instead, the stagnation point in entry remains on the 

belly of the foil and the trajectories become more uneven, which greatly increases the speed at the sharp 

edge; for this reason the airfoils have a rounded leading edge that regulates the flow field. 

Since the phenomena that regulate the output conditions of a real flow are very complex in general, to stay 

within non-viscous fluids, reference is made to "Kutta condition" which states that the velocity at the trailing 

edge must be finite. This simplification constraint can be satisfied by imposing a boundary condition on the 

speed, which typically introduces an additional circulation to the motion field that simulates the effect of 

viscosity in the stationary flow of a real fluid. In general, the vorticity necessary to satisfy the Kutta condition 

is determined iteratively until the tail stagnation point coincides with the trailing edge. 

 

5.3. Conformal mapping of Joukowsky 
 

Any-one correspondence between two sets of complex coordinates can be defined as a transformation, 

which defines a link between the points (images) of the two plans considered. More specifically speaking of 

conformal transformation when two curves at the point of intersection keep unchanged the angle, in terms 

of amplitude and direction, and the ratio between the lengths passing from one plane to another in a 

neighbourhood of the point d ' interest. It can be shown that any holomorphic function conforms at all points 

of the plane in which is characterised by non-zero and finite first derivative. 

As the transformations are not unique but have three degrees of freedom, are required suitable boundary 

conditions. Typically these require that infinitely far away from the body match points and speed. 

 

lim
𝑧→∞

𝜔(𝑧)

𝑧
= lim
𝑧→∞

𝑑𝜔(𝑧)

𝑑𝑧
= 1 ; 

 

Since each condition imposes two constraints is necessary to introduce a further degree of freedom leaving 

free the scale factor between a plane and the other. 

 

For this reason, in the following we will refer exclusively to complex plans in which it is convenient to express 

the position of the points in polar coordinates rather than Cartesian. The transition is immediate by simply 

applying Euler's formula. 

 

𝑧 = 𝑥 + 𝑖𝑦 = 𝑅𝑒𝑖𝜗 = 𝑅 cos 휃 + 𝑖 ∙ 𝑅 sin휃 ; 

 

𝑅 = √𝑥2 + 𝑦2 ; 

 

𝜗 = tan−1 (
𝑦

𝑥
) ; 
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It introduces a complex potential, in which precisely the real and imaginary part are respectively represented 

by the kinetic potential and the stream function defined for a uniform, incompressible and irrotational flow 

of a non-viscous fluid in uniform density. The relationships that have allowed us to affirm the othogonality 

of the equipotential lines and 𝛹 =  𝑐𝑜𝑛𝑠𝑡, actually translate the Cauchy-Riemann condition, which 

guarantees the independence of the complex derivative with respect to the chosen direction in the 

neighbourhood of the point considered. 

 
𝜕𝛷

𝜕𝑥
=
𝜕𝛹

𝜕𝑦
 ; 

 
𝜕𝛷

𝜕𝑦
= −

𝜕𝛹

𝜕𝑥
 ; 

 

These, together with the condition that the real and imaginary components of the complex potential are real 

functions characterized by continuous first derivative in the neighbourhood of the point of interest, are 

sufficient to ensure that the function of a complex variable considered is holomorphic in the same point, said 

regular . 

 

𝜔 = 𝛷 + 𝑖𝛹; 

 

Otherwise, it comes to singular point when the complex function is not holomorphic at that point. 

 

The holomorphic condition for the complex potential is very important because it ensures that its 

components are harmonic solutions of the Laplace equation and ensures that the composition of several 

analytic functions is another analytic function. 

 

The elementary solutions of the Laplace equation previously analysed can now be obtained through the 

complex potential by introducing an appropriate transformation of general validity. 

 

𝜔 = 𝑚 ∙ ln 𝑧 = 𝑚 ∙ ln𝑅𝑒𝑖𝜗 = 𝑚 ∙ ln𝑅 + 𝑖 ∙ 𝑚𝜗 = 𝑚 ∙ ln√𝑥2 + 𝑦2 + 𝑖 ∙ 𝑚 tan−1 (
𝑦

𝑥
) ; 

 

Varying the expression assumed by the parameter m is possible to obtain simultaneously the expressions for 

the kinetic potential and current function for the different elementary cases analysed. 

 

 source: 

 𝑚 =
𝜆

2𝜋
⇒𝜔 = 𝛷 + 𝑖𝛹 =

𝜆

2𝜋
∙ ln√𝑥2 + 𝑦2 + 𝑖 ∙

𝜆

2𝜋
tan−1 (

𝑦

𝑥
) ; 

 

 vortex: 

 𝑚 = −𝑖 ∙
𝛤

2𝜋
⇒𝜔 = 𝛷 + 𝑖𝛹 = −𝑖 ∙

𝛤

2𝜋
∙ ln√𝑥2 + 𝑦2 +

𝛤

2𝜋
tan−1 (

𝑦

𝑥
) ; 

 

Of greater practical interest is the case when you want to describe the condition in which a circular section 

of generic radius �̅� is hit by a uniform flow with unitary speed. 

The presence of the body introduces changes in the real fluid dynamic lattice that can be mapped by a 

uniform flow in the complex plane of the above scalar functions using an appropriate conformal 

transformation, called Joukowsky transform. 

 

𝜔 = 𝑧 +
�̅�2

𝑧
 ; 
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𝜔 = 𝑅𝑒𝑖𝜗 +
�̅�2

𝑅
𝑒−𝑖𝜗 ; 

 

Going back to Cartesian coordinates through the Euler formula. 

 

𝜔 = 𝛷 + 𝑖𝛹 = 𝑅 (1 +
�̅�2

𝑅
) cos 휃 + 𝑖 ∙ 𝑅 (1 −

�̅�2

𝑅
) sen 휃 = (1 +

�̅�2

𝑅
) 𝑥 + 𝑖 ∙ (1 −

�̅�2

𝑅
) 𝑦 ; 

 

Reversing the expression you determine immediately the coordinates of the complex potential around the 

circular section. 

 

𝑥 =
𝛷

(1+
�̅�2

𝑅
)
= √𝑅2 − 𝑦2  ; 

 

𝑦 =
𝛹

(1−
�̅�2

𝑅
)
= √𝑅2 − 𝑥2   ; 

 

These relations allow you to track easily in the original plane the equipotential lines when you set a certain 

value for Φ through the first expression and the current lines from the second one once it is fixed Ψ. In fact, 

in conformal transform the complex potential maintains the same values on corresponding lines of the 

original and transformed plan. So also solid surfaces and other boundary conditions remain the same going 

from one plane to another. 

 

Operate with transformations in succession to obtain a new holomorphic function can lead to expressions 

capable of describing phenomena much more complex. The first attempts were made by Joukowsky that 

initially applied in two phases of the just view homonymous transformation. A first time by applying the 

reversed version to obtain the coordinates of the transformed points as a function of Φ and Ψ; a second to 

transform these coordinates in another complex plane where the representation of the problem turns out 

to be more simple. 

 

𝜔 = 𝑧1 +
�̅�2

𝑧1
⇒ 𝑧1 = 𝑥1 + 𝑖𝑦1 ⇒ 𝑧 = 𝑧1 +

�̅�2

𝑧1
 ; 

 

Substituting the coordinates of diametrically opposite points on the circumference of the section immersed 

we obtained coordinates in the transformed plane belonging to the real axis. 

 

𝑧1 = ±�̅� ⇒ 𝑧 = ±2�̅� ; 

 

𝑧1 = ±𝑖�̅� ⇒ 𝑧 = 0 ; 

 

This indicates that the points belonging to the circumference of the immersed section are mapped in the 

transformed plane through a section of a thin foil of width 4�̅�, represented by a segment belonging to the 

abscissa axis. This particular type of transformation is defined as homothetic since it involves any rotation or 

translation, but only a stretching. 
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Consequently, when the flow is aligned with the real axis, the current lines are all parallel to the airfoil, while 

the equipotential lines are normal to it for the property of orthogonality already discussed. 

 

𝑧 = 𝑥 + 𝑖𝑦 = 𝑥1 + 𝑖𝑦1 +
�̅�2

𝑥1+𝑖𝑦1
= 𝑥1 + 𝑖𝑦1 +

�̅�2

𝑅1
2 (𝑥1 − 𝑖𝑦1) = (1 +

�̅�2

𝑅1
2) 𝑥1 + 𝑖 (1 −

�̅�2

𝑅1
2) 𝑦1 ; 

 

Subsequently, the author has proposed other solutions that take into account many more factors and allow 

to analytically describing the flow around airfoils said precisely as Joukowsky ones. 

You first need to modify the expression of the complex field ω in order to clarify the actual average speed of 

the uniform flow, which invests the object of interest. 

Moreover, as has been previously shown to overcome the paradox of d'Alembert is necessary to take into 

account the vorticity that is formed around the body immersed and that, by introducing an asymmetry in the 

flow field, guarantees not null lift even for the particularly flow analysed that is incompressible, irrotational 

and steady for an inviscid and uniform density fluid. Moreover, the presence of circulation is strictly necessary 

in order to satisfy the Kutta condition on the speed at the trailing edge. It’s important to note that the 

circulation keeps in the turned plane the same values along closed paths that assumed in the original plan. 

So first we calculate the complex potential associated to the flow around the circular cross-section. 

 

𝜔 = 𝑈 (𝑧1 +
�̅�2

𝑧1
) − 𝑖

𝛤

2𝜋
ln 𝑧1 ; 

 

Besides, we must consider that the incident flux is never parallel to the rope that joins the leading with the 

trailing edge (called nose and tail of the airfoils) section. Is detected, then, an angle α between the two 

directions said angle of attack. To take this into account it is necessary to introduce a transformation 

intermediate between those seen previously that rotates properly the flow. 

 

𝑧2 = 𝑧1𝑒
−𝑖𝛼 ; 

 

It underlines the fact that the compliance of the transformation keeps unchanged the angle of attack going 

from one plane to another. 

It is clear now that the circulation necessary to satisfy the Kutta condition also depends on the angle of attack. 

It should however keep in mind the fact that the lift calculated using the Kutta-Joukowsky theorem is purely 

theoretical. Experimentally it shows that the lift force vanishes when the angle of attack reaches values close 

to that of the stall, specifically for the section in question but that with a good approximation can be taken 

equal to 10 °. This is mainly due to vortex shedding from the upper side of profile generating turbulence that 

break down the lift. 

 

However, it is not all because to be able to deal with cases of real practical interest than the simple flat plate 

is possible to introduce a translation of the centre of the circle just defined. In the complex plane are eligible 

two translations orthogonal along the real axis and the imaginary one that respectively allow to take into 

account the tapered shape and curvature (asymmetry) of the rope in the real section. 

 

∆= 𝑚 + 𝑖𝑛 ; 

 

𝜔 = 𝑧 +
(�̅�−𝑚)2

𝑧
 ; 

 

For simplicity, the translation is written for the basic transformation for which is simpler to notice that the 

centre of the circle cannot translate. 
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In fact, the first derivative of the analytical function ω with respect to complex variable z vanishes, then at 

that point the transformation cannot be conformal and the section assumes a typical teardrop shape. 

 

𝑓′(𝑧)|𝑧=�̅�−∆ =
𝑑𝜔

𝑑𝑧
|
𝑧=�̅�−𝑚

= [1 −
(�̅�−𝑚)2

𝑧2
]
𝑧=�̅�−𝑚

= 0 ; 

 

Returning to the more general case the translation of the circle translates otherwise. 

 

𝑧3 = 𝑧2 + ∆ ; 

 

Finally last applies the transformation of Joukowsky. 

 

𝑧 = 𝑧3 +
(�̅�−𝑚)2

𝑧3
 ; 

 

At the end of this section is to stress that the importance of conformal transforms lies in the simplicity with 

which make it possible to study problems particularly complex starting from the known solutions of the 

elementary simpler cases as the flow around a circular section. The main simplification concerns the 

geometry of the real problem which is reduced to a much simpler one to be analyse and the solution of which 

is defined analytically. 

 

 

5.4. Theory of Theodorsen 
 

The present theory wants to provide an analytical formulation to aeroelastic forces acting on a wing section 

when immersed in an unsteady potential flow, in order to identify the conditions that lead to instability of 

the system. To do this you need to equip the body of at least two degrees of freedom, one vertical translation 

and one torsional around the stiffness axis of the profile. In fact, in the case in which they were present only 

the vertical oscillations, these would be damped by fluid dynamic forces. For simplicity, we want to consider 

the conditions that lead to instability without investigating the post critical response of the system, so it is 

permissible to assume that the oscillations around the equilibrium condition are infinitely small. This 

condition is very important in the fluid dynamic field because it is the basis of the concept of small 

perturbations, which allows linearizing the aeroelastic problem. In the following, the discussion is restricted 

to the case where the motion induced by the aeroelastic action is sinusoidal. This is an ideal condition but in 

general is a good estimate of the actual response. In fact, on the one hand, the structural damping induces 

small perturbations to the motion, and moreover hen it’s neglected you are in favour of safety, on the other 

hand is not interested in describing a divergent response since, as already mentioned, but it's interesting to 

identify the conditions that lead to its onset. 

 

Let’s consider a thin flat plate parallel to the potential flow that invests starting from undisturbed uniform 

but non-stationary conditions, and that generates a wake equally thin. The configuration can be further 

complicated by overlapping the solution found regarding a stationary flux incident on a thin profile curved 

and separately for the flow incidence. Moreover, the assumption of flat wake has little influence on the 

results when considering small oscillations. The flat section can be mapped into a circular unit radius obtained 

by a conformal transformation of Joukowsky. In fact, considering a reference system X,Y centred at the origin 

of the circular section, the position of each point in the plane can be described by means of cylindrical 

coordinates expressed by the real and imaginary part of a complex number Z. 
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Then, applying the above transformation is possible to pass to the transformed plan x,y centred at the 

midpoint of the thin plate of width 2b equal to four times the radius of the circle. 

 

𝑧 = 𝑍 +
�̅�2

𝑍
 ; 

 

𝑏 = 2�̅� ; 

 

It is noted that both the points that describe the flux lines around the circle that those associated to the 

direct internal flow between corresponding sources and sinks are transformed in the plane of the thin plate 

into flow lines which affect the entire domain. In fact very small or very large values of Z map points tending 

to infinity in z. So the transformed plane is mapped twice by different Riemann surfaces. The transition from 

one surface to the other is accomplished by crossing the circumference of the circle or the thickness of the 

thin plate. More specifically to the points on the upper and lower side of the thin plate correspond 

respectively those belonging to the upper and lower semi-circumference of the circle, instead the points of 

the top and bottom of the rectilinear wake become respectively the external and internal points of the same 

circle. 

 

Theodorsen uses the so-called method of singularities, which consists of the superposition of the effects 

caused by different elementary entities whose solutions, as has been shown previously, present a singular 

point. To this end are applied rectilinear sources of intensity ±2λ on the circumference of the section 

respectively in correspondence of the points with the same abscissa but opposite ordinates, representative 

of the upper and lower surface of the flat plate. In addition, to take account of the presence of vorticity in 

the flow, straight vortices are inserted with intensity equal to ± 2Γ places on the horizontal axis, respectively, 

within the circle and in its wake, indefinitely extended, in points that map to those of the upper and bottom 

surface of the wake associated with the sheet. 

We highlight the fact that in the plane of the thin plate although sources and vortices of opposite intensity 

match, their contributions cannot cancel due to the fact that they belong to different Riemann surfaces, and 

so it is not granted any type of contact between opposing contributions. 

 

The analysis of the problem, thanks to the validity of the principle of superimposition of the effects, may be 

divided into two phases.  

 

5.4.1. Non-circulatory flow component 

 

The contribution of the component of the circulatory flow is represented by the distribution of sources and 

sinks along the circumference of the circular section. 

Each pair of source and sinks is a primary mathematical entity called doublet. Each of these elements has, by 

definition, an intensity proportional to the intensity of the source and the distance from the pit. 

 

𝑘 = 𝜆𝑑 ; 

 

Since each of them can move freely along the circumference of the section, it follows that the overall 

distribution of doublets varies in time and space. This is essential because it allows you to keep track of the 

continuous variation of the flow around the flat plate due not so much to the unsteadiness of the flow, which 

you can keep track already by the time variation of its local velocity, but to the aeroelastic response of the 

system. In fact, the characteristics of the motion of the foil and the flow influencing each other. 

 



244 
 

In order to determine the relationship between the intensity of the rectilinear sources and the motion of the 

system is required that the distribution of doublets meets at each instant on the solid surface of the foil both 

the condition of impermeability and the absence of cavitations resulting from the assumption of very small 

fluctuations. 

This request results in the Neumann condition that in this case enforces the pointwise equality on the surface 

of the foil between the normal component of the flow velocity and that of the body in the same direction. In 

this regard, we consider the equation that describes in time the configuration of the surface of the foil. 

 

𝐹(𝑥, 𝑦, 𝑧, 𝑡) = 0 ; 

 

If we consider a more general case of the present one in which the geometry of the section also depends on 

the out of plane coordinated z, it is possible to separate the variables of dependence. 

 

𝐹(𝑥, 𝑦, 𝑧, 𝑡) = 𝑦 − 𝑦𝑠(𝑥, 𝑧, 𝑡) = 0 ⇒ 𝑦 = 𝑦𝑠(𝑥, 𝑧, 𝑡) ; 

 

In order to establish the absence of cavitation is useful to introduce the mathematical entity defined as 

substantial derivative, that in analytical level is nothing but the composite derivative of a functional, but that 

translates a very important physical concept. It takes into account the variability of the field not only as 

function of time but also of the fact that each point has its own temporal history and that the observer is 

moving in the same field. This method is known in the literature as Lagrangian approach, and is distinguished 

from the Eulerian just for the fact that the observer moves together with a particle of the field. 

 
𝐷𝐹

𝐷𝑡
=
𝜕𝐹

𝜕𝑡
+ 𝑢

𝜕𝐹

𝜕𝑥
+ 𝑣

𝜕𝐹

𝜕𝑦
+𝑤

𝜕𝐹

𝜕𝑧
 ; 

 

So the Neumann condition is expressed in cancelling the previously said derivative. 

  

𝐷𝐹

𝐷𝑡
= 0⇒ 𝑣(𝑥, 𝑦, 𝑧, 𝑡) =

𝜕𝑦𝑠

𝜕𝑡
+ 𝑢

𝜕𝑦𝑠

𝜕𝑥
+𝑤

𝜕𝑦𝑠

𝜕𝑦
 ; 

 

Consequence of the small perturbations approach, the fluctuating components of velocity of the flow are 

infinitesimal compared to the average undisturbed speed, and the rotations of the body represented by the 

spatial derivatives are always much smaller than unit. So, being allowed neglecting infinitesimals of higher 

order than the first, the above expression is simplified. 

 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) =
𝜕𝑦𝑠

𝜕𝑡
+ (𝑈 + 𝑢′)

𝜕𝑦𝑠

𝜕𝑥
+𝑤

𝜕𝑦𝑠

𝜕𝑦
≅
𝜕𝑦𝑠

𝜕𝑡
+𝑈

𝜕𝑦𝑠

𝜕𝑥
 ; 

 

The equation just written is valid in general because it is able to describe the speed on the surface of a body 

of any sectional geometry. Typically, however, it tends to approximate the actual geometry with that of a 

thin profile when its dimensions permit. In this way, the equation refers directly to the axis of the profile. 

In the present case, not only the thickness is negligible, but also since the motion field is two-dimensional, 

the displacement of the foil is identical for any values of the out of plane coordinate z, with respect to which 

the function is independent. 

 

𝑣𝑎(𝑥, 𝑡) =
𝜕𝑦𝑎

𝜕𝑡
+ 𝑈

𝜕𝑦𝑎

𝜕𝑥
 ; 

 

To describe appropriately the oscillations of the flow around the foil were introduced sources. 



245 
 

The expression of the kinetic potential for a single rectilinear source has already been defined and is written 

here introducing a generic translation along the horizontal axis in the plane of the thin plate. 

 

𝛷𝑠(𝑥, 𝑦, 𝑡) =
𝜆(𝑥0,𝑦0,𝑡)

2𝜋
ln√(𝑥 − 𝑥0)

2 + 𝑦2 =
𝜆(𝑥0,𝑦0,𝑡)

4𝜋
ln[(𝑥 − 𝑥0)

2 + 𝑦2] ; 

 

Assume that the source distribution on the surface of a generic sheet is sufficiently thick as to be able to 

describe the intensity per unit length by a continuous function �̃�(𝑥, 𝑦, 𝑡). In this way, the potential at a generic 

point of the domain can be calculated through the integration of the different contributions from distributed 

sources with continuity along the whole extension of the foil. 

  

𝛷′(𝑥, 𝑦, 𝑡) =
1

4𝜋
∫ �̃�(𝜉, 𝑦, 𝑡) ln[(𝜉 − 𝜉0)

2 + 𝑦2] 𝑑𝜉
𝑏

−𝑏
 ; 

 

In calculating the speed of oscillation of the foil in the y direction is necessary to pay attention to which area 

is being considered; for now it is assumed to be the top one. 

 

𝑣𝑎(𝑥, 0
+, 𝑡) =

𝜕𝛷

𝜕𝑦
=

1

4𝜋
lim
𝑦→0+

𝜕

𝜕𝑦
∫ �̃�+(𝜉, 𝑡) ln[(𝜉 − 𝜉0)

2 + 𝑦2] 𝑑𝜉
𝑏

−𝑏
=

1

2𝜋
lim
𝑦→0+

𝑦 ∫
�̃�+(𝜉,𝑡)

[(𝜉−𝜉0)
2+𝑦2]

𝑑𝜉
𝑏

−𝑏
 ; 

 

Since the speed tends to cancel approaching the axis of the foil with the exception of the case in which you 

tend simultaneously to the centre of the source, the only non-negligible contribution it has in the 

neighbourhood of that point. 

 

𝑣𝑎(𝑥, 0
+, 𝑡) =

1

2𝜋
lim
𝑦→0+

𝑦 ∫
�̃�+(𝜉,𝑡)

[(𝜉−𝜉0)
2+𝑦2]

𝑑𝜉
𝑥+𝜖

𝑥−𝜖
 ; 

 

The intensity function being continuous can vary only an infinitesimal amount in the neighbourhood 

considered, therefore, hence it is legitimate to consider constant and equal to the value assumed in the 

generic point along the horizontal axis. 

 

𝑣𝑎(𝑥, 0
+, 𝑡) =

�̃�+(𝑥,𝑡)

2𝜋
lim
𝑦→0+

∫
𝑦

[𝜉′2+𝑦2]
𝑑𝜉′

𝜖

−𝜖
=
�̃�+(𝑥,𝑡)

2𝜋
lim
𝑦→0+

[tan−1 (
𝜖

𝑦
) − tan−1 (−

𝜖

𝑦
)] ; 

 

Now it is necessary that together with the abscissa also the around tends to zero though less rapidly, so that 

the limits of inverse trigonometric functions prove respectively equal to ± π / 2 and are negligible the effects 

of the other sources in the neighbourhood considered. This way you can go back to a discrete formulation of 

the problem. 

 

𝑣𝑎(𝑥, 0
+, 𝑡) =

�̃�+(𝑥,𝑡)

2
 ; 

 

Since in this case the intensity of the sources is equal to the double of those considered for the general case 

it is possible to write immediately the previous relation for both the sources with positive and negative 

intensity. 

 

𝑣𝑎(𝑥, 0
+, 𝑡) = ±𝜆±(𝑥, 𝑡) ; 

 

The fact that sources and sinks are discretely distributed on different surfaces allows the calculation of the 

intensity of one regardless of the presence of the other. Indeed, the current lines of a doublet are represented 

by the circles passing through the source and the pit associated with it. A special flow line exactly coincides 
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with the circumference of the circle that is transformed as seen in the contour of the foil so that it coincides 

with a stream line. The particular case considered shows clearly that the vertical velocities of sources and 

doublets do not affect each other as it is not allowed no direct connection between the two that would 

require to be able to cross the thickness of the plate. 

 

The last equation written states that the vertical component of the speed of the foil determines the pointwise 

intensity required to the distribution of sources and sinks. 

Therefore, it is of fundamental importance to know the expression of that speed. In this case, the degrees of 

freedom, both of which refer to the stiffness axis of the foil, are represented by a vertical translation in the 

positive direction opposite to the y axis (pointing upwards) and a clockwise rotation. The axis of rotation is 

positioned in the point of abscissa �̅�𝛼 proportional to half of the total length of the lamina. 

 

�̅�𝛼 = 휀𝛼𝑏 ; 

 

𝑦𝑎(𝑥, 𝑡) = −ℎ𝛼(𝑡) − 𝛼(𝑡)(𝑥 − �̅�𝛼) ; 

 

It replaces the expression just given for the vertical component of movement of the rope in the expression 

previously obtained for the velocity in the same direction. 

  

𝑣𝑎(𝑥, 𝑡) =
𝜕𝑦𝑎

𝜕𝑡
+ 𝑈

𝜕𝑦𝑎

𝜕𝑥
= −ℎ�̇� − �̇�(𝑥 − �̅�𝛼) − 𝑈𝛼 ; 

 

It is therefore immediately determine the kinetic potential of the circle as a function of the kinematics of the 

foil having already obtained the relation between its vertical speed to the intensity of the sources. 

For now we will just define the infinitesimal component around the origin of a generic point of source or pit 

of the flow. 

Since reference is now made to the circumference of the circle is also well introduce a translation in the 

vertical component and to remember that the sources used have intensity twice that of reference. 

 

𝑑𝛷′ =
�̃�(𝑋,𝑌,𝑡)

4𝜋
ln[(𝑋 − 𝑋0)

2 + (𝑌 − 𝑌0)
2] =

𝜆(𝑋,𝑌,𝑡)

2𝜋
ln[(𝑋 − 𝑋0)

2 + (𝑌 − 𝑌0)
2] ; 

 

Considering the intensity of the pair source-sink, placed symmetrically on the circumference to the horizontal 

axis, you must add the two contributions of opposite intensity. 

 

𝑑𝛷′ =
𝜆(𝑋,𝑌,𝑡)

2𝜋

ln[(𝑋−𝑋0)
2+(𝑌−𝑌0)

2]

ln[(𝑋−𝑋0)
2+(𝑌+𝑌0)

2]
 ; 

 

Exploiting the relationship between the ordinate of the points belonging to the circumference, the kinetic 

potential is defined as a function of a single variable. 

 

𝑌 = √�̅�2 − 𝑋2 ; 

 

To determine the potential associated with the full distribution of sources and sinks is necessary to integrate 

the infinitesimal contributions along the outline of the complete circle. Thanks to the fact we have written it 

all as a function of the only abscissa the integral ranges exclusively within the diameter of the circle. 

 

𝛷′ =
1

2𝜋
∫ 𝜆(𝑋, 𝑌, 𝑡)

ln[(𝑋−𝑋0)
2+(𝑌−𝑌0)

2]

ln[(𝑋−𝑋0)
2+(𝑌+𝑌0)

2]
𝑑𝑋

�̅�

−�̅�
 ; 
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Substituting to the intensity of the elementary entity the vertical component of the velocity of the foil and 

suitably transforming the coordinates in the plane of the lamina is obtained an expression fully defined. 

The integration is reduced to the following expression valid for sources when you see the positive sign and 

negative for sinks. 

 

𝛷𝑛𝑐′(𝑥, 𝑡) = [ℎ�̇� + �̇� (
𝑥

2
− �̅�𝛼) + 𝑈𝛼]√𝑏

2 − 𝑥2; 

 

It is emphasized that the potential just determined relates to the fluctuating component of the incident flux 

on the foil. 

Being known the expression of the kinetic potential is possible to determine immediately that relating to the 

distribution of pressure along the circumference of the circle. This requires to apply the formula of Bernoulli's 

theorem, has already been treated previously, for the case of non-stationary incompressible and irrotational 

flow of a non-viscous fluid with uniform density, in the absence of external force (є = 0). 

 
𝜕𝛷′

𝜕𝑡
+
P̃

ρ̅
+
|�⃗⃗� |2

2
= 𝐶(𝑡) ; 

 

Where instead of the absolute value of the gradient of the kinetic potential has replaced the local velocity of 

the total flow. The same should be done for the first term but, being derived in time, the contribution of the 

average velocity vanishes. The expression can be made explicit by recalling that the plate is struck by a 

horizontal flow, so the velocity components transverse to its chord are usually negligible for small 

displacements and rotations of the immersed profile. 

 

|�⃗� | = √(𝑈 + 𝑢′)2 + 𝑣2 +𝑤2 ≅ 𝑈 +
𝜕𝛷′

𝜕𝑥
 ; 

 

It is observed that in this case the velocity of flow concerns the entire domain surrounding the foil and then 

the Neumann condition, which prevents the phenomenon of cavitation, does not bind the speeds of all the 

points considered to be equal to those of the foil. 

 

Thus it is possible to explain the Bernoulli theorem in function of pressure, refers to that which is infinitely 

far away from the lamina where the motion is uniform, although variable in time. This can be done for both 

the upper and lower side of the blade by simply changing the sign to the kinetic potential, taking advantage 

of the skew symmetry of the velocity field. 

 

𝑃∞ = �̅�𝐶(𝑡) ; 

 

(�̃� − 𝑃∞)
±
= −�̅� [±

𝜕𝛷′

𝜕𝑡
+
1

2
(𝑈 ±

𝜕𝛷′

𝜕𝑥
)
2
] ; 

 

Since we want to determine the force acting on the foil, is of interest the only difference in pressure between 

the top surface and the bottom. 

 

(𝑈 ±
𝜕𝛷′

𝜕𝑥
)
2
= 𝑈2 ± 2𝑈

𝜕𝛷′

𝜕𝑥
+
𝜕𝛷′

𝜕𝑥

2
 ; 

 

∆�̃� = (�̃� − 𝑃∞)
+
− (�̃� − 𝑃∞)

−
= −2�̅� [

𝜕𝛷′

𝜕𝑡
+ 𝑈

𝜕𝛷′

𝜕𝑥
] ; 
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The calculation of the total lift acting on the blade due to the circulatory flow component requires the non-

simple integration of the pressure difference over the entire width of the foil. 

Attention should be paid to the fact that as it was written for the pressure difference is necessary to consider 

positive lift associated with a jump of negative pressure so that it is concordant with the direction chosen for 

the y-axis. 

 

𝐹𝐿,𝑛𝑐 = −∫ ∆�̃�𝑑𝑥
𝑏

−𝑏
= 2�̅� ∫ [

𝜕𝛷′

𝜕𝑡
+ 𝑈

𝜕𝛷′

𝜕𝑥
] 𝑑𝑥

𝑏

−𝑏
= 2�̅� ∫

𝜕𝛷′

𝜕𝑡
𝑑𝑥

𝑏

−𝑏
+ 2�̅�𝑈[𝛷′(𝑏, 𝑡) − 𝛷′(−𝑏, 𝑡)] ; 

 

Since the velocity field of the flow depends on the first derivative in space of the kinetic potential, it is not 

affected by the change of a constant term in the potential. This allows to assume that the potential vanishes 

in correspondence with the entrance of the foil. In addition, since there are no circulatory contributions, the 

potential is uniquely defined so that the constant has been assumed null must be the same whatever the 

number of times we move on the contour of the foil. It follows that the potential also vanishes at the end of 

the output. 

 

𝛷′(±𝑏, 𝑡) = 0 ; 

 

𝐹𝐿,𝑛𝑐 = 2�̅�
𝜕

𝜕𝑡
(∫ 𝛷′(𝑥, 𝑡)𝑑𝑥
𝑏

−𝑏
) ; 

 

We note that the lift will cancel in the general case in which the flow is steady, confirming what has already 

been found in deriving the Kutta-Joukowsky theorem for stationary flows without circulation. 

Specializing the solution to the present case, the time variation of the integral in the space of the kinetic 

potential completely defines the out of plane lift per unit length of the foil. 

 

𝐹𝐿,𝑛𝑐(𝑡) = 𝜋�̅�𝑏
2[ℎ̈𝛼(𝑡) − �̅�𝛼�̈�(𝑡) + 𝑈�̇�(𝑡)] ; 

 

The non-circulatory contribution to the torsional moment around the axis of rotation of the blade requires 

roughly the same steps already seen, remembering to considered positive aerodynamic couples only if clock-

wise. 

 

𝑀𝑧,𝑛𝑐(𝑡) = ∫ ∆�̃� ∙ (𝑥 − �̅�𝛼)𝑑𝑥
𝑏

−𝑏
= −2�̅� ∫ [

𝜕𝛷′

𝜕𝑡
+ 𝑈

𝜕𝛷′

𝜕𝑥
] (𝑥 − �̅�𝛼)𝑑𝑥

𝑏

−𝑏
 ; 

 

Developing the product is recognized in the last term the direct contribution of the lift, it is also possible to 

operate an integration by parts the second term to eliminate the contributions coming from the ends of the 

plate. 

 

∫
𝜕𝛷′

𝜕𝑥
𝑥𝑑𝑥

𝑏

−𝑏
= [𝛷′𝑥]−𝑏

𝑏 − ∫ 𝛷′𝑑𝑥
𝑏

−𝑏
= 2𝑏𝛷′(𝑏, 𝑡) − ∫ 𝛷′𝑑𝑥

𝑏

−𝑏
= −∫ 𝛷′𝑑𝑥

𝑏

−𝑏
 ; 

 

𝑀𝑧,𝑛𝑐(𝑡) = −2�̅�
𝜕

𝜕𝑡
∫ 𝛷′(𝑥, 𝑡)𝑥𝑑𝑥
𝑏

−𝑏
+ 2�̅�𝑈 ∫ 𝛷′𝑑𝑥

𝑏

−𝑏
+ 𝐹𝐿,𝑛𝑐(𝑡)�̅�𝛼; 

 

It replaces the general expression for the lift already fount. 

 

𝐹𝐿,𝑛𝑐 = 2�̅�
𝜕

𝜕𝑡
(∫ 𝛷′(𝑥, 𝑡)𝑑𝑥
𝑏

−𝑏
) ; 

 

𝑀𝑧,𝑛𝑐(𝑡) = −2�̅�
𝜕

𝜕𝑡
∫ 𝛷′(𝑥, 𝑡)(𝑥 − �̅�𝛼)𝑑𝑥
𝑏

−𝑏
+ 2�̅�𝑈 ∫ 𝛷′𝑑𝑥

𝑏

−𝑏
 ; 
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Finally, it is explained the kinetic potential for the present case and develop the integrals in the plane of the 

foil to obtain the out of plane torque per unit length. 

 

𝑀𝑧,𝑛𝑐(𝑡) = 𝜋𝑏
2�̅� [�̅�𝛼ℎ̈𝛼(𝑡) + 𝑈ℎ̇𝛼(𝑡) − (

𝑏2

8
+ �̅�𝛼

2) �̈�(𝑡) + 𝑈2𝛼(𝑡)] ; 

 

5.4.2. Circulatory flow component 

 

Unless consider very specific kinematics, and of little practical interest, the circulatory component alone is 

not able to satisfy the constraint of finite speed at the output end of the profile. This need is dictated by the 

Kutta condition and as a direct consequence of this is that, the point of detachment of the flow takes place 

precisely at the tail of the profile. 

To this end it is necessary to superimpose a motion field characterized by not null circulation obtained by 

introducing a distribution of vortices fixed on the surface of the thin plate, and a counter-vortices that move 

away from it at the speed of the uniform flow following the route traced by the wake that is extends to 

infinity. The last statement translates what is commonly called the hypothesis of Taylor, which states that, 

with good approximation, the turbulence, and therefore all the vorticity in the flow, is transported by the 

average undisturbed stream as suspension particles. The approximation is to neglect the interaction between 

the different structures that are formed in the flow, going to consider only those of larger dimensions. 

This particular distribution of vortices of positive intensity and against-vortices of negative intensity allows 

to satisfy also the theorem of Kelvin with which it binds the total circulation in a closed path, which moves 

with the current, to remain constant in time. In fact, to an increase of the circulation on the foil corresponds 

to an increase of counter-circulation in the wake. This underlines the importance of the wake in the study of 

forcing acting on a submerged body, which would otherwise be strongly overestimated as it is in the quasi-

static approach. This fact will be extensively discussed at the end of the paragraph. 

This emphasizes the fact that the theorem of Kelvin do not prevent the possibility that the sources of vorticity 

are both variable in time and in space, as has been done for the sources, in fact, this condition appears to be 

strictly necessary in order to correctly model the aeroelastic response of the system. 

 

So that on the surface of the foil and then the circle one is again satisfied the condition of impermeability is 

necessary that both surfaces coincide with stream lines, which as we know cannot be crossed by the flow. To 

this end, has been shown to be necessary that each counter-clockwise against-vortex in place 𝑋0
− on the 

horizontal axis passing through the center of the circle of radius �̅� is associated with a vortex positioned 𝑋0
+  

on the same axis, that in the complex plane is translated into the following condition. 

 

𝑋0
− =

�̅�2

𝑋0
+ ; 

 

It is evident the analogy with the conformal transformed of Joukowsky which in effect is formed by two 

components of which the first is the uniform current lines and the second the curve around a circle. Of course, 

the two components have different areas of influence where their contribution becomes more important, 

respectively away and in the neighbourhood of the immersed body. 

In the following, to identify the pair of vortices, it will always refer to the position of the vortex with negative 

circulation. 

 

It is observed that as the position of the vortex moves toward the centre of the circle are generated counter-

vortices in the wake increasingly distant from the body. 
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The fact of positioning the axis of the vortices exclusively inside the circle or in the wake is not random but 

allows you can isolate these singular points outside the stream. In fact, as has already been mentioned, to 

make the domain simply connected we need to introduce a cut in the domain in correspondence of the wake, 

thus introducing an approximation, however, is that more and more negligible as the wake and then the cut 

is thin. That said, it has the added benefit of placing the singular points outside the domain, a fundamental 

requirement for the applicability of many theorems used in the treatment. 

In the present case, considering a flat wake, the procedure to reduce to a simply connected domain is 

definitely acceptable and the absence of singularities allows to apply without problems Stokes theorem that 

guarantees the existence of kinetic potential for an irrotational flow, as previously been shown. 

 

We proceed now with the definition of the potential associated to the component of the circulatory flow, 

and recalling the expression already obtained for the single rectilinear vortex is imprinted a translation along 

the horizontal axis in the plane of the foil. 

 

𝛷𝑣(𝑋, 𝑌, 𝑋0, 𝑡) =
𝛤(𝑋0,𝑡)

2𝜋
𝑡𝑎𝑛−1 (

𝑌

𝑋−𝑋0
) ; 

 

It is observed that the intensities of all the vortices should be independent from the vertical coordinate being 

all positioned on the horizontal axis. 

 

As for the sources also for the vortices is considered a pair of elementary entities linked by a kinematic 

constraint on the mutual position. So is immediate calculate the potential associated to a system formed by 

associated vortex and counter-vortex, recalling the relationship between the position of the two elements. 

 

𝛷(𝑋, 𝑌, 𝑋0, 𝑡) =
𝛤(𝑋0,𝑡)

2𝜋
[𝑡𝑎𝑛−1 (

𝑌

𝑋−𝑋0
) − 𝑡𝑎𝑛−1 (

𝑌

𝑋−�̅�2 𝑋0⁄
)] =

𝛤(𝑋0,𝑡)

2𝜋
tan−1 [

(𝑋0−�̅�
2 𝑋0⁄ )∙𝑌

𝑋2−(𝑋0+�̅�
2 𝑋0⁄ )∙𝑋+𝑌2+1

] ; 

 

We introduce a new parameter. 

 
𝑋0

�̅�
+
�̅�

𝑋0
= 2

𝑋0

�̅�
 ; 

 

After a few steps, you leads back to a simpler expression of the potential in the plane of the foil. 

 

𝛷𝑐(𝑥, 𝑥0̅̅ ̅, 𝑡) = −
𝛤(𝑥0̅̅̅̅ ,𝑡)

2𝜋
tan−1 [

√𝑏2−𝑥2 √𝑥0̅̅̅̅
2−𝑏2

𝑏2−𝑥𝑥0̅̅̅̅
]; 

 

This emphasizes the fact that the trailing edge of the foil the kinetic potential is not cancelled. 

Therefore, confirms what has been said previously for the single vortex, that to each path of 360 ° around it 

the potential increases by a constant amount. 

To determine the pressure jump through the foil is exploited again the same expression used for the 

component of the non-circulatory motion being this again antisymmetric with respect to the horizontal axis. 

 

∆�̃� = −2�̅� [
𝜕𝛷′

𝜕𝑡
+ 𝑈

𝜕𝛷′

𝜕𝑥
] ; 
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Assuming to be valid the hypothesis proposed by Taylor in respect of the propagation of turbulence, it is 

possible to explain the time derivative of the kinetic potential in a simpler form by the average speed of the 

flow. 

 
𝜕𝛷′

𝜕𝑡
=
𝜕𝛷′

𝜕𝑥0̅̅̅̅
𝑈 ; 

 

∆�̃� = −2�̅�𝑈 [
𝜕𝛷′

𝜕𝑥0̅̅̅̅
+
𝜕𝛷′

𝜕𝑥
] ; 

 

Substituting the expression previously determined for the kinetic potential, after a few passages it is possible 

to obtain the expression of the pointwise change of pressure generated by a pair of counter-rotating vortices 

of the same intensity. The effect is measured in a generic point of the blade, corresponding to the counterpart 

on the circular perimeter in the complex plane. 

 

∆�̃�(𝑥, 𝑥0̅̅ ̅, 𝑡) = −�̅�𝑈
𝛤(𝑥0̅̅̅̅ ,𝑡)

𝜋
[

𝑥0̅̅̅̅ +𝑥

√𝑏2−𝑥2 √𝑥0̅̅̅̅
2−𝑏2

] ; 

 

To determine the effect of a single vortex pair in terms of lift over the entire plate is necessary to integrate 

on the surface of the section (corresponding to the outline of the circular one in the complex plane). 

Once again, as it was written the pressure difference is necessary to consider positive lift associated with a 

negative pressure jump. 

 

𝐹𝐿,𝑐(𝑥0̅̅ ̅, 𝑡) = −∫ ∆�̃�(𝑥, 𝑥0, 𝑡)𝑑𝑥
𝑏

−𝑏
= �̅�𝑈

𝛤(𝑥0̅̅̅̅ ,𝑡)

𝜋√𝑥0̅̅̅̅
2−𝑏2

∫ [
𝑥0̅̅̅̅ +𝑥

√𝑏2−𝑥2 
] 𝑑𝑥

𝑏

−𝑏
= �̅�𝑈𝛤(𝑥0̅̅ ̅, 𝑡)

𝑥0̅̅̅̅

√𝑥0̅̅̅̅
2−𝑏2

 ; 

 

Note that as the position of the negative vortex moves away along the trail, the lift tends to that of a single 

vortex in accordance with the formulation of the theorem of Kutta-Joukowsky. 

Subsequently it is necessary to overlap the contributions of each pair of vortices in order to obtain the total 

lift. To do this we need to integrate the above expression along the entire trail for hypothesis extends 

indefinitely from the tail of the profile. In fact if you consider a finite time interval is sufficient to integrate up 

to where it was transported the first vortex generated on the surface of the foil, that is 𝑏 + 𝑈 ∙ 𝑡0. 

 

𝐹𝐿,𝑐(𝑡) = ∫ 𝐹𝐿,𝑐(𝑥0̅̅ ̅, 𝑡)
+∞

𝑏
= �̅�𝑈 ∫

𝑥0̅̅̅̅

√𝑥0̅̅̅̅
2−𝑏2

𝛤(𝑥0̅̅ ̅, 𝑡)
+∞

𝑏
 ; 

 

Since you are implicitly integrating over the circulation introduced by each pair of vortices, it is useful to 

assume, as had been done for doublets, a sufficiently dense distribution to consider the vorticity continuously 

variable. 

 

𝛤(𝑥0̅̅ ̅, 𝑡) = 𝛾(𝑥0̅̅ ̅, 𝑡)𝑑𝑥0̅̅ ̅ ; 

 

The new parameter introduced is the intensity per unit length of the circulation generated by the pairs of 

counter-rotating vortices. Since the hypothesis of Taylor ensures that the vorticity moves at constant 

intensity in the space, to meet this condition it is necessary 𝛾 to be variable not only in space but also in 

time. 
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Only in the particular case in which the reference frame is moving along with the flow we will not resend of 

any variation of the density of circulation due to the passing of time but only the fact that there is moving 

away from the first vortex 

 

𝛾(𝑥0̅̅ ̅, 𝑡) = 𝛾(𝑈 ∙ 𝑡 − 𝑥0̅̅ ̅) ; 

 

The above expression simply resumes the hypothesis of Taylor, in fact, the time dependence is of 

fundamental importance in order to define the current position of the vortex that is previously detached 

from 𝑥0̅̅ ̅. Since the time axis starts at the instants of the first motion of the fluid we are considering the 

distance from the first vortex that is formed in the flow. 

Redefining the components immediately circulatory potential, pressure difference and importance. 

 

𝛷𝑐(𝑥, 𝑡) = −
1

2𝜋
∫ tan−1 [

√𝑏2−𝑥2 √𝑥0̅̅̅̅
2−𝑏2

𝑏2−𝑥𝑥0̅̅̅̅
]

+∞

𝑏
𝛾(𝑥0̅̅ ̅, 𝑡)𝑑𝑥0̅̅ ̅ ; 

 

∆�̃�(𝑥, 𝑡) = −�̅�𝑈
1

𝜋√𝑏2−𝑥2
∫

𝑥0̅̅̅̅ +𝑥

√𝑥0̅̅̅̅
2−𝑏2

𝛾(𝑥0̅̅ ̅, 𝑡)𝑑𝑥0̅̅ ̅
+∞

𝑏
 ; 

 

𝐹𝐿,𝑐(𝑡) = �̅�𝑈 ∫
𝑥0̅̅̅̅

√𝑥0̅̅̅̅
2−𝑏2

𝛾(𝑥0̅̅ ̅, 𝑡)𝑑𝑥0̅̅ ̅
+∞

𝑏
 ; 

 

The circulatory component of the aerodynamic torque around the centre of stiffness due to a single pair of 

vortices is obtained by the following integral. 

In this case the clockwise sign convention requires no change of sign of the pressure difference. 

 

𝑀𝑧,𝑐(𝑥0̅̅ ̅, 𝑡) = ∫ ∆�̃�(𝑥, 𝑥0̅̅ ̅, 𝑡) ∙ (𝑥 − �̅�𝛼)𝑑𝑥
𝑏

−𝑏
= −�̅�𝑈(𝑡)

𝛤(𝑥0̅̅̅̅ ,𝑡)

𝜋∙√𝑥0̅̅̅̅
2−𝑏2

∫
𝑥0̅̅̅̅ +𝑥

√𝑏2−𝑥2 
(𝑥 − �̅�𝛼)𝑑𝑥

𝑏

−𝑏
=

−�̅�𝑈(𝑡)𝛤(𝑥0̅̅ ̅, 𝑡)
𝑏2

√𝑥0̅̅̅̅
2−𝑏2

(
1

2
−
𝑥0̅̅̅̅ ∙𝑥𝛼

𝑏2
) ; 

 

Integrating once again but on the length of the wake travelled by the first vortex generated, one obtains 

the total torque generated by all the detached vortices so far from the body. 

 

𝑀𝑧,𝑐(𝑡) = ∫ 𝑀𝑧,𝑐(𝑥0̅̅ ̅, 𝑡)
+∞

𝑏
= −�̅�𝑈(𝑡)𝑏2 ∫

1

√𝑥0̅̅̅̅
2−𝑏2

∙ (
1

2
−
𝑥0̅̅̅̅ ∙𝑥𝛼

𝑏2
) ∙ 𝛾(𝑥0̅̅ ̅, 𝑡)𝑑𝑥0̅̅ ̅

+∞

𝑏
=

−�̅�𝑈(𝑡)𝑏 ∫ [
1

2
(𝑏+𝑥0̅̅̅̅ )

√𝑥0̅̅̅̅
2−𝑏2

− (
𝑥𝛼

𝑏
+
1

2
)

𝑥0̅̅̅̅

√𝑥0̅̅̅̅
2−𝑏2

] 𝛾(𝑥0̅̅ ̅, 𝑡)𝑑𝑥0̅̅ ̅
+∞

𝑏
= −�̅�𝑈(𝑡)𝑏 ∫ [

1

2
√
𝑥0̅̅̅̅ +𝑏

𝑥0̅̅̅̅ −𝑏
−

+∞

𝑏

(휀𝛼 +
1

2
)

𝑥0̅̅̅̅

√𝑥0̅̅̅̅
2−𝑏2

] 𝛾(𝑥0̅̅ ̅, 𝑡)𝑑𝑥0̅̅ ̅ ; 

 

In the integral previous some terms are grouped so as to highlight the fact that the lift and the aerodynamic 

torque depend on the same integrals appropriately weighed. 
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5.4.3. Circulatory intensity 

 

It now goes to the most important phase of the theory developed by Theodorsen, namely the determination 

of the intensity of the circulation. To do this it is necessary to impose the Kutta condition constraining the 

total velocity at the trailing edge of the profile to be finite. Since you are considering a simple geometry you 

can narrow it down to only the horizontal component of the velocity, lined with the foil. In order to determine 

the total speed of the flow you must first define the total potential, composed by the contribution of duplets 

and of vortex pairs. 

𝛷𝑡𝑜𝑡(𝑥, 𝑡) = 𝛷
′
𝑛𝑐 +𝛷𝑐 = [ℎ�̇� + �̇� (

𝑥

2
− �̅�𝛼) + 𝑈𝛼]√𝑏

2 − 𝑥2 −
1

2𝜋
∫ tan−1 [

√𝑏2−𝑥2 √𝑥0̅̅̅̅
2−𝑏2

𝑏2−𝑥𝑥0̅̅̅̅
]

+∞

𝑏
𝛾(𝑥0̅̅ ̅, 𝑡)𝑑𝑥0̅̅ ̅  

Differentiating with respect to the abscissa in the plane of the thin plate is obtained the expression for the 

horizontal component of the local velocity. 

𝑢(𝑥, 𝑡) =
𝜕𝛷𝑡𝑜𝑡

𝜕𝑥
= −[ℎ�̇� − �̇��̅�𝛼 + 𝑈𝛼]

𝑥

√𝑏2−𝑥2
+
�̇�

2
(√𝑏2 − 𝑥2 −

𝑥2

√𝑏2−𝑥2
) +

1

2𝜋
∫

√𝑥0̅̅̅̅
2−𝑏2

(𝑥0̅̅̅̅ −𝑥)∙√𝑏
2−𝑥2

+∞

𝑏
𝛾(𝑥0̅̅ ̅, 𝑡)𝑑𝑥0̅̅ ̅ ; 

 

It is observed that the common denominator tends to zero as it approaches to the trailing edge of the foil. 

So in order to avoid that the intensity of the speed explodes, it is necessary that the numerator decreases 

faster than the previous term. 

It is estimated, therefore, the expression of the numerator at abscissa x = b and imposes that vanishes. 

 

𝑄(𝑡) = [ℎ�̇� − �̇� (�̅�𝛼 −
𝑏

2
) + 𝑈𝛼] =

1

2𝜋𝑏
∫ √

𝑥0̅̅̅̅ +𝑏

𝑥0̅̅̅̅ −𝑏

+∞

𝑏
𝛾(𝑥0̅̅ ̅, 𝑡)𝑑𝑥0̅̅ ̅; 

 

The relation just given is the most important result of the theory of Theodorsen and must be respected in 

order to satisfy the Kutta condition. This imposes a constraint to the circuitry whose intensity can now be 

defined. 

 

Furthermore we introduce a function C(t), which collects all of the terms under the integral appearing in the 

expressions of the forcing that it can be defined in a concise expression. This is obtained simply by multiplying 

and dividing the circulatory components of lift and torque by the factor Q (t) just defined. 

 

𝐹𝐿,𝑐(𝑡) = �̅�𝑈 ∫
𝑥0̅̅̅̅

√𝑥0̅̅̅̅
2−𝑏2

𝛾(𝑥0̅̅ ̅, 𝑡)𝑑𝑥0̅̅ ̅
+∞

𝑏
= 2𝜋𝑏�̅�𝑈𝑄(𝑡)𝐶(𝑡) ; 

 

𝑀𝑧,𝑐(𝑡) = −�̅�𝑈𝑏 ∫ [
1

2
√
𝑥0̅̅̅̅ +𝑏

𝑥0̅̅̅̅ −𝑏
− (휀𝛼 +

1

2
)

𝑥0̅̅̅̅

√𝑥0̅̅̅̅
2−𝑏2

] 𝛾(𝑥0̅̅ ̅, 𝑡)𝑑𝑥0̅̅ ̅
+∞

𝑏
= −2𝜋𝑏2�̅�𝑈𝑄(𝑡) [

1

2
− (휀𝛼 +

1

2
)𝐶(𝑡)] ; 

 

The exact expression of the new time dependent parameter introduced is as follows. 

 

𝐶(𝑡) =

∫
𝑥0̅̅ ̅̅

√𝑥0̅̅ ̅̅
2−𝑏2

𝛾(𝑥0̅̅̅̅ ,𝑡)𝑑𝑥0̅̅̅̅
+∞

𝑏

∫ √
𝑥0̅̅ ̅̅ +𝑏

𝑥0̅̅ ̅̅ −𝑏

+∞

𝑏
𝛾(𝑥0̅̅̅̅ ,𝑡)𝑑𝑥0̅̅̅̅

; 

 

In order to determine the value of C (t) at each time instant is of fundamental importance to provide a 

reasonable expression to the intensity per unit length of the circuitry. 
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It really is not easy to identify a function 𝛾(𝑥0̅̅ ̅, 𝑡) a priori; for this it is convenient to choose a time trend of 

the motion of the plate and from this calculate the intensity distribution of circuitry. 

The choice of the more reasonable flow field appears to be the sinusoidal one; in fact it was observed that 

for small oscillations of the foil the variation of vorticity follows a sinusoid in the stretch of the wake 

immediately downstream of the trailing edge. 

Having chosen a temporal history sinusoidal generic, both components of motion of the foil can be expressed 

by making use of the Euler notation for complex numbers, thanks to the fact that we are in the linear range 

for the hypothesis of small oscillations. 

 

ℎ𝛼(𝑡) = ℎ𝛼,0 ∙ 𝑒
𝑖𝜔𝑡 ; 

 

𝛼(𝑡) = 𝛼0 ∙ 𝑒
𝑖𝜔𝑡 ; 

 

It is emphasized that the stationary terms may be complex numbers to be able to track the spatial phase shift 

between the different points of the plan. 

 

Until now it was only assumed that the oscillations were so small as to linearize the geometry of the problem, 

but with the kinematic constraint just introduced we can obtain exact solutions only in the case where the 

motion is actually sinusoidal or at least stationary (corresponding to a infinite period). 

The same applies to the intensity of circuitry per unit length, since it is linked to the components of motion 

by the equality that translates the Kutta condition. 

 

𝛾(𝑥0̅̅ ̅, 𝑡) = 𝛾0 ∙ 𝑒
𝑖𝜔∙(𝑡−

𝑥0̅̅ ̅̅

𝑈
)
 ; 

 

A direct consequence is that now the vorticity not only is periodic in space but also in time. In fact, the two 

coordinates are well connected to each other by the hypothesis of Taylor on the propagation of eddies along 

the trail. 

 

𝛾(𝑥0̅̅ ̅, 𝑡) = 𝛾(𝑥0̅̅ ̅ + 𝑈 ∙ 𝑇, 𝑡) = 𝛾(𝑥0̅̅ ̅, 𝑡 + 𝑇) ; 

 

The two equalities are merely to indicate that moving along the trail of a stretch equal to that travelled by a 

vortex transported by the average speed of the flow or waiting for a period of time equal to the period of the 

sinusoidal motion of the foil, we will observe the same conditions. This causes the wavelength of the motion 

is closely related to the average speed of the flow. 

 

𝜆 = 𝑈 ∙ 𝑇 ; 

 

𝑇 =
2𝜋

𝜔
 ; 

 

The last observation made allows us to link the speed of the mean flow to the motion of the foil through the 

angular wave number k, with respect to the dimensionless semi-chord b. In fact, it is possible to reformulate 

the expression of the phase angle at the imaginary exponent of 𝛾(𝑥0̅̅ ̅, 𝑡) choosing an instant and a position in 

the wake generic as shown below. 

 

𝜔 ∙ (𝑡 −
𝑥0̅̅̅̅

𝑈
) =

𝜔

𝑈
(𝑈𝑡 − 𝑥0̅̅ ̅) =

2𝜋

𝜆
(𝑈𝑡 − 𝑥0̅̅ ̅) = 𝑘(𝑈𝑡 − 𝑥0̅̅ ̅) = 𝑘𝑏 (

𝑈

𝑏
𝑡 −

𝑥0̅̅̅̅

𝑏
) = �̃�(

𝑈

𝑏
𝑡 − 𝜉0) ; 

 

𝛾(𝑥0̅̅ ̅, 𝑡) = 𝛾0 ∙ 𝑒𝑥𝑝 {𝑖�̃�(
𝑈

𝑏
𝑡 − 𝜉0)} ; 
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𝑥0̅̅ ̅ = 𝜉0 ∙ 𝑏 ; 

 

Now it is possible to reformulate the expression given previously for C(t) that after some simplifications is no 

longer a function of time but only the wave number k, and also is clear to be a complex function. 

 

𝐶(𝑘∗) =

∫
𝜉0

√𝜉0
2
−1

𝑒−𝑖𝑘
∗𝜉0 𝑑𝜉0

+∞

1

∫ √
𝜉0+1

𝜉0−1

+∞

1
𝑒−𝑖𝑘

∗𝜉0 𝑑𝜉0

 ; 

 

 

5.4.4. Bessel and Theodorsen functions 

 

At this point in the discussion you need to open a small parenthesis to recall the main properties of the Bessel 

functions. 

First define a complex function. 

 

𝐾𝑛(𝑧) = ∫ 𝑒−𝑥∙cosh (𝑡)
∞

0
cosh(𝑛𝑡) 𝑑𝑡 ; 

 

Such that. 

 

𝐾𝑛(𝑡) = 𝑒
𝑖𝑛𝜋

2 𝐺𝑛(𝑖𝑡) ; 

 

 

Where a new complex function is expressed as follows. 

 

𝐺𝑛(𝑖𝑡) = −�̅�𝑛(𝑥) + (ln 2 − 𝛾 + 𝑖
𝜋

2
) ∙ 𝐽𝑛(𝑥) ; 

 

Defining. 

 

�̅�𝑛(𝑥) =
𝜋

2
𝑌𝑛(𝑥) + (ln 2 − 𝛾) ∙ 𝐽𝑛(𝑥) ; 

 

The above function can be rewritten. 

 

𝐺𝑛(𝑥) = −
𝜋

2
[𝑌𝑛(𝑥) − 𝑖 ∙ 𝐽𝑛(𝑥)] ; 

 

You can now determine the values of the first function above defined as 𝐾𝑛(𝑧). 

 

𝐾0(−𝑖𝑘) = ∫ 𝑒𝑖𝑘∙cosh (𝑡)
∞

0
𝑑𝑡 = ∫

𝑒𝑖𝑘𝑥

√𝑥2−1

∞

1
𝑑𝑥 = ∫

cos (𝑘𝑥)

√𝑥2−1

∞

1
𝑑𝑥 + 𝑖 ∫

sen (𝑘𝑥)

√𝑥2−1

∞

1
𝑑𝑥 ; 

 

Because. 

 

𝐺0(𝑘) = −
𝜋

2
[𝑌0(𝑘) − 𝑖 ∙ 𝐽0(𝑘)] = 𝐾0(−𝑖𝑘) ; 

 

There are two conditions that allow to determine the two unknown functions simply equating the real and 

imaginary parts. 



256 
 

 

𝑌0(𝑘) = −
2

𝜋
∫

cos (𝑘𝑥)

√𝑥2−1

∞

1
𝑑𝑥 ; 

 

𝐽0(𝑘) =
2

𝜋
∫

sen (𝑘𝑥)

√𝑥2−1

∞

1
𝑑𝑥 ; 

 

Continuing to sample the functions in the same way just seen, you switch to the next term. 

 

𝐾1(−𝑖𝑘) = ∫ 𝑒𝑖𝑘∙cosh (𝑡)cosh (𝑡)
∞

0
𝑑𝑡 = ∫

𝑥𝑒𝑖𝑘𝑥

√𝑥2−1

∞

1
𝑑𝑥 = ∫

x∙cos (𝑘𝑥)

√𝑥2−1

∞

0
𝑑𝑥 + 𝑖 ∫

x∙sen (𝑘𝑥)

√𝑥2−1

∞

0
𝑑𝑥 ; 

 

𝐺1(𝑘) = −
𝜋

2
[𝑌1(𝑘) − 𝑖 ∙ 𝐽1(𝑘)] =

𝐾1(−𝑖𝑘)

𝑖
 ; 

 

𝑌1(𝑘) = −
2

𝜋
∫

x∙sen (𝑘𝑥)

√𝑥2−1

∞

1
𝑑𝑥 ; 

 

𝐽1(𝑘) = −
2

𝜋
∫

x∙cos (𝑘𝑥)

√𝑥2−1

∞

1
𝑑𝑥 ; 

 

The functions just formed are known in the literature as Bessel functions of order n (1 and 2), respectively of 

the first 𝐽𝑛 and second 𝑌𝑛 species. These can be linearly combined to form complex functions used in the 

study of radiation known as Hankel functions. 

 

𝐻𝑛
(2)(𝑘) = 𝐽𝑛(𝑘) − 𝑖𝑌𝑛(𝑘) ; 

 

You arrive at the conclusion of this parenthesis rewriting the function C (k) as follows. 

 

𝐶(�̃�) =
𝐻1
(2)(�̃�)

𝐻1
(2)(�̃�)+𝑖𝐻0

(2)(�̃�)
 ; 

 

This expression can be drastically simplified by rationalizing the denominator to clearly separate the real from 

the imaginary part. 

 

𝐶(�̃�) =
[𝐽1(�̃�)−𝑖𝑌1(�̃�)]

[𝐽1(�̃�)−𝑖𝑌1(�̃�)]+𝑖[𝐽0(�̃�)−𝑖𝑌0(�̃�)]
=

[𝐽1(�̃�)−𝑖𝑌1(�̃�)]

[𝐽1(�̃�)+𝑌0(�̃�)]−𝑖[𝑌1(�̃�)−𝐽0(�̃�)]
= 𝐹(�̃�) + 𝑖 ∙ 𝐺(�̃�) ; 

 

𝐹(�̃�) =
𝐽1(�̃�)[𝐽1(�̃�)+𝑌0(�̃�)]+𝑌1(�̃�)[𝑌1(�̃�)−𝐽0(�̃�)]

[𝐽1(�̃�)+𝑌0(�̃�)]
2
+[𝑌1(�̃�)−𝐽0(�̃�)]

2 ; 

 

𝐺(�̃�) = −
𝐽1(�̃�)∙𝐽0(�̃�)+𝑌1(�̃�)∙𝑌0(�̃�)

[𝐽1(�̃�)+𝑌0(�̃�)]
2
+[𝑌1(�̃�)−𝐽0(�̃�)]

2; 
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Figure 5.1_Real and imaginary part of the complex Theodorsen function. 

 

The two functions just defined represent the true goal of the entire study so far conducted, so that C (k) is 

known as a function of the circuitry of Theodorsen. This can be seen as a filter capable of damp down more 

consistently the aerodynamic forces acting on the body when it oscillates at very high frequencies (high wave 

number k). From the physical point of view, the function just defined is able to take into account the 

aeroelastic interaction existing between the motion of the fluid vein and that of the body. This is also a big 

difference compared with the Quasi- Stationary approach, which has been mentioned at the beginning of 

treatment. In fact, as the name itself suggests the Stationary Theory provides reliable results only when the 

frequency with which the immersed body moves is much lower than that required by a particle of fluid to 

cross the characteristic dimension (aligned with the mean flow) of the body itself. The parameter that 

promptly provides that information is said "reduced speed". 

 

𝑈∗ =
𝑈

𝑓𝐵
 ; 

 

This is an important parameter when you want to carry out wind tunnel tests, in fact when making scale 

models is a must to ensure that the model maintains the same reduced speed of the real structure. Therefore, 

when the wind speed and the mechanical characteristics of the structure to the true are such as to use the 

Quasi- Stationary Theory, you can measure the dimensionless aerodynamic coefficients in the wind tunnel 

on simple rigid models. This way you avoid having to realise a complex aeroelastic model that is able to 

faithfully reproduce the inertial characteristics and the stiffness of the structure to the true, the cost of which 

in terms of realisation and testing are significantly higher. In general, for simplicity arises a practical threshold 

equal to U * = 10-20 over which is applicable. 
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You immediately notice the similarity between the expression of the angular wave number and the reduced 

velocity. 

 

�̃� =
2𝜋𝑓𝑏

𝑈
=

𝜋

𝑈∗
 ; 

 

It is observed then that in making k dimensionless has followed an unusual path, in fact, the normalization 

term is not the full length of the foil but only its half. 

In wind engineering applications is typical also refer to another dimensionless parameter said reduced 

frequency, corresponding to the ratio between the frequency of the body and that of the flow, or coincides 

with the inverse of the reduced speed. 

 

𝑓∗ =
𝑓𝐵

𝑈
=

1

𝑈∗
 ; 

 

So you can see 𝑘∗ as a kind of dimensionless reduced frequency. 

 

�̃� = 𝜋𝑓∗ ; 

 

Further, the number of Strouhal allows to link the frequency of vortex shedding to the average speed of the 

wind and to the characteristic size of the body. 

 

𝑓𝑠 = 𝑆𝑡
𝑈

𝐵
 ; 

 

Since the phenomenon of vortex shedding is self-excited the body immersed in the flow oscillates more when 

the frequency of vortex shedding frequency is close to his own. So it is possible to determine a critical speed 

of the flow for which this phenomenon takes place, said speed of Strouhal. 

 

𝑈𝑠𝑡 =
𝑓𝑠𝐵

𝑆𝑡
 ; 

 

You notice immediately that switching to reduced speed you have a direct link with the number of Strouhal 

therefore coincides with the reduced frequency at the vortex shedding. 

 

𝑈𝑠𝑡
∗ =

1

𝑆𝑡
 ; 

 

 

5.4.5. Aeroelastic forces 

 

Now we are able to determine fully the components of the circulatory lift and the aerodynamic torque. 

 

𝐹𝐿,𝑐(𝑡) = 2𝜋𝑏�̅�𝑈𝑄(𝑡)𝐶(�̃�); 

 

𝑀𝑧,𝑐(𝑡) = −2𝜋𝑏
2�̅�𝑈𝑄(𝑡) [

1

2
− (휀𝛼 +

1

2
)𝐶(�̃�)]; 

 

We have reached the end of the discussion proposed by Theodorsen, in fact have been completely defined 

the aerodynamic forcing in their two components circulatory and not. 

 

 



259 
 

Now it only remains to superimpose effects. 

 

𝐿(𝑡) = 𝐹𝐿,𝑛𝑐(𝑡) + 𝐹𝐿,𝑐(𝑡) ; 

 

Hence. 

 

𝐿(𝑡) = 𝜋𝑏2�̅�[ℎ̈𝛼(𝑡) − �̅�𝛼�̈�(𝑡) + 𝑈�̇�(𝑡)] + 2𝜋𝑏�̅�𝑈𝐶(�̃�) [ℎ�̇� − �̇� (�̅�𝛼 −
𝑏

2
) + 𝑈𝛼]; 

 

In the expression of the aerodynamic torque, you have simplify common terms between the components 

circulatory and not. Specifically cancel out the second and fourth component of the non-circulatory that are 

replaced with the residual coming from the circulatory contribution. 

 

𝑀(𝑡) = 𝑀𝑧,𝑛𝑐(𝑡) + 𝑀𝑧,𝑐(𝑡) = 𝜋𝑏
2�̅� [�̅�𝛼ℎ̈𝛼(𝑡) + 𝑈ℎ̇𝛼(𝑡) − (

𝑏2

8
+ �̅�𝛼

2) �̈�(𝑡) + 𝑈2𝛼(𝑡)] −

2𝜋𝑏2�̅�𝑈 [
1

2
− (휀𝛼 +

1

2
)𝐶(�̃�)] [ℎ�̇� − �̇� (�̅�𝛼 −

𝑏

2
) + 𝑈𝛼] ; 

 

Hence. 

 

𝑀(𝑡) = 𝜋𝑏2�̅� [�̅�𝛼ℎ̈𝛼(𝑡) − (
𝑏2

8
+ �̅�𝛼

2) �̈�(𝑡) + 𝑈�̇� (�̅�𝛼 −
𝑏

2
)] + 2𝜋𝑏�̅�𝑈 (�̅�𝛼 +

𝑏

2
)𝐶(�̃�) [ℎ�̇� − �̇� (�̅�𝛼 −

𝑏

2
) + 𝑈𝛼]; 

 

You can now see that not only the not-circulatory contribution of the flow introduces terms proportional to 

the second derivative of the two free coordinates of the system. These terms represent the added 

aerodynamic mass that must be summed up to that of the structural system. In fact, at the physical level this 

added mass represents the portion of fluid that participates in the body motion increasing its inertia. Indeed, 

since the speed of the body is transmitted to the fluid, there being no dissipative internal resources (such as 

viscosity, neglected here) it is necessary that the increase of kinetic energy is converted completely into work 

required to move the fluid. Because the forcing that change the internal energy of the fluid are generally 

outside the system, this additional kinetic energy can be taken into account by simply considering the balance 

of forces acting on the immersed body characterized however by increased mass and inertia. Finally, we note 

that these apparent masses are not only characteristics of the particular geometry of the immersed solid but 

also depend on the inclination of along or around which it moves. You also have to take special care when 

dealing with complex kinematics where multiple degrees of freedom contribute to the same component of 

apparent mass. 

It is noted that this contribution is given only by not-circulatory terms, then it is not to depend on the reduced 

frequency (or wave number) of the aeroelastic system through the function of Theodorsen. Despite this, their 

contribution in the energy balance of the immersed body becomes increasingly dominant with as its 

acceleration grows. This is to indicate that at very high oscillation frequencies the participating mass is 

expected to grow very much, but in many cases under these conditions collapses the hypothesis of 

incompressibility and we must treat typical problems of sound waves propagation. 

In the literature there are references in which this apparent mass is associated with that of a cylinder having 

a radius equal to the semi-chord of the foil. In reality, this analogy is valid as regards the lift exerted on the 

fluid. In fact, a cylinder of this size is characterized by a moment of inertia completely different from the not-

circulatory contribution present in the aerodynamic torque, but it would be necessary to have a cylinder 

characterized by a much smaller diameter of √2𝑏. 

This emphasizes the fact that when dealing with low density fluids such as air (�̅� = 1.18 𝑘𝑔/𝑚^3), the 

contribution of the apparent mass is generally negligible compared to that structural, unless it has to do with 

particular structures (such as sails of boats). 
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With respect to the terms proportional to the speed is important to emphasize the fact that their weight on 

the total aero-mechanical damping strongly depends on the velocity of the fluid. Therefore, it is a good rule 

not to neglect the effects of the aerodynamic component, which typically already for wind speed not 

excessively high exceeds the purely structural contribution (unless that are provided special dissipation 

devices). Without, in fact, it would cause a valuation in favour of safety of the structural response but an 

underestimation of the resources of the complete aero-mechanical system would be excessive. 

 

Now you bring back the aeroelastic forces just determined to matrix form more appropriate numerical 

implementation. 

 

𝑀𝑎𝑒𝑟𝑜 = 𝜋𝑏
2𝜌 [

1 −�̅�𝛼

�̅�𝛼 −(
𝑏2

8
+ �̅�𝛼

2)
] ; 

 

 

𝐶𝑎𝑒𝑟𝑜 = 𝜋𝑏𝜌𝑈 [
2 ∙ 𝐶(�̃�) 𝑏 − 2 (�̅�𝛼 −

𝑏

2
) ∙ 𝐶(�̃�)

2 (�̅�𝛼 +
𝑏

2
) ∙ 𝐶(�̃�) 𝑏 (�̅�𝛼 −

𝑏

2
) − 2 (�̅�𝛼

2 −
𝑏2

4
) ∙ 𝐶(�̃�)

] ; 

 

 

𝐾𝑎𝑒𝑟𝑜 = 2𝜋𝑏𝜌𝑈
2 ∙ 𝐶(�̃�) [

0 1

0 (�̅�𝛼 +
𝑏

2
)] ; 

 

These represent respectively the aerodynamic matrices of mass, damping and stiffness that will add to the 

structural counterparts to form the complete aeroelastic system. In fact, you can go to the frequency domain 

by introducing the idea of sinusoidal oscillations, replacing the coordinate’s expressions already seen in terms 

of complex exponentials. 

 

𝑀𝑠𝑡𝑟𝑢 ∙ �̈� + 𝐶𝑠𝑡𝑟𝑢 ∙ �̇� + 𝐾𝑠𝑡𝑟𝑢 ∙ 𝑞 = 𝐹𝑎𝑒𝑟𝑜 ; 

 

𝑞(𝑡) = [
ℎ𝛼(𝑡)
𝛼(𝑡)

] = [
ℎ𝛼,0
𝛼0
] 𝑒𝑖𝜔𝑡 = 𝑞0 ∙ 𝑒

𝑖𝜔𝑡 ; 

 

[−𝜔2(𝑀𝑠𝑡𝑟𝑢 −𝑀𝑎𝑒𝑟𝑜) + 𝑖𝜔(𝐶𝑠𝑡𝑟𝑢 − 𝐶𝑎𝑒𝑟𝑜) + (𝐾𝑠𝑡𝑟𝑢 − 𝐾𝑎𝑒𝑟𝑜)] ∙ 𝑞0 = 0 ; 

 

It is observed that once defined the aero-mechanical matrices the system becomes homogeneous since there 

is no component of the aerodynamic forcing that does not depend on the motion of the foil. In general, when 

it approaches the problem with the Quasi- Stationary Theory always remains a static component of the 

forcing, which determines the stationary configuration of the system, and another associated with the 

turbulent components of the incident flow that leads to a structural response variable in time, known as 

Buffeting. 

Despite this lack, easily remedied, the usefulness of this theoretical formulation is undoubted whenever you 

approach the problem of determining the critical conditions leading to a flutter kind of instability. For which 

only the dynamic components of the flow are of interest, which depend directly on the configuration 

assumed by the body instantaneously. So the static component turns out to be of little interest since it does 

not affect in any way the onset of instability. While the dynamic component of buffeting forces is strongly 

dependent on the instantaneous configuration of the body, but generally it is permissible to linearize this 

dependence in the neighbourhood the static configuration. So that these forcing depend exclusively on the 
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turbulent components of the flow velocity and consequently don’t affect directly the mass, damping and 

structural rigidity matrices, which affect the critical flutter conditions. 

In fact, the solving system has a non-trivial solution only in the case where the determinant of the complete 

aeroelastic matrix vanishes. This is precisely defined Flutter Determinant and the solution requires an 

iterative approach having to solve a nonlinear system of two equations. In fact, the said determinant is a 

complex entity, then the vanishing of the real and imaginary part provide respectively the frequency and the 

corresponding average flow velocity in correspondence of the instability onset of the system. This coincides 

with the vanishing of the aeroelastic damping that, becoming negative at speeds exceeding that of flutter 

just determined, introduces energy into the system instead of dissipating it. 

However, we doubt that the introduction of the kinematic constraint of sinusoidal oscillations is strong 

enough to introduce an approximation comparable to what you would have using a simpler approach such 

as Steady Theory. 

In this regard, please note that you have perfectly sinusoidal oscillations only in special cases such as in the 

presence of free oscillations (absence of forcing, structural and aerodynamic damping) or external sinusoidal 

forcing. Since as mentioned above the critical flutter speed conventionally arises at the vanishing of the aero-

mechanical damping, and from then the response becomes self-excited with sinusoidal behaviour, then the 

frequency and the critical speed of flutter so calculated are exact results the analytical problem. It therefore 

underlines the fact that the results are accurate only at the exact critical condition, so it is not possible to 

refer to the results obtained for different speeds from flutter. This is not to say, however, even the variation 

of the eigenvalues of the problem with the average wind speed is completely unreliable, but only that it is 

not exact because the shape functions used to describe the motion of the foil only approximates the real 

ones. 

Typically for observation already made previously, since the Stationary Theory overestimate the aerodynamic 

forces then the critical flutter speed determined by the approach of Theodorsen are less on safe side since it 

allows to reach higher intensities as the analytical model reproduces more faithfully the physics of the 

problem. 

 

Deepen now the main differences observed between the approach of Quasi- Stationary Theory and the one 

proposed by Theodorsen. First, as already mentioned the Stationary one completely ignores the effect that 

the wake has on the aerodynamic forcing, leading to an excessive overestimation of their effects on the 

immersed body (as the onset of the flutter instability) in terms also very significant. Instead, the theory 

presented so far holds strongly considering the contribution of the vortices that are detached from the body 

immersed. In fact, in the discussion above, was given great importance to the contribution of the circulatory 

flow for which immediately was emphasized the importance of placing counter-vortices in wake so that we 

can meet the balance between generated and dissipated circulation required by Kelvin theorem. The theory 

of Theodorsen simplifies the physics of the phenomenon but the assumptions introduced represent in a 

sufficiently accurate way real phenomena. Numerical analysis with complex computational codes introduce 

approximations comparable to the simplifications introduced by an analytical approach, due for example to 

the impossibility of knowing a priori the point where the vortex shedding occurs exactly. Besides being very 

expensive algorithms, in computational terms, their use, at least in the early stages of analysis, can be 

inconvenient having to simulate the response of the system each time a parameter has to be changed. 

 

We have already discussed the importance of the reduced angular wave number 𝑘∗ that can be taken as the 

prince parameter capable of synthesizing the fundamental information regarding the transient component 

of the aeroelastic interaction between the flow and the foil. Now we want to investigate the substantial 

difference between the analytical method proposed by Theodorsen and those generally used in the simplified 

design, the so-called Quasi-Static approach. 
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In fact, when an unsteady phenomenon is characterized by a reduced frequency sufficiently low it is possible 

to neglect a large part of the interaction between the motion of the incident flow and the thin plate. 

The first and simplest is undoubtedly the pure stationary approach in which the forcing are determined as a 

function of static configuration reached by the body instantaneously to vary the angle of attack of the flow. 

 

𝐿(𝑡) ≅ 2𝜋𝑏�̅�𝑈[ℎ�̇� + 𝑈𝛼] ; 

 

𝑀(𝑡) ≅ −𝐹𝐿(𝑡)𝑏 (휀𝛼 +
1

2
) ; 

 

It is noted that the speed with which the foil translates vertically is essential to grasp the variation of the 

angle of attack, while moving by itself has no effect on the forcing, which are expressed in terms of only the 

circulatory components essential to define the intensity. 

 

The second difference is more sophisticated and, as has already been mentioned earlier, simplifies the 

treatment as it ignores the effect of the wake. Of course we are talking of the Quasi- Stationary approach, 

for which the formulation of aerodynamic forcing reproduces exactly the one proposed by Theodorsen but 

neglects the influence of the motion of the foil on that of the particles of the fluid letting the function C (k *) 

to tend to unity. 

 

𝐶(�̃�) = 1 ; 

 

Again, this is granted when the reduced frequency is sufficiently low. Previously by referring to the reduced 

speed was reported a threshold of U * = 10-20 over which the Stationary Theory provides reliable results. In 

terms of reduced frequency, this empirical limit corresponds to f * = 0.05-0.1 below which it must remain. 

 

Therefore, the function of Theodorsen plays a crucial role in defining the aerodynamic forcing agents on the 

foil. The reasons are essentially two and affect the circulatory flow component alone, the only one that 

suffers the effects of the function C (k *). 

 

The first reason, which has been already discussed, is the most obvious. In fact, if one considers only the 

function F (k *), being generally of interest the real component of the intensity, it always takes values less 

than unity. This result in a reduction of both the aerodynamic lift and couple passing from the Stationary to 

the more complete Theodorsen Theory. It is observed that the reduction may be very substantial and shows 

a maximum of 50% in the limit condition U * = 0, which is reached exactly only when the flow speed is zero 

and thus the oscillation of the body strongly affects the local motion of fluid particles that are in its vicinity. 

Referring to what stated above in respect of the field of applicability of the Stationary Theory is observed 

that in correspondence with the practical threshold U * = 10-20 have very high over-estimation of 

aerodynamic forcing ranging respectively between 40 and 25%. Therefore, when using the Stationary 

approach is good to keep in mind this observation, noting that the results obtained in terms of structural 

performance are enormously in favour of safety. Of course the approach of Theodorsen exactly represent 

the quasi-static one in the limit condition for which the reduced speed tents to infinity, to indicate the 

complete absence of aeroelastic interaction for C (k *) = 1. 
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The second reason is inherent in the fact that the same function C (k *) is a complex entity. Because if the 

quasi-static forces are real, and therefore in phase with the movements associated with them, multiplying 

these actions by C (k *) are generated some negative phase shifts (due to the sign of G (k *)) that rotate in 

clock-wise sense the aerodynamic resultants. 

 

휃 = 𝑎𝑟𝑡𝑎𝑛[𝐺(�̃�) 𝐹(�̃�)⁄ ] ; 

 

It is observed that the amount of rotation is very limited, since the function 𝐺(�̃�), that governs the 

phenomenon, after a very small maximum equal to 0.2 in correspondence of U * = 5π, it shows a trend that 

levels very rapidly around 0.1. Despite this, this effect cannot be neglected when the energy introduced into 

the oscillating structural system appears to be strongly influenced by the angle of incidence of the flow. So 

studying issues related to the phenomena of dynamic instability such as flutter is well to bear in mind that 

the Stationary Theory loses essential information, which in this case may lead to an underestimation of the 

critical condition. 

 

At the experimental level have been conducted many tests on thin layer in order to verify the accuracy of the 

theory of Theodorsen. From studies of Halfman, Greidanus, van der Bergh Vooren and shows that below k*= 

0.4 the error that the theoretical approximations commit is negligible being of the same order of the 

experimental. Except for the torsional component of the lift, which turns out to be overestimated by 10-15% 

by the theoretical approach. Beyond this threshold, the experimental results diverge very quickly from the 

theoretical ones. These differences are largely because with increasing the reduced frequency you 

accentuate the discrepancies of the theoretical model, which no longer able to satisfy instantly the Kutta 

condition and the assumption of flat wake becomes unrealistic.  

 

 

5.5. Static torsional divergence 
 

In order to provide an upper limit to the admissible wind speed to be taken in account for Flutter analysis, 

let’s first focus on the limit condition of static divergence. As usually happens the static unstable limit requires 

higher extreme conditions than its dynamic counterpart. Hence, we will assume the static ones as a threshold 

beyond which is no more interesting to investigate further the dynamic instability problem since the system 

undergoes first to a static unstable condition. 

Another important feature of static aeroelastic problems is the fact that are characterised by several 

simplifying features. By definition, time does not appear as an independent variable and, as result, vibratory 

inertial forces are eliminated from the equilibrium equations. Also, aerodynamic forces can be based upon 

well-known steady flow results rather than more complex unsteady flow theories. 

 

In order to comprehend the basic phenomena of static aeroelasticity, let’s consider the behaviour of a rigid 

wing segment, elastically restrained in a two-dimensional flow, similar to that used by Theodorsen with the 

only difference that in this situation we have just the torsional degree of freedom. 

The wing is characterised by a constant chord c and an area S, its twisting is opposed by a linear coiled spring 

attached at the elastic axis, located at a distance e behind the aerodynamic centre, where forces’ resultants 

apply. Notice that due to the fact that we are dealing with a thin airfoil the sectional area and the chord are 

coincident. 

  

 𝑒 = 𝑥𝛼 +
𝑏

2
 ; 
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 𝑆 = 𝑐 = 2𝑏 ; 

 

The total angle of attack 𝜗 measured from the zero lift condition, is taken as the sum of an initial angle 𝜗0 

and the elastic twist contribution 𝜗𝑒𝑙. 

 

 𝜗 = 𝜗0 + 𝜗𝑒𝑙  ; 

 

Since the elastic twist is proportional to the external aerodynamic torque about the elastic axis by means of 

the torsional flexibility coefficient of the coiled spring equal to the inverse of its stiffness. 

 

 𝜗𝑒𝑙 = 𝐶𝜗 ∙ 𝑇 = 𝑇 𝐾𝜗⁄  ; 

 

Notice that we have to consider the total torque, that is the sum of the direct contribution coming from the 

external aerodynamic couple and lift about the elastic axis. Hence, the lift force has a torsional contribution 

because of the fact that it’s acting on the aerodynamic axis that is not coincident with the elastic one. 

 

 𝑇 = 𝑀 + 𝐿 ∙ 𝑒 ; 

 

Then is necessary to introduce some simple steady state relations allowing us to define aerodynamic forces 

in a straightforward way by means of the dynamic pressure q notion. 

 

 𝑇 =
1

2
𝜌𝑎𝑈

2𝑆 ∙ (𝐶𝑀 ∙ 𝑆 + 𝐶𝐿 ∙ 𝑒) = 𝑞𝑆 ∙ (𝐶𝑀 ∙ 𝑆 + 𝐶𝐿 ∙ 𝑒) ; 

 

We are able to link the total lift coefficient to the total angle of attack, and we can assume that it vanishes as 

𝜗 does if we are dealing with a thin foil. In fact, the resultant lift force acting on a horizontal plate is null as 

its thickness tends to vanish. 

 

 𝐶𝐿(𝜗) = 𝐶𝐿(0) +
𝜕𝐶𝐿

𝜕𝜗
∙ 𝜗 =

𝜕𝐶𝐿

𝜕𝜗
∙ (𝜗0 + 𝜗𝑒𝑙) ; 

 

Where the slope of the lift curve can be determined by means of wind tunnel tests on rigid models at different 

angle inclinations, being valid the assumption of quasi-static condition. Anyway, for simple sectional shapes 

of the wing is possible to get analytical expression also for the aerodynamic coefficients. Indeed, for the case 

of thin plate in steady motion can be demonstrate [14] that the lift coefficient grows linearly with the angle 

of attack proportionally to a factor of a round angle. 

 

 𝐶𝐿(𝜗) = 2𝜋 ∙ 𝜗 ⇒
𝜕𝐶𝐿

𝜕𝜗
= 2𝜋 ; 

 

Consequently, it’s possible to define the actual elastic component of the total angle of attack simply 

exploiting the previous definition given to it and to the total torque. 

 

 𝜗𝑒𝑙 = 𝑇 𝐾𝜗⁄ =
𝑞𝑆

𝐾𝜗
∙ {𝐶𝑀 ∙ 2𝑏 + [𝐶𝐿(0) +

𝜕𝐶𝐿

𝜕𝜗
∙ (𝜗0 + 𝜗𝑒𝑙)] ∙ 𝑒} ; 

 

Hence, obtaining an implicit equality we need to make in evidence the only important parameter that is the 

elastic torsional angle. 

 

 𝜗𝑒𝑙 = {𝐶𝑀 ∙ 2𝑏 + [𝐶𝐿(0) +
𝜕𝐶𝐿

𝜕𝜗
∙ 𝜗0] ∙ 𝑒} {

𝐾𝜗

𝑞𝑆
−
𝜕𝐶𝐿

𝜕𝜗
∙ 𝑒}⁄  ; 
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It’s evident that exists a particular value for the dynamic pressure such that the elastic torsional angle 

explodes. This particular condition known as Torsional Divergence. 

 

 𝜗𝑒𝑙 → ∞⇔
𝐾𝜗

𝑞𝑆
−
𝜕𝐶𝐿

𝜕𝜗
∙ 𝑒 = 0 ⇒ 𝑞𝐷 = 𝐾𝜗 (

𝜕𝐶𝐿

𝜕𝜗
∙ 𝑆 ∙ 𝑒)⁄  ; 

 

Finally recalling the definition of dynamic pressure, we are able to define the wind speed threshold for static 

divergence onset. 

 

 𝑞𝐷 =
1

2
𝜌𝑎𝑈𝐷

2⇒𝑈𝐷 = √𝐾𝜗 (
1

2
𝜌𝑎𝑆𝑒 ∙

𝜕𝐶𝐿

𝜕𝜗
)⁄  ; 

 

Notice that up to now we deal with a generic wing section, and the fact that the initial inelastic angle of attack 

does not play any role in the definition of the critical condition. 

For the particular condition of thin flat plate section, the previous expression further simplifies. 

 

 𝑈𝐷 = √𝐾𝜗 (
1

2
𝜌𝑎𝑆𝑒 ∙

𝜕𝐶𝐿

𝜕𝜗
)⁄ = √𝐾𝜗 {

1

2
𝜌𝑎 ∙ 2𝑏 ∙ (𝑥𝛼 +

𝑏

2
) ∙ 2𝜋}⁄ = √𝐾𝜗 {𝜋𝜌𝑎𝑏 ∙ (2𝑥𝛼 + 𝑏)}⁄  ; 

 

We have already underline the fact that the proposed 2-dof model of suspension bridge is characterised by 

nonlinearities up to cubic terms. Consequently is not possible to know a priori the exact position of the elastic 

axis being dependent on the actual configuration of the bridge. Hence, we need to refer all the quantities, 

such as displacements and rotations, to the geometric axis of the bridge symmetric section. The actual values 

fount will consequently contain also contributions related to the lever arm present between the elastic and 

the geometrical axis. 

The exact position of the pressure point (aerodynamic centre) where all the external aerodynamic forces act, 

requires a numerical analysis of the wind-structure interaction. Usually as proposed by Theodorsen its 

position is fixed to the first quarter of the airfoil chord. For sake of simplicity and to be on safe side we will 

assume the aerodynamic centre coincide with the nose of the foil. 

 

 𝑥𝛼 = 0 ⇒ 𝑒 = 2𝑥𝛼 + 𝑏 = 𝑏 ⇒ 𝑈𝐷 = √𝐾𝜗 (𝜋𝜌𝑎𝑏
2)⁄  ; 

 

Notice that the divergence speed is very much influenced by the relative position of elastic and aerodynamic 

axis. In fact as the latter goes aft the first one, the lift force gives a stabilising contribution to the overall 

system. As we can see as the pressure centre coincide with the elastic one we get an infinite divergence 

speed. 

 

As already notice, the static divergence condition is independent from the initial angle of attack. Hence, static 

divergence occurs as the increase of aerodynamic total torque due to an arbitrary change of the angle of 

attack is equal to the elastic restoring moment. 

 

 ∆𝑀𝑒𝑙 = ∆𝜗 𝐶𝜗⁄ = ∆𝑀𝑎𝑒𝑟𝑜 = 𝑞 ∙ ∆𝜗 ∙ 𝑆 ∙ 𝑒 ∙
𝜕𝐶𝐿

𝜕𝜗
 ; 

 

Since the elastic moment is constant with the initial angle of attack and the aerodynamic couple grows 

linearly with it, equilibrium in small rotation is no more granted beyond a critical angle. 

The same problem holds in the lateral instability of columns with initial eccentricity, hence we are not dealing 

with a hidden instability. 
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Lets’ try to pass to the dimensionless format for the static divergence speed, trying to use the modal 

quantities such as mass and stiffness. This allow us to pass from the continuous formulation to the discrete 

one of a 2-dofs oscillator. Hence making use of the definitions of dimensionless torsional circular eigen-

frequency and gyration radius we get the following expression for the dimensional torsional stiffness. 

 

 𝐾𝜗,𝑚 = �̃�𝜗,𝑚
2 ∙ 𝐽𝜗,𝑚 ⇒𝐾𝜗 = {�̃�𝜗,𝑚

2 (𝑙2 ∙
𝑚𝑑+2𝑚𝑐

2𝐻
)⁄ } ∙ {𝐽�̃� ∙ (𝑚𝑑 + 2𝑚𝑐) ∙ 𝑏

2} ; 

 

Hence the divergence speed can be rewritten as follows. 

 

 𝑈𝐷,𝑚 = √𝐾𝜗 (𝜋𝜌𝑎𝑏
2)⁄ = √𝐽�̃� ∙ �̃�𝜗,𝑚

2 ∙ √
2𝐻

𝜋𝜌𝑎𝑙
2 ; 

 

Finally we get the dimensionless format. 

 

 �̃�𝐷,𝑚 = 𝑈𝐷,𝑚 ∙ √
𝜋𝜌𝑎𝑙

2

2𝐻
= √𝐽�̃� ∙ �̃�𝜗,𝑚 ; 

 

Notice that the values assumed by the dimensionless torsional divergence speed are equal to that of the 

corresponding circular eigen-frequencies of the structural model. In order to stress the fact that these 

frequencies are independent from the wind speed level, in the following we will write it in uppercase. 

 

  �̃�𝐷,𝑚 = √𝐽�̃� ∙ �̃�𝜗,𝑚 

 

 
Figure 5.2_Torsional static divergence wind speed of Mode 1 for 𝜒2 = 0. 
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From the available data taken from literature [31-40] we can get an estimation of the variation range of the 

dimensional factor just collected. 

 

 √
𝜋𝜌𝑎𝑙

2

2𝐻
≅ (4 ÷ 10)   [𝑚 𝑠⁄ ] ; 

 

Therefore, we need to take in consideration that the dimensional counterpart of the following Divergence 

Speed has to be incremented by that scaling factor to get reliable values. 

 

Notice that we limit the plotting of the dimensionless wind speed up to values of 50 since generally real 

critical Flutter conditions onset at speed never above 100 m/s. 

 

5.6. Dynamic flutter instability 
 

Now we are able to write down the analytical formulation for the complete aeroelastic model of a suspension 

bridge. 

We have already fount the equations of motion governing the flexural and torsional vibrations in the 

undamped but forced situation. Thence, we need to define explicitly the aerodynamic forcing just fount and 

add structural equivalent viscous damping. In fact, as we will see in the following, the presence of 

aerodynamic damping doesn’t allow us to neglect the influence of the velocity on the overall response of the 

bridge. Hence adding also the structural contribution does not make the computations more cumbersome 

than they are. Indeed, we expect the appearance of imaginary terms linked not only to the presence of 

damping but also to the presence of Theodorsen complex function inside the aerodynamic contributions.  

 

5.6.1. Analytical formulation 

 
The theory developed by Theodorsen it’s able to model the mean wind actions on a rigid section of a plate. 

The forces arising from these actions are linear with the system’s configuration, hence can be included in the 

linear equations governing the forced-damped bridge’s motion. 

 

(𝑚𝑑 + 2𝑚𝑐) ∙ �̈�𝑑 + 𝑐𝑤 ∙ �̇�𝑑 + 𝐸𝑑𝐼𝑑 ∙ 𝑤𝑑
′𝑣 − 2𝐻 ∙ 𝑤𝑑

′′ − 2𝑦′′ℎ𝑤 = −𝐿(𝑡) ; 

 

(𝐽𝑡 + 2𝑚𝑐𝑏
2) ∙ �̈�𝑑 + 𝑐 ∙ 휃̇𝑑 + 𝐸𝑑𝛤𝑑 ∙ 휃𝑑

′𝑣 − (𝐺𝑑𝐽𝑑 + 2𝐻𝑏
2) ∙ 𝜗𝑑

′′ − 2𝑦′′𝑏ℎ = 𝑀(𝑡) ; 

 

Where: 

 

𝐿(𝑡) = 𝜋𝑏2𝜌𝑎 ∙ (�̈�𝑑 − 𝑥𝛼�̈�𝑑) + 2𝜋𝑏𝜌𝑎𝑈 ∙ {𝐶𝑤�̇�𝑑 + [
𝑏

2
− (𝑥𝛼 −

𝑏

2
)𝐶 ] 휃̇𝑑} + 2𝜋𝑏𝜌𝑎𝑈

2𝐶 휃𝑑 ; 

 

 

𝑀(𝑡) =

{
  
 

  
 𝜋𝑏2𝜌𝑎 ∙ [𝑥𝛼�̈�𝑑 − (

𝑏2

8
+ 𝑥𝛼

2) �̈�𝑑] +

+2𝜋𝑏𝜌𝑎𝑈 ∙ {(𝑥𝛼 +
𝑏

2
)𝐶𝑤�̇�𝑑 + [

𝑏

2
(𝑥𝛼 −

𝑏

2
) − (𝑥𝛼

2 −
𝑏2

4
)𝐶 ] 휃̇𝑑} +

+2𝜋𝑏𝜌𝑎𝑈
2 (𝑥𝛼 +

𝑏

2
)𝐶 휃𝑑 }

  
 

  
 

 ; 
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Before proceeding, let’s make few considerations. 

 

In the previous treatment, that allows us to define analytically the forces arising from the wind-structure 

interaction, we assume a sign convention such that are positive upward lifting displacements and clock-wise 

rotations. In the structural model, nothing change regarding the rotational convention, but on the contrary, 

we need to reverse the flexural one. Consequently, in order to refer to the structural convention we need to 

change the sign of the lift force. 

In fact, the aerodynamic lift and couple for Theodorsen Theory are positive respectively upward and 

clockwise, hence the first one has negative sign with respect to downward sign convention for flexural 

coordinate used in the structural model. 

 

The Theodorsen theory refers the plate’s motion to its centre of stiffness since it’s tailored on a linear model 

of a wing. Since the model of the bridge takes in account the nonlinear geometrical behaviour of the main 

cables, the position of the centre of stiffness in each bridge’s section is a priori unknown. This requires 

referring the principal coordinates to the centre of mass, whose position falls on the vertical axis passing 

through the geometric midpoint of the deck + cables system’ section. Practically this requires to cancel out 

𝑥𝛼 terms that appears in aerodynamic forces. Immediate consequence is that the mass matrix becomes 

diagonal, but the inertial forces still indirectly couples the flexural-torsional motion. This operation simply 

hide a translation of the reference system and a change of variables, in fact we know that any rigid 

displacement can be reduced to a rigid roto-translation, hence it’s allowed. 

 

𝐿(𝑡) = 𝜋𝑏2𝜌𝑎 ∙ �̈�𝑑 + 2𝜋𝑏𝜌𝑎𝑈 ∙ {𝐶𝑤 ∙ �̇�𝑑 +
𝑏

2
(1 + 𝐶 ) ∙ 휃̇𝑑} + 2𝜋𝑏𝜌𝑎𝑈

2𝐶 ∙ 휃𝑑 ; 

 

𝑀(𝑡) = −
𝜋

8
𝑏4𝜌𝑎 ∙ �̈�𝑑 + 𝜋𝑏

2𝜌𝑎𝑈 ∙ {𝐶𝑤 ∙ �̇�𝑑 +
𝑏

2
(1 − 𝐶 ) ∙ 휃̇𝑑} + 𝜋𝑏

2𝜌𝑎𝑈
2𝐶 ∙ 휃𝑑 ; 

 

As we can see, the wind actions are constant along the span of the bridge since the formulation proposed by 

Theodorsen refers to a generic section of a thin infinite wing. This could be not a good approximation in the 

study of real wing, where side effects given by the finite length can be relevant. However, concerning 

suspension bridges where the span length ranges from 20 to 80 times the deck’s width [31-40] neglecting 

side effect is a must when dealing with the main span. 

In real problems wind properties cannot be constant along all the main bridges span due to the randomness 

of the phenomenon, hence the previous assumptions allows us to get results on the safe side. 

We can say that this assumption is similar to the one that allow us to consider constant sectional properties 

of the structural system. 

 

Further we must remember the fact that, Theodorsen, in order to be able to define the circulation intensity 

in a simple way, assumes a pure sinusoidal motion for the airfoil both in flexure and in torsion. From this, two 

further remarks follow. 

 

First, sinusoidal motion is strictly possible only in absence of damping, hence when the aerodynamic 

contribution degrades the structural one in correspondence of Flutter condition. In the following will be 

considered generic conditions following the path to reach Flutter onset, then will be assumed the theory 

proposed by Theodorsen to be valid also for wind speeds lower than the critical one. 

Notice that is the presence aerodynamic damping that makes oscillations approximately but not exactly 

sinusoidal. In fact, if the structural contribution to equivalent viscous damping is in general negligible in 

absence of special dissipative devices; on the other hand the aerodynamic one can reach significant values 

above 10% with respect the critical condition. 
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Hence, in order to better approximate the actual response of the suspension bridge immersed in a viscous 

fluid, we need a slight modification the definition of Theodorsen function. Can be demonstrate [14] that the 

integral that define the function 𝐶(𝑘∗) still converges as we substitute to the reduced frequency the following 

definition. 

 

 𝑢𝑛𝑑𝑎𝑚𝑝𝑒𝑑  ∶    �̃� =
𝜔𝑏

𝑈
⇒ 𝑑𝑎𝑚𝑝𝑒𝑑  ∶    �̃� = (𝜔 − 𝑖𝛼)

𝑏

𝑈
 ; 

 

The previous statement simply makes possible to consider damped oscillations of the following kind.  

 

𝑞(𝑡) = 𝑞0 ∙ 𝑒
(𝛼+𝑖𝜔)𝑡 ; 

 

This modification slightly changes the shape of the real and imaginary part of Theodorsen Function. 

Generally, we can say that it has negligible influence since affect only very low reduced frequencies where 

the Quasi- Stationary Theory gives reliable results. From numerical analysis is possible to state that the 

presence of damping introduce considerable modification only in correspondence of dimensionless circular 

frequencies lower than unit, meaning that it affect strongly the response of very stiff bridges. 

 

The second remark concern the fact that up to now we have considered a unique circular eigen-frequency. 

This assumption is typical when dealing with coupled linear systems. In fact the presence of aerodynamic 

forces makes coupled also the linear component of the structural response, while the nonlinearities coming 

from the cables behaviour just couple higher order terms of second and third degree. Hence in order to make 

a clear distinction between flexural and torsional contribution the following definitions hold. 

 

 𝐶𝑤 = 𝐶(�̃�𝑤)   𝑤𝑖𝑡ℎ   �̃�𝑤 = (𝜔𝑤 − 𝑖𝛼𝑤)
𝑏

𝑈
 ; 

 

 𝐶𝜗 = 𝐶(�̃�𝜗)   𝑤𝑖𝑡ℎ   �̃�𝜗 = (𝜔𝜗 − 𝑖𝛼𝜗)
𝑏

𝑈
 ; 

 

Notice that in the definition of the reduced frequencies we have the dimensional circular eigen-frequencies. 

 

Let’s now find out the dimensionless format for the linear equations of motion for the complete aeroelastic 

system. 

 

First of all we sum up the structural and the aerodynamic contributions in terms of mass, damping and 

stiffness. 

 

{
 
 

 
 

(𝑚𝑑 + 2𝑚𝑐 + 𝜋𝑏
2𝜌𝑎) ∙ �̈�𝑑 +

+(𝑐𝑤 + 2𝜋𝑏𝜌𝑎𝑈𝐶𝑤) ∙ �̇�𝑑 + 𝜋𝑏
2𝜌𝑎𝑈(1 + 𝐶 ) ∙ 휃̇𝑑

+𝐸𝑑𝐼𝑑 ∙ 𝑤𝑑
′𝑣 − 2𝐻 ∙ 𝑤𝑑

′′ − 2𝑦′′ℎ𝑤 + 2𝜋𝑏𝜌𝑎𝑈
2𝐶 ∙ 휃𝑑}

 
 

 
 

= 0; 

 

{
 
 

 
 (𝐽𝑡 + 2𝑚𝑐𝑏

2 +
𝜋

8
𝑏4𝜌𝑎) ∙ �̈�𝑑 +

+[𝑐 +
𝜋

2
𝑏3𝜌𝑎𝑈(1 − 𝐶 )] ∙ 휃̇𝑑 − 𝜋𝑏

2𝜌𝑎𝑈𝐶𝑤 ∙ �̇�𝑑

+𝐸𝑑𝛤𝑑 ∙ 휃𝑑
′𝑣 − (𝐺𝑑𝐽𝑑 + 2𝐻𝑏

2) ∙ 𝜗𝑑
′′ − 𝜋𝑏2𝜌𝑎𝑈

2𝐶 ∙ 휃𝑑 − 2𝑦
′′𝑏ℎ }

 
 

 
 

= 0 ; 

 



270 
 

 

Then introduce the fundamental dimensionless quantity already define for the structural model. 

 

(1 + �̃�𝑎) ∙
𝑑2�̃�𝑑

𝑑𝜏2
+ �̃�𝑤𝑤 ∙

𝑑�̃�𝑑

𝑑𝜏
+ �̃�𝑤𝜗 ∙

𝑑�̃�𝑑

𝑑𝜏
+ 𝜇2 ∙ �̃�𝑑

′𝑣 − �̃�𝑑
′′ + 𝜆𝐿

2ℎ̃𝑤 + 2�̃�𝜗𝜗 ∙ 휃𝑑 = 0 ; 

 

(𝐽�̃� + 𝐽�̃�) ∙
𝑑2�̃�𝑑

𝑑𝜏2
+ �̃�𝜗𝜗 ∙

𝑑�̃�𝑑

𝑑𝜏
+ �̃�𝜗𝑤 ∙

𝑑�̃�𝑑

𝑑𝜏
+
𝛽2

𝜒2
∙ �̃�𝑑

′𝑣
− (1 + 𝛽2) ∙ �̃�𝑑

′′
− �̃�𝜗𝜗 ∙ 휃𝑑 + 𝜆𝐿

2ℎ̃𝜗 = 0 ; 

 

The new parameters introduced can be define as follows. 

First, let’s introduce the dimensionless aeroelastic participating mass and torsional inertia. 

 

 �̃�𝑎 = 𝜋𝑏
2𝜌𝑎 (𝑚𝑑 + 2𝑚𝑐)⁄  ; 

 

 𝐽�̃� =
𝜋

8
𝑏4𝜌𝑎 [(𝑚𝑑 + 2𝑚𝑐) ∙ 𝑏

2]⁄  ; 

 

We can say immediately that the additional mass coming from the fluid participating to the motion of the 

structure is negligible. From literature [31-40] we can state that, with respect to the deck and cables 

contribution, the aeroelastic mass ranges from 0.02 to 0.07 while the torsional inertia drop down by an order 

of magnitude ranging between 0.004 to 0.01 with respect to the structural one 𝐽�̃�. 

 

 𝐽�̃� ≅ 0.6 ; 

 

We want to underline the fact that in the following we will neglect the aeroelastic contributions, but we are 

not making any change in the definition of the dimensionless parameters. In fact doing that it’s like if we are 

defining a new time parameter in which we take in account also the participating mass. This would not be 

possible otherwise, the results coming from the structural analysis cannot be compared to the ones coming 

from the aeroelastic analysis.  

 
𝑑2�̃�𝑑

𝑑𝜏2
+ �̃�𝑤𝑤 ∙

𝑑�̃�𝑑

𝑑𝜏
+ �̃�𝑤𝜗 ∙

𝑑�̃�𝑑

𝑑𝜏
+ 𝜇2 ∙ �̃�𝑑

′𝑣 − �̃�𝑑
′′ + 𝜆𝐿

2ℎ̃𝑤 + 2�̃�𝜗𝜗 ∙ 휃𝑑 = 0 ; 

 

𝐽�̃� ∙
𝑑2�̃�𝑑

𝑑𝜏2
+ �̃�𝜗𝜗 ∙

𝑑�̃�𝑑

𝑑𝜏
+ �̃�𝜗𝑤 ∙

𝑑�̃�𝑑

𝑑𝜏
+
𝛽2

𝜒2
∙ �̃�𝑑

′𝑣
− (1 + 𝛽2) ∙ �̃�𝑑

′′
− �̃�𝜗𝜗 ∙ 휃𝑑 + 𝜆𝐿

2ℎ̃𝜗 = 0 ; 

 

Then, write the damping contributions. 

 

 �̃�𝑤𝑤 = (𝑐𝑤 + 2𝜋𝑏𝜌𝑎𝑈𝐶𝑤) ∙ 𝑙 √2𝐻 ∙ (𝑚𝑑 + 2𝑚𝑐)⁄  ; 

 

 �̃�𝑤𝜗 = 𝜋𝑏𝜌𝑎𝑈(1 + 𝐶 ) ∙ 𝑙 √2𝐻 ∙ (𝑚𝑑 + 2𝑚𝑐)⁄  ; 

 

 �̃�𝜗𝜗 = [𝑐 +
𝜋

2
𝑏3𝜌𝑎𝑈(1 − 𝐶 )] ∙ 𝑙 [𝑏

2 ∙ √2𝐻 ∙ (𝑚𝑑 + 2𝑚𝑐)]⁄  ; 

 

 �̃�𝜗𝑤 = −𝜋𝑏𝜌𝑎𝑈𝐶𝑤 ∙ 𝑙 √2𝐻 ∙ (𝑚𝑑 + 2𝑚𝑐)⁄  ; 

 

Finally the stiffness one. 

 

 �̃�𝜗𝜗 = 𝜋𝜌𝑎𝑈
2𝐶 ∙ 𝑙2 2𝐻⁄  ; 
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Let’s make some consideration regarding the positive or negative contributions of the last terms. First, we 

must remember the variation range of the original Theodorsen function. 

 

 𝐶 = 𝐹 + 𝑖𝐺   𝑤ℎ𝑒𝑟𝑒   𝐹 ∈ [0.5 , 1)   ;    𝐺 ∈ ( −0.2 , 0]  ; 

 

The direct flexural damping �̃�𝑤𝑤 has a real part that will be always positive and an imaginary part always 

negative. Where always means for any value reached by the wind speed. 

The torsional contribution on the flexural �̃�𝑤𝜗 and torsional �̃�𝜗𝜗 motion has both the real and the imaginary 

parts positive for any U. 

While the flexural contribution on the torsional motion �̃�𝜗𝑤 has always a negative real part and a positive 

imaginary one. 

More interesting is the aerodynamic contribution on the torsional stiffness parameter �̃�𝜗𝜗 that has a positive 

real part and a negative imaginary one. This means that increasing the wind speed it is able on one hand to 

increase its contribution to the stiffness of the flexural motion while on the other hand it reduces the 

torsional one. 

Hence, we can state that this last parameter is the fundamental one responsible of the so called Torsional 

Degradation phenomenon. Notice that not only it reduces the torsional stiffness but also increases the 

flexural one with a contribution two times higher. Consequently, as the wind speed increases the structure 

becomes very stiff in with respect to flexural motion and slack with respect the torsional one. Thence we will 

expect that the bridge will prefer to transfer energy from the flexural to the torsional motion where the TPE 

in lower. 

 

Before proceeding we want to write the previous dimensionless parameters in a more compact format. First 

reformulate a term common to all these parameters. 

 

 𝜋𝑏𝑙𝜌𝑎𝑈 √2𝐻 ∙ (𝑚𝑑 + 2𝑚𝑐)⁄ =
𝑈

𝑈𝐷
∙ √𝐽�̃� ∙ �̃�𝜗 ∙ √

2𝐻

𝜋𝜌𝑎𝑙
2 ∙

𝜋𝑏𝑙𝜌𝑎

√2𝐻∙(𝑚𝑑+2𝑚𝑐)
= √𝐽�̃� ∙ �̃�𝜗 ∙ √�̃�𝑎 ∙ �̃� ; 

 

To this end let’s introduce the notion of dimensionless wind speed 𝑢, that is the generic one 𝑈 normalised 

with respect to the Divergence Speed 𝑈𝐷 proper for the structural condition under consideration. 

 

 �̃� = 𝑈 𝑈𝐷⁄  ; 

 

Notice that the aeroelastic mass appears again but this time cannot be neglected since there is any term of 

comparison. Thence in the following numerical analysis will be important to give it a representative value for 

the most common situation, taken from the bibliographical references previously mentioned. 

 

 �̃�𝑎 ≅ 4% ; 

 

Further from the analysis of a single degree of freedom damped oscillator we can state some relations 

between the dimensionless damping parameter and the associate ratios. 

 

 𝑐𝑤
𝑙

√2𝐻∙(𝑚𝑑+2𝑚𝑐)
= �̃�𝑤 = 2 ∙ 𝜉𝑤 ∙ �̃�𝑤 ∙ (1 + �̃�𝑎) ≅ 2 ∙ 𝜉𝑤 ∙ �̃�𝑤 ; 

 

 𝑐
𝑙

𝑏2∙√2𝐻∙(𝑚𝑑+2𝑚𝑐)
= �̃� = 2 ∙ 𝜉𝜗 ∙ �̃�𝜗 ∙ (𝐽�̃� + 𝐽�̃�) ≅ 2 ∙ 𝜉𝜗 ∙ �̃�𝜗 ∙ 𝐽�̃� ; 
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Consequently, we are able to define the damping and stiffness dimensionless parameters as follows. 

 

 �̃�𝑤𝑤 = 2(𝜉𝑤 ∙ �̃�𝑤 +√𝐽�̃� ∙ �̃�𝑎 ∙ �̃�𝜗 ∙ �̃� ∙ 𝐶𝑤) ; 

 

 �̃�𝑤𝜗 = √𝐽�̃� ∙ �̃�𝑎 ∙ �̃�𝜗 ∙ �̃� ∙ (1 + 𝐶 ) ; 

 

 �̃�𝜗𝜗 = 2√𝐽�̃� ∙ {𝜉𝜗 ∙ √𝐽�̃� ∙ �̃�𝜗 +
1

4
∙ √�̃�𝑎 ∙ �̃�𝜗 ∙ �̃� ∙ (1 − 𝐶 )} ; 

 

 �̃�𝜗𝑤 = −√𝐽�̃� ∙ �̃�𝑎 ∙ �̃�𝜗 ∙ �̃� ∙ 𝐶𝑤 ; 

 

�̃�𝜗𝜗 = 𝐽�̃� ∙ �̃�𝜗
2
∙ �̃�2 ∙ 𝐶  ; 

 

It’s evident that the introduction of the dimensionless wind speed normalised with respect to the Static 

Divergence condition is a powerful tool that avoid us the need to know the actual value of many structural 

parameters not always so simple to found in literature. Notice the difference between �̃�𝜗 that refers to the 

response of the structure alone and �̃�𝜗 associated to the complete aeroelastic model, hence it varies as the 

wind speed changes. 

 

Now we are ready also to define the reduced frequency in function of all dimensionless quantities introducing 

the quantities introduced up to now. 

 

 �̃� = (𝜔 − 𝑖𝛼)
𝑏

𝑈
= (�̃� − 𝑖�̃�) ∙

1

𝑙
√

2𝐻

𝑚𝑑+2𝑚𝑐
∙ 𝑏 ∙

𝑈𝐷

𝑈
∙

1

√𝐽�̃�∙�̃�𝜗
√
𝜋𝜌𝑎𝑙

2

2𝐻
= (�̃� − 𝑖�̃�) ∙ √�̃�𝑎 (√𝐽�̃� ∙ �̃�𝜗 ∙ �̃�)⁄  ; 

 

Now we are ready to pass to the modal space simply performing two steps. The first consist in the modal 

expansion of the approximate dimensionless equation of motion where we assume to neglect the fluid mass 

contributions. 

 

 �̃�𝑑(𝜉, 𝜏) = ∑ 𝑊𝑛(𝜉) ∙ (𝑍𝑛𝑒
𝜆𝑤,𝑛𝜏 + 𝑐. 𝑐)∞

𝑛=1    𝑤𝑖𝑡ℎ  𝑛 ∈ ℵ\{0}   ;    𝜆𝑤,𝑛 = 𝛼𝑤,𝑛 + 𝑖𝜔𝑤,𝑛 ; 

 

�̃�𝑑(𝜉, 𝜏) = ∑ 𝛩𝑚(𝜉) ∙ (𝛤𝑚𝑒
𝜆𝜗,𝑚𝜏 + 𝑐. 𝑐. )∞

𝑚=1    𝑤𝑖𝑡ℎ  𝑚 ∈ ℵ\{0}   ;    𝜆𝜗,𝑚 = 𝛼𝜗,𝑚 + 𝑖𝜔𝜗,𝑚 ; 

 

Notice that we need to consider damped vibrations hence the exponential term has both the real and 

imaginary parts. Consequently, in order to get real vibrations we need a complex amplitude and the 

associated conjugate counterpart. 

Substituting we get two modal equations that are not useful for our purpose due to their spatial dependence. 

Then we can pass to the second step consisting in the complete modal projection of the original 

dimensionless equations of motion. To do that we need to multiply respectively the first and the second 

modal equations by the flexural and the torsional modes and then integrate over the whole length of the 

dimensionless span. 
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Finally, we obtain two linear coupled equations of motion similar to that of a 2-dof degree of freedom 

oscillator. 

 

 {[

(𝑀𝑤,𝑛 ∙ 𝜆𝑤,𝑛
2 + �̃�𝑤𝑤 ∙ 𝑀𝑤,𝑛 ∙ 𝜆𝑤,𝑛 +𝐾𝑤,𝑛) ∙ 𝑍𝑛𝑒

𝜆𝑤,𝑛𝜏 +

+(�̃�𝑤𝜗 ∙ 𝜆𝜗,𝑚 + 2�̃�𝜗𝜗) ∙ ℎ̃𝑤𝑛,𝜗𝑚 ∙ 𝛤𝑚𝑒
𝜆𝜗,𝑚𝜏

] + 𝑐. 𝑐. } = 0   ∀(𝑛,𝑚) ; 

 

 

 {[

(𝐽𝜗,𝑚 ∙ 𝜆𝜗,𝑚
2 + �̃�𝜗𝜗 ∙ 𝑀𝜗,𝑚 ∙ 𝜆𝜗,𝑚 + 𝐾𝜗,𝑚 − �̃�𝜗𝜗 ∙ 𝑀𝜗,𝑚) ∙ 𝛤𝑚𝑒

𝜆𝜗,𝑚𝜏 +

+(�̃�𝜗𝑤 ∙ 𝜆𝑤,𝑛) ∙ ℎ̃𝑤𝑛,𝜗𝑚 ∙ 𝑍𝑛𝑒
𝜆𝑤,𝑛𝜏

] + 𝑐. 𝑐. } = 0   ∀(𝑛,𝑚)  ; 

 

Where the new parameters defined are modal masses, stiffness and coupling term. 

 

 𝑀𝑤,𝑛 = ∫ 𝑊𝑛
2(𝜉)𝑑𝜉

1

0
 ; 

 

 𝑀𝜗,𝑚 = ∫ 𝛩𝑚
2(𝜉)𝑑𝜉

1

0
⇒ 𝐽𝜗,𝑚 = 𝐽�̃�𝑀𝜗,𝑚 ; 

 

𝐾𝑤,𝑛 = ∫ 𝑊𝑛(𝜉) ∙ [𝜇
2 ∙ 𝑊𝑛

′𝑣(𝜉) −𝑊𝑛
′′(𝜉)]𝑑𝜉 + 𝜆𝐿

2ℎ̃𝑊,𝑛
21

0
= �̃�𝑤,𝑛

2
∙ 𝑀𝑤,𝑛 ; 

 

𝐾𝜗,𝑚 = ∫ 𝛩𝑚(𝜉) ∙ [
𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2) ∙ 𝛩𝑚
′′(𝜉)] 𝑑𝜉 + 𝜆𝐿

2ℎ̃𝛩,𝑚
21

0
= �̃�𝜗,𝑚

2
∙ 𝐽𝜗,𝑚 ; 

 

ℎ̃𝑤𝑛,𝜗𝑚 = ∫ 𝑊𝑛(𝜉) ∙ 𝛩𝑚(𝜉)𝑑𝜉
1

0
 ; 

 

Once again notice that the uppercase circular frequencies are constant with the wind speed since refers to 

the structural model. 

 

From the modal projection of the equations of motion it is evident that the term ℎ̃𝑤𝑛,𝜗𝑚 is the fundamental 

parameter giving us the actual order of magnitude of the coupling between a flexural and a torsional mode. 

Its definition allows us to state that we will expect higher coupling between similar modal shapes. In fact, in 

the limit condition, the product between two identical modes will give us the maximum expected coupling 

since the function to be integrated will be only positive. In all the other cases, the function will have both 

positive and negative sign, hence, the integral will decrease. The opposite limit condition refers to the case 

when two sinusoidal modes, one symmetric and the other skew-symmetric, of the same order interact, 

leading to the vanishing of the coupling term. 

 

 ℎ̃𝑤𝑛,𝜗𝑚 = ∫ 𝑠𝑖𝑛(𝑛𝜋𝜉) ∙ 𝑠𝑖𝑛(𝑚𝜋𝜉)𝑑𝜉
1

0
= 0 ; 

 

Therefore, in the following Flutter analysis will be crucial to identify the modal combination that would led 

first the structure to the unstable threshold. A priori, we can assume that the worst combination will be that 

with the maximum coupling term, hence we would perform a mode by mode analysis between modal shape 

of the same order and with the same symmetries.  

Another interesting feature of the modal equations of motion is that both the complex conjugate parts are 

in turn complex expressions because of the presence of the Theodorsen function. Hence is important to 

underline the fact that the notation 𝑐. 𝑐. refers only to the time variation of oscillations and not to the function 

𝐶(𝑘∗). 
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Let’s proceed writing the modal equations of motion in matrix form, exploiting the definition of modal mass, 

stiffness and coupling term just given. 

 

 𝐹 ∙ 𝑞 = 0 ; 

 

Where we have introduce the so-called Flutter matrix and the vector of generalised coordinate. 

 

𝐹 =

{
 

 (𝜆𝑤,𝑛
2 + �̃�𝑤𝑤 ∙ 𝜆𝑤,𝑛 + �̃�𝑤,𝑛

2
) ∙ 𝑀𝑤,𝑛 (�̃�𝑤𝜗 ∙ 𝜆𝜗,𝑚 + 2�̃�𝜗𝜗) ∙ ℎ̃𝑤𝑛,𝜗𝑚

(�̃�𝜗𝑤 ∙ 𝜆𝑤,𝑛) ∙ ℎ̃𝑤𝑛,𝜗𝑚 (𝐽�̃� ∙ 𝜆𝜗,𝑚
2 + �̃�𝜗𝜗 ∙ 𝜆𝜗,𝑚 + 𝐽�̃� ∙ �̃�𝜗,𝑚

2
− �̃�𝜗𝜗) ∙ 𝑀𝜗,𝑚}

 

 
 ; 

 

 𝑞 = {
𝑍𝑛𝑒

𝜆𝑤,𝑛𝜏 �̃�𝑛𝑒
�̃�𝑤,𝑛𝜏

𝛤𝑚𝑒
𝜆𝜗,𝑚𝜏 �̃�𝑚𝑒

�̃�𝜗,𝑚𝜏

} ; 

 

The complex linear system of two equations just fount is homogeneous; hence we can find a non-trivial 

solution only enforcing the vanishing of the so-called Flutter Determinant. 

 

 𝑑𝑒𝑡(𝐹) = 0 ; 

 

In its general format, the Flutter determinant cannot be solved analytically because all the terms are implicit 

and non-linear functions of the solution.  

First, we need to notice that all the terms depend on the 𝜆 parameter referred to the flexural or the torsional 

motion. In fact, on one hand the aeroelastic terms depend on it by the Theodorsen function through the 

definition of reduced frequency, and on the other the modal terms by means of the modal shapes. For both 

the groups the dependence is indirect and non-linear. 

Consequently, the main unknowns of the problem are the real and the imaginary part of the exponential 

terms, both for the flexural and the torsional vibrations. Hence, it seems that the problem cannot be solve 

because we have a number of unknowns higher than the number of equations. In reality this is not so because 

as the modal system is quadratic with the unknowns frequencies, the Flutter Determinant has to be of the 

fourth order because of the cross multiplication between the terms of the matrix of coefficients. 

Hence, the vanishing of the Flutter Determinant is able to give us both the flexural and torsional exponential 

parameters 𝜆. 

 

The problem is a little bit more complicated since all the aeroelastic terms depend on the actual wind speed. 

This means that at each value of U we get a different system to be solved, that give us the flexural and 

torsional exponential terms associated to that particular wind speed level. For example assuming null wind 

speed all aerodynamic terms will vanish, except the ones associate to direct damping given by the structural 

contribution. Thence neglecting the structural damping also the last ones vanish and the Flutter Determinant 

reduces to the following forth order expression. 

 

 𝑑𝑒𝑡(𝐹) = (𝜆𝑤,𝑛
2 + �̃�𝑤,𝑛

2
) ∙ (𝐽�̃� ∙ 𝜆𝜗,𝑚

2 + 𝐽�̃� ∙ �̃�𝜗,𝑚
2
) ∙ 𝑀𝑤,𝑛𝑀𝜗,𝑚 = 0 ; 
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It’s evident that is absence of any fluid motion the structural response is identical to the one already analysed 

in the previous chapter. 

 

 𝑑𝑒𝑡(𝐹) = 0⇔ 𝜆𝑤,𝑛 = �̃�𝑤,𝑛   𝑎𝑛𝑑   𝜆𝜗,𝑚 = �̃�𝜗,𝑚 ; 

 

In all the other conditions when the wind speed is not null, we need to solve a fourth order implicit equation 

by means of appropriate iterative methods. 

 

In this regard we must remember the fact that the Flutter matrix is complex because of Theodorsen function. 

Hence, once we fix the wind speed, in order to zeroing the Flutter Determinant we need to split it into real 

and imaginary parts. This means that in order to solve the Flutter system we need to pass from a single non-

linear quadratic complex equation to two real ones. 

Since we are not able to write down a code able to find out the solution of a non-linear system of equations 

in two unknowns, we will rely on the available solutor fsolve implemented in the commercial sofware Matlab. 

The only important note is that the solver is able to find out just the nearest zero to the initial conditions 

proposed, hence we need to solve it twice, once starting near the flexural vibrating conditions and then near 

the torsional one. We want to stress the fact that we solve the Flutter Determinant twice since we need to 

assume each time that the flexural and torsional oscillations are identical. This is only an assumption needed 

every time we have a coupled vibrating system. Hence, the two unknowns to be fount are the real and 

imaginary part of the flexural or torsional exponential parameter. 

 

Therefore, since the goal of the Flutter analysis is to identify the critical wind speed corresponding to the 

unstable response onset, we need to assume iteratively different wind speeds until we reach Flutter 

conditions. 

It’s evident the advantage to have introduced dimensionless wind speed normalised with respect to the Static 

Divergence onset. In fact, it gives us priori an upper limit beyond which is useless to investigate further Flutter 

conditions. 

 

Let’s focus on the critical conditions for Flutter onset we have just mentioned. Since Flutter is a phenomenon 

that brings the structure to undergo to self-sustained oscillations. Consequently, if external conditions still 

stand for a sufficient elapse of time the oscillations of the structure will diverge in time. The reason why 

oscillations pass from a stable condition to an unstable one is that the wind speed is enough high that the 

aerodynamic damping becomes enough negative to overcome the positive structural one. Thence the 

structure is no more able to dissipate part of the energy introduced by the wind action, but nay it pump 

additional energy even if the external forcing does not change. 

Hence, the first straightforward way is to map the equivalent viscous damping of the complete aeroelastic 

system at each wind speed analysed. The Flutter onset will coincide with the wind speed that grants null total 

damping. This can be deduce directly from the zeroing of the Flutter Determinant by means of the following 

simple relations coming from the single dof damped oscillator. 

 

 𝛼 = −𝜉𝜔𝐷   ,   𝜔𝐷 = 𝜔√1 − 𝜉
2   ,   𝜉 =

𝑐

𝑐𝑐𝑟
= −

𝛼

√𝜔2+𝛼2
   ,   𝑐𝑐𝑟 = 2√𝑘𝑒𝑞𝑚𝑒𝑞 ; 

 

This approach will be used to define the Flutter using the automatic solver for the zeroing of the Flutter 

Determinant. Hence we will refer to the combination of both as to the New Approach. 

 

The previous critical condition is strongly based on the physics of the problem, but there exists also another 

one a little bit more mathematical. As we have previously mentioned, the Flutter determinant has a real and 

an imaginary part because of Theodorsen function. 
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Hence we reach the Flutter onset as the solution of the imaginary part coincide with one of the real one. 

Classical solutions of Flutter determinant are based on this procedure and for simplicity assume undamped 

oscillations though the presence of the relevant aerodynamic contribution. This way the zeroing of two 

independent non-linear equations allows us to find out the three relevant positive roots. The first two relate 

to the real part and the third to the imaginary part of the Flutter Determinant, since only the first one ensure 

two positive roots. Notice that the roots has to be positive since are representative of aeroealstic circular 

eigen-frequency. 

Thence as the wind speed increases we expect the imaginary solution to move towards one of the two real 

roots. As it reaches on of them, we get the Flutter onset of flexural or torsional kind depending on whatever 

motion is representing the real root reached. This can be detected simply following the variation of both the 

two circular eigen-frequency as the wind speed grows. It’s evident that we don’t need to map the damping 

parameter in order to find out critical thresholds. Anyway, it’s possible to get an estimation of it simply 

substituting the circular eigen-frequency fount from the real roots into the direct aeroelastic damping 

contributions. In the following, we will refer to the actual procedure as to the Old Approach. 

 

We want to underline the fact that we are able to map both the damping and the circular eiegn-frequency 

of the aeroelastic system. Hence, we can find out also the variation of the modal shapes as the wind speed 

grows. In the following we will refer to these as to Aeroelastic Modes to be distinguished from the Structural 

ones dependent only on geometrical and mechanical properties of the bridge and not on the wind speed 

level. Notice that we will assume that only the symmetric modal shapes can be influenced by the wind action, 

indirectly through the variation of the circular eigen-frequency. Instead, the skew-symmetric ones will not 

change shape but only frequency of vibration since the definition of the modal shape is feasible only when 

the circular frequency assumes particular values. 

 

Before proceeding we want to hint that in the following we will analyse different aerodynamic models for 

the wind actions on the structure. We will refer to the Theodorsen and Steady-State analysis respectively to 

the one modelling the wind effect by means of the complete Theodorsen Theory and to that with the 

simplification of assuming unitary the complex function 𝐶(𝑘∗). 

 

A further kind of analysis will be based on the so-called Quasi-Static modelling of wind forces. According to 

this approach the aerodynamic lift and couple are proportional to appropriate homonymous coefficients. 

 

 𝐿(𝑡) = 2𝜋𝑏𝜌𝑎𝑈 ∙ (�̇�𝑑 + 𝑈 ∙ 휃̇𝑑) = 𝐶𝐿𝑏𝜌𝑎𝑈 ∙ (�̇�𝑑 + 𝑈 ∙ 휃̇𝑑) ; 

 

𝑀(𝑡) = 𝐿(𝑡) ∙ (𝑥𝛼 +
𝑏

2
) = 2𝐶𝑀𝑏𝜌𝑎𝑈 ∙ (�̇�𝑑 + 𝑈 ∙ 휃̇𝑑) ∙ (𝑥𝛼 +

𝑏

2
) ; 

 

Notice that the expression for the aerodynamic coefficients are the same previously analysed for the Static 

Divergence onset. Hence are valid only for the case of a thin plate in a potential flow, in all the other case a 

wind tunnel tests are required. 

Is important to notice that the lift force accounts for the instantaneous angle of attack thanks to the vertical 

speed �̇�𝑑. Generally this term can be neglected when approximate solutions are sufficiently accurate. 

 

Following the same procedure seen for the Transient Approach we get the following Flutter matrix. 

 

𝐹 =

{
 

 (𝜆𝑤,𝑛
2 + �̃�𝑤𝑤 ∙ 𝜆𝑤,𝑛 + �̃�𝑤,𝑛

2
) ∙ 𝑀𝑤,𝑛 2�̃�𝜗𝜗 ∙ ℎ̃𝑤𝑛,𝜗𝑚

(�̃�𝜗𝑤 ∙ 𝜆𝑤,𝑛) ∙ ℎ̃𝑤𝑛,𝜗𝑚 (𝐽�̃� ∙ 𝜆𝜗,𝑚
2 + �̃�𝜗𝜗 ∙ 𝜆𝜗,𝑚 + 𝐽�̃� ∙ �̃�𝜗,𝑚

2
− �̃�𝜗𝜗) ∙ 𝑀𝜗,𝑚}

 

 
 ; 



277 
 

 

Where the definition of some parameters slightly change. 

  

 �̃�𝑤𝑤 = 2(𝜉𝑤 ∙ �̃�𝑤 +√𝐽�̃� ∙ �̃�𝑎 ∙ �̃�𝜗 ∙ �̃�) ; 

 

 �̃�𝜗𝜗 = 2𝐽�̃� ∙ �̃�𝜗 ∙ 𝜉𝜗 ; 

 

 �̃�𝜗𝑤 = −
1

2
[�̃�𝑤𝑤]𝜉𝑤=0 ; 

 

�̃�𝜗𝜗 = 𝐽�̃� ∙ �̃�𝜗
2
∙ �̃�2 ;  

 

Let’s introduce some further simplifications neglecting first of all the vertical speed on the actual angle of 

attack and secondly the effect of damping on the response of the system also the structural one. Accordingly, 

the aeroelastic damping parameters vanish and the unknowns are the only flexural and torsional circular 

eigen-frequencies. 

 

 𝐹 =

{
 

 (−�̃�𝐹,𝑛𝑚
2 + �̃�𝑤,𝑛

2
) ∙ 𝑀𝑤,𝑛 2�̃�𝜗𝜗 ∙ ℎ̃𝑤𝑛,𝜗𝑚

0 (−𝐽�̃� ∙ �̃�𝐹,𝑛𝑚
2 + 𝐽�̃� ∙ �̃�𝜗,𝑚

2
− �̃�𝜗𝜗) ∙ 𝑀𝜗,𝑚}

 

 
 ; 

 

Hence, the vanishing of the Flutter determinant leads to the following statement. 

 

 𝑑𝑒𝑡(𝐹) = (𝐾𝑤,𝑛 − �̃�𝐹,𝑛𝑚
2 ∙ 𝑀𝑤,𝑛) ∙ (𝐾𝜗,𝑛 − �̃�𝐹,𝑛𝑚

2 ∙ 𝐽𝜗,𝑚 − 𝛤𝜗,𝑚) = 0 ; 

 

We can solve it analytically as follows. 

 

(𝑀𝑤,𝑛 ∙ 𝐽𝜗,𝑚) ∙ �̃�𝐹,𝑛𝑚
4 − (𝐾𝑤,𝑛 ∙ 𝐽𝜗,𝑚 + 𝐾𝜗,𝑛 ∙ 𝑀𝑤,𝑛 − 𝛤𝜗,𝑚 ∙ 𝑀𝑤,𝑛) ∙ �̃�𝐹,𝑛𝑚

2 +𝐾𝑤,𝑛 ∙ (𝐾𝜗,𝑛 − 𝛤𝜗,𝑚) = 0 ; 

 

Collect the modal equivalent masses.  

 

�̃�𝐹,𝑛𝑚
4 − (�̃�𝑤,𝑛

2
+ �̃�𝜗,𝑚

2
−
𝛤𝜗,𝑚

𝐽𝜗,𝑚
) ∙ �̃�𝐹,𝑛𝑚

2 + �̃�𝑤,𝑛
2
∙ (�̃�𝜗,𝑚

2
−
𝛤𝜗,𝑚

𝐽𝜗,𝑚
) = 0 ; 

 

Define the relative flutter to torsional  and the flexural to torsional squared circular eigen-frequency ratios. 

 

 {

휀 = (𝜔𝐹,𝑛𝑚 �̃�𝜗,𝑚⁄ )
2

𝛿 = (�̃�𝑤,𝑛 �̃�𝜗,𝑚⁄ )
2
⇒ 휀2 − (1 + 𝛿 −

𝛤𝜗,𝑚

𝐾𝜗,𝑚
) ∙ 휀 + 𝛿 ∙ (1 −

𝛤𝜗,𝑚

𝐾𝜗,𝑚
) = 0  

 

Hence, we can find directly the analytical solution for the aeroelastic frequencies. 

 

 휀1,2 =
1

2
{(1 + 𝛿 −

𝛤𝜗,𝑚

𝐾𝜗,𝑚
) ± √(1 + 𝛿 −

𝛤𝜗,𝑚

𝐾𝜗,𝑚
)
2

− 4𝛿 ∙ (1 −
𝛤𝜗,𝑚

𝐾𝜗,𝑚
)} ; 

 



278 
 

From the last expression is possible to extrapolate two extreme conditions. The first one refers to the Static 

Divergence condition that can be fount simply enforcing null Flutter circular frequency since any motion is 

required. 

 

 𝜔𝐹,𝑛𝑚 = 0⇒ 휀 = 0⇔ (1 −
𝛤𝜗,𝑚

𝐾𝜗,𝑚
) = 0⇒ 𝛤𝜗,𝑚 = 𝐾𝜗,𝑚 ⇒ 𝐽�̃� ∙ �̃�𝜗

2
∙ �̃�2 ∙ 𝑀𝜗,𝑚 = 𝐾𝜗,𝑚 ⇒ �̃�𝐷 = 1 ; 

 

Meaning that the actual definition give to the dimensional Divergence speed is exact, since no dimensionless 

speed can overcome it, being normalised with respect to it. 

 

In order to define the Flutter condition onset is necessary to enforce that the two roots fount are identical, 

as we have done in the Old Approach. 

 

휀1 = 휀2⇔(1 −
𝛤𝜗,𝑚

𝐾𝜗,𝑚
+ 𝛿)

2

− 4𝛿 ∙ (1 −
𝛤𝜗,𝑚

𝐾𝜗,𝑚
) = 0⇒ (1 −

𝛤𝜗,𝑚

𝐾𝜗,𝑚
− 𝛿)

2

= 0⇒ 𝛤𝜗,𝑚 = 𝐾𝜗,𝑚 ∙ (1 − 𝛿) ; 

 

Then recall some known definitions. 

 

 𝐽�̃� ∙ �̃�𝜗
2
∙ �̃�2 ∙ 𝑀𝜗,𝑚 = 𝐾𝜗,𝑚 ∙ (1 − 𝛿) ⇒ �̃�𝑄𝑆 = √1 − 𝛿 ; 

 

The Quasi-Static Approach allows analytical solution but due to its simplicity it does not allow to say if the 

Flutter onset will be of flexural or torsional kind. The ratio between the flexural and torsional structural 

circular eigen-frequencis plays a fundamental role, in fact as it decreases we get Flutter speed approaching 

the limit Divergence condition. This happen as the flexural stiffness is sufficiently high with respect to the 

torsional one. Notice that implicit assumption is that the bridge is always much more slack with respect to 

torsional vibrations than flexural one, as usually happens in reals structures. In fact, as the condition reverses 

we would get a negative radicand. Hence the parameter 𝛿 must range between 0 and 1.  

 

5.6.2. Numerical results 

 
Before starting to comment the Flutter limit curves let’s make few consideration on the numerical methods 

implemented. 

We have already explain the main feature of the methods we have called New and Old Approach, now we 

want to sketch some representative images in order to see how the codes work. 
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First of all we analyse the main feature of the New Approach focusing on the variation of the circular eigen-

frequency and of the damping ratio for the complete aeroelastic system. 

 

 
Figure 5.3_Aeroelastic frequency and damping of Mode 1 for Theodorsen and Steady-State formulation. 

  

The first thing we notice is that there is a huge difference between the so-called Theodorsen formulation and 

the Steady-State one. The only difference is that in the second one we assume the complex Theodorsen 

function to be constant and unitary. Therefore, it’s evident that its influence on the Flutter speed threshold 

is very important, because neglecting its dependence on the actual reduced frequency means lose too much 

fundamental information. In fact, we are not able to feel the difference between the structural vibration 

frequency and the one required to the fluid to overpass the whole bridge’s sectional width. The fact that with 

the Steady-State formulation we assume the reduced frequency to be very high means that the structural 

vibrations are much more slow than the wind ones. Therefore, we are losing the information concerning the 

interaction between the fluid flow and the motion of the bridge section that modifies the direction of the 

stream lines. Consequently, the Steady-State approach overestimate very much the wind forces and hence 

we get lower admissible Flutter speed limits. We can state that it is a method a little bit easier than the 

Transient one, but simplifications means also less reliable models since to get simple results we cannot 

exploit all the structural resources that can be appreciated only by a more complicate but accurate model of 

the wind-structure interaction such as the Theodorsen formulation. Generally we can state that the safe 

factor is about 50 % or higher. 

 

As we can see, results confirm what we have already stated concerning the contribution coming from the 

aeroelastic damping. In fact, starting from the initial value of 0.5 %, assumed to be representative of real life 

bridges without special dissipative devices, associated to the pure structural contribution, it’s evident that 

both the damping branches at least double it within very low wind speed levels. The stable branch, the 

flexural one in this case, grows very fast and in correspondence of Flutter onset it overcome 10 % and 5 % 

respectively for the Theodorsen and the Steady-State formulation in all cases analysed. 
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Regarding the unstable branch we want to underline two fundamental features. The first one concern the 

fact that in both the formulations is evident a change of curvature slightly after the reaching of the Flutter 

onset. This means that if the wind speed increases monotonically from zero, the divergent damping branch 

will pass from stable to unstable conditions but then the structure will return to stable one. This is a 

theoretical possibility in fact in all cases analysed the wind speed required to return to the stable condition 

is higher than the Static Divergence threshold. Anyway in the present treatment also if possible is not of 

interest because we want to catch just the limit onset of the Flutter instability, in fact we are not assuming 

any wind speed time history meaning that for us wind speed is constant along the time axis. 

Focusing on the unstable branch of the only Steady-State approach, we want to underline the fact that 

assuming a null structural damping would be not possible. In fact, the curve has an initial slope slightly 

negative that will led the structure to become unstable as the wind speed becomes different from zero. 

Thence the choice of a very small but not null initial structural damping should appear to be useless but in 

reality it is not. This is true at least for the Steady-State formulation, instead for the Transient one it become 

useless, because the unstable damping branch initially grows.  

 

Further, another important information we can get analysis the unstable damping branch is the slope 

characterising the curve near the Flutter onset. In fact, it gives a qualitative measure of how much is violent 

and sudden the passage from stable to unstable oscillations under accelerate wind action. This in general is 

a very important aspect to be taken in consideration, particularly regarding accelerate flight of aileron. 

 

 
Figure 5.4_Damping slope of Mode 1 for Theodorsen and Steady-State formulation. 

  

As we can see this feature depends strongly on the geometrical and mechanical properties of the structure. 

In fact as the torsional stiffness in much more higher than the flexural one, the Flutter speed approaches the 

Divergence threshold and the structure enters in the unstable branch more and more suddenly and violently. 

Notice also that as the initial values of circular eigen-frequencies are more different from each other, then 

overlapping effect due to aeroelastic forces increases. 
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The aeroelastic response of any coupled structure has another important peculiarity, that is, starting from 

more or less distinct values, the frequency of oscillations of the main two interacting modes tend to converge 

as the wind speed grows. Notice that this phenomenon has its maximum effect in an around of the Flutter 

onset, where we have the highest modal energy exchange. 

 

Now we want to show how the Old Approach works in finding the Flutter limit conditions. First of all we need 

to plot both the real and imaginary part of the Flutter determinant as function of the only circulat eigen-

frequency. 

 

 
Figure 5.5_Flutter determinant of Mode 1 for generic structural conditions at null wind speed. 

  

As we can see as the wind speed is null we get two roots from the zeroing of the real part of the Flutter 

determinant corresponding to the flexural and torsional one of the only structure, and a unique root from 

the imaginary part in between the previous two. 

Then as the wind speed increases also the properties of the aeroleastic system change, consequently we get 

different masses, stiffness and damping that change the frequencies of oscillations. 

 

There particular structural condition for which one of the real root is so near vanishing that increasing the 

wind speed we get just one real root meaning that the previous frequency collapses to zero. 

Others cases concern the ones in which the two real frequencies are very near to each other, hence as the 

wind speed increases we can get a unique real root meaning that the two are coincident and then return to 

separate again. We assume that frequencies cannot exchange, that means the min frequency remains so for 

any value of wind speed. This is an important aspect to be taken in account when the two real roots coincide 

at certain wind speed. 
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Figure 5.6_Flutter determinant of Mode 1 for generic structural conditions at Divergent wind speed. 

  

As the wind speed reaches the threshold corresponding to the Static Divergence condition, we notice that 

the imaginary root overtake one of the two real roots, the higher or the lower one. This means that there 

exist a wind speed level at which the imaginary and one of the real root coincide; this is the Flutter onset 

condition. In fact at this wind speed level the Flutter Determinant exactly vanishes. 

 

 
Figure 5.7_Flutter determinant of Mode 1 for generic structural conditions at Flutter wind speed. 

  

Thence, once we find for each wind speed the three roots we can trace the difference between the imaginary 
and the real ones in order to find out, which is overtaken to know if it is a flexural or torsional Flutter 
condition, and in correspondence of which wind speed. 
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Figure 5.8 _Flutter onset of Mode 1 for Theodorsen and Steady-State formulation. 

Finally after detecting the Flutter condition we can get also the path followed both by the circular eigen-

frequencies and by the damping ratios. 

This last plot allow us to compare the Flutter onset condition obtained with both the Approaches 

implemented. As we can see the results are practically identical, in fact we can notice just a slight difference 

that makes the Old approach slightly on the safe side. This is because in the zeroing process the latter does 

not consider the contributions coming from the aeroelastic damping. Consequently the aerodynamic forces 

are a little bit higher with respect to the one obtained with the New Approach. Hence we can state that the 

Old Approach is simpler in the formulation but longer in the numerical process with respect to the New one, 

and result are coincident for engineering applications. 

 
Figure 5.9_Aeroelastic frequency and damping of Mode 1 for Theodorsen and Steady-State formulation. 
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With respect to the New Approach it’s evident that the damping ratios are strongly different due to the fact 

that we are computing them on the basis of the only direct aeroelastic damping parameter, hence losing 

some important contributions coming from the other dof motion. In fact one on all, we cannot distinguish 

any divergent damping branch. Notice that in the Steady-State formulation we get constant damping due to 

the simplified formulation of the complex Theodorsen function than is now independent from the reduced 

frequency. On the other hand both the frequencies branches are quite similar to the ones we obtain with the 

New Approach. 

 

Further we want to analyse the variation of the modal shapes as the wind speed increases. In fact we as we 

have previously stated, modes depend indirectly from the actual circular eigen-frequency that we have just 

seen is an aeroelastic property. Notice that we have assumed that only the non-sinusoidal modal shapes can 

be tuned by the presence of wind actions. 

In the following we will plot not the whole set of modals shapes corresponding to the wind speed considered, 

but only the ones corresponding to the structural one in absence of wind as reference, the one with minimum 

and maximum participating mass to get the lower and upper limit for modal shapes and the one so-called 

Flutter modal shape in correspondence of Flutter onset. 

 

 
Figure 5.10_Aeroelastic modal shape of Mode 1 for generic structural conditions. 
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Figure 5.11_Aeroelastic modal shape of Mode 1 for generic structural conditions. 

It’s evident that as Flutter condition exist the modal shape with the highest participating mass will be never 

reached. In all the cases analysed we notice a slight modification of the circular eigen-frequencies up to 

Flutter condition when it exist, consequently the variation of modal shapes with wind speed conditions is not 

so crucial. 

The choice between Theodorsen and Steady-State formulation is not so important regarding the shapes of 

the modes up to the Flutter condition but can be relevant beyond it. 

 

 
Figure 5.12_Aeroelastic modal shape of Mode 1 for generic structural conditions. 

 

On the other hand the slight difference between the New and Old Approach in the Flutter condition onset, 

affects the shapes of eigen-modes strongly also up to Flutter condition. 
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Notice that the wind has the same effect on modal shape of reducing on one hand the cables inextensibility 

or on the other the flexural or torsional relative stiffness. 

 

Now we are ready to analyse the results coming from the Flutter analysis in terms of wind speed limits. 

First let’s see the simpler approach, that is the Quasy-Static formulation of the problem. As we can see from 

the following plotting, we decide to sketch different curves for each value of the deck to cables flexural 

stiffness ratio 𝜇2 since the Quasy-Static formulation is not able to say if the divergence would be flexural or 

torsional, hence we choose the deck to cables torsional stiffness 𝛽2 as reference parameter. 

As we can see the curves are strongly non-linear and some are not monotonically growing with the 𝛽2 

parameter. The latter feature is reasonable if we think to the simple formulation given by the Quasi-Static 

formulation to the Flutter wind speed limit. 

 

 �̃�𝑄𝑆 = √1 − 𝛿 = √1 − (�̃�𝑤,𝑛 �̃�𝜗,𝑚⁄ )
2

 ; 

 

We have already pointed out that it implicitly assumes that the 𝛿 cannot be higher than one, meaning that 

the flexural frequency need to be always lower than the torsional one. 

This assumption precludes the possibility to trace flexural unstable branches for Flutter speed. 

In the code, in order to avoid a negative radicand, we take the absolute value of the radicand since the 

previous condition is not always satisfied particularly as the flexural stiffness becomes very high. 

Hence, the branches that decreases with as the parameter 𝛽2 grows represent flexural unstable branches, 

while the other growing ones relates all to torsional vibrations. 

In general the path followed by the curves was expected since would be reasonable that once 𝜇2 is fixed 

increasing the torsional relative stiffness we expect higher and higher torsional Flutter wind speeds since the 

energetic level respectively for the flexural and torsional motion differ more and more. The opposite 

behaviour is expected increasing the flexural relative stiffness since energetic levels comes nearer. This is 

true for torsional unstable branches that are feasible only when the relative torsional stiffness reaches values 

enough high. 

On the other hand as the structural system becomes enough rigid in the flexural direction, then as the low 

torsional stiffness grows the energetic levels tends to align hence flexural Flutter will occur at lower wind 

speed. 

 

 
Figure 5.13_Flutter curves of Mode 1 for Quasi-Static formulation with 𝜒2 = 0. 
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As the cables inextensibility increases, to see the passage from flexural to torsional unstable branches, we 

need higher relative flexural stiffness 𝜇2 and lower torsional limit parameter 𝛽2. This is a consequence of the 

fact that, as cables stiffness increases, the global flexural stiffness reduces and hence we need higher 

contributions coming from the deck so that flexural frequencies of oscillations overtake the torsional ones. 

The reduction of flexural stiffness contribution coming from the cables system is because increasing their 

axial inextensibility we are limiting the stiffening behaviour directly linked to deformations. On the other 

hand the cables inextensibility has lower effect on torsional oscillations in correspondence of high and low 

values of 𝛽2 respectively for the stiff 𝜒2 = 0 and free 𝜒2 = ∞ warping limit condition. 

As main consequence of these two aspects the coupling factor ℎ̃𝑤𝑛,𝜗𝑚 decreases as the cables inextensibility 

is higher and higher. 

 

 
Figure 5.14_Flutter curves of Mode 1 for Quasi-Static formulation with 𝜒2 = 0. 

  

We notice also that we have an higher variation between different curves in correspondence of low torsional 

stiffness 𝛽2, meaning that the relative flexural parameter this parameter 𝜇2 has an higher effect on the 

Flutter onset when the torsional one is not too much high, otherwise any tuning of the first one will be less 

influent. 

The Irvine cables parameter 𝜆2 influences results turns away the curves increasing the scattering. But notice 

that the upper limit curve does not present so evident differences with respect the previous one, hence the 

increase of cables inextensibility leads to an higher influence of the relative flexural stiffness parameter 𝜇2. 

This is due again to the fact that there is an higher influence on flexural modes than torsional ones, as 

previously stated regarding the coupling factor. 

Also it decreases and increases Flutter speed respectively at the highest and lowest range of 𝛽2.  

Both effect are due to the fact that the higher is 𝜆2 the more the cables are inextensible and consequently 

the structure is more rigid and any tuning of the structural parameters has less influence on its response. 
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Considering the case of 𝜒2 = ∞ we get similar shapes of the curves with the important difference that critical 

conditions move toward higher values of 𝛽2, with a translation of two order of magnitude. 

 

 
Figure 5.15_Flutter curves of Mode 1 for Quasi-Static formulation with 𝜒2 = ∞. 

 

Regarding the results obtained by means of the Theodorsen and Steady-State formulation we can state that 

there are just slight differences between the ones obtained by the New and Old approach. The only 

remarkable one is that from the latter we never get Flutter conditions of flexural type with the parameter 

used in the numerical simulations. 

 

 
Figure 5.16_Flutter curves of Mode 1 Steady-State formulation. 
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At a first sight we can see that the main feature noticed in the Quasi-Static formulation are relevant also for 

both the other approaches. In fact, curves are non-linear and we notice that are not monotonically growing. 

However, this time the decreasing branches are not associated to flexural oscillations. Consequently, we can 

state that as the flexural stiffness is high enough the bridge can reach higher wind speed limit when the 

torsional stiffness is low than when it is very high. We noticed this same phenomenon previously in the Quasi-

Static formulation for the flexural branches. Hence, the main difference is that only with the Transient and 

Steady-State formulation we are able to say exactly if the Flutter condition will be of torsional or flexural 

type. 

From this observation we learn that is not important which frequency is lower and which is higher to choose 

if the Flutter onset will be of torsional or flexural kind. What really and only governs the choice is the Flutter 

determinant and the damping ratio of the complete aeroelastic system. 

 

As we can see from the Transient results we get slightly lower Flutter speed with respect to the Quasi-Static 

condition since the latter one lose too much information regarding the interaction between modes. In fact it 

consider just the frequencies and not also the modal shape similarities and further any damping contribution 

is taken in account. Hence although it’s the simplest method taken in account it gives not the more safe 

results. 

 

As the cables inextensibility increases we get the same behaviour previously commented, that is an higher 

influence of flexural parameter 𝜇2. This time both for the Transient and Steady-State approach we notice an 

increase of the scatter between curves mainly in correspondence of mean values of the relative torsional 

parameter 𝛽2 in the range 0.01-10. Hence in that region we get that higher Flutter speeds increases and 

lower ones decreases for the same reason that the Irvine parameter modifies modal shapes in different ways 

for flexural and torsional motion, and the latter one is more influenced in correspondence of high and low 

values of 𝛽2 respectively for the stiff 𝜒2 = 0 and free 𝜒2 = ∞ warping limit condition. Consequently the 

coupling terms ℎ̃𝑤𝑛,𝜗𝑚 changes in different ways depending on the actual structural conditions. 

 

 
Figure 5.17_Flutter curves of Mode 1 Theodorsen  formulation. 



290 
 

 

Regarding the differences between Transient and Steady-State results we can say that the latter one gives us 

Flutter speed that are really on safe side being lower of above 50 % with respect to the ones obtained with 

the complete Theodorsen formulation. On the other hand the main feature are the same in the two 

formulation, and also the critical values for flexural and torsional parameters are practically the same. 

 

Finally we report also the flexural ranch of the Flutter curves, that as we have already stated, we can get it 

only from Transient formulation. It’s evident that we can get flexural unstable branches only in a very limited 

set of situations. This mainly happens when the flexural stiffness is very low and the torsional one too much 

high so that the latter one is not able to vibrate enough to pump energy inside the system. Hence the flexural 

one do that but only at very high wind speed level as the flexural parameter 𝜇2 reaches reliable values. 

 

 

 
Figure 5.18_Flutter curves of Mode 1 Theodorsen  formulation. 
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6. Parametric resonance 

 
6.1 Floquet theory 

 

6.1.1 The theorem 

 

The classical theory proposed by Floquet allows us to study the stability of linear systems with periodic 

coefficients. 

 

Let’s consider a system of first order n linear equations. 

 

 𝑥′ = 𝐴(𝑡) ∙ 𝑥 ; 

 

Where 𝑥 = (𝑥1…𝑥𝑛) be the vector of unknowns, 𝑡𝜖(−∞,+∞) the time variable and 𝐴(𝑡) the (𝑛𝑥𝑛) matrix 

of continuous periodic functions of period 𝑇. 

 

 𝐴(𝑡 + 𝑇) = 𝐴(𝑡) ; 

 

A system of this kind does not have necessarily a non-trivial periodic solution of period 𝑇, as can be show 

considering the simple 𝑛 = 1 case. 

 

 𝑥′ = 𝑎(𝑡) ∙ 𝑥 ⇒ 𝑥(𝑡) = 𝑐 ∙ 𝑒𝑥𝑝 (∫ 𝑎(𝑡)𝑑𝑡
𝑇

0
) ⇒ 𝑥(𝑡 + 𝑇) = 𝑥(𝑡) ⇔ 𝑐 ≠ 0   𝑎𝑛𝑑   ∫ 𝑎(𝑡)𝑑𝑡

𝑇

0
= 0 ; 

 

Floquet states the following theorem [28]. 

 

“A system 𝑥′ = 𝐴(𝑡) ∙ 𝑥 with 𝐴(𝑡 + 𝑇) = 𝐴(𝑡) has at least one non-zero solution 𝑥(𝑡) such that 

 𝑥(𝑡 + 𝑇) = 𝜆 ∙ 𝑥(𝑡) for any 𝑡 where 𝜆 is a convenient non-vanishing constant (real or complex).” 

 

Hence, let’s prove that statement. Consider first a fundamental (𝑛𝑥𝑛) system which columns are the n 

solutions of the problem. 

 

 𝑋(𝑡) = {𝑥𝑖𝑘(𝑡)} = {𝑐𝑜𝑙[𝑥1𝑘(𝑡), … , 𝑥𝑛𝑘(𝑡)]} ; 

 

Consequently thanks to Abel Theorem we get 𝑑𝑒𝑡[𝑋(𝑡)] ≠ 0. Then, from the Jacobi-Liouville formula we can 

write the following relations. 

 

 𝑑𝑒𝑡[𝑋(𝑡)] = 𝑑𝑒𝑡[𝑋(𝑡0)] ∙ 𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴) 𝑑𝑡
𝑡

𝑡0
) ; 

Assuming 𝑡0 = 0 we get that as long as 𝑑𝑒𝑡[𝑋(0)] ≠ 0
  
⇒𝑑𝑒𝑡[𝑋(𝑡)] ≠ 0 ⇒ 𝑑𝑒𝑡[𝑋(𝑡 + 𝑇)] ≠ 0 for any 𝑡. 

In fact, the vanishing of the determinant is not linked to the choice of the time instant but only on initial 

conditions. 

 

 𝑑𝑒𝑡[𝑋(𝑡 + 𝑇)] = 𝑑𝑒𝑡[𝑋(𝑡0)] ∙ 𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴) 𝑑𝑡
𝑡+𝑇

𝑡0
) ; 
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Consequently also 𝑋(𝑡 + 𝑇) is a fundamental system of solutions and it can be seen as a linear combination 

of 𝑋(𝑡) . 

 

 𝑋(𝑡 + 𝑇) = 𝐶 ∙ 𝑋(𝑡) ⇒ 𝑥𝑖𝑘(𝑡 + 𝑇) = ∑ 𝑐𝑗𝑘 ∙ 𝑥𝑖𝑗(𝑡)
𝑛
𝑗=1  ; 

 

Where 𝐶 is a (𝑛𝑥𝑛) constant matrix, hence exploiting the relations just obtained we get another fundamental 

relation. 

 

 𝑑𝑒𝑡[𝑋(𝑡 + 𝑇)] = 𝑑𝑒𝑡[𝐶] ∙ 𝑑𝑒𝑡[𝑋(𝑡)] = 𝑑𝑒𝑡[𝑋(0)] ∙ 𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴) 𝑑𝑡
𝑡

0
) ≠ 0 ; 

 

Consequently as 𝑑𝑒𝑡[𝑋(0)] ≠ 0. 

 

 𝑑𝑒𝑡[𝐶] = 𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴) 𝑑𝑡
𝑡

0
) ≠ 0 ; 

 

Now we want to discuss whether there are non-zero solutions, such that 𝑥(𝑡 + 𝑇) = 𝜆 ∙ 𝑥(𝑡) holds. 

If such a solution 𝑥(𝑡) = (𝑥1…𝑥𝑛) exists, then for some non-zero vector 𝑚 = (𝑚1…𝑚𝑛) we must have the 

following relations. 

 

 𝑥𝑠(𝑡) = ∑ 𝑚𝑘 ∙ 𝑥𝑠𝑘(𝑡)
𝑛
𝑘=1  ; 

 

Hence exploiting the previous relation. 

 

𝑥𝑠(𝑡 + 𝑇) = ∑ 𝑚𝑘 ∙ 𝑥𝑠𝑘(𝑡 + 𝑇)
𝑛
𝑘=1 = ∑ 𝑚𝑘 ∙ ∑ 𝑐𝑗𝑘 ∙ 𝑥𝑠𝑗(𝑡)

𝑛
𝑗=1

𝑛
𝑘=1 = ∑ {∑ 𝑐𝑗𝑘 ∙ 𝑚𝑘

𝑛
𝑘=1 } ∙ 𝑥𝑠𝑗(𝑡)

𝑛
𝑗=1  ; 

 

Finally, in order to satisfy the fundamental condition we get. 

 

 𝑥𝑠(𝑡 + 𝑇) = 𝜆 ∙ 𝑥𝑠(𝑡) ⇔ ∑ 𝑐𝑗𝑘 ∙ 𝑚𝑘
𝑛
𝑘=1 = 𝜆 ∙ 𝑚𝑗   𝑓𝑜𝑟   𝑗 = 1,… , 𝑛 ; 

 

Consequently we can state that the factors or multipliers 𝜆 are the characteristic roots of the matrix 𝐶. In 

fact, the previous relation can be written in the classical matrix form. 

 

 [𝐶 − 𝜆 ∙ 𝐼] ∙ 𝑚 = 0   𝑤𝑖𝑡ℎ   𝐼 = 𝑑𝑖𝑎𝑔(1,… ,1) ; 

 

It represent a classical eigen-value problem that allows us to find out the characteristic eigen-values and 

eigen-vector of a linear problem as long as the vector 𝑚 does not vanish simply zeroing the determinant of 

the left hand side matrix and the solving the linear system. 

 

 𝑑𝑒𝑡[𝐶 − 𝜆 ∙ 𝐼] = 0 ⇒ 𝜆 = (𝜆1, … , 𝜆𝑛) ⇒ [𝐶 − 𝜆𝑖 ∙ 𝐼] ∙ 𝑚𝑗 = 0⇒𝑚𝑗 ⇒ 𝑥𝑖(𝑡) ; 

 

From the condition that avoid the determinant of the matrix 𝐶we get that, no multipliers 𝜆𝑠 can vanish. 

 

 𝑑𝑒𝑡[𝐶] = ∏ 𝜆𝑖
𝑛
𝑖=1 ≠ 0⇔ 𝜆𝑖 ≠ 0   𝑓𝑜𝑟   𝑖 = 1,… , 𝑛  ; 

 

Hence if all the characteristic roots 𝜆𝑖 are distinct then there exists also n distinct solutions 𝑥𝑖(𝑡) forming a 

fundamental system. Otherwise if only m multipliers 𝜆𝑖 are distinct, with 1 ≤ 𝑚 ≤ 𝑛, then there exist just m 

distinct solution. Consequently the theorem is proved. 
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We notice that the multipliers 𝜆𝑖 are independent from the choice of the fundamental system of solutions. 

To see this, let 𝑌 be another fundamental system of solutions such that 𝑌 = 𝑀 ∙ 𝑋 where matrix 𝑀 is not 

singular. This assumption is fundamental for the following relations. 

 

 𝑋(𝑡 + 𝑇) = 𝐶 ∙ 𝑋(𝑡) ⇒𝑀−1 ∙ 𝑌(𝑡 + 𝑇) = 𝑀−1𝐶 ∙ 𝑌(𝑡) ⇒ 𝑌(𝑡 + 𝑇) = 𝑀−1𝐶𝑀 ∙ 𝑌(𝑡) = 𝐶′ ∙ 𝑌(𝑡) ; 

 

It’s evident that the characteristic roots of 𝐶 and 𝐶′ have to be the same since we have performed just a 

simple change of variables. 

 

Generally the numbers 𝜆𝑖 are called characteristic multipliers or factors of the system, and can be written in 

exponential format as 𝜆𝑖 = exp (𝑟𝑖 ∙ 𝑇) where the real or complex numbers 𝑟𝑖 are called characteristic 

exponents of the system and are defined up to multiples of 𝑖𝜔 = √−1 ∙ 2𝜋 𝑇⁄ . 

Consequently, we can write the solutions in the following format. 

 

 𝑥𝑖(𝑡) = 𝑝𝑖(𝑡) ∙ 𝑒𝑥𝑝(𝑟𝑖 ∙ 𝑡) ; 

 

Exploiting the fundamental relation for the solutions and the definition of characteristic multipliers we get. 

 

 𝑥𝑖(𝑡 + 𝑇) = 𝑝𝑖(𝑡 + 𝑇) ∙ 𝑒𝑥𝑝[𝑟𝑖 ∙ (𝑡 + 𝑇)] = 𝜆𝑖 ∙ 𝑝𝑖(𝑡 + 𝑇) ∙ 𝑒𝑥𝑝(𝑟𝑖 ∙ 𝑡) = 𝜆𝑖 ∙ 𝑥𝑖(𝑡) ; 

 

Hence also the new function is periodic of period 𝑇. 

 

 𝑝𝑖(𝑡 + 𝑇) = 𝑝𝑖(𝑡) ; 

 

Finally we can conclude that the linear system 𝑥′ = 𝐴(𝑡) ∙ 𝑥 has at least , 1 ≤ 𝑚 ≤ 𝑛 , periodic linearly 

independent solutions in the form 𝑥𝑖(𝑡) = 𝑝𝑖(𝑡) ∙ 𝑒𝑥𝑝(𝑟𝑖 ∙ 𝑡) , 1 ≤ 𝑖 ≤ 𝑚 of period 𝑇. 

 

Let’s proceed by considering a particular fundamental system 𝑋(𝑡) such that 𝑋(0) = 𝐼. 

 

 𝑋(𝑡 + 𝑇) = 𝐶 ∙ 𝑋(𝑡) ⇒ 𝐶 = 𝑋(𝑇) ; 

 

Hence we define for the first time the so called Monodromy matric 𝐶 that give a quantitative measure of the 

variation of the solution 𝑥(𝑡) after a period 𝑇. Consequently, it can be defined numerically simply integrating 

the equations along the time axis up to the period of the periodic term. 

 

 𝑑𝑒𝑡[𝐶] = 𝑑𝑒𝑡[𝑋(𝑇)] ⇒ ∏ 𝜆𝑖
𝑛
𝑖=1 = 𝑑𝑒𝑡[𝑋(0)] ∙ 𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴) 𝑑𝑡

𝑇

𝑡0
) ; 

 

Finally we get the definition for the characteristic exponents. 

 

 𝑒𝑥𝑝(∑ 𝑟𝑖
𝑛
𝑖=1 ∙ 𝑇) = 𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴) 𝑑𝑡

𝑇

𝑡0
) ⇒ ∑ 𝑟𝑖

𝑛
𝑖=1 = ∫ 𝑡𝑟(𝐴) 𝑑𝑡

𝑇

𝑡0
𝑇⁄  ; 
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Now we search for a convenient choice of the fundamental matrix 𝑋(𝑇) in order to be able to write the 

Monodromy matrix in canonical form, i.e as the sum of n Companion matrices of the generic characteristic 

root 𝜆𝑠 of order 𝑛𝑠 uniquely defined up to an arbitrary permutation as proved by Jordan’s Theorem . 

 

 𝐶 = 𝐽 = 𝑃−1𝐴𝑃 = ∑ 𝐶𝑠
𝑚
𝑠=1 = [𝑐𝑖𝑗]   𝑠. 𝑡.   

{
 
 

 
 
𝑐𝑖,𝑖 = 𝜆𝑠

𝑐𝑖,𝑖+1 = 1

𝑐𝑖,𝑗 = 0

  𝑤𝑖𝑡ℎ   1 ≤ 𝑖 ≤ 𝑛𝑠 ; 

 

Where 𝐽 is the so-called Jordan canonical matrix and 𝑃 arbitrary complex non-singular Permutation matrix. 

Notice that because of the particular definition given to the Companion matrices, the associate characteristic 

multiplier 𝜆𝑠 has a multiplicity equal to 𝜇𝑠 = ∑ 𝑛𝑠
𝑚
𝑠=1  since we repeat each along the main diagonal of 𝐶𝑠. 

Consequently, for each Companion matrix the associate Fundamental system has 𝑛𝑠 solutions 𝑥𝑠(𝑡) 

 

𝑋𝑠(𝑡 + 𝑇) = 𝐶𝑠 ∙ 𝑋𝑠(𝑡) ⇒ 𝑥𝑘(𝑡 + 𝑇) = 𝜆𝑠 ∙ 𝑥𝑘(𝑡) − 𝑥𝑘−1(𝑡) ; 

 

Let’s write the Monodromy matrix as an exponential one by means of a (𝑛𝑥𝑛) canonical matrix 𝐷. 

 

 𝐶 = exp(𝐷 ∙ 𝑇)   𝑤ℎ𝑒𝑟𝑒   𝐷 = ∑ 𝐷𝑠
𝑚
𝑠=1 = [𝑑𝑖𝑗]   𝑠. 𝑡.   

{
 
 

 
 
𝑑𝑖,𝑖 = 𝑑

𝑑𝑖,𝑖+1 = 1

𝑑𝑖,𝑗 = 0

  𝑤𝑖𝑡ℎ   1 ≤ 𝑖 ≤ 𝑛 ; 

 

Assume a particular form for each Companion matrix. 

 

𝐷𝑠 = 𝑑𝐼 + 𝑍   𝑤ℎ𝑒𝑟𝑒   𝑍 = [𝑧𝑖𝑗]   𝑠. 𝑡.  {

𝑧𝑖,𝑗 = 0

𝑧𝑖,𝑖+1 = 1
   𝑤𝑖𝑡ℎ   1 ≤ 𝑖 ≤ 𝑛  ; 

 

Consequently the 𝑍 matrix elevated at the generic power gives. 

 

 𝑍ℎ = [𝑧𝑖𝑗
(ℎ)]   𝑠. 𝑡.   {

𝑧𝑖,𝑗
(ℎ) = 0

𝑧𝑖,𝑖+ℎ
(ℎ) = 1

   𝑖𝑓   1 ≤ ℎ ≤ 𝑛𝑠 − 1   ;   𝑧𝑖,𝑗
(ℎ) = 0   𝑖𝑓 ℎ ≥ 𝑛𝑠 ; 

 

Hence, we can take its exponential to get a polynomial expression for 𝑍. 

 

 exp( 𝑍) = [𝜉𝑖𝑗
(ℎ)]   𝑠. 𝑡.   

{
 
 

 
 

𝜉𝑖,𝑖 = 1

𝜉𝑖,𝑗>𝑖 = 1 𝑗!⁄

𝜉𝑖,𝑗<𝑖 = 0

 ; 

 

Finally we can write the Monodromy matric as follows. 

 

 𝐶 = exp(𝐷 ∙ 𝑇) = ∑ exp(𝐷𝑠 ∙ 𝑇)
𝑚
𝑠=1 = ∑ exp[(𝑑𝐼 + 𝑍) ∙ 𝑇]𝑚

𝑠=1  ; 
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Hence recalling that. 

 

 𝑐𝑖,𝑖 = exp(𝑑𝑖,𝑖 ∙ 𝑇) ⇒ 𝜆𝑠 = exp (𝑑 ∙ 𝑇) ; 

 

Then. 

 

 𝐶𝑠 = exp(𝐷𝑠 ∙ 𝑇) = [𝑔𝑖𝑗]   𝑠. 𝑡.  

{
 
 

 
 

𝑔𝑖,𝑖 = 𝜆𝑠

𝑔𝑖,𝑗>𝑖 = 𝜆𝑠 ∙ 𝑇
𝑗 𝑗!⁄

𝑔𝑖,𝑗<𝑖 = 0

   𝑤𝑖𝑡ℎ   1 ≤ 𝑖 ≤ 𝑛 ; 

 

Now we can prove the periodicity of all the functions 𝑝𝑘(𝑡). 

 

 𝑥𝑘(𝑡) = 𝑝𝑘(𝑡) ∙ 𝑒𝑥𝑝(𝑟𝑘 ∙ 𝑡) ⇒ 𝑋(𝑡) = 𝑃(𝑡) ∙ exp (𝐷 ∙ 𝑡) ; 

 

Since. 

 

 𝑋(𝑡 + 𝑇) = 𝑃(𝑡 + 𝑇) ∙ exp(𝐷 ∙ 𝑡) ∙ exp(𝐷 ∙ 𝑇) = 𝐶 ∙ 𝑋(𝑡) ⇔ 𝑃(𝑡 + 𝑇) = 𝑃(𝑡) ; 

 

Finally assuming 𝑀(𝑡) = exp(𝐷 ∙ 𝑡) we get the fundamental system in a more compact form. 

 

 𝑋(𝑡) = 𝑃(𝑡) ∙ 𝑀(𝑡) ; 

 

It states that, the fundamental solution of a linear differential system with periodic coefficients is given by 

the product between a periodic function 𝑃(𝑡) and the solution of the associate system with constant 

coefficient 𝑀(𝑡). 

 

Hence, it’s immediate to check the stability of all the solutions of the system that is completely dictated by 

𝑀(𝑡) being 𝑃(𝑡) periodic bounded. 

 

 𝑥(𝑡) → 0   𝑎𝑠   𝑡 → +∞⇔ |𝜆𝑖| = |exp (𝑟𝑖 ∙ 𝑡)| < 1 ⇒ 𝑅𝑒(𝑟𝑖) < 0 ; 

 

 𝑥(𝑡) < ∞   𝑎𝑠   𝑡 → +∞⇔ |𝜆𝑖| ≤ 1   𝑤𝑖𝑡ℎ   𝜇𝑖 = 𝜈𝑖   𝑎𝑠   |𝜆𝑖| = 1 ; 

 

 𝑥(𝑡) = 𝑥(𝑡 + 𝑇)   ∀𝑡 ⇔ |𝜆𝑖| = 1   𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑐𝑒 ; 

 

Where 𝜇𝑖  is the multiplicity of the root 𝜆𝑖 for the equation 𝑑𝑒𝑡[𝐶 − 𝜆 ∙ 𝐼], and 𝜈𝑖 is the nullity of the associate 

matrix 𝐶 − 𝜆𝑖 ∙ 𝐼. 
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Before proceeding ley’s focus on the periodicity of the solution when at least one root satisfies |𝜆𝑖| = 1   . 

 

 𝑥(𝑡 + 𝑇) = 𝜆 ∙ 𝑥(𝑡) ⇒ {
𝑖𝑓 𝜆 = 1 ⇒  𝑥(𝑡 + 𝑇) = 𝑥(𝑡) ⇒ 𝑝𝑒𝑟𝑖𝑜𝑑 𝑇

𝑖𝑓 𝜆 = −1⇒ 𝑥(𝑡 + 2𝑇) = −𝑥(𝑡 + 𝑇) = 𝑥(𝑡) ⇒ 𝑝𝑒𝑟𝑖𝑜𝑑 2𝑇

 ; 

 

We can deduce that the period of the solution is strongly influenced by the value assumed by the 

characteristic multiplier. In general is valid the following relation. 

 

 𝑥(𝑡 + 𝑛𝑇) = 𝜆𝑛 ∙ 𝑥(𝑡) ⇒ 𝑝𝑒𝑟𝑖𝑜𝑑 𝑛𝑇 ; 

 

 

6.1.2 Hill’s equation 

 

A case in which the application of the Floquet theory has been particularly fruitful is the Hill’s equation. 

 

 𝑥′′ + 𝑝(𝑡) ∙ 𝑥 = 0 ; 

 

It can be also generalised to the damped case as follows. 

 

 𝑦′′ + 𝑞(𝑡) ∙ 𝑦′ + 𝑝∗(𝑡) ∙ 𝑦 = 0 ; 

 

Where both 𝑞(𝑡) and 𝑝(𝑡) are periodic functions of period 𝑇. The second one can be reduced to the first 

form simply by means the following transformation. 

 

 𝑦 = 𝑥 ∙ exp (−
1

2
∫ 𝑞(𝑡)𝑑𝑡
𝑡

0
) ; 

 

So that. 

 

 𝑦′ = {𝑥′ −
1

2
∙ 𝑥 ∙ 𝑞(𝑡)} ∙ exp (−

1

2
∫ 𝑞(𝑡)𝑑𝑡
𝑡

0
) ; 

 

 𝑦′′ = {𝑥′′ − 𝑥′ ∙ 𝑞(𝑡) +
1

2
∙ 𝑥 ∙ [

1

2
∙ 𝑞(𝑡)2 − 𝑞′(𝑡)]} ∙ exp (−

1

2
∫ 𝑞(𝑡)𝑑𝑡
𝑡

0
) ; 

 

Substituting we get. 

 

 𝑥′′ + 𝑝(𝑡) ∙ 𝑥 = 0   𝑤ℎ𝑒𝑟𝑒   𝑝(𝑡) = 𝑝∗(𝑡) −
1

4
∙ 𝑞(𝑡)2 −

1

2
∙ 𝑞′(𝑡) ; 

 

In order to reduce the system to a first order one we need some further transformations. 

 

 𝑥 = 𝑥1   𝑎𝑛𝑑   𝑥
′ = 𝑥2; 

 

Hence, we reduce the order of the differential equation but we increase the number of unknowns. 

 

 {

𝑥1
′ = 𝑥2

𝑥2
′ = −𝑝(𝑡) ∙ 𝑥1

⇒ 𝑧′ = 𝐴𝑧   𝑤𝑖𝑡ℎ   𝑧 = (
𝑥1
𝑥2
) ;  𝐴 = [

0 1
−𝑝(𝑡) 1

]  ; 
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Let’s choose the fundamental system 𝑋(𝑡) = (𝑥1, 𝑥2) such that. 

 

𝑥11(0) = 𝑥22(0) = 1 ; 

 

𝑥21(0) = 𝑥12(0) = 0 ; 

 

Hence the determinant of the initial fundamental system of solutions is unitary. 

 

 𝑑𝑒𝑡[𝑋(0)] = 1 ; 

 

Since the trace of the matrix of coefficients vanishes and the initial conditions determinant is one then also 

the determinant of the Monodromy matrix has to be unitary. 

 

 𝑡𝑟(𝐴) = 0 ⇒ 𝑑𝑒𝑡(𝐶) = 𝑑𝑒𝑡[𝑋(0)] ∙ 𝑒𝑥𝑝(𝑡𝑟(𝐴)) = 1 ; 

 

Notice that in all Hamiltonian systems the last relation holds. 

 

Before proceeding let’s find out the characteristic roots of the Monodromy matrix. 

 

 𝑑𝑒𝑡[𝐶 − 𝜆 ∙ 𝐼] = 0⇔ 𝜆2 − 𝜆 ∙ 𝑡𝑟(𝐶) + 𝑑𝑒𝑡(𝐶) = 0 ; 

 

Since each component of the solutions can be written in the form 𝑥𝑖𝑘(𝑡 + 𝑇) = ∑ 𝑐𝑗𝑘 ∙ 𝑥𝑖,𝑗(𝑡)
𝑛=2
𝑗=1 , then 

exploiting the assumed particular initial conditions to 𝑥𝑖𝑘(𝑇) = ∑ 𝑐𝑗𝑘 ∙ 𝑥𝑖,𝑗(0)
𝑛=2
𝑗=1 = ∑ 𝑐𝑗𝑘

𝑛=2
𝑗=1  

 

 2𝐵 = 𝑡𝑟(𝐶) = 𝑐11 + 𝑐22 = 𝑥11(𝑇) + 𝑥22(𝑇) ; 

 

Finally, we get the following quadratic form. 

 

 𝜆2 − 2𝜆 ∙ 𝐵 + 1 = 0⇔ 𝜆1,2 = 𝐵 ± √𝐵
2 − 1 ; 

 

Hence we need to study the sign of the determinant 𝐵2 − 1. 

 

 𝑖𝑓 𝐵2 < 1⇒−1 < 𝐵 < 1⇒ |𝜆1,2| = |𝐵 ± 𝑖√1 − 𝐵
2| < 1 ⇒ 𝑥(𝑡)  𝑏𝑜𝑢𝑛𝑑𝑒𝑑 ; 

 

 𝑖𝑓 𝐵2 = 1⇒ 𝐵 = ±1⇒ |𝜆1,2| = 1 ⇒ 𝑥(𝑡)  𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑜𝑓 (𝑇   𝑜𝑟   2𝑇) ; 

 

 𝑖𝑓 𝐵2 > 1⇒ 𝐵 < −1;𝐵 > 1⇒ |𝜆1,2| = |𝐵 ± √𝐵
2 − 1| > 1 ⇒ 𝑥(𝑡)  𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑 ; 

 

Hence we can conclude that stable and unstable solutions are separated by two particular situations that 

grant periodic solutions. In order to find out more precisely where these regions are we need further 

considerations. 
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Before we want to mention the results obtained by Liapunov concerning the stability thresholds of for the 

solution. 

 𝑖𝑓 𝑝(𝑡) ≤ 0 ⇒ 0 < 𝜆1 < 1 < 𝜆2 ⇒ 𝑥(𝑡)  𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑 ; 

 

 𝑖𝑓 𝑝(𝑡) > 0   𝑎𝑛𝑑   ∫ 𝑝(𝑡)𝑑𝑡
𝑇

0
≤ 4 𝑇⁄ ⇒ 𝜆1,2 = exp(±𝑖휃)    𝑤𝑖𝑡ℎ   휃 > 0 ⇒ 𝑥(𝑡)  𝑏𝑜𝑢𝑛𝑑𝑒𝑑 ; 

 

Then pass exploiting the relation 𝜆 = exp (𝜇 ∙ 𝑇) in order to define the determinant and the trace of the 

Monodromy matrix. 

 

 det(𝐶) = 𝜆1 ∙ 𝜆2 = 1⇒ 𝜇1 + 𝜇2 = 0⇒ 𝜇1 = −𝜇2 ; 

 

 tr(𝐶) = 2𝐵 = 𝜆1 + 𝜆2⇒ exp(𝜇1 ∙ 𝑇) + exp(𝜇2 ∙ 𝑇) = exp(𝜇1 ∙ 𝑇) + exp(−𝜇1 ∙ 𝑇) ; 

 

Exploiting the exponential definition of the hyperbolic cosine function, we get. 

 

 cosh(𝛼) =
1

2
∙ (𝑒𝛼 + 𝑒−𝛼) ⇒ 𝐵 = cosh (𝜇1 ∙ 𝑇) ; 

 

Let’s analyse first the case −1 < 𝐵 < 1. Assuming 𝐵 = cos (𝜎 ∙ 𝑇∗) with 0 < 𝜎 ∙ 𝑇∗ < 𝜋 we get. 

 

 𝜆1,2 = 𝐵 ± √𝐵
2 − 1 = cos(𝜎 ∙ 𝑇∗) ± 𝑖 ∙ sin(𝜎 ∙ 𝑇∗) = exp (±𝑖 ∙ 𝜎𝑇∗) ; 

 

Hence, we need to consider a complex amplitude and take in account both the complex conjugate terms to 

get real pseudo-periodic solutions, which consequently are stable. 

 

 𝑥(𝑡) = exp(±𝑖 ∙ 𝜎𝑇∗) ∙ [𝑞(𝑡) ± 𝑖 ∙ 𝑟(𝑡)] + 𝑐. 𝑐. ; 

 

Notice that the pseud-period of the solution is 𝑇∗ = 2𝜋 𝜎⁄ , hence as it becomes equal to a multiple of the 

period of the forcing periodic term, we get that. 

 

 𝑇∗ = 𝑛𝑇 ⇒ 𝜎 = 2𝜋 𝑛𝑇⁄    𝑤𝑖𝑡ℎ 𝑛 = 1,2   (𝑓𝑜𝑟 𝜆 = ±1) ; 

 

Further, since we have 𝐵 ≠ ±1 it follows that. 

 

 cos(𝜎 ∙ 𝑇) ≠ ±1⇔ 𝜎 ∙ 𝑇 ≠ 𝑚𝜋   𝑤𝑖𝑡ℎ 𝑚 = 0,1,2 ⇒ 𝑇∗ ≠ 2𝑇 𝑚⁄  ; 

 

Hence at resonance a 𝑘 multiple of 𝑇∗ has to be equal or twice the forcing one 𝑇. 

 

 𝑘𝑇 = 𝑘 ∙ 2𝜋 𝜎⁄ = 𝑛𝑇⇔ 𝜎 =
𝑛

𝑘
∙
2𝜋

𝑇
 ; 

 

The second case refers to 𝐵 > 1. 

 

 𝜆1,2 = 𝐵 ± √𝐵
2 − 1⇒ 𝜆1 > 1 > 𝜆2 > 0 ; 
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Since det(𝐶) = 𝜆1 ∙ 𝜆2 = 1⇒ 𝜆2 = 1 𝜆1⁄  hence being 𝜇1 = −𝜇2 we get an unstable solution due to the 

explosion of the first exponential term. 

 

 𝑥(𝑡) = 𝐶1 ∙ exp(𝜇1 ∙ 𝑡) ∙ 𝑝1(𝑡) + 𝐶2 ∙ exp(−𝜇1 ∙ 𝑡) ∙ 𝑝2(𝑡); 

 

The third when 𝐵 = 1⇒ 𝜆1,2 = 1. Hence we get an unstable solutions due to an harmonic instability of 

period 𝑇. 

 

 𝑥(𝑡) = (𝐶1 + 𝐶2 ∙ 𝑡) ∙ p1(𝑡) + 𝐶2 ∙ p2(𝑡) ; 

 

The fourth case is characterised by 𝐵 < −1. Hence assuming a periodic solution of period 2𝑇 we get. 

 

 𝜆1,2 = 𝐵 ± √𝐵
2 − 1⇒ 𝜆1 < −1 < 𝜆2 < 0⇒ 𝜇1 = 𝜑 + 𝑖 ∙

𝜋

𝑇
 ; 

 

Consequently the first exponential diverges in time. 

 

 𝑥(𝑡) = 𝐶1 ∙ exp(𝜑𝑡) ∙ p1(𝑡) ∙ exp (𝑖 ∙
𝜋

𝑇
𝑡) + 𝐶2 ∙ exp(−𝜑𝑡) ∙ p2(𝑡) ∙ exp (−𝑖 ∙

𝜋

𝑇
𝑡) ; 

 

Finally the fifth refers to the case 𝐵 = −1⇒ 𝜆1,2 = −1. We get an unstable solution of period 2𝑇, hence we 

can call it subharmonic resonance since the structural period is an higher multiple of the forcing term. 

 

 𝑥(𝑡) = (𝐶1 + 𝐶2 ∙ 𝑡) ∙ p1(𝑡) ∙ exp (𝑖 ∙
𝜋

𝑇
𝑡) + 𝐶2 ∙ p2(𝑡) ∙ exp (−𝑖 ∙

𝜋

𝑇
𝑡) ; 

 
6.2 Modal projection of aeroelastic equations of motion 

 

We want to apply the Floquet Theory to the complete aeroleastic model of suspension bridges treated in the 

previous chapter. The goal will be to determine which structural parameters play an important role in the 

stability of vibrations. 

 

First, we need to consider the complete system of non-linear coupled equations in the dimensionless format. 

 

{
  
 

  
 
𝑑2�̃�𝑑

𝑑𝜏2
+ �̃�𝑤𝑤 ∙

𝑑�̃�𝑑

𝑑𝜏
+ �̃�𝑤𝜗 ∙

𝑑�̃�𝑑

𝑑𝜏
+ 𝜇2 ∙ �̃�𝑑

′𝑣 − �̃�𝑑
′′ + 𝜆𝐿

2ℎ̃𝑤 + 2�̃�𝜗𝜗 ∙ 휃𝑑 +

−𝜆𝑄
2 ∙ [ℎ̃𝑤 ∙ �̃�𝑑

′′ + ℎ̃𝜗 ∙ �̃�𝑑
′′
−
1

2
(ℎ̃𝑤′𝑤′ + ℎ̃𝜗′𝜗′)] +

−𝜆𝐶
2 ∙ [

1

2
(ℎ̃𝑤′𝑤′ + ℎ̃𝜗′𝜗′) ∙ �̃�𝑑

′′ + ℎ̃𝑤′𝜗′ ∙ �̃�𝑑
′′
] }

  
 

  
 

= �̃�(𝜉, 𝜏) ;  
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{
  
 

  
 𝐽�̃� ∙

𝑑2�̃�𝑑

𝑑𝑡2
+ �̃�𝜗𝜗 ∙

𝑑�̃�𝑑

𝑑𝜏
+ �̃�𝜗𝑤 ∙

𝑑�̃�𝑑

𝑑𝜏
+
𝛽2

𝜒2
∙ �̃�𝑑

′𝑣
− (1 + 𝛽2) ∙ �̃�𝑑

′′
+ 𝜆𝐿

2ℎ̃𝜗 − �̃�𝜗𝜗 ∙ 휃𝑑 +

−𝜆𝑄
2 ∙ [ℎ̃𝜗 ∙ �̃�𝑑

′′ + ℎ̃𝑤 ∙ �̃�𝑑
′′
− ℎ̃𝑤′𝜗′] +

−𝜆𝐶
2 ∙ [ℎ̃𝑤′𝜗′ ∙ �̃�𝑑

′′ +
1

2
(ℎ̃𝑤′𝑤′ + ℎ̃𝜗′𝜗′) ∙ �̃�𝑑

′′
] }

  
 

  
 

= �̃�(𝜉, 𝜏) ; 

 

Notice that we still have right hand side terms since in the following we need to introduce an additional 

external forcing term. 

 

Next, we need to perform a modal expansion of both the vertical and the torsional vibrations. 

 

 �̃�𝑑(𝜉, 𝜏) = ∑ 𝑊𝑛(𝜉) ∙ 𝑧𝑛(𝜏)
∞
𝑛=1    𝑤𝑖𝑡ℎ  𝑛 ∈ ℵ\{0} ; 

 

�̃�𝑑(𝜉, 𝜏) = ∑ 𝛩𝑚(𝜉) ∙ 𝛾𝑚(𝜏)
∞
𝑚=1    𝑤𝑖𝑡ℎ  𝑚 ∈ ℵ\{0} ; 

 

Notice that we don’t need to specify the time function hence it would be determined numerically. 

 

However, in order to get the equations of motion of an equivalent 2-dof pendulum we need to avoid the 

direct dependence on the spatial coordinate. Hence we project the equations of motion in the modal space 

simply multiplying the flexural and the torsional one by the respective modal shape and then integrate over 

the unitary domain of the dimensionless span. 

 

The flexural vibrations. 

 

{
  
 

  
 𝑀𝑤,𝑛 ∙ �̈�𝑛 + 𝐶𝑤,𝑛 ∙ �̇�𝑛 + 𝐶𝑤𝜗,𝑛𝑚 ∙ �̇�𝑚 + 𝐾𝑤,𝑛

(𝐿)
∙ 𝑧𝑛 + 𝐾𝑤𝜗,𝑛𝑚

(𝐿)
∙ 𝛾𝑚 +

+𝐾𝑤,𝑛
(𝑄)
∙ 𝑧𝑛

2 + 𝐾𝑤𝜗,𝑛𝑚
(𝑄)

∙ 𝛾𝑚
2 +

+𝐾𝑤,𝑛
(𝐶)
∙ 𝑧𝑛

3 + 𝐾𝑤𝜗,𝑛𝑚
(𝐶)

∙ 𝑧𝑛 ∙ 𝛾𝑚
2

}
  
 

  
 

= 𝛤𝑤,𝑛 ;  

 

Where.  

 

 𝑀𝑤,𝑛 = ∫ 𝑊𝑛
2(𝜉)𝑑𝜉

1

0
 ; 

 

 𝐶𝑤,𝑛 = �̃�𝑤𝑤 ∙ 𝑀𝑤,𝑛 ; 

 

 𝐶𝑤𝜗,𝑛𝑚 = �̃�𝑤𝜗 ∙ ℎ̃𝑊𝑛,𝛩𝑚 ; 

 

 𝐾𝑤,𝑛
(𝐿)
= ∫ 𝑊𝑛(𝜉) ∙ [𝜇

2 ∙ 𝑊𝑛
′𝑣(𝜉) −𝑊𝑛

′′(𝜉)]𝑑𝜉 + 𝜆𝐿
2 ∙ ℎ̃𝑊𝑛

21

0
 ; 

 

 𝐾𝑤𝜗,𝑛𝑚
(𝐿)

= 2�̃�𝜗𝜗 ∙ ℎ̃𝑊𝑛,𝛩𝑚 ; 

 

 𝐾𝑤,𝑛
(𝑄)
= −𝜆𝑄

2 ∙ ℎ̃𝑊𝑛 ∙ {∫ 𝑊𝑛(𝜉) ∙ 𝑊𝑛
′′(𝜉)𝑑𝜉

1

0
−
1

2
∙ ℎ̃𝑊𝑛′2} =

3

2
∙ 𝜆𝑄

2 ∙ ℎ̃𝑊𝑛 ∙ ℎ̃𝑊𝑛′2 ; ; 
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 𝐾𝑤𝜗,𝑛𝑚
(𝑄)

= −𝜆𝑄
2 ∙ {

ℎ̃𝛩𝑚 ∙ ∫ 𝑊𝑛(𝜉) ∙ 𝛩𝑚
′′(𝜉)𝑑𝜉

1

0
+

−
1

2
∙ ℎ̃𝑊𝑛 ∙ ℎ̃𝛩𝑚′2

} = 𝜆𝑄
2 ∙ {ℎ̃𝛩𝑚 ∙ ℎ̃𝑊𝑛′ ,𝛩𝑚′ +

1

2
∙ ℎ̃𝑊𝑛 ∙ ℎ̃𝛩𝑚′2} ;  

 

 𝐾𝑤,𝑛
(𝐶)
= −

1

2
∙ 𝜆𝐶

2 ∙ ℎ̃𝑊𝑛′2 ∙ ∫ 𝑊𝑛(𝜉) ∙ 𝑊𝑛
′′(𝜉)𝑑𝜉

1

0
=
1

2
∙ 𝜆𝐶

2 ∙ (ℎ̃𝑊𝑛′2)
2

 ; 

 

 𝐾𝑤𝜗,𝑛𝑚
(𝐶)

= −𝜆𝐶
2 ∙ {

1

2
∙ ℎ̃𝛩𝑚′2 ∙ ∫ 𝑊𝑛(𝜉) ∙ 𝑊𝑛

′′(𝜉)𝑑𝜉
1

0
+

+ℎ̃𝑊𝑛′ ,𝛩𝑚′ ∙ ∫ 𝑊𝑛(𝜉) ∙ 𝛩𝑚
′′(𝜉)𝑑𝜉

1

0

} = 𝜆𝐶
2 ∙ {

1

2
∙ ℎ̃𝛩𝑚′2 ∙ ℎ̃𝑊𝑛′2 + (ℎ̃𝑊𝑛′,𝛩𝑚′ )

2
} ; 

 

 𝛤𝑤,𝑛 = ∫ 𝑊𝑛(𝜉) ∙ �̃�(𝜉, 𝜏)𝑑𝜉
1

0
 

 

We remember that all the operator ℎ̃ simply perform the integration of the product between the term at the 

subscript, along the dimensionless span length. 

 

Moreover, the torsional ones.  

  

 

{
  
 

  
 𝐽𝜗,𝑚 ∙ �̈�𝑚 + 𝐶𝜗,𝑚 ∙ �̇�𝑚 + 𝐶𝜗𝑤,𝑚𝑛 ∙ �̇�𝑛 + 𝐾𝜗,𝑚

(𝐿)
∙ 𝛾𝑚 +

+𝐾𝜗𝑤,𝑚𝑛
(𝑄)

∙ 𝛾𝑚 ∙ 𝑧𝑛 +

+𝐾𝜗,𝑚
(𝐶)
∙ 𝛾𝑚

3 + 𝐾𝜗𝑤,𝑚𝑛
(𝐶)

∙ 𝛾𝑚 ∙ 𝑧𝑛
2

}
  
 

  
 

= 𝛤𝜗,𝑚(𝜉, 𝜏) ; 

 

Where. 

  

 𝑀𝜗,𝑚 = ∫ 𝛩𝑚
2(𝜉)𝑑𝜉

1

0
⇒ 𝐽𝜗,𝑚 = 𝐽�̃� ∙ 𝑀𝜗,𝑚 ;  

 

 𝐶𝜗,𝑚 = �̃�𝜗𝜗 ∙ 𝑀𝜗,𝑚 ; 

 

 𝐶𝜗𝑤,𝑚𝑛 = �̃�𝜗𝑤 ∙ ℎ̃𝑊𝑛,𝛩𝑚 ; 

 

𝐾𝜗,𝑚
(𝐿)
= ∫ 𝛩𝑚(𝜉) ∙ [

𝛽2

𝜒2
∙ 𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2) ∙ 𝛩𝑚
′′(𝜉)] 𝑑𝜉 + 𝜆𝐿

2 ∙ ℎ̃𝛩𝑚
21

0
− �̃�𝜗𝜗 ∙ 𝑀𝜗,𝑚 ; 

 

 𝐾𝜗𝑤,𝑚𝑛
(𝑄)

= −𝜆𝑄
2 ∙

{
 
 

 
 
ℎ̃𝛩𝑚 ∙ (

∫ 𝛩𝑚(𝜉) ∙ 𝑊𝑛
′′(𝜉)𝑑𝜉

1

0
+

−ℎ̃𝑊𝑛′,𝛩𝑚′

)+

+ℎ̃𝑊𝑛 ∙ ∫ 𝛩𝑚(𝜉) ∙ 𝛩𝑚
′′(𝜉)𝑑𝜉

1

0 }
 
 

 
 

= 𝜆𝑄
2 ∙ {

2 ∙ ℎ̃𝛩𝑚 ∙ ℎ̃𝑊𝑛′,𝛩𝑚′ +

+ℎ̃𝑊𝑛 ∙ ℎ̃𝛩𝑚′2

} ; 

 

 𝐾𝜗,𝑚
(𝐶)
= −𝜆𝐶

2 ∙ ℎ̃𝛩𝑚′2 ∙ ∫ 𝛩𝑚(𝜉) ∙ 𝛩𝑚
′′(𝜉)𝑑𝜉

1

0
= 𝜆𝐶

2 ∙ (ℎ̃𝛩𝑚′2)
2
 ; 
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 𝐾𝜗𝑤,𝑚𝑛
(𝐶)

= −𝜆𝐶
2 ∙ {

ℎ̃𝑊𝑛′,𝛩𝑚′ ∙ ∫ 𝛩𝑚(𝜉) ∙ 𝑊𝑛
′′(𝜉)𝑑𝜉

1

0
+

+
1

2
∙ ℎ̃𝑊𝑛′2 ∙ ∫ 𝛩𝑚(𝜉) ∙ 𝛩𝑚

′′(𝜉)𝑑𝜉
1

0

} = 𝜆𝐶
2 ∙ {(ℎ̃𝑊𝑛′ ,𝛩𝑚′ )

2
+
1

2
∙ ℎ̃𝑊𝑛′2 ∙ ℎ̃𝛩𝑚′2} ;  

 

 𝛤𝜗,𝑚 = ∫ 𝛩𝑚(𝜉) ∙ �̃�(𝜉, 𝜏)𝑑𝜉
1

0
 

 

Notice that in the modal torsional equation of motion we are not able to define a second order term that is 

independent from the flexural component. This is an important difference with respect to the vertical 

counterpart and is due to the fact that rotations of the deck introduces an asymmetric response of the two 

main cables, but this response depend strongly on the flexural amplitude of vibration that affect the stiffness 

of the cables system. This property of the system will be fundamental in the following in order to study the 

stability of vibrations. 

 
6.3 Vortex shedding modelling 

 

The forcing terms 𝛤 represent the modal counter part of external unsteady forces. For the complete 

aeroelastic model, they can represent any unsteady aerodynamic action such as gusts, buffeting or vortex 

shedding. 

 

An accurate modelling of unsteady forces coming from the detachment of vortices from the bridge’s deck is 

a very complex procedure. 

 

Vortex shedding is perhaps one of the most studied phenomena of fluid mechanics, especially its interaction 

with circular cylinders 

 

When a vortex is formed on one side of the immersed body, it immediately increases flow velocity on the 

opposite side, which results, according to Bernoulli theory, in a pressure reduction 

 

The process of vortex shedding can only be explained if the effect of viscosity is considered. In fact, only a 

viscous fluid will satisfy the no-slip condition of its particles on the surface of a body immersed in the flow-. 

Even if viscosity is very small this condition will hold but its influence on the flow regime will be confined to 

a small region, which is the boundary layer along the body. Within this layer the velocity of the fluid changes 

from zero on the surface to the free-stream velocity of the flow. 

 

 
Figure 6.1_ Boundary layer on a flat plate. 
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While the free stream is pulling the boundary layer forward, the skin friction at the solid wall is retarding it. 

At surfaces with high curvature, there can also be an adverse pressure gradient adding contributions to the 

retarding action, which may cause the flow to be interrupted entirely and the boundary layer may detach 

from the wall, called separation. Notice that streamlined bodies can still experience separation if the angle 

of attack between the free stream and the surface is large enough. 

 

It’s clear from the physical understanding of the separation process, that viscosity and free stream velocity 

have an important influence and can be collected in the Reynolds number. Its expresses the ratio between 

the inertia and the friction forces acting on the fluid. 

 

 𝑅𝑒 ∶=
𝜌𝑈𝐷

𝜇
=
𝑈𝐷

𝜈
 ; 

 

Considering the flow past a circular cylinder, a great variety of changes in the nature of the flow occur with 

increasing Reynolds number. 

 

 
Figure 6.2_ Reynolds number effect on trailing vortex street. 

  

 

At very low Reynold number, say below 0.5, the inertia effects are negligible and the flow patters is very 

similar to that for laminar flow, the pressure recovery being nearly complete. This means, that the pressure 

drag is also negligible and effective drag on the body is entirely due to skin friction. 

 

At increased Re, approximately between 2 and 30, separation of the boundary layer occurs at two points at 

the back of the cylinder. There symmetrical eddies are formed which rotates in opposite direction. They 

remain fixed and the flow closes behind them. 

 

Further increase of the Reynolds number elongate the fixed vortices, which then begins to oscillate until they 

break away at a Re of around 90.  
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The breaking away occurs alternatively from one and the other side, then the eddies travel downstream. This 

process is intensified with further increase of Re while the shedding of vortices from alternate sides of the 

cylinder is regular. This leads to formation of the characteristic wake which is known as Von Karman vortex 

street. The eddying motion is periodic both in space and time. The pressure drag at this stage is already larger 

than the profile drag. Having passed a transition range where the regularity of shedding decreases, above a 

Re of 300 vortex shedding becomes irregular. However, there still is a predominant frequency but the 

amplitude appears to be random. Notice that the critical regime can be anticipated as the roughness of the 

body surface increases. 

 

At very high level of Reynolds number from about 3 ∙ 105 the separation point moves rearward on the 

cylinder, consequently the drag coefficient decreases appreciably. The flow in the wake becomes so turbulent 

that the vortex street pattern is no longer recognisable. 

 

 
 

 
Figure 6.3_ Reynolds number effect on drag coefficient. 

  

Hence it’s clear that the process of vortex shedding and its dependence on the Reynolds number is highly 

complex, which makes analytical as well as numerical treatment very challenging. 

 

Since vortex shedding process is able to exert a fluctuating force on the body, this can be very interesting 

when studying the body oscillations. To characterise this process, Strouhal defined a dimensionless shedding 

frequency, called Strouhal number. 

 

 𝑆𝑡 = 𝑓 ∙ 𝐷 𝑈⁄  ; 
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Where D is the generic cross flow dimension of the immersed body. For circular cylinders this formula applies 

to 250 < 𝑅𝑒 < 2 ∙ 105. As we know air has a kinematic viscosity at 20°C is about 𝜈 = 1.5 ∙ 10−5   𝑚2/𝑠, 

hence for suspension bridges taking the sectional height of the deck as reference cross flow dimension we 

are sure to be in that range of Reynolds number for any wind speed, being 𝐷 = 3 ÷ 8   𝑚. 

 

 
Figure 6.4_ Reynolds number effect on Strouhal number. 

  

After Strouhal’s observations, subsequent investigations found the Strouhal number to be highly dependent 

on the cross-sectional geometry of the body and accordingly focused on determining so called universal 

Strouhal numbers, which would be independent of the geometry. The most widely used is that proposed by 

Roshko [46]. 

 

The most important physical parameter of a two-dimensional body exhibiting vortex-induced oscillations is 

the size and shape of its after-body, which is the part of the cross-section downstream of the separation 

points. For vortex-induced or galloping type excitation the pressure loading occurs principally on the after-

body surface. Accordingly, body with a very short after-body, e.g. a semi-circular cylinder with the flat face 

downstream, will only be weakly excited. On the contrary, the same cylinder mounted the other way round 

can experience considerable oscillations under the same conditions. 

 

Deniz and Staubli [47] compare results obtained from investigations on the effect of body geometry on the 

vortex shedding process. They notice sudden jumps of the Strouhal number occurring at elongation ratios of 

approximately 𝐵 𝐷⁄ = 2 ÷ 3 and 𝐵 𝐷⁄ = 4 ÷ 7, which mark the limits of three different flow regimes due to 

reattachment of the separated flow. The first class refers to leading-edge vortex shedding, the second to 

impinging leading edge vortices and the third to trailing-edge vortex shedding. 
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Figure 6.5_ Sectional aspect ratio effect on Strouhal number. 

Hence concerning large structures, like suspension bridges, where the cross sectional aspect ratio ranges 

between 𝐵 𝐷⁄ = 4 ÷ 12 [31-40], we can state that we fall in the Third class of trailing edge eddies. 

 

Notice that also the angle of attack plays a fundamental role in the separation flow, seems to render universal 

Strouhal number inapplicable. 

 

Further the curvature of the body surface is very important since it has the same effect of a non-null angle of 

attack. Civil engineering structures have generally bluff body sections characterised by sharp edges that are 

preferential separation points. Since those points are generally fixed consequently the vortex-shedding 

phenomenon is not actually influenced by Reynolds number. 

 

The Strouhal number describe the process of vortex-shedding and depends on the geometry and the 

Reynolds number. The frequency of the shedding is also that of the alternating forces acting transversely to 

the flow on the body whereas the forces in flow direction have a frequency twice. Notice that the latter force 

component would be useless in the proposed 2-dof model of the suspension bridge since we are neglecting 

all drag component coming from the wind action.  

  

 𝐹𝐿 =
1

2
∙ 𝜌𝑎 ∙ 𝐵 ∙ 𝑈

2 ∙ 𝐶𝐿 ∙ sin (𝜔𝑆𝑡 ∙ 𝑡) ; 

 

 𝜔𝑆𝑡 = 2𝜋 ∙ 𝑆𝑡 ∙ 𝑈 𝐷⁄  ; 

 

Where we have introduced the lift coefficient being the actual transversal force associate to upward or 

downward motion of the immersed body. Further, notice that we chose as reference surface the upper deck 

face where resulting lift forces directly acts, and then normalised it to get the same quantity per unit length. 

 

 𝑆𝑑𝑒𝑐𝑘 = 𝐵 ∙ 𝑙 ⇒ 𝑆𝑟𝑒𝑓 = 𝐵 = 2 ∙ 𝑏 ; 

 

It should be noted, that this only describes the principal oscillating forces, since the time-history actually 

applied on the body is much more complex with a rich frequency spectrum. 
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If the structure id elastically mounted the periodic force exerted by the process of vortex-shedding gives rise 

to oscillations. These will also influence the flow pattern and a complex interaction takes place. Further if the 

structure is considerably deformable under the pressure forces it will not only act as a rigid body, giving rise 

to aeroelastic conditions. 

 

It’s obvious that considerable excitation of the body only occurs at the shedding frequencies close to the 

natural frequency of the body in the across-flow direction. However, it’s important to note, that even in the 

case of resonance the amplitude always remains limited, as shown experimentally in studies of oscillating 

cylinders. Vortex-induced vibrations are thus a response a response problem opposed to Flutter being a 

stability problem. The aim is either to predict the frequency of the aerodynamic forces and then to design 

the structure for the caused oscillations or to make sure the characteristics of the structures are such that it 

will not be excited. In limit state terminology this type of oscillations can be considered as serviceability 

problem because the levels of vibrations need to be limited to ensure comfort of the users and to avoid 

fatigue problem in the long term. 

 

By experimental investigations, it had soon realised that the wake behind a bluff body is altered if the body 

exerts an oscillation. The main finding was, that the oscillations alter the vortex pattern in that spacing 

between vortices in the wake changes. Subsequent investigations then studied elastically mounted bodies, 

mainly cylinders. An important phenomenon observed in those occurs at shedding frequencies close to 

resonance. Here the shedding process becomes controlled by the natural frequency of the structure even if 

variations in the flow velocity tend to shift it away. This is commonly referred to as lock-in phenomenon. 

 

 
Figure 6.6_ Strouhal model and lock-in phenomenon. 

While the influence of the frequency of oscillation on vortex shedding process is well investigated, the 

influence of the amplitude is less well known. Visualisation of the flow field around a transversally oscillating 

cylinder by Griffin and Ramberg [48] shows well organised shedding for amplitude of 0.5 ∙ 𝐷 and an oscillation 

frequency near the natural vortex-shedding frequency. An increase in amplitude to 𝐷 at the same frequency 

of oscillation leads to a disorganisation of the wake. This can be thought as a self-limitation of the vortex-

induced excitation. Generally we can take as 0.2 ∙ 𝐷 the reference maximum admissible amplitude of 

oscillation induced by vortex detaching from circular cylinders. 

 

Another important parameter affecting the vortex-shedding phenomenon is the mass-damping ratio, which 

generally is well represented by the Scruton number. 

 

 𝑆𝑐 = 4𝜋 ∙ 𝑚 ∙ 𝜉𝑡𝑜𝑡 𝜌𝑎 ∙ 𝐷
2⁄  ; 
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Notice that we need to consider both the structural and the aerodynamic damping contributions. 

Experimental investigations show that as the Scruton number increases the lock-in region moves towards 

lower flow velocities and it becomes thinner. Notice that generally it ranges between 𝑈 𝑈𝑆𝑡⁄ = 0.8 ÷ 1.5. 

However, more important is its effect on the maximum amplitude of oscillation induced by vortex-shedding. 

In fact, is possible to limit the oscillations simply increasing Sc by means of proper damping devices, like a 

tuned mass damper (TMD). 

Further, it influences the flow regime, in fact experimental investigations show that can be detected three 

main regimes. The first where vibrations are forced mainly by the random nature of vortex-shedding, the 

second is a transition zone where there is a considerable increase of the root mean square response and 

finally the third characterised by self-sustained vibrations due to lock-in phenomenon. 

 

By last, we want to mention the fact that the turbulence intensity of the flow strongly influence the 

oscillations of the body. In fact, mainly in aeroelastic phenomena turbulence is able to reduce very much the 

correlation of wind action between different points of the structure, which vibrations consequently 

decreases in amplitude. 

 

 
Figure 6.7_ Scrouton number effect on response of cylinder. 

 

In order to define completely the transversal lift force generated by the vortex-shedding phenomenon we 

give some numerical results [49] for generic bridge cross sections. Notice that an average value of the 

Strouhal number for circular cylinder is around 0.18. 
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Figure 6.8_ Drag, Lift and Strouhal parameters for different cross sections. 

 
6.4 Stability analysis of the complete aeroelastic model 
 

Now we are ready to define the unsteady forcing terms comparing in the right hand-side of the modal 

equations of motion of the complete aroelastic model for the suspension bridge. 

 

Before proceeding let’s recall the fact that concerning suspension bridge’s deck, thanks to the high cross 

sectional aspect ratio 𝐵 𝐷⁄  the eddies detachment  phenomenon falls in the third class, that of trailing-edge 

vortex shedding. Hence, the fact that the periodic resultant forces arising are not applied in the centre of 

stiffness of the deck section, means that we can reduce them to a vertical force and a torque. Consequently, 

vortex-shedding will perturb the structural systems both with a flexural and a torsional component. 

But due to the fact that the structural model is not linear and then the centre of stiffness is a priori unknown 

we need to refer to the centre of mass that thanks to the symmetry of the section is well known. 

 

𝛤𝑤,𝑛 = ∫ 𝑊𝑛(𝜉) ∙ �̃�(𝜉, 𝜏)𝑑𝜉
1

0
= ∫ 𝑊𝑛(𝜉) ∙ 𝐹𝐿 ∙ 𝑙

2 2𝐻𝑓⁄ 𝑑𝜉
1

0
= 𝛤0 ∙ ℎ̃𝑊𝑛 ∙ sin (�̃�𝑆𝑡 ∙ 𝜏) ; 

 

𝛤𝜗,𝑚 = ∫ 𝛩𝑚(𝜉) ∙ �̃�(𝜉, 𝜏)𝑑𝜉
1

0
= ∫ 𝛩𝑚(𝜉) ∙ 𝐹𝐿𝑏 ∙ 𝑙

2 2𝐻𝑓𝑏⁄ 𝑑𝜉
1

0
= 𝛤0 ∙ ℎ̃𝛩𝑚 ∙ sin (�̃�𝑆𝑡 ∙ 𝜏) ; 

 

Where the forcing term can be written in function of the dimensionless wind speed. 

 

 𝛤0 =
1

2
∙ 𝜌𝑎 ∙ 𝐵 ∙ 𝑈

2 ∙ 𝐶𝐿 ∙ 𝑙
2 2𝐻𝑓⁄ = �̃� ∙ �̃�𝐿 ∙ 𝐽�̃� ∙ �̃�𝜗,𝑚

2
∙ �̃�2 ; 

 

 



310 
 

Once again we need to introduce few new parameters easily available from literature [31-40], such as the 

deck sectional aspect ratio, the dimensionless deck’s height and the lift coefficient normalised with respect 

to the flat plate condition. 

 

 �̃� = 𝐵 𝐷⁄ = 2𝑏 𝐷⁄ = 4 ÷ 12 ; 

 

 �̃� = 𝐵 𝑓⁄ = 0.17 ÷ 0.51 ; 

 

 �̃�𝐿 = 𝐶𝐿(휃𝑑) 2𝜋⁄  ; 

 

In order to fix these values we will take the average value for �̃� ≅ 7 and �̃� ≅ 0.32 , whilst since up to now 

we dealt with flat plate limit condition let’s assume for sake of simplicity �̃�𝐿 = 1. Notice that the actual lift 

coefficient depends upon the dimensional deck torsional configuration only since we assume the wind 

blowing aligned with the chord of the deck section at rest.  

 

Furthermore, we need to define the dimensionless counterpart of the Strouhal circular frequency and critical 

speed. 

 

 �̃�𝑆𝑡 = 𝜔𝑆𝑡 ∙ 𝑙√
(𝑚𝑑+2𝑚𝑐)

2𝐻
= 2𝜋 ∙ 𝑆𝑡 ∙ 𝑈 𝐷⁄ ∙ 𝑙√

(𝑚𝑑+2𝑚𝑐)

2𝐻
= 𝜋 ∙ 𝑆𝑡 ∙ (�̃� √�̃�𝑎⁄ ) ∙ √𝐽�̃� ∙ �̃�𝜗,𝑚 ∙ �̃� ; 

 

 �̃�𝑆𝑡 = �̃�𝑤⇔ �̃�𝑆𝑡 = �̃�𝑤 (𝜋 ∙ 𝑆𝑡 ∙ (�̃� √�̃�𝑎⁄ ) ∙ √𝐽�̃� ∙ �̃�𝜗,𝑚)⁄  ; 

 

Hence we need to define a representative value for the Strouhal number taking 𝑆𝑡 ≅ 0.1, according to the 

values reported in the previous figure for different sectional shape. 

Notice that the most important parameter is the deck sectional aspect ratio; in fact, it can vary in a large 

range and then it can affect strongly the results. 

 

Before proceeding, we want to stress the fact that in order to model the self-limiting behaviour of vortex 

induced vibrations would be necessary to slightly modify the simple formula proposed for vortex-shedding 

forcing. What is generally done is to introduce a damping term dependent on the vibration itself, like a Van 

der Pol oscillator [30]. 

 

 𝐹𝐿 =
1

2
∙ 𝜌𝑎 ∙ 𝑈

2 ∙ 𝐵 ∙ {�̃� ∙ 𝐻0(�̃�) 𝑈⁄ ∙
𝑑�̃�𝑑

𝑑𝜏
+ 𝐶𝐿 ∙ sin (𝜔𝑆𝑡 ∙ 𝑡)} ; 

 

Where 𝐻0(�̃�) is the Flutter derivative, function of the reduced frequency, associate to the direct flexural 

damping. Since in the aeroelastic model we have already taken in account of it in the flutter formulation, we 

will not consider it twice. 

 

The goal now is to study the stability of the suspension bridge when it undergoes to dominant flexural 

motion. Hence we will proceed following the procedure used in the work by Herrmann and Hauger [29] 

 

 𝑧𝑛(𝑡) < 휀 ⇒ 𝑧𝑛
2(𝑡) ; 𝑧𝑛

3(𝑡)  ≅ 0 ; 

 

𝛾𝑚(𝑡) ≅ 0 ⇒ �̃�𝐿 = 𝐶𝐿(휃𝑑 = 0) 2𝜋⁄  ; 
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Notice that though dominant, flexural vibrations are anyway small, consequently non-linear terms are 

negligible and we can study the response of a single degree of freedom linear and damped oscillator under 

the action of external sinusoidal forcing. Whilst the fact that torsional oscillations are negligible allows us to 

take the lift coefficient corresponding to a zero angle of attack, that for the assumption of aligned wind flow, 

means null deck torsion. 

 

 𝑀𝑤,𝑛 ∙ �̈�𝑛 + 𝐶𝑤,𝑛 ∙ �̇�𝑛 + 𝐾𝑤,𝑛
(𝐿) ∙ 𝑧𝑛 = 𝛤0 ∙ ℎ̃𝑊𝑛 ∙ sin (�̃�𝑆𝑡 ∙ 𝜏) ; 

 

First, let’s study the homogeneous which solution is well known. 

 

 𝑧𝑛,𝑜 = 𝐶 ∙ exp (�̂�𝑤,𝑛 ∙ 𝜏) ∙ cos (�̂�𝑤,𝑛 ∙ 𝜏 + 𝜑𝑤,𝑛) ;  

 

 �̂�𝑤,𝑛 = − �̃�𝑤𝑤 2⁄  ; 

 

 �̂�𝑤,𝑛 = √�̃�𝑤,𝑛
2 − �̂�𝑤,𝑛

2 ; 

 

Where the constant amplitude and the phase lag can be define from initial conditions. Since we are looking 

for unstable conditions we can neglect the homogeneous term since it will always be damped down by 

passing of time. This is not true just if the wind speed is already so high that the Flutter onset has been already 

reached, and hence negative damping grant self-sustained oscillations. Since we know a priori that this is an 

unstable condition we will not consider it further. 

 

Hence the only term that will be taken in account is the particular integral, which can be determined simply 

passing to the complex domain taking in account also for a fictitious cosine forcing. 

Exploiting 𝐾𝑤,𝑛
(𝐿) = �̃�𝑤,𝑛

2
∙ 𝑀𝑤,𝑛 we get. 

 

 

{
  
 

  
 (�̈�𝑛,𝑝 + �̃�𝑤𝑤 ∙ �̇�𝑛,𝑝 + �̃�𝑤,𝑛

2
∙ 𝑧𝑛,𝑝 = 𝛤0 𝑀𝑤,𝑛⁄ ∙ ℎ̃𝑊𝑛 ∙ sin(�̃�𝑆𝑡 ∙ 𝜏)) ∙ 𝑖 +

(�̈�𝑛,𝑝 + �̃�𝑤𝑤 ∙ �̇�𝑛,𝑝 + �̃�𝑤,𝑛
2
∙ 𝑠𝑛,𝑝 = 𝛤0 𝑀𝑤,𝑛⁄ ∙ ℎ̃𝑊𝑛 ∙ cos(�̃�𝑆𝑡 ∙ 𝜏)) =

= (�̈�𝑛,𝑝 + �̃�𝑤𝑤 ∙ �̇�𝑛,𝑝 + �̃�𝑤,𝑛
2
∙ 𝑦𝑛,𝑝 = 𝛤0 𝑀𝑤,𝑛⁄ ∙ ℎ̃𝑊𝑛 ∙ exp(𝑖 ∙ �̃�𝑆𝑡 ∙ 𝜏))}

  
 

  
 

 ; 

 

Hence assume the particular integral in the following form. 

 

 𝑦𝑛,𝑝 = 𝛤0 𝑀𝑤,𝑛⁄ ∙ ℎ̃𝑊𝑛 ∙ 𝐻(𝛿) ∙ exp(𝑖 ∙ �̃�𝑆𝑡 ∙ 𝜏) ; 

 

 𝛿 = �̃�𝑆𝑡 �̃�𝑤,𝑛⁄  ; 

 

Substituting we get the so-called complex dynamic amplification factor. 

 

 𝐻(𝛿) = {�̃�𝑤,𝑛
2
∙ (1 − 𝛿2 + 𝑖 ∙ (�̃�𝑤𝑤 �̃�𝑤,𝑛⁄ ) ∙ 𝛿)}

−1
= |𝐻(𝛿)| ∙ exp (−𝑖 ∙ 𝜑) ; 
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Since the direct flexural damping is a complex parameter because of Theodorsen function dependence, we 

need to split it into its real and imaginary component in order to define the modulus and the phase lag of 

𝐻(𝛿). 

 |𝐻(𝛿)| = {�̃�𝑤,𝑛
2
∙ √(1 − 𝛿2 − (�̃�𝑤𝑤

𝐼 �̃�𝑤,𝑛⁄ ) ∙ 𝛿)
2
+ ((�̃�𝑤𝑤

𝑅 �̃�𝑤,𝑛⁄ ) ∙ 𝛿)
2
}

−1

 ; 

 

 𝑡𝑔(𝜑) = (�̃�𝑤𝑤
𝑅 �̃�𝑤,𝑛⁄ ) ∙ 𝛿 (1 − 𝛿2 − (�̃�𝑤𝑤

𝐼 �̃�𝑤,𝑛⁄ ) ∙ 𝛿)⁄  ; 

 

Notice that thanks to damping the oscillation amplitudes are finite also in correspondence of linear primary 

resonance, while in same conditions the phase lag is exactly equal to 𝜋 2⁄ . 

But the most important thing is that actually this formulation will not take in account the wind effect on the 

primary linear resonance since the dynamic amplification factor depends upon �̃�𝑤,𝑛. 

 

Then in order to consider just the actual external sinusoidal forcing we need to take just the imaginary part 

of 𝑦𝑛,𝑝. 

 

 𝑧𝑛,𝑝 = 𝐼𝑚(𝑦𝑛,𝑝) = 𝑧𝑛,0 ∙ sin(�̃�𝑆𝑡 ∙ 𝜏 − 𝜑) ; 

 

 𝑧𝑛,0 = 𝛤0 ∙ ℎ̃𝑊𝑛 ∙ |𝐻(𝛿)| 𝑀𝑤,𝑛⁄  ; 

 

Since vortex-shedding is a self-limited phenomenon in the following numerical analysis we will assume as 

upper bound for 𝑧𝑛,0 = 0.2 ∙ 𝐷 𝑓⁄ = 0.2 ∙ �̃� ≅ 0.009. 

 

Having defined the perturbation in terms of amplitudes we can use it to perturb the complete system, 

assuming it small enough but not vanishing in order to neglect just the non-linear perturbed terms. 

 

 𝑧𝑛(𝑡) = 𝑧𝑛,0 ∙ sin(�̃�𝑆𝑡 ∙ 𝜏 − 𝜑) + 𝑧𝑃,𝑛(𝑡)   𝑤𝑖𝑡ℎ   𝑧𝑃,𝑛(𝑡) < 휀 ; 

 

 𝛾𝑚(𝑡) = 𝛾𝑃,𝑚(𝑡)   𝑤𝑖𝑡ℎ   𝛾𝑃,𝑚(𝑡) < 휀 ; 

 

Substituting in the complete non-linear aeroelastic system of equations of motion we get the following 

Variational System of equations. 

 

 𝑀𝑤,𝑛 ∙ �̈�𝑃,𝑛 + 𝐶𝑤,𝑛 ∙ �̇�𝑃,𝑛 + 𝐶𝑤𝜗,𝑛𝑚 ∙ �̇�𝑃,𝑚 + 𝐾𝑤,𝑛
(𝐿) ∙ 𝑧𝑃,𝑛 + 𝐾𝑤𝜗,𝑛𝑚

(𝐿) ∙ 𝛾𝑃,𝑚 = 0 ; 

 

 𝐽𝜗,𝑚 ∙ �̈�𝑃,𝑚 + 𝐶𝜗,𝑚 ∙ �̇�𝑃,𝑚 + 𝐶𝜗𝑤,𝑚𝑛 ∙ �̇�𝑃,𝑛 + {𝐾𝜗,𝑚
(𝐿) + 𝐾𝜗𝑤,𝑚𝑛

(𝑄) ∙ 𝑧𝑛,0 ∙ sin(�̃�𝑆𝑡 ∙ 𝜏 − 𝜑)} ∙ 𝛾𝑃,𝑚 = 0 ; 

 

Notice that the fact that the second order term of torsional motion is dependent on both linear motion while 

the flexural one has the two quadratic contributions in two independent terms, make possible that a small 

but not vanishing vertical perturbation influences the torsional response. In fact any residual of the periodic 

perturbation vanishes in the flexural equation of motion since its contributions has been already satisfied. 

This kind of phenomena are known as Parametric excitation. 

 

We have stressed many times the fact that being a self-limiting phenomenon, vortex shedding is able to 

induce just small flexural perturbations. However, due to the fact that their effects on torsional vibrations is 

amplified by the quadratic coupled modal stiffness 𝐾𝜗𝑤,𝑚𝑛
(𝑄)  it will be of fundamental importance to 

understand its influence on the system response. 
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Consequently, we can say that in the design process will be useful whether is possible to tune the geometrical 

and mechanical properties of the suspension bridge in order to minimise that cross stiffness. 

 

Notice that the Variational Equations contains both the Aerodynamic (𝑧𝑛,0 = 0) and the Parametric (𝑈 = 0). 

Hence though it accounts for just the fundamental parameter associated to parametric excitation, being a 

simplification of the original complete non-linear coupled aeroelatic model, it’s able to catch both 

phenomena. 

 

Hence we obtain a system of two linear coupled second order differential equations with periodic coefficients 

that recall a generalised Hill’s equation and that can be solved exploiting the Floquet Theory previously 

treated. 

 

In order to proceed with numerical investigations we need to reduce the Hill’s system to the first order by a 

simple change of variables. Thence, let’s write it in matrix form. 

 

 𝑀 ∙ �̈� + 𝐶 ∙ �̇� + 𝐾 ∙ 𝑞 = 0 ; 

 

 𝑞 = {
𝑧𝑃,𝑛
𝛾𝑃,𝑚

} ; 

 

 𝑀 = {
𝑀𝑤,𝑛 0

0 𝐽𝜗,𝑚
} ; 

 

 𝐷 = {
𝐶𝑤,𝑛 𝐶𝑤𝜗,𝑛𝑚
𝐶𝜗𝑤,𝑚𝑛 𝐶𝜗,𝑚

} ; 

 

 𝐾 = {
𝐾𝑤,𝑛
(𝐿) 𝐾𝑤𝜗,𝑛𝑚

(𝐿)

0 𝐾𝜗,𝑚
(𝐿) + 𝐾𝜗𝑤,𝑚𝑛

(𝑄) ∙ 𝑧𝑛,0 ∙ sin(�̃�𝑆𝑡 ∙ 𝜏 − 𝜑)
} ; 

 

Then. 

 

 �̈� = −𝑀−1 ∙ 𝐷 ∙ �̇� − 𝑀−1 ∙ 𝐾 ∙ 𝑞 = 0 

 

Assuming. 

 

 𝑥 = {
𝑥1
𝑥2
}    𝑤ℎ𝑒𝑟𝑒   𝑥1 = 𝑞   𝑎𝑛𝑑   𝑥2 = �̇�1 ; 

 

Thence we get. 

 

 �̇� = 𝐽 ∙ 𝑥 ; 

 

Where we have introduce the Jacobian matrix, that from the previous treatment we know it is periodic of 

the same period of the periodic term, hence 𝑇 = 2𝜋. 

 

 𝐽 = {
0 𝐼

−𝑀−1 ∙ 𝐾 −𝑀−1 ∙ 𝐷
} ; 

 

The numerical analysis requires some simple steps. 
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First, we need to define the Monodromy matrix simply performing a numerical integration of the equations 

of motion over the period and take the value assumed by the oscillation amplitude and velocity in 

correspondence of 𝑡 = 𝑇. Since we need to assume proper initial conditions for both the velocity and the 

amplitude of both flexural and torsional oscillations we will assume unitary one by one so that the 

fundamental matrix at initial instant will be the unitary matrix 𝑋(0) = 𝐼 and we can exploit 𝐶 = 𝑋(𝑇). In this 

way the first column of the Monodromy matrix will be filled as follows. 

  

 𝐶 = 𝑋(𝑇) = {[𝑥(𝑇)]𝑧=1 [𝑥(𝑇)]𝛾=1 [𝑥(𝑇)]�̇�=1 [𝑥(𝑇)]�̇�=1} ; 

 

Then we need just to compute the eigenvalues of the Monodromy matrix in order to get the characteristic 

multipliers of the problem. 

 

Finally, we get stable conditions as long as the maximum absolute value of the characteristic roots is lower 

than one. Otherwise, at least one of the degree of freedom will diverge in time. 

 

In the following, we will comment some numerical result obtained in the form of stability maps. They allows 

us to distinguish in an easy and synthetic way stable from unstable regions. Each condition will be fully 

characterised by the circular frequency of vortex shedding 𝛺𝑉𝑆 and by a wind speed level. Notice that a priori 

these two will be completely separate in order to be able to catch unstable regions independently from any 

model able to link the two previous parameters. Only secondly we will introduce the Strouhal linear model 

enriched by the lock-in effect, in order to able to say under which conditions vortex shedding phenomenon 

is able to explain unstable conditions. 

 

Two model will be analyse. 

 

The first is called Structural one, since it accounts for geometrical and mechanical properties of the 

suspension bridge only. This preliminary analysis is useful in order to check if the non-linearities of the 

dynamic system are enough to find out resonance conditions different from the primary linear one. Hence in 

this model the term playing a fundamental role is 𝐾𝜗𝑤,𝑚𝑛
(𝑄)  since it’s the only one able to couple the equations 

of motion. In fact all damping and stiffening terms coming from aeroelastic effects will not be taken in 

account. 

 

On the other hand, we will refer to second one as to the Aeroelastic model, where both structural and 

aerodynamic parameters will be of relevance. The task of this model is to find out if and under which 

conditions, wind effect on suspension bridges, coupled with parametric resonance, is able to lead the 

structure to unstable conditions. Results will be of relevance only if the structure reaches those critical 

conditions in correspondence of a wind speed lower than Flutter one. 

 

Notice that to be rigorous we can deal with only external resonances since the system is driven by the 

external action of vortex shedding. However, since we want to study the stability of the perturbed system 

this external forcing does not appear directly in the equations of motion, but it introduces in the linear system 

a cross coupling periodic term linked to flexural vibrations. Hence regarding the perturbed system we are 

dealing with a structural model characterised by periodic coefficients, and the fact that periodicity is driven 

by an external excitation is of secondary importance. What really matters is to find out the amplitudes and 

the frequencies of vertical motion able to lead the system to unstable conditions. 

Consequently, we can talk indifferently about external or internal resonance since simply the first refers to 

the cause and the second to the effects of wind actions on the structure. 
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In both the model we will analyse different resonance conditions besides the linear primary one, such as 

subharmonic and superharmonic of order two for both the flexural and the torsional vibrations, and further  

combinational of sum and difference type. 

 

 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑙𝑖𝑛𝑒𝑎𝑟  ∶   𝛺𝑉𝑆 = 𝜔𝑖 ; 

 

 𝑠𝑢𝑏ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐  ∶   𝛺𝑉𝑆 = 2 ∙ 𝜔𝑖 ; 

 

 𝑠𝑢𝑝𝑒𝑟ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐  ∶   𝛺𝑉𝑆 = 𝜔𝑖 2⁄  ; 

 

 𝑐𝑜𝑚𝑏𝑖𝑎𝑛𝑡𝑖𝑜𝑛𝑎𝑙   𝑠𝑢𝑚  ∶   𝛺𝑉𝑆 = 𝜔𝑤 +𝜔𝜗 ; 

 

 𝑐𝑜𝑚𝑏𝑖𝑎𝑛𝑡𝑖𝑜𝑛𝑎𝑙   𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  ∶   𝛺𝑉𝑆 = |𝜔𝑤 −𝜔𝜗| ; 

 

We choose to consider just the second order type of internal resonance since we want to catch just the most 

important and critical conditions near the classical primary linear resonance. 

We know that all the other kind of resonances are feasible only in non-linear systems, but we have stressed 

many times that the perturbed model is linear. This is true but non-linearities are hidden inside the periodic 

coupling term where flexural vibrations appear. 

 

Let’s analyse some numerical results starting from the Structural model. 

 

 
Figure 6.9_Stability map for the Structural model with slender deck section. 

 

As we can see, the Structural model is able to catch the main resonance of the system. In fact, besides the 

primary linear flexural one the system undergoes in resonance also as the vertical motion frequency is near 

the torsional one. This kind of phenomenon is called internal resonance of kind 1:1. Further is able to catch 

also the so called 2:1 internal resonance as the flexural motion is characterised by a frequency that doubles 

the torsional one. On the other hand, the effect of other kind of resonances are less evident.  
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Notice that the presence of internal resonances reduces drastically the critical wind speed level that in the 

case of the simple structural model alone is represented by the torsional divergence speed. 

But, it’s evident that in this case the vortex-shedding phenomenon seems not be able to explain any of the 

previous unstable conditions. In fact the linear model proposed by Strouhal never reaches the critical 

conditions in terms of frequencies and amplitudes (wind speed) that lead the system response to diverge in 

time. 

 

As already mentioned in the definition of the dimensionless Strouhal circular frequency plays a relevant role 

the deck sectional aspect ratio. In fact it strongly modifies the slope of the Strouhal curve, that consequently 

under certain geometrical conditions can enter unstable regions. 

This means that in the design process is fundamental to take in consideration this fact, since the choice of 

the sectional dimensions of the deck will be of fundamental importance for the dynamic stability of the 

overall structure. 

 

As we can see reducing the aspect ratio down to �̃� = 3 the vortex shedding phenomenon is able to explain 

the main resonant unstable conditions that are the flexural primary linear one and the second order 

subharmonic internal torsional one. 

 

 
Figure 6.10_Stability map for the Structural Model with bluff deck section. 

 

Hence, we can conclude that very bluff deck sections can be useful to increase torsional and flexural stiffness 

of the suspension bridge but lead the structure to be more susceptible to instabilities due to vortex shedding. 
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Let’s now analyse the Aeroelastic model accounting for the fluid-structure interaction effects on the 

dynamic stability if the system. 

 

 
Figure 6.11_ Stability map for the Aeroelastic Model with slender deck section. 

As already mentioned in the Flutter analysis, the fluid-structure interaction makes the frequencies being 

dependent on the actual wind speed level, consequently we see curved lines representing the main internal 

or external resonance conditions. 

Further and more important is that the wind-structure interaction enlarges unstable regions. This valid also 

for wind speed very much lower than the one required to reach the critical Flutter condition. Hence, the 

interaction between Aeroelasticity and Parametric resonance can lead to unexpected unstable conditions. 

 

Notice that though the unstable region is more merged than in the pure structural model, we still recognise 

the main resonances, which are the linear primary and the 2:1 internal ones. The presence of wind not only 

obscures the stability maps but also it reduces and increases respectively the critical wind speed required to 

reach the torsional 2:1 internal and the flexural 1:1 external resonances. In fact as we can see the Flutter 

instability is of torsional kind. 

 

Another interesting feature is that near the curve of combinational resonance of difference type we get 

always a larger stable region. In fact as reported also in different articles [41], the so called anti-parametric 

resonance with respect to the parametric and additive parametric resonances has a stabilising effect on the 

dynamic response of the system. This is due primary to the fact that this phenomenon is able to increase 

significantly the damping of the system. This particular property can be exploit trying to find the optimal 

geometrical and mechanical parameters able to maximise this intrinsic damping effect. The physical 

explanation of this phenomenon hides behind the fact that as parametric excitation occur there is energy 

transfer between the two main interacting modes. Consequently, as higher order modes are characterised 

by higher damping ratios, then the system is able to dissipate faster that energy with respect to the system 

without Parametric excitation. Notice that we are dealing with an energetic exchange; hence, being the 

energy transfer not unidirectional we should observe modulated vibrations. 
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As we can see as long as the deck is slender enough vortex shedding is not sufficient to bring the structure to 

unstable conditions, while as the deck sectional aspect ratio reduces, the dynamic response diverges as the 

wind speed reaches levels that are much lower than those expected by the only Flutter analysis. 

 

 
Figure 6.12_ Stability map for the Aeroelastic Model with bluff deck section. 

 

Now we are able to transform the previous information in terms of flexural antinodal displacements by 

means the singles degree of freedom oscillator formulation. In fact once we define the wind speed and the 

shedding frequency we know respectively the forcing term 𝛤0 and the complex dynamic amplification factor 

𝐻(𝛿). 

 

 
Figure 6.13_ Unstable antinodal displacements for the Structural Model with slender deck section. 
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Figure 6.14_ Unstable antinodal displacements for the Aeroelastic Model with slender deck section. 

 

We recognise immediately the usual shape perfomed by any single dof forced oscillator. We must remind 

that it’s also damped only in the latter figure, where we reach limited oscillations in the case of primary linear 

resonance. In fact, it’s evident that the amplitudes reached in the lock-in interval are much higher when 

neglecting aerodynamic damping. 

Anyway, the total damping is never high enough to limit flexural oscillations to be lower than the cable’s 

initial sag. 

On the contrary according to Strouhal conditions we should reach amplitudes that are always lower than the 

more conventional 10% with respect 𝑓. 
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Is more interesting to analyse the results associate to bluff decks where unstable conditions are feasible, 

focusing on amplitudes up to 0.1 ∙ 𝑓. 

 

 
Figure 6.15_ Unstable antinodal displacements for the Structural Model with bluff deck section. 

 

 

Figure 6.16_ Unstable antinodal displacements for the Aeroelastic Model with bluff deck section. 

 

First notice that regarding amplitudes we have a lower bound representing the flexural motion in 

correspondence of torsional Divergence and Flutter respectively for the Structural and the Aeroelastic model. 
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What is important to underline is that according to Strohual linear law, only in correspondence of 2:1 internal 

resonances unstable conditions are feasible for both the models. In fact, all the other situations require too 

much high antinodal displacements that are difficult to observe. 

 

Secondly, it’s evident that the critical amplitudes just obtained are just slightly different with respect to the 

Divergence or Flutter ones. This simply remind us that dealing with parametric excitation the amplitudes of 

the forcing mode are fundamental but not sufficient to exploit unstable conditions. In fact, a proper 

frequency of oscillation is required to the flexural motion in order to make the system divergent in time. 

 

Notice that the critical amplitudes obtained are small enough to fulfil approximately the empirical limit 

threshold 𝑧𝑚𝑎𝑥 = 0.2 ∙ 𝐷 𝑓⁄ ≅ 0.009 reminding us that vortex-shedding is a self-limiting phenomenon. 

 

Further we can observe that for the actual example analyse the amplitudes are low enough that hangers 

remains taut. In fact the antinodal displacement induced by vortex-shedding does not overcome the one 

required for slackening initiation of about 0.105 ∙ 𝑓. Hence the stiffness contribution coming from the cable 

system has to be taken in account on the overall length of the suspension bridge. 

 
6.5 Application to the Tacoma Narrow Bridge 

 

The collapse of the central span of the original Tacoma suspension bridge on 7 November 1940 has been 
studied in many papers. The first one has a thorough report (the ‘‘Carmody Report’’), written by a 
governmental committee consisting of O.H. Ammann, T. Von Karman, and G.B. Woodruff in 1941 [52]. 
 
Clark Eldridge, a bridge engineer for the Washington State Toll Bridge Authority, proposed a design in 1938. 
The central span was 853.4m long and 11.9m wide, with two lanes. A truss below the roadway was 7.6m 
deep to stiffen the deck against vertical, lateral, and torsional displacements. The design was submitted to 
the US Public Works Authority (PWA), which was to provide a grant for 45 percent of the cost, with the 
remainder to be borrowed from the Reconstruction Finance Corporation and paid back from tolls. The 
estimated cost was $11 million. The PWA wanted to lower the cost, and a well-known consultant, Leon 
Moisseiff of New York, was hired. He replaced the truss in Eldridge’s design with two vertical (stiffening) 
silicon-steel plate girders along the sides, extending 1.22m above and below the roadway. Stringers and 
laterals with a chevron (K) configuration were placed below the deck. The new estimated cost was $6.4 
million. The Washington State engineers accepted the new deck so that they could get a bridge over the 
Tacoma Narrows. 
As an aside, a replacement bridge was built on the site 10 years after the collapse, for $14 million. It has four 
lanes. The deck is 18.3m wide and 10.1m  deep, with a stiffening truss below the roadway and with three 
sets of diagonal shock absorbers on each side at midspan. An adjacent bridge with three lanes opened in 
2007, at a cost of $849 million. 
 
The  original Tacoma suspension bridge was opened on 1 July 1940 and since the opening day vertical 
oscillations appeared due to lateral winds whose speed reached more than 22m/s. In those cases the 
amplitude ranges from 0.4m up to 0.76m [26]. Those vertical oscillations were not considered dangerous and 
they died away due damping forces when the velocity of wind dropped down. On 7 November 1940 the wind 
speed of 19 m/s was measured. The motion of the deck before 10 a.m. was vertical with an amplitude not 
more than 0.5 m. The frequency of the motion was 36–38 cycles per minute, which was significantly higher 
than previously measured frequencies. Around 10 a.m. the motion of the central span switched into a 
torsional mode with a single nod at the midspan. The torsional oscillations appeared after the loosening of 
the midspan cable band on one main cable. The initial frequency was 14 cycles per minute, but after a short 
time it decreased to 12 cycles per minute, perhaps due to some damage within the deck. 
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The motion of the central span changed form during the subsequent hour, but it was primarily a one-nodded 
torsional oscillation. The maximum twist angle was about 35° and the corresponding maximum vertical 
amplitude was about 4.3 m. The bridge collapsed at 11:10 a.m. and the central span fell into the Tacoma 
Narrows. From the parameters of the original Tacoma bridge [40,50] it follows that the hangers are 
sufficiently stiff to be considered inextensible in tension and completely slack in compression. 
 
There have been presented many theories discussing reasons which led to the collapse. The influence of 

aerodynamic forces has been intensively studied together with some nonlinear phenomena connected with 

the construction of suspension bridges, namely the nonlinearity of cable systems. Scanlan’s approach has 

resulted in an estimate of the critical flutter velocity for the Tacoma Narrows bridge of approximately 20 m/s 

[51], which is approximately the wind speed measured on the actual bridge on 7 November 1940. 

 

In the present work we want to consider not only the nonlinearities introduced by the cable system and the 

ones coming from wind action, but also the effects of parametric flexural excitation of the bridge. 

 

From the available data of the structure [40,50] we can define first the fundamental dimensionless 

parameters entering in the governing equation of motion. 

 

𝜆𝐿
2 = 168.3  

 

𝜒2 = 0.3  
 

𝜇2 = 3.8 ∙ 10−4  

 

𝛽2 = 1.2 ∙ 10−4  

 

With these values we are able to completely define the eigen-properties of the bridge. The ones of interest 

are the circular frequencies associated to the fifth symmetric flexural mode and to the first skew-symmetric 

torsional one. In fact just before collapse the bridge oscillates according to a dominant flexural motion 

characterised by 8 internal nodes that is associated to a fifth order symmetric mode, and once the snap 

occurs, torsional oscillations of a central one node mode appears. 

 

�̃�𝑤,5 = 32.315  

 

�̃�𝑡,1 = 9.187  

 

By means of the definition given in Chapter 1 for the dimensionless circular eigen-frequency, we are able to 

define the frequencies associated to the modes of interest. 

 

𝑓𝑤,5 = 0.681 𝐻𝑧  

 

𝑓𝑡,1 = 0.194 𝐻𝑧  

 

Comparing the numerical results with those observed during the collapse [26,51,52,53] we can state that the 

flexural frequency just computed is higher than the measured one (of about 0.617 Hz) whilst the computed 

torsional frequency is slightly lower than the one observed (about 1.94 Hz). The reason is that the proposed 

model neglects the contribution coming from the motion of pylons assumed to be perfectly rigid and the 

ones coming from the hangers for which a tenso-rigid constitutive model applies , both make the structure 
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stiffer in the flexural and torsional direction. On the other hand the assumption of perfectly hinged ends 

neglects the stiffening contribution coming from cables inertia and mainly from the two side spans. 

Consequently we can state that on the flexural motion the combination of all these contributions makes the 

response stiffer whilst the torsional one become softer. The reason hides behind the fact that practically the 

whole torsional stiffness comes from the two main cables, hence the stiffening contribution coming from 

hangers deformability is of less relevance than in the flexural response. 

 

Further we are able to estimate the critical wind speed level that is able to lead the structure both at torsional 

divergence and to Flutter onset. 

 

 𝑈𝐷 = 41.7 𝑚/𝑠 

 

Since we are looking for the lowest critical wind speed, we have performed the numerical analysis focusing 

on the interaction between similar modal shapes characterised by a low order. Hence we have concluded 

that the lowest threshold is given by the interaction between the first flexural and torsional skew-symmetric 

modes. 

 

 𝑈𝐹 = 27.6 𝑚/𝑠  

 

The results obtained are in accordance with those obtained numerically (𝑈𝐹 = 20 𝑚/𝑠) by a recent (2004) 

study of Scanlan [20,51] but not with the experimental ones by Farquhardson [53] in 1954 on a full model 

1:50 scale dynamic wind tunnel test (𝑈𝐹 = 7.1 𝑚/𝑠). 

 

Finally we can focus on the stability conditions analysing the stability map associated to the aeroelastic model 

for the TNB. In order to compare numerical results with those measured during the collapse we need to take 

in consideration the fifth order symmetric flexural mode, characterising the structure just before the sudden 

snap condition, and the first order skew-symmetric torsional one, leading the structure to collapse. 

 

 
Figure 6.17_ Stability map for the Aeroelastic Model of the Tacoma Narrow Bridge. 
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First of all we should notice that the interaction between these two modes alone is not able to lead the 

structure to Flutter onset before the static Divergence condition occurs since the modal shapes are too much 

different. Secondly we notice immediately that the torsional frequencies are lower than the flexural one due 

to the fact that are associated to modes of the first and of the fifth order, respectively. 

 

We have not reported the figure associated to the only structural model since the absence of aeroelastic 

effects preclude the possibility of appearance of unstable conditions in the wind speed range below the static 

divergence limit. 

 

According to the Strouhal model as vortex shedding frequencies reaches the one proper of the flexural 

motion of the bridge, the first unstable condition occurs. This does not necessarily mean that lock-in 

phenomenon occurs since generally, for suspension bridges and all heavy bodies, is the structure itself that 

governs the vortex shedding frequency. Hence we can interpret the result saying that as the structure excited 

by vortex shedding vibrates according to the fifth order flexural symmetric mode, the response diverges in 

time due to the internal parametric interaction with the first order skew-symmetric torsional mode. 

However what really makes evident the strength of the interaction between aeroelastic effects and internal 

parametric excitation is the critical wind speed necessary for the onset of unstable conditions. 

 

𝑈𝑐𝑟 = 0.4 ∙ 𝑈𝐷 = 16.7 𝑚/𝑠  

 

As already noticed in the previous paragraph, accounting for both the aeroelastic and parametric excitation 

phenomena a drastic reduction of the critical wind speed occurs. In this particular case the reduction is about 

the 40%. 

We can say that the numerical results we have just found for the TNB are reasonable according to the onset 

registered just before collapse when the wind blow approximately to 19m/s. 

 

Let’s now focus on the vertical antinode displacements necessary for the onset of unstable conditions. 

 

 
Figure 6.18_ Unstable antinodal displacements for the Tacoma Narrow Bridge. 
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First notice that, in correspondence of the lock-in point, the unstable antinode displacement is about 0.775% 

(54cm) the initial cables sag. This is an important data since allows us to state that the hangers does not 

undergoes to slackening conditions being the initiation threshold for the fifth order flexural symmetric mode 

equal to 1.033% (73cm) the initial sag. Consequently we can avoid to take in consideration any stiffness 

reduction due to slackening of hangers and compute all the modal quantities integrating all over the length 

of the suspension bridge. 

Again concerning the comparison with real phenomenon we can state that effectively during collapse of the 

TNB in the central span no hangers seems to slack. Further just before the bridge motion snaps to the 

dominant torsional motion, vertical oscillations of about 0.5m were observed, very similarly to those just 

determined. 
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7. Conclusion 

 
In this work, a non-linear dynamic model of a suspension bridge is devised, with the purpose of providing a 
unified framework for the study of aeroelastic and internal parametric resonance instabilities. 
 
An initial insight into cables statics makes possible to detect the main relevant terms governing their 
elongation and stiffening behaviour. This makes possible to state, first, that only considering higher than one 
half-wave number would be necessary to consider both the linear and the quadratic contribution; second, 
that neglecting the cable’s slope in the definition of its curvature we will introduce an overestimation of the 
overall elongation, higher as the modal order increases; and finally as the order of modal shapes increases 
the total elongation of cables reduces drastically. 
Following the classical Deflection Theory, it has been possible to write the nonlinear static flexural response 
of a suspension bridge. The next step has consisted in the generalization of the displacement field in order 
to account for the torsional response of the deck-cables system. Hence by means of variational formulation 
we achieve the self-adjoin system of two equations of motion. The presence of quadratic and cubic nonlinear 
terms make the equations coupled. Once the dimensionless equations governing the motion of the bridge 
have been determined, we have been able to perform a modal expansion necessary to define the analytical 
expression for both the eigen-frequencies and the modal shapes. We notice that the functions governing the 
eigen-value problem are define through trigonometric and hyperbolic tangents, characterised by vertical 
asymptotes, which makes difficult to recognise numerically the roots of the problem. In fact, as the order of 
modal shapes increases the eigen-roots tend to coalesce on these vertical asymptotes. Concerning modal 
shapes the fundamental term governing the distinction between symmetric and skew-symmetric 
configurations is the so-called stiffening term, which vanishes in the latter situation. Symmetric modes’ 
expression contains not only a trigonometric cosine function but also its hyperbolic counterpart. The latter 
term makes the spatial solution to diverge from the simpler sinusoidal shape introducing additional moving 
“upward” regions near the bridge span ends and reducing the amplitudes of the negative unitary antinode 
displacements, characterising also the skew-symmetric shapes. These on the contrary are define by a 
sinusoidal function, typically used for Fourier series expansions. 
A parametric analysis allows us to detect the main extreme structural conditions such as Flat Cables, 
Inextensible Cables, Flexible Deck, Rigid Deck, Free Warping Deck, Stiff Warping Deck and all the possible 
combinations. For each of them we have been able to define both the eigen-values (frequencies) and the 
eigen-vectors (modal shapes). From a bibliographical research we have been able to define typical values for 

the dimensionless terms governing the equations of motion such as  𝜆𝐿
2, 𝜇2, 𝛽2, 𝜒2. 

We have concluded that frequencies of vibrations increases more rapidly with the stiffness of the deck (in 
terms of 𝜇2 or 𝜒2, 𝛽2) as also the cables’ inextensibility does. On one hand there exist a critical value for deck 

stiffness below which the contribution coming from the cable system (𝜆𝐿
2) is so relevant that frequencies 

remains constant. This threshold reduces as the cables contribution or the modal order increases. On the 
other hand as the deck’s stiffness overcomes a certain critical value, the cables’ initial tension is no more able 
to affect the frequencies of vibrations of the system that coalesce to the ones characterising the case of Flat 
Cables. It has been possible to define a critical combination of cable inextensibility and deck stiffness able to 
lead the structure to switch from a symmetric to a skew-symmetric mode. This is known from literature as 
Cross Over Frequency (COF). 
Concerning the influence of structural parameters on modal shapes we can say that the bridge performs 

higher upward motions as the inextensibility of cables increases. In fact as 𝜆𝐿
2 grows, the cables govern the 

spatial response of the suspension bridges making deck flexibility less relevant. Further as the deck stiffness 
increases the antinodal upward and downward motions tends to get farther from the deck midspan. For each 
generic symmetric modal shape of order 𝑛, it’s possible to define some critical threshold beyond which it  
switches from a 2(𝑛 − 1)  to a 0, from a 0 to a 2(𝑛 − 1) and finally from a 2(𝑛 − 1)  to a 2𝑛 internal noded 
mode. Respectively the conditions to be enforced are the vanishing of the midspan upward antinode motion, 
of the span ends slope, and of the vanishing of the midspan displacement once again. 
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By analogy we called these conditions Cross Over Modes. We notice that for the first order mode the COF 
condition is coincident with the 2(𝑛 − 1)-to-0 and the 0-to-2(𝑛 − 1)  COM conditions, which appear in 
correspondence of the same structural conditions. Even more specifically for the case of Free Warping deck 
the COF and the unique COM condition of torsional mode 1 coalesce on the same curve. Whilst for any modal 
order we can say that both the COF and all the COM conditions holds for the same value of the tuning 

parameter 𝜆𝐿
2 only in correspondence of the Flexible Deck condition. Further it is possible to detect some 

critical values for the deck stiffness beyond which any level of the cables initial tension would be not sufficient 
in order to reach any of the COF or COM conditions. 
Finally performing the modal expansion of the linear damped-forced equations of motion and applying the 
well-known Duhamel convolution integral, we have been able to find out some modal participation 
parameters. The analysis of the one associated to antinodal displacements, relevant for the mode 
considered, confirm the fact that increasing or decreasing both the deck’ stiffness and the cables’ 
inextensibility would not be the better solution. There exist, in fact, an optimal combination of structural 
parameters able to minimise or maximise the modal displacement in certain position of interest. The same 
conclusion holds for the participation parameter associated to cables tension increment, although we can 
recognise that, as the modal order increases, higher levels of cables inextensibility are required to reach peak 
values of tension increment. 
 
The direct application of the Multiple-Scale perturbation technique allows us to study analytically the main 
features of the complete nonlinear system of coupled equations. The choice of applying the direct approach 
ensures the possibility to get analytical expressions for the so-called Quadratic Modes, that are no more than 
the second order correction of the classical linear ones. The same parametric analysis performed for the 
linear modes allows us to explain the well-known phenomenon of Travelling Waves, which can be observed 
from experimental and numerical testing on suspension bridges. In fact, we found that only under very 
special conditions the second order correction of linear skew-symmetric modal shapes is skew-symmetric 
too. In all the other, and more common, situations we get symmetric second order corrections to linear skew-
symmetric modes. Considering this and the fact that Quadratic Modes varies in time according to a multiple 
of the non non-linear frequency characterising the Linear Ones, superimposing the two contributions we 
would observe a higher amplitude of oscillation that moves along the bridge span. 
Then we focus on the particular case of the so-called mode-by-mode approach, neglecting interaction 
between modes of different order, for the special case of 1:1 internal resonance. Hence, we obtain the 
equations governing the time variation of amplitudes and phase lag for the flexural and the torsional motion. 
In order to simplify further the treatment we analyse just the steady state response in the case of perfectly 
isolated system, neglecting any source of dissipation (damping) or excitation (external forces). First we 
consider the case of dominant flexural or torsional motion. We conclude that the system can perform both 
a hardening and softening behaviour according to the sign of a parameters collecting all the information 
regarding the structural data. As already mentioned the structure will vibrates according to a nonlinear 
frequency that changes as the amplitudes of oscillations, with the risk of performing the well-known Jump 
Phenomenon. For flexural and torsional dominant motion we observe that the second order correction of 
modal shapes vibrates according to a frequency that doubles the nonlinear one associated to Linear Modes. 
Further, Quadratic contribution will not vibrates around the undeformed configuration, hence the overall 
motion would be drifted apart by a small quantity.  
Then analysing the more generic condition of interacting flexural and torsional modes we were able to write 
the equations of motion in terms of the so-called Energy Exchange Ratio, which allows us to simplify the 
analysis. Particular cases have been analysed; such as pure Phase Modulation that can be performed as long 
as amplitudes remains constant in time, leading to the so-called Entrainment phenomenon. On the contrary 
pure Amplitude Modulation is not feasible. Generally suspension bridges perform a combination of phase an 
amplitudes modulation typical of internal energetic exchange phenomena. 
Then find out the initial conditions required to get periodic solutions in the steady state response, concluding 
that periodicity is a very unstable condition, meaning that the system generally prefers internal energy 
exchange. 
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Focusing on initial conditions we observe that the system will oscillates between the initial condition and the 
so-called upper or lower aperiodic regime threshold. Then performing a parametric analysis of initial 
conditions we were able to define the initial energy required to get pure flexural or torsional motion, and the 
one that grants the periodic passage from one to the other. 
Finally we perform a simple stability analysis perturbing the equations of motion by means of a small amount 
of additional energy and phase lag. We obtain a general condition of stability. Consequently for those initial 
conditions for which that condition is not satisfied the response could be unstable but also indifferent to 
perturbations. Hence the results are not so satisfactory. 
 
A perfectly tenso-rigid constitutive model for hangers has been assumed in order to take into account the 
nonlinearities coming from the Slackening phenomenon. Starting from the Variational Formulation has been 
possible to reformulate the complete system of equations governing the response of the suspension bridges 
taking in account both the non-local, coming from the main cables, and the local, from the hangers, sources 
of nonlinearities. In order to take in consideration the fact that, in those regions where hangers undergoes 
to slackening, the cables stiffening contribution vanishes, we have introduce proper reduction parameters. 
We notice that only in the case of pure torsional vibration the slackening condition would be pointwise. 
Then, passing to the modal projection of equations, we focus on the slackening onset, writing down the 
analytical expression for the critical antinode amplitude required for both the flexural and torsional motion. 
Focusing on the more interesting case of pure flexural motion, we get the critical amplitudes that reduces 
drastically as the modal order increases. Whilst the effect of structural parameters is much more complicate, 
in fact there exist critical structural configuration able to minimise the slackening amplitude making the 
structure much more susceptible to that phenomenon. Generally those critical conditions require to have 
high level of cables inextensibility and of deck’ stiffness. 
The analysis of cables tension increment, associate to the antinode amplitude required to get first slackening 
of hangers, had initially the scope of neglecting those amplitudes leading to too high reduction of cables 
initial tension, with the risk of slackening of the cables system itself. However it unexpectedly reveals also 
that under particular structural condition the initiation of slackening would be located in correspondence of 
the pylons. Obviously this is not admissible being, there, the bridge supported directly by the vertical 
elements. Fortunately this particular condition will not be feasible with real life structural parameters. 
 
A deep insight in analytical aerodynamic field paves the way for the study of aeroelastic effects treated by 
means of the well-known Thodorsen Theory for an airfoil immersed in a potential flow. Wind forces introduce 
additional mass, damping and stiffness that not only couples the linear equations of motion but also led the 
system to be no more self-adjoin. In fact, it loses its symmetries both in damping and stiffness matrices, 
making the structure susceptible respectively to flutter instabilities and static divergence problems. 
The comparison between different approaches to the Flutter problem allows us to analyse the main 
differences. In fact, comparing the original formulation proposed by Theodorsen with the so-called Steady-
State we get a relevant reduction of the critical wind speed. The unique difference between the two 
formulations is that the latter one assume a priori a unitary value for the well-known Complex Theodorsen 
Function. Hence, results confirm the importance of maintaining the actual reduced frequency of the 
aeroelastic system, in order to account for the effects that the structural motion has on the surrounding flow. 
From the analysis of the frequencies and the damping of the aeroelastic system we notice that as the flexural 
and torsional frequencies of the structural system alone are increasingly different, the Flutter onset occurs 
for wind speed nearer to the Static Divergence condition. This fact can be explained considering that the 
higher is the similarity of the two main interacting modes the higher is the interaction, and then the lower is 
the Flutter critical speed. Further, the slope of the damping curve of the unstable branch (usually the torsional 
one) increases as the difference between flexural and torsional structural frequencies does; meaning that 
the onset of Flutter condition would be less possible, but as it occurs it would be increasingly violent and 
sudden. 
The fact that frequencies varies with the wind speed level allows us to find out so-called aeroelastic modal 
shapes. Anyway we conclude that the variation with respect to the structural frequencies and modal shapes 
is negligible up to the Flutter onset. 
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The non-linear system has been treated in the framework of Floquet stability theory, thus achieving the 
stability maps in terms of wind speed and frequency of vortex shedding. After a thorough examination of the 
achieved results, we can conclude saying that parametric resonance is a critical phenomenon that can be 
activated by vortex-shedding as far as the sectional shape factor is low enough. This should warn very much 
engineers, since a phenomenon like vortex-shedding is usually taken in consideration just concerning 
serviceability limit states. On the contrary, we have just found that under certain conditions such a 
phenomenon may lead to very strong and critical unstable conditions in correspondence of wind speed that 
can be considered safe with respect to classical static divergence or dynamic flutter instabilities. 
Finally, the classical application to the Tacoma Narrow Bridges is performed considering the interaction 
between the fifth flexural symmetric mode and the first torsional skew-symmetric one. Results in terms of 
frequencies match with those observed just before the collapse of the TNB. Whilst the lowest Flutter speed, 
obtained numerically by the skew-symmetric modes of first order, seems to overestimate the results 
obtained by experimental test on the full model scaled bridge. However, the stability map for the TNB confirm 
that parametric resonance and aeroelastic effects, together, lead the structural response to diverge in time 
in correspondence of wind speed level that is considerably lower than flutter speed. Further the threshold 
obtained numerically seems to be comparable to that measured during the collapse, both in terms of wind 
speed level and flexural amplitudes. 
 
The present study can be improved accounting for the possible slackening of vertical hangers directly in the 

code written to construct the stability maps, which may introduce an additional non-linearity to the system. 

In fact, the structural model considered herein is based on perfectly bilateral behaviour of hangers, so that 

the deck displacement parameters are univocally connected to the cable displacements. In the presence of 

large upward displacement, slackening may occur, thus leading to a loss of stiffness for the whole system. In 

spite of this limitation, the model still provides valid results: in fact in the cases analysed the unstable 

behaviour corresponds to displacements that are lower than the ones necessary for slackening initiation. In 

the future development of this work, when dealing with higher modes in the framework of multi modal 

approach, it will be unavoidable to introduce the loss of stiffness due to slackening, since as we have observed 

initiation will be much easily feasible. 
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